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Preface

Volume 2 of this series gives an overview of electronic
power converters (DC/DC, DC/AC, AC/DC and AC/AC) as
used in industrial and transport applications, notably in
variable speed drives. Existing works used in teaching on the
subject have paid little attention to the detailed analysis of
vector pulse width modulation (PWM) for three-phase
inverters, including their impact on the DC power bus. We
will attempt to provide this analysis, alongside a
presentation of matrix converters (AC/AC conversion) and an
introduction to multi-level converters. This volume will also
include a case study of the design of a variable speed drive,
which constitutes a synthesis of the other subjects tackled in
the book (with the exception of direct AC/AC conversion).

This volume also contains two appendices, providing a
general formula for electrical engineering and power
electronics, and a relatively thorough discussion of the
spectrum analysis tools used in power electronics. The
formulas supplied in Appendix 1 use elements of
electromagnetism which are not covered in this volume; this
appendix is, in fact, intended for use with all four volumes of
the book. Volume 4 [PAT 15c] is particularly concerned with
electromagnetic compatibility, providing a presentation of
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radiation disturbances, which requires the use of certain
electromagnetic notions. Generally speaking, all chapter
references in the appendices specify the volume in question.

Nicolas PATIN
Compiègne, France

February 2015
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DC/DC Converters

1.1. DC motors

1.1.1. Electromechanical model

A direct current (DC) machine consists of two distinct
elements:

– an armature containing a coil, located at the rotor;

– a field coil (or magnets fulfilling the same function) at the
stator.

The presence of the field coil means that the armature coil
operates within a magnetic flux of ψf . When a current ia is
supplied to the armature, is enabled electromechanical energy
conversion by creating a motor torque of the form:

tm = k.ψf .ia [1.1]

where k is a constant which is characteristic of the machine.
Furthermore, we note that the flux ψf is:

– either a function of the current iexc circulating in the field
coil, if this exists (more precisely, a linear function for a non-
saturated machine: ψf = Kφ.iexc);

– or a constant ψf = Ψf in the case of an inductor using
permanent magnets.
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Due to energy conversion, it is possible to establish that
the mechanical and electrical instantaneous powers are
identical. Consequently, the machine holds an electromotive
force (e.m.f.) ea such that:

ea.ia = tm.ω [1.2]

where ω is the rotation speed of the machine expressed in
rad/s. Thus, we obtain:

ea = k.ψf .ω [1.3]

As the armature contains a wound coil, we inevitably
encounter a resistance Ra and an inductance La:
consequently, the equivalent electrical model of the DC motor
is a series circuit (Ra, La, ea). For the purposes of our study in
the remainder of this chapter, we will use the hypothesis of
negligible resistance; consequently, the model of the machine
is reduced to a series circuit (La, ea), and the mechanical
inertia Jm of the motor is such that, on the scale of the
switching period Td of the converter (i.e. operating period of
the switch), the speed ω may be considered constant (slow
evolution across a high number of switching periods –
typically, the mechanical time constant of the machine will be
around 100 times larger than Td). Finally, all of our converter
studies will be carried out in a steady state, i.e. all of the
electrical values (currents and voltages) will be periodical.
This hypothesis allows us to postulate that as the voltage VL

at the terminals of inductance L is written as a function of
current IL as follows:

VL (t) = L
dIL
dt

[1.4]

then we must have

〈VL〉Td
=

1

Td

ˆ
(Td)

VL (t) dt = 0. [1.5]
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1.1.2. Applications

Mechanical applications are characterized in terms of
mechanical couple and speed reversibility; operations are
qualified by the number of quadrants used in the
torque/speed reference frame. As we see from equations [1.1]
and [1.3], there is a direct correspondence between the
torque/speed and current/voltage reference frames.

The cases encountered in practice correspond to five
different types of converters (choppers):

– one-quadrant chopper, with a single rotation direction in
a motor function (step-down chopper);

– one-quadrant chopper, with a single rotation direction in
a generating function (step-up chopper);

– two-quadrant chopper, with a single rotation direction for
motor or generator functions (current-reversible two-quadrant
chopper);

– two-quadrant chopper, with two rotation directions but
only one torque – motor or generator direction (voltage-
reversible two-quadrant chopper);

– four-quadrant chopper, with two rotation directions and
two torques – motor or generator directions (four quadrant,
i.e. full bridge chopper).

1.2. Step-down chopper

1.2.1. Structure and general equation model

The structure of a step-down chopper is shown in
Figure 1.4. This is a single quadrant converter, used to
operate a DC motor in rotor mode with a single rotation
direction.
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Vd

VT

Vch

Ich

Figure 1.1. Single quadrant chopper (step-down chopper)

The equation model of the circuit is based on two
independent loops and one node:⎧⎨⎩

E = VT − Vd

−Vd = Vload

Iload = IT + Id

[1.6]

1.2.2. Continuous conduction

In the case of continuous conduction, the operation of the
converter over a switching period Td is split into two distinct
phases, with durations of α.Td (T ON, D OFF) and (1 − α).Td

(T OFF, D ON), respectively.

During the first phase, we control transistor switch-off.
Consequently,

VT = 0 [1.7]

hence:

Vd = −E [1.8]
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As the voltage at the diode terminals is negative, the diode
is switched off:

Id = 0 [1.9]

hence:

IT = Iload [1.10]

This also gives us:

Vload = E [1.11]

In the case of an (La, ea) modeling of the DC motor,
supposing that ea = Ea = cte, we may note:

La
dIload
dt

= E − Ea [1.12]

hence:

Iload(t) = Iload(0) +
E − Ea

La
(t) [1.13]

At the end of this phase, we may write:

Iload(α.Td) = Iload(0) +
E − Ea

La
(α.Td) [1.14]

and the value of Iload(0) is, in accordance with the definition of
continuous conduction, non-null.

During the second phase, we control transistor switch-on.
Hence:

IT = 0 [1.15]
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At the start of this phase, as Iload is non-null and cannot be
subject to discontinuity, the diode is switched on:

Id = Iload [1.16]

We, therefore, write:

Vd = 0 [1.17]

and, in the load:

Vload = 0 [1.18]

and:

VT = E [1.19]

The evolution of the current in the load is, therefore,
written as:

Iload(t) = Iload(α.Td)− Ea

La
(t− α.Td) [1.20]

Given that the circuit is operating in permanent mode, we
note that the voltage at the terminals of the inductance La of
the machine Vload − Ea presents an average value of zero for
the switching period Td; hence:

〈Vload − Ea〉Td
=

1

Td

(ˆ α.Td

0
(E − Ea)dt+

ˆ Td

α.Td

(−Ea) dt

)
=

1

Td
(α.Td.(E − Ea)− (1− α) .Td. (Ea))) = 0 [1.21]

hence:

Ea = α.E [1.22]



DC/DC Converters 7

Once this equation is established, we may rewrite the
evolution of current Iload over the two phases of the switching
period. For the first phase, the current increases:

Iload(t) = Iload(0) +
(1− α).E

La
t [1.23]

For the second phase, the current decreases, as follows:

Iload(t) = Iload(α.Td)− α.E

La
(t− α.Td) [1.24]

Given the periodicity of the current and its piecewise
affine evolution, current Iload(0) is the minimum value Imin of
the current, whilst Iload(α.Td) is its maximum value Imax.
Based on results [1.56] and [1.57], it is possible to establish
an expression of the ripple of the current ΔIload = Imax − Imin

as a function of E, La and Td (where Fd = 1
Td

):

ΔIload =
α.(1− α)Td.E

La
=

α.(1− α).E

La.Fd
[1.25]

The waveforms corresponding to the results established
above are shown in Figure 1.2.

A link between electrical and mechanical quantities can
now be established if the load is perfectly known. We have
seen that the e.m.f. Ea imposed on the DC motor by the
chopper is expressed as α.E. Consequently, the chopper
imposes the speed ω of the machine, in accordance with
equation [1.3]. This speed corresponds to a resistive torque cr
of the load (dry, viscous or aeirodynamic friction, load to raise
using a lift, etc.). As the machine is operating in permanent
mode (with a speed which is presumed to be constant, or at
least varying slowly), we know, based on the fundamental
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principle of dynamics, that the motor torque is equal to the
resistive torque:

cm − cr = JT
dω

dt
= 0 ⇒ cm = cr [1.26]

where Jt is the inertia of the machine and its load. Given the
resistive torque cr = Cr = cte (and thus cm), using equation
[1.1], we may calculate the induced current ia of the machine,
which, in this case, is simply the average value of Iload(t),
which we will denote as I0.

−E

VT

β.Tdα.Td Td

t

t

E

E − Ea

E

Vch

Vd

t

t

t

t

Imax

Imax

IT

Ich

Id

Imax

−Ea

Ea

Figure 1.2. Waveforms for a step-down
chopper with alternating current
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The key values involved in continuous conduction operation
of this chopper are shown in Table 1.1.

Element Value or temporal
expression

Max. transistor voltage VTmax E

Max. reverse diode voltage Vdmax −E

Average load current I0
Cr

k.ψf

Current ripple in the load ΔIload
α.(1− α).E

La.Fd

Average voltage at load terminals 〈Vload〉 (α) .E

Max. current in the transistor and diode I0 +
ΔIload

2

Average current in the transistor 〈IT 〉 α.I0

Average current in the diode 〈Id〉 (1− α) .I0

RMS current in the transistor (for
ΔIload � I0)

√
α.I0

RMS current in the diode (for ΔIload � I0)
√
1− α.I0

Table 1.1. Summary of continuous conduction
in a step-down chopper

1.2.3. Discontinuous conduction

In the case of discontinuous conduction, our study is
complicated by the fact that the end of the second phase
(conducting diode) does not coincide with the end of the
switch period. The average current in the load is too low, so
the current decreases to zero; this leads to spontaneous
turn-off of the diode, while the transistor is not yet at turn-on
point. Within time interval [0, Td], we can, therefore, define an
instant α.Td corresponding to the end of conduction in the
transistor, and an instant β.Td (with β ≤ 1) when the diode
turns off spontaneously (in the case where β = 1, we speak of
critical conduction, which constitutes the limit separating
direct and alternating current (AC)). The values and
expressions of the different elements used in the first two
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phases are identical to those established for DC (noting that
Iload(0) = Imin = 0 in this case). During the third phase, both
the transistor and the diode are turned off. This gives us:

IT = Id = 0 [1.27]

As current Iload is also identically null, its derivative in
relation to time is identically null. We can, therefore, write:

IT = Id = 0 [1.28]

As current Iload is also identically null, its derivative in
relation to time is identically null. We can, therefore, write:

Vload = Ea [1.29]

and thus,⎧⎨⎩Vd = −Ea

VT = E − Ea

[1.30]

The new waveforms for this mode of operation are shown in
Figure 1.2.

One way of analyzing this operating mode would be to
calculate coefficient β; however, it is generally better to use
reasoning based on average input Pe and output power Ps at
the switching period scale. As the converter does not contain
a storage element, the input power is equal to the output
power1. Our aim in this case is to calculate the expression of
the average voltage 〈Vload〉 = Ea applied to the machine;
contrary to the case of DC, this expression will no longer
simply be a function of E and α, but also of the average
current I0 in the machine.

1 Even if a storage element were used, the power balance would be null
based on the hypothesis of a steady state.
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To do this, we note:

Ps = 〈Vload〉 .I0 = Ea.I0 [1.31]

and

Pe = E. 〈IT 〉 = E · 1

Td

ˆ α.Td

0

E − Ea

La
t.dt

= E · α
2. (E − Ea)

2La.Fd
[1.32]

hence:

Ea =
E

1 + 2La.Fd.I0
α2.E

[1.33]

This result clearly shows that the output voltage depends
on α, E and I0. To analyze this characteristic, we may use the
following reduced variables:⎧⎨⎩x = 2La.Fd.I0

E

y = Ea/E
[1.34]

This leads us to rewrite equation [1.33] as follows:

y =
1

1 + x
α2

[1.35]

Comparing the latter with the equivalent characteristic in
continuous mode, which is simply written as:

y = α [1.36]

We may then trace a network of characteristics of y as a
parameterized function of x following α; first, however, we
must identify the respective domains of validity of equations
[1.37] and [1.36]. To do this, we need to determine a critical
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function zone. The critical zone simultaneously verifies the
two characteristics, as it constitutes the border between the
two operating modes. In order to identify this zone, we must
simply eliminate parameter α from equation [1.37], replacing
it with y in accordance with equation [1.36]. This gives us:

y =
1

1 + x
y2

=
y2

y2 + x
[1.37]

or:

y2 − y + x = 0 [1.38]

We can easily verify that this zone passes through
coordinates (0, 0) and (1, 0) in the plane (x, y) and takes the
form of a parabola, with symmetry along the axis with
equation y = 1/2. We can also show that, on this axis, it
passes through point (1/4, 1/2), as shown in Figure 1.3.

1.3. Step-up choppers

1.3.1. Structure and general equation model

The structure of a step-up chopper is shown in Figure 1.4.
Like the step-down chopper, the step-up chopper is a single
quadrant converter, but it operates in the opposite direction:
the continuous current motor acts as a generator with this
type of converter (still with a single direction of rotation).

Once again, the equation model of this circuit is based on
two loops and one junction:⎧⎪⎪⎨⎪⎪⎩

E = VT − Vd

VT = Vload

Iload = IT + Id

[1.39]
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Figure 1.3. Full reduced characteristic of the step-down chopper
(continuous and discontinuous conduction)

Vch

E

T

D

IT

Id

Vd

VT

Id

Ich

Figure 1.4. Single quadrant chopper (step-up chopper)

1.3.2. Continuous conduction study

Using the same approach as for the step-down chopper, the
switching period Td begins with a transistor conduction phase
of duration α.Td:

VT = 0 [1.40]
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hence:

Vd = −E [1.41]

As the voltage at the diode terminals is negative, the diode
is turned off:

Id = 0 [1.42]

hence

IT = Iload [1.43]

and

Vload = 0 [1.44]

In the case of an (La, ea) model of the DC motor (Note,
according to the active sign convention, the machine behaves
as a generator) for which we presume that ea = Ea = cte, we
may note:

La
dIload
dt

= Ea [1.45]

hence:

Iload (t) = Iload (0) +
E

La
t [1.46]

At the end of this phase, we may write:

Iload (α.Td) = Iload (0) +
E

La
α.Td [1.47]

and once again, we take Iload(0) �= 0 due to the definition of
continuous conduction.
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In the second phase, we control the turn-off of the
transistor. Thus,

IT = 0 [1.48]

hence, at the beginning of this phase, as Iload is non-null and
cannot be subject to discontinuity, the diode is turned on:

Id = Iload [1.49]

Thus, we write:

Vd = 0 [1.50]

and at the load terminals

Vload = E [1.51]

and

VT = E [1.52]

Thus, the evolution of the current in the load is written as:

Iload (t) = Iload (α.Td) +
Ea − E

La
(t− α.Td) [1.53]

Given that the current operates in a steady state, we may
note that the voltage across the inductance La of the machine
Ea−Vload presents an average value of zero over the switching
period Td and thus:

〈Vload − Ea〉Td
=

1

Td

(ˆ α.Td

0
Eadt+

ˆ Td

α.Td

(Ea − E) dt

)
=

1

Td
(α.Td.Ea − (1− α) .Td. (Ea − E)) = 0 [1.54]
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hence

E =
Ea

1− α
[1.55]

If we consider that the machine is placed at the input point
of the converter, and the voltage source E at the output point,
note that this corresponds to the direction of power transfer,
and in this case, the chopper acts as a boost converter. If we
consider the relationship in the same direction as for the step-
down chopper, we obtain:

Ea = (1− α) .E [1.56]

While relationship [1.55] is logical from a physical point of
view in terms of system orientation, it is not relevant in the
context of the chopper in question, as voltage E is imposed
by a source (unless it is designed to absorb energy with no
effect on its value). This relationship will be more useful when
considering boost switch-mode power supplies, based on this
chopper structure, which will be presented in Volume 3 [PAT
15b].

Once this relationship has been established, we can
rewrite the evolution of the current Iload during the two
phases of the switching period. For the first phase, the
expression is unchanged, and corresponds to an increase in
the current:

Iload (t) = Iload (0) +
(1− α) .E

La
t [1.57]

For the second phase, the current decreases as follows:

Iload (t) = Iload (α.Td)− α.E

(1− α) .La
(t− α.Td) [1.58]

The waveforms corresponding to these results are shown in
Figure 1.5.
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VT

Vch
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t

t
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t

Tdα.Td

Ea − E

Ea

Ich

IT

Figure 1.5. Waveforms for a step-up chopper
in continuous conduction

The key elements in the operation of this chopper in
continuous conduction are shown in Table 1.2.

1.3.3. Discontinuous conduction

We can carry out the same reasoning for discontinuous
conduction as for the step-down chopper, using an equality
between power Pe on the machine side and Ps on the side of
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source E. Current Iload always increases during the transistor
conduction phase, but this time with an initial value of zero:

Iload (t) =
Ea

La
t [1.59]

to reach a maximum value of Imax = αEaTd
La

in the final instant
of this phase (t = α.Td).

Element Value or temporal
expression

Max. transistor voltage VTmax E

Max. reverse diode voltage Vdmax −E

Average load current I0
Cbrake − Cr

k.ψf

Current frequency in the load ΔIload
α.Ea

La.Fd
=

α.(1− α).E

La.Fd

Average voltage at load terminals
〈Vload〉 = Ea

(1− α) .E

Max. current in the transistor and diode I0 +
ΔIload

2

Average current in the transistor 〈IT 〉 α.I0

Average current in the diode 〈Id〉 (1− α) .I0

RMS current in the transistor (for
ΔIload � I0)

√
α.I0

RMS current in the diode (for ΔIload � I0)
√
1− α.I0

Table 1.2. Summary of continuous conduction in a step-up chopper

The current decreases during the diode conduction phase,
and we wish to determine the instant β.Td when Iload cancels
out. To do this, we use δ.Td = (β − α) .Td and thus:

Imax +
Ea − E

La
δ.Td = 0 [1.60]

hence:

δ =
α.Ea

E − Ea
[1.61]
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For reference, during the third phase of the switching
period (diode and transistor turned off), we have:⎧⎪⎪⎨⎪⎪⎩

VT = Ea

Vd = Ea − E

Vload = Ea

[1.62]

The waveforms associated with this operating mode are
presented in Figure 1.6.

