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Preface

Volume 4 in this book series presents a damaging
consequence of switching in converters used in power
electronics, studied in the context of a domain known as
“electromagnetic compatibility” (EMC). In Volume 1
[PAT 15a], we saw that the switching mode used in
converters may seem simplistic in terms of degrees of
freedom when controlling the power flowing between a power
supply and a load. However, this mode was seen to be
satisfactory as long as the load presented an inertia sufficient
to avoid effects from voltage of current switching. Once this
conceptual difficulty is overcome, the gains in terms of energy
efficiency and loss reduction (with associated gains regarding
the volume and weight of the converter) are considerable.
Unfortunately, this is not the full picture as it does not
include electromagnetic interference produced by electronic
switches in switching mode as switching occurs very quickly
and at an increasingly high speed (switching times lower –
sometimes much lower – than 1 microsecond and switching
frequencies from a few hundred hertz in high power
applications to several megahertz in some low power highly
miniaturized switch mode power supplies). In these
conditions, the great variation in (potentially high) voltages
and currents over time results in the production of variable
electrical and magnetic fields, which can generate
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interference in nearby electronic equipment (including
subsystems in the converter itself). EMC can be seen as the
study of the interference mechanisms which may exist
between equipment creating interference (the source) and
equipment subject to interference (the victim). Rules for
coexistence are established on this basis in order to
guarantee successful operation of elements in proximity to
one another. This volume will not focus on the
standardization approach (which will, nevertheless, be
mentioned in Chapter 1), but will concentrate on the study of
disturbance mechanisms and tools used to combat these
difficulties.

Sources of interference will be presented in Chapter 1,
including artificial sources (such as electronic switches in
switching mode) but also natural interference (lightning and
static electricity carried by the human body). Clearly, the key
element in this chapter will be the pulse width modulation
(PWM) waveform, which is the most common source of
interference in an electronic power converter. Detailed
consideration will, therefore, be given to spectral modeling of
the PWM waveform using an innovative approach, not widely
used in power electronics, based on the Heisenberg
uncertainty principle; this principle is widely used in
quantum mechanics and signal theory to analyze the duality
between notions of temporal and frequency dispersion of a
signal.

Chapters 2 and 3 will focus on the paths taken by
electromagnetic disturbances between the emitter and the
receiver. In Chapter 2, conducted interference will be
discussed and, more generally, interference using electrical
couplings with lumped elements will be presented. In this
case, propagation may be modeled using an equivalent
electrical diagram (potentially including parasitic
capacitances or mutual inductances, along with common
impedances in cases where circuits are galvanically
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connected). In Chapter 3, we will discuss propagation
mechanisms for which the spatiotemporal dimension cannot
be reduced (except by the introduction of a cascade of
elementary electrical circuits to take account of the
non-infinite speed of field and/or voltage propagation,
traveling through the length of the propagation channel).
This context clearly includes the case of radiated
interference, although the division between Chapters 2 and 3
does not fully conform to the classic separation of conducted
and radiated interference generally used when studying the
EMC.

Finally, this volume includes two appendices, also included
in the previous volumes. Appendix 1 provides general
formulas for electrical engineering, and was included in
Volumes 1, 2 and 3 [PAT 15a, PAT 15b, PAT 15c]. In this
volume, the appendix is particularly useful with regard to the
Maxwell equations. Appendix 2 is concerned with spectral
analysis, as presented in Volume 2. The Fourier transform, in
particular, is an important tool used in Chapter 1 of this
volume.

Nicolas PATIN
Compiègne, France

March 2015
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Introduction to EMC

1.1. Problems and definitions

All operational electrical or electronic devices produce
interference, which may affect the operation of the device
itself and/or that of nearby electrical or electronic equipment.
Electromagnetic compatibility (EMC) is a domain which is
concerned with the coupling of devices and aims to use all
possible means to guarantee the “harmonious” operation of a
set of nearby, or coupled, equipment. EMC may be compared
to a set of rules for “peaceful coexistence”, and is based on a
set of standards that must be respected. EMC includes both a
scientific aspect, which consists of studying the way in which
a device interferes with (or pollutes) its environment, via
different types of connections to the “victims”, and a
standardization aspect, concerning the specification of
acceptable thresholds for interference emission, and of
sensitivity thresholds at victim level.

The nature of interacting equipment is highly variable. In
some cases, elements are truly separate (for example, a
television and a telephone); however, they may also form part
of the same device (for example, the power supply and
motherboard of a personal computer (PC)). Generally
speaking, interference may propagate along electric wires (or
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PCB tracks): this is known as conducted interference. It may
also propagate through empty space (i.e. air or a vacuum) in
the case of radiated interference.

“Low-frequency” interference is essentially propagated
toward victims by conduction, while higher frequencies are
mostly propagated by radiation, as the use of filters allows us
to prevent their propagation by conduction. This method is
relatively cheap (or natural, given the inductive behavior of
connection wires and, for example, the capacitive character of
PCB tracks with ground and power supply planes). However,
further study is required, as components (inductances and
capacitors) are not always able to operate at the frequencies
in question.

Conducted and radiated interference will be covered in
detail in Chapters 2 and 3; in the case of conducted
interference, particular attention will be given to the spectral
breakdown of interference (notably for applications connected
to the 50 Hz) network:

– electrostatic interference (static electricity, a type of
interference often ignored in power electronics);

– very low-frequency interference (flicker, <10 Hz);

– “low-frequency” harmonic interference, of the order of a
few multiples of 50 Hz;

– “medium-frequency” interference, linked to the switching
frequency (and to its first multiples, for example, from 10 to
100 kHz for industrial speed variation drives);

– high-frequency (HF) interference, linked to the switching
time in the switches (>1 MHz);

– environmental interference (cosmic or solar radiation,
lightning).

Static interference and very low-frequency interference
are specific elements, not directly linked to the switching
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mechanism; flicker, for example, is linked to variable use (on
a human time scale) of electrical energy. “Low-frequency”
interference is limited to current switching converters
(diodes, thyristors and triacs), and thus also belongs to a
specific category.

We will, therefore, focus on the two types of interferences
which are most widespread in transistor-based converters
(choppers, inverters and switch-mode power supplies) used
in forced switching, i.e. “medium and high-frequency”
interferences.

Environmental interference and the associated protection
equipment will be covered in two specific chapters: one in
Chapter 2, in relation to conducted interference, and the
other in Chapter 3, concerning radiated interference.

The remainder of this chapter is devoted to sources of
interference encountered in power electronics: both “natural”
interference (lightning and electrostatic discharge) and
artificial interference, created by switching, which is at the
heart of the EMC problem for electronic power converters.

1.2. “Natural” interference

1.2.1. Static electricity

When two different materials are rubbed together, static
electricity may be produced. This is particularly true in
relation to the human body and certain fabrics; as the body
behaves in a capacitive manner, discharge may occur on
contact with electronic circuits. Fragile and/or poorly
protected components may be damaged by this phenomenon,
so preventive measures should be taken.

The human body has a surface equivalent to that of a
sphere with a diameter of 1 m. Considering the capacitance of
a spherical capacitor (with two concentric frames of radius r1
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and r2, where r1 < r2), direct application of the Gauss formula
gives us an expression of the capacitance C as follows:

C =
4πε0εr
1
r1

− 1
r2

[1.1]

In this case, regarding the intrinsic capacitance of the
human body, the external frame of radius r2 must be
considered to extend to infinity. This gives us the following
expression:

C∞ = 4πε0εrr1 [1.2]

As we live in air, εr = 1, giving a capacitance of 56 pF for
r1 = 0.5 m.

This capacitance is clearly affected by proximity to the
ground, which adds around 100 pF, and additional
capacitances may be added, linked to walls or furniture
located close to the body (varying from approximately 50 to
100 pF). This gives an overall parallel association of
capacitances of around 200 pF. Note, moreover, that this
capacitance is not the only element in the equivalent model of
the body when charging or discharging: skin contact is
resistive, with a value varying from 500Ω to 10 kΩ for
different individuals and according to the contact surface (the
end of a finger or the palm of a hand); this value is also
affected by the humidity of the skin. Thus, the human body
can be assimilated to a series R,C circuit (an inductance may
even be included, with a value of less than 100 nH).

Electrostatic charge can easily reach very high values
without the individual in question being aware of it, as
voltages under 3.5 kV cannot be felt. Table 1.1 shows two
examples of charges produced by walking on two different
materials and for two different levels of air humidity.
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Charge generation sources Humidity: 10 to 20 % Humidity: 65 to 90 %
Walking on carpet 35 kV 1.5 kV

Walking on vinyl flooring 12 kV 250 V

Table 1.1. Examples of electrostatic charge in the human body

1.2.2. Lightning

Lightning (see Figure 1.1) is a common natural
phenomenon, with an estimated 32 million bolts worldwide
each year. Figure 1.2 (a) shows a global map with a color
scale representing the number of lightning bolts per square
kilometer per year. Note that the majority of lightning occurs
close to the equator, and that strikes at sea are considerably
rarer (but not unknown). Note, however, that lightning does
not simply concern discharge from a cloud to the ground: 60 %
of lightning bolts form inside a cloud or between two clouds.

Figure 1.1. Photograph of a storm (source: Wikipedia,
Hansueli Krapf)

France alone receives 1 million lightning bolts per year on
an average. The map in terms of numbers of storms per year
shown in Figure 1.2(b) shows a high concentration of bolts in
mountainous regions, with considerably fewer storms along
the coast. The lightning trigger mechanism is primarily
based on an increase in the electrical field induced by
particular atmospheric conditions (fast-moving masses of air
at different temperatures producing significant friction



6 Power Electronics Applied to Industrial Systems and Transports 4

between molecules, generating an electrostatic charge in
storm clouds). Once the field reaches a certain threshold,
imposed by the dielectric rigidity of the air, a small discharge,
known as the “precursor”, propagates between a positively
charged zone and a negatively charged zone.

These events, generated by strong magnetic fields1

resulting from the voltages produced (which can reach
100 MV), are extremely short (1/4 s overall), but violent, with
pulsed currents of several tens of kA (values of over 200 kA
are extremely rare, and the median lies at around 50 kA).
This value results in a significant temperature increase,
which may reach 30,000°C at ground level; this explains the
formation of fulgurites (vitrified sand) at impact points in
sandy soil.

Lightning is a dangerous phenomenon, causing the death
of 8–15 people and 20,000 animals per year in France. Storms
also result in considerable damage due to the intense
currents and high temperatures they generate: 20,000
incidents, including 15,000 fires, the destruction of 50,000
electricity meters and of 250 church towers. Clearly, the
power involved is sufficient to destroy any electronic
equipment without appropriate protection.

1.2.3. Protection equipment

Protection against lightning is primarily supplied by the
network itself, as the peak effect means that the network is
the main victim2. To avoid the propagation of overvoltage
through the network, air spark gaps (see Figure 1.3) are used
to limit the voltage and divert the energy from the lightning
toward the ground closest to the point of impact.

1 The dielectric rigidity of air is 3 MV/m for 11 g/m3 humidity.
2 Pointed objects (such as electricity pylons) increase the electrical field
locally, promoting discharge (producing sparks in the surrounding air).
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a)

b)
Figure 1.2. Maps showing the occurrence of storms a) worldwide

(source: Wikipedia, NASA) and b) in France (source: Météo
France/Alain Morel). For a color version of the figure, see

www.iste.co.uk/patin/power4.zip
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Figure 1.3. Spark gap

Lightning rods are another protection device used on
buildings (see Figure 1.4). The purpose of this equipment is to
conduct lightning into the ground without touching the
electrical installation, which is thus protected.

Figure 1.4. Lightning rod

Individual protection may be used for electronic equipment,
offering effective protection of fragile components which are
poorly protected by gas spark gaps (particularly air spark
gaps) found in the network. The main difficulty lies in the
reaction speed of these devices, which is insufficient. Two
types of components may be used to combat this problem:

– varistors (nonlinear resistances which decrease rapidly
above a certain voltage);

– transil diodes (a specific type of Zener diode).
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REMARK 1.1.– All of these components (spark gaps,
varistances or transils) should be placed in parallel to the
equipment being protected. To guarantee an effective
protection, guide UTE C 15-443 recommends cabling of less
than 50 cm between the phase to protect and the earth. In
practice, care should be taken to connect the power supply
terminals directly to the component pins, and then redirect
the wires (or tracks on a printed circuit board (PCB)) of the
power supply back (toward the protected equipment) from the
same terminals. The phenomena which we wish to present
are very brief, and it is important to remember that cables
have an inductance of around 1μH/m; the length of
derivation cabling used to connect the protection component
should, therefore, be minimized (see Figure 1.5).

Figure 1.5. Connection recommendations for a
transil diode or a varistor

1.3. Switching in power electronics

The switching of high-value voltages and currents can
potentially generate significant interference due to the
presence of very large dv

dt - and di
dt -type variations. As an

example, for a variable speed drive with a direct current (DC)
bus voltage of 600 V and “peak” currents of 28 A in each
phase of the powered machine, if the insulated gate bipolar
transistors (IGBTs) switch in 400 ns, we obtain dv

dt and di
dt of

1.5 GV/s and 70 MA/s, respectively.
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At switching level, the “modulation” aspect of duty ratios
may be left aside, leaving only the square waveform (with any
given duty ratio α); the spectrum of a gate function can
therefore be analyzed, with a width considered equal to αTd

in this case3.

The normalized function s0(t), defined below, will therefore
be studied:

s0 (t) =

⎧⎨
⎩1 ∀ |t| ≤ αTd

2

0 ∀ |t| > αTd
2

[1.3]

The spectrum S0(f) is established using a Fourier
transform:

S0 (f) �
ˆ
R

s0 (t) .e
j2πft.dt [1.4]

In this case giving:

S0 (f) =

ˆ αTd/2

−αTd/2
ej2πft.dt =

[
ej2πft

j2πf

]αTd/2

−αTd/2

= αTd · sinc (πfαTd) [1.5]

where the cardinal sine function sinc (·) is expressed as:

sinc (x) �
sinx

x
[1.6]

3 Appendix 2 shows that the spectrum of a T -periodic signal is a form
sampled at all multiples of the frequency 1/T of the continuous spectrum
(in the sense of the Fourier transform) of the elementary motif defined for a
period.
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Given that the sine function is less than or equal to 1 in
terms of absolute value, the spectrum of S0 (f) (modulus) can
be seen to follow a hyperbolic envelope of the form:

Env |S0 (f)| = 1

πf
[1.7]

Representing the spectrum in a log/log reference frame, we
obtain a first-order asymptote with a slope of −20 dB/dec.

This model of switching in power electronics (which will be
known as the zero-order model from now on) is only realistic
at low and medium frequencies. In this model, switching is
considered to be instantaneous, leaving aside switching times
and motifs. A more realistic modeling approach may be
obtained by convolving the zero-order model with a motif
representing switching. This approach was initially proposed
by Costa et al. [COS 05, REB 98].

The simplest model of this type (first-order model) consists
of convolving s0(t) by a second port sswitch(t) of width
Tswitch � Td (representing the switching times, which are
considered to be identical for the rising and descending edges
of the PWM signal) and amplitude 1/Tswitch in order to retain
the amplitude of s0(t) after convolution. A signal s1(t) is thus
obtained as follows:

s1 (t) = (s0 � sswitch) (t) [1.8]

This result is presented from a temporal perspective in
Figure 1.6. We know (see Appendix 2) that a convolution
product becomes a simple product in the frequency domain.
Given that sswitch(t) is of the same nature as s0(t) in the time
domain and that the only difference consists of replacing Td/2
(width of the gate function) by Tswitch, the following result is
obtained:

S1 (f) = αTd · sinc (πfαTd) · sinc (πfTswitch) [1.9]
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Figure 1.6. Switching spectra (zero-order and first-order models)

Repeating the envelope calculations gives us:

Env [S1 (f)] =
1

π2Tswitchf2
[1.10]

The asymptotic behavior of the spectrum thus follows a
second-order asymptote (still within the log/log frame) with a
slope of −40 dB/dec.

REMARK 1.2.– The envelope is only representative of the HF
trend of the evolution of the spectrum in question. The
cardinal sine deviates strongly from the hyperbola in the
vicinity of zero, in that it has a value of 1 at the origin. In
practice, a horizontal asymptote may be added across almost
the full width fp of the main lobe of the narrowest cardinal
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sine. In this case, the narrowest value of S1(f) corresponds to
sinc (πfαTd), and the equation model gives:

πfpαTd = π [1.11]

hence:

fp =
1

αTd
[1.12]

Spectra S0(f) and S1(f) are represented in Figure 1.7 for
Fd = 10 kHz, α = 0.5 and Tswitch = 500 ns.

20 dB/dec

20 dB/dec

40 dB/dec

Figure 1.7. Switching spectra (order 0 and order 1 models). For a
color version of the figure, see www.iste.co.uk/patin/power4.zip

The spectrum of the order 1 model (i.e. the closest to the
reality of non-instantaneous switching) is less rich in HF
than the zero-order model. Presuming that a dynamic of
100 dB constitutes the measurable limit of a spectrum, the
order 0 switching model still includes significant components
at 100 MHz, whereas there are no measurable components
beyond 20 MHz for switching using the order 1 model.
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The switching observed in a chopper is in practice
nonlinear. The switching profiles present a more complex
form, and rising and descending switchings are different.
However, it is preferable to retain a symmetrical model, and
it is interesting to seek an optimal switching profile for two
reasons:

– to establish a minimum limit for this source of
interference, which forms the starting point for an EMC study,
allowing identification of the most favorable situation for filter
dimensioning purposes;

– to propose a switching reference value when using closed-
loop switching control, as encountered in publications on the
subject [CHE 09, OSW 11]4.

This problem will be addressed in the following section.

1.4. Optimal switching

Optimal switching is based on a result of signal theory,
presented in Appendix 2, known as the Heisenberg5–Gabor
inequality. This result demonstrates, qualitatively, that all
signals present a temporal dispersion σt (i.e. a time range)
which may be considered to be inversely proportional to the
frequency dispersion σω6 (the frequency range – or, more
precisely, the range of the angular frequency ω = 2πf ). It
shows that the product σt.σω is always greater than or equal
to 1/2, irrespective of the signal in question. Moreover, in

4 A priori not yet encountered in industrial solutions.
5 Not related to the pseudonym of Walter White (from Breaking Bad).
6 Mathematically speaking, this is not strictly true, but it remains
satisfactory in qualitative terms.
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Appendix 2, equality is shown to be obtained using a
Gaussian signal of the form:

g(t) =
1

σt
√
2π

.e
− t2

2σ2
t [1.13]

insofar as the temporal dispersion σt is clearly used as a
parameter in the expression, and its spectrum is also known
to be Gaussian, with the form:

G(ω) = e−σ2
t ω

2
[1.14]

In this expression, the angular frequency dispersion σω is
seen to be equal to 1

2σt
, allowing verification of the equality.

This result may be used when studying switching, as g(t)
can be used in place of sswitch(t) as a switching motif. This
function verifies the only property required for this type of
signal:

ˆ
R

g(t).dt = 1 [1.15]

By convolution with the zero-order model s0(t), a new
switching model is obtained, denoted s∞(t) as the Gaussian is
infinitely derivable, and its spectrum S∞(f) is expressed as:

S∞ (f) = S0 (f) .e
−σ2

t ω
2

[1.16]

As the spectrum S0(f) is imposed from a functional
perspective, the weighting introduced by factor e−σ2

t ω
2

produces a spectrum with the smallest possible spread (i.e.
with maximum HF damping), based on the previous result.

A time dispersion equivalent to that of the order 1 model
must now be defined in order to carry out a correct
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comparison. To do this, the following temporal dispersion
formula (also given in Appendix 2):

σt =

(´ (
t− t
)2

. |ψ (t)|2 .dt´ |ψ (t)|2 .dt

)1/2

[1.17]

is applied to a “gate” function p(t).

In this case, we therefore have (for a gate of width Tswitch

centered on the origin):

ˆ
|ψ (t)|2 .dt =

ˆ −Tswitch/2

−Tswitch/2

1

T 2
switch

dt =
1

Tswitch
[1.18]

and:

ˆ (
t− t
)2

. |ψ (t)|2 .dt =
ˆ −Tswitch/2

−Tswitch/2

t2

T 2
switch

dt

=
1

T 2
switch

[
t3

3

]Tswitch/2

−Tswitch/2

=
Tswitch

12
[1.19]

Finally, we obtain:

σt =
Tswitch√

12
� 0, 289.Tswitch [1.20]

or Tswitch = 3.464.σt.

For illustrative purposes, a “gate” function and a Gaussian
with the same temporal dispersion are shown
superimposedly in Figure 1.8. Most of the Gaussian is located
within the temporal support of the gate (i.e. outside of the
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interval [−Tswitch/2;Tswitch/2]). By integrating the Gaussian
numerically between [−1.732.Tswitch; 1.732.Tswitch], we obtain:

ˆ 1.732

−1.732

1√
2π

e−
t2

2 .dt � 0.917 [1.21]
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Figure 1.8. Switching motifs sswitch(t) of the “door” and “Gaussian”
types. For a color version of the figure, see

www.iste.co.uk/patin/power4.zip

Thus, this result can be practically assimilated to a
switching operation measured (experimentally or by
simulation) between 5 and 95 % of the variation of the
switched signal. This result is useful for evaluating the
performance of switching obtained based on experimental
results, or for more or less fine simulation of real components
(for example, using a SPICE-type simulator).

Having established the relevance of this type of
“Gaussian” switching motif in terms of EMC, we need to
produce the corresponding spectrum graph as shown in
Figure 1.9. For illustrative purposes, the figure also shows
the trace of the first-order model. In equivalent conditions,
the measurable limit frequency (vertical dynamic fixed at
100 dB for a first-order model) is around 20 MHz, whereas for
the Gaussian model the limit is between 2 and 3 MHz. This
switching profile, therefore, produces significant gains.
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Figure 1.9. Spectra of the order 1 and Gaussian models. For a color
version of the figure, see www.iste.co.uk/patin/power4.zip

The graph of the Gaussian model, therefore, constitutes an
absolute minimum, only parameterized by σt, i.e. a switching
time Tswitch fixed by constraints external to EMC (switching
losses, thermal losses, physical limits of the switching
component(s), etc.). This boundary may be seen either as an
unattainable theoretical limit or as an objective to aim for
when designing advanced gate drive circuitry for a metal
oxide semiconductor field effect transistor (MOSFET) or
IGBT.

1.5. Standardization

EMC is not only a science (more specifically, a branch
of electronics, in the broadest sense), but also the “art”
of establishing successful coexistence between devices. To
do this, rules are needed to define the “rights” and
“responsibilities” of each electrical and/or electronic device
so as to guarantee correct operation. This definition was
presented at the beginning of this chapter, but should be
retained in this context: EMC cannot be limited to the simple
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analysis of interference phenomena, but it should also limit
their impact. The evaluation framework is therefore arbitrary,
and is defined by means of standards. A variety of standards
exist according to:

– the domain of application of the equipment in question:
industrial, medical, domestic, automobile, rail, naval,
aeronautics, civil or military;

– the nature of the interference source: conducted artificial
interference, radiated artificial interference, static electricity,
lightning, cosmic radiation, etc.

A considerable amount of information concerning
standards is available in [IEE 12], bringing together
all of these categories via current and past standards
(from the 1950s to the present). The collection notably
includes the standards defined by the International
Electrotechnical Commission (IEC 61000 standard) and
refined by the Comité International Spécial des Perturbations
Radioélectriques (CISPR, special international committee on
radio interference), founded in 19347, which has published a
certain number of documents:

– CISPR 10: organization, rules and procedures of the
CISPR;

– CISPR 11: industrial, scientific and medical (ISM)
equipment – radio-frequency disturbance characteristics –
limits and methods of measurement;

– CISPR 12: vehicles, boats and internal combustion
engine driven devices – radio disturbance characteristics
– limits and methods of measurement for the protection
of receivers themselves, except for those installed
in vehicles/boats/engines themselves or in nearby
vehicles/boats/engines;

7 Proof that these are not simply recent concerns.
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– CISPR 13: radio and television receivers and associated
equipment – limits and methods of measurement;

– CISPR 14-x: electromagnetic compatibility –
requirements for household appliances, electric tools and
similar apparatus – in two parts: emissions and immunity;

– CISPR 15: limits and methods of measurement of radio
disturbance characteristics of electrical lighting and similar
equipment;

– CISPR 16: specification for radio disturbance and
immunity measurement apparatus and methods;

– CISPR 20: radio and television receivers and associated
equipment – immunity characteristics – limits and methods
of measurement;

– CISPR 22: information technology equipment –
radio disturbance characteristics – limits and methods of
measurement;

– CISPR 24: information technology equipment – immunity
characteristics – limits and methods of measurement.

In the case of aeronautics, onboard equipment is subject to
Joint Aviation Requirements (JAR) certification, for example,
which includes an “EMC” component.

1.6. Summary

In this introductory chapter, a certain number of
definitions and terms used in EMC have been established. A
significant term for interference sources has also been
highlighted, in the form of the switched quantity in a
converter controlled by PWM. This approach is
fundamentally oriented toward transistor-based converters in
forced switching; this restriction is, in reality, suitable for use
with the majority of the modern electronic power converters
which have been analyzed elsewhere in this series. The
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source term will be used as an input quantity in filter
dimensioning problems in order to comply with the
acceptable interference ranges established by the relevant
standards. The “filtering” aspect of EMC will be considered in
the following chapter, along with “circuit” coupling
mechanisms (i.e. with lumped elements) between
interference-emitting equipment and the victim.



2

Lumped Parameter Models

2.1. Context

Conducted interference represents a significant part of the
interference covered in electromagnetic compatibility (EMC).
As the name indicates, this interference uses wires as a
support for propagation from a source to a victim. Both
common impedance couplings, which are evidently
responsible for conducted disturbances, will be covered in this
chapter; we will also consider interference through inductive
or capacitive coupling which, in a certain way, are associated
with radiation of the magnetic or electrical field, respectively.
In this case, all forms of couplings which may be modeled
using an electrical diagram with lumped elements will be
considered to be conducted disturbances. The fundamental
difference between coupling types lies in the frequency of the
electrical quantities (voltage and/or current) involved, along
with the dimensions (in the geometric sense of the term) of
the device in question.

