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Dedication

William L. McGuire, M.D.
(1937-1992)

Professsor of Medicine
Chief of Medical Oncology

University of Texas Health Science Center
San Antonio, Texas

Series Editor
Cancer Treatment

We dedicate this volume to the memory and achievements (both scientific
and academic) of one of the most influential cancer researchers of this
century, particularly relating to the biology and treatment of breast cancer.
He will be greatly missed both personally and professionally.



Table of Contents

List of Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

Preface. . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . .. . . . .. . . . . . . . . . . . . . . . . .. xv

1. Oncogenes and Tumor Suppressor Genes. . . . . . . . . . . . . . . . . . . . . . . 1
E. LIU AND B. WEISSMAN

2. Activated Oncogenes and Putative Tumor Suppressor Genes
Involved in Human Breast Cancers . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15
D. TRIPATHY AND c.c. BENZ

3. Oncogenes in Human Lung Cancer. . . . . . . . . . . . . . . .. . . . . . . . . . .. 61
R.A. KRATZKE, E. SHIMIZU, AND FJ. KAYE

4. Thyroid Growth Factors and Oncogenes. . . . . . . . . . . . . . . . . . . . . . .. 87
O.H. CLARK AND Q.-Y. DUH

5. Growth Regulation of Human Neuroblastoma 105
O.M. EL-BADRY AND M.A. ISRAEL

6. Kaposi Sarcoma: A Cytokine Responsive Neoplasia? 129
S.A. MILES

7. BCL-2: Physiology and Role in Neoplasia 141
A. BAGG ANDJ. COSSMAN

8. Malignant Transformation by abl and BCR/ABL 167
R.A. VAN ETTEN

9. The Biological and Clinical Roles of Increased Insulin Receptors in
Human Breast Cancer 193
R. VIGNERI AND I.D. GOLDFINE

10. The Role of Fibroblast Growth Factors and Related Oncogenes in
Tumor Growth 211
H. BREM AND M. KLAGSBRUN

vii



11. Transforming Growth Factor-alpha and its Role in Neoplastic
Progression 233
D.C. LEE, N.C. LUETTEKE, AND L.A. PETCH

12. Growth Regulation by Transforming Growth Factor-~. . . . . . . . . . .. 255
B.A. ARRICK AND R. DERYNCK

13. Signal Transduction by Receptor Tyrosine Kinases , 265
D.R. KAPLAN, A. PERKINS, AND O.K. MORRISON

14. Involvement of G Proteins, Cytoplasmic Calcium, Phospholipases,
Phospholipid-Derived Second Messengers, and Protein Kinases in
Signal Transduction from Mitogenic Cell Surface Receptors 281
R.A. FRYE

15. Fos and fun: Inducible Transcription Factors Regulating Growth of
Normal and Transformed Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 301
J. HOLT

16. DNA Binding by the myc Oncoproteins . . . . . . . . . . . . . . . . . . . . . . .. 313
G.J. KATO, D.S. WECHSLER, AND C.V. DANG

17. Normal and Malignant Growth Control by p53 327
C.A. FINLAY

18. Nucleoside Diphosphate Kinases, nm23, and Tumor Metastasis:
Possible Biochemical Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 345
A. GOLDEN, M. BENEDICT, A. SHEARN, N. KIMURA, A.
LEONE, L. LIOTTA, AND P.S. STEEG

19. Angiogenesis: A Mechanism by Which Oncogenes and
Tumor Suppressor Genes Regulate Tumorigenesis . . . . . . . . . . . . . .. 359
N. BOUCK

Index , 373

viii



List of contributors

(Primary authors in bold)

Bradley Arrick, M.D., Ph.D.
Section of Hematology and Oncology
Dartmouth-Hitchcock Medical Center
2 Maynard St.
Hanover, NH 03756
(603-646-5347)

Adam Bagg, M.D.
Department of Pathology
Georgetown University Medical Center
3900 Reservoir Rd., N.W.
Washington, DC 20007
(202-687-1704)

Mary Benedict
Laboratory of Pathology, N.C.1.
Bldg. 10, Room 2A33, N.I.H.
9000 Rockville Pike
Bethesda, MD 20892
(301-496-9753)

Christopher Benz, M.D.
Cancer Research Institute
University of California San Francisco
San Francisco, CA 94143-0128
(415-476-4149)

Noel P. Bouck, Ph.D.
Department of Microbiology-Immunology and Cancer Center
Northwestern University Medical School
303 East Chicago Ave.
Chicago, III 60611
(312-503-5934)

ix



Harold Brem, M.D.
Boston Children's Hospital
300 Longwood Avenue
Boston, MA 02115
(617-735-7503)

Orlo H. Clark, M.D.
Department of Surgery
U.C.S.F. - Mt. Zion Medical Center
1600 Divisadero St.
San Francisco, CA 94120
(415·885·7616)

Jeffrey Cossman, M.D.
Department of Pathology
Georgetown University Medical Center
3900 Reservoir Rd., N.W.
Washington, DC 20007
(202-687-1704)

Chi V. Dang, M.D., Ph.D.
Departments of Medicine, Cell Biology and Anatomy, and the Johns Hopkins
Oncology Center

The John Hopkins University School of Medicine
720 N. Rutland St. Ross 1012
Baltimore, MD 21205
(410-955-2773)

Rik Derynck, Ph.D.
Departments of Growth and Development and Anatomy
University of California, San Francisco
San Francisco, CA 94143·0640
(415·476·3018)

Quan-Yang Duh, M.D.
Department of Surgery
V.C.S.F. - Mt. Zion Medical Center
1600 Divisadero St.
San Francisco, CA 94120
(415-885-7616)

Osama EI-Badry
Training Center
Life Technologies, Inc.
20271 Goldenrod Lane, Suite 100
Germantown, MD 20876
(301-921-2245)

x



Cathy A. Finley, Ph.D.
Department of Molecular Biology
Lewis Thomas Lab
Princeton University
Washington Rd.
Princeton, NJ 08544-1014
(609-258-6785)

Roy A. Frye, M.D.
Department of Pathology
University of Pittsburgh
Pittsburgh, PA 15261
(412-647-6592)

Adam Golden
Laboratory of Pathology, N.C.I.
Bldg. 10, Room 2A33, N.I.H.
9000 Rockville Pike
Bethesda, MD 20892
(301-496-9753)

Ira Goldfine, M.D.
Division of Diabetes and Endocrine Research
U.C.S.F. - Mt. Zion Medical Center
1600 Divisadero St.
San Francisco, CA 94115
(415-885-7429)

Jeffrey Holt, M.D.
Department of Cell Biology and Pathology
Vanderbilt University
Nashville, TN 37232
(615-343-4730)

Mark Israel, M.D.
Preuss Laboratory, Department of Neurosurgery,
Brain Tumor Research Center
University of California San Francisco
San Francisco, CA 94143-0520
(415-476-6662)

David Kaplan, Ph.D.
ABL-Basic Research Program
N.C.I. - Frederick Cancer Research and Development Center
Frederick, MD 21702
(301-846-5497)

xi



Gregory J. Kato, M.D.
Department of Pediatrics and the Johns Hopkins Oncology Center
The John Hopkins University School of Medicine
720 N. Rutland St. Ross 1012
Baltimore, MD 21205
(410-955-2773)

Frederic J. Kaye, M.D.
N.C.1. - Navy Medical Oncology Branch
Bldg. 8, Room 5101
Naval Hospital
Bethesda, MD 20814
(301-496-0901)

Narimichi Kimura
Department of Molecular Biology
Tokyo Metropolitan Institute of Gerontology
Tokyo, Japan

Michael Klagsbrun, Ph.D.
Boston Children's Hospital
300 Longwood Avenue
Boston, MA 02115
(617-735-7503)

Robert A. Kratzke
N.C.1. - Navy Medical Oncology Branch
Bldg. 8, Room 5101
Naval Hospital
Bethesda, MD 20814
(301-496-0901 )

David Lee, Ph.D.
Lineberger Cancer Research Center
University of North Carolina of Chapel Hill
Chapel Hill, NC 27599-7295
(919-966-3036)

Alvaro Leone
Laboratory of Pathology, N.C.1.
Bldg. 10, Room 2A33, N.I.H.
9000 Rockville Pike
Bethesda, MD 20892
(301-496-9753)

xii



Lance A. Liotta
Laboratory of Pathology, N.C.I.
Bldg. 10, Room 2A33, N.I.H.
9000 Rockville Pike
Bethesda, MD 20892
(301-496-9753)

Edison Lin, M.D.
Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7295
(919-966-1283)

N.C. Luetteke
Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7295
(919-966-3036)

Steven A. Miles, M.D.
Department of Medicine (AIDS Center, Room 60-054)
University of California Los Angeles
650 Circle Dr. South
Los Angeles, CA 90024-1793
(213-206-8359)

Deborah Morrison
ABL - Basic Research Program
N.C.1. - Frederick Cancer Research and Development Center
Frederick, MD 21702
(301-846-5497)

Archibald Perkins
ABL - Basic Research Program
N.C.1. - Frederick Cancer Research and Development Center
Frederick, MD 21702
(301-846-5497)

L.A. Petch
Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7295
(919-966-3036)

Allen Shearn
Department of Biology
The Johns Hopkins University
Baltimore, MD

xiii



Eiji Shimizu
N.C.1. - Navy Medical Oncology Branch
Bldg. 8, Room 5101
Naval Hospital
Bethesda, MD 20814
(301-496-0901)

Patricia S. Steeg, Ph.D.
Laboratory of Pathology
Bldg. 10, Room 2A33, N.LH.
9000 Rockville Pike
Bethesda, MD 20892
(301-496-9753)

Debu Tripathy, M.D.
M-1282 Cancer Research Institute
University of California San Francisco
San Francisco, CA 94143-0128
(415-476-4149)

Richard A. Van Etten, M.D.
Department of Genetics
Center for Blood Research
Harvard Medical School
800 Huntington Avenue
Boston, MA 02115
(617-731-6470, ext. 332)

Riccardo Vigneri, M.D.
Cattedra di Endocrinologia del l'Universita di Catania
Ospedale Garibaldi, 95123
Catania, Italy

Daniel S. Wechsler, M.D., Ph.D.
Department of Pediatrics and the Johns Hopkins Oncology Center
The John Hopkins University School of Medicine
720 N. Rutland St. Ross 1012
Baltimore, MD 21205
(410-955-2773)

Bernard E. Weissman, Ph.D.
Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7295
(919-966-1283)

XIV



Preface

The first edition of Oncogenes (1989) focused on several of the better
known transforming mechanisms and surveyed a spectrum of solid tumors
and hematologic malignancies. Several of the nearly 50 known oncogenes
most relevant to human disease were examined. In contrast, this volume
presents a very different profile and balance of subject material that reflects
the rapidly changing field of molecular oncology and its newly emerging
concepts. Among the most important discoveries of the past 4 years are the
identification of nearly a dozen different tumor suppressor genes and the
finding of an entirely new class of cancer-causing gene (bcl-2) that acts by
inhibiting cell death rather than stimulating cell proliferation.
This edition begins by reviewing selected malignancies in which our

earlier search for clinically relevant oncogenes has led to more focused
studies on gain-of-function and loss-of-function genetic abnormalities, as
well as autocrine and paracrine growth factor loops known to regulate tumor
physiology and malignant cell behavior. Curiously, many of these genetic
and functional abnormalities are shared by several different tumor types and
are not uniformly present in all tumors of the same type. This observation
brings up molecular questions about the tissue-specific determinants that
underlie individual cancers and also gives added impetus to the suggestion
that molecular abnormalities (referred to as tumor markers) be included
among the histopathologic features used for clinical diagnosis and manage
ment. The remainder of the volume updates molecular mechanisms relating
to selected growth factor systems, oncogenes, and tumor suppressor genes
introduced earlier in the disease-oriented chapters. The topics are not meant
to be inclusive or to assign undue importance to any particular oncogenic
mechanism; rather, the selections serve to highlight the concept that growth
factors often mediate nonproliferative processes, such as tumor cell invasion
and metastasis, two critical functions that distinguish the behavior of cancers
from benign human tumors.
Together, these reviews try to convey the increasing fascination that

comes with a greater understanding of tumor physiology. They reveal, for
instance, that tumor cells can induce the secretion of paracrine growth
factors from nonmalignant tissues, thus usurping normal genetic programs

xv



reserved for fetal development or wound healing, such as those that provide
neovascularization for a malignant tissue colony. Optimistically, the
uncovering of these subverted intercellular mechanisms, as well as the con
stitutively stimulated intracellular signaling pathways associated with acti
vated oncogenes and mutated tumor suppressor genes, provide researchers
with many new targets for the development of more specific and less toxic
anticancer agents. As pointed out in the following chapters, a number of
these novel agents are already in clinical testing.

CHRISTOPHER C. BENZ
EDISON T. LIU

xvi



Oncogenes and Tumor Suppressor Genes in Human
Malignancies



1. Oncogenes and tumor suppressor genes

Edison Liu and Bernard Weissman

Introduction

Cancer-associated genes generally can be divided into 'dominant' acting
protooncogenes/oncogenes and 'recessive' tumor suppressor genes. Most
simply defined, protooncogenes are identified by a gain of function as
mutational damage occurs, whereas tumor suppressor genes contribute to
cancer by a loss of function. However, the pace of science leads us to
believe that these categories are arbitrary and, perhaps, functionally in
correct as the oncogenes are found to interact with tumor suppressor genes.
Nevertheless, because the details of the interaction are, to date, still
unclear, the current nosology of oncogenes and tumor suppressor genes will
be used for the sake of convenience. The ever increasing numbers of proto
oncogenes and tumor suppressor genes discovered and their complex inter
actions suggest that the challenge for cancer researchers lies in deciphering
the intricate genetic mosaic that characterizes cancer. This chapter will serve
as an overview for both types of cancer-associated genes and will include
specific examples that highlight important concepts in the field.

Oncogenes

Viral oncogenes were the first proof that endogenous genes can directly
cause cancer. Here, the mutations are engendered when normal cellular
genes (proto-oncogenes, designated by the c- prefix) are mutated through
the error-prone replicative process of the retrovirallife cycle. The end result
is a viral oncogene (v-one) that structurally resembles its normal cellular
counterpart but is functionally locked in a biochemically activated form.
Since cancer cells differ from normal cells mainly by the loss of normal
control mechanisms for cell growth and differentiation, it is not surprising
that all proto-oncogenes identified thus far are involved in different aspects
of these command and control processes.
Cells are triggered to change and grow by external signals; therefore,

proto-oncogenes and oncogenes figure heavily in signal transduction, a

Christopher C. Benz and Edison T. Liu (eds.), ONCOGENES AND TUMOR SUPPRESSOR GENES IN
HUMAN MALIGNANCIES. Copyright© 1993.
Kluwer Academic Publishers. Boston. All rights reserved. ISBN 0-7923-1960-5



process that converts external stimuli into intracellular signals that guide
cellular function. In the past 10-15 years of oncogene research, the identifi
cation of proto-oncogenes as specific components of signal transduction
pathways has been the major discovery in the field. These and other more
recent findings suggest that several new areas are emerging as important
topics for future investigations in molecular oncogenesis. They include the
deciphering of the intricate interactions between the various oncogene
classes involved in signal transduction, the study of the molecular mimicry
produced by chimeric transcription factors, and the recognition that onco
genesis may result from a block to programmed senescence.

Interactions between oncogene pathways

Proto-oncogenes interact with each other in different cellular functions
with astonishing consistency, suggesting that an understanding of these
oncogene networks may lead to a better grasp of the biochemical controls
of tumorigenesis. Intracellular injection of anti-ras neutralizing antibodies
revealed that transformation by certain membrane-associated oncogenes,
such as src, fms, and fes, were blocked by ras inactivation, but that trans
formation by two cytoplasmic oncogenes mos and raf was not affected [1].
These data and the finding that ras and myc are both required to transform
primary rodent fibroblasts were the first indications that oncogenes interact
to transform cells [2].
Since then, many nodes of interaction amongst the proto-oncogenes have

been discovered and with some intriguing surprises [reviewed in 3]. The
platelet-derived growth factor (PDGF) and its oncogenic homologue, v-sis,
function as a hormone; its receptor (PDGF-receptor) is a receptor tyrosine
kinase, of which c-erbB (a.k.a, epidermal growth factor receptor), HER
2lneu, and c-fms (a.k.a, the CSF1 receptor) are also members. These
receptor tyrosine kinases act to transduce external stimuli into intracellular
signals via tyrosine phosphorylation. Upon stimulation, the activated
receptor not only phosphorylates a variety of substrates (including itself) but
also functions as a potential point of aggregation for critical cellular com
ponents. One target for this enzymatic activity and topographical recruitment
is the ras-GTPase activating protein (GAP), which undergoes association
and phosphorylation with PDGFR after ligand activation [4,5]. GAP is the
important cofactor that stimulates the ras GTPase activity responsible for
converting the active ras form (ras-GTP) to the inactive ras-GDP form. ras
GTP complexes, stabilized either by nonhydrolyzable GTP analogs or by
oncogenic mutations in ras, function to signal a variety of cellular responses,
including proliferation and differentiation [6]. There is also evidence that at
least in one system, ras-GTP must interact with GAP for ras action to be
manifest [7]. Exactly how GAP is involved in PDGF-receptor signalling is
unclear, but these data suggest that GAP may function as one such node of
oncogene interaction.
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Also converging on this node centered on the ligand-activated PDGFR is
the c-raf protein product that coimmunoprecipitates with and is tyrosine
phosphorylated by PDGFR [8]. The phosphorylated form of raf activates
the serine/threonine kinase activity of the raf-1 protein product, which
in turn induces (by yet undefined mechanisms) the transcription of the
nuclear protooncogene c-fos [9]. Other regulatory proteins, such as
phosphatidylinositol 3-kinase (PtdIns 3-kinase) and PLC-y also undergo
ligand-dependent association with and phosphorylation by the PDGFR;
nevertheless, the association of several protooncogenes (PDGFR ~ GAP
and c-raf ~ c-fos) in a single signal transduction pathway suggests that
the oncogenic conversion of one gene may act in part by stimulating
downstream protooncogenes. These biochemical links also suggest that
pharmacologic intervention at a critical node of interaction may be devised
to block transformation by a series of upstream oncogenes. Thus, for
example, dominant inhibitory mutants or antisense constructs of raf-1 can
attenuate ras-induced transformation [10].
Though ras appears to play a central role in a variety of signalling

pathways, the linkage appears to be frequently through ras-associated
proteins, such as GAP. In human disease this GAP-ras interaction figures
prominently in neurofibromatosis I. The neurofibromatosis gene (NFl),
localized on chromosome 17q11.2, when sequenced, has been found to be
highly homologous to human GAP. Functional analysis confirmed that the
normal NFl gene product acts to stimulate ras-p21 GTPase activity (a GAP
activity) and complements the yeast GAP homolog, IRA2. Furthermore,
NFl binds with greater avidity to ras than ras-GAP itself, though its specific
activity is significantly lower [11,12]. These findings raise the intriguing
possibility that NFl functions to downregulate the active ras-GTP form and
that mutations in NFl, like those found in neurofibromatosis, may inactivate
its potentially important ras-suppressing effect.
These are but a few examples of the rich intracellular network involving

the various oncogenes that can start to explain the nuances in signal trans
duction and the complexities of cellular transformation. We anticipate that
further dissection of this network will lead us to a more unified theory of
growth, differentiation, and transformation.

Molecular mimicry: Chimeric transcription factors

Whereas transformation by receptor tyrosine kinases can be the result
of an excess of common signals, transformation by certain transcription
factors arises by misdirecting signals. An example of this is seen in the
genes involved in acute promyelocytic leukemia (APL). It has been long
known that APL is characterized by a consistent cytogenetic translocation
t(15;17)(q21;q11.2-12) [13]. Recently, using positional cloning techniques,
the precise breakpoint has been mapped to the retinoic acid receptor alpha
(RARA) gene on chromosome 17q [14,15]. The translocation results in a
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fusion between a large 3' portion of the RARA gene with the 5' portion of a
gene on chromosome 15 called PML.

PML is a putative zinc finger protein and a potential transcription
factor resembling other human transcription factors such as the human
recombinase-activating gene, RAG-1, and the repair gene RAD-18 of
Saccharomyces cerevisiae. The fusion protein places the presumed DNA
binding domain of PML with the ligand and DNA binding regions of RARA
[16]. In CAT assays using target constructs harboring various retinoic acid
response elements, the PML-RARA fusion protein was shown to function
as a transcriptional activator. However, the PML-RARA protein exhibited
a different transactivational profile compared to the native RARA protein
[17]. This suggests that the PML-RARA fusion protein misdirects the
retinoic acid signal to inappropriate DNA targets, a possible example of
molecular mimicry.
The excitement of these findings were compounded by the fact that,

clinically, the retinoic acid isomers, cis- and trans-retinoic acid, have been
shown to induce differentiation in API J cells and complete remissions in
APL cases [18,19]. Thus the molecular lesion in APL (i.e., in the retinoic
acid receptor) makes conceptual sense with the known clinical information
(i.e., response to retinoic acid derivatives). Exactly how retinoic acid
induces differentiation in leukemic cells harboring the PML-RARA fusion
protein is unclear; the most simple explanation may be that PML-RARA
functions as an oncogene that blocks the differentiation of myeloblasts at the
promyelocyte stage. Treatment by retinoic acid may work by binding the
fusion receptor, shunting the ligand-receptor complex to other sites, and
relieving the block in differentiation.
This concept has precedence in a related oncogene, v-erbA, which

contributes to avian erythroleukemias by blocking the normal cellular
counterpart, the thryoid hormone receptor [20]. Structurally, RARA and
c-erbA/thyroid hormone receptor (TR) are related. Now, evidence ties
c-erbAITR and RARs together biochemically in that a cell factor, the
retinoic acid X receptor ~ or RXR~, forms heterodimers with TRs and
RARs, and enhances the binding of both RARs and TRs to their respective
response elements [21]. This suggests that the RXRs may function as a node
of interaction between two differentiation systems (TRs and RARs) shown
to be operative in leukemogenesis. Again, the seemingly disparate onco
genic systems appear to coalesce to produce a more unified model of
transformation.
This molecular mimicry has also been found in other human cancers. Pre

B lymphoblastic leukemias with the t(l ;19) translocation result in fusion
between the transactivation region of the E2A transcription factor and the
DNA binding domain of the homeoprotein PBX [22]. Theoretically, in this
fusion the E2A transcriptional activation is misdirected by the PBX DNA
binding domain.
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Blocking programmed senescence: bcl-2

Until recently the study of molecular oncogenesis has concentrated on
growth and growth signals. On a kinetic level, however, the accumulation
of cancer cells can be accomplished by a decrease in cell loss as well
as by increased cellular proliferation. Current evidence suggests that the
abrogation of programmed cell death or apoptosis may be an important
concomitant to neoplastic transformation. The clearest example of an
oncogene involved in the apoptotic process is bcl-2.
Follicular lymphomas are characterized by a consistent translocation be

tween chromosomes 14 and 18 [t(14;18(q32;q21))]. The breakpoint on
chromosome 14 involves the IgH locus, and that on chromosome 18 involves
a novel oncogene, bcl-2 [23]. The novelty of bcl-2 was that the mechanism of
transformation by bcl-2 was initially a mystery. The translocation did not
perturb the structure of the oncoprotein but juxtaposed the IgH enhancer
with the translocated bcl-2 gene [24]. This suggested that overexpression
or inappropriate expression of bcl-2 in lymphoid cells leads to Iympho
magenesis. However, standard transformation assays in 3T3 cells did not
show any oncogenic activity with constructs overexpressing bcl-2. When
exogenous bcl-2 was expressed in primary bone marrow cells through
retroviral gene transfer or in transgenic mice, no early transformation was
seen, though polyclonal lymphocytes with a capacity for prolonged survival
in vitro dominated the transgenic lymph nodes [25].
The first indication that bcl-2 was involved in a transformation pathway

that differed from other oncogenes was when bcl-2 was introduced into IL-3
dependent lymphoid and myeloid cell lines. These cell lines require IL-3 for
growth in culture and will undergo apoptotic death when IL-3 is withdrawn.
Other oncogenes, such as v-fms or v-ab!, will induce factor-independent
growth in these cell lines (FDC-Pl and LyH7). bcl-2, however, does not
induce growth but, intriguingly, prevents FDC-Pl and LyH7 from under
going programmed cell death when IL-3 is withdrawn [26,27].
That bcl-2 is directly involved in apoptosis in vivo has been confirmed

by several lines of experimentation. bcl-2 expression appears to normally
rescue antigen-reactive B cells as part of the process of antibody affinity
maturation [28]. Immunohistochemical examination of normal lymphoid
tissues show that the bcl-2 protein is most abundantly expressed in the long
lived recirculating B cells of the follicular mantle [29] and not in centroblasts
and centrocytes that are destined to die. Lastly, the ability of the Epstein
Barr virus (EBV) to immortalize B cells may be due to its capacity to induce
bcl-2 expression [30]. Thus bcl-2 represents an oncogene with a novel
function: not the stimulation of proliferation, but the prevention of cell
death.
Though bcl-2 does not immediately transform cells, it contributes sig

nificantly to malignant conversion. Transgenic mice harboring bcl-2 will
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develop diffuse large cell lymphomas after long latency, and half of these
tumors will harbor rearrangements of the myc oncogene [31]. This inter
action between myc and bcl-2 have also been confirmed by the inevitable
emergence of early lymphomas in the progeny of matings between myc- and
bcl-2-bearing transgenic mice [32].

Tumor suppressor genes

Cancer behaves as a recessive genetic trait

In the early 1960s, a French group led by Drs. Barski and Cornefurt
observed the phenomenon of fusion of cultured mouse cells grown in the
laboratory [33]. Their studies showed that a 'hybrid' cell could arise that
contained all of the genetic information of two different cells. After the
development of efficient methods for this process, investigators could easily
produce hybrid cells from any two cell types. Using this technology, several
investigators produced hybrid cells between mouse or human cancer cells
and normal fibroblastic cells of the same species. They then determined
whether these hybrid cells had retained the malignant phenotype of the
cancer cell. Remarkably, all of the hybrid cell lines had lost the ability to
form tumors in vivo [34]. Thus, the results established the recessive genetic
nature of malignancy. Furthermore, these experiments suggested that normal
cells contain information that can modulate or abrogate the malignant
nature of cancer cells.

Retinoblastoma, the simple model for the development of human cancer

The occurrence of retinoblastoma in children was one of the first cancers
with a demonstrated familial inheritance. The tumor appears sporadically at
a rate of approximately 1 in every 10,000 live births. However, children of
individuals with the hereditary form of this disease have a 50-50 chance
of developing retinoblastoma. Initially, this disease was classified as a
dominantly inherited trait, in a similar manner to Huntington's disease or
Marfan's syndrome. However, in 1970 Dr. Alfred Knudson proposed that
retinoblastoma actually arose from a loss of genetic information, rather than
a single dominantly acting gene, such as an oncogene [35]. The basis for
this assertion lay in a statistical analysis of two facets of the disease. In
simplest terms, the majority of the patients who had the bilateral disease
(involvement of both eyes) also possessed the hereditary form, while none
of patients with nonhereditary retinoblastoma showed bilateral disease.
Furthermore, patients with the hereditary disease tended to develop tumors
at an earlier age than individuals with the other form. Dr. Knudson
hypothesized that retinoblasts must lose both copies of a recessively acting
or tumor-suppressor gene in order for retinoblastoma to occur. In non-
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hereditary or sporadic cases, two separate genetic events must occur for loss
of both copies of the gene, a relatively rare occurrence. However, in the
hereditary disease individuals would inherit one abnormal copy of this gene
from the affected parent. Thus, only a single mutation or deletion of the
remaining active gene would lead to the onset of this cancer.
From this initial observation in the early 1970s, a series of scientific

clues from many laboratories led to the isolation of the retinoblastoma
susceptibility gene (rb-1) in 1986. We will mention the highlights of this
search because they illustrate the elegance and excitement of a scientific
venture using the latest and best experimental tools. The first major piece
of information coincided with the development of chromosome banding
techniques that accurately identified each chromosome in human cells. A
cytogenetic study of retinoblastoma tumors revealed a specific deletion in a
small area of human chromosome 13 in about 25% of the cases [36]. The
information lost in this area of the chromosome presumably contained the
putative retinoblastoma susceptibility gene. Further support for this hypo
thesis came from the ohservation that the gene that codes for esterase D
also localized to this region of chromosome 13 [37]. A case study of
one patient with hereditary retinoblastoma showed that his somatic cells
possessed only 50% of the normal esterase D [38]. However, the tumor that
arose in this patient had lost all esterase D activity. The investigators
interpreted these results as demonstration of a close physical linkage be
tween the esterase D and the then putative rb-1 genes. This individual had
inherited a deletion of chromosome 13, including both the esterase D and
rb-1 genes from his affected parent. Subsequent loss of the remaining
normal rb-l gene and its closely linked esterase 0 gene led to the develop
ment of retinoblastoma.
Even with these results, a major problem remained with the proposed

location of the rb-1 gene on chromosome 13. As mentioned earlier, only
about 20-25% of the tumors showed visible deletions in chromosome 13.
Even in these cases, generally only one chromosome 13 possessed a detect
able deletion. Therefore, the majority of the retinoblastoma tumors dis
played two apparently normal human chromosome 13s. How could one
reconcile the required loss of genetic information on the chromosome
13 with the seeming apparently normal chromosomes in the tumors? The
answer to this conundrum came with the development of new molecular
markers, called restriction fragment length polymorphisms (RFLP). These
DNA sequences allowed investigators to distinguish between the two copies
of each human chromosome pair. When scientists compared these RFLP
markers between tumor and normal material from patients with retino
blastoma, they observed an exciting result. While normal cells possessed two
different copies of chromosome 13, presumably representing the contribu
tion of both parents, tumor material contained two copies of the same
chromosome [39]. Thus, during tumor progression the cancer cells had lost
one complete copy of chromosome 13 and had replaced it with a duplicate

7



copy of the remammg chromosome 13. If this remammg copy of the
chromosome carried an inactive rb-1 gene, the retinoblastoma cell now had
two inactive copies. Subsequent studies showed that this scenario occurs
frequently during the genesis of retinoblastoma.
By determining the frequency of loss of the molecular markers in multiple

tumor samples, investigators found several that lay close to the rb-1 gene.
Using these random sequences of DNA as starting points, Dr. Dryja's and
Dr. Weinberg's laboratories isolated the rb-1 gene based on its position on
chromosome 13 [40]. Further studies showed that this candidate rb-1 gene
was lost or mutated in all retinoblastoma cells [41].

Functions of tumor suppressor genes

What role does the rb-1 protein play in the normal function of cells?
The previous section discussed the involvement of proto-oncogenes in the
control of cellular proliferation. These proteins provide positive signals for
the onset and maintainence of cell growth. The rb-1 gene exerts a negative
effect on the cell cycle, i.e., it applies the 'brake' to the positive signals of
the oncogenes. One of the first clues to rb-1 function came from the field of
DNA tumor viruses. Several investigators had noted that the transforming
genes of these viruses bound to a variety of cellular host proteins. One of
these previously unidentified proteins had a molecular weight of approxi
mately 107 kDa, the same size as the rb-1 protein. Later, using specific
antisera, this rb-1 protein was found to be the same 107-kDa protein
that complexed with the viral transforming proteins SV40 large T antigen
and the adenovirus E1A protein [42,43]. Thus, these viral transforming
proteins inactivate rb-1 function by sequestering rb-1 in an inactive complex.
Normally, the rb-1 protein negatively regulates an important transcription
factor, E2F. This sequestration of the rb-l gene product presumably releases
this suppression of E2F, thus allowing promiscuous positive growth signal
ling [44,45]. Therefore, one can see how the loss of this gene in the retino
blasts may lead to uncontrolled cell division, a hallmark of the cancer cell.
Experimentally, restoration of a normal rb-1 gene to retinoblastoma cells
causes a potent inhibition of cell growth [46].
Another feature of oncogenes concerns their involvement in different

types of human cancers. Thus, activation of the ras family or amplification
of the neu oncogene may occur in many types of carcinomas. In a similar
fashion, loss of rb-l function arises in a variety of human cancers. One study
demonstrated a dramatic increase in cancer during young adulthood for
patients who had survived hereditary retinoblastoma as a child [47]. These
individuals displayed a restricted range of malignancies, including (in order
of frequency) osteosarcomas, fibrosarcomas, and skin carcinomas. Exami
nation of tumor material from these patients confirmed the inactivation of
the rb-l gene. Furthermore, many sporadic cases of these diseases also

8



contain losses of rb-l function. This involvement of the rb-l gene in
the genesis of multiple human cancers corresponds to the similar patterns
observed with oncogene activation.
The identification of tumor-suppressor genes has lagged behind the

studies on oncogenes due to the paucity of appropriate assays. However,
several research groups over the past 6 years have isolated approximately
10 tumor-suppressor genes. At least one of them, the p53 gene, func
tions as a regulator of the cell cycle [48]. Recently, Malkin et aI. have
demonstrated a loss of p53 activity in patients with the heritable Li
Fraumeni multicancer syndrome [49]. Interestingly, osteosarcoma, a tumor
that loses rb-l function, also shows deletion of the p53 gene. This seeming
requirement for loss of two genes might explain the later appearance in
childhood of osteoscarcoma compared to retinoblastoma. The development
of the latter disease may result from the inactivation of a single tumor
suppressor, rb-l, while the progression of osteoscarcoma may necessitate
the loss of both genes.

Tumor suppressor genes and oncogenes - Opposite sides of
the same coin?

The actions of oncogenes and tumor-suppressor genes intersect at other
points in the normal pathways of cell growth. A candidate gene has been
identified that is responsible for the onset of neurofibromatosis, a disease of
neural crest cells [50,51]. The gene, NFl, has been discussed previously and
codes for a large 250-kDa protein that contains a region similar to the
GTPase activating protein (GAP) [52]. The GAP protein interacts with the
ras gene family by stimulating the conversion of GTP to GDP by the ras p2l
proteins [53]. The amount of p2l proteins bound to GTP correlates with an
increase in cellular proliferation. Thus loss of the NFl gene could potentially
cause an increase in cell division by allowing an abundance of the active
GTP-p2l protein complex.
Wilms' tumor, a pediatric nephroblastoma, may also present in hereditary

or spontaneous forms with unilateral or bilateral involvement in a similar
fashion to retinoblastoma. Two laboratories simultaneously isolated one of
the genes important for the development of this disease, called WT-l [54].
Unlike the rb-l or p53genes, only a limited number of tissue types produce
the WT-l protein, including kidney and thymus. The WT-l gene codes for a
transcription factor similar to the PML gene, a protein that regulates activity
of other genes. However, WT-l exerts a negative effect on the transcription
of other cellular genes. Two of the proteins that WT-l controls are growth
factors. Thus, loss of WT-l synthesis leads to abnormally high levels of
proteins that stimulate proliferation. If this event occurs during fetal devel
opment, the overgrowth of these cells could provide the environment for the
appearance of cancer cells.
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Colorectal cancer - A model for oncogene/tumor suppressor gene interaction

Up to now we have viewed cancer as the product of single genetic events
in different tumor types. However, human malignancies, especially adult
carcinomas, arise from a series of oncogene perturbations and losses of
tumor suppressor genes. The best example of this complex pathway for
converting normal cells to malignant cells centers on recent studies on the
genesis of colorectal cancer. The appearance of this tumor involves at
least four different genetic alteractions, including loss of the p53 gene and
activation of the K-ras oncogene. In the past 2 years several groups have
characterized the role of two other tumor suppressor genes, DCC and APC,
in the progression of colorectal cancer [55,56]. We must emphasize that the
progression of this disease does not result from a defined temporal order of
these genetic changes. Rather, the critical facet of this disease centers on the
accumulation of these changes. Thus, all cases of advanced colorectal cancer
show multiple genetic alterations, though the array of changes varies among
individual tumors. In view of the complex nature of cellular growth with
multiple redundant control mechanisms, it is not surprising that malignancy
requires alterations in many genetic systems before the cancerous phenotype
is manifest.
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2. Activated oncogenes and putative tumor suppressor
genes involved in human breast cancers

Debasish Tripathy and Christopher C. Benz

Introduction

The clinical progression of human breast cancer almost certainly reflects
accumulated molecular defects in specific genes that are important in
regulating normal breast tissue growth and development. These specific
defects may occur in association with gross chromosomal damage and
aberrations in total cellular DNA content, once providing the only basis for
their genetic detection. Within the past decade, however, new molecular
techniques have enabled the detection of an increasing number of genetic
abnormalities that are specific to malignant cells but not necessarily unique
to breast cancers. Some of these molecular defects found in the earliest
stages of human breast cancer (e.g., c-erbB-2 amplification) appear to have
clinical significance by their ability to predict tumor relapse and patient
survival, suggesting that they produce permanent cellular disturbances con
tributing to the proliferative or invasive nature of breast cancer. Nonethe
less, a unified molecular model explaining breast carcinogenesis and its
clinical progression is far from being realized. As this review demonstrates,
we have only begun to identify and characterize clinically significant genetic
abnormalities as they are found in primary human breast cancers. At
present, it is useful to classify these molecular abnormalities into two types:
gain-of-function genetic events that activate proto-oncogenes by DNA
mutation, rearrangement, or amplification, and loss-of-function defects
reflecting putative tumor suppressor genes that have been inactivated by
DNA mutation and unmasked by deletion or allelic loss.

Karotypic abnormalities in human breast tumors

Well before the development of molecular techniques that have begun to
alter our pathogenetic classification of malignancies, cytologic descriptions
of aneuploid DNA content and nonrandom karyotypic abnormalities in
breast tumors focused the attention of investigators on possible chromosomal
defects underlying breast tumorigenesis. The accumulated database of
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breast cancer karyotypic abnormalities suffers from the lack of any large
series looking at direct tumor cell preparations with modern banding tech
niques. Highly abnormal karyotypes are commonly seen in direct cell
harvests or short-term cultures of human breast cancer cells, whereas long
term cultures and established cell lines often yield normal diploid karyotypes
[1]. Karyotypic variations between cells in a given tumor or among different
tumor specimens also make it difficult to separate out random from non
random chromosomal changes that may be systematically overrepresented
and of potential biological importance. The proportion of breast cancer
specimens yielding sufficient metaphase spreads suitable for banding analysis
is approximately 20%. Despite these limitations, consistent reports of non
random abnormalities involving chromosomes 1, 3, 6, 7, and 11 have been
noted using standard cytogenetic techniques.
Chromosome 1 contains the most frequently detected cytologic abnor

malities in breast cancers, with up to 80% of analyzable specimens showing
nonrandom abnormalities, usually consisting of translocations and rearrange
ments with short-arm (Ip) losses and long-arm (Iq) gains [2,3]. Rearrange
ments in chromosome 1 exhibit breakpoint clustering in two distant regions,
usually involving Ipl1-13 and lq21-23 [4]. Chromosome 3 alterations have
been seen in 40% of specimens, with clustering of these abnormalities
around 3pl1-14, similar to observations in renal cell and small cell lung
cancers [4]. Chromosome 11 changes have been documented in over 60% of
analyzable breast tumors with the regional involvement of 11q23-34 and
11p15 bands [5]. Nonrandom losses and rearrangements have also been
noted to variable extents in other chromosomes, including 4, 6q, 7p, 8p, 9p,
13, 16q, 17p, 18, and 19 [1,2,6].

Table I. Loss of heterozygosity (LOH) frequency in human breast cancer

Chromosome location Potentially involved tumor
of lost allele suppressor or nearest known gene LOH frequency Reference

Ip 10-41% 12,13,29
lq DF3/pum 21-41% 12,17,21,22,29
3p raf-I, erbA~, erbA2 24-47% 12,27-29
6q 48% 12
7q comet 41% 35
lip Ha-ras, ~-globin, PTH 20-29% 28,29,37,38
13q Rb-l 26-40% 12,28,29,43
16q 38-51% 12,29,48
17p p53 27-58% 12,29,50,65,367
17q nm23 24-64% 12,29,69

Estradiol 17~-dehydrogenase
GHC
erbB-2
RARa

18q DDC 2.5-28% 12,29,74,367
22q BCRI 27% 29

IGLV
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Homogeneously stammg regions (HSRs), perhaps representing large
stretches of amplified DNA, have been noted on chromosomes 8, 19, and
20; altogether 15 of 44 (36%) tumors in one series exhibited HSRs [6,7].
Double minutes (DMs), perhaps carrying amplified DNA sequences that are
not chromosomally integrated, have been seen in 48% of 50 primary breast
tumors and in 40% of 46 metastatic pleural effusions [8]. In other large
series, however, the presence of DMs have not been demonstrated [6,9].
Furthermore, HSRs and DMs identified to date have not been directly
associated with any of the oncogenes known to be amplified in human breast
cancers [7,10,11].
In brief, breast cancer karyotypic changes may localize either loss-of

function or gain-of-function genetic abnormalities. Those involving chromo
somes 1, 3,6, 11, 13, 16, 17, and 18 are most consistent with loss of genetic
sequences, as determined by molecular analysis, perhaps pointing to loci of
inactivated tumor suppressor genes.

Loss-of-function defects: Allelic loss unmasking an inactivated tumor
suppressor gene

The use of restriction fragment length polymorphism (RFLP) analysis
permits the identification of lost allelic DNA sequences (loss of hetero
zygosity, LOH) in a breast cancer sample when the patient's normal DNA is
'informative,' or possessing polymorphic allelic sequences at that chromo
somal site. For some tumors, LOH loci correlate with karyotypic abnor
malities, but in others this is not the case, presumably due to the relatively
small genomic segment that can be detected as an allelic loss by RFLP
analysis. The concurrent finding of a mutation in the nondeleted allele
confirms the location of a putative tumor supressor gene at that genetic
locus; and in some instances these LOH loci map closely to known or
suspected tumor suppressor genes, as shown in Table 1. Recently a model
was proposed suggesting that breast cancers accumulate losses at multiple
genetic loci in a stepwise fashion, correlating with more malignant and
metastatic tumor cell behavior [12].
Chromosome 1 LOH at Ip36 has been noted in breast tumors with a

frequency approaching 40% by Genuardi et aI., and this association appears
to occur more frequently in patients with a strong family history of breast
cancer, young age, and multifocal disease at diagnosis [13]. LOH at this
chromosomal region has also been noted in medullary thyroid carcinomas
and pheochromocytomas in patients with multiple endocrine neoplasia Type
2 (MEN2), although the MEN2-predisposing locus is independently asso
ciated with chromosome 10 LOH by linkage analysis [14-16]. LOH at
lq23-32 occurs in 20-25% of breast tumors examined [17,18]. A poly
morphic locus within lq21-23 encodes several mucinlike glycoproteins. One
such gene, DF-3/pum, produces a 300-kDa glycoprotein and contains a
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region with a variable number of tandem repeats (VNTR region) within one
of its exons [19,20]. Merlo et al. and Gendler et al. used this polymorphism
for the RFLP analysis of 133 breast tumors and found that 35% of tumors
have lost one allele at this locus; many of these LOH events occurred as a
result of internal deletions that seemed to be associated with decreased
expression of the DF-3 glycoprotein [21,22]. The biological significance of
DF-3 and its reduced expression due to 1q21-23 LOH remains unknown,
especially in light of a recent report by Chen et al. showing that the most
frequent region of LOH within 1q21-23 does not include DF-3 [23]. How
ever, other studies are consistent with the possibility that DF-3 represents a
tumor suppressor gene product. Normally, DF-3 glycoprotein is expressed
on the apical borders of nonsecretory mammary cells, but staining with an
anti-DF-3 monoclonal antibody reveals the loss of this membrane-staining
polarity in a majority of breast cancers [24]. Increased DF-3 expression
tends to correlate with well-differentiated tumors and estrogen receptor
(ER) positivity [25]; furthermore, one retrospective study involving 190
patients with stage II breast cancer demonstrated superior disease-free
and overall survival in patients whose tumors showed high DF-3 immuno
reactivity [26].
LOH on chromosome 3 within 3p21-25 is also seen in about 30% of

informative primary breast tumors [12,27-29]. This genetic abnormality
correlates with c-myc overexpression, chromosome 11 deletions, high histo
pathologic tumor grade, ER negativity [30], and DNA aneuploidy [29]. The
shortest overlapping region of deletion within 3p23-25 seems to include
both c-erbA~, a thyroid hormone receptor encoding gene, and c-erbA2, a
related gene whose function is unknown [27,28]. This same pattern of LOH
is seen in lung cancer, familial and sporadic renal cancer, and von Hippel
Lindau disease, with its inherited susceptibility to multiple cancers [31-33].
Allelic loss at this locus is intriguing, since the thyroid hormone receptor is
important for both tissue development and differentiation, and a loss of
receptor function by either gene mutation or deletion could lead to con
stitutive repression of receptor-mediated differentiation [34], a potentially
tumorigenic event. The serine-threonine kinase protooncogene, c-raf1, also
maps within this chromosome 3 region; however, LOH at the c-raf1 locus
appears to occur at a much lower frequency [27].
Allelic loss at several loci on chromosome 6q has been noted in 48% of

breast cancers in one series, and this accumulation of LOH events appears
to be inversely correlated with the number of axillary lymph nodes involved
with tumor [29]. Bieche et al. noted LOH at chromosome 7q31 in 41%
of 121 informative primary breast cancers using a probe for the c-met
proto-oncogene, and this LOH correlated with shortened metastasis-free
and overall survival [35]. The c-met gene encodes a tyrosine receptor kinase
recently shown to be the hepatocyte growth factor receptor [36]. Although
its significance in breast cancer remains unclear, c-met or a nearby gene may
be a candidate tumor suppressor gene.
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For chromosome IIp, LOH is evident in about 25% of informative breast
tumors, and most studies have focused on the distal end of this chromosome
at llp15, which includes the polymorphic c-Ha-ras locus. At least two
groups have documented a correlation between allelic loss at this locus and
increased primary tumor size, ER negativity, and high histologic grade
[37,38]. There appears to be no difference in the distribution of rare
and common c-Ha-ras alleles in breast tumor specimens as compared to
normal tissue controls [37,39-41], and no point mutations in the known
ras-activating codons of the remaining allele [42]. Gain-of-function ras
activating mutations will be discussed later; however, in breast tumors
expression of the c-Ha-ras transcript and p21 ras protein product occurs at
higher than normal tissue levels, whether or not there is LOH at this genetic
locus [42]. More detailed RFLP analysis has revealed that the most fre
quently deleted llp15 sequence occurs centromeric to the c-Ha-ras locus,
probably explaining the lack of any direct association between llp15 LOH
and c-Ha-ras activation in breast tumors and pointing to the putative
existence of a tumor suppressor gene lying between the ~-globin and
parathyroid hormone (PTH) genes within llp15 [38].
Chromosome 13 LOH was initially shown to occur at several different

loci [43]. Subsequent to the identification of the retinoblastoma tumor sup
pressor gene (Rb-1) at chromosome 13q14.1, several groups have observed
abnormalities in the Rb-1 gene that include homozygous internal deletions
and duplications, resulting in absent or aberrant Rb-1 transcripts and loss
of Rb-1 protein expression [44,45]. In one large series of primary breast
tumors, deletion or rearrangement of the Rb-1 gene was seen in 15/77
(19%) of tumors, with no Rb-1 abnormalities detected in lymphocytes or
benign breast lesions from the same patients [46]. Those tumor cases with
altered Rb-1 genes also showed negative immunohistochemical staining for
the Rb-1 protein in at least a proportion of the tumor cells. Some tumors
with no structural changes in the Rb-1 gene demonstrated absent Rb-1
protein expression, suggesting that breast tumors may also develop abnor
malities in the transcriptional regulation of an otherwise intact Rb-1 coding
sequence or that alternative mechanisms may lead to Rb-1 protein seques
tration and degradation. At present, the relative importance of Rb-1 defects
in breast cancers remains uncertain, yet patients carrying the Rb-1 defect in
association with hereditary retinoblastoma seem to be at increased risk
for the development of breast cancer [47], supporting the possibility that
inactivation of this tumor suppressor gene represents a critical event in the
multistep progression to invasive breast cancer.
Allelic loss at 16q has been found to occur in over 40-50% of primary

breast tumors [12,29], and this defect appears to associate with breast
tumors having nodal metastases [48]. With over 90% of this chromosome
now mapped by the Human Genome Project, increased attention will be
given to the search for a putative 16q breast tumor suppressor gene.
The most frequent RFLP finding in human breast tumors studied to date,
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however, is LOH at multiple loci on chromosome 17p. 17p deletions are
also common in small cell lung, colon, and ovarian cancers as well as
osteosarcomas [49 and references therein]. Coles et aI. probed multiple loci
from 17p13.1 to 17p13.3 in 168 breast tumors and noted LOH in nearly 60%
of informative cases. The most commonly involved locus was found to be
17p13.3, and the tumor suppressor gene p53 (located on 17p13.1) exhibited
LOH in only 27% of cases, introducing the possibility of another breast
tumor suppressor gene located telomeric to p53. Others have noted breast
cancer associated LOH extending from 17p12 to 17p13.3 [12,29,50]. Sato et
aI. noted that 17p13.3 LOH, when combined with 13q LOH in a given
breast tumor, was associated with a more malignant histology [48]; additional
reports note a correlation of 17p allelic loss with DNA aneuploidy [29,51].
Recent attention has been given to p53 gene abnormalities and protein

overexpression in breast cancers as well as other malignancies. Circulating
anti-p53 antibodies detected in patients with breast cancer first suggested an
important clinical role for the p53 phosphoprotein [52]. Subsequently, over
expression of p53 protein has been noted in 15-27% of breast cancer
specimens [53-60]. p53 overexpression is seen both in in situ and invasive
breast cancer, and the same staining pattern observed in primary compared
to metastatic lesions in a given patient, suggesting that this change is an
early and sustained event in breast tumorigenesis [61]. There is a close
correlation between p53 overexpression, loss of heterozygosity at or near
the p53 locus, and mutations in the remaining p53 allele [59,62-64],
although overexpression without p53 allelic loss and a single mutated p53
allele can also lead to overexpression [59]. p53 mRNA levels in tumors
overexpressing p53 are not elevated, in keeping the fact that mutated p53
protein has a longer half-life, which explains its overexpression [52].
LOH at 17p13.3, which is some 20 megabases distal to the p53 gene,

correlates with p53 overexpression in some series [65] but not in others
[54,59]; this finding is consistent with the possibility that other genetic
changes at 17p can also lead to p53 overexpression and that this may occur
independent of p53 mutations or LOH. The independent clinical significance
of p53 overexpression was recently shown by Thor et aI., who found over
expression in primary breast tumors was associated with overall and disease
free patient survival as well as tumor ER negativity and poor histologic
grade [54]. These observations are supported by other correlative studies
[55-58]. In breast tumors as well as other tumor types, p53 mutations
are generally single base-pair missense substitutions that fall within five
evolutionarily conserved regions spanning about 600 base pairs (codons
110-327) and encompassing p53 exons 5-8 [49,62-64, see Chapter 17].
One series examining 59 breast cancer specimens found 10 (17%) mutations
in exons 5-9 of the p53 gene [66]. G:C amd A:T mutations tend to
predominate for most human tumor types, including breast cancer, but, in
contrast to colon cancer, only a minority of these occur in CpG islands [49].
The rare Li-Fraumeni familial autosomal dominant syndrome with early
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predisposition to breast cancer, soft tissue sarcomas, brain tumors, osteo
sarcoma, and other malignancies is now known to involve allelic germline
mutations in the p53 gene [67,68]. These germline mutations vary between
families, but they are generally single base-pair missense substitutions, like
those seen in the sporadic tumors, and in the one case in which tumor tissue
was available for analysis, the remaining wild-type allele had been lost [67].
Specific attention has also been given to allelic losses at two chromosome

17q regions. The 17q11 locus of the nm23 gene, whose expression is reduced
in metastatic murine and human tumors, including breast cancer, shows
LOH in over 60% of breast tumors as reported by Leone et at. [69]. This
putative tumor suppressor gene is discussed in greater detail in Chapter 18.
Investigators have also noted LOH at several more distal 17q loci with a
frequency ranging from 24% to 35%, the higher frequency correlating with
younger age patients [12,29,70,71]. In particular, a familial form of breast
cancer occurring in young women is being linked to a potential breast cancer
suppressor gene at 17q21-22, which is currently being investigated by at
least three different groups worldwide (M.e. King, Berkeley, CA; G.M.
Lenoir, Cedex, France; B.J. Ponder, Cambridge, UK). Known genes near
this locus include c-erbB-2, homeobox 2, nm23-H1, and those encoding the
retinoic acid receptor (RAR)-u (discussed later) and the progestin-inducible
catabolic enzyme, estradiol-17~-dehydrogenase[72]. Loss of function of this
latter enzyme would be expected to increase endogenous estradiol levels, a
physiological condition associated with increased risk for breast cancer.
The DCC tumor suppressor gene, found to be inactivated in colon

cancers and located on chromosome 18 within 18q21.3-23, encodes an
adhesion glycoprotein that may have a role in breast cancers [73]. In human
breast tumors, LOH in this 18q region has been observed in 24-38% of
informative samples [29,74]. Using a probe mapping to the DCC gene itself,
however, Sato et at. found only 1 of 40 breast tumors with DCC allelic loss,
perhaps implicating the existence of a different 18q breast tumor suppressor
gene [12].
In all, between 20% and 60% of primary spontaneous human breast

cancers have allelic loss or deletion occurring on chromosomes 1, 3, 6, 11,
13, 16, 17, 18, and 22, with the exact chromosomal loci involved yet to be
defined. Previous knowledge about the Rb-1 and p53 genes at 13q14 and
17p13, respectively, makes it likely that new tumor suppressor genes will be
found at many if not all of these breast-cancer-involved chromosomal loci.

Gain-of-function events: DNA mutation, rearrangement, or amplification
producing a dominant-acting oncogene

Genetic alterations in breast cancer leading to the activation of proto
oncogenes were initially observed in both virally and chemically induced
murine mammary tumors. The mouse mammary tumor virus (MMTV), with
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its cis-acting transcriptional activating long terminal repeat (LTR) elements,
can integrate its proviral DNA into specific host genomic sites, thereby
transcriptionally activating silent genes that could predispose to cellular
proliferation and the development of murine mammary cancers [75]. To
date, seven of these specific integration sites, or int genes, have been
described (initially designated int-l, 2, 3, 4, 5, 41, and hst-l) [76]. The first
of these genes to be discovered, int-l (now designated wnt-l [77]) was
found to encode an evolutionarily conserved protein homologous to the
Drosophila morphogen, wingless [78]; in mice, wnt-l is normally expressed
in a very restricted manner in embryonic neural tissue and in adult testes
[79]. Transfection of activated (MMTV-LTR-promoted) wnt-l into im
mortalized cells results in malignant transformation as determined by soft
agar colony formation and tumorigenic growth in nude mice [80]. Wnt-l
bearing transgenic mice develop mammary gland hyperplasia and focal
mammary tumors that are hormonally independent [81]. The second member
of this family of genes, int-2, was later found to encode a member of
the fibroblast growth factor (FGF) family, and this protein appears to
be normally expressed in a complex pattern during murine embryogensis,
suggesting that it too normally functions as a morphogen [82-85]. Upon
transfection, int-2 also induces malignant transformation in mammalian
cells [86]. Transgenic mice bearing int-2 constructs develop hyperplastic
mammary glands following pregnancy, with tumors forming at a low fre
quency only after a long latency period [87]. Endogenous activation of int-2
by insertion of MMTV sequences produces murine mammary tumors that
are initially hormone responsive but later become hormone independent
[88,89]; this behavior parallels that seen in the progression of estrogen
responsive human breast cancers. To date, int-3, 4, 5, and 41 have not
been well characterized [90,91]. The hst-l gene (hstFl, FGF-K) was first
described as a transforming gene found in human gastric cancers [92],
Kaposi's sarcoma [93], and subsequently found to be activated in MMTV
induced murine mammary tumors [94]. It also shares structural homology
with FGFs and int-2 [95]. Although the murine int genes are not syntonic
(except int-2 and hst-l), they are frequently activated together, either
sequentially or in various combinations, suggesting a multistep progression
in MMTV-induced mammary neoplasia [82,94,96,97].

Genes amplified at llq13

In human breast cancers, the llq13-colocalized int-2 and hst-l genes are
either singly amplified or frequently coamplified, as seen in a variety of
other solid tumors, including esophageal [98], head and neck [99], bladder
[100], and hepatocellular cancers [l01], and in melanoma [102]. Amplifi
cation of int-2 is observed in 9-23% of primary breast tumors [103-109],
and this is associated with an 11q13 amplicon that commonly includes hst-l,
which is 35 kb distant from int-2 [110,111]. Amplification of int-2 seems to
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correlate with increased tendency for breast cancer metastases and locally
recurrent disease [106,112], as well as decreased patient survival [99,108]. In
some studies, int-2 amplification has been associated with more differ
entiated tumors, including those that are ER and PR positive [100,109]; in
contrast, there has been no correlation with tumor stage or patient charac
teristics, such as age and menopausal status [100].
In an RFLP analysis of 96 breast cancer specimens, one particular int-2

allele correlated with lymph node involvement but not with any other
clinical parameter [113]. In contrast to the murine model, transcriptional
activation by amplified int-2 and hst-l genes has been difficult to demon
strate. Liscia et at. detected low transcript levels of int-2 but not hst-1 by in
situ hybridization and Northern blot analyses of breast tumor specimens
coamplified for these two genes [114]. The breast cancer int-2 transcripts on
Northern blots were not the size expected based on the int-2 physical map or
as formerly observed in teratocarcinoma cells [104].
Theillet et at. detected low levels of both int-2 and hst-1 amplification in

breast tumors, but only hst-1 expression correlated with gene amplification
[105]. In contrast, using the more sensitive RNA protection assay, Fantl et
at. were unable to detect int-2 or hst-1 transcripts in either gene-amplified or
unamplified tumors [104]. Therefore, the biological role of amplified int-2
and/or hst-1 genes, which mayor may not be transcriptionally activated in
human breast cancers, remains unclear.
Given this uncertainty, more recent attention has focused on other

genes that are frequently coamplified with int-2 and hst-l within the llq13
amplicon. The bel-1 locus at llq13 was initially described as a common
breakpoint in B-cell chronic lymphocytic leukemia bearing the t(11;14)
chromosomal translocation [115,116]. It is located at least 1000kb cen
tromeric to the int-2 and hst-1 genes [110]. Ali et at. showed coamplification
of int-2, hst-1, and bel-1 in 17 out of 18 breast cancer specimens, with one
specimen showing only int-2 amplification [117]. Theillet et at. found 17% of
297 samples coamplified for bel-I, int-2, and hst-1; however, int-2 and hst-1
were never amplified independently of bel-I, and in six cases bel-1 alone was
amplified [118]. The sea oncogene, also found at llq13, and the ets-1 gene,
found at llq24, were each amplified in only 3 of the 297 cases.
These results indicated that the most frequent loci of llq13 amplification

in human breast cancers include int-2, hst-1, and bel-I, but not sea; further
more, the gene of real interest in the llq13 amplicon may lie closer to bel-1
than to int-2 or hst-l. A gene linked to the bel-l marker at a distance of
less than 250 kb (DllS287 or PRAD-1) was initially noted to be c10nally
rearranged in a subset of parathyroid adenomas [119] and subsequently was
found to be coamplified with int-2 and hst-1 in 18% of 202 primary breast
cancers, including one case in which the amplification unit did not extend to
bel-1 [120]. Furthermore, a 4.5 kb mRNA transcript was readily detectable
in the tumors exhibiting PRAD-1 amplification, but not in other tumors or
normal mammary tissue. Using chromosome walking techniques, Motokura
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et at. and Withers et at. have cloned and sequenced this gene and have
found it to encode a novel Dl (Gl-type) cyclin [121,122]. This breast
cancer-amplified protein exhibits cyclin function in that it can bind a p34/
cdc2-like protein (which is distinct from cdc2) [123] and activates histone HI
kinase activity [121].
Three other groups have identified the same gene through its ability to

complement bacterial mutants for all three of the known G I-type cyclins
[123-125]. Faust et at. noted overexpression of this gene in 5 out of 7 breast
cancer cell lines using Northern blot analysis, only moderately correlating
with gene amplification, but not correlating with the rate of cell growth in
culture [126]. Therefore, it is likely that the cyclin Dl gene (PRAD-l) plays
a pivotal growth-promoting role in the nearly 20% of human breast cancers
having amplification at llq13, although overexpression in the absence of
amplification suggests transcriptional control as well. The potential link
between cyclins and various human malignancies, including breast tumors,
remains intriguing, and the possibility that Dl cyclin can function as a
transforming oncoprotein must be investigated further.
The gene encoding an isozyme of glutathione S-transferase, GST7t, is also

located at llq13, distal to bcl-l [127], and increased expression of this
detoxifying enzyme is known to account for some forms of tumor resistance
to antineoplastic agents, such as melphalan and doxorubicin [128-130].
Doxorubicin resistant breast cancer cell lines are known that preferentially
express GST7t, as has been observed in some surgically resected human lung,
head and neck, colon, and breast cancers [128,131-133], and preferential
expression has been noted in sarcomas with biologically aggressive features
[134]. Of note, some GST7t-overexpressing and doxorubicin-resistant breast
cancer cells do not exhibit GST7t gene amplification [135]. However, Saint
Ruf et at. found GST7t amplification in 6 out of 6 breast cancer samples
having either int-2 or hst-l amplification, but not in 11 samples without
llq13 amplification [101]; unfortunately, tumor cell expression of GST7t was
not assessed in this study. In contrast, Theillet et at. were unable to detect
GST7t amplification in a subset of 22 breast cancers having int-2, hst-l, and
bcl-l amplification [118]. Thus, it remains to be established whether or
not breast tumors with llq13 amplicons also demonstrate GST7t amplifi
cation, overexpression, or resistance to chemotherapeutic agents such as
doxorubicin.

Amplification of c-myc

The transcriptional activation of the c-myc proto-oncogene by gene rear
rangement or amplification has long been implicated in tumor initiation and
progression, and c-myc overexpression has been observed in various human
malignancies, including lymphoma [136,137], leukemia [138,139], lung [140],
colon [141], and breast [142] cancers. However, the possible role of c-myc
overexpression in breast tumor progression is confounded by its known
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secondary induction in normal and malignant cells exposed to mitogens,
growth factors, and various other stimuli [143-146]. Transgenic mice
bearing an MMTV long terminal repeat (LTR) fused to c-myc coding
sequences develop hormone-dependent solitary breast cancers, testicular
tumors, as well as B-cell, T-cell, and mast cell tumors [147,148]. When c
myc is fused to a lactogenic (whey acidic protein, WAP) promoter in a
transgenic mouse model, premalignant changes precede the development of
multifocal mammary adenocarcinomas, forming only after pregnancy [149].
Both of these transgenic c-myc models implicate the need for one or more
additional tumorigenic steps besides c-myc activation; these additional steps
may be facilitated by the hormonal dependency of the WAP and MMTV
promoters.

In an estrogen-dependent human breast cancer cell line, MCF-7, the
transfection of a murine leukemia virus LTR-c-myc exon 2-3 construct
resulted in slower in vitro cell growth and no change in the cell line's in vivo
tumorigenicity or hormone dependency, calling into question the ability of
overexpressed c-myc sequences to enhance breast cancer progression [150].
Estrogen-responsive MCF-7 and T47-0 cells exhibit rapid induction of c
myc mRNA upon treatment with estrogen; and the antiestrogen, tamoxifen,
causes a decline in c-myc mRNA [151-153]. Furthermore, antisense oligo
deoxynucleotides to c-myc have been shown to selectively inhibit MCF-7
myc protein expression in response to estrogen, which is accompanied by an
inhibition in estrogen-stimulated cell growth; however, these same antisense
oligomers inhibit the estrogen-independent growth of MOA-MB-231 cells
[154]. All of the above studies support the fact that enhanced expression of
c-myc may be necessary for breast cancer growth but is not necessarily
sufficient for breast cancer induction or progression. Constitutive over
expression resulting from amplification of a proto-oncogene, such as c-myc,
must also be distinguished from the enhanced growth-factor-induced proto
oncogene expression that can be seen during short-term culture growth of
normal breast epithelial cells [155].
Amplification of c-myc was initially observed in the human breast cancer

cell lines SKBR-3 [156] and SW6B-5 [157]; in the latter case it was asso
ciated with the cytogenetic findings of OMs and HSRs. In an early review of
proto-oncogene expression in primary human tumors, Slamon et al. noted
that c-myc transcript levels were almost uniformly elevated in a variety
of solid and hematologic tumors, including four cases of breast cancer,
although the potentially confounding influence of admixed stromal and
inflammatory cells was not assessed in this study [142]. Other investigators
have detected c-myc amplification in primary breast tumors with a frequency
ranging from 4% to 41%, with c-myc gene rearrangements occuring in fewer
than 16% of cases [109,158-167].
The clinical implications of c-myc amplification have been studied by

restrospective analysis of archival samples, and these studies have produced
inconclusive results. Reports have suggested that amplification correlates
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with patient age <50 [158], poor survival [162], tumor nodal metastases
[112,164], progesterone receptor (PR) negativity [109], high cathepsin-D
expression [167], inflammatory histology [165], and poor tumor grade [166].
However, these relationships have not been observed consistently, and
other reports indicate that they may only be apparent when c-myc amplifi
cation occurs in association with other amplified proto-oncogenes, such as c
Ha-ras or c-erbB-2 [161]. If, in fact, there is no clinical significance to the
finding of c-myc amplification, it is difficult to understand what the selective
cellular pressures are that account for the increased c-myc gene copies found
in up to 40% of human breast cancers.
Overexpression of c-myc mRNA and protein generally result from gene

amplification; however, they can also occur in the absence of either gene
amplification or rearrangement, as suggested earlier [158,162]. Elevated c
myc mRNA transcript levels have been observed in 45% of breast tumors in
one study using in situ RNA: RNA hybridization, and this overexpression
was correlated with nodal involvement by tumor [168]. Using a similar
technique, LeRoy et aI. demonstrated lower c-myc mRNA expression in
ER-positive tumors treated preoperatively with tamoxifen, as compared to a
similar group of untreated tumors, again suggesting that c-myc expression
correlates with tumor growth in an estrogen-dependent fashion [169].
The 62-kDa myc oncoprotein can be detected by immunohistochemical

staining and in one study was observed in 70% of 100 tumors, although this
expression was not found to correlate with any clinical parameters [170].
Locker et aI. measured c-myc protein levels by flow cytometry and noted a
clinical association only with tumor differentiation [171]. High levels of myc
staining in surgical breast cancer specimens is usually apparent only in
malignant cells and not in the surrounding normal breast or stromal cells
[172]. In one report examining benign fibrocystic disease, however, detect
able myc staining was not seen in the normal epithelial cells, but strong
staining was present in the metaplastic cells within benign epitheliosis and
papillomatous lesions [173]. In contrast, Spandidos et aI. observed high myc
staining in normal breast tissue adjacent to tumor and speculated that its
induction in the normal cells might be due to paracrine factors secreted by
the tumor cells [174].

Activated ras oncogenes

The c-Ha-ras, c-K-ras, and c-N-ras family of protooncogenes encode 21-kDa
guanine nucleotide-binding proteins (p21 ras

) that are able to catalyze the
hydrolysis of GTP and thereby stimulate intracellular signal transduction
[reviewed in 175]. Activating point mutations in ras codons 12, 13, and 61
prevent the interaction of p21 ras with GTPase-activating protein (GAP),
maintaining p21ras in an activated and GTP-bound form. Such ras mutations
have been consistently noted in colon [176,177], pancreas [178], and lung
cancers [179], but not in human breast cancers [42,180]. In contrast, these
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mutations are frequently found in carcinogen-induced rodent mammary
carcinomas, and activated ras oncogenes readily produce mammary cancers
in transgenic mouse models.
N-nitroso-N-methylurea (NMU) will consistently induce estrogen

dependent mammary cancers in female rats after a 6 to 12-month delay.
Over 80% of these mammary tumors contain a GGA to GAA mutation in
codon 12 of the c-Ha-ras gene, in keeping with the ability of NMU to
methylate the N7 and 0 6 positions, thus causing G to A mutations [181].
Similarly, 7,12-dimethylbenz(a)-anthracene (DMBA)-induced rat mammary
tumors exhibit c-Ha-ras mutations in codon 61 in 25% of cases [182]. In
contrast to this sex-dependent induction of malignancy, both male and
female MMTV LTR/v-Ha-ras transgenic mice develop focal mammary
tumors in a stochastic fashion, with the less frequent development of
salivary gland tumors, lymphoma, and lacrimal gland hyperplasia [148].
Transgenic progeny of MMTV LTR/c-myc and MMTV LTR/v-Ha-ras
crosses yield similar tumors that develop much more rapidly [148], sup
porting the cooperative potential of these two transforming constructs. A
WAP promoter/activated c-Ha-ras construct produces transgenic females
that develop solitary breast and salivary gland tumors at a low frequency
and after a long latency [183].
With each of these different ras transgene constructs in which the pro

moter is altered to produce different mouse transgenic strains, there is a
positive correlation between the frequency of tumor development and the
level of ras expression [184]. The stochastic manner in which these focal
tumors arise suggests that further genetic changes are necessary, in addition
to ras activation, for the full development of mammary cancer. In one
interesting in vitro transfection study, the insertion of v-Ha-ras into estrogen
dependent MCF-7 cells produced estrogen-independent MCF-7 tumor
growth in nude mice [185], providing a posible explanation for the pattern of
in vivo tumor progression in patients whose hormone-dependent breast
cancers later become resistant to endocrine therapy. A similar study
suggested that c-Ha-ras activation can also induce resistance to cisplatin
chemotherapy, possibly by increased metallothionine content or impairment
of intracellular drug accumulation [186].
In spontaneous human breast cancers, however, the role of the ras family

of protooncogenes remains uncertain. Neither amplification nor rearrange
ment of c-Ha-ras has been detected in a database of over 500 accumulated
cases of primary breast cancer [42,159,161,162,165,187]. The c-Ha-ras gene
is highly polymorphic due to its 3' VNTR, and the distribution of its four
major RFLP-determined alleles and one of its minor variants does not seem
to differ in patient populations with or without breast cancer [37,39-41].
However, one study found that a rare c-Ha-ras allele was overrepresented in
breast cancer patients as compared to controls [188]. The significance of this
epidemiologic finding is unknown, as is its possible association with the
c-Ha-ras LOH data presented earlier [37,42,165]. Unlike the carcinogen-
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induced rodent mammary tumor models, activating mutations in K-, Ha-,
and N-ras at codons 12, 13, and 61 are rarely found in human breast cancers
of any stage [42,180]. Despite the apparent genetic integrity of the ras family
of protooncogenes, overexpression of c-Ha-ras (but not K-ras or N-ras) can
be seen in up to 70% of spontaneous human breast cancers [42,189,190].
Rarely, K-ras or N-ras overexpression is observed [142,191]. An association
between elevated c-Ha-ras mRNA levels and advanced histologic tumor
grade has been reported [192].
Archival breast tumors have been studied for p21 ras protein expression

by immunocytochemical or Western blotting techniques using monoclonal
antibodies that do not distinguish between the different ras protein pro
ducts. Overexpression of p21 ras has been observed in 21-83% of cases
[170,187,191,193-202], with the wide variation in this observed incidence
probably due to different antibodies, techniques, and threshholds for
positivity used by the different investigators. Most studies have shown that
p21 ras is overexpressed in both malignant and benign breast neoplasms but
not in normal breast tissue.
Candlish et aI., however, found no significant difference in p21 ras staining

between breast cancers, benign breast tumors, or the normal breast tissue
adjacent to tumors using the same antibody [203]. Other studies have noted
that the incidence of p21 ras expression is highest in malignant breast tumors
(63-83%), lower in breast fibroadenomas and cystic disease (23-42%), and
lowest (~10%) in normal breast tissue [194,195,204]. As well, increased
p21 ras staining has been noted in the high-risk subgroup of benign breast
disease that is composed of hyperplasia with atypia; in fact, after a IS-year
follow-up, the higher p21 ras-expressing lesions were found in those patients
who subsequently developed breast cancer [195].
More intense staining observed in the invasive component of breast

cancers, as compared to either intraductal lesions or distant metastases,
suggested to one group of investigators that ras expression is an early
determinant in the development of invasive breast cancer [205]. Other
investigators have suggested that increased p21 ras correlates with reduced
disease-free and overall patient survival [196,198,199], higher tumor stage
[196], estrogen and epidermal growth factor receptor overexpression [200],
c-erbB-2 oncoprotein overexpression [199], and younger patient age at
diagnosis [170]. On the other hand, some investigators have found no
clinical association with p21 ras expression in breast tumors [206]. It seems
plausible, therefore, that p21 ras overexpression occurs secondary to other
growth-stimulatory mechanisms that may become dysregulated in the earliest
stages of invasive disease, or perhaps even in the most proliferative forms of
preinvasive breast lesions.

Activation of c-mos, c-fos, c-fes, c-myb, and others

There are other potentially activated proto-oncogenes in human breast
tumors that have received much less attention. The c-mos proto-oncogene is
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located on chromosome 8pl; its product is a 39-kDa serine/threonine kinase
that may function as a maturation and meiotic arrest factor in oocytes
[207,208]. Although HSRs and abnormal banding patterns at 8pl have been
reported in 13% of breast tumors [9], amplification or overexpression of c
mos has not been reported. Of unknown significance is the rare 5-kb EcoRI
c-mos allele found in both tumor and normal DNA of 8% of breast cancer
patients [209,210], an incidence over 15-fold higher than that observed in
unaffected populations [211].
Overexpression of the c-fos proto-oncogene has been seen in almost all

tumor types, including breast cancer [142,190]. Its transcriptional induction,
however, is a common endpoint for intracellular signaling initiated by a
wide variety of cell stimuli, including stress; exposure to serum, mitogens,
and growth factors; as well as differentiation and tumor-promoting agents
[reviewed in 212]. Therefore, a primary role for c-fos involvement in breast
tumorigenesis remains dubious.
Overexpression of the receptor tyrosine kinase-encoding c-fes and c-fms

proto-oncogenes have been noted more selectively in some tumors, in
cluding breast, lung, and renal cancers [142]. One instance of c-fes amplifi
cation has also been reported in breast cancer [11].
The nuclear protooncogene, c-myb, appears to be overexpressed primarily

in hematologic malignancies; however, Sorokine et al. noted increased anti
myb antibody in the sera of 43% of breast cancer patients, although this
finding did not appear to correlate with tumor cell expression of c-myb
[213]. Guerin et al. found expression of a 3.5-kb c-myb transcript in 64% of
169 primary breast cancers and noticed a correlation with more favorable
clinical features, including low histopathologic tumor grade, ER and PR
positivity, absence of inflammatory carcinoma, and lack of c-erbB-2 over
expression [214].
Adnane et al. noted amplification of the FGF receptor genes, BEK and

FLG, in 11.5% and 12.7% of 387 breast tumors, respectively. In particular,
FLG amplification correlated with nodal involvement and also int-2/hst
lIbcl-l amplification, while BEK amplification correlated with c-myc am
plification [215]. The significance of FGF receptor amplification and/or
overexpression must be studied further.