As in the case of continuous conduction, E is fixed for the
target application (i.e. a chopper supplying a DC motor).
Consequently, the expression of the ratio y = Ea/E is
preferable to E/Ea, as in the case of boost power supplies,
which will be presented later. Thus, we may rewrite δ as
follows:

δ =
α.y

1− y
[1.63]

If we wish to determine the operating point of the chopper,
this must be characterized in relation to the average current
in the machine, i.e.:

〈Iload〉 = I0 =
(α+ δ) .Imax

2
=

α

1− y
· Imax

2

=
α2Ea

2.LaFd (1− y)
[1.64]

Using the same reduced current x = 2LaFdI0
E as for the step-

down chopper, we obtain:

x =
α2y

1− y
[1.65]
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and seeking the expression of y(x), we obtain:

y =
x

α2 + x
[1.66]

Equation [1.56] may be rewritten with reduced variable y
as follows:

y = 1− α [1.67]

−E

t

t

t

t

t

t

E

Ea

Imax

Imax

Imax

E

Ea

α.Td β.Td Td

δ.Td

Id

IT

Ich

Vd

VT

Vch = VT

Ea − E

Figure 1.6. Waveforms for a step-up chopper
in discontinuous conduction
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Following the same approach used for the step-down
chopper, we identify the critical zone separating the
continuous and discontinuous operating modes, replacing α
with its expression 1− y in accordance with [1.66] in [1.67]:

y =
x

(1− y)2 + x
[1.68]

This gives us the following equation for the critical zone:

x = y. (1− y) [1.69]

This is identical to the critical zone equation for the step-
down chopper. In fact, the network of reduced characteristics
for the step-up chopper is exactly symmetrical to that of the
step-down chopper in the plane with equation y = 1/2, as we
see in Figure 1.7.

Figure 1.7. Full reduced characteristic of a step-up chopper
(continuous and discontinuous conduction)
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1.4. Two-quadrant current-reversible chopper

1.4.1. Structure and general equation model

The converter structure shown in Figure 1.8 is a
current-reversible two-quadrant chopper, which is effectively
a combination of the step-down and step-up choppers seen
above. In this section, therefore, we will not present
continuous and discontinuous operating modes, as these
correspond to our calculations in sections 1.2 and 1.3.
Instead, we will focus on the way in which a converter control
allows transparent passage from the step-down to the step-up
chopper during a normal operating phase of a continuous
current machine (e.g. braking).

VK2

E

Vch

Ich

K2

K1

IK2

IK1

VK1

Figure 1.8. Two-quadrant chopper (current reversible)

As a starting point, when creating an equation model, we
may leave aside the precise details of currents in switches K1

and K2 (currents in transistors and diodes) to concentrate on
currents IK1 and IK2, noting that the three-segment switches
used allow us to reverse the direction of current. As before (for
step-down and step-up choppers), we may write:⎧⎪⎪⎨⎪⎪⎩

E = VK1 + VK2

VK2 = Vload

Iload = IK1 − IK2

[1.70]
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1.4.2. Step-up and step-down operation

Using classic chopper control methods, we send
complementary orders to the gates of both transistors.
One key rule which must be respected is that both transistors
should never be closed simultaneously. As an additional
precaution, the transistor switching times are not always
identical, and are precisely controlled: a deadtime TM is
established between the order to open one transistor and
the order to close the other. This guarantees the absence of
simultaneous conduction. The circulation of current Iload in
the load is maintained by one of the two diodes in the circuit:

– the upper diode (in K1) is on if Iload < 0 (step-up chopper
operation);

– the lower diode (in K2) is on if Iload > 0 (step-down
chopper operation).

The permanent control of both transistors might be
considered superfluous, as, when current Iload is positive, only
the transistor in K2 may be used, and when Iload is negative,
only K1 may be used. However, the control of both components
is generally preferred, for two reasons:

– the passage through the point of zero current is managed
transparently: as the transistors are under permanent
control, the transistor which is not operating before the
passage through zero is switched on without needing to
establish a control principle detecting current reversal2. This
also avoids control delays;

– a metal oxide semiconductor field effect transistor
(MOSFET) is bidirectional in terms of current, and is
generally a better conductor than the parallel diode. This
provides considerable gains in terms of efficiency, particularly

2 This is generally known as switching logic, and is also used in controlling
thyristor rectifiers.
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at very low voltages (in which case, we may speak of a
synchronous rectifier). The anti-parallel diode, therefore, only
acts as a transitional free wheel during deadtime periods.

Using the hypothesis of transistors which are genuinely
unidirectional in terms of current (such as insulated gate
bipolar transistors (IGBTs)), Figure 1.9 presents the
waveforms of current through the load and the conduction
intervals of different components.

Figure 1.9. Waveforms and switch conduction sequence for the
two-quadrant (current reversible) chopper

NOTE 1.1.– The structure (K1,K2) made up of the two
transistors and two diodes is known as a half-bridge. This
structure is widely used in a range of components (choppers,
inverters, controlled rectifiers, etc.), and is commercially
available in the form of integrated power modules. This
assembly may be considered as the basic structure in power
electronics.
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1.5. Two-quadrant voltage-reversible chopper

1.5.1. Structure and general equation model

The converter shown in Figure 1.10 is a two-quadrant
voltage-reversible chopper, with a single authorized direction
of current on the load (machine) side. The equation model of
this converter is partially based on the expression of voltage
Vload as a function of voltages Vd1 and VT2:

Vload = −Vd1 − VT2 [1.71]

and we note that:⎧⎨⎩E = VT1 − Vd1

E = −Vd2 + VT2

[1.72]

Id2

E

−Vd1 VT2

T1

VT1

IT1

D1

Vch

Id1

D2

−Vd2

T2

IT2

Ich

Figure 1.10. Two-quadrant chopper (voltage reversible)

The model is also based on equations related to currents:⎧⎪⎪⎨⎪⎪⎩
Iload = IT1 + ID1

Iload = IT2 + ID2

Ie = IT1 − ID2

[1.73]

where Ie is the output current of the voltage source E.
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1.5.2. Operating principle

As we have two controlled switches (both with two possible
states ON and OFF), we have four possible configurations for
the full converter. We will limit our study to the continuous
conduction mode (i.e. Iload �= 0):

a) T1 ON and T2 ON: in this configuration, we may assume
that VT1 = VT2 = 0. We, therefore, obtain:⎧⎨⎩Vd1 = −E

Vd2 = −E
[1.74]

and thus the diodes D1 and D2 are in the OFF state.

We then note that:

Vload = E [1.75]

Regarding currents, we have:

IT1 = IT2 = Ie = Iload [1.76]

and

Id1 = Id2 = 0 [1.77]

In this configuration, we see that the machine operates as a
motor in one sense of rotation, denoted (1), for a positive power
supply voltage.

b) T1 ON and T2 OFF: in this configuration, we have VT1 = 0
(T1 ON) and IT2 = 0 (T2 OFF), hence,⎧⎨⎩Vd1 = −E

Id2 = Iload
[1.78]
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Diode D2 is, therefore, in the ON state (Vd2 = 0) for this
control input configuration. Hence,

Vload = 0 [1.79]

The balance of currents in the circuit is as follows:⎧⎨⎩ IT1 = Id2 = Iload

IT2 = Id1 = Ie = 0
[1.80]

This configuration corresponds to a “free wheel” in which
the voltage at the terminals of the machine is equal to zero.

c) T1 OFF and T2 ON: in this configuration, we have VT2 = 0
(T2 ON) and IT1 = 0 (T1 OFF), hence,⎧⎨⎩Vd2 = −E

Id1 = Iload
[1.81]

Diode D2 is in the ON state (Vd2 = 0) for this control input
configuration. Hence,

Vload = 0 [1.82]

The balance of currents in the circuit is as follows:⎧⎨⎩ IT2 = Id1 = Iload

IT1 = Id2 = Ie = 0
[1.83]

This configuration is also of the “free wheel” type. From a
functional perspective, it adds nothing compared to the
previous configuration.
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d) T1 OFF and T2 OFF: in this configuration, we have IT1 =
IT2 = 0 (T1 and T2 OFF), hence:⎧⎨⎩ Id1 = Iload

Id2 = Iload
[1.84]

Diodes D1 and D2 are therefore in the ON state (Vd1 = Vd2 =
0) for this control input configuration. Hence:

Vload = −E [1.85]

The balance of currents in the circuit is as follows:⎧⎪⎪⎨⎪⎪⎩
Id1 = Id2 = Iload

IT1 = IT2 = 0

Ie = −Iload

[1.86]

In this configuration, the machine turns in direction (2), but
the current Iload continues to circulate in the same direction.
The machine, therefore, operates as a generator.

SUMMARY.– This converter allows us to operate a DC motor
with a unidirectional torque and two directions of rotation. A
typical application of this type of converter is in a crane, where
the mechanical load directs operations: the DC motor operates
as a motor during lifting, and as a brake during descent. From
a control perspective, control inputs (a–b) or (a–c) are applied
during lifting (at the scale of a switching period Td); in descent
phases, the controls are of type (d–b) or (d–c).

As we have seen, control configurations b and c are
identical from a user perspective, and we may choose to use
only one of these configurations. However, from a purely
physical perspective, this would lead to overuse of one switch
to the detriment of another, meaning that component losses
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would become unbalanced. If the more complex
implementation involved in alternating both free wheel
configurations b and c is acceptable, it is therefore preferable
to use this type of control scheme.

1.6. Four-quadrant chopper

1.6.1. Structure and general equation model

The converter structure shown in Figure 1.11 is a
four-quadrant chopper. This means that the converter allows
a DC motor to operate as a motor and as a generator in both
directions of rotation. This converter may be seen as an
assembly of two two-quadrant choppers: one current-
reversible and the other voltage-reversible.

Ich

IK4

IK2

K4K3

K2K1

E

IK3

IK1

Ie

VK4VK3

VK1 VK2

Vch

Figure 1.11. Four-quadrant chopper

This structure is relatively easy to study, due to the fact
that by knowing the switch control input, we are able to know
the voltage applied to the load.

If every half-bridge is controlled as defined in section 1.4
for the current-reversible two-quadrant chopper, then the
control inputs for K1 and K3 on the one hand and K2 and K4

on the other hand are complementary (with the introduction



30 Power Electronics Applied to Industrial Systems and Transports 2

of a deadtime to avoid short-circuiting the source E). Thus,
for each half-bridge, we may define a connection function c as
follows:

c =

⎧⎨⎩0 if high side transistor is OFF, low side transistor is ON

1 if high side transistor is ON, low side transistor is OFF

[1.87]

Let ca be the switching function associated with the half-
bridge (K1,K3) and cb the switching function of (K2,K4).

Voltage VK3 may be expressed as a function of E and ca
alone:

VK3 = E.ca [1.88]

as, for example, whatever the sign of Iload, if ca = 0, the current
will circulate in either the transistor (Iload < 0) or the diode
(Iload > 0) of switch K3.

In the same way, we note that:

VK4 = E.cb [1.89]

and thus,

Vload = E. (ca − cb) [1.90]

The equation model of the currents in this circuit gives us:⎧⎪⎪⎨⎪⎪⎩
IK1 = IK3 + Iload

IK4 = Iload + IK2

Ie = IK1 + IK2

[1.91]



DC/DC Converters 31

We may also express the currents in the switches as a
function of Iload and the switching functions ca and cb:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

IK1 = Iload.ca

IK3 = −Iload.(1− ca)

IK4 = Iload. (1− cb)

IK2 = −Iload.cb

[1.92]

The current Ie supplied by source E is, therefore, expressed
as:

Ie = IK1 + IK2 = Iload. (ca − cb) [1.93]

1.6.2. Control strategy

The results shown in the previous section only apply when
using complementary control for transistors in the same
half-bridge. On this basis, switching functions ca and cb may
be chosen independently. However, the chopper can only
control one quantity, the voltage Vload applied to the
machine3. If the number of control input values exceeds the
number of values to control, a variety of choices are possible.
In this case, we speak of control strategies, where each
strategy presents a number of advantages and drawbacks
which must be taken into consideration when making a
selection for a target application.

In this chapter, we will only consider the simplest strategy,
which consists of controlling the two half-bridges in a
complementary manner. Thus, when ca = 0, we have cb = 1
and vice versa. This strategy is known as bipolar modulation.
Another widespread strategy is unipolar modulation; we will

3 The current Iload absorbed by the machine is simply a consequence of this
voltage supply (in terms of causality).



32 Power Electronics Applied to Industrial Systems and Transports 2

consider this strategy in the next chapter in the context of
inverters (DC/AC converters), more precisely for the control
of a single phase inverter, the power structure of which is
identical to that of the four-quadrant chopper.

The complementary control can be summarized as:

cb = 1− ca [1.94]

This gives us the following result:

Vload = E. (2ca − 1) [1.95]

The voltage applied to the load can, therefore, only take
the two values ±E, hence the term “bipolar modulation”.
Concerning the input current into the converter, we have:

Ie = Iload. (2ca − 1) [1.96]

The current absorbed from source E is, therefore, equal to
±Iload.

Returning to the notion of duty cycle α (for a switching
period [0, Td]), we have ca = 1 for the interval [0, α.Td] and
ca = 0 for the interval [α.Td, Td]. We can then evaluate the
average voltage at the load terminals 〈Vload〉 and the average
current taken from the source 〈Ie〉:

〈Vload〉 = (2α− 1) .E [1.97]

and

〈Ie〉 = (2α− 1) .Iload [1.98]

One interesting aspect of this assembly is that operation
with discontinuous current is no longer possible. This mode of
operation is unsatisfactory, as:
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– there is a loss of control (however, short) when the
machine is disconnected from the converter (all switches
open);

– switches are underused over time. This is due to poor
dimensioning (and is genuinely a valid criterion for switch-
mode power supplies);

– the behavior of the converter is more complex (the voltage
supplied to the machine is not mastered).

However, the magnitude of the waves in voltage Vload on
the machine side is high (2.E), resulting in higher wave
magnitude of the current injected into the machine
(previously assumed to be constant in calculating 〈Ie〉). If the
evolution of current Iload over time interval [0, α.Td] is written
using the hypothesis of an (La, Ea) model of the machine, we
obtain:

Iload (t) =
E − Ea

La
t+ Iload (t) [1.99]

In the case of a steady state, we know that Iload(0) is the
minimum current Imin, while Iload(α.Td) is the maximum
current Imax. Consequently, the wave magnitude of current
ΔIload is written as:

ΔIload = Imax − Imin =
E − Ea

La
α.Td [1.100]

where Ea is equal to the average voltage 〈Vload〉 provided by
the converter, the expression of which was established in
equation [1.97]. Thus:

ΔIload =
2α (1− α)E

La.Fd
[1.101]
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We can show that the wave magnitude is highest for α =
1/2 (i.e. for 〈Vload〉 = 0):

ΔIchmax =
E

2La.Fd
[1.102]



2

DC/AC Converters

2.1. Single phase inverter and choppers

An inverter is a converter which facilitates the use of a
continuous voltage source to power a load (current source)
with an alternating voltage and an alternating current. The
converter is therefore current- and voltage-reversible in
relation to the load. This is the case of the four-quadrant
chopper seen in the previous chapter. In the context of this
chapter, this will be referred to as a full bridge inverter –
single phase). The structure of the converter is shown in
Figure 2.1.
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K4K3

K2K1
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IK3

IK1

Ie

VK4VK3

VK1 VK2

Vch

Figure 2.1. Four-quadrant chopper = single phase
full bridge inverter
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As we have seen, the chopper allows us to supply a
positive or negative voltage Vload and current Iload to the load.
This structure is therefore suitable for the production of an
alternating voltage wave at the load terminals.

2.2. Control strategies and spectra

2.2.1. Full wave modulation

The notion of full wave modulation corresponds to the
most basic converter control scheme. It consists of applying
complementary control inputs ca and cb with a fixed duty
cycle (equal to 50%) and frequency Fm. In this case, the
voltage Vload at the load terminals is a square wave of
frequency Fm, peak-to-peak amplitude 2E and an average
value of zero, as seen in Figure 2.2. The Fourier series
decomposition of a signal of this type (see Appendix 2) gives
the following result:

Vload (t) =
∞∑
p=0

V2p+1. sin (2π (2p+ 1)Fmt) [2.1]

with:

V2p+1 =
4E

(2p+ 1)π
[2.2]

Thus, we have a rich harmonic spectrum, so the total
harmonic distortion (THD) is very high (0.435 or 0.483
depending on the definition: IEC and IEEE/DIN respectively,
see Appendix 2, section A2.1.4). With these results, full wave
modulation cannot be used in single phase mode, except in
specific cases, i.e. in power supplies for resonant loads1 (i.e.
RLC circuits), as used in induction hobs, for example. In this

1 Due to their high filtering capacity – on the condition that the quality
factor Q is high.
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case, the current supplied to the load is quasi-sinusoidal,
despite the fact that the voltage wave does not take this form,
and the full wave modulation not only imposes a maximum
amplitude for the fundamental component (peak-to-peak
amplitude of 8E/π), but also gives the lowest possible
switching losses (two commutations per switch per period).

Figure 2.2. Waveform and spectrum of the single
phase full wave modulation

THD is a synthetic performance indicator which hides the
spectral description of the signal. In practice, in
electrotechnics, powered loads are inductive and therefore
present an impedance Z which increases as the frequency
increases. If the load becomes mostly inductive, we may
consider that the modulus of Z increases in a linear manner
in relation to the frequency. In this case, if we wish to use the
voltage power supply to deduce the quality of the current
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supplied to the load, we use the notion of weighted THD. This
may be considered as the THD of the current obtained for a
purely inductive load (with fundamental resistance of 1Ω)
powered using a given voltage. To do this, we use the fact that
the current harmonics are linked to the voltage harmonics by
the following relationship:

Ik =
Vk

k
[2.3]

This gives us a current THD equal to:

TDH(I) = TDHPond/k (V ) =

√∑
I2k

I1
=

√∑(
Vk
k

)2
V1

[2.4]

REMARK 2.1.– This definition conforms to the IEEE/DIN
standard. Adaptation to correspond to the IEC standard (see
Appendix 2, section A2.1.4) with a total effective value in the
denominator is problematic, as impedance can only be
normalized for the fundamental. Additionally, note that this
weighting is calculated for inductive loads. Other weightings
(e.g. for a capacitative load) may be envisaged, but are not
widely used in power electronics and electrical engineering.

2.2.2. Intersective strategies

So far, we have considered a bipolar strategy, for which we
have shown that the average voltage 〈Vload〉 at the scale of the
switching period Td may be written as follows:

〈Vload〉 = (2α− 1) .E [2.5]

where α is the duty cycle of the control signal.

The operation of this converter as an inverter simply
consists of modifying the duty cycle in a sinusoidal manner
(with a low modulation frequency Fm in comparison with the
switching frequency Fd = 1/Td). Let us take:
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α (t) =
1

2
(1 +Km. cos (2πFmt+ ϕm)) [2.6]

where ϕm is any given phase and Km is a positive coefficient,
known as the modulation, for which we can identify two cases:

– Km ≤ 1: Linear modulation of the amplitude of the “low
frequency” voltage supplied to the load,

– Km > 1: Overmodulation, where the “low frequency”
voltage is no longer purely sinusoidal.