In the case of a circuit that is small compared to the
associated wavelength (λ = c/f in a vacuum1, slightly lower
in dielectrics such as FR4 or Teflon), all couplings may be

1 Where c is the speed of light, i.e. 3× 108 m/s (see Chapter 3).
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modeled as parasitic capacitances and mutual inductances.
In these conditions, an EMC study involves the calculation of
transfer functions, and may use the layering principle to
analyze the contributions of different sources of interference
for a victim. This type of modeling and analysis will be
discussed in this chapter. In some ways, this type of study is
simpler than the study of radiation over significant lengths of
the wavelength as, in practice, above 0.1λ, the lumped
element approach ceases to be suitable and should be
replaced by a common constant approach (based on partially
derived equations).

2.2. Common impedance interference

Common impedance interference is extremely widespread
in the 50 Hz electric network (with, ideally, a sinusoidal
voltage in open circuit mode), distributed across a variety of
equipment, absorbing currents that are often non-sinusoidal.
If a source is connected to these different loads via a common
impedance Zswitch, a voltage drop occurs at the impedance
terminals, and this will be experienced by all of the loads
placed in parallel.

In practice, this phenomenon only becomes visible when a
powerful nonlinear load is placed on the network:

– a high-power installation (industrial or otherwise: e.g. a
reflow furnace, or, on a smaller scale, a welding machine);

– multiple synchronized low-power loads (such as
capacitance-head rectifiers).

A typical configuration is shown in the diagram of
Figure 2.1.

Based on the diagram, the expression of the voltage Vload at
the terminals of the two loads can be written as:

Vload = Vnet − Zswitch. (Iload1 + Iload2) [2.1]
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Figure 2.1. Common impedance coupling

Consequently, load 1 “sees” not only the voltage drop
Zswitch.Iload1 resulting from its own consumption, but also a
voltage drop Zswitch.Iload2 caused by load 2. This drop can be
significant in the case of “powerful” loads. Note, moreover,
that this voltage drop is not necessarily resistive, but also
inductive in distribution networks.

2.2.1. Flicker

EMC interference is not only caused by power switching,
where electronic components are used in switching mode; it
may also be caused by slow fluctuations in the power (active
and reactive) consumed by a load. As we have seen, this
fluctuation generates a variation in the power voltage
observed by the fluctuating load itself, but also by other
parallel loads (particularly lighting). The low-frequency
voltage fluctuation phenomenon2 is particularly troublesome
for human beings (leading to fatigue, irritability and epileptic
episodes) in the context of lighting variations. The flicker
phenomenon should be limited in order to correspond to strict
standards (IEC 61000).

Generally speaking, voltage drops (both resistive and
inductive) in the network (modeled by a series impedance

2 With periods much longer than the network period, and than the time
constant of the human eye (retinal persistence).
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R,L) are low in comparison with the open voltage, and Kapp’s
hypothesis may be used to write that the voltage drop
ΔV = (R. cosϕ+X. sinϕ) .I where ϕ is the phase shift
between the voltage and the current at the load terminals
and X is the reactance Lω of the line (R is the resistance).

2.2.2. Ground impedance

The common impedance coupling phenomenon is
observable for a wide range of frequencies and for all power
supply types (from alternating current (AC) or direct current
(DC) networks to printed circuit boards (PCBs)3). A typical
example of common impedance coupling occurs in “badly
designed” PCBs. In a diagram, the ground is represented by a
symbol showing the reference potential (conventionally 0 V),
presumed to be common to all points of the connected
electronic assembly. Physically speaking, however,
interconnected copper tracks present a resistance (connected
to the cross-section, i.e. the width and thickness of the track,
the length and the current frequency, generating a skin
effect). These conductors also present an inductance linked to
the track length and geometry (and, potentially, to the
environment, if ferromagnetic materials are present). In
these conditions, an impedance of the form R + jLω occurs,
such as that seen in the previous section. There may
therefore be a potential difference between two ground points
if a current is circulating (particularly if the current has a
high variation frequency) between these points. This
situation may lead to dysfunctions, and can also cause the
destruction of certain sensitive components on a PCB subject
to these fluctuations in “ground” potential.

3 A PCB is an isolating plate (generally made up of epoxy resin and fiber,
but which may also be made from Teflon for certain high-frequency (HF)
applications), with thin copper connection tracks (35μm is standard), used
for integrated circuits (and/or discrete components) which are soldered in
place (either using holes and pins or directly onto the surface of the PCB).
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In these conditions, we must ensure that:

– the track impedance is sufficiently low (short tracks,
sufficiently wide and thick4);

– the ground equipotentials (this may also apply to other
equipotentials) should, as far as possible, be connected to a
common point (constituting a star connection).

Generally, components should be placed onto a PCB in a
way which simplifies the connections as far as possible (i.e.
shortening connections and avoiding diversions). This task
may be made easier using modern computer-aided design
(CAD) tools, but it is often advisable to group components by
“function” in order to simplify manual routing.

The use of ground planes (large areas of copper, such as
that shown in Figure 2.2) reduces the ground impedance, and
fulfills other functions which are useful for EMC (screening,
to avoid cross talk between tracks with different signals – see
the next section).

Figure 2.2. PCB with a ground plane. For a color version of the
figure, see www.iste.co.uk/patin/power4.zip

4 Width and thickness are generally chosen as a function of the current that
needs to circulate (tables are available, giving values based on tolerated
self-heating levels – see Figure 6.1 of Chapter 6 in Volume 1).
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Finally, the use of multilayer technology (double-sided, in
the simplest case, but large numbers of internal layers may
be used in modern PCBs) increases the number of degrees of
freedom and simplifies routing in complex chips. In RF
applications, the inductive character of the metallic vias used
for the interconnection of layers should also be taken into
account. A via with a length of 1 mm presents an inductance
of around 1 nH. If this value is too high, a possible solution
(as shown in Figure 2.3) is to multiply the number of vias
(placed in parallel) to reduce the equivalent inductance: these
are known as stitching vias. The figure shows that the vias
(in green) are directly connected to a copper plate, shown in
red (TOP layer of a double-sided circuit) and appear to be
connected in the same way to a second copper plate, shown in
blue (BOTTOM layer of the circuit). These two planes act as
the ground of the circuit. In the center of the PCB, we also see
a copper track (TOP side) surrounded by vias, fulfilling a
blinding function (in the same way as a coaxial cable) of the
track; the shape and width of this track suggest a controlled
impedance operating mode (e.g. microstrip, with a
characteristic impedance of 50Ω) for a rapid digital or analog
signal. Note that this is confirmed when we look at the
application of the PCB, designed to connect a “patch”-type
aerial to a GPS module (with an operating frequency of
1,575.42 MHz).

Figure 2.3. Stitching vias between two ground planes. For a color
version of the figure, see www.iste.co.uk/patin/power4.zip
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Unfortunately, a copper track cannot be treated in
isolation from the other tracks on a PCB. Even if two tracks
are completely independent of operational terms when
designing an electronic assembly, physical coupling may still
occur as a result of proximity.

2.3. Coupling interference

In this section, we will show that two nearby tracks can
interact. In these conditions, a “residue” of the signal carried
by one track may be observed in the second track: this is
known as cross talk. This type of phenomenon is particularly
critical when a low-amplitude signal is carried by a track (or
wire) running parallel to a track (or wire) carrying a high
current (or high voltage) with HF variation. Two physical
mechanisms are involved in these couplings:

– inductive-type coupling (by mutual inductance);

– capacitive-type coupling.

2.3.1. Inductive coupling

In inductive coupling, two nearby tracks may be
assimilated to the primary and secondary of a transformer.
This means that in addition to their individual inductances,
the two tracks are connected by a mutual inductance,
resulting in the equation system seen in Chapter 5 of
Volume 1 [PAT 15a]:⎧⎨

⎩ψ1 = L1.i1 +M12.i2

ψ2 = M21.i1 + L2.i2
[2.2]

where L1 and L2 are the separate inductances of each track
and M12 = M21 = M , given the mutual reciprocity of the
actions of the two tracks. Fluxes ψ1 and ψ2 are connected to
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the potential differences at the terminals of the two tracks
(see Figure 2.4) as follows:⎧⎨

⎩Δv1 = R1.i1 + L1
di1
dt +M di2

dt

Δv2 = R2.i2 + L2
di2
dt +M di1

dt

[2.3]

This equation model is simple, but the separate and
common inductances in the two tracks are not easy to
calculate. Analytical formulas may exist, but in this case,
they are often applied to complex geometries (turns, vias,
etc.) and it is better to use specific software in order to obtain
satisfactory results. The best-known CAD platforms may
include tools to analyze signal integrity.

Δv1

M

L1

L2

R1

R2

i1

i2

Δv2

Figure 2.4. Inductive coupling between nearby lines

A simple rule to minimize track inductances (of the order
of 1nH/mm) and mutual inductances is to reduce track
length, as, for example, between a decoupling capacitor and
the component subject to (power) voltage smoothing. In this
case, the use of vias to and from the ground (GND) and power
(POWER) layers is particularly useful, as shown in Figure 2.5
(left). When decoupling needs to operate at very high
frequencies, capacitors may even be placed on the other side
of the PCB – see Figure 2.5 (right) – to the associated
component (in this case, a U2 in a ball grid array (BGA)
packaging). More detailed information on the decoupling
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issue for fast digital circuits is given in the Xilinx technical
documentation [XAP 05], notably with regard to the required
size of decoupling capacitors (surface mount device (SMD)
packages), the technology used and their location on the PCB.
Note that this information is also applicable in the context of
power electronics.

a)

b)
Figure 2.5. Minimization of track length – in this case, for

decoupling condensers: a) TOP layer and b) BOTTOM layer. For a
color version of the figure, see www.iste.co.uk/patin/power4.zip

2.3.2. Capacitive coupling

In addition to inductive coupling, capacitive coupling may
occur between nearby lines, as all of the components of a
capacitor are present:
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– two conductors, placed face-to-face;

– an insulating gap between the two conductors (not only
air, but also dielectric substrate, with a permeability going
from 4, for FR4, to around 10n for the Teflon used in radio
frequency (RF) applications).

As for inductances, it is easy to establish an equation model
(circuit type), but the effective calculation of the capacitance
between two conductors can be tricky. Note, moreover, that the
interference transmitted by capacitive coupling is a current of
the form C dV

dt , whereas in the case of inductive coupling, it was
a voltage of type M di

dt . A capacitive coupling will therefore be
sensitive to high variations in voltage, notably at the output
point of a chopper or inverter (i.e. at the mid-point of a half-
bridge), while inductive coupling is sensitive to chopped input
currents in these converters.

Note that a full modeling of inductive and capacitive
couplings may be obtained in an analytical or semi-analytical
way for wired or mass conductors using the partial element
equivalent circuit (PEEC) method, notably implemented in
CEDRAT’s InCa3D program. Details of this method may be
found in articles [ROU 04a, ROU 04b] in Techniques de
l’Ingénieur. Other programs, such as Q3D Extractor,
developed by ANSYS, are based on the method of moments
[GIB 07] and fulfill a similar role.

REMARK 2.1.– The capacitances introduced by coupling
between conductors located opposite one another (tracks,
cables, bus bars, etc.) is often negligible in comparison with
the capacitances introduced physically by capacitors,
particularly for decoupling power supplies. However, their
role may still be significant at high frequencies, where
electrolytic capacitors cease to function.

To minimize capacitive coupling between tracks on a PCB,
a rotation of 90◦ is carried out between layers (red and blue
tracks) during routing, as shown in Figure 2.6.
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Figure 2.6. Coupling reduction in tracks on two layers of a PCB.
For a color version of the figure, see www.iste.co.uk/patin/power4.zip

There are two ways of minimizing coupling between two
parallel signal tracks on a given layer of a PCB:

– increasing the distance between the tracks to reduce
coupling (capacitive and inductive)5;

– place a ground screen between the tracks (a ground plane,
or a track connected to the ground at both ends).

This latter solution operates by screening, and is not only
applicable to printed circuits, but also to multiwired “ribbon”
connection carrying rapid signals (which are often digital)6.

2.4. Interference modes

The previous section covered the physical means used by
interference (voltage, in the case of inductive coupling, or

5 This is often difficult when producing a compact PCB, something which
also reduces the length of the tracks (and consequently the individual
inductances of the connections).
6 In multiwired connections, differential signals are also (and increasingly)
used: in this case, two adjacent wires operate as a two-wire line (HDMI,
USB, etc.) and offer very good immunity to common-mode interference (a
definition of common mode is provided in the following section).
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current, in the case of capacitive coupling) to propagate from
one conductor to another. We will now consider the paths
which disturbances take in a circuit. This will be done using a
“multipole”-type representation of a converter, specifically a
quadrupole converter, in the simple case of a chopper shown
in Figure 2.77.

Figure 2.7. Quadrupole (+1 leakage terminal)
representation of a chopper

The diagram includes two input terminals (i.e. the chopper
power supply). Generally speaking, we presume that:

– the terminals are at potentials VA and VB which are
different from 0V (i.e. the ground);

– they carry different currents IA and IB (a leakage
pathway is therefore presumed to exist).

The general equation model of the two voltages (and the
two currents) includes the introduction of terms which are
said to be either:

– differential mode (the difference, up to a coefficient);

– common mode, denoted as cm (the average).

7 T, strictly speaking, is a quadrupole, as there is a fifth (leakage) terminal
in this representation of the chopper.
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In this case, we note:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vd = VA − VB

Vcm = VA+VB
2

Id = IA−IB
2

Icm = IA + IB

[2.4]

REMARK 2.2.– Note the difference between the definitions of
common and differential mode for voltages and currents. A
coefficient of 1/2 may be applied to either the common or the
differential mode as a function of requirements; this has a
direct effect on the equivalent diagram representation, as we
will see.

The decoupling of the two modes allows a two-stage
modeling process to be used for the converter and its
environment, facilitating the study of conducted interference
within the system.

2.4.1. Differential mode

Differential mode consists of observing the potential
difference between the two terminals, considering the two
terminals of the multipole to be isolated (i.e. operating as a
dipole), and considering a current entering the system
through one terminal and leaving, in its entirety, through the
other terminal. In the case of input into a chopper or
inverter-type converter, the connected source must be of the
voltage type, as the converter behaves as a current source.
The converter is therefore modeled in the form of an
equivalent current source Id. Conversely, the output from a
chopper behaves as a voltage source Vd in the context of
differential mode. The equivalent model of this converter is
shown in Figure 2.8.
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D

Vd

Id

A

B

C

Figure 2.8. Idealized differential model of a chopper

REMARK 2.3.– The leakage connection is not shown in the
differential model.

2.4.2. Common mode and hexapolar representation

Rather than using a quadripolar structure with an added
leakage terminal (see Figure 2.7), it is generally better to use
a representation with an even number of terminals, in this
case, a hexapole, which may be modeled in matrix form (as in
the case of quadrupoles). There is therefore a common
terminal for the input and output ports (three terminals per
port). This approach is the same as that used for the
quadrupole representation with h parameters of the
transistor which, while only including three physical
terminals, is traditionally represented by a four-terminal
model. The equivalent hexapolar model of a chopper is shown
in Figure 2.9.

The figure shows the same sources present in the
differential mode representation, both on the input and
output sides of the converter. Impedances are then added,
connecting the different (useful) terminals of the converter to
the heat sink: these paths may all be used by leakage
currents, generating common-mode interference. These
impedances, denoted as ZCC , ZEE and ZCE , include a series
capacitance due to the isolation of the silicon chip in the
power component from the metal base which allows cooling.
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However, these impedances are not, strictly speaking, purely
capacitive due to the connections (bonding wires and possibly
printed tracks) between chips inside a module (e.g. an
insulated gate bipolar transistor (IGBT) half-bridge)8. The
“parasite component” aspect of components used in power
electronics will be discussed further in the following section.

Figure 2.9. Full idealized model of a chopper

2.4.3. Parasite components in switches

The chopper models (in differential and common mode)
presented above are idealized, which only include current
and voltage sources. In reality, the switches making up a
half-bridge present parasitic capacitive and inductive
behaviors, which must be taken into account in order to show
the fastest transitional phenomena which occur during
switching (i.e. the HF components of the observed quantity
spectra).

8 This is also true in the case of discrete-component converters mounted on
PCBs, with the inductances of the component packaging themselves, and
the inductances of the tracks in the printed circuit.
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2.4.3.1. MOSFET transistors

A MOSFET transistor behaves as a current source IDS

(between a drain and a source) controlled by the voltage VGS

applied between the gate and the source. However, the
capacitances present between the three pins must be taken
into account, along with the inductances involved in
accessing these pins, which come from the component
packaging and cabling (or routing on a PCB).

A model is shown in Figure 2.10. This model is still
simplified, as no resistance is taken into account for pin
access; however, it is already complex, as the expression of
current IDS is nonlinear, depending not only on VGS , but also
on VDS . Finally, the parasitic capacitances CGS , CDG and CDS

are nonlinear as they are dependent on the voltage at their
terminals.

Figure 2.10. EMC model of a MOSFET transistor

REMARK 2.4.– This diagram essentially corresponds to those
used in SPICE models, as supplied by manufacturers, with the
exception of the inductances, which are generally linked to the
cabling carried out by the component user.
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2.4.3.2. Diodes

Diodes behave in a nonlinear manner, with two distinct
representations in ON and OFF state (see Figure 2.11).

Ideally, the diode is considered to be a voltage source VF

when switched on, and an open circuit when switched off. For
a more realistic representation, the dynamic behavior of the
diode also needs to be taken into account:

– in the ON state, a dynamic resistance rD is present,
associated with a diffusion capacitance CD;

– in the OFF state, a transition capacitance CT (nonlinear,
as it is dependent on the applied voltage) is present,
potentially associated with a resistance (to take account of the
leakage current).

2.4.3.3. “Half-bridge” switching cells

Complex models of transistors and diodes may make them
hard to use in system simulations. It is therefore better to use
a simplified model, based on the idealized structure,
including the differential and common-mode behaviors as
seen in Figure 2.9. Figure 2.12 clearly shows the parasite
impedances through which common-mode currents are able
to circulate toward the metal base.

2.5. Modeling the converter environment

We do not intend to present an exhaustive list of
components and the associated models in terms of EMC. In
this section, we will focus on examples which are
representative of the different components of a switch-mode
power supply or a variable speed drive. These two examples
will be covered in the next section.
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Figure 2.11. EMC model of a diode

Parasite inductances due

to bonding wires (presumed

to be low, or even negligible)

Metallic base with an insulating

coating (generally alumina)

Parasite capacitances

between chips and base

(via the insulating layer)

Figure 2.12. “Half-bridge” model and parasite elements

2.5.1. Modeling cables

When modeling cables, a certain number of impedances
linked to underlying physical phenomena must be evaluated:

– the resistance and inductance of wires;

– the capacitance and conductance of the insulating
material between the wires.



Lumped Parameter Models 41

Figure 2.13 shows an equivalent model of a shielded three-
phase cable, including:

– the impedance, presumed to be zero, of the shielding,
assimilated to an ideal conductor;

– an absence of mutual inductance between the wires and
the shielding.

Figure 2.13. Common-mode filter in a USB cable

REMARK 2.5.– The proposed model is a lumped element
model, representing the operation of the cable for frequencies
below a certain threshold. As we have already seen, and as
we will see in more detail in the next chapter, if the length of
the cable is longer that a given fraction of the wavelength
λ = c

f , or more generally v
f , associated with the carried

signal9 (in practice, a limit of λ
10 ) is used, then this

representation is no longer satisfactory, unless a cascade of
cable “slices” is considered, each with a model of the type
shown in Figure 2.13. In this case, the linear parameters of
the cable need to be taken into consideration, and the
representation takes the form of a partially derived equation
known as the wave equation.

9 Where v is the speed of wave propagation in the dielectric (less than or
equal to c).
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2.5.2. Modeling transformers

The transformer model is based on the diagram shown in
Chapter 5 of Volume 1 with the addition of parasite
capacitors in the primary and secondary. The number of
capacitors varies as a function of the desired accuracy of the
model, particularly at high frequencies. A variety of more less
complex models exist (e.g. three or six capacitances in
[BRÉ 05]). The model illustrated in Figure 2.14 shows a
single-phase transformer, with six capacitances requiring
identification.

L1

m

p1

p2

s1

s2

R1 R2
σ.L2

Rf

Cpp Css

Cps11

Cps21

Cps22

Cps12

Figure 2.14. Model of a single-phase transformer at HF

This type of model (which presents a high number of
degrees of freedom) demonstrates good theoretical tracking of
the real transformer; however, this increased complexity
requires considerably more measurements to be taken for
parameter identification purposes (and the sensitivity of
parameters in relation to measurements needs to be suitable
for a valid model to be produced).

REMARK 2.6.– This type of model can potentially be applied to
any type of transformer (50 Hz or switch-mode power supplies,
or even for transistor gate control – pulse transformers).
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2.5.3. Modeling three-phase motors

The final element which we will model here is the
electrical machine; in this case, we will consider the classic
case of a squirrel-cage induction motor (the form most widely
used in industry). This model can easily be transposed for
synchronous motors (and DC motors) as the modeling
strategy is similar to an EMC perspective; in EMC, the
low-frequency domain, where electromechanical energy
conversion occurs, is not taken into account. We focus instead
on the HF domain, where coils present inductive and
capacitive behaviors which are relatively independent of the
mechanical parameters of the machine (at least in the case of
machines with smoothed poles). The equivalent electrical
diagram of an induction motor from a “low-frequency”
perspective (see Figure 2.15) clearly shows physical
phenomena such as the magnetization of the magnetic
circuit, with a magnetizing inductance Lm.

R′
r

g

Rs Lfs

RfLm

Figure 2.15. Single-phase equivalent model of a
squirrel-cage induction motor

The diagram also shows the conversion of
electromechanical energy, with the motional resistance R′

r/g,
where R′

r is the rotor resistance affecting the stator and g the
slide of the machine. We then see the stator resistance Rs and
the leakage inductance totaled in the stator Lfs, which shows
an imperfect magnetic coupling between the stator coils and
the squirrel cage located at the rotor. Finally, a resistance Rf

is classically added in parallel to the magnetizing inductance
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to take into account iron losses (by hysteresis and Foucault
currents) in the ferromagnetic sheets in the machine.

In a way, an EMC is a simplified version of this
representation, which eliminates aspects which are of
secondary importance in HF: electromechanical energy
conversion (the model no longer includes sliding). The motor
is essentially seen as an iron–core coil (or, more accurately,
three coupled coils). However, care must be taken to include
non-negligible capacitive phenomena, with resonances and
antiresonances which may, in practice, be observed across a
frequency range of several tens of megahertz for a 1.5 kW
motor (see [REV 03]). This thesis includes an basic model (see
Figure 2.16) which takes into account these phenomena for
frequencies of less than 1 MHz.

Figure 2.16. Phase-by-phase model of a squirrel-cage
inductance motor in relation to the chassis)

This model includes the parasitic capacitances Cg1 and
Cg2, which are the circulation pathways used by
common-mode currents. A parasitic capacitance Cp is located
parallel to the classic model of an iron–core coil, made up of a
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series circuit (Ls, Rs) with the addition of a parallel resistance
Rf representing iron losses10.

Quasi-separate identification of the three parasitic
capacitances (Cg1, Cg2 and Cp) can be carried out using three
distinct measurements as shown in Figure 2.17. Short circuits
are successively established between:

– P and the chassis, for the first measurement, in order to
identify Cp + Cg2;

– P’ and the chassis, for the second measurement, in order
to identify Cg1 + Cp;

– P and P’, for the final measurement, in order to identify
Cg1 + Cg2.

Beyond 1 MHz, this model ceases to be sufficient due to
the appearance of multiple resonances and antiresonances.
The model, as shown in Figure 2.16, is therefore replaced by
a model using multiple parallel R, L and C cells, as shown in
Figure 2.18. In this structure, the number of cells used Ncell

is equal to the number of observed resonances (note: Ncell is
equal to the number of resonances, not to the sum of the
resonances and antiresonances).

Note that this model corresponds, in physical terms, to
accounting for interturn capacitances, which cannot be
globalized within a coil. From a mathematical perspective,
the correlation between the model and experimental
measurements obtained using impedance analysis can be

10 Strictly speaking, this resistance should be placed parallel to Ls and not
to the coil resistance Rs, which is purely representative of Ohmic voltage
drops in the copper. As this is an equivalent model of a nonlinear device,
the domain of validity is theoretically limited to a specific operating point;
in practice, however, it is satisfactory for a wide range of frequencies.
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established by noting that a parallel cell (Ri, Li, Ci) presents
a resonance (high impedance) at the following frequency fri:

fri =
1

2π
√
LiCi

[2.5]

Cg2
Cg1

Ceq = Cg1 + Cg2

Cg2

P’P

Chassis

Rf

RsLs

Cp

P’P

Chassis

Rf

Cg1

P’P

Chassis

Rf

RsLs

Cp

Cg2
Cg1

Ceq = Cg1 + Cp

Ceq = Cg2 + Cp

RsLs

Cp

Figure 2.17. Identification protocol for parasitic capacitances
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Figure 2.18. Multicell model of an induction motor
for high frequencies

Antiresonances are obtained by intercellular association
(i.e. between the inductance Li and the capacitance Cj). This
gives an expression of the antiresonance frequency faij of the
form:

faij =
1

2π
√

LiCj

[2.6]

The set of inductances introduced into each cell must verify
the following equality:

Ncell∑
k=1

Li = Ls [2.7]

where Ls is the coil inductance observed at low frequencies.
This inductance may then be split into multiple elements (in
decreasing quantity order), and the capacitances of each cell
are calculated in order to establish the resonance and
antiresonance frequencies of the model, in accordance with
the observations obtained through impedance analysis.

[REV 03] notes that this model does not accurately
account for the “low”-frequency behavior of the coil, as the
model presumes that inductances are constant, while
phenomena such as the skin effect will modify these
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parameters. The author cites work on HF transformers
presented in [SCH 99] as a solution for refining the model for
this “low-frequency” context.