Amplification of c-erbB-2 (HER2/neu)

The c-erbB-2 (HER2/neu) oncogene was first identified as the human
homologue of the transforming oncogene, neu, in nitrosourea-induced rat
brain tumors [216]. The c-erbB-2 proto-oncogene is located on chromosome
17q21 and encodes an approximately 185-kDa glycoprotein (pI85erbB-2) that
bears extensive homology to the 175-kDa epidermal growth factor receptor
(EGFR). Both are subclass I transmembrane receptor tyrosine kinases
related to the truncated transforming oncogene, v-erbB, from the avian
erythroblastosis virus [217-223]. Since the ligand for c-erbB-2 has not
yet been well characterized, it is unclear how much of the receptor's cell
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signaling is constitutive and how much is ligand dependent in receptor
overexpressing breast tumors.
In c-erbB-2 amplified cell lines, receptor autophosphorylation and

internalization, as well as phosphatidylinositol turnover and induction of
early response genes such as c-fos, all occur within minutes of extracellular
receptor binding by agonists such as the murine monoclonal antibody,
muMAb4D5 [224,225]. In the rat model, the activated neu gene has been
shown to contain a mutation that is necessary for it to confer malignant
transformation; this mutation substitutes valine for glutamic acid in the
transmembrane domain [226,227], predisposing the receptor to ligand
independent dimerization and activation [228].
Transgenic mice bearing the activated neu gene under the control of a

MMTV-LTR promoter develop synchronous, polyclonal adenocarcinomas
that replace all normal mammary tissue in both male and female progeny
[229]. This result is unlike that produced by the earlier discussed transgenes
containing c-myc, v-Ha-ras, c-Ha-ras, wnt-1, or int-2, each of which produce
mammary tumors in a stochastic fashion dependent on a prolonged
hormonal stimulus such as pregnancy [81,147-149,183].
Curiously, a similar neu transgenic strain, differing only by much closer

proximity ofthe oncogene to its MMTV-LTR promoter, produced stochastic
and asynchronous growth of less aggressive tumors adjacent to normal
mammary epithelium [230], suggesting that in this particular model addi
tional genetic events were necessary for breast tumorigenesis. Like the
others, these transgenic models also exhibited hyperplasia of the epididymis,
seminal vesicles, and salivary glands, resulting from the tissue-specific
expression of the MMTV-promoter-driven constructs.
In humans, the amplification and overexpression of c-erbB-2 was first

noted in gastric and breast cancer cell lines as well as primary salivary gland
adenocarcinomas [231-233]. Kraus et al. studied a variety of breast cancer
cell lines and showed that overexpression of c-erbB-2 transcripts does not
absolutely depend on gene amplification [234]; upstream regulatory elements
have since been identified in the c-erbB-2 promoter, suggesting that trans
activating factors may be involved in the development of some c-erbB-2
overexpressing breast tumors [235]. The cytogenetics of c-erbB-2 gene
amplification have not yet been fully characterized. In one cell line with c
erbB-2 amplification and cytogenetic evidence for OMs, in situ hybridization
confirmed the chromosomal localization of the increased gene copies [10].
More recently, fluorescence in situ hybridization (FISH) indicates that c
erbB-2 amplified breast cancers typically exhibit intercellular heterogeneity
in both the degree and pattern of chromosomal integration by the multiple
gene copies; this heterogeneity is even seen within the same tumor specimen
[236].
Unlike the carcinogen-induced c-neu from the rat brain tumor model, c

erbB-2 transmembrane domain mutations have not been detected in human
breast, ovarian, or gastric cancers, including those with c-erbB-2 amplifi-
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cation [237,238]. The normal human c-erbB-2 gene can confer a tumorigenic
phenotype upon transfection and overexpression in immortalized fibroblasts
[221,239]. Such c-erbB-2 transfectants form colonies in soft agar and develop
tumors in nude mice; of interest, these overexpressing cells become resistant
to the cytotoxic effects of macrophages and tumor necrosis factor-a [240]. In
contrast, amino (N)-terminus truncation or point mutations introduced into
the transmembrane domain of c-erbB-2 leads to cell transformation without
the need for receptor overexpression [221,241], since the altered receptor
protein possesses a higher intrinsic tyrosine kinase activity than does the
normal p185erbB-2. Furthermore, p185erbB-2 in overexpressing primary human
breast tumors is phosphorylated on tyrosine, suggesting that it is active
in cell signaling [242]. Transgenic mice bearing overexpressed but normal
c-erbB-2 develop a range of malignancies, including mammary tumors and
B-cell lymphomas [243]. Transfection of wild-type, N-terminally truncated
or transmembrane mutated c-erbB-2 into immortalized human mammary
epithelial cells results in in vivo tumorigenicity that is more marked for the
altered c-erbB-2 constructs [244]. Transfection of wild-type c-erbB-2 into
estrogen-dependent MCF-7 cells has also resulted in low-level resistance to
cisplatin and complete loss of in vivo growth inhibition by the antiestrogen
tamoxifen, occurring independent of tumor ER content [245]. This par
ticular transfection model may be analogous to the pattern of acquired
tamoxifen resistance that ultimately develops in human tumors that are
initially responsive to tamoxifen. From all of these basic studies, it can be
surmised that amplification and overexpression of p185erbB-2 is a necessary
but not entirely sufficient genetic event, contributing to human breast
tumorigenesis.
The relationship of c-erbB-2 amplification and overexpression to breast

cancer prognosis and clinical behavior has also been widely studied. Slamon
et al. initially reported 2- to 20-fold levels of gene amplification in 189
primary breast cancers, and a significant correlation between gene amplifi
cation and decreased overall survival in node-positive patients [246]. Both
amplification and overexpression of c-erbB-2 have since been shown to
correlate with reduced survival in patients with other adenocarcinomas,
particularly ovarian cancer [247,248]. Overexpression of c-erbB-2 in the
absence of gene amplification has been associated with worse prognosis for
patients with lung adenocarcinomas [249]. Since the first clinical reports on
c-erbB-2, numerous retrospective studies have been performed using archival
tumor tissues and patient follow-up data in attempts to determine the actual
incidence and clinical significance of c-erbB-2 amplification and overex
pression in human breast cancers (Table 2). Pooled data from over 5000
patients shows a 20% incidence of c-erbB-2 amplification and overex
pression. These studies have shown statistically significant associations
between amplification/overexpression and reduced overall and disease-free
patient survival [108,162,199,247,250-259), overall survival alone [260-265],
disease-free survival alone [266,267], as well as the lack of any association
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Table 2. Retrospective studies reporting on incidence and prognostic significance of c-erbB-2
amplification and overexpression in breast cancer

Breast cancer incidence (%) Patient survivala

(+, - predictability)
Oncogene Oncoprotein Correlated tumor
amplification overexpression OS DFS parametera Reference

31/185 (17%) + + Grade, ER- 253
6/61 (10%) 19/57 (33%) NR 287
75/497 (15%) + NR Grade 263

104/465 (22%) + NR 264
39/172 (23%) + S-phase, ER/PR- 266

12/122 (10%) 268
17/195 ( 9%) Grade 272
14/85 (16%) + + Grade 256

20/89 (22%) + + ER- 257
52/314 (17%) + + Grade 258
29/211 (14%) + + Nodes, grade,

ER/PR- , S-phase 255
278/1210 (23%) + NR Size, grade 265

146/526 (28%) 51/187 (27%) + + 247
52/310 (17%) 68/360 (19%) + + Size, ER/PR- 250
16/48 (33%) 118/728 (16%) + + Nodes, ER/PR- 251

62/292 (21%) + Grade 260
13/66 (20%) + Aneuploidy 261
8/53 (13%) Nodes, size 161

17/157 (11%) 159
7/37 (19%) + + 162

10/57 (18%) 19/62 (31%) + 262
47/313 (15%) + + Nodes, ER- 252

19/77 (25%) 51/132 (39%) + + PR-, p21,as 199
17/50 (34%) PR- , mitoses 269

14/103 (14%) 270
27/189 (14%) 271

28/176 (16%) 27/176 (15%) + + 108,163
41/187 (22%) + + 259
20/89 (23%) NR + 267

475/2437 (19%) 1099/5501 (20%)

aSignificant (p < .05) correlations reported between amplification or overexpression and
reduced disease-free patient survival (DFS) or overall patient survival (OS), and the indicated
tumor parameter. NR = not reported.

with patient outcome [159,161,268-272]. In some of these studies, the
significant prognostic associations were observed only in subsets of axillary
node-positive patients [108,163,247,250-252,258,263,265,266], poor nuclear
grade tumors [260], or T3- and T4-stage primary tumors [252]. More recent
studies have demonstrated an association with poor prognosis in node
negative patients as well [254,256,260,261]. One comparative analysis that
focused only on node-negative patients found that a significantly greater
number of relapsing patients had primary tumors with greater than or equal
to threefold c-erbB-2 amplification; in this study a 70% recurrence predic-
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tion was calculated for patients whose primary tumors had ~6 c-erbB-2 gene
copies [273]. Another study noted reduced overall survival for patients with
ER-positive, node-negative, and c-erbB-2-overexpressing tumors [274].
The possibility that c-erbB-2 amplification or overexpression has a greater

prognostic impact on overall patient survival rather than disease-free patient
survival (Table 2) suggests that treatment following tumor relapse may
be less effective on tumors bearing activated c-erbB-2. In support of this
possibility, some in vitro models have predicted hormonal or cytotoxic
resistance in c-erbB-2-overexpressing breast cancers [245]. As well, pre
liminary reports suggest an increased incidence of c-erbB-2-overexpressing
tumors in patients relapsing on tamoxifen therapy [275,276].
Clinical indices that have been correlated significantly but inconsistently

with amplified or overexpressed c-erbB-2 include higher histologic breast
tumor grade [165,253-256,258,260,262,265,272,277]' axillary nodal involve
ment [161,251,252,255,277- 280], increased primary tumor size [250,265,271]'
younger patient age or premenopausal status at diagnosis [281], presence
of inflammatory breast cancer [278,281], ER negativity [165,250-253,255,
257,266-279,282,283], PR negativity [165,199,250,251,255,266,269,278,282],
high S-phase fraction [255,266,284], high mitotic activity [269], aneuploidy,
and abnormal DNA content [166,255,285,286].
The above studies have many limitations, perhaps explaining their incon

sistent conclusions. All have been retrospective in design and based on
archived tumor samples, which introduces institutional and referral pattern
biases as well as skewed patient study populations. Imperfect techniques
for determining oncogene amplification and oncoprotein overexpression
introduce variables that can be further confounded by the different cutoff
values selected for assay positivity. Immunohistochemical results may
depend on tissue fixation techniques and the type of antibody used [247],
although some of these problems can be overcome [286].
Overall, there appears to be a very good correlation between c-erbB-2

amplification and overexpression [108,199,247,250,251,277,278,281,287
289], consistent with their nearly equivalent incidences, as shown in the
accumulated database of Table 2. These two parameters are not equivalent,
however, as also demonstrated [261]. Moreover, about 10-20% of over
expressing breast tumors appear to lack amplified c-erbB-2 gene copies
[246,247,262,277 ,278,281,287,288], which supports the earlier suggestion
that a c-erbB-2 transcriptional activator may be contributing to dysregula
tion of this proto-oncogene in some human breast cancers [234,235]. Dis
agreement about the clinical significance of c-erbB-2 amplification also stems
from the failure to perform multivariate analyses in the majority of clinical
studies reported to date. This form of analysis is important in order to
determine if c-erbB-2 overexpression is codependent on other adverse prog
nostic markers. Ongoing prospective trials will help to determine whether
c-erbB-2 amplification or overexpression represent clinically important
markers with independent prognostic value.
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Some insight into the biologic importance of c-erbB-2 in the induction
and progression of human breast cancers has been gained from studies of
surgical samples collected at various clinical stages of cancer progression,
including normal mammary tissue, fibrocystic disease with hyperplasia,
carcinoma in situ, invasive carcinoma, and late-stage metastatic lesions.
Immunoreactive c-erbB-2 in tumor epithelium stains most intensely along
the surface membrane, with weak cytoplasmic staining occasionally seen in
the epithelial, myoepithelial, and vascular smooth muscle cells associated
with normal and benign breast disease [270,290]. In contrast with the average
20% incidence of c-erbB-2 immunoreactivity among inverse cancers, in situ
breast cancers demonstrate strong c-erbB-2 immunoreactivity in 29-42%
of cases [271 ,291], with ~80% of high-risk comedo-type ductal in situ
lesions staining positive [271 ,285,291,292]. This immunoreactivity correlates
with the high thymidine labelling index [291] and DNA content [285] of
comedo-type in situ breast tumors. Porter et aI. observed only rare c-erbB-2
positivity in either lobular carcinomas in situ or lobular invasive cancers
[293]. Other histologic subtypes, such as cribiform and papillary forms of
ductal in situ disease, stain positive for c-erbB-2 with a lower incidence, but
this is not as well established due to variations in the pathologic subtyping
of ductal in situ tumors [271,292]. For invasive breast cancers, c-erbB-2
expression seems largely restricted to ductal rather than lobular disease or
less common histologic variants, including mucinous, medullary, tubular,
cribiform, and papillary invasive cancers [294]. Concordance in c-erbB-2
positivity is observed between intraductal and invasive disease present
within the same specimen, as well as between the invasive primary tumor
and its nodal or distant metastatic sites in the same patient [163,270,196].
The recent finding of amplified c-erbB-2 gene copies occurring in purely

ductal in situ tumors at twofold greater incidence than that found in primary
invasive breast tumors has interesting implications that deserve further
study. Liu et aI. proposed that this finding could be explained by the
existence of a 'protoinvasive' form of breast disease that is not morpho
logically recognized as in situ breast cancer, yet this form frequently pro
gresses to c-erbB-2 negative invasive breast cancer [295]. Improvements in
the genotyping of individual cells by techniques such as FISH should help
determine which epithelial lesions first acquire a c-erbB-2 gain-of-function
abnormality and thus constitute lesions with the highest risk of converting
into invasive breast cancers.
Interest has also focused on developing therapeutic modalities that inter

fere with the transforming or growth-promoting function of overexpressed
pI85erbB-2. Monoclonal antibodies to the rat neu product can inhibit the
growth of neu-expressing cells in vitro as well as in vivo [296-299]. Active
immunotherapy targeting the overexpressed pl85erbB.2 extracellular domain
on tumor cells can inhibit and prevent the growth of breast tumors innoculated
into syngeneic rats [300,301]. Likewise, antibodies to the human pl85erbB-2
extracellular domain have demonstrated antiproliferative effects both in
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vitro and in vivo against overexpressing human breast cancer cell lines; in
particular, muMAb4D5 not only inhibits p185erbB-2-overexpressing tumors
but also reverses the resistance of these cells to tumor necrosis factor-a
[302,303]. There is additional evidence that such antibody therapy can
potentiate the antitumor effects of certain chemotherapy agents such as
cisplatin [304]. Antisense oligodeoxynucleotides have also been shown to
decrease the expression of p185erbB-2 and to inhibit the in vitro growth
of overexpression cells [305]. Clinical trials with such novel anti-receptor
therapeutics as muMAb4D5 are currently underway in patients with ad
vanced breast and ovarian cancers. Bispecific and humanized (presumeably
less immunogenic) versions of this therapeutic antibody are also ready for
clinical testing.

Coamplified genes and others related to c-erbB-2

Amplification of nearby c-erbAl has been noted in primary breast tumors,
but this occurs exclusively in the presence of c-erbB-2 coamplification;
however, the transcriptional expression of coamplified c-erbA1 has not been
detected [108,166,271]. A gene homologous to c-erbB-2, termed c-erbB-3,
has also been cloned. This gene is found on chromosome 12q13, is normally
expressed in normal human epithelial tissue, and appears to be overexpressed
in some breast cancer cell lines and primary breast tumors [306].

EGFR and other tyrosine kinase membrane receptors

The epidermal growth factor receptor, EGFR or p175EGFR
, is a membrane

tyrosine kinase receptor with extensive homology to c-erbB-2. It may be
classified as a proto-oncogene, since it is the cellular homologue of v-erbB,
a transforming oncogene of the avian erythroblastosis virus that encodes
a truncated EGFR-like protein that possesses constitutive kinase activity
[reviewed in 307]. EGFR is normally expressed in many tissues and responds
to locally produced growth factors necessary for growth and development
during embryogenesis and wound healing [308]. Overexpression of EGFR
has been detected in a variety of human cancers. Full malignant trans
formation by EGFR has not been demonstrated, although it mediates
mitogenic cell stimulation in vitro by binding to one of its two known
ligands, EGF or transforming growth factor-a (TGF-a) [309]. EGFR
transfected fibroblasts exhibit EGF-dependent morphologic transformation
but they are unable to form tumors in nude mice [310]. TGF-a may stimulate
tumor growth by interacting with EGFR as part of an autocrine loop, since
TGF-a is secreted by about 50% of breast cancers (as well as normal breast
tissue), and a significant fraction of these tumors also overexpress EGFR
[311,312]. MMTVrrGF-a transgenic mice develop hyperplasia in breast
alveoli and terminal ducts, followed by the stochastic appearance of breast
adenomas and adenocarcinomas after pregnancy [313-315]. In murine
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models, EGF deprivation by removal of the EGF-rich submandibular
salivary gland reduces the incidence of breast tumors significantly, and this
effect can be abrogated with the exogenous administration of EGF [316].
In human breast cancers, the amplification of EGFR has been seen

in some established breast cancer cell lines but occurs in less than 5%
of primary breast cancers [246,261,281]. Breast cancer overexpression of
EGFR has been analyzed in a large number of reports in which it has been
evaluated in relationship to patient prognosis and other tumor parameters.
A recent review of 40 separate studies, including accumulated data on more
than 5000 breast cancer cases, showed that EGFR overexpression occurs in
about 40% of breast tumors [317]. Various investigators have found a
correlation between EGFR overexpression and reduced overall and disease
free patient survival, both for node-positive and node-negative patient sub
groups. In addition, overexpression correlates with decreased response to
endocrine therapy in those patients with ER-positive metastatic disease
[317], while there is no relationship between EGFR overexpression and
the response to chemotherapy has been noted. Other tumor parameters
consistently associated with EGFR overexpression include ER and PR
negativity, nodal involvement and distant metastatic spread, ductal disease
with poorly differentiated tumor histology, and DNA aneuploidy. Less
consistently observed is an association between EGFR overexpression and
tumor size, patient age, or menopausal status [317].
A correlation between EGFR and c-erbB-2 overexpression has been

noted in two different reports [200,318], but this has been contradicted by
four others [253,282,319,320]. However, the possibility of such a correlation
raises the question of receptor cooperation or cross-signaling between
EGFR and pI85erbB-2, leading to enhanced transforming potential. Co
operation has been documented in fibroblasts where full malignant trans
formation was induced by contransfected EGFR and c-erbB-2, but not with
either proto-oncogene individually [321,322]. Two potential mechanisms for
this interaction have been described. EGF, in an EGFR-dependent manner,
can increase tyrosine phosphorylation of pl85erbB-2 [323]; as well, EGFR/
pl85erbB-2 receptor heterodimers can potentially form that might be more
resistant to intracellular internalization and downregulation [324]. Both of
these mechanisms could lead to enhanced receptor tyrosine kinase activity
and constitutive mitogenic signaling.
Insulin and insulinlike growth factors (IGF-I and IGF-II) appear to playa

role in normal breast epithelial growth and metabolism, suggesting that
abnormal interactions between these factors and their cognate receptors
(IR, IGF-I-R, IGF-II-R) may also be important in autocrine or paracrine
regulation of breast cancer growth. IGF-I and IGF-II are mitogens for
breast cancer cells in vitro [325,326], and transcripts for both are detectable
in most breast cancer specimens [325,327]. The IR and IGF-I-R are subclass
II membrane tyrosine kinase receptors, while IGF-II-R (identical to the
mannose-6-phosphate receptor) is composed of a single transmembrane
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chain with a small intracellular domain that lacks tyrosine kinase activity
[328-330]. All three receptors are expressed on both normal and malignant
breast tissues [331-333]. Although considerable cross-reactivity takes place
between these ligands and their receptors [334], the mitogenic effects of
both IGF-I and IGF-II appear to be mediated by IGF-I-R [332], while the
mitogenic effects of insulin occur via interaction of IR alone [332), or IR
and IGF-I-R [335]. The overexpressed ligands may function in a paracrine
fashion in which normal stromal cells are recruited by malignant breast
epithelial cells into overexpressing either IGF-I or IGF-II [327,336].
Papa et al. demonstrated a sixfold higher mean IR content in 159 breast

cancer specimens compared to normal breast tissue and showed that the
overexpressed IR is functional and confined to the malignant breast cells as
opposed to admixed stromal and inflammatory cells [333]. In this study there
was a significant correlation between IR overexpression and tumor size,
histologic grading, and estrogen receptor content. The observations and
mechanisms related to overexpression of IR are discussed in further detail in
Chapter 9. Pekonen et al. similarly demonstrated increased IGF-I-R in
breast cancers as compared to normal breast tissue [331]; more recently,
Bonneterre et al. studied 297 patients and found that elevated IGF-I-R
expression correlates with increased disease-free and overall survival in
node-positive patients only, and is associated with increased tumor differ
entiation and ER and PR positivity [337]. In another series, prognostic
correlation with IGF-I-R overexpression was not seen [338]. Altogether,
these findings suggest that abnormalities in insulin and related factors, as
well as their receptor systems, may playa biologic role in the development
or progression of breast cancer, although the question of whether these are
primary or secondary events in breast tumorigenesis remains to be clarified.
Experimental models indicate that IR overexpression can confer ligand
dependent transformation in fibroblasts [339), but there is not yet definitive
evidence that this transforming mechanism is operative in the clinical devel
opment of breast cancer.

It is also possible that various tyrosine kinase receptors, including
p185erbB.2, EGFR, IR, and IGF-I-R, playa combined or cooperative role
in promoting or maintaining breast cancer growth. In support of their
combined biologic potential, there is evidence that total tyrosine kinase
specific activity (membrane and cytosolic) is considerably higher in breast
cancer tissues as compared to normal breast tissue or benign breast tumors;
furthermore, this high total tyrosine kinase activity appears to be associated
with worse patient prognosis [340].
Lastly, other membrane peptide receptors may influence the growth

promoting autocrine or paracrine loops that utilize tyrosine kinase receptors,
suggesting new therapeutic modalities for breast cancer. For example,
somatostatin is a widely distributed peptide that binds to its own receptor
and suppresses the release of various pituitary and gastrointestinal hormones,
yet it can also decrease EGF and IGF-I secretion [341] and directly inhibit
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breast cancer cell growth in vitro [342]. Foekens et at. noted an increased
disease-free survival in the 15% of patients whose breast cancers express the
somatostatin receptor [338], introducing further rationale for the clinical
testing of somatostatin analogues as therapy for breast cancer.

The oncogenic potential of steroid receptors

The concept of structurally altered steroid receptors functioning as onco
proteins has recently been proposed [reviewed in 343]. The steroid/thyroid
receptor superfamily is a class of ligand-dependent DNA-binding trans
activating proteins [reviewed in 344]. The v-erbA transforming oncogene
of the avian erythroblastosis virus encodes a truncated analogue of the
mammalian thyroid hormone receptor that acts as a dominant-negative
transcriptional repressor of genes normally activated by the thyroid
hormone-bound thyroid receptor [345]. As these genes appear to be
involved in normal tissue differentiation, the repressive effect of v-erbA or a
similarly truncated member of the receptor superfamily may be oncogenic.
Such receptor abnormalities may occur by either genetic or epigenetic
mechanisms. For example, a structurally rearranged retinoic acid receptor-a
(RAR-a) gene resulting from a t(15;17) chromosomal translocation in
acute promyelocytic leukemia generates a new fusion gene product between
portions of the PML and RAR-a genes; this DNA-binding fusion protein
appears to confer and propagate the transformed phenotype because of its
abnormal DNA binding and interaction with other transcription factors
[346,347]. In fact, treatment with excess trans-retinoic acid induces clinical
remissions in patients with acute promyelocytic leukemia, presumably by
binding and preventing the abnormal transactivating function of this fusion
protein [348].
Recent work in human breast cancers has focused on ER variants

that may confer estrogen-independent or constitutive DNA binding and
abnormal gene transactivation, leading to a more aggressive breast cancer
phenotype [349,350]. In a murine model, ER-positive mammary tumors that
lose estrogen dependence with serial transplantation exhibit a gradual
increase in truncated ER isoforms by an apparent epigenetic mechanism
[351]. Fuqua et al. have examined the infrequent subgroup of human breast
cancers that are ER negative/PR positive, postulating that the ER in these
tumors is structurally altered and immunologically undetectable, yet still
able to bind DNA and transcriptionally activate the PR gene [352]. These
investigators have identified potential ER variants produced by abnormal
RNA splicing that lack key amino acid sequences in the hormone binding
domain. In a different approach, Scott et al. used gel retardation assays to
show that many ER-positive human breast tumors appear to contain either
truncated forms of DNA-binding ER or unusual forms of immunoreactive
ER that are unable to bind DNA [353]. An ER variant lacking exon 7 has
been reported in ER+ /PR- breast cancers that can interfere with wild-type
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ER DNA binding in a dominant negative manner [354]. While continued
investigations in this area will no doubt clarify how abnormal ER can
contribute to a more malignant breast cancer phenotype, there has been
little effort to determine whether other steroid receptor abnormalities
potentially contribute to breast cancer development or progression.

Other functional abnormalities associated with breast cancer invasion and
metastasis

There is increasing interest in the molecular mechanisms that account for
breast tumor invasion and metastasis. The elaboration of Cathepsins B
and D, urokinase-type plasminogen activator, and collagenase type IV are
all early events in the breakdown of extracellular matrix necessary for
mammary epithelial cell invasion. Increased levels of these proteinases are
known to correlate with poor prognosis in breast cancer patients [355 and
references therein, reviewed in 356], but the genetic controls regulating
expression of the many known breast cancer proteinases and proteinase
inhibitors remain poorly understood. A new metalloproteinase gene,
stromolysin-3, was recently identified by a subtractive hybridization tech
nique using human breast carcinoma and breast adenoma specimens as
tissue sources [357]. Unexpectedly, this tumor associated proteinase was
found to be stromally produced, presumably induced by paracrine factors
arising from adjacent breast cancer cells.
The putative metastasis supressor gene, nm23, was initially identified by

Steeg et al. (see Chapter 18), also using a subtractive hybridization technique
[358]. The gene is virtually identical to the Drosophila awd developmental
gene for abnormal wing discs [359] and is homologous to the phylogenetically
conserved enzyme, nucleoside diphosphate kinase [360], raising the possi
bility that a G-protein-related pathway is involved in the regulation of tumor
metastasis. Transfection of the nm23 gene into a melanoma cell line reduces
its metastatic potential [361]. In breast cancer, significantly lower nm23
mRNA levels have been measured in the tumors of patients with increased
lymph node involvement [362]; and loss of nm23 mRNA appears to be
associated with reduced disease-free and overall patient survival [363]. It is
still not clear if nm23 loss is a sufficient or necessary step in developing
a metastatic phenotype. As discussed earlier, the putative nm23 tumor
suppressor gene is localized to chromosome 17p11-q11 and shows allelic
deletion in 16 of 25 (64%) breast cancer specimens [69]. Another highly
homologous gene, designated nm23-H2, has recently been cloned, and
preliminary analysis of breast tumors with this gene probe does not show
a correlation between decreased expression and metastatic potential
[364].
Searches for similar breast cancer suppressor genes using the same tech

nique of subtractive hybridization, but employing short-term normal breast
epithelial cell cultures and breast cancer cell lines have yielded clones for
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genes encoding the gap junction protein connexin 26, a calcium-binding
protein of the S-100 family, members of the keratin gene family, the
detoxifying enzyme glutathione-S-transferase 1t, and a bone matrix (gla)
protein [365,366]. Although these results must be considered tentative given
the artifact that can be introduced by this technique, it is interesting to note
that these tumor-associated if not tumor-suppressing genes appear to affect
critical cell activities, such as intercellular communication and intracellular
signaling, xenobiotic detoxification, and cell differentiation, all of which are
functionally abnormal in the malignant phenotype.

Summary

Cytogeneticists first proposed that the karyotypic abnormalities identified on
chromosomes 1, 3, 6, 11, 13, 16, 17, and 18 supported a genetic basis for
breast cancer. Such abnormal banding patterns, however, may represent
either loss-of-function or gain-of-function molecular events. RFLP analyses
have since confirmed that 20-60% of primary and spontaneous human
breast tumors exhibit allelic losses on these same chromosomes, although
the exact genes involved at these chromosomal sites remain largely
unknown. Knowledge gained about the Rb-l and p53 tumor suppressor
genes at 13q14 and 17p13 in breast and other human tumors supports the
paradigm that for any chromosomal locus, allelic loss associated with a
mutation in the remaining tumor allele signifies an involved tumor
suppressor gene. Given this paradigm, there are nearly a dozen putative
breast tumor suppressor genes under active investigation, with most
investigators now focusing on various chromosome 17 loci.
Among the known proto-oncogenes found activated in breast cancer,

amplification of c-erbB-2 at 17q21 is the most widely studied and clinically
significant gain-of-function event uncovered to date, occurring in about 20%
of all primary breast tumors. The involvement of this overexpressed
membrane receptor has engendered interest in related tyrosine kinase
receptors, such as EGFR, IR, and IGF-I-R, as well as their respective
ligands, which may be overexpressed in a greater fraction of tumors,
contributing to the autocrine and paracrine regulation of breast cancer
growth and metastasis. New attention is being given to the potentially
oncogenic function of structurally altered nuclear transactivating steroid
hormone receptors, such as ER, whose overexpression has long been used
to determine endocrine therapy and prognosis for individual breast cancer
patients. While c-myc was one of the first known proto-oncogenes to be
found amplified and overexpressed in human breast cancers, the actual
incidence and clinical significance of its activation remain disputed and in
need of further study. Lastly, we can expect greater clarification about the
importance of various 11q13 genes found coamplified in nearly 20% of
primary breast cancers, and pursuit into the intriguing possibility that a
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cyclin-encoding gene represents the overexpressed locus of real interest in
this amplicon.
Virtually all of these important genetic abnormalities identified thus far

are associated with but not restricted to human breast cancers. The absence
of identifiable molecular defects relating to the tissue specificity of this
malignancy must be considered a substantial gap in our basic understanding
of breast carcinogenesis. Further clues may come with a better under
standing of genetic abnormalities potentially associated with the commonly
ascribed breast cancer risk factors that include familial predisposition,
dietary fat intake, and endogenous sex steroid levels.
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3. Oncogenes in human lung cancer

Robert A. Kratzke, Eiji Shimizu, and Frederic J. Kaye

Introduction

While the last 15 years have not yielded substantial improvements in the
diagnosis and treatment of lung cancer, this same period has experienced an
extraordinary expansion of our understanding of cancer initiation and pro
gression. These investigations have provided strong support for a multistep
mechanism of tumor induction and progression [1,2] that previously could
only be inferred from experimental animal models and from epidemiologic
analyses. This recent work has also revealed that, in many cases, the struc
tural alterations of the same gene products (for example, myc and ras or p53
and Rb genes) might be critical steps in the genesis of a wide range of adult
tumors of differing histologic origins. These observations blur the distinction
for investigators focusing on specific cancer models, while at the same time
offer the hope that advances in the understanding and treatment of any
particular tumor type will have far broader implications. In addition, now
that the genetic basis for lung cancer has been well established, we are
witnessing a resurgence of interest in mechanisms of specific environmental
carcinogens as tools for a new generation of cancer prevention strategies [3].
There is currently no doubt that the use of tobacco products is the single
most important (although not the only) causative factor in the development
of lung cancer [4,5), and as these patterns of abuse spread there will
be a projected worldwide increase in the incidence of lung malignancies
paralleling that seen in North America and Europe over the last 50 years.
Therefore, the challenge in the immediate future will be to apply the
molecular clues obtained from the laboratory into effective preventive and
therapeutic applications. The purpose of this chapter is to review some of
the more important experiments concerning the molecular genetics of lung
cancer, focusing on the identification (and implications) of somatic muta
tions in a limited number of cellular genes referred to as either dominant or
recessive oncogenes.

Christopher C. Benz and Edison T. Liu (eds.J. ONCOGENES AND TUMOR SUPPRESSOR GENES IN
HUMAN MALIGNANCIES. Copyright© 1993.
Kluwer Academic Publishers. Boston. All rights reserved. ISBN 0-7923-1960-5



Small cell lung cancer

Lung cancer is the most common cause of cancer death in the United States,
with a predicted incidence of 150,000 new cases in 1991 [6]. These tumors
have been conveniently separated into two major categories (designated as
small cell or non-small cell lung carcinoma) on the basis of their clinical
behavior and their histologic appearance under light microscopy (Table 1).
Small cell lung cancer constitutes about 25% of all cases of lung cancer and
is an aggressive lung tumor with a high propensity for disseminated spread
throughout the body. As a result, surgical resections of this tumor are rarely
clinically indicated, limiting the ability of the investigator to obtain primary
tumor material. Although these tumors are initially sensitive to cytotoxic
chemotherapy and/or radiation therapy, with a reduction in tumor volume
seen in almost all treated patients, the disease usually recurs, at which
time it is usually refractory to any further treatments. In retrospect, the
appearance of this tumor as a 'small cell' with pyknotic nuclei ('oat cell' or
'lymphocytic' appearance) is likely a crush artifact from the bronchoscopic
biopsy, while well-preserved tissue sections show larger epithelial cells with
a fine nuclear chromatin pattern [7]. Nonetheless, the histologic appearance
of small cell lung cancer is characteristic and remains the only accepted
method to establish the diagnosis.
One of the major advances in the study of the biology of lung tumors was

Table 1. Characteristics of lung cancer

Clinical
Method of diagnosis
Distribution of cases
Primary treatment
Dissemination at diagnosis
Paraneoplastic syndromes:
ectopic peptide secretion

Biochemical
Growth in tissue culture

Neuroendocrine markers
L-dopa decarboxylase
Neuron-specific enolase
Creatine kinase BB
Chromagranin
Neurosecretory granules

Peptide secretion
Arginine vasopressin
Atrial natriuretic factor
Gastrin releasing
peptide

EGF receptors

SCLC

Light microscopy
25%
Nonsurgical
Frequent

Common

Nonadherent
clusters

Common

Present

Rare

NSCLC

Light microscopy
75%
Surgical
Less frequent

Uncommon

Adherent
monolayer

Rare

Absent

Present

a SCLC-small cell lung cancer; NSCLC-non-small cell lung cancer.
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the ability to generate a series of continueus cell lines derived from biopsies
of patients with lung cancer [8,9]. The cell lines obtained from small cell
carcinoma samples characteristically grow as tight clusters of 20 to several
hundred cells that nonadherently float in culture medium, making it difficult
to obtain viable single cell suspensions. Early biochemical studies con
firmed the observation that small cell lung cancer is a neuroendocrine tumor
characterized by neurosecretory granules and the production of a cassette of
neural specific enzymes and peptides, including dopa-decarboxylase, neuron
specific enolase, the brain isoenzyme of creatine kinase, chromogranin
A, bombesin-like immunoreactivity or gastrin releasing peptide, ACTH,
arginine vasopressin, atrial natriuretic factor, and others [8,10-13]. The
significance of the production of large amounts of functionally active
bioenergetic enzymes (i.e., enolase and creatine kinase) is unknown; how
ever, the expression of other products, such as gastrin-releasing peptide,
has been speculated to play a mitogenic role in an autocrine feedback
loop mechanism [14]. In summary, these immortalized cell lines have con
tinued to serve as an invaluable resource for biochemical and subsequent
cytogenetic studies that have ushered in the first investigations on genetic
alterations in lung cancer.

Non-small cell lung cancer

Non-small cell lung cancer comprises all other types of lung cancer and,
as a result, is a collection of at least four histologic types: squamous cell
carcinoma, bronchioloalveolar and adenocarcinoma, large cell carcinoma,
and undifferentiated lung carcinoma. Although these tumors are less likely
than small cell carcinomas to undergo early dissemination, they are charac
terized by aggressive local spread and are less responsive to treatments with
cytotoxic chemotherapy or radiation therapy. As a result, patients are more
likely to undergo an attempt at surgical resection, allowing the collec
tion of primary tumor material for laboratory investigations. In addition,
tumorigenic cell lines can also be derived from these samples and such
cultures typically grow readily as an adherent monolayer with fibroblastlike
morphology.
Although this classification of small cell vs. non-small cell has been useful

for both pathologists and clinicians, it incorrectly implies an understanding
of the cell of origin of these tumors. Intuitively, it is believed that small cell
carcinomas arise from rare cells with neural APUD (amine precursor uptake
and decarboxylation) features that are buried in the bronchial mucosa, while
non-small cell carcinomas arise from varying other precommitted bronchial
epithelial cells. For years, however, pathologists have observed lung tumors
characterized by admixtures of both small cell and non-small cell histology.
In addition, about 10-15% of non-small cell tumors exhibit features of
neuroendocrine differentiation, while a similar proportion of small cell
tumors express no neuroendocrine products [15]. These observations have
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raised the hypothesis ('unitarian theory' of lung cancer) of a single progenitor
cell that gives rise to varying types of lung tumors [16]. As will be discussed
below, however, the molecular genetic analysis of small cell and non-small
cell tumors will reveal as many similarities as differences between the two
histologic types, and at least for the time being we will continue to use the
same pathology-based classification system.

Recessive oncogenes in lung cancer

An elusive lung cancer susceptibility gene on chromosome 3p. An early clue
for the possibility of a lung cancer susceptibility gene was suggested in 1982
in a cytogenetic analysis of a series of small cell lung cancer cell lines.
Although all karyotypes demonstrated multiple alterations, the most con
sistent abnormality was a deletional event on the short arm of chromosome
3 [17,18], and more precise cytogenetics allowed the smallest consensus
deletion to be mapped to the region of 3pI4-3p24. This finding was sub
sequently tested by restriction fragment length polymorphism (RFLP)
analyses of both primary small cell and non-small cell carcinomas [19-23].
These investigators verified that there was evidence at the molecular level
for DNA loss on one allele of chromosome 3p in >90% of informative cases
of small cell lung cancer, while in non-small cell lung cancer a similar allelic
loss was observed in approximately 50% of samples tested [21,22]. The
consistent finding of tumor-specific chromosomal deletions in this region led
to the hypothesis that a lung cancer susceptibility gene mapped to this area.
Using the retinoblastoma gene as a paradigm (see below), this hypothesis
proposed that inactivation of this chromosome 3p cellular gene would result
in deregulated cellular proliferation and would play an important role in
the multistep pathway to frank neoplasia. Attempts to identify the puta
tive recessive oncogene on chromosome 3p, however, have met with little
success to date.
One approach to identify a putative '3p tumor-suppressor gene'. has

been to examine interesting genes that have previously been characterized
and mapped to the vicinity of this region on chromosome 3p. Several
candidate genes have been studied, including the thyroid hormone receptor
(c-erbA-~), a retinoic acid receptor (rar~, previously designated hapl),
and a transcribed gene of unknown function at the DNF15S2 locus of
chromosome 3p21 [24-29]. Although each of these genes undergo allelic
loss in most (but not all) tumor samples from patients with small cell lung
cancer, evidence for homozygous mutations and/or loss of wild-type protein
function has not been reported for these cases. Recently, a gene encoding a
tyrosine phosphatase (PTP-gamma) has been proposed as a candidate for
the 3p tumor suppressor gene [30]. This gene maps to chromosome 3p21 and
is one of a family of phosphatase enzymes that helps mediate information
signalling pathways in the cell. In 5 of 10 primary non-small cell lung cancer
samples tested, there was evidence for allelic loss of PTP-gamma, and in 3
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of these 5 cases there was retention of loci flanking the PTP-gamma gene.
Although this finding suggested the possibility of loss of a discrete portion
of chromosome 3p at or very near the PTP-gamma gene, homozygous
abnormalities have not been reported as yet to indicate that this gene is
specifically targeted for inactivation in lung cancer.
The search for a lung cancer 3p gene has outlined several difficulties:

First, prior work with the retinoblastoma gene demonstrated that potential
tumor suppressor genes might be inactivated by subtle deletions or point
mutations that could escape detection by routine DNA or RNA blotting
techniques [31], emphasizing the meticulous work that must be applied
in the analysis of candidate genes. Second (and more importantly) lung
cancer does not have a clear familial predisposition with well-recognized
kindreds available for the powerful gene linkage analyses that have aided in
the cloning of other human disease genes, such as the cystic fibrosis or
neurofibromatosis-1 genes [32,33]. Although recent epidemiologic studies
have suggested an inherited predisposition in certain populations with
lung cancer [34], the significance of this contribution appears too small
for practical applications. In contrast, familial renal cancer and renal
tumors within the von Hippel-Lindau syndrome have been genetically linked
to chromosome 3p, and large-scale efforts are underway to delineate a
manageable stretch of DNA to begin searching for transcribed genes [35
38]. Additional evidence supporting the presence of a functional renal
cancer gene was the ability to reverse the tumorigenicity of a renal tumor
cell line with the introduction of chromosome 3 material by micro-cell fusion
techniques [39]. These observations have, optimistically, suggested the
possibility that the renal cancer tumor suppressor gene may also be the
3p gene targeted in lung cancer. Alternatively, translocations and RFLP
analyses from renal tumors has noted DNA loss near chromosome band
3p14 (near the centromere) [35,37], while linkage analysis and other studies
have placed the gene closer to the telomere [36,38].
Similar inconsistencies in defining a minimum consensus deletion by

RFLP analyses have also been observed in lung cancer. This may be
explained by the presence of a known fragile site at 3p14 that is associated
with increased breakage and sister chromatid exchange in the peripheral
blood and bone marrow of young cigarette smokers [40], or these findings
may suggest that there are multiple recessive oncogenes on chromosome
3p. In fact, in addition to lung cancer and renal cancer, several other
tumors have also been associated with deletions of chromosome 3p, includ
ing cervical [41] and breast cancers [42]. Currently, vigorous attempts are
underway in several laboratories to clone the predicted 3p lung cancer
gene using systematic methods of molecular biology, including subtractive
libraries, chromosome-specific libraries, and further analysis of current
candidate genes and loci. These efforts, in cooperation with an interna
tional human genome effort and the mapping of human chromosome 3, will
address these questions in the near future.
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The Rb gene

Overview. In 1986, a gene located at chromosome 13q14 was identified as
the candidate locus that conferred susceptibility to the development of
familial and sporadic retinoblastoma tumors [43]. The existence of this gene,
named the retinoblastoma susceptibility (Rb) gene [43-45], was predicted
by Knudson in 1971 on the basis of a mathematical analysis of epidemiologic
data [46]. He postulated that two discrete genetic mutations would be
necessary to inactivate both alleles of a recessive oncogene, resulting in
the development of retinoblastoma tumors (the 'two-hit' hypothesis). This
hypothesis was initially supported by the detection of a specific chromosomal
deletion (13qI4) in certain patients with familial retinoblastoma [47] and
subsequently was confirmed with careful RFLP analysis of germline and
tumor material from affected patients [48]. Evidence for the authenticity of
this gene as a tumor suppressor gene came primarily from the observation
that (1) some tumor samples contained interstitial deletions within the Rb
gene, suggesting that the mutation was targeting the Rb and not adjacent
loci; (2) the RB protein product is inactivated in all retinoblastoma tumors
examined to date; and (3) suppression of tumorigenicity was observed in a
retinoblastoma cell lines with the introduction of the Rb gene [49,50].
The RB gene product is a nuclear phosphoprotein that migrates on

SDS-PAGE as a series of closely spaced bands of approximately 1l0
115 kDa, with the more slowly migrating bands representing differentially
phosphorylated species [51]. Since the absence of RB protein was associated
with deregulated cell growth, an early hypothesis for RB function was
that it somehow regulated cell cycle events. This hypothesis was greatly
strengthened by the observation that the phosphorylation state of the RB
protein was tightly synchronized with specific stages of the cell cycle [52
57]. For example, resting cells (Go) or cells in early G1 expressed largely
unphosphorylated protein, while RB became progressively phosphorylated
during S phase and early mitosis. Further, the recognition that RB is
phosphorylated by the kinase system (cyclin:cdc2/cdk complex), which had
previously been shown to regulate motosis and meiosis checkpoints in all
eukaryotic cells, unequivocably links RB biochemistry with the cell cycle
[58,59].
Related experiments has shown that the RB protein can bind specifically

to the transforming proteins of at least three different classes of DNA
tumor viruses (large T of SV40, EIA of adenovirus, and E7 of human
papillomavirus) [60-62]. These unexpected interactions predicted that RB
activity was normally modulated by cellular protein(s) and that these DNA
tumor viruses had usurped this function to allow enhanced viral prolifera
tion. A strategy based on this viral oncoprotein: RB interaction led to the
identification of a growing set of cellular proteins [63-67] that specifically
bind to RB: the transcription factor E2F, c-myc, and N-myc oncoproteins,
and the retinoblastoma binding proteins 1 and 2 (RBPI and RBP2). Of
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interest, the viral large T antigen and the cellular E2F protein appear
to bind preferentially to underphosphorylated RB [68]. This observa
tion, as well as the association of unphosphorylated RB with quiescent or
early interphase cells, has been interpreted to suggest that the under
phosphorylated RB species are the 'active' growth suppressor molecules.

Lung cancer and Rb. Interest in the Rb gene and lung cancer was stimulated
by ongoing research to identify and clone the putative 'chromosome 3p
gene' discussed above. Review of cytogenetic data, however, revealed that
numerous examples of deletions or unbalanced translocations involving the
chromosome band 13q14 were also present in karyotypes of small cell lung
cancer cell lines [69]. These had been previously overlooked due to the
extensive aneuploidy found in these samples, and this suggests that addi
tional marker chromosome abnormalities may yet be found (see below).
Similarly, review of RFLP data from primary lung tumor samples demon
strated frequent loss of heterozygosity, not only on chromosome 3p, but also
on 13q and 17p in small cell lung cancer [21]. Although small cell lung
cancer had a completely different clinical presentation than retinoblastoma,
these tumors, nevertheless, present similar histopathologic characteristics:
They both exhibit features of neural differentiation, they grow nonadherently
in cell culture as tight clusters of several hundred cells, and they both
frequently amplify myc family genes [70-73]. Therefore, the Rb gene, which
had recently been cloned, was a potential target for somatic mutations in
small cell lung cancer.
Early DNA and RNA studies demonstrated evidence for structural muta

tions in 20% of small cell lung cancer samples tested and absent mRNA in
approximately 40% of derived cell lines [69]. In addition, in each case where
a matched primary tumor sample was available, the abnormality detected
was identical to that observed from the derived cell line. Further studies of
RB protein revealed that the majority of small cell lung cancer samples that
expressed apparently normal mRNA had no detectable RB protein [74,75].
In addition, several examples of mutant RB proteins were found as a result
of subtle structural mutations, generally single point mutations. To date
these have included aberrant deletion of nucleotide sequences from exons
16, 21, or 22, yielding stable, but truncated, proteins with intact amino- and
carboxyl-terminal residues [74,76]. Some of these same abnormalities have
been observed in other tumor types, such as a deletion of exon 21, which
was reported in both a bladder tumor [77] and a prostate tumor [78], while
an example of deletion of exon 22 has also been seen in a case of non-small
cell lung cancer [79]. Another interesting mutation identified in small cell
lung cancer was a single nucleotide change in exon 21 that led to missense
mutation (cys706 to phe706) [80]. Each of these in vivo RB protein mutants
share the same phenotype: They are defective in viral oncoprotein binding
(and, therefore, also defective in their ability to bind to the corresponding
cellular binding proteins) and in phosphorylation. Since the mutations do
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not directly affect a cluster of serine and threonine residues that are the
presumed sites of phosphorylation, these mutations [58], instead, appear to
block a specific conformation required for protein binding and phosphoryla
tion. In fact, a series of in vitro generated mutants have mapped the domain
on RB for oncoprotein binding [81-83], and all mutants that have lost
binding function are also defective in phosphorylation, although the reverse
may not necessarily be true [84]. The in vivo RB mutants, therefore, are
presumed to be inactive ('loss of function mutants'), and this is consistent
with their inability to transform primary rat embryo cells by themselves or in
cooperation with an activated ras gene [79]. Further, simultaneous expres
sion of both wild-type and mutant protein has not been observed in any
tumor samples from either retinoblastoma or adult solid tumors, implying
that homozygous genetic alterations with complete wild-type inactivation
has occurred in all cases.
In summary, essentially all small cell lung cancer samples have absent or

aberrant RB protein expression. In contrast, only about 15% of non-small
cell lung cancer tumors have inactivated RB function [69,85]. This lower
frequency of Rb inactivation is seen in a wide range of many adult tumors,
such as bladder, prostate, breast, hematologic, and other tumors [74,86,87].
The biologic significance of the Rb gene as a high-frequency target in small
cell lung cancer, but a lower frequency target in other common tumors, is
still uncertain.
Another unresolved issue is why germline mutations in the Rb gene (as

seen in patients with familial retinoblastoma) are not associated with a high
risk for small cell lung cancer. Prior studies of retinoblastoma survivors
had not identified small cell lung cancer as a common secondary tumor. A
recent analysis, however, of subjects who were identified clinically or
epidemiologically as carriers of a mutant Rb allele reported a I5-fold increase
risk of lung cancer in this group, which appeared predominantly to be small
cell lung cancer [88]. If this association is correct, then it appears that
these carriers are at a significantly higher risk for small cell lung cancer,
but nonetheless still require time to stochastically accumulate additional
genetic lesions, such as p53 mutations, chromosome 3p deletions, and
others. Removal of incriminating carcinogens, therefore, is especially im
portant for these individuals.
Reintroduction of the Rb gene in a variety of Rb( -/-) cell lines, such

as retinoblastoma [49], osteosarcoma [49], prostate [78], and bladder
cancer [89] derived lines, has resulted in complete or partial suppression of
tumorigenicity when measured as the ability to form subcutaneous tumors in
athymic mice. Preliminary work in lung cancer also show suppression of
tumorigenicity in nude mice in an Rb(-/-) non-small cell lung cancer cell
line that was stably transfected with an Rb gene under a cytomegalovirus
promoter [79]. Recently, however, a conflicting study reported no sup
pression of tumorigenicity in a retinoblastoma cell line, despite stable
exogenous expression of RB protein [90]. This emphasizes the fact that the
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primary role RB plays in cell physiology has not been identified, which
necessarily limits the ability to assay for activity with gene replacement.
The identification of two-hit mutational inactivation of the Rb gene in

small cell carcinoma was the first example of a recessive oncogene clearly
involved in the pathogenesis of lung cancer. This finding, along with the
subsequent recognition of p53 mutations, confirmed the multihit genetic
etiology of lung cancer. This insight will undoubtedly lead to attempts
to develop new strategies for prevention, early detection, and treatment.
Recently, several studies have correlated RB protein immunohistochemistry
tissue staining with clinical prognosis, and one report observed a direct
correlation with reduced RB tissue immunostaining and a more aggressive
clinical course in patients with malignant sarcoma [91]. Another study
observed reduced expression of RB protein in a higher fraction of tumor
specimens with advanced-stage disease (stage III and IV) than earlier stages
[92]. These authors have suggested that reduced/loss of RB is associated
with more aggressive clinical disease. Although promising, difficulties in
interpreting protein staining data arise from the uncertain biologic sig
nificance of reduced RB levels (gene inactivation had previously been
defined as absent or aberrant protein) and because many mutant proteins
react with commercially available antisera. Additional studies will continue
define the proper role for this new technology in clinical practice.

The pS3 gene

Overview. The p53 gene encodes a 53-kDa nuclear protein that localizes to
chromosome 17p13. It was originally identified as a host cellular protein that
bound to the large T viral antigen of animal cells infected with simian virus
40 (SV40) [93-95], and in those early reports it was already speculated that
the large T antigen might exert its transforming effect by binding to and,
therefore modulating, the activity of the cellular p53 gene [93]. Several years
later, however, it was classified as a 'dominant transforming gene' on the
basis of elevated protein levels in many tumors and the ability of its cDNA
to transform primary rat embryo fibroblasts when transfected in cooperation
with an activated ras gene [96-99]. In 1988, however, it was appreciated
that all transforming clones of p53 had undergone activating somatic muta
tions, while, in contrast, wild-type p53 appeared to exert a phenotype of
growth suppression when transfected into immortalized cell lines [100-102].
In addition, the elevated steady-state levels of p53 observed in many tumors
was the result of mutations that markedly increased the protein half-life, and
the detection of increased protein levels on immuno (Western)-blotting is
one of the methods presently used to screen samples for the presence of
activating p53 mutations.
It is now recognized that the p53 gene is the most frequently mutated

gene in human cancers and, consequently, plays an important role in the
transformation of a wide range of distinct tumors. Although the mechanism
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of action of p53 is still unknown, it appears to play an important multi
functional role and has been implicated in both DNA replication and as a
potent transcriptional activator [103,104]. However, a strong argument
against p53 playing an essential role in normal cellular physiology was
the recent report of the normal development of mice with an engineered
knockout of the p53 gene [105]. Mice heterozygous for a germline mutation
in their p53 gene (generated by homologous recombination into embryonal
stem cells) were inbred to create offspring that were homozygous for mutant
p53 alleles. Although these mice appeared phenotypically normal, these
mutations did confer a markedly increased susceptibility to a range of
different tumors [105]. This finding is consistent with human in vivo data
that suggest p53 is not critical for cell growth and differentiation but rather
subserves an important role in safeguarding against tumor formation.
There are two related hypothesis to explain the effect of mutant p53 on

the formation of tumors in human cells. One hypothesis predicts that the
mutant protein can act to bind to wild-type p53 molecules, thus subverting
the normal function of p53 in the nucleus [100-102]. This 'dominant
negative' mechanism has considerable support from in vitro experiments
that demonstrate that the p53 gene product can undergo homooligomeriza
tion, forming a protein complex that may be necessary for its functional
activity. In addition, wild-type p53 could suppress the transforming activity
(in rodent cells) of mutant p53 in a dose-dependent manner. Arguments
against an important role for a dominant-negative mechanism in human
cancer, however, was the observation that wild-type and mutant p53 pro
tein have not been observed to be coexpressed in the same human tumor
sample. In addition, when subjects carrying a germline mutation of the
p53 gene (i.e., cancer-prone families, such as the Li-Fraumeni syndrome)
develop a malignant tumor, the wild-type allele has invariably been in
activated [106]. These observations resemble the pattern seen with the
Rb gene, suggesting that p53 may also behave as a recessive oncogene.
Regardless, wild-type p53 functions as a potent growth and tumor suppressor
when transfected into human or rodent cell types [100], offering the hope
that this activity might be exploited in future clinical studies.

Lung cancer and p53. Earlier RFLP analyses had implicated tumor-specific
loss of heterozygosity on chromosome 17p in both lung cancer and colon
cancer [21,107]. Shortly afterward it was demonstrated that the gene on
17p targeted for allele loss in colon cancer was the p53 gene, which had
frequently acquired a somatic mutation in the open reading frame of the
remaining allele [108]. Similar investigations of lung cancer revealed that
essentially all (70-100%) small cell lung cancers have acquired mutations,
while approximately 40% of non-small cell lung cancers have evidence for
p53 mutations [109-113]. In these resected specimens, the presence of p53
abnormalities was not consistently correlated with tumor stage or histology,
although there was a relationship between an increased smoking history and
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the frequency of somatic mutations [114J. When material was available for
analysis, the identified mutations were not found in adjacent normal lung
from the same patients, arguing against a 'field defect' phenomena in these
tumors. The high frequency in small cell lung cancer of p53, as well as Rb
abnormalities, suggests that these genetic alterations are early events in the
tumorigenic pathway of this disease. Unfortunately, lung cancer does not
have a readily available 'premalignant' model to test this hypothesis, such
as the benign and dysplastic colonic polyps observed in the model of pro
gression toward colon cancer. In colon cancer it has been argued that p53
mutations are late, and perhaps rate-limiting, genetic events for the devel
opment of the aggressive, malignant phenotype [115). This observation
appears to be true for bladder and primary brain tumors as well [116,117),
although clonal abnormalities of p53 have been reported in the premalignant
esophageal epithelia referred to as Barrett's esophagus [118J. The develop
ment of a model for premalignant respiratory epithelia will be a useful tool
to help address these important issues.
The in vivo p53 mutations identified in the different types of human

tumors seem to cluster around region of the open reading frame that have
been conserved across species [100J. More interestingly, the specific types of
mutations appear to be loosely correlated with specific types of carcinogen
exposure. For example G to T transversions of p53 predominate in tobacco
related tumors, while G to A transitions are more common in colonic
tumors, and mutations from thymidine dimers occur in ultraviolet light
associated skin cancers [119,120). Although these finding are not surprising,
they, nonetheless, add further validity to a model of human tumorigenesis
that is developing and suggest an objective assay to attempt to identify
exogenous and endogenous carcinogens.

Table 2. Cytogenetic abnormalities in lung cancer"

SCLC

3p14-3p24
13q14
17p
IIp
Ip
Sq

NSCLC

3p21-3p2S
3p14
i(3q)
IIp
17p
lql-lq3
9p
17q
19q13
Sql
7q

a Selected listing of observed cytogenetic abnormalities in small
cell lung cancer [17,18,121,122) and non-small cell lung
cancer (123,124).
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Other recessive oncogenes. The accuracy with which cytogenetics and RFLP
analyses predicted the presence of tumor suppressor genes at the 13q (Rb)
and 17p (p53) regions suggests that the presence of nonrandom, tumor
specific evidence for allele loss is an important clue for the identification of
additional recessive oncogenes. Therefore, in addition to 3p abnormalities,
many other chromosomal loci have been identified as frequent sites for gross
structural mutations in lung cancer [17,18,121-124J (Table 2), suggesting
that many of these additional sites may also harbor novel genes mediating
normal growth and development for pulmonary tissues.

Activation of dominant oncogenes in lung cancer

myc. Since the first recognized oncogenes belonged to a category referred
to as 'dominant oncogenes,' it was only natural that the earliest work on
the genetic etiology of lung cancer involved these genes. Homogeneously
staining regions (HSRs) and double-minute chromosome fragments had
been observed in the karyotypes of small cell lung cancer for several years.
Prior work had shown that these staining patterns often represent regions of
gene amplification, and in 1983 amplification of the c-myc gene was reported
in 7 out of 18 small cell lung cancer cell lines [71]. In addition, it was
believed that those lung tumor cell lines with amplified DNA and over
expressed c-myc mRNA had a characteristic 'variant' phenotype with
a more aggressive growth pattern and a less differentiated appearance
[71J. Further, the transfection of a c-myc gene, under the control of viral
promoter, into a 'classic' small cell lung cancer cell line resulted in an
altered phenotype resembling a 'variant' morphology [125J. Cytogenetic
studies of these cell lines showed that translocations involving the chromo
some band 8q24 are not characteristically seen in these tumors, in contrast
to the pattern of myc activation seen in certain human lymphoid tumors.
When additional lung tumor samples were tested for the presence of myc
amplification, however, several cell lines exhibited novel hybridizing bands
that could not be explained on the basis of a rearrangement of the c-myc
gene. These bands represented amplification of two other related myc
family genes: the N-myc gene, which had previously been cloned from
neuroblastoma tumor tissue [72), and the L-myc gene [73J.
In summary, overexpression (with or without myc gene amplification) of

one of the related myc oncogenes occurs in approximately 10-40% of tested
small cell lung cancer primary tumors and derived cell lines [126-129].
Variabilities in the reported frequencies of myc amplification in lung cancer,
however, is partly due to misinterpretation of moderate increases in band
intensity on Southern blotting due to chromosome hyperdiploidy as represent
ing true gene amplification. Since the presence of myc amplification was
reported to be higher in cell lines than in primary tumor samples, it was
believed that this genetic event occurred late in tumor progression pathways.
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However, other studies have observed that both cell lines and corresponding
primary tumor (when available) were concordant with myc amplification
[126-129], although the frequency reported for primary tumors was 5
15%. These subsequent studies have not supported the correlation of myc
amplification in small cell lung cancer with a 'variant' cell line morphology,
but it appears that prior exposure to cytotoxic chemotherapy may be an
important stimulus [127-129].
Whereas 8% (3 of 40) specimens from untreated SCLC patients demon

strated amplified myc family DNA, 28% (19 of 67) of the tumor specimens
from patients previously treated with combination chemotherapy demon
strated such myc amplification [129]. In addition, there may be a differential
effect from specific chemotherapy agents, as c-myc amplification may occur
less frequently in patients treated with the more recent regimen of etoposide/
cisplatin [129]. Although chromosomal rearrangement of the myc genes are
not believed to be an important mechanism of myc activation in carcinomas,
two independent small cell lung cancers were identified with an intra
chromosomal rearrangement fusing an amplified L-myc gene with a pre
viously unknown transcribed gene (designated rlf) [130]. Since the rlf
gene, which is located within 800 kb of the L-myc gene, contributes amino
terminal sequences to the chimeric polypeptide, this alteration may playa
role in the development of these tumors [131].
Since amplification of N-myc has been associated with a more aggressive

behavior and inferior survival in pediatric neuroblastoma tumors [132],
several reports have investigated the correlation of myc amplification in
lung cancer with patient survival. These studies have shown a small, but
statistically significant, decrease in survival time in patients whose tumors
exhibited c-myc DNA amplification [127-129]' while no clinical correlation
was observed with amplification of N-myc or L-myc in these samples.
Another study, however, did detect increased expression of N-myc by in situ
hybridization techniques in biopsies of patients with poor-prognosis small
cell lung cancer [133]. Since human tumors can exhibit a range of sensitivity
to ionizing radiation delivered in vivo or in vitro, investigators have observed
the ability of certain oncogenes, such as myc or ras, to modulate radio
sensitivity [134,135]. Studies on different xenografts of SCLC tumors from
the same patient, however, showed varying radiosensitivity with no correla
tion to oncogene expression [136].
The myc genes share many structural and functional similarities, including

several domains of striking amino acid identity throughout their respective
encoded open reading frames [137]. The proteins encoded by these genes
share extensive homology, including a basic domain helix-loop-helix (bHLH)
and leucine zipper (LZ) motifs in the carboxyl terminus of the protein.
These regions have been identified as the binding site of a cellular protein
(designated Max for myc-associated protein X) that confers a specific DNA
binding activity to the resulting complex [138]. The recognition of this DNA
binding activity to the sequence CAGGTG [139] is the first step to identify
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the target genes regulated by myc:Max, which should then help unravel
the role myc plays in cell growth and differentiation. In addition, the
amino-terminal region of myc has been implicated in the binding of the
retinoblastoma protein [66]. If this interaction occurs in vivo, this surprising
finding raises many more questions about the role myc might play in cell
cycle events and as an early participant in tumor formation. In particular,
since retinoblastoma (and small cell lung) tumors frequently amplified and
overexpressed the myc oncogenes, an early hypothesis for RB function was
that it acted to suppress myc expression [70]. Recent work demonstrating
that RB can suppress transcription of early response genes, such as los [140]
and myc [141], may support this model.
Although myc genes share many similarities, they have a divergent pattern

of tissue expression that has not yet been explained [142]. In addition,
although c-myc and N-myc are highly tumorigenic in cooperation with an
activated ras in rat embryo cells, L-myc is only weakly tumorigenic [143].
Finally, the L-myc gene undergoes a complex pattern of alternative intron
splicing and polyadenylation site utilization that generates a family of
mature mRNA that have the potential to encode a truncated protein with a
novel carboxyl terminus [137]. All these findings suggest that these genes
may encode distinct functions as well. Studies of the L-myc gene in lung
cancer have largely focused on an RFLP due to a polymorphic EcoRl
site within intron 2 [134]. These reports have noted an association of a
metastastic phenotype with the presence of the smaller EcoRl band (6.6kb
band) and not the larger 1O.0-kb polymorphic [144]. Subsequent reports,
however, have not confirmed this association [145,146], and the biologic
significance of this finding is still under study.

ras. The ras oncogenes are members of a supergene family that has been
conserved from yeast to humans. There are three mammalian ras genes 
H-ras, K-ras, and N-ras - which were initially identified by their ability to
transform animal cells in culture in a dominant mechanism [147]. These
genes are now recognized to encode a 21-kDa cytoplasmic protein, which
can tightly bind guanine nucleotides (G-proteins) and which are believed to
function as mediators of information (signals) across membranes. Their
conversion into transforming proteins, as a result of acquired missense
mutations, reduces their ability to metabolize guanine nucleotides, and this
is hypothesized to 'lock' the protein in a conformation signaling growth
stimulation [147]. Since these mutations are generally restricted to codons
12, 13, or 61, it has been possible to easily screen a variety of human tumors
for their presence. These analyses have identified activated ras genes in a
variety of human tumors, including lung, bladder, colon, breast, kidney,
pancreas, liver, ovary, stomach, hematologic tumors, mesenchymal tumors,
and others, and their overall incidence is estimated at approximately 10
15% [147]. The likelihood of finding a ras mutation, however, varies greatly
among tumor types, with very low frequencies observed in breast cancer,
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while about 50% of colon cancer and greater than 90% of exocrine pancreas
tumors have mutations.
In lung cancer, for unknown reasons, the K-ras allele appears to be

preferentially targeted, and activated ras genes can be found in approxi
mately 30% of non-small cell lung cancers [148-151]. One group of studies
found an overrepresentation of the adenocarcinoma subtype with ras muta
tions [148,149], while involvement of all subtypes were observed in another
report [151]. In contrast, 0 of 37 small cell lung cancer cell lines had ras
mutations [151]. In non-small cell lung cancer, the majority of these tumors
involved codon 12 of K-ras [149,151], predominantly with a G to T or
A to T transversion. These nucleotide changes are similar to the type of
mutations reported with inactivation of the Rb and p53 genes in samples of
patients with lung cancer. These studies also showed a statistically significant
correlation with heavy cigarette smoking and K-ras mutations compared to
patients with tumors bearing wild-type ras sequences [149]. The metabolism
of inhaled cigarette smoke results in its conversion to over 3000 different
chemicals [5], and of these a group of polycyclic aromatic hydrocarbons,
such as benzo(a)pyrene and dimethylbenzanthracene, have been especially
implicated as carcinogens of occupational concern. In particular, experi
mental lung tumors or skin tumors in mice treated with benzo(a)pyrene
have been associated with G to T mutations at codon 12 in the K-ras
gene [152,153]. In summary, these findings are supportive evidence that
chemical carcinogens can, in fact, accelerate in vivo the accumulation of
mutations targeted to specific regulatory genes, thus resulting in neoplastic
transformation.
Recent studies have proposed that the presence of a K-ras mutation is a

negative prognostic factor in lung cancer. In a series of 69 patients with
completely resected adenocarcinoma of the lung, 12 of 19 patients harboring
a codon 12 mutation died in the follow-up period as compared with 16 of the
remaining 50 patients [154]. Interestingly, even though they had manifested
a poorer prognosis, the patients with K-ras mutations initially presented
with a lower clinical stage and smaller tumor volume than those without K
ras mutations. Another recent study also demonstrated an inferior survival
in patients with non-small cell lung cancer and ras mutations [155], further
suggesting that there may be a biologic difference conferred by this mutation.

Other dominant oncogenes. Activation of several other dominant oncogenes
have been shown in isolated reports. These have included evidence for
amplification and overexpression of c-erb-1 (EGFR) and c-erb-2 (neu) [156]
in non-small cell lung cancer, and c-myb [157] and c-fms [158] in small cell
lung cancer. In addition, overexpression without gene amplification has
been reported for c-raf [158] and c-kit [159] in small cell lung cancer. Until
more work is done, however, the clinical and biologic significance of these
isolated abnormalities is uncertain.
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Summary

The rapid pace of research in the genetics of human cancer will predictably
render any review of the topic out of date by the time of its publication.
Prospects for the near future will likely include the identification of a
chromosome 3p gene(s) linked with the development of familial renal cancer
and, perhaps, also lung cancer. In addition, the availability from the Human
Genome Project of an increasing number of well-characterized markers will
accelerate the search for additional human recessive oncogenes.
Many questions still remain about the etiology of lung cancer and how to

apply this information for patient care. For example, identification of the
cell of origin for small cell and non-small cell lung cancers will facilitate
our understanding of the development of these tumors and improve the
possibilities for future preventive strategies. In addition, we now realize that
these cancers arise from the sequential accumulation of multiple genetic
mutations (Table 3; Fig. 1). Therefore, a central question is which of these
targets are essential for the process of carcinogenesis, and whether there is a
critical temporal order for this process with a defined premalignant phase
in a discrete field of bronchial tissue. In addition, are there genetically

Table 3. Frequency of selected oncogene abnormalities in human lung cancer samples

Allele loss at Absent or aberrant Absent or aberrant Activated Activated
Chromosome 3p Rb protein p53 protein ras myc

SCLC >90%
Non-SCLC 50%

>90%
15%

90%
50%

0%
33%

10-40%

pulmonary epithelium ~
carcinogen exposure

1
inherited predisposition?

~ somatic mutations

Rb

"pre-neoplastic" p53 chromosomal deletion

3p chromosomal rearrangement
phase? ras subtle structural mutation

1
myc gene amplification

others

~ somatic mutations

invasive/metastatic
~ somatic mutations

tumor autocrine and paracrine effects
on cell proliferation

Figure 1. Multistep genetic model for lung cancer (modified from Kaye [160]).
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inherited susceptibilities to the development of lung cancer (either directly
or via variabilities in carcinogen metabolism) that could be accurately
identified in the general population? Finally, is there a rate-limiting muta
tion and will the genetic correction of this defect suffice to restore growth
regulation, or will the replacement of multiple gene products be required for
tumor suppression?
We are already witnessing the beginnings of the use of molecular diag

nostic markers as a research tool for assigning prognostic information. The
expression of neuroendocrine markers in non-small cell lung cancer has
recently been applied as an indicator of the potential response to combina
tion chemotherapy [15]. Similar methods are being applied to the expression
of tumor suppressor genes or the presence of somatic mutations in dominant
oncogenes such as the ras gene. However, the clinical benefit of this prog
nostic information with currently available treatment programs is still
uncertain. Reversion of tumorigenicity observed with the replacement of
Rb, and particularly the p53 gene, has stimulated the development of animal
models to test the feasibility of in vivo tumor suppression. Although the
continuing development of viral vectors for effective transfer of other genes
in pulmonary diseases, such as alpha-l antitrypsin deficiency [161] or cystic
fibrosis [162], makes this form of genetic therapy for lung cancer, a possibility
for the future, safe, and efficient gene delivery for disseminated cancer does
not seem practical with available technology. Perhaps the best hope for the
early application of molecular oncology lies with research aimed toward the
goal of prevention. As discussed above, patterns of mutations may reveal a
fingerprint for endogenous and environmental mutagens and will put a
growing focus on gene repair mechanisms. At a minimum, the public dis
semination of the detailed genetic consequences of cigarette exposure
(or other carcinogens) that has now become available should strengthen
legislative/public resolve against these exposures [120].
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4. Thyroid growth factors and oncogenes

arlo H. Clark and Quan-Yang Duh

Introduction

Thyroid neoplasms and thyroid enlargement result from the preferential
growth (benign), invasion, and/or metastases (malignant) of either follicular
or parafollicular cells in the thyroid gland. By histological examination at
autopsy and by sensitive localization procedures such as ultrasound, about
50% of persons have thyroid tumors [1,2]. Although most thyroid tumors
are benign, thyroid cancer has been documented at postmortem examina
tions in 13% of person in Minnesota and up to 28% of Japanese in Hawaii
[3,4]. Most of these tumors are occult and of little clinical consequence.
Clinically appreciable enlarged thyroid glands, however, occur in about 4%
of the population in the United States and are more common in areas of
endemic goiter [5]. Diffuse and nodular hyperplasia of the thyroid gland
with or without hyperfunction (hyperthyroidism) is also a relatively common
clinical problem.
Thyroid cancer requiring clinical treatment occurs in about 40 persons per

million population per year and 6 persons per million die of thyroid cancer
annually in the United States [6]. Thyroid cancers vary dramatically in
behavior; small (less than 1cm) occult sclerosing papillary cancers are rarely
lethal, whereas most patients with anaplastic thyroid cancer die within 6
months of diagnosis, despite all means of therapy [7]. Follicular thyroid
cancer and anaplastic thyroid cancer and death due to thyroid cancer all
occur more commonly in areas of endemic goiter and iodine deficiency
[8,9]. Papillary thyroid cancer is more common in areas of iodine excess
[10,11]. Thus the follicular cell may develop into different tumors based on
iodine consumption. The various types of thyroid malignancies are listed in
Table 1.
Other factors also appear to predispose one to developing thyroid cancer,

including heredity [12,13], radiation exposure [14], carcinogens [15], and to
a lesser degree estrogens [16], antecedent breast cancer [17], dietary calcium
and vitamin D [18], and living near certain types of volcanoes [19]. A recent
study suggests that patients with benign thyroid disorders are more prone to
develop malignant thyroid disorders, suggesting either common environ-
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Table I. Type of thyroid malignancies

Follicular cell origin
Papillary
Follicular
Mixed
Hurthle cell
Anaplastic

Parafollicular cell origin
Medullary
Anaplastic

Stroma
Lymphoma
Sarcoma
Teratoma

mental factors or that benign tumors such as follicular adenomas may pro
gress to follicular adenocarcinomas [20]. The presence of Hashimoto's
thyroiditis predisposes patients to develop thyroid lymphoma [21]. The
association of various epidemiologic factors and thyroid cancer, including
genetic predisposition and the environment, provide an opportunity to study
these factors and their relation to tumorigenesis.
Thyroid tumors, because of their marked variation in aggressiveness,

their relation to predisposing factors, their response to thyroid stimulating
hormone (TSH) , and other endocrine, paracrine, and autocrine growth
factors offer an ideal system to study the role of oncogenes and tumor
suppressor genes, as well as changes in signal transduction pathways and
their relationship to the development and progression of these neoplasms.
TSH has been documented to stimulate the adenylate cyclase-protein kinase
A pathway, as well as the phospholipase C-protein kinase C pathway
[21-24].

Thyroid growth factors

In areas of endemic goiter (iodine deficiency) up to 85% of the population
have goiters [25]. Even animals in these areas have goiters [26]. Iodine
deficiency increases the thyroid growth response to TSH [27], and also, by
decreasing thyroid hormone levels, secondarily increases serum TSH levels
that stimulate thyroid growth. When iodine intake is increased in these
areas, the frequencies of both nodular goiter and thyroid cancer decrease
[28]. A recent investigation documented that iodine deficiency decreased the
concentration of transforming growth factor (TGF) beta, a growth factor
that inhibits thyroid epithelial growth [29]. Transforming growth factors are
substances that tumors secrete (autocrine factors) that allow tumors to grow
in the absence of serum or other growth factors. It is now recognized that
TGF-alpha and -beta are also involved in normal cell growth regulation.
Increased consumption of vitamin A has been reported to result in smaller
thyroid gland size [30]. In contrast, a high-calcium diet, especially in areas of
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Table 2. Endocrine, paracrine and autocrine factors as thyroid growth factors

Stimulators
Thyroid stimulating hormone (TSH)
Thyroid stimulating immunoglobulins (TSI)

Epidermal growth factor (EGF)
Insulinlike growth factor 1 & 2 (lGF)
Fibroblast growth factor (FGF)
Human chorionic gonadotropin (HCG)
Growth hormone (GH)
Iodine deficiency
Interleukin-l (IL-I)
Platelet-derived growth factor (PDGF)"
Prostaglandin Ez (PGEz)
Vasoactive intestinal polypeptide (VIP)
Vitamin C

aAnaplastic thyroid cancer only.

Table 3. Oncogenes as thyroid growth factors

Inhibitors
Transforming growth factor
beta (TGF-P)
Vitamin A

Circulating growth factors

Plasma membrane receptors

Signal transduction

Nuclear transcription factors

sis (PDGF)
TSI, TSH"
int-2 (FGF)
c-erbB (EGF receptor)
PTe
neu (EGF-receptor)
ras (p21 proteins)
gsp (stimulating G protein)
myc
los
jun

aTSI, TSH, and TSH receptors are involved in the growth
regulation of thyroid cells but not other cells, and may be
considered tissue-specific 'oncogenes.'

relative iodine deficiency, results in goiter (Derbyshire neck) [31]. Goiter is
also more common in parts of West Virginia and in other areas where coal
or oil production is common, even when there is no iodine deficiency [32].
The list of thyroid growth factors and inhibitors is found in Table 2.

These factors often work in concert, and the relative importance of individ
ual growth factors may vary in different species. Experts currently agree that
one can no longer assume that there is one hormone, such as thyroid
stimulating hormone (TSH), affecting one target tissue - the thyroid [33].
For example, estrogen has little trophic effect on breast cells in culture
unless other growth factors, such as serum or fibrolasts, are present in the
culture media [34]. Endocrine growth factors for the thyroid gland include
TSH, thyroid stimulating immunoglobulins (TSI), and human chorionic
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Figure 1. TSH-adenylate cyclase-protein kinase A, TSH-phospholipase C-protein kinase C, and
EGF-tyrosine kinase signal transduction pathways in a thyroid cell.

gonadotropins (HCG). Pleiotropic auto or paracrine growth factors that act
to regulate thyroid cell growth include epidermal growth factor (EGF),
fibroblast growth factors (FGF), insulinlike growth factors (IGF), platelet
derived growth factor (PDGF), interleukin 1, transferrin, prostaglandin,
and other stimulating growth factors as well as factors that appear to
inhibit growth, such as transforming growth factor beta, iodine, somato
statin, adenosine, lithium, alpha-adrenergic agents, and vitamin A [23,35].
Thus both extracellular and intracellular growth factors or inhibitors act on
their receptors to regulate thyroid growth.
To understand how various growth factors function, one must understand

the signal transduction pathways that occur within a cell. In the thyroid
gland TSH, TSI, EGF, IG-1, IGF-2, FGF, vasoactive intestinal polypeptide
(VIP), and interleukin (IL) have been described to have growth effects
[23,24,35,36]. Some of these growth factors, such as TSH, TSI, and VIP,
work via the adenylate-cyclase protein kinase A system, others work via the
phosphoinositide-protein kinase C system, and others work via tyrosine
kinase (Fig. 1). Currently we do not know how an endocrine cell knows
when to secrete a hormone and when to grow in response to a specific
stimulus. For example, TSH and TSI appear to stimulate growth and dif-
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ferentiated function, such as iodine incorporation in normal thyroid tissue,
whereas EGF increases growth but decreases differentiated function [37].

It appears that for each step in the hormone or growth factor-receptor
pathway, there are both positive and negative regulating steps. These
regulating steps are controlled by certain genes and their products. Thus,
cell proliferation is regulated by growth-promoting proto-oncogenes,
counterbalanced by growth-constraining tumor suppressor genes. Mutations
that potentiate the activities of proto-oncogenes create oncogenes (genes
that are either overproduced or whose mutation results in an unregulated
protein product) that influence growth. Oncogenes and tumor suppressor
genes or their products can mimic or replace specific growth factors, growth
factor receptors, signal transducers, or nuclear transcription factors as
shown in Table 3 [38-41]'

Oncogenes and basic molecular biology

Oncogenes are usually less responsive to the regulatory mechanisms that
control normal cell growth than proto-oncogenes [42-44]. The genetic
alterations that change proto-oncogenes to oncogenes provide a cell with a
growth advantage and are usually dominant mutations [45]. Oncogenes are
created from proto-oncogenes via point mutations, inversions, transloca
tions, or amplifications.
Genes are coded by double-stranded linear deoxyribonucleic (DNA)

molecules. Four different bases of DNA - adenine (A), guanine (G),
thymidine (T), and cytosine (C) - make up this code. Genes include cod
ing sequences of DNA (exon), spacer regions (introns), and regulatory
sequences (promotors/enhancers) that direct the expression of adjacent or
perhaps other protein-coding regions by attracting protein-coding regions.
Three bases in specific order - the codon - encode for a particular amino
acid, e.g., ATG for methionine. Mutations are changes in DNA base
sequences that may result from (1) change in a singe base or base pair,
termed a point mutation; (2) loss of a variable length of DNA, ranging
from one base to entire genes to whole chromosomes (deletion); or (3)
rearrangements between genetic loci on the same (inversion) or different
(translocations) chromosomes. A tumor can contain several different
chromosomal abnormalities.
Mutations may be inherited and either result in death of the cell or

fetus or may predispose one to familial cancers. Other mutations may be
acquired, such as DNA damage resulting from radiation or carcinogens.
Thyroid tumors occur in up to 50% of children exposed to low-dose (6.5
2000 rads) radiation and about 7% of such children develop thyroid cancer
[46]. Carcinogens also cause DNA damage and thyroid tumors [15].
DNA codes a single-stranded base sequence called ribonucleic acid

(RNA) [47,48]. RNA exists in four forms: transfer RNA, ribosomal RNA,
small nuclear ribonucleoprotein particle (SNRP), and messenger RNA
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(mRNA). The mRNA carries the coded sequence of DNA from the nucleus
to the cytoplasm for translation into proteins. Proteins are the major func
tional molecules in the cell. The amino acids in a protein determine its
shape, function, and activity.
Both DNA and RNA viruses can cause tumors and are called viral

oncogenes. These viral oncogenes encode for proteins that appear to be
involved in the growth of some thyroid neoplasms. Oncogenes have been
documented for growth factors (sis), growth factor receptors (erbB), signal
transducers (ras, gsp), and regulation of gene transcription (los, jun, myc)
[42,45,49-56]. Thus, after infection of cells the viral DNA is integrated into
the host genome. Such infection may result in cellular transformation via the
chronic production of one or more proteins. This results in enhanced DNA
synthesis [50,57] and can transform various cells in vivo or in culture so that
they no longer require the usual growth factor. The introduction of gene
coding for simian virus (SV40T) antigen into transgenic mice, for example,
results in thyroid and other endocrine tumors [58]. Thus, the overexpression
of normal genes, expression of new or altered genes, and the deletion of
suppressor genes can all result in cellular transformation and malignant
tumors. Viral oncogenes can cause these types of cellular transformations.
A loss of genetic material may also cause tumors by the absence of

a growth regulator that normally constrains cellular proliferation. Loss
of these tumor suppressor genes (recessive oncogenes or anti-oncogenes)
usually requires that both alleles are deleted. The best example of a gene
that encodes products that suppress the development of malignancy is the
tumor retinoblastoma gene [59]. Patients with familial retinoblastoma have
a dominantly inherited mutation in the retinoblastoma gene that is situated
in one of the two alleles of chromosome 13. Patients who acquire a second
mutation in the previously normal gene on the other allele of chromsome 13
develop retinoblastoma because this mutation eliminates the cell's ability to
produce enough of the tumor suppressor gene product to prevent tumor
development. This type of anti-oncogene may also be involved in patients
who develop familial thyroid cancers [60].
The chromosomal abnormalities responsible for the dominantly inherited

multiple endocrine neoplasm (MEN) types 1, 2a, and 2b have been identified.
The gene responsible for MEN 1 has been mapped to chromosome 11, and
the gene for MEN 2 has been mapped to chromosome 10 [61-64]. The
MEN syndrome involves multiple tumors and/or hyperplastic changes in the
parathyroid glands, pituitary, and pancreas. Patients with MEN 2a have
tumors of the thyroid (medullary), and the adrenal (pheochromocytoma) and
parathyroid glands. Patients with MEN 2b have tumors of the thyroid and
adrenal but rarely of the parathyroid [65]. The latter patients also have a
characteristic Marfanoid habitus with mucosal neuromas and ganglioneuromas
of the gastrointestinal tract [65]. Medullary thyroid cancers are more lethal
in patients with MEN 2b than in MEN 2a or sporadic medullary thyroid
cancer MTC [66,67]. Patients with familial medullary thyroid cancer with-
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out other manifestations of MEN 2 have the best prognosis, and in some
families patients die with medullary thyroid cancer but not from medullary
carcinoma. It, therefore, appears that identification of the specific chromo
somal abnormality in patients with medullary thyroid cancer will not only be
valuable in screening family members for the predisposition to medullary
thyroid cancer but also for predicting the biological behavior of this tumor.

TSH

There are considerable clinical and laboratory evidence supporting TSH as a
trophic hormone for the thyroid gland and for thyroid neoplasms. Bruns in
1895 [68], in 326 patients with nodular goiters, reported that about two
thirds of the goiters decreased in size in response to treatment with thyroid
hormone (presumably by decreasing serum TSH levels). Subsequent studies
by Greer and Astwood [69], Shimoaka and Sokel [70], and others [71,72]
confirmed these studies, but more recent studies by Boey et al. [73] and
Morita et al. [74] documented that only about 40% of thyroid nodules
decreased in size. A well-designed investigation by Gharib et al. [75], how
ever, found that no significant regression in thyroid nodules occurred in
patients treated with thyroid hormone when compared to placebo-treated
control patients. Berghout et al. [76], however, recently documented the
effectiveness of treating patients with nodular goiter with thyroid hormone
when compared to placebo-treated controls and also noted increased goiter
growth when the thyroid hormone was discontinued (Fig. 2).
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Figure 2. Effect or TSH suppressors with L-thyroxine (2.5 mg/thyroxin kg body unit daily)
alone or combined with carbinazole (CBZ, 40 mg daily) in 78 patients with sporadic nontoxic
goiter in a prospective placebo-controlled double-blind randomized trial. A response to treat
ment as judged by ultrasonography was found in 58% of the T4-treated group, in 35% of the
T4-carbinazole-treated group, and in 5% of the placebo-treated group. From Berghout et al.
[76], with permission.
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Figure 3. Serum thyroglobulin levels after thyroidenctomy in patients whose metastatic thyroid
cancers did (solid circles) or did not (open circles) take up radioactive iodine. From Grant et al.
[87], with permission.