The notion of “low frequency” voltage requires spectrum
analysis of the real-voltage Vload at the load terminals. In the
case of linear modulation, we can show that, if the
modulation is synchronous (Fd = m.Fm where m is an
integer), then the spectrum of this voltage includes a
fundamental pulse at frequency Fm, and harmonic pulses
around the “carrier” frequency Fd (pulses with frequencies Fd,
Fd − Fm, Fd + Fm, Fd − 2Fm, Fd + 2Fm, etc.) and multiples of
the carrier frequency (2Fd, 3Fd, etc.) – see Figure 2.3(a). The
analytical formulation of the Fourier series decomposition of
Vload takes the following form:

Vload (t) = KmE. cos (2πFmt+ ϕm)

+

∞∑
p=1

∞∑
q=−∞

Vpq. cos (2π (p.Fd + q.Fm) t+ ϕpq) [2.7]

In the case of overmodulation, this spectrum is modified,
notably with the appearance of pulses at multiples of the
modulating frequency at low frequencies (2Fm, 3Fm, etc.) –
see Figure 2.3(b):

Vload (t) =
∞∑
k=1

Fk (Km) .E. cos (2πkFmt+ ϕmk)

+
∞∑
p=1

∞∑
q=−∞

Vpq. cos (2π (p.Fd + q.Fm) t+ ϕpq) [2.8]
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Although pulses may potentially occur at the frequencies
shown in Figure 2.3, the modulation strategy has an impact
on the amplitude of the pulses. Figure 2.4 shows the spectrum
generated by a bipolar modulation strategy and by a unipolar
strategy for a fundamental of the same amplitude at frequency
Fm: these graphs were obtained using Fast Fourier Transform
(FFT) in a calculation program (Matlab/Simulink) for a power
voltage E = 100 V, a switching frequency Fd = 2 kHz and a
modulation frequency Fm = 100 Hz. As the modulation index
Km is fixed at 0.8, the amplitude of the fundamental at 100 Hz
is 80 V.

The principle of unipolar modulation involves only
modulating the control of one half-bridge at a time. Thus,
when we wish to produce a positive voltage, the half-bridge
(K2,K4) is switched to position cb = 0 (modulating ca); for a
negative output voltage, half-bridge (K1,K3) is switched to
state ca = 0 (modulating cb).

In concrete terms, to create a strategy of this type,
intersective PWM is used (see Appendix 1), for which we use
two triangular, unipolar and opposite sub-carriers (varying
between 0 and +Pmax for switching function ca and between
−Pmax and 0 for switching function cb). An illustration of this
control scheme is shown in Figure 2.5.

REMARK 2.2.– Another solution may be used: for positive
switching, we put (K1,K3) into state ca = 1 (modulating cb),
and for negative switching, we put (K2,K4) into state cb = 1
(modulating ca). In reality, a combination of the two solutions
is preferable in order to balance the use of switches and thus
balance losses (both through conduction and switching).

The waveforms obtained take values of +E, 0 and −E,
unlike bipolar PWM, where only values +E and −E are
accessible. There are no direct “edges” between +E and −E,
reducing the amplitude of high frequency (HF) harmonics.
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This can be seen in Figure 2.4 in the pulses around the
carrier frequency (2 kHz); in bipolar PWM, the level of the
most significant pulse (at 2 kHz) is close to that of the
fundamental component at 100 Hz (80 V), whereas in
unipolar PWM, the largest pulses are located at
Fp − Fm =1,900 Hz and Fp + Fm =2,100 Hz with a lower
amplitude.

Figure 2.4. Spectra obtained using simulation for bipolar
a) and unipolar b) modulation
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Figure 2.5. Structure of a “unipolar” PWM controller

These spectral aspects may appear to be irrelevant due to
the fact that currents will be filtered by the load, which is
inductive in nature. In cases with a high difference between
the chopping frequency Fd and the modulating frequency Fm,
it is not possible for voltage harmonics to induce high current
harmonics. However, these electromagnetic disturbance
aspects should be taken into account, as even weak
disturbances in terms of amplitude can cause failures in
neighboring equipment, or even self-disturbance within the
converter (particularly in the control structure). Finally, note
that single-phase inverters are not designed to power
machines (which are generally three-phase in the case of
alternating current machines2), but rather for use in
uninterruptible power supplies (UPS). In this context, they
are generally used with LC filters in order to generate
sinusoidal instantaneous voltages. Consequently, the spectral
content of the voltage wave has a direct impact on the quality
of the output voltage of the UPS (better quality for unipolar
PWM) for a given filter, or will have an impact on the
dimensioning of the filter for a given output voltage quality
(requiring a larger, and thus more costly, filter in the case of
bipolar PWM).

2 Single-phase AC machines do exist (for example asynchronous auxiliary
winding/capacitor machines or shaded-pole motors), but these are directly
integrated into the network and are rarely associated with a converter.
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2.2.3. Precalculated PWM

2.2.3.1. General points

So far, we have considered full wave modulation and
intersective PWM. Full wave modulation presents the
advantage of reducing switching losses (in addition to a high
fundamental amplitude) to the detriment of the THD
(weighted) of the waveform. Intersective PWMs, on the other
hand, produce waves of high quality in terms of THD, but
with much higher switching losses (increased by an order of
around Fd/Fm). Moreover, the amplitude of the fundamental
is reduced in linear modulation mode to 21.5% of that
obtained using full wave mode. Nevertheless, overmodulation
remains possible, and allows us to tend toward full wave
modulation for Km � 1 (with a weighted TDH during periods
of increase). However, the problem of switching losses
remains, and at very high powers (for example for rail
traction), these values may be incompatible with the use of
intersective PWM. As we have seen, intersective PWM
requires a high Fd/Fm ratio in order to avoid the emergence
of parasitic sub-harmonic pulses, similar to aliasing, which
are problematic in sampled systems (see Appendix 2).

Based on this observation, a solution situated somewhere
between full wave modulation and intersective PWM would
be ideal. The use of microprocessors and digital control allows
us to envisage control strategies which would not have been
possible using analog electronics alone. A compromise has
been identified in the form of precalculated PWM, where we
aim to obtain the best possible weighted THD with a limited
number of commutations per switch and per fundamental
period. For example, instead of the two effective
commutations in full wave modulation, we might choose to
produce a voltage wage with four, six or eight commutations
per fundamental period. The gain in terms of the number of
degrees of freedom should then be exploited in order to cancel
out certain harmonics in the waveform (those with the lowest
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frequencies), or to attenuate all of the harmonics present in a
given frequency range. However, this solution comes at a
price: the equations to solve are complex (as they are
nonlinear), and are thus impossible to solve in real-time
using the converter control element. Switching instants must
therefore be calculated offline and memorized (hence the
term “precalculated”) then reproduced by the controller
during use. Therefore, this method does not offer the same
flexibility as intersective (or natural) PWM, and sequence
sets need to be tabulated in a memory element integrated
into the controller [LAN 09].

We will not provide an exhaustive examination of this
subject here; instead, we will focus on harmonic cancellation
for a bipolar waveform such as that shown in Figure 2.6. The
figure shows a signal with 10 commutations per period,
parameterized using two switching angles, α1 and α2.

Figure 2.6. Composition of a waveform for precalculated PWM

2.2.3.2. Fourier series decomposition
The Fourier series decomposition of the 2π-periodic signal

x(θ) defined in Figure 2.6 may be established using the
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definitions given in Appendix 2. However, in this section, we
wish to begin by highlighting the symmetrical aspects of the
signal in order to simplify our study:

– the signal has an average value of zero, hence a0 = 0;

– we note that the signal is odd when described over a full
period [0; 2π], implying that ∀k ∈ N, ak = 0;

– finally, note that a “sliding symmetry” exists
(antisymmetric to θ = π, i.e. in the middle of the period),
which implies that ∀k ∈ N, b2k = 0.

Consequently, only the odd harmonics b2k+1 are non-null.
We can therefore focus on these coefficients, expressed as:

b2k+1 =
8

2π

ˆ π/2

0
x(θ).sin ((2k + 1) θ) .dθ [2.9]

This integral may be split into three terms, following the
evolution of x(t) in this interval:

b2k+1 =
8E

2π

(ˆ α1

0
sin ((2k + 1) θ) .dθ −

ˆ α2

α1

sin ((2k + 1) θ) .dθ

+

ˆ π/2

α2

sin ((2k + 1) θ) .dθ

)
[2.10]

Integration is then easy to carry out, and we obtain:

b2k+1 =
4E

π

(
1− 2 cos ((2k + 1)α1) + 2 cos ((2k + 1)α2)

2k + 1

)
[2.11]

With the two parameters α1 and α2, we then hope to cancel
out two components (for example b3 and b5) using the following
system:⎧⎨⎩ b3 =

4E
π

(
1−2 cos(3α1)+2 cos(3α2)

3

)
= 0

b5 =
4E
π

(
1−2 cos(5α1)+2 cos(5α2)

5

)
= 0

[2.12]
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While these equations are simple to formulate, their
solution is complex and cannot be envisaged in real-time.
Moreover, we should remember that we wish to control the
amplitude of the fundamental; in this case, we cannot simply
use the two degrees of freedom to cancel out harmonics. We
also need to consider the control of b1, fixed at a reference
value bref1 :

b1 =
4E

π
(1− 2 cos (α1) + 2 cos (α2)) = bref1 [2.13]

In fact, if we take α1 = 23.6◦ and α2 = 33.3◦, we cancel out
b3 and b5, but this imposes b1 = 1, 068 × E. The spectrum of
the signal obtained for these values of α1 and α2 is shown in
Figure 2.7 for reference purposes.

Figure 2.7. Spectrum of the PWM signal from
Figure 2.6 for α1 = 23.6◦ and α2 = 33.3◦
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2.3. “Value” half-bridge inverters

The economic aspects of converter design may lead us to
consider a simplified structure of the single-phase inverter. If
we consider a two-quadrant current-reversible chopper, used
in PWM inverter mode, we note that the modulation of the
duty cycle α(t) allows us to produce an average voltage 〈Vs〉3

between the midpoint (point separating the two switches) and
the negative terminal of the source E (known as the “mass”),
of the form:

〈Vs〉 = E

2
(1 +Km. cos (2πFmt+ ϕm)) [2.14]

for:

α = 1/2. (1 +Km. cos (2πFmt+ ϕm)) [2.15]

Here, the linear modulation range is still Km ≤ 1. This
“low frequency” voltage is purely sinusoidal for a sinusoidal
modulation within this range, but if Km exceeds 1, then “low
frequency” harmonics will appear at frequencies 2Fm, 3Fm,
etc.

To obtain the desired result, we still need to eliminate the
continuous component E/2. To do this, we must simply “plug
in” the powered load between the midpoint of the half-bridge
and the midpoint of a series assembly of two identical voltage
sources with a value of E/2, as shown in the diagram in
Figure 2.8(a).

In practice, we do not always have access to a midpoint
power supply such as that shown above, but simply to a
source E. In this case, it is possible to artificially create two

3 Once again, this is a sliding average within the switching period, evolving
slowly at the frequency Fm of the sinusoidal modulation signal acting on
the duty ratio.
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half-sources with a value E/2 by including a capacitance
bridge, created using two identical capacitors, for which we
must determine a capacity C0 (Figure 2.8(b)). A capacitance
bridge of this type powered by source E may be modeled as
an equivalent Thévenin source (Eth, Zth), for which we obtain:

Eth =
E

2
[2.16]

and:

Zth =
1

j2C0ω
[2.17]

Figure 2.8. Half-bridge single phase inverter

This gives us a voltage source with a value of E/2 (as
required), but which presents an impedance equivalent to
that of a capacitor with capacity 2C0. In practice, we must
ensure that the impedance of this equivalent capacitor is low
in relation to that of the powered load, in order for the
inverter to operate in the required manner. This may impose
significant limitations if we wish to power a load with a very
low frequency, as, unless it is significantly over-dimensioned,
the capacitor will present a very high impedance value. In
this situation, a full bridge inverter, as described in the
previous section, would be preferable, despite doubling the
number of transistors and diodes required.
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Figure 2.9. Three-phase voltage inverter

2.4. Three-phase inverter

2.4.1. Structure and modeling

The structure of the three-phase inverter is a simple
extension of the full-bridge chopper using three half-bridges,
as shown in Figure 2.9. It would be possible to create a
converter using three full-bridge single-phase inverters
(giving us 12 switches, each made up of a transistor and a
diode), but this “luxury” solution is superfluous in the case of
a load with only three connections (known as “phases”). This
is the most widespread configuration, as, although most
machines have a connection block with six accessible
terminals (two per phase); these terminals are connected in
situ following a star or triangle layout (see Figure 2.10),
leaving three connections accessible to the user.
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Figure 2.10. Triangle and star connections in electrical machines

This choice was made because it is pointless to input a
current system with a sum other than zero (this sum is
known as a “zero sequence current”) into a symmetric and
balanced machine, as this zero sequence component presents
no advantages in terms of electromechanical conversion; in
other terms, the current generates no mechanical connections
within the machine. As long as we do not wish to inject a
current of this type into the windings of a machine, then
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there is no need for three separate converters; the
three-phase inverter with three half-bridges may be seen as
the most simplified version of this structure.

In the context of this study, we can therefore assume that
the sum of the currents injected into the phases of the machine
is null:

ia + ib + ic = 0 [2.18]

We also consider that this is balanced in electrical
modeling terms (each phase has the same impedance – Rs, Ls

– and e.m.f. values ea, eb and ec also constitute a balanced
three-phase system: ea + eb + ec = 0). We can therefore write:

vaN + vbN + vcN = 0 [2.19]

Using this basis, we will now attempt to express the
voltages vxN applied to the phases of the machine
(x ∈ {a, b, c}) as a function of the power voltage U0 of the
inverter and the switching functions cx associated with each
half-bridge.

To simplify the written expression of these equations, we
will use a matrix formulation, using the following vectors
(noted in bold):

– v3N = (vaN , vbN , vcN )t ;

– v3M = (vaM , vbM , vcM )t ;

– c3 = (ca, cb, cc)
t ;

– i3 = (ia, ib, ic)
t.

As in the case of the current reversible two quadrant
chopper, we may write that:

∀x ∈ {a, b, c} , vxM = U0.cx [2.20]
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In matrix form, this gives us:

v3M = U0.c3 [2.21]

Using the loop law, we can easily demonstrate that the line-
to-line voltages uij with i, j ∈ {a, b, c} may be written as:

uij = viM − vjM = U0. (ci − cj) [2.22]

but also:

uij = viN − vjN [2.23]

These final two equalities give us the following matrix
equation:⎛⎜⎜⎝

1 −1 0

0 1 −1

−1 0 1

⎞⎟⎟⎠
︸ ︷︷ ︸

M

.v3N = U0.

⎛⎜⎜⎝
1 −1 0

0 1 −1

−1 0 1

⎞⎟⎟⎠ .c3 [2.24]

This system, with three equations and three unknown
variables (vaN , vbN and vcN ) cannot be solved directly, as
matrix M is not invertible. By applying Sarrus rule, we can
easily verify that:

det (M) = 0 [2.25]

However, by replacing one of the equations in the system
with equation [2.19], we obtain the following matrix equation:⎛⎜⎜⎝

1 −1 0

0 1 −1

1 1 1

⎞⎟⎟⎠
︸ ︷︷ ︸

M ′

.v3N = U0.

⎛⎜⎜⎝
1 −1 0

0 1 −1

0 0 0

⎞⎟⎟⎠ .c3 [2.26]
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where M ′ is now an invertible matrix. This allows us to obtain
the desired relationship, i.e.:

v3N = U0.

⎛⎜⎜⎝
1 −1 0

0 1 −1

1 1 1

⎞⎟⎟⎠
−1

.

⎛⎜⎜⎝
1 −1 0

0 1 −1

0 0 0

⎞⎟⎟⎠ .c3

=
U0

3

⎛⎜⎜⎝
2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎟⎠ .c3 [2.27]

This model can only be considered complete if a
relationship is established connecting currents ia, ib, ic and i0.
We note that the instantaneous input pe and output ps power
values from the converter are identical, given that the
converter is presumed to be ideal (i.e. not subject to losses)
and that it does not include any energy storage components
(inductances or capacitors). We may therefore take the
following expressions of pe and ps:⎧⎨⎩pe = U0.i0

ps = vt
3N .i3

[2.28]

thus, taking pe = ps, we obtain:

i0 =
1

3
ct3.

⎛⎜⎜⎝
2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎟⎠ .i3 [2.29]

REMARK 2.3.– To obtain this result, we must take account of
the following property of the transposition of a matrix product:⎧⎨⎩ (A.B)t = Bt.At

(A.B.C)t = Ct.Bt.At
[2.30]
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2.4.2. Modulation by intersective PWM

The application of intersective PWM to the control of
three-phase inverters involves generalizing the technique
used for the single-phase inverter and the current-reversible
two quadrant chopper: an additional control input is applied
for the switches on one supplementary half-bridge. As in the
case of the single-phase inverter, we then define the duty
ratio αx associated with half-bridge x as the average value of
the connection function cx. We can then produce the
expression of the “low frequency” voltages 〈vxN 〉 supplied to
the load. The vector of these “average” voltages is simply
noted 〈v3N 〉. In the same way, we take α3 to be the vector of
the duty ratios αa, αb and αc. Then, we can write:

〈v3N 〉 = U0

3

⎛⎜⎜⎝
2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎟⎠
︸ ︷︷ ︸

G

.α3 [2.31]

The simplest form of modulation consists of applying three
sinusoidal duty ratios, with a shift of 120°:⎧⎪⎪⎨⎪⎪⎩

αa (t) = 1/2. (1 +Km. cos (2πFmt))

αb (t) = 1/2. (1 +Km. cos (2πFmt− 2π/3))

αc (t) = 1/2. (1 +Km. cos (2πFmt+ 2π/3))

[2.32]

where Fm is the modulation frequency (as for other types of
converters, let Fd be the switching frequency such that
Fd � Fm) and Km is the depth of modulation, defined as in
the case of the single-phase inverter, i.e. Km ≤ 1 for a linear
modulation and Km > 1 for overmodulation. The matrix
formulation of vector α3 gives us:
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α3 =
1

2

⎛⎜⎜⎝
1

1

1

⎞⎟⎟⎠
︸ ︷︷ ︸
C31

+
Km

2

⎛⎜⎜⎝
cos (2πFmt)

cos (2πFmt− 2π/3)

cos (2πFmt+ 2π/3)

⎞⎟⎟⎠ [2.33]

The first term in this expression is known as the zero
sequence component (linked to matrix C31); the second term
has components with a zero sum, and may be reformulated
using a “cos/sin” two phase decomposition. To do this, we
simply note that:⎛⎜⎜⎝

cos (2πFmt)

cos (2πFmt− 2π/3)

cos (2πFmt+ 2π/3)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0

−1/2
√
3/2

−1/2 −√
3/2

⎞⎟⎟⎠
︸ ︷︷ ︸

C32

.