2.5.4. T and Π quadrupole models

Circuits often need to be studied from the perspective of
both common and differential mode. The models presented
above generally follow a Π structure; in certain situations, a
T representation is preferable. A transformation should
therefore be carried out; this is always possible in a linear
context, although it is no longer possible to produce a circuit
based on constant resistances, capacitances and inductances
in this situation. In such cases, it is better to express the
relationships between impedances, based on the diagram and
notation shown in Figure 2.19. In these diagrams, the ground
clearly corresponds to a motor chassis, the shielding of a
cable or the heat sink of an electronic power converter (a
variable speed drive, in the context of a power supply for an
electrical machine).

Figure 2.19. T and Π models of quadrupoles

REMARK 2.7.– Note that the T and Π quadrupoles proposed
here for modeling purposes are dissymmetric. This is the
most widespread configuration, although it is not always the
case, and it is sometimes not possible to measure potential
dissymmetry in practice.
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The transformation between a T model and a Π model is
known as Kennelly’s theorem (this is the same transformation
used to pass from star to delta coupling11). The transformation
relationships are as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ZA = Z1Z2

Z1+Z2+Z3

ZB = Z1Z3
Z1+Z2+Z3

ZC = Z2Z3
Z1+Z2+Z3

[2.8]

And in the opposite direction:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 =
ZAZB+ZBZC+ZCZA

ZC

Z2 =
ZAZB+ZBZC+ZCZA

ZB

Z3 =
ZAZB+ZBZC+ZCZA

ZA

[2.9]

In the case of symmetrical quadrupoles (i.e. for
ZA = ZB = ZAB and Z2 = Z3 = Z23), the following
simplifications are used:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ZA = Z1Z23

Z1+2Z23

ZB = Z1Z23
Z1+2Z23

= ZA

ZC =
Z2
23

Z1+Z2+Z3

[2.10]

And in the opposite direction:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 =
Z2
AB+2ZABZC

ZC

Z2 =
Z2
AB+2ZABZC

ZAB

Z3 =
Z2
AB+2ZABZC

ZAB
= Z2

[2.11]

11 The T quadrupole case is clearly a specific form of the star configuration,
while the Π case is a specific form of the star configuration.
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The differential mode Zd and common-mode Zmc

impedances that lead to perfectly decoupled behaviors can
then be clearly identified:

Zd = 2ZA =
2Z1Z23

Z1 + 2Z23
[2.12]

and:

Zmc =
Z2

2
=

Z2
AB + 2ZABZC

2ZAB
[2.13]

Generally speaking, however, the common and differential
modes cannot be separated. Mode coupling therefore occurs: a
differential mode disturbance can lead to a common-mode
disturbance and vice versa. For this reason, symmetrical
structures are often preferred for filters, converters, cables
and/or motors, although this is not an absolute rule.

2.6. Filtering

2.6.1. Differential modes

2.6.1.1. LC filtering

Differential mode filtering is the most traditional filtering
function, and has been encountered on several occasions in
previous chapters:

– at the output of a rectifier bridge in Chapter 2 of Volume 2;

– at the output of switch-mode power supplies (such as the
buck chopper or the forward power supply), seen in Chapters
1 and 2 of Volume 3.

In its simplest form, filtering in power electronics is carried
out by an LC circuit which constitutes a 2nd-order low-pass
filter, which, in an ideal model, is non-dissipative (and in
reality is only slightly dissipative). This is a key point in the
creation of a static converter where efficiency needs to be
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maximized. However, this type of device needs to respond to
certain constraints:

– avoid the generation of resonance or instability12;

– filter interference effectively;

– not take up too much space;

– not cause excessive degradation of the overall efficiency of
the converter.

We therefore have a constraint-based optimization
problem, which will not be dealt with here; we will simply
provide a reminder of the structure of the LC filter
(Figure 2.20).

Figure 2.20. Differential mode LC filter

Note, however, that this structure is interesting from both
upstream and downstream perspectives in terms of filtering:

– it smooths the current-experienced upstream, where the
filter is perceived as a current source in the sense of power
electronics;

– it smooths the voltage-experienced downstream, where
the filter is perceived as a voltage source in the sense of power
electronics.

12 This is unfortunately possible in a low dissipation circuit (with low
damping).
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The open transfer function H0 (p) of this “LC” bridge may
be established as:

H0 (p) =
1

1 + LCp2
=

1

1 + p2

ω2
0

[2.14]

This highlights the presence of a characteristic angular
frequency (i.e. resonance frequency) ω0 = 1√

LC
and a damping

coefficient of zero (due to the absence of a 1st-order term in p
in the denominator). This filter is therefore at the stability
borderline, with a resonance which is potentially infinite at
angular frequency ω0. This resonance is limited in practice,
on the one hand, by losses in the coil (iron and copper losses),
but also in the capacitor (equivalent series resistance (ESR)).
Moreover, if the circuit is charged by a resistance R (parallel
to C), a transfer function H(p) is obtained of the form:

H (p) =
1

1 + 2z p
ω0

+
(

p
ω0

)2 [2.15]

where the characteristic angular frequency is unchanged. A
non-null damping coefficient z also appears, which is
expressed as:

z =
R

2

√
C

L
[2.16]

Another form of the transfer function is often encountered
in publications on the subject, introducing the filter quality
factor Q:

H (p) =
1

1 +Q
(

p
ω0

+ ω0
p

) [2.17]

where:

Q =
1

2z
=

1

R

√
L

C
[2.18]
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2.6.1.2. The stability problem

The stability problem associated with LC filters was
mentioned in the previous section. At first glance, it seems
surprising that a circuit of this type may be unstable.
However, as demonstrated in calculating the transfer
function H0, the filter is at a stability limit when open. It
stabilizes as soon as it is charged by a positive resistance. We
may thus suppose that most of the time, a load-connected
upstream of the filter will be dissipative; however, it is
necessary to ensure that this will always be the case when an
upstream converter is powering a machine. The problem is
not only applicable to phases where energy is returned to the
DC bus, if the filter is situated at the input terminals of a
reversible converter, as seen in the first section; it may also
occur in overspeed phases for machines with controlled
excitation.

Classically, constant couple machines are controlled at low
speeds, and constant power is then used at higher speeds. In
the case of constant power operation, the characteristic of the
“converter/machine” dipole in the plane V (I) is a hyperbola.
Linearization around an operating point shows a negative
dynamic resistance, which is a potential source of instability
and resonance in the DC bus.

2.6.2. Common mode

In the case of common-mode filtering, the element used
needs to demonstrate low impedance in relation to the
differential mode, and high impedance in relation to common
mode. To do this, coupled inductances are used, with
matching dots placed as shown in Figure 2.21.

In this configuration, in the presence of a differential
current, the flux in the “outward” conductor and the flux in
the “inward” conductor cancel out; for two currents
circulating in the same direction (i.e. both entering through
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matching dots), the system will present high impedance. To
establish an equation model of the voltage drop ΔV in the
coils in common mode, we first write IA = IB = Icm/2. Hence:

ΔV =
L+M

2
· dIcm

dt
[2.19]

A C

D

CcmCcm

M

L

L

IA

IB

B

Figure 2.21. Common-mode filter

Note that the impedance experienced by this system,
globally traversed by IA + IB, presents an equivalent
inductance L+M

2 which is connected to a global capacitance
2Ccm. This therefore constitutes a 2nd-order low-pass filter,
for which the characteristic angular frequency can be
calculated based on the results obtained for the differential
filter LC. To be effective, a circuit of this type needs to use a
magnetic circuit with high permeability (i.e. with no air gap),
made from ferrite to allow it to operate at HFs. However,
saturation induction is not a problem in this type of
application, as common-mode currents are generally low
(remembering that these are leakage currents).

A “differential mode filter + common-mode filter” system
is not always found in wiring, as is often seen in the case of
computer cables, such as USB cables. In this case (see Figure
2.22), a node is used to cover the cable, and therefore all of the
wires, in order to produce a high mutual blocking common-
mode interference.
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2.6.3. Limitations and design difficulties

The filter diagrams shown in Figures 2.20 and 2.21
represent idealized structures. In Chapter 5 of Volume 1
[PAT 15a], we saw that real capacitors present an ESR or
even a series inductance (ESL), which degrades the
“short-circuit”-type behavior expected at high frequencies.
Similarly, a real inductance presents a coil resistance
(aggravated by the fact that the frequency increases with the
skin effect), an iron-loss resistance (even if a ferrite,
amorphous or nanocrystalline core is used: these are all
suitable for use at HFs and with the components of EMC
filters). Moreover, we have also seen in Figures 2.14 and 2.18,
for the transformer and the inductance motor, respectively,
that coils are characterized by parasitic capacitances between
turns, but also (and especially) in relation to the magnetic
circuit. These parasitic capacitances between coils and the
magnetic core can be significant at filter operating
frequencies when ferrites are used, as these materials are
ceramic and present a high relative permittivity εr.

These limitations in real components reduce the efficiency
of filters, and need to be taken into account during the design
process [REV 03] in order to produce a satisfactory result and
respect the disturbance frequency ranges imposed by current
standards.

Figure 2.22. Common-mode filter of a USB cable
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2.6.4. Further reading

The filters presented in this chapter (for both common and
differential mode) are specific examples, suited to a situation
where the impedance of the upstream dipole (source) is low,
while the impedance of the downstream dipole (load) is high.
Different filter variations are available for other contexts; a
full list of commercially available filters may be found in
[ESC 87].

2.7. Experimental aspects

2.7.1. Line impedance stabilization networks (LISNs)

An experimental phase is always required when analyzing
conducted interference phenomena (in differential or common
mode). In the case of applications connected to the EDF
network (Electricité de France: the French mains network), it
is hard to guarantee the reproducibility of tests and
measurements due to fluctuations in network parameters,
notably the impedance. While the frequency is precise (50 Hz
± 0.5 Hz), network equipment is designed to operate across
root mean square (RMS) voltages varying from 0.85Un to
1.1Un (Un = 230V).

Figure 2.23. Fluctuating impedance in the network

This variability in voltage terms is linked to the
consumption of loads connected to the network. Using a
diagrammatic representation of the problem (see Figure
2.23), we see that when a load with impedance ZA is
connected to point A, the Thévenin impedance obtained at
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point B will be different from that produced by the network
alone. In practice, it is very difficult (if not impossible) to
control the impedance of the network in an EMC test
laboratory located in the vicinity of offices, with computers
and printers which may be switched on, off, put on standby,
etc., at any moment.

This difficulty can only be overcome by isolating the device
under test (DUT) from the fluctuating network, and
supplying a normalized impedance across a certain range of
frequencies. This is used by installing an element known as
an LISN between the network and the load. A diagram of an
LISN is shown in Figure 2.24.

 

 

 

 

Figure 2.24. LISN for an AC network

REMARK 2.8.– The diagram shows an LISN for an AC
network, but LISNs for DC networks are also available.

The two BNC measurement outputs shown in the diagram
in Figure 2.24 and the photograph in Figure 2.25 (which
includes four outputs) allow measurement of the potential
differences between each of the two DUT power terminals
and the ground (following high-pass filtering with a switching
pulse of 1

RC = 1
0.22×10−3 , giving a frequency of 724 Hz).

Note that these two signals do not directly supply
information regarding the common and differential modes. To
obtain this information, an active or passive device is used to
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calculate the difference and the sum of these two signals.
Generally, the passive solution shown in the diagram of
Figure 2.26 is preferred.

Figure 2.25. Photograph of an AC LISN

Differential model (DM)

Common mode (CM)

Figure 2.26. Common- and differential-mode separator

2.7.2. Spectrum analyzer

Spectrum analyzers (see Figure 2.27) are used alongside
oscilloscopes for time/frequency analysis. The oscilloscope is
essentially used to observe temporal variations of a signal,
while the analyzer provides a frequency representation: it
carries out a Fourier transform, which may be digital (using
an FFT13 algorithm, which may also be found in modern

13 Fast Fourier transform.
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oscilloscopes), or analog (by frequency translation, via
amplitude modulation, followed by peak, quasi-peak or RMS
detection, based on the device and its configuration).

Figure 2.27. Spectrum analyzer

Thus, using a spectrum analyzer, we no longer consider
the temporal evolution of a signal (which is no longer known),
but simply the frequency content, which indicates whether
the system evolves slowly (spectral content limited to low
frequencies) or with rapid variation (shown by the presence of
HF components). In the case of power electronics generally,
and more particularly in EMC, special consideration is given
to HF components, and the spectrum analyzer (and not the
FFT function of an oscilloscope) constitutes an ideal tool for
measuring HF interference.

However, there are certain restrictions concerning the use
of this tool:

– the equipment is expensive and covers wide frequency
ranges (up to 3 GHz for “basic” models);

– the bandwidth is limited at low frequencies, generally to
9 kHz, and additional payment is required for extension to
lower frequencies;
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– the device is often used in the RF domain, and is designed
for 50Ω sources;

– the level of the input signal cannot exceed a given
threshold, meaning that a probe (active or otherwise) must
be used.

REMARK 2.9.– The measurements M produced by an analyzer
are often given in decibel-milliwatt, and the reference value is
therefore the milliwatt. Hence:

M [dBm] = 10. log

(
P [W]

10−3

)
= 10. log (P [W]) + 30 [2.20]

Considering the analyzer input voltage U , note that the
power is that dissipated in the device (with an input
impedance of 50Ω). Hence:

M [dBm] = 20. log (U [V]) + 13.01 [2.21]

Finally, this relationship may be inverted to obtain U in
volts from a measurement in dBm:

U [V] = 10
M [dBm]−13.01

20 [2.22]

REMARK 2.10.– Measurements may also be given in dBμV. As
the name indicates, this logarithmic unit uses the microvolt as
a reference value:

M [dBμV] = 20. log

(
U [V]

10−6

)
= 20. log (U [V]) + 120 [2.23]

The inversion of this relationship produces:

U [V] = 10
M [dBμV]−120

20 [2.24]
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2.7.3. Impedance analyzers

An impedance analyzer (see Figure 2.28) may be used to
characterize certain elements of an electronic system centered
on a static converter.

Figure 2.28. Agilent 4396B impedance analyzer

An impedance analyzer is perfectly suited to identifying
the parameters (impedances) of a cable, transformer, electric
motor or elementary components (capacitors, coils, etc). This
tool allows precise measurement of the impedance of a linear
dipole, in a more or less automatic fashion, across a wide
range of frequencies. The complex result Z may be presented
digitally in a variety of forms:

– Cartesian representation: real elements R = Re [Z]
(resistance) and imaginary elements X = Im[Z] (reactance);

– polar representation: modulus |Z| and argument arg (Z).

Based on a given equivalent model (R,C or R,L; series or
parallel), the impedance analyzer is able to propose
parameters. Finally, top-of-the-range impedance analyzers
also automatically produce impedance graphs for a whole
range of frequencies (with the potential to identify more
complex moduli, typically of the 2nd-order, e.g. an R,L,C
series). Clearly, this type of postprocessing activity can be
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carried out in any case using calculation software by
connecting the device to a computer (as in the case of all
modern laboratory equipment).

Impedance meters are generally characterized by:

– their accuracy;

– their range of operating frequencies;

– their ability to operate with continuous polarization (e.g.
useful when identifying batteries);

– their power level (measurement at high
voltages/currents).

REMARK 2.11.– The impedance analyzer shown in Figure 2.28
also offers spectrum analyzer and network analyzer functions
(the network analyzer will be discussed in the next chapter).



3

Distributed Element Models

3.1. Aspects of electromagnetism

3.1.1. Context and notation

The aspects of electromagnetism presented below cover the
case of a vacuum (with dielectric permittivity ε0 � 8.85 ×
10−12F/m and magnetic permeability μ0 = 4π × 10−7T.m/A).
Note that the following notation will be used:

– scalar quantities and operators will be noted in standard
font (e.g. ρ, div, V , etc.);

– vector quantities and operators will be noted in bold (e.g.
j, E, D, H, B, curl, etc.).

REMARK 3.1.– The differential operators used here are
classic tools for electromagnetism, generally taught in the
first years of university or in preparatory engineering
courses. A variety of high-quality books are available for
readers wishing to refresh their knowledge; [LUM 00] or
[APP 02] are particularly recommended.
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3.1.2. Maxwell equations

The basis for modern electromagnetism was established in
1864 by J.C. Maxwell, who established the four equations
which bear his name. These equations are rooted in earlier
work (by C.F. Gauss, A.M. Ampère, M. Faraday, etc). First, we
note the Maxwell–Gauss equation linking the electrical field
E to the electrical load density ρ:

divE =
ρ

ε0
[3.1]

Moreover, the vector field D may be introduced (the
“electrical displacement” vector), defined as D = ε0E; the
previous equation can then be rewritten as:

divD = ρ [3.2]

A second equation establishes the link between the
magnetic field H, the load current density j and a
displacement current density ∂D

∂t . This is the
Maxwell–Ampère equation:

curlH = j+
∂D

∂t
[3.3]

Note, as for the electric field, there is a connection between
the magnetic field H and a second field, known as the
magnetic induction (or magnetic flux density), B, which
involves the magnetic permeability μ0:

B = μ0H [3.4]

This equation may be used to rewrite [3.3] as follows:

curlB = μ0j+ μ0ε0
∂E

∂t
[3.5]
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The third Maxwell equation is generally known simply as
the magnetic flux conservation equation:

divB = 0 [3.6]

Finally, the fourth equation (the Maxwell–Faraday
equations) establishes the relationship between the electric
field E and the temporal variations in the magnetic induction
B:

curlE = −∂B

∂t
[3.7]

3.1.3. Scalar and vector potentials

The quantities handled here are space variables, which
may be linked to the electrical quantities classically used in
analyzing electrical circuits (voltage and current). The
voltage V between two conductors is linked to the electric
field by a gradient:

E = −gradV [3.8]

which enables calculation of a potential difference between
two points A and B using an integral along a path (between A
and B) in E:

V (B)− V (A) =

ˆ B

A
E · dl [3.9]

Current I may be obtained by calculating the flux of a
current density j across a surface Σ:

I =

¨
Σ
j · ds [3.10]

The electric field (defined by a divergence, based on the
Maxwell–Gauss equation) is therefore linked to a scalar
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potential at all spatial points. In the case of the magnetic
field B, equation [3.6] is verified by the curl of this field, and
the notion of vector potential A may be introduced, such that:

B = curlA [3.11]

Finally, note that the Maxwell–Gauss and magnetic flux
equations are often known as initial condition equations in
that, if these equations are satisfied at a given moment, they
will always be satisfied as long as the two other equations are
verified. These latter equations are dynamic equations due to
the presence of a term in ∂

∂t .

3.1.4. Initial conditions

The electrical charge conservation law (a basic principle
behind electromagnetic theory) can be deduced from the
Maxwell equations [3.2] and [3.3]. Let us begin by noting the
local flux-divergence equation:

div j+
∂ρ

dt
= 0 [3.12]

Deriving equation [3.2] in relation to time gives:

∂

∂t
[divD] = div

∂D

∂t
=

∂ρ

∂t
[3.13]

Based on [3.3], it is known as:

∂D

∂t
= curlH− j [3.14]

∂D
∂t can therefore be replaced by this expression in [3.13]:

div (curlH− j) = div curlH− div j =
∂ρ

∂t
[3.15]
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Moreover, the curl of a field is known to have a divergence
of zero (div curl ≡ 0). This results in the same charge
conservation equation [3.12]. Consequently, equation [3.2]
may be seen as an initial condition of equation [3.3], which
conserves this property at all instants (QED).

Let us now consider equations [3.6] and [3.7]. This is done
using a similar method to that used for the previous equations,
deriving the “static” equation [3.6]:

∂

∂t
[divB] = div

∂B

∂t
= 0 [3.16]

Equation [3.7] can then be used to establish an expression
of ∂B

∂t :

∂B

∂t
= −rotE [3.17]

Once again, equation [3.16] comes down to calculating the
divergence of the curl of a field which is, once again, zero
(QED).

3.2. Guided propagation

3.2.1. Introduction

Before considering the propagation of electromagnetic
waves in free space, it is important to study waveguides, which
are used to confine electromagnetic waves within a closed
space. Waveguides can take a variety of forms:

– copper pipes (often with a silver coating) with either a
round or rectangular cross-section;

– coaxial cables or two-wire lines (generally twisted);

– optical fibers.
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In this case, we will consider “cable” type waveguides, also
known as TEM waveguides, where the electric and magnetic
fields are oriented perpendicular to the axis of the cable (and
thus to the direction of propagation). In this context, the
notions of voltage and current are used in relation to the
wires. However, these quantities retain an irreducible
spatio-temporal dimension, which is not classically seen in
the localized constant circuits considered in the previous
chapter. The voltage and current in the cable are denoted as
v(x, t) and i(x, t), respectively (where x is the point under
consideration along the length of the cable).

3.2.2. Coaxial cable parameters

More detailed consideration will be given in this section to
the simple case of a coaxial or shielded cable, the geometry of
which is defined in Figure 3.1. This cable is made up of a
conducting core of radius r1 and a conducting shield with
internal radius r2 and external radius r3.

 

Figure 3.1. Model of a coaxial cable

As a starting point, the conductors will be presumed to be
ideal (zero resistivity), while the space separating the core
from the shield is considered to be filled with an insulating
material of relative permittivity εr. Supposing that the cable
is infinitely long, the cable may be studied as a cylindrical
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geometry problem (reduced to a 2D problem with a cutting
plane following the direction of the cable) where the
quantities only depend on the radius r at the point under
consideration.

Applying Gauss’ theorem (i.e. the integral equation
deduced from the Maxwell–Gauss equation1), it can be shown
that:

E (r) =
ρL

2πr.ε0εr
∀r1 < r < r2 [3.18]

where ρL is the linear density of charges in the core of the
cable. This result may be supplemented by noting that the
electric field is zero at all other points: not only in the
conductors (presumed to be ideal), but also outside of the
cable, where the conducting shield is charged with a linear
density opposite to that of the core.

It is then easy to establish the expression of the potential
difference ΔV between the two conductors to obtain an
equation of form ρL = CL.ΔV , where CL is the linear
capacitance of the cable. Thus:

CL =
2πε0εr

ln
(
r2
r1

) [3.19]

Ampère’s theorem is then applied along a circular closed
loop of radius r centered on the axis of the cable in order to
calculate the expression of the orthoradial induction field,
with a modulus denoted as B(r). To do this, a current I is
presumed to circulate within the central core, and return to
the conducting shield in its entirety. Moreover, this current is
presumed to be distributed in a uniform manner across the
cut surface of the conductors. In these conditions, the
magnetic field may be seen to be null outside of the cable (as

1 By applying the Green–Ostrogradski formula.



70 Power Electronics Applied to Industrial Systems and Transports 4

the sum of the outgoing and incoming currents is zero).
However, there is a non-null magnetic field in both the
dielectric and the conductors. Whatever the zone under
consideration, the magnetic permeability is considered to
have a value of μ0. Thus, the expression of B(r) in the central
conductor may be written as:

B (r) =
μ0I.r

2πr21
∀r < r1 [3.20]

Next, calculating the field in the dielectric, the cut current
remains constant, while the length of the integration contour
increases. This produces a field which decreases in terms of
1/r:

B (r) =
μ0I

2πr
[3.21]

Finally, when the integration contour enters the conducting
shield, the magnetic field drops even more rapidly, reaching 0
when r = r3:

B (r) =
μ0I

2πr

(
1−
(
r2 − r22

)(
r23 − r22

)) [3.22]

The energy WLmag stored per unit in the cable can then be
integrated to give an equation of the form WLmag = 1

2LL.I
2,

where LL is the linear inductance of the cable. At high
frequency (HF), note that the skin effect allows us to consider
that the magnetic energy is essentially located in the
dielectric. We thus obtain a simple expression of this linear
inductance:

LL =
μ0

2π
ln

(
r2
r1

)
[3.23]

A line piece of length dx can therefore be represented by
an LC circuit, where L = LL.dx and C = CL.dx. This model
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corresponds to a lossless transmission line, LTL (leaving
aside both the resistance in the conductors and losses in the
dielectric). To produce a more accurate model, a resistance R
may simply be added in series with the inductance in order to
take account of ohmic losses in the conductors, and a
conductance G is placed in parallel to the capacitor to model
losses in the dielectric (see Figure 3.2). To complete the piece
model, note that the resistance and the conductance may (as
for L and C) be expressed as a function of linear parameters,
respectively denoted as RL and GL, such that R = RL.dx and
G = GL.dx.

Figure 3.2. RLCG model of a line piece

3.2.3. Line equations

3.2.3.1. Equation model of a line slice

The equation model of the line sliced is established by
noting that the variation between the input and output
voltage (i.e. the voltage variation per unit of length ∂v

∂x )
corresponds to the voltage drop at the terminals of the R,L
system (more accurately RL, LL per unit of length):

∂v

∂x
= −RLi− LL

∂i

∂t
[3.24]
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In the same way, an equation is established to evaluate the
difference between the input and output currents of the piece
( ∂i
∂x ):

∂i

∂x
= −GLv − CL

∂v

∂t
[3.25]

This equation system is known as the line equations, and
was established by O. Heaviside in the 1880s. In the case of a
lossless line, the following simplified equations may be used:

∂v

∂x
= −LL

∂i

∂t
[3.26]

and:

∂i

∂x
= −CL

∂v

∂t
[3.27]

3.2.3.2. Telegrapher’s equations

Equation [3.24] is then derived in relation to x and
equation [3.25] is derived in relation to time in order to
obtain the Telegrapher’s equation:

∂2v

∂x2
− LLCL

∂2v

∂t2
− LLGL

∂v

∂t
−−RLGL

∂v

∂t
−RLGLv = 0 [3.28]

The same equation is obtained for the current (simply
replacing v with i).