Dunhill [77] in 1934 was the first to report that some thyroid carcinomas
regress in response to treatment with thyroid hormone. His clinical observa
tion was confirmed by Crile [71] and Thomas [72], and Balme [78] even
reported regression of metastatic thyroid cancer. Purves et at. [79] docu
mented that rats fed goitrogens develop thyroid tumors, and numerous
investigators have demonstrated that treatment with thyroid hormone
prevents or decreases the number of radiation-induced thyroid cancers in
rats [80-82]. Fogelfeld et at. [83,84] reported that in people exposed to low
dose therapeutic radiation thyroid hormone decreased tumor recurrence.
Studies of DeGroot et at. [85], in contrast, failed to find any beneficial
effects.
High serum TSH levels are also required for effective transplantation of

most thyroid tumors [86]. Increased TSH levels in patients with persistent
papillary and follicular thyroid cancer, even after total thyroidectomy,
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increase serum thyroglobulin levels, thus demonstrating the importance of
suppressing serum TSH levels [87]. (Fig. 3). Serum thyroglobulin levels
decrease in most patients with thyroid nodules whose \lodules decrease in
size in response to TSH suppression therapy [74]. Numerous studies have
also documented that most differentiated thyroid tumors of follicular cell
origin have TSH receptors, have an intact TSH-adenylate cyclase signal
transduction system, and respond metabolically to TSH [33,88,89]. Both
functioning and nonfunctioning thyroid tissue transplanted into nude mice
also appears not only to grow faster than normal human thyroid tissue in
response to TSH stimulation, but also suppression of TSH decreases this
growth [90]. The amount of regression in growth of abnormal thyroid tissue,
however, is not as great as that which occurs in normal thyroid tissue,
suggesting that other thyroid growth factors are also involved.
Thyroid stimulating immunoglobulins (TSI) or antibodies also stimulate

normal thyroid tissue and cause goiter (Graves' disease) [91,92]. These
immunoglobulins may also stimulate the growth of some thyroid tumors
[93]. TSI appears to function via the TSH receptor. In one study TSI
stimulated the adenylate cyclase system but not the phosphoinositide
phospholipase C system (Fig. 1) [94]. The cytokines, such as interleukin, are
also thyroid growth factors, and the local release of these substances by
lymphocytes and other cells within the thyroid gland or thyroid tumor could
influence normal or neoplastic thyroid growth [95-97].

Thyroid oncogenes

Oncogenes, whether of viral origin or not, encode products that act either
in the nucleus or in the cytoplasm [42]. Specific oncogenes have been
documented in thyroid neoplasms. These oncogenes often cause constitutive
activation of the signal transduction pathway. For example, sis and int-2
oncogenes resemble platelet-derived growth factor (PDGF) and fibroblast
growth factor (FGF), respectively [49,50,98-100]. The sis oncogene and
PDGF receptors that are not usually found in normal follicular cells have
been identified in two anaplastic thyroid cancer cell lines and FGF has been
reported to increase thyroid growth [98-100]. The ras oncogene product or
p21 is a guanyl nucleotide binding protein that keeps GTP bound in an
'activated state.' The stimulating G protein oncogene (gsp) has been found
in thyroid neoplasms,.. whereas the inhibiting G-protein oncogene (gip) has
not [52-]. TSH stimulation increases c-myc and c-fos oncogene expression in
cultured thyroid cells [49,55]. Terrier et aI. [101] documented increased
amounts of c-myc RNA in 57% (13 of 23) of the thyroid cancers they
studied and increases in c-fos RNA in 61% (14/23). Patients with an
unfavorable clinical and/or histological programs were twice as likely to
overexpress c-myc as patients with a better prognosis. The expression of c
fos did not correlate with prognosis.
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The studies by Lemoine et al. [51,102-110] have documented that ras is
present in 0-100% of thyroid neoplasms. The three types of activated ras
oncogenes (N-ras, H-ras, and K-ras) vary in thyroid neoplasms. Wright et al.
[111] recently reported that although the overall prevalence of ras mutations
was the same in 68 spontaneous and 12 radiation-associated thyroid tumors,
follicular carcinomas that developed in radiated patients had a significantly
higher K-ras mutation rate (60-67% p < 0.005). Johnson et al. [112] noted
that expression of the ras oncogene product, p21, is only weakly expressed
in normal thyroid tissue but is more strongly expressed in both benign and
malignant thyroid tumors, as well as in Hashimoto's thyroiditis and Graves'
disease. Anaplastic carcinoma, however, showed little staining for p21.
Pacini et al. [113] documented that p21 staining was positive in 35 of 51
(64.8%) thyroid tumors. A significant correlation was found between
patient outcome and p21 tumor staining. Eleven of 12 patients who died
(91.6%) with papillary thyroid cancer and 8 of 17 (72.7%) patients with
follicular cancer had tumors that stained positive for p21. Overall 19 of 23
(82.6%) of patients who died stained positively for p21 vs. a 51.5% positive
rate in patients who were alive (p < 0.02 by Chi square). This is in contrast
to those findings of Nakagawa et al. [114], who documented that introduc
tion of v-H-ras oncogene into an aggressive human medullary thyroid cancer
cell line that did not normally express H-ras induced differentiation and a
decrease in cellular proliferation. PC12, a phenochromocytoma cell line,
also became more differentiated in response to microinjection of ras-p21
[115]. Thus the same oncogenes may manifest in different ways in varying
tumors.
Shi et al. [116] reported that mutated ras oncogene is more common in

thyroid tumors from iodine-deficient patients from Hungary than in iodine
sufficient patients from Newfoundland. We, however, have not observed
these differences in ras oncogenes in thyroid tumors from iodine-deficient
Germany when compared to patients from iodine-rich San Francisco [117].
Iodine deficiency could be a reason for some differences in ras mutations
observed in various studies. Thus, Lemoine et al. [102-104] report a higher
frequency of ras mutation in follicular thyroid cancer in patients than do
most other groups, and these investigators work in a relatively low iodine
area. Other factors may also be important for the reported discrepancies
in mutant ras frequency in thyroid tumors. These include (1) varying
techniques with conditions not stringent enough to distinguish mutant from
wild-type DNA sequences in some investigations, (2) tumor selection and
classification, and (3) contamination by stromal or normal thyroid. Genetic
predisposition and environmental exposure to radiation and carcinogens
or infectious agents that serve as mutagens might also contribute to the
observed differences. For example, Lidereau et al. [118] have observed the
association of H-ras and tumor susceptibility, especially the development of
breast cancer. Muschel et aI. [119] noted in NIH-3T3 cells that activated
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H-ras and another as of yet undefined factor are required for the develop
ment of metastatic disease.
Lyons et al. [52] have reported a GTPase inhibiting mutation in the alpha

chain of the heterotrimeric G protein. This mutation constitutively activates
the G protein and is called the gsp oncogene. In initial studies, this oncogene
was present in 14 of 42 (43%) growth hormone secreting pituitary tumors
but in only one of 24 (4%) thyroid tumors. One would predict that gsp
oncogenes would result in constitutive activation of adenylate cyclase, since
they inhibit the guanosine triphosphatase (GTPase) activity. This proved to
be true for the GH-secreting pituitary tumors that have a gsp mutation
but not for the single gsp-positive thyroid autonomous follicular adenoma.
Suarez et a1. [53] recently reported that 2 of 3 constitutively activated
follicular carcinomas and 1 of 3 constitutively activated papillary thyroid
carcinomas had a gsp oncogene. This suggests that the gsp oncogene may be
an important oncogene, but it also suggests that other factors result in
constitutive activation of the adenylate cyclase pathway, since 3 of the 6
patients were gsp negative. O'Sullivan et a1. [120] identified gsp-activating
mutations in 5 of 13 (38%) autonomously functioning thyroid adenomas, but
in 0 of 16 nonfunctioning adenomas, six papillary carcinomas, and three
follicular carcinomas. They suggest that the gsp oncogene is involved in the
pathogenesis of autonomously functioning thyroid tumors but not in other
tumors. Studies by Goretzki et al. [121] have documented that when both
gsp and ras mutations are present in thyroid cancer, the tumor behaves in a
more aggressive fashion. The gsp oncogene, i.e., activating mutations of the
Gs gene, have been found in the various tissues from four patients with the
McCune-Albright syndrome, which is characterized by polyostatic fibrous
dysplasia, sexual precosity, and hyperfunction of various endocrine glands,
including multinodular goiter [122].
Fusco et al. [123] have reported the presence of a new oncogene named

PTC in papillary thyroid cancers, as well as in two lymph node metastases.
This gene is a variant of the ret proto-oncogene. ret proto-oncogenes were
also identified in human pheochromocytomas and in medullary thyroid car
cinoma of the sporadic and familial type [124]. The latter finding suggested
that the ret gene would be on situated on chromosome 10, close to the gene
that predisposes patients to the MEN 2a syndrome. Donghi et al. [125]
subsequently found the PTC oncogene on chromosome 10 qll-q12 in
the same region as that for multiple endocrine neoplasia type 2a (MEN 2a).
The same investigators screened 20 papillary thyroid cancers from 16 patients.
DNA from thyroid tumors from 10 patients (62%) displayed a transforming
activity in cultured cells: 4 due to the PTC oncogene, 4 due to TRK
oncogene, and two due to N-ras. Since both PTC and TRK have tyrosine
kinase activity and the EGF receptor is also a tyrosine kinase, this signal
transduction pathway may also be involved in the pathogenesis of papillary
thyroid cancer [126].
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The p53 gene acts as a tumor suppressor gene or as a dominant transform
ing oncogene (see chapter 17). Wild-type p53 has been documented to be
antiproliferative in SV40-transformed HR 8 cells, colon carcinoma cells, and
other cells [60,127]. Mutant p53 genes are found in breast, colon, and lung
cancers. Only 1 of 130 thyroid tumors, however, was found to have a p53
mutation [127]. Recently, however, p53 mutations were detected in 6 of 7
undifferentiated thyroid carcinomas [128].

Conclusions

The marked variations in thyroid tumor aggressiveness, the known regula
tory control by thyroid stimulating hormone (TSH), and other growth factors
makes thyroid tumors an ideal system to study. The TSH-adenylate cyclase
signal transduction pathway has been extensively studied in thyroid neoplasms
and information is also available about TSH-phospholipase C, EGF-tyrosine
kinase, and other signaling systems. Numerous oncogenes have also been
found in both benign and malignant thyroid tumors, including ras, gsp,
erbB, sis, ret, TRK, PTC, mye, los, and jun. Several studies, but not all,
suggest that the presence of several oncogenes predicts a more aggressive
tumor behavior.
It appears that more aggressive thyroid cancers may contain more

activated oncogenes and/or inactivated anti-oncogenes, similar to what has
been found in the studies of colon cancer [129]. Analyzing the oncogene
profile of a tumor may help in the diagnosis of certain tumors, in predicting
the behavior of tumors, and thus how aggressive patients with these tumors
should be treated. Recent studies have documented that removal of a single
genetic lesion eliminates the ability of cancer cells to grow in nude mice
[130]. For such therapy to be applicable for patients, methods must be
developed to deliver gene constructs to the cancer cells, possibly via viral
vectors. Thus the expression of a dominant oncogene could be inhibited, or
a deleted or altered tumor suppressor gene could be replaced. Techniques
may also be developed with oncogene-specific monclonal antibodies or other
substances that can interfere with the excessive stimulus for growth or
metastases.
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5. Growth regulation of human neuroblastoma

Osama M. EI-Badry and Mark A. Israel

Introduction

Neuroblastoma is a highly malignant tumor of infants and children. It
typically occurs before the age of 5 years and accounts for up to 50% of all
malignancies among infants [for review see 1,2]. A significant fraction of
cases are identified neonatally, indicating that the tumor can arise during
fetal life and may represent a disorder of normal development [3]. These
tumors arise in sympathetic neuroblasts that originate in the neural crest and
are destined to become chromaffin or neuronal tissues of the peripheral
nervous system [4]. Sixty-five percent of neuroblastomas occur in the
abdomen, where adrenal medullary tumors account for 40% of these tumors
[1,2]. Approximately 50% of infants and 70% of older children with neuro
blastomas have evidence of tumor spread beyond the primary location to
metastatic sites, including the lymph nodes, bone, bone marrow, liver, and
skin, at the time they first come to medical attention [1]. In children under 1
year of age, a special presentation of disseminated neuroblastoma, which is
most clearly distinguished from the more common presentation of advanced
stage neuroblastoma in that it does not involve lytic lesions of the bone,
has been recognized [5-8]. This group, designated stage IVs, includes
approximately 17% of neuroblastoma tumors arising in children under the
age of 1 year. Remarkably these tumors regress without therapy, while
those of older patients or of young children with metastatic disease to bone
have a very poor prognosis [1].
Neuroblastomas may be distinguished from other histologically similar

small, round blue cell tumors, such as neuroepithelioma and Ewing's sar
coma, by patient age, urinary excretion of the catecholamine metabolites
homovanillic acid (HVA) and vanillylmandelic acid (VMA), absence of a
t(11,22) chromosomal alteration [9], and secretion of neurotransmitter
biosynthetic enzymes [for review see 10]. Neuroblastomas are also charac
terized by greatly diminished or absent HLA Class I antigen expression,
abnormalities of chromosome 1, and src and ras oncogene expression, and
may contain multiple copies of N-myc oncogene DNA (see below). More
over, recent investigations indicate that expression of the ret oncogene
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may be specific to neuroblastomas [11,12], while expression of dbl may be
specific to Ewing's sarcomas [13].

Chromosomal abnormalities

Karyotypic abnormalities in tumor cells of patients with neuroblastoma have
been documented in many studies [14-20]. These include homogeneously
staining regions (HSRs), double-minute chromosomes (OMs), and chromo
somal alterations, such as deletions and aneuploidy.

HSRsand DMs

HSRs and OMs are anomalous nonbanding chromosomal material present
in metaphase preparations of many human neuroblastoma tumors. These
structures were first identified in neuroblastoma. Most commonly they
were found in tumors from patients with advanced-stage disease (stage III
and IV) who responded poorly to treatment [17,20-24]. HSRs and OMs
are often present in cells resistant to the cytotoxic effect of high-dose
chemotherapeutic agents [24]. It is known that these structures contain genes
that encode drug resistance, and it is possible that the genes present in OMs
and HSRs of tumors confer a selective growth advantage on those tumor
cells as well. HSRs and OMs have since been detected in many other human
tumor types, including colon carcinoma, small cell lung carcinoma, and
retinoblastoma [25-27].
The N-myc oncogene (see below), located on chromosome 2 [28], is often

amplified in HSRs and OMs, where it is overexpressed [28-33]. This finding
suggests that these chromosomal regions contain amplified genes that con
tribute to the pathogenesis of neuroblastomas. The genes amplified in HSRs
and OMs are not thought, however, to initiate neuroblastomas, as they are
detected only in advanced-stage tumors. The role of such genes in the
progression or metastasis of neuroblastomas has not been resolved, although
amplification of N-myc is associated with a poor prognosis (see below).

Chromosomal deletions: Ip, 14q, llq

Chromosomal deletions have been detected in many neuroblastomas. Most
notable among these are deletions in chromosomes 1p, 14q, and 11q. Allelic
loss in chromosome 14q has been reported in 10 of 21 (48%) [34] and 4 of
12 (33%) [35] primary tumors from patients with neuroblastoma. The sig
nificance of 14q deletions, however, is not clear, as such losses are infrequent
among neuroblastomas. Also, they may be detected in tumors from patients
with all stages of disease, as well as in patients with ganglioneuroblastoma, a
form of neuroblastoma that has a favorable prognosis [34]. Deletions in
chromosome llq have been reported in tumor DNA from 5 of 12 (42%)
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patients evaluated [35]. Allelic loss in llq has been detected in tumors other
than neuroblastomas, suggesting that a tumor suppressor gene important for
several human tumors may be located in this region [35].
One of the most frequent chromosomal alterations observed in neuro

blastoma is the apparent loss of a portion of the short arm of chromosome 1.
Such alterations were originally observed in neuroblastoma cell lines isolated
from patients with advanced-stage disease [19,20,36] and may differ from Ip
deletions observed in tumor cells of other cancers [37]. The reported fre
quency of Ip- among neuroblastomas is high: 65% of neuroblastoma cell
lines and 70-100% of advanced-stage tumors have this change [22,23,38,
39]. Christianson [23] detected chromosome 1 alterations in 15 of 18 patients
with stage IV neuroblastoma, 2 of 3 patients with stage III, and 0 of 7
patients with stages I, II, and IVs. All of the seven patients with stages I, II,
or IVs without chromosome 1 abnormalities were alive with no evidence of
disease. Life table analyses revealed that there was a 90% probability of
survival for patients lacking Ip abnormalities compared to <10% in patients
with detectable 1p alterations. These findings suggest that structural changes
in chromosome 1 may be used to discriminate between patients with good
and bad prognoses [23].
The frequency of chromosome 1 alterations and the association of such

alterations with poor clinical outcome has raised the possibility that such
changes may be associated with the inactivation of a tumor suppressor gene
[3,37,40] or the activation of a neuroblastoma susceptibility gene [39].
Support for such a hypothesis comes from studies demonstrating the sup
pression of the ability of neuroblastoma tumor cells with chromosome 1
alterations to form tumors after fusion with Hela carcinoma cells [41].
Cytogenetic and molecular studies of tumor samples using chromosome
specific polymorphic DNA markers indicate that the extent of deleted
material on chromosome 1 varies greatly between tumors [37,39]. However,
the region most commonly involved includes Ip31 to ter [19,42-44]. Using
molecular genetic analysis Fong reported that the most distal breakpoint
noted is at or near the FGR locus, Ip34-36 [43]. Using a region-specific
panel of probes generated by microdissection and microcloning, Schwab [37]
and Weith [45] have identified a region, Ip36.1-2, which is deleted in more
than 90% of stage III and IV neuroblastoma tumors.

Ploidy: Near triploid versus near diploid DNA index

In addition to the predictive value of Ip-, a strong correlation has been
observed between DNA ploidy and prognosis among patients with neuro
blastoma [23,46-53]. In one study, Kaneko [50] observed that near diploid
or pseudodiploid and hypotetraploid karyotypes with numerical and struc
tural abnormalities were associated with chromosome 1 alterations, HSRs,
OMs, and N-myc amplification. Such features were observed mostly in
patients greater than 1 year of age with stage III or IV neuroblastoma. The
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mean survival time for these patients was 376 days, with 7 of 11 of these
patients succumbing to the disease. A near-triploid karyotype, on the other
hand, was associated with almost complete haploid sets, few structural
abnormalities, and no N-myc amplification. Such characteristics were found
only in infants with stage I or II disease, who were reported to be alive with
no evidence of disease. Bourhis [52] also reported that the combination of
ploidy and N-myc status can be highly predictive of outcome. In these
studies the 2-year actuarial disease-free survival rate was 94% for patients
with near-triploid neuroblastoma (DNA index between 1.25 and 1.7), com
pared to 11% and 45% for patients with near-diploid tumors, with and
without N-myc amplification, respectively (p < .01).

Oncogenes

Proto-oncogenes are normal cellular genes whose aberrant expression
contributes to the development of tumors [54]. Although expression of
such genes may have prognostic value, there is presently limited evidence
implicating the expression of specific oncogenes with tumor initiation
or progression of neuroblastomas. The ret oncogene, which encodes two
isoforms of a receptor type tyrosine kinase [55,56], has been shown to be
expressed in 11 of 11 neuroblastoma cell lines and all 29 neuroblastoma
tumors examined. Expression has not been detected in a large number of
other tumors or in 19 nonneuroblastoma solid tumors and in one human
diploid fibroblast cell line [11,12]. The levels of mRNA encoding ret varied
up to lOO-fold in these tumors. Such expression also appeared to be in
dependent of patient age, stage, histological grade, N-myc amplification or
expression, or the serum level of neuron-specific enolase [11,12]. Since other
neural-crest-derived tumors do not express ret [57], expression of this gene
may be related to its expression in neuroblasts in which neuroblastoma
arises [58]. No structural rearrangement or amplification of ret has been
detected in any neuroblastomas [11].

c-src, the cellular homologue of the viral transforming gene, v-src is a
tyrosine-specific kinase [59,60] that is expressed at low levels in most cell
types. Elevated levels of c-src kinase activity are detected in neurons and
chromaffin cells, as well as in some other cell types [61-63]. High levels of
c-src mRNA or protein have also been detected in many human tumors,
including small cell lung carcinoma cell lines, colon carcinoma, rhabdomyo
sarcoma, breast cancer, and neuroblastoma but not in any other childhood
tumors [64-70]. The expression of additional forms of c-src, c-src-NI, and
c-src-NII appears to be limited to neuroblasts, neurons, and cells dif
ferentiated along a neuronal lineage, [61,70-72]. Thus, c-src-N may be a
marker for neuroblastoma among small, round blue-cell tumors. Among
neuroblastoma, c-src-N is highly expressed in less-aggressive, low-stage,
more-differentiated, good-prognosis tumors of infants, but not in tumors
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from older, poor-prognosis neuroblastoma patients [73,74). Expression
of c-src in neuroblastomas also may be inversely correlated with N-myc
expression (74).
The ras oncogene, which functions in the transduction of signals across

the cell membrane [75-78], has also been shown to be expressed at elevated
levels in neuroblastoma of young children, which has a favorable prognosis,
in ganglioneuroblastoma, and in neuroblastomas differentiated by chemo
therapy [79,80). The ras gene is also expressed at high levels in normal rat
brain and has been shown to promote morphological differentiation and
growth inhibition of rat pheochromocytoma PC-12 cells into neuronlike cells
[81-84). These findings suggest that ras may have an important function in
neural tissues [79). A single point mutation in the gene coding for ras is
sufficient to transform cells. An analysis of DNAs from 10 neuroblastoma
cell lines for mutations in N-ras, H-ras, or K-ras revealed no point muta
tions, except for a single point mutation in codon 59 of N-ras in DNA from
SK-N-SH. This mutation was postulated to result from in vitro passage as
early passages or sublines of SK-N-SH did not contain such a rearrangement
(85).
Much has been written regarding the association of N-myc oncogene

amplification and the pathogenesis of neuroblastomas. N-myc was originally
identified in an amplified form in 8 of 9 neuroblastoma cell lines and in one
tumor by sequence similarity to c-myc [21,28,29], which was previously
shown to be amplified in cell lines from acute promyelocytic leukemia [86],
colon carcinoma [25], and lung tumor (26). By virtue of its homology with c
myc and by its amplification in a majority of neuroblastoma cell lines, N
myc was thought to contribute directly to tumorigenesis. Support for such a
hypothesis was provided by transfection studies, which indicated that N-myc
can support mutationally activated ras-H in the tumorigenic conversion of
primary rat embryo cells [87,88). Subsequent reports revealed that N-myc
was not amplified in all neuroblastomas. Rather, multiple copies of N-myc
were detected in only 30-40% of all neuroblastomas, primarily in tumor
tissues from patients with either advanced-stage disease [30,89,90], disease
originating in the suprarenal region [91), histologically undifferentiated
tumors [91-93), surgically unresesictable primary tumors [94,95], and
tumors associated with low levels of urinary VMA and HVA [96,97). N-myc
amplification was rarely observed in tumors presenting as stage I, II, or
IVs [31,89,90,98). Such findings lead to the suggestion that rather than
representing the primary transformation event in neuroblastomas, N-myc
may be associated with progression of the disease [90).
More recent studies reveal that, in addition to stage III and IV neuro

blastoma, N-myc may be detected in an amplified form in some early stage
tumors, including IVs neuroblastomas [92,99-103). N-myc amplification is
associated with a poor prognosis, independent of patient age or disease
stage at presentation [92,100). Among neuroblastoma cell lines that express
N-myc, the gene is expressed only in the round neuritic 'N' cells, which grow
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in soft agar and are tumorigenic in athymic mice. N-myc is not expressed in
the flat epithelial-like component'S' cells of neuroblastoma cell cultures.
These cells do not grow in soft agar and are not tumorigenic in nude mice
[104].
The N-myc oncogene encodes two nuclear DNA binding phosphoproteins

[105] with molecular weights of 65 and 67 kDa [106], and 62/64 [107]. These
proteins have a short half-life and resemble proteins encoded by the c-myc
oncogene [108]. N-myc expression is developmentally regulated and is found
in immature Band T lymphocytes, as well as fetal tissues such as brain,
retina, lung, kidney, and cranial muscle. Several different tumors of neuro
endocrine origin, such as neuroblastoma, retinoblastoma, and small cell lung
carcinoma [29,30,109-118]' also express N-myc. In human fetal brain,
N-myc mRNA is detectable in mitotic undifferentiated neural cells but not
in differentiated neurons [113]. Neuroblast precursor cells express N-myc
while migrating from the neural crest, while proliferating, and while invad
ing the fetal adrenal or sympathetic ganglia. N-myc expression ceases,
however, once the neuroblasts are established in the adrenal gland [112]. By
virtue of its DNA binding capacity, as well as by the presence of conserved
motifs previously identified in transcription factors, the N-myc gene is
thought to encode a regulatory protein. In addition, its transient and localized
expression during early stages of organogenesis suggests that N-myc may
regulate gene expression in the developing organism [119].

N-myc expression has been postulated to correlate with increased growth
potential [120,121]. However, many investigators believe that such expression
is associated with the differentiated state of the cells [110,112,119,122-124].
Agents that induce differentiation of neuroblastoma cells have also been
shown to reduce N-myc expression [125-127]. Studies comparing the growth
characteristics of neuroblastoma cells in nude mice, however, indicate that
there is no difference in tumorigenecity between neuroblastoma IMR-32
cells, which contain amplified copies of N-myc, and SK-N-SH cells, which
contain a single copy N-myc [128].

Class I "LA expression

One of the mechanisms important for tumor growth and evasion of the
host immune system may involve altered expression of class I major histo
compatibility complex (MHC) antigens. These membrane molecules are
important for the presentation of tumor antigens to cytotoxic T lymphocytes,
which is key for the in vivo destruction of tumor cells. In mice, loss of class I
antigen expression has been observed in both spontaneous tumors, such as
leukemias and sarcomas [129-131), and in virus-induced tumors [132].
Reversion to the benign phenotype has been observed following transfec
tion of neuroblastoma cells with class I genes, which restore normal MHC
antigen levels and sensitivity to cytotoxic T-Iymphocytes [133-135]. In
human tumors a reduction of HLA-A, -B, and -C antigens has been demon-
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strated in many neoplasms, including choriocarcinoma; teratocarcinoma;
skin carcinoma; small cell lung carcinoma; colorectal, laryngeal, and breast
carcinomas; melanoma; lymphoma; and neuroblastoma [for review,
see 136].
Among cell lines derived from human neuroblastomas or from tumors of

neuronal origin, class I HLA expression has been shown to be very low or
absent [137,138]. These findings suggest that such expression may lead to
the escape of neuroblastoma tumor cells from immunosurveillance [139,
140]. One study examining such a possibility did not demonstrate a correla
tion between the loss of HLA expression and the prognosis of patients with
neuroblastoma [141]. Using the monoclonal antibody W6/32 and anti-~-2

microglobulin, Cooper demonstrated that MHC antigen expression is devel
opmentally regulated in the human adrenal gland [142]. It is undetectable in
adrenal neuroblasts from human fetuses estimated to be at 24 weeks of
gestation, but is detectable in postnatal adrenal neuroblast cells. Thus MHC
antigen expression among neuroblastomas may reflect the stage during
development at which individual tumors arise.
Surface expression of MHC antigens in neuroblastoma has been induced

by treatment with gamma-IFN [143-147] as well as by other agents [145].
A phase 1111 trial using gamma-IFN in patients with neuroblastoma has
indicated the relative safety of the treatment, but has not resulted in sig
nificant clinical responses [148]. Differentiation concomitant with chemo
therapy in primary as well as metastatic sites has also resulted in enhanced
expression of class I antigens [138].
Examination of the expression of class I HLA and N-myc genes in

neuroblastoma cell lines suggests that an inverse relationship exists between
the expression of N-myc and HLA class I molecules [149]. Transfection of
N-myc into neuroblastomas [150] or c-myc into melanomas [151] has also
been shown to modulate the expression of HLA class I molecules. Further
more, fusion of N-myc amplified IMR-32 cells with L cells resulted in the
downregulation of N-myc gene expression and the upregulation of HLA
expression [152]. These findings suggest that N-myc overexpression may
result from inactivation of a suppressor gene, while downregulation of N
myc reactivates HLA expression [152]. Two reports, however, present data
that do not support the notion that expression of N-myc and HLA genes are
linked, one using N-myc transfection [153] and the other employing cytokine
treatment [147]. These studies did not report a close association between the
expression of N-myc and HLA, and indicate that an understanding of the
precise relationship between these genes will require further study.

Autocrine and paracrine growth

It has been proposed that the growth of many human tumors may be
mediated by soluble factors produced by the tumor cells themselves [154].
Critical data to support this hypothesis, however, are available for only a
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few types of tumors [155-157]' On the other hand, a significant literature
exists to support the possibility that the growth of human tumor cells may be
stimulated by factors produced by nonmalignant cells within the tumor [e.g.,
158,159]. Such a mechanism is consistent with the paracrine model of tumor
growth.

Exogenous factors that stimulate the growth of neuroblastomas in vitro

Studies using serum-containing medium have suggested that epidermal
growth factor (EGF) or the combination of EGF and hydrocortisone
stimulate the proliferation of substrate-adherent, S-type, neuroblastoma
cells [160-162] in semisolid medium [163]. EGF has also been reported to
stimulate the proliferation of 7 of 8 neuroblastoma cell lines in liquid
medium containing low concentrations of serum [164], and of SK-N-BE and
CA-2 neuroblastoma cells in semisolid medium. The range of this stimula
tion was 1.3- to 3.5-fold 14 days after growth factor addition. Basic fibroblast
growth factor (bFGF), nerve growth factor (NGF), and cell-free extract
from selected embryonic chick eye tissue (CIPE) have also been reported
to stimulate the proliferation of IMR-32 neuroblastoma cells in serum
containing medium [165].
In a chemically defined serum-free medium, insulin and insulinlike

growth factor (IGF) I or II stimulated the proliferation of almost all human
neuroblastoma cell lines, whereas the addition of other such factors, includ
ing EGF, acidic FGF, bFGF, platelet-derived growth factor, endothelial cell
growth factor, granulocyte-macrophage colony stimulating factor, and
transforming growth factor beta, had no effect [166-169]. Insulin stimulated
the growth of human neuroblastoma cells only when supraphysiological
concentrations (1-10llg/ml) of the peptide were used [167,168]. In con
trast, physiological concentrations of IGF I or II, 2-10 ng/ml, stimulated the
growth of all neuroblastoma cell lines studied. The proliferation of three
such cell lines was stimulated six- to sevenfold using IGF-II for 9 days [167]
(Fig. 1).
Insulin, IGF-I, and IGF-II stimulate growth by binding to the same

receptor, the type I IGF receptor [170-172]' which is present on the cell
surface of all neuroblastoma cell lines studied to date [166,173-176]. Since
supraphysiological concentrations of insulin are required to stimulate the
growth of neuroblastoma cells, and physiological concentrations of IGF I or
II have the same effect, it seems likely that a physiological ligand mediating
the growth of neuroblastomas in vivo will be an IGF rather than insulin
itself (see below).

Factors produced by tumor cells that mediate the growth of neuroblastomas

Several studies have examined the possibility that cell extracts or cell
conditioned medium contains factors mitogenic for neuroblastoma cells. In
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Figure 1. IGF-II stimulates the proliferation of human neuroblastoma cells in vitro. 104 human
neuroblastoma cells were plated (3 x 104/cm2) into 96-well tissue culture dishes containing
serum-free N2E medium [166] with or without IGF-II. The cells were refed on day 6. Cell
number was determined on the indicated days using the MIT assay. (Reproduced with
permission (167].)

one such report medium conditioned by the human neuroblastoma cell line
BE(2)-C was shown to contain a factor that stimulated its own growth,
as well as that of other neuroblastoma cells. Biochemical analysis of this
factor suggested that it may be IGF-II [168]. Chelmicka-Schorr et al. [177]
have reported that a factor produced by PC-12 pheochromocytoma cells
augments the growth of mouse C-1300 neuroblastoma cells. A factor elabo
rated in newborn sympathetic ganglion cells has a similar effect. Ablation of
the sympathetic nervous system in mice by chemical treatment prior to
C-1300 injection also suppressed growth of the tumor significantly [178].
Based upon studies indicating that virtually all pheochromocytomas express
high levels of mRNA encoding IGF-II [166], as well as other studies indicat
ing that neuroblastomas are growth stimulated by this peptide, it is likely
that the factor made by PC-12 cells, which is mitogenic to mouse C-1300
neuroblastoma cells, will be IGF-II. Similarly, the factor produced by
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sympathetic ganglion cells, which enhances C-1300 tumorigenicity, may also
be IGF-II.

IGF-II mediated autocrine and paracrine growth of neuroblastomas

An analysis of growth factor gene expression in neuroblastomas indicated
that some neuroblastoma cell lines (6 of 22) and tumors (2 of 8) express
mRNA encoding IGF-II [166,167]. One such cell line, SK-N-AS, which
expresses high levels of IGF-II mRNA, is capable of continuous growth for
many months in cell culture medium without serum or exogenous growth
factors (Fig. 1). These cells synthesize biologically active IGF-II, display
type I IGF receptors on their cell surface, and their growth in mitogen-free
medium may be blocked using antibodies that bind the type I IGF receptor
[166]. These studies indicate that SK-N-AS neuroblastoma cells are capable
of autocrine growth mediated by endogenously produced IGF-II, and suggest
that the growth of other neuroblastoma cell lines and tumors that synthesize
IGF-II and express the IGF receptor may be autocrine as well. A survey
of the growth characteristics of 25 other human neuroblastoma cell lines
revealed that most of these cell lines grow well in serum-free medium
containing insulin or IGF-II (Fig. 1). Elimination of insulin from the cul
ture medium resulted in the sluggish growth of most such cell lines, even
among some cell lines that expressed high (e.g., SMS-KAN or SK-N-FI) or
moderate levels (CHP-238 or SK-N-BE-[2]) of IGF-II. The growth of many
such cell lines in mitogen-free medium was improved, however, if the cell
density was increased, suggesting that these cells may synthesize low levels
of paracrine-acting growth factors.

Temporal expression of IGF-II in the human adrenal gland

IGF-II is thought to function primarily in the fetus [179-186], whereas IGF
I is thought to function during adolescence [187,188]. Since neuroblastomas,
which are thought to originate during fetal development, are growth stimu
lated in vitro by IGF-II, we examined the expression of IGF-II in the human
adrenal gland, the tissue in which many neuroblastomas arise [4]. Using in
situ hybridization and an antisense oligonucleotide probe specific for IGF-II
[189], we detected IGF-II mRNA expression in adrenal cortical cells at all
times during fetal development, but not in adrenal cortical cells of newborns
or adults (Fig. 2) [167]. Several reports have indicated that IGF-II mRNA
expression declines dramatically in adrenal cortical cells from the high levels
expressed at approximately 8-9 weeks of gestation to low levels at 24
weeks of gestation and to undetectable levels after birth and in adulthood
[167,181,189-192].
The temporal expression of IGF-II in adrenal medullary tissue is more

difficult to determine. During development adrenal neuroblast cells invade
the primordial adrenal gland and populate it to form the adult adrenal
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Figure 2. Expression of IGF-II in the human fetal adrenal gland at 20 weeks gestation. Human
adrenal gland tissues were evaluated for IGF-II gene expression by in situ hybridization
histochemistry using an oligonucleotide probe specific for IGF-II [166,167,189]. Panels Band D
are dark field images of the same views shown in panels A and C. IGF-II positive cells (white
dots in panels B and D) are within adrenal cortical tissue. IGF-II negative cells in the center of
the field are adrenal medullary precursor cells [142].

medulla [193,194]. At early times such cells are few in number. However,
when such cells were identified they did not express detectable IGF-II
[167J (Fig. 2). IGF-II mRNA expression was also not detected in adrenal
medullary cells of adults using in situ hybridization, although low levels were
found using Northern blot analysis [166,167J. These data indicate that the
adult adrenal medulla expresses low levels of IGF-II. It remains to be
determined whether fetal adrenal neuroblasts also express low levels of IGF
II mRNA that are currently undetectable using in situ hybridization.

IGF-ll gene expression and the proliferation of neuroblastomas in vivo

IGF-II gene expression has been detected in both parenchymal and stromal
tissue of many different human embryonic organs and tumors [112,158,
159,181,189,195]. Using an antibody directed against rat IGF-II, Suzuki
[196J detected IGF-II protein in 3 of 4 ganglioneuroblastomas and in adult
adrenal medulla. An examination of IGF-II mRNA expression in neuro
blastoma tumor tissues using in situ hybridization has indicated that IGF-II
was expressed by tumor cells in only 5 of 21 tumors examined [167].
However, IGF-II mRNA expression was detected in nontumor tissue of all
such tumors, including the adrenal cortex, stroma, capsule, and invading
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Figure 3. Expression of IGF-II in nonmalignant tissues associated with neuroblastoma tumors.
Human neuroblastoma tumors were evaluated for IGF-II gene expression as described in the
legend to Figure 2. Panels B, 0, and F are dark field images of the same views shown in panels
A, C, and E. Panels A and B demonstrate IGF-II gene expression in adrenal cortical cells
surrounding an IGF-II negative neuroblastoma. Panels C and 0 demonstrate IGF-II gene
expression in stromal tissue infiltrating an IGF-II negative neuroblastoma. Panels E and F
demonstrate IGF-II gene expression in eosinophils associated with neuroblastoma tumor cells.
(Panels C-F were reproduced with permission (167].)

eosinophils [167] (Fig. 3). Interestingly, we have observed that there may be
an association between the number of eosinophils in neuroblastoma tumors
and patient age and survival (Fig. 4). Although several reports have indicated
that some hematopoietic cells may synthesize IGF-I [197-199], IGF-I or
IGF-II gene expression in eosinophils or eosinophil infiltration of neuro
blastomas has not been previously noted. If such cells do synthesize bio
logically active IGF-II, eosinophils associated with neuroblastoma tumors
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Figure 4. Association between number of eosinophils and survival in patients with
neuroblastoma. Eosinophils were counted in paraffin sections of each of 21 tumors from
patients presenting with neuroblastoma. To quantitate eosinophils in neuroblastoma tumor
specimens, we first scanned nneuroblastoma tumor sections at 40x magnification using dark
field optics to identify 10 areas of the specimen that conntained the hiighest number of
eosinophils. Using 200x magnification, we counted all of the eosinophils in each of 10
randomly chosen nonoverlapping fields within each of these areas. In tissues where eosinophils
were rare, such that 10 fields containing eosinophils could not be readily identified using 40x
magnification, the entire tissue was scanned at 200x magnification, and eosinophils in the 10
fields containing the greatest number of eosinophils were counted. Kaplan-Meier actuarial
curves [205] demonstrate the relationship between eosinophil number (1-30, open circles; 30,
closed circles) and survival. Mantel-Haenszel analysis of the data reporting 21 patients [206]
yielded a two-tailed p value of 0.008.

may represent an important source of growth factor that can mediate neuro
blastoma tumor cell proliferation.

Significance of IGF-Il gene expression to metastasis and regression of
neuroblastomas

In addition to stimulating the growth of human neuroblastoma tumor cells
by autocrine or paracrine mechanisms, IGF-II gene expression may influence
the sites at which metastatic neuroblastoma arises. Neuroblastomas typically
metastasize to lymph nodes, bones, liver, or skin [1]. All of these tissues
have been shown to express high levels of IGF-II mRNA or protein at the
times during development when neuroblastomas are thought to arise [167,
181,189,190,195,200,201]. Also, IGF-II has been shown to be a chemo
attractant for several human tumors [157,202]. These findings raise the
possibility that neuroblastomas may metastasize to specific tissues due to
the migratory influences of IGF-II. After invasion, the survival of neuro-
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blastomas may be dependent on the availability of IGF-II in the micro
environment of the invaded tissue [167,169].
Neuroblastomas regress at a rate higher than that of any other human

tumor. Tumor regression has been observed in neuroblastoma tissue located
in the adrenal gland, liver, and skin [5,6]. Such regression may be due to the
normal, although delayed, developmental decline of IGF-II production by
such tissues. IGF-II expression in these tissues has been shown to decline
from high levels observed early during gestation to low levels noted before
birth or shortly after birth [167,181,190-192]. In our analysis, all four
neuroblastomas in which IGF-II gene expression was detected in adrenal
cortical cells adjacent to tumor were derived from patients newborn to 11
months of age. The tumors in three of these patients, newborn to 2 months
of age, have regressed and these individuals are alive with no evidence of
disease after 5-15 years of follow-up. The fourth patient died 5 months after
diagnosis. Tumor tissue from this patient, aged 11 months, expressed IGF-II
and contained numerous IGF-II positive eosinophils [167].

Concluding remarks

Several lines of investigation strongly support the view that neuroblastomas
represent outgrowths of cells arrested at different stages during development
[142,203]. Expression of N-myc, ret, src, and IGF-II, as well as the lack of
expression of HLA in neuroblastoma cells, may indicate the time dur
ing development when such cells undergo malignant transformation. Cells
blocked at different stages during the process of maturation are likely to
have disparate growth potentials. An understanding of the different growth
regulating mechanisms operative during development may make it possible
to design therapies that are appropriate for neuroblastoma tumors with
distinctive biologic features.
IGF-II expression in neuroblastoma tumor cells and adjacent normal

tissues may be important for the pathogenesis of neuroblastoma. IGF-II is
not likely to initiate malignant transformation. Rather, IGF-II may mediate
the autocrine or paracrine growth of neuroblastomas. Interestingly, neuro
blastoma cell lines that express mRNA encoding IGF-II also express markers
that identify mature adrenal medullary cells. Cell lines that do not express
IGF-II express markers associated with less mature adrenal neuroblasts
[167]. Lack of expression of IGF-II by neuroblastoma cells may indicate that
such cells were transformed at a time during development when they did not
express IGF-II. Such cells may require an exogenous source of IGF-II for
growth. IGF-II gene expression by neuroblastoma tumor cells that arose
from cells that physiologically express this gene may exhibit an autocrine
growth mechanism utilizing endogenously produced IGF-II, as demon
strated for SK-N-AS cells [166].
The association of N-myc amplification and expression with the patho-
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genesis of neuroblastomas remains a mystery. Clearly N-myc amplification
is associated with a very poor prognosis, independent of age or stage.
However, N-myc is amplified and overexpressed in only a minority of
advanced-stage neuroblastomas [90,204]. For tumors in which N-myc is
amplified or overexpressed, several questions remain. How does N-myc
contribute to cellular transformation? Is N-myc a gene that induces autocrine
growth factor production or metastasis? What are the pathologic charac
teristics of tumor progression with which N-myc amplification seems to
correlate?
Nearly 60% of advanced-stage neuroblastomas lack detectable N-myc

amplification at diagnosis [90] or at recurrence [204], yet in over 90% of
such patients progressive disease develops [97]. This observation indicates
that it will be important to identify and characterize other factors involved in
the pathogenesis of neuroblastoma.
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6. Kaposi sarcoma: A cytokine-responsive neoplasia?

Steven A. Miles

Introduction

Kaposi sarcoma is the most common malignant complication of HIV
infection [1,2]. While the incidence has steadily declined since AIDS was
first described [3-5], Kaposi sarcoma still affects nearly 30% of patients at
some time during their disease course. Since both the extent of disease
and rate of progression varies widely between patients [6], cytokines are
hypothesized to be involved in the pathogenesis of this neoplasia [7 -11].
Kaposi sarcoma is also seen in endemic and indolent forms [12,13].

The former occurs in African males and the later primarily in men of
mediterranean descent. The precise reasons for the male predilection of
both classical and epidemic forms, and the marked increased incidence
of Kaposi sarcoma in patients with HIV infection, are unknown. However, a
careful evaluation of the epidemiology and clinical presentation of this
disorder reveals some clues to its pathogenesis. Recent laboratory studies
provide support to some of these hypotheses and may provide new avenues
of therapeutic intervention. Completed studies suggest that both angiogenic
growth factors and an altered progenitor cell are keys to the development of
Kaposi sarcoma [8,14-17].

Epidemiology of Kaposi sarcoma

There are several unique characteristics of Kaposi sarcoma that must be
explained by any model for its pathogenesis. In the case of HIV-associated
Kaposi sarcoma, these include a high male to female ratio in the United
States [1,2,6,18,19], the preponderance of disease in patients with sexually
transmitted HIV infection [12,20-27], its declining incidence in the U.S.
population of HIV patients [5,28), and its appearance in individuals at
risk for HIV infection but without detectable HIV infection [19,29-33].
Clinically, the neoplasia can be indolent or aggressive and frequently has
exacerbations at the time of opportunistic infections. This stepwise pro
gression of disease suggests the presence of circulating growth factor(s)
[7-9,14,34]'

ChrislOpher C. Benz and Edison T. Liu (eds.). ONCOGENES AND TUMOR SUPPRESSOR GENES IN
HUMAN MALIGNANCIES. Copyright© 1993.
Kluwer Academic Publishers. BoslOn. All rights reserved. ISBN 0-7923-1960-5



To a certain extent, these features are also seen in endemic and classical
Kaposi sarcoma, but there are some exceptions. For example, the pre
ponderance of affected individuals are male and most have subtle immu
nologic abnormalities [12,13]. Affected patients have an increased incidence
of low-grade lymphomas. Similar to HIV patients, the incidence of Kaposi
sarcoma appears to be increased in cytomegalovirus-infected patients [35
39]. However, nearly all lack evidence of HIV infection as well as infection
with other known human retroviruses.
Kaposi sarcoma also occurs occassionally in patients who have received

organ transplants and who are iatrogenically immunosuppressed. Interest
ingly, these patients are usually receiving steroids and have been exposed to
cytomegalovirus. After withdrawal of the immunosuppression, the Kaposi
sarcoma lesions typically regress [40].
Together, the epidemiology of all three forms of disease suggests that

Kaposi sarcoma is associated with some form of immunosuppression.
Whether this association is causative (from defects in immunosurveillance)
or simply an exacerbation of a premalignant lesion from altered cytokine
production is unknown. Growth of Kaposi sarcoma can be modified by both
glucocorticoids and perhaps the sex steroids. This may potentially explain
the male predonderance. More controversial is whether Kaposi sarcoma
could be the result of cytomegalovirus infection or another sexually trans
mitted agent [29,41-43] or HIV [14,16]. Its regression with immune
modification and alpha interferon [44-49] suggests that Kaposi sarcoma
maybe a neoplasia that is driven by circulating mitogens [50-52].

In vitro studies of Kaposi sarcoma cells

Kaposi sarcoma derived cells (KS cells) were first grown in long-term culture
with conditioned media from retrovirally infected T-cell lines [8]. Although
the cells were isolated from lung tissue, careful histologic examination of
the isolated cells confirmed earlier immunohistochemical studies of Kaposi
sarcoma skin lesions [8]. The isolated cells typically stain with Ulex Europeas
I lectin, acetylated LDL receptors, in some cases vimentin, and variably
for Von Willebrand's factor. Subsequent studies detected both desmin
and smooth muscle alpha actin, suggesting that the cultured cells are
mesenchymal progenitor cells that possess both endothelial and smooth
muscle antigens [53]. Since the cells are isolated in a complex media with
multiple cytokines, it is important to note that the expression of some of
these antigens may be artifactual and the result of current isolation and
growth processes [53].

Oncogenic potential of Kaposi sarcoma DNA

Southern analysis of DNA from Kaposi sarcoma lesions [37,38] and derived
cells [8] fails to detect any sequences that are homologous to HIV or other
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human retroviruses. Evidence of cytomegalovirus infection is typically
found. However, given the very high rate of CMV infection in patients with
HIV, it is likely that CMV may represent a comorbid factor rather than an
etiologic agent. In other studies, transfection of DNA from human Kaposi
sarcoma lesions identified the presence of an oncogene called ks-FGF [54
56]. This member of the fibroblast growth factor family is related to the
hst (int) oncogene. The gene product ks-FGF uses bFGF receptors, is
homologous with bFGF, and acts as a mitogen for fibroblasts, endothelial
cells, and melanocytes. More detailed studies of skin lesions show that this
gene is more important in other epithelial tumors than in epidemic Kaposi
sarcoma.
Additional transforming sequences in AIDS-KS and classical KS DNA

have been described [57-59]. Using transfection of NIH3T3 cells with
DNA extracted from a KS tissue, several primary transformants, containing
human repetitive DNA, were identified and shown to be anchorage in
dependent and tumorigenic in nude mice. This occurs approximately 5-10
times higher than background transfectants. DNA extracted from such
clones was transfected in NIH3T3 cells for a second round of transfection. A
single fragment of DNA (5.4kB) containing Alu homologous sequences was
identified and is now being sequenced.
A separate group has also identified transforming sequences with a fre

quency of approximately 0.02 foci per 5 x 105 cells/~g DNA in NIH
3T3 cells [60]. The primary and secondary transfectants contain human
repetitive DNA sequences. The transfected clones produce hemorrhagic
angiosarcomatous neoplasms when implanted in nude mice with a histology
that is very similar to human Kaposi sarcoma. The tumor produced by some
transfectants is highly invasive and metastatic in nude mice. No significant
homologues of rasN, rasH, rasK, v-sis, v-src, and v-fes oncogenes (known to
transform NIH/3T3 cells) were identified in the Kaposi sarcoma DNA
transformed cells. Overall these studies indicate that there are acutely trans
forming sequences present in Kaposi sarcoma that are human and not of in
fectious origin. Unfortunately, without the identification of these sequences,
it is not possible to tell whether they represent new oncogenes and where
these findings fit into the process of transformation.

Angiogenic growth factors

Factors in the conditioned media from several human retrovirus-infected T
cells promote the growth of Kaposi sarcoma cells and, to a lesser extent,
normal human endothelial cells [8]. Moreover, both the media and protein
extracts from the Kaposi sarcoma cells support the growth and proliferation
of newly derived Kaposi sarcoma cells [8,61,62]. This suggests that both
retrovirus-infected T cells and Kaposi sarcoma cells produce angiogenic
factors that could increase the growth of Kaposi sarcoma. The angioblastic
reaction observed at the site of inoculation of Kaposi sarcoma cells in
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nude mice confirms that Kaposi sarcoma cells produce substances that are
angiogenic [61].
Additional studies of potential angiogenic factors show that Kaposi

sarcoma cells express basic fibroblast growth factor (bFGF), IL-1 alpha [61],
and IL-6 [9]. Both classical and AIDS-associated Kaposi sarcoma cells also
appear to be more responsive to PDGF than their normal counterparts
[63-66]. This may give them a growth advantage. High-affinity receptors for
several cytokines, including IL-1, IL-2, IL-6, IL-8, TNF, and PDGF, are
present on Kaposi sarcoma cells [63,78]. These receptors may be functional
as antibodies to IL-1, bFGF, or PDGF and antisense oligonucleotides to IL
6 inhibit Kaposi sarcoma cells [9,61]. Since Kaposi sarcoma cells make and
respond to several of these cytokines [79], Kaposi sarcoma cells could
participate in multiple paracrine and autocrine growth loops in vitro and in
vivo.
Production of several of these factors by mesenchymal cells is normal and

does not necessarily indicate that Kaposi sarcoma cells possess an altered
cell phenotype. For example, expression of IL-6 by mesenchymal tissues is
normal [67]. However, the unusual observation is that Kaposi sarcoma cells,
but not endothelial or smooth muscle cells, respond to IL-6 [9,67]. This also
appears to be the case with Oncostatin-M [79]. The unique proliferative
response of these cells to these cytokines may distinguish Kaposi sarcoma
cells from their normal mesenchymal counterparts. In addition, since both
IL-6 and IL-6 receptor mRNA are found in AIDS Kaposi sarcoma lesions,
this autocrine growth loop may be functional in vivo [9].
IL-6 may also be important because of its central role in modulating the

response of these cells to other cytokines that are known to be perturbed in
HIV-infected individuals. Because multiple cytokines can modulate IL-6 in
vivo and in vitro [77], it is possible that increases in the level of other
cytokines could increase IL-6 and thereby increase the growth of Kaposi
sarcoma lesions. For example, both TNF-a and IL-1~ are often increased in
patients with HIV [68,82]. This expression is transient and usually occurs
coincident with opportunistic infections. It is interesting to speculate that
increases in one or several of these cytokines during opportunistic infections
could increase IL-6 within Kaposi sarcoma cells and increase tumor cell
growth. This could explain the explosive growth of tumors seen at times of
opportunistic infections.

Role of the HIV in the development of Kaposi sarcoma

An additional factor, the transactivating protein of HIV, HIV-tat, may be a
mitogen for Kaposi sarcoma cells [50,69]. HIV-tat increases the proliferation
of Kaposi sarcoma cells but has no effect on smooth muscle or endothelial
cell cultures. However, the mitogenic effects of HIV-tat are modest (less
than twofold) and are not of the magnitude seen with cytokines such as
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oncostatin-M, TNF-a, or IL-1~ [77]. Nonetheless, the demonstration that
HIV-tat could contribute to the development of AIDS-associated Kaposi
sarcoma is important for several reasons. First, it confirms earlier animal
data that HIV-tat, under the control of the HIV LTR, could produce
Kaposi sarcoma-like lesions in male transgenic mice [70]. Despite a variety
of attempts, multiple groups were unsuccessful in reproducing this find
ing. Second, it is the first demonstration that HIV could directly induce
angiogenesis and may be the sole factor necessary for the development
of HIV-associated Kaposi sarcoma. If true, it would obviate the need to
postulate a role for CMV or other sexually transmitted agents [29,41-43].
Finally, it provides a rationale for the use of tat inhibitors as primary therapy
for Kaposi sarcoma [71].
As attractive as this possibility is, there are several problems with the

hypothesis and several limitations of the research. First, HIV-tat was found
to have activity in trans at nanogram concentrations. Others groups work
ing with a variety of tat preparations find that transcellular activation by
recombinant tat is seen at microgram concentrations [72,73], raising doubt as
to the specificity of the response. Further, it is postulated that HIV-tat
enters the cells at this low concentration via an RGD receptor [69,74].
Preliminary reports suggest that IL-1, TNF-a, and retroviral supernatants
can increase expression of RGD receptors on normal endothelial cells,
facilitating tat activity [83]. Thus, according to this theory, cytokines could
increase a tat receptor on mesenchymal cells. Once inside the cell, tat would
act as a mitogen, giving the tat-containing cells a growth advantage. This is
unlikely for several reasons.
While applicable to AIDS-associated Kaposi sarcoma, this theory ignores

the obvious lack of a role for HIV-tat in the pathogenesis of classical Kaposi
sarcoma. Also, not all patients with HIV infection, and hence HIV-tat,
develop Kaposi sarcoma despite the profound immunosuppression seen in
all patients. Second, these experiments are carried out in systems using both
heparin and gelatin. The former is known to inhibit the activity of tat in
transcription and the later is rich in RGD sequences. It is difficult to believe
that tat at nanogram concentrations is capable of overcoming both these
obstacles when other systems require tat concentrations at least two orders
higher in the absense of heparin and gelatin. Several groups have also shown
that the major route of uptake of tat is via the arginine-rich basic region of
HIV-tat, not the RGD sequence found in the second exon. In fact, tat
that is deficient in the second exon is quite capable of entering cells and
transactivating HIV-LTR DNA constructs [73,75,76]. Thus, RGD-mediated
specific uptake of HIV-tat is unlikely. Moreover, several attempts at identify
ing circulating tat in patients with HIV have failed, as well as attempts
to find tat sequences in lesions or mononuclear cells of HIV-negative
homosexual men with Kaposi sarcoma [77]. Since HIV retroviral sequences
are not found in classical Kaposi sarcoma, the data suggest that tat plays a
minor direct role.
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Nonetheless, there is support for the activity of tat in the growth of
Kaposi sarcoma cells [34]. For example, our group found that recombinant
tat had stimulatory activity at concentrations of 0.1-1.0 Jlg/ml. Since we
were unable to prove that this activity was not due to endotoxin contamina
tion, we transfected tat and mutated tat vectors directly into the Kaposi
sarcoma cells. While this does not mimic the transcellular activation that is
postulated to occur in vivo, it sidesteps the problems of heparin or gelatin
binding as well as uptake via RGD receptors. We found that tat and not
the mutated vector increased growth approximately 1.5- to 2.0-fold in a
reproducable manner. In concert with our earlier findings, this increase
in proliferation was accompanied with an increase in IL-6-specific mRNA
and secreted IL-6. Finally, the effects of tat could be abolished with IL-6
antisense constructs, suggesting that part of the mitogenic effects of tat could
be modulated by IL-6 [34]. While lending credence to a direct role for tat in
Kaposi sarcoma, additional work in this area by other groups is required
before a direct role for tat in the etiology of Kaposi sarcoma is accepted.

Other growth factors

Recent studies identify oncostatin-M as a major growth factor for Kaposi
sarcoma cells [79]. Oncostatin-M is a T-cell and monocyte-produced cytokine
that selectively increases IL-6 expression in endothelial cells [80]. It appears
that oncostatin-M can share functional properties of both LIF and IL-6,
depending on the cellular receptors present. Oncostatin-M is a potent
mitogen for Kaposi sarcoma and induces IL-6 in Kaposi sarcoma cells
[17,79]. Oncostatin-M may be a transforming agent, as oncostatin-M alters
the histologic characteristics of Kaposi sarcoma cells in culture and supports
the growth of these cells in soft agar [79]. In these properties, it is different
from other cytokines. Oncostatin-M is the principal T-cell-derived growth
factor that was identified earlier [8] in retrovirally infected T cells.
The control and expression of oncostatin-M and its receptor is under

intense study. It will be interesting to see if abnormal expression of one of
the subtypes of the oncostatin-M receptor can account for the transforma
tion of normal mesenchymal cells. If so, this lesion could explain the dif
ferential effects of IL-6, tat, and oncostatin-M on Kaposi sarcoma cells
compared to normal endothelial or smooth muscle cells.

New directions of research

To date, many potential paths to the development of Kaposi sarcoma have
been identified. The pivotal role of IL-6 and its modulation by multiple
cytokines, including oncostatin-M, suggests that this cytokine plays a major
part in the pathogenesis. Alteration of expression of oncostatin-M receptors
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by HIV-tat and possibly other sexually transmitted agents is an attractive
hypothesis. It also provides for a more important indirect role for tat; it
could be an amplifier of altered cytokine expression (such as oncostatin-M)
from HIV-infected T cells and monocytes.
Indeed, the very nature of the AIDS Kaposi sarcoma progenitor cells has

also recently come into question. Work from two groups suggests that
adherent cells, with immunologic and phenotypic characteristics similar
to mesenchymal Kaposi sarcoma progenitor cells, can be found in the
peripheral blood of patients with HIV-associated Kaposi sarcoma [81]. If
true, this finding would completely alter our understanding of the nature of
the multifocal Kaposi sarcoma tumors. For example, rather than postulating
that local production of growth factors such as oncostatin-M, TNF-a, IL-1P,
or PDGF would result in the formation Kaposi sarcoma cells, it is postulated
that circulating Kaposi sarcoma progenitor cells could implant into tissues
and proliferate locally. Infection with HIV and the immune disturbances
associated with HIV infection could increase the frequency of these circulat
ing cells. This process could give rise to the spontaneous production of
tumors at multiple sites. This provocative hypothesis is currently under
study in several laboratories.

New therapeutic agents

The laboratory studies completed in the last several years significantly alter
our concept and understanding of the pathogenesis and etiology of Kaposi
sarcoma. These studies also provide the basis for new therapeutic interven
tions that may potentially have activity in modulating the growth of Kaposi
sarcoma in vivo. For example, IL-4 is a potent inhibitor of IL-6 expression
in monocytes and inhibits IL-6 production and proliferation of Kaposi
sarcoma cells [77]. As such, it may have antineoplastic activity in vivo.
Other agents, such as recombinant platelet factor-4, also inhibit the pro
liferation of Kaposi sarcoma cells in vitro [77]. The mitogenic effects of basic
fibroblast growth factor (bFGF) on Kaposi sarcoma cells and its inhibition
by charged molecules suggest that anionic surfactants, such as pentosan
polysulfate or the newly described polysulfated polysaccharide (SPPG)
that binds bFGF, could inhibit Kaposi sarcoma cells. Finally, a variety of
inhibitors of IL-6 and oncostatin-M have been described [79]. It is possible
that inhibitors of these cytokines or receptor-mediated inhibitors of IL-l or
TNF-a could have biologic activity in patients with HIV-associated Kaposi
sarcoma. Thus, the in vitro study of the growth of Kaposi sarcoma cells has
led to a wide variety of potential therapeutic interventions.

135



References

1. Mitsuyasu RT: AIDS-related Kaposi's sarcoma: A review of its pathogenesis and
treatment. Blood Rev 2:222, 1988.

2. Mitsuyasu RT: Clinical variants and staging of Kaposi's sarcoma. Semin OncoI14:13, 1987.
3. Reynolds P, Saunders LD, Layefsky ME, Lemp GF: An update on Kaposi's sarcoma
reporting in San Francisco (letter). J AIDS 4:825, 1991.

4. Reynolds P, Layefsky ME, Saunders LD, Lemp GF, Payne SF: Kaposi's sarcoma reporting
in San Francisco: A comparison of AIDS and cancer surveillance systems. J AIDS 3(Suppl.
1):S8, 1990.

5. Haverkos HW, Friedman-Kien AE, Drotman DP, Morgan WM: The changing incidence of
Kaposi's sarcoma among patients with AIDS. J Am Acad DermatoI22(Suppl.):1250, 1990.

6. Mitsuyasu RT, Groopman JE: Biology and therapy of Kaposi's sarcoma. Semin Oncol
11:53, 1984.

7. Ensoli B, Nakamura S, Salahuddin SZ, Biberfeld P, Larsson L, Beaver B, Wong-Staal F,
Gallo RC: AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and
paracrine growth effects. Science 243:223, 1989.

8. Nakamura S, Salahuddin SZ, Biberfeld P, Ensoli B, Markham PD, Wong-Staal F, Gallo
RC: Kaposi's sarcoma cells: Long-term culture with growth factor from retrovirus-infected
CD4+ T cells. Science 242:426, 1988.

9. Miles SA, Rezai AR, Salazar-Gonzalez JF, Meyden MV, Stevens RH, Logan DM,
Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, Martinez-Maza 0: AIDS Kaposi sarcoma
derived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 87:4068, 1990.

10. Biberfield P, Nakamura S, Salahuddin ZS, Ensoli B, Gallo RC: Characteristics of in vitro
culture of KS-derived cells. Int Conf AIDS 5:600, 1989.

11. Ensoli B, Nakamura S, Salahuddin SZ, Wong-Staal F, Gallo RC: AIDS-Kaposi's sarcoma
(KS) derived cells express cytokines with a potential role in the pathogenesis of KS lesions.
Int Conf AIDS 5:599, 1989.

12. Friedman-Kien AE, Ostreicher R: Overview of classical and epidemic Kaposi's sarcoma.
In: Friedman-Kien AE, Laubenstein U (eds): AIDS. The Epidemic of Kaposi's Sarcoma
and Opportunistic Infections. New York, Masson, 1984.

13. Friedman-Kien AE, Saltzman BR: Clinical manifestations of classical, endemic African,
and epidemic AIDS-associated Kaposi's sarcoma. J Am Acad Dermatol 22(Suppl.):1237,
1990.

14. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F: Tat protein of HIV-l
stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature
345:84, 1990.

15. Parravicini C, Kaaya E, Gendelman R, Berti E, Nakamura S, Ensoli B, Gallo RC,
Biberfeld P: Fibroblastic and monocytic spindle cells in HIV-related and endemic Kaposi's
sarcoma (KS). Int Conf AIDS 7:117, 1991.

16. Ensoli B, Barillari G, Gallo RC: Pathogenesis of AIDS-associated Kaposi's sarcoma.
Hematol Oncol Clin North Am 5:281, 1991.

17. Ensoli B, Salahuddin SZ, Gallo RC: AIDS-associated Kaposi's sarcoma: A molecular
model for its pathogenesis. Cancer Cells 1:93, 1989.

18. Mitsuyasu RT, Taylor JM, Glaspy J, Fahey JL: Heterogeneity of epidemic Kaposi's
sarcoma. Implications for therapy. Cancer 57:1657, 1986.

19. Afrasiabi R, Mitsuyasu RT, Nishanian P, Schwartz K, Fahey JL: Characterization of a
distinct subgroup of high-risk persons with Kaposi's sarcoma and good prognosis who
present with normal T4 cell number and T4:T8 ratio and negative HTLV-Ill/LAV serologic
test results. Am J Med 81:969, 1986.

20. Friedman-Kien AE: Disseminated Kaposi's sarcoma syndrome in young homosexual men.
J Am Acad Dermatol 5:468, 1981.

21. Gottlieb GJ, Ragaz A, Vogel JV, Friedman-Kien A, Rywlin AM, Weiner EA, Ackerman

136



AB: A preliminary communication on extensively disseminated Kaposi's sarcoma in young
homosexual men. Am J DermatopathoI3:111, 1981.

22. Friedman-Kien AE, Laubenstein LJ, Rubinstein P, Buimovici-Klein E, Marmor M, Stahl
R, Spigland I, Kim KS, Zolla-Pazner S: Disseminated Kaposi's sarcoma in homosexual
men. Ann Intern Med 96:693, 1982.

23. Stahl RE, Friedman-Kien A, Dubin R, Marmor M, Zolla-Pazner S: Immunologic
abnormalities in homosexual men. Relationship to Kaposi's sarcoma. Am J Med 73:171,
1982.

24. Jaffe HW, Choi K, Thomas PA, Haverkos HW, Auerbach DM, Guinan ME, Rogers MF,
Spira TJ, DarrowWW, KramerMA,FriedmanSM, MonroeJM,Friedman-Kien AE,
Laubenstein LJ, Marmor M, Safai B, Dritz SK, Crispi SJ, Fannin SL, Orkwis JP, Kelter A,
Rushing WR, Thacker SB, Curran JW: National case-control study of Kaposi's sarcoma
and Pneumocystis carinii pneumonia in homosexual men: Part 1. Epidemiologic results.
Ann Intern Med 99:145, 1983.

25. Friedman-Kien AE: Epidemic Kaposi's sarcoma: A manifestation of the acquired immune
deficiency syndrome. J Dermatol Surg Oncol 9:637, 1983.

26. Marmor M, Friedman-Kien AE, Zolla-Pazner S, Stahl RE, Rubinstein P, Laubenstein L,
William DC, Klein RJ, Spigtand I: Kaposi's sarcoma in homosexual men. A
seroepidemiologic case-control study. Ann Intern Med 100:789, 1984.

27. Friedman-Kien AE: Kaposi's sarcoma: An opportunistic neoplasm. J Invest Dermatol
82:446, 1984.

28. Des Jarlais DC, Stoneburner R, Thomas P, Friedman SR: Declines in proportion of
Kaposi's sarcoma among cases of AIDS in multiple risk groups in New York City [letter].
Lancet 2: 1024, 1987.

29. Beral V, Peterman TA, Berkelman RL, Jaffe HW: Kaposi's sarcoma among persons with
AIDS: A sexually transmitted infection. Lancet 335:123, 1990.

30. Jensen OM, Mouridsen HT, Petersen NS, Jensen KH, Thomsen K, Ulrich K: Kaposi's
sarcoma in homosexual men: Is it a new disease [letter]. Lancet 1:1027, 1982.

31. Friedman-Kien AE, Saltzman BR, Cao Y, Nestor MS, Mirabile M, Li JJ, Peterman TA:
Kaposi's sarcoma in HIV-negative homosexual men. Lancet 335: 168, 1990.

32. Goriano V, Hewlett I, Friedman-Kien A, Tor J, Huang Y, Epstein J: Definitive exclusion
of HIV infection in a Kaposi's sarcoma bisexual man. Suggestions on a pathogenic model of
KS. Int Conf AIDS 7:78, 1991.

33. Delli Bovi P, Donti E, Knowles DM, Friedman-Kien A, Luciw PA, Dina D, Dalla-Favera
R, Basilico C: Presence of chromosomal abnormalities and lack of AIDS retrovirus DNA
sequences in AIDS-associated Kaposi's sarcoma. Cancer Res 46:6333, 1986.

34. Miles S, Rezai A, Gaynor R, Magpantay L, Kishimoto T, Martinez-Maza 0: HIV-tat
increases IL-6 production by and proliferation of AIDS-KS derived cells. Int Conf AIDS
7:55, 1991.

35. Fenoglio CM, McDougall JK: The relationship of cytomegalovirus to Kaposi's sarcoma. In:
Friedman-Kien AE, Laubenstein LJ (eds): AIDS. The Epidemic of Kaposi's Sarcoma and
Opportunistic Infections. New York, Masson, 1984, 329-336.

36. Huang ES: The role of cytomegalovirus infection in Kaposi's sarcoma. In: Friedman-Kien
AE, Laubenstein LJ (eds): AIDS. The Epidemic of Kaposi's Sarcoma and Opportunistic
Infections. New York, Masson, 1984, pp 111-26.

37. Andersen CB, Karkov J, Bjerregaard B, Visfeldt J: Cytomegalovirus infection in classic,
endemic and epidemic Kaposi's sarcoma analyzed by in situ hybridization. APMIS 99:893,
1991.

38. Hashimoto H, Miiller H, Miiller F, Schmidts HL, Stutte HJ: In situ hybridization analysis
of cytomegalovirus lytic infection in Kaposi's sarcoma associated with AIDS. A study of 14
autopsy cases. Virchows Arch A Pathoi Anat Histopathol 411 :441, 1987.

39. Drew WL, Huang ES: Etiology of Kaposi's sarcoma: Role of Cytomegalovirus. In: Ziegler
JL, Dorfman RF (eds): Kaposi's Sarcoma: Pathophysiology and Clinical Management.
New York, Marcel Dekker, 1988, pp 113-28.

137



40. Siegal B, Levinton-Kriss S, Schiffer A, Sayar J, Engelberg I, Vonsover A, Ramon Y,
Rubinstein E: Kaposi's sarcoma in immunosuppression: Possibly the result of a dual viral
infection. Cancer 65:492, 1990.

41. Beral V, Bull D, Jaffe H, Evans B, Gill N, Tillett H, Swerdlow AJ: Is risk of Kaposi's
sarcoma in AIDS patients in Britain increased if sexual partners came from United States
or Africa? [published erratum appears in Br Med J 302(6779):752, 1991]. Br Med J
302:624, 1991.

42. Beral V, Bull D, Jaffe H: Sexual spread of Kaposi's. Nurs Times 87:13,1991.
43. Lifson AR, Darrow WW, Hessol NA, O'Malley PM, Barnhart L, Jaffe HW, Rutherford
GW: Kaposi's sarcoma among homosexual and bisexual men enrolled in the San Francisco
City Clinic Cohort Study. J AIDS 3(Suppl. 1):S32, 1990.

44. Lane HC, Davey RT, Jr., Sherwin SA, Masur H, Rook AH, Manischewitz JF, Quinnan
GV, Smith PD, Easter ME, Fauci AS: A Phase I trial of recombinant human interferon
gamma in patients with Kaposi's sarcoma and the acquired immunodeficiency syndrome
(AIDS). J Clin Immunol 9:351, 1989.

45. Volberding P, Valero R, Rothman J, Gee G: Alpha interferon therapy of Kaposi's sarcoma
in AIDS. Ann NY Acad Sci 437:439, 1984.

46. Kovacs JA, Deyton L, Davey R, Falloon J, Zunich K, Lee D, Metcalf JA, Bigley JW,
Sawyer LA, Zoon KC, Masur H, Fauci AS, Lane HC: Combined zidovudine and
interferon-a therapy in patients with Kaposi sarcoma and the acquired immunodeficiency
syndrome (AIDS). Ann Intern Med 111:280, 1989.

47. Rybojad M, Borradori L, Verola 0, Zeller J, Puissant A, Morel P: Non-AIDS-associated
Kaposi's sarcoma (classical and endemic African types): Treatment with low doses of
recombinant interferon-alpha. J Invest Dermatol 95(Suppl.):176S, 1990.

48. Krown SE, Niedzwiecki D, Bhalla RB, F10menberg N, Bundow D, Chapman D:
Relationship and prognostic value of endogenous interferon-alpha, beta 2-microglobulin,
and neopterin serum levels in patients with Kaposi sarcoma and AIDS. J AIDS 4:871,
1991.

49. Sawyer LA, Metcalf JA, Zoon KC, Boone EJ, Kovacs JA, Lane HC, Quinnan GV, Jr.:
Effects of interferon-alpha in patients with AIDS-associated Kaposi's sarcoma are related
to blood interferon levels and dose. Cytokinetics 2:247, 1990.

50. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F: Tat protein of HIV-1
stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature
345:84, 1990.

51. De Wit R, Raasveld MHM, Ten Berge RJM, Van der Wouw PA, Bakker PJM, Veenhof
CHN: Interleukin-6 concentrations in the serum of patients with AIDS-associated Kaposi's
sarcoma during treatment with interferon-alpha. J Intern Med 229:539, 1991.

52. Miles SA, Rezai AR, Logan D, Salazar-Gonzalez JF, Vander Meyden M, Mitsuyasu RT,
Taga T, Hirano T, Kishimoto T, Martinez-Maza 0: AIDS Kaposi's sarcoma-derived cells
produce and respond to interleukin 6. Int Conf. AIDS. 6:112, 1990.

53. Weich HA, Salahuddin SZ, Gill P, Nakamura S, Gallo RC, Folkmann J: AIDS-Associated
Kaposi's sarcoma-derived cells in long-term culture express and synthesize smooth muscle
alpha-actin. Am J Pathol139:1251, 1991.

54. Werner S, Hofschneider PH, Stiirzl M, Dick I, Roth WK: Cytochemical and molecular
properties of simian virus 40 transformed Kaposi's sarcoma-derived cells: Evidence for the
secretion of a member of the fibroblast growth factor family. J Cell Physiol 141:490, 1989.

55. Sinkovics JG: Kaposi's sarcoma: Its 'oncogenes' and growth factors. Crit Rev Oncol
Hematol 11:87, 1991.

56. Wellstein A, Zugmaier G, Califano JA, III, Kern F, Paik S, Lippman ME: Tumor growth
dependent on Kaposi's sarcoma-derived fibroblast growth factor inhibited by pentosan
polysulfate. J Nat! Cancer Inst 83:716, 1991.

57. Buonaguro FM, Galloway DA, Beth-Giraldo E, Giraldo G, McDougall J: Kaposi's
sarcoma associated transforming sequences (meeting abstract). Presented at the Second
International Symposium on AIDS and Associated Cancers in Africa, October 7-9, 1987.

138



58. Buonaguro FM, Giraldo G, Nakamura Y, Vecchione R, Alessi E, Finzi AF, Safai B,
Mueller N, Hatzakis A, Owili DM: Genetic mechanisms in Kaposi's sarcoma pathogenesis.
Int Conf AIDS 7:117, 1991.

59. Spandidos DA, Kaloterakis A, Yiagnisis M, Varatsos A, Field JK: Ras, C-myc and
C-erbB-2 oncoprotein expression in non-AIDS Mediterranean Kaposi's sarcoma.
Anticancer Res. 10:1619, 1990.

60. Lo SC, Liotta LA: Vascular tumors produced by NIH/3T3 cells transfected with human
AIDS Kaposi's sarcoma DNA. Am J Pathol 118:7, 1985.

61. Salahuddin SZ, Nakamura S, Biberfeld P, Kaplan MH, Markham PD, Larsson L, Gallo
RC: Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in
vitro. Science 242:430, 1988.

62. Albini A, Nakamura S, Poggi L, Gallo RC, Salahuddin SZ, Thompson EW: Cultured
AIDS-related Kaposi's sarcoma cells (AIDS-KS) produce activators of endothelial cell
chemotaxis and invasiveness. Int Conf AIDS 7:118, 1991.

63. Werner S, Hofschneider PH, Roth WK: Cells derived from sporadic and AIDS-related
Kaposi's sarcoma reveal identical cytochemical and molecular properties in vitro. Int J
Cancer 43:1137, 1989.

64. Werner S, Viehweger P, Hofschneider PH, Roth WK: Low mitogenic response to EGF
and TGF-alpha: A characteristic feature of cultured Kaposi's sarcoma derived cells.
Oncogene 6:59, 1991.

65. Werner S, Hofschneider PH, Heldin C-H, Ostman A, Roth WK: Cultured Kaposi's
sarcoma-derived cells express functional PDGF A-type and B-type receptors. Exp Cell Res
187:98, 1990.

66. Roth WK, Werner S, Schirren CG, Hofschneider PH: Depletion of PDGF from serum
inhibits growth of AIDS-related and sporadic Kaposi's sarcoma cells in culture. Oncogene
4:483, 1989.

67. Podor TJ, Jirik FR, Loskutoff DJ, Carson DA, Lotz M: Human endothelial cells produce
IL-6. Lack of responses to exogenous IL-6. Ann NY Acad Sci 557:374-85, 1989.

68. Ammann AJ, Palladino MA, Volberding P, Abrams D, Martin NL, Conant M: Tumor
necrosis factors alpha and beta in acquired immunodeficiency syndrome (AIDS) and
aids-related complex. J Clin Immunol 7:481, 1987.

69. Ensoli B, Buonaguro L, Barillari G, Gallo RC: Biological properties of tat, the
transactivator gene of HIV-1. Int Conf AIDS 7:55, 1991.

70. Vogel J, Hinrichs SH, Reynolds RK, Luciw PA, Jay G: The HIV tat gene induces dermal
lesions resembling Kaposi's sarcoma in transgenic mice. Nature 335:606, 1988.

71. Hsu M-C, Schutt AD, Holly M, Slice LW, Sherman MI, Richman DD, Potash MJ, Volsky
DJ: Inhibition of HIV replication in acute and chronic infections in vitro by a Tat
antagonist. Science 254: 1799, 1991.

72. Marciniak RA, Calnan BJ, Frankel AD, Sharp PA: HIV-1 Tat protein trans-activates
transcription in vitro. Cell 63:791, 1990.

73. Mann DA, Frankel AD: Endocytosis and targeting of exogenous HIV-l Tat protein.
EMBO J 10:1733,1991.

74. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F: HIV-I Tat protein rel~ased

during acute infection stimulates growth of spindle cells derived from AIDS-Kaposi's
sarcoma. Int Conf AIDS 6:202, 1990.

75. Frankel AD, Biancalana S, Hudson D: Activity of synthetic peptides from the Tat protein
of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:7397, 1989.

76. Calnan BJ, Biancalana S, Hudson D, Frankel AD: Analysis of arginine-rich peptides from
the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev
5:201, 1991.

77. Miles SA, Rezai A, Kishimoto T, Mitsuyasu RT, Martinez-Maza 0: Multiple cytokines
simultaneously alter secretion of interleukin-6 and growth of AIDS Kaposi's sarcoma cells.
Submitted, 1992.

78. Lunardi-Iskandar Y, Lam HH, Judde JG, Gallo RC: Cytokine and hormone receptors on

139



AIDS-Kaposi's sarcoma (KS)-derived cells. Meeting of the Laboratory of Tumor Cell
Biology, Bethesda, MD. (abs. Tues. 7), 1991.

79. Miles SA, Martinez-Maza 0, Rezai A, Magpantay L, Salahuddin S, Nakamura S, Radka S,
Linsley P: Oncostatin-M as a potent mitogen for AIDS-Kaposi sarcoma derived cells.
Submitted, 1992.

80. Brown TJ, Rowe J, Jingwen L, Shoyab M: Regulation of IL-6 expression by Oncostatin-M.
J ImmunoI147:2175-2180, 1991.

81. Looney DJ, Poeschla E, Fiegal E, Badel P, Rappaport J, Wong-Staal F: Spindle like cells
derived from the peripheral blood of patients with Kaposi's sarcoma. Meeting of the
Laboratory of Tumor Cell Biology, Bethesda, MD (abs. Tues. 9), 1991.

82. Berman MA, Sandborg CI, Calabia BS, Andrews BS, Friou GJ: Interleukin 1 inhibitor
masks high interleukin 1 production in acquired immunodeficiency syndrome (AIDS). Clin
Immunol Immunopath 42:133-40, 1987.

140



7. BCL·2: Physiology and role in neoplasia

Adam Bagg and Jeffrey Cossman

Introduction

Deregulation of proto-oncogenes or inhibition of tumor suppressor genes
results in the acquisition of a cellular growth advantage, usually manifested
as increased proliferation [1]. Many of the mechanisms that mediate these
functions have been elucidated, while the function of others still remains to
be resolved. Nevertheless, there exists a broad stratification of genes whose
alteration is mechanistic in the development of neoplasia. By contrast, bcl-2,
which was originally identified in 1984 (2), appears to function by a mechanism
independent of the above two categories, and it may be the first described
member of a third broad class of genes whose deregulation plays a role in
oncogenesis. It appears to act by inhibiting cell death, rather than by
stimulating proliferation.
The demonstration of proto-oncogenes first derived from observations of

the transforming capacity of retrovirally transmitted oncogenes or in vitro
transformation assays. Alternative clues to the identification of putative
proto-oncogenes are the nonrandom cytogenetic abnormalities, as these
have revealed the location of genes involved in the pathogenesis of neoplasia.
The most common translocations observed in lymphoid malignancies, which
encompass the non-Hodgkin's lymphomas (NHL), involve the loci of the
antigen receptor (both immunoglobulin and T-cell receptor) genes; the clon
ing of the reciprocal breakpoints has uncovered numerous 'novel,' and
previously unrecognized, genes [3]. This, too, was the case in follicular
NHL, in which a t(14;18) cytogenetic translocation has been identified
morphologically in the majority of cases. Using the immunoglobulin heavy
chain gene (on 14q32) as a handle, the cloning of the chromosome 18
breakpoint led to the identification of the bcl-2 locus (for B-celllymphoma/
leukemia). The numeric designation relates to the fact that the locus involved
in the t(l1 ;14) translocation, reported on just prior to the above description,
had been designated bcl-l [4].
While most of the initial data on bcl-2 derived from studies on its involve

ment in the t(14;18) translocation, a significant amount of information has
subsequently emerged on the normal or physiological role of the gene. This
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review will, therefore, discuss the data in an historically inverse fashion, but
in a way that attempts to evolve logically, from physiology through to
pathology.