⎛⎝ cos (2πFmt)

sin (2πFmt)

⎞⎠

[2.34]

The association of matrix C31 and matrix C32 is known as
the “Clarke transform” (named after its inventor, Edith
Clarke), and connects any given three-phase vector x3 to the
couple x2 = (xα, xβ)

t (two-phase vector), x0 (zero sequence –
scalar):

x3
Δ
= C32.x2 + C31.x0 [2.35]

REMARK 2.4.– Matrices C31 and C32 present a number of key
properties, given as:

Ct
31C31 = 3 [2.36]

Ct
32C32 =

3

2

⎛⎝1 0

0 1

⎞⎠
︸ ︷︷ ︸

I2

[2.37]
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Ct
31C32 =

(
0 0
)

[2.38]

Ct
32C31 =

⎛⎝0

0

⎞⎠ [2.39]

This transform is useful due to a notable property of the
gain matrix G of the inverter:

G =
2U0

3
C32C

t
32 [2.40]

Having established this property, we can immediately use it
to simplify equation [2.31]:

〈v3N 〉 = 2U0
3 C32C

t
32.

⎛⎝1
2C31 +

Km
2 C32.

⎛⎝ cos (2πFmt)

sin (2πFmt)

⎞⎠⎞⎠
= KmU0

2 C32.

⎛⎝ cos (2πFmt)

sin (2πFmt)

⎞⎠ [2.41]

In this way, we show that the “low frequency”
line-to-neutral voltages 〈vxN 〉 applied to the load are
effectively sinusoidal, with frequency Fm and amplitude
Km.U0/2 (so with a maximum of U0/2 for a linear modulation)
and form a balanced three-phase system.

The waveform of a line-to-neutral voltage is shown in
Figure 2.11 for the case of a sinusoidal modulation with
frequency Fm = 100Hz with a carrier frequency Fd = 2kHz,
modulation depth Km = 0.8 and a DC bus voltage U0 = 100V.
The corresponding spectrum is shown in Figure 2.12.

We see that the low frequency content of the spectrum is
limited to a single pulse at 100 Hz, whilst pulses also occur
around the carrier frequency and its multiples, as in the case
of the single-phase inverter. Considering the waveform, we
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see that three instantaneous values are available:
(−2U0/3,−U0/3, 0, U0/3, 2U0/3).

Figure 2.11. Waveform of a line-to-neutral voltage for
intersective sinusoidal PWM (bipolar)

Figure 2.12. Spectrum of a line-to-neutral voltage
for intersective sinusoidal PWM

2.4.3. “Full wave” modulation

Full wave modulation for a three-phase inverter uses the
same techniques as for a single-phase inverter, where the
half-bridge connection function is kept at 1 for half a period
Tm/2 (where Tm = 1/Fm) and at 0 for the following
half-period. This technique may be adapted for a three-phase
inverter by simply shifting the switching functions of the
half-bridges, taken by pairs, by a third of a period (i.e. by
120°) as shown in Figure 2.13.
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Figure 2.13. Control signals and voltages in full wave modulation
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We see that the line-to-line voltages present visible
sequences of the form −U0, 0, +U0 and 0. These states are
maintained for periods of Td/3, Td/6, Td/3 and Td/6
respectively. Therefore, the Fourier series decomposition of
voltage uab is as follows:

uab =

∞∑
p=0

U2p+1. sin (2π (2p+ 1)Fmt) [2.42]

with:

U2p+1 =
4U0

(2p+ 1)π
cos

(
(2p+ 1)π

6

)
[2.43]

In this expression, we see that the spectrum contains not
only odd harmonics (the usual result), but that all harmonics
which are multiples of 3 have an amplitude of zero (harmonics
3, 9, 15, etc). Once we have obtained the line-to-line voltage
spectrum, we can also determine the spectrum of the line-to-
neutral voltages.

If we simply wish to determine the amplitude Vfond of the
fundamental of the line-to-neutral voltages, we simply obtain:

Vfond =
2U0

π
[2.44]

This amplitude should be compared to that accessible
without distortion with a sinusoidal intersective PWM, which
is equal to U0/2 (result established in the previous section).
“Full wave” modulation therefore produces a gain of over
27%. However, in the next section, covering vector PWM, we
will show that another solution offers even better
performances from this perspective, while conserving a
purely sinusoidal “low frequency” waveform. Full wave
modulation still produces the highest possible amplitude, but
to the detriment of spectrum quality.
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An important point in full wave operation lies in the fact
that at the three switching functions are never in the same
state at the same moment (whether 0 or 1). When the
combinations ca = cb = cc = 0 or ca = cb = cc = 1 occur, we see
that the instantaneous line-to-neutral voltage vector v3N is
null. In full wave modulation, we systematically avoid
application of this null vector, a fact which explains the fact
that the voltage wave has a maximum amplitude. As we have
three binary control variables, we have 23 = 8 possible
combinations for controlling the full inverter. As we have
seen that two of these configurations are never used, full
wave modulation only uses six control combinations. This
corresponds to the six voltage levels identified in the
line-to-neutral voltages shown in Figure 2.13. This fact is
reflected in the alternative name for the technique, which is
also known as six-step modulation.

2.4.4. Vector PWM modulation

The last approach which we will discuss here is based on
the use of the Clarke transform, as defined in equation [2.35],
and the factorization of the gain matrix G of the inverter.
Rather than considering the line-to-neutral voltages v3N

supplied to the load, we will consider the equivalent
two-phase vector v2N , as we know that the zero sequence
component of v3N is null (as we have a balanced three-phase
system):

v3N = C32.v2N =
2U0

3
C32.C

t
32.c3 [2.45]

After simplification (by “left side” multiplication of both
elements by Ct

32), we obtain:

v2N =
2U0

3
.Ct

32.c3 [2.46]
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The list of possible values (components vα and vβ of v2N ) is
shown in Table 2.1 and these results are illustrated by the
constellation of corresponding vectors in Figure 2.14. We wish
to produce a voltage vector vref

2N (setpoint) located in the
two-phase plane (as an average value, for a switching period
Td). This vector must also lie within the hexagon formed by
connecting the extremities of vectors V1 to V6 to enable the
inverter to function in linear mode. This setpoint vector may
be localized according to the sector (i) in which it is found, as
shown in the figure.

Vector PWM consists of projecting the setpoint vector
(which is generally not instantly accessible) following two
base vectors. This decomposition is carried out following the
two vectors delimiting sector (i), which is determined in
advance. We therefore wish to write vref

2N in the form:

vref
2N = λi.Vi + λi+1.Vi+1 [2.47]

Control (ca, cb, cc) vα/U0 vβ/U0 Vector name
(0, 0, 0) 0 0 V0

(1, 0, 0) 2/3 0 V1

(1, 1, 0) 1/3 1/
√
3 V2

(0, 1, 0) −1/3 1/
√
3 V3

(0, 1, 1) −2/3 0 V4

(0, 0, 1) −1/3 −1/
√
3 V5

(1, 0, 1) 1/3 −1/
√
3 V6

(1, 1, 1) 0 0 V7 = V0

Table 2.1. Voltage values v2N = (vα, vβ)
t available for all

control combinations (ca, cb, cc)

REMARK 2.5.– Indexes i and i + 1 are defined as “modulo 6”.
Thus, in the case where vref

2N is located in sector (6), we take
i = 6 and i+ 1 = 7 → 1.
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Vref

2N
= λ1.V1 + λ2.V2

V1

V2V3

V4

V5 V6

V0 = V7

(2)

(1)(3)

(4) (6)

(5)

vref

2N

λ1.V1

λ2.V2

Figure 2.14. Constellation of instant vectors v2N available as
inverter output. For a color version of the figure, see

www.iste.co.uk/patin/power2.zip

Before calculating the coordinates λi and λi+1 of the vector
(v2s), we need to decompose angle α (as shown in Figure 2.14
with an example of vector vref

2N for i = 1):

α =
(i− 1)π

3
+ α̃ [2.48]

We can thus give the expression of vector (v2s) by replacing
α with this expression:

vref
2N = V · P

(
(i− 1)π

3
+ α̃

)
·
(
1

0

)
[2.49]
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where P (·) is the 2D rotation matrix, defined as follows:

P (ϕ) =

(
cosϕ − sinϕ

sinϕ cosϕ

)
[2.50]

Thus, we can identify the two expressions [2.47] and [2.49]
in order to establish two equations with two unknown
variables (λi and λi+1):⎧⎨⎩λi +

λi+1

2 = V
2U0
3

· cos α̃
√

3
2 · λi+1 =

V
2U0
3

· sin α̃ [2.51]

This system may be written in the form W.Λ = X, where
Λ = (λi, λi+1)

t with:

W =

(
1 1/2

0
√
3/2

)

and X = V
2U0
3

·
(
sin
(
π
3 − α̃

)
sin α̃

)

The solution is therefore written as:

Λ = W−1.X =
V

U0
·
(
sin
(
π
3 − α̃

)
sin α̃

)
[2.52]

REMARK 2.6.– We note that coordinates (λi, λi+1)
t are

dimensionless.

Decomposition using the vectors delimiting sector (i) is not
the only possible method. If we consider the example of vector
vref
2N , we see that this cannot only be decomposed using V2 and

V3, but also using V2 and V4 or V1 and V3.

These coordinates will be used in the final stage for the
creation of control sequences. Each coordinate represents the
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fraction of the switching period during which the
corresponding base vector must be maintained.

2.4.4.1. Sequence creation

2.4.4.1.1. Duration of sequence phases

In the previous section, we identified the coordinates λi and
λi+1 associated with the base vectors Vi and Vi+1 which will
be applied during part of the switching period Td.

Thus, vector Vi is applied for a duration τi defined by the
relationship:

τi = λi.Td [2.53]

In the same way, we obtain the duration of application τi+1

of vector Vi+1, defined as:

τi+1 = λi+1.Td [2.54]

Taken together, these durations cannot exceed Td. This
gives us the following inequality for components λi and λi+1:

λi + λi+1 ≤ 1 [2.55]

The last fraction of Td, not used by the two vectors Vi and
Vi+1, is used by the null vector corresponding to two
connection configurations in the inverter, i.e. vectors V0 and
V7 together.

2.4.4.1.2. Sequence list

The applicable sequences for a period are made up
of a limited number of phases of variable durations. For
a conventional vector PWM, there are only six different
sequences (excluding phase duration variations), which
correspond to the six sectors identified in Figure 2.14.
Generally speaking, a generic sequence associated with sector
(i) may take the form:
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1) application of vector V0;

2) application of vector Vi for odd i and Vi+1 if i is even;

3) application of vector Vi for even i and Vi+1 if i is odd;

4) application of vector V7;

5) application of vector Vi for even i and Vi+1 if i is odd;

6) application of vector Vi for odd i and Vi+1 if i is even;

7) application of vector V0.

A summary of the six sequences is shown in Figure 2.15.

Figure 2.15. Profiles of control sequences for each sector

2.4.4.1.3. Limitations

The points in the plane (vα, vβ) which are accessible to the
inverter as average values are included in the hexagon shown
in Figure 2.14. λi + λi+1 = 1 in the segments connecting the
extremities of vectors V1, V2, ..., V6. Leaving the hexagon
results in a sequence which exceeds the duration Td (outlying
result).
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2.4.4.1.4. Control values

The application durations of vectors Vk cannot be used
directly to control the inverter. It is more practical to consider
the durations Ta, Tb and Tc, during which the switching
functions ca, cb and cc are equal to 1 for a switching period.

Let C[V k] be the function linking vector Vk to the
corresponding vector (C). Vector (T ) = (Ta, Tb, Tc)

t may then
be written in the form:

(T ) =
k=7∑
k=0

λk.Td.C[Vk] [2.56]

where λ0 and λ7 are the application durations of vectors V0

and V7 (present in all sequences) with λ0 = λ7 = 1−λi−λi+1

2 for
a sequence in sector (i).

2.4.4.1.5. Digital implementation

The processes involved in vector PWM, as described, are
typically digital. This digital aspect goes hand in hand with a
discretization of possible states in the plane (vα, vβ), contrary
to what we initially wished to obtain (i.e. continuous
regulation of these voltages). Let us now consider a concrete
example to see whether this phenomenon will have an effect
on the behavior of the “static converter -machine” assembly.

To do this, we will fix a switching period quantification step,
equal to Td

510 . This enables us to calibrate the duration of the
motifs presented in Figure 2.15. These motifs are symmetrical
in relation to Td

2 , and so the calibration value is limited to a
half-period (255 subdivisions of period Td). We can then code
the duration of phase ci = 1” (Bridge i) using Nb = 8 bits:

– 00000000B ⇒ ci = 0 for the whole of the period Td;

– 11111111B ⇒ ci = 1 for the whole of the period Td.
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From this, we can use the size of the code to deduce the
number of available sequences Ns:

Ns =
(
2Nb
)3 [2.57]

In our example, we have Ns = 224 = 16.777×106; for Nb = 4,
we obtain Ns = 4096. This result is only indicative, in that
the number of sequences Ns should not be assimilated to the
number Np of points accessible in the plane (vα, vβ). In fact, Np

may be expressed as a function of Nb:

Np =
(
2Nb+1 − 1

)2 − 22Nb + 2Nb [2.58]

Thus, for Nb = 4, we have a number of points Np = 721, as
shown in Figure 2.16.

Figure 2.16. Constellation of points accessible
as an average value (Nb = 4)

We will not demonstrate relationship [2.58]. However, it is
easy to show that Np < Ns. To do this, let us take the
sequences for which the motifs of ca, cb and cc are identical.
We have 256 different sequences of this type; these sequences



DC/AC Converters 69

only include the two vectors V0 and V7 together, equal to the
null vector. This is an example of losses due to the
overlapping phenomenon: these multiple codes all produce
the same vector.

The curve in Figure 2.17 gives the number of points Np as
a function of the number of bits Nb in the code. The line is
produced using a logarithmic scale on the X axis. Note that the
point distribution is similar to that in Figure 2.16 whatever
the number of bytes Nb.

Figure 2.17. Number Np of points as a function of the
size Nb of the associated code

However, the results show that the impact of discretization
is low, and that the size of the code is not critical. Thus,
coding using 8 bits (or fewer) is more than sufficient for the
digital modulation operation to be transparent for other
system components (controller and machine).

2.4.5. Geometric analysis of the inverter and PWMs

One interesting approach to modeling three-phase
inverters consists of representing the state of the inverter by
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an operating point in a three-dimensional (3D) space. As we
have seen, the state of the inverter depends solely on the
switching functions driving the three half-bridges of the
converter. We can assimilate the switching functions to
coordinates in the space (ex, ey, ez). Given that these
switching functions cx with x ∈ {a, b, c} can only take values
of 0 or 1, we obtain a discrete operating domain with eight
possible positions, marking the vertices of a cube with sides
of 1 unit in length. This (dimensionless) cube can also be used
to represent the voltages vxM ; in this case, the length of the
sides of the cube (in volts) is equal to U0. The average model
of the inverter may also be represented geometrically, noting
that the average values of the switching functions cx at the
level of the switching period Td are the associated duty ratios
αx in pulse width modulation. The average state of the
converter therefore no longer belongs to a discrete domain,
but to a continuous domain, which is the whole of the volume
contained in the cube with sides of 1 unit in length (see
Figure 2.18).

Figure 2.18. Operating space of the three-phase inverter. For a color
version of the figure, see www.iste.co.uk/patin/power2.zip
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On this cube, we have identified points corresponding to
the different Vk vectors (0 ≤ k ≤ 7), and we see that the two
vectors V0 and V7, which correspond to the coordinates
(0, 0, 0) and (1, 1, 1), define a straight line with the orientation
vector C31: this is the “zero sequence line” defined by the
Clarke transform. The vectors forming C32 are orthogonal
toC31 (since Ct

31C32 = (0 0 )), so the two-phase plane (α, β) is
perpendicular to this line.

For positioning purposes, we need to define a point of
passage; to do this, we simply note that the average value of
the voltages produced in sinusoidal PWM (PWM with no zero
sequence components in the control signals, except the phase
shift of 0.5 for the duty ratios) is equal to U0/2. By applying
Millman’s theorem to the neutral point of the load, we see
that vNM = U0/2 (for a balanced load). Consequently, the
identified point of passage of the two-phase plane is simply
the center of the cube. Once the normal direction and the
point of passage have been established (in the center of the
diagonal of the cube defining the zero sequence line), we can
easily identify the zone of the plane included in the cube: this
is one of the hexagons shown in Figure 2.19.

Figure 2.19 shows the cube from Figure 2.18, this time
seen in the axis

−−−→
M ′M . Points M and M ′ are thus combined,

and the profile of the cube appears having a shape of an
hexagon formed by six sides, with vertices corresponding to
the “active” vectors from V1 to V6 (corresponding to the
hexagon defined in Figure 2.18. We also see that the hexagon
delimits the part of the two-phase plane Pαβ contained in the
cube: this limit of the two-phase plane corresponds to a
maximum norm of vector vref

2N in the case of sinusoidal PWM.
With this strategy, the inverter control scheme does not
include a zero sequence component (with the exception of a
constant equal to 0.5): the trajectory of the inverter state is
consequently flat and contained within this hexagon.
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Figure 2.19. Operating space of the three-phase inverter (view using
the hompolar axis). For a color version of the figure, see

www.iste.co.uk/patin/power2.zip

This strategy is not optimal. The inclusion of a zero
sequence component in the control scheme is perfectly
acceptable, as it does not affect the load. The state of the
inverter is therefore allowed to move throughout the whole
cube; we see from Figure 2.19 that in this way, the norm of
vector vref

2N is able to reach higher values (without
saturation).

2.4.6. Summary of modulation techniques

A comparison of modulation strategies for single-phase
inverters is given in Table 2.2. PWM strategies (sinusoidal
and vector) allow us to obtain a spectrum in which the range
of low frequencies only contains the useful term, while
unwanted harmonics are restricted to high frequencies.
However, this advantage over full-wave modulation is
obtained at the expense of the amplitude of the fundamental
component of the voltages applied to the load.
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2.5. Impact of the inverter on the DC bus

The primary function of an inverter is to supply a voltage
to a load, but it also has an impact on its power supply by
absorbing a hashed current. The spectral content of this
current depends on the type of inverter used (single- or
three-phase), but also on the modulation strategy used in
controlling it.