These equations are simplified in the case of a lossless line:

∂2v

∂x2
− LLCL

∂2v

∂t2
= 0 [3.29]

and:

∂2i

∂x2
− LLCL

∂2i

∂t2
= 0 [3.30]
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3.2.3.3. Harmonic state

In the case of harmonic state (or sinusoidal steady-state),
complex solutions v (x, t) and i (x, t) with separable variables
should be sought, in order to write:

v (x, t) = V (x) .ejωt [3.31]

and:

i (x, t) = I (x) .ejωt [3.32]

Complex amplitudes V (x) and I (x) therefore need to be
defined in order to solve the problem. The propagation
equations lead to the establishment of equations of the form:

V (x) = A.eγx +B.e−γx [3.33]

and:

I (x) =
1

Zc

(
A.eγx −B.e−γx

)
[3.34]

where parameters γ and Zc (respectively, the propagation
constant and the characteristic impedance of the cable in Ω)
are expressed as:

γ = [(RL + jLLω) . (GL + jCLω)]
1/2 = α+ jβ [3.35]

and:

Zc =

(
RL + jLLω

GL + jCLω

)1/2

[3.36]

In a lossless context, simplified expressions of these two
parameters are used (denoted as γLTL and ZLTL

c ):

γLTL = [jLLω.jCLω]
1/2 = j ω

√
LLCL︸ ︷︷ ︸

βLTL

[3.37]
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and:

ZLTL
c =

√
LL

CL
[3.38]

3.2.4. Impedance of a line piece

3.2.4.1. Impedance reference planes

An impedance Z(x) should now be defined for a given point
x in the line (i.e. a reference plane2) which is simply the ratio
between V (x) and I(x). This gives the following relationship:

Z (x) =
V (x)

I (x)
= Zc · A.eγx +B.e−γx

A.eγx −B.e−γx
[3.39]

Full solution of the propagation problem in the cable
implies determining coefficients A and B. We will now
consider this point in greater detail, noting that, as for any
partially derived equation, the telegrapher’s equation
requires the use of boundary conditions in order to be solved.
In this case, these conditions are obtained by characterizing
the elements placed at the extremities of the cable.

REMARK 3.2.– Position x presumes that a reference point has
been established; this may be one of the two extremities. For
the remainder of this chapter, we will consider that position
x = 0 corresponds to the load, which is therefore considered
as the reference point. Note, however, that this choice is
completely arbitrary3.

3.2.4.2. Integration of the line between a source and a load

Let the load impedance be denoted as ZL, as demonstrated
in the previous section; this load is taken as a reference point,

2 An important notion when calibrating a network analyzer, as presented
in section 3.2.5.3.
3 However, this choice is most widely used in publications on the subject.
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and so we will consider that it is situated at x = 0. Therefore,
x increases toward the source.

The source is modeled as an equivalent Thévenin circuit,
i.e. an ideal voltage source e(t) = E.ejωt placed in series with
an impedance ZS . The diagram corresponding to this study is
shown in Figure 3.3.

Figure 3.3. Complete line (source + cable + load)

On the load side, Z(x = 0) may be calculated based on
equation [3.39]:

Z (x = 0) = Zc · A+B

A−B
[3.40]

Considering the form of solutions V (x) and I(x),
coefficients A and B can be seen to correspond to the
amplitude of the voltages (and currents) circulating in the
opposite direction: in the direction of decreasing x (according
to our convention), propagation occurs from the source
toward the load, something known as an incident wave. In
the direction of increasing x, movement occurs from the load
toward the source: in these conditions, as the load is passive,
the wave may be seen to be reflected by the load.
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A reflection coefficient ΓL may then be easily introduced (at
load level), defined as:

ΓL =
B

A
[3.41]

The expression of Z(x) may then be rewritten to include
this new parameter:

Z (x) = Zc · e
γx + ΓLe

−γx

eγx − ΓLe−γx
[3.42]

and, on the load side (for x = 0):

Z (x = 0) = Zc · 1 + ΓL

1− ΓL
[3.43]

Moreover, we know that at x = 0, the perceived impedance
must be that of the load (ZL). Hence:

Zc · 1 + ΓL

1− ΓL
= ZL [3.44]

As impedances Zc and ZL are known, this reflection
coefficient ΓL can be expressed on the load side in the
following way:

ΓL =
ZL − Zc

ZL + Zc
[3.45]

REMARK 3.3.– Generally speaking, a reflection coefficient
Γ (x) may be defined at any given point in the line. Coefficient
ΓL is therefore a specific instance for x = 0, and the general
expression is as follows:

Γ (x) = ΓL.e
−2γx [3.46]
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This result can then be used to calculate the impedance due
to a “load + cable piece” system. Equation [3.42] can then be
reformulated as:

Z (x) = Zc · ZL + Zc tanh (γx)

Zc − ZL tanh (γx)
[3.47]

where tanh(·) is the hyperbolic tangent function, defined as:

tanh (x) � sinh (x)

cosh (x)
=

ex − e−x

ex + e−x
[3.48]

In the case of a lossless transmission line, equation [3.47]
becomes:

ZLTL (x) = Zc ·
ZL + jZc tan

(
βLTLx

)
Zc − jZL tan (βLTLx)

[3.49]

This result shows that the impedance is a complex
quantity which is subject to periodic modifications, as the
“tangent” function is π-periodic. The spatial periodicity Δx of
ZLTL (x) can therefore be obtained using the equation:

βLTLΔx = π [3.50]

hence:

Δx =
π

βLTL
=

π

ω
√
LLCL

=
c′

2f
[3.51]

where c′ is defined as the wave propagation speed in the
cable. Ratio c′/f is the spatial period (or wavelength λ) of the
wave with frequency f propagating at speed c′. The spatial
periodicity of the impedance is thus λ/2.
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3.2.4.3. Impedance matching

In the previous section, the impedance of a “cable piece +
load” system was seen to present a periodic evolution based
on the length x of the piece with a period λ/2. However, note
that this behavior can tend toward a trivial case, where Z (x)
becomes constant for all values of x. Taking equation [3.42]
and using ΓL = 0, we obtain:

Z (x) = Zc ∀x [3.52]

Condition ΓL = 0 corresponds to the equation:

ZL − Zc

ZL + Zc
= 0 [3.53]

and thus to the case where the load impedance ZL is equal to
the characteristic impedance Zc of the cable. In this case, there
is impedance matching between the load and the cable. This
corresponds to nonreflection of the wave transmitted by the
cable on the load side: all of the power supplied by the source
is transferred to the load.

Impedance matching on the source side may be considered
in the same way. To do this, note that the impedance perceived
by the source is Z(x = Lc). In the general case, this impedance
is expressed as:

Z (Lc) = Zc · ZL + Zc tanh (γLc)

Zc − ZL tanh (γLc)
[3.54]

For an LTL, this expression becomes:

ZLTL (Lc) = Zc ·
ZL + jZc tan

(
γLTLLc

)
Zc − jZL tan (γLTLLc)

[3.55]
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A new reflection coefficient ΓS can then be defined on the
source side, replacing Zc by ZS and ZL by Z (Lc) in the
expression of ΓL, giving:

ΓS =
Z (Lc)− ZS

Z (Lc) + ZS
[3.56]

As for the load, impedance matching occurs if ΓS = 0, and
thus if Z (Lc) = ZS .

In conclusion, a fully matched system is obtained if the
impedance of the source, the cable (characteristic impedance)
and the load are identical. Clearly, this type of system may
also be partially matched, or totally unmatched.

3.2.4.4. Power and impedance matching

The concept of impedance matching is crucial when
considering the power extracted from an impedant source
connected to a charge. The notion of impedance matching is
therefore not specifically linked to wave propagation in a
cable; it also applies to a source – load system, as shown in
Figure 3.3, where the two elements are connected directly
(i.e. by a cable of negligible length Lc). In these conditions, a
voltage divider bridge is obtained. Noting the voltage at the
load terminals as vL, we obtain:

vL =
ZL

ZS + ZL
· e [3.57]

The current circulating in the “source e + ZS + ZL” loop can
also be expressed as:

i =
e

ZS + ZL
[3.58]
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The power P in a dipole (in this case, the load) as a function
of the associated complex voltages and currents is written as:

P = Re [vL.i] =
1

2
(vL.i

∗ + v∗L.i) [3.59]

Giving the following result:

P =
Re [ZL] . |e|2
|ZS + ZL|2

[3.60]

This result may be used by introducing the real and
imaginary parts of impedances ZS and ZL:⎧⎨

⎩ZS = RS + jXS

ZL = RL + jXL

[3.61]

This gives a new expression of the power:

P =
RL. |e|2

(RS +RL)
2 + (XS +XL)

2 [3.62]

Without needing to calculate the extremum in the space
(RL, XL), it is easy to see that the second term of the
denominator can be canceled out for XL = −XS . This is the
minimum value of this term; XS and XL are only involved in
the expression of P. The problem then consists of calculating
the extremum of the reduced expression:

P =
RL. |e|2

(RS +RL)
2 [3.63]

This expression of P can then be derived in relation to RL

to obtain the desired result:

∂P
∂RL

=
|e|2 (RS +RL)

2 − 2RL |e|2 (RS +RL)

(RS +RL)
4 [3.64]
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This expression is canceled by canceling the numerator.
This gives the following expression:

R2
S −R2

L = (RS +RL) (RS −RL) = 0 [3.65]

in which impedance matching occurs when RL = RS .

The result obtained earlier therefore needs to be corrected
as, generally speaking, impedance matching is not truly
obtained for identical impedances (except in the case of an
LTL for which the characteristic impedance is purely real),
but, in fact, for:

ZL = Z∗
S [3.66]

3.2.4.5. Standing-waves

The spatial periodicity of the impedance Z(x) has already
been discussed. This periodicity has an effect on the
amplitude of the voltage and of the current (V (x) and I(x)
respectively). In cases of unmatched impedance, the
amplitude of sinusoidal signals observed in the line is
dependent on the position x under consideration: as in the
case of vibrating strings, the amplitude reaches maximum
and minimum values. This phenomenon is known as a
standing-wave.

For illustrative purposes, let us consider the simple case of
an LTL, with a matched source (ZS = Zc) at one extremity and
a short circuit (ZL = 0) at the other extremity. The value of the
reflection coefficient on the load side is easy to calculate:

ΓL = −1 [3.67]

When calculating the impedance due to the short circuit in
a line piece of length λ/2, the impedance is already known to
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be zero. However, when calculating this impedance for x=λ/4,
a theoretical value of infinity is obtained:

Z (x = λ/4) = ZLTL (Lc) = jZc tan

(
βLTLλ

4

)

= jZc tan
(π
2

)
→ ∞ [3.68]

The “piece + load” system may therefore be replaced by an
open circuit. However, the source matched to the rest of the
cable may be seen as the source alone. Applying the vector
divider bridge formula, the voltage at the point under
consideration is seen to be equal to the open e.m.f. of the
source.

This phenomenon is repeated all along the cable.
Measurements show that voltage maxima occur every λ/2;
between these maxima, the voltage is canceled at points
where the impedance cancels out. This is identical to the
classic behavior of a vibrating string, with nodes and
antinodes in the amplitude of oscillation.

REMARK 3.4.– This phenomenon also occurs in the case of
infinite load impedance and, more generally, in all unmatched
cases. However, when the load is matched, the amplitude of
oscillation is constant along the whole length of the cable
(and equal to the amplitude of the voltage e divided by 2).

The standing-wave ratio (SWR) is a parameter widely used
to characterize the matched or mismatched nature of a “cable
+ load” system. This is simply the ratio between the maximum
and minimum observable voltage amplitudes in the line:

SWR =
|A|+ |B|
|A| − |B| =

1 + |Γ (x)|
1− |Γ (x)| =

1 + ΓL

1− ΓL
[3.69]
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In the case of an LTL:

SWR =
ZL

Zc
[3.70]

This coefficient is equal to 1 in the case of a matched
system. In the case of a short circuit, the coefficient is equal
to zero; it tends toward infinity when the cable is in an open
circuit at its extremity.

3.2.4.6. The Smith chart

The formulas presented in the previous sections make it
possible to carry out all of the calculations required to
understand the behavior of a transmission line, calculate
impedances, reflections, etc.

However, a graphical tool may be used to replace all of these
formulas by geometric operations (specifically, rotations). This
tool is known as the Smith chart, and is shown in Figure 3.4.

Using this tool, a complex impedance may be represented
using a network of “iso-resistance” and “iso-reactance” circles,
then subjected to a transformation through a cable piece by
rotation around the center of the main circle in the chart.
Figure 3.4 shows indications showing the required sense of
rotation, depending on whether movement is made toward
the generator (clockwise) or toward the load
(counter-clockwise). Note, moreover, that the polar gradations
on the edge of the chart are given as fractions of the
wavelength, and a full turn has a value of 0.5λ. This is
perfectly coherent with the results established in equation
[3.51], which indicated that the impedance of the load due to
a line piece of length x evolves with a spatial periodicity of
λ/2.

The chart corresponds to a complex plane, with an origin
at the center of the principle circle; it is not an impedance
graph, but rather a graph showing the (complex) reflection
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coefficient Γ. The origin of the reference frame corresponds to
zero reflection, which is generally associated with an
impedance of 50Ω (the characteristic impedance generally
encountered in radio frequency (RF) with coaxial cables and
measurement instruments: generators, oscilloscopes,
spectrum analyzers, network analyzers, etc.). This complex
plane is supplemented by a chart, made up of a network of
curves establishing specific values for the real and imaginary
parts of the normalized impedance z = Z(x)/Zc, or, more
accurately, according to 2x/λ (the normalized distance based
on a half-wavelength).

3.2.4.7. Impedance matching in power electronics

Impedance matching is not a major aim in power
electronics, and, in this context, is unnatural. While
impedance matching may seem interesting in terms of power
transfer, based on our previous discussion, we should
remember that this study was based on an imposed impedant
source with the aim of extracting the highest possible power
level by matching the load. Note, however, that in this
configuration, the extracted power is maximized, but at the
expense of significant losses in the source: the power
dissipated in the source in this case is equal to the power
transferred to the load. Clearly, in the context of an antenna
receiving a cellular telephone signal, this is not problematic,
and is, moreover, essential for satisfactory signal retrieval;
however, in power electronics, this situation (with an
efficiency level of 0.5) is unacceptable, as loss reduction is key.

Low-impedance converters have been developed which can
only be used at operating points far from a matched
situation; these components would be unable to withstand
matching. For illustrative purposes, note that switch-mode
power supplies for MOSFET switches are widely used with a
resistance of around 10 mΩ (or less) at a few volts (e.g. 5 V).
These switches may be easily used for switched currents of a
few tens of amps (on condition that they are cooled correctly);
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however, a rapid calculation shows that in the case of
matching, the current circulating in the switch would no
longer be in the tens of amps (5V/0.02Ω = 250 A).

Finally, note that reflection and standing-wave phenomena
are to be expected in power electronic devices in some
corresponding geometrical and time/frequency scales (for
example when the dimensions of the cables are significant in
relation to the wavelength).

REMARK 3.5.– As power electronic devices present high levels
of mismatching, it may be difficult to use the Smith chart to
replace calculations (or, if the chart is used, the results will
not be particularly accurate as the networks of “iso-resistance”
and “iso-reactance” curves are limited to an insufficiently wide
range of values). However, this simple tool enables a clearer
understanding of these phenomena, and is particularly useful
for teaching purposes.

3.2.5. Quadripoles and “S” parameters

3.2.5.1. Definitions

The notion of the quadripole was introduced in the
previous chapter in the context of a “lumped parameters
circuit” approach, but is still relevant in the case of
“distributed elements model”, such as transmission lines. In
this context, the impedance, admission and transfer matrices
are replaced by the “S” parameter matrix (for Scattering
parameters) linking the incident and reflected waves
constituting input and output for the cable (or, more
generally, any quadripole).

These waves are normalized in relation to the
characteristic impedance of the cables. More precisely, if we
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consider the quadripole constituted by the line piece between
x1 and x2, voltages V (x1) and V (x2) are defined as follows:⎧⎨

⎩V (x1) = A.eγx1 +B.e−γx1

V (x2) = A.eγx2 +B.e−γx2

[3.71]

Figure 3.4. The Smith chart
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Using the initial convention (x = 0 at the load and x > 0
toward the source), x1 is therefore considered to be greater
than x2, and we note that terms in A.eγx evolve from the
source toward the load, while the terms in B.e−γx evolve in
the opposite direction. In these conditions, the incident and
reflected waves at the two ports of the line-piece quadripole
may be clearly identified:

– A.eγx1 corresponds to an incident wave at port 1 (localized
in x1);

– B.e−γx1 corresponds to a reflected wave at port 1;

– A.eγx2 corresponds to a reflected wave at port 2 (localized
at x2) ;

– B.e−γx2 corresponds to an incident wave at port 2.

The normalized waves linked to the “S” parameters are
simply the components which have just been defined, up to
a coefficient 1√

Zc
:

– incident wave a1 at port 1:

a1 =
A.eγx1

√
Zc

[3.72]

– reflected wave b1 at port 1:

b1 =
B.e−γx1

√
Zc

[3.73]

– incident wave a2 at port 2:

a2 =
B.e−γx2

√
Zc

[3.74]

– reflected wave b2 at port 2:

b2 =
A.eγx2

√
Zc

[3.75]
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3.2.5.2. Uses of “S” parameters

Parameters Sij are quadripole parameters which can be
measured using a network analyzer (see section 3.2.5.3).
Their utility may be called into question, as the notions of
impedance and admittance also exist in this HF context. In
fact, the equations of a quadripole with the coefficients of
matrix (Z) and matrix (Y ) may simply be used to highlight
an experimental identification approach:⎧⎨

⎩V1 = Z11.I1 + Z12.I2

V2 = Z21.I1 + Z22.I2
[3.76]

and:⎧⎨
⎩ I1 = Y11.V1 + Y12.V2

I2 = Y21.V1 + Y22.V2

[3.77]

The approach used to identify an impedance (for example
Z11) therefore consists of opening a circuit (I2 = 0 to identify
Z11):

Z11 =
V1

I1

∣∣∣∣
I2=0

[3.78]

In the case of an admittance matrix (for example Y11), a port
must be short-circuited (V2 = 0, to identify Y11):

Y11 =
I1
V1

∣∣∣∣
V2=0

[3.79]

In HF, short circuits are particularly difficult to establish
(due to the presence of parasitic inductances), and it is even
harder to maintain a purely open circuit (due to parasitic
capacitances). In these conditions, while matrices (Z) and (Y )
are theoretically still valid and usable, they cannot be
identified experimentally. “S” parameters are therefore
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preferred, as a reflected wave will be canceled in the case of
connection of a matched load (which is much easier to obtain
accurately in practice than a short-circuit or an open circuit).

REMARK 3.6.– Calibration kits including short-circuits, open
circuits and matched loads (commonly referred to as “50Ω
plugs”) are commercially available (see Figure 3.5). This
equipment is costly, despite its apparent simplicity, with
prices ranging from a few hundred to a few thousand euros.
These devices are essentially used in addition to a network
analyzer to carry out calibration using the standard “SOLT”
(Short, Open, Load, Thru) method as close as possible to the
equipment under test (and to compensate the effect of the
cables connecting the equipment to the analyzer: the
extremities of the cables are assimilated to reference planes
for the ports of the quadripole in question).

Figure 3.5. Calibration kit for network analyzers

3.2.5.3. Network analyzers

Network analyzers (see Figure 3.6) are sophisticated (and
very expensive) devices which offer a range of functions,
including certain aspects of impedance analysis. Network
analyzers are able to fully characterize a quadripole (see
Figure 3.7) using a matrix of four complex coefficients.

In electronics, the following matrices are generally used to
describe quadripoles:
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– impedance (Z), linking the voltage vector (V ) = (v1, v2)
t

to the current vector (I) = (i1, i2)
t;

– admittance (Y ), linking the two vectors (V ) and (I) in the
opposite direction;

– transfer (T ),4 linking a hybrid “voltage/current” vector
(X1) = (v1, i1)

t associated with port 1 (input) to a second vector
(X2) = (v2,−i2)

t associated with port 2 (output).

Figure 3.6. Agilent N5245A network analyzer (10 MHz–50 GHz)

Figure 3.7. Generic quadripole

4 Also denoted as ABCD in certain publications.
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The equations linking these different vectors and matrices
are:

(V ) =

⎛
⎝Z11 Z12

Z21 Z22

⎞
⎠

︸ ︷︷ ︸
(Z)

. (I)

(I) =

⎛
⎝Y 11 Y 12

Y 21 Y 22

⎞
⎠

︸ ︷︷ ︸
(Y )

. (V )

(X1) =

⎛
⎝T 11 T 12

T 21 T 22

⎞
⎠

︸ ︷︷ ︸
(T )

. (X2)

[3.80]

In the RF domain, a representation using “S” parameters
is preferred – Sij (scattering parameters) – which establishes
a link between the incident waves ai and reflected waves bi at
ports 1 and 2 (i = 1 or 2) of the quadripole:⎛

⎝ b1

b2

⎞
⎠ =

⎛
⎝S11 S12

S21 S22

⎞
⎠

︸ ︷︷ ︸
(S)

.

⎛
⎝a1

a2

⎞
⎠ [3.81]

These are complex coefficients; when the device is able to
fully determine the values of the Sij coefficients, the term
vector network analyzer (VNA) is used. A device which is
only able to evaluate the moduli of these coefficients is known
as a scalar analyzer.

REMARK 3.7.– This type of device is only really useful when
considering propagation phenomena in circuits with
distributed components; in these cases, voltage and current
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propagation produces visible effects (standing-waves in
mismatched circuits).

Note that this equipment is particularly useful when
considering variable signals with very high frequencies in
relation to the propagation speed of electromagnetic waves
and the size of the circuits involved. In this context, network
analyzers are especially valuable. For illustrative purposes,
the physical meanings of the coefficients Sij of matrix (S) may
be specified:

– coefficient S11 (respectively S22) is a translation of the
reflection phenomenon of the incident wave a1 (respectively
a2) at port 1 (respectively 2);

– coefficient S12 (respectively S21) is a translation of the
transfer phenomenon of the incident wave a1 (respectively a2)
toward port 2 (respectively 1).

Waves ai and bi are specific quantities (neither voltages,
currents, nor powers) used very specifically in the RF
domains, and are square roots of powers, in that, for example,
a1 (the incident wave at port 1) is obtained from the incidence
voltage (at the same port) using the formula:

a1 =
Vi1√
Z0

[3.82]

where Z0 is the characteristic impedance (generally 50Ω) of
the cables used between the analyzer and the device under
test (DUT).

3.2.5.4. Transfer relationships

Although matrix (S) supplies as much information related
to a quadripole as matrices (Z), (Y ) and (T ), it should be
noted that this matrix cannot be “cascaded”, unlike the
transfer matrix (T ), and does not allow calculation of the
parameters of series or parallel connections of quadripoles,
something which is possible using matrices (Y ) and (Z),
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respectively. The transfer relationships between these
different representations are therefore particularly useful. A
summary of the required relationships, taken from [FRI 94],
is presented in Tables 3.1, 3.2 and 3.3. The impedance
connected to port 1 of the quadripole is denoted as Z01, and
Z02 is the impedance connected to port 2 of the same
quadripole. Let R01 = Re [Z01] and R02 = Re [Z02].

Passage from (S) to (Z)

S11 =
(Z11−Z∗

01)(Z22+Z02)−Z12Z21

(Z11+Z01)(Z22+Z02)−Z12Z21
S12 = 2Z12

√
R01R02

(Z11+Z01)(Z22+Z02)−Z12Z21

S21 = 2Z21

√
R01R02

(Z11+Z01)(Z22+Z02)−Z12Z21
S22 =

(Z11+Z01)(Z22−Z∗
02)−Z12Z21

(Z11+Z01)(Z22+Z02)−Z12Z21

Passage from (Z) to (S)

– –
– –

Table 3.1. Transfer relationships between matrices (S) and (Z)

REMARK 3.8.– No transfer relationship is indicated for a
passage from matrix (Z) to matrix (Z), as in Dean Frickey’s
original article. Note that this transformation can be carried
out via the admittance matrix (Y ) = (Z)−1.

Transfer relationships allow us to use the properties
of matrices (Z), (Y ) and (T ) applied to connections
(series, parallel or cascaded) of quadripoles, summarized in
Figure 3.8. Noting (Z1), (Y1) and (T1), the matrices linked to
quadripole 1 and (Z2), (Y2) and (T2), the matrices linked to
quadripole 2, we obtain the global matrices (Zg), (Yg) and (Tg)
of each connection verifying the following relationships:

– for a series connection (Zg) = (Z1) + (Z2);

– for a parallel connection (Yg) = (Y1) + (Y2);

– for a cascade connection (Tg) = (T1) + (T2).
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Passage from (S) to (T )

S11 =
T11Z02+T12−T21Z

∗
01Z02−T22Z

∗
01

T11Z02+T12+T21Z∗
01Z02+T22Z01

S12 = 2(T11T22−T12T21)
√
R01R02

T11Z02+T12+T21Z∗
01Z02+T22Z01

S21 =
2
√
R01R02

T11Z02+T12+T21Z∗
01Z02+T22Z01

S22 =
−T11Z

∗
02+T12−T21Z01Z

∗
02+T22Z01

T11Z02+T12+T21Z∗
01Z02+T22Z01

Passage from (T ) to (S)

T11 =
(1−S22)(Z

∗
01+S11Z01)+S12S21Z01

2S21

√
R01R02

T12 =
(Z∗

01+S11Z01)(Z
∗
02+S22Z02)−S12S21Z01Z02

2S21

√
R01R02

T21 = (1−S11)(1−S22)+S12S21

2S21

√
R01R02

T22 =
(1−S11)(Z

∗
02+S22Z02)+S12S21Z02

2S21

√
R01R02

Table 3.3. Transfer relationships between matrices (S) and (T )

3.2.6. Transient mode

3.2.6.1. Context of power electronics

The study of transmission lines presented above applied to
operations in sinusoidal steady-state. However, in the context
of power electronics, while periodic modes do exist, these are
generally based on stepped waveforms. It is therefore useful
to study the behavior of a transmission line, whether matched
or mismatched to the source and load, in a transient context
of the “step response” type.