BCL-2 physiology

Gene structure and expression

Structure. The normal bcl-2 gene is located on the long arm of chromosome
18, at band q21.3, in close (genomic) proximity to the plasminogen activator
inhibitor type 2 gene [5]. It comprises three exons, the first of which is
noncoding, due to the presence of stop codons in all three open reading
frames [6]. Indeed, the gene has long untranslated regions at both the 5' and
3' ends, with the open reading frame spanning the 3' end of exon 2 and the
5' end of exon 3. Pulse-field gel electrophoresis studies initially suggested
that the gene was several hundred kilobases long [7]. Only recently has the
entire genomic clone of bcl-2 been isolated, using meiotic recombination
between yeast artificial chromosomes (YACs), which demonstrated that the
gene spans approximately 230 kb [8]. The first intron is only 220 bp long,
while the intron between exons 2 and 3 was thought to be one of the largest
known (-370 kb), based on pulse-field gel electrophoresis analysis [7].
However, it has been demonstrated that the second intron is 'only' 225 kb
long [8].

Regulation. There exist two alternative promoters, with differential (two
vs. three) exon usage, but our knowledge of the factors involved in the
normal regulation of transcription is limited. The regulation of the bcl-2
gene appears to be fairly complex, with transcription being affected by
both stimulatory as well as inhibitory factors [9]. One promoter is located
immediately 5' to the ORF in exon 2 (classic TATA plus CAAT box, as
well as a decanucleotide, ATGCAAAGCA, which is homologous with the
tissue-specific immunoglobulin-variable region enhancers, referred to as the
'dc/cd sequence', and an SV40 enhancer), while the other is further 5' in
exon 1 (this region is GC rich and contains seven Sp1-binding motifs, as
noted in SV40, but no TATA box). The latter promoter region is similar to
that noted in other oncogenes, such as abl and myb. Experiments using
cyclohexamide provided indirect evidence that short-lived transacting
factor(s) may be involved in the regulation of transcription [10]. Other
factor(s) may act to destabilize or degrade the bcl-2 message. The methyla
tion status of the 5' end of the gene does not appear to affect transcription.
In a proliferating T-cell leukemic line, unstimulated cells express high levels
of bcl-2 mRNA, but these diminished rapidly following the cessation of
growth induced by phorbol esters [11]. As a consequence of differential
exon utilization (due to the presence of alternate promoters), alternate
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splicing, and different polyadenylation sites, more than one transcript
results. The mRNA species that are generated are 8.5, 5.5, and 3.5 kb in
length. The transcripts have a relatively short half-life of 2.5 hours, perhaps
related to the presence of AU-rich sequences in the 3' UT region. Transcript
levels are highest during the pre-B-cell stage of development, with down
regulation during maturation [7,9].

bcl-2 protein. Until recently, the subcellular localization and function of
the bcL-2 protein had been enigmas. The absence of signal peptides from
sequence data [12,13] implied that the protein was intrinsic to the cell and
not exported. Initial DNA sequence analysis failed to show any significant
homology with any known oncogenes, but it did appear to have some
similarity to an Epstein-Barr virus protein, BHRFI [12,14]. This provided
the first hint of what may evolve into a tantalizing link between bcL-2 and
EBV (see later). BHRFl, a component of the early antigen (EA) complex
of EBV, is a protein of unknown function, which is expressed in the initial
stages of viral infection, and it does not appear to be involved in the
development of EBV latency. Two proteins are generated from the bcL-2
mRNA species, a -25- to 26-kDa (239 amino acid) a bcL-2 and a 22-kDa
(205 amino acid) ~ bcL-2, with the former predominating. These two pro
teins have identical 196 amino terminus amino acids [13], with the carboxy
terminus divergence being a consequence of the alternative splice site
selection.
The observation of a hydrophobic/lipophilic carboxy-terminus domain

suggested that the protein may be subcellularly localized to membranes [15],
with the carboxy-terminus tail anchoring bcl-2 into membranes. Indeed,
biochemical studies revealed that bcl-2 was an integral membrane protein,
being ubiquitous in all membranes of the cell, although it appeared to
be more abundant in the perinuclear endoplasmic reticulum and nuclear
envelope [16]. These initial topographic observations, with its subcellular
localization on the cytoplasmic surface of cellular membranes, were reminis
cent of that for a number of other oncogenic proteins, including ras, abl,
and other kinases. It was thus thought that the protein perhaps had a role
in signal transduction, possibly transmitting signals from growth factor
receptors. This notion was consistent with the description of bcL-2 being an
early response gene, following mitogenic stimulation of lymphocytes [9].
Recently, studies with a hamster monoclonal antibody and cell fractionation
experiments have shown that the bcL-2 protein is situated in the inner
mitochondrial membrane [17]. This fairly conclusive evidence of its subcellular
localization makes it novel among protooncogenes.

Cellular expression. Although bcl-2 was initially identified and studied most
exhaustively in follicular NHL and was thought to be specific for cells with
the t(14;18) translocation [18] (see below), it has become clear that the
expression of the protein is neither specific for neoplastic cells that carry the
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t(14;18) translocation, nor is its expression limited to B cells [19,20]. The
description of and immunohistochemical examination with a variety of
monospecific and polyspecific antibodies [17,19], has revealed that the pro
tein is expressed in a variety of hematopoietic and nonhematopoietic cells.
This expression appears to correlate with the level of maturation, as well as
the function and longevity of the cells. Within lymph nodes, bcl-2 expression
is most abundant in B cells of the follicular mantle, while it is essentially
absent from cells within the follicle itself, other than those in the apical light
zone [21]. The mantle zone is composed primarily of long-lived, recirculat
ing IgM/IgD+ B cells, while the apical light zone is the area where B cells
with high affinity to presented antigen are selected. Interfollicular cells
express intermediate levels of the protein. In the thymus, more mature
medullary thymocytes demonstrated substantial amounts of bcl-2, while less
differentiated cortical thymocytes are negative. It is within the cortex that
thymocytes undergo positive and negative selection, based upon their T-cell
receptor specificities.
The protein is also expressed in nonlymphoid hematopoietic precursors,

being found most abundantly in early identifiable myeloid cells, including
blasts, promyelocytes, and myelocytes. As these cells mature through the
metamyelocyte and band stages, bcl-2 protein levels decrease and mature
neutrophils have virtually undetectable amounts [20,21]. Not surprisingly,
bcl-2 expression is not restricted to hematopoietic and lymphoid cells. It
has been found in some, but not all, tissues that are either long lived,
pluripotent, or hormone/growth factor dependent [21]. Such cells include
those in breast, thyroid, pancreatic, and prostatic epithelia, as well as in skin
and gastrointestinal epithelia, localized to ceIls that are long lived and
probably self-renewing. This hierarchical expression of the protein correlates
very neatly with what is now known about its function (see below). Neurons,
which are long-lived postmitotic cells, also express bcl-2. However, not all
long-lived cells are positive for bcl-2; muscle and other tissues of mesodermal
origin were found to be negative [21].

Function

Initial clues as to the function of bcl-2 derived from two broad approaches,
namely, that of transfection experiments and the creation of transgenic
mice. The aforementioned immunohistochemical studies, with the anatomic
restriction of bcl-2 to cells that are long lived and its absence from cells that
are dying corroborated the in vitro and transgenic findings.

Transfected bcl-2. Under the effect of different promoters, the cloned bcl-2
gene has been introduced into a variety of cell lines, including B-lymphoid,
myeloid, and fibroblastic lines. In EBV-transformed human lymphoblastoid
lines, the effect was an at least threefold increased in clonogenicity in soft
agar [22], but this was insufficient to confer tumorigenesis when injected
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into immunodeficient mice [23]. By contrast, similar introduction of the
gene into murine precursor B cells did not affect proliferation [24]. This
apparent disparity may be due to two differences in these two systems,
namely, the species of the transfected cells and their degree of maturation.
Furthermore, EBV-transformed cells may not be an appropriate system in
which to study bcl-2, given the fact that EBV itself may induce bcl-2
expression [25] (see below).
To answer the question as to whether bcl-2 is involved in some of the

growth factor pathways, a murine bcl-2 gene was introduced into a variety of
factor-dependent hematopoietic cell lines [26]. No long-term growth factor
independence resulted in IL-2, IL-3, and IL-6 dependent cell lines. How
ever, the consistent effect of the gene appeared to be to extend the survival
and spare some cells from death, in particular, IL-3 dependent pro-B
lymphocytes, promyelocytes, and mast cells. A similar effect was noted in
cells maintained in GM-CSF or IL-4. The effect was not noted, however,
in IL-2 dependent T cells or IL-6 dependent myeloma cells. These data
suggested that bcl-2 interfered with cell death but in a cell-type or factor
restricted fashion. The improved survival of cells transfected with bcl-2 is
not restricted to growth factor deprivation, but is also observed in response
to a variety of other stresses, such as heat shock and exposure to methotrexate
[27]. Transfecting NIH3T3 cells led to the increased coupling of growth
factor receptors to stimulate inositol phosphate production, strongly support
ing a role for bcl-2 in the growth-factor-receptor-mediated signal transduc
tion pathway [28]. A report that bcl-2 is a GTP-binding protein seemed to
confirm its role in signal transduction [29]. This finding, however, was not
reproduced in another laboratory, which showed that bcl-2 was incapable of
binding GTP, that several small GTP-binding proteins were found to be
ubiquitous and not to vary with levels of bcl-2 expression, and that bcl-2
could be separated from these proteins by immunological, electrophoretic,
and cell fractionation techniques [30].
Addit,ional gene transfer experiments have illustrated that bcl-2 alters the

growth characteristics of human B lymphocytes by enhancing their growth in
the presence of reduced serum and in limiting dilution cultures [31], as well
as showing an effect of enhancing tumorigenicity of NIH3T3 cells [32],
which was also shown to be complemented by cotransfection with Ha-ras in
another rodent fibroblast system [33]. Other cotransfection experiments
have repeatedly demonstrated synergy between bcl-2 and mye, in both B
cells [22,24,31] and T cells [34]. These in vitro observations have been
confirmed in both transgenic studies and in the clinical setting (see below).

bcl-2 Transgene. The in vitro observations on the effect of bcl-2 were
extended when its function was evaluated in an intact immune system
through the generation of transgenic mice. Animals bearing the bcl-2-Ig
minigene, representing that seen in follicular NHL, revealed overexpression
of the gene in splenic and thymic tissue [35,36]. Cellular and immunologic
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characterization showed that there was an expanded population of small
resting and recirculating IgM/IgD+ B cells, which resided in Go/G). Although
resting, the cells were functionally normal in terms of their response to LPS
and anti-Jl, and they also had an enhanced secondary immune response.
This latter observation indicates that bcl-2 may have a significant physiologic
role in the emergence and maintenance of B-cell memory [37]. Initially,
the B-cell expansion was indolent and polyclonal, but over a period of
time oligoclonality manifested, with the eventual progression to malig
nant lymphomas. Half of these disseminated, monoclonal, immunoblastic
lymphomas had rearranged myc genes [38]. These phenomena suggested
that prolonged B-cell life increased tumor incidence.
Transgenic mice generated with the bcl-2 gene under the control of the 5'

IgH enhancer (EJl-bcl-2 transgene) exhibited abnormalities of both B cells
and T cells [39]. While the observations with the bcl-2-Ig minigene were
initially similar (with an increase in the number of B cells with an enhanced
survival capacity), these mice did not develop B-cell lymphomas. Indeed,
many instead developed a systemic autoimmune-like disease, resembling
systemic lupus erythematosis [40]. The reason for this difference may relate
to the differences in the genetic backgrounds of the mice and/or the nature
of the constructs. The T-cell effects were the exhibition of prolonged survival
ex vivo. The capacity for bcl-2 to synergize with other oncogenes was
investigated in doubly transgenic mice [41]. Mice bearing both myc and
bcl-2 developed tumors much more rapidly than those carrying myc alone.
Interestingly, these tumors had a novel immature phenotype, which may
represent a neoplastic counterpart of a lymphoid committed stem cell.

Apoptosis. A detailed study of the mechanism of death in the IL-3 deprived
cells, noted in the transfection experiments above, clearly showed that the
cells were dying by apoptosis [17]. These dying cells demonstrated plasma
membrane blebbing, volume loss, nuclear condensation, and endonucleolytic
cleavage of DNA into 180-bp oligonucleosomal fragments. The presence of
the transfected bcl-2 blocked this programmed cell death. Therefore, it
appears from the transfection and transgenic studies that bcl-2 functions to
inhibit apoptosis and that on its own it is not tumorigenic, but that by
enabling B cells to live longer it puts them at risk for other genetic events,
with myc not uncommonly being the target, which then leads to the develop
ment of neoplasia. Furthermore, the observation of bcl-2 expression in
nonhematopoietic tissues, noted in the previous section, supports this notion,
in that cancers of the skin, colon, breast, prostate, and pancreas rank first,
third, fourth, fifth, and ninth, respectively, in the incidence of all carcinomas
[21].
Apoptosis is a physiologic control mechanism in a number of processes,

including embryonic development and clonal deletion in the immune system
[42,43]. A variety of physiological mechanisms exist in at least some cell
types to prevent this programmed cell death, with bcl-2 being an important,
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but probably not the only, component. The effect of transfecting individ
ual EBV latent genes on the induction of apoptosis has been examined.
Intriguingly, expression of the EBV latent membrane protein, LMPl,
suppressed apoptosis, and this correlated with the endogenous expression of
bcl-2 [25]. It appears that elevated bcl-2 expression may normally rescue
antigen-reactive B cells as part of the selection mechanism implicated in the
development of antibody affinity maturation [44]. In follicular NHL and
transgenic mice, the inappropriately high levels of bcl-2 expression allow B
cells to bypass this physiologic control mechanism and thus to accumulate
(by inhibiting cell loss). In both of these scenarios, additional factors,
in particular myc activation, are required for the development of more
aggressive hematopoietic malignancies. Centrocytes, the putative normal
equivalent of the neoplastic cells in follicular NHL, undergo apoptotic cell
death unless they are rescued by the stimulation of their CD40 receptors and
surface immunoglobulin [45]. In follicular NHL, reduced apoptotic cell
death has been observed [46], which is almost certainly due to increased
levels of bcl-2 (see next section). CD40 is a member of a recently described
superfamily of cell surface proteins related to the NGF receptor [47]. Of
interest, an anti-las antibody, which resembles the Apo-l antibody (which is
a monoclonal antibody that induces apoptosis in lymphoid cell lines [48]),
also induces apoptosis in hematopoietic cells and fibroblasts [49]; las, a
transmembrane protein, has significant homology with the TNF receptor,
which is also a member of the NGF receptor family. Despite its name, when
TNF (tumor necrosis factor) binds to its specific receptor, it can induce
apoptosis [50], and TNF receptors have been observed on some lymphoma
cells [51]. p53, a prototypic tumor suppressor gene, can function to induce
apoptosis [52], and it may be involved in the pathogenesis of some
lymphomas [53]. A variety of other, and as yet undefined, mRNAs are
associated with the induction of apoptosis [54], and recently CD77, a neutral
glycolipid, has been identified as an antigen of germinal center B cells
entering apoptosis [55]. Clearly then, there are complex pathways, yet to be
unravelled, involved in the process of programmed cell death. Nevertheless,
bcl-2 appears to be a major component in the inhibition of this pathway.
The subcellular localization of the bcl-2 protein in the inner mitochondrial
membrane suggests that inhibition of apoptosis may involve oxidative
phosphorylation and/or electron and metabolite transportation [17].

bcl-2 in disease

Follicular NHL

Although the bcl-2 gene was initially cloned from an acute B-cell leukemic
line [2], the prototypic disease in which it has been extensively studied is
follicular NHL. The t(14;18)(q32;q21) is the most common translocation
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Figure 1. bcl-2 breakpoint cluster regions. The alternatively used first two exons of the bcl-2
gene are followed by a long second intron of approximately 225 kb. The open reading frame of
the gene (shaded) is contained in the 3' end of the second exon and the 5' end of the third
exon. The four clustered breakpoint regions are designated as vcr (variant or 5' cluster region),
mbr (major breakpoint region), 3' bcr (3' breakpoint cluster region) and mer (minor cluster
region). The frequency of involvement of these breakpoints has been found to be: vcr (5-10%),
mbr (60%), 3' bcr (5-10%) and mer (20-30%). Note that none of the breakpoints affects the
coding region of the gene.

seen in human lymphoid malignancies, and approximately 85% of folIicular
NHLs carry this translocation [56]. Some studies have, however, questioned
the notion that the t(14;18) translocation is 'the hallmark' of folIicular NHL
[57]. The incidence of the translocation appears to vary with geographic
locale and ethnicity, being found in only 41% of European folIicular NHLs
[58], 27% of Japanese patients with the disease [59], and 25-57% of Hong
Kong Chinese follicular NHLs [60,61]. Despite this variation in reported
incidence, there remains a clear association between the translocation and
follicular NHL.
The breakpoints on the chromosome 18 cluster (Fig. 1). The most com

mon site involved is in the 3' UT region of exon 3 of bcl-2, in which the
breakpoints are clustered in a region approximately 150 bp long. This site is
referred to as the major breakpoint region (mbr) [62-64] and accounts for
the site of translocation in about 60% of cases. The second commonest area
of breakage is in a 500-bp region 20-30kb 3' of exon 3, known as the minor
cluster region (mer), and is involved in 25% of breakpoints [65-67]. Rarely,
the rearrangements involve regions 5' of the bcl-2 gene [68]. Alterations in
the 5' area have also been reported to coexist with mbr and mer rearrange
ments [69]. Most often, the reciprocal translocation involves a breakage at
the Ig heavy chain locus, within the 5' portion of one of the JH segments. In
rare instances, the DH region is juxtaposed with the bcl-2 gene [70,71]. Also,
translocations involving the loci of the Ig light chain genes, with t(2;18)
and t(18;22) translocations have been reported [72,73]. The translocations
between the bcl-2 oncogene and all three Ig gene loci are reminiscent of that
which occurs with the myc oncogene in Burkitt's lymphoma. Curiously,
there is a striking correlation with the chromosome 18 breakpoint in trans
locations involving the Ig light chain genes, occurring in a short (2.5 kb)
region 5' of the bcl-2 gene. Based on this, it has recently been proposed that
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the region is also an area of clustered breakpoints, being referred to as the
variant cluster region (vcr) [74]. A t(18;22) translocation has also been
reported as a secondary phenomenon in a lymphoma [75], at variance with
the typical t(14;18), which has not been reported to occur as a secondary
change. In Japanese patients, it has been suggested that the translocations
occur at a later stage of B-cell development, as evidenced by the observation
of some cases involving either the Ig light chain loci or the 0H Ig heavy
chain locus [73,76].
The involvement of the Ig J regions in the translocation provided a hint

that the translocation occurs in a precursor stage of B-cell development, at
the time of physiological VOJ rearrangement. The observation of extra
nucleotides inserted at the joining site [77], reminiscent of 'N' regions,
inserted by the nuclear enzyme terminal deoxynucleotidyl transferase (Tdt),
supported the hypothesis that translocation occurs due to a mistake in VOJ
joining [78]. This has led to the notion that a low but constant background
of tumors affecting the lymphoid system may be perceived as an 'acceptable
cost of the capacity of the recombinase system to generate immune diversity'
[79]. Since the translocation is thought to occur during IgH gene rearrange
ment, this event almost certainly occurs in bone marrow cells, but only
subsequently manifests in peripheral lymphoid tissues once surface Ig
is expressed on the cells [80]. Thus, while these rearrangements prob
ably occur early in B-cell ontogeny, it has recently been shown that the
recombinase system may also be active in later stages of lymphoid develop
ment [81], and also, gene rearrangements can occur in mature B cells, and
perhaps also then in follicular NHL cells [82].
However, despite this compelling evidence that the VDJ recombinase

mediates the translocation, and the observation of 'signal-like' sequences in
close proximity to the chromosome 18 breakpoint [83], the exact mecha
nism remains controversial, as only imperfect heptamer-nonamer signal
sequences have been detected around the bel-2 breakpoints. The breakage
on chromosome 18 may be a consequence of DNA repair following single
strand breaks [77]. Another explanation proposed includes the finding of
chi sequences (sequences that are similar to a prokaryotic activator of
recombination) around the bel-2 mbr. It appears that slight and inheritable
variations in this region may influence the probability of a translocation
[84,85]. Analysis of the DNA around the 5' breakpoints revealed the
presence of multiple alternating purine-pyrimidine elements (potential
Z-ONA), which may be involved in mediating translocations affecting this
region [86].
Whichever translocation occurs, the coding region of the bel-2 gene is left

intact, so that the bel-2/Ig fusion transcript encodes a normal bel-2 protein
[6,87]. The consequence of the translocation is logfold increases in bel
2 mRNA and protein, indicative of a marked deregulation of the gene
following the translocation [6,16,66,87]. While a fusion transcript has been
repeatedly detected in cell lines with mbr rearrangements (the only bel-2
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rearrangement occurring within an exon), only recently was this chimeric
mRNA detected in primary human follicular NHL [88]. It is not entirely
clear what mediates the increased bel-2 expression that is observed following
the translocation. It has been suggested that the 'proximity' of the IgH
enhancer may result in increased transcription, but the size of the second
intron in the bel-2 gene implies that it would have to act over a considerable
distance. Loss of AU-rich sequences from the 3' end of the bel-2 gene, as a
consequence of the 3' translocation, may enhance mRNA stability [89-91].
Sequences other than AU-rich regions may also affect message stability [92].
The half-life of the transcript encoded by the translocated bel-2, however,
does not appear to be that different from the wild-type gene [6,7], arguing
against this as an important consequence of the translocation. However, the
correct determination of a half-life for mRNA may not be feasible using
only one method and may require a variety of approaches [93]. Regulation
may also be altered at the translational level, as a result of the translocation,
since UT regions both 5' [94] and 3' [95] of other messages, such as those
for TGF-p and creatine kinase, respectively, demonstrate the ability to
bind factors that regulate translation. While the precise mechanism remains
elusive, it appears that quantitative changes in bel-2 are more important
than qualitative alterations, in that no amino acid altering mutation of the
gene have been found in primary human follicular NHL [96,97], despite the
observation of point mutations in two potentially critical regions in cell lines
[6,87].

Involvement of bcl-2 in other malignancies

Increased expression of bcl-2, with or without translocations involving the
bel-2 locus, is not restricted to follicular NHL. Approximately 20-30% of
diffuse B-cell non-Hodgkin's lymphomas have translocations involving bel
2, as detected by conventional cytogenetics, Southern blotting, or the
polymerase chain reaction (PCR) [64,67,98,99]. Although it was once
proposed that the expression of the bcl-2 protein was a specific marker
for B-cell malignancies harboring the t(14;18) translocation [18], it has
subsequently been shown that the expression of the protein is independent
of, and certainly not specific for, the translocation [19,20]. Thus, although
bel-2 expression increases in tumors with the t(14;18), its expression can also
be detected in the absence of the translocation, in other Iymphoproliferative
disorders, plasma cell dyscrasias, chronic myelogenous leukemia, as well as
in normal T and B lymphocytes and nonhematopoietic tissues [19-21,100].
In B-cell chronic lymphocytic leukemia (CLL), the bel-2 gene is rearranged

in fewer than 10% of patients [101-104]' In almost all the cases analyzed,
the breakpoints on chromosome 18 cluster in the 5' region of the gene, and
all the rearrangements result in the juxtaposition with the Ig light chain
genes. These translocations are very similar, if not identical with, those in
follicular NHL involving the vcr [74]. Whereas the typical bcl-2 rearrange-
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ments affecting the 3' region of the gene result in a head-to-tail juxtaposition
with the Ig gene, the translocations seen in CLL result in a head-to-head
configuration. No 'N' nucleotides are present in these translocations, con
sistent with the fact that Tdt is not active at the time of Ig light chain gene
rearrangement. Z-DNA may be involved in mediating the translocation
in this setting [86]. Whatever the mechanism, the association of bcl-2
rearrangements involving Ig light chain genes suggests that the translocation
occurs at a later stage of B-cell ontogeny as compared with most follicular
NHL. An additional variant translocation has been described in small cell
lymphocytic NHL, a disease similar to CLL, namely, a novel t(11;18)
translocation [105].

In Hodgkin's disease, the pathogenesis, cell of origin, and c10nality
remain unresolved, related primarily to the paucity of the putative neoplastic
cell, the Reed-Sternberg cell, in the tissues of patients with this disease.
Using PCR (see section on diagnosis), a number of groups have searched
for evidence of the t(14;18) in this disease. In our initial report, 32% of
unselected patients with Hodgkin's disease had molecular evidence of the
translocation, while this was not found in T-cell NHL, benign lymph nodes,
and normal peripheral blood lymphocytes [106]. Although the t(14;18)
translocation had previously been identified karyotypically in Hodgkin's
disease [107], the high incidence of bcl-2-JH joining detected by PCR was
unexpected. Accordingly, the possibility of false-positive PCR results was
carefully evaluated. The results were reproduced three times, and with each
analysis negative controls, normal lymphocytes, reactive lymph nodes, and
T-cell lymphomas remained negative. Thus, the finding of a 32% prevalence
of bcl-2 rearrangement in Hodgkin's disease appeared not to be an artifact
of PCR. In this study, only the mbr was analyzed, leaving open the possibility
that bcl-2 rearrangements might have occurred at other sites in cases thought
to be negative. It is not known which cells in the Hodgkin's tissues contain
the t(14;18), and an initial survey suggested that the Reed-Sternberg cells do
not overexpress bcl-2 protein [19,20], but we have detected the protein in
the Reed-Sternberg cells of 7 of 7 cases of Hodgkin's disease, using frozen
section immunohistochemistry and a monoclonal antibody. The differences
in these results may be a consequence of tissue fixation, antibody titer, or
other technical factors. Whether the bcl-2 gene is rearranged and expressed
in Reed-Sternberg cells remains an intriguing question deserving further
research. While some other laboratories have confirmed this observation
[108-110], others have not [111,112]. The failure to detect rearrangements
may be due to technical factors, i'lcluding the use of paraffin-imbedded
tissue, biotinylated, rather than :'I2P-labelled probes, mismatched or short
primers, as well as the selection of certain histologic subtypes. These con
flicting results may be a consequence of differences in sensitivity of detection
of a rare event, or that Hodgkin's disease may be an even more hetero
geneous disease than was originally believed.
A significant body of evidence, based on epidemiologic, serologic,
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immunologic, Southern blotting, PCR, and in situ studies, has emerged
linking EBV infection with Hodgkin's disease [113-115]. The afore
mentioned studies, demonstrating PCR-detectable t(14;18), suggest that the
activation of bcl-2 may playa role in the genesis of the disease, and this may
be associated with the recent demonstration that the expression of an EBV
gene, LMP1, can induce bcl-2, accompanied by the inhibition of apoptosis
[25]. These findings raise the possibility that Hodgkin's disease is a disease
in which an association between EBV and bcl-2 exists. The LMP gene has
transforming potential and is found to be expressed in more than a third
of patients with Hodgkin's disease [116,117], with the expression being
detected exclusively in Reed-Sternberg and Hodgkin's cells, which are the
probable neoplastic cells in this disease.
The bcl-2 gene has also been examined in a variety of other lympho

proliferative disorders. Rearrangements are found, as expected, in extranodal
follicular NHLs [109], but they are extremely rare in other extranodal
NHLs, in particular, in so-called MALTomas (lymphomas of Mucosa
Associated Lymphoid Tissue) [118-121]. MALTomas may, however,
express bcl-2 protein, confirming that it may be expressed independently
of t(14;18) [122]. Similarly, bcl-2 involvement has not been observed in
monocytoid B-cell lymphoma [123], mediastinal large B-cell lymphoma of
young adults [124], primary cutaneous B-cell lymphoma [125], and in
AIDS-associated lymphoma [126]. Rearrangements have been detected
cytogenetically in some myelomas and Waldenstrom's macroglobulinemias
[127], in salivary gland lymphomas [128], in other nonfollicle center cell
lymphomas [129], and also in some T-cell-rich large B-celllymphomas [130].
The diversity of diseases with which bcl-2 is associated is consistent with
what is currently understood about its function. Curiously, bcl-2 rearrange
ments have been detected in benign reactive follicular hyperplasia [131,132].
Until longitudinal follow-up studies are conducted, we do not yet know
whether this finding serves as a marker to predict which patients may
subsequently develop overt lymphomas. Alternatively, there may be a low,
but finite, number of cells in normal individuals that carry t(14;18) but that
lack other, as yet undiscovered, factors needed for malignant transformation.

Progression of diseases with bcl-2 involvement

As noted previously, bcl-2 appears to function to protect cells from pro
grammed cell death. When dysregulated, as in t(14;18) bearing follicular
NHLs, a neoplastic proliferation/accumulation results. This disease may be
viewed as a malignancy in evolution, in that the majority will progress into
higher grade diseases, with the risk for conversion to more aggressive diffuse
NHL, being approximately 44% at 5 years and 67% at 10 years from the
initial diagnosis [82]. It is reasonable to presume that the t(14;18) alone is
insufficient to account for this evolution and that additional genetic events
must be involved. Based on gene rearrangement, DNA sequencing analysis,
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and examination of tumor idiotype, it has been shown that there exists a
common single cell origin for the primary and evolved disease [133,134].
However, in an evaluation of patients with follicular NHL over a period of
time, while the translocated bcl-2 locus remained conserved in each individ
ual, some variation in Ig gene rearrangement patterns was noted [133]. This
indicates that clonal evolution, at the level of the Ig genes, can occur in
some cases in the absence of histologic conversion.
Numerous secondary cytogenetic abnormalities appear during the

evolution of follicular NHL carrying t(14;18) to more aggressive histologic
subtypes. The most frequent abnormalities described are trisomy 7 and
deletions of chromosome 6 [135,136]. Although the genes for the epidermal
growth factor receptor and myb, respectively, have been mapped to the
involved regions of chromosomes 7 and 6, the exact molecular genetic
explanation for these observations remains to be resolved. The acquisition
of deletions of the long arm of chromosome 13 is also associated with an
accelerated clinical course [56], but here again, a molecular explanation is
lacking. By contrast, there are numerous reports of myc gene involvement
in the progression of t(14;18) lymphoma, supporting the synergy between
myc and bcl-2 observed in the gene transfer and transgenic studies referred
to earlier. Activation of the myc gene in follicular NHLs with bcl-2 involve
ment can result in conversion to both high-grade NHL [137-140], as well as
to lymphoblastic leukemias [141-143]. In a cell line, SUDUL-5, established
from a patient with lymphoblastic lymphoma, a novel three-way transloca
tion appears to simultaneously inactivate the bcl-2 gene and activate the myc
gene [144]. In summary, increased expression of bcl-2, on its own, in B cells
does not appear to confer a significantly increased intrinsic proliferative
activity, as evidenced by the usually indolent course of follicular NHL. If,
however, the myc gene is also activated in these cells, due to secondary
genetic events, more aggressive growth occurs. It should nevertheless be
emphasized that in most instances of progression of this disease we do not
know the exact molecular lesion, and the reported abnormalities affecting
myc are the exception rather than the rule.
Defects of chromosome 2 (trisomy or dup 2p) have also been described in

patients with follicular NHL, and these are associated with progression of
the disease [56]. It has been demonstrated that the rei proto-oncogene is
rearranged in this setting [145]. This oncogene is homologous to the NF-KB
family of transcription factors, and provocatively, v-rei initiated bursal
neoplasms are accompanied by the resistance to the induction of apoptosis
[146]. This then suggests that the activation of two oncogenes involved in
the regulation of programmed cell death may be involved in the develop
ment and/or evolution of follicular NHL.
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bcl-2 in diagnosis and prognosis

Diagnosis

A variety of different strategies exist for the evaluation of bcl-2 involvement
in human diseases. At a genetic level, increasing sensitivity for the detec
tion of rearrangement is apparent through the spectrum of conventional
cytogenetics, Southern blotting, and PCR. Pulsed-field gel electrophoresis
may supercede these strategies, including PCR, in the detection of relatively
small clonal cell populations [147]. The recent description of antibodies that
detect the bcl-2 protein should also prove to be of diagnostic value.
A number of chromosome 18 specific probes can be used to analyze

restriction enzyme digested tumor cell DNA for evidence of rearrangement
[64,67,98]. These allow the sensitive detection of clonal rearrangements
when neoplastic cells comprise only a minority of the cells present and can
be found in the context of both follicular and diffuse NHL. In addition to
analyzing tissue samples for bcl-2 rearrangement, fine needle aspirate
specimens are also amenable to similar Southern analysis [148]. The cluster
ing of breakpoints on both chromosome 18 and 14 has lent itself to the use
of PCR. Specific fusion gene amplification can be performed with universal
primers for the JH genes at the 3' end and with primers for the mbr
[149-151] and mer [66] at the 5' end of the fusion gene. These sensitive
techniques allow for the detection of as little as one lymphoma cell in
106 normal cells, and thus for the identification of occult/minimal residual
disease. Subclinical evidence of neoplastic cells can be discerned when most
other techniques are negative. The clinical significance of such sensitive
detection needs to be evaluated in longitudinal trials. Indeed, circulating
cells carrying the t(14;18) translocation can be detected by PCR in patients
in long-term remission (up to 16 years), raising doubt regarding their
presence as a possible predictor of relapse [152]. Furthermore, the descrip
tion of PCR detectable fusion genes in nonneoplastic scenarios [131,132]
suggests that PCR may not be that specific for discerning minimal disease.
PCR amplification does, however, enable the rapid sequencing of the
breakpoints, without the need for conventional and laborious cloning. PCR
can also be easily performed with a mixture of mbr and mer primers, with
the products being analyzed with nonradioactive probes [153].
Despite the enhanced sensitivity of PCR, not all cases that are positive by

standard Southern analysis are detectable with this amplification procedure
[154]. This is probably due to the choice of primers and highlights the need
for careful attention to be paid to the design of primer(s) for such analyses.
Many initial diagnostic specimens may not have been prospectively pro
cessed for DNA analysis. These would be useful for the detection of a
tumor-specific bcl-2-Ig fingerprint, for monitoring occult disease. However,
it has been demonstrated that formalin-fixed tissue is amenable to analysis
by PCR [58,155,156]. PCR studies can also be performed for staging pur-
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poses, for the detection of occult disease in cytologically and morphologically
normal tissues, such as blood, bone marrow, and other fluids [152,157-159].
More useful, however, is the role of PCR in detecting minimal disease
following intensive chemotherapy [160]. In this context, PCR is able to
discern disease in the marrow despite evidence of histologic remission.
Similarly, PCR can be utilized for the detection of residual disease following
bone marrow purging in patients undergoing autologous bone marrow
transplantation [161,162]. In follow-up studies, patients whose marrows are
PCR negative pretransplant remain PCR negative posttransplant. The loss
of PCR-detectable lymphoma following purging is associated with a sig
nificantly increased disease-free survival when compared with those patients
whose marrows harbored PCR-detectable cells [163]. All patients who
relapsed posttransplantation were PCR positive; however, not all patients
who were PCR positive relapsed, even after up to 88 months of follow-up.
Clearly, in this situation too, longitudinal studies are required to evaluate
the merit of these findings. Amplification of the fusion gene is sometimes
useful in the determination of c10nality and lineage, when conventional
Ig gene rearrangement and surface Ig studies are negative or equivocal
[164,165].

In an analysis of mRNA levels, expression of bcl-2 message has been
found to be heterogeneous in a spectrum of hematopoietic malignancies,
that did not have bcl-2 DNA rearrangement [166]. In T-cell malignancies,
expression was higher in acute compared with chronic leukemias. Expression
was undetectable in precursor B-cell acute leukemias, but bcl-2 message was
highly expressed in 50% of plasma cell dyscrasias. Given the observation
that the translocated bcl-2 gene in the context of t(14;18) results in higher
mRNA levels, it was reasoned that the detection of the chimeric transcript
using cDNA-PCR may be as, if not more, sensitive than DNA-PCR. Indeed,
fusion transcripts can be discerned in primary lymphoma specimens, some
times in the absence of detectable genomic rearrangements [88].
Immunostaining with anti-bcl-2 antibodies has revealed that many tumors

without the t(14;18) translocation, and also many normal tissues, are bcl-2
protein positive [19-21,167]' This may suggest that such studies are of
limited diagnostic value and certainly show that expression of the protein is
not a specific marker for t(14;18) positive lymphomas, as had been proposed
[18]. However, the major diagnostic utility of immunostaining may be in
the differentiation of benign follicular hyperplasia from malignant follicular
NHL, in which the immunolocalization of bcl-2 is quite distinct [20]. The
staining pattern is inverted in these two situations, so that bcl-2 is localized
to the follicular mantle cells in the reactive context, with the cells within the
follicle being negative, while in the neoplastic setting the cells within the
follicle are intensely positive.
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Prognosis

A number of factors have been proposed to be of prognostic relevance in
patients with follicular NHL [168]. It was initially thought that cytogenetics
might add important prognostic information, as it does in patients with acute
leukemias [169]. The data in patients with follicular NHL are conflicting,
with some reports that patients with the t(14;18) have a longer survival
compared with patients with other cytogenetic abnormalities [170], while
other reports suggest that patients without the t(14;18) translocation respond
better to therapy than those who do have this translocation [171]. Other
studies, using molecular techniques to identify the translocation, conven
tional cytogenetics, or bcl-2 protein expression, showed no correlation with
survival [172,173]. A t(14;18) positive de novo B-cell acute lymphoblastic
leukemia was recently described, and this disease seems to have a poor
prognosis [174].
In patients with diffuse NHL, no clear message has emerged from the

reports on the prognostic value of bcl-2 rearrangements. The finding of bcl-2
rearrangements has been shown to be associated with a relatively poor
prognosis [171] and with a significantly higher incidence of extranodal disease
[175]. In other studies, while bcl-2 rearrangements have been shown not to
affect overall survival, patients with this lesion appeared to have a longer
survival in partial remission, resembling the clinical behavior of follicular
NHL [176,177].

Conclusions and future directions

The unravelling of bcl-2 has provided significant insights in a number of
areas, including normal cell biology and tumor biology. It appears to be a
proto-oncogene with a unique role, functioning to extend cell survival by
inhibiting programmed cell death, independent of stimulating proliferation.
The phenomenon of prolonging B-cell life, as a consequence of its activa
tion, appears to be tumorigenic, both in itself as well as by increasing the
risk for secondary genetic events, particularly involving myc and perhaps
also rei.
Despite the information that has emerged recently, there remain many

unanswered questions. We need to learn more about the factors involved in
the regulation of expression of the gene, both physiologically and patho
logically. What is the biochemical basis for its function in blocking apoptosis,
and how does it interact with other pathways, including the NGF receptor
superfamily and the rei gene product?
Finally, what is the potential role for targeting bcl-2 in the therapy of

diseases in which it is overexpressed? There is precedent for the utility of
antisense-mediated inhibition of other oncogenes implicated in tumori
genesis, such as myc and myb [178,179]. Indeed, phosphodiester and
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phosphorothionate antisense oligonucleotides inhibit bcl-2 protooncogene
expression, and leukemic cell growth and survival [180]. Of concern, how
ever, is the potential effect of inhibition of the wild-type bcl-2 message.
Given the detection of the fusion message in primary follicular NHL cells
[88], antisense oligonucleotides directed specifically at the tumor-specific
fusion message may overcome this problem and selectively inhibit only the
abnormal cells. A similar strategy has been employed in the context of
the ber-abl hybrid message seen in chronic myelogenous leukemia [181].
Another potential application would perhaps be to exploit the ability of
bcl-2 to enhance B-cell survival and immunoglobulin production, and to
heighten the response to immunization [40]. The practical utilities of this
might include production of monoclonal antibodies to rare specificities and
perhaps also in enhancing the response to vaccines.
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8. Malignant transformation by abl and BCR/ABL

Richard A. Van Etten

Introduction

Activated abl oncogenes have been implicated in causing pre-B lymphoma
in mice via Abelson murine leukemia virus, fibrosarcoma in cats via Hardy
Zuckerman feline sarcoma virus II, and, through the Philadelphia chromo
some, are linked with the myeloproliferative syndrome chronic myelogenous
leukemia and with acute lymphoid and myeloid leukemia in humans. This
review will outline the current state of knowledge concerning this important
oncogene family, emphasizing recent advances in our understanding.

Viral forms of abl

The abl oncogene was originally identified as the transforming gene of an
acutely oncogenic murine retrovirus, Abelson murine leukemia virus (Ab
MuLV) [for review, see 1]. Ab-MuLV was isolated from a corticosteroid
treated mouse infected with Moloney murine leukemia virus (Mo-MuLV),
which subsequently developed, after an unusually short latent period, a
nonthymic lymphoma distinct from the thymic lymphoma characteristically
induced by Mo-MuLV [2]. Mice inoculated with filtrates from tumor tissue
of this animal developed an identical syndrome, confirming the infectious
nature of the agent involved. For several years, the nature of the infecting
virus that induced these nonthymic lymphomas (also referred to as Abelson
disease) was obscure, since antisera directed against Mo-MuLV neutralized
Ab-MuLV, and very dilute preparations of the infectious agent induced
thymic lymphoma indistinguishable from that induced by Mo-MuLV. A
major advance came when it was discovered that the infectious agent in
Abelson disease was able to transform NIH3T3 fibroblasts, a property not
shared by Mo-MuLV [3]. This discovery led to the recognition that the
original infectious agent isolated by Abelson and Rabstein was actually a
complex of replication-competent Mo-MuLV helper virus with a replication
defective derivative of Moloney virus, which we now denote Ab-MuLV. It is
this defective retrovirus that, in the absence of helper virus, can induce
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Abelson lymphoma and transform 3T3 fibroblasts [4], although production
of infectious virus from the transformed cells requires superinfection with
Mo-MuLV helper virus.
Ab-MuLV induces a lymphoma of B lymphocytes after intraperitoneal

inoculation of neonatal mice, in distinction to the T lymphoma induced by
Mo-MuLV. Pathologically, the disease presents in neonates with a charac
teristic 'caput' or bulging of the skull, a reflection of the infiltration of the
meninges and the marrow of the calvaria with malignant lymphoblasts.
While virtually all strains of neonatal mice are susceptible to Ab-MuLV,
there are genetic restrictions on the susceptibility of adult mice to the virus.
Resistance to development of Abelson disease in adult mice appears to be
immunologically mediated and segregates as two independent autosomal
loci where sensitivity is dominant over resistance [5]. The only commonly
used inbred mouse strain carrying sensitivity alleles at both loci is Balb/c,
and adult Balb/c mice develop Abelson lymphoma with a particular pro
pensity to involve the spinal canal and cause hind-limb paralysis after
inoculation with Ab-MuLV.
The target cell for the induction of Abelson lymphoma appears to be an

early B-lymphoid progenitor that is present in murine bone marrow at low
numbers [6]. The malignant cells that are isolated from diseased animals
have the characteristics of B-lymphocytes that are, to a first approximation,
arrested at the pre-B stage of B-cell development [7]. Most Ab-MuLV
transformed B-lymphoid cell clones have carried out DJ or VDJ rearrange
ment at one or both alleles of the immunoglobulin heavy chain (IgH) gene
locus, and some express cytoplasmic Il protein; all express the B-lymphoid
cell surface antigen B220. The tumors that develop in Ab-MuLV-infected
mice are usually monoclonal or oligoclonal with respect to both proviral
integration site and IgH gene rearrangements, suggesting that additional
genetic events must occur subsequent to viral infection in order for a
malignancy to result. Ab-MuLV can transform this same cell type in vitro,
yielding bone marrow-derived B-Iymphoblastoid cell lines that are tumori
genic in syngeneic mice [8]. The type of malignancy that results after Ab
MuLV infection can be modulated by pretreatment of mice with pristane oil
[9]. Such mice subsequently develop plasmacytomas, representative of the
most mature B-lineage cells, with rearranged heavy and light chain Ig genes
and expression of Ig. These tumors carry the Ab-MuLV provirus and
also have rearrangements of the c-myc locus. Under defined conditions,
Ab-MuLV can also transform a wide variety of primary hematopoietic cells,
including macrophages [10], mast cells [11], and T-lymphoid cells [12].
Ab-MuLV infection of fetal liver or yolk sac cells, followed by plating in
methylcellulose, yields factor-independent erythroid [13] and myeloid [14]
colonies, some of which can be expanded into continuous cell lines. In
addition, Ab-MuLV infection can abrogate growth factor dependence in
several factor-dependent lymphoid [15,16] and myeloid [17] cell lines in
vitro by a mechanism that does not appear to involve autocrine growth

168



factor production. These experiments indicate that the transforming ability
of Ab-MuLV is wider than would be appreciated from the narrow range of
disease observed after intraperitoneal inoculation.
Studies of viral RNA and protein showed that Ab-MuLV-infected cells

contained a novel protein with sequences derived from the retroviral gag
gene as well as sequences that appeared not to be derived from Mo-MuLV
[18,19]. Tumor regressor sera, which recognized the non-Moloney portion
of the novel protein, were found to crossreact with a polypeptide in normal
cells of molecular weight 150 kDa, denoted normal cell protein 150 (NCP
150) [20]. Molecular cloning of the Ab-MuLV genome showed that the virus
was derived from a recombination between Mo-MuLV and a normal cellular
gene denoted c-abl [21,22]. Thus, the parental virus transduced a cellular
proto-oncogene to become an acutely transforming virus, a now-familiar
theme in retrovirus and oncogene research [23]. The transforming gene of
Ab-MuLV is a fusion between retroviral gag sequences and the c-abl gene,
resulting in a 160-kDa gag/abl fusion protein denoted Pl6()8aglubl or Pl60v-abl

(Fig. 1). Plwaglabl includes the p15, p12, and a part of p30 sequences of
Gag at the N-terminus fused to 1008 amino acids derived entirely from
c-Abl. Like the native Gag protein, the Gag-Abl fusion protein has a
myristate fatty acid moiety covalently linked through the NHz group of the
N-terminal glycine [24]. For unknown reasons, these Gag proteins are not
efficiently cleaved from the v-Abl fusion protein by the viral protease in cells
infected with Ab-MuLV and Mo-MuLV. Another naturally isolated strain
of Ab-MuLV was found to carry a smaller form of gag/abl, P120. The P120
genome has an internal deletion in the abl sequences relative to P160,
resulting in a smaller protein. Sequence analysis of the two strains have
shown that they have identical recombination breakpoints, suggesting that
they both arose from the same primary transduction event, with P120 later
derived from the P160 strain.
The Pl60v-abl gene, when expressed in fibroblasts or hematopoietic cells

without other retroviral sequences, is able to recapitulate the full range of
transforming activity demonstrated by Ab-MuLV, and hence the question of
transformation by Ab-MuLV may be focused on understanding the function
of the v-abl gene. Like the v-Src protein, the v-Abl protein has protein
tyrosine kinase activity and is able to autophosphorylate on tyrosine in vitro
[25,26]. Naturally occuring deletion mutants of Ab-MuLV defined the need
for the tyrosine kinase domain of the protein, encoded by the Abl portion of
the molecule, for transformation [27,28]. Temperature-sensitive mutations
in kinase function are conditional for transformation, implicating the kinase
activity directly in transformation [29,30]. Studies of the localization of the
v-abl protein by subcellular fractionation have shown that v-Abl is a cyto
plasmic protein, with a substantial portion associated with the plasma
membrane and the detergent-insoluble matrix [20,31]. Indirect immuno
fluorescence has confirmed the association of v-Abl with the inner surface
of the plasma membrane and with focal adhesion plaques, similar to the
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Figure 1. Abelson tyrosine kinase family members. Schematic representation of Abl proteins,
with the tyrosine kinase domain shown in black. The deletions of sequences between Pl60 and
P120v•ahl , and P210 and Pl90HCR'ABL, are indicated by the lines.

distribution of v-Src [32,33]. Myristoylation of v-Abl and v-Src is thought to
be important for membrane association, as myristoylation-defective mutants
of v-Src have decreased membrane association [34]. Myristoylation-defective
mutants of v-Abl and v-Src are unable to transform fibroblasts [35,36].
The reason for the propensity of Ab-MuLV to induce pre-B lymphoma

after intraperitoneal inoculation is not completely understood. In com
parative studies of murine retroviruses with different tissue tropisms, the
long terminal repeat (LTR) sequences, which contain cis-acting regulatory
elements for the control of viral transcription, were implicated as controlling
disease specificity induced by the virus. However, when the LTR of Ab
MuLV was replaced by the LTR from an erythrotropic retrovirus (Friend
MuLV), a fibrotropic retrovirus (Harvey murine sarcoma virus) [37], or
a pleiotropic hematopoietic retrovirus (myeloproliferative sarcoma virus
or MPSV) [38], the pre-B specificity of Ab-MuLV after intraperitoneal
inoculation did not depend on the nature of the LTR, given that a reason
able level of expression of the v-abl gene product was obtained. Thus, the v
abi gene itself has a certain propensity to transform this particular target cell
after intraperitoneal inoculation. At least part of this specificity may depend
on the route of infection and the access of the virus to target cells, as direct
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infection of bone marrow by v-abl yields a broader spectrum of malignancy
(see below).
An independent retroviral transduction of c-abl appears to have occurred

in the generation of the Hardy-Zuckerman feline sarcoma virus type II (HZ
FeSV II), which causes fibrosarcoma in cats [39]. The structure of the HZ
FeSV II transforming gene is shown in Fig. 1. The gene is a gag-abl-pol
fusion, with the FeSV gene containing more 5' abl sequence and lacking
much 3' abl sequence compared with PI608aglabl of Ab-MuLV. When
expressed in a murine retroviral backbone, the HZ-FeSV II abl gene
induced a leukemia indistinguishable from that induced by Ab-MuLV [40];
the reciprocal experiment, testing the ability of Pl6~aglabl to induce feline
sarcoma, has not been reported.

The c-abl gene: Structure, function, and activation

Utilizing probes from v-abl, the c-abl gene was cloned and characterized
[21,41]. The mammalian c-abl locus is fairly complex in organization and
expression (Fig. 2). The gene is composed of 13 exons spread over about
250-300 kb of genomic DNA. Two distinct promoters, PI and P2, in
dependently initiate transcription at either of two distinct first exons, which
then splice onto common downstream exons, yielding two major mRNA
transcripts of 6.5 and 5.3 kb. The P2 promoter is located about 17 kb from
the first common exon, but the PI promoter is located at least 200 kb
upstream from the first common exon, making this one of the largest introns
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known [42]. The remainder of the abl common exons, including one large 3'
exon, are confined to about 30 kb of genomic DNA. The c-abl promoters
are typical of genes of a 'housekeeping' nature, lacking TATA sequences
and having high GC content. The two RNA transcripts are relatively
ubiquitously expressed in hematopoietic and nonhematopoietic adult tissues,
and throughout mouse embryonic development [43]. The only variation in
this transcription pattern is in haploid cells in the testis, where a 4.2-kd
mRNA is also found. This RNA differs from the 5.3-kb message only in its
3' untranslated sequences; the mechanism of production of this alternate
form and its possible functional significance are unknown [44]. Cloning of
mammalian c-abl cDNAs has revealed two major species with two alter
natively spliced 5' ends, corresponding to the two distinct 5' exons [45,46].
There are two additional minor cDNA species identified in mouse cells that
are not conserved in humans and are thought to be of minor importance.
The two c-abl mRNAs code for two major c-Abl proteins, which differ in

sequence only at their N-termini. The two forms are denoted c-Abl la and
Ib in humans, and c-Abl I and IV, respectively, in mice. The c-Abl la/l
protein is 1122 amino acids in length, while the c-Abl Ib/lV protein is 1142
amino acids long. Both proteins migrate together on SDS-polyacrylamide
gels as a single species of about 150 kDa. As mentioned above, the c-Abl
proteins are members of a family of nonreceptor protein-tyrosine kinases, of
which the Src protein is the prototype, all of which share the ability to
phosphorylate cellular proteins on tyrosine; however, Abl is distinct from
members of the Src family by the existence of a large 80 kDa domain C
terminal to the kinase region, while the Src family members all terminate
just after the kinase region. Thus, formally, abl belongs in a separate
subfamily from src [47]. Another potential member of the abl subfamily,
denoted arg for Abl-related gene (also known as abl-2), has been cloned
by differential hybridization [48]. Arg also contains the large C-terminal
domain characteristic of Abl [49], but whether there are additional members
of this subfamily is unknown.
The c-abl gene appears to be highly conserved throughout metazoan

evolution, but the physiological function of abl is unknown. The c-abllocus
in Drosophila has been studied extensively [50]. The Drosophila c-abl gene
is highly expressed in neuronal axons of the developing central nervous
system. Homozygous null mutations of abl, while exhibiting no gross CNS
structural abnormalities, have a high degree of pupal lethality with reduced
fecundity and rough eyes in surviving adults. The severity of the phenotype
can be dramatically enhanced by placing the abl null homozygous genotype
in other genetic backgrounds, such as flies mutant in fasciclin I or haplo
insufficient for certain genes such as the disabled (dab) locus [51]. Such
mutants exhibit embryonic lethality and severe disruption of the CNS,
suggesting that in flies abl plays some fundamental role in organization and
pathfinding of CNS neurons. In contrast, homozygous inactivation of the c
abl gene in mice leads to runted growth and immunodeficiency, mainly from
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a deficiency in mature lymphocytes, with CNS structure apparently normal
[52,53]. This suggests that c-abl has a physiologically different role in flies
and mammals.
Recently, structural and functional studies of the c-abl gene have defined

several domains (Fig. 3). Studies of the subcellular localization of the ABL
proteins in fibroblasts have shown that the c-Abl Ib/IV protein is largely
nuclear in location, with a portion present at the inner surface of the plasma
membrane and in adhesion plaques [33]. The subcellular localization of the
c-Abl IalI protein is unknown. The nuclear localization of the c-Abl Ib/IV
protein is dependent on the presence and function of a basic pentalysine
(K5) motif in the C-terminus, which is homologous to the nuclear local
ization signal of SV40 large T antigen [33]. There is a signal for myristoyla
tion in the first 7-14 amino acids of c-Abl Ib [54], and this protein has been
shown to be myristoylated at an N-terminal glycine residue [55], while the c
Abila protein is predicted from its sequence not to be myristoylated.
The myristate group in c-Abl Ib is necessary for membrane localization
of a fraction of the protein, although myristoylation alone is not sufficient
to localize all the Ib protein to the membrane. It is expected that the
myristoylated form of Abl may have a specific protein receptor in the
membrane, like those demonstrated for Lck [56] and Src [57]. The myristate
group is also necessary for transforming alleles of Abl to transform fibro
blasts, but is not required for transformation of hematolymphoid cells by
Abl [35].
In a sequence comparison with Src, three major regions of homology

between Src and Abl are identified, denoted the Src homology or SH
regions [58,59]. The first Src homology region, SH1, defines the tyrosine
kinase domain, which studies of deletion, conditional, and kinase-inactive
mutants of Abl have demonstrated is required for transformation. Like
other protein kinases, the Abl kinase domain contains canonical sequences
for the binding of the adenine nucleotide of ATP (GXGXXG), with a
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conserved downstream VA(V/I)K motif for hydrogen bonding of the ~

phosphate of ATP. Expression of the Abl kinase domain in E. coli or by in
vitro translation confirms that this minimal region is able to function as a
tyrosine kinase [60]. Immediately N-terminal of the kinase domain in Src
and Abl is a second region of homology of about 100 amino acids, the
SH2 domain. Although not strictly required for catalytic activity, mutations
in SH2 generally decrease the transforming activity of oncogenic tyrosine
kinases [61] and can confer host-range-dependent transforming activity [62].
Recently, the SH2 domains of Abl and Fps have been shown to bind to
tyrosine-phosphorylated cellular proteins with high affinity [63,64], perhaps
mediating the formation of protein-protein complexes between protein
tyrosine kinases and substrates, which may be important for signal trans
duction [65] (see below). The final Src homology region, SH3, while present
in both Abl and Src, is missing from some other Src family members such as
Fps. In Src and Abl, the SH3 domain is about 50 amino acids in length,
located just N-terminal to SH2. SH3 appears to be a negative regulatory
domain of Abl, as some mutations in this region serve to activate the
transforming ability of c-Abl [55], (see below).
The large C-terminal domain of Abl contains several known functions.

Besides the nuclear localization signal mentioned earlier, there are two sites
for phosphorylation of Abl by protein kinase C [66]. In addition, c-Abl
appears to be differentially phosphorylated during the cell cycle by the
mitotic kinase p34cdc-2 at several sites, all in the C-terminal domain; only
two of these sites have been precisely identified [67]. The functional impli
cation of phosphorylation of Abl by these kinases is unknown. At the
extreme C-terminus of Abl is a domain that mediates the association of Abl
with the F-actin cytoskeleton, a finding of unknown significance [33,68].
Two other functions of the Abl C-terminus, a requirement for lymphoid cell
transformation and a phenomenon known as toxicity, are as yet poorly
defined genetically. There appears to be a relative requirement for the C
terminus of v-Abl for transformation of lymphoid cells, as v-Abl mutants
truncated at the C-terminus, while unaffected in their ability to transform
3T3 cells, exhibit a greatly reduced frequency of lymphoid transformation in
vitro and in vivo [69,70]. The precise sequences responsible for reduced
lymphoid transformation have not been mapped. The phenomenon of
toxicity of Abl proteins, observed only in fibroblast cell types, is manifest in
a number of different ways and is likewise poorly understood. With trans
forming alleles of abl, infection of Balb/c 3T3 fibroblasts leads to a transient
transformed phenotype, followed by cell death [71]. Cotransfection of NIH
3T3 cells by transforming or nontransforming alleles of abl with a selectable
marker gene shows that cells expressing both genes are recovered at a much
lower frequency than control cells transfected with the marker gene alone
[72]. With nontransforming alleles of abl, it is possible to derive subclones of
transfected cells that express c-Abl at levels 10- to 20-fold increased
over the level of endogenous Abl. Such clones grow much more slower than
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parental NIH 3T3 cells by a factor of 2.5-3.0, and there is a strong tendency
with simple passage of these clones in culture to select for variants that lose
Abl expression, even when grown under continued selective pressure. These
'revertant' lines again grow at normal rates [73]. Thus there is some negative
effect associated with Abl expression at the cellular level. The toxic effect of
abl requires an active kinase domain and an intact C-terminus linked in cis
in the transfected abl gene, but the precise sequences in the C-terminus
required for toxicity have not been defined. A truncation mutant of P160v



abl, denoted P130, which terminates around amino acid 850, is defective for
lymphoid transformation but is still toxic for fibroblasts, indicating that the
two functions can be genetically separated [70].
Overexpression of either c-Abl Ia or Ib via a retroviral expression vector

is insufficient for transformation of fibroblasts or hematolymphoid cells
[33,55], and, as mentioned above, overexpression of c-Abl Ib instead has a
profound negative effect on fibroblast cell growth. Therefore, in contrast to
protooncogenes like c-myc, where simple overexpression of the normal gene
product is sufficient for transformation, abl belongs to a class of proto
oncogenes that must be altered by specific mutation in order to transform
cells. There are three mechanisms currently known by which the trans
forming ability of c-abl may be activated. The largest known class of activated
abl genes contain mutations in the N-terminal regulatory region SH3,
including both deletions and small insertions [55,74]. Point mutations can
also contribute to the oncogenicity of abl. Comparison of the transforming
activity of a series of recombinants between v- and c-ab/led to the discovery
that some isolates of the P160 strain of v-abl carry a point mutation in
the tyrosine kinase domain that changes the phenylalanine at position 420
to valine (F420V), a mutation that confers weak transforming ability on
c-abl in the absence of other mutations [75]. As another example, a point
mutation in the C-terminus of abl contributes to the transforming potency
of a gag/abl fusion construct [76]. Finally, addition of certain exogenous
sequences to the N-terminus of Abl in place of Abl first exon sequences can
activate abl independent of the first two mechanisms [77]. One example of
this mechanism is retroviral gag sequences, which have been shown to
dominantly activate the transforming ability of abl independent of SH3
mutation. Interestingly, the P160v

-
abl gene has been activated by all three

mechanisms, since the addition of Gag sequences to the Abl N-terminus has
also resulted in partial deletion of the SH3 domain. Activation of c-Abl Ib
by any of these mechanisms is associated with a change in the localization of
the protein from the nucleus to the cytoplasm and plasma membrane [33].
In the c-Src protein, phosphorylation of the tyrosine at position 527 has a
negative regulatory effect on kinase activity and transforming ability, and
mutation of this residue to phenylalanine or deletion (as occurs in v-Src)
weakly activates transforming ability [78]. Abl lacks a homolog of tyrosine
527, so that this mechanism of control of Src transforming activity has no
counterpart in Abl.
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Fibroblasts transformed by activated forms of abl display all the usual
correlates of the transformed state, including morphological changes, loss
of 'contact inhibition.' decreased adherence, changes in ionic permeability
and glucose transport, growth in semisolid medium and low serum, and
disruption of the cytoskeleton. They also contain greatly increased levels
of phosphotyrosine-containing proteins and elevated levels of phospho
tidylinositol breakdown products. One of the most prominent phospho
tyrosinated species in abl-transformed cells is the Abl protein itself [25],
which contains phosphotyrosine at two major sites, one of which maps
within the kinase domain at position Y412 [79,80]. While autophosphoryla
tion of v-Src or v-Fps is thought to increase the catalytic activity of the
kinase, the effect of autophosphorylation on Abl function or kinase activity
is unclear. While c-Abl is not detectably phosphorylated on tyrosine in
nontransformed cells [81] or after in vitro translation [82], in both cases
tyrosine kinase activity may be demonstrated in vitro after immunoprecipi
tation of c-Abl and washing of the immune complex at high stringency [83].
In addition, phosphotyrosine can be detected on c-Abl proteins after over
expression 100- to 500-fold in Cos cells or Sf9 insect cells [82]. Taken
together, these observations suggest that c-Abl tyrosine kinase activity is
reversibly inhibited in vivo by a cellular factor that is removed by immuno
precipitation or is titrated out by vast overexpression of c-Abl. An attractive
hypothesis is that this putative inhibitor may interact with the negative
regulatory SH3 domain, such that mutations in SH3 domain lead to loss of
inhibition of the abl kinase by the inhibitor, allowing expression of the
latent kinase activity of Abl. Thus, activating mutations in c-abl unmask the
inherent kinase activity of the protein in vivo, leading to autophosphoryla
tion, increased levels of phosphotyrosine-containing proteins in the cell, and
transformation. It is not clear whether activating mutations of c-abl directly
affect the intrinsic kinase activity of the Abl protein or whether they
activate c-Abl by affecting some other parameter, such as interactions with
inhibitors, alterations in substrate specificity, or changes in subcellular local
ization. Although some workers have found an increase in the intrinsic
kinase activity of transforming alleles of abl as compared with c-abl [84],
others have not [80,85].
The molecular mechanism of transformation of cells by the Abl tyrosine

kinase, or indeed by any of the tyrosine kinase oncogenes, is unknown.
Since transformed cells in culture have reduced growth factor requirements,
they might secrete their own growth factors, as proposed in the autocrine
hypothesis of Sporn and Todaro [86]. Fibroblasts transformed by v-abl
produce a number of transforming growth factors, including transforming
growth factor a (TGF-a) [87], which has homology to epidermal growth
factor and utilizes the EGF receptor. A mutant Swiss 3T3 fibroblast cell
line, lacking the EGFffGF-a receptor, is morphologically transformed by v
abl but is nontumorigenic in nude mice, in contrast to the parental cells [88].
Thus, autocrine stimulation mediated by TGF-a may be required for the full
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tumorigenic phenotype induced by v-abl in fibroblasts. Because the tyrosine
kinase activity of Abl is required for transformation, it is reasonable to
expect that tyrosine phosphorylation of one or more particular substrate
proteins is crucial for transformation by Abl. Despite extensive searches
for substrates of protein-tyrosine kinases, no substrates necessary for trans
formation or for normal function have been identified [36,89], nor is it even
known if substrates phosphorylated by transforming kinases are hyper
phosphorylated normal substrates or aberrant substrates. Recently, a number
of molecules involved in growth-factor signal transduction and cell growth
have been found to be substrates of receptor tyrosine kinases, to form stable
complexes with ligand-activated growth-factor receptors, and in some cases
to have their functional properties altered by tyrosine phosphorylation. This
list of substrate proteins includes phospholipase C-y, the 85-kDa subunit of
the phosphatidylinositol 3-kinase (PI 3-kinase), c-raJ, and ras-GAP [for
review, see 65J. SH2 domains have been identified in some of these proteins
and may mediate the formation of protein-protein complexes with activated
growth-factor receptors by binding to autophosphorylated receptors. Abl
has been shown to be associated with some of these molecules, notably the
PI 3-kinase [90J and a 62-kDa GAP-associated protein [63,91J. Although
none of these substrates has yet been shown to be critical for transformation,
this remains an important and active area of oncogene research.

Abl in human malignancies: CML and the Philadelphia chromosome

Chronic myelogenous leukemia (CML) is a hematologic malignancy char
acterized by increased numbers of maturing myeloid cells and their pro
genitors in peripheral blood, bone marrow, liver, and spleen [for review, see
92J. CML has a triphasic clinical course and serves as a paradigm of multi
step carcinogenesis. The early so-called chronic phase of the disease is
marked by greatly increased numbers of maturing myeloid cells. Terminal
differentiation of cells to the postmitotic state is maintained, resulting in a
large elevation in the peripheral blood granulocyte count. Although there
are subtle abnormalities of granulocyte and platelet function, these rarely
lead to significant complications. Thus, the chronic phase differs from a de
novo acute leukemia, which is characterized by a profound block in dif
ferentiation and overgrowth of blood and bone marrow with immature,
proliferating cells. The chronic phase of CML may be managed by several
different treatments, and patients usually have a nearly normal quality of
life. However, the chronic phase is inherently unstable, and after a variable
period of time ranging from weeks to several years (mean interval 3-4
years), the disease enters a period of acceleration, where the capacity of the
malignant cells to terminally differentiate becomes progressively impaired,
resulting in the appearance of more immature myeloid cells in the peripheral
blood, often accompanied by basophilia and thrombocytosis. Shortly there-
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after, the terminal (and inevitably fatal) blast crisis stage appears, character
ized by proliferating immature blast cells. The phenotype of the blast
cells may be myeloid (65% of cases), B-lymphoid (30% of cases), or
megakaryocytic, erythroid, T-lymphoid, or undifferentiated «5% of cases).
Myeloid blast crisis cells are morphologically similar to myeloblasts or pro
myelocytes, and express myeloid-specific cell surface antigens and cyto
plasmic enzymes. Lymphoid blast crisis cells are phenotypically pre-B
leukemia cells, express terminal transferase and common acute lympho
blastic leukemia antigen (CALLA, COlO), and have immunoglobulin heavy
chain gene rearrangements and express cytoplasmic I! chains. Clinically,
CML is usually grouped with polycythemia vera, essential thrombocythemia,
and myeloid metaplasia as one of the myeloproliferative diseases.
CML was the first human cancer to be associated with a consistent chro

mosomal abnormality. Working in Philadelphia, Nowell and Hungerford in
1960 described a small chromosome 22 (now called the Philadelphia chro
mosome or Phi) in metaphase preparations from patients with CML [93]. In
1973, Rowley demonstrated that Ph I typically results from a reciprocal or
balanced translocation between the long arms of chromosomes 9 and 22:
t(9;22)(q34.1;q11.21) [94]. Thirty years later, the Philadelphia chromosome
remains the best tumor-specific marker for any human malignancy. Using
the Philadelphia chromosome as a marker, early cytogenetic studies estab
lished that Phi was present in granulocyte, monocyte, and erythroid pre
cursors and in megakaryocytes [for example, see 95]. The Ph' marker is not
found in bone marrow fibroblasts (or other mesenchymal tissues), even in
cases of myelofibrosis (which is frequently associated with CML) [96]. In the
lymphoid compartment, B lymphocytes usually carry the Ph I marker, but
peripheral blood T cells usually do not. These results suggest that CML is a
clonal disorder arising in a multipotential hematopoietic stem cell. The lack
of consistent involvement of the T-lymphoid lineage may be a consequence
of preexisting long-lived normal T cells that predominate during the chronic
phase, and it is possible that small numbers of Ph '-positive T cells are
present in CML patients but cannot be detected. When blast crisis develops,
the blast cells are invariably found to carry the Ph I marker, confirming that
the blast crisis cells arise from the same leukemic clone as the chronic phase.
Although rare, several cases of Phi-positive T-cell blast crisis have been
reported [97], suggesting that the disease involves a pluripotent cell capable
of differentiating to T-Iymphoid cells as well as along B-lymphoid and
myeloid lines. Taken together, these studies strongly support the concept
that CML is a malignancy involving the pluripotent hematopoietic stem cell.
The elucidation of the structure of the Philadelphia chromosome is a

triumph of modern molecular biology [for recent reviews, see [98-100].
Early studies of rodent-human somatic cell hybrids containing PhI demon
strated that the c-abl protooncogene, normally located on the long arm of
chromosome 9 (band q34), is translocated to the Ph1 chromosome in CML
[101]. Fine structure mapping of the c-ABL locus in CML cells established
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that the breakpoints occurred 5' to the body of the ABL gene, and in one
patient occurred within 14.5 kb of ABL sequences [102]. However, even
though as much as 40 kb of human genomic DNA that mapped 5' to the c
ABL sequences were cloned, probes derived from that genomic DNA
failed to detect additional breakpoints in samples from other CML patients.
This mystery was resolved when it was found that probes derived from
the chromosome 22 side of the Ph I breakpoint detected rearrangements
in virtually all CML patients [103]. When the various breakpoints were
molecularly cloned, it became clear that the breakpoints on chromosome 9
occurred at variable and sometimes great distances (hundreds of kilobases)
upstream of the c-ABL locus, explaining why few rearrangements can be
detected using ABL probes, which contain only the 3' end of the locus. In
contrast to the variability of breakpoints on chromosome 9, the breakpoints
on chromosome 22 all fell in a restricted 5.8-kb area, which was termed the
breakpoint cluster region or ber.
The BCR gene is composed of 20 exons spanning about 70 kb, with the

5.8-kb breakpoint cluster region located in the center of the gene and, like
the c-ABL gene, is oriented with the 5' end towards the centromere. The
BCR gene expresses 4.5- and 6.7-kb mRNA transcripts, which, like those
of the c-ABL gene, appear to be ubiquitous, and are detected in all
hematopoietic cells as well as fibroblasts and cells of epithelial origin [104].
CML cells express two novel products: an altered ABL-related mRNA of
about 8.5 kb [104] and an altered form of the c-ABL protein with a mole
cular weight of 210 kDa [105]. Molecular cloning of the cDNA corresponding
to the altered 8.5-kb transcript established that this was a fused transcript
consisting of 5' ber sequences joined to 3' c-ABL sequences [106]. Anti
bodies raised against synthetic peptides predicted by the BCR and ABL
sequences immunoprecipitated the altered ABL protein of CML cells and
confirmed that it was a hybrid protein representing the fusion of Bcr and
Abl polypeptides predicted from the sequence of the cDNA [107).
In summary, the Philadelphia chromosome results in a fusion of the genes

for BCR and c-ABL, with the breakpoint in the BCR gene occurring in a
restricted area called the breakpoint cluster region and the breakpoint in the
c-ABL gene occurring somewhere in a very large first intron. Following
transcription, splicing, and translation, a 21O-kDa BCR/ABL fusion protein
(denoted P21OBCR/ABL) is produced. Although the reciprocal product to the
Phi translocation also results in the fusion of the 5' end of the c-ABL locus
with the 3' end of the BCR gene, the product of this chimeric gene has not
been consistently identified in CML cells. In addition, the protooncogene c
SIS, which encodes platelet-derived growth factor, is also translocated from
chromosome 22 to chromosome 9 in CML, and has been postulated to play
a role in the myelofibrosis that often accompanies CML. However, the c-SIS
gene is located a substantial distance away from the breakpoint, and there is
no evidence that it is involved in any way in the pathogenesis of CML.
The Ph I chromosome is also found in approximately 30% of cases of
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adult acute lymphoblastic leukemia (ALL), 10% of pediatric ALL, and
about 1% of adult acute myelogenous leukemia (AML). Some patients with
Phi-positive ALL have recently been shown to have a distinct Abl-related
protein of molecular weight 185-190 kDa [108]. Molecular cloning and
sequencing of cDNAs from these patients have revealed a novel form of the
BCR/ABL translocation, with the breakpoint on chromosome 22 in the first
intron of the BCR gene instead of the usual 5.8-kb breakpoint cluster region
[109]. This leads to expression of a 190-kDa fusion protein consisting of
sequences from the first exon of the BCR gene joined to the second ABL
exon, differing from P21O, which contains sequences from the first 11 or 12
exons of ber in the hybrid protein. Because the PI90 form of BCR/ABL has
been found in cases of Ph I-positive AML, it appears that the P190 protein is
not specifically linked to lymphoid leukemia [110]. However, it may be that
the P190 form of BCR/ABL is associated only with cases of de novo acute
leukemia, since P190 is rarely if ever seen in the chronic phase of CML
[111]. While all documented cases of CML have traditional breakpoints in
the 5.8-kb ber region, giving rise to the P210 form of BCR/ABL, some
patients who present with PhI-positive ALL and AML also have traditional
ber breakpoints and express P21O. As a rule, these patients have persistence
of the Phi chromosome in remission, suggesting that they represented cases
of CML presenting in blast crisis after an unrecognized chronic phase. In
contrast, most ALL patients with the more 5' breakpoint become Ph'
negative during remissions and do not exhibit the additional cytogenetic
abnormalities typical of CML blast crisis, suggesting that they represent
transformation of a cell type that is more restricted in its differentiation
potential than a pluripotent stem cell [112]. However, patients who appear
to violate these rules have been described [113,114]. A central unanswered
question is whether the difference in disease spectrum associated with the
two forms of BCR/ABL is due to some intrinsic difference in the properties
of the proteins themselves. An alternate but not mutually exclusive expla
nation is that different translocation breakpoints on chromosome 22 are
favored in different hematopoietic cell types, with the traditional ber break
point favored in stem cells and the breakpoint in the BCR first intron
favored in committed lymphoid (or myeloid) progenitor cells. The recent
development of animal model systems of the Philadelphia-positive leukemias
may allow an answer to this important question.

Properties of BCR and BCR/ABL

The substitution of Bcr sequences for the N-terminal exon of c-Abl results in
a large increase in the tyrosine kinase activity of the fusion protein [105].
Thus, the Bcr/Abl proteins are examples of Abl proteins that are activated
by the third mechanism listed above. The SH3 domain of Abl is encoded
starting with ABL exon 2 (the first common exon) and is present intact in
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the Bcr/Abl proteins. In addition, direct sequencing of the ABL portion of
the P2IOBCRIABL gene from the CML cell line K562 reveals no changes in
nucleotide sequence between human c-ABL and P2IO, suggesting that point
mutations like those present in v-abl have not occurred. The specific mech
anism by which BCR activates ABL is unknown. The normal product of the
BCR gene is a 160-kDa cytoplasmic phosphoprotein of unknown function
[115], is rather ubiquitously expressed in both hematopoietic and non
hematopoietic tissues [104], and appears to have a closely associated serine/
threonine kinase activity. The serine/threonine kinase activity is found
associated with Bcr even after in vitro translation of the BCR gene in
reticulocyte lysates [116], but is unlikely to be the BCR gene product itself,
as the primary sequence of Bcr bears no homology to any of the known
serine/threonine kinases [117]. There is, however, a conserved ATP-binding
motif encoded by the first exon of BCR. There is a recent report that Bcr
has GTPase activating (GAP) activity for p2 l'ac , a ras-related G protein
[118], but the region of Bcr with GAP activity is in the C-terminal region of
the protein, which is not present in the Bcr/Abl proteins, so that the
relevance of this finding to transformation or leukemogenesis by Bcr/Abl
is unclear. Deletion mapping of the Bcr sequences in Bcr/Abl, using
endogenous phosphotyrosine content [85] or Rat-l fibroblast transformation
[119] as assays for activation, suggests that the first exon of Bcr (found in
P190) alone contains all the information necessary to activate Abl and also
appears to increase the association of Bcr/Abl proteins with the detergent
insoluble matrix and F-actin cytoskeleton [85]. This Bcr first exon may
specifically interact with the N-terminal SH2 domain of Abl, perhaps
inducing a conformational change in the Bcr/Abl fusion protein that
deregulates the tyrosine kinase activity [120].
Like v-Abl, P210BCRIABL has the ability to transform established factor

dependent myeloid [121] and lymphoid [122] cell lines to growth factor
independence by a mechanism that probably does not involve autocrine
growth factor production. In some cases, the mechanism of transformation
appears to be the constituitive activation of cellular proteins normally
involved in growth-factor signal transduction [123]. Unlike v-Abl, however,
the P210 protein is unable to transform NIH 3T3 fibroblasts [124], probably
because it lacks a myristate group [35], although it is able to partially
transform another fibroblast cell line, Rat-l [125]. P210-transformed Rat-l
cells form small colonies in soft agar and noninvasive tumors in nude mice.
v-Myc is able to cooperate with P2IO in this assay to induce large colonies in
agar and invasive tumors in nude mice [125]. When the P2IO protein is
expressed (by retroviral gene transfer) in long-term bone marrow culture
under conditions that favor lymphoid (Whitlock-Witte) or myeloid (Dexter)
cell growth, there is a clonal or oligoclonal outgrowth of immature B
lymphoid cells, which remain dependent of the feeder layer and are not
fully tumorigenic [126,127]. Some clones expressing P2IO progress to
tumorigenicity upon continuous in vitro culture, suggesting that additional
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mutational events must occur to produce the fully transformed phenotype.
The target cell for P210 in these experiments appears to be similar to the
Ab-MuLV target cell.
P190 has greater transforming activity in these assay systems than P2IO.

P190 is more efficient than P2IO in transformation of Rat-l cells [84), and
Pl90-infected Whitlock-Witte cultures grow more quickly and reach greater
density than cultures infected with matched stocks of P2IO virus [128]. Thus,
P190 appears to be a more 'potent' oncogene in some way than P2IO, and it
is tempting to postulate that this may in part explain the epidemiological
association of P190 exclusively with the more aggressive acute leukemias in
humans. The hallmark of CML is the overproduction of myeloid cells
without a block in the ability of these cells to differentiate, and it is reason
able that P2IO, as a weak oncogene, might induce this phenotype upon
expression in a pluripotent cell type. In support of this, a modification of the
standard Whitlock-Witte culture conditions allows the outgrowth of clonal
lines after P2IO infection that have characteristics of early B-Iymphoid
progenitors. These cells are growth stimulated by P2IO but maintain full
differentiative capacity and are able to reconstitute the B-lymphoid com
partment of scid mice [129]. These experiments confirm the ability of P2IO
to stimulate the growth of hematopoietic cells without blocking differentia
tion. Similar experiments with P190 have not been reported, but one might
predict that the transforming ability of P190 might be too 'strong' to allow
preservation of differentiation of this nature.