2.5.1. Single-phase inverters

In the case of the single-phase inverter presented in
Figure 2.1 (H bridge), the current idc absorbed by the DC bus
may take three distinct values, which are (taking iload as the
current in the load):

iload =

⎧⎪⎨⎪⎩
iload ifK1 = K4 = K2 = K3 = 1

0 ifK1=K2=K3=K4=1orK1=K2=K3=K4=0

−iload ifK1 = K4 = K2 = K3 = 0

[2.59]

Therefore, we have HF chopping of the current taken from
the DC bus, but it is important to note that the inverter
absorbs not only a non-null average current, but also a
fluctuating low-frequency component. We must simply note
that if the voltage vBF

load takes the form:

vBF
load (t) = Vmax. cos (ωt) [2.60]

and the load consumes a current:

iload (t) = Imax. cos (ωt− ϕ) [2.61]
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then the instantaneous power pload is written as:

pload (t) = Vmax.Imax. cos (ωt) . cos (ωt− ϕ)

=
Vmax.Imax

2
(cos (2ωt− ϕ) + cosϕ) [2.62]

Strategies

Ampl.
norm. of

plane
voltages
Vmax/U0

Advantages Disadvantages

Sinus. PWM
(SPWM)

1
2
= 0.5

Simplicity of
creation (analog or
digital circuit), high

spectrum quality

Limited voltage
amplitude, switching

losses

Vector PWM
(SV-PWM)

1√
3
≈ 0.577

Maximum voltage
amplitude for linear

PWM, high
spectrum quality

Complexity (digital
circuit

quasi-compulsory),
switching losses

Full wave
modulation

2
π
≈ 0.637

Maximum
fundamental

amplitude, reduced
switching losses,

simplicity

Poor spectrum
quality

Table 2.2. Comparison of modulation techniques
for a three-phase inverter

If we consider that the inverter has a unitary yield, then
the instantaneous power pdc (t) on the continuous bus is equal
to pload(t). Presuming that the bus voltage is strictly constant
and equal to E, we may write:

pdc (t) = E.idc (t) [2.63]
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Evidently, this equation conceals the HF phenomena
involved in chopping, and it is better to use the current
iBF
dc (t), expressed as follows:

iBF
dc (t) =

Vmax.Imax

2E
(cos (2ωt− ϕ) + cosϕ) [2.64]

We therefore have a component at two times the
fundamental frequency, in addition to the continuous
component. Filtering must therefore take account of this LF
component, as it has the highest impact on the voltage wave
at the terminals of the decoupling capacitor, which should be
placed directly at the entry to the inverter. In these
conditions, HF switching has comparatively little effect.

2.5.2. Three-phase inverters

In the case of a three-phase inverter, we can easily show
the absence of fluctuating components. Consequently, the LF
current only includes a continuous component. The decoupling
capacitor is dimension-based uniquely on the high frequency
(HF) current associated with switching. The vector model of
the inverter is particularly useful in this case with regard to
the continuous bus. We begin by noting that:

v2N =
2U0

3
.Ct

32.c3 [2.65]

Using Clarke’s formalism, if i2 is the two-phase current
injected into the load, then the instantaneous power in the
load is written as:

pload =
3

2
vt
2N .i2 [2.66]

The instantaneous input power is identical, and is written
as (for a DC bus voltage U0):

pdc = U0.idc [2.67]
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hence:

idc =
(
Ct
32.c3

)t
.i2 [2.68]

We see that the DC bus current is a scalar product between
the vector i2 and a normalized version of the voltage vector
v2N , as we may note that:

Ct
32.c3 =

3

2U0
v2N [2.69]

Geometrically, the instantaneous current idc is obtained by
orthogonal projection of the two-phase current vector in the
load onto a line, for which the orientation vector is the
applied instantaneous voltage vector. We should remember
that this model does not make use of averaging across the
switching period: it is not an LF model, but an instantaneous
representation, valid for all instants.

Figure 2.20 shows an example of the projection of a
“current” vector onto two active vectors, leading us to
calculate the instantaneous absorbed current as input for the
DC bus in both cases.

Note that classic PWM strategies (“two adjacent vectors”4)
such as sinusoidal and vector PWM give us the same result for
the effective value of the fluctuating component of the current
idc. Generally, this current may be written as:

idc = Idc + δidc [2.70]

where Idc is the average value of idc and δidc, the alternating
component. This component is involved in the dimensioning
of decoupling capacitors, as if the inverter input filter is
correctly dimensioned, the current from the power supply will

4 These strategies use two consecutive active vectors for a switching period,
with the addition of one or two null vectors.
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be limited to the continuous component, and the whole
component δidc will circulate through the capacitor(s). It is
thus important to characterize this component in terms of
effective value, as this is the key point used when selecting a
capacitor, based on manufacturer specifications5.

idc2

V1

V2

i2

idc1

Figure 2.20. Partial representation of plane (α, β) and projections of
the “current” vector. For a color version of the figure,

see www.iste.co.uk/patin/power2.zip

Let Ic be the current in the capacitors, and let us suppose
that Ic = δidc. The RMS of the current is expressed as follows:

RMS (Ic) = Imax.

√√√√√
3m

4π
+

(√
3m

π
− 9m2

16

)
cos2 ϕ [2.71]

This result corresponds to the most widespread PWM
strategies, but other strategies (double carrier strategies) exist

5 Spectral distribution is also important, but this is reduced if the capacitor
technology is selected with consideration for the switching frequency.
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which aim to minimize this criterion [HOB 05, NGU 11a].
These approaches notably work by reducing the application
time of the null vectors. These times may even be removed
completely when seeking to obtain a high amplitude voltage
vector. The current reduction in decoupling capacitors can
reach 40%, allowing us to either:

– reduce capacitor volumes (for a given stress);

– increase capacitor lifetime by reducing stress (for a given
volume).

2.6. Classification of PWM strategies: overview

The PWM strategies seen above are only some of the
techniques which may be applied to electronic power
converters. They may be considered as “open loop” controls,
as we calculate the control inputs applied to the switches
based solely on the reference voltage for the load. This
category of control strategies contrasts with the closed loop
approach, where a measure (generally of voltage or current)
is compared to a reference value, and this comparison (i.e. an
error signal) is used to establish the required switch control
inputs via a closed loop controller (such as a PI controller,
widely used in industrial applications). More recent research
activities have led to the creation of another category of
mixed, hybrid or semi-open strategies, founded on the concept
of carrier-based PWM; in this approach, reference values are
established in an open loop, but the choice of a zero sequence
component and/or carrier is made based on measurements
(generally of current). A classification of the PWM families
found in the relevant literature is given in Figure 2.21. This
is an updated version of a tree diagram found in Christophe
Lesbroussards doctoral thesis, presented at the UTC in 1997
[LES 97].

We have only considered examples from the open-loop
group of control strategies in this chapter, specifically:
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– intersective PWM (which covers natural or uniform
sampling);

– precalculated PWM (with harmonic elimination and
criteria optimization)6;

– space vector PWM (also known as space vector
modulation, or barycentric PWM).

In reality, intersective PWM strategies, as presented in
section 2.2.2, may be used in both analog and digital
environments. In an analog context, we use circuits (for
example using operational amplifiers) to create a triangular
or zigzag carrier, which is compared to an analog signal. This
signal itself is produced in a similar way, although it is
possible, particularly in the context of three-phase inverters,
to use semi-analog methods. These approaches use
digital-analog converter circuits, associated with “memories”
containing digital tables of waveforms (e.g. sinusoidal
waveforms).

Clearly, this type of solution is now obsolete, and purely
digital implementations are now used in micro-controllers or
programmable logic circuits (CPLD or FPGA). This requires
certain adaptations to the strategy; in a microcontroller, even
if it includes a timer allowing us to create a digital triangular
or zigzag carrier (with a counter, the operating timescales of
the timer and the control algorithm are very different. This
means that the modulation signal is modified only once or
twice per switching period. In this case, we consider that this
signal is sampled (hence “sampled PWM”) with control loops
(typically used to control the torque, speed and/or position of
an electrical machine).

We have shown that space vector PWM allows us to
optimize the use of the voltage available as input into the

6 This subcategory was described briefly in section 2.2.3.
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inverter, with a maximum output voltage which is 15%
higher than that obtained using intersective PWM with a
sinusoidal modulation signal, while still using a linear
operating mode (i.e. without over-modulation, avoiding
saturation of the signal). To achieve this, the control strategy
takes account of the converter as a whole, rather than
controlling individual half-bridges independently, as we
might expect given the modular construction of a three-bridge
three-phase inverter. However, note that the vector-based
vision of inverter control is not really better than that based
on intersective PWM, as an equivalent result may be
obtained by adding a zero sequence component of the form:

vo (t) =
1

2
min (|va| , |vb| , |vc|) [2.72]

to the sinusoidal modulation signals va, vb and vc used in
classic intersective PWM, following the diagram shown in
Figure 2.22.

Furthermore, although it is possible to implement a purely
vector-based intersective PWM strategy using a
microcontroller [MIC 05], an equivalent intersective PWM
implementation is often preferred [MON 97] as this approach
is less costly in calculation terms. Vector-based and
intersective approaches may therefore be considered
complementary for understanding the operation of an
inverter for a given control, from both load and source
perspectives, and for synthesizing control laws.

Note that classical space vector modulation requires both
null vectors to be used for identical time periods per switching
periods. This arbitrary choice implies that each half-bridge is
switched twice per period.
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It would, however, be perfectly possible to use only one of
the two null vectors without affecting the voltage applied to
the load: this is the principle of discontinuous PWM (DPWM).
In this case, we might expect a reduction in switching losses,
as one half-bridge is maintained in a constant state
throughout each switching period (the half-bridge with the
highest or lowest modulation signal). Different variants of
DPWM strategies exist, but a generalized approach
(GDPWM) systematically minimizes switching losses, the
main goal for this type of modulation. A solution given in
[NGU 11b] consists of measuring the current circulating in
the half-bridge with the highest modulation signal, alongside
the current in the half-bridge with the lowest modulation
signal. Either half-bridge may be switched on; it is best to use
the half-bridge carrying the highest current in absolute
terms, as switching losses are proportional to the switched
current. Switching on the half-bridge with the highest
current therefore results in minimum losses. These losses are
also lower for DPWM than for classic PWM, which
systematically switches all three half-bridges in each
switching period. This is neither a truly open-loop control
strategy, as the control signals depend on a measurement (in
this case, that of the current injected into each of the two
half-bridges); nor is it a truly closed-loop approach, as
currents are never directly regulated.

A variety of “open loop” type strategies exist, acting on
control signals based on measurements. Another group of
strategies of this type, studied in the LEC at the UTC
[HOB 05, NGU 11a], concerns the reduction of the effective
current in decoupling capacitors. These control schemes use
“classic” intersective PWM, but use two (opposite) carriers for
each of the three half-bridges, while the classic approach uses
a single carrier. These strategies (a number of variations
exist) formed the basis of two theses, which demonstrated
that the use of three active vectors, or of two non-consecutive
active vectors and a null vector, leads to significant
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reductions in the effective value of the AC component of
inverter input: consequently, the current circulating in the
switching capacitors of the DC bus7.

Finally, the only constraint which may reasonably be
imposed for inverter control is that the two half-bridges
should not switch simultaneously (see the diagram of possible
switches in Figure 2.23). This is not due to the potential for
damage to the inverter (except in relation to increased EMC
disturbances), but rather to the fact that we cannot
guarantee that two half-bridges will switch at exactly the
same moment; this raises the possibility of more or less
erratic intermediate states8.

For closed-loop control techniques, values are
systematically controlled in order to follow a reference value.
To do this, the value in question is measured, then compared
to a reference value. The error between the two values is used
by the controller (e.g. a PI controller). Once again, a number
of variations are possible, as shown in the table in
Figure 2.21. We will consider these approaches in the
following section.

2.7. Closed-loop control

2.7.1. Definitions and classification

Generally speaking, closed-loop converter control aims to
regulate (control) a voltage or voltages, or more generally the
output current(s), in an attempt to achieve a reference value,
independently of disturbances such as voltage dropoffs in

7 This current (more specifically its effective value) is a key parameter in
dimensioning capacitors, as we will see in our case study of a variable speed
drive, presented in Chapter 6.
8 These states may or may not be problematic. In the latter case, no
restrictions are needed, and a wide variety of PWM strategies may be
envisaged.
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switches, deadtime introduced by IGBT/MOSFET drivers or
fluctuations in the inverter input voltage. The only constraint
in attaining this objective is the need to physically possess
the dynamic performances needed to follow the reference
value, along with sufficient bandwidth in the regulation
(control) loop to process the reference values and
disturbances.

1 0 1

V1

V2V3

V4

V5 V6

V7

V0

0 0 0

1 1 1

1 0 00 1 1

1 1 0

0 0 1

0 1 0

Figure 2.23. Diagram of “authorized” switches

In Figure 2.21, the closed-loop family of control strategies
is split into two categories, labeled “optimal” and
“sub-optimal”. It is important to establish a clear definition of
the notion of optimality in this context. Strategies considered
to be optimal are those which combine the vector aspect of
control (and therefore use a global approach to the control of
the three half-bridges) with direct control of switches,
without the use of carrier-based PWM, which hides the
instantaneous behavior of the converter, instead providing an
“averaged” vision.
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2.7.2. Non-optimal controls

2.7.2.1. Hysteresis control

The first type of non-optimal control cited in our list is
hysteresis control. This is a form of direct switch control (i.e.
without a carrier), but it involves controlling each current (at
each half-bridge output) independently. The structure of the
controller is shown in Figure 2.24.
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C b
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C c
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2-level voltage

inverter

3ph 

Mach.

+

Figure 2.24. Three-phase hysteresis control

The hysteresis controller behaves in an intuitive manner,
applying a switching function equal to one to increase the
current and a value of 0 to reduce the current. This control
scheme is particularly robust in relation to uncertainties
regarding load parameters, and, from an “automatic control”
viewpoint, belongs to the “sliding control mode” category. This
control method is highly dynamic, but the current ripple is
linked to the width of the hysteresis and the switching
frequency increases as the hysteresis window narrows.
Current ripples may be reduced, but at a cost: switching
losses in the switches increase in proportion to the reduction.
Moreover, in qualitative terms, the frequency will increase or
decrease according to the width of the hysteresis, but we
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cannot precisely control this frequency, which fluctuates as a
function of variations in the reference values and of
variations in load parameters. It is therefore difficult to
precisely control the spectrum of switched quantities (output
voltages, input current); this may have undesirable
consequences in terms of EMC, or in terms of the vibration
and noise associated with the use of this type of power supply
in a machine.

REMARK 2.7.– The controlled quantities (the three currents)
are linked by a zero sum, so the three currents cannot be
controlled independently in three hysteresis windows. In
practice, a controller of this type, duplicated three times for
the three half-bridges, will not be able to operate strictly with
each current ik with k ∈ a, b, c such that irefk − imes

k < H/2.
Figure 2.25 shows a simulation of this control approach in an
ideal inverter, connected to an ideal voltage source (input)
and with a three-phase RL load as output. The currents are
not confined to an interval [−H/2;+H/2] around the
reference value (H = 0.25A in this case).

2.7.2.2. Carrier-based current regulation

One more traditional solution for current regulation
consists of using a PWM of the type considered above (such as
sinusoidal intersective PWM or vector PWM), for which
voltage reference values are established by current control
loops in each phase. Generally, PID controllers are used for
this operation (PI controllers are also widely used in
electrical engineering). However, we should note that, while
these controllers offer good performances in regulating values
in relation to a constant reference value (no static error), they
do not perform as well when following a variable reference
value (following error), particularly in the case of sinusoidal
variation.

We should remember that the function used to obtain a
closed-loop of unity feedback system TCL(p) (see Figure 2.26)
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from an open-loop transfer function TOL(p) is expressed as
follows:

TCL(p) =
TOL (p)

1 + TOL (p)
[2.73]

Figure 2.25. Simulation of three-phase hysteresis control for
H = 0.5A and Irefmax = 2A for a series load R = 1Ω, L = 1mH. For a

color version of the figure, see www.iste.co.uk/patin/power2.zip

In order to follow the reference value exactly, the
closed-loop transfer function must be equal to 1, and thus the
function TOL(p) must tend toward infinity for the frequency of
the input signal (while guaranteeing stable operations). This
result is obtained using a PI controller for constant input, but
is not achieved when using a sinusoidal signal. In this case,
the solution is to use a filter which resonates at the frequency
of the reference signal.
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Figure 2.26. Generic structure for current control
using intersective PWM

In fact, satisfactory results can be obtained using a PI
controller on the condition that the reference signal is located
within the bandwidth of the closed loop. Figure 2.27 shows
simulation results obtained using a PI transfer function:

C(p) = Kp
1 + Tip

Tip
[2.74]

where the chosen value of Ti is equal to the time constant of
the load (Ti = τ = L/R). This is known as pole compensation
control. We then choose to take Kp = 1. In these conditions, we
obtain an open-loop transfer function of the form:

TOL (p) =
Ginv

τp
[2.75]

where Ginv is the inverter gain connecting the amplitude of
reference values at the input of the PWM controller and the
voltages supplied as output. In our case, the input signals are
normalized between -1 and 1, while the output voltages have
a maximum amplitude of Vdc/2. The inverter gain is therefore
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equal to Vdc/2 (25V in our simulation). The RL load is
parameterized as follows:{

R = 10Ω

L = 1mH
[2.76]

The time constant is therefore equal to 100μs. From this,
we may deduce a closed-loop transfer function of the form:

TCL (p) =

Ginv
τp

1 + Ginv
τp

=
1

1 + τ
Ginv

p
[2.77]

We thus obtain a time constant of 4μs, and the bandwidth
of the closed loop is therefore 39.7kHz. This bandwidth
appears sufficient to control currents of up to a few hundred
Hertz; this is confirmed by simulation results, as shown in
Figure 2.27 for two reference values with an amplitude of 2A
at frequencies of 50 and 200Hz respectively.

There is only a small lag between the reference and
measured values at 200Hz (although this is hard to measure
with switching). We can verify this lag theoretically, as it is
equal to:

ϕ200Hz = − arctan

(
2τπ × 200

Ginv

)
= −0.3° [2.78]

This situation is suited to the use of a PI controller, as the
time constant of the load is already relatively low. This is not
always the case, and in these situations, we need to use a
resonating filter instead of the PI controller. The transfer
function of this type of controller must include a factor of the
form:

Cnet(p) =
1

1 + (p/ωnet)
2 [2.79]
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This corrector presents an infinite gain at angular
frequency ωnet, so the closed-loop transfer function is equal to
1 for this precise angular frequency. We can therefore follow a
sinusoid at this frequency with no error9.

 

 

Figure 2.27. Simulation of three-phase hysteresis control for
H = 0.5A and Irefmax = 2A for a series load R = 1Ω, L = 1mH

2.7.2.3. Controlling the current space vector

A more effective means of controlling currents via a PI
corrector, independently of the parameters of the physical
system, consists of observing sinusoidal values in a reference
frame rotating at the same speed. This is the Park transform
(abc-to-dq transformation), which consists of two successive
steps:

– transformation from three phases “abc” to two phases
“αβ” (Clarke or Concordia transform);

9 Ripples due to switching introduced by PWM will still be present.
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– rotation of the fixed two-phase frame of reference αβ to a
rotating two-phase frame, generally noted dq.