While analytical calculations are possible (mobile wave
method), they are fastidious after a certain number of
iterations, and can result in errors when carried out
manually. A graphical analysis tool has therefore been
developed for this purpose, known as a Bergeron diagram.
This will be discussed in the next section.
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3.2.6.2. Reflections in open or short circuits

When a step is generated at t = 0 by a source (with open
voltage amplitude E0) matched to a cable, the voltage which is
instantaneously visible at the cable input point will be equal
to E0/2. This voltage wave then propagates along the length
of the cable, of length Lc, at a characteristic speed c′. The time
taken by the wave to travel from one end of the cable to the
other is denoted as τ .

In the case of a circuit which is open at the “load side”
extremity, the wave is reflected with the same amplitude and
polarity as the incident wave. The amplitude of the input
voltage is therefore E0 after a time t = 2τ .

In the case of a short-circuit, the wave is still reflected
with the same amplitude, but the polarity is reversed in
relation to the incident wave. The amplitude of the input
voltage therefore falls to 0 after the same period of time
t = 2τ .

These two examples are illustrated in Figure 3.9.

3.2.6.3. Bergeron diagrams

The Bergeron diagram consists of tracing the evolution of
a wave between the source and the load (by iterations) in a
reference frame (V, Zc.I), where Zc is the characteristic
impedance of the cable between the two, based on the
characteristics of the source and the load.

As the characteristics of these two elements can only be
static, this tool may only be applied if reactive elements
(inductances or capacitances) are present. However, it is
perfectly suitable for use with nonlinear elements (such as
diodes).

An example of a trace is shown in Figure 3.10. This
example shows the usage principle of the Bergeron diagram:
displacements between the source characteristic and the load
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characteristic occur by segments with a line at ±45°, in
accordance with the behavior of a cable of impedance Zc in
the plane (V, Zc.I). Based on successive operating points on
the source side and on the load side, the temporal waveforms
of the corresponding voltages (Figure 3.11) can easily be
found; these waveforms evolve by steps of duration 2τ , with
τ = 2Lc

c′ , where Lc is the length of the cable and c′ is the
propagation speed of the wave (this is therefore the time
taken for the wave to travel from one end to the other and
back again).

 

 

Figure 3.9. Example of a Bergeron diagram

In this example, a succession of operating points are
denoted as A, B, C, D, ...∞. These points alternatively
represent the state of the extremity on the source side (A at
t = 0, C at instant 2τ ) and of the extremity on the load side (B
at instant t = τ , D at instant t = 3τ ). The system finally
converges (after an infinite number of iterations in theory,
but relatively quickly in practice) toward the point of
intersection between the source and load characteristics (this
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point is denoted as ∞ in the figure). This behavior is coherent
with our classic experiment (at low frequency level)
concerning a coaxial cable connection, which is ideally
assimilated to two equipotentials.

Figure 3.10. Example of a Bergeron diagram

3.2.6.4. Time domain reflectometry

Time domain reflectometry involves analyzing the
response to a step (or a pulse) in a cable of known impedance
for diagnostic purposes. When the cable is connected to
another cable, variations in impedance are frequent, and
reflections generally occur when impedance variations exist.
By measuring the delays and the amplitude of “accidents”
observed in the cable input voltage, information can be
obtained regarding the configuration of the cable, any faults
(short-circuits and discontinuities) and their location. Devices
designed for this purpose are known as Time domain
reflectometers (TDRs). This type of equipment exists not only
for copper cables (Metallic TDR), but also for optical fibers
(Optical TDR) – see Figure 3.12 (left and right, respectively).
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Figure 3.11. Chronogram of voltages deduced
from the Bergeron diagram

3.2.6.5. Reactive loads

The step response of a reactive load is harder to study, as
Bergson diagrams, designed for static situations, can no
longer be used. For this reason, simulation is generally
preferred. The “classic” behavior of an RL or RC circuit
should, however, be kept in mind in order to verify the
coherence of the obtained result with usual “low frequency”
behaviors. For illustrative purposes, consider the case of a
voltage source (step E0) with a series impedance RS of 50Ω
(resistive) connected to a cable with a characteristic
impedance of 50Ω, the extremity of which is connected to a
capacitor of capacitance C = 1μF.

Classically (leaving aside the cable), the system made up of
the impedance source and the capacitor allows the generator
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output voltage v(t)5 to be written in the form:

v(t) = E0.
(
1− e−t/τ ′

)
with τ ′ = RSC = 50μs [3.83]

Figure 3.12. Time domain reflectometers (TDRs) for “copper” cables
(left) and optical fibers (right)

In practice, at t = 0, the voltage wave applied to the cable
perceives the characteristic impedance of the cable. In these
conditions, a divider bridge with a gain of 1/2 is obtained,
with a voltage source E0 producing a voltage E0/2. This wave
will remain unchanged until it has traveled through the cable
in both directions (outward journey of duration τ and inward
journey, after time-variable reflection, of duration τ ). In fact,

5 Presumed to be equal to the voltage at the capacitor terminals in LF, as
the coaxial cable is assimilated to two equipotentials.
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the expected waveform in LF, expressed in equation [3.83], is
preceded by a pulse of constant amplitude E0/2 and duration
2τ , as shown in the time curve in Figure 3.13.

3.3. Free-space propagation

3.3.1. Wave equation

The propagation of electromagnetic waves may be shown
by coupling the dynamic equations [3.3] and [3.7]. As this
propagation may occur in free space, in the absence of any
load density ρ or current density j, a first expression of ∂E

∂t
may be given, based on [3.3], for j = 0:

∂E

∂t
=

1

μ0ε0
curlB [3.84]

 

 

 

Figure 3.13. Step response of a “matched cable + capacitor ” system

If the two sides of [3.7] are derived in relation to time, this
result may be replaced in the obtained equation:

1

μ0ε0
· curl curlB = −∂2B

∂t2
[3.85]
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The notion of the vector laplacian should then be
introduced, defined, in the Cartesian framework, as:

ΔB =

⎛
⎜⎜⎜⎝

∂2Bx
∂x2 + ∂2Bx

∂y2
+ ∂2Bx

∂z2

∂2By

∂x2 +
∂2By

∂y2
+

∂2By

∂z2

∂2Bz
∂x2 + ∂2Bz

∂y2
+ ∂2Bz

∂z2

⎞
⎟⎟⎟⎠ [3.86]

where Bx, By and Bz are the components of vector B in the
Cartesian reference frame under consideration.

A notable equality allows us to write:

ΔB = grad divB− curl curlB [3.87]

Moreover, based on the magnetic flux conservation
equation [3.6], this equation may be reduced to:

ΔB = −curl curlB [3.88]

Using this result, [3.85] can be rewritten as:

ΔB− μ0ε0
∂2B

∂t2
= 0 [3.89]

REMARK 3.9.– The second side is a zero vector, denoted as 0,
and not the scalar 0.

This 2nd-order partially derived equation is known as the
wave equation, where coefficient μ0ε0 is homogeneous to the
inverse square of the propagation speeds of the waves
constituting solutions to the equation. This speed is denoted
as c, and is thus linked to the electromagnetic properties of
free space by the relationship:

μ0ε0c
2 = 1 [3.90]
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This speed is known as celerity, and is the propagation
speed of electromagnetic waves in a vacuum, i.e. the speed of
light, approximately 3× 108 m/s.

A single-dimension case, such that By = Bz = 0, is easier
to analyze. In these conditions, the induction field B becomes
a scalar Bx, and equation [3.89] becomes:

∂2Bx

∂x2
− 1

c2
· ∂

2Bx

∂t2
= 0 [3.91]

It is easy to verify that the solutions to this equation are of
the form:

Bx (x, t) = f+ (x− ct) + f− (x+ ct) [3.92]

where functions f+(·) and f−(·) are waves which propagate in
opposite directions. In the case of guided propagation, with a
specified preferred direction of propagation (in this case, the
positive direction), the terms “incident wave” and “reflected
wave” are used.

Equation [3.89] can be clearly rewritten using field H, as
these two quantities are proportional.

The wave equation relating to the electric field is
established by applying the same approach used in equation
[3.85]. Instead of deriving this equation in relation to time,
we derive equation [3.3], still using the hypothesis of a
current density j of zero:

curl
∂H

∂t
=

∂2D

∂t2
[3.93]

First, H and D are replaced by their respective expressions
as functions of B and E:

1

μ0
curl

∂B

∂t
= ε0

∂2E

∂t2
[3.94]
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∂B
∂t is then replaced by −rotE following [3.17]. Formula [3.87]

is then applied to field E, giving:

−grad divE+ΔE = μ0ε0
∂2E

∂t2
[3.95]

In this case, the term grad divE has not been yet
eliminated. Note, however, that in the absence of a load
density ρ, divE = 0. Consequently, the previous equation can
be reduced:

ΔE− μ0ε0
∂2E

∂t2
= 0 [3.96]

This results in the same equation for B as for H. This
equation can evidently also be rewritten using field D, for the
same reason as in the case of the magnetic field.

3.3.2. Speed, frequency and wavelength

In the previous section, electromagnetic equations were
used to show that electrical and magnetic fields propagate
through a vacuum or through air at the speed of light c (in
the broadest possible sense, as this property applies to E, D,
B and H). Consequently, when these quantities are periodic
(of period T = 1/f ) as a function of time at a point in space,
this periodicity is also found at spatial level; the wavelength
λ is thus the spatial equivalent of the period in the time
domain:

λ =
c

f
[3.97]

This quantity is particularly important when considering
the validity of a “circuit” type modeling of an electrical or
electronic system.

In circuit theory, wires are assimilated to equipotentials,
and the current is considered to be the same at any point in a
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circuit loop. This is not the case in practice in HF mode, in
circuits where the characteristic dimensions are not
negligible in relation to the wavelength: in these conditions, a
distributed constant modeling is required in order to take
account of propagation phenomena.

3.3.3. Wave impedance

The notion of wave impedance (more precisely the intrinsic
impedance of a vacuum, in this specific case) may be used to
establish a link between field E and field H of an
electromagnetic wave. This is an important parameter in
wave propagation. It is easy to verify that, from a
dimensional perspective, the ratio E/H is equivalent to an
impedance (in Ohms), in that E is expressed in V/m, while H
is expressed in A/m. The simplest propagation mode to study
is that of permanent steady-state (with angular frequency ω),
with two fields E and H evolving in a plane perpendicular to
the direction of propagation. This is known as transverse
electromagnetic (TEM) propagation.

 

Figure 3.14. Propagation of a TEM wave along the x axis

As an example, we will consider the simple case (see
Figure 3.14) of propagation of a progressive (TEM) wave with
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two orthogonal6 fields E and H (one directed along the y axis
and the other following the z axis – the specific case of a wave
with rectilinear polarization) along the x axis.

Take:⎧⎨
⎩E (x, t) = E (x, t) .ey

H (x, t) = H (x, t) .ez
[3.98]

where ey and ez are the direction vectors corresponding to the
y and z axes, respectively (ex is the equivalent vector for the x
axis).

For calculation purposes, the real moduli E(x, t) and H(x, t)
of the fields will be replaced by equivalent complex amplitudes
(E(x, t) and H(x, t) respectively), expressed as:

E (x, t) = E0.e
j(ωt−kx) [3.99]

H (x, t) = H0.e
j(ωt−kx+φ) [3.100]

where k = 2π
λ is the wavenumber.

We then need to verify the conditions E0, H0 and φ in which
Maxwell’s equations are verified. Specifically, the validity of
the Maxwell–Faraday equation may be tested:

curlE = −μ0
∂H

∂t
[3.101]

6 This is a generic property of plane waves.
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The rotational formula is then applied using Cartesian
coordinates (introducing the Nabla operator ∇):

curlE = ∇×E =

⎛
⎜⎜⎜⎝

∂
∂x

∂
∂y

∂
∂z

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝

Ex

Ey

Ez

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂Ez
∂y − ∂Ey

∂z

∂Ex
∂z − ∂Ez

∂x

∂Ey

∂x − ∂Ex
∂y

⎞
⎟⎟⎟⎠[3.102]

In this case, where Ex = Ez = 0 (and Ey is only dependent
on x), this rotational can be simplified as follows:

curlE =

⎛
⎜⎜⎜⎝

0

0

∂Ey

∂x

⎞
⎟⎟⎟⎠ = −jkE0

⎛
⎜⎜⎜⎝

0

0

ej(ωt−kx)

⎞
⎟⎟⎟⎠ [3.103]

This rotation may then be identified to the right hand side
of equation [3.101], i.e.:

−μ0
∂H

∂t
= −jμ0ωH0

⎛
⎜⎜⎜⎝

0

0

ej(ωt−kx+φ)

⎞
⎟⎟⎟⎠ [3.104]

The z axis components of the two sides should then be
identified in order to obtain the desired result:

kE0 = μ0ωH0e
jφ [3.105]

The moduli and arguments of the two sides can then be
identified in order to establish the following relationships:

E0

H0
=

μ0ω

k
=

√
μ0

ε0
[3.106]
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and:

φ = 0 [3.107]

Let Z0 be the ratio E0/H0, known as the intrinsic
impedance of a vacuum, with an approximate value of
120π � 376.8Ω.

This result allows a link to be established between the
electric field and the magnetic field emitted by a distant
antenna. This is known as far field behavior (at a distance D
from the antenna which is high in relation to the characteristic
dimensions). This context considerably simplifies study of
the radiation of an antenna, in that the emitted field tends
systematically toward a plane wave for any type of antenna.
Unfortunately, near-field study is more relevant in the case of
an EMC study, as:

– the polluting device is not an efficient emitter, and its
range is low;

– victims are generally close to the radiating element (and
may, moreover, be part of the same equipment).

Radiating sources therefore often need to be characterized
in a near-field, requiring field calculations which may be
complex. The equations established above showed the
capacity of electrical and magnetic fields to propagate
through space, but the lack of a source (ρ or j) prevented true
demonstration of the behavior of radiating elements. This
point will be discussed in the following section.

3.3.4. The Biot–Savart law

The Biot–Savart law is used to calculate an infinitesimal
magnetic filed dB (r) produced at a point localized by vector r
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by a circuit element of length dl, situated at the point defined
by r′, in which a current I circulated:

dB (r) =
μ0

4π
· Idl× (r− r′)

‖r− r′‖3 [3.108]

REMARK 3.10.– This law will not be demonstrated here.
Note, however, that it is derived from Maxwell’s equations
and can easily be obtained when considering a circuit element
which is quasi-punctual (very short, and made up of a wire
with a negligible cross-section) in relation to the point r at
which the field is calculated. Moreover, the notion of vector
potential A is generally used in the demonstration (although
this is not strictly necessary), such that B = rotA, as we
know that div (rot •) = 0 (this guarantees that B will satisfy
the magnetic flux conservation equation). The equation in
terms of A takes a form very similar to equation [3.108]:

dA (r) =
μ0

4π
· j.dV (r′)
‖r− r′‖ [3.109]

where dV (r)′ is a volume element surrounding the considered
point r′ of the source.

When considering variable modes (and not the calculation
of quasi-static fields), a propagation time needs to be taken
into account for actions at a distance. These are known as
delayed-action potentials. The duration of the delay is linked
to the distance separating the source (a wire carrying a
current at point r′) from the point under consideration (r)
when calculating the field and the propagation speed (c). This
results in the equation can be written as:

dA (r) =
μ0

4π
·
j
(
r′, t− ‖r−r′‖

c

)
.dV (r′)

‖r− r′‖ [3.110]
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An expression of the electrical (scalar) potential V can also
be given for any point in the space, taking account of the
propagation phenomenon. The corresponding equation is:

dV (r) =
1

4πε0
·
ρ
(
r′, t− ‖r−r′‖

c

)
.dV (r′)

‖r− r′‖ [3.111]

3.3.5. Emission principles

An antenna is a conducting element designed to radiate an
electromagnetic field into the surrounding space (antenna are
also able to pick up radiation). The simplest radiating
elements are electrical and magnetic dipoles. In this section,
we will consider these elements, showing that these simple
examples may be found in real-world cases of electromagnetic
radiation within the context of power electronics.

3.3.5.1. Radiation of a dipolar antenna

We will consider this antenna in the case of permanent
steady-state and in a vacuum (or air). To simplify
calculations, the equations of complex quantities will be
expressed in the form ejωt. First, consider the
Maxwell–Ampère equation in this context:

curlH = j+ jωD = j+ jωε0E [3.112]

Calculating the divergence of this relationship, we obtain:

0 = div j+ jωρ [3.113]

This is the electric field conservation equation, which
allows a connection to be established between the volume
density of the load ρ and the current density j:

ρ = − 1

jω
div j [3.114]
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In the case of a Hertz dipole (a conducting segment of
length L carrying a current i0) observed from a large distance
(r � L), the current density may be considered to be punctual
(located at x = y = z = 0). Moreover, the z axis is used as the
axis of the dipole:

j = i0Lδ (x) .δ (y) .δ (z) .ez [3.115]

where δ (•) is the Dirac distribution.

In fact, note that current i0 is actually a sinusoidal current,
with the equivalent complex formulation:

i0 = Imax.e
jωt [3.116]

The Dirac impulse may be derived in the direction of
distribution in order to obtain the following boundary
passage:

dδ (z)

dz
= lim

L→0

δ
(
z + L

2

)− δ
(
z − L

2

)
L

[3.117]

Consequently, the load distribution ρ linked to j for this
dipole is:

ρ = − lim
L→0

i0δ (x) δ (y)

jω

[
δ

(
z +

L

2

)
− δ

(
z − L

2

)]
[3.118]

The fact that the source (segment carrying a current) is
considered as a punctual element means that it can be
assimilated to a dipole made up of two loads located at
z = −L/2 and +L/2 (with x = y = 0).

Using this basis, the vector potential A (r) may be
calculated at a point distant from the source by applying
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equation [3.110] to the delayed-action potential:

A (r) =
μ0

4π
·
˚ j

(
r′, t− ‖r−r′‖

c

)
.dV (r′)

‖r− r′‖

=
μ0ImaxL

4πr
ej(ω(t−

r
c )) · ez [3.119]

where r = ‖r‖ � ‖r− r′‖. This shows that the vector potential
A (r) is colinear with the z axis when the antenna is observed
from a distance r which is high in relation to the length L of
the antenna (r � L).

θ

ex

ey

ez

er

eθ

eϕ

r

ϕ

Figure 3.15. Passage from Cartesian to spherical coordinates

In a far-field situation, the problem is spherical. The
representation of coordinate systems shown in Figure 3.15 is
therefore used. Then, the induction should be calculated,
based on the following property of the rotation of an axial
field:

curl (μ.ez) = (gradμ)× ez [3.120]
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Hence, in this case:

B = curlA =
μ0ImaxL

4π
grad

(
ej(ω(t−

r
c ))

r

)
× ez [3.121]

Using spherical coordinates, the gradient calculation gives:

grad

(
ejω(t−

r
c )

r

)
= − 1

r2

(
1 +

jωr

c

)
ejω(t−

r
c )er [3.122]

Thus, as er × ez = − sin θ.eϕ:

B =
μ0ImaxL. sin θ

4π

(
1

r2
+

jω

rc

)
ejω(t−

r
c ).eϕ [3.123]

The magnetic field therefore includes an azimuth. Field E
is then deduced, using the impedance of a vacuum, as defined
in [3.106]:

E = Z0 ‖H‖ .eθ = Z0

μ0
‖B‖ .eθ = c ‖B‖ .eθ [3.124]

3.3.5.2. Far-field radiation diagram and antenna resistance

In far-field radiation, note that terms in 1/r and 1/r2 are
included in the expression of E and B. The terms in 1/r2

become negligible when:

ω

cr
� 1

r2
[3.125]

The notion of far-field is related to the wavelength λ of the
emitted signal. If the antenna is observed from a very long
distance (r � λ – typically r > 10.λ), the expressions of the
two fields are simplified. For example, with induction B:

B (r, θ) = j
μ0ωImaxL. sin θ

4πrc
· ejω(t− r

c ).eϕ [3.126]
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There is a maximum emission for θ = π
2 , with an amplitude

of:

Bmax =
μ0ωImaxL

4πrc
[3.127]

Although it is possible to create a trace of a radiation
diagram in a magnetic induction field (or an electric field) for
this dipolar antenna, it is generally better to use a “power
flux” diagram. This is done using the Poynting vector P,
defined as:

P = E×H [3.128]

This vector is homogeneous to a surface power density (in
W/m2), so the flux of P is simply calculated across a closed
surface Σ surrounding the emitting antenna in order to
calculated the emitted power Pem:

Pem =

‹
Σ
P · ds [3.129]

In this case, we obtain:

‖P‖ = Z0.

(
ωImaxL

4πrc

)2

sin2 θ [3.130]

After normalization in relation to the maximum modulus
of P at a given distance r, an antenna radiation diagram is
obtained in terms of “sin2 θ”. This diagram is shown in Figure
3.16. The antenna radiates around the z axis in all directions,
independently of ϕ; however, the intensity of the Poynting
vector is dependent on θ, with maximum emission at θ = π

2
and zero radiation in the axis of the antenna. This is
interesting from an EMC perspective, as when considering an
emitting antenna for which emissions cannot be contained,
this information allows us to determine which spatial zones
will be subject to the highest and lowest (or even zero)
interference. Similarly, if the antenna is likely to be subject to
interference, the diagram shows the directions of highest and
lowest sensitivity.
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Figure 3.16. Emission diagram for a dipolar antenna
(the x axis of the graph corresponds to the z axis in the problem)

REMARK 3.11.– Note that the power flux decreases in terms
of 1/r2. This is coherent with an increasing distribution of the
emitted power across the surface of concentric spheres (in
4π.r2) as the wave propagates (dilution of energy).

Based on this expression, which is dependent on the square
of the current i0 (t) circulating in the antenna, the equivalent
resistance of the antenna Rant may be determined using the
expression:

Pem = Rant.I
2
RMS [3.131]

where IRMS is the RMS value of the current.

In this example, the total emitted power Pem may be
evaluated by integrating the Poynting vector. This is not
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difficult, as it is radial:

Pem =
´ +π
−π

´ +π
2

−π
2
r2 ‖P (θ)‖ dθdϕ = 2π

´ +π
2

−π
2
r2 ‖P (θ)‖ dθ

= 2πZ0.
(
ωImaxL

4πc

)2 ´ +π
2

−π
2
sin2 θdθ

[3.132]

The charge q multiplied by its displacement speed has
already been seen to correspond to a current, and as a0ω is
the maximum charge displacement speed, the following
expression may be used:

Pem =
πI2max

4

√
μ0

ε0
·
(
L

λ

)2

=
πI2RMS

2

√
μ0

ε0
·
(
L

λ

)2

[3.133]

where Imax and IRMS are, respectively, the amplitude and the
RMS value of the current circulating in the antenna.

An equivalent antenna resistance can be identified in this
expression:

Rant =
π

2

√
μ0

ε0
·
(
L

λ

)2

[3.134]

REMARK 3.12.– An antenna should not be completely
reduced to the notion of impedance in relation to the power
supply and to the radiation diagram (such as that shown in
Figure 3.16). Even if two antenna are aligned in such a way
that their respective maxima (of the emission/reception
diagram) coincide, the receiving antenna will not necessarily
pick up a signal transmitted by the emitting antenna. The
polarizations also need to coincide in order for the excitation
generated by the first antenna to be received, in the form of a
signal, by the second antenna.
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3.3.5.3. Near-field radiation

In the case of an electric dipole, the spherical components
associated with the evaluation point of the electromagnetic
field may be noted:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Hϕ = I0dl

4πr2
sin θ · ejω(t− r

c )

Er = −jZ0
I0dlλ
4π2r3

cos θ · ejω(t− r
c )

Eθ = −jZ0
I0dlλ
8π2r3

cos θ · ejω(t− r
c )

[3.135]

The electromagnetic field is no longer perpendicular to the
direction of propagation, and is therefore more complex than
the far-field from a study perspective. Note, however, that in
this configuration, the electric field dominates the magnetic
field. In fact, a simple analysis of the ratio ‖E‖ / ‖H‖ at all
points in the space is sufficient to note that, with a far-field,
the impedance is always the free-space impedance Z0; in a
near-field, however, the impedance is dependent on the
nature of the antenna. In the case of an electric dipole, the
electric field is dominant, while in the case of a magnetic
dipole (i.e. a conducting coil), the magnetic field can be shown
to dominate the electric field in the “near-field”
approximation zone (r � λ

2π ).

In simple cases, far-field radiation can be calculated
analytically; however, near-field study is generally more
difficult, and a digital approach is preferred for this type of
problem. A wide range of commercial or freely-available
software is available for this purpose. These programs are not
necessarily designed for EMC, but are often intended for the
study and design of antenna. One example is 4NEC2, a free
program based on the method of moments, which uses the
Numerical Electromagnetic Code (NEC) calculation code
developed in 1981 by J. Burke and A. Poggio at the Lawrence
Livermore Laboratory (USA) as part of a contract with the
US Navy.
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This software facilitates users to implant sources in an
environment with 3D geometry. An example calculation is
shown in Figure 3.17, with a representation of the intensity
of the magnetic field generated by an antenna fixed on a
simplified geometric model of a car. This mapping evidently
shows that the field is reduced as the distance from the
source (antenna) increases, but presents local maxima at
certain points distant from the vehicle chassis. Note that this
simulation is carried out using a finite zone of a horizontal
section plane of the car, and the program has certain
limitations in terms of simulable nodes (volume/surface of
study, resolution).

Figure 3.17. Example of a digital study of a vehicle-mounted
antenna in near-field. For a color version of the figure, see

www.iste.co.uk/patin/power4.zip

3.3.5.4. Magnetic dipoles

A magnetic dipole is a conducting closed loop of radius R �
λ. In these conditions, the current I = I0.e

jωt circulating in
the dipole may be presumed to be the same at all points in the
loop.