Expression of abl and BCRIABL in animal models

A great deal has been learned about the biochemistry and genetics of
transformation by activated alleles of abl by expressing these genes in
various tissue culture systems, but full understanding of their leukemogenic
properties can only come from studying their expression within the hemato
poietic system of a living animal. Two distinct strategies have been em
ployed: the creation of transgenic strains of mice that carry activated abl
genes or the transduction of activated abl genes into murine bone marrow
cells using retroviral vectors and bone marrow transplantation.
Transgenic mice have been generated that carry the v-abl gene under the

control of the SV40 early region promoter and the immunoglobulin heavy
chain gene enhancer (Ell). These mice develop plasmacytomas but not pre
B lymphoma [130]. This suggests that the Ell-directed transgene may not be
expressed at an early enough stage to transform the traditional Abelson
target cell for the development of pre-B lymphoma, and B-cell malignancy
subsequently develops at a more differentiated step in development. The
plasmacytomas are clonal with respect to IgH or K gene rearrangements,
secrete IgA or IgG, and have rearrangements of the c-myc locus. In addition,
the progeny of a cross between EIl-v-abl transgenic mice and a strain
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bearing a EJ.l-c-myc transgene resulted in the rapid development of oligo
clonal plasmacytomas, confirming the cooperation between these two onco
genes. Transgene expression was detected in hematopoietic tissues of the
EJ.l-v-abl mice before the development of overt plasmacytoma, but the
mice were hematologically normal during this period.
Transgenic mice carrying the P190BCRIABL gene have also been generated

by placing the P190 gene under the control of the mouse metallothionein
promoter [131]. The P190 transgenic animals rapidly developed fatal acute
leukemias shortly after birth, or in some cases are moribund at birth with
leukemia that may have developed in utero. These leukemias were of
lymphoid type in most cases, with a few cases of acute myeloid leukemia,
and were of such rapid onset that the affected animals could not be bred.
Interestingly, although transgene expression was detected in a variety of
tissues, including muscle, brain, and spleen, without induction with heavy
metals, only malignancies of the hematopoietic system were observed.
These experiments strongly implicate the P190 protein in the pathogenesis
of acute leukemia, but none of the animals exhibited the prominent granulo
cytosis characteristic of CML.
Efforts to generate transgenic mice bearing the P210BCRIABL gene have

been somewhat less successful. Several transgenic strains of mice have been
generated that carry a facsimile of the human P2IOBCRIABL gene under the
control of either the EJ.l enhancer or the relatively tissue-nonspecific LTR of
the myeloproliferative sarcoma virus (MPSV LTR) [132]. Both transgenic
strains show a predisposition to develop clonal lymphoid tumors, principally
of the T-cell type, but no tumors of myeloid origin have been observed.
There appears to be a problem with expression of P2IO in transgenic mice,
even when under the control of restricted promoters. In these experiments
there were smaller numbers of transgenic pups born than would have been
expected given historical controls. This decreased yield of transgenic animals
was more striking for the MPSV LTR-driven transgene (which is more
widely transcribed) than for the EJ.l-driven transgene. In both cases, the
transgene is silent in the transgenic animals that are born, even in hemato
poietic cells, and hematopoiesis appears normal until rare individuals develop
Tor B lymphomas. These tumors are clonal by analysis of T-cell receptor or
IgH gene rearrangements, and the tumor cells express the transgene. Taken
together, these observations suggest that there may be some toxic effect of
BCRIABL transgenes on embryonic development, and that the transgene
must be silenced, perhaps by somatic mutation, for development to proceed
to term. Reactivation of the transgene in hematopoietic cells, a rare event,
would account for the low frequency of clonal malignancies observed. Other
groups have seen no transgenic animals born after repeated attempts to
generate mice with a BCRIABL gene under control of the BeR promoter,
which is quite ubiquitously expressed [131,133]. This 'toxicity' problem
seems limited to P210BCRIABL, as v-abl and P190BCRIABL transgenics have
been generated without these difficulties [130,131]. In summary, the existing
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transgenic model systems provide firm evidence of a causal link between
bcr/abl and leukemia, but they do not recapitulate the complex biology of
CML, where the leukemic cells maintain their ability to terminally differ
entiate in the chronic phase.
The alternative approach for establishing an animal model for CML is

introduction of the BCR/ABL gene into hematopoietic stem cells of mice
using retroviral gene transfer. Infection of murine bone marrow with a
replication-defective, helper virus-free retrovirus carrying the P2IOBCRIABL
gene followed by bone marrow transplantation into lethally irradiated
recipients results in a spectrum of hematopoietic malignancies. In one series
of experiments, malignancies of B- and T-lymphoid, erythroid, mast cell,
and monocyte-macrophage cell types were observed, but no granulocytosis
suggestive of CML was observed [134]. Using a slightly different vector
system and different mouse strain, a myeloproliferative syndrome with a
striking resemblance to the chronic phase of human CML was observed in
transplant recipients, in addition to malignancies of the other cell types
[135]. It is not yet clear whether the difference between the two experi
mental systems involves the vector system, mouse strain, or other factors.
Mice with the CML-like syndrome (murine CML) develop very high peri
pheral blood white cell counts, composed mainly of maturing granulocytes,
and hepatosplenomegaly. The BCR/ABL provirus can be detected in DNA
from spleen, bone marrow, and peripheral blood granulocytes, and early
myeloid cells from these sources express the P2IO protein, as determined
by immunofluorescence, immunohistochemistry, and immunoblotting. The
target cell for infection that gives rise to murine CML is an early multi
potential hematopoietic progenitor cell, which can give rise to the day 12
spleen colony-forming unit (CFU-S12), and in one case has been shown to be
the pluripotent hematopoietic stem cell itself. The disease is transplantable
by transfer of bone marrow to syngeneic recipient animals, and clonally
related acute leukemias of lymphoid and myeloid origin have been observed
in secondary transplant recipients, showing that the leukemic clone can
evolve to acute leukemia in a way that mimics the tendency of the human
disease to progress to blast crisis [136]. Thus, murine CML resembles the
human disease in several fundamental aspects.
One of the questions that can be addressed utilizing this type of bone

marrow infection system to express BCR/ABL is to determine whether
different forms of activated Abl proteins cause different disease phenotypes.
In particular, do v-abl and PI90BCRIABL, which are predominantly asso
ciated with pre-B leukemia in mice and humans, respectively, also have the
capacity to induce a myeloproliferative syndrome resembling chronic phase
CML? Rosenberg, Witte, and coworkers introduced both P2IO and P160v

-
abl

into murine bone marrow by infection with retroviruses that included
replication-competent Moloney murine leukemia virus as a helper virus
[137]. Some animals infected with P210 developed a granulocytosis suggestive
of CML, while animals infected with v-abl developed primarily tumors of
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monocytic cells. In a similar experiment, Scott and coworkers found that
recipients of v-abl-infected marrow did exhibit a moderate granulocytosis
early after transplant, but that these cells lacked the proviral marker and
were not part of the malignant clone [138]. These experiments are compli
cated by the presence of helper virus, which caused each individual animal
to develop multiple diseases and made secondary transplant analysis im
possible. Helper-free infection of fetal liver cells with v-abl followed by
transplantation has also been reported [139]. These animals appear to devel
op mono- or oligoclonal leukemias, and tumors of monocyte-macrophage
cell types, but the occurrence of granulocytosis was not reported. Taken
together, the clinical and histopathological picture of disease induced by
v-abl after bone marrow infection differs considerably from that seen with
P2IOBCRIA BL, and the two proteins appear to induce distinct diseases in
these animal model systems.
Expression of the P190 gene in the bone marrow infection system in the

presence of helper virus gives rise to the same spectrum of hematological
malignancies seen with the P210 gene, but with a shorter latency period,
again suggesting that P190 is more potent than P2IO in leukemogenesis
[140]. When P190 is expressed in murine bone marrow by a helper-free
retroviral vector, it very rapidly and efficiently induces pre-B lymphoma and
tumors of monocyte/macrophage origin. The target cells for the induction
of these diseases are lineage-restricted and probably represent committed
progenitors. A small number of animals appear to have had stem cell
infection by P190 and exhibit a transient myeloproliferative syndrome,
followed by rapid evolution of the infected clone to acute leukemia,
mimicking blast crisis [141]. These results suggest that P190 may be able to
induce CML when expressed in a stem cell, but rapid progression to acute
leukemia may preclude identification of human patients with chronic phase
CML who express P190.

Summary and future prospects

Although abl is one of the oldest oncogenes known, research on this family
continues at a brisk pace. In the coming years, we may expect the definition
of more functional domains in the c-Abl proteins and progress in under
standing the puzzling relationship between transformation and subcellular
localization. Identification of proteins interacting with Abl in the cell will be
a fruitful area of investigation. The availability of mice strains carrying
germline inactivations of the c-abl locus should provide insight into the
physiological role of abl in lymphoid development. Finally, the recent
development of animal model systems of the BCR/ABL leukemias should
accelerate our understanding of the molecular pathophysiology of these
diseases, and provide a means of testing new anti-leukemic therapies.
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9. The biological and clinical roles of increased insulin
receptors in human breast cancer

Riccardo Vigneri and Ira D. Goldfine

Introduction

Both steroid hormones and peptide growth factors are known to control the
growth and progression of breast cancers [1,2]. Human and animal breast
carcinomas have receptors for steroid and peptide hormones, and both
in vitro and in vivo studies have indicated that tumor proliferation rate
and overall growth are dependent on these ligand-receptor systems [3,4].
Approximately one third to one half of all breast cancer cases show estrogen
dependent growth [3], and clinical studies have indicated that patients whose
tumors have estrogen or progesterone receptors (ER, PR) have biologically
less aggressive tumors and live longer than those patients whose tumors lack
ER or PR [1,5]. However, some receptor-positive breast cancers are not
normally responsive to steroid hormone regulation, behave much more
aggressively, and reduce patient survival [5,6]. One explanation for this
discrepancy between steroid-receptor positivity and tumor behavior is that
the tumor may lose certain intracellular mechanisms that mediate hormonal
growth control. A second explanation is that these receptor-positive tumors
are heterogeneous and contain subpopulations of receptor-negative cells
capable of more aggressive behavior. A third possibility is that the more
aggressive tumor cell behavior is derived from the influence of other
hormones, such as polypeptide hormones and growth factors. These latter
factors may play autocrine and paracrine roles in determining aggressive
breast tumor behavior, including a more rapid tumor proliferation rate and
steroid hormone resistance. For this reason it is important to quantitate
tumor receptor levels in concert with histological analysis and other tech
niques to identify the cells in tumors that contain receptors for steroid
hormones and polypeptide growth factors.
Recent investigations have focused on growth factors and receptors that

are members of the tyrosine kinase family [7]. A number of growth factors
stimulate cellular mitogenesis by interacting with a family of cell surface
receptors that possess an intrinsic ligand-sensitive protein tyrosine kinase
activity. It is believed that tyrosine phosphorylation of ~ey cellular proteins
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initiates changes in cell growth. Tyrosine kinase receptors are typically
composed of an extracellular ligand binding domain that is linked to a
cytoplasmically oriented catalytic domain, which not only transduces the
growth factor or hormonal signal but also generates mitogenic second
messengers. There are now four subclasses of tyrosine kinase receptors [7].
Subclass I includes the epidermal growth factor receptor (EGF-R), which is
activated by the ligands EGF and transforming growth factor a (TGF-a) and
the closely related HER-2/neu receptor. Subclass II receptors include the
insulin receptor (IR) and the closely related insulin-like growth factor-I
receptor (IGF-I-R), which are activated by insulin and IGF-I, respectively.
Subclass III receptors include the platelet-derived growth factor receptor
(PDGF-R) and the colony stimulating factor receptor (CSF-I-R). Subclass
IV receptors include the fibroblast growth factor receptor (FGF-R) and its
relatives [8]. In addition to these proto-oncogene encoded tyrosine kinase
receptors, there are also receptor-derived viral oncogene products. V-erb B
is derived from the EGF-R, and v-fms from the CSF-I-R. In general, these
viral oncogene products differ from their normal receptor counterparts in
that they have either amino acid deletions or substitutions that enable them
to possess ligand-independent (and thus constitutively activated) tyrosine
kinase activity.
Several mechanisms have been suggested [7] by which receptor tyrosine

kinases and their derived oncogenes are believed to be implicated in tumor
formation. These include increased receptor kinase content (secondary to
gene amplification or overexpression) and inappropriate enzymatic activity
(e.g., mutant protein) with otherwise normal levels of the receptor protein.
In a recent survey, breast tumors were commonly found to have high
tyrosine kinase activity that correlated with poor patient prognosis; how
ever, the specific kinases involved were not identified in this study [9]. In
breast cancers, the most commonly activated subclasses of tyrosine kinase
receptors are EGF-R, HER-2/neu, and IGF-I-R. Gene amplification and/or
overexpression has been reported for HER-2/neu, whereas overexpression
without amplification is characteristic of EGF-R [7].
The largest number of clinical studies in breast cancer relate to the HER

2/neu receptor [10,11]. This proto-oncogene product if overexpressed in
approximately 30% of breast cancers [10,11]; and in cases that are lymph
node positive, there is a negative correlation between gene amplification (or
protein overexpression) in the tumor and patient survival [10,11]. These
cases do not constitute the majority of breast tumors with elevated tyrosine
kinase activity, and some, but not all, of those tumors overexpressing
tyrosine kinase activity may also overexpress the EGF-R (found in 30-40%
of human breast tumors), which is also a predictor for poor patient survival
[10,11]. The role of other tyrosine kinase receptors in breast cancer needs to
be elucidated. Our studies have focused on the insulin receptor (a tyrosine
kinase receptor of subclass II), its characteristics, and its role in human
breast cancer.
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Figure 1. Competition-inhibition curves for the purified placenta insulin receptor standard (.)
and extracts of human MCF-7 breast cancer cells (0), breast cancer tissue (0), and normal
breast tissue (e) on the binding of labeled insulin. (From Papa et al. (23) with permission.)

Insulin receptor content in human breast cancer specimens

Insulin regulates the growth and metabolism of animal breast cancer cells
both in vivo and in vitro [12-14J and human breast cells in vitro [13,15-18J.
Moreover, several human breast cancer cell lines in permanent culture have
specific, high-affinity receptors for insulin [19,20], and the presence of
insulin receptors has been reported in frozen specimens of human breast
carcinomas [20,21J. For several reasons, however, the importance of these
observations was unclear. First, a quantitative comparative analysis between
the number of receptors in tumor cells vs. normal mammary gland tissue
had not been carried out. Second, in human cancers correlations between
insulin receptor content and established prognostic parameters of cancer
evolution, including estrogen and progesterone receptor content, and tumor
size and grading had not been made.
We have recently employed a new, sensitive, and specific radioimmuno

assay [22J for the direct measurement of insulin receptors [23J in surgical
specimens of breast cancers (Fig. 1). In 159 specimens the insulin receptor
content averaged 6.15 ± 3.69ng/0.1mg protein (Fig. 2). This value was
more than sixfold higher than the mean value found in both 27 normal
breast tissues obtained at total mastectomy (0.95 + 0.68, P < 0.001) and in

195



•
--.

24j
c
.4:j 16...
Q
I.
c. 14
~

E
~

12
~
~ 10c......
I.
Q 8...
c.
~y
~ 6I.

C

:; 4
<I) •c- 2 •

~'-.

0 ~
Normal
breast
tissue

I
:
1.
:I,
•...:

Breast
cancer
tissue

Breast
fibroadenoma
tissue

Figure 2. Insulin receptor content in normal breast tissue, breast cancer, and breast
fibroadenoma specimens. (From Papa et at. (23) with permission.)

six normal specimens obtained from reduction mammoplasty (0.84 ± 0.78,
P < 0.001). The insulin receptor content in breast cancer tissues was also
higher than in any normal tissue investigated, including liver. Immuno
staining of the specimens revealed that the insulin receptor content was high
in malignant epithelial cells (Fig. 3), but not in stromal and inflammatory
cells.
Statistical analysis revealed that the insulin receptor content of the tumors

correlated positively with tumor size (p = 0.014), histological grading (p =

0.030), and the estrogen receptor content (p = 0.035). There were no
significant correlations between insulin receptor content and the age, body
weight, menopausal status, and nodal involvement of the patients. These
studies indicate, therefore, that the insulin receptor content is high in human
breast cancers. The correlation between IR content and some clinical and
biological characteristics of breast cancers raise the possibility that the
insulin receptor may have a role in the biology of these tumors.
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Figure 3. Representative sections of a ductal breast cancer. Indirect immunoperoxidase staining
of the insulin receptor with insulin receptor monoclonal antibody. Specific staining, with various
intensity, is located only in the cytoplasm of malignant epithelial cells, while stromal and other
cells are not stained. Some heterogeneity in the intensity of malignant cell staining is evident at
higher magnifications. (From Papa et al. (23) with permission.)

Insulin receptor structure and function in human breast cancer specimens

We next characterized the structure and function of insulin receptors
isolated from 10 human breast cancer specimens. In both cancer and normal
breast tissues, insulin receptor mRNA consisted of two major species of
approximately 11.0 and 8.5 kb. The size of the insulin receptor alpha subunit
was determined by 125I-insulin crosslinking followed by immunoprecipitation
and polyacrylamide gel electrophoresis; a value of 135 kDa was observed for
receptors from both breast cancer and normal breast tissues (Fig. 4). The
functional binding ability of insulin receptors from breast cancer tissues was
slightly lower as compared to normal breast cancer tissues (% Brr per
nanogroun of insulin receptor = 2.22 ± 0.50 vs. 2.96 ± 0.49, mean ±
SEM). The concentration of insulin that caused half-maximal inhibition of
t25I-insulin binding was similar for both breast cancer tissue and normal
breast tissue.
The size of the insulin receptor beta subunit molecular weight as deter

mined by insulin receptor autophosphorylation was 95 kDa. Basal and
maximal insulin (100 nM) stimulated receptor receptor autophosphorylation
was similar in both breast cancer and normal breast tissues (Fig. 5). How-
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Figure 5. Insulin receptor autophosphorylation. WGA purified insulin receptors from normal
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minutes at 20°C. Next yp32_ATP (I J.lM) was added and the mixture was incubated for
additional 30 minutes at 20°C. Insulin receptors were then immunoprecipitated by protein
A-sepharose, boiled in the presence of lOOmMDTI, subjected to PAGE, and
autoradiographed.
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Table 1. Insulin receptor content in cultured
breast cell lines

Cells

MCF-7
ZR-7S-1
T-47D
1848S
184

Insulin receptor content
(ng/106 cells)

28.S ± 4.S
17.S±1.9
4.8 ± 0.84
S.3 ± 1.7
4.1 ± 0.22

ever, insulin receptors from breast cancer tissues had a slightly lower basal
tyrosine-kinase activity using the substrate poly(Glu-Tyr)4 :1. The maximal
insulin effect, expressed as the percent increase over basal value, was similar
in insulin receptors from breast cancer and normal breast tissues (150 ± 10
vs. 142 ± 11, respectively).
In conclusion, breast cancer tissues have structurally and functionally

normal insulin receptors. Since these receptors are overexpressed in breast
cancer tissues, it is possible that, in vivo, insulin, by stimulating their
tyrosine kinase activity, may play a role in the biology of certain breast
cancers.

Insulin receptors in human breast cancer cell lines

In other to further understand the role of the insulin receptor in breast
cancer, insulin receptor expression and function were characterized in three
human breast cancer cell lines - MCF-7, ZR-75-1, and T-47D - and were
compared to a nonmalignant human breast epithelial cell line, 184B5.
Insulin receptor content, measured by radioimmunoassay, was fivefold
and threefold elevated in MCF-7 and ZR-75-1 breast cancer cell lines,
respectively, when compared to the nonmalignant epithelial cell line, 184B5
and a primary culture of breast epithelial cells 184 (Table 1). In contrast, the
insulin receptor content of T-47D cells was not increased.
The increase in insulin receptor content in MCF-7 and ZR-751 cells was

not due to amplification of the insulin receptor gene. Also, total insulin
receptor mRNA content was not increased in breast cancer cells in com
parison to nonmalignantly transformed 184B5 breast epithelial cells (Fig. 6).
However, significant differences in the content of receptor mRNA species
were observed. These observations raise the possibility that the observed
increase in insulin receptor protein content in certain breast cancer cell lines
is due to changes in either mRNA quality, enhanced mRNA translation, or
enhanced protein stability.
The insulin receptors in the breast cancer cell lines were functional and

receptor function correlated with receptor content: (1) In all cell lines,
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Figure 6. Northern blot analysis of insulin receptor mRNA in breast cell lines. Poly (A)+ RNA
was prepared from each cell line (8 Itg) and was subjected to agarose gel electrophoresis,
followed by transfer to nitrocellulose filters and hybridization with labeled insulin receptor
cDNA.

high-affinity insulin binding was detected, and, in concert with the insulin
receptor radioimmunoassay data, binding capacity was highest in MCF-7
and then ZR-75-1 cells. (2) In all cell lines, insulin stimulated insulin receptor
tyrosine kinase activity. In concert with insulin receptor content and binding
data, the greatest effects were observed in MCF-7 cells. (3) In all cell lines,
insulin stimulated cell growth at concentrations of 1nM or less. The effect of
insulin was greater in MCF-7 cells, the cell line having the greatest insulin
receptor expression and insulin receptor tyrosine kinase activity (Fig. 7).
These studies thus demonstrated that certain human breast cancer cell lines,
like human breast cancers in vivo, have enhanced expression of functional
insulin receptors; moreover, like breast cancers in vivo, insulin receptor
expression and function in breast cancer cell lines is heterogeneous. The
study of human breast cancer cells in vitro, therefore, could provide im
portant insights into hormonal regulation of breast tumor growth in vivo.

Progestin regulation of insulin receptor in human breast cancer cell

The effects of progesterone on the growth of breast carcinoma cells is still
controversial. Thus we investigated the effect of progestins on insulin
receptor gene expression and insulin action in human breast cancer cells
[24]. Treatment of T47D cells with the synthetic progestin R5020 induced a
time- and dose-dependent increase in insulin receptor content as measured
by both ligand-binding studies and radioimmunoassay (Fig. 8). Binding was
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al. [24) with permission.)
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Figure 9. Effect of R5020 on insulin receptor mRNA. T47D cells were grown for 2 days
without R5020 and then incubated 4 days in the absence or presence of 100 nM R5020. A: Slot
blot of poly (At RNA from control and R5020-treated cells. Filters were probed with either
labeled insulin receptor eDNA or labeled A-lamin eDNA. B: Northern blot of insulin receptor
poly (A)+ RNA from control (-) and R5020-treated (+) cells. (From Papa et al. (24) with
permission.)

half-maximally increased at 300pM R5020, and a maximal increase was
reached after 4 days of treatment. Progesterone was 10-fold less potent than
R5020, while 17 p-estradiol and dihydrotestosterone had minimal effects.
Cortisol had no effect on insulin receptor levels. Progestin treatment both
increased insulin receptor mRNA levels (Fig. 9) and altered the relative
distribution of the multiple insulin receptor mRNA transcripts. In order to
study the functional significance of the increased insulin receptor levels, we
incubated T47D cells with progesterone and then treated them with insulin.
Insulin alone had a small effect on cell growth; however, the effect of insulin
was markedly potentiated by progesterone treatment. Similar effects of
progestins on insulin-stimulated cell growth were seen with the MCF-7
cell line (Fig. 10). These studies in T47D and MCF-7 cells demonstrate,
therefore, that insulin receptor expression in these breast cancer cells is
under the regulation of progestins and raise the possibility that progestin
insulin interactions may regulate breast cancer cell growth in vivo.

Role of the insulin receptor in malignant transformation

To investigate the role of the insulin receptor in cancer we studied whether
overexpression of the insulin receptor results in altered cell growth [25].
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Figure 10. Effect of progesterone treatment on insulin-stimulated cell growth in breast cancer
cells. Top: T47D cells Bottom: MCF-7 cells. (From Papa et al. [24] with permission.)

We used NIH 3T3 cells transfected with a bovine papilloma virus/insulin
receptor eDNA construct (3T2/HIR). These cells expressed high numbers of
insulin receptors (631.0 ± 16.7ng receptors/106 cells). Insulin significantly
stimulated the growth of 3T3/HIR cells maintained in serum-free medium
(Fig. 11). Moreover, in these cells insulin induced marked phenotypic
changes, including alterations in cell shape, loss of contact inhibition, and
focal growth (Fig. 12). In contrast to 3T3/HIR cells, insulin was without
effect in either wild-type 3T3 cells (3T3/wt), 3T3 cells transfected with
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Figure II. Proliferation of 3T3/wt and 3T3/HIR cells in response to insulin. Cells were cultured
in the absence or presence of increasing concentrations of insulin for 4 days in serum-free
medium containg 0.1% BSA. (From Giorgino et al. (25) with permission.)

the neomycin resistance gene (3T3/NEO), or the bovine papilloma virus
(3T3/BPV).
To assess the presence of anchorage-independent growth, cells were
seeded in soft agar and inspected for colony formation. 3T3/HIR cells
showed absent or minimal colony growth in the absence of insulin. How
ever, there was a dose-dependent, insulin-stimulated (Fig. 13) increase in
both colony size and number (Table 2). Insulin-stimulated colony formation
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Figure 12. Light microscopic pictures of 3T3/HIR cells grown in medium containing 0.1% BSA
in the absence (A) and presence (B) of 100 nM insulin. Cells were stained with Papanicolau
stain. Magnification x 100. (From Giorgino et al. [25] with permission.)

was specifically inhibited by an insulin antagonist, the anti-insulin receptor
monoclonal antibody MA-lO. In the presence oflOOnM insulin, about 3%
of cells formed large colonies. Insulin neither stimulated growth nor induced
colony formation in 3T3/wt cells or 3T3INEO cells. Insulin also stimulated
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Table 2. Comparision of 3T3/HIR cell colony formation in soft
agar in response to IGF-I and insulin

Colonies

Addition Number

None 85

IGF-1 (nM)
0.1 83
1.0 112
10.0 115

Insulin (nM)
10.0 480

Size

Small

Small/medium
Small/medium
Small/medium

Large

From Giorgino et at. [25] with permission.
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Figure 13. 3T3/HIR and 3T3/NEO cell soft agar colony formation in response to insulin. Cells
were seeded in 0.33% soft agar in the absence or presence of increasing concentrations of
insulin. (From Giorgino et at. [25) with permission.)

colony formation in CHO cells transfected with an insulin receptor cDNA
construct. However, when 105 to 106 3T3/HIR or 3T3INEO cells were
injected in nude mice, no specific tumor formation was observed after 8
weeks. In conclusion, overexpression of normal insulin receptors induces
a ligand-dependent transformed phenotype. This phenomenon may have
clinical relevance by conferring a selective growth advantage to tumor cells
with high numbers of insulin receptors and playing a role, therefore, in the
initiation or progression of certain breast tumors.
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Conclusions

The mechanism(s) whereby insulin receptors are increased in human breast
cancer remain speculative. There are several possibilities. Since the genes
for some oncogenes, including c-myc, int-2, and c-erbB-2 (HER-2/neu), may
be amplified in human breast carcinomas [26], it is possible that the insulin
receptor gene is also amplified in some breast cancers. Alternatively, since
structural gene rearrangement occurs in human breast carcinomas [27], it is
possible that the insulin receptor gene is altered in this tumor and con
sequently insulin receptor mRNA is overexpressed.
Our studies in three cultured breast cancer cell lines (two of which had

increased insulin receptor content) indicated that neither the insulin receptor
gene copy number nor the insulin receptor mRNA content were increased.
Therefore it is possible that the processes of either enhanced protein syn
thesis or decreased protein degradation are involved in the mechanism
of increased insulin-receptor content. It is also possible that either the insulin
receptor signal transduction pathway or additional cell processes are altered
in breast cancer cells, and that other hormones (such as progestins) playa
role in regulating the insulin receptor content of breast cancers.
Insulin receptors in breast cancers were functional. They bind insulin and

induce ligand-activated tyrosine kinase activity. Since insulin is a mitogen
for a variety of cells, it is possible that insulin via the insulin receptor plays a
role in breast cancer growth. Our studies with 3T3 and CHO cells indicate
that when these cells express an increased number of insulin receptors they
acquire a transformed phenotype, which is insulin dependent and is mediated
via the insulin receptor. However, in these cells the expression of the insulin
receptor does not induce tumor formation in nude mice. This observation
suggests that, in addition to the insulin receptor, other factors may be
necessary for full neoplastic transformation.
The appearance of an insulin-dependent transformed phenotype in

3T3 cells transfected with the insulin receptor gene resembles a similiar
phenomenon described in NIH-3T3 cells transfected with the human epi
dermal growth factor (EGF) receptor gene [28-30]. 3T3 cells overexpressing
EGF receptors demonstrated anchorage-independent growth when stimu
lated with either EGF or TGF-u. These observations suggest, therefore,
that overexpression of insulin receptors and related receptors in the tyrosine
kinase family may lead to the initiation and/or progression of certain
tumors.
The clinical significance of the observation that increased insulin receptors

are present in most breast cancers is unknown. Insulin receptor content
correlates with other clinical parameters, including tumor size and grade,
properties that reflect increased tumor aggressiveness. Tumor size reflects
both tumor growth rate and the duration of tumor growth. These obser
vations suggest, therefore, that less differentiated and more aggressive
breast tumors contain more insulin receptors. It is also possible that the
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duration of tumor growth leads to the selection of cancer cells with a higher
insulin receptor content. On the other hand, there is no apparent correlation
between insulin receptor content and lymph node involvement, an im
portant reflection of breast tumor aggressiveness. Also, insulin receptor
content appears to correlate with estrogen receptor content, a more favor
able prognostic indicator. Thus, whether breast tumor insulin receptor
content predicts for a negative or positive patient outcome remains to be
determined, and these studies are now in progress.
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10. The role of fibroblast growth factors and related
oncogenes in tumor growth

Harold Brem and Michael Klagsbrun

The FGF family

Introduction

The fibroblast growth factors (FGF) constitute a family of seven mitogenic
and structurally homologous polypeptides found in a variety of cells and
tissues [for reviews see 1-9]. The FGF family includes acidic FGF (aFGF),
basic FGF (bFGF), int-2, hstIK-fgf, FGF-5, FGF-6, and keratinocyte growth
factor (KFGF) (Table 1). A simplified nomenclature has been proposed
in which the FGF family members are named FGF-1, FGF-2, FGF-3,
FGF-4, FGF-5, FGF-6, and FGF-7, respectively. Structurally, the homo
logies between the seven FGF family members is 35-45%, with the homo
logies being greatest in the internal regions of these proteins. Their molecular
weights range from 18 to 30 kDa. They all share with aFGF and bFGF the 3
exon-2 intron structure and the conservation of two cysteine residues. An
important structural difference between the FGF family members is that,
unlike the others, aFGF and bFGF lack signal peptide sequences and are
not secreted proteins. Members of the FGF family, in particular bFGF [10],
are also characterized by their strong affinity for heparin. The affinity of
bFGF for heparin is manifested in its ability to bind to cell surface heparan
sulfate proteoglycan (HSPG), an activity that is required for binding to high
affinity FGF receptors [9]. A schematic representation of the FGF family
members portraying domains of sequence homology and signal peptides is
shown in Fig. 1.
The biological significance of cell-associated aFGF and bFGF is still a

matter of conjecture, while the other five FGFs are thought to be involved
in typical paracrine and autocrine growth mechanisms. An important bio
logical distinction is that aFGF, bFGF, and KGF do not transform the cells
that produce them, while int-2, hstIK-fgf, FGF-5, and FGF-6 are oncogenes.
Unlike aFGF and bFGF, which are found ubiquitously in adult tissue, these
oncogenes are expressed primarily during embryogenesis, neonatal devel
opment, and in many tumors. KGF is associated mostly with the epithelium.
In this chapter, we will review the structural and biological properties of

Christopher C. Benz and Edison T. Liu (eds.), ONCOGENES AND TUMOR SUPPRESSOR GENES IN
HUMAN MALIGNANCIES. Copyright© 1993.
Kluwer Academic Publishers. Boston. All rights reserved. ISBN 0-7923-1960-5



Table I. Members of the FGF family

Common name MW Originally found in

FGF-l acidic FGF (HBGF-l) 18,000 Adult tissue (neural)
FGF-2 basic FGF (HBGF-2) 18,000 Most adult tissue
FGF-3 int-2 27,000 Site of MMTV integration,

breast carcinoma
FGF-4 hstlK-fgf 23,000 Human stomach tumor (hst),

FGF-5
Kaposi's sarcoma (KFGF)

FGF5 29,000 Bladder carcinoma, hepatoma
FGF-6 FGF6 ? Homologous to hst
FGF-7 Keratinocyte 28,000 Epithelial tissue stromal cells

Growth factor (KGF)

FGFFAMILY
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aFGF (155) AeoN
; .
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Figure 1. Schematic representation depicting FGF family structural features. The numbers in
parentheses represent the numbers of amino acids in the open reading frames. Also depicted
are the presence or absence of signal peptide sequences, the N-terminal amino acids blocked by
acetylation, the regions of structural homology, and the presence throughout the family of two
homologous cys residues.

the individual FGF family members, with an emphasis on their perceived
role in tumorigenesis.

aFGF and bFGF (FGF-I and FGF-2)

Acidic FGF and basic FGF will be discussed together, since only subtle
physiological differences have been found between these two well-charac-
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terized proteins. Acidic FGF and bFGF have a 53% protein sequence
homology [11]. Both are single-chain polypeptides of 154 amino acids with
molecular weights of about 18 kDa, as predicted from their cDNA nucleotide
sequence. The gene for aFGF is located on chromosome 5 [12], while that of
bFGF is located on chromosome 4 [13]. They also have other important
structural differences [6,13-15]' Acidic FGF is an anionic protein with a pI
of 5.6 [15], while bFGF is very cationic with a pI of about 10 [16]. In
addition, there are forms of bFGF containing more than 154 amino acids
that have molecular weights of 22-25 kDa [17-19]. These higher molecular
weight forms of bFGF are generated by an unusual mechanism in which
synthesis is initiated on the CUG start codons, rather than the typical AUG
codon that initiates the 18 kDa form [18,19].
An important property of aFGF and bFGF is their interaction with

heparin [20,21]. Both bind tightly to columns of immobilized heparin, a
property that has facilitated their purification [1,10,15,20]. In addition,
heparin stabilizes aFGF and bFGF, and protects them from heat, acid [21],
and proteolytic degradation [22]. Acidic FGF and bFGF also bind to
heparin-like molecules that are associated with cells. These include heparan
sulfate proteoglycans (HSPG) in extracellular matrix and on cell surfaces. It
has been suggested that aFGF and bFGF are sequestered or "stored" in the
extracellular matrix [23-25] as part of a highly stable FGF-HSPG complex
and are released during injury by a combination of proteases and heparinases
[23]. The binding of bFGF to cell surface HSPG is a prerequisite for FGF's
ability to bind to the FGF high-affinity receptor [9,26] as well as for bFGF
mitogenic activity. Thus, heparin binding is an important property that
modulates FGF structure, stability, and function. Interestingly, bFGF also
maintains a high affinity for betacyclodextrin-tetradecasulfate, which struc
turally resembles heparin [27].
The biological activities of aFGF and bFGF are very similar. Both are

important components of endothelial cell growth and differentiation, and
stimulate new blood vessel growth, i. e., they are angiogenic in vivo [1].
Their angiogenic activity stems from the ability to stimulate many com
ponents in the formation of new blood vessels, such as (1) endothelial cell
migration [28], (2) endothelial cell proliferation [29], (3) protease produc
tion [30], (4) matrix degradation [31], (5) plasminogen activator activity
[32], and (6) capillary tube formation [33].
Acidic FGF and bFGF also stimulate the proliferation of a variety of

other cell types in vitro, including fibroblasts [34], vascular smooth muscle
cells [35], granulosa cells [36], osteoblasts [37], ovarian epithelial cells [38],
oligodendrocytes [39], and keratinocytes [40].
There has been considerable effort to analyze the activities of aFGF and

bFGF in vivo. One fruitful area has been the role of these growth factors in
modulating wound healing. Since endothelial cells and fibroblasts are critical
components of wound healing, mitogens of these cell types, such as aFGF
and bFGF, might be expected to accelerate wound repair. In one of the first
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studies to elucidate the role of fibroblast growth factor in wound healing,
it was demonstrated that bFGF administered to a wound stimulates the
formation of a highly vascular granulation tissue [41]. Subsequently, it was
found that topical application of bFGF increased tensile strength in sutured
linear incisions in rats [42] and accelerated the rate of closure of partial
thickness wounds in pigs [43]. If bFGF is blocked in vivo by local application
of antibodies, the wound will not heal, suggesting that bFGF has a natural
critical role in wound healing [44].
Folkman and colleagues hypothesized that duodenal ulcers are similar to

surgical wounds that require bFGF to heal. Therefore they administered an
acid-resistant oral form of bFGF to rats and found that angiogenesis was
stimulated in the ulcer bed and the ulcers healed significantly more rapidly
[45].
Acidic FGF is also active in vivo. When applied in Gelfoam implants in

the peritoneal cavities of rats [46], aFGF stimulates angiogenesis.
One potential important therapeutic use for aFGF, bFGF, and KFGF

in patients may be to reverse impaired wound healing. In rodents, the
application of topical bFGF has been demonstrated to reverse wound
healing impairments produced by systemic steroids and genetic obesity [47],
genetically induced diabetes [48], and local bacterial contamination [49].
These results may be applicable to humans as well.
Fibroblast growth factor may also be useful in stimulating a variety of

regenerative processes in the central nervous system. For example, bFGF
increases neuronal preservation [50] and nerve regeneration [51].

int-2 (FGF-3)

int-2 was the first FGF-like oncogene to be described [52-55]. It was so
named because of the initial discovery that it was induced to become trans
criptionally active after integration (int) of the mouse mammary tumor virus
into the mouse genome [53]. The int-2 gene is expressed in very specific time
periods and locations from midgestation until birth in amphibia [56-58]'
The int-2 gene induces mesoderm in Xenopus laevis animal pole cells and
stimulates DNA synthesis in mammalian fibroblasts [59]. Based on these
studies and others, it has been designated a developmental control gene
[56].
Once the structure of int-2 was determined its homology to bFGF became

apparent. The int-2 gene encodes for a protein of 231 amino acids that has a
46% homology to bFGF [60]. As expected for a secreted protein with
a signal peptide, the int-2 protein can be detected in the endoplasmic
reticulum of transfected cells [61]. However, the int-2 protein has not, to
date, been shown to be an active mitogen and its mechanism in transforming
cells is unclear.
As an oncogene induced by mammary tumor virus, int-2 would be

expected to be expressed by breast tumors. Expression of int-2 in transgenic
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mice results in epithelial cell hyperplasia in mammary and salivary glands,
as well as prostatic epidermal hypertrophy, which results in male sterility
[62]. Amplification of the int-2 gene has been found in a variety of human
tumors, particularly in breast carcinomas [63-66] and squamous cell carci
nomas of the head and neck region [66-69]. The clinical implications of
these findings appear to be relatively insignificant, since they occur in less
than a majority of patients with these tumors and have not been shown to
have a significant correlation with outcome in patients in whom int-2 is
expressed. In breast carcinoma, for example, the percentage of patients who
show int-2 amplification is usually less than 30% [63-66].

Int-2 is expressed during embryogenesis and tumorigenesis; however,
further work is needed to understand its function in oncogenically trans
forming cells. Since it is rarely found in adult preneoplastic cells, one
possible function for int-2 is as a clinical prognosticator. Furthermore, its
diagnostic significance may be amplified when it is found in the presence
of other oncogenes [70-72]. The coamplification of oncogenes may be
important for many oncogenes that have not yet had significant clinical
impact when expressed in and of themselves. One exception is the expression
of N-myc in neuroblastomas, which has clinical significance when it is
singularly expressed [73].

hstlK-fgf (FGF-4)

The hstlK-fgf oncogene was isolated from two sources simultaneously. One
source was NIH-3T3 cells transfected with the Kaposi sarcoma DNA, hence
the name Kaposi FGF (K-fgf) [74,75]. The other source was NIH-3T3 cells
transfected with DNA from a human stomach tumor, hence the name hst
[76-78]. hstlK-fgf is located on chromosome 11 band q13 [77], approxi
mately 40-50 kb from the int-2 gene. The hstlk-fgf has 43%, 38%, and 40%
sequence homologies to aFGF, bFGF, and int-2, respectively.

hstlK-fgf has similar biological activities to aFGF and bFGF, but it has
different structural features. In particular, the hstlK-fgf gene encodes for a
206 amino acid primary translation product that contains a hydrophobic
signal peptide sequence. In distinction to aFGF and bFGF, the mature 23
kDa 176 amino acid protein of hstlk-fgf is glycosylated and secreted [75].
The gene for hstlK-fgf is rarely expressed in adult cells or in adult tissues
[79]. It is expressed, however, in embryogenesis, specifically during mid
stage mouse embryogenesis. hstlk-fgf also stimulates DNA synthesis in
mammalian fibroblasts [59]. As expected for an oncogene, hstlK-fgf syn
thesis has been demonstrated in a variety of solid tumors, including germ
cell [80], esophageal [81], gastric [82], and breast tumors [83]. On the other
hand, it is not expressed in hematopoietic tumors, such as leukemias [83].
Interestingly, although hstlK-fgfwas first isolated from cells transfected with
Kaposi sarcoma DNA, it has not been detected in the secreted material
from cultured Kaposi sarcoma cells [84,85].
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It has been suggested that hstlK-fgf induces the transformed phenotype
by binding to cell surface receptors, thereby creating an autocrine closed
loop [75]. No specific receptor has been identified for the hstlK-fgf protein,
but it is thought to bind to the same receptor as aFGF and bFGF [85].

FGF-5

FGF-5 was originally isolated by transfection of a human bladder tumor
DNA into NIH-3T3 cells [86]. Its gene sequence has 40-50% homology to
aFGF and bFGF [87]. The FGF-5 gene is found on human chromosome
number 4 [88] and encodes for a 267 amino acid protein with a signal
sequence. There is some evidence that FGF-5 synthesis is dramatically
increased if there is a deletion or a point mutation in an upstream open
reading frame [89].
The FGF-5 protein is secreted as glycoprotein molecules of hetero

geneous sizes [89]. It is a potent mitogen for endothelial cells and fibroblasts
[87]. Messenger RNA transcripts for FGF-5 are found in nearly all phases of
embryogenesis [90] and in the neurons of adult brains [91]. The protein for
FGF-5 is also secreted from bladder carcinoma, endometrial carcinoma, and
human hepatoma cell lines [87].

FGF-6

FGF-6 is an oncogene originally isolated from a mouse plasmid library by
screening with the hst/K-fgf gene [92]. The FGF-6 gene is found on chromo
some 12 band pl3, unlike int-2 and hstIK-fgf, which are localized on
chromosome 11 band ql3 [93]. Transfection of NIH-3T3 cells with the
FGF-6 gene transforms them. The amino acid sequence for FGF-6 is 70%
identical to the aFGF product at the C terminus. FGF-6 is the least char
acterized of the FGF family members and there are very little data to date
on expression of the FGF-6 protein.

KGF

The keratinocyte growth factor (KGF) has a 39% homology to bFGF [94].
The KGF gene encodes for a primary translation product of 194 amino
acids, and the mature protein does have a signal peptide and is secreted.
KGF is present in stromal cells (i.e., fibroblasts) derived from epithelial
tissues and is present in embryonic and adult tissue [94]. It has not to date
been identified in tumor cells. Unlike other FGF family members, it is
neither an endothelial cell growth/angiogenesis factor nor is it an oncogene.
Instead, it is a highly specific mitogen for epithelial cells, in general, and for
keratinocytes in particular [94]. Thus it differs from aFGF and bFGF, which
do not show such target cell specificity.
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Table 2. Presence of fibroblast growth factors in human tumors

Tumor aFGF bFGF int-2 hstlK-fgf FGF-5 References

Adrenal carcinoma + 175
Basal cell carcinoma + 177
Bladder carcinoma + + 86,147
Brain tumors
Gioblastoma + + 170-173
Meningioma + 171
Acoustic neuroma + 150
Pituitary tumors + 151
Astrocytoma + 174

Breast carcinoma + + + 63-66,83,
152-155
169

Cervical carcinoma + 160
Chollangiocellularcarcinoma + 156
Colon carcinoma + 78,179
Embryonal carcinoma + + 157,163
Endometrial carcinoma + 87
Esophageal squamous cell + + 67-69,81
carcinoma 72,158,159
Gastric adenocarcinoma + 72,77 ,78,82
Hepatoma + 87,160-162
Kaposi sarcoma + 164,181
Laryngeal squamous cell
carcinoma + 67
Melanoma + + + 70,160,177
Neuroblastoma + + 165,177
Oral cavity & tongue + 67
Osteosarcoma + 177
Ovarian carcinoma + 166
Pancreatic adenocarcinoma + 167
Renal cell carcinoma + 147,149,168
Rhabdomyosarcoma + + 178,180
Teratocarcinoma + + + 80,176
Tonsil squamous cell carcinoma + 67

The FGF family and tumor growth

Members of the FGF family are expressed in animal and human tumors (for
human tumors see, Table 2). The four FGF oncogenes, int-2, hstIK-fgf,
FGF-5, and FGF-6 are involved in autocrine transformation of cells. The
role of aFGF and bFGF is less clear, since they are found in both normal
and tumor cells. Furthermore, tumorigenicity has not been directly cor
related with aFGF or bFGF expression. Normal endothelial cells synthesize
more bFGF than is expressed in many tumor cell lines [24,95]. The normal
phenotype of these endothelial cel1s is maintained, even though these cel1s
have FGF receptors and could in theory participate in autocrine trans
formation. Secondly, aFGF and bFGF are not secreted. Thus, even if
expressed by tumor cells they may not be able to iduce autocrine trans-
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formation, which typically requires interaction of a secreted growth factor
with its receptor on the same cell type. Lack of active secretion also limits
possible paracrine activity, unless aFGF or bFGF are released by alternative
mechanisms, such as cell death.
There are conditions, however, in which aFGF or bFGF might induce

autocrine cell transformation; for example, acquisition by FGF of a signal
peptide. Cells transfected with native bFGF cDNA and overexpressing bFGF
acquire an enhanced proliferation rate and a higher saturation density,
evidence of a transformed phenotype. However, they remain density arrested
and are nontumorigenic in syngeneic mice [96], suggesting that transfor
mation in vitro is not necessarily correlated with tumorigenicity in vivo.
Cells transfected with native aFGF cDNA are similarly nontumorigenic [97].
One possible explanation is that cells overexpressing the FGFs might release
small but sufficient amounts of growth factor for stimulating autocrine
growth in vitro but that in vivo this material diffuses away. Alternatively,
aFGF and/or bFGF transform cells in culture by some type of internal
autocrine mechanism in which FGFs are not released but interact with
intracellular FGF receptors. This might occur in vitro to stimulate trans
formation but for some unknown reason may be insufficient to induce
tumorigenicity in vivo.
Cells transfected with a construct in which bFGF cDNA is altered by

addition of a signal sequence undergo autocrine transformation and exhibit
morphological and biochemical alterations characteristic of highly trans
formed cells [96,98]. The signal peptide bFGF (spbFGF)-transformed cells
have an accelerated proliferation rate, are not density arrested, and are
capable of anchorage-independent growth. spbFGF cells possess few func
tional FGF receptors at the cell surface, supporting the idea that these cells
are transformed by constitutive interaction with and downregulation of the
FGF receptor. Most importantly, the spbFGF-transformed cells are highly
tumorigenic and metastatic. It has been suggested that spbFGF transforms
cells via an internal autocrine loop, since these cells do not secrete bio
logically active bFGF, despite the presence of a signal peptide, and their
proliferation rate is not affected by neutralizing antibodies to bFGF.
The molecular mechanism by which a signal peptide-bearing bFGF leads

to transformation is yet to be determined. It is possible that a structural,
posttranslational modification of FGF, being processed through the endo
plasmic reticulum and golgi apparatus, may lead to an atypical interaction
with the FGF receptor. The localization of bFGF-receptor interaction might
play an important role in autocrine transformation. While native bFGF can
interact with the FGF receptor only at the cell surface, spbFGF might be
able to bind the receptor inside the cell anywhere along the secretory
pathway. Such an intracellular interaction may activate different modes
of signal transduction by exposing novel substrates to the tyrosine kinase
activity of the FGF receptor.

In summary, the four FGF oncogenes and their respective proteins are
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the most likely to stimulate tumor growth. The reason for their oncogenic
potential could be that, unlike aFGF and bFGF, these four oncogenes have
naturally occurring signal sequences and encode for secreted proteins that
appear to be involved in the autocrine transformation of cells possessing
FGF receptors. In this regard, the distribution of int-2, hst/K-jgf, and FGF-5
is quite different than that of aFGF or bFGF. The oncogenes are rarely
found in normal adult tissue. Rather, they appear to be mostly expressed
during embryogenesis and in tumors. It is possible that FGF-related onco
genes are the forms of FGF preferentially expressed during periods of
intense proliferation.

The FGF family and tumor vascularization

Proliferation of blood vessels is necessary for the normal growth and devel
opment of tissue. In the adult, angiogenesis occurs infrequently. Exceptions
are found in the female reproductive system, where angiogenesis occurs in
the follicle during its development, in the corpus luteum during ovulation,
and in the placenta during pregnancy. These periods of angiogenesis are
relatively brief and tightly regulated. Normal angiogenesis also occurs as
part of the body's repair processes; for example, in the healing of wounds
and fractures. By contrast, uncontrolled angiogenesis is usually pathological.
For example, the ability of tumors to stimulate angiogenesis or new capillary
blood vessel growth allows them to grow in an exponential manner [1,5,99
109]. The corollary of this principle is that without the ability of tumors to
stimulate new blood vessels, the tumors will remain in a small, avascular
state. Vascularization of a tumor also enhances metastatic potential. It has
been recently demonstrated that in breast cancer patients their is a strong
correlation between the number and density of microvessels in the primary
tumor and the incidence of breast cancer metastases [110].
A number of growth factors have been shown to be angiogenic, including

aFGF, bFGF, angiogenein, platelet-derived endothelial cell growth factor,
vascular endothelial growth factor, tumor necrosis factor, and transformig
growth factors-a and -p [1,4,7,111-114]. Acidic FGF and bFGF are the best
characterized of all the angiogenesis factors. These FGFs stimulate angio
genesis in the classical bioassays, such as the normally avascular cornea and
the chick chorioallantoic membrane [115, 116]. Acidic FGF and bFGF
modulate endothelial cell activity in vitro in a manner consistent with being
stimulators of angiogenesis in vivo. For example, in culture FGF stimulates
endothelial cell chemotaxis [28] and proliferation [29] for endothelial cells.
Endothelial cells themselves secrete substantial amounts of bFGF [29,95],
most of which is associated with the subendothelial cell extracellular matrix
[23-25,117-120]. FGF found in the endothelial cell extracellular matrix
is an essential component required for blood vessel growth. It has been
suggested that capillary growth is regulated locally by bFGF stored in
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capillary basement membrane that is released to stimulate capillary endo
thelial cells in an autocrine manner [25,117]. Basic FGF has been shown to
support tumor growth by stimulating blood vessel growth [121-123]. For
example, colon carcinoma can be stimulated by the application of bFGF in
vivo [121]. Since FGF receptors do not appear on the colon cancer cells
themselves but are found on the endothelial cells in the tumor, it appears
that colon carcinoma growth is mediated by bFGF-induced neovascular
ization. Neutralizing FGF antibodies significantly reduce the tumor volume,
further suggesting an endothelial cell-stimulating paracrine role for FGF in
the growth of some tumors [121,122]. Furthermore, when fibroblasts were
transfected with a gene posessing a signal sequence fused to bFGF, large
tumors grew in nude mice [123]. Antibodies to bFGF administered systemi
cally resulted in approximately a 75% decrease in the size of these tumors
[123].
An important question remains: How can bFGF, which is not normally

secreted, become a paracrine vascularization factor? Several possible mech
anisms of FGF release by tumors have been postulated, including tumor
necrosis, tumor cell leakiness, acquisition of signal peptide, and induction of
multidrug resistant genes that encode for proteins that are involved in FGF
export. A possible mechanism involving differential bFGF export by normal
and tumor cells has been reported [124]. In these studies, transgenic
mice carrying the bovine papilloma virus genome (BPV-1) at first produced
benign avascular dermal fibromatoses. Eventually, there was a transition
from the avascular tumors to the formation of highly vascular malignant
fibrosarcomas. The switch from avascular to vascular tumors was ac
companied by a change in bFGF release profiles. Basic FGF was expressed
in both normal dermal fibroblasts and in benign fibromatoses but was cell
associated, a typical property of bFGF that has no signal peptide for
secretion. In contrast, the fibrosarcoma cells had very little cell-associated
bFGF and a substantial amount of exported bFGF-like activity, which was
neutralized by anti-bFGF antibodies. Since bFGF is angiogenic, it may be
that its export by fibrosarcoma cells results in a paracrine stimulation of
blood vessel growth in the tumors. Tumor angiogenesis might not occur in
the avascular fibromatoses because bFGF is not released by these tumor
cells. The mechanism by which the fibrosarcoma cells export bFGF is not
understood. The cells might have special pathways for exporting proteins, or
alternatively, the bFGF in these cells might be altered structurally and
exported. The precise nature of this mechanism is not understood to date.

Conclusions and future directions

Members of the FGF family are important modulators of tumor growth. The
four FGF oncogenes - int-2, hstIK-fgf, FGF-5, and FGF-6 - are the most
likely candidates to be involved in stimulating autocrine tumor growth and
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tumor neovascularization because they are secreted. The role of aFGF and
bFGF in tumor growth is less clear. Since they are not secreted proteins, it is
not clearly understood how they could be involved in cell transformation.
Recent studies have suggested some possible mechanisms that allow aFGF
and bFGF to be involved in tumor growth. For example, internal autocrine
loops may occur in which aFGF and bFGF interact with their receptors
within cells. Another possible mechanism is the alteration of FGF structure
or of the tumor cell that allows specific FGF export, resulting in the stimula
tion of tumor angiogenesis.
Given the possibility that FGF is involved in tumor growth, anti-bFGF

therapy might have therapeutic value. Several strategies have been attempted.
These include the following: (1) the use of neutralizing antibodies that
would inhibit exported members of the FGF family [123), (2) the use of
antisense oligonucleotides that inhibit FGF synthesis. Basic FGF antisense
has been used to inhibit melanoma growth [125]. (3) The use of drugs that
inhibit the interaction of FGF with its receptor. Suramin has been shown
to inhibit FGF-FGF receptor interactions and to revert the phenotype of
tumors dependent on FGF production [126,127]. (4) The use of reagents
that degrade cell surface heparan sulfate proteoglycans (HSPG). It has been
shown that bFGF needs to bind to cell surface HSPG in order to be
mitogenic [9,26,128]. Inactivating cell surface HSPG with heparinase or with
specific peptides that bind to HSPG might be a way to block the mitogenic
activity of FGF family members in a tumor. (5) The use of angiogenesis
inhibitors. These compounds include a synthetic laminin peptide [129], AGM
1470 [130-133]), minocycline [134), thrombospondin [135,136), cartilage
derived inhibitor [137], penicillamine [138,139], platelet-factor 4 [140], and
modulators of collagen metabolism [141]. Angiostatic steroids with or
without heparin [142,143] or with betacyclodextrin-tetradecasulfate [144]
have also been found to be potent angiogenesis inhibitors. The extent to
which these angiogenesis inhibitors interfere with FGF expression remains
to be elucidated.
The presence of FGF family members in tissues and biological fluids

[145-147] may have diagnostic value. Methods that could be used to detect
these growth factors include immunocytochemistry of tumor tissue, in
situ hybridization to detect FGF family transcripts, and ELIZA analysis
[148,149].
There is a great deal still to be learned about the FGF family, including

questions of structure, localization, biosynthesis, regulatory mechanisms,
and involvement in angiogenesis. More detailed information regarding these
FGF properties might continue to provide information that can be translated
into further advances in the diagnosis and therapy of benign and malignant
diseases.
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11. Transforming growth factor-alpha and its role in
neoplastic progression

David C. Lee, Noreen C. Luetteke, and Leslie A. Petch

Introduction

The discovery of transforming growth factor alpha (TGF-a) stemmed from a
finding by Todaro et al. [1] in the mid-1970s that several retrovirally trans
formed cell lines showed reduced surface binding of radiolabeled EGF. This
led to an examination of media conditioned by these cells for factors
that would bind the EGF receptor, thereby making it unavailable to the
exogenously added ligand. Such a factor was identified in media conditioned
by feline sarcoma virus-transformed fibroblasts and was therefore named
sarcoma growth factor (SGF) [2]. Subsequent studies showed that SGF-like
activity could be identified in media conditioned by a variety of chemically
and retrovirally transformed cells, but not by their normal cell counterparts
[3-5]. This, in turn, stimulated the belief that the production of SGF
contributed to the development and/or maintenance of the transformed
phenotype.
Support for the aforementioned hypothesis came from the demonstration

that preparations of SGF were able to promote a reversible, phenotypic
transformation of normal rat kidney (NRK) fibroblasts, as evidenced by the
growth of treated cells in semisolid media (soft agar) and a loss of their
normal contact inhibition [2,6]. This prompted a change in nomenclature
from SGF to transforming growth factor (TGF). The purification and further
characterization of TGF revealed that its activity (as measured by the trans
formation of NRK cells), in fact, reflected the synergistic actions of two
distinct and unrelated proteins that were subsequently named TGF-a and
TGF-~ [7,8]. Although TGF-~ would not by itself induce NRK colony
formation in soft agar, it would significantly enhance colony formation
induced by TGF-a, the EGF receptor-binding component. We now ap
preciate that the requirement for both proteins reflects the use of this
particular cell transformation model. In other assays, or with certain other
cell lines, either polypeptide alone can function as an agonist [9]. It should
also be stressed that, as is so often the case, the choice of names for these
molecules reflects the accidental choice of the assay system used in their
initial discovery and characterization. Other growth factors, acting either
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alone or in combination, will induce phenotypic transformation of cultured
cells. Hence, this assay is by no means specific for either TGF-a or TGF-~.
Nevertheless, a variety of evidence summarized for TGF-a below further
implicates this molecule in neoplastic progression.

Synthesis and processing ofTGF-a

Structure of the mature, fully processed ligand

Early gel-filtration analyses of TGF-a-like activities produced by a variety of
rodent or human cell types revealed significant size heterogeneity, with
active species ranging from a 6-kDa form predominant in media conditioned
by tumor cell lines [10] to a 30- to 40-kDa species present in the urine of
patients with disseminated cancer [11]. With most sources, both small and
large forms were coproduced in varying proportions. Upon purification and
protein sequence analysis, the 6-kDa form was found to be a 50 amino acid
polypeptide with approximately 30% sequence homology with mouse and
human EGFs [12,13]. Of the conserved residues, six are cysteines whose
spacing is also preserved when compared with EGFs. It was therefore
predicted - and subsequently confirmed [14,15] - that TGF-a forms a
compact, three-loop structure similar to that of EGF. It is apparently the
preservation of this overall structure that allows TGF-a to bind to the EGF
receptor, and it is through this receptor that its biological actions [for a
recent review see ref. 16] are mediated. TGF-a binds to the EGF receptor
with an affinity comparable to that of EGF [17], but in many assays TGF-a
is the more potent ligand [18-21]. A recent report suggests that this may
be explained by the fact that internalized TGF-a/receptor complexes are
preferentially recycled to the cell surface, whereas EGF/receptor complexes
are degraded [22].
EGF and TGF-a are members of a family of EGF receptor ligands that

are recognized by the preserved spacing of six cysteine residues, with a
consensus pattern -CX7CX4_SCXIO_13CXCXSC-, Other members of the
family include the heparin-binding ligands, amphiregulin [23] and HB-EGF
[24], as well as polypeptides encoded by the genomes of certain pox family
viruses. An example of the latter is vaccinia growth factor (VGF) encoded
by vaccinia virus [25- 27]. Additionally, as described below, a growing list of
secreted or integral membrane proteins with diverse function have been
found to contain EGF-like repeats. This extended family includes secreted
proteases (e.g., components of the blood-clotting cascade [28]), the products
of homeotic genes critical for development (e.g., Notch of Drosophila
melanogaster [29] and glp-l [30] and lin-12 [31] of Caenorhabditis elegans)
and other cell-surface proteins (e.g., the low-density lipoprotein (LDL)
receptor [32]). What the function of the EGF-like elements in these latter
proteins is remains unknown, although at present there is no evidence to
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suggest that they are released as bioactive peptides. A very recent report
suggests that some of the EGF-like elements in the Notch protein are
essential for interactions with Delta (another transmembrane protein) that
are critical for proper development of neural and epidermal lineages in
Drosophila [33].

The integral membrane glycoprotein, proTGF-a

The cloning of human [34] and rat [35] cDNAs revealed that the 50 amino
acid form of TGF-a is synthesized as a portion of a larger polypeptide
(proTGF-a). Microheterogeneity of transcript splicing creates two species of
mRNA that encode two forms of proTGF-a, of 159 and 160 amino acids,
respectively [36]. The presence within this precursor molecule of a second
hydrophobic domain, in addition to the signal peptide at the NH4-terminus,
suggested that it might be an integral membrane protein with the mature, 50
amino acid sequence located in the extracellular portion. Other features of
the precursor include the presence of a potential glycosylation site imme
diately following the signal peptide, and a short, cysteine-rich cytoplasmic
domain of about 40 amino acids. A schematic of this molecule is shown in
Fig. 1. Release of the mature, 50 amino acid sequence from proTGF-a
would occur through the cleavage of alanine-valine bonds that are contained
within the sequence Val-Ala-Ala-Ala-Val-Val at the NHz-terminus, and
within the similar sequence Ala-Val-Val-Ala-Ala at the COOH-terminus.
This cleavage specificity, which is reminiscient of that of elastase enzymes
[37], is unusual and is not typical of the processing of other growth factor/
hormone precursors that frequently occurs at sites of dibasic residues [38-41].
The involvement of an unusual specificity may indicate that proteolytic
processing of proTGF-a is a regulated activity (see below). Interestingly, the
ecto-domain of the membrane proteoglycan betaglycan, a component of the
TGF-~ receptor system, can be released as a soluble protein, and a similar
Ala-Val-Val sequence is found on the external side of the transmembrane
[42]. Whether this corresponds to the actual cleavage site is currently
unknown.
The essential features of this model have been confirmed experimentally.
For example, biochemical analyses [43-45] and immunofluorescence [46]
have localized proTGF-a to the plasma membrane in the predicted orienta
tion [43]. Studies from several laboratories have shown that processing of
proTGF-a is frequently inefficient and incomplete, thus resulting in the
release of larger forms of TGF-a due to cleavage at the carboxyl terminus
only [44,47,48]. These partially processed forms appear larger than pre
dicted, on the basis of their sequence, due to heterogeneous N- and
O-linked glycosylation, and likely correspond to the larger forms identified
earlier by gel filtration. In at least some instances, these larger soluble forms
can be processed to a relatively homogeneous product of approximately
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Figure 1. Model of the TGF-u precursor. The complete sequence of the 159 amino acid rat
proTGF-u molecule is shown embedded in the plasma membrane. A consensus site for
N-linked glycosylation is indicated, and cysteine residues within the cytoplasmic domain of the
precursor are marked with asterisks. Darkened arrows indicate the amino acid bonds that must
be proteolytically cleaved in order to release the mature, 50 amino acid growth factor. The
open arrow near the NHz-terminus designates the apparent signal peptide cleavage site between
amino acid positions 22 and 23; however, our data suggest that cleavage of the signal peptide
from proTGF-u is not invariant [43J. The open arrow immediately external to the plasma
membrane marks a lysine-lysine bond that could serve as a potential cleavage site for a
trypsinlike protease. In fact, we have failed to find evidence of cleavage at this site, even when
high levels of exogenous trypsin are added to cells expressing proTGF-u [46J.

6 kDa (the size of mature TGF-a) by treatment with pancreatic elastase
[48,49].

Processing ofproTGF-a

Relatively little is known about the in vivo processing of proTGF-a. Studies
of Chinese hamster ovary (CHO) cells stably transfected with a proTGF-a
expression vector have indicated that processing occurs in two steps after
proTGF-a reaches the cell surface [50]. In the first step, which can be
mimicked by exogenously added pancreatic elastase, proTGF-a rapidly
(within minutes) loses the NHz-terminal segment that precedes the mature
sequence. The second step, which involves cleavage at the COOH-terminal
site, occurs more slowly (within hours) and is not mimicked by exogenous
elastase. Whether this differential cleavage reflects a requirement for two
distinct enzymes is unknown, but it could account for the reported ac-
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cumulation of proTGF-a species on the cell surface [51]. On the other hand,
the kinetics of processing in CHO cells seem inconsistent with the commonly
observed release of larger forms of TGF-a (see above). There are also
conflicting data as to the requirement for glycosylation in the processing
events. Whereas release of soluble TGF-a is not dependent on N- and 0
glycosylation in transfected CHO cells, inhibitors of N-glycosylation inter
fere with TGF-a production in retrovirally transformed rat fibroblasts [47].
Thus, there may be some cell-type differences in the processing events.
Finally, more recent studies suggest that cleavage of proTGF-a can be
enhanced by various exogenous stimuli acting through protein kinase C
dependent and independent pathways [52,53]. These include phorbol esters,
Ca2+ ionophores, and factors present in serum. These observations may be
consistent with the regulation of processing.
The cleavage of TGF-a from an integral membrane precursor is analogous
to the processing of other members of the EGF family of ligands, including
(in addition to TGF-a and EGF) amphiregulin, HB-EGF, and VGF. In each
case, the soluble ligand is released from a transmembrane protein precursor.
The largest of these, proEGF, contains a total of nine EGF-Iike peptides in
its external domain [54,55]. Only one of these - the peptide closest to the
membrane - is known to be released as a bioactive ligand. The precursors
to the other EGF family members are smaller and contain only one EGF
like unit each [24,34,35,56]. Except for the EGF-Iike elements, there are
no other apparent sequence homologies between the various precursors.
Additionally, there is no similarity with respect to the nature of those
amino acids flanking the cleavage sites. However, incomplete or inefficient
cleavage of the precursor molecules may be a recurrent theme, since
proEGF is reported to accumulate in the distal tubules of the rodent kidney
with little or no processing [57].

Juxtacrine actions of membrane-bound growth factors

Producing non cleavable forms ofproTGF-a

The findings that proTGF-a is cleaved by a protease with unusual specificity
and that, depending on the biological context, processing is not inevitable,
raised the question as to whether the intact, membrane-bound precursor is
biologically active. Could it bind to and activate EGF receptor located in
adjacent or contiguous cell membranes? Such activity could not be taken
for granted, in part because the precursor is relatively small (159-160
amino acids) and there is uncertainty as to how closely adjacent cells can
approach one another. Additionally, it seemed possible that the bioactive
domain, closely tethered to the membrane and immediately preceded by a
glycosylation site, would be sterically hindered from binding to the receptor.
Accordingly, our laboratory used site-directed mutagenesis to alter amino
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Figure 2. Schematic of the proTGF-u molecule and description of mutants. The various
domains of the proTGF-u molecule are designated schematically. The sequence of amino acids
that flank the mature growth factor in the rat proTGF-a molecule is shown below, with arrows
marking the positions of the cleavage sites. The amino acid substitutions encoded by the two
mutant constructs (Mt2-4 and Mt4) are indicated, along with the corresponding designations.

acid sequences flanking the proteolytic cleavage sites, and then character
ized the biological activity of noncleavable forms of proTGF-a in transfected
cells that do not otherwise produce the growth factor [46]. In carrying
out these experiments, we also considered that proTGF-a could serve as
a model for other integral membrane proteins that contain EGF-like
sequences, including not only the precursors to the EGF family of ligands,
but also the products of the aforementioned homeotic genes critical for early
fly and worm development.
The nature of the mutations introduced into proTGF-a are shown in
Fig. 2. Given the paucity of information regarding the specificity of the
processing enzyme(s) and the fact that the flanking sequences contain
additional valine and alanine residues, we were concerned about the
possibility of residual cleavage in the flanking regions. We, therefore,
prepared mutant forms of proTGF-a that not only contained substitutions of
the dipeptides that comprise the amino- and carboxy-terminal cleavage sites,
but also alterations in the flanking regions so that no val-ala or ala-ala
dipeptides remained. This concern proved to be valid, since we subsequently
determined that processing was blocked only in the case of the more ex
tensively mutated molecules. We created two kinds of proTGF-a molecules
- one altered so as to block processing at both termini (Mt2-4) and the
other so as to prevent cleavage at the COOH-terminal site only (Mt4). This
latter form would still anchor the mature growth factor sequence to the
membrane, but would allow cleavage of the NHz-terminal portion of the
precursor. TGF-a cDNAs encoding either wild-type or mutant sequences
were then cloned into an expression vector under the control of the zinc-
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inducible mouse metallothionein promoter, and these constructs were trans
fected into cultured fibroblasts. Immunofluorescent staining of clones shown
to be highly inducible for expression of both TGF-a mRNA and protein
confirmed that both wild-type and mutant precursors were localized to the
cell surface with the appropriate orientation. That the introduced mutations
had indeed blocked processing of proTGF-a was shown by (1) gel analyses
of immunoprecipitated, cell-associated TGF-a species in pulse-chase experi
ments and (2) examination of media conditioned by transfected cells using
both Western blot analyses and sensitive bioassays that measure TGF-a's
ability to compete with 1251 EGF for binding to the EGF receptor and to
induce the growth of NRK cells in soft agar. The results of these various
assays clearly revealed an absence of processing with both of the mutated
forms of proTGF-a [46].

ProTGF-a is biologically active

The biological activity of noncleavable, mutant proTGF-a was examined by
coincubation of zinc-induced cells with human A431 epidermoid carcinoma
cells known to express high levels of EGF receptor [46]. The addition of
cells bearing mutated proTGF-a on their surface rapidly induced an auto
phosphorylation of the A431 receptor that was not observed following the
addition of either uninduced or parental (nontransfected) cells. To assay
for receptor-mediated signal transduction, we looked for a rise in free,
intracellular Ca2+, a well-known early response to growth factor stimulation.
Strikingly, the addition of cells bearing noncleavable proTGF-a produced a
rapid (15-30 second) five-fold increase in the A431 intracellular Ca2+ levels.
A significantly smaller rise followed the addition of uninduced cells and
parental cells produced no response. Similar results were obtained using
normal primary rat hepatocytes in place of A431 cells, and we further
showed that the addition of plasma membranes bearing mutated proTGF-a
(Mt2-4) to cultures of primary rat hepatocytes stimulated hepatocyte DNA
synthesis up to four-fold (Fig. 3). In contrast, hepatocyte DNA synthesis
was not stimulated by membranes from either uninduced or parental cells.
Finally, we also examined the biological activity of intact proTGF-a by
measuring its ability to transform NRK cells infected with retroviral ex
pression vectors encoding either wild-type or noncleavable forms of
proTGF-a [58]. We found that expression of both wild-type and mutant
forms of proTGF-a transformed NRK cells as measured by their growth in
soft agar and their ability to form tumors in nude mice. These results
confirmed the biological activity of intact proTGF-a and indicate that growth
factor sequence anchored to the membrane can productively interact with
receptor in adjacent membranes. This type of ligand action has been
termed juxtacrine, as opposed to the more familiar autocrine, paracrine,
and endocrine actions. Our results also suggest that the accumulation of
precursor on the surface of transformed cells is likely to have pathological
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Figure 3. Dose curve of hepatocyte DNA synthesis in response to plasma membranes from
BHK cells expressing a noncleavable form of proTGF-a. Plasma membranes were isolated
from parental BHK cells (circles) and clones harboring constructs encoding the mutant, Mt2-4
form of proTGF-a (squares). Where indicated, cells were induced with zinc for 8 hours prior to
harvesting, and plasma membranes were prepared according to established procedures.
Increasing amounts of total membrane protein, together with II!Ci of PHI-thymidine, were
added to quiescent primary cultures of adult rat hepatocytes 6 hours after plating. Hepatocytes
were harvested 48 hours later for scintillation counting and DNA assay. The level of DNA
synthesis attained in the absence (solid bar) and presence (hatched bar) of EGF (10 ng/ml) is
shown for comparison. Note that the induced Mt2-4 membranes containing the noncleavable
proTGF-a stimulate hepatocyte DNA synthesis in a dose-dependent and saturable manner, and
to a level comparable to that of EGF.

significance and that attempts to slow the growth of tumor cells by blocking
the processing of proTGF-a may be ill founded.
Our conclusions regarding the biological activity of proTGF-a have been

confirmed and extended by others. Derynck and colleagues used a similar
mutagenesis strategy to express noncleavable forms of the human TGF-a
precursor on the surface of transfected Chinese hamster ovary (CHO) cells.
They then examined the activity of proTGF-a in cocultures with mouse
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NIH3T3 fibroblasts that had been engineered to express high levels of EGF
receptor. They showed that coincubation of the two cell ~ypes led to auto
phosphorylation of the NIH3T3 cell EGF receptor and that this activation
induced c-fos expression [51]. Evidence suggests that preproEGF is also
biologically active. Purified, wild-type human preproEGF bound and acti
vated EGF receptor, and sustained the growth of EGF-dependent keratino
cytes in culture [59]. Additionally, transfection of a preproEGF expression
vector transformed NIH3T3 cells in culture [60]. Thus, biological activity
of integral membrane precursors to growth factors may prove to be a
generality. If so, this further implies that in contrast to the processing
of soluble prohormones, which are generally inactive, cleavage of growth
factor precursors may be aimed less at generating active molecules than at
switching from membrane-anchored to diffusible forms.

Roles for membrane-bound growth factors in development?

The ability to restrict cleavage of precursor molecules and to limit growth
factor-mediated signalling to adjacent cells may be critical in certain bio
logical contexts, for example, during development. A fascinating case in
point is provided by the development of the compound eye in Drosophila,
which is comprised of about 800 ommatidia or unit eyes [see ref. 61 and
references contained therein]. Each of these, in turn, contains 20 distinct
cells with eight photoreceptor neurons, together with several different non
neuronal cell types. An early step in the development of these structures
from the eye imaginal discs is the assembly of cells into clusters. Within each
cluster, the eight photoreceptor neurons differentiate stepwise in a stereo
typed fashion that is apparently regulated by signals from adjacent cells. The
best characterized event is the differentiation of the R7 photoreceptor cell,
which occurs, at least in part, in response to a signal from the R8 cell. The
induction of R7 can be blocked by mutations in any of several genes. One of
these, sevenless, appears to encode a putative receptor with tyrosine kinase
activity that is expressed on the surface of the R7 cell. Another critical gene,
bride of sevenless (boss), encodes a protein with multiple, membrane
spanning domains that is believed to be the ligand for sevenless. In this
context, it seems possible to imagine that the sevenless signal cannot be
diffusable but instead must be tethered to the membrane and limited to the
R7 cell. Interestingly, a more recent study [61] of boss/sevenless interaction
addresses an important question, that is, how is the stimulation of receptor
by membrane-anchored growth factor terminated? What is the equivalent of
internalization and downregulation of soluble growth factor/receptor com
plex? In mixed cocultures of cells expressing, on the one hand, sevenless,
and on the other, boss, boss immunoreactivity was internalized into the
sevenless cells. Whether this is the result of boss being pulled out of its
membrane, or whether binding somehow dictates cleavage of the extra
cellular sequences, is currently unknown.
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Although the characterization of membrane-anchored forms of mammalian
growth factors has not yet progressed to this elegant stage, evidence suggests
that at least one is critical for normal development. The protooncogene, c
kit, is a receptor of the tyrosine kinase class whose normal signalling is
essential for hematopoiesis, gametogenesis, and melanogenesis [62]. The
c-kit ligand (steel) has recently been cloned and has been shown to be
expressed in two alternate transmembrane forms as a result of tissue
specific, alternate splicing of transcripts. One of the transmembrane forms
preferentially gives rise to soluble species, whereas the other remains cell
surface associated. A particular mutant steel allele, Sid, impairs the devel
opment of hematopoietic cells, melanocytes, and germ cells. Significantly,
analysis of this mutant revealed that it contains a deletion in the steel gene
that removes the transmembrane and cytoplasmic domains [63]. One inter
pretation of this finding would be that the cell surface form of steel has a
critical developmental role that cannot be supplanted by the soluble form
that continues to be produced in Sid mice. Additional insights may come
from recent advances in gene targeting, which might allow the development
of lines of mice in which the membrane-anchored, but not soluble, forms of
growth factors are eliminated.
Finally, that integral membrane precursors to growth factors might
also play additional roles is supported by recent findings that they can
simultaneously function as mediators of cell-cell adhesion and proliferation.
For example, proTGF-a expressed in bone marrow-derived stromal cell
monolayers binds to the EGF receptor on suspended hematopoietic pro
genitor cells, thereby promoting adhesion of the two cell types. Adhered
progenitor cells form foci of sustained DNA replication and cellular pro
liferation [64]. Similarly, membrane-bound, pro-colony stimulating factor 1
(proCSF-l) expressed in fibroblast monolayers mediates the adhesion and
proliferation of macrophages expressing the CSF-l receptor [65]. Whether
the integral membrane precursors have yet other roles - perhaps functioning
as receptors as originally suggested by Pfeffer and Ullrich [66] - remains to
be determined. In this regard, it is a curious observation that the COOH
terminal region of proTGF-a, which includes the transmenbrane and cyto
plasmic domains (but not the receptor-binding sequence) is the most
conserved (>95%) portion of the molecule [67].

Transcriptional regulation ofTGF-a

Expression of TGF-a in normal and neoplastic cells

The availability of cDNA probes and specific antibodies has revealed that
TGF-a expression is not restricted to neoplastic cells. During embryogenesis,
TGF-a mRNA is present in the maternal rat decidua [68] and in the devel
oping kidney, otic vesicle, oral cavity, pharyngeal pouch, and first and
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second branchial arch of the mouse fetus at days 9 and 10 of gestation
[69]. It has also been identified in preimplantation blastocysts by PCR
methodology [70]. Finally, TGF-{l protein and/or mRNA have been detected
in various adult tissues, including pituitary [71], skin keratinocytes [72; with
particularly high levels in psoriatic lesions; ref. 73], macrophages [74],
regenerating liver [75], reproductive tissues [76,77], and mammary gland
[78]. In adult rats, some of the highest levels of TGF-{l mRNA are found in
regions of the CNS [79-81], most notably the cervical spinal cord [81].
Although its precise physiological roles are not yet known, detection in
these various tissues is perhaps consistent with postulated roles for the
growth factor in such diverse processes as cell migration [19], wound healing
[82], angiogenesis [20], and bone resorption [21].
The hallmark of TGF-{l expression, however, is the finding that it is most
prevalent and abundant in neoplastic cells and tissues. Thus, compared to
normal tissue counterparts, the levels of TGF-{l are consistently elevated in
solid tumors as well as in cultured cells derived from these tumors [83-85].
In some cases, increased expression of TGF-{l mRNA correlates with
enhanced expression of EGF receptor [83]. Reflecting these observations,
measurement of TGF-{l protein in either urine or tumor effusions reportedly
provides a useful marker in the clinical management of patients with hepato
cellular carcinoma [86], and possibly for assessments of tumor burden and
patient prognosis in the case of other cancers [87]. In culture, TGF-{l
expression is consistently elevated in cells transformed by chemicals [48,88]
or by direct introduction of activated oncogenes [89,90]. A particularly
convincing example is provided by the recent demonstration that expression
of TGF-{l mRNA is activated in cells that have been induced to express H
ras from an integrated vector under the control of the mouse metallothionein
promoter [91]. That TGF-{l functions as an autocrine factor to enhance the
growth of some of the transformed cell lines that produce it has been
experimentally verified in certain cases through the use of neutralizing
antibodies [92].
In addition to the above-described transformation-associated regulation,

the expression of TGF-{l mRNA can also be induced by the tumor promoter
12-0-tetradecanoylphorbol-13-acetate (TPA) in a chemically induced rat
liver epithelial cell line [93], in cells of the bovine anterior pituitary gland
[94], and in human keratinocytes [95]. This transient induction, which is
partly mediated through increased transcription of the TGF-{l gene [93], is
distinguished from the classical TPA-mediated induction of either c-myc [96]
or c-fos [97,98] by its delayed and prolonged time course, and by a possible
requirement for early protein synthesis [93]. TGF-{l mRNA can also be
induced by EGF or TGF-{l [72,93], itself, as well as by other hormones that
may, like TPA, act through protein kinase C [93]. Finally, the expression
of TGF-{l mRNA in human breast cancer cells can also be induced by
estrogens [99]. Although the molecular mechanisms responsible for regulation
of the TGF-{l gene have not yet been elucidated, a recent preliminary report
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describes TPA and hormone-induced increases in bacterial chloramphenicol
acetyl transferase (CAT) expression under the control of the human TGF-u
promoter (100].