In these conditions, sinusoidal values are seen as constant
values, which can be controlled with no following error by a
PI controller. We may easily verify the connection between
the abc and dq values in permanent sinusoidal mode, taking
a balanced, direct three-phase system in vector form:

x3 = Xmax.

⎛⎜⎝ cosα

cos (α− 2π/3)

cos (α+ 2π/3)

⎞⎟⎠ = XmaxC32.

(
cosα

sinα

)
[2.80]

Note that the rotation matrix P (α) is defined as follows:

P (α) =

(
cosα − sinα

sinα cosα

)
[2.81]

We can therefore note that:(
cosα

sinα

)
=

(
cosα − sinα

sinα cosα

)
.

(
1

0

)
[2.82]

and thus:

x3 = XmaxC32.P (α) .

(
1

0

)
[2.83]

By identification with the Park transform (based on the
Clarke transformation10):

x3 � C32.P (α) .xdq [2.84]

10 Which therefore retains the real amplitude values.
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where xdq is the two-phase Park vector equivalent to x3. By
identification, we have, simply:

xdq =

(
Xmax

0

)
[2.85]

In the case of operation in permanent sinusoidal mode, we
simply have α = ω.t + ϕ0. The controller imposes its own
references, and the reference frame may be chosen arbitrarily
with a null phase at the origin instant; in this case, only the
angular frequency counts, and this should be equal to the
desired value (for example Ω/Np for a synchronous machine
where Ω is the mechanical speed of the machine and Np, the
number of pairs of poles in the machine). Then the controller
has the structure presented in Figure 2.28.

2.7.2.4. Single-phase Σ–Δ control

Unlike the closed-loop control structures presented in the
previous section, Σ–Δ control operates on the voltage rather
than the current. This control strategy is derived from a
technique used in analog to digital converters. The principle
behind the strategy lies in the observation of the error
occurring between the output voltage of the converter (which
necessarily belongs to a discrete, and limited, series of
values) and a reference value, which may take an infinite
number of values within a given interval. This error, noted Δ,
is then integrated to produce a signal, noted Σ. The converter
is then controlled in such a way that signal Σ remains within
a given interval (as in the case of hysteresis control).

Mathematically speaking, these operations involve
evaluating the sliding average of the converter output
voltage, and making this average follow a reference. This
results in closed-loop control of the voltage supplied to the
load. It does not allow us to control the current injected into
a machine, but this closed loop is able to control the voltage
delivered by an inverter, irrespective of disturbances such as:
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– variations in the voltage of the DC bus at the converter
entry point;

– deadtimes introduced by gate drivers (which tend to
reduce the RMS voltage supplied to the load in comparison
with ideal waveforms without deadtime);

– voltage dropoffs resulting from switching.
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Figure 2.28. Regulation of currents controlled by an inverter with
carrier-based PWM in the plane dq

One advantage of this control strategy is that it guarantees
a high voltage quality (in terms of harmonic distortion) for a
low average switching frequency for the switches.

We can therefore apply this single-phase control (also used
in single-phase contexts, notably for class D audio amplifier
controls) independently to each half-bridge of a three-phase
inverter (see Figure 2.29) in the same way as hysteresis or PI
controllers are applied to the three currents. However, a vector
approach is generally preferred; this strategy will be discussed
in section 2.7.3.
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Figure 2.29. Single-phase Σ–Δ control applied to a three-phase
inverter (duplicated three times)

2.7.3. Optimal control

2.7.3.1. Predictive current control

Predictive current control was proposed by Holtz and
Stadtfeld in [HOL 83] for controlling stator currents in
three-phase AC machines. While the approach may be
generalized for other contexts, this application constitutes a
point of reference; in this section, we will consider the
connected machine (or load or source) as a balanced series
load R,L,E with a star connection. We will therefore consider
that resistances and inductances are identical, and the e.m.fs
form a balanced three-phase system. It would be possible to
consider non-sinusoidal e.m.fs with a 120° phase shift, but we
will consider the e.m.fs to be sinusoidal. The three voltages
Ea, Eb and Ec are therefore written as follows:⎧⎪⎨⎪⎩

Ea (t) = Emax cosωt

Eb (t) = Emax cos
(
ωt− 2π

3

)
Ec (t) = Emax cos

(
ωt+ 2π

3

) [2.86]
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As we have seen, a two-level three-phase voltage inverter
possesses eight distinct states according to the control input
values used (i.e. the three switching functions). From a load
perspective, seven different states are available. As the
number of control input combinations is finite, we may study
the load response to all possible configurations. To do this, we
first need to establish an equation model for the load. The
best reference frame for this purpose is a two-phase
stationary frame αβ (in this case, we have selected a Clarke
transformation). We thus obtain:

v2 = R.i2 + L
di2
dt

+ e2 [2.87]

where v2 = (vα, vβ)
t, i2 = (iα, iβ)

t and e2 = (eα, eβ)
t and for this

vector e.m.f, we can also write, following [2.86]:

e2 = Emax.

(
cosωt

sinωt

)
[2.88]

On this basis, we know that the voltage vector v2 can only
take seven distinct values, based on the number k of the
voltage vector used for the inverter output. Note that k is the
value of the control input index, and is an integer between 0
and 7 inclusive.

We note that:

v2 = 0 for k = 0 or k = 7 [2.89]

and that:

v2 =
2U0

3

⎛⎝ cos
(
(k−1)π

3

)
sin
(
(k−1)π

3

) ⎞⎠ for 1 ≤ k ≤ 6 [2.90]

where U0 is the voltage of the DC bus at the inverter input
point.
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Generally speaking, v2[k] is therefore the inverter output
voltage for a given control input index k. This makes it
possible to predict the evolution of currents in the load based
on the model [2.87]:

di2
dt

=
1

L
(v2 −R.i2 − e2) [2.91]

We therefore require a model of the load (and thus R and
L, which are identifiable, and the vector e.m.f. e2 which can
generally be estimated for a given instant), but we also need
to measure the current in order to make a prediction. In
theory, a single initial measurement is required, and all
predictions can then be based on their predecessors. In
practice, however, the context of open-loop operations means
that this method will result in erroneous predictions after a
given period of time, which varies based on the chosen
prediction model11. It is therefore better to obtain a new
current measurement for each new prediction phase
(including all possible values of k). If the time frame of
prediction ΔT is sufficiently short, we may approximate the
derivative using a rate of increase, and we obtain a prediction
for instant t of the current at t+ΔT for control k:

î2(t+ΔT, k) = imes
2 (t) +

ΔT

L
(v2[k]−R.imes

2 (t)− e2(t)) [2.92]

These predictions are then compared with a current
reference value iref2 , before making control decisions based on
a given criterion. For example, a control signal may be
selected with the aim of obtaining the lowest possible
switching frequency for a given ripple value in the current
vector. This is illustrated in Figure 2.30, which shows the
generalized structure of a predictive control, and an

11 This time is very short if we do not take account of imperfections in the
inverter and in the close control approach.
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illustration of predictions of the evolution of the current
vector.

This figure also shows that the selection process consists of
choosing the prediction which is most closely directed toward
the reference value, and which therefore lengthens the path
to the “wall” of the authorized zone around the reference point
before the next switching operation.

REMARK 2.8.– Note that this reference point may evolve, and
in this case, the circular limit around the reference point also
evolves. In this case, the choice made in Figure 2.30 will not
necessarily be the best option to reduce the switching
frequency. Where possible, it is interesting to plan the
trajectory of the reference point, and include this additional
information in the decision-making element: this is the
notion of control with trajectory pursuit, included in the
classification in Figure 2.21.

This control strategy can be generalized to more complex
converters (for example an inverter with four half-bridges).
In this case, the duplication involved in the converter
provides a certain level of fault tolerance (operation in
degraded mode). This approach presents major advantages,
as predictions are easy to verify a posteriori, which enables us
to detect abnormal evolutions. In this way, we can both
identify and localize faults (i.e. identify the faulty switch),
then take account of this information in order to limit future
predictions to the controls still available in the faulty
converter.

2.7.3.2. Vector Σ–Δ control

Vector Σ–Δ control uses the same concept as single-phase
Σ–Δ control, which consists of controlling the voltage in a
closed loop by integrating the difference between a reference
value and a measurement. However, the compared values are
now vectors, rather than scalar values. The reference value
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and measurement are obtained in a two-phase plane αβ,
obtained using a Clarke or Concordia transformation of the
real-values.

REMARK 2.9.– Vector integration consists of a scalar
integration of each component.

We now need to define the controller. In the case of a scalar
Σ–Δ control scheme, as shown in Figure 2.29 (duplicated for
the three phases of an inverter), this was a hysteresis
comparator. When using vectors, we need to define a type of
comparator with a domain of definition suited to the context;
this is a 2D domain in the plane αβ. The logical choice is to
define limits of the evolution of the error signal Σ in a circle
(centered on the origin of the reference frame αβ) to
guarantee that the voltage reference value will be followed in
the same way as for predictive vector control of currents,
shown in Figure 2.30.

Σ–Δ vector control is therefore a closed-loop approach for
control of the voltage vector, and does not include a load
model; it is therefore only able to compensate for
disturbances introduced by fluctuations in the inverter input
voltage (noted U0 in the diagram in Figure 2.30 or
modifications in relation to the ideal waveforms introduced
by close control of inverters (particularly deadtimes).

REMARK 2.10.– The most significant advantage of Σ–Δ
control is that it significantly reduces the required switching
frequency, while maintaining a high quality power supply to
the load. This strategy is particularly interesting for driving
high-powered machines (for example in rail traction or heavy
industry), as it requires the use of large components, rated
for high voltages and currents, which are generally slow
(requiring switching frequencies below 1kHz).

Several variations on this strategy may be adopted
(allowing synchronization with a carrier, or use with
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multi-level converters – seen in Chapter 5), but these lie
outside the remit of this book. Interested readers may wish to
consult [LES 97]. [MON 09] also includes a chapter on Σ–Δ
modulation, written by Vilain and Lesbroussard. An
English-language version of this work is also available:
[MON 11]. This edition is a compilation of two volumes
published in French on the subject of PWM and closed-loop
control schemes12 with different current variation techniques.

Figure 2.30. Predictive vector control of currents.
For a color version of the figure, see www.iste.co.uk/patin/power2.zip

12 In reality, Σ–Δ PWM is also a form of “closed loop” voltage control, unless
the voltage output of a half-bridge is assimilated to the corresponding
control signal.
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AC/DC Converters

3.1. Non-controlled rectifiers

3.1.1. Half-wave rectifiers

The half-wave rectifier is a converter which carries out
half-wave rectification. In a single-phase context, this is a
converter including a diode which may be qualified as P1; in a
three-phase context, we use P3, and in a generalized case
with n phases, Pn. A single-phase half-wave rectifier is shown
in Figure 3.1. Note that the alternating current (AC) side is
connected to an ideal voltage source Vr, while the direct
current (DC) side powers a resistance R. This configuration
will also be used for other converters, but we will also study
the case of a power supply to a current source I0 presumed to
be constant. Note that in the P1 context, it is not possible to
power a current source, as this would require permanent
conduction through the only diode in the circuit.

The equation model of the only loop in the circuit gives us:

Vr = Vd1 + Vrec [3.1]

with:

Vrec = R.irec [3.2]
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knowing that irec can only be positive due to the single possible
direction of current through diode D1.

Vre c

ire c

Vd1

D1

R

Vr

Figure 3.1. Half-wave single-phase
diode rectifier (P1)

In the D1 OFF state, we know that irec = 0. In this case, we
also have Vrec = 0 and thus Vr = Vd1. As diode D1 is switched
off for Vd1 < 0, we can write that the switch-off condition for
D1 boils down to:

Vr < 0 [3.3]

For state D1 ON, we know that Vd1 = 0. In this case, we
have Vrec = Vr, and thus irec = Vr/R. As diode D1 is switched
on for irec > 0, we can therefore state that the conduction
condition for D1 is:

Vr > 0 [3.4]

For a sinusoidal input voltage Vr of the form:

Vr (t) = Vrmax. sin (2π.F.t) [3.5]

this is equivalent to noting, for the interval 0 ≤ t ≤ T (where
T = 1/F ), that:

– D1 is ON for 0 ≤ t ≤ T/2, so we have Vrec = Vr and irec =
Vr/R;

– D1 is OFF for T/2 ≤ t ≤ T with Vrec = 0 and irec = 0.
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An equivalent half-wave rectifier exists for three-phase
networks. This is the P3 assembly shown in Figure 3.3. In
studying a circuit of this type, we note that the cathodes of
diodes D1, D2 and D3 are connected to a common node.
Consequently, this group of three diodes (known as a
common-cathode cell) can only include one conducting diode
(leading to switch off of the two others): this is the diode with
the highest potential at the anode. We can therefore write
that Vrec is equal to the maximum of the three-phase voltages
VaN , VbN and VcN :

Vrec = max
x∈{a,b,c}

(VxN ) [3.6]

Finally, we can write the expression of the average voltages
〈Vrec〉 at the load terminals. Generally, this is written (for a
single bridge Pn with n > 1 phases) as:

〈Vrec〉 = nVmax

π
sin
(π
n

)
[3.7]

where Vmax is the amplitude (and not the effective value) of
the phase voltages.

This general formula can be applied to the diagram in
Figure 3.4. For the P3 bridge, it is, clearly, used as follows:

〈Vrec〉P3 =
3Vmax

π
sin
(π
3

)
=

3Vmax

√
3

2π
[3.8]

This is not applicable to the single-phase context, where we
simply use:

〈Vrec〉P1 =
Vmax

π
[3.9]

The waveform of the voltage supplied by the half-wave
rectifier is shown in Figure 3.2 for the case of a power supply
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of 230V RMS at 50Hz. The waveform for the P3 bridge is
shown in Figure 3.5.
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Figure 3.2. Voltage waveforms for a single-phase
half-wave rectifier
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Figure 3.3. Three-phase half-wave diode rectifier (P3)
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Figure 3.4. Three-phase half-wave diode rectifier
(P3) with current source
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Figure 3.5. Voltage waveforms for a three-phase, single-alternation
rectifier (P3) in a 230–400V/50Hz network

In terms of currents, we generally consider an ideal case
(which may be relatively close to reality) of a power supply
with a constant current I0. In this case, the current absorbed
by a phase may be easily expressed as follows:

– either I0 when the corresponding diode is switched on;

– or 0 when the diode is switched off.

The interest of the corresponding waveforms is limited.
However, we may like to consider the power factor (on the
source side – denoted as AC) of this type of converter, as we
can easily calculate the active power, which is the same on
the AC and DC sides as the diodes are presumed to be ideal,
i.e. not subject to losses. In the case of the P1 bridge, we
therefore have:

PP1
ac = PP1

dc = 〈Vrec〉 .I0 = Vmax.I0
π

[3.10]

For bridge P3, we have:

PP3
ac = PP3

dc = 〈Vrec〉 .I0 = 3Vmax.I0
√
3

2π
[3.11]
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Figure 3.6. Half-wave n-phase diode rectifier
(Pn) with current source

On the AC side, we calculate the apparent power, which is
defined in general terms (in non-sinusoidal mode) as follows:

S � nVmaxIRMS√
2

[3.12]

where IRMS is the RMS current in a phase. We know (see
Appendix 1) that the RMS value of a square periodic signal
x(t), with period T and a value of X0 for a fraction αT of the
period and 0 the remaining time, is equal to X0

√
α.

Consequently, we note that:

IP1RMS = I0
√
2 [3.13]

and:

IP3RMS = I0
√
3 [3.14]

In more general terms, for a bridge Pn with n > 1 phases:

IPnRMS = I0
√
n [3.15]
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Consequently, we have the following power factor for
bridge P1:

λP1 =
1

π
	 0, 318 [3.16]

and for bridges Pn (with n > 1) :

λPn =

√
2 sin

(
π
n

)
π
√
n

[3.17]

In the case of a P3 bridge, this gives us a value of
1

π
√

2
	 0, 225. We thus see that the power factor is reduced as

the number of phases increases.

REMARK 3.1.– One point which creates significant difficulties
for this type of rectifier assembly is the presence of a current
component (DC) drawn from the network. This is strictly
prohibited in the Electricité de France (EDF) (a French
electric utility company) network for instance; in the (very
frequent) context of installations with a transformer at the
top, the circulation of DC currents in the secondary element
of a transformer will lead to:

– losses in conductors;

– a displacement of the average magnetic state of the
sheets making up the magnetic circuit of the distribution
transformer (resulting in a different saturation for positive
and negative half-cycles, leading, among other things, to
voltage distortions).

3.1.2. Full-wave bridges

Full-wave bridges may be studied as an association of two
half-wave bridges (one with common cathodes, as above, and
the other with common anodes). Note, however, that there is
a subtle difference in the naming of double bridges PDn; the
single-phase bridge is known as PD2 (which is also known as
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a Graetz bridge). The association of the two-phase voltages in
this case is clear, as shown in Figure 3.10.

Finally, note that the instantaneous voltage Vrec is
expressed as:

• VaN when VaN > 0;

• −VaN when VaN < 0.

In the case of a sinusoidal voltage source VaN (with
amplitude Vmax), we may easily establish the expression of
〈Vrec〉:

〈Vrec〉 = 2Vmax

π
[3.18]

Figure 3.7 shows the waveform obtained for a 230V RMS
sinusoidal voltage at 50H z.
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Figure 3.7. Voltage waveforms for a half-wave
single-phase rectifier

When the rectifier powers a load modeled as a current
source I0 as shown in Figure 3.8, we see that the phase current
ia is expressed as:

• I0 when VaN is positive;

• −I0 when VaN is negative.
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Figure 3.8. Full-wave single-phase diode rectifier
(PD2) with current source

In this context, the evaluation of the input power factor
λPD2 of this bridge is trivial, as we can write the power P at
the input and output of the converter as follows:

P = 〈Vrec〉 .I0 = 2Vmax.I0
π

[3.19]

We may also write the apparent power Se at the input of the
rectifier, noting that VRMS = Vmax/

√
2 and IRMS = I0. Hence:

λPD2 =
P

Se
=

2
√
2

π
	 0.900 [3.20]

The rectifier input current ia is a square wave (+I0 if
vaN > 0 and −I0 if vaN < 0), and consequently, it presents a
fundamental component with an amplitude of Ia1max = 4I0

π in
phase with the voltage provided by the network (i.e. an RMS
value of Ia1max = 2

√

2I0
π ). From this, we conclude that the

rectifier absorbs no reactive power, as the apparent power is
simply composed of an active term and a distortion term
(S2 = P 2 +D2).