120 Power Electronics Applied to Industrial Systems and Transports 4

  

 

 

 

Figure 3.18. Magnetic dipole aligned with the line (O, ez)

Figure 3.18 shows this dipole located at the origin of a
Cartestian reference plane (O, ex, ey, ez) with an axis oriented
along the line (O, ez). The aim is to evaluate the resulting
electromagnetic field at a point M located at a distance r
from the origin. The electromagnetic field is then expressed
using spherical coordinates (er, eθ, eϕ) linked to this point M .
In this reference frame, the electric field has a single
component with axis eϕ, while the magnetic field presents
components following er and eθ:⎧⎪⎪⎨
⎪⎪⎩

Eϕ = −j ω3μ0ε0I0R
2

4
sin θ ·

(
j 1
2π

(
λ
r

)
+ 1

(2π)2

(
λ
r

)2)
.ejω(t−

r
c )

Hr = j ω3μ0ε0I0R
2

2Z0
cos θ ·

(
1

(2π)2

(
λ
r

)2 − 1
(2π)3

(
λ
r

)3)
.ejω(t−

r
c )

Hθ = j ω3μ0ε0I0R
2

4Z0
cos θ ·

(
j 1
2π

(
λ
r

)
+ 1

(2π)2

(
λ
r

)2 − 1
(2π)3

(
λ
r

)3)
.ejω(t−

r
c )

[3.136]

A far-field approximation (corresponding to r � λ
2π ) can

then be established, with terms in 1/r2 and 1/r3 which
become negligible, leading to the following result:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Eϕ = −j ω

3μ0ε0I0R2

4 sin θ · j 1
2π

(
λ
r

) · ejω(t− r
c )

Hr = 0

Hθ = j ω
3μ0ε0I0R2

4Z0
cos θ · j 1

2π

(
λ
r

) · ejω(t− r
c )

[3.137]
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In this case, the term of the radial magnetic field
disappears, and only transversal terms (i.e. perpendicular to
the direction of propagation) remain: this is a TEM wave.
Moreover, it is possible to verify that the ratio Eϕ/Hθ is equal
to the intrinsic impedance of a vacuum Z0.

In near-field, however, higher-order terms become most
important (in 1/r2 for Eϕ and in 1/r3 for Hr and Hθ):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Eϕ = −j ω

3μ0ε0I0R2

4 sin θ · 1
(2π)2

(
λ
r

)2 · ejω(t− r
c )

Hr = −j ω
3μ0ε0I0R2

2Z0
cos θ · 1

(2π)3

(
λ
r

)3 · ejω(t− r
c )

Hθ = −j ω
3μ0ε0I0R2

4Z0
cos θ · 1

(2π)3

(
λ
r

)3 · ejω(t− r
c )

[3.138]

The electromagnetic field is made up of two orthogonal
components, but these components are no longer
perpendicular to the direction of propagation. As in the case
of the electric dipole, the configuration of the near-field is
more complex than that of the far-field, and the magnetic
field is dominant.

3.4. Natural radiated interference

Natural sources of radiation exist which have the ability to
cause failures in electronic equipment. This is particularly
true in space, where satellites are exposed to cosmic
radiation, and more precisely to the electromagnetic waves
and particles emitted by the sun. As we will see in the
following section, equipment is protected by shielding, but
this is problematic due to the additional weight component.
Moreover, while thin shielding is sufficient for protection
against electromagnetic waves encountered on earth, thicker
shielding is required for protection against high-energy
waves (similar to those produced by radioactive material –
i.e. X and γ rays) and particles moving at high speed.
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Note, moreover, that equipment sent into space is often
made up of hardened components with their own integrated
protection (in the form of materials and/or software7).

REMARK 3.13.– The protection methods discussed here for
natural radiation encountered in space are also suitable for
use in applications subject to high levels of artificial
radiation, such as those encountered in the nuclear sector,
whether civilian (for example, for maintenance purposes in
nuclear power stations) or military.

3.5. Protection

Protection against radiated interference generally takes
the form of shielding. Shielding consists of placing a metallic
screen between the interference source and the victim: the
shield does not necessarily have to be very thick, but it
should, ideally, be hermetic.

Hermetic casings are able to block a very wide range of
frequencies – particularly visible light.

However, this raises a number of practical issues:

– casings often include openings for the passage of cables,
connectors or buttons;

– certain openings are required to allow air to circulate
(ventilation for cooling purposes).

Generally speaking, these openings constitute potential
points for the introduction of disturbances, with a possible
risk of diffraction. Note, however, that the interference
requiring blocking may be located in a range of frequencies

7 Processors designed for aeronautic and aerospace applications can include
error correction codes in their own machine language in order to minimize
the risk of bugs, resulting from interference caused by ambient radiation.
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which is compatible with perforated shielding. This is
particularly interesting not only from a thermal perspective,
but also from an economic perspective (less material is used,
reducing costs) and in terms of equipment weight. This is
seen in certain satellite dishes, such as that shown in Figure
3.19, which are perforated in order to reduce wind resistance.

Figure 3.19. Perforated satellite dish

From a theoretical perspective, considering an ideal
conduction screen (with infinite conductivity), it is necessary
to show that the electric and magnetic fields are zero inside
the material. Mathematically (and physically) speaking, an
incident wave of an electric (or magnetic) field is compensated
on the surface of the screen by a wave moving in the opposite
direction (such as a reflected wave). This wave is generated
by the fields and currents induced by the incident field. In
fact, the electric field is reflected by a network of fine, parallel
conducting wires (with a low separation distance e in relation
to the wavelength λ), co-linear with the direction of E. This is
known as a wire-grid polarizer. If two perpendicular grids are
assembled to produce a conducting mesh, this mesh
constitutes an electromagnetic screen which is effective for
waves with a length greater than the mesh (characteristic
dimension e). For instance, considering a mesh with sides
1mm, if the screen is effective for waves of a length ten times
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higher (e.g. 1 cm), the screen may be considered suitable to
reflect waves with frequencies less than or equal to 30 GHz.
More generally, when there is an opening in a conducting
screen, the electromagnetic field will not be able to pass
effectively through the gap if the perimeter of the opening is
small in relation to λ. However, if the two parameters are of
the same order of magnitude, the opening may operate as an
antenna (i.e. a radiating opening) and the shield will be
completely ineffective (or even constitute a reverberating
box).

REMARK 3.14.– The shielding must be thicker than the skin
thickness (see equation [5.47], in Chapter 5, Volume 1
[PAT 15a]). Shielding is consequently simpler (lighter and
less costly) for high frequencies than for low frequencies. In
the low-frequency domain (particularly in electrical
engineering and power electronics), the magnetic field is most
problematic: for this reason, shielding materials with high
magnetic permeability are selected, particularly mu-metal
(essentially a nickel, iron and molybdenum alloy) which is
designed for this type of application. The aim is to direct the
field into the shielding wall to prevent it from entering the
protected zone; for this to succeed, the material must not
reach saturation.

3.6. Experimental aspects

Experiments concerning radiated EMC require the use of
specific equipment. The radiation generated by a device must
be evaluated using antenna (of variable type according to the
frequency range under study); for analysis to succeed, the
equipment must be placed in an anechoic chamber, itself
generally situated inside a shielded room in order to avoid
not only the reflection of emitted waves by the walls, but also
radiation from the outside environment.
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Figure 3.20 shows an electromagnetic anechoic chamber,
padded with pyramids of polyurethane foam, loaded with
carbon in order to absorb waves. These types of chamber may
also use ferrite tiles for the same purposes (often at different
frequencies and power levels).

Figure 3.21 shows a shielded room, which operates as a
Faraday cage over a wide range of frequencies. The walls,
floor and ceiling of a room of this type are covered in
conducting sheets (generally copper), forming an almost
perfect equipotential.

This kind of environment may be considered to be
perfectly insulated from the external electric field, and, in the
absence of a source, the field within the room is null8. To
avoid disturbing the electromagnetic field within an
installation of this type, 100% wooden furniture is preferred.

Finally, for sensitivity tests, we do not necessarily aim to
characterize a preferred direction in which a component will
or will not be sensitive to an electromagnetic field (except in
the case of isolated equipment made up of polluting and/or
sensitive elements), but rather to verify whether a device or
system as a whole is resistant to a given disturbance. To
carry out tests of this type in an anechoic chamber by moving
an emitter antenna around the object would be costly and
labor-intensive; it is therefore better to use an
over-dimensioned mode-mixing echo chamber. This allows us
to obtain multiple resonances in given directions, in order to
apply isotrope solicitations to the “victim”. The metallic walls
in this type of chamber reflect electromagnetic waves, and a
mode shuffler, made from a motorized pole supporting
reflecting poles, is used; this device is shown in the in

8 This is not the case in open air, as the electric field at ground level in clear
weather is typically of 100V/m, a value which increases considerably in the
vicinity of angular conductors (peak effect).
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Figure 3.22. Immunity (or sensitivity) standards apply to this
type of test installation, notably EN61000-4-21.

Figure 3.20. Electromagnetic anechoic chamber

Figure 3.21. Shielded room
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Figure 3.22. Mode-shuffling echo chamber

3.7. Practical applications

Readers may wonder how these wave propagation tools (in
free space or using waveguides) are useful in the context of
power electronics. It is not easy to use all of these theoretical
and practical tools, designed for radio frequency applications
(and mostly used in information transmission, wirelessly or
using coaxial cables, or microribbon lines on PCBs). Note,
however, that the use of these tools becomes apparent if we
ask the right questions concerning electric diagram models of
equipment, for which EMC filters are required, or where
electromagnetic interference is to be analyzed.

If these aspects are not taken into consideration, there is a
risk of falling into the usual trap of considering electronics as
a type of black magic (not related to the sub-title of the Smith
chart presented in Figure 3.4). The preliminary questions to
be asked before embarking on a study, and particularly before
modeling is attempted, may be summarized as follows:

– up to what frequency fmax should the system be analyzed?

– what are the supports for the propagation of electrical
quantities (currents and voltages) – more precisely, is there
a dielectric with a permittivity ε = ε0.εr which is significantly
different than that of a vacuum (i.e. εr = 1)?
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– based on the first two responses, what is the minimum
wavelength λmin = v

fmax
(where v = c√

εr
9) associated with the

transported voltages/currents?

– if the lengths involved in the system are greater than
10% of the wavelength10, phenomena may appear which
are difficult to explain using distributed constant models;
consequently, predictions made using a model of this type will
be imprecise and subject to errors.

In practice, the aim is to minimize the length over which
disturbances are propagated, notably in the case of
common-mode interference, which can easily overcome
shielding. A circulation loop with a common-mode current
constitutes an excellent antenna, both in terms of radiation
and of sensitivity to external pollution. It is therefore
generally advisable to avoid distributed constant phenomena
in power electronics. Note, however, that applications
connected to the network are increasingly confronted with
this type of phenomena, due to the widespread use of the
electrical network for information transmission (service
signals sent by the French electricity network operator, RTE,
for example), but also, and especially, due to Ethernet
modules with carrier currents. In the context of these
applications, “propagation” aspects are essential in
understanding and implementing this type of equipment,
which needs to cohabit successfully with the electronic power
converters present in any modern domestic or industrial
setting.

9 Note that c is the speed of light in a vacuum, i.e. approximately 3×108 m/s.
10 This is a rule of thumb with a somewhat blurred boundary. Certain more
conservative authors consider that this boundary lies closer to λmin/20, for
example.
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Formulas for Electrical Engineering
and Electromagnetism

A1.1. Sinusoidal quantities

A1.1.1. Scalar signals

A1.1.1.1. Definitions
Sinusoidal waveforms are extremely widespread in

electrical engineering, both for voltages and for currents. In
this case, we will consider a generic signal of the form:

x (t) = Xmax cos (ωt− ϕ) [A1.1]

This real signal is associated with an equivalent complex
signal:

x (t) = Xmax.e
j(ωt−ϕ) [A1.2]

This vector may be represented in the complex plane. We
obtain a circular trajectory of radius Xmax with a vector
rotating at a constant speed ω in a counterclockwise
direction. This representation (which is widespread in
electrical engineering) is known as a Fresnel diagram (or,
more simply, a vector diagram).
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REMARK A1.1.– Derivation and integration calculations are
greatly simplified in the complex plane, as they are replaced,
respectively, by multiplying or dividing by jω. To return to the
real domain, we simply take the real part of the corresponding
complex signal: x(t) = Re [x (t)].

The rotating component ejωt of the complex vectors is
meaningless when studying linear circuits; the amplitudes
and the relative phases between the different quantities
under study are the only important elements. Note that an
absolute phase for a sinusoidal value would be meaningless;
the choice of a reference value of the form Xref . cos(ω.t),
associated with the vector Xref .e

jωt, is purely arbitrary.

Complex vectors are also often represented (in the
literature) using the RMS value of the real value in question
as the modulus, and not the real amplitude.

A1.1.1.2. Trigonometric formulas

When making calculations using complex values, we need
Euler’s formulas:{

cos θ = ejθ+e−jθ

2

sin θ = ejθ−e−jθ

2j

[A1.3]

These two formulas can be used to give the four basic
trigonometric formulas used in electrical engineering:⎧⎪⎪⎨

⎪⎪⎩
cos (a+ b) = cos a cos b− sin a sin b
cos (a− b) = cos a cos b+ sin a sin b
sin (a+ b) = sin a cos b+ cos a sin b
sin (a− b) = sin a cos b− cos a sin b

[A1.4]

These four equations allow us to establish four further
equations:

cos a cos b =
1

2
(cos (a+ b) + cos (a− b)) [A1.5]



Appendix 1 131

⎧⎪⎪⎨
⎪⎪⎩

cos a cos b = 1
2 (cos (a+ b) + cos (a− b))

sin a sin b = 1
2 (cos (a− b)− cos (a− b))

sin a cos b = 1
2 (sin (a+ b) + sin (a− b))

cos a sin b = 1
2 (sin (a+ b)− sin (a− b))

[A1.6]

A1.1.2. Vector signals (three-phase context)

A1.1.2.1. Reference frame (a, b, c)

Three-phase systems are very much common in electrical
engineering, particularly balanced three-phase systems. A
vector (x3) = (xa, xb, xc)

t with three balanced components is
therefore expressed as:

(x3) = Xmax

⎛
⎝ cos θ

cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
⎞
⎠ where θ = ω.t+ φ0 [A1.7]

in the case of a direct system, or:

(x3) = Xmax

⎛
⎝ cos θ

cos
(
θ + 2π

3

)
cos
(
θ − 2π

3

)
⎞
⎠ where θ = ω.t+ φ0 [A1.8]

in the inverse case.

DEFINITION A1.1.– A balanced three-phase system is thus
made up of three sinusoids of the same amplitude and same
frequency, with a phase deviation of 2π

3 .

A direct three-phase system is characterized by the fact
that, taking phase 1 as a reference point (i.e. first
component), the second component has a delay of 120° (in a
balanced situation) and the third component presents a delay
of 120° in relation to the second component.

An inverse three-phase system is characterized by the fact
that, taking phase 1 as a reference point (i.e. first
component), the third component has a delay of 120° (in a
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balanced situation) and the second component presents a
delay of 120° in relation to the third component. A direct
system can be converted into an inverse system (and
vice versa) by permutations of two components.

A1.1.2.2. Three-phase to two-phase transformation (α, β)

It is important to note that a balanced three-phase system
(whether direct or inverse) presents an important property in
that the sum of the components is null:

xa + xb + xc = 0 [A1.9]

This sum is classically referred to as the zero sequence
component (denoted as x0). A balanced three-phase system is
therefore not linearly independent in that, given two of the
components, we may calculate the value of the third
component. It is therefore possible to propose a three-phase
to two-phase transformation without any information loss.
The simplest transformation, known as the Clarke
(abc-to-αβ) transformation, allows us to associate an initial
vector (x3) = (xa, xb, xc)

t with an equivalent two-phase vector
(xαβ) = (x2) = (xα, xβ)

t using components of the same
amplitude as those in the initial vector. This operation
introduces the Clarke matrix C32:

Xmax

⎛
⎝ cos θ

cos
(
θ + 2π

3

)
cos
(
θ − 2π

3

)
⎞
⎠ = Xmax.

⎛
⎝ 1 0

−1/2
√
3/2

−1/2 −√
3/2

⎞
⎠

︸ ︷︷ ︸
C32

.

(
cos θ
sin θ

)
[A1.10]

This gives the following direct transformation:

(x3) � C32. (x2) [A1.11]
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The Clarke transformation may be extended by taking
account of the zero sequence component x0, presented in
[A1.9]:

(x3) � C32. (x2) + C31.x0 [A1.12]

with:

C31 =

⎛
⎝1

1
1

⎞
⎠ [A1.13]

Noting certain properties of matrices C32 and C31:

Ct
32C32 =

3
2

(
1 0
0 1

)
; Ct

31C31 = 3

Ct
32C31 =

(
0
0

)
; Ct

31C32 =
(
0 0
) [A1.14]

we can establish the inverse transformation:

(x2) �
2

3
Ct
32. (x3) [A1.15]

and:

x0 �
1

3
Ct
31. (x3) [A1.16]

A1.1.2.3. Concordia variant

A second three-phase to two-phase transformation is also
widely used in the literature, with properties similar to those
of the Clarke transformation. This variation does not retain
the amplitudes of the transformed values, but allows us to
retain powers. This operation is known as the Concordia
transformation and is based on two matrices, denoted T32 and
T31, deduced from C32 and C31:

T32 =

√
2

3
C32 ; T31 =

1√
3
C31 [A1.17]
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The properties of these matrices are deduced from those
established in [A1.14]:

T t
32T32 =

(
1 0
0 1

)
; T t

31T31 = 1

T t
32T31 =

(
0
0

)
; T t

31T32 =
(
0 0
) [A1.18]

This produces a direct transformation of the form:

(x3) � T32. (x2) + T31.x0 [A1.19]

with the following inverse transformation:

(x2) � T t
32. (x3) [A1.20]

and:

x0 � T t
31. (x3) [A1.21]

A1.1.2.4. Park transformation

The Park (abc-to-dq) transformation consists of associating
the Clarke (or Concordia) transformation with a rotation in
the two-phase reference plane (α, β) onto a reference frame
(d, q). This operation is carried out using the rotation matrix
P (θ), defined as:

P (θ) =

(
cos θ − sin θ
sin θ cos θ

)
[A1.22]

Thus, if we associate a vector (xdq) = (xd, xq)
t with the

initial two-phase vector (xαβ) = (x2) (obtained from a Clarke
or Concordia transformation), we obtain the following
relationship:

(xαβ) = (x2) � P (θ) . (xdq) [A1.23]
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The choice of a frame of reference involves the definition of
angle θ, selected arbitrarily. Generally, the chosen reference
frame is synchronous with the rotating values (sinusoidal
components with an angular frequency ω), but this is not
obligatory.

The following (non-exhaustive) list shows a number of
properties of matrix P (θ):

P (0) =

(
1 0
0 1

)
= I2 ; P

(
π
2

)
=

(
0 −1
1 0

)
= J2 such that J2 = −I2

[A1.24]

P (α+ β) = P (β + α) = P (α) .P (β) = P (β) .P (α)[A1.25]

P (α)−1 = P (α)t = P (−α) [A1.26]

d
dt [P (α)] = dα

dt · P (α+ π
2

)
= dα

dt · P (α) · P (π2 )
= J2

dα
dt · P (α)

[A1.27]

A1.1.2.5. Phasers or complex vectors
The matrix formalism of the Clarke, Concordia and Park

transformations may be replaced by an equivalent complex
representation. Evidently, a rotation of the frame of reference
by angle θ may be obtained by using a complex coefficient ejθ

as easily as with a rotation matrix P (θ). To this end, we use a
“phaser” xs defined in a stationary frame of reference:

xs = xα + j.xβ [A1.28]

The phaser is also defined in a rotating frame (xr):

xr = xd + j.xq [A1.29]

Note that these complex representations may be obtained
using matrix transformations. The real transformations seen
in the previous sections each have an equivalent complex
transformation, as shown in Table A1.1.
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Real transformation Complex transformation
Clarke Fortescue

Concordia Lyon
Park Ku

Table A1.1. Correspondence between real and complex
transformations (names)

A1.2. General characteristics of signals in electrical
engineering

This section presents the formulas used for calculating the
general characteristics of periodic signals traditionally
encountered in electrical engineering. However, it does not
cover formulas related to spectral analysis, which are covered
in Appendix 2 in this volume and in Volume 2 [PAT 15b].

In this section, we will therefore cover the formulas used
to calculate the average and RMS values of given quantities,
applied to two widespread signal types: sinusoids and the
asymmetric square signal of duty ratio α.

A1.2.1. Average value

A1.2.1.1. General definition

The average value 〈x〉 of a T -periodic signal x(t) is defined
generally by the integral:

〈x〉 = 1

T

ˆ T

0
x(t).dt [A1.30]

REMARK A1.2.– In this case, the integration limits are
chosen arbitrarily. Only the interval between the two limits is
important, and it must be equal to T .

A1.2.1.2. Sinusoids

In the case of sinusoids, we evidently obtain an average
value of zero.
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A1.2.1.3. Asymmetric square

The T -periodic asymmetric square x(t) studied here has a
certain value X0 during a period αT , then 0 for the rest of the
period. We can therefore write the average value 〈x〉 directly:

〈x〉 = 1

T

ˆ T

0
x(t).dt =

1

T

ˆ αT

0
X0.dt = α.X0 [A1.31]

A1.2.2. RMS value

A1.2.2.1. General definition

The RMS value Xrms of a T -periodic signal x(t) is defined
generally by the integral:

Xrms =

√
1

T

ˆ T

0
x2(t).dt [A1.32]

REMARK A1.3.– When calculating the average value, the
integration limits are chosen arbitrarily. Only the interval
between the two limits is important, and it must be equal to
T .

A1.2.2.2. Sinusoids

For a sinusoid of amplitude Xmax, the RMS value is Xrms =
Xmax√

2
.

A1.2.2.3. Asymmetric square

The T -periodic asymmetric square x(t) defined in section
A1.2.1 presents an RMS value expressed as:

Xrms =

√
1

T

ˆ αT

0
X2

0 .dt =
√
α.X0 [A1.33]
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A1.3. Energy and power

A1.3.1. Energy

In mechanics, energy is obtained by the operation of a
force over a certain distance. In electrical engineering, this
term corresponds to the movement of a charge following a
variation in electrical potential. In particle physics, a unit
known as an electron-volt (eV) is used for energy values at
the atomic level. The energy formulas used in power
electronics (expressed in Joules (J)) correspond to the energy
stored in an inductance or a capacitor.

In an inductance, the energy EL (magnetic energy) depends
on the current I and the inductance L:

EL =
1

2
LI2 [A1.34]

For a capacitor, the energy EC (electrostatic energy)
depends on the voltage V and the capacitance C:

EC =
1

2
CV 2 [A1.35]

A1.3.2. Instantaneous power

The instantaneous power p(t) given – or provided to – the
dipole is linked, according to the passive sign convention
(PSC), to the voltage v(t) at its terminals and the current i(t)
passing through it as follows:

p(t) = v(t).i(t) [A1.36]

This power is defined in watts (W). It is linked to the
energy consumed E (in J) between two instants t1 and t2 by
the following integral:

E =

ˆ t2

t1

p(t).dt [A1.37]
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The instantaneous power p(t) is connected to the variation
in energy e(t) which can also be defined (up to an additive
constant) as a function of time. In this case, we obtain:

p (t) =
de (t)

dt
[A1.38]

A1.3.3. Average power

As for any T -periodic signal, the average power P is
obtained using the following formula:

P =
1

T

ˆ T

0
p(t).dt =

1

T

ˆ T

0
v(t).i(t).dt [A1.39]

In the case of a resistive charge R, we can establish the
following relationship (Ohm’s law):

v(t) = R.i(t) [A1.40]

This allows us to formulate two possible expressions for this
power:

P =
R

T

ˆ T

0
i2(t).dt = R.I2rms [A1.41]

and:

P =
1

RT

ˆ T

0
v2(t).dt =

V 2
rms

R
[A1.42]

where Vrms and Irms are the RMS values of the voltage and the
current, respectively.
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A1.3.4. Sinusoidal mode

A1.3.4.1. Single phase

In single phase sinusoidal operating mode, we can,
generally speaking, consider a voltage v(t) of the form:

v(t) = Vrms

√
2 cos (ωt) [A1.43]

as the phase reference, with a current, with a phase deviation
angle ϕ (the lag in relation to the voltage), expressed as:

i(t) = Irms

√
2 cos (ωt− ϕ) [A1.44]

Calculating the instantaneous power obtained using these
two values, we obtain:

p(t) = VrmsIrms (cos (2ωt− ϕ) + cosϕ) [A1.45]

We thus obtain two terms:

– a constant term, which is, evidently, the average power,
referred to in this context as active power;

– a variable term, with an angular frequency of 2ω, known
as fluctuating power.

The first interesting result is, therefore, the expression of
the average (active) power P :

P = VrmsIrms cosϕ [A1.46]

In terms of voltage dimensioning (thickness of insulation)
and current dimensioning (cross-section of conductors) of
equipment, the real power value used for design purposes is
known as the apparent power S , and is obtained by directly
multiplying the RMS voltage value by the RMS current
value:

S = VrmsIrms [A1.47]
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To emphasize the “fictional” character of this power, it is
not given in W, but in volt-amperes (VA).

In electrical engineering, we then use the notion of reactive
power Q, which allows us to establish a connection between
the active power P and the apparent power S. This is
expressed as:

Q = VrmsIrms sinϕ [A1.48]

The connection between P , Q and S is thus:

S2 = P 2 +Q2 [A1.49]

As in the case of apparent power, this power value is
fictional; it is not measured in W, or in VA, but rather in volt
ampere reactive (VAR).

REMARK A1.4.– Equation [A1.49] is only valid if the voltage
and the current are sinusoidal. In non-sinusoidal mode, we
introduce an additional power, denoted D, known as the
deformed power. This is used to establish a new equation as
follows:

S2 = P 2 +Q2 +D2 [A1.50]

The instantaneous power is always positive (respectively,
negative) when ϕ = 0° (respectively, ϕ = 180°), but if ϕ takes a
different value, p(t) cancels out, changing the sign. In these
conditions, the direction of transfer of electronic energy
between the source and the load is reversed.