The TGF-a gene and its promoter

ProTGF-u is encoded by a 4.5-5.0kb mRNA that contains relatively short
and long 5' and 3' untranslated regions, respectively [36,101]. This transcript
is, in turn, derived from a large gene that spans close to 100 kb of genomic
DNA and is comprised of six exons, the first three of which are separated
by large (30 kb) introns [36]. Interestingly, the 50 amino acid, EGF-like
sequence is encoded by two exons (3 and 4), an organizational feature
common to those EGF-like sequences that are known to be ligands (e.g.,
EGF, amphiregulin, VGF), but not those for which a ligand function has
not been established (e.g., the remaining EGF-like repeats in preproEGF;
see ref. 102). The human gene is located on the short arm of chromosome 2
in the pll-p13 region close to the breakpoint of the Burkitt's lymphoma
t(2;8) variant [103]. Whether the latter observation has any significance with
respect to the activation of TGF-u expression in neoplastic cells is unknown.
The TGF-u promoter has been identified in both human [104] and rat [36]
genomic DNAs (Fig. 4). It is characterized by a G+C-rich sequence that
is devoid of TATA or CAAT elements but contains multiple, potential
recognition sites for other transcription factors, including Spl and E2F.
Consistent with the absence of a TATA box, transcription of the rat pro
moter initiates from two major and multiple minor sites spanning over
200 bp of DNA. In contrast, transcription reportedly initiates from a single
site in the human promoter. The basis for this discrepancy is unclear, since a
sequence comparison reveals that the promoter is highly conserved between
these species (Fig. 4). Working with the rat promoter, our laboratory has
recently established a role for Spl in determining both the level of ex
pression and in establishing the position of individual initiation sites [105].
On the other hand, we have thus far failed to demonstrate regulation of
promoter-CAT constructs in transfected cells exposed to either TPA or
estrogen, or in cells cotransfected with activated ras expression vectors.
These findings suggest that regulation of TGF-u gene expression by these
agents may not be mediated via direct response elements, but rather is
indirect and possibly conferred through changes in the levels or activities of
basal transcription factors.

Transforming properties of TGF-u in vivo

Creation of TGF-a transgenic mice

Studies from a number of laboratories have indicated that TGF-u (either
exogenously provided or endogenously produced) can transform various
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H -318 CCGCCCCTTACCCCAAACCCCCACCCTCTGTGCCCTCAGGGGGGCACCCCCATCGGGGCG,.....
R -244 ...GAGGGTGGTCCGCCTCGCCCCGGTCGCCTA.AGGCAGAGAGGTGGCGGGAACCTccA

I 1/1 1111 1/ 1/1/11/11/11 I 1/1 111II1 III I II II
H -258 GGAGGGGGGGGTCAGCTGTGCCCCGGTCGCCGAGTGGCGAGGAGGTGACGGTAGCCGCC.

R -188 CCTCTTTCCCGTTTCCGCC.. GCGGGCAGCGC .. GCTGGCCAGTGCCA.CCGGGAGGCG.

II/I 11111111 11111111111 III 1111111 I I 1111/1
H -199 .•..• TTCCTATTTCCGCCCGGCGGGCAGCGCTGCGGGGCGAGTGCCAGCAGAGAGGCGC

R -134 .CGGTCGTCCCTCCGCC .. CGCGCGCCGGGGGCCGGCCCTG •. TCGCCTGCGCCTTTTTC

II/II 1/11111/11 I 1/1/1/1/1/1/ II11I11 I I 11111 11111/1
H -144 TCGGTCCTCCCTCCGCCCTCCCGCGCCGGGGGCAGGCCCTGCCTAGTCTGCGTCTTTTTC

~
R -79 CCCCGCGCACAdCGCGGCGGcGCGCGGCCACTCGCCAACCGCAAAGAGCGC.GGTGGCTG

1/11/ 11/1/1/1/1 II/ I 11/11/1/ 111111 1/ II II 11111
H -84 CCCCG •••. CACCGCGGCGCCGCTCCGCCACTCGGGCACCGCAGGTAGGGCAGGAGGCTG

L...,.
R -20 CAGCGCCCTGCGCTCGGAAG aIQ

II III
H -28 GAGAGCCTGCTGCCCGCCCGCCCGTAAA ATG

Figure 4. Nucleotide sequence comparison of the rat (above) and human (below) TGF-a
promoters. In each case, nucleotide positions are numbered with respect to the first base of the
codon, corresponding to the initiating AUG. Conserved nucleotides are marked, and gaps
required for optimal alignment are indicated. The positions of the single human, and two
predominant rat, transcription start sites are marked by heavy arrows; the position of the
S'-most minor rat transcription start site is indicated by a light arrow. The nucleotide sequences
of the human and rat promoters are derived from refs. 104 and 36, respectively.
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cells in culture [58,92,106]. While significant, a more important consider
ation relates to the possible extent to which deregulated expression of
TGF-u contributes to the development and/or progression of neoplasia in
vivo, particularly in the context of epithelial tissues from which most cancers
arise. To address this issue, several laboratories have recently created lines
of transgenic mice in which overexpression of proTGF-u is targeted to either
specific or multiple tissues under the control of heterologous promoters. For
example, we prepared expression vectors containing the TGF-u sequence
under the control of either the metal-inducible mouse metallothionein I
promoter, which is expressed in multiple tissues at various stages of devel
opment, or other promoters that restrict expression to specific tissues. In
light of growing evidence that intron/exon structure is essential for efficient
expression of transgenes in vivo [107], these constructs were designed either
as proTGF-u cDNA/human growth hormone gene fusions (with growth
hormone not expressed), or as proTGF-u cDNA/gene ('minigene') chimeras
(since the normal TGF-u gene is too large to incorporate into a vector).
These various constructs were then used to generate multiple lines of trans
genic mice according to established procedures in a collaboration with Eric
Sandgren, Ralph Brinster, and Richard Palmiter [108]. Subsequent analyses
documented the apropriate expression of transgenic TGF-u mRNA and
protein in various tissues.
Results obtained with our various lines of mice were mutually consistent
and corroborative, and revealed a spectrum of tissue-specific responses in
mature animals. For example, kidney generally showed no phenotype
despite high levels of TGF-u expression and the presence of EGF receptor.
On the other hand, some tissues, including liver and other parts of the
gastrointestinal tract (e.g., colon), were markedly increased in size (with wet
weight increases of two- to three-fold), but normal tissue architecture was
preserved. Consistent with a hyperplastic basis, increased tissue mass was
generally accompanied by similar relative increases in DNA content, in
dicating that TGF-u is a potent mitogen for these tissues and can playa role
in establishing the 'set point' with respect to tissue size.
In certain other tissues, however, overexpression of TGF-u produced
abnormal growth. For example, the pancreas was greatly enlarged (up
to ten-fold) due to acinar cell and especially fibroblast proliferation, and
showed marked evidence of acinar cell metaplasia with the frequent appear
ance of ductlike elements. The latter are reminiscient of ductlike structures
(pseudoducts) that reportedly arise in the rodent pancreas in response to
treatment with carcinogens [109] and that are also described in studies of
human pancreatic cancer. Although, in the latter context these are thought
to represent preneoplastic lesions, we have not observed the formation of
pancreatic tumors, even in aged mice. The pancreatic phenotype was also
reproduced in mice harboring a construct in which the proTGF-u sequence
was placed under the control of the elastase promoter that specifically
restricts expression to the acinar cells of the exocrine pancreas. That we saw
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no effects in other tissues of these latter mice suggests that the growth
factor's actions are largely local, i.e., autocrine and paracrine. Interestingly,
the acinar cell metaplasia, but not the fibroplasia, was observed in the
pancreases of mice that expressed the mutated, noncleavable form of
proTGF-a, indicating that induction of fibroblast proliferation requires dif
fusion of the soluble growth factor. This result confirms the absence of
processing of the mutated precursor in vivo. Finally, in addition to the
aforementioned effects in the pancreas, one line of mice displayed growth
abnormalities in the coagulation gland epithelium (the functions of which
are partially subsumed by the prostate in men), with dramatic hyperplasia
and dysplasia, and examples of carcinoma in situ.
Through the mating of different lines of transgenic mice, we are currently

exploring the ways in which coexpression of TGF-a and certain oncoproteins
alters the development of tumors in tissues, such as the pancreas, in which
TGF-a does not itself act as a direct oncoprotein. Preliminary results suggest
that coexpression of TGF-a dramatically accelerates the growth of tumors
induced by several oncogenes, thus producing significant decreases in
survival time.

TGF-a produces carcinoma of the breast

A consistent observation among our multiple lines of mice has been the
development of breast cancers in mature females that have undergone one
or more rounds of pregnancy [108]. This response was first noted in those
animals in which expression is under the control of the metallothionein
promoter, despite the fact that expression in the mammary tissue of these
animals is significantly lower than that in other tissues. It has been pre
liminarily reproduced in mice expressing TGF-a transgenes in mammary
epithelium under the control of the whey acidic protein (WAP) promoter,
which specifically directs expression to the milk-producing alveolar cells
from late pregnancy through lactation, as well as the mouse mammary
tumor virus (MMTV) promoter, which additionally directs expression to
ductal cells. In the case of the metallothionein-TGF-a mice, the develop
ment of the disease is generally characterized by the appearance of many
(100 or more) hyperplastic alveolar nodules (HANs) at 10-18 months of
age. These range in appearance from relatively normal but nonregressed
glands to enlarged, dysplastic nodules. This is often followed by the coinci
dental and focal appearance of from one to several tumors per mammary
pad. At least some of these tumors, which include examples of fibrotic
tumors, as well as tumors with papillary or glandular architecture, can
be classified as carcinomas, since they produce tumors upon subcutaneous
injection of dispersed cells into syngeneic mice. Additionally, we have
observed metastases to lung in some of the animals harboring breast tumors.
Based on the above findings, our working model is that the HANs cor
respond to preneoplastic lesions and that our transgenic mice provide a
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model of neoplastic progression that culminates in the appearance of frank
breast tumors. We conclude that TGF-a can act as an initiator of neoplastic
progression in the mammary gland, though the focal nature of the tumor
development suggests that other, critical genetic lesions are also required.
Possibly, in the context of hormonal stimulation, the abnormal proliferation
triggered by TGF-a in some way promotes the occurrence of these genetic
lesions. We are currently assessing the validity of this model, in part by
screening for altered expression and/or mutation of gene products previously
implicated in the genesis of breast cancer, including members of the FGF
family of growth factors, the EGF receptor, the related neu, and p53.
Other laboratories have coincidentally reached similar conclusions using

transgenic mouse models. Coffey et al. have likewise noted the development
of breast tumors in response to MMTV-directed expression of TGF-a [109].
Merlino and coworkers have reported the development of pancreatic lesions
in metallothionein-TGF-a mice, similar to those described above [110).
They also report a relatively high incidence of hepatocellular carcinomas
in older transgenic animals. The fact that we have only rarely observed
hepatocellular carcinomas, even in older animals, may be attributed to the
use of different lines of mice, since hybrid (C57BI/6 x SJL) used in our
studies has a relatively low incidence of spontaneous liver neoplasia.

Conclusions

Although the preceding discussion is focused largely on our own studies,
work from numerous laboratories over the past several years has generated
a significant body of knowledge regarding the expression, structure, and
processing of TGF-a. Studies of proTGF-a have helped to confirm the
juxtacrine hypothesis, and this molecule may prove to be a useful model in
studies of membrane-anchored forms of growth factors. An addition, we
have acquired some knowledge of the structure of the TGF-a gene and its
promoter but are ignorant of the mechanisms that regulate its expression.
Finally, a large body of evidence suggests that TGF-a can transform cells in
culture, but much less is known about the ways in which TGF-a contributes
to the development and progression of neoplastic disease. Hopefully, the
development of transgenic models will not only help to fill this latter gap,
but will also provide generally useful models of tumor progression in vivo.
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12. Growth regulation by transforming growth
factor-p

Bradley A. Arrick and Rik Derynck

Introduction

The name transforming growth factor-~ (TGF-~) has come to represent a
family of highly homologous polypeptides with a wide range of biological
activities. The first member of this gene family was identified nearly a
decade ago as one of two essential factors, called TGF-a and TGF-~ present
in the conditioned medium of a murine sarcoma virus-transformed cell
line, which together stimulated the anchorage-independent growth of non
transformed fibroblast cell lines [1]. Several members of the TGF-~ family
have since been identified, of which TGF-~l, ~2, and ~3 are produced
by mammalian cells. These three forms of TGF-~ have similar biological
activities in the majority of assay systems, though differences in relative
potency are sometimes evident. For simplicity, we will use the name TGF-~
to refer to the TGF-p family as a whole, unless otherwise specified. It
should, however, be pointed out that most studies have evaluated only the
biological activities of TGF-~l. Finally, a number of proteins have been
identified that exhibit structural similarities to TGF-~, though with a more
distant relationship than the individual TGF-~ isoforms. Together with
TGF-~, they constitute the TGF-~ superfamily. As yet little is known about
the effects of these factors on cell proliferation, and they will not be
discussed here.
Following its initial identification as a stimulator of anchorage

independent growth, TGF-~ was shown to be a potent regulator of cell
proliferation, chemotaxis, and cell-matrix interactions. A number of
excellent recent reviews are available that outline in detail our current
understanding of the full scope of TGF-p's biological activities [2-4]. With
respect to cell proliferation, it has now become evident that TGF-~ not only
induces proliferation of various cell types, but is also a potent and reversible
inhibitor of cell proliferation for a wide range of cell types, including epi
thelial, endothelial, and hematopoietic cells. We will discuss in this chapter
possible molecular mechanisms of growth regulation by TGF-p.
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HUMAN MALIGNANCIES. Copyright© 1993.
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TGF-fJ is a stimulator of cell proliferation

TGF-~ has been shown to promote cell proliferation in a handful of cell
types, predominantly of mesenchymal origin. Examples include fibroblasts,
osteoblasts, smooth muscle cells, and Schwann cells [5,6]. In the case of
NRK-49F cells, treatment of these cells with TGF-~ resulted in an increased
number of cell surface receptors for epidermal growth factor (EGF) [7],
suggesting that an increased sensitivity to EGF or the related TGF-a in the
medium could be the basis for the TGF-~-induced increase of proliferation
and the synergistic effect of TGF-~ and EGF or TGF-a on anchorage
independence. However, this potential mechanism of TGF-~-induced pro
liferation is not common to all cells that are mitogenically stimulated by
TGF-~.

More insight into the mechanism of growth stimulation by TGF-~ came
from the observation that, in comparison with other growth factors, enhanced
DNA synthesis following addition of TGF-~ to cell cultures was preceded
by a significantly prolonged lag period [8]. This suggested that the mitogenic
effect of TGF-~ for some cell types was indirect and probably due to the
stimulated production of a direct mitogen acting in an autocrine manner. In
this context, work from a number of investigators has focused attention on
platelet-derived growth factor (pDGF). TGF-~ was shown to induce c-sis
mRNA encoding the PDGF B chain and PDGF (or PDGF-related) protein
in the AKR-2B fibroblastic cell line within 4-12 hours [9]. With human
foreskin fibroblasts, TGF-~ has been shown to stimulate expression of the
A-chain gene of PDGF. Moreover, the addition of anti-PDGF antibody to
TGF-J3-treated fibroblasts resulted in a 60% reduction in the magnitude
of the mitogenic response [10]. The inability of anti-PDGF antibody to
completely abolish TGF-Ws stimulation of DNA synthesis could be due to
endogenously produced PDGF interacting with its receptor intracellularly,
thus resulting in an inaccessibility to the exogenously added neutralizing
antibody [11]. Alternatively, elaboration of PDGF may not be the only
effector mechanism for TGF-~-induced mitogenesis in these cells. It is useful
to note in this regard that most cell types that are growth inhibited by
TGF-~ lack PDGF receptors and thus cannot establish a PDGF-based
autocrine loop [12].
A similar induction of PDGF-A-chain mRNA and secretion of PDGF

protein by smooth muscle cells exposed to TGF-~ has been reported [13].
However, it was noticed that smooth muscle cells, as well a fibroblasts and
chondrocytes, displayed a proliferative behavior with a bimodal response to
TGF-~. Thus, treatment of these cells with a concentration of TGF-~ 10
fold higher than that which stimulated DNA synthesis nearly abolished the
mitogenic response. At these higher concentrations of TGF-~, the expres
sion of the PDGF receptor a subunit mRNA and protein were inhibited.
In this manner, a PDGF-based autocrine growth loop stimulated by low
concentrations of TGF-~ was blocked at the receptor level by higher con-

256



centrations of TGF-~ [13]. Thus, at least in these cells, the effects of TGF-~
on cell proliferation are a reflection of the TGF-~-modulated interaction of
the PDGF-based autocrine growth regulation.
The demonstration of growth stimulation of mesenchymal cells by TGF-~

under defined culture conditions can provide useful insights into possible in
vivo effects of TGF-~. However, the presumed existence of concentra
tion gradients of TGF-~ in the in vivo setting poses another level of com
plexity for factors such as TGF-~ with bimodal dose-response relationships.
Exogenous TGF-p administration in vivo has been shown to result in an
increased cell density, as well as fibrosis and angiogenesis [14]. However,
there is as yet little in vivo evidence documenting cell proliferation in
response to TGF-~. On the contrary, a recent study has revealed that an
increased cell mass in the chicken chorioallantoic membrane system follow
ing administration of TGF-~ was concommitant with a decreased mitogenic
activity in the newly formed tissue, suggesting that the increased cell mass
was largely the result of a cellular influx [15]. TGF-~ is a potent chemotactic
agent for a variety of cell types. Thus, many reported observations of
hypercellular lesions at the site of TGF-~ injection may be due to an influx
of cells as a consequence of the chemotactic activity of TGF-~, rather than
a TGF-~-induced increase in cell proliferation [16].

TGF-fJ is a potent growth inhibitor

As mentioned above, TGF-~ reversibly inhibits proliferation of many cell
types at picomolar concentrations. In several cases it has been shown that an
anti-mitogenic effect can be achieved through an inhibition of proliferation
induced by other growth stimulatory factors. In one well-studied example,
TGF-~ inhibited the fibroblast growth factor-stimulated proliferation of
a Chinese hamster lung fibroblast cell line without affecting many of the
cellular events that occur within the first few hours after mitogen stimula
tion. Some of the early cellular responses to mitogen that were unaffected
by TGF-~ included induction of ornithine decarboxylase activity, increased
levels of c-fos mRNA, and elevated ribosomal protein S6 kinase activity
[17]. Similarly, other investigators have shown that epidermal growth factor
(EGF)- or insulin-stimulated proliferation of mink lung epithelial cells was
inhibited by TGF-~ without affecting mitogen stimulation of the ribosomal
protein S6 kinase [18]. In addition, TGF-~ did not inhibit the binding of
growth factors to their receptors on these cells. Thus, TGF-~ can inhibit the
growth stimulatory effects of various mitogens without blocking specific
receptor-ligand interactions or signal transduction pathways.
Specific information regarding the TGF-~ receptor(s) involved in growth

regulation is limited currently. It has been proposed, based on studies with
TGF-~ resistant mutants, that the type 1 TGF-~ receptor, a glycoprotein of
approximately 53 kDa, is the relevant receptor in this regard [19]. Involve
ment of a pertussis toxin-sensitive guanine nucleotide-binding protein (G
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protein) has been suggested, based on observations with an epithelial cell
line [20]. No doubt, the characterization and recent cloning of the TGF-p
receptors will greatly facilitate analysis of early TGF-p-induced growth
regulatory events.
Most studies on the direct inhibition of cellular proliferation by TGF-p

have been performed using keratinocytes or other epithelial cells. Using
synchronized cells, it has been shown that the TGF-p-induced proliferative
block occurs in late G1, just prior to the onset of S phase, and thus prevents
the wave of DNA synthesis [21,22]. The mechanistic nature of this inhibition
is as yet largely unclear; however, some interesting functional connections
have recently emerged.
Inhibition of murine keratinocyte proliferation by TGF-p was associated

with diminished expression of c-myc, but not with a change in expression of
c-fos or several other oncogenes. That this decrease in c-myc expression
could be functionally involved in the inhibition of proliferation by TGF-p
was suggested by an increase of c-myc during increased proliferation. More
over, keratinocytes that are growth inhibited by TGF-p are inhibited to a
similar extent by antisense oligonucleotides specific for c-myc [23]. Finally
c-myc mRNA levels were not decreased in various tumor cell lines that
are not growth inhibited by TGF-p. This is, for example, the case with
keratinocytes transformed with human papillomavirus (HPY) types 16 or 18,
and the simian virus 40 (SY40) [24]. An association between growth inhibi
tion by TGF-p and decreased expression of c-myc has also been reported
for well-differentiated colon carcinoma cells [25]. Whereas early studies
attributed the observed reduction in c-myc by TGF-p to a post transcrip
tional process [26], subsequent analyses have documented a predominant
inhibition of transcriptional initiation of c-myc by TGF-p. This inhibition
of transcription was mapped to a genomic region extending from -100 to
+71, relative to the 5' most transcription initiation site of the c-myc gene
[23]. More accurate mapping revealed the requirement of a specific 23 base
pair sequence, termed the TGF-p control element, in this region of the
c-myc promoter [27]. This TGF-p control element contains sequences similar
to the previously described TGF-p inhibitory element (GAGTTGGTGA),
which mediates the TGF-p-induced repression of transcription of the transinl
stromelysin gene [28]. DNA-binding proteins specific for sequences within
the TGF-p control element of the c-myc gene have recently been described
[27].
Transfection studies with keratinocytes employing a plasmid in which

chloramphenicol acetyltransferase was linked to the TGF-p repression
element from the c-myc promoter (-100 to +71) have shown that expres
sion of the transforming proteins from three DNA tumor viruses - E7 from
HPY-16, E1A from adenovirus, and large T antigen from SY40 - could
effectively block inhibition of c-myc transcription by TGF-p [24]. These
transforming proteins are known to bind to critical growth-regulatory cellular
proteins, including the retinoblastoma gene product, pRB, which has been
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shown to be a tumor suppressor gene and to exert growth inhibitory activities
[29]. Pietenpol et al. have further reported that a transformation-defective
mutant of adenovirus ElA protein that could bind to pRB was able to
prevent inhibition of c-myc transcription by TGF-p [24].
Thus, attention has now been focused on the possible role of pRB and

related proteins as mediators of TGF-p's growth-inhibitory activity. During
the cell cycle, pRB undergoes phosphorylation and dephosphorylation, with
the underphosphorylated form predominating in the Gl phase [30]. Laiho et
al. have shown that growth inhibition of mink lung epithelial cells by TGF-p
was associated with an overall decreased phosphorylation state of pRB [21].
Futhermore, SV40 T antigen expression served to diminish the growth
inhibitory effect of TGF-p without affecting the decrease in phosphorylation
of pRB [21]. Other early responses to TGF-p, such as increased expression
of junB mRNA, were not blocked by T antigen [31]. The hypothesis that
arises from these data is that TGF-p in some manner generates or stabilizes
the underphosphorylated form of pRB, which in turn mediates inhibition of
cell proliferation. Transforming proteins, such as SV40 T antigen, which
associate with and thereby inactivate or alter the function of the under
phosphorylated form of pRB, would thus effectively block TGF-p's growth
inhibitory activity. Consistent with the hypothesis that for some cell types
the growth-inhibitory effects of TGF-p require functional pRB, the human
prostate carcinoma cell line DUl45, which contains a mutant pRB, responds
to TGF-p with a decrease in c-myc mRNA content but is not growth
inhibited [32]. It should, however, be pointed out that it is as yet unclear
whether the effect of TGF-p on the phosphorylation state of pRB is the
result of a direct effect of TGF-p or a consequence of the growth arrest in
Gl.
In a recently published study of the ability of various mutants of the ElA

transforming protein to impart resistance to growth inhibition by TGF-p in a
mouse keratinocyte line, ElA-associated cellular proteins other than pRB
have been implicated as well [33]. Specifically, resistance to TGF-p was
greatest with an ElA mutant that retained binding to pRB as well as three
other ElA binding proteins (p60, pI07 and p300). When an EtA mutant
capable of binding to p300, but not the other three proteins, was used, TGF
Presistance dropped to 61% of control. Thus, cellular proteins other than
pRB, perhaps recessive oncogenes themselves, can also be mediators of
growth inhibition by TGF-p. Such would also be the conclusion from
observations that some breast cancer cell lines that lack functional pRB
retain sensitivity to inhibition of proliferation by TGF-p [34]. The p53
recessive oncogene product is a candidate alternative mediator of growth
inhibition by TGF-~ of some cell types. For example, SV40-immortalized
human bronchial epithelial cells lose their negative growth responsiveness to
TGF-~ when transfected with a mutant p53 [35].
The possibility remains that other late-GI-acting proteins may also be

involved in TGF-p's growth-inhibitory effects. One such protein is a 34-kDa
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serine-threonine kinase (p34CdC2
) , which itself fluctuates in activIty and

phosphorylation state with the cell cycle. As with pRB, growth inhibition by
TGF-~ has been associated with a decrease in the level of phosphorylation
of this protein [22]. Perhaps activation of a specific phosphatase by TGF-~,
such as has been reported with protein phosphatase 1, is involved in these
changes in the phosphorylation state of cell cycle-regulatory proteins [36].
A recent finding that pRB can itself modulate expression of the TGF-~l

gene, positively or negatively depending on cell type, adds yet another level
of complexity to this growth regulatory pathway [37]. Clearly, we have much
more to learn about the functional relationships between TGF-~ and pRB.
In a more general sense, interactions between growth-inhibitory proteins
and recessive oncogene products may prove to be a fruitful area for future
study.

Additional possible mechanisms for TGF-fJ-induced growth inhibition

Numerous investigators have reported observations that suggest mechanisms
of growth inhibition by TGF-~ distinct from those discussed above. TGF-~
can, in some settings, downregulate the surface expression of receptors for
growth-stimulatory factors. We have already reviewed the inhibition of
PDGF receptor levels by TGF-~ as part of a bimodal dose-response rela
tionship in some cells stimulated to grow at low concentrations of TGF-~
[13]. Similarly, TGF-~-induced decreases in high-affinity receptor densities
for EGF and basic fibroblast growth factor on endothelial and osteosarcoma
cells have been proposed to mediate the inhibition of proliferative response
to these mitogens by TGF-~ [38,39]. Inhibition of interleukin 1 receptor
expression in hematopoietic cells by TGF-~ may be another example of
growth inhibition via a decrease in the availability of receptors for positive
growth regulators [40].
Inhibition of normal rat kidney cell proliferation by TGF-~ in serum-free

conditions was overcome by the exogenous addition of collagenase. These
cells were growth inhibited by collagen, the secretion of which was increased
by TGF-~ [41]. Thus, for some cells in certain settings interactions with the
extracellular matrix, as modified by the actions of TGF-~, may influence cell
proliferation.
Lipid peroxidation as a component of growth inhibition by TGF-~ for

some cells has been suggested by a report that polyunsaturated fatty acids in
combination with TGF-~ can result in enhanced and irreversible inhibition
of cell proliferation. The antioxidant vitamin E could abolish the cytotoxicity
of fatty acid plus TGF-~ [42]. While it is possible that this observation
represents a peculiarity of the serum-free, nonhypoxic in vitro conditions,
the suggestion that cellular proliferation can be affected by oxidation events
is intriguing. Further evidence supporting this hypothesis has recently been
published. TGF-~ has been reported to exert a prooxidant effect on bovine
arterial endothelial cells, and treatment of a murine osteoblast cell line with
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TGF-p stimulated the secretion of hydrogen peroxide [43,44]. Furthermore,
TGF-p-induced inhibition of DNA synthesis in the osteoblastic cells was
reversed by catalase [44].
As we had cautioned in the previous discussion of growth stimulation by

TGF-p, in vitro experiments cannot account for the full complexity of the in
vivo setting and may therefore incorrectly predict in vivo phenomena. Many
of the published examples demonstrating growth inhibition by TGF-p in
vivo involve localized or intravenous delivery of supraphysiologic amounts
of active TGF-p. Such experimental approaches have demonstrated an
inhibition of proliferation of regenerating hepatocytes, developing mouse
mammary epithelia, and human tumor xenografts in athymic mice [45-47].
In this review we have focused on possible mechanisms of growth regula

tion by TGF-p, both positive and negative. Observations that correlate loss
of responsiveness to the growth inhibitory effect of TGF-p with malignant
transformation [48] underscore the importance of cellular pathways and
mediators of TGF-p action as targets for carcinogenic events. A number of
publications have appeared that report an altered response to TGF-p by
metastatic cells compared with their nonmetastatic counterparts. Metastatic
radiation- or ras-transformed fibroblasts were growth stimulated by TGF-p,
in contrast to similarly transformed but nonmetastatic cells, which were
growth inhibited by TGF-p [49]. Likewise, stimulation of soft agar colony
formation by TGF-p of a metastatic melanoma cell line was abolished in
cells made less metastatic by transfection with a plasmid directing synthesis
of the nm23 protein [50]. These and other observations that suggest metas
tatic subclones may be preferentially stimulated by TGF-p [51] encourage
further investigations into the molecular mechanisms that underlie the
regulation of cell proliferation by TGF-p.
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13. Signal transduction by receptor tyrosine kinases

David R. Kaplan, Archibald Perkins, and Deborah K. Morrison

Introduction

Many oncogenes exert proliferative effects on cells by influencing signal
transduction pathways. Signal transduction provides a means for cells to
propagate and amplify signals received from the environment to specific
targets ·within the cell. The culmination of this pathway is DNA synthesis
and cell division. Since growth is not a common event in organs of mature
multicellular organisms, these pathways must be precisely regulated. The
signalling process begins at the cytoplasmic membrane, where cell surface
receptors interact with growth factors that are either soluble or present on
other cells or in the extracellular matrix. Nontransformed cultured cells
require exogenously supplied growth factors to stimulate proliferation and
growth [1]. In contrast, transformed cells exhibit partial to complete relaxa
tion of the requirements for growth factors, and factor dependence can
be abrogated by the expression of oncogenes or activated forms of proto
oncogenes [1]. Oncogene products are able to overide factor dependency by
mimicking the actions of ligands, their receptors, or downstream signals in
the ordered procession of events that follow mitogenic stimulation [2]. Each
control point in the signal transduction pathway is a potential target of
deregulation by oncoproteins. Thus, an understanding of how tumorigenic
events affect the cell's dependence upon growth factors requires the identifica
tion of these control points and the characterization of the interactions
between the components of the signal transduction machinery.
Several growth factors and growth factor receptors that utilize tyrosine

kinase activity to transmit signals have been identified as oncogenes with
potential involvement in human cancers [2]. Among the growth factors with
oncogenic potential is the product of the v-sis oncogene, first identified in
the simian sarcoma virus [3,4]. v-sis encodes a protein highly related to
the beta chain of platelet-derived growth factor (PDGF) and has been
implicated as an oncogenic agent in certain astrocytomas, sarcomas, and
gliomas [5,6]. v-sis andPDGF are potent mitogens for cultured cells of
mesenchymal origin, and autocrine stimulation of PDGF receptors by
expression of v-sis in fibroblasts results in morphological transformation
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[6]. Recent investigations into the signal transduction mechanisms used by
factors such as PDGF have provided important clues as to how proliferative
signals in mitogenesis and oncogenesis are propagated. The most striking
finding has been the discovery that ligand-activated receptors form com
plexes with various intracellular proteins, many of which have potent
growth-promoting activities. These proteins include proto-oncogene pro
ducts and regulators of these products. This chapter will review these find
ings, focusing upon the primary responses of cells to PDGF. For a more
detailed description of ligand-receptor tyrosine kinase interaction and of
tyrosine kinase signal transduction, see Ullrich and Schlessinger [7], Cantley
et al. [8], and Williams [9].
The members of the family of receptors encoding tyrosine kinase activity

contain a number of common structural features important to their function.
All have large glycosylated, extracellular ligand-binding domains, a single
membrane-spanning region, and a cytosolic portion containing a tyrosine
kinase domain [7]. The kinase domain of the PDGF receptor and several
other receptor tyrosine kinases are interrupted by a region of variable length
('kinase insert'), which plays an important role in receptor signal transduc
tion [9] (see below). The PDGF receptor functions as a homodimer or
heterodimer of two related PDGF receptors (alpha and beta). Ligand addi
tion to cells results in receptor dimerization or oligomerization, an event
that alters the conformation of receptors and allows adjacent monomers to
phosphorylate each other on critical tyrosine residues [7,9]. As a result of
tyrosine phosphorylation and conformational change, receptors show both
enhanced kinase activity towards endogenous and exogenous substrates, and
an increased ability to interact with intracellular proteins.

The formation of the PDGF receptor signal transduction complex

The first evidence of the existence of complex formation between PDGF
receptors and intracellular proteins was obtained from experiments that
demonstrated copurification of receptors with phosphatidylinositol (PI)-3
kinase activity [10,11]. Subsequently, ligand-activated PDGF receptors
were shown to copurify with six other proteins: phospholipase (PLC)-yl,
rasGTPase activating protein (rasGAP), Raf-l, pp60c-src , pp60c-yeS, and
pp60c-fyn [12-19] (Fig. 1). As described below, the activities of each of
these proteins have been postulated to play major roles in mitogenic signal
transduction. The formation of complexes between receptor tyrosine kinases
and intracellular proteins may thus be an important intermediate in the
transmission of growth regulatory signals. This complex has been termed a
signalling complex or signal transfer particle [7,19] and is designated as a
signal transduction complex in this chapter. Two models have been proposed
as to how complex formation may facilitate signal transduction responses.
In the first model, the associations between the cytoplasmic portions of
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Figure I. The PDGF receptor signal transduction complex. In cells treated with PDGF, PI-3
kinase, PLC-yl, rasGAP (GAP), Raf-l, and pp60c-src (src) associate with ligand-activated
PDGF receptors.

receptors and intracellular proteins may provide a mechanism for the recruit
ment of these proteins from the cytoplasm to the plasma membrane [8]. This
would allow proteins such as PI-3 kinase and rasGAP, which are normally
localized in the cytosol, to translocate to the membrane, where their sub
strates and targets, membrane phospholipids, and p21'as, reside. It would
also serve to colocalize signalling molecules that interact with each other. In
support of this model, the levels of membrane-associated PLC-yl, PI-3
kinase, and rasGAP increase following growth factor treatment of cells
[12,20-22]. Furthermore, growth factors induce these molecules to form
complexes with each other, in addition to those with receptors [16,19].
Alternatively, the associations may represent intermediates of enzyme
substrate interactions. In this model, intracellular proteins transiently
interact with receptors and are then phosphorylated on tyrosine residues.
Tyrosine phosphorylation of the substrate or modification of receptor
interaction sites then releases the substrate protein from the receptor.
Regardless of its functional significance, complex formation defines a possible
pathway by which cellular proteins receive signals from ligand-activated
receptors and suggests that these proteins are direct substrates of tyrosine
kinases.
Further discussion of the signal transduction complex and its significance
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in signalling events requires that an experimental definition of 'complex
formation' be established. A common way to detect complex formation
involves immunoprecipitation assays. This method involves the precipita
tion of receptors with specific antibodies, followed by analysis of receptor
immunoprecipitates by Western blotting techniques in order to detect
associated intracellular proteins. Complex formation is thus defined as
protein-protein interactions that are maintained in the salt and detergent
conditions used in the immunoprecipitation assays.
The associations between receptors and intracellular proteins are transient

in nature and involve only a small proportion of the available receptor
molecules. In PDGF-treated cells, complex formation between PDGF
receptors and intracellular proteins occurs rapidly (1-5 minutes) and declines
to basal levels after 60 minutes of factor treatment [10-19] (D.R. Kaplan
and D.K. Morrison, unpublished). This decline in observable associations
parallels the time course of receptor deactivation, which presumably occurs
as a result of phosphatase activity or internalization of receptors. Thus,
in cells where receptor activity cannot be downmodulated, such as PC12
cells overexpressing the trk receptor tyrosine kinase, the quantity of PL-y1
kinase associating with the receptors does not decline for many hours (100).
Only a small proportion «10%) of PDGF receptors associate with proteins
such as rasGAP, PLC-y1, and pp60c-src . Similar proportions of these
proteins associate with receptors, indicating that the associations are either
rare events or that they are extremely transient [14,16-19]. Alternatively,
the immunoprecipitation assay may only detect the subpopulation of
complexed proteins that are resistant to dissociation in the assay buffers
containing detergent. It is likely that in intact cells a large number of
intracellular proteins cycle on and off the receptors, and a small subset of
these complexes are stabilized by cell lysis and are then detected in the
immunoprecipitation assays.

Structural requirements for signal transduction complex formation

The association of intracellular proteins with the cytoplasmic domains of
PDGF receptors occurs only when receptors are phosphorylated in response
to ligand binding [11,13,15,16,19,24]. This requirement of receptor cross
(or auto-) phosphorylation for association has been demonstrated by several
experimental approaches. First, removal of phosphate from ligand-activated
receptors by phosphatase treatment inhibits the binding of receptors to
intracellular proteins, while rephosphorylation of the dephosphorylated
receptors restores binding potential [15,25]. Futhermore, mutant PDGF
receptors that lack tyrosine kinase activity are incapable of associating
with intracellular proteins [11,13,15,16,19]. Mutation of specific receptor
phosphorylation sites also diminishes complex formation. For example, PI-3
kinase no longer associates with PDGF receptors containing mutations at
the tyrosine 751 autophosphorylation site [13]. Mutation of tyrosine 857,
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the most prominent receptor autophosphorylation site, prevents efficient
binding of src-family members to PDGF receptors [24]. Strikingly, various
receptor-associated proteins appear to recognize different autophosphoryla
tion sites on the cytoplasmic domains of receptors to effect complex forma
tion. PI-3 kinase and rasGAP recognize sites within the kinase insert region
of the PDGF receptor, while PLC-yl and Raf-l are capable of binding
receptors in which this domain has been deleted [9,11,13,15,16,19]. Another
approach to identifying receptor association sites has utilized synthetic
peptides containing sequences of the autophosphorylation sites. A peptide
composed of sequences of the kinase insert region, including one of the
autophosphorylation sites of the receptor (tyrosine 751 of the human PDGF
receptor) prevented ligand-activated receptors from associating with PI-3
kinase, but only when the peptide was phosphorylated on tyrosine residues
[25]. Unphosphorylated peptide, or tyrosine-phosphorylated peptide
containing sequences unrelated to those in the kinase insert region did not
inhibit association events. Thus tyrosine-phosphorylated residues in specific
sequence contexts are responsible for mediating the association between
PDGF receptor and PI-3 kinase.
In addition to specific receptor sequences, specific regions of intracellular
proteins are required for association with receptors. One such domain
identified on cellular proteins is termed SH2 (src homology 2). This region is
approximately 100 amino acids in length and was first identified as a domain
conserved in the src family of tyrosine kinases [26]. Each of the proteins
found to associate with receptors, with the exception of Raf-l, contains one
or more SH2 domains. SH2 domains from rasGAP, PLC-yl, PI-3 kinase,
and pp60c-src bind tyrosine-phosphorylated receptors with different affinities,
suggesting that it is this region that determines the binding specificity of
proteins with receptors [16,19,25,27-33]. The SH2 domains are thought to
be structurally similar to a pocket, where binding to negatively charged
phosphotyrosine residues is stabilized by three strategically placed arginine
residues (T. Pawson, personal communication).

Tyrosine phosphorylation of signal transducing proteins

Coincident with complex formation between ligand-activated receptors and
cellular proteins is the phosphorylation of several of these proteins on
tyrosine residues. Only unphosphorylated forms of substrates such as PLC
yl, however, can be coimmunoprecipitated with receptors, suggesting
that tyrosine phosphorylation releases the proteins from the receptor [29].
Among the receptor-associated proteins, the 85-kDa subunit of PI-3 kinase,
PLC-yl, rasGAP, Raf-l, and pp60c-src show increased phosphorylation on
tyrosine in PDGF-treated cells [10,12,13,15-19,23,34,35]. Phosphopeptide
mapping analysis of several of these proteins phosphorylated in vivo or
in vitro by purified receptors indicates that the phosphorylation event is
mediated directly by the activated tyrosine kinase activity of the PDGF
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receptors [15,23] (D.K. Morrison, unpublished). Tyrosine phosphoryla
tion may induce a conformational change in the substrate protein, thereby
enhancing its growth-promoting ability. For two proteins, PLC-yl and
Raf-l, tyrosine phosphorylation in vitro has been demonstrated to affect the
intrinsic activity of the protein. In these experiments, the activity of these
proteins was increased following phosphorylation by purified epidermal
growth factor or PDGF receptors in vitro [15,36]. Other experiments
demonstrate that tyrosine phosphorylation is necessary for the function
of PLC-yl in intact cells. Mutation of PLC-yl at the tyrosine residue
phosphorylated in vivo by PDGF receptors (tyrosine 783) completely in
hibited the ability of this molecule to become activated in response to PDGF
[37]. However, the mutated PLC-yl protein was capable of associating
with PDGF receptors, indicating that the formation of complexes between
PLC-yl and PDGF receptors is not sufficient for activation of this protein
by PDGF. For the other receptor-associated proteins - rasGAP, PI-3
kinase, Raf-l, and the src family tyrosine kinases - experimental evidence
is lacking as to the contribution of tyrosine phosphorylation in the modula
tion of the activities of these proteins.

The proteins of the signal transduction complex

The following section will provide a brief description of several proteins of
the PDGF-receptor signal transduction complex. In addition to the proteins
described below, immunoprecipitates of ligand-activated receptors contain
several as yet unidentified proteins. The characterization of these proteins
may permit a more complete understanding of PDGF signal transduction
pathways. Their identification may be facilitated by the observation that
SH2 domain-containing proteins associate with ligand-activated receptors.
For example, three proteins containing SH2 domains, the serine/threonine
kinase c-akt, the tyrosine phosphatase SH-PTPl, and the cellular homologue
of the oncogene product v-crk, are prime candidates for receptor associa-

Table 1. Summary of interactions of PDGF receptor-associated proteins

Tyrosine Regulation of
PDGF-receptor phosphorylation Activation activity
association" in vivo in vivoh in vitro"

PLC-yl + + + +
PI-3 kinase + + + ?
rasGAP + + ? ?
Raf-l + + + +
Src family + + + ?

a Protein associates with PDGF receptor in immune complexes from PDGF-treated cells.
h Activity of protein increases in PDGF-treated cells.
"Intrinsic protein activity induced by receptor tyrosine phosphorylation in in vitro assays.
References in text.
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tions [38-40]. Such proteins may participate in the signal transduction
complex by regulating the type or extent of phosphorylation events. A
summary of the interactions between intracellular proteins and the PDGF
receptor is in Table 1.

PI-3 kinase

PI-3 kinase was the first protein identified that formed complexes with
ligand-activated PDGF receptors [10,11]. In addition to PDGF receptors,
this protein associates tightly with activated forms of virtually all receptor
and nonreceptor tyrosine kinases [13,41-57]. A consensus sequence of
the site on tyrosine kinases involved in PI-3 kinase interactions has been
noted [8] as Y(P04)-MXM. This sequence is also present in IRS-I, which
undergoes tyrosine phosphorylation and binds PI-3 kinase in insulin-treated
cells [58]. PI-3 kinase is a cytosolic enzyme present in eukaryotic cells from
yeast to mammals [59]. It catalyzes the phosphorylation of the membrane
phospholipid, phosphatidylinositol, on the 3' (D3) position of the inositol
ring both in vitro and in intact cells [60,61]. The second messengers generated
by PI-3 kinase activity are unknown. However, the enhancements of PI-3
activity and the association of this activity with tyrosine kinases correlate
well with the ability of intracellular tyrosine kinases to transform cells or
to produce tumors in vivo, and of receptor tyrosine kinases to promote
mitogenesis [10,43-45,54,59,62-67]. Experimental evidence suggests that
PI-3 kinase consists of at least two subunits of 85 and 110kDa [31,68,69].
The 85-kDa subunit does not contain an ATP binding site or a kinase
domain, indicating that this protein is not the catalytic subunit of PI-3 kinase
[31,32,69]. However, the 85-kDa protein contains two sequences, SH2 and
SH3, which are common structural elements of several cellular proteins
involved in receptor tyrosine kinase signel transduction [31,32,69].

PLC-yl

PLC-yl associates with several ligand-activated receptor tyrosine kinases,
including the PDGF, epidermal growth factor (EGF), fibroblast growth
factor (FGF), trk-nerve growth factor (NGF), and c-kit receptors [14,16,
33,54,55,70-72]. PLC-yl acts upon membrane phosphoinositides to pro
duce the potent second messenger molecules: Inositol trisphosphate (IP)),
which is involved in the regulation of intracellular calcium levels, and
diacylglycerol (DAG), an activator of protein kinase C [73,74]. Protein
kinase C may affect many cellular processes, including gene transcription
events [75] and the regulation of the proto-oncogene p21RAS [75]. Several
experiments have addressed the requirement of PLC-yl activation in serum
and PDGF-mediated mitogenesis. The importance of this activity was
demonstrated by studies in which microinjection of antibodies to PLC-yl
or to the PLC-yl substrate, PIP2 , blocked mitogenic events [77,78]. This
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result is in contrast to experiments that showed that PDGF-induced DNA
synthesis occurred in the absence of PLC activation [79]. The significance
of PLC-yl in growth responses will be further elucidated by mutational
analysis of receptor-PLC-yl association sites. For the EGF and FGF
receptor tyrosine kinases, these sites have been located in the carboxy
terminal regions of the receptor [30,33].

rasGAP

rasGAP associates with the PDGF, CSF-l receptor (c-fms), and c-kit
receptors, and is phosphorylated on tyrosine residues in cells treated with
PDGF, CSF-l, Steel factor (ligand for c-kit), and EGF [12,17,19,47,53,54,
80]. In addition to receptor association, growth factor treatment also induces
rasGAP to complex with two cellular proteins of unknown function, p62 and
p190 [22,80]. rasGAP is a negative regulator of the proto-oncogene product,
p21ras, stimulating the conversion of p21ras from its growth-promoting GTP
bound form to an inactive GOP-bound state [81]. One mechanism that
growth factors might utilize to increase the levels of p21ras bound to GTP
would be to inhibit rasGAP activity by tyrosine phosphorylation. Tyrosine
phosphorylation, however, has no apparent effect on rasGAP activity [22].
Reductions in rasGAP activity are observed when rasGAP is complexed to
p190 or to the phospholipid, phosphatidic acid, or following stimulation of
the serine/threonine kinase activity of protein kinase C in T cells [22,76,82].
Increased levels of rasGAP-pl90 complexes, phosphatidic acid levels, and
protein kinase C activities are observed within minutes of growth factor
treatment of cells, implicating these responses in rasGAP regulation.
The finding that serine/threonine phosphorylation might modulate rasGAP
activity is intriguing, since the serine/threonine kinase Raf-l associates with
rasGAP following PDGF treatment of cells [19]. The formation of com
plexes between PDGF receptors and rasGAP may also prevent rasGAP
from interacting with the inhibiting the activity of p21 ras

•

Raf-l

The Raf-l serine/threonine kinase associates with ligand-activated PDGF,
EGF, and c-kit receptors [15,53,83]. While PDGF stimulates a small increase
in Raf-l tyrosine phosphorylation «1% of phosphate incorporated), the
most evident modification is hyperphosphorylation on serine and threonine
residues [84-86]. In addition, the serine/threonine kinase activity of Raf-l is
induced by treatment of cells with several growth factors that interact with
receptor tyrosine kinases, including PDGF, EGF, CSF-l, and insulin [35,
87-90]. Several experiments demonstrate that Raf-l plays a key role in
mitogenesis. Microinjection of growth-arrested fibroblasts with mutant
Raf-l protein exhibiting enhanced kinase activity, induced DNA synthesis
and morphological transformation [78]. In addition, expression of Raf-l
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antisense oligonucleotides or kinase-defective forms of Raf-l in fibroblasts
inhibited the serum-induced proliferation of these cells [91]. Experiments
using serine- or tyrosine-specific phosphatases indicate that Raf-l activity
may be regulated by both serine and tyrosine phosphorylation [90] (D.K.
Morrison, unpublished). A likely substrate of Raf-l in PDGF-treated cells
may be PLC-yl. Raf-l and PLC-yl form complexes from such cells, and the
sites of PLC-yl phosphorylated on serine in response to PDGF are similar
to those phosphorylated by Raf-l in vitro [16]. The functional consequence
of this phosphorylation is not yet known.

Src-family tyrosine kinases

Three src family members, pp60c-src , pp60c-yes , and pp60c-fyn , associate
with ligand-activated PDGF receptors [18,24]. PDGF also induces a small
subpopulation of cellular pp60c-src molecules to become activated and
phosphorylated on serine and tyrosine residues [18,92,93]. The function of
the src-family proteins in growth factor responses in not known. Recent
experiments implicate src family proteins in the regulation of receptor
tyrosine kinase activity. Expression of the oncogene, v-src, results in con
stitutive EGF receptor signalling activity and hyperphosphorylation of
the receptor [94]. Thus, tyrosine phosphorylation of PDGF receptors by
pp60c-src could enhance receptor activity, although changes in receptor
phosphorylation by pp60c-src have not been demonstrated. pp60c-src may also
be involved in the regulation of other members of the signal transduction
complex, as pp60c-srC, together with p2Fas , are required for the activation of
the kinase activity of Raf-l in certain cells [94].

Inhibitors of signal transduction complex formation: Possible therapeutic
agents

The structural and biochemical links between growth factor receptors and
proto-oncogene products and their regulators support the hypothesis that
subversion of growth factor pathways is one of the mechanisms involved in
cell transformation. Oncogenic activation of members of the signal transduc
tion complex may deregulate these pathways, causing constitutive prolifera
tive signals to be transmitted. By interfering with the formation of this
complex, the mitogenic activity of these proteins may be inhibited. One
approach is to identify specific inhibitors of the activity of members of
the complex. Two inhibitors, the actinomycete tyrphostin and the alkaloid
K252, inhibit the tyrosine kinase activity of the EGF receptor and the trk
(NGF) receptor, respectively, with little apparent effect on other tyrosine
kinase activities [96-99]. By the use of rational drug design, selective
inhibitors of cellular kinase activities may be developed. A second approach
is to introduce into cells synthetic peptides that will block the associations of
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kinases and their substrates [25]. This will require the identification of the
interaction sites of the proteins of the signal transduction complex. The
feasibility of this approach has been demonstrated by experiments in which
peptides containing PDGF receptor sequences inhibited the interactions of
purified PDGF receptor and PI-3 kinase in vitro.
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14. Involvement of G proteins, cytoplasmic calcium,
phospholipases, phospholipid-derived second
messengers, and protein kinases in signal
transduction from mitogenic cell surface receptors

Roy A. Frye

Introduction

The binding of growth factors to cell surface receptors rapidly induces
a mitogenic signal transduction cascade, which results in transcriptional
activation of early response genes such as los [1,2]. This mitogenic signal
transduction process involves a complex series of events, including tyrosine
phosphorylation, Ras G-protein-dependent effects, activation of phos
pholipases, and activation of protein kinase C and other cytoplasmic
serine/threonine protein kinases that transduce the mitogenic signal from
the cell membrane to the cell nucleus. In addition to the rapid activation
of los transcription, there are rapid changes in phosphorylation of the
Jun protein. The newly synthesized Fos protein complexes with newly
phosphorylated Jun protein via leucine zipper motifs; this produces the
active Fos:Jun heterodimer known as AP-l(Fos:Jun) [3,4]. AP-l(Fos:Jun) is
a transcription control factor that modulates the transcription of numerous
genes that contain AP-l control elements. The activation of AP-l(Fos:Jun)
in response to mitogenic stimuli occurs during the transition between the Go
phase (the resting stage of the cell cycle) and G. phase (the stage when the
cell becomes committed to undergo mitosis). This initiation of the G. phase
is followed several hours later by the activation of DNA synthesis (S phase)
and eventually mitosis (M phase). This chapter focuses on the. signal
transduction pathways, which may connect stimulation of cell surface
receptors to an important early G1 phase response, i.e., AP-l(Fos:Jun)
formation via activation of los transcription and Jun phosphorylation.
The mitogenic signal transduction process is not yet well understood and

several complex parallel or intersecting pathways may prove to be involved;
nevertheless, a general outline of a putative signal transduction network can
be postulated (Fig. 1) in which mitogenic receptor stimulation results in
activation of tyrosine kinases and phospholipases, which then generate
phospholipid-derived second messenger molecules; this in turn causes
activation of a cytoplasmic serine/threonine protein kinase cascade that
eventually results in formation of AP-l(Fos:Jun) due to activation of los
transcription and Jun phosphorylation.

Christopher C. Benz and Edison T. Liu (eds.J, ONCOGENES AND TUMOR SUPPRESSOR GENES IN
HUMAN MALIGNANCIES. Copyright© 1993.
Kluwer Academic Publishers. Boston. All rights reserved. ISBN 0-7923-1960-5
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Figure 1. Schematic diagram of putative mitogenic signal transduction pathways emanating
from cell surface receptors. The receptors are grouped into three categories: the seven
transmembrane-domain, trimeric-G-protein-linked, heptahelix receptor (Group I); the integral
tyrosine kinase receptors (Group II); and the cytoplasmic tyrosine kinase-linked 'hematopoietin'
receptors (Group III). Activation of various phospholipases causes phospholipid-derived
signaling molecules (IP), DAG, and AA) to be generated at the plasma membrane. Subsequent
events include activation of a cascade of cytoplasmic protein kinases (presumably including
PKC, Erk/MAP kinase, and Raf), which eventually causes changes in phosphorylation of Jun
and activation of los transcription, thus leading to formation of the Fos:Jun heterodimer,
which comprises the active AP-I transcription factor. PC = phosphatidylcholine; PIPz =

phosphatidylinositol-4,5-bisphosphate; IP) inositol-I,4,5-trisphosphate; DAG
diacylglycerol; AA = arachidonic acid; PLAz = phospholipase A z; PLCp = phosphoinositide
specific phospholipase C (~isoform); ~'Y,ai,aq = various subunits of trimeric G proteins; PLC =
phosphatidylcholine-specific phospholipase C; GAP = GTPase activating protein; PKC =
protein kinase C; E.R. = endoplasmic reticulum; SRF = serum response factor; SRE = serum
response element.



As shown in Fig. 1 there are three major classes of mitogenic cell surface
receptors. They are group I - the seven transmembrane domain-containing
'heptahelix' receptors that act through trimeric G-proteins; group II - the
integral tyrosine kinase-containing growth factor receptors; and group III 
the 'hematopoeitin' family of growth factor receptors that are composed of
multimeric membrane-associated protein subunits that are somehow linked
to rapid activation of tyrosine kinase activity.

Heptahelix receptor/trimeric (a~'Y) G-protein-Iinked pathways

The heptahelix receptors signal via interactions with trimeric G proteins
composed of a, ~, and 'Y subunits [5,6]. An intracellular portion of the
heptahelix receptor binds to GOP-bound trimeric (a~y) G protein to pro
duce a high-affinity for ligand conformation of the receptor. Binding of the
ligand to the extracellular portion of the receptor results in dissociation of
the GOP from the a-subunit and replacement by GTP; the GTP-bound a
subunit then dissociates from the ~y subunits and activates the downstream
effector system [5,6]. Precisely which effector system is activated depends
upon the identity of the particular heptahelix-receptor/G-protein a-subunit
combination; there are several isoforms of the G-protein a-subunits, which
appear to be linked to several effector systems [5,6]. For example, the as
isoforms of the G-protein a-subunit cause activation of adenylate cyclase
[5,6], whereas activation of phosphoinositide-phospholipase C-~ occurs via
aq [7,8]. The aj isoforms (aj_l> ai-Z, ai-3) are thought to mediate inhibition of
adenylate cylase, modulation of K+ and Ca2+ channels, and activation of
phospholipase A2 [5,6,9]. Phosphoinositide-phospholipase C-~ (PI-PLC~)

hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI4, 5P2) produces
inositol-1,4,5,-trisphosphate (IP3), which releases Ca

2+ stored within the
endoplasmic reticulin, thereby elevating cytosolic Ca2+ [10]. Diacylglycerol
(DAG), a lipid that activates protein kinase C, is the other product generated
from hydrolysis of P14,5P2 by PI-PLC~. Free arachidonic acid (AA) is
produced by phospholipase A2 (PLA2) hydrolysis of phospholipid sub
strates, such as phosphatidylinositol (PI), phosphatidylcholine (PC), and
phosphatidylethanolamine (PE). An important function of phospholipases is
to generate phospholipid-derived second messengers that activate protein
kinase C (PKC). This enzyme is activated by combinations of phospholipid,
Ca2+, DAG, and AA [11,12]. As will be discussed in more detail below,
activation of PKC causes activation of a cytoplasmic serine/threonine
protein kinase cascade, which activates los gene transcription and lun
phosphorylation.
Mitogenic agents that act via heptahelix G-protein-linked receptors

include thrombin, bombesin, vasopressin, bradykinin, endothelin, and
serotonin [13]. In fact the proto-oncogene mas encodes a heptahelix type
receptor for angiotensin [14]. The growth associated gene gro encodes the

283



growth factor MGSA, which binds to the same receptor sites as IL-8 [15];
the IL-8 receptor is of the heptahelix type [16]. Agents that act through
G-protein-linked receptors are rather weak and ineffective mitogens when
acting alone, but they often show significant mitogenic actions when admin
istered in the presence of tyrosine kinase-activating stimuli, such as insulin,
EGF, or serum [13]. Mutations in the gip2 gene (the gene that encodes Ui-Z)
were found in some adrenal and ovarian carcinomas [17]. These mutations
abrogated the GTPase activity of Ui-Z by altering amino acids at positions
analogous to those altered in oncogenic ras mutations. The benign fibroblast
Rat-l cell line could be oncogenically transformed by introduction of a
mutated gip2 gene; however, another benign fibroblast cell line (mouse 3T3)
was refractory to gip2-induced transformation [18]. Chinese hamster ovary
cells transfected with the mutated gip2 gene showed disruption of PLAz
stimulation by thrombin, which may represent a desensitization phenomenon
associated with a constitutively activated pathway [19].
Of the various G-protein-sensitive effector systems, PI-PLC~ and PLAz

are the two effector pathways that have received the most attention in terms
of possible involvement in mitogenic activation. Recent studies have deter
mined that uq is the G-protein u-subunit isotype that activates PI-PLC~

[7,8]. It is unlikely that the PI-PLC~ pathway actually plays an important
role in cell growth stimulation [13]. In the case of the heptahelix recep
tor agonist serotonin, mitogenic stimulation of smooth muscle cells and
fibroblasts appears to involve an Ui subunit that is not linked to PI-PLC~

activation [20,21]. Other studies have shown that the PLAz pathway may be
more closely linked to mitogenic activation than the PI-PLC~ pathway.
In Swiss 3T3 cells, vasopressin-induced heterologous desensitization of
bombesin-stimulated PLAz activation correlated closely with desensitization
of bombesin-stimulated mitogenesis, while bombesin stimulation of PI
PLC~ did not show this correlation with desensitization of cell growth [22].
The actions of certain G-protein u-subunits (Ui-I> Ui-Z, Ui-3, and Uo but not
uq) can be blocked via ADP ribosylation by pertussis toxin [6]. An insect
venom peptide called mastoparan can act as a molecular mimic of the
intracellular portion of certain activated heptahelix receptors, thus potently
activating some G-protein-mediated signal transduction pathways at a
step just downstream from the heptahelix receptor [23,24]. In Swiss 3T3
cells, mastoparan stimulated both PLAz and cell proliferation; furthermore,
both events were blocked by pertussis toxin, thus again indicating a close
correlation between activation of PLAz and mitogenesis [25]. In Swiss 3T3
cells, lowering the extracellular Caz+ concentration from 3.0 to 0.03 mM
severely attenuates bombesin stimulation of PLAz but has no effect on
bombesin stimulation of the PI-PLC~ pathway [26]. Lowering the extra
cellular Caz+ concentration from 3.0 to 0.03 mM also resulted in an inhibi
tion of bombesin-induced cell proliferation [27].
Recently a cytosolic PLAz was purified [28,29] and cloned [30,31]. This

enzyme, designated c-PLAz, is thought to represent the type of PLAz that
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is activated by cell surface receptors because it has a similar substrate
specificity (it preferentially releases arachidonic acid), and it is active at the
low Ca2+ concentrations (10-8 to 10-6 M) that are found in the cell interior.
This PLA2 responds to Ca

2+ by translocating from the cytoplasm to its
phospholipid membrane substrate [32]; it can be further activated by poly
phosphoinositide lipids and diacylglycerol [33]. This newly characterized
PLA2 contains an N-terminal domain with sequence homology to protein
kinase C, GAP, and PI-PLC; this domain enables the PLA2 to bind to its
phospholipid membrane substrate at low Ca2+ concentrations [30].
Hydrolysis of phospholipids by phospholipase C produces DAG, a well

known activator of protein kinase C [11,12]. PKC can also be activated by
arachidonic acid (AA), which is produced by PLA2 [11,12]. Furthermore,
DAG and AA act in a synergistic fashion to activate PKC [34,35]. The
activation of PKC (e.g., by phorbol ester) results in a potentiation of the
activation of PLA2 by Ca

2
+ [36-38]; thus it appears that PKC can stimulate

the production of its own activator (AA). Physiological mechanisms that
downregulate PLA2 activity are not well understood, but in vitro experi
ments with purified PLA2 found that upon interaction with its phospholipid
membrane substrate, the enzyme was rapidly autoinactivated by an unknown
mechanism [39]. It is yet to be determined whether activation of PLA2

occurs as a direct primary response to heptahelix/trimeric G-protein signaling
(as in aq activation of PI-PLC~) or as a secondary response, resulting from
PKC activation and/or changes in cytoplasmic Ca2+. The aj family of
G-protein a-subunits that have been associated with PLA2 activation have
also been linked to modulation of cell membrane ion channels [9,40].
Altering ion channel activity could activate influx of Ca2+ across the cell
membrane and thus increase cytoplasmic Ca2+ levels; PLA2 activation could
then occur as a secondary effect. In Madin-Darby kidney cells, elevation of
cytoplasmic Ca2+ and activation of PKC was found to be necessary for full
PLA2 activation by G-protein-coupled receptors [38] and (as noted above)
in Swiss 3T3 cells Ca2+ influx has been implicated in activation of PLA2 by
bombesin [27].
Initially it was assumed that the DAG produced in response to mitogenic

stimulation derived entirely from PI-PLC-mediated breakdown of phos
phoinositide lipids; however, it is now known that only the initial rapid peak
of DAG production that occurs during the first few minutes is from PI-PLC
and that the subsequent sustained elevation of DAG derives from the break
down of phosphatidylcholine by phospholipase C and/or phospholipase D
[41]. The breakdown of phosphatidylcholine by phospholipase D yields
choline and phosphatidic acid. Many of the same heptahelix receptors that
are linked to activation of PI-PLC~ and PLA2 have also been linked to
activation of phosphatidylcholine-phospholipase D (PC-PLD). There is
evidence for involvement of both PKC and an unidentified G-protein in the
activation of PC-PLD [42-46].
In Fig. 1 the heptahelix/trimeric G-protein pathway is presented as
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separate from the tyrosine phosphorylation pathway; however, in some
systems there appears to be some connection between these two pathways.
For example, in certain systems vasopressin, epinephrine, bombesin,
angiotensin, endothelin, and thrombin (which act via heptahelix receptors)
can activate tyrosine phosphorylation [47-50]. In the WB rat liver epithelial
cell line there is evidence for a Ca2+-dependent pathway for activation of
tyrosine phosphorylation by angiotensin, vasopressin, and epinephrine [47].
A possible explanation relates to the ability of some G-protein-coupled
receptors to activate the pp42/Erk/MAP kinase; this enzyme is now known
to exhibit kinase activity on tyrosine residues, in addition to its previously
recognized serine/threonine kinase activity [51]. In a fibroblast cell line,
pertussis toxin (which blocks G proteins that contain Uj subunits) inhibited
thrombin-stimulated (but not FGF-stimulated) activation of the pp42/Erk/
MAP kinase [52].

Tyrosine kinase/Ras G-protein linked pathways

As shown in Fig. 1, the nonheptahelix cell surface receptor mediated
signalling involves tyrosine-specific protein kinases. Tyrosine kinases can be
grouped into two major types: receptor and nonreceptor. The receptor
tyrosine kinases are composed of an extracellular ligand-binding domain
connected by a single transmembrane segment to an intracellular tyrosine
kinase domain; binding of the ligand causes dimerization and activation of
the tyrosine kinase domain [53]. The nonreceptor 'src family' of tyrosine
kinases are associated with the cytoplamic surface of cell membranes via C
terminal myristoylation. In addition to the heptahelix and integral tyrosine
kinase-containing receptor classes, there is a third class of cell growth
modulating receptors, which includes the receptors for IL-2, IL-3, IL-4,
IL-5, IL-6, IL-7, g-CSF, gm-CSF, growth hormone, prolactin, LIF, and
erythropoeitin [54-58]. These so-called hematopoietin receptors have a
complex multimeric structure [59]. The proto-oncogene c-mpl encodes a
member of this class of receptors [60]. Although the ligand-binding subunits
do not contain intrinsic tyrosine kinase domains, many of these receptors
are physically associated with tyrosine kinases [61,62] and are able to rapidly
activate tyrosine phosphorylation [63-66]. The cytoplasmic portion of the
IL-2~ subunit of the IL-2 receptor directly associates with and activates the
Lck tyrosine kinase (a src-family nonreceptor tyrosine kinase) [67,68]. The
cytoplasmic portions of the hematopoietin receptors contain a region of
shared sequence homology that appears to be required for transmission of
growth signals [69,70]; perhaps this conserved region is involved in interac
tion with cytoplasmic tyrosine kinase(s).
Activated tyrosine kinases phosphorylate potential intracellular signal

tranducing substrates, including phosphoinositide phospholipase Cy (PI-
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PLCy), the 85-kDa noncatalytic subunit of phosphoinositide 3' kinase
(PI(3)K-p85), Ras GTPase activating protein (GAP), and the 62-kDa GAP
associated tyrosine phosphoprotein (p62) [71-73]. Many of these tyrosine
kinase substrates, including PI-PLCy, GAP, and PI(3)K-p85, contain a
conserved sequence motif known as the Src homology 2 (SH2) domain (this
motif is also found in members of the nonreceptor src family of tyrosine
kinases) [74]. The SH2 domains allow these proteins to bind in a specific
fashion to certain tyrosine-phosphorylated proteins. Via their SH2 domains,
PI-PLCy, GAP, and PI(3)K-p85 are able to bind to specific tyrosine residues
within the cytoplasmic domains of certain receptor tyrosine kinases when
these tyrosine residues become autophosphorylated during the receptor
dimerization/activation process [75,76]. The SH2 domains also enable these
proteins to bind to other phosphotyrosine-containing proteins within the
cell. For example, via an SH2 domain GAP binds to p62, but only when p62
is tyrosine phosphorylated [71]. It is still uncertain which of the various
tyrosine kinase substrates are important in mitogenic signalling. Recent
studies have indicated that PI-PLCy and PI(3)K-p85 are probably not
required for mitogenic signal transduction from receptor tyrosine kinases.
The CSF-l receptor (c-Fms) is able to potently transmit a mitogenic signal
yet it does not bind to or activate PI-PLCy [77]. Enhancement of the ability
of the PDGF receptor to activate PI-PLCy (by overexpressing PI-PLCy)
does not enhance mitogenic stimulation [78]. In the past few years a lot of
interest was directed toward PI(3)K because this enzyme physically associates
with (and is activated by) various activated tyrosine kinases [73,79,80].
However, more recent studies have determined that PI(3)K is probably not
directly involved in mitogenic stimulation [81].
The tyrosine kinase substrate known as the GAP-associated p62 protein is

particularly interesting in that it may represent a link between the two major
categories of cell membrane-associated oncogene products, i.e., the tyrosine
kinases and the Ras G proteins. The mitogenic signal emanating from
tyrosine kinases is thought to utilize a Ras-dependent step. One of the
first indications of the Ras-dependent nature of tyrosine kinase-mediated
mitogenic signaling was the finding that intracellular microinjection of anti
Ras antibody abrogated the mitogenic effects of tyrosine kinase oncogenes
[82]. Furthermore, there is evidence that a tyrosine kinase-mediated/Ras
dependent signaling pathway arose early in evolution. Studies involving the
primitive eukaryote C. elegans have provided evidence for a Ras-dependent
step in a receptor tyrosine kinase-mediated pathway; vulval induction
requires a receptor tyrosine kinase-encoding gene (let-23) as well as a Ras
protein-encoding gene (let-60) [83]. Recent work in the Drosophila system
has also provided evidence that Ras is involved in an important signaling
pathway that is activated by receptor tyrosine kinases [84,85].
The remaining sections of this chapter discuss recent evidence pointing to

a pathway wherein tyrosine kinases cooperate with Ras to cause the break-
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down of phosphatidylcholine and to elevate DAG, this activates protein
kinase C, which leads to activation of the Erk/MAP and Raf cytoplasmic
serine/threonine protein kinases.

Tyrosine kinases and Ras activate phosphatidylcholine-phospholipase C

The Xenopus oocyte represents a model system for signal transduction in
which either receptor tyrosine kinase stimulation (via addition of insulin or
IGF-1) or Ras activation (via microinjection of oncogenically activated Ras
protein) can activate the oocyte meiotic maturation response as manifested
by germinal vesical breakdown [86,87]. Microinjection of the oocyte with
neutralizing anti-Ras antibody blocks insulin-induced oocyte maturation
[87]; this is further evidence for a functional connection between the tyrosine
kinase and Ras signal transduction pathways. Oocyte maturation requires
activation of the maturation promoting factor (MPF), which is now known
to be identical with the M-phase kinase and is composed of a complex of
p34cdC2 kinase with cyclin [88,89]. Experiments in the Xenopus oocyte
system have shown that the addition of insulin (i.e., tyrosine kinase stimula
tion) or microinjection of oncogenically activated Ras protein can both
cause activation of phosphatidylcholine-specific phospholipase C (PC-PLC)
[90-92]' Furthermore microinjection of a purified bacterial PC-PLC enzyme
mimicked the effect of insulin or microinjected Ras on oocyte maturation
(germinal vesicle breakdown) and on activation of p34cdc2 kinase [91,92]. It
had previously been reported that an antibody generated against purified
bacterial PC-PLC crossreacted with a mammalian PC-PLC [93]. Recently it
was reported that microinjection of antibacterial PC-PLC antibody into the
Xenopus oocyte blocked both insulin- and Ras-induced responses, including
phosphocholine release (an index of PC-PLC activation), germinal vesicle
breakdown, and HI-kinase (p34Cdc2 kinase/MPF) activation [91,92]. In
mammalian cells there is also evidence for PC-PLC activation in response to
activation of Ras [94], as well as tyrosine kinase receptor agonists such
as PDGF [95,96], EGF [97,98], and CSF-1 [99,100]. Protein kinase C
activation and translocation to the cell membrane was associated with the
PC-PLC-induced elevation of DAG in ras-transformed [101] and CSF-1
stimulated [99] cells.

Activation of cytoplasmic serine/threonine kinases may transduce mitogenic
signals from cell membrane to nucleus

Protein kinase C

Cells in virtually all tissues contain protein kinase C (PKC), an important
regulatory enzyme that modulates exocytosis (secretion), leukocyte
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superoxide generation, and cell proliferation [11,12]. The N-terminal half of
PKC comprises a regulatory domain and the C-terminal half contains the
protein kinase domain. There are several isozymes of PKC, designated a,
p, 'Y, 0, c, and ~ [11,12]. The a, p, and 'Y isozymes require Ca2+ and
activating lipid (DAG and/or AA) in order to translocate from the cytoplasm
to the cell membrane and become activated; these three isozymes have a C2
domain within their N-terminal halves, whereas the 0, c, and ~ isozymes
do not contain C2 domains and do not require Caz+ for activation [102]. As
mentioned above, GAP, PI-PLC, and c-PLAz also contain a C2 domain
[30]. The tumor-promoting agents known as phorbol esters are able to act in
place of the naturally occurring lipid activators DAG and AA, and cause
direct activation of PKC [11,12]. The phorbol esters bind to a conserved
motif, which is repeated twice within the regulatory domain of PKC; this
region is called the C1 domain [103,104]. Interestingly, the Raf-1 protein
kinase also contains a copy of this C1 motif in its regulatory domain,
although neither phorbol esters nor DAG have been shown to directly
activate purified Raf-1 kinase. Direct activation of protein kinase C by
phorbol ester results in activation of the AP-1(Fos:Jun) transcription con
trol factor as a result of transcriptional activation of [os [105] and altered
phosphorylation of Jun [106]. Altering portions of the regulatory domain of
PKC produces a constitutively active PKC, which causes activation of [os
transcription in mammalian cells and activates the maturation response in
the Xenopus oocyte system [103}.
Many mitogenic stimuli (including phorbol ester activation of PKC, ras,

and tyrosine kinase activation) cause activation of the serum response factor
(SRF), a protein complex that binds to the serum response element (SRE)
within the [os promoter [107,108]. As discussed above, tyrosine kinases
and Ras may activate hydrolysis of phosphatidylcholine by PC-PLC, thus
producing the PKC-activating-Iipid DAG [91,94,97,101]. Introduction of
activated Ras protein into mammalian cells through scrape loading caused
rapid activation of PKC [109]. Specific inhibition of PKC, either by micro
injection of an inhibitory peptide that mimicks the inhibitory regulatory
domain of PKC or by microinjecting anti-PKC antibodies, caused blockade
of Ras-induced [os transcription [108]. Although the mitogenic [os-inducing
signal generated by Ras seems to be entirely PKC dependent, there is
evidence that the [os-inducing signal generated by tyrosine kinase activation
has both PKC-dependent and PKC-independent elements. PKC can be
downregulated by a several hour exposure of cells to phorbol esters,
which results in proteolytic degradation of the cell's PKC [110]. In PKC
downregulated cells, tyrosine kinase receptor agonists, such as PDGF and
FGF, can still activate (albeit at a reduced level) [os transcription via the
SRE, thus indicating that tyrosine kinase-mediated mitogenic stimuli can
activate [os transcription via a PKC-independent pathway (even though
these tyrosine kinases can also signal through PKC) [111]. The Erk/MAP
kinase is a potentially important element of the mitogenic signal transduc-
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tion pathway that can be activated by both PKC-dependent and (via tyrosine
kinase-mediated stimuli) PKC-independent mechanisms, and this may
account for how both PKC-dependent and PKC-independent stimuli can
converge to evoke some similar downstream effects [52,112,113].

Erk/MAP kinases

The Erk/MAP kinases comprise a protein kinase family whose members in
clude 42-kDa (Erk-2), 44-kDa (Erk-l), and 54-kDa tyrosine-phosphorylated
proteins [114]. The members of this family have been called MAP2 kinases
because the microtubule associated protein-2 is a good substrate for this
kinase [112,115,116]. The terms MAP kinase and Erk kinase have also been
used to denote mitogen activated protein kinase [49] and extracellular
signal-regulated kinase [117]. These Erk/MAP kinases are activated by
virtually all mitogenic stimuli, including tyrosine kinase receptor stimulators
such as EGF, FGF, NGF, IGF-l, or insulin; activated ras; phorbol ester (a
direct activator of PKC); and thrombin, which is an agent that acts through
a heptahelix receptor/trimeric G-protein mechanism [52,114,116,118,119].
Although the Erk/MAP kinases were originally considered as tyrosine
kinase substrates with serine/threonine specific kinase activity, it is now
known that the Erk/MAP kinases are dual-function kinases that have intrinsic
kinase activity toward tyrosine as well as serine/threonine residues [51]. The
phosphorylation of tyrosine and threonine residues within the Erk/MAP
kinases are both required for activation of the Erk/MAP kinases [113];
this dual phosphorylation pattern may result from phosphorylation of the
ErklMAP kinase by exogenous tyrosine and serine/threonine specific kinases
as well as from autophosphorylation by the Erk/MAP kinase itself [51]. The
Erk/MAP kinases can phosphorylate and activate other mitogen-activated
serine/threonine protein kinases, such as Rsk/Pp90 S6 kinase [120-123] and
Raf-l [124,125].
The Jun protein is a necessary component of the AP-l(Fos:Jun)

transcription factor [3,4]. In the basal resting Go state, the cell's Jun protein
forms an inactive complex by interacting with an inhibitor protein; the Jun
protein appears to bind to this inhibitor via its Al activation domain region
[126]. The effect of activated Src or Ras is to dissociate the inhibitor protein
from the Jun protein, thus allowing Jun to bind with Fos to form an active
AP-l(Fos:Jun) transcription control factor [127]. This dissociation of the
inhibitor protein from Jun is associated with phosphorylation of the Al
activation domain of Jun; thus the ability of activated Ras to stimulate AP
I(Fos:Jun) complex formation was found to require phosphorylation of Jun
on two specific serine residues located within the Al activation domain
[128]. As discussed above, mitogenic stimuli cause activation of Erk/MAP
kinase, via both PKC-dependent and PKC-independent mechanisms. When
activated by mitogenic stimuli (e.g., tyrosine kinases, Ras, or phorbol ester)
the Erk/MAP kinase phosphorylates the two serine residues within the Al
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activation domain of Jun [118]; apparently this causes dissociation of the
inhibitor protein from Jun and the resulting free phosphorylated form of Jun
is able to bind to Fos and form active AP-l(Fos:Jun) factor.

Raf-l kinase

The Raf family of serine/threonine-specific protein kinases include Raf-l
(expressed in virtually all cells), A-Raf (expressed in urogenital tissues), and
B-Raf (expressed in cerebrum and testis) [129]. The structure of Raf-l
kinase shows some similarity to the structure of PKC [130]; the C-terminal
half contains the catalytic kinase domain and the N-terminal half constitutes
an inhibitory regulatory domain, which when absent (as in v-Raf) results in
constitutively active kinase activity that can activate fos transcription [131,
132] and transform cells [133]. Microinjection of anti-Ras antibody blocks
the mitogenic effects of cell-membrane-associated oncogene proteins, such
as tyrosine kinases and Ras; however, v-Raf effects are not inhibited; this
indicates that Raf acts in the mitogenic pathway downstream from tyrosine
kinases and Ras [82]. A variety of growth factors, including insulin, PDGF,
EGF, CSF-l, IL-2, gm-CSF, and IL-3, cause rapid serine/threonine (and in
some instances, tyrosine) phosphorylation of Raf-l, and this phosphorylated
form of Raf-l is activated in terms of its kinase activity [134-137]. Growth
factors and phorbol esters cause rapid activation of a serine/threonine kinase
that phosphorylates and activates Raf-l [138]. As noted above, this Raf
activating kinase has been identified as the Erk/MAP kinase [124,125]. The
serum response element (SRE) is a transcription control element found in
the upstream control regions of several mitogen-activated 'early response'
genes, such as fos, ~-actin, and Egr-l; v-Raf can activate the promoter of
these genes [131,132,139]. A dominant inhibitory mutant of raf-l (which is
thought to specifically interfere with Raf-l-mediated mechanisms) blocks
serum-stimulated cell proliferation and ras-induced cell transformation
[140]. This dominant inhibitory form of Raf also blocks v-Src-induced
activation of the SRE-containing Egr-l promoter [139].

Summary

Some putative mitogenic signal transduction mechanisms involving G pro
teins, calcium, phospholipases, and protein kinases have been discussed.
Several elements in this signal transduction scheme are not yet well under
stood and require further experimental investigation. With regard to the
heptahelix receptors, exactly how do they activate PLA2? Is PLA2 activation
linked to mitogenic pathways? Is this via stimulation of protein kinase C or
perhaps another mechanism? How do heptahelix receptors activate tyrosine
phosphorylation, and is it important in their ability to stimulate cell growth?
With regard to the various phospholipases that are thought to be regulated
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by receptor-mediated stimuli, only PI-PLC~ and PI-PLCy are well charac
terized. PLAz, PC-PLD, and PC-PLC require furt~~r study in regard to
determination of molecular structure and elucidation of mechanisms of
phospholipase activation (e.g., what are the molecular mechanisms whereby
tyrosine kinases and Ras affect PC-PLC?). The protein kinase C dependent
and protein kinase C independent mechanisms that enable mitogenic stimuli
to activate the ErklMAP kinase are enigmatic at this time. How Raf-l
activates SRE-containing gene promoters (such as the los promoter) is also
not known. However, given the current rapid rate of progress in this field, it
is likely that a much more complete understanding of the mitogenic signal
transduction process will soon be obtained.

References

I. Mehmet H, Rozengurt E: Regulation of c-fos expression in Swiss 3T3 cells: An interplay
of multiple signal transduction pathways. Br Med Bull 47:76-86, 1991.

2. Rivera VM, Sheng M, Greenberg ME: The inner core of the serum response element
mediates both the rapid induction and subsequent repression of c-fos transcription
following serum stimulation. Genes Dev 4:255-268, 1990.

3. Curran T, Franza BJ: Fos and Jun: The AP-l connection. Cell 55:395-397, 1988.
4. Verma 1M, Ransone U, Visvader J, Sassone CP, Lamph WW: fos-jun conspiracy:
Implications for the cell. Ciba Found Symp 150:128-137, 1990.

5. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: A conserved switch
for diverse cell functions. Nature 348: 125-132, 1990.

6. Birnbaumer L: G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:
675-705, 1990.

7. Smrcka AV, Hepler JR, Brown KO, Sternweis PC: Regulation of polyphosphoinositide
specific phospholipase C activity by purified Gq. Science 251:804-807, 1991.

8. Taylor SJ, Chae HZ, Rhee SG, Exton JH: Activation of the beta 1 isozyme of
phospholipase C by alpha subunits of the Gq class of G proteins. Nature 350:516-518,
1991.