For the three-phase PD3 full-wave bridge (see Figure
3.10), we note that the association of two P3 (one with
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common cathodes, the other with common anodes) leads to an
expression of the rectified average voltage 〈Vrec〉:

〈Vrec〉 = 3Vmax

√
3

π
[3.21]

This is a specific case of the general expression obtained for
a bridge PDn:

〈Vrec〉 = 2nVmax

π
sin
(π
n

)
[3.22]

The waveform of Vrec(t) is shown in Figure 3.9 for the case
of a power supply using a 230/400V network at 50Hz.
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Figure 3.9. Voltage waveforms for a PD3 diode rectifier

Once again, we see that formula [3.22] is not directly
applicable for the PD2 bridge; as we have already seen,
voltage VaN is composed of two identical voltages in opposite
phases, connecting the double single-phase bridge to those
using greater numbers of phases.

The waveform obtained for a phase current with a “current
source”-type load is presented in Figure 3.11. We see that,
over a period, the current takes three distinct values (+I0, 0
and −I0) and that the signal is in phase with the voltage.
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Consequently, the fundamental component of the current is
purely active; no reactive power is consumed in the case of a
PD3 diode rectifier (but a distortion power D exists).
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Figure 3.10. Double-alternation three-phase diode rectifier
(PD3) with current source

0 30 60 90 120 150 180 210 240 270 300 330 360
−400

−200

0

200

400

P
h

as
e 

v
o

lt
ag

es
 (

V
)

 

 

0 30 60 90 120 150 180 210 240 270 300 330 360
−15

−10

−5

0

5

10

15

Angle θ = ω .t (°)

L
in

e 
cu

rr
en

t 
(A

)

 

 

vaN
vbN
vcN

Ia
Fundamental

Figure 3.11. Current waveforms for a PD3 diode rectifier. For a
color version of the figure, see www.iste.co.uk/patin/power2.zip

Once again, we should consider the power factor at the
input of this type of converter (PD3). To do this, we follow the
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same method used above, calculating the active power
output P :

P =
3Vmax.I0

√
3

π
[3.23]

We also calculate the apparent input power. To do this, we
note that the currents absorbed in each phase are offset by
120°, and the currents are non-null for 2/3 of the period. For
the phase current ia (with a “current source I0” type load, in
accordance with Figure 3.10), we successively obtain:

– a null current for 1/6 of the period;

– a current equal to I0 for 1/3 of the period;

– a null current again for 1/6 of the period;

– ia = −I0 for 1/3 of the period.

In this case, the RMS phase current IaRMS is expressed as
follows:

IaRMS = I0.

√
2

3
[3.24]

We can then calculate the apparent power S at the rectifier
input point:

S = 3VRMS.IaRMS = Vmax · I0.
√
3 [3.25]

From this, we deduce the corresponding power factor λPD3:

λPD3 =
3

π
	 0.955 [3.26]

We note that this power factor is better than that obtained
using the full-wave single-phase bridge (PD2).
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Considering only the fundamental component of the
current, we note that this element has a maximum value
Ia1max expressed as follows:

Ia1max =
4I0
π

cos
(π
6

)
=

2
√
3I0
π

[3.27]

giving an RMS value of Ia1RMS =
√

6I0
π .

3.2. Rectifier DC output filters

We will consider the dimensioning of a filter in the context
of a PD2 rectifier, but this approach is applicable for all
rectifier types, including controlled rectifiers (although the
calculations involved are more complicated in the latter case).

3.2.1. LC filters

In the case of a rectifier (diode PD2, in this case) associated
with an LC filter (see Figure 3.12), we note that:

– upstream, it behaves as a (quasi-) constant current
source;

– downstream, it behaves as a (quasi-) constant voltage
source.

We therefore consider from the outset that the LC filter
obtains the desired objective (smoothing of the output voltage
and the input current). This is a classic approach in power
electronics (which will be seen again in the context of
switch-mode power supplies in Volume 3 [PAT 15b]), used to
ensure coherence between initial hypotheses and the results
obtained with selected L and C values.
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Figure 3.12. LC filter at the output point of a rectifier

In permanent mode, as the system evolves in a periodic
manner (100Hz for the output of a rectifier with a power
supply of 50Hz), we note that:

〈vL〉 = 0 [3.28]

and:

〈iC〉 = 0 [3.29]

If we consider that the current in the inductance is smooth
and can be assimilated to a constant, the PD2 rectifier should
behave in an identical manner to that shown in Figure 3.7.

Vma x

Vrec (θ)

θ = ω.t

2 Vma x
π

θ1 θ2 ππ
2

Figure 3.13. Voltage waveforms for a full-wave rectifier
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In Figure 3.13, we see the average value of the voltage
Vrec (θ) where θ = ω.t, along with the angles θ1 and θ2 at
which the instantaneous voltage passes through this value
during the interval [0;π]. These angles are defined as follows:

θ1 = arcsin

(
2

π

)
	 0.690rad = 39.5° [3.30]

and:

θ2 = π − θ1 	 2.45rad = 140.5° [3.31]

If we take the voltage vC at the capacitor terminals as
constant, it can only be equal to 2Vmax

π as 〈vL〉 = 0, in
accordance with the loop equation highlighted in Figure 3.12:

Vrec = vL + vC [3.32]

and thus:

〈Vrec〉 = 〈vL〉+ 〈vC〉 [3.33]

We can therefore calculate the peak-to-peak ripple ΔIL of
current iL in the inductance:

ΔIL =
1

Lω

ˆ θ2

θ1

Vmax

(
sin θ − 2

π

)
.dθ [3.34]

By integration, we obtain:

ΔIL =
Vmax

Lω

(
− cos θ2 + cos θ1 − 2

π
(θ2 − θ1)

)
[3.35]

By symmetry in function cos (·) and using the values of θ1
and θ2 established in equations [3.30] and [3.31], we may
finally write that:

ΔIL =
2Vmax

Lω

(
cos θ1 − 1 +

2θ1
π

)
	 0, 421Vmax

Lω
[3.36]
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Once we have obtained this expression, we must simply
define, for a given network (i.e. Vmax and ω), the maximum
acceptable level of current ripple in order to calculate the
minimum required value of L.

For example, if we consider a 230VRMS, 50Hz network, and
we know that the load consumes a current Iload = 10A, we
need to keep the current ripple in the inductance below 1A
from peak to peak (i.e. 10% ripple). In these conditions, we
obtain:

L =
0.421Vmax

ΔILω
	 436mH [3.37]

Note that this value is high for an inductance required to
withstand a peak current of 10.5A (without saturation1).

Once we have calculated the current ripple, we need to
determine the expression of the peak-to-peak voltage ripple
ΔVC at the terminals of C. We know that the current iL in the
inductance includes a continuous component IL0 and a
variable component δiL:

iL (θ) = IL0 + δiL (θ) [3.38]

The current iC in the capacitor only includes a variable
component δiC (as it has a null average value at steady state):

iC (θ) = δiL (θ) [3.39]

If the load absorbs a strictly constant current Iload, we
deduce that:

IL0 = Iload [3.40]

1 In this type of application, we use an iron-core winding (see Chapter 5
[PAT 15a]).
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and that the current ripple in the inductance is equal to the
current in the capacitor:

δiL = δiC = iC [3.41]

Several approaches may then be used to obtain the desired
result (i.e. ΔVC):

– accurate analytical calculation of the integral of δiL (non-
sinusoidal current);

– analytical calculation of the amplitude δIL1 of the
fundamental component of current δiL then of the
corresponding ripple (limited to the harmonic) of voltage
ΔVC1, considered to be fairly close to ΔVC ;

– an approximate calculation based on the assumption that
a sinusoidal ripple of current δiL with a pulsation ω and
a peak-to-peak amplitude ΔIL will create a voltage ripple
ΔVC analogous to that obtained through accurate analytical
calculations.

This final method provides satisfactory results for a very
low number of calculations. It does not require us to integrate
piecewise-defined sinusoidal signals or to calculate the
fundamental component of a Fourier series. This method is
therefore preferred in cases where a accurate result is not
required (this is generally the case in practice).

The current ripple is fixed by the specification, so we may
calculate the voltage ripple at the terminals of C by direct
application of Ohm’s (generalized) law:

ΔVC =
ΔIL
2Cω

[3.42]

REMARK 3.2.– Note the presence of coefficient 2 in the
denominator of this formula. As ω is the pulsation of the
network, we must remember that the current (and voltage)
ripple output from a PD2 diode rectifier will present a
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pulsation (or frequency) of twice this value. In the case of a
PD3 (still using diodes), a coefficient of 6 is required, as we
see from the waveforms in Figure 3.9.

As for the current ripple (fixed at 1A in our example), we
determine a maximum value of ΔVC in order to determine a
minimum value of C. For example, we know that the output of
a PD2 diode rectifier connected to a 230VRMS, 50Hz network
will have an average voltage of 207V. We then need to select a
maximum peak-to-peak ripple, for example 1% (i.e. 2.07V) in
order to obtain a result:

C =
ΔIL

2ΔVCω
	 1

2× 2.07× 2π × 50
= 769μF [3.43]

3.2.2. Capacitor filters

While the solution presented above is effective in filtering
terms, it is cumbersome and expensive due to the use of a
coil. In low-cost approaches, we tend to prefer solutions which
are satisfactory from a load perspective (good voltage
filtering) but which do not perform as well from a source
perspective (highly pulsed current in the network). This
solution takes the form of a simple capacitor filter. In this
configuration, as shown in Figure 3.14, a filtering capacitor is
placed at the output terminals of the diode rectifier. In this
section, we will consider the case of a PD2 diode rectifier. The
network will be presumed ideal (zero impedance), as will the
capacitor.

D1

Vrec

D2

D4

vD 1

Ich
Vnet

C

inet

iC

iD 1

D3

Figure 3.14. Full-wave single phase rectifier with capacitor filter
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To simplify our study, we will also consider that the load
behaves as an ideal current source, absorbing a current Iload
independently of the applied voltage Vrec.

As in the case of operations with a load which behaves as a
current source, the operating modes:

– mode 1: (D1, D4) ON and (D2, D3) OFF;

– mode 2: (D1, D4) OFF and (D2, D3) ON

are accessible; we also have an additional operating mode
(mode 3) in which all of the diodes are switched off. In this
specific case, the capacitor + source Iload assembly functions
autonomously. This gives a constant current discharge, which
consequently presents a linear reduction in voltage Vrec(t) as
a function of time:

Vrec (t) = −Iloadt

C
+ Vrec (0) [3.44]

where Vrec(0) is the initial voltage (at the beginning of this
operating phase, we arbitrarily take t = 0).

It is also useful to change the variable in order to express
this equation as a function of θ rather than t:

Vrec (θ) = −Ichθ

Cω
+ Vrec (0) [3.45]

Moreover, we see that when the rectifier is operating in
mode 1 or mode 2, the voltage Vrec is always equal to |Vnet(t)|.
Consequently, a graphical representation (Figure 3.15) of the
rectified value of the “network” voltage is useful as a basis for
reasoning. Taking the hypothesis that the capacitor is fully
discharged at the beginning of our study, and if
Vnet(θ) = Vmax. sin(θ), then the rectifier immediately switches
to mode 1, and thus Vrec(θ) = Vnet(θ). This operating mode
lies a little beyond angle θ = π

2 , and will be denoted as π
2 + α.
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Figure 3.15. Waveform for top capacitor filtering

This angle, at which the rectifier switches to mode 3,
corresponds to a cancellation of the current entering the
rectifier. This current is equal to the sum Ich + iC . During the
first operating phase (mode 1), we have:

iC (t) = C
dVrec

dt
[3.46]

and following θ with Vrec (θ) = Vmax. sin θ:

iC (θ) = CωVmax cos θ [3.47]

The current inet is therefore canceled out when:

Iload + CωVmax cos θ = 0 [3.48]

Replacing θ by π
2 + α, the previous equation becomes:

Iload − CωVmax sinα = 0 [3.49]

i.e.:

α = arcsin

(
Iload

CωVmax

)
[3.50]
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REMARK 3.3.– Note that this angle is determined at the end
of a phase in transitional mode, but it remains present in the
following periods (i.e. in permanent mode).

The voltage at this instant constitutes the initial condition
for operating mode 3:

Vrec

(
θ =

π

2
+ α

)
= Vmax. cosα [3.51]

We then have a capacitor discharge in accordance with
equation [3.45], and we need to determine angle β involved in
the reestablishment of conduction through the rectifier
(mode 2). The equation for the discharge line in the global
reference frame is:

Vrec (θ) = Vmax. cosα− Iload
Cω

(
θ − π

2
− α

)
[3.52]

We therefore need to calculate the angle of intersection
3π
2 − β between this line and the equation of the sinusoid
−Vmax. sin θ:

Vmax. cosα− Iload
Cω

(
3π

2
− β − π

2
− α

)
= −Vmax. sin

(
3π

2
− β

)
[3.53]

This may be rewritten as:

Vmax. cosα− Iload
Cω

(π − α) = Vmax. cosβ − Iload
Cω

β [3.54]

This equation is hard to solve analytically. Evidently, a
digital approach is entirely suitable (and simulations may be
used in cases which are potentially more complex than for a
“current source” type load), but we may also use
simplifications if we assume that voltage smoothing is
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effective (as for LC filtering). In these cases, angle β is low,
and we may carry out a development of the cosine function:

cosβ ∼
0
1− β2

2
[3.55]

We thus obtain:

Vmax. cosα− Iload
Cω

(π − α) = Vmax.

(
1− β2

2

)
− Iload

Cω
β [3.56]

Note that α is no longer an unknown value, as we
established an expression in [3.50]. The only unknown value
is β, and the limited development allows us to establish a
second-order equations. We thus see that when two real
solutions are established, only one solution can genuinely be
used; this solution must clearly lie within the interval

[
0; π2

]
.

The simplest dimensioning approach is therefore iterative.
It is best to fix a value for capacity C and evaluate the voltage
ripple obtained in this case (ΔVC = Vmax. (1− cosβ)), and then
to adjust the value of C up or down as a function of the desired
voltage ripple.

When selecting an initial capacity, we note that the phase
of “mode 3” covers an angular range smaller than π radians;
consequently, the voltage ripple ΔVC cannot exceed the
following value:

ΔVC =
πIload
Cω

[3.57]

As an example, if we consider a load consuming 10A and
a 230VRMS, 50Hz network, we may, for instance, initialize the
dimensioning process using a voltage ripple of 10% (N.B. the
value of the average output voltage is close to Vmax and not
to 2Vmax

π – we will therefore select a ripple ΔVC of 32V). This
choice leads us to select a capacitor value of 3, 100μF.
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Based on this choice, we can then calculate angles α and β:

α = arcsin

(
Ich

CωVmax

)
	 0.031rad [3.58]

giving us a very small angle (1.78°).

Once this result has been established, we can write our
second-order equation in terms of β:

162.5β2 + 10.27β − 32.1 = 0 [3.59]

This equation has a positive discriminant Δ 	 20, 970 and
therefore has two real roots, which we will call β1 and β2:

β1 =
−10.27−√

Δ

2× 162.5
	 −0.477 rad [3.60]

and:

β2 =
−10.27 +

√
Δ

2× 162.5
	 0.414rad [3.61]

We have already established a desired interval of
[
0; π2

]
, i.e.

approximately [0; 1.57]. We can therefore rule out angle β1 and
consider that the desired angle is β2 	 0.414 rad 	 23.7°.

Finally, we may verify the voltage ripple value, knowing
that ΔVC = Vmax. (1− cosβ). We obtain ΔVC 	 27.5V,
representing an error of 5V in relation to the initial value
used to calculate C with the “highly approximative” formula
[3.57].

On this basis, we may create a graph of the current
absorbed in the network (see Figure 3.16). A digital
calculation of the fundamental component of this current
gives us an amplitude of 20.6A (14.56ARMS) and a phase shift
of 15.3° in advance of the voltage. We can therefore evaluate
the active power taken from the network (3.24kW). We can
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also calculate the effective total current Inet (31.75ARMS) in
order to deduce the apparent power (7.3kVA). We thus obtain
a very low-power factor (0.44) in comparison to that obtained
using LC filtering, which can tend to the theoretical result
obtained for a constant current source (0.9). Clearly, the
benefits of this approach in terms of simplicity (and
consequently, of cost savings) are most important in the case
of “mass-market” low-power applications, although a large
number of devices of this type connected to the network can
have a significant effect on the network itself (and on the
overdimensioning of all equipment, from power stations to
the equipment used in the network).
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Figure 3.16. Waveform for top capacitor filtering

REMARK 3.4.– The result shown in Figure 3.16 corresponds
to an ideal network. In practice, this current is somewhat
smoothed (with no discontinuity when the bridge is switched)
due to the impedance of the lines and transformers used in
the electrical network. This reduces the distortion rate
(which is still high) of the current Inet, and, as a result,
slightly increases the input power factor of the rectifier.
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3.3. Controlled rectification

3.3.1. Half-wave bridges

In studying controlled bridges, we begin by considering
their uncontrolled equivalents, adding a delay in the
conduction interval with a control angle ψ (the firing delay
angle). This gives us rectified voltage Vrec waveforms with a
higher level of ripple, but also, and especially, an average
voltage 〈Vrec〉 which can be controlled using angle ψ (or, more
accurately, cosψ).

Note that in theory, the value of ψ may vary from 0° to
180°; which means that cosψ may take any value from 1 to -1
inclusive. In practice, the maximum accessible angle is
approximately 150°. The remaining 30° are known as the
buffer angle, and correspond to a time period of
approximately 1.67ms, which must be greater than or equal
to the turn-off time (generally denoted as Tq) specified in
manufacturer documentation. This corresponds to the
minimum time needed to guarantee that the component will
have regained the ability to switch off. If this time is not
respected, the thyristor is switched back on, in the same way
as a classic diode, when conditions are once again respected.

REMARK 3.5.– To use an analogy, we should remember that a
thyristor is the electronic equivalent of a Water Closet (WC)
flush system. The thyristor remains switched on as long as
the current traveling through it is not canceled out; it only
truly switches off when the current is canceled for a sufficient
period of time (long enough to evacuate the charge stored in
the semiconductor).

The P3 thyristor bridge has an average output voltage
〈Vrec〉P3 of the form:

〈Vrec〉P3 =
3Vmax

π
sin
(π
3

)
cosψ =

3Vmax

√
3

2π
cosψ [3.62]
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In general terms, for a Pn thyristor bridge, we have:

〈Vrec〉Pn =
nVmax

π
sin
(π
n

)
cosψ [3.63]

At best, the power factor is equal to that of the
corresponding diode bridge (ψ = 0), but is reduced as ψ
increases. This is connected to the fact that the current wave
is offset in relation to the voltage wave at the rectifier input
terminals. In the case of diode rectifiers, the current
fundamental was in phase with the sinusoidal voltage wave,
and so we obtained cosϕ1 = 1 (where ϕ1 is the offset between
the current fundamental and the voltage). The power factor
was only degraded by the presence of a continuous component
absorbed by the network, and by the multiple harmonics of
the network voltage; this is known as a distorting power D.
The reactive power Q was strictly null. In this case, the
distortion power is still present, along with a non-null
reactive power term, as ϕ1 = ψ.