A1.3.4.2. Three phase

In a three-phase context, using the “voltage” vector (v3) as
a point of reference, and more specifically as the first
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component, we take (based on the hypothesis of a direct
balanced system):

(v3) = Vrms

√
2

⎛
⎜⎝ cos (ωt)

cos
(
ωt− 2π

3

)
cos
(
ωt+ 2π

3

)
⎞
⎟⎠ [A1.51]

From this, we deduce the “current” vector (i3), with a lag
in each component when compared to the corresponding
components in (v3):

(i3) = Irms

√
2

⎛
⎜⎝ cos (ωt− ϕ)

cos
(
ωt− 2π

3 − ϕ
)

cos
(
ωt+ 2π

3 − ϕ
)
⎞
⎟⎠ [A1.52]

A matrix formalism may be used to obtain the expression
of the instantaneous power p(t):

p(t) = (v3)
t . (i3) [A1.53]

In this case, the Park factorization of the “voltage and
current” vectors is particularly effective:

(v3) = Vrms

√
2.C32

(
cos (ωt)

sin (ωt)

)

= Vrms

√
2.C32.P (ωt) .

(
1

0

)
[A1.54]

(i3) = Irms

√
2.C32

(
cos (ωt− ϕ)

sin (ωt− ϕ)

)

= Irms

√
2.C32.P (ωt− ϕ) .

(
1

0

)
[A1.55]
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Hence:

p(t) = 2Vrms.Irms

(
1 0
)
.P (−ωt) .Ct

32.C32.P (ωt− ϕ) .

(
1

0

)
[A1.56]

After simplification, this gives us:

p(t) = 3Vrms.Irms cosϕ [A1.57]

Note that we obtain the instantaneous power, and not an
average value. This highlights a notable property of
three-phase systems: there is no globally fluctuating power in
this configuration.

The active power P is therefore defined as follows:

P = p(t) = 3Vrms.Irms cosϕ [A1.58]

The notions of reactive power Q and apparent power S are
also used in three-phase contexts, with the following
expressions:{

Q = 3Vrms.Irms sinϕ

S = 3Vrms.Irms
[A1.59]

Relationship [A1.49] is therefore still valid in a three-phase
context:

S2 = P 2 +Q2 [A1.60]

Note that variants exist, notably where the notion of
line-to-line voltage is used. Voltage Vrms is the RMS
line-to-neutral voltage (i.e. between the phase and the
neutral); the neutral is not always accessible, so the notion of
line-to-line voltage is often preferred , with an RMS voltage,
denoted Urms. In the case of a balanced three-phase system,
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the relationship between the RMS line-to-neutral and
line-to-line voltage is:

Urms =
√
3Vrms [A1.61]

jca

ia ib ic

jab jbc

Figure A1.1. Line and branch currents for a triangular connection

A second point, which may lead to a different formulation
of expression [A1.58], is concerned with currents. Generally
speaking, we always have access to line currents, and thus to
the RMS value Irms. A second type of current can appear when
using a load with a triangle connection (see Figure A1.1): this
branch current presents an RMS value Jrms with the following
expression as a function of Irms:

Jrms =
Irms√

3
[A1.62]

A1.4. Mathematics for electromagnetism

A1.4.1. The Green–Ostrogradsky theorem

The Green–Ostrogradsky theorem (also known as the
flux–divergence theorem) establishes a connection between
the integral of the divergence of a field with vector E in a
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volume Ω and the integral of the flux of E on the closed
surface ∂Ω delimiting the volume Ω:

˚

Ω

divE.dω =

‹
∂Ω

E · ds [A1.63]

where dω is a volume element, while ds is a normal vector1

with a surface element (infinitesimal) ds of the complete
surface ∂Ω.

A1.4.2. Stokes–Ampère theorem

The Stokes–Ampère theorem establishes a connection
between the the flux curl of the magnetic field H on a surface
Σ and the integral of the circulation of H along the closed
contour ∂Σ delimiting surface Σ:

¨
Σ
curlH · ds =

‰
∂Σ

H · dl [A1.64]

where ds is a normal vector2 with a surface element
(infinitesimal) ds of the complete surface Σ. Element dl is a
vector (whose norm is dl) tangent to the closed contour ∂Σ.

A1.4.3. Differential and referential operators

The definition of the differential operators used in
electromagnetism (primarily grad, div and curl) is dependent
on the chosen frame of reference. Using the Cartesian

1 Oriented toward the outside of volume Ω.
2 Oriented in accordance with the right-hand rule as a function of the choice
of orientation of contour ∂Σ.
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coordinate system, the nabla operator (vector), ∇, allows us
to easily write these operators as:

∇ =

⎛
⎜⎝

∂
∂x
∂
∂y
∂
∂z

⎞
⎟⎠ [A1.65]

and we know that:⎧⎪⎨
⎪⎩

gradV = ∇V

divE = ∇ ·E
curlH = ∇×H

[A1.66]

where the symbol “·” is the scalar product and “×” is the vector
product.

If we want to write these operators using spherical or
cylindrical coordinates, the ∇ operator is no longer suitable;
in these cases, it is better to use intrinsic definitions (which
are independent of the chosen frame of reference). For the
gradient, we have:

dV = (gradV ) · dr [A1.67]

where dV is the exact total differential of V and dr is an
infinitesimal shift (vector) away from the considered point in
the space (defined by vector r from the origin of the reference
frame).

For the “divergence” and “curl” operators, we simply use the
two theorems presented in sections A1.4.1 and A1.4.2. First,
we obtain:

dφ = divE.dω [A1.68]

where dφ is the flux of E across the surface of the volume dω
under consideration.
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We can then write:

dC = curlH · n.dS [A1.69]

where dC is the circulation of field H along a closed contour
enclosing a surface dS, and with an orientation allowing us
to define a normal (unitary) vector n (in accordance with the
right-hand rule).
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Elements of Spectral Analysis

A2.1. Periodic signals

A2.1.1. Fourier series decomposition

A Fourier series decomposition consists of writing a
T -periodic signal x(t) (i.e. with a frequency F = 1/T ) as an
infinite (discrete) sum of sinusoids with frequency k.F (where
k ∈ N). This Fourier series decomposition is convergent at all
points, on the condition that certain mathematical conditions
are met; in this context, we will consider these conditions to
be met by ensuring the continuity of signal x(t).
Mathematically speaking, in the opposite case, convergence is
not guaranteed but is still “almost always” obtained1. Thus,
we may use the following equation:

x (t) = a0 +
+∞∑
k=1

ak. cos (2πkF.t) + bk. sin (2πkF.t) [A2.1]

1 While this definition is simplistic from a mathematical perspective, it is
largely sufficient when studying power electronics, and may be used more
widely in electrical engineering.
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where (taking k > 1):

a0 =
1

T

ˆ T

0
x (t) .dt [A2.2]

ak =
2

T

ˆ T

0
x (t) . cos (2πkFt) .dt [A2.3]

bk =
2

T

ˆ T

0
x (t) . sin (2πkFt) .dt [A2.4]

Note that the amplitude Ak of the sinusoid of frequency k.F
is obtained by combining the “cos” and “sin” terms, i.e.:

Ak =
√

a2k + b2k [A2.5]

Another Fourier series formulation is possible, using the
complex exponential ej2kπFt, where k ∈ Z, in the place of the
“cos” and “sin” functions:

x(t) =

+∞∑
k=−∞

ck.e
j2kπFt [A2.6]

with:

ck =
1

T

ˆ T

0
x (t) .ej2kπFt.dt [A2.7]

Note that in this case the ck coefficients of the Fourier series
are complex numbers.

A2.1.2. Properties

A2.1.2.1. Symmetries
In the case of an even x(t) signal, i.e. such that x(−t) = x(t),

it is easy to verify that:

∀k ∈ N, bk = 0 [A2.8]
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For an odd x(t) signal, such that x(−t) = −x(t), it is easy to
verify that:

∀k ∈ N, ak = 0 [A2.9]

More specifically, if we have symmetry “in T/2 and T/4”, the
Fourier series decomposition is simplified, with a reduction in
the number of coefficients to calculate.

If (axial) symmetry exists in T/2, then the decomposition
only includes non-null odd coefficients (a2p = b2p = 0).

In the same way, if (central) symmetry exists in T/4, then
the odd coefficients which are multiples of 3 will be null
(coefficients 3, 9, 15, etc.).

For example, consider the case of the waveform of the
line-to-line voltage output of a three-phase inverter under
“full wave” command (see Chapter 2, Figure 2.13, of Volume 2
[PAT 15b]). In this case, both types of symmetry are present,
and only the odd components which are not multiples of 3
will have non-null amplitudes. This is easy to verify for
learning purposes.

More generally, we may wish to consider the properties of
the complex Fourier series decomposition. In this case, we
note that the ranks are relative integers (positive, negative or
null), whereas in the case of a “cos/sin” breakdown, the ranks
are always natural integers (positive or null). If the signal
x(t) is real (i.e. a function of R in R)2, the Fourier
decomposition presents a property known as Hermitian
symmetry, which consists of noting that:

∀k ∈ Z, c−k = c∗k [A2.10]

2 This is the most common situation encountered in power electronics.
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A2.1.2.2. Integration/derivation

The integration
´
x(t).dt and the derivation ẋ(t) of a signal

x(t) with a known Fourier series decomposition allow
immediate calculation of the Fourier series of

´
x(t).dt and

ẋ(t). If we consider the following complex decomposition of
x(t):

x(t) =
+∞∑

k=−∞
ck.e

j2kπFt [A2.11]

we deduce:
ˆ

x(t).dt =
+∞∑

k=−∞

ck
j2kπF︸ ︷︷ ︸

γk

· ej2kπFt [A2.12]

and:

ẋ(t) =
+∞∑

k=−∞
j2kπF.ck︸ ︷︷ ︸

δk

· ej2kπFt [A2.13]

A2.1.2.3. Temporal dilation/contraction

Temporal dilation or contraction consists of transforming
an initial signal x(t) into a signal x(a.t) where a ∈ R+∗. This
type of transformation has no effect on the Fourier series
decomposition or the way in which it is calculated. We must
simply remember that the fundamental frequency F = 1/T
has been modified (along with the harmonics k.F ), becoming
a.F (respectively, a.k.F ).

A2.1.3. Parseval’s theorem

The RMS value Xrms of a signal x(t) may be obtained by
direct integration, applying the following definition:

X2
rms =

1

T

ˆ T

0
x2 (t) .dt [A2.14]
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This is also possible using a link to coefficients a0 and ck of
the Fourier series:

X2
rms = a20 +

+∞∑
k=1

(
a2k + b2k

)
=

+∞∑
k=−∞

ck.c
∗
k [A2.15]

This formula is known as Parseval’s theorem.

A2.1.4. Total harmonic distortion

Parseval’s theorem is extremely useful for calculating the
total harmonic distortion (THD) of a non-sinusoidal value
which we wish to compare to a pure sinusoid.

Two definitions of THD are used in two different standards:

– THD− F (IEEE or DIN standards) related to the
fundamental of the value (which may be greater than 1):

THD− F =

√∑+∞
k=2

(
a2k + b2k

)
√

a21 + b21
; [A2.16]

– the TDH− F (IEC standard) related to the overall RMS
value (always less than or equal to 1):

THD− F =

√∑+∞
k=2

(
a2k + b2k

)
√∑+∞

k=1

(
a2k + b2k

) . [A2.17]

REMARK A2.1.– Note that, as a general rule, TDH− F (X = F
or G) is calculated using quantities with a null continuous
component (i.e. for a0 = 0) or at least that the continuous
component is not taken into account in calculating the THD.
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A2.2. Double Fourier series and PWM

A2.2.1. Context of study

Before considering the spectral analysis of non-periodic
signals, which will be covered in section A2.3, we will focus on
one particularly important class of periodic signals
encountered in power electronics: MLI signals, obtained by
the modulation of a triangular (or sawtooth) carrier of
frequency Fd using a periodic modulation sequence (not
necessarily sinusoidal) of frequency Fm. The effective
determination of a Fourier series in this case is subject to
significant calculation problems. The desired result may be
obtained using a method based on a double Fourier series,
proposed in [BEN 33] in 1933 and in [BLA 53] in 1953.

A2.2.2. Double Fourier series

The double Fourier series is a generalization of the Fourier
series to periodic functions of two variables of the type f(x, y),
with a period of 2π along the two axes3. As in the case of [A2.1],
it is possible to write:

f (x, y) = A00 +
∑∞

n=1 (A0n. cos (ny) +B0n. sin (ny))

+
∑∞

m=1 (Am0. cos (mx) +Bm0. sin (mx))

+
∑∞

n=1

∑±∞
m=±1 (Amn. cos (mx+ ny)

+Bmn. sin (mx+ ny))

[A2.18]

where ∀m ∈ N, n ∈ Z:

Amn =
1

2π2

ˆ 2π

0

ˆ 2π

0
f (x, y) . cos (mx+ ny) .dx.dy [A2.19]

3 This does not limit the generality of the method, as this specific case can
always be attained by changing a variable.
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and:

Bmn =
1

2π2

ˆ 2π

0

ˆ 2π

0
f (x, y) . sin (mx+ ny) .dx.dy [A2.20]

A2.2.3. PWM and the “wall model”

The “wall model” is based on the duplication of a time
motif in the modulator across a series of vertical bands, with
a width equal to the amplitude of the carrier, as shown in
Figure A2.1. In this case, we will consider the simplest
possibility using a sawtooth carrier: this type of carrier
corresponds to an oblique line (AB) cutting across the copies,
with regular modulator steps, for each switching instant of
the PWM signal cpwm(t) for which we wish to calculate the
spectrum. We must simply note that, when this line “travels
through” the hatched zones, cpwm = 1; in the white zones,
cpwm = 0.

Based on this representation, it is evidently possible to
define a function f(x, y) such that:

f (x, y) =

⎧⎨
⎩1 in thehatched zone

0 otherwise
[A2.21]

This function is periodic along both axes by construction:
it can, therefore, be decomposed to produce a double Fourier
series, as described in section A2.2.2. Finally, we must simply
analyze the spectrum obtained along the line (AB) to obtain
the RMS spectrum of the PWM signal. To do this, we note the
relationship between variable x = ωmt and y = ωdt4 to obtain
the desired result.

4 With these two variables x and y, function f(x, y) is 2π-periodic along both
axes.
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Figure A2.1. Creation of a two-dimensional function for Fourier
series decomposition. For a color version of the figure, see

www.iste.co.uk/patin/power2.zip

REMARK A2.2.– This particularly elegant method avoids the
(major) difficulty of direct calculation of a PWM spectrum.
However, the calculation is still relatively cumbersome, and
involves Bessel functions of the first time, which can only be
calculated approximately. We then simply read the curves
produced by this family of functions to obtain an exact
spectral representation of a given PWM signal.
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Figure A2.2. Bessel functions of the first kind of order 0–5. For a
color version of the figure, see www.iste.co.uk/patin/power2.zip

A2.2.4. Bessel functions

The Bessel function of the first kind of order n is defined by
the general formula:

Jn(x) =
j−n

2π

ˆ 2π

0
ejx cos(α)ejn·αdα [A2.22]

The effective determination of the value of a Bessel
function for any given argument is generally based on
numerical calculations, or by reading the curves presented in
Figure A2.2.

A2.2.5. Analytical spectra for different PWMs

In this section, we will consider the Fourier series
decompositions of a number of widespread PWM signal types:

– PWM with unipolar sawtooth (increasing) carrier;
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– PWM with bipolar sawtooth (increasing) carrier;

– PWM with unipolar triangular (symmetrical) carrier;

– PWM with bipolar triangular carrier.

When noting PWM parameters, we will consider that the
modulator (presumed, in this case, to be sinusoidal) takes the
following form:

m (t) = M0 +Mmax. cos (ωmt+ φm0) [A2.23]

The carrier has a peak-to-peak amplitude Pmax and may
be unipolar (varying between 0 and Pmax) or bipolar (varying
between −Pmax and Pmax), of frequency Fd. Note that a
distinction is commonly made between the definitions of the
PWM signal cpwm in these two cases:

– for unipolar PWM, cpwm ∈ {0, 1};

– for bipolar PWM, cpwm ∈ {−1/2, 1/2} (but this may also be
{−1, 1}).

Using these bases, we can define an average PWM signal
c0 = M0

Pmax
, whatever the strategy (unipolar or bipolar) and the

depth of modulation m = 2Mmax
Pmax

(once again, this is
independent of the modulation type).

REMARK A2.3.– Using PWM signals with a unitary
peak-to-peak amplitude for unipolar and bipolar PWM
strategies makes it easier to carry out comparisons.

Furthermore, the instantaneous phase of the carrier is
denoted as φp (t) = ωpt+ φp0 where ωp = 2πFp.

More information on PWM spectra may be found in [BLA
53], which also covers the case of decreasing sawtooth carriers.
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A2.2.5.1. PWM with a unipolar sawtooth carrier
In this case, the signal cpwm is decomposed as follows:

cpwm (t) = c0 +
m

2
cos (ωmt+ φm0)

+

∞∑
k=1

1

kπ
[sin (k (ωpt+ φp0))

−J0 (kmπ) . sin (k (ωpt+ φp0)− 2kc0π)]

+
∞∑
k=1

±∞∑
l=±1

Jl (kmπ)

kπ
sin

(
lπ

2
− k (ωpt+ φp0)

−l (ωmt+ φm0) + 2kc0π) [A2.24]

where we usually have c0 = 1/2.

A2.2.5.2. PWM with a bipolar sawtooth carrier
In this case, we have (for c0 = 0):

cpwm (t) =
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

1

kπ
[cos (kπ)− J0 (kmπ) . sin (k (ωpt+ φp0))]

+

∞∑
k=1

±∞∑
l=±1

Jl (kmπ)

kπ
sin

(
lπ

2
− k (ωpt+ φp0)

−l (ωmt+ φm0)

)
[A2.25]

A2.2.5.3. PWM with a unipolar triangular carrier
Using this new carrier, we obtain:

cpwm (t) = c0 +
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

2

kπ
· J0
(
kmπ

2

)
· sin (kπc0) cos (k (ωpt+ φp0))
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+

∞∑
k=1

±∞∑
l=±1

2

kπ
· Jl
(
kmπ

2

)

· sin
(
(2kc0 + l)π

2

)
cos (k (ωpt+ φp0) + l (ωmt+ φm0)) [A2.26]

As in the case of PWM with a unipolar sawtooth carrier, we
generally take c0 = 1/2.

A2.2.5.4. PWM with a bipolar triangular carrier

In this final case, we obtain (for c0 = 0):

cpwm (t) =
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

2

kπ
· J0
(
kmπ

2

)
· sin
(
kπ

2

)
cos (k (ωpt+ φp0))

+

∞∑
k=1

±∞∑
l=±1

2

kπ
· Jl
(
kmπ

2

)

· sin
(
(k + l)π

2

)
cos (k (ωpt+ φp0) + l (ωmt+ φm0))

[A2.27]

A2.2.5.5. Qualitative summary

In practice, triangular carrier PWMs are less rich in
harmonic components (at least around frequency Fd) than
those using a sawtooth carrier. Furthermore, unipolar PWM,
for which we use voltage levels of 0 and U0 during the positive
alternations of the modulator and 0 and −U0 for negative
alternations, produces spectral content which is less rich
than that produced by bipolar PWM (with the use of ±U0 over
a switching period): this point is clearly illustrated in
Chapter 2 of Volume 2 [PAT 15b].
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A2.3. Non-periodic signals

A2.3.1. Fourier transformation

Fourier series can be extended to non-periodic signals using
the notion of Fourier transformation. Any given signal x(t) is
associated with a Fourier transform X (f) defined as follows:

X (f) = F [x(t)] =

ˆ
R

x(t).e−j2πft.dt [A2.28]

A2.3.2. The Dirac impulse

The unitary element of the Fourier transformation is a
Dirac impulse δ (t). This is a distribution (generalization of
mathematical functions) which can be assimilated, from a
physical perspective, to a passage at the limit of a “gateway”
function πT (t), defined as follows:

πT (t) =

⎧⎨
⎩

1
T pour |t| ≤ T/2

0 for |t| > T/2
[A2.29]

Note, based on this definition, that:

∀T ∈ R
+∗,
ˆ
R

πT (t) .dt = 1 [A2.30]

The passage at the limit value leading to the Dirac impulse
is thus:

δ (t) = lim
T→0

πT (t) [A2.31]

One important property of the Dirac impulse in the case of
a function f(t) which is continuous in 0 is that:

ˆ
R

δ (t) .f(t).dt = f (0) [A2.32]
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This enables us to establish the Fourier transform of the
Dirac impulse Δ(f) = F [δ (t)]:

Δ(f) = 1 [A2.33]

Thus, we see that the spectral content of this impulse is
uniform, and the spectral range is infinite. This is simply a
mathematical tool, which has no physical reality in absolute
terms: a Dirac impulse is impossible to obtain in practice, but
remains useful for simplified modeling of brief events (which
may be considered to be instantaneous5 for the purposes of
initial analysis).

A2.3.3. Properties

A2.3.3.1. Linearity

As the Fourier transformation is an integral, its linearity is
easy to verify:

∀(λ, μ)∈R
2,F [λ.p(t)+μ.q(t)] =λ.F [p(t)] +μ.F [q(t)] [A2.34]

A2.3.3.2. Integration/derivation

Let us consider a signal x(t), with a known Fourier
transform denoted as X (f) = F [x (t)]. We will begin by
establishing the expression of the Fourier transform of´ t
−∞ x(τ).dτ :

F
[ˆ t

−∞
x(τ).dτ

]
=

ˆ
R

ˆ t

−∞
x(τ).dτ.e−j2πft.dt [A2.35]

REMARK A2.4.– The formula for integration by parts can be
deduced from the product derivation formula:

(uv)′ = u′v + uv′ [A2.36]

5 Switching, for example, in the context of power electronics.
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This gives us the following result:
ˆ

uv′ = [uv]−
ˆ

u′v [A2.37]

Using [A2.37], based on [A2.35], we obtain the following
result:

F
[ˆ t

−∞
x(τ).dτ

]
=

[ˆ t

−∞
x(τ).dτ · e

−j2πft

−j2πf

]+∞

−∞

+
1

j2πf
·
ˆ
R

x(t).e−j2πft.dt [A2.38]

Supposing that the integrated function tends toward zero
toward infinity (i.e. in ±∞), the first term disappears. Hence:

F
[ˆ t

−∞
x(τ).dτ

]
=

1

j2πf
·
ˆ
R

x(t).e−j2πft.dt =
X (f)

j2πf
[A2.39]

For derivation, we wish to calculate the Fourier transform
of ẋ(t) = dx

dt :

F [ẋ(t)] =

ˆ
R

ẋ(t).e−j2πft.dt [A2.40]

Similarly to the case of integration, we can establish the
following relationship (using integration by parts):

F [ẋ(t)] = j2πf.X (f) [A2.41]

A2.3.3.3. Temporal dilatation/contraction

The problem of temporal dilation and contraction for the
Fourier transform is different from that encountered using
Fourier series for periodic signals. However, the starting
point for study still consists of replacing a signal x(t) with a
known Fourier transform X (f) by a signal x(a.t) with a
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strictly positive real coefficient a (i.e. a ∈ R+∗). We may begin
by defining the Fourier transform of the new signal:

F [x (a.t)] =

ˆ
R

x (a.t) .e−j2πft.dt [A2.42]

We then simply change a variable (τ = a.t and thus t = τ
a )

to obtain a result. First, note that dt = dτ
a ; as a > 0, integration

is always carried out from −∞ to +∞ (and not in the opposite
direction). Hence:

F [x (a.t)] =
1

a
X
(
f

a

)
[A2.43]

A2.3.3.4. Hermitian symmetry

Hermitian symmetry, as seen in the context of complex
Fourier series, also occurs in the case of the Fourier
transform. When the signal x(t) under study is real,
symmetry will be present between the value of the Fourier
transform X (f) in f and in −f . This is why the
representation of a signal spectrum is generally limited to a
unilateral representation for f ≥ 0, and not to the bilateral
form, which provides no additional information. To
demonstrate this symmetry, note the expression of the
Fourier transform of x(t):

X (f) =

ˆ
R

x(t).e−j2πft.dt [A2.44]

The conjugation operation (denoted asconj(z) = z∗) is linear
and can consequently be placed inside or outside of the

´
sign.

Thus:

X (f)∗ =
(ˆ

R

x(t).e−j2πft.dt

)∗
=

ˆ
R

(
x(t).e−j2πft

)∗
.dt [A2.45]
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The conjugation of a product is equal to the product of the
conjugations:

X (f)∗ =
ˆ
R

x(t)∗.ej2πft.dt [A2.46]

If x(t) is real, we have x(t) = x(t)∗ and thus:

X (f)∗ =
ˆ
R

x(t).ej2πft.dt = X (−f) [A2.47]

This result is known as the Hermitian symmetry of a
Fourier transform (of a real signal), and corresponds to the
continuous form of result [A2.10], obtained for complex
Fourier series.