9. Birnbaumer L, Abramowitz J, Yatani A, Okabe K, Mattera R, Graf R, Sanford J,
Codina J, Brown AM: Roles of G proteins in coupling of receptors to ionic channels and
other effector systems. Crit Rev Biochem Mol Bioi 25:225-244, 1990.

10. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341:197-205,
1989.

11. Kikkawa U, Kishimoto A, Nishizuka Y: The protein kinase C family: Heterogeneity and
its implications. Annu Rev Biochem 58:31-44, 1989.

12. Nishizuka Y: The Albert Lasker Medical Awards. The family of protein kinase C for
signal transduction. JAMA 262:1826-1833,1989.

13. Moolenaar WH: G-protein-coupled receptors, phosphoinositide hydrolysis, and cell
proliferation. Cell Growth Differ 2:359-364, 1991.

14. Jackson TR, Blair LA, Marshall J, Goedert M, Hanley MR: The mas oncogene encodes
an angiotensin receptor. Nature 335:437-440, 1988.

15. Moser B, Schumacher C, von Tscharner V, Clark LI, Baggiolini M: Neutrophil-activating
peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil
activating peptide lIinterieukin 8 receptors on human neutrophils. J Bioi Chern
266: 10666-10671, 1991.

16. Thomas KM, Taylor L, Navarro J: The interleukin-8 receptor is encoded by a neutrophil
specific cDNA clone, F3R. J Bioi Chern 266:14839-14841,1991.

292



17. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark
OH, Kawasaki E, Bourne HR, McCormick F: Two G protein oncogenes in human
endocrine tumors. Science 249:655-659, 1990.

18. Pace AM, Wong YH, Bourne HR: A mutant alpha subunit of Gi2 induces neoplastic
transformation of Rat-l cells. Proc Natl Acad Sci USA 88:7031-7035, 1991.

19. Lowndes JM, Gupta SK, Osawa S, Johnson GL: GTPase-deficient G alpha i2 oncogene
gip2 inhibits adenylylcyclase and attenuates receptor-stimulated phospholipase A2
activity. J Bioi Chern 266:14193-14197,1991.

20. Kavanaugh WM, Williams LT, Ives HE, Coughlin SR: Serotonin-induced
deoxyribonucleic acid synthesis in vascular smooth muscle cells involves a novel, pertussis
toxin-sensitive pathway. Mol Endocrinol 2:599-605, 1988.

21. Seuwen K, Magnaldo I, Pouyssegur J: Serotonin stimulates DNA synthesis in fibroblasts
acting through 5-HTlB receptors coupled to a Gi-protein. Nature 335:254-256, 1988.

22. Millar JB, Rozengurt E: Arachidonic acid release by bombesin. A novel postreceptor
target for heterologous mitogenic desensitization. J Bioi Chern 265:19973-19979, 1990.

23. Higashijima T, Burnier J, Ross EM: Regulation of Gi and Go by mastoparan, related
amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of
activity. J Bioi Chern 265:14176-14186,1990.

24. Weingarten R, Ransnas L, Mueller H, Sklar LA, Bokoch GM: Mastoparan interacts with
the carboxyl terminus of the alpha subunit of Gi. J Bioi Chern 265: 11044-11049, 1990.

25. Gil J, Higgins T, Rozengurt E: Mastoparan, a novel mitogen for Swiss 3T3 cells,
stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate
accumulation. J Cell Bioi 113:943-950, 1991.

26. Takuwa N, Iwamoto A, Kumada M, Yamashita K, Takuwa Y: Rolc of Ca2+ influx in
bombesin-induced mitogenesis in S\',iss 3T3 fibroblasts. J Bioi Chern 266:1403-1409, 1991.

27. Takuwa N, Kumada M, Yamashita K, Takuwa Y: Mechanisms of bombesin-induced
arachidonate mobilization in Swiss 3T3 fibroblasts. J Bioi Chern 266: 14237-14243, 1991.

28. Clark JO, Milona N, Knopf JL: Purification of a 110-kilodalton cytosolic phospholipase
A2 from the human monocytic cell line U937. Proc Natl Acad Sci USA 87:7708-7712,
1990.

29. Kramer RM, Roberts EF, Manella J, Putnam JE: The Ca2(+)-sensitive cytosolic
phospholipase A2 is a 100-kDa protein in human monoblast U937 cells. J Bioi Chern
266:5268-5272, 1991.

30. Clark JO, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL:
A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent
translocation domain with homology to PKC and GAP. Cell 65:1043-1051, 1991.

31. Sharp JD, White OL, Chiou XG, Goodson T, Gamboa GC, McClure D, Burgett S,
Hoskins J, Skatrud PL, Sportsman JR, Becker GW, Kang LH, Roberts EF, Kramer RM:
Molecular cloning and expression of human Ca(2+)-sensitive cytosolic phospholipase A2.
J Bioi Chern 266:14850-14853, 1991.

32. Channon JY, Leslie CC: A calcium-dependent mechanism for associating a soluble
arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line
RAW 264.7. J Bioi Chern 265:5409-5413,1990.

33. Leslie CC, Channon JY: Anionic phospholipids stimulate an arachidonoyl-hydrolyzing
phospholipase A2 from macrophages and reduce the calcium requirement for activity.
Biochim Biophys Acta 1045:261-270, 1990.

34. Lester OS, Collin C, Etcheberrigaray R, Alkon D: Arachidonic acid and diacylglycerol
act synergistically to activate protein kinase C in vitro and in vivo. Biochem Biophys Res
Commun 179:1522-1528, 1991.

35. Shinomura T, Asaoka Y, Oka M, Yoshida K, Nishizuka Y: Synergistic action of
diacylglycerol and unsaturated fatty acid for protein kinase C activation: Its possible
implications. Ptoc Nat! Acad Sci USA 88:5149-5153, 1991.

36. Frye RA, Holz RW: Arachidonic acid release and catecholamine secretion from digitonin
treated chromaffin cells: Effects of micromolar calcium, phorbol ester, and protein

293



alkylating agents. J Neurochem 44:265-273, 1985.
37. Halenda SP, Banga HS, Zavoico GB, Lau LF, Feinstein MB: Synergistic release of
arachidonic acid from platelets by activators of protein kinase C and Ca2+ ionophores.
Evidence for the role of protein phosphorylation in the activation of phospholipase A2
and independence from the Na+ /H+ exchanger. Biochemistry 28:7356-7363, 1989.

38. Weiss BA, Insel PA: Intracellular Ca2+ and protein kinase C interact to regulate alpha
l-adrenergic- and bradykinin receptor-stimulated phospholipase A2 activation in Madin
Darby canine kidney cells. J Bioi Chem 266:2126-2133, 1991.

39. Leslie CC: Kinetic properties of a high molecular mass arachidonoyl-hydrolyzing
phospholipase A2 that exhibits Iysophospholipase activity. J Bioi Chem 266: 11366-11371,
1991.

40. Brown AM, Birnbaumer L: Ionic channels and their regulation by G protein subunits.
Annu Rev Physiol 52:197-213, 1990.

41. Exton JH: Signaling through phosphatidylcholine breakdown. J Bioi Chem 265:1-4, 1990.
42. Martinson EA, Trilivas I, Brown JH: Rapid protein kinase Codependent activation of
phospholipase D leads to delayed 1,2-diglyceride accumulation. J Bioi Chem 265:22282
22287, 1990.

43. Sandmann J, Wurtman RJ: Stimulation of phospholipase D activity in human
neuroblastoma (LA-N-2) cells by activation of muscarinic acetylcholine receptors or by
phorbol esters: Relationship to phosphoinositide turnover. J Neurochem 56: 1312-1319,
1991.

44. Van der Meulen J, Haslam RJ: Phorbol ester treatment of intact rabbit platelets greatly
enhances both the basal and guanosine 5'-[gamma-thioJtriphosphate-stimulated
phospholipase D activities of isolated platelet membranes. Physiological activation of
phospholipase 0 may be secondary to activation of phospholipase C. Biochem J 271 :693
700,1990.

45. Van Blitterswijk WJ, Hilkmann H, de Widt J, van der Bend RL: Phospholipid
metabolism in bradykinin-stimulated human fibroblasts. n. Phosphatidylcholine
breakdown by phospholipases C and 0; involvement of protein kinase C. J Bioi Chem
266: 10344-10350, 1991.

46. Pai JK, Pachter JA, Weinstein IB, Bishop WR: Overexpression of protein kinase C beta I
enhances phospholipase 0 activity and diacylglycerol formation in phorbol ester
stimulated rat fibroblasts. Proc Natl Acad Sci USA 88:598-602, 1991.

47. Huckle WR, Prokop CA, Dy RC, Herman B, Earp S: Angiotensin II stimulates protein
tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Bioi 10:6290-6298,
1990.

48. Golden A, Brugge JS: Thrombin treatment induces rapid changes in tyrosine
phosphorylation in platelets. Proc Natl Acad Sci USA 86:901-905, 1989.

49. Rossomando AJ, Payne OM, Weber MJ, Sturgill TW: Evidence that pp42, a major
tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc
Natl Acad Sci USA 86:6940-6943, 1989.

50. Zachary I, Gil J, Lehmann W, Sinnett SJ, Rozengurt E: Bombesin, vasopressin, and
endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl
Acad Sci USA 88:4577-4581, 1991.

51. Seger R, Ahn NG, Boulton TG, Yancopoulos GO, Panayotatos N, Radziejewska E,
Ericsson L, Bratlien RL, Cobb MH, Krebs EG: Microtubule-associated protein 2 kinases,
ERKI and ERK2, undergo autophosphorylation on both tyrosine and threonine residues:
Implications for their mechanism of activation. Proc Natl Acad Sci USA 88:6142-6146,
1991.

52. L'Allemain G, Pouyssegur J, Weber MJ: p42/mitogen-activated protein kinase as a
converging target for different growth factor signaling pathways: Use of pertussis toxin as
a discriminating factor. Cell Regul 2:675-684, 1991.

53. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity.
Cell 61 :203-212, 1990.

294



54. Bazan JF: Haemopoietic receptors and helical cytokines. Immunol Today 11:350-354,
1990.

55. Bazan JF: Structural design and molecular evolution of a cytokine receptor superfamily.
Proc Natl Acad Sci USA 87:6934-6938, 1990.

56. Bazan JF: Neuropoietic cytokines in the hematopoietic fold. Neuron 7:197-208, 1991.
57. Cosman D, Lyman SD, Idzerda RL, Beckmann MP, Park LS, Goodwin RG, March CJ:
A new cytokine receptor superfamily. Trends Biochem Sci 15:265-270, 1990.

58. Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King J, Price V, Cosman
D, Beckman MP: Leukemia inhibitory factor receptor is structurally related to the IL-6
signal transducer, gp 130. EMBO J 10:2839-2848, 1991.

59. Nicola NA, Metcalf D: Subunit promiscuity among hematopoietic growth factor
receptors. Cell 67:1-4, 1991.

60. Souyri M, Vigon I, Penciolelli JF, Heard JM, Tambourin P, Wendling F: A putative
truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus
immortalizes hematopoietic progenitors. Cell 63:1137-1147, 1990.

61. Carter-Su C, Stubbart JR, Wang XY, Stred SE, Argetsinger LS, Shafer JA:
Phosphorylation of highly purified growth hormone receptors by a growth hormone
receptor-associated tyrosine kinase. J Bioi Chern 264:18654-18661,1989.

62. Fung MR, Scearce RM, Hoffman JA, Peffer NJ, Hammes SR, Hosking 18, Schmandt R,
Kuziel WA, Haynes BF, Mills GB, Greene WC: A tyrosine kinase physically associates
with the beta-subunit of the human IL-2 receptor. J Immunol 147:1253-1260, 1991.

63. Murata Y, Yamaguchi N, Hitoshi Y, Tominaga A, Takatsu K: Interleukin 5 and
interleukin 3 induce serine and tyrosine phosphorylations of several cellular proteins in an
interleukin 5-dependent cell line. Biochem Biophys Res Commun 173:1102-1108, 1990.

64. Kanakura Y, Druker B, Cannistra SA, Furukawa Y, Torimoto Y, Griffin JD: Signal
transduction of the human granulocyte-macrophage colony-stimulating factor and
interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic
proteins. Blood 76:706-715, 1990.

65. Isfort RJ, Ihle IN: Multiple hematopoietic growth factors signal through tyrosine
phosphorylation. Growth Factors 2:213-220, 1990.

66. QueUe FW, Wojchowski DM: Proliferative action of erythropoietin is associated with
rapid protein tyrosine phosphorylation in responsive B6SUt.EP cells. J Bioi Chern
266:609-614, 1991.

67. Hatakeyama M, Kono T, Kobayashi N, Kawahara A, Levin SD, Perlmutter RM,
Taniguchi T: Interaction of the IL-2 receptor with the src-family kinase p561ck:
Identification of novel intermolecular association. Science 252:1523-1528, 1991.

68. Horak 10, Gress RE, Lucas PJ, Horak EM, Waldmann TA, Bolen JB: T-lymphocyte
interleukin 2-dependent tyrosine protein kinase signal transduction involves the activation
of p561ck. Proc Nat! Acad Sci USA 88: 1996-2000, 1991.

69. Fukunaga R, Ishizaka-Ikeda E, Pan C-X, Seto Y, Nagata S: Functional domains of the
granulocyte colony-stimulating factor receptor. EMBO J 10:2855-2865, 1991.

70. Murakami M, Narazaki M, Hibi M, Yawata H, Yasukawa K, Hamaguchi M, Taga T,
Kishimoto T: Critical cytoplasmic region of the interleukin 6 signal transducer gp 130 is
conserved in the cytokine receptor family. Proc Nat! Acad Sci USA 88:11349-11353,
1991.

71. Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T: Src
homology region 2 domains direct protein-protein interactions in signal transduction. Proc
Natl Acad Sci USA 87:8622-8626, 1990.

72. Hunter T: Cooperation between oncogenes. Cell 64:249-270, 1991.
73. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S:
Oncogenes and signal transduction. Cell 64:281-302, 1991.

74. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: Elements
that control interactions of cytoplasmic signaling proteins. Science 252:668-674, 1991.

75. Margolis B, Li N, Koch A, Mohammadi M, Hurwitz DR, Zilberstein A, Ullrich A,

295



Pawson T, Schlessinger J: The tyrosine phosphorylated carboxyterminus of the EGF
receptor is a binding site for GAP and PLC-gamma. Embo J 9:4375-4380, 1990.

76. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T: Binding of SH2 domains
of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science
250:979-982, 1990.

77. Hartmann T, Seuwen K, Roussel MF, Sherr CJ, Pouyssegur J: Functional expression of
the human receptor for colony-stimulating factor 1 (CSF-l) in hamster fibroblasts: CSF-I
stimulates Na+ /H+ exchange and DNA-synthesis in the absence of phosphoinositide
breakdown. Growth Factors 2:289-300, 1990.

78. Margolis B, Zilberstein A, Franks C, Felder S, Kremer S, Ullrich A, Rhee SG, Skorecki
K, Schlessinger J: Effect of phospholipase C-gamma overexpression on PDGF-induced
second messengers and mitogenesis. Science 248:607-610, 1990.

79. Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, Cantley L, Roberts TM:
Common elements in growth factor stimulation and oncogenic transformation: 85 kd
phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021-1029, 1987.

80. Coughlin SR, Escobedo JA, Williams LT: Role of phosphatidylinositol kinase in PDGF
receptor signal transduction. Science 243:1191-1194,1989.

81. Yu JC, Heidaran MA, Pierce JH, Gutkind JS, Lombardi D, Ruggiero M, Aaronson SA:
Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert
domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without
affecting mitogenic or chemotactic signal transduction. Mol Cell Bioi 11:3780-3785, 1991.

82. Smith MR, DeGudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral
oncogene transformation. Nature 320:540-543, 1986.

83. Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW: The let-23 gene necessary
for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor
subfamily. Nature 348:693-699, 1990.

84. Simon MA, Bowtell DDL, Dodson GS, Laverty TR, Rubin GM: Rasl and a putative
guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless
protein tyrosine kinase. Cell 67:701-716, 1991.

85. Fortini ME, Simon MA, Rubin GM: Signalling by the sevenless protein tyrosine kinase is
mimicked by Rasl activation. Nature 355:559-561, 1992.

86. Birchmeier C, Broek D, Wigler M: ras proteins can induce meiosis in Xenopus oocytes.
Cell 43:615-621, 1985.

87. Korn LJ, Siebel CW, McCormick F, Roth RA: Ras p21 as a potential mediator of insulin
action in Xenopus oocytes. Science 236:840-843, 1987.

88. Gautier J, Norbury C, Lohka M, Nurse P, Maller J: Purified maturation-promoting factor
contains the product of a Xenopus homolog of the fission yeast cell cycle control gene
cdc2+. Cell 54:433-439, 1988.

89. Erikson E, Maller JL: Biochemical characterization of the p34cdc2 protein kinase
component of purified maturation-promoting factor from Xenopus eggs. J Bioi Chem
264:19577-19582, 1989.

90. Lacal JC: Diacylglycerol production in Xenopus laevis oocytes after microinjection of
p21ras proteins is a consequence of activation of phosphatidylcholine metabolism. Mol
Cell Bioi 10:333-340, 1990.

91. Garcia de Herreros A, Dominguez I, Diaz-Meco MT, Graziani G, Cornett ME, Guddal
PH, Johansen T, Moscat J: Requirement of phospholipase C-catalyzed hydrolysis of
phosphatidylcholine for maturation of Xenopus laevis oocytes in response to insulin and
ras p21. J Bioi Chem 266:6825-6829, 1991.

92. Dominguez I, Marshall MS, Gibbs lB, Garcia de Herreros A, Cornet ME, Graziani G,
Diaz-Meco MT, Johansen T. McCormick F. Moscat J: Role of GTPase activating protein
in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C. EMBO
J. 10:3215-3220, 1991.

93. Clark MA, Shorr RG, Bomalaski JS: Antibodies prepared to Bacillus cereus

296



phospholipase C crossreact with a phosphatidylcholine preferring phospholipase C in
mammalian cells. Biochem Biophys Res Commun 140:114-119, 1986.

94. Lopez-Barahona M, Kaplan PL. Cornet ME, Diaz-Meco MT, Larrodera P, Diaz-Laviada
I, Municio AM, Moscat J: Kinetic evidence of a rapid activation of phosphatidylcholine
hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic
cascade. J Bioi Chern 265:9022-9026, 1990.

95. Besterman JM, Duronio V, Cuatrecasas P: Rapid formation of diacylglycerol from
phosphatidylcholine: A pathway for generation of a second messenger. Proc Natl Acad Sci
USA 83:6785-6789, 1986.

96. Larrodera P, Cornet ME, Diaz-Meco MT, Lopez-Barahona M, Diaz-Laviada I, Guddal
PH, Johansen T, Moscat J: Phospholipase C-mediated hydrolysis of phosphatidylcholine is
an important step in PDGF-stimulated DNA synthesis. Cell 61:1113-1120, 1990.

97. Wright TM, Shin HS, Raben OM: Sustained increase in 1,2-diacylglycerol precedes DNA
synthesis in epidermal-growth-factor-stimulated fibroblasts. Evidence for stimulated
phosphatidylcholine hydrolysis. Biochem J 267:501-507, 1990.

98. Fisher GJ, Henderson PA, Voorhees JJ, Baldassare JJ: Epidermal growth factor-induced
hydrolysis of phosphatidylcholine by phospholipase 0 and phospholipase C in human
dermal fibroblasts. J Cell PhysioI146:309-317, 1991.

99. Imamura K, Dianoux A, Nakamura T, Kufe 0: Colony-stimulating factor I activates
protein kinase C in human monocytes. EMBO J 9:2423-2428, 1990.

100. Choudhury GG, Sylvia VL, Sakaguchi AY: Activation of a phosphatidylcholine-specific
phospholipase C by colony stimulating factor 1 receptor requires tyrosine phosphorylation
and a guanine nucleotide-binding protein. J Bioi Chern 266:23147-23151, 1991.

101. Diaz LI, Larrodera P, Diaz MM, Cornet ME, Guddal PH, Johansen T, Moscat J:
Evidence for a role of phosphatidylcholine-hydrolysing phospholipase C in the regulation
of protein kinase C by ras and src oncogenes. EMBO J 9:3907-3912, 1990.

102. Ryves WJ, Evans AT, Olivier AR, Parket PJ, Evans FJ: Activation of the PKC-isotypes
alpha, beta .. gamma, delta and epsilon by phorbol esters of different biological activites.
FEBS Lett 288:5-9, 1991.

103. Kaibuchi K, Fukumoto Y, Oku N, Takai Y, Arai K, Muramatsu M: Molecular genetic
analysis of the regulatory and catalytic domains of protein kinase C. J Bioi Chern
264:13489-13496, 1989.

104. Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, Nishizuka Y: Phorbol ester
binding to protein kinase C requires a cysteine-rich zinc-finger-Iike sequence. Proc Nat!
Acad Sci USA 86:4868-4871, 1989.

105. Fisch TM, Prywes R, Roeder RG: c-fos sequence necessary for basal expression and
induction by epidermal growth factor, 12-0-tetradecanoyl phorbol-13-acetate and the
calcium ionophore. Mol Cell Bioi 7:3490-3502, 1987.

106. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T: Activation
of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its
DNA-binding activity. Cell 64:573-584, 1991.

107. Gilman MZ: The c-fos serum response element responds to protein kinase Codependent
and -independent signals but not to cyclic AMP. Genes Dev 2:394-402, 1988.

108. Gauthier RC, Fernandez A, Lamb NJ: ras-induced c-fos expression and proliferation in
living rat fibroblasts involves C-kinase activation and the serum response element
pathway. Embo J 9:171-180,1990.

109. Morris JD, Price B, Lloyd AC, Self AJ, Marshall CJ, Hall A: Scrape-loading of Swiss 3T3
cells with ras protein rapidly activates protein kinase C in the absence of phosphoinositide
hydrolysis. Oncogene 4:27-31, 1989.

110. Rodriguez PA, Rozengurt E: Disappearance of Ca2+-sensitive, phospholipid-dependent
protein kinase activity in phorbol ester-treated 3T3 cells. Biochem Biophys Res Commun
120:1053-1059, 1984.

111. Stumpo OJ, Blackshear PJ: Insulin and growth factor effects on c-fos expression in normal

297



and protein kinase C-deficient 3T3-Ll fibroblasts and adipocytes. Proc Natl Acad Sci USA
83:9453-9457, 1986.

112. Hoshi M, Nishida E, Sakai H: Characterization of a mitogen-activated, Ca2+ -sensitive
microtubule-associated protein-2 kinase. Eur J Biochem 184:477-486, 1989.

113. Anderson NG, Maller JL, Tonks NK, Sturgill TW: Requirement for integration of signals
from two distinct phosphorylation pathways for activation of MAP kinase. Nature
343:651-653, 1990.

114. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho
RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: A family of protein-serine/
threonine kinases that are activated and tyrosine phosphorylated in response to insulin
and NGF. Cell 65:663-675, 1991.

115. Ray LB, Sturgill TW: Rapid stimulation by insulin of a serine/threonine kinase in 3T3-Ll
adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Proc Natl Acad
Sci USA 84:1502-1506, 1987.

116. Hoshi M, Nishida E, Sakai H: Activation of a Ca2+-inhibitable protein kinase that
phosphorylates microtubule-associated protein 2 in vitro by growth factors, phorbol esters,
and serum in quiescent cultured human fibroblasts. J Bioi Chern 263:5396-5401, 1988.

117. Boulton TG, Gregory JS, Cobb MH: Purification and properties of extracellular signal
regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase.
Biochemistry 30:278-286, 1991.

118. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of
c-jun mediated by MAP kinases. Nature 353:670-674, 1991.

119. Leevers SJ, Marshall CJ: Activation of extracellular signal-regulated kinase, ERK 2, by
p21ras oncoprotein. EMBO J 11 :569-574, 1992.

120. Sturgill TW, Ray LB, Erikson E, Maller JL: Insulin-stimulated MAP-2 kinase
phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715-718, 1988.

121. Chung J, Chen RH, Blenis J: Coordinate regulation of pp90rsk and a distinct protein
serine/threonine kinase activity that phosphorylates recombinant pp90rsk in vitro. Mol
Cell Bioi 11:1868-1874, 1991.

122. Chung J, Pelech SL, Blenis J: Mitogen-activated Swiss mouse 3T3 RSK kinases I and II
are related to pp44mpk from sea star oocytes and participate in the regulation of pp90rsk
activity. Proc Natl Acad Sci USA 88:4981-4985,1991.

123. Chen RH, Chung J, Blenis J: Regulation of pp90rsk phosphorylation and S6
phosphotransferase activity in Swiss 3T3 cells by growth factor-, phorbol estero, and cyclic
AMP-mediated signal transduction. Mol Cell Bioi 11: 1861-1867, 1991.

124. Anderson NG, Li P, Marsden LA, Williams N, Roberts TM, Sturgill TW: Raf-l is a
potential substrate for mitogen-activated protein kinase in vivo. Biochem J 277:573-576,
1991.

125. Lee R-M, Cobb MH, Blackshear PJ: Evidence that extracellular signal-regulated kinases
are the insulin-activated Raf-l kinase kinases. J Bioi Chern 267:1088- 1092, 1992.

126. Baichwal VR, Tjian R: Control of c-Jun activity by interaction of a cell-specific inhibitor
with regulatory domain delta: Differences between v- and c-Jun. Cell 63:815-825, 1990.

127. Baichwal VR, Park A, Tjian R: v-Src and EJ Ras alleviate repression of c-Jun by a
cell-specific inhibitor. Nature 352:165-168,1991.

128. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M: Oncogenic and transcriptional
cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature
354:494-496, 1991.

129. Rapp UR: Role of Raf-l serine/threonine protein kinase in growth factor signal
transduction. Oncogene 6:495-500, 1991.

130. Beck TW, Huleihel M, Gunnell M, Bonner TI, Rapp UR: The complete coding sequence
of the human A-raf-l oncogene and transforming activity of a human A-raf carrying
retrovirus. Nucleic Acids'Res 15:595-609, 1987.

131. Kaibuchi K, Fukumoto Y, Oku N, Hori Y, Yamamoto T, Toyoshima K, Takai Y:
Activation of the serum response element and 12-0-tetradecanoylphorbol-13-acetate

298



response element by the activated c-raf-l protein in a manner independent of protein
kinase C. J Bioi Chern 264:20855-20858, 1989.

132. Jamal S, Ziff E: Transactivation of c-fos and beta-actin genes by raf as a step in early
response to transmembrane signals. Nature 344:463-466, 1990.

133. Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P, Pawson T, Rapp
UR: Mutational activation of c-raf-l and definition of the minimal transforming sequence.
Mol Cell Bioi 10:2503-2512, 1990.

134. Morrison DK, Kaplan DR, Rapp U, Roberts TM: Signal transduction from membrane to
cytoplasm: Growth factors and membrane-bound oncogene products increase Raf-l
phosphorylation and associated protein kinase activity. Proc Natl Acad Sci USA 85:8855
8859,1988.

135. Carroll MP, Clark LI, Rapp UR, May WS: Interleukin-3 and granulocyte-macrophage
colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf.
J Bioi Chern 265:19812-19817,1990.

136. Carroll MP, Spivak JL, McMahon M, Weich N, Rapp UR, May WS: Erythropoietin
induces Raf-l activation and Raf-l is required for erythropoietin-mediated proliferation.
J Bioi Chern 266:14964-14969, 1991.

137. Baccarini M, Sabatini DM, App H, Rapp UR, Stanley ER: Colony stimulating factor-l
(CSF-I) stimulates temperature dependent phosphorylation and activation of the RAF-l
proto-oncogene product. EMBO J 9:3649-3657,1990.

138. Lee RM, Rapp UR, Blackshear PJ: Evidence for one or more Raf-l kinase kinase(s)
activated by insulin and polypeptide growth factors. J Bioi Chern 266:10351-10357,1991.

139. Qureshi SA, Rim M, Bruder J, Kolch W, Rapp U, Sukhatme VP, Foster DA: An
inhibitory mutant of c-Raf-l blocks v-Src-induced activation of the Egr-l promoter. J Bioi
Chern 266:20594-20597, 1991.

140. Kolch W, Heidecker G, Lloyd P, Rapp UR: Raf-l protein kinase is required for growth of
induced NIH/3T3 cells. Nature 349:426-428, 1991.

299



15. Fos and Jun: Inducible transcription factors
regulating growth of normal and transformed cells

Jeffrey Holt

Introduction

Although the study of oncogenes has provided some useful insights into
cancer mechanisms, the most important benefit from oncogene research has
been the delineation of the growth factor response pathway and molecular
characterization of important cellular processes. The nuclear proto
oncogenes c-fos and c-jun have been particularly useful in this regard. Their
study has provided important information about gene regulation in response
to growth factors, regulation of immediate early genes, and the function
and interaction of transcription factors. This chapter will describe (1) the
expression and function of these cellular proto-oncogenes as 'immediate
early' genes, (2) interactions between Fos, Jun, and other transcription
factors, (3) distinct transcriptional effects of Fos, and (4) how mutation
and/or overexpression of these oncogenes alters their transcriptional effects
and carcinogenic potential, and (5) the potential role of these proteins in
human tumorigenesis.
The Fos oncogene was discovered as the cellular homologue of three

distinct tumor viruses derived from mice and chickens [1-4]. Both the
normal and viral Fos transforming proteins complex with a 39-kD protein
[5,6], which was ultimately shown to be the cellular homologue (c-jun) of an
avian tumor virus oncogene v-jun [7]. The fact that these proto-oncogenes
form a stable complex is of great importance; it allows these transcription
factors to heterodimerize and activate transcription of specific genes. We
now know that these genes represent prototypes for a larger gene family
that consists of multiple genes that have different expression patterns and
transcriptional properties [8]. This gene family is called the b-ZIP or basic
zipper family of transcription factors and includes Fos proteins (c-fos,
Fosb, Fra-l, Fra-2) [9-13], Jun proteins (c-jun, JunB, JunO) [14], and a
number of CREB/ATF proteins [15-17]. These proteins can heterodimerize
with each other in specific combinations, resulting in transcription factors
that activate two types of TPA responsive elements: TGAC/GTCA and
TGACGTCA [14,17-19]. The members of the Fos subfamily are unique
because they can only form heterodimers with Jun or ATF proteins because
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their structure prevents functional homodimers [20,21]. The physical struc
ture of the ancestral basic zipper protein GCN4 has been defined by nuclear
magnetic resonance [reviewed in 21].

Fos and Jun are immediate early genes

Growth factors induce quiescent fibroblasts to proliferate by a series of
receptor-mediated events, which ultimately require new transcription and
protein synthesis [22-24]. However, many of the earliest transcriptional
responses to growth factors will occur even in the presence of protein
synthesis inhibitors [23,24]. A subset of these growth-factor-inducible genes
have been termed immediate early genes by virtue of similarities in gene
regulation with certain DNA tumor virus genes, notably, rapid but transient
transcriptional induction [22,24-26]. The genes c-fos and c-myc were the
first to be identified as immediate early genes after detailed analysis of their
mRNA expression patterns. The transient induction of c-fos expression is
mediated by multiple transacting factors, which bind to the c-fos promoter

PROTEIN STRUCTURE:

C-£08

c-jun,---..r------,

DNA Leucine
Binding Repeat

DNA BINDING

Figure 1. DNA binding by c%~~s and c-jun proteins. The upper panel shows the protein domains
of the Fos and Jun proteins, including the DNA binding region and leucine repeat region
involved in dimerization of the proteins. The lower panel shows how a Fos-Jun heterodimer
presumably binds to its DNA recognition sequence.
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and mediate transcriptional activation and repression by mechanisms that
are not completely understood [12,27,28]. Immediate early genes have been
identified by two primary methods: (1) characterization of proto-oncogene
expression patterns (e.g., c%~~s) and (2) deliberate cloning of these genes
by differential cDNA cloning stratagies [24,25]. The c-jun gene is also
rapidly and transiently induced by growth factors through a combination of
transcriptional and posttranscriptional mechanisms [reviewed in 3,20].
Although much of the work on immediate early gene induction has

employed cultured fibroblasts as a model system, members of the Fos and
lun gene families are rapidly induced in a number of cells and tissues. The c
los mRNA and its 55-kD nuclear phosphoprotein (Fos) are rapidly but
transiently induced by both growth factors and differentiating agents [22,
29-31]. Studies by our laboratory and others have demonstrated that c%~~s
expression is required for fibroblast proliferation and for growth factor
mediated induction of DNA synthesis [32-39]. A complex association
between differentiation and c%~~s expression has been inferred in studies
with PC12 pheochromocytoma cells and HL60 leukemia cells [3]. Expres
sion of Fos- and lun-related proteins is differentially regulated by a variety
of agents and stimuli, providing further complexity to the study of immediate
early gene action. Finally, Fos proteins are induced during a variety of
neural events, including seizures, sensory stimulation, cocaine administra
tion, and circadian responses to light [31]. Induction of Fos and lun proteins
in these diverse biological systems confounds attempts to reconcile the role
of these immediate early gene products to a single physiologic function or
transcriptional program.

Fos-Jun complexes and AP-l activity

Studies of the role of Fos and lun proteins during cell growth and dif
ferentiation were greatly facilitated by the discovery that lun was a com
ponent of purified AP-1 preparations [6,11 ,40-43]' AP-1 represented a
previously identified transcription factor that mediates transcriptional
induction by tumor promoters [44,45] and has a similar DNA recognition
sequence as the homologous yeast transcription factor GCN4 [46,47]. This
AP-l recognition site is present in the adipocyte protein 2 (aP2) promoter,
which contains c%~~s protein in its transcriptional complex [43,48]. Com
parison of the protein sequences of c%~~s and c-jun proteins with GCN4
revealed significant sequence homology [8]. The sequence homology of
GCN4, AP-l, and aP2 DNA binding sites suggested that Fos and lun
proteins might bind to these DNA sequences. The Fos-Iun heterodimer can
bind TRE (TPA-reponsive element: consensus sequence TGAc/gTCA, also
called AP-1 recognition site) DNA sequences and activate transcription
of target genes that contain these DNA sequences [35,36,39,42,49-51]'
Comparison of the protein sequences of Fos and lun family proteins with
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the yeast transcriptional activator GCN4 revealed a repeated leucine heptad
motif, which was initially termed the leucine zipper, but is now presumed to
represent a coiled-coil interaction [52]. This leucine motif is required for
heterodimerization of Fos and lun proteins, and consequent DNA binding.
In vitro synthesis of Fos and lun proteins in reticulocyte Iysates demonstrated
that Fos could only bind DNA (the AP-1 binding site or TRE: consensus
TGAGTCA) following heterodimerization with lun [14,19,42,53-58]. lun
can bind DNA as a homodimer, but heterodimarization with Fos may
increase the affinity of this binding for the AP-1 DNA binding site. Muta
tions in the leucine motif of Fos disrupt dimerization and DNA binding,
while mutations in the basic alpha-helical region disrupt DNA binding but
permit lun association [50,55,59-62]. The structure of these functional
domains within the Fos and lun proteins is illustrated in Fig. 1.
The model that the alpha-helical domain controls DNA binding and the

leucine repeat controls Fos-lun heterodimerization is extremely important,
but these is evidence that other factors are involved: (1) a sulfhydryl reduc
tion activity apparently modifies cysteine residues in Fos and/or lun proteins
prior to DNA binding [20,63]; (2) an inhibitory factor may bind to a region
of lun protein [64,65]; (3) accessory molecules have been described that
inhibit AP-1 activity [66], further complicating the regulatory possibilities.
Fos protein has been demonstrated to participate in complex interactions
with other transcription factors. Several laboratories have demonstrated
that Fos and lun proteins may interact with steroid hormone receptors to
increase the flexibility of transcriptional responses [67-69]. These studies
taken together provide support for the idea that Fos protein may function as
a modulator of other transcriptional programs by interacting with a variety
of transcription factors.

Transrepression by Fos protein

The rapid but transient induction of the c-fos gene is mediated by multiple
transacting factors that bind to the c-fos promoter and mediate transcrip
tional activation and repression by complex mechanisms that are not yet
completely understood. Inhibitors of protein synthesis, such as cycloheximide,
produce a sustained induction of immediate early genes (including c-fos), in
marked contrast to the usual transient induction observed in untreated
cells [23,24]. Although numerous models could be proposed to explain the
transient nature of immediate early gene induction and its prolongation and
enhancement by cycloheximide, a popular notion suggests that one or more
of the immediate early gene products prevents sustained transcription of
itself and/or similar genes [12]. Two distinct lines of evidence indicate that
Fos protein autoregulates its own production:
1. Overexpression of Fos inhibits transcription mediated by the SRE (serum
response element) within the c-fos and Egr-1 promoters [12,70-73]
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2. Underexpression of Fos employing antisense RNA methods activates and
prolongs transcription of the c-fos promoter at the SRE and adjacent
sites [74].
The c-fos promoter element(s) responsible for autoregulation is in some

dispute, with different studies proposing either classical Fos-Jun binding
sites, AP-l/ATF [12,75], or the serum response element, SRE [71,72,74,
76,77). The serum response element was identified by mutational analysis
of the c-fos promoter and is sufficient to confer serum induction upon a
heterologous gene [78,79]. The serum response element represents the bind
ing site for serum response factors, nuclear protein(s) whose binding is
essential for growth factor induction of the c-fos gene [27,58,72,76,80). In
addition to the serum response factor, other nuclear proteins have been
identified that interact with adjacent upstream promoter elements [12,81).
The in vivo significance of these adjacent elements is unclear because the 14
bp inner core of the SRE is sufficient for both induction and repression of c
fos transcription [77).
Which functional domains of Fos are necessary for transrepression?

Although the helical DNA binding domain is dispensable, studies differ on
whether the leucine zipper domain is required. Fos mutants with large
deletions or major changes in the leucine repeat domain cannot repress
[72]. However, a small mutation within the leucine heptad repeat of Fos
eliminates Fos-Jun association with little effect on SRE transrepression [70].
This suggests that SRE transrepression by Fos does not require hetero
dimerization with Jun or another protein capable of binding DNA. The role
of the C-terminus in transrepression is also in some dispute. Deletion of
C-terminal amino acid sequences have little effect on transrepression; only
insertions within this region can alter the protein's ability to transrepress
[47,71]. However, studies involving site-directed mutation of the c-fos pro
tein indicate that phosphorylation of the Fos C-terminus is apparently
required for transrepression, although the introduction of net negative
charges may offset this requirement [73].

Differential transcriptional regulation by Fos and Jun family members

Fos-Jun transcriptional response is futher complicated by the presence
of specific transcriptional inhibitors, including members of the Fos and
Jun families. The JunB protein can only bind multimerized AP-1 sites
and apparently functions as a negative regulator of Fos/Jun transcriptional
activity [82,83]. The FosB gene codes for two distinct proteins, one of which
is C-terminally truncated (AFosB) and functions as an inhibitor of Fos/
Jun transcriptional activity [13,19], although this result may be considered
controversial [10]. Other inhibitors of AP-1 activity have also been identified,
although the corresponding genes have not yet been cloned [65,66).
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Figure 2. Structural differences between coone and v-one proteins. The upper panel shows the
structural differences between the c%~~s proto-oncogene and two of its transforming viral
homologues: FBR and FBJ. The open boxes show regions of unique viral sequences that are
not present in c%~~s: FBR differs at both the N- and C-termini, including its N-terminal
myristylation (denoted by the zigzag line); FBJ differs due to a C-terminal frameshifl.
Differences between c-jun and v-jun are shown in the lower panel.

Mechanisms of tumorigensis by v-los and v-jun

Both c-fos and c-jun genes can transform at low efficiencies but their mutant
counterparts generally have increased transformation potential [84,85].
Because v-fos and v-jun are much more effective transforming genes than
their corresponding proto-oncogenes, genetic methods have been employed
to determine the functional domains and molecular mechanisms responsible
for transformation by v-fos and v-jun. The structures of the three v-fos and
the only v-jun transforming protein are illustrated in Fig. 2. FBR protein
differs from the others because it can both transform and immortalize
primary cells. The FBJ vias protein binds AP-l DNA sites and activates
transcription at the TRE but cannot transrepress the SRE within the c-fos
promoter [54,71]. The molecular functions of the FBR v-fos protein are
more complex. FBR v-fos protein is myristylated as a consequence of the
fusion of the viral gag sequence to mouse fos sequences. This myristylation
has previously been shown to inhibit TRE transactivation by FBR (gag-fos)
protein [54] and SRE transrepression by FBR protein [71]. Transfer of
myristylation sequences to c-fos is sufficient to inhibit TRE transactivation
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but is not sufficient to inhibit transrepression by Fos, suggesting a functional
difference between the FBR and Fos C termini. Analysis of Fos mutants and
Fos/FBR chimeras indicated that the FBR C terminus encodes a novel
transrepressor domain, which is functionally competent but inhibited by
N-myristylation [71]. These results indicate that both N-terminal and C
terminal mutations contribute to the transrepressional properties of FBR
v-fos protein. Although clear differences in transcriptional regulation are
apparent when v-fos proteins are compared with c-fos protein [54,71,86], it
is not yet clear whether these differences contribute to transformation by
v-fos.

V-jun differs structurally and functionally from c-jun primarily because
v-jun lacks 27 amino acids, which represent the proposed binding site for a
tissue-specific inhibitor of AP-l activity (Fig. 2). The loss of these regulatory
sequences may lead to uncontrolled transcriptional activity by v-jun [65].
Although these differences in transcriptional properties between c-one
and v-one are intriguing, there is still no direct evidence that v-jun or
v-fos proteins transform as a consequence of alterations in cellular AP-l
transcription.

Possible role of Fos and Jun in human tumors

Although mutations in Fos or lun genes have not been identified in human
cancer cells, there is accumulating evidence that these transcription factors
may serve as nuclear targets for the effects of cytoplasmic oncogenes,
such as ras mutations. The concept of cooperating oncogenes developed
from the observation that cytoplasmic 'transforming' oncogenes, such
as v-sre or v-ras, could not transform primary cells in the absence of
'immortalizing' nuclear oncogenes. Recent studies indicate that expression
of these 'transforming' oncogenes produces a site-specific dephosphorylation
of lun protein, resulting in an increased lun-mediated transactivation [29,
87]. Transforming oncogenes also produce an increased phosphorylation by
MAP kinase of distinct residues, providing another potential mechanism for
increased AP-l activity [88]. A third mechanism for this oncogene coopera
tion is provided by a report that transforming oncogenes alleviate repression
by an inhibitor of AP-l activity [64,65]. These studies indicate that trans
formation by cytoplasmic oncogenes may result in increased AP-l activity
and may presumably alter the expression of growth-regulatory genes.
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16. DNA binding by the Myc Oncoproteins

Gregory J. Kato, Daniel S. Wechsler, and Chi V. Dang

Introduction

The v-myc oncogene was first identified in 1977 as the transforming gene of
the MC29 avian retrovirus, which causes myelocytomatosis, carcinomas,
and sarcomas in chickens [1]. The c-myc proto-oncogene has since been
identified in a wide variety of organisms ranging from the invertebrate sea
star [2] to humans [3]. Deregulated expression of a normal c-myc gene leads
to malignant transformation in certain cell culture models, such as primary
rat embryo fibroblasts (REF; in which the coexpression of a second activated
oncogene, ras, is also required) [4,5], and in transgenic mice [6] and rabbits
[7]. Burkitt lymphoma, a naturally occurring human tumor, provides a
paradigm for the role of c-myc in malignant transformation. In this case,
chromosomal translocation of the c-myc locus to a location downstream of
the regulatory elements of the immunoglobulin heavy chain gene results in
deregulated expression of c-myc [8]. In contrast to many other oncogenes
that have activating mutations in the coding sequence, this deregulated
expression of a normal c-myc coding sequence appears to be responsible for
the oncogenic contribution of c-myc [4].
The product of the c-myc oncogene, with translation initiated at a con

ventional ATG start codon, is a 439 amino acid nuclear phosphoprotein with
a short half-life of 15-30 minutes [reviewed in 9]. Translation from an
upstream alternative CTG start codon gives rise to a 453 amino acid protein
[10]. It is widely expressed in virtually all proliferating tissues. In resting
cells in culture, c-Myc is expressed at low levels, but mitogenic stimulation
induces high levels of c-Myc expression within minutes. These properties
have suggested that c-Myc may serve as a master nuclear regulatory protein,
controlling subsequent cellular events necessary for proliferation. The hy
pothesis that c-Myc is involved in the regulation of growth-related genes has
led to the proposal that c-Myc might be a transcription regulatory factor
[reviewed in 11,12].
Unlike many other transcription factors, c-Myc contains two different

DNA binding motifs. The first, the basic/helix-loop-helix/leucine zipper
(bHLH-ZIP) motif [13], confers sequence-specific DNA recognition [14,15]
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and is critical for c-nyc function [16]. Highly homologous bHLH-ZIP motifs
are found in N-Myc, the product of the N-myc oncogene that is amplified
in human neuroblastoma cells [17,18]; L-Myc, the product of the L-myc
oncogene that is amplified in human small cell lung carcinoma cells [19]; v
Myc, the product of the avian retroviral homolog of chicken c-myc; and
Max, a protein that can heterodimerize with Myc family members [20]. The
second DNA binding motif, the 'SPXX-like' motif [21], provides nonspecific
DNA binding (NDB) function [22] and is not absolutely required for c-Myc
cotransforming activity [16]. This chapter will reinforce the concept that the
c-Myc protein is a potential transcription factor, with a detailed discussion of
DNA binding function by the Myc family of proteins.

Functional domains of c-Myc

A number .of specific properties have been shown to be associated with
various domains of the c-Myc protein (Fig. 1) [reviewed in 23]. Initial
studies mapped the regions of c-Myc that are necessary for its ability to
transform REF cells in cooperation with an activated ras gene [16,24]. These
experiments demonstrated that the amino-terminal 143 amino acids and
the carboxyl-terminal 89 amino acids are necessary for transformation.
Subsequent investigations have revealed a structure common to many trans
cription factors: a transcriptional activation domain (TAD) capable of
stimulating transcription of a target gene and a specific DNA-binding
domain, which confers specificity to transcription by mediating binding of
the protein to a specific DNA sequence, usually upstream of the target gene.
The TAD of c-Myc overlaps precisely with the amino terminal 143 amino

c-Myc

bKJI"NLS~
Max EJI~j*!e~ ~

o '"
to- '"

Figure I. Functional domains of c-Myc and Max. Each bar schematically depicts the
localization of various identified functional domains of the c-Myc and Max proteins. Numbers
indicate amino acid residues beginning at the amino terminus. TAD == transcriptional activation
domain; NOB == nonspecific DNA binding domain; b == basic region; HLH == helix-loop-helix;
Zip == leucine zipper; CK II == sites of phosphorylation by casein kinase II; NLS == nuclear
localization signal.
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acid transformation domain [25]. Similarly, the bHLH-ZIP motif and
sequence-specific DNA binding function coincide with the carboxyl-terminal
transformation domain (amino acids 350-439) [13-15]. These data suggest
that transcriptional activation and DNA binding are integral to the function
of c-Myc in malignant transformation.
There are other functional domains in the c-Myc protein. The nonspecific

DNA binding domain is located between amino acids 265 and 318 [22].
A nuclear localization signal (amino acids 320-328) efficiently targets the
protein into the nucleus [26]. Neither of these domains is strictly required
for transformation by c-Myc [16]. The potential significance of different
DNA binding functions with respect to transformation will be discussed
below.

Sequence-specific DNA binding by Myc and other bOLO proteins

Dimerization via the HLH and ZIP motifs

The bHLH motif is a hypothetical secondary protein structure, consisting of
(1) the basic region: an alpha-helix rich in basic amino acids, approximately
12 amino acids in length; (2) helix 1: an alpha-helix of approximately 12
residues with amphipathic characteristics, i.e., one face of the helix is pre
dominantly composed of hydrophobic residues and the opposite face is
composed primarily of hydrophilic residues; (3) the loop: a region without
definite structural characteristics, 10-12 residues in length; and (4) helix 2:
a second amphiphatic alpha-helix region [13]. The HLH motif serves as a
dimerization interface between two HLH proteins, most often two different
HLH proteins in a heterodimeric combination [27]. Biochemical and
physicochemical data suggest that the hydrophobic faces of the two helices
of each subunit interact in a parallel four-helix bundle to provide. a stable
protein-protein interaction [28,29]. Hypothetically, the paired basic regions
of the two proteins extend from the four-helix bundle in a forklike structure
(Fig. 2). The basic regions may then potentially lie in the major groove
of DNA, making specific contacts with DNA [30]. Dimerization through
the HLH is necessary for DNA sequence recognition and binding by the
adjacent basic region in this class of proteins [13].
A subset of the bHLH protein family is the bHLH-ZIP group of proteins,

which include the Myc and Max proteins, as well as the known transcrip
tional activators TFE3 [31], USF [32], and AP4 [33]. These proteins are
distinguished by a leucine zipper (ZIP), which directly extends from helix 2
of the bHLH. The leucine zipper is an amphipathic alpha-helical motif, in
which leucine residues are present every seven amino acid residues, forming
the major component of the hydrophobic face [34]. Although the ZIP serves
as the sole dimerization motif in some proteins (Fos, Jun, C/EBP, etc.), in
the bHLH-ZIP family the ZIP appears to be an extension of helix 2, likely
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Figure 2. Schematic depiction of c-Myc/Max heterodimer contacting a specific DNA sequence.
Shown is a representation of the hypothetical four-helix bundle arrangement of the bHLH-ZIP
regions. The c-Myc portion of the dimer is shaded.

providing additional stability and specificity to the dimer formation [35].
The c-Myc protein is unable to bind to DNA as a homodimer in vitro

[36]. A polypeptide containing the minimal bHLH-ZIP domain of c-Myc is
able to homodimerize and bind DNA, but this in vitro phenomenon using a
truncated protein is unlikely to reflect the function of the full-length protein
in vivo [37]. Association of c-Myc with Max, however, yields a heterodimer
that binds to DNA effectively in vitro, and it is likely that this dimer is
biologically active [20,36,38]. Max homodimers also bind to the same DNA
sequence, and this may be of biological importance (see below). Likewise,
Max is able to dimerize with N-Myc and L-Myc proteins, although none of
these proteins appears to interact with USF or AP4 [20,39].

Amino acid-nucleotide interaction via the basic region

The c-Myc/Max heterodimer and the Max homodimer bind to DNA bearing
the core palindromic hexanucleotide CACGTG [20,36,38]. These complexes
also bind to the sequence CACATG, but with lower affinity. A number of
other bHLH proteins also bind to CACGTG; these are designated class B
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CLASS A: bHLH
AP4
MyoD
E12
E47

CLASS B: c-Myc
Max
USF
CBn
TFE3
PH04

BASIC REGIONS

-- BB ---N-- ER-R X --w---w-- L --w
RI RR EIANSN ERRR M QSINAGFQS L KTL
AD RR KAATMR ERRR L SKVNEAFET L KRC
KE RR VANNAR ERLR V RDINEAFKE L GRM
RE RR MANNAR ERVR V RDINEAFRE L GRM

* * *NV KR RTHNVL ERQR R NELKRSFFA L RDQ
AD KR AHHNAL ERKR R DHIKDSFHS L RDS
EK RR AQHNEV ERRR R DKINNWIVQ L SKI
KQ RK DSHKEV ERRR R ENINTAINV L SOL
RQ KK DNHNLI ERRR R FNINDRIKE L GTL
DD KR ESHKHA EQAR R NRLAVALHE L ASL

BINDING SITE

-.~
CAG CTG

-.~
CAC GTG

Figure 3. Amino acid homologies and differences in the basic regions of bHLH family
members. Partial amino acid sequences of nine bHLH proteins are aligned at their basic
regions, displayed by a single-letter amino acid code. Boxes indicate residues conserved in all
bHLH proteins. Asterisks mark the positions of the conserved histidine, hydrophobic, and
arginine residues in class B bHLH proteins. B = basic; X = any amino acid; w = hydrophobic
residue (figure adapted from ref. 40, with permission.).

bHLH proteins. Class A bHLH proteins prefer the sequence CAGCfG or
CAGGTG [40]. Thus, all known bHLH proteins bind to DNA sequences
with the pattern CANNTG, where N is any nucleotide [41]. A comparison
of the basic regions of the bHLH proteins reveals a number of highly
conserved amino acids, which are presumably involved in the recognition of
the conserved nucleotides, the initial CA and the final TG (Fig. 3).
Several amino acid residues that are conserved among class B (but

not class A) proteins are likely to be involved in distinguishing between
CACGTG and CAGCTG. These residues - histidine, valine, and arginine
- are indicated in Fig. 3. Arginine 367 of c-Myc has, in fact, been shown to
be essential in dictating sequence specificity. Mutation of the comparable
residue (Met to Arg) in the basic region of AP4, a class A bHLH protein,
changes its specificity to that of the class B sequence CACGTG [40]. The
conserved histidine and valine in class B proteins probably also serve im
portant functions with regard to specific DNA binding, but these have not
been determined.
In addition to the core hexanucleotide, the three flanking residues

upstream and downstream are important to DNA binding specificity [42].
A 12-nucleotide nearly palindromic binding site has been determined for
purified native c-Myc protein: (G/A)ACCACGTGCTC [43].

Functional consequences of specific DNA binding

In certain cell culture systems, a consequence of DNA binding by c-Myc
is transformation of the cells to a malignant phenotype [4,5,44]' The im
portance of DNA binding in transformation by c-Myc has been inferred
from a variety of data. First, mutations in the bHLH-ZIP region of c-Myc
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abolish both its ability to bind DNA specifically in vitro and to transform
cultured cells [16,36,45]. Second, certain mutations in c-Myc result in
proteins that not only are inactive for transformation, but also are able to
inhibit transformation by wild-type c-Myc in a trans-dominant fashion, i.e.,
the presence of a mutant gene can neutralize the transforming effect of a
wild-type gene [45]. A mutant c-Myc protein that lacks part of the c-Myc
TAD retains the ability to dimerize, presumably with Max or Max-like
proteins, and to bind to DNA. This dimer is able to compete with wild-type
dimers for DNA binding but fails to stimulate transcription from those DNA
sites. Hence concurrent expression of the mutant with wild-type c-Myc fails
to result in transformation of REF cells. A second type of trans-dominant
mutant c-Myc contains a small insertion mutation near the basic region
(45a, C.Y. Dang, unpublished). Such a mutation permits its dimerization
with Max, but the heterodimer is unable to bind to DNA because of the
defect in the DNA contact region. This mutant also antagonizes the trans
forming effect of wild-type c-Myc in REF cells, possibly by heterodimer
ization with all available Max protein, leaving virtually no Max to form
active heterodimers with wild-type c-Myc. Both of these trans-dominant
mutants reinforce the concept that DNA binding by the c-Myc/Max hetero
dimer is necessary for c-Myc-induced malignant transformation. Mutations
in the HLH or ZIP regions result in proteins that are unable to transform
REF cells [16]. In contrast to the trans-dominant mutants, these proteins
lack the ability to dimerize and are therefore unable to form inactive dimers
to affect transformation by wild-type c-Myc.
At the molecular level, a straightforward consequence of specific DNA

binding by c-Myc and Max is the tethering of these factors to DNA,
allowing the remainder of the protein to exert an influence on nearby
factors. In such a manner, the TADs of transcriptional activators are believed
in some way to participate in the formation of the basal transcriptional
complex at the promoter region of a gene, thus stimulating transcription of
that gene [reviewed in 46,47]. Preliminary evidence has been presented
that c-Myc/Max heterodimer is capable of such transcriptional activation
(R.N. Eisenman, personal communication; L.M.S. Resar and c.y. Dang,
unpublished) .

It is somewhat less straightforward to consider how the c-Myc/Max
heterodimer might affect the structure of the DNA on which it is bound.
Recent work has shown that the Fos and Jun transcriptional activator
proteins are able to bend DNA upon binding to their specific nucleotide
recognition sequences [48]. It has been suggested that differential bending
by these proteins may be responsible for their distinct biological effects in
vivo. The potential significance of DNA bending is that protein-induced
alteration in DNA conformation may facilitate initiation of transcription
by bringing proteins bound to an upstream regulatory element in closer
proximity to the transcription apparatus at the promoter region. Indeed,
stretches of intrinsically bent DNA have been shown to functionally replace
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sites of transcription factor-induced bending and to promote transcription in
the absence of these factors [49]. Alternatively, the energy used to induce
bending may increase the likelihood of unwinding the double helix, thereby
facilitating the initiation of transcription [49,50].
Homo- and heterodimeric complexes of c-Myc and Max are able to cause

increased DNA flexure as measured by circular permutation analysis [50a].
A mathematical derivation reveals that the angle of flexure induced by both
homodimeric protein complexes is similar, approximately 530 from the
horizontal. Since this technique does not permit determination of the
orientation of bending, phasing analysis was used to determine whether
different dimers induce bending in similar or different directions. Based on
this analysis, Max and truncated c-Myc homodimers bend DNA in opposite
orientations, whereas c-Myc/Max heterodimers cause a smaller bend in an
orientation similar to that induced by Max homodimers. To address the
possibility that the apparent opposite orientation of bending was the result
of DNA unwinding by one of the proteins, the ability of c-Myc and Max
homodimers to effect DNA unwinding was assayed. No specific unwinding
caused by c-Myc or Max was demonstrable.

Nonspecific DNA binding by c-Myc

The c-Myc protein is distinct from related Myc family members because of
the presence of a nonspecific DNA binding domain (NDBD). This domain
is not essential for c-Myc transforming function; mutation or deletion of this
region does not abrogate transformation. It may, however, appear to
improve the kinetics of specific DNA binding by c-Myc through a mech
anism of facilitated diffusion. The rationale and evidence for such a model is
presented below.

Functional characterization of the nonspecific DNA binding domain

The NDBD was identified using peptide fragments of c-Myc produced in E.
coli [22]. These c-Myc fragments were fused to staphylococcal Protein A,
which served as an affinity tag, enabling rapid purification. A minimal c-Myc
fragment representing amino acids 265-318 is sufficient to confer the ability
to bind to random DNA sequences. This region contains four repeats that
resemble a serine-proline-X-X motif (where X is any amino acid, commonly
lysine) initially identified in the histone H4 protein, in which this motif
mediates nonspecific DNA binding [21,51].

Proposed role of the nonspecific DNA binding domain in facilitated diffusion

The c-Myc NDBD is located in a region of c-Myc, which is not essential for
transformation of REF cells [16]. Deletion of the NDBD, however, does
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result in diminished efficiency of transformation. How does this second
DNA binding domain contribute to the efficiency of c-Myc activity? In the
E. coli lac repressor protein, the NDBD improves the kinetics of specific
DNA binding through a mechanism of facilitated diffusion [52]. According
to this model, nonspecific DNA binding serves to increase the local concen
tration of a protein around and on DNA, thereby enhancing the likelihood
of encountering its specific chromosomal binding site(s). Data from similar
investigations in prokaryotes suggest a model in which nonspecific DNA
binding serves to promote a 'sliding and hopping' function, whereby the
protein binds to a DNA molecule, sliding along the double helix and hopping
to an adjacent DNA molecule until a specific high-affinity site is encountered
[52]. Such a model would suggest that a high level of c-Myc expression could
compensate for a deletion of NDBD function, but this has not been
evaluated. Only indirect data exist for this proposed role for nonspecific
DNA binding by c-Myc [25].

Potential role of phosphorylation in the regulation of DNA binding

It is well understood that, in vivo, c-Myc is a phosphoprotein and that in
vitro, c-Myc can be phosphorylated by casein kinase II [53]. However, the
biological effect of phosphorylation of c-Myc remains unclear. Provocative
data concerning DNA binding by Max and by c-Myc/Max heterodimer
raises the possibility that phosphorylation status may be important to DNA
binding activity in vivo. Unphosphorylated Max homodimers bind to DNA
readily. However, Max homodimers phosphorylated by casein kinase II are
unable to bind to DNA [54]. Such phosphorylation does not appear to affect
DNA binding by a c-Myc/Max heterodimer. The biological implication of
modulation by phosphorylation is not clear, but this complex alteration of
DNA binding properties by phosphorylation might provide a mechanism for
regulation of DNA binding by c-Myc heterodimers and related proteins.

Summary

The c-Myc protein is a potential activator of transcription, with the ability to
bind in a heterodimer form with Max to DNA sequences containing the
core hexanucleotide sequence CAC(G/A)TG. These properties are shared
with L-Myc, a homologous oncoprotein expressed in small cell lung carci
noma cells; with N-Myc, expressed in neuroblastoma cells; and with avian
v-Myc, the c-Myc homolog expressed by a chicken retrovirus. The c-Myc,
and probably v-Myc, proteins also have nonspecific DNA binding function,
which may improve the kinetics of specific DNA binding. Curiously, this
domain appears not to be conserved in L-Myc or N-Myc [22].
The data that have accumulated to date are consistent with a model in
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which a c-Myc/Max heterodimer positively regulates the transcription of
growth-related genes, with Max homodimer functioning as a negative
regulator of the same genes (Fig. 4) [55]. Max is expressed constitutively at
low levels, whereas c-Myc is expressed at low levels in quiescent cells, but
high levels of c-Myc are induced by mitogenic stimulation [56]. Thus, in
proliferating cells c-MyclMax heterodimers might bind to the regulatory
elements of growth-related genes, where the c-Myc TAD might stimulate
transcription. Conversely, in quiescent cells with little c-Myc present, Max
homodimers might predominate. They might bind to exactly the same
regulatory elements, but due to the apparent absence of a TAD in Max [36],
transcription might be repressed. Validation of this model will require the
demonstration of clear regulation of a physiological promoter of a growth
related gene by c-Myc/Max.
Although it is widely believed that Myc proteins function as transcrip

tional activators, this hypothesis has only been conclusively supported
recently [57,58]. A theory that c-Myc plays a role in DNA replication is not
as well substantiated at this point. It is even possible that Myc might be
involved in both transcription and replication. Although the function
of these fascinating proteins has been enigmatic for a decade, the rate of
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Figure 4. Proposed model of activity of c-Myc/Max heterodimers and Max homodimers. The
graph depicts constant expression levels of Max and low levels of c-Myc in quiescient cells
induced by mitogenic stimulus to high level c-Myc expression, gradually decreasing with time.
The insets depict binding by c-Myc/Max heterodimer and Max homodimer to DNA regulatory
elements of growth-related genes.
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progress in our understanding of Myc function is accelerating. Such progress
will undoubtedly lead to a deeper appreciation of this protein, which lies at
the crossroads of cellular proliferation and oncogenesis.
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17. Normal and malignant growth control by p53

Cathy A. Finlay

Introduction

The role of the p53 protein in the growth of both the normal and the
transformed cell has been the focus of investigation since the discovery of
p53 12 years ago. Although the function of this protein is not yet known,
p53 appears to be a critical protein involved in the regulation of cell growth.
Once classified as a dominant oncogene [1-3], it has recently become clear
that only mutant forms of p53 can contribute to cellular transformation
[4-6]. In contrast, overexpression of the wild-type p53 protein suppresses
the formation of transformed cells [7,8] and, in addition, inhibits the growth
of tumor cells [9-13]. These observations have resulted in the redefinition of
the role of p53 to that of a recessive oncogene or a tumor suppressor gene
[reviewed in 14,15]. Numerous studies conducted in the past few years have
shown that alterations (deletions, rearrangements, missense mutations) in
the p53 gene occur frequently (25-85% of the time) in quite a wide variety
of human tumors [16-40]. Thus, mutations at the p53 locus are, at present,
the most common genetic change known to occur in human cancer. Do
certain mutations appear to be selected for in human tumors? What are the
known activities and phenotypes of the p53 protein in the normal cell, and
what is the effect of mutation on the known p53 properties? What is the
role, if any, of the overexpressed mutant p53 proteins in the tumor cell?

From oncogene to tumor suppressor gene

p53 is a cellular protein expressed at low levels in normal cells and tissues
[41-44]. In most nontransformed cells, the p53 protein (so named because
the migration of this protein on SDS-polyacrylamide gels indicated a mole
cular weight of 53,000 Da) has a short half-life, 20-30 minutes, depending
on the cell type [45,46]. p53 was discovered as a protein that coimmuno
precipitated with the transforming protein of simian virus 40 (SV40), the
large T antigen, in SV40 transformed cells following immunoprecipitation
with anti-sera from SV40 tumor bearing animals [47,48]. In SV40 trans-
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formed cells, p53 is found in oligomeric protein complexes with large T
antigen, and the levels of p53 are lOO-fold higher than that observed in
normal cells; the half-life of p53 is correspondingly extended (from 20-30
minutes to over 24 hours) [45,46]. p53 also forms a stable complex with one
of the transforming proteins of adenovirus type 5, the E1b 55K protein [49].
The fact that the transforming proteins from two different viruses bound p53
suggested that p53 plays a role in the transformation of cells by these viruses
and that this protein was critical in the regulation of cell growth. In accord
with this hypothesis, a positive role for p53 in the cell cycle was demon
strated by Mercer and coworkers [50,51], who showed that p53 expression is
essential for cells to enter the cell cycle; the microinjection of a monoclonal
antibody specific for p53 into Balb/c 3T3 cells within the first 4 hours of
serum stimulation blocked the entry of these cells into DNA synthesis.
Numerous studies, which examined p53 expression in a wide variety of
transformed cells, tumors, and tumor-derived cell lines, soon demonstrated
that p53levels were frequently elevated in the transformed cell [41-44,52,53].
Thus, overexpression of p53 was correlated with the transformed phenotype.
To determine if elevated levels of p53 could effect changes in the pheno

type of the normal cell, murine p53 genomic or cDNA clones were over
expressed in rodent cells. High levels of p53 resulted in the immortalization
of primary rat chondrocytes [1] or rat embryo fibroblasts (REFs) [54,55],
and when assayed in conjunction with an activated ras gene, in the full
transformation of primary rat fibroblasts [2,3]. High levels of p53 expression
also enhanced the transformation frequency of primary rodent cells by the
SV40 large T antigen [56]. In addition, when p53 was overexpressed in an
immortalized rodent cell line (Rat 1), this resulted in the increased tumori
genicity of these cells [57]. Overexpression of p53 in a murine bladder
carcinoma cell line increased the metastatic capacity of these cells [58].
Similar results were observed when p53 was introduced into an Abelson
murine leukemia virus transformed cell line (L12 cells) that did not express
any endogenous p53; the L12 cells were converted from a cell line that
formed tumors that regressed to one that formed progressively growing,
eventually lethal tumors [59,60). Thus, utilizing a variety of assay systems,
p53 acted as a oncogene.
Some p53 clones, however, did not possess transforming properties in

these assays. For example, similar experiments conducted utilizing a murine
p53 cDNA cloned from the F9 teratocarcinoma cell line did not show p53 to
have transforming activity [61]; i.e., this clone did not cooperate with an
activated ras gene to transform primary REFs [4,61]. The situation was
clarified when the sequences of the transforming p53 genomic and cDNA
clones were compared with the F9 murine cDNA sequence; each trans
forming sequence differed from the F9 sequence by a single (different)
amino acid [4]. Detailed studies soon demonstrated that a single nucleotide
change resulting in a single amino acid change (missense mutation) did
activate p53 for transformation [5,6]. The activating mutations are located in
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a region spanning over 25% of the p53 gene (amino acids 130-240 out of
390) and result in stabilization of the p53 protein with an elevation of p53
levels [4,6]. The diversity of mutations that activate p53 has led to the
hypothesis that these mutations are dominant loss-of-function mutations and
that one mechanism by which p53 can act to transform cells in tissue culture
is to form oligomeric protein complexes with the wild-type endogenous rat
p53 and inactivate a wild-type regulatory function [62]. Complexes between
wild-type and mutant p53 proteins have been noted by several investigators
[6,7,54], and levels of mutant p53 approximately 100-fold higher than that of
endogenous p53 are necessary for efficient transformation [5]. In light of the
above observations, the purpose of the SV40 large T antigen/p53 and the
adenovirus EIB/p53 complexes may be to inactivate the regulatory actions
of p53, thus providing one of the common mechanism(s) by which a virus
can control the cell cycle of the infected cell. Of interest is the recent
observation that wild-type human p53 can interact in vitro with another viral
protein, the E6 protein from human papilloma viruses 16 and 18 [63]. In this
instance, however, p53 is destabilized through a ubiquitin-mediated mech
anism [64]. Complexes are also formed between the retinoblastoma (RB)
tumor suppressor gene product and transforming proteins from the same
three viruses, the SV40 large T antigen, the adenovirus Type 5 Ela protein,
and the human papilloma virus Type 16 E7 proteins [65-67].
Insights into the biological activities of wild-type p53 were provided by in

vitro evidence that p53 could act as a suppressor of cell transformation.
Indeed, when transfected with two cooperating oncogenes such as ras and
adenovirus type 5 Ela or ras plus mutant p53, wild-type p53 suppressed the
formation of transformed foci in primary rat cells [7,8]. Cell lines (13/13)
derived from ras plus Ela plus wild-type p53 transfections either did not
express wild-type p53 or expressed mutant forms of the protein [7]. In
contrast, mutant p53 proteins did not suppress transformed cell growth
[7,8]. In fact, mutant p53 enhanced the transformation of REFs by ras plus
Ela in these assays and was expressed in all (15/15) of the cell lines
examined [7]. A summary of mutant and wild-type p53 activities in trans
forming assays is presented in Table 1.
Although the above studies demonstrated that wild-type p53 could

suppress transformed cell growth in vitro, additional support for the role of
p53 as a tumor suppressor was provided by evidence that mutations in p53

Table 1. p53 activity in transformation assays

Assay

Immortalization of rat cells (1,54,55)
Transformation of REF in cooperation with ras [2-4]
Enhanced tumorigenicity of rodent cells [57-60]
Suppression of transformation of REF by two
cooperating oncogenes [7,8]

Wild-type p53

+

Mutant p53

+
+
+
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occurred in the development of tumors in vivo. Elegant studies character
izing the role of p53 in Friend virus induced murine erythroleukemias had
previously shown that p53 was either deleted or overexpressed in these
tumors; the overexpressed p53 was mutant, confirming that the inactivation
of p53 occurred in tumor development in vivo [68-72]. Overexpression of a
p53 clone derived from one of these murine erythroleukemia cell lines
resulted in immortalization of primary REFs [54]. The laboratory of Bert
Vogelstein extended these observations into human tumors with meticulous
studies on p53 in human colorectal cancer; in 85% of colorectal cancers, one
allele of p53 (on human chromosome 17p) has typically been deleted, while
the remaining allele carries a missense mutation [18,22,73]. As demon
strated for mutant murine p53 clones, the mutant human p53 clones derived
from colorectal tumors were transforming in cooperation with an activated
ras gene, although to differing degrees [74]. These data are consistent with a
model [22,74] for tumor progression in which a precancerous cell possessing
a missense mutation in p53 has a growth advantage over cells possessing two
wild-type alleles (through a dominant negative mechanism). The increased
proliferative capacity of these cells would result in more cell divisions, thus
increasing the probability of a second mutation (allelic loss) occurring at the
wild-type allele. The resultant cell with a single mutant p53 gene (and no
wild-type allele) would then be fully transformed.

Wild type p53 effects on transformed cell growth

If the p53 protein as a tumor suppressor, then the expression of p53 in
tumor cell lines should effect changes in the growth properties of tumor cells
(for example, the ability to enter DNA synthesis or growth in soft agar). To
address this question, wild-type p53 was introduced into a variety of trans
formed cell lines [9-13]. In most instances, wild-type p53 expression was
incompatible with transformed cell growth, i.e., following cotransfection
with a selectable marker and cDNA or genomic clones expressing wild-type
p53 (often under strong promoter enhancer regions [9,10]) a reduction
in the plating efficiency of the cells was observed and no colonies were
obtained that expressed the wild-type protein [9-11]. This result was
observed whether the recipient cells were expressing either no endogenous
p53 [10,11] or mutant endogenous p53 [9-11]. In contrast, transfection of
wild-type p53 into normal primary REFs did not alter the plating efficiency
of these cells [7,8,11], and exogenous p53 expression was observed in
clones derived from these transfections [11]. Thus p53 overexpression was
selectively incompatible with transformed cell growth.
The technical problems involved in determining the effects of p53 on

transformed cell growth in vitro were circumvented utilizing a variety of
experimental methods. First, it was recently discovered that a murine
mutant clone, p53val135 (possessing a valine instead of an alanine at amino
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acid 135), had a temperature-sensitive phenotype [75]. At 32°C, the protein
is predominantly in a wild-type conformation (assayed by recognition by a
murine-specific monoclonal antibody, PAb 240 [76]), does not cooperate
with an activated ras gene, and can suppress the development of trans
formed foci. At 39°C, the protein is primarily in a mutant conformation,
assayed by recognition by monoclonal antibody PAb 240 [77], and does act
like an oncogene. A ras plus p53va1l35 transformed cell line, when shifted to
32°C, reversibly arrests in the G1 phase of the cell cycle. This growth arrest
occurs concomitantly with the translocation of p53va1l35 protein from the
cytoplasm into the nucleus [78-80], suggesting that p53 must be in the
nucleus to exert growth regulatory effects. In a novel observation, Yonish
Rouach and co-workers [81] noted that at 32°C, expression of p53va1l35

(wild-type conformation) resulted in the programmed cell death (apoptosis)
of a murine myeloid leukemic cell line. Second, the negative effect of wild
type p53 on the growth of a human glioblastoma cell line, T98G, was
examined by controlling p53 expression with a hormone-inducible promoter
(the mouse mammary tumor virus promoter); induction of wild-type p53
resulted in the inhibition of cell growth with the cells arrested in the G I

phase of the cell cycle [12]. Third, the inability of cells overexpressing wild
type p53 to enter DNA synthesis was also demonstrated by analyzing cells
within 48 hours after transfection; growth inhibition (measured as a decline
in the population of cells synthesizing DNA) was observed in Saos-2 cells (a
human osteosarcoma cell line that has deleted p53 [82] and in a colorectal
carcinoma cell line (expressing low levels of endogenous wild-type p53)
[9,10]. This inhibition was not observed, however, in an adenoma cell line
(derived from a benign colorectal tumor), again showing this effect was
specific to carcinoma cells [9]. Fourth, Saos-2 cell lines expressing a single
copy of human wild-type p53 were generated by retroviral infection [13].
Although the Saos-2 cells expressing wild-type p53 continued to proliferate,
the doubling time of the cells was increased, and the cells no longer grew in
soft agar or formed tumors in nude mice [13]. In addition, clonal cell lines
expressing both a human wild-type and a human mutant (at amino acid 273)
p53 [13] were obtained. Although Saos-2 cells expressing the 273 mutant
grew in soft agar, formed tumors in nude mice, and also possessed a limited
growth advantage over the parent cell (increased saturation density), cell

Table 2. Effects of wild-type p53 expression on transformed cell growth

Recipient cell

Tumor cells [9-11]
Transformed rat cells [75,78-80]
Human glioblastoma cell line (12]
Human osteosarcoma cell line [10]
Human colorectal carcinoma cell line [9]
Murine myeloid leukemia cell line [81]
Human osteosarcoma cell line [13]

Effect

Reduction in plating efficiency

Growth arrest

Apoptosis
Reduction in tumorigenicity
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lines expressing both the mutant and wild-type protein had the phenotype of
cell lines expressing wild-type p53; that is, these cells no longer grew in soft
agar and no longer formed tumors in nude mice [13]. The extended half-life
of the mutant protein resulted in mutant protein levels 10-fold higher than
that of the wild-type protein; therefore, in the presence of this mutant the
phenotype of the wild-type protein is dominant. The effects of wild-type p53
on transformed cell growth are summarized in Table 2.

p53 mutations in human cancer

What types of p53 mutations are found in human tumors? Since the initial
observations on p53 mutations in human colorectal cancer 2 years ago,
mutational analyses of the human p53 gene (located on the small arm of
human chromosome 17 (17p) [83-85]) have been presented for over 250 cell
lines, tumor-derived cell lines, and primary tumors and xenografts. Since
p53 mutations are common in cell lines [4] and in some instances occur at a
higher frequency than observed in the primary tumor cell [32], this review
will focus on p53 mutations found in human tumors. These data may be
limited by the fact that investigators often do not sequence the entire p53
gene, since mutations have been shown to occur less frequently in the amino
and carboxy terminus [18,29,73]. To date, p53 mutations (rearrangements,
deletions, and point mutations resulting in missense or frameshift mutations
or termination codons) have been found in tumors of the anus [16],
bone [35,36], bladder [17], brain [18], breast [19-21]' colon [22], esophagus
[23,24], stomach [25], liver [27,28], lung [29-31,86], lymphoid system
[32,33], ovary [37], and prostate [38], demonstrating that p53 must playa
critical role in the growth regulation of many different tissues. The vast
majority of these mutations are missense mutations (73%), suggesting
mutant p53 is beneficial to cell growth. A graphic compilation of 148 mis
sense mutations found in human tumors is presented in Fig. 1. A similar
tabulation of p53 mutations in human cancers has recently been provided by
Hollstein et al. [87].
There are several points to be made about the pattern of p53 mutations

in human tumors (Fig. 1). First, the missense mutations do not occur
randomly; the mutations are clustered in four regions of the p53 protein that
are highly conserved from rainbow trout to humans (Domains II- V) (Table
3), indicating these regions are of functional importance. Second, there are
mutational 'hot spots' [18] at amino acids 175 (17/148), 248-249 (25/148),
273 (9/148), and 282 (8/148). Mutations at these amino acids account for
approximately 40% of the total missense mutations observed in human
tumors. Third, different 'hot spots' are present in different tissues. For
example, mutations at amino acid 175 have been found repeatedly in
colorectal carcinomas (5/25) [22] and in Burkitt's lymphoma (3/10) [32], and
have been observed at least once in breast carcinoma [19], glioblastoma
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Figure I. The distribution of p53 missense mutations in human tumors. The horizontal axis
represents the 393 codons of the human p53 gene from the amino terminus (codon 1) to the
carboxy terminus (codon 393). The vertical axis represents the number of total missense
mutations observed at a specific codon. These data are a compilation of p53 mutations found in
148 primary tumors or xenografts (16-32,34,36-40,86).

[18], and an esophageal squamous cell carcinoma [23]. An exception is lung
carcinomas, where a mutation at 175 has not yet been observed. Mutations
at amino acid 249 have been found in almost 50% of the hepatocellular
carcinomas examined from high-incidence areas of Qidong, China [28] and
southern Africa [27]. The reason for the different frequencies of mutations
in different tissues is not yet known. Tissue-specific 'hot spots' could reflect
differences in the intracellular environment or the mutagens present in a
given tissue. For example, Hollstein et al. [87] have noted that mutations
resulting from G: C to T: A transversions occur commonly in hepatocellular
carcinomas and in lung carcinomas, perhaps reflecting exposure to specific
carcinogens (Aflatoxin Bl in the case of hepatocellular carcinoma, for
example). In contrast, missense mutations resulting from transitions (G: C
to A: T) at CpG dinucleotides are most common in colon cancer and
leukemias and lymphomas [87]. An alternate explanation is that point
mutations occur randomly in the p53 gene in each tissue, but different
mutant p53 proteins contribute a growth advantage to different cells (and
are selected for) in a tissue-specific manner.
The presence of a mutant p53 allele is often correlated with the loss of the

remaining wild-type p53 allele. For example, this has been observed in colon
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and lung carcinomas and in lymphomas and leukemias, suggesting the
mutant phenotype is recessive in the presence of the wild-type allele
[22,29,32]. Detailed analysis has shown that a mutant and wild-type allele
co-exist in colon carcinomas less than 30% of the time (when compared to
all carcinomas expressing 2 alleles) [22]. The presence of a mutant allele is
strongly correlated with the loss of the remaining allele; 91% of one allele
carcinomas possess a mutant p53 protein. Thus, at least in this tumor, there
appears to be a strong selection for the inactivation of both alleles in quick
succession. In breast carcinomas, however, examination of p53 mutations
and loss of heterozygosity (LOH) has demonstrated that the two events are
not correlated, i.e. p53 mutations are found equally frequently in tumors
with or without a wild-type allele [20]. Conversely, approximately 40% of
the tumors possessing a single allele are found to express a wild-type p53
[20]. It will be of interest to determine if the levels of mutant p53 expressed
in breast tumors expressing both a wild-type and a mutant p53 are higher
than those observed in breast tumors expressing only a mutant allele, thus
conferring a notable growth advantage even in the presence of the wild-type
allele.