A2.3.3.5. Time reversal

We have already considered the impact of temporal
dilation/contraction on the Fourier transform of a signal,
using a strictly positive temporal modification coefficient
(a > 0). We may also wish to consider the case where a is
negative (non-null), or the specific case where signal x(t) is
replaced by an opposite signal in relation to the time axis
x(−t). Note that the composition of the two effects produces a
general case, corresponding to a ∈ R∗:

F [x (−t)] =

ˆ
R

x (−t) .e−j2πft.dt [A2.48]

Once again, we must change a variable (τ = −t, and thus
dt = −dτ ). Note that, in this case, the direction of integration
is also reversed:

F [x (−t)] = −
ˆ −∞

+∞
x (τ) .ej2πfτ .dτ =

ˆ +∞

−∞
x (τ) .ej2πfτ .dτ

= X (−f) [A2.49]
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Based on the Hermitian symmetry result established in the
previous section, we obtain:

F [x (−t)] = X (f)∗ [A2.50]

A2.3.3.6. Lag

When a signal x(t) with a known Fourier transform X (f) is
delayed for a duration t0, we can easily verify, by changing a
variable, that:

F [x (t− t0)] = X (f) .e−j2πft0 [A2.51]

A2.3.3.7. Frequency translation

When we multiply a signal x(t) with a known Fourier
transform X (f) by a complex exponential ej2πf0t, it is possible
to show that the convolution in terms of frequency leads to a
frequency translation:

F
[
x (t) .ej2πf0t

]
= X (f − f0) [A2.52]

A2.3.3.8. Convolution

The convolution product � is a mathematical operation
which is widely used in physics in relation to the solution of
ordinary differential equations (the tool may also be
generalized for the solution of partially derived equations,
with the addition of a Green node). Unfortunately, this
operation is hard to process directly in practice, as it concerns
the “sliding” integral of the product of two functions between
−∞ and +∞, as demonstrated by the following definition:

r(t) = (p � q) (t) =

ˆ
R

p (τ) .q (t− τ) .dτ [A2.53]

However, this operation may be carried out in a simplified
manner in an image domain: the Fourier (frequency) domain,
and more generally the Laplace domain (used in automatics,
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and discussed in Volume 3 [PAT 15c], Chapter 4, in the
context of switch-mode power supply transfer), may be
treated by introducing the Laplace variable p. The
simplification operation consists of noting that the
convolution product becomes a simple product (i.e. an
arithmetic multiplication) in this image domain.

Let us consider two signals p(t) and q(t), with Fourier
transforms denoted as P (f) and Q (f), respectively. The
product of convolution r(t) between p(t) and q(t), defined in
accordance with equation [A2.53], presents a Fourier
transform R (f) which may be expressed using the following
formula:

R (f) = P (f) .Q (f) [A2.54]

Note that, while this result appears to be simple, a
(potentially considerable) difficulty remains concerning the
return to the temporal domain. To do this, we need to use an
inverse Fourier transformation formula, and we must be able
to apply this formula to the result obtained in [A2.54].

In the case where one of the two functions is replaced by
the Dirac impulse, which is the neutral element of the
convolution product (here, using any given function f(t)),
calculation is simple:

(f � δ) (t) = (δ � f) (t) = f (t) [A2.55]

This is also valid in the frequency domain, as the Fourier
transform Δ(f) of the Dirac impulse has a value of 1, as
demonstrated in [A2.33].

REMARK A2.5.– The Fourier transform allows us to replace
the convolution product by a simple product, as shown above,
but the reverse is also true. A simple product may be replaced
by a convolution product using a Fourier transformation.
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A2.3.3.9. Inverse transformation

The inverse Fourier transformation will be defined below.
In this case, consider a Fourier transform X (f) from which we
wish to obtain the temporal original x(t):

x(t) =

ˆ
R

X (f) .ej2πft.df [A2.56]

REMARK A2.6.– The inverse Fourier transformation formula
is very similar to the direct transformation formula, and its
properties are similar, notably in relation to the convolution
product.

A2.3.3.10. Sinusoids

The Fourier transform of cos (2πf0t) can be obtained using
Euler’s formula:

cos (2πf0t) =
ej2πf0t + e−j2πf0t

2
[A2.57]

Consequently, the Fourier transformation gives us the
following result:

F [cos (2πf0t)] =
1

2

ˆ
R

(
e−j2π(f−f0)t + e−j2π(f+f0)t

)
.dt [A2.58]

A useful result consists of noting, based on [A2.33] and
[A2.56], that:

ˆ
R

ej2πft.df = δ (t) [A2.59]

In the same way, as δ (t) is even, we may also write:
ˆ
R

e−j2πft.df = δ (t) [A2.60]

Note also that the roles of t and f are completely
interchangeable in these results.
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Consequently, after changing the variable, we obtain:

F [cos (2πf0t)] =
1

2
(δ (f − f0) + δ (f + f0)) [A2.61]

In the case of the signal sin (2πf0t), we begin by noting:

sin (2πf0t) =
ej2πf0t − e−j2πf0t

2j
[A2.62]

We then deduce the spectrum, as in the case of [A2.61]:

F [cos (2πf0t)] =
1

2j
(δ (f − f0)− δ (f + f0)) [A2.63]

REMARK A2.7.– We see that Hermitian symmetry, as
described in [A2.47], is respected for the two results [A2.61]
and [A2.63].

A2.3.4. Fourier transform of periodic signals

Using the Fourier transform of any periodic signal, we
may expect to obtain a discrete spectrum (non-null only at
multiples of the fundamental frequency), corresponding to
the complex Fourier series decomposition.

Let us consider a signal mT (t) with a finite temporal
support T (i.e. non-null for an interval of width T alone). It is
interesting to note that the convolution of this signal by a
delayed Dirac impulse δt0 (t) = δ (t− t0) gives us a delayed
version of the signal:

(mT � δt0) (t) = mT (t− t0) [A2.64]

Based on this result, a T -periodic signal m(t) may be formed
using the motif mT (t) using convolution between this initial
signal and a Dirac comb (sampling function) of period T :

⊥T (t) =
∑
k∈Z

δ (t− kT ) [A2.65]
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Hence:

m (t) = (mT �⊥T (t)) [A2.66]

Next, if we wish to calculate the Fourier transform M (f)
of the obtained signal, we have:

M (f) = MT (f) .F
[∑
k∈Z

δ (t− kT )

]
[A2.67]

As the Fourier transformation is a linear operation, it may
be applied to each element under the

∑
sign separately:

M (f) = MT (f) .
∑
k∈Z

F [δ (t− kT )] [A2.68]

Using [A2.33] and [A2.51], we have:

F [δ (t− kT )] = e−j2kπfT [A2.69]

Hence:

M (f) = MT (f) .
∑
k∈Z

e−j2kπfT [A2.70]

The (frequency) periodicity 1/T of X (f) =
∑

k∈Z e
−j2kπfT is

easy to demonstrate. This spectrum may then be decomposed
to produce a Fourier series. Moreover, this expression
corresponds precisely to a complex decomposition in which all
of the coefficients ck (for any relative integer k) have a value
of 1. For a signal x(t), coefficient ck is expressed as:

ck =
1

T

ˆ T

0
x (t) .ej2kπFt.dt [A2.71]
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In the case of our frequency (with period 1/T ), this
corresponds to:

ck = T.

ˆ 1/T

0
X (f) .ej2kπTf .df [A2.72]

The integration interval should be of width 1/T , but the
boundaries may be modified: for example, we may choose an
interval centered on f = 0 (between − 1

2T and 1
2T ). In this case,

we wish to find a function X(f) such that:

∀k ∈ Z, ck = 1 [A2.73]

It is easy to verify that:

X (f) =
1

T
· δ (f) [A2.74]

is a solution in the interval
[− 1

2T ;
1
2T

]
. Its existence is,

therefore, proved, and in this case, unique. Consequently, the
global expression of X(f) (i.e. ∀f ∈ R) is:

X (f) =
1

T
·
∑
k∈Z

δ

(
f − k

T

)
[A2.75]

We see that the spectrum of a temporal Dirac comb is a
Dirac frequency comb. Expression [A2.70] of the spectrum of a
periodic signal becomes:

M (f) =
1

T
· MT (f) .

∑
k∈Z

δ

(
f − k

T

)
[A2.76]

We see that the continuous spectrum of the elementary
motif mT (t) (defined over a single period T ) is sampled at all
multiples of the fundamental frequency 1/T . This result is
perfectly coherent with the expected discrete spectrum, and
conforms to the complex Fourier series decomposition defined
in [A2.6]–[A2.7].
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A2.3.5. Fourier transform of sampled signals

The result presented in the previous section has a
counterpart associated with the Fourier transform of a
sampled signal. It is possible to demonstrate that a sampled
signal (with discrete temporal components) is associated with
a periodic frequency spectrum.

To do this, we associate a signal x(t) with its sampled
version x∗(t), obtained by multiplying x(t) by a temporal
Dirac comb of period T :

x∗(t) = x(t).
∑
k∈Z

δ (t− kT ) [A2.77]

The Fourier transform X∗(f) of this signal is obtained by
convolution of spectrum X(f) of x(t) by the spectrum of the
temporal Dirac comb:

X∗ (f) = X (f) � F
[∑
k∈Z

δ (t− kT )

]
[A2.78]

As the Fourier transform is a linear operation, we have:

F
[∑
k∈Z

δ (t− kT )

]
=
∑
k∈Z

F [δ (t− kT )] =
∑
k∈Z

e−j2kπfT

[A2.79]

Therefore, we can write:

X∗ (f) = X (f) �
∑
k∈Z

e−j2kπfT [A2.80]

Note that
∑

k∈Z e
−j2kπfT also appeared in equation [A2.70],

where it was identified as a Dirac frequency comb. In this



Appendix 2 173

case, the spectrum is convolved with X(f), giving the
following result:

X∗ (f) =
∑
k∈Z

X

(
f − k

T

)
[A2.81]

The spectrum of the sampled signal is thus a duplication
of the spectrum of the initial signal x(t) around each multiple
of the sampling frequency 1/T . Note that if the spectrum
X(f) is bounded by a maximum frequency denoted as fmax,
the inequality 2fmax ≤ 1/T must be respected to avoid overlap
in the duplicated motifs of spectrum X(f). This inequality is
known as Shannon’s theorem and the overlap phenomenon is
known as aliasing. This result is important not only in digital
signal processing but also in explaining certain phenomena
encountered in PWM, particularly the appearance of
subharmonics when the switching frequency is too low in
relation to the modulation frequency.

A2.3.6. Parseval’s theorem

As for Fourier series, Parseval’s theorem is applicable to
Fourier transformations. However, there is one important
nuance in this case: in the case of periodic signals, the
integration interval for the square of the signal is limited to
the period, whereas in the context of the Fourier
transformation, the integration interval covers the whole of
the real axis. The treated function must, therefore, be of class
L2 (i.e. a summable square function).

Let us take a signal of this type, x(t) (presumed to be
complex in this case to ensure generality). An identity exists
between the temporal and frequency integrals:

ˆ
R

|x (t)|2 .dt =
ˆ
R

|X (f)|2 .df [A2.82]
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A2.3.7. The Heisenberg–Gabor spectrum inequality

The result presented here provides an important basis not
only for signal theory, but also for quantum mechanics, where
it is known as the Heisenberg uncertainty principle
(established in 1927); Heisenberg was awarded the Nobel
prize in physics in 1933 for creating this new area of
research.

In qualitative terms, the result may be summarized as
follows: a short signal (in temporal terms) occupies a broad
range of frequencies. However, a signal which is highly
localized in terms of frequency is longer in terms of time.

This result is clearly shown in two of the examples seen
above:

– The Dirac impulse is the shortest possible signal, and, as
we have seen, its spectrum is uniform up to f → ∞.

– The sinusoid (with frequency f0) is a signal with a
spectrum (unilateral) limited to a single component at f = f0.
However, it occupies a time range from −∞ to +∞.

We will now consider the quantitative aspects of these
statements. To do this, we need to introduce the notions of
temporal and frequency dispersion.

A2.3.7.1. Temporal dispersion

The temporal dispersion σt of a signal ψ (t) is defined in a
way similar to the standard deviation of a random signal:

σt =

(´ (
t− t
)2

. |ψ (t)|2 .dt´ |ψ (t)|2 .dt

)1/2

[A2.83]

where t is the temporal barycenter of the signal:

t =

ˆ
t.ψ (t) .dt [A2.84]
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A2.3.7.2. Frequency dispersion

A similar approach is used to calculate the frequency
dispersion (or, more correctly, the dispersion of the angular
frequency ω = 2πf ):

σω =

(´
(ω − ω)2 . |Ψ(ω)|2 .dω´ |Ψ(ω)|2 .dω

)1/2

[A2.85]

where Ψ(ω = 2π.f) = F [ψ (t)] with a frequency barycenter ω
defined as follows:

ω =

ˆ
ω.Ψ(ω) .dω [A2.86]

A2.3.7.3. Heisenberg–Gabor inequality

This inequality, applied to any given signal ψ (t), may be
summarized as:

σt.σω ≥ 1

2
[A2.87]

REMARK A2.8.– The demonstration of this inequality lies
outside the scope of this book, but further details may be
found in [DEG 01].

A2.3.8. “Time/frequency” optimal signal

We may use inequality [A2.87] to consider the form of the
signal ψ (t) which allows us to reach a situation of equality,
which may be considered to be optimal. It is possible to verify
that this result is obtained for a Gaussian signal g(t):

g(t) =
1

σt
√
2π

.e
− t2

2σ2
t [A2.88]

Note that this signal is centered on instant t = 0, and the
temporal dispersion σt appears explicitly in the expression.
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Moreover, the Fourier transform of a Gaussian signal is also
Gaussian:

G(ω) = e−σ2
t ω

2
[A2.89]

Using the analogy between the two expressions [A2.88]
and [A2.89], the angular frequency distribution σω may be
obtained without calculation:

σω =
1

2σt
[A2.90]

We, therefore, clearly see that the minimum boundary of
the product σt.σω is reached in this case.

A2.4. PWM and distortion analysis

In this section, we will consider the quality of the power
supply to a load in permanent sinusoidal load provided by
an inverter (in both single- and three-phase contexts). In this
case, we will presume that the inverter and power supply are
ideal:

– a strictly constant voltage source entering the inverter;

– instantaneous switch commutation;

– no deadtime in switching in half-bridges;

– zero voltage drop-off at the switch terminals in ON state.

Evidently, the voltage v(t) supplied to the load has a finite
number of possible values, due to the switching function of
the converter used in the power supply. This value is a
piecewise constant (i.e. constant for given time intervals).
However, using PWM, the sliding average of this voltage
needs to follow a reference sinusoid with fixed amplitude and
frequency values. The load, generally of the R, L, E type for
an electrical machine, behaves as a low-pass filter which
eliminates (or at least significantly limits) the high-frequency
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components of the current. This specific value is key in
evaluating the quality of the power supply to a machine, as it
is central to the torque generated by the machine in relation
to the mechanical load.

Since a machine is a complex piece of equipment, the
characterization of a PWM strategy in terms of distortion
requires the use of mathematical tools, which must be
sufficiently representative of the real load and sufficiently
simple to enable effective study. Generally, an evaluation of
the integral of the voltage wave is used to evaluate the
distortion created by a command in comparison with both the
ideal case and a number of other command techniques.

This methodology is applicable to both single- and
three-phase inverters. However, in the case of a three-phase
inverter, we use a vector-based approach to model the
inverter, with an equivalent two-phase representation of the
voltage (and current) output of the inverter. Despite this
difference, we will systematically consider an inverter output
voltage waveform v(t), in comparison with the desired
sinusoidal wave vref(t). The induced error, denoted as
Δ(t) = v(t) − vref (t), is then integrated to obtain a signal
denoted as Σ(t) =

´
Δ(t) .dt. We then evaluate the RMS

value of this signal over a period Fm of the reference wave
vref(t).

Clearly, a certain number of additional parameters have an
effect on the result:

– the direct current (DC) bus voltage Vdc powering the
inverter;

– the amplitude of the reference voltage V max
ref ;

– the switching frequency Fd.

In practice, these parameters may be condensed to give two
normalized parameters:
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– the modulation depth Km = 2V max
ref /Vdc;

– the frequency ration Kf = Fd/Fm.

A2.4.1. Single-phase inverters

In a single-phase context, only two fixed-frequency
command variations may be envisaged for an H-bridge, single-
phase inverter. Two types of PWM may be used:

– bipolar PWM (with complementary control of the two
half-bridges, giving a voltage of v(t) ∈ {−Vdc; +Vdc});

– unipolar PWM (with one half-bridge in the ON state for
each half-alternation of vref (t), giving a voltage of v(t) ∈
{−Vdc; 0; +Vdc}).

In comparing the two strategies, we have chosen to use the
THD of the integral of the error between v(t) and vref (t) (vref
is sinusoidal, with a period Tm = 1/Fm):

THDweighted =

√
1
Tm

´ Tm

0

(´ t
0 v(τ)− vref (τ)dτ

)2
.dt

V max
ref /

√
2

[A2.91]

The logarithm of this distortion rate (log (THDpond)) for both
modulation types is presented in Figure A2.3.

We immediately see that the distortion resulting from
unipolar PWM is significantly lower for a given pairing
(Kf ,Km) than the distortion involved in bipolar PWM. In
qualitative terms, this result can be explained by the fact
that the voltage peaks induced by unipolar PWM are half the
size of those induced by bipolar PWM (Vdc instead of 2Vdc), as
shown in Chapter 2 of Volume 2 [PAT 15b].
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Bipolar modulation
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Figure A2.3. Comparison of distortions resulting from
bipolar and unipolar PWM
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A2.4.2. Three-phase inverters

The same analytical approach may be used for three-phase
inverters, but it no longer applies to a scalar voltage v(t), but
rather to a two-phase voltage vector, expressed in the
stationary plane (α, β)6.

Several calculation methods have been proposed
[HAV 99, NAR 08, NAR 06, ZHA 10]; here, we have chosen to
use a method developed by Hava [HAV 98] due to its
simplicity of implementation.

Using the hypothesis Fd � Fm, the three reference
voltages are always considered to be constant at the level of
the switching period Td = 1/Fd. From a vector perspective in
the plane (α, β), the normalized reference vector (in relation
to Vdc

2 )
−→
V ∗ is, therefore, considered to be constant for each

switching period, and may be expressed using the equivalent
phaser V ∗:

V ∗ = m× ejθ [A2.92]

where θ = ωt, which is the angle between the reference vector
and axis α, and ω is the angular speed of rotation of the
reference vector.

In this case, the SVPWM strategy may be used to illustrate
this principle.

In sector I of the hexagon in the plane αβ, for a
raising-lowering-type carrier, the following symmetrical
sequence is applied for each switching period: 7-2-1-0-0-1-2-7
(where 7 represents the vector

−→
V7) (inverse configuration in

relation to that used in Figure 2.15 of this volume,

6 This approach can also be applied to quantities expressed in a rotating
plane (d, q): both formalisms are used in the literature on the subject, but
note that the results obtained are strictly equivalent.
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Chapter 2). When a normalized output vector of the inverter−→
Vi is applied, an instantaneous error vector (or harmonic
vector) is deduced using the following relationship:

−→
Δi =

vdc
2

× (
−→
Vi −

−→
V ∗)︸ ︷︷ ︸

−→
δi

[A2.93]

where
−→
δi , dependent on m, θ and

−→
Vi , is the normalized vector

in relation to Vdc/2 of vector
−→
Δi.

This voltage error
−→
Δi is, evidently, measured in volts, and

vector
−→
δi has no unit.

Figure A2.4. Trajectory of the harmonic flux during a switching
period for the SVPWM strategy

Figure A2.4 shows the different error vectors
corresponding to a reference vector situated in sector I of the
hexagon. We see that the amplitude and phase of the error
vectors are dependent on the amplitude (and thus the
modulation index m) and the position of the reference vector
(and thus on angle θ).
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The cumulated voltage error is defined by the following
formula:

−→
Σ =

ˆ −→
Δidt =

vdc
2

×
ˆ −→

δi dt [A2.94]

This quantity
−→
Σ is the integral of a voltage, and is

equivalent (following Faraday’s law) to a magnetic flux. This
flux is known as the conceptual harmonic flux.

Using a classic R − L(−E) model of electrical machines
(this time using three phases), the role of the inductive
component is more important than that of the resistive
component at switching period level. As the origin of the
current harmonics is the error between the voltage applied at
the inverter output and the reference voltage, the following
relationship between the harmonics of the load currents Ih
and the integral of the voltage error vector reveals the nature
of the “conceptual” flux of vector Σ:

−→
Σ = L×−→

Ih [A2.95]

Consequently, the study of
−→
Σ is equivalent to the study of−→

Ih. Note that the calculation of the conceptual harmonic flow
requires no information concerning the load, and is
characteristic of the chosen PWM strategy. The trajectory of−→
Σ corresponding to the SVPWM strategy over a switching
period is illustrated in Figure A2.4. Let us suppose that, at
the start of the first switching period,

−→
Σ starts from 0: it

returns to 0 in the middle and at the end of the switching
period (this is repeated for all periods). The trajectory shown
in Figure A2.4 corresponds to the 7-2-1-0-0-1-2-7 sequence,
with equal application times for vectors

−→
V0 and

−→
V7. As

intersective PWM strategies with raising lowering-type
carriers only generate symmetrical switching sequences, it is
sufficient to calculate

−→
Σ for half of the switching period, and

the trajectory of
−→
Σ for the second half of the period is exactly
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symmetrical to that of the first half. Furthermore, each PWM
strategy involves a different distribution of the application
times of free wheel vectors; consequently, the trajectory of

−→
Σ

for each PWM strategy is unique (we do not, therefore, obtain
results by PWM family, as in the case of Idc).

We will now present the method used to calculate the RMS
value of the modulus of

−→
Σ over a fundamental period;

symmetry in the plane αβ means that only a sector of π
3 (60◦)

needs to be analyzed.

First, variable changes may be used to express the
harmonic flux over half a switching period as:

−→
Σ = Σ0 ×−→σ [A2.96]

where Σ0 = vdc
2

Td
2 is dependent on the DC bus voltage and the

switching period, and −→σ is the normalized vector in relation
to Σ0 of vector

−→
Σ .

For the SVPWM strategy, the analytical formulation of the
trajectory of phaser σ (associated with vector σ) is:

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−m× ejθ×y 0≤y ≤ y7

− 4
3 × ej

π
3 × y7 + ( 43 × ej

π
3 −m× ejθ)× y y7≤y≤y2

− 4
3 × ej

π
3 × y7 +

4
3 × (ej

π
3 − 1)× y2

+( 43 −m× ejθ)× y y2≤y≤y1

− 4
3 × ej

π
3 × y7 +

4
3 × (ej

π
3 − 1)× y2

+ 4
3 × y1 −m× ejθ × y y1 ≤ y≤1

[A2.97]

where y7 = t7
Td

, y2 = y7 + t2
Td

, y1 = y2 + t1
Td

are coefficients
imposed by projections of the reference vector onto the
vectors used during the switching period (in this case,

−→
V1 and−→

V2). Next, the switching period is filled in by applying the null
vectors

−→
V0 and

−→
V7 (used for the same periods as in classic

PWM).
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The RMS value of vector −→σ over a fundamental period,
which we will denote by ψf , may be calculated following the
method explained in Appendix 1. The relationship between
the RMS value of

−→
Σ over a fundamental period RMS(

∥∥∥−→Σ∥∥∥)
and ψf is as follows:

RMS(
∥∥∥−→Σ∥∥∥) = Σ0 × ψf [A2.98]

In other words, ψf is the normalized value in relation to
Σ0 of the RMS value of

−→
Σ over a fundamental period. In the

following, ψf will be used as a tool for comparing strategies.

Using the same PWM strategy, by increasing the switching
frequency, we reduce the value of Td, and consequently the
value of Σ0. In qualitative terms, this relates to the fact that
current harmonics are reduced as the switching frequency
increases. In order to compare different PWM strategies, the
same switching frequency must be used in all cases; this
comes down to comparing strategies using the value of ψf ,
which is independent of the switching frequency. Clearly,
from this perspective, the best strategies will present the
lowest value for ψf (reduced ripple in load currents).

The value of ψf for the SVPWM strategy may be obtained
using the following formula [HAV 98]:

ψf (m) =

√√√√ 3

π

[
π

36
m2 − 2

√
3

27
m3 +

(
π

32
− 3

√
3

128

)
m4

]
[A2.99]

This analytical expression is particularly interesting as
the SVPWM strategy is generally considered in published
literature as a benchmark for the evaluation of other
techniques.

Figure A2.5 shows its appearance as a function of m. This
curve is applicable for all values ϕ of the phase deviation
between currents and voltages in a load.
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A2.5. Spectral analysis of the DC bus current

The method presented in section A2.2.3 allows us not only
to calculate the spectrum of inverter output voltages but also
the spectrum of the inverter input current. Bierhoff et al.
[BIE 08] applied the method proposed by Black [BLA 53] for
different PWM strategies, based on the double Fourier series
decomposition. We will not go into detail concerning this
work here, but useful information on this subject may also be
found in [NGU 11a].

Figure A2.5. RMS value of the normalized harmonic flow for the
SVPWM strategy as a function of m in the linear zone
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scalar, 177
criterion vector-based, 181
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anechoic (chamber), 125
Bergeron diagram, 95
Bessel (functions), 157
Biot–Savart law, 109

C, D
cardinal sine, 10
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charge conservation, 66
Clarke transformation, 132
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E, F
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transformers, 42

field far, 109
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Parseval’s theorem, 152
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Fourier transformation

convolution, 166
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Hermitian symmetry, 164
integration and
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inverse, 168
Lag, 166
linearity, 162
Parseval’s theorem, 173
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sinusoids, 168
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contraction, 163
time reversal, 165

Fresnel diagram, 129

G, H, I
Green–Ostrogradsky

(theorem), 144
Heisenberg–Gabor

inequality, 14, 174
integration by parts, 162
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conducted, 23
radiated, 102
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Kapp (hypothesis), 26
Kennelly, theorem, 48
LISN, 56
Maxwell equations

Ampère, 64
Faraday, 65

flux conservation, 65
Gauss, 64

mode
commun, 36
differential, 35

N, P
Nabla, 146
phaser, 135
power

active, 140
apparent, 140
fluctuating, 140
reactive, 141

propagation
impedance of a vacuum,
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poynting vector, 115
TEM wave, 106
wave equation, 102
wavelength, 105
wavenumber, 107

pulse width modulation
spectra, 157

Q, R
quadripoles

(S) matrix, 85
(Z) , (Y) and (T)

Matrices, 88
transfer relationships

(matrices), 92
reflectometry, 99

S, T
Shannon’s theorem, 173
shielded chamber, 125
signal
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spectral envelope, 11
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Stokes–Ampère (theorem),
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SWR, 82
telegrapher’s equation, 72
three-phase system

balanced, 131
direct, 131

Total Harmonic Distortion
(THD), 153

transformation
concordia, 133
park, 134

V, W, Z

value
average, 136
RMS, 137

vector laplacian, 103
voltage

line-to-line, 143
line-to-neutral, 143

wall model, 155
waveguides, 67
zero sequence component, 132