Germline mutations in p53

The predominance of p53 mutations found in human cancer occur as
somatic mutations in the development of the tumor. Do germline mutations
in p53 contribute to tumor formation in humans? In an animal model
system, transgenic mice carrying a mutant p53 gene (in the presence of two
endogenous wild-type alleles) develop a variety of tumors (lung adeno
carcinomas, lymphomas, and osteosarcomas) following a long latent period,
suggesting that mutant p53 can predispose to tumor formation [88]. This
question was addressed by examining the p53 gene in individuals from
families affected by the Li-Fraumeni syndrome (a rare autosomal dominant
syndrome characterized by diverse neoplasms at multiple sites [89,90]).
Germline mutations in p53 have been found in individuals from six Li
Fraumeni families [26,91]. To date, all of these mutations in p53 have been
found in conserved region IV (Table 3). The wild-type allele (present in the
normal tissue from these people) is generally deleted in the tumors, while

Table 3. Highly conserved domains of the p53 protein (t0l]
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Domain

I
II
III
IV
V

Amino acid residues

13-19
117-142
171-181
236-258
270-286



Table 4. Properties of p53 human wild-type and mutant proteins

Property WT 143" l75 248 273 281

Relative transformation 0 2 22 NOh 8 4
frequency (74]

Transformation suppression +
[9,10,13,92]
Conformational alteration WI" Mutant Mutant WT WT WT
[74, R. Ouartin and
A.J. Levine, unpublished]
Protein half-life (hours) 0.3 1.5-2 3.6 NO 7 1.4
[74]

Transactivation of a test + NO + NO
gene [95,96]
Binding to T antigen + -(10%)
[93, R. Ouartin and
A.J. Levine, unpublished]

" Assayed in the absence of introns.
hNO = not determined.
cWT = wild type.

the mutant allele is retained [26]. In addition, another germline mutation
was found at amino acid 242 in a young patient with an intracranial
ependymoma [40]. Since individuals carrying germline mutations in p53
develop normally, this would suggest that the deregulating effects of mutant
p53 in the presence of a wild-type allele are subtle. This may reflect the
phenotype of p53 proteins with mutations in domain IV (Table 4). The
prevalence of both somatic and germline mutations in this region (amino
acids 242-258) (Fig. 1) indicates that this region of the protein is critical to
p53 function.

The properties of mutant p53 proteins

The prevalence of p53 missense mutations in human tumors suggests that
the elevated expression of a full-length mutant protein has been selected
for in tumor development. Are the transforming activities of p53 mutants
similar? Are there properties common to all mutants? To answer these
questions, mutant p53 cDNA clones have been isolated from colorectal
tumors and the mutant proteins have been characterized. The results from
these studies are presented in Table 4. In all cases mutant p53 proteins have
been found to be nonsuppressive in transformed cell growth assays, demon
strating the loss of the growth-inhibitory wild-type function [9,10,13,92]. In
addition, the half-lives of the mutant proteins are long (generally several
hours) [74] and the ability of mutant p53 proteins to complex with SV40
T antigen is reduced or eliminated [93,94; R. Quartin and A.J. Levine,
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unpublished]. p53 proteins with mutations at amino acids 143 and 175
complex with the constitutively expressed member of the heat shock family,
hsc 70, and are recognized by the mutant specific monoclonal antibody
PAb240 [74; R. Ouartin and A.J. Levine, unpublished]. p53 proteins with
mutations at amino acids 248, 273, or 281, however, possess less altered
conformations (are not recognized by PAb240 and do not bind to hsc 70 [74;
R. Ouartin and A.J. Levine, unpublished]). The transforming activities of
these mutants are also not equivalent; on average, the 175 mutant repro
ducibly yields 2.5- to 6-hold more foci than the 273 or the 281 mutant,
respectively, when assayed in conjunction with an activated ras gene [74].
The wild-type p53 protein and the 273 mutants can transactivate a test gene;
however, the 143 and 175 mutants cannot [95,96]. In these transactivation
assays, the carboxy terminus of p53 is replaced with the Gal-4 DNA binding
domain; therefore, this assay masks deficiencies in DNA binding and
oligomerization that may exist in those mutants that score as active in these
assays. Indeed, the 273 mutant transactivates [96]; however, the ability of
the mutant protein to bind DNA is strongly reduced [93].
Thus, different mutations alter different properties of p53. As the char

acterization of mutant p53 continues, the number of p53 mutant phenotypes
will no doubt continue to increase. Different amino acid changes at the same
amino acid residue could result in proteins with different characteristics.
Perhaps, different mutants can influence the growth of the tumor cell and
affect the prognosis of the cancer. If so, a greater understanding of the role
of mutant p53 proteins and the proteins they interact with is critical for
diagnosis and effective treatment of human cancer.
The results of numerous studies examining the ability of mutant p53 to

mitigate the growth-suppressive effects of wild-type p53 have shown that, in
most instances, the wild-type phenotype is dominant. Previous work has
shown, however, that 100-fold or greater excess of a mutant protein may be
necessary for sufficient transforming activity to be observed in tissue culture
[5]. Therefore, the relative levels of mutant and wild-type p53 may deter
mine the outcome of experiments, and the overexpression of wild-type p53
in many of the transfection experiments could have influenced the results.
Alternatively, the phenotype of the mutant could determine how wild-type
properties are affected in the heterozygous state. For example, Milner and
Medcalf [97] have shown that human p53 clones with mutations at amino
acids 151, 247, or 273, when cotranslated with the wild-type protein, can
drive the wild-type protein into the mutant conformation, and hypothetically,
interfere with normal function. Of particular interest is the observation that
the human p53 mutant with a mutation at amino acid 248 (seen in Li
Fraumeni families [26]) does not alter the conformation of the wild-type
protein [97]. Thus these data provide an explanation for the observation
that the transforming activities of different mutants are not the same
[74,98].
Critical to our understanding of p53 in malignant cell growth is the
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knowledge of whether the mutant p53 proteins are advantageous to tumor
cell growth. There are data that demonstrate mutations in p53 can result in a
gain of a growth-promoting function in tumor cells. First, the expression of
mutant p53 in murine LI2 cells (which do not express p53 and can only form
tumors that regress in nude mice) results in cells that are fully tumorigenic
[59,60]. In addition, disruption of the nuclear localizaion signal eliminates
this effect, suggesting that, at least for some mutants, positive growth effects
are exerted in the nucleus [60]. Second, expression of the endogenous
mutant p53 is necessary for the growth of methylcholanthrene transformed
cells [99,100]. Third, minimal growth-promoting effects were also noted
when mutant p53 was introduced into Saos-2 cells [13].

The function(s) of p53

Although mutations in p53 eliminate the ability of this protein to regulate
transformed cell growth, the function(s) of wild-type p53 that is involved in
normal cell growth regulation has yet to be defined. At present there are
two hypotheses to explain the ability of p53 to control cell proliferation.
First, p53 could act as a transactivator of gene expression, turning on or off
the expression of genes involved in the cell cycle. The primary structure of
p53 is compatible with the hypothesis that p53 is a transactivator. The
structure of p53 can be separated into three domains: (1) an acidic, highly
charged amino-terminal region (amino acids 1-75), followed by (2) an
extended hydrophobic proline-rich region (amino acids 75-150), with (3) a
highly charged basic carboxy-terminal domain (amino acids 275-390) [101].
The carboxy terminus possesses nuclear localization signals [60,102,103],
and the oligomerization [104] and DNA binding domains [95]. Although
early experiments showed that p53 could bind DNA in a nonspecific fashion
[105-107], the results of recent studies demonstrate p53 can bind to DNA in
a sequence-specific manner [93,108]. Mutations in p53 reduce the ability of
p53 to bind DNA [93,107,108]. In 1990, direct support for the role of p53
as a transactivator of gene expression emerged from several laboratories
[96,109,110]; when fused to a Gal-4 DNA binding domain, p53 activated the
expression of reporter genes regulated by Gal-4 DNA binding sequences.
This activity was mapped to the acidic amino terminus [96,110]. Murine and
human mutants that bind to hsc 70 did not transactivate in this assay (Table
4) [95,109]. In transient assays, wild-type p53 expression has also resulted in
both the activation [111] and the repression [112] of expression of reporter
sequences from cellular promoters. It will be of interest to determine what
promoter-enhancer regions contain the sequences specifically recognized by
p53 and to demonstrate the activation or repression of these genes by p53.
Second, p53 could be involved in the regulation of the initiation of DNA
synthesis. The majority of evidence supporting this role for p53 comes from
the association of p53 with the SV40 large T antigen. The SV40 large T
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antigen is required for the initiation of viral DNA replication. Wild-type p53
can compete with DNA polymerase alpha for binding to T antigen [113],
and wild-type, but not mutant, p53 expression can inhibit viral DNA repli
cation in vivo and in vitro [114-117]. A simplistic explanation for these
observations is that in the normal ceIl p53 binds a homologue(s) of T antigen
involved in the initiation of cellular DNA synthesis. The formation of a
complex with p53 could prevent the association of this protein with DNA
polymerase alpha (or another critical cellular protein), negatively controlling
cell growth. The inability of mutant p53 proteins to bind T antigen [93,94]
suggests the p53 mutants are no longer capable of binding the appropriate
cellular protein and regulating cell growth. In both of these models, a
regulatory function of p53 has been lost. How could p53 mutants positively
affect cell growth in the absence of a wild-type allele? Different p53 proteins
could bind (with differing affinities) to cellular proteins (that mayor may
not associate with the wild-type p53 protein) involved in growth control.
Characterization of p53-associated proteins [74] could thus provide insights
into the role of mutant p53 in ceIl growth.

Conclusions

Since the acceptance of p53 as a recessive oncogene or tumor suppressor
gene, there has been rapid progress in the characterization of the function(s)
of wild-type p53 and the effect of mutation on p53 properties. The wild-type
protein may control growth at several points during the cell cycle, inter
acting in succession with a variety of cellular proteins. Different mutations
alter different properties of the protein and are likely to affect these inter
actions, and thus to alter cell growth. It is rapidly becoming clear that a
minimum of several different classes of p53 mutants exist. As these data
continue to accumulate, the p53 mutants associated with each tumor type
may become more defined, providing greater insights into the carcinogens
and/or repair mechanisms present in each tissue type. Whether the different
mutants have growth-promoting properties in the normal and malignant cell
is an important question yet to be answered. An understanding of the
differential growth-promoting effects of mutant p53 expression could be
invaluable in determining the proper diagnosis and most effective course of
treatment of human cancers.
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18. Nucleoside diphosphate kinases, nm23, and tumor
metastasis: Possible biochemical mechanisms

Adam Golden, Mary Benedict, Allen Shearn, Narimichi Kimura,
Alvaro Leone, Lance A. Liotta, and Patricia S. Steeg

Introduction: Genetic control of tumor metastasis

Tumor metastasis remains the leading cause of death for cancer patients,
excluding those with skin cancers. Metastasis is a complex process, requiring
tumor cell invasion, motility, arrest and extravasation from the circulatory
system, angiogenesis, and avoidance of host immune responses. A consider
able list of proteases, motility factors, and adhesion molecules for cells and
extracellular matrix components have been examined for their potential
roles in the tumor metastatic process [reviewed in 1,2].
Less clear in the research literature are the molecular mechanisms, if any,

that induce or coordinate the various phenotypic changes in metastasis. Two
general regulatory themes for the metastatic process have been explored
to date. First, at least 10 different oncogenes have been demonstrated
in transfection experiments to induce or augment the tumor metastatic
phenotype, as well as inducing tumorigenesis [reviewed in 3]. Acquisition of
metastatic behavior by these oncogene-transfected cell lines was accompanied
in many cases by alterations in the expression of proteases and adhesion
molecules [3]. This observation is consistent with the hypothesis that onco
genes may directly or indirectly regulate the expression of a cascade of
metastasis-related genes. It is important to note, however, that many of
these oncogenes induced metastatic behavior in some but not all cell types
tested. Factors such as cell type, state of differentiation, and expression of
genes that modify oncogene action (i.e., ras and GAP, k-rev, exchange
factors) may also be critical.
A second theme in the control of metastasis proposes that it may represent

a reversion to a more embryonic state. Genes controlling differentiation
may negatively regulate metastasis by preventing this reversion [reviewed in
2,4]. Studies with butyrate induction of differentiation are consistent with
this hypothesis [5]. Hart [4] suggested that the two theories may merge, in
that oncogenes may induce both cell division and phenotypes characteristic
of embryonic cells. Support for this hypothesis is found in recent investiga
tions of the roles of oncogenes, i.e., certain growth factors and growth factor
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receptors, in mediating characteristics such as cell motility in embryonic
development [reviewed in 6].

Structure and expression of nm23 in tumor metastasis

The nm23 gene was identified by differential colony hybridization of low
metastatic potential and high metastatic potential murine K-1735 melanoma
cell lines [7]. Steady-state nm23 RNA levels were quantitatively higher in
two low metastatic potential K-1735 melanoma cell lines than in five related,
high metastatic potential K-1735 melanoma cell lines. Quantitative reduc
tions in nm23 steady-state RNA levels were subsequently observed in high
metastatic potential tumor cells in three additional rodent metastasis model
systems, N-nitrososmethylurea (NMU) induced rat mammary tumors [7),
c-Ha-ras + Ad2 Ela transfectd rat embryo fibroblasts [8), and mouse
mammary tumor virus (MMTV) induced mouse mammary tumors [9].
In the study of oncogene regulation of cancer progression, a significant

number of cases exist in which data observed in rodent model systems was
not applicable to human tumor progression. Examples include the role of
ras and certain int genes in human breast cancer, as predicted by the NMU
and MMTV rodent model systems, respectively [reviewed in 10]. Therefore,
nm23 structure and expression has been investigated in four human cancer
cell types. Two human nm23 genes have been identified, nm23-Hl [11] and
nm23-H2 [12], both of which encode 17 kDa proteins approximately 90%
identical to the nm23-1 murine protein and to each other. At the present
time it is not known whether additional members of the nm23 family of
genes exist. Data concerning nm23-Hl and nm23-H2 structure and expression
in human carcinomas of the breast, lung, colorectal tract, as well as child
hood neuroblastoma, have provided an important insight: Many types of
alterations to nm23, not just its reduced expression, occur in nature and are
associated with high tumor metastatic potential.
The most comprehensive analysis of nm23 structure and expression has
been published in human breast cancer. We initially determined steady-state
nm23 RNA levels in tumor cells of sections of 17 human infiltrating ductal
carcinomas using in situ hybridization [13]. All patients with evidence of
lymph node metastases at surgery (considered the best· indicator of high
metastatic potential) had how steady-state nm23 RNA levels. Patients with
lymph node-negative (no evidence of metastasis) tumors had varied, but
generally higher nm23 RNA levels, consistent with data from the rodent
metastasis systems. Studies by Hennessy et al. [14] confirmed and extended
these observations. Total cellular RNA was extracted from 70 breast car
cinomas and was analyzed for nm23 steady-state RNA levels on Northern
blots. The data were then compared to patient clinical course. Low tumor
steady-state RNA levels were significantly associated with reduced patient
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overall and disease-free survival. This assocIatIon applied to the entire
cohort as well as the lymph-node-negative and well-differentiated subsets.
The data indicate the potential utility of nm23 expression as a prognostic

indicator in breast cancer. Since tests at the RNA level require relatively
large amounts of tumor material and techniques not consistently available in
hospital histopathology laboratories, more recent studies have focused on
immunoperoxidase staining of nm23 protein levels. Two small-scale studies
have been reported to date. We prepared an affinity-purified polyclonal
antibody to a synthetic nm23 peptide (anti-nm23 peptide 11 antibody) [11),
which recognizes 17- and 18.5-kDa bands from lysates of human tumor
cells on Western blots. In experiments not published, bacterial recombinant
nm23-H1 protein migrated on SDS-PAGE with an apparent molecular weight
of 18.5 kDa, while recombinant nm23-H2 protein migrated at 17 kDa. Thus
anti-nm23 peptide 11 antibody recognized both gene products. Immuno
peroxidase staining of 39 infiltrating ductal carcinomas was evaluated
independently by three pathologists who were blind to clinical course data
[15J. Patients with uniform or focal low-staining tumors exhibited a signifi
cantly reduced overall survival than those with uniformly high-staining
tumors when analyzed by two of three pathologists. The clinical outcome
correlation by the third pathologist closely approached significance (p =
0.052). Like the survival data, Cox's regression analysis indicated that nm23
staining was a significant independent predictor of reduced patient survival
in two of the three pathologists' analysis and closely approached significance
in the third (p = 0.066). A second study by Hirayama et al. [16J used a
polyclonal antibody to a rat homolog of nm23 protein. Twenty-four breast
carcinomas, consisting of intraductal carcinomas (two cases), invasive car
cinomas (15 cases), invasive carcinomas with a predominant intraductal
component (five cases) and mucinous carcinomas (two cases) were stained
for NDPK protein, and the data were compared to patient relapse over a
5-year follow-up period. None of the patients with high staining tumors
relapsed over the follow-up period, while 4 of 11 patients with intermediate
staining tumors relapsed and 4 of 7 patients with low NDPK staining tumors
relapsed over the same period. Taken together, the data suggest that
traditional immunohistochemical staining should be evaluated for its prog
nostic potential in breast cancer, focusing on subgroups of patients in which
current techniques are not sufficient, such as lymph-node-negative patients.
The data are too limited at this point to definitively determined the prog
nostic potential of nm23 protein expression in human breast cancer.
The mechanism(s) by which nm23 expression is reduced in breast cancer

are under study. We have reported that 64% of informative (heterozygous)
breast tumors in a French cohort exhibited somatic allelic deletion of nm23
HI [17J. The nm23-HI gene was localized to chromosome 17q21 in the
C.E.P.H. database [17]. The effect of allelic deletion at nm23-HI, potential
allelic deletion of nm23-H2, and/or mutation of either gene, is currently
under study. Additional investigations of the effects of hormones relevant to
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breast development and carcinogenesis, as well as breast cancer oncogenes
such as c-erb-B-2, are also under investigation.
Similar trends in nm23 structure and expression in human lung cancer

have been observed. In a blinded cohort of non-small cell lung carcinomas,
42% of informative tumors exhibited allelic deletion of nm23-Hl [17]. All of
the tumors with nm23-Hl allelic deletions were adenocarcinomas, while
allelic deletions at or near the p53 tumor suppressor locus (at chromosome
17p13) were most prevalent in the squamous cell carcinomas. Since allelic
deletion data may pertain to the gene used as the probe on the Southern
blots or to a closely linked gene, we have also investigated nm23 expression
in a human lung cancer malignant progression model system [18]. A cell
line established from SV40 immortalized human bronchial epithelial cells
(BEAS-2B) was transfected/infected with v-Ki-ras, N-ras, or v-Ha-ras,
generating the transformed BVK, BZN, and BZR cell lines, respectively.
An additional cell line was established from the subcutaneous tumors
resulting from injection of the BVK, BZN, and BZR lines, designated
BVK-Tll, BZN-T33, and BZR-T46, respectively, and these latter lines
exhibited increased tumorigenic and/or malignant behavior upon subsequent
injection into nude mice. We observed that nm23 steady-state RNA levels,
as well as nm23 protein biosynthetic levels, were progressively reduced with
increasing malignant potential in the BEAS-2B-BVK-BVK-T11 and BEAS
2B-BZN-BZN-T33 systems. No consistent trend in expression was observed
in the Ha-ras system. The data indicate that Ki-ras and N-ras can result in
decreased nm23 expression, which is intriguing in light of the fact that Ki-ras
is the most prevalent ras mutation in adenocarcinomas of the lung, in which
nm23-Hl allelic deletion was observed [18]. The data also indicate that
reduced nm23 expression was not always correlated with malignant pro
gression, as in the case of Ha-ras, and suggests that either other types of
nm23 alterations or mechanisms independent of nm23 are operative.
Evidence for alterations in nm23 structure and expression, other than its

reduced expression, was observed iIi human colorectal carcinomll. Haut et
al. [19] initially reported that nm23 steady-state RNA levels were elevated
in colonic polyps and carcinomas, as compared to adjacent normal colonic
epithelium. Furthermore, no consistent trend was observed between car
cinomas of Dukes grades A-D (exhibiting increasing evidence of local and
distant metastases). Somatic allelic deletion of nm23-Hl was observed in
20% of informative colorectal carcinomas examined [17]. Based on this
observation, Cohn et al. [20] investigated in a prospective study of colorectal
carcinoma patients whether nm23-Hl allelic deletion was associated with the
development of distant metastases. Twenty-one patients, free of distant
metastases at initial surgery and heterozygous at the nm23-Hl locus, were
typed for nm23-Hl allelic deletion in the tumor tissue and were followed
for an average of 22 months for the development of distant metastases.
Approximately 73% of patients with nm23-Hl allelic deletions developed
distant metastases, while only 20% of patients whose tumor was nondeleted

348



at the nm23-Hl locus developed distant metastases; the data indicated a
significant difference in the incidence of distant metastasis development by
the log rank test (p = 0.03). In the nm23-Hl allelic deletion subset, three
patients initially stage I at surgery were present. These patients have a
traditionally favorable (>95% chance) of recovery, and it was interesting
that 2 of the 3 patients developed distant metastases. The data indicate that
nm23-Hl allelic deletion, and not overall nm23 RNA or protein levels,
is associated with metastatic progression in colorectal carcinoma. Current
investigations are examining the remaining alleles for possible mutations. It
cannot be ruled out at this point that a gene closely linked to nm23-Hl, and
not nm23-Hl itself, is the gene responsible for regulating metastasis devel
opment in colorectal carcinoma.
In childhood neuroblastoma another pattern of altered nm23 regulation

has been correlated with high tumor metastatic potential. Stage 3 and 4
neuroblastomas (highly aggressive tumors) were reported to exhibit elevated
levels of a 19-kDa protein, for which partial amino acid sequence matched
nm23-Hl [21]. It was concluded that nm23 overexpression in aggressive
neuroblastomas was not due to gene amplification, and was linked to myc
amplification. A second study performed in our laboratory has generated
different conclusions [22]. When matched DNA samples from normal bone
marrow and tumor tissue were examined on Southern blots, amplification of
one nm23-Hl and nm23-H2 allele was observed in 4/4 tumors with myc
amplification, as well as 0/10 stage 1 and 2, 2/7 stage 3, 3/6 stage 4, and 1/3
stage 4s tumors with one copy of myc. In addition, analysis of nm23-Hl and
nm23-H2 cDNAs by the single strand conformational polymorphism (SSCP)
technique indicated the presence of a minor population of cDNAs with
altered conformations in addition to the wild-type bands. The altered SSCP
conformers corresponded to the 5' but not the 3' halves of the cDNAs,
suggestive of the presence of nm23 mutations. Amplification may therefore
represent the tumor cell's response to a mutated allele. Clearly this cancer
cell type has a complex pattern of altered I structure and expression, and
current efforts are focusing on identifying specific bases that are mutated.

Transfection of nm23

The fact that altered structure and/or expression of nm23 has been cor
related to metastatic progression in diverse tumor cell types argues for a
functional role for nm23 in the metastatic process. However, in no case can
the data exclude the possibility that a closely linked gene is the actual
metastasis regulatory gene and that variations in nm23 are a 'bystander'
effect of the amplification or deletion of relatively large portions of tumor
DNA. Transfection data are therefore the only accepted indicator of a
functional role for a putative suppressor gene.
Our initial transfection experiments utilized the murine K-1735 melanoma
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metastasis model system, from which the nm23 gene was identified. The
most stable, highly metastatic cell line, K-1735 TK, was cotransfected with
pRSVneo and pnm23-1 (containing the murine nm23-J cDNA, which
was linked to a constitutive SV40 early promoter). Clones exhibiting both a
0.8-kb endogenous nm23 band and a 1.0-kb band of transfected nm23-1 on
Northern blots were selected for analysis [23]. As controls, TK cells were
transfected with pRSVneo, or with both pRSVneo and pnm23-1, and clones
were selected that did not express the exogenous 1.0-kb band on Northern
blots.
The tumor metastatic potential of the nm23-1 and control transfected TK

cells was determined by injection into mice. In experimental metastasis
assays tumor cells were injected into the lateral tail veins, and pulmonary
metastases was quantitated several weeks postinjection. TK clones expressing
the nm23-J construct produced 57-96% fewer pulmonary metastases than
did control transfected TK clones [23]. In spontaneous metastasis assays,
tumor cells were injected subcutaneously, and the development of both
primary tumors and metastases were measured. TK clones transfected with
nm23-1 produced fewer primary tumors than control transfectants, although
the sizes of the tumors that were produced did not consistently differ from
those of control transfectants. The formation of metastases in spontaneous
metastasis assays is slow and inefficient, but significantly fewer animals that
received nm23-J-transfected TK clones developed spontaneous metastases
than animals receiving control-transfected TK clones [23]. The data indicate
that nm23-1 is a suppressor gene for primary tumor incidence and metastasis
in K-1735 TK melanoma cells.
The mechanism of nm23-1 action was investigated [23]. The endogenous

TK nm23 gene was PCR amplified and cloned, and its sequence was deter
mined to be wild type. Thus, the nm23-J transfection did not supplement a
mutated TK nm23 gene with a wild-type gene. Nm23-I-transfected TK
clones exhibited an altered response to the cytokine transforming growth
factor-B t (TGF-B) in soft agar colonization assays. Control, highly metastatic
TK clones were stimulated by TGF-B in a dose-dependent manner, while
the lower metastatic potential, nm23-I-transfected TK clones showed no
significant response to TGF-B [23]. Thus, nm23-1 may exert an inhibitory
effect on primary tumor incidence and metastasis by abrogating a stimulatory
colonization response to TGF-B.

Homologs of nm23 are involved in development and differentiation

Homologs of nm23 have been identified in the fruit fly (Drosophila
melanogaster) and cellular slime molds (Dictyostelium discoideum). The
Drosophila abnormal wing discs (awd) gene encodes a 17-kDa protein that
is 77% identical and 96% conserved in charge and hydrophobicity to the
amino acid sequence of nm23-Hl [11]. Mutation or reduced expression of
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awd permitted nearly normal larval development. After metamorphosis,
when presumptive adult tissue differentiates, widespread abnormalities were
observed. These include altered cell morphology, aberrant differentiation
and cell necrosis, and the wing, leg, eye-antennae imaginal discs, ovaries,
brain, and proventriculus [24-26]. An equally striking characteristic of awd
mutants is the heterogeneity in the appearance of these abnormalities, to the
extent that two wing discs from the same animal were often dissimilar. Most
importantly, awd mutations have been functionally linked to differentiation
and development. Transformation of the mutant germline with wild-type
awd DNA resulted in normal development [26).
The gip 17 cDNA clone was identified from an cDNA expression library

from cellular slime mold, screened with an antibody to kinases [27,28]. The
predicted amino acid sequence of gip 17 is 66% identical to nm23-Hl. RNA
levels corresponding to gip17 were determined in the nutrient-starvation
induced model of Dictyostelium differentiation [28]. Cells in the vegetative,
proliferative state expressed high steady-state gip17 RNA levels. Upon
starvation cells begin to migrate, and gip17 RNA levels were reduced.
Continued starvation resulted in the aggregation and differentiation of the
cells, and was accompanied by progressively increased levels of gip17 RNA.
These evolutionary associations suggest that nm23 may participate in the

development and differentiation of mammalian organisms. The role of nm23
in tumor metastasis may therefore involve its regulation of one or more
'differentiated' characteristics, which serve to stabilize functions such as cell
division, adhesion, invasion, or migration. Two correlations of high nm23
protein levels with advanced differentiation have been noted in mammalian
cells: Rat PC12 pheochromocytoma cells, when cultured with nerve growth
factor or dibutryl cAMP, cease dividing, and produce axons characteristic of
the differentiated state. Under these more differentiated conditions, nm23
protein levels are increased (personal communication, Dr. David Berstein).
Second, immunoperoxidase staining of nm23 in squamous cell carcinomas of
the head and neck indicate that differentiated (keratinizing) tumor cells
express higher nm23 protein than undifferentiated tumor cells (personal
communication, Drs. Edward Barker and Paul Pavolich).

Nucleoside diphosphate kinases and nm23

Nucleoside diphosphate kinases (NDPK) catalyze the phosphorylation of
nucleoside diphosphates (NDP) into nucleoside triphosphates (NTP). The
enzyme may be more correctly termed a transferase than a kinase, as a
terminal phosphate is shifted from one nucleotide diphosphate to another.
The cellular NDPK is an oligomer of three to six monomeric units, depending
upon the cell type. Post-translational modification of NDPK and binding to
other proteins have also been postulated. The biological functions of NDPK
are not well understood. Virtually any biochemical process that requires a
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NTP can be a candidate role for NDPK, although GTP function in micro
tubule assembly and G-protein function have received widespread attention.
In addition, NDPK have been proposed to maintain intracellular pools of
NTPs and to be part of the DNA replicon. Two NDPKs were purified
from sequences from human erythrocytes and were identical in amino acid
sequence to nm23-H1 and nm23-H2 [29]. In addition, Drosophila awd
and Dictyostelium gip17 have been demonstrated to encode NDPK [27,30].
In Drosophila, an association of differentiation abnormalities with reduced

NDPK activity has been reported by Biggs et al. [30]. Mutant awd larvae
contained 98% less NDPK activity than their wild-type counterparts. The
remaining 2% of the NDPK activity was postulated to result from another
NDPK gene or was maternally derived. Biggs et al. noted that mutant awd
larvae exhibited condensed chromosomes, suggestive of colchicine-treated
cells. Furthermore, awd protein was found to immunolocalize with tubulin.
The data suggest that one consequence of awd mutation is the lack of
NDPK provision of GTP or transphosphorylation of microtubule-bound
GDP into GTP for efficient microtubule polymerization, with possible
effects on cell shape, motility, mitosis, and chromosomal stability.
We have examined the K-1735 TK melanoma nm23-1 and control

transfected clones for total NDPK activity, using both a spectrophotometric
coupled enzyme assay [30] and a radiosotopic assay [31]. Whereas nm23
RNA levels were elevated severalfold over controls, TK clones expressing
the transfected nm23-1 construct contained, on average, only 10% more
NDPK than control-transfected clones (Table 1). Similarly, when the low

Table I. The phenotypic changes induced in TK melanoma cells by NM23-1 transfection were
accompanied by only small increases in cellular NDPK activity

NDPK activity Percent
(umoles/min/mg) change

Experiment #1;
A2 (control) 5.75
A3 (nm23-1+) 6.52 +13.4%

Experiment #2
A2 (control) 5.86
A3 (nm23-1 +) 6.53 +11.4%

Experiment #3
A2 (control) 6.40
A3 (nm23-1+) 7.11 +13.6%

Experiment #4
2-4 (control) 6.40
4-6 (nm23-1 +) 7.11 +11.1%

Experiment #5
2-4 (control) 5.95
4-6 (nm23-1 +) 7.33 +23.2%

Experiment #6
2-4 (control) 6.50
4-6 (nm23-1 +) 7.26 +11.7%
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Table 2. Lysates of tumor cells do not contain an inhibitor of NDPK activity

NDPK activity
(change in absorbance/min)

0.033 pg recombinant
NM23-H1 protein

2.9511g TK cell lysate
0.033 pg recombinant
NM23-Hl protein +
2.9511g TK cell lysate

Expt #1

0.02

0.101
0.131
108% of expected additive
value

Expt #2

0.047

0.111
0.154
98% of expected of
additive value

and high metastatic potential K-1735 melanoma cell lines clone 19 and TK
were analyzed, significant differences in nm23 RNA levels lead to only
minor changes in total NDPK activity (data not shown). Addition of cell
lysate to a known amount of NDPK resulted in additive amounts of NDPK
activity (Table 2), indicating that the lack of a significant amount of NTP
produced in these assays was not due to the presence of an inhibitor of
the NDPK assay in cell lysates or the excessive presence of NTPases.
Subcellular fractionation of one set of nm23-1-transfected and control
transfected TK clones is shown in Table 3. In no subcellular fraction were
severalfold increases in NDPK activity found. Analysis of chromosome
condensation and tubulin organization, the latter shown in Fig. 1, also
indicated no significant differences in the nm23-1- and control-transfected
TK clones. The data argue that if the NDPK activity of nm23-1 is responsible
for the observed phenotypic changes upon transfection into TK cells, then
specific mechanisms must be involved. The data also indicate that gross
changes in microtubule organization were not required for alterations in the
metastatic phenotype.
What biochemical mechanisms could account for the specificity of action

of NDPK? NDPK have been demonstrated to associate with membrane
signal transducing systems such as hormone-sensitive adenylate cyclase
[32,33] and has been postulated to function as GTP supply machinery,
resulting in their activation. The GTP supply in this system in activated by
hormone but is insensitive to cholera toxin, the latter of which acts in a
receptor-independent mechanism [34]. Complex formation between hetero
trimeric G-protein Gs and membrane-associated NDPK was demonstrated
in a detergent-solubilized preparation [35]. Two possible mechanisms have
been postulated: (1) NDPK increases the GTP concentration in the imme
diate vicinity of the G protein, leading to increased GDP for GTP exchange
and G protein activation. (2) Alternately, NDPK directly transphos
phorylates GDP bound to the G protein into GTP. The discrimination of
these possibilities is complicated by the difficulty in measuring GDP disso
ciation rates from G proteins and awaits further rigid evidence [36,37].
The possible interaction between NDPK and small molecular weight G
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Figure J. Immunostaining of tubulin in control and nrn23-J-transfected K-1735 TK melanoma
cells. Two sets of control and nrn23-J-transfected TK clones were stained for tubulin
expression, as previously described (30). 2-4, control transfectant; 4-6, nrn23-J expressing
transfectant. A2, control transfectant; A3, nrn23-J expressing transfectant.

proteins was suggested in a study of Drosophila. The x-linked prune (pn)
eye color mutation has a specific lethal interaction with the nm23 homolog
awd. This lethal interaction occurs only upon mutation of an awd serine to a
proline and is known as the Killer of prune mutation (awd K-pn) [24]. Pn
was recently reported to demonstrate homology to the catalytic domain of
mammalian GTPase activating protein (GAP) [38]. GAPs stimulate the
GTPase activity of small G proteins such as ras. The data lead to the
suggestion that nm23/awd/NDPK and a GAP-like protein may interact on
the same signaling pathway as ras-like proteins [39]. Unpubished obser
vations indicate no evidence for a direct association of nm23 with ras,
however. A 17-kDa protein was observed to copurify with ras, but it was
unreactive to anti-nm23 peptide antibody (personal communication, Dr.
C.W. Marshall).
Recombinant murine nm23-1 protein has been demonstrated to trans

phosphorylate GDP bound to a small G protein, ADP ribosylation factor
(ARF), under conditions of undetectable GDP dissociation [40]. Activation
of ARF was also quantitated, indicating that transphosphorylation had
a functional effect [35]. Thus, NDPK may bind, transphosphorylate, and
activate this small G protein. Two issues complicate an interpretation of the
significance in vivo of these findings: First, the Km and Vmax were calculated
for NDPK interaction with ARF-GDP as opposed to free GDP; ARF-GDP
exhibited a lower Km but a slower Vmax than free GDP [35]. In vivo,
ARF-GDP could represent (1) a stimulator of ARF activation, given the
significant Vmax and Km, or (2) an inhibitor of ARF, by virtue of its tight
binding to ARF and relatively slow catalysation of the phosphorylation
reaction. Thus, the in vivo significance of NDPK interactions with small G
proteins remains unclear.
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If NDPK serve to activate small G proteins in vivo, the issue of specificity
must also be addressed in terms of what small G proteins are responsive and
what NDPK are capable. Does NDPK activate ARF, a subset of small G
proteins, or virtually all G proteins?

It cannot be excluded that nm23 possess biochemical activities distinct
from its NDPK activity, which mediate its biological effects. One candidate
is a repeat of three Ieucines indicative of a leucine zipper, involved in
protein-protein and protein-DNA interactions [12J. Site-directed mutagenesis
underway in the laboratory will alter nm23-1 amino acids to eliminate these
and other biochemical activities. The constructs will then be transfected into
K-1735 TK cells to definitively link the biochemical activities with alterations
in the metastatic phenotype.

Clinical perspectives

The phenotypic consequences of transfection of human nm23 cDNAs into a
variety of human tumor cell lines must be determined before any preclinical
strategies for nm23 can be developed. From a theoretical standpoint, if
human nm23 genes are suppressive for metastastic behavior, two strategies
can be pursued. First, drugs that increase nm23 expression can be identified
and tested. However, if mutant nm23 proteins are found, as is suggested by
the SSCP data in neuroblastoma, it is not known whether a simple increase
in the synthesis of an wild-type gene will have a significant beneficial effect.
Second, gene therapy offers the eventual hope for delivery of a wild-type
construct to tumor cells, although significant advances in tissue-specific
delivery, stability of the construct, and efficiency of infection are required.
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19. Angiogenesis: A mechanism by which oncogenes
and tumor suppressor genes regulate tumorigenesis

Noel Bouck

Introduction

Normal cells become malignant in a tissue culture flask, in experimental
animals, and in cancer patients, largely as a result of the accumulation of a
series of genetic lesions that activate proto-oncogenes to oncogenes and that
inactivate tumor suppressor genes, sometimes called anti-oncogenes [1].
About 50 oncogenes and a dozen anti-oncogenes have been cloned and
sequenced. The functions of most of them are well understood in the sense
that the primary structure and biochemical activity of the proteins they
encode are known. The vast majority of these proteins are either transcrip
tion factors or participants in signal transduction pathways (see Chapter 1).
However, the identification of an oncogene-encoded protein as a transcrip
tion factor or a member of a signal transduction pathway does not fully
explain why an increase in its activity (or its loss of function in the case of
the anti-oncogenic tumor suppressor genes) increases the likelihood that
a cell will become tumorigenic. A complete understanding of how the
activation of an oncogene contributes to tumorigenicity demands additional
information. It requires (1) that the oncogene-regulated genes be identified
and the function of their protein products determined and (2) that those
oncogene-regulated proteins that play a crucial role in the development of
the tumorigenic phenotype be differentiated from those that are irrelevant.
One way to begin to identify crucial oncogene- and tumor suppressor gene
regulated proteins is to investigate molecules that control a phenotype
known to be essential for tumor growth and then to determine if the
production of such proteins is altered by oncogene activation or by sup
pressor gene loss. One phenotype that is particularly amenable to such
analysis is angiogenesis - the ability to induce neovascularization or new
blood vessel growth.

Induction and inhibition of neovascularization

In the normal adult organism in the absence of disease, there is no new
blood vessel growth, except in response to injury or to cyclical changes in
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Table 1. Naturally occurring inducers and enhances of in vivo neovascularization

Growth factors

Other proteins
and peptides

Carbohydrates

Lipids

Small molecules
and ions

Others

• Acidic fibroblast growth factor (aFGF)
• Basic fibroblast growth factor (bFGF)
• Epidermal growth factor (EGF)
• Transforming growth factor alpha (TGF-u)
• Transforming growth factor beta (TGF-~)
• Tumor necrosis factor alpha (TNF-u)
• Platelet-derived endothelial cell growth factor (PD-ECGF)
• Vascular permability factor (VPF, VEGF, or FSdGF)
• Interleukin 1 (IL-l)
Interleukin 2 (IL-2)
• Angiogenin
Angiotensin II
• Plasminogen activator
• Ceruloplasmin
• Polyamines
• Substance P
Human angiogenic factor (h-AF)
Fibrin
Hyaluronan fragments
• Lactate
• Prostaglandins E1, E2
Monobutyrin
12(R)-hydroxyeicosatrieonic acid (compound D)
• Nicotinamide
Adenosine diphosphate
Sel~nium

Copper
• Endothelial cell stimulating angiogenesis factor (ESAF)
Angiotropin

[2,3)"
[2,3)
[2,3)b
[2,3)
[2,3)
[2,3)
[2,3)
[2,3)
[4-6]<
(7)
[2,3)
(9)
(10)
(II)
(121
(13)
(14,15)
(3)
(17,18)
(19)
[20J
[3,20)
[21]
(3)
(l6,22-23J
[24J
(16,25)
[26-28J
[2,3,29)

• Known to be produced by tumors and/or tumor cell lines.
"Reviews are cited for well-known inhibitors.
b See also contrary report (8).
cInhibitory in some circumstances (36).

the female reproductive organs. Although many naturally occurring com
pounds are capable of inducing neovascularization (Table 1), in normal
tissues they are apparently not available to the endothelial cell at effective
concentrations. Some are awaiting activation, such as plasminogen activator,
others are sequestered within cells such as the platelet-derived endothelial
cell growth factor or within the interstitial matrix like basic fibroblast growth
factor [47]. On the other hand, naturally occurring molecules capable
of blocking angiogenesis (Table 2) are thought to be present at effective
concentrations in normal tissues, where they may act to make the endo
thelial cell insensitive to modest ambient concentrations of inducers. Upon
wounding, the stringent inhibition of angiogenesis immediately dissolves. In
response to cytokines and enzymes released by cells involved in clotting and
inflammation, new vessels grow to support the repair of injured tissue and,
when healing is complete, regress to the preinjury level. Successful solid
tumors usurp the inductive phase of this physiological wounding response,
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Table 2. Naturally occurring inhibitors of in vivo neovascularization

'Platelet factor 4 (PF-4)
Eosinophil major basic protein
'protamine
Interleukin-1 (IL-1; bFGF specific?)
, Interferons
, Retinoids
'1,25-dihydroxyvitamin D3
, Angiostatic steroids + sulphated
polysaccharide
'Tissue inhibitor of metalloproteinases (TIMP)
'RNase inhibitor (angiogenenin specific)
, Laminin peptides
High mass hyaluronan
Thrombospondin (TSP)

, Shown to slow growth in vivo of some experimental tumors.

[see 2,3,31-34]
[see 3,31]
[see 2,31,35]
[36]
[see 2,37]
[38-40]
[30]
[see 2,3,41]

[see 20,12,42]
[43]
[44,45]
[17]
[see 2,46]

creating around them an environment akin to that of an active wound,
complete with continuous neovascularization [48].

Mechanisms linking transformation and angiogenesis

A large body of work published over the last 20 years (principally from the
Harvard laboratory of Judah Folkman) [reviewed in 20,49] indicates that
solid tumors are absolutely dependent on this angiogenesis. Without it they
are unable to grow progressively to a thickness of more than 1-2mm or to
metastasize efficiently [3,50,51]. All available evidence is consistent with this
being just as true for human tumors as for those growing in experimental
animals. For example, human melanomas become life threatening only
when they expand to a thickness of greater than 0.75 mm, an event ac
companied by the initiation of angiogenesis around the thickening tumor
[52]. Cells in progressively growing solid tumors use a number of strategies
to attract the vascular supply they need [reviewed in 2,3,53-57]: (1) They
produce diffusible angiogenic factors that directly activate endothelial cells,
stimulating them to sprout into vessels that grow towards the developing
tumor. (2) They elaborate cytokines, which attract macrophages to their
environment [58], mast cells [59], and neutrophils [60], which also produce
angiogenic factors. (3) They halt the production of molecules that inhibit
angiogenesis [20,61]. (4) They produce enzymes that release angiogenic
factors stored in the extracellular matrix [62]. (5) They stimulate adjacent
normal tissue to make enzymes such as stromelysin [63] and collagenase
[64,65] that can be activated to promote angiogenesis.

If sequentially acquired lesions in oncogenes and tumor suppressor genes
cause normal cells that are not angiogenic in situ to develop into neo
vascularizing tumors, it is a logical presumption that it is oncogene activation
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and/or suppressor gene loss that directly or indirectly enables cells to
become angiogenic. There are many instances in the current literature that
can be interpreted as supporting a causative link between oncogenes and
anti-oncogenes and angiogenesis, although this link has seldom been studied
directly.

The angiogenic phenotype is acquired stochastically

It is during tumor initiation, promotion, and progression in vivo, as onco
genes are being activated and tumor suppressor genes lost, that the ability to
be angiogenic arises. It can arise early, midway, or late in the tumorigenic
process [49,66]. It is necessary, but of course not sufficient, for tumori
genicity, as is true of most individual lesions in oncogenes or anti-oncogenes.

Some oncogenes encode angiogenic factors

Constructs expressing EGF [67], TGF-a [68-70], or bFGF [71,72] can
transform cells to increased tumorigenicity, and each of these genes
encodes a growth factor that can induce angiogenesis. Three tumor-derived
oncogenes - int-2, hst/K1gf/KS3, and FGF-5 - are highly homologous to
bFGF, the prototypic inducer of angiogenesis, and may encode angiogenic
proteins, as they are more similar to bFGF than is angiogenic acidic FGF.
The induction of angiogenesis is certainly not the only function of the
secreted molecules encoded by these oncogenes, for they can be potent
growth factors for the cells they transform in tissue culture systems, where
angiogenesis is irrelevent. In most cases it is not yet clear whether the
angiogenic molecules encoded by the transforming oncogenes are actually
produced by the cells in sufficient quantity to directly induce all neovascular
ization necessary for progressive tumor growth in vivo. Most likely they
have dual roles, activating endothelial cells directly and attracting accessory
cells to amplify the response. A tight correlation has been found between
bFGF release and angiogenesis in developing fibrosarcomas in transgenic
mice carrying bovine papilloma virus [73]. Interestingly, neoplasms in these
animals become aggressive and angiogenic not when the cells of the devel
oping tumor begin to make large amounts of bFGF protein, but rather when
these cells become able to export it efficiently. It is not yet clear whether the
switch to a secretory mode is due to a change in the gene encoding bFGF,
which in experimental systems would convert it to an oncogene [74], or to
an alteration in cellular secretory pathways. Secretion begins at the same
time that the developing tumor cells begin to overexpress the E6 and E7
oncoproteins encoded by the resident papilloma virus, raising the possibility
that these viral oncogenes may be ultimately responsible for the initiation of
angiogenesis in this system.
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Some transforming oncogenes induce cells to produce angiogenic factors

Ras, src, and certain other oncogenes appear to enhance angiogenesis, for
tumors grown from ras-transformed fibroblasts tend to be exceptionally
bloody and to have more vessels than tumors derived from spontaneously
transformed controls [75]. When cells from the mouse urogenital sinus are
allowed to regenerate a prostatelike organ after transplantation under the
kidney capsule, angiogenesis is increased by lO-fold if H-ras-expressing cells
are present [76]. How ras stimulates angiogenesis is unknown but it can
increase the expression of angiogenic TGF-a, as can other oncogenes [69].
H-ras expression can also raise phospholipase A2 activity in cultured rodent
fibroblasts (as can src, met, trk, mas, and raf, but notfos or myc) [77], which
could increase the production of angiogenic prostaglandins. The synthesis of
prostaglandins was measured directly in chicken embryo fibroblasts (CEF)
transformed by a variety of viral oncogenes, and PGE2 was found to be
increased by three- to fourfold in cells transformed by src,fps, ros, yes, mas,
and ras, but not by v-crk or c-src [78]. Increased PGE production in v-src
transformed cells is proportional to the degree of transformation [77] and
may be due to the oncogene-mediated persistent induction [79] and appro
priate splicing [80] of the transcript encoding prostaglandin synthase.
V-src-transformed CEF also acquire the ability at their cell surface to
activate plasminogen activator [81], another molecule capable of inducing
angiogenesis.
Oncogenes encoding transcription factors might be expected to influence

the production of many molecules relevant to angiogenesis. For example,
angiogenic molecules, such as collagenase and IL-2, are sensitive to
transcriptional regulation via AP-1 promoter sites and thus represent poten
tial targets genes for activated fos and jun [82]. As yet, however, no specific
links between these oncogenes and angiogenesis have been made. A pre
liminary report from Schweigerer et at. [83] describes the ability of the N
myc oncogene to enhance the vascularization and malignant potential of
neuroblastoma cells having low N-myc expression, apparently by increasing
the production of endothelial cell growth factors. Enhanced vascularization
and the increased metastasis that it engenders may contribute to the well
documented increased aggressiveness of neuroblastomas carrying amplified
N-myc [84].

The tumorigenicity of DNA tumor viruses depends on the induction of
angiogenesis

The viral oncogenes of DNA tumor viruses are probably able to make cells
angiogenic, especially those oncogenes sufficient to convert nonangiogenic
primary cultures into cells capable of forming well-vascularized solid tumors.
In the case of middle T antigen of polyoma virus, we have some insight into
a possible mechanism. Expression of this oncogene in endothelial cells of
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transgenic or newborn mice results in high fibrinolytic activity due to the
unusual combination of increased production of urokinase plasminogen acti
vator (uPA) and decreased production of plasminogen activator inhibitors
(PAl) [85]. When endothelial cells expressing middle T are injected into
normal mice, hemangiomas grow rapidly but consist largely of host endo
thelial cells whose migration has been stimulated and whose differentiation
has been inhibited apparently as a result of rampant matrix degradation
triggered by the injected middle T-expressing cells [86]. UPA alone can be
angiogenic (Table 1), and one can envision in another cell or another
environment that polyoma middle T could induce angiogenesis via modula
tion of uPA and PAl to a more modest degree than occurs in the embryonic
endothelial cell.
The large T antigen of SV-40 virus is capable of transforming cultured

cells to tumorigenicity but is apparently incapable of providing an angio
genic phenotype when it is expressed in the beta cells of the pancreas in a
transgenic mouse [87]. It is not clear if this is due to constraints on its level
of expression imposed by the transgenic system or whether this simply
indicates that the mechanisms by which a single oncogene induces angio
genesis are not effective in all cells and/or in all tissue environments. Many
other viral oncogenes sufficient to transform cells in culture to tumorigenicity
fail to cause every cell in a transgenic mouse in which they are expressed to
produce tumors [88]. In two such cases, baby chicks infected with v-src
expressing Rous sarcoma virus [89] and transgenic mice expressing v-jun
driven by the H-2K promoter [90], tumors form only at the site of a wound,
which is of course accompanied by angiogenesis. But the observation that
tail fibroblasts cultured from v-jun transgenic mice are able to form vascular
solid tumors in nude mice suggests that it is the further growth of the
oncogene-containing cells, stimulated by the wounding environment in vivo,
or by the analogous serum-containing culture medium in vitro, that is crucial
in these models and not the angiogenesis.

The loss of tumor suppressor genes can activate angiogenesis

In two histologically different hamster tumor systems, loss of a suppressor
gene influences angiogenesis. In a cultured BHK fibroblast line that is
converted to anchorage independence and tumorigenicity by loss of a tumor
suppressor gene, suppressor loss is invariably accompanied by a gain in
the ability to be angiogenic [61]. In this system, the presence of an active
tumor suppressor gene ensures that the normal cell will produce high levels
of mRNA encoding a secreted inhibitor of angiogenesis, thrombospondin
[46, 61]. When the suppressor is inactivated, the levels of thrombospondin
mRNA decrease and the amount of secreted protein becomes inadequate
to block the angiogenic activity of constitutively produced growth factors
(Fig. 1). During in vivo carcinogen-initiated transformation of hamster
keratinocytes into carcinomas, it has been shown by cell fusions that a tumor
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Figure 1. Control of angiogenesis by a tumor suppressor gene. In hamster fibroblasts, an active
tumor suppressor gene mediates a high level of transcription from a second gene that encodes
an inhibitor of angiogenesis, the matrix protein thrombospondin. Inactivation of the suppressor
gene results in reduction in the transcription and secretion of thrombospondin [46,61].
Preliminary experiments indicate that analogous mechanisms may link inhibitors and suppressor
genes in human tumors, as returning a suppressor gene to a human neuroblastoma line or to a
human osteosarcoma line causes upregulation of the production of a different inhibitor of
angiogenesis.

suppressor gene is lost as cells of the developing carcinoma gain the ability
to be angiogenic [66].

In humans, the von Recklinghausen neurofibromatosis suppressor gene
has been indirectly implicated in angiogenesis in experiments showing that
Schwann cells cultured from neurofibromas (assumed to have lost expression
of at least one allele of the NF-1 gene) are angiogenic, whereas Schwann
cells cultured from normal individuals are not [91]. In two instances where
human tumor cell lines have been reverted to nontumorigenic lines by
introduction of a suppressor gene (a neuroblastoma line reverted by intro
duction of normal chromosome 17 [92] and an osteosarcoma line reverted by
the cloned retinoblastoma suppressor gene [93]), the suppressed cells begin
producing an activity inhibitory for angiogenesis (Tolsma, Huang, Bader,
Stanbridge, Polverini, and Bouck, unpublished data). The p53 tumor
suppressor gene could also be involved in suppression of angiogenesis, as
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both it and the retinoblastoma gene have recently been shown by transient
transfection assay to be able to repress the IL-6 promoter, along with
promoters of many other genes [94]. Although not yet rigorously tested in
vivo, in vitro data suggest that IL-6 is angiogenic [95), thus it is possible that
the complete loss of p53, which has been shown to occur in some tumors,
permits the increased expression of this putative angiogenic factor.

Future studies and therapeutic options

The above suggestions linking oncogenes and anti-oncogenes to the activation
of tumor angiogenesis are tenuous but amenable to experimental testing.
Most angiogenic factors and inhibitors are released by cells in culture and
can be collected, assayed, purified, and identified, and their contribution to
in vivo neovascularization can be assessed. The identification of angiogenic
molecules offers insight into the functions of oncogenes and anti-oncogenes
by defining molecules crucial to tumorigenicity that they encode or regulate.
Inducers of angiogenesis make tempting therapeutic targets; many stimulate
the growth of tumor cells as well as of the supporting vessels, and these offer
an opportunity to interfere with both tumorigenic actions. In contrast, the
inhibitors of angiogenesis are attractive as direct therapeutic agents that are
potentially able to block tumor progression and to hold covert metastases in
check. Specific inhibitors seem to be lost from different tumors, raising
the possibility of being able to treat with the inhibitor produced by cells
that are the normal precursors of that particular tumor. Whether such anti
angiogenic therapy is based on natural inhibitors or on some of the many
xenobiotics that also block neovascularization, it also provides a theoretical
bonus. Inhibitors of neovascularization directly target not the unstable,
constantly evolving tumor cell population but rather the activated, normal
diploid endothelial cell whose karyotype is stable, whose behavior is pre
dictable, and whose sensitivity should be similar from one individual to
another and remain constant over time.
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150,153,155-156

Dihydrotestosterone, 202
7,12-Dimethylbenz(a)-anthracene (DMBA),
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c-abl gene and, 171, 172
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neuroblastomas and, 105, 109, 110
nm23 gene and, 349, 351
TGF-a and, 244, 246
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nonspecific, 319-320
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p53 protein and, 335, 336
sequence-specific, 315-317, 336
DNA mutations, see Mutations
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int-2 gene and, 214
p53 protein and, 328, 330
signal transduction and, 265, 272, 281
TGF-a and, 239
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DNA tumor viruses, 8, 66, 92, 363-364
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Double-minute chromosomes, 72, 106, 107
Doxorubicin, 24
Drosophila, 22,172,235,241,287,350
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39,350-351,355

Drosophila melanogaster, 234, 350

EIA protein, 8, 258, 259, 329
E2A transcription factor, 4
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E2F transcription factor, 8, 66, 67, 244
Egr-l promoter, 291, 304
Endometrial cancer, 216
Endothelial cell growth factor, 112
Endothelin, 283, 286
Eosinophils, neuroblastoma and, 116-117,
119
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Epidermal growth factor (EGF), see also
Epidermal growth factor receptors abl
gene and, 176
angiogenesis and, 362
breast cancer and, 35, 36, 194
neuroblastomas and, 112
signal transduction and, 271, 272, 284,
288, 290, 291
TGF-a and, 233, 234, 237, 238, 243, 244
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TGF-~ and, 257
thyroid function and, 90, 91, 98
Epidermal growth factor receptors (EGFR),
2,28,29,35-38,40, 194,207,248,see
also Epidermal growth factor

abl gene and, 176
bcl-2 gene and, 152
c-erbB-2 gene and, 29
IR and, 207
lung cancer and, 75
ras gene and, 28
TGF-a and, 233, 237, 239, 241, 242, 243,
246,248

TGF-~ and, 256
thyroid cancer and, 97
Epinephrine, 286
E6 protein, 362
E7 protein, 258, 329, 362
Epstein-Barr virus (EBV), 5, 143, 145, 147,

151
erbB gene, 92, 98
Erk/MAP kinase, 286, 288, 289-291, 292
Esophageal cancer, 22, 331, 333
Essential thrombocythemia, 178
Esterase 0, 7
17 ~-Estradiol, 202
Estradiol-17~-dehydrogenase, 21
Estrogen receptors (ER), 36, 37, 38-39, 40,
193, 195,208, see also Estrogens

Estrogens, 25, 26, 27, 28, 87, 89,193,243,
see also Estrogen receptors

Etoposide, 73
Ewing's sarcoma, 105
Extranodal non-Hodgkin's lymphoma
(NHL),151

Fasciclin I, 172
FBI protein, 306
FBR protein, 306, 307
FOC-Pl,5
fes gene, 2
FGF-K gene, 22
Fibroadenomas, 28
Fibroblast growth factor (FGF), 211-221,

see also specific types
angiogenesis and, 219-220
breast cancer and, 22, 29, 194,248
signal transduction and, 271, 272, 289,
290

TGF-~ and, 257
thyroid function and, 90, 95
tumor growth and, 217-219
Fibroblast growth factor-l (FGF-l), see
Acidic fibroblast growth factor

Fibroblast growth factor-2 (FGF-2), see
Basic fibroblast growth factor

Fibroblast growth factor-3 (FGF-3), see
int-2 gene

Fibroblast growth factor-4 (FGF-4), see
hstlK-fgfgene

Fibroblast growth factor-5 (FGF-5), 211,
215,217,219,220,362
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216,217,220

Fibroblast growth factor-7 (FGF-7), 211
Fibroblasts

abl gene and, 176-177
TGF-~ and, 256

FLG gene, 29
fms gene, 2
Follicular lymphomas, 5
Follicular non-Hodgkin's lymphoma (NHL),
141,147-150,151,152-153, 155, 156

Follicular thyroid cancer, 87, 88, 94-95, 96
fos gene, 74
angiogenesis and, 363
signal transduction and, 281, 283,289,
291,292
thyroid growth factors and, 92, 98

fosB gene, 305
Fos protein, 301-307, 316, 319
differential transcriptional regulation by,
305
as immediate early gene, 302-303, 304
signal transduction and, 281, 289, 290,
291
transrepression by, 304-305
Fosb protein, 301
fps gene, 363
Fps protein, 174
Fra-l protein, 301
Fra-2 protein, 301
Friend murine leukemia virus (MuLV), 170

gag/ablgene, 169,175
gag-abl-pol gene, 171
gag-los gene, 306
Gain-of-function events, 19, 21-40
Gal-4, 335, 336
Ganglioneuroblastoma, 109, 115
GAP, 2, 3, 9, 26,177,181,345,355
signal transduction and, 266, 267, 268,
269,272,285,287,289

Gastrin releasing peptide, 63
GCN4 protein, 302, 303, 304
gip gene, 95
gip2 gene, 284
gipJ7 gene, 351
Glioblastomas, 332
~-Globin gene, 19
glp-I gene, 234
Glutathione S-transferase (GST), 24, 40
Goiter, 87, 88-89, 93, 95, 97
G-proteins, 39, 74, 95, 97
NOPK and, 352, 353-356
signal transduction and, 281, 283-286,
290,291

TGF-~ and, 257-258
Granulocyte-colony stimulating factor
(G-CSF), 286

Granulocyte-macrophage colony stimulating
factor (GM-CSF), 112, 145, 286, 291

Graves' disease, 95, 96
gro gene, 283-284
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gsp gene, 95,97, 98
Guanosine diphosphate (GOP), 2, 9, 272,
283,352,353,355

Guanosine triphosphatase (GTPase), 97,
181,266,284,287,355

Guanosine triphosphate (GTP), 2, 9, 26, 95,
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hap1 gene, 64
Ha-ras gene, 28, 145
Hardy-Zukerman feline sarcoma virus II,
167, 171

Hashimoto's thyroiditis, 88, 96
HB-EGF, 234, 237
Head and neck cancer, 22, 214
Hemangiomas, 364
Hematologic tumors, 74
Hematopoeitin growth factor receptors, 283
Heparan sulfate proteoglycan (HSPG), 211,
213,221

Heparin, 211, 213, 221, 234
Heparinase, 221
Hepatic cancer, 22, 74, 216, 331
Hepatocyte growth factor receptors, 18
HER-2/neu gene, 2, 29-35,194,207, see

also c-erbB-2 gene
HI-kinase, 288
H-2K promoter, 364
Hodgkin's disease, 150-151
Homeobox 2, 21
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H4 protein, 320
H-ras gene
angiogenesis and, 363
Kaposi sarcoma and, 131
lung cancer and, 74
neuroblastoma and, 109
TGF-a and, 243
thyroid cancer and, 96-97
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hst-l gene, 22, 23, 24, 29
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hst/K-[gfgene, 211, 215-216, 217, 219, 220,
362
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Human immunodeficiency virus (HIV), 129,
130-131,132-134,135,152

Human leukocyte antigens (HLA) class I,
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Human papillomavirus (HPV), 258, 329
Huntington's disease, 8
Hyperthyroidism, 87

Immediate early genes, Fos:Jun proteins as,
302-303, 304

Inositol triphosphate (IP3), 271, 283
Insulin, 36, 112, 257, 284, 288, 290, 291, see

also Insulinlike growth factor; Insulin
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Insulinlike growth factor-1 (IGF-1), 36-37,
112,114,116,194,288,290

Insulinlike growth factor-2 (IGF-2), 36-37,
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Insulinlike growth factor-l receptor
(IGF-1-R), 36-37, 40,194

Insulinlike growth factor-2 receptor
(IGF-2-R),36-37

Insulin receptors (IR), 36-37, 40,193-208,
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content of, 195-196
in malignant transformation, 202-206
progestin and, 200-202
Interferon-y (IFN-y), 111
Interleukin-1 (IL-1), 90, 133, 135, 260
Interleukin-1a (IL-1a), 132
Interleukin-Ip (IL-1P), 132, 133, 135
Interleukin-2 (IL-2), 132, 145,286,291,363
Interleukin-2p (IL-2P), 286
Interleukin-3 (IL-3), 5, 145,286,291
Interleukin-4 (IL-4), 135, 145,286
Interleukin-5 (IL-5), 286
Interleukin-6 (IL-6), 132, 134, 145,286,366
Interleukin-7 (IL-7), 286
Interleukin-8 (IL-8), 132, 284
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int-2 gene, 211, 214-215, 217, 219, 220, 362
breast cancer and, 22-23, 24, 29, 30, 207,
214
thyroid cancer and, 95
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differential transcriptional regulation by,
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signal transduction and, 281, 283, 289,
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Kaposi sarcoma, 22, 129-135, 215
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epidemiology of, 129-130
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K-ras gene
breast cancer and, 28
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thyroid cancer and, 96
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let-60 gene, 287
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abl gene and, 167, 180, 183
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acute myelogenous, 180
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B-cell, 141, 155
bcl-2 gene and, 141, 150, 153, 155
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chronic lymphocytic, 23, 150
chronic myelogenous, see Chronic
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c-myc gene and, 24
lymphoblastic, see Lymphoblastic
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L-myc gene, 72, 73, 74, 314
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nm23 gene and, 346
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Lymphoblastic leukemia, 155
acute, 180
pre-B,4
Lymphoblastic lymphomas, 153
Lymphomas, 111, 130

abl gene and, 167, 168, 170, 182, 183, 185
B-cell, see B-celllymphomas
bcl-2 gene and, 5, 148, 153
Burkitt's, 148, 244, 332
c-myc gene and, 24
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follicular, 5
lymphoblastic, 153
non-Hodgkin's, see Non-Hodgkin's
lymphoma
p53 protein and, 332, 333
pre-B, 167, 170, 182, 185
ras gene and, 27
T-cell, 168, 183

Major histocompatibility complex (MHC)
antigens, 110-111

MALTomas, 151-152
MA-lO monoclonal antibodies, 205
Mannose-6-phosphate receptor, 36
MAP kinase, 307, see also Erk/MAP kinase
Marfan's syndrome, 8
mas gene, 283
Mast cell tumors, 25
Mastoparan, 284
Maturation promoting factor (MPF), 288
Max, 73-74, 314, 317, 318-319, 320,
321-322

McCune-Albright syndrome, 97
Medullary thyroid cancer, 92-93
Melanomas, 22
angiogenesis and, 361
HLA class I expression in, 111
nm23 gene and, 39, 346, 349-350, 353
Melphalan, 24
Mesencymal tumors, 74
Metallothioneins (MT), 27, 239, 247
Metastasis, 19,23,26,39-41,105,117-118,
345-356
EGFR and, 36
NDPK and, 351-356
nm23 gene and, 346-356

met gene, 363
Methotrexate, 145
Methylcholanthrene, 335
MGSA,284
~-2-Microglobulin,11
Minocycline, 221
Mitogenic signal transduction, 281-292
Moloney murine leukemia virus
(Mo-MuLV), 167-168, 184

Monoclonal antibodies
anti-DF-3, 18
Apo-1,147
MA-10,205
muMAb4D5, 30, 35
PAb246,331
W6/32,111

mas gene, 363
Mouse mammary tumor virus (MMTV),
21-22

c-erbB-2 gene and, 30
c-myc gene and, 25
nm23 gene and, 346
ras gene and, 27
TGF-a and, 35, 247,248
mRNA

bc~2, 142, 143, 147, 149



c-abl, 171, 172
c-!os, 257, 302,303
c-Ha-ras, 28
c-myc, 25,26, 72,258, 259,302
c-sis,256
c-src, 108
FGF-5,216
IGF-II, 113, 114, 115, 117, 118
IL-6, 132, 134
IR, 197, 199, 202, 207
junB,259
nm23,39
N-myc, 110
p53,20
rb,67
ret, 108
TGF-a, 235, 239, 242, 243, 244, 246
thrombospondin, 364
thyroid growth factors and, 91-92
Multiple endocrine neoplasia type 1
(MEN1),92

Multiple endocrine neoplasia type 2
(MEN2), 17,92,93

Multiple endocrine neoplasia type 2a
(MEN2a), 92, 97

Multiple endocrine neoplasia type 2b
(MEN2b),92

muMAb4D5 monoclonal antibodies, 30, 35
Mutations
breast cancer and, 15,21-40
point, 91,175
in p53 protein, 327, 329-330, 331-333,
334-335,336,337
thyroid growth factors and, 91

myb gene, 142, 152, 156
myc-associated protein X, see Max
myc gene, 74, 349, 363

bcl-2 gene and, 6, 145, 146, 148, 153, 156
lung cancer and, 61, 67, 72-74
radiation therapy and, 73
thyroid growth factors and, 92, 98
Myc protein, DNA binding by, 313-322
Myelofibrosis, 178
Myeloid metaplasia, 178
Myeloproliferative sarcoma virus (MPSV),
170, 183

Neomycin resistance gene, see 3T3-NEO
gene

Nerve growth factor (NGF), 112, 147, 156,
271,273,351

neu gene, 248
Neuroblastomas, 72, 73, 105-119,363
angiogenesis and, 365
autocrine and paracrine growth in,
111-118
HLA class I expression in, 105, 110-111,
118
karyotypic abnormalities in, 106-108
Myc protein and, 321
nm23 gene and, 346, 349
N-myc gene and, see under N-myc gene

Neuroepithelioma, 105
Neurofibromatosis gene, see NFl gene
NF-KB transcription factors, 153
NFl gene, 3, 9, 65, 365
N-Nitrososmethylurea (NMU), 27, 346
nm23 gene, 346-356
breast cancer and, 21,39,346,347-348
NDPK and, 351-356
structure and expression of, 346-349
TGF-f3 and, 261, 350
transfection of, 349-350

nm23-l gene, 346, 350
nm23-Hl gene, 21, 346, 347, 348-349
nm23-H2 gene, 39, 346, 347, 349
N-myc gene, 314, 363
lung cancer and, 66, 72, 73, 74, 109
neuroblastomas and, 72, 73, 105, 106,
107,108,109-110,111,118-119,363

N-Myc protein, 314, 317
Non-Hodgkin's lymphoma (NHL)
diffuse, 150, 153, 155-156
extranodal, 151
follicular, 141, 147-150, 151, 152-153,
155, 156

Non-small cell lung cancer, 63-64, 67, 68,
70,75,76,77,348

Notch protein, 234, 235
N-ras gene, 348
breast cancer and, 28
Kaposi sarcoma and, 131
lung cancer and, 74
neuroblastomas and, 109
thyroid cancer and, 96, 97
Nucleoside diphosphate kinases (NDPK),
351-356

Nucleoside diphosphates (NDP), 351
Nucleoside triphosphates (NTP), 351, 352,
353

Nucleotides, 317-318

Oncostatin-M, 132, 133, 134-135
Osteosarcomas, 9, 20, 21, 68, 333
Ovarian cancer, 20, 74, 332

PAb246 monoclonal antibodies, 331
Pancreatic cancer, 26, 74, 75, 146
Papillary thyroid cancer, 87, 94-95, 96, 97
Paracrine growth factors
breast cancer and, 193
Kaposi sarcoma and, 132
neuroblastomas and, 111-118
thyroid function and, 90
Parathyroid hormone (PTH) gene, 19
Parcrine growth factors, 211
PBX homeoprotein, 4
p34/cdc2 protein, 24, 288
Penicillamine, 221
Pentosan polysulfate, 135
Peptide growth factors, 193
Pheochromocytomas, 17, 113
Philadelphia chromosome, 167, 177-180
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Phosphatase 1,260
Phosphatidylcholine (PC), 283, 288
Phosphatidylcholine-phospholipase C
(PC-PLC), 288, 292

Phosphatidylcholine-phospholipase D
(PC-PLD), 285, 292

Phosphatidylethanolamine (PE), 283
Phosphatidylinositol (PI), 283
Phosphatidylinositol-4,5-bisphosphate (PI4,

5Pz),283
Phosphatidylinositol-3 (PI-3) kinase, 3,177,
266,267,268,269,270,271,274

Phosphoinositide 3' kinase (PI(3)K-p85),
287

Phosphoinositide-phospholipase C
(PI-PLC), 285, 289

Phosphoinositide-phospholipase Cop
(PI-PLCP), 283, 284, 292

Phosphoinositide-phospholipase Coy
(PI-PLCy), 286-287, 292

Phosphoinositide-protein kinase C (PKC)
system, 90, 95

Phospholipase A z (PLAz), 283, 284-285,
289,291,292,363

Phospholipase C (PLC), 98, 285
Phospholipase Coy (PLC-y), 3,177,266,
267,268,269,270,271-273

Phospholipase D (PLD), 285
Phosphorylation, 320-321, see also Tyrosine
phosphorylation

Plasmacytomas, 182
Plasminogen activator inhibitors (PAl), 364
Platelet-derived growth factor (PDGF), 2,

see also Platelet derived growth factor
receptors
angiogenesis and, 219, 360
Kaposi sarcoma and, 132, 135
neuroblastomas and, 112
signal transduction and, 272, 288, 289,
291
TGF-p and, 256-257
thyroid function and, 90, 95
Platelet-derived growth factor receptors
(PDGF-R), 3, see a/so Platelet-derived
growth factor
breast cancer and, 194
signal transduction and, 265-273, 274
TGF-p and, 260
Platelet-factor 4, 135,221
Ploidy, 107-108, see a/so Aneuploidy;
Diploid DNA index; Triploid DNA
index

PML gene, 9
Point mutations, 91, 175
Polycythemia, 178
Polyoma virus, 363-364
Potassium, signal transduction and, 283
pp60 protein, 266, 268, 269, 273
PI promoters, 171-172
P2 promoters, 171-172
p21 protein, 3, 9, 26, 28, 95, 96,181,267,
271,272

p53 protein, 327-337
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angiogenesis and, 365-366
breast cancer and, 20-21, 40, 248, 331,
332
colon cancer and, 10,70,71,330,331,
332
functions of, 336-337
lung cancer and, 61, 68, 69-71, 75, 77,
331,333
mutations in, 327, 329-330, 331-333,
334-335,336,337

nm23 gene and, 348
rb-l gene and, 9
TGF-p and, 259
thyroid cancer and, 97
wild-type, 98, 259, 329, 330-331, 334,
335,336,337

p62 protein, 272, 287
P120 protein, 169
P160 protein, 169, 171,175,184
p185 protein, 31, 34-35, 36, 37
P190 protein, 182, 183, 184, 185,272
P210 protein, 179,181-182,183,184,185
PRAD-l gene, 23-24
pRB, 258-259, 260
Pre-B lymphoblastic leukemia, 4
Pre-B lymphomas, 167, 170, 182, 185
Progesterone receptors (PR), 26, 36, 38,
193, 195

Progestin, 200-202
Programmed senescence, see Apoptosis
Prolactin, 286
Prostaglandins, 90, 363
Prostate cancer, 67, 68,146,332
Protein A, 320
Protein kinase C (PKC), 90, 95,174,237,
243
signal transduction and, 271, 272, 281,
283,285,288-291,292

Pro-Transforming growth factor-a (TGF-a),
235-241,242,244,246

pRSYneo, 350
PTe gene, 97, 98
PTP-y gene, 64-65

R5020, 202
RAD-18 gene, 4
Radiation exposure, 87, 91, 94
Radiation therapy, 73
rajgene, 3, 363
raJ-l gene, 291
Raf-l protein, 3, 266, 269, 270, 272-273,
289,290,291,292

RAG-l gene, 4
ram gene, 3-4, 21, 38
rarp gene, 64
ras gene, 2, 8, 9, 73,143,177,181,363
breast cancer and, 19,26-28,74
c-Myc protein and, 315
lung cancer and, 61, 69, 73, 74-75, 77
metastasis and, 345
NDPK and, 355
neuroblastomas and, 105, 109



p53 protein and, 69, 328, 329, 330
Rb gene and, 68
signal transduction and, 289, 290, 291
TGF-a and, 244
TGF-~ and, 261
thyroid cancer and, 96-97, 98
Ras protein, 266, 267, 268, 269, 270, 272,
281,287,288,290,292

Rb gene, 61, 64, 66-69, 71, 75, 77
rb-l gene, 7-9, 19,21,40,92,366
RB protein, 66-69, 74
Recessive oncogenes, 61, 64-65
Reed-Sternberg cells, 150-151
rei gene, 153, 156
Renal cancer, 16, 18,65,74,76
ret gene, 97, 98, 105-106, 108, 118
Retinoblastoma binding protein (RBP), 66
Retinoblastomas, 6-8, 19,68, 106

myc gene and, 74
N-myc gene and, 110
thyroid growth factors and, 93
Retinoic acid, 4, see also rara gene
RGD receptor, 133
Rhabdomyosarcomas, 108
rlfgene,73
RNA, 91-92,169

c-fos, 95
c-myc,95
gip17,351
lung cancer and, 67
nm23, 346-347, 348, 349, 352-353

ros gene, 363
rRNA,91

Saccharomyces cerevisiae, 4
Salivary gland tumors, 27, 30, 152
sea gene, 23
Serine-threonine kinase, 29, 260, 281,
288-291

Serotonin, 283
Serum response element (SRE), 289, 291,
292, 304, 305, 306

Serum response factor (SRF) , 289
sevenless gene, 241
Signal transduction, 265-274, 359
inhibitors of, 273-274
mitogenic, 281-292
by tyrosine kinase, see under Tyrosine
kinase

Simian sarcoma virus, 265
Simian virus 40 (SV40)

abl gene and, 182
angiogenesis and, 364
bcl-2 gene and, 142
c-abl gene and, 173
nm23 gene and, 348, 350
p53 protein and, 98, 327-328, 329, 336
rb-l gene and, 8
TGF-~ and, 258, 259
thyroid growth factors and, 92

sis gene, 95, 98

Skin cancer, 71,111,146, see also
Melanomas

Small cell lung cancer, 16,20,62-63,64,
75, 76, 106

c-src gene and, 108
HLA class I expression in, 111
myc gene and, 72, 73, 74
Myc protein and, 321
N-myc gene and, 110
p53 protein and, 71
Rb gene and, 67, 68
Small nuclear ribonucleoprotein particle
(SNRP),91

Smoking, 70-71, 75
Soft tissue sarcomas, 21
Somatostatin, 37-38, 90
S6 protein kinase, 257, 290
Spl transcription factor, 244
Squamous cell carcinomas, 63, 214, 333
src gene, 2, 105, 118, 172,269,273,363
Src protein, 173-174,286,290
steel gene, 242, 272
Steroid hormone receptors, 38-38
Stomach cancer, 74, 331
Stromolysin-3, 39
Suramin, 221

Tamoxifen, 26, 31, 33
TATA boxes, 142, 172,244
tat protein, 132-134, 135
T-cell lymphomas, 168, 183
T cells, 272

abl gene and, 178
bcl-2 gene and, 141, 144, 145, 146, 150
Kaposi sarcoma and, 121, 130, 134, 135

T-cell tumors, 25, 155
Teratocarcinoma, III
Terminal deoxynucleotidyl transferase
(Tdt), 148

Testicular tumors, 25
12-0-Tetradecanoylphorbol-13-acetate
(TPA), 243, 244

TFE3 transcription activator, 316
Thrombin, 283, 286, 290
Thrombospondin, 221, 364
Thyroid cancer, 87-88, 94-98
Thyroid growth factors, 87-98, see also
specific types

Thyroid hormone receptor (TR), 4
Thyroid stimulating hormone (TSH), 88, 89,
90-91,93-95,98

Thyroid stimulating immunoglobulins
(TSI), 89, 90-91, 95

3T3-NED gene, 204, 205, 206
TPA-responsive element (TRE), 301, 303,
304,306-307

Transferrin, 90
Transforming growth factor-a (TGF-a), 88,
233-248,255

abl gene and, 176-177
angiogenesis and, 219, 243, 362
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breast cancer and, 35,194,207,243,
247-248
juxtacrine actions of, 237-242
synthesis and processing of, 234-237
transcriptional regulation of, 242-244
transforming properties of, 244-248
Transforming growth factor-p (TGF-P),
233,235,255-261
angiogenesis and, 219
bcl-2 gene and, 150
cell proliferation and, 256-257
growth inhibition by, 257
iodine and, 88
neuroblastomas and, 112,258-259
nm23 gene and, 261, 350
Transgenic animals

ablgenein, 182-185
angiogenesis in, 364
bcl-2 gene in, 145-146
c-mye gene in, 25, 183
TGF-a in, 244-247
Translocations, 91
Transrepression, 304-305
Triploid DNA index, 107-108
Trisomy 7, 152
trk gene, 97, 98, 363
tRNA,91
Tubulin, 352, 353
Tumorigenesis, 306-307, 363-364
Tumor necrosis factor (TNF), 147,219, see

also Tumor necrosis factor-a
Tumor necrosis factor-a (TNF-a) , 31,132,
133,135

Tyrosine kinase, 18, 35-38, 289
abl gene and, 169, 177
ber-abl gene and, 181
c-abl gene and, 174, 175
c-fes gene and, 29
cjms gene and, 29
IRand, 193-194, 199,200,207
signal transduction by, 265-274, 281, 283,
286-288,290,291,292
thyroid growth factors and, 90, 97, 98

Tyrosine phosphatase, 64-65
Tyrosine phosphorylation

abl gene and, 177
breast cancer and, 193-194
signal transduction and, 267, 269-270,
281,286,291

Tyrphostin, 273

Ubiquitin, 329
Undifferentiated lung carcinoma, 63
Urokinase plasminogen activator (uPA), 39,
364

USF transcription activator, 316, 317
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v-abl gene, 5,176-177
in transgenic animals, 184-185
viral forms of, 169-171
v-Abl protein, 169,174, 181
Vaccinia growth factor (VGF) , 234, 237,
244

Vanillylmandelic acid (VMA), 105, 109
Vascular endothelial cell growth factor, 219
Vasoactive intestinal polypeptide (VIP), 90
Vasopressin, 63, 283, 286
v-crk gene, 270, 363
v-erb gene, 194
v-erbA gene, 4, 38
v-erbB gene, 29, 35
v-fes gene, 131
v-fms gene, 5, 194
v-fos gene, 306-307
v-Fps protein, 176
v-Ha-ras gene, 30, 348
v-H-ras gene, 96
Vimentin, 130
Vitamin A, 88, 90
Vitamin D, 87
Vitamin E, 260
v-jun gene, 301, 306-307, 364
v-Ki-ras gene, 348
v-mye gene, 313
v-Myc protein, 181, 314, 321
Volcanoes, 87
v-one gene, 1, 307
von Hippel-Lindau syndrome, 18,65
von Recklinghausen neurofibromatosis
gene,365

Von Willebrand's factor, 130
v-Raf protein, 291
v-ras gene, 307
v-rei gene, 153
v-sis gene, 2,131,265-266
v-sre gene, 108, 131,273,307,363,364
v-Src protein, 169, 170, 176,291

Waldenstrom's macroglobulinemia, 152
Whey acidic protein (WAP), 25, 27, 247
Wilms' tumor, 9
W6/32 monoclonal antibodies, 111
wnt-1 gene, 22, 30
WT-1 gene, 9

Xenopus laevis, 214
Xenopus oocyte, 288

yes gene, 363

Z-DNA, 149, 150
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