3.3.2. Double bridges

The control of “thyristor only” double bridges (PD2 or PD3,
respectively, in Figures 3.17 and 3.18) allows them to provide
a constant positive or negative voltage to a load, while the
current in the load is unidirectional due to the unidirectional
behavior of thyristors (which behave in the same way as
diodes in this respect). The power supplied to the charge can
therefore be positive or negative: the bridge either behaves as
a rectifier, when power is directed from the AC side to the DC
side, or as an inverter (assisted) when the power circulates
from the DC side to the AC side. In this case, we talk of
assisted inverters, as the bridge cannot operate as an
inverter when the power is moving in the AC to DC direction:
this operating mode corresponds to a braking mode, if the
“DC” load is a DC electrical machine. From an application
perspective, note that in this case, the powered machine will



AC/DC Converters 127

operate in two quadrants (two directions of rotation, one
torque direction); this corresponds to the case of a hoist or an
elevator, for example.
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Figure 3.17. Full-wave single-phase thyristor rectifier
(PD2) with current source
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Figure 3.18. Double-alternating three-phase thyristor
rectifier (PD3) with current source
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As with half-wave bridges, the average output voltage of
the rectifier takes the same expression as for non-controlled
rectifiers (i.e. diode rectifiers), with the multiplication by a
coefficient cosψ. In this case, for a PD3 bridge, we have:

〈Vrec〉PD3 =
6Vmax

π
sin
(π
3

)
cosψ =

3Vmax

√
3

π
cosψ [3.64]
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Figure 3.19. Output voltage waveform for a PD3 thyristor
rectifier (ψ = 30° then ψ = 150°)

More generally, for a PDn bridge:

〈Vrec〉PDn =
2nVmax

π
sin
(π
n

)
cosψ [3.65]

The current absorbed by a PD3 thyristor bridge is the same
as that for a diode PD3, except for a phase shift of angle ψ
in relation to the corresponding phase voltage, as shown in
Figure 3.21.
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We have the same expression for the maximum and
effective values of the rectifier input current(s): this means
that the apparent power is the same as for a diode rectifier,
but with an offset of angle ψ between the voltage and the
fundamental current (denoted as ia1(t)). We therefore have
the following active power:

PPDn =
2nVmaxI0

π
sin
(π
n

)
cosψ [3.66]

and a reactive power of:

QPDn =
2nVmaxI0

π
sin
(π
n

)
sinψ [3.67]
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Figure 3.20. Operating area of a PD3 thyristor bridge
in the plane (P,Q) with current source

In the specific case of a PD3 bridge, we have:{
PPD3 =

3VmaxI0
√

3
π cosψ

QPD3 =
3VmaxI0

√

3
π sinψ

[3.68]
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We can then verify that P 2 + Q2 �= S2, following the
expression of S defined in [3.25] for the PD3 bridge (the
result is valid for both diode and thyristor rectifiers). The
apparent power S entering the rectifier therefore includes
three components: the active power P , reactive power Q and
distortion power D, in accordance with the relationship:

S2 = P 2 +Q2 +D2 [3.69]

Note that this is the most general example of decomposition
of the apparent power in non-sinusoidal periodic mode.

System [3.68] shows that the behavior of a PD3 thyristor
bridge with a “current source I0” type load may be
represented in the plane (P,Q), located on a circle centered
on the origin of the reference frame with a radius of
Pmax = 3VmaxI0

√

3
π . Note that the area of possible operation is

limited to the upper semi-circle, as illustrated by the graph in
Figure 3.20; angles in excess of 150° are also generally
inaccessible, due to the margin angle imposed by controls in
order to provide thyristors with sufficient time to switch off.

The antiparallel connection of two full-wave three-phase
thyristor bridges allows us to create a four-quadrant converter,
each being responsible for two different quadrants. The
control approach used may be more or less sophisticated, and
may include the use of an interconnecting winding. These
approaches include:

– control of one converter at a time (with non-instantaneous
transition from one to the other when the current cancels
out in the load – leading to momentary loss of control of the
machine torque, in the case of a DC machine);

– simultaneous control of both converters, with a current
circulating between the two (limited by circulating current
inductor). While control is more complex in this case, there
is no latency during the passage through zero current (no
momentary loss of control).



AC/DC Converters 131

0
30

60
90

12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

−
50

00

50
0

Phase voltages (V)

 

 

0
30

60
90

12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

−
2I

o

−
Io0Io2I
o

Linecurremt (A)

 

 

0
30

60
90

12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

−
2I

o

−
Io0Io2I
o

A
ng

le
 θ

 =
 ω

.t 
(°

)

 
Line current (A)

 

 

v aN v bN v cN

C
ur

re
nt

i a

Fu
nd

am
en

ta
l

C
ur

re
nt

 i
a

Fu
nd

am
en

ta
l

ψ
 =

 3
0°

ψ
 =

 1
50

°

F
ig

ur
e

3.
21

.W
av

ef
or

m
of

in
pu

tl
in

e
cu

rr
en

ts
fo

r
a

P
D

3
th

yr
is

to
r

re
ct

ifi
er

(ψ
=

3
0
°

th
en

ψ
=

1
5
0
°)

.F
or

a
co

lo
r

ve
rs

io
n

of
th

e
fig

ur
e,

se
e

w
w

w
.is

te
.c

o.
uk

/p
at

in
/p

ow
er

2.
zi

p



132 Power Electronics Applied to Industrial Systems and Transports 2

3.3.2.1. Half-controlled bridges

Half-controlled PD2 and PD3 bridges are similar to the full-
bridge thyristor versions, but half of the switches are diodes.
In this case, we realize that the sign of the voltage supplied to
the load can no longer be changed by controlling the thyristors.
Therefore, only a strictly positive variable average voltage can
be produced, hence these convertors are single-quadrant ones.

3.4. Overlap phenomenon

3.4.1. Description and model

So far, we have considered rectifiers connected to ideal
voltage sources on the AC side and to ideal current sources on
the DC side2. In practice, the AC sources used with rectifiers
are not ideal voltage sources; they are, in fact, powerful
networks characterized by an electromotive force
electro-motive force (e.m.f.) in series with a low-value
impedance. However, these networks notably include
transformers, and, as seen in Chapter 5 of Volume 1 [PAT
15a], these components present a leakage inductance in their
secondary winding (added to the line inductance of the cables
separating a distribution transformer from the load). The
input source can be modeled more accurately as a voltage
source in series with an inductance (and even a resistance).
In our specific context, however, we will ignore the resistance
component of the network in order to focus on its inductive
behavior. In rectifiers, this behavior is responsible for a
phenomenon known as overlap.

This point may be illustrated using the specific example of
a PD3 diode rectifier; we will then generalize our overlapping
model for other converter types (diode or thyristor bridges).
This study is based on the diagram shown in Figure 3.22,

2 With the exception of a rectifier with a capacitor filter.
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where we see that in addition to e.m.f., the network presents
identical inductances lnet for each phase (based on the
hypothesis of a balanced network). However, the model of the
DC bus is the same as that used in Figure 3.10: we consider
that the load behaves as an ideal current source.

VP N

lnet

lnet

lnet

ia

ib

ic

Va

Vb

Vc

I0

P

N

O

ibtiat ict

iab ibb icb

Dat Dbt Dct

Dab Dbb Dcb

Figure 3.22. Diode PD3 with a current-source type load,
with input from an inductive network

Having said that, it is no longer possible to switch from
one diode to another in a switching cell. Previously, for the
upper cell (D1, D2, D3), for example, the conducting diode was
the one having the highest potential at its anode. In this case,
two diodes may be in conduction simultaneously; in fact when
a diode begins to conduct (as the potential of its anode
becomes higher than that of the diode previously in
conduction), the current through it increases in a
non-instantaneous manner, while the current in the diode
which was initially in conduction decreases in the same
proportion. The two currents (of diodes denoted as u and v, in
the general case) must verify the following condition at all
times:

iu + iv = I0 [3.70]
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As a consequence, the equation of a loop including two
phases of the power network can be written:

Vu − Vv = lnet

(
diu
dt

− div
dt

)
[3.71]

Based on [3.70]:

diu
dt

+
div
dt

= 0 [3.72]

thus:

Vu − Vv = 2lnet
diu
dt

[3.73]

On the other hand, the input phase voltages Vu and Vv may
be written in the form:

Vu = Vmax. cos (ω.t+ φ0) [3.74]

and:

Vv = Vmax. cos

(
ω.t+ φ0 ± 2π

3

)
[3.75]

These voltages consequently cross for:

ω.t+ φ0 = ±π

3
[3.76]

having a value of Vmax/2.

Switching can then be analyzed from this instant (or, more
accurately, this angle, after changing the variable θ = ω.t+φ0).
Thus:

Vu = Vmax. cos (θ) [3.77]
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For Vv, we decide, arbitrarily, to consider that this voltage
presents a lag3:

Vv = Vmax. cos

(
θ − 2π

3

)
[3.78]

Consequently, before θ0 = π/3, the conducting diode is Dut;
after this instant, diode Dvt enters into conduction. It is
therefore necessary to evaluate the duration of simultaneous
conduction in the two diodes (known as overlap). Taking
equation [3.73], after changing the variable, we may write:

iu (θ)− iu (θ0) =
1

2lnetω

ˆ θ

θ0

(Vu (ξ)− Vv (ξ)) .dξ [3.79]

As diode Dut is in conduction before θ0, we know that
iu(θ0) = I0. Replacing Vu and Vv by their expressions, we
obtain:

iu (θ) = I0 +
Vmax

2lnetω
·
ˆ θ

θ0

(
cos (ξ)− cos

(
ξ − 2π

3

))
.dξ [3.80]

hence:

iu (θ) = I0 +
Vmax

2lnetω
·
[
sin(θ)− sin(θ0) + sin

(
θ0 − 2π

3

)
− sin

(
θ − 2π

3

)]
[3.81]

Taking θ0 = π/3, we obtain:

iu (θ) = I0 +
Vmax

2lnetω
·
[
sin(θ)− sin

(
θ − 2π

3

)
− 2 sin

(π
3

)]
[3.82]

3 This choice does not affect the final result.
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Finally, as we like to consider an instant θ situated after θ0,
we can change the variable again:

θ = θ0 + α =
π

3
+ α [3.83]

Hence:

iu (θ) = I0 +
Vmax

2lnetω
·
[
sin
(π
3
+ α

)
− sin

(
α− π

3

)
−2 sin

(π
3

)]
[3.84]

We may use this result with the following trigonometric
formulas:{

sin (a+ b) = sin a. cos b+ sin b. cos a

sin (a− b) = sin a. cos b− sin b. cos a
[3.85]

hence:

iu

(
θ =

π

3
+ α

)
= I0 −

√
3Vmax

2lnetω
· (1− cosα) [3.86]

The “angular” duration α = αe of simultaneous connection
of the two diodes can then be calculated by determining the
instant at which current iu cancels out:

iu

(π
3
+ αe

)
= I0 −

√
3Vmax

2lnetω
· (1− cosαe) = 0 [3.87]

We thus obtain:

1− cosαe =
2lnetω.I0√

3Vmax

[3.88]

hence:

αe = arccos

(
1− 2lnetω.I0√

3Vmax

)
[3.89]
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During the phase in question, we may calculate the voltage
vPO applied to the common anode of the rectifier:

vPO = Vu − lnet
diu
dt

= Vv − lnet
div
dt

[3.90]

hence:

vPO =
1

2

(
Vu − lnet

diu
dt

+ Vv − lnet
div
dt

)
[3.91]

and, using [3.72], we can simplify this expression to obtain:

vPO =
1

2
(Vu + Vv) [3.92]

As voltage Vv becomes higher than Vu, the obtained voltage
is lower than that used in the idealized model presented
above. Thus, overlap leads to an instantaneous voltage
drop-off, resulting in a reduction in the average voltage over a
period. As we have already seen, the average output voltage
of a double bridge is twice the voltage of a single bridge. This
is still verifiable, so we may base our reasoning on the single
bridge (D1t,D2t,D3t). We may calculate the average voltage
〈vPO〉, placing the overlap phase at the beginning of the
integration interval. In our case, we like to integrate vP0(θ)
between π/3 and π:

〈vPO〉 = 2π
3

´ π
π/3 vPO (θ) .dθ = 2π

3

(´ π/3+αe

π/3
Vu(θ)+Vv(θ)

2 dθ

+
´ π
π/3+αe

Vv (θ) .dθ
) [3.93]

remembering that:{
Vu (θ) = Vmax. cos (θ)

Vv (θ) = Vmax. cos
(
θ − 2π

3

) [3.94]

In order to simplify the calculation, it is useful to
determine the voltage drop-off resulting from the overlap and
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not the expression of the output voltage. We therefore need to
calculate the difference between the ideal average output
voltage, denoted as 〈vPO〉0, and [3.93]. Note that:

〈vPO〉0 =
2π

3

ˆ π

π/3
Vv (θ) .dθ

=
3

2π

(ˆ π/3+αe

π/3
Vv (θ) dθ +

ˆ π

π/3+αe

Vv (θ) .dθ

)
[3.95]

hence:

Δ 〈vPO〉 = 〈vPO〉 − 〈vPO〉0

=
3

2π

(ˆ π/3+αe

π/3

Vu (θ)− Vv (θ)

2
dθ

)
[3.96]

Replacing Vu, Vv and αe by their respective values, we
obtain:

Δ 〈vPO〉 = 3Vmax

√
3

4π

×
(ˆ π/3+arccos

(
1−

2lnetω.I0√
3Vmax

)

π/3
cos
(
θ +

π

6

)
dθ

)
[3.97]

hence:

Δ 〈vPO〉 = 3Vmax

√
3

4π

×
(
sin

(
π

2
+ arccos

(
1− 2lnetω.I0√

3Vmax

))
− 1

)
[3.98]

Applying one of the trigonometric formulas set out in [3.85],
we obtain:

Δ 〈vPO〉 = −3lnetω.I0
2π

[3.99]
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There is clearly a voltage drop-off, which is demonstrated
by the “-” sign. Furthermore, we see that this voltage drop-off
is proportional to the current supplied to the load.
Consequently, the system behaves as if this drop-off resulted
from a resistance: this is known as the equivalent overlap
resistance

This result corresponds to a half-wave bridge. We note that
the voltage drop-off is doubled for a full-wave bridge. The
result can be generalized for any number k of phases (for
half-wave bridges Pk and full-wave bridges PDk):{

Δ 〈vPN 〉Pk = −klnetω.I0
2π

Δ 〈vPN 〉PDk = −klnetω.I0
π

[3.100]

The equivalent overlap resistances are thus RPk
emp and

RPDk
emp , respectively, defined as follows:{

RPk
emp =

klnetω
2π

RPDk
emp = klnetω

π

[3.101]

REMARK 3.6.– While these results have been obtained for
diode bridges, they can also be transposed to controlled
rectifiers.

3.4.2. Other rectifier voltage drop-offs

We have seen that overlap leads to a voltage drop-off
which may be assimilated to a resistance. This should not be
confused with other potential resistive drop-offs which may
occur at the input and output points of the rectifier as a
result of the real resistances present in the cables. These
drop-offs therefore need to be added. Finally, in a fine model
of a rectifier, we need to take account of the voltage drop-offs
introduced by diodes in the ON state. In practice, these may
be assimilated to quasi-ideal voltage sources (VF of the
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diode). In the case of single bridges, where a single diode is in
a state of conduction, we simply have a drop-off of VF in the
rectifier output; for double bridges, two diodes are involved,
and the drop-off is therefore 2VF .

3.5. Association of rectifier assemblies

3.5.1. Parallel associations and interphase windings

3.5.1.1. Half-wave bridges and applications

Parallel associations are important in low-voltage,
high-current applications, such as in electrochemical factories
(e.g. the electrolysis troughs used in aluminum production).
In this case, half-wave bridges are preferred in order to
minimize voltage drop-offs (in steady state, a voltage drop-off
at the terminals of a single switch, instead of two switches in
a full-wave bridge, is observed); however, it is essential to
reduce the current in the switches, as there are no component
units able to process the current required by the load.

It is therefore necessary to interconnect two (or more)
converters, which operate in parallel, and each supply a
current of I0/2 (or less) to provide a total current of I0 to the
load. This interconnection involves the use of two
half-windings (as in the association of full-wave bridges
shown in Figure 3.23) in order to smooth the currents,
notably the ripple δi, known as circulation current, which
travels from one converter to the other due to the differential
voltage ripple produced by the two converters (e.g. the two
rectifiers are powered by three-phase systems, offset by 60°).
These two half-windings are both crossed by a very high
current (I0/2), with the addition of a ripple δi, which we
reduce by choosing a suitable global inductance value L (for
the two half-windings). To avoid overdimensioning the
half-windings, the two components are produced using a
common magnetic circuit, taking care to compensate the
ampere turns linked to the two currents I0/2. This may be
referred to as a common mode, where the currents leave from
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the same point (the middle of the winding assembly) to travel
toward the load. Thus, the (non-saturated) magnetic circuit is
dimensioned for the “small” circulation current, δi, alone.

REMARK 3.7.– However, the windings (copper) must clearly be
dimensioned in order to withstand the full current.

This assembly must be produced with care, using
components of the same type placed on the same heat sink (in
order to guarantee use at the same temperature, or at least
the closest possible temperature). The connections must be
perfectly symmetrical. Under these conditions, the currents
between the two converters should balance “naturally”.
However, the use of uncontrolled rectifiers is not
recommended, and it is better to use two current rectification
mechanisms (see [COH 00] on automatics) for the currents in
the two converters, enabling us to use controls in order to
force balancing of the currents if differences remain.

REMARK 3.8.– This type of technique is not limited to
rectifiers, and is also used for choppers using low voltages
and high currents. In this case, we speak of interleaved
choppers. This type of converter is widely used to power
central processing unit (CPU) (or graphics processing unit
(GPU)) cores in computers; they are powered by a voltage of
approximately 1 V, and consume a power of several tens of
watts (or more). The currents involved are therefore high,
and components with a very low-voltage drop-off are needed
in order to obtain satisfactory efficiency (the term
synchronous rectifier is often used). These components are
used in parallel associations with balanced currents. Note,
however, that the primary reason for using interleaved
choppers for very low-voltage, high-current power supplies,
for microprocessors and other high-density digital circuits
very large scale integration (VLSI), is their ability to provide
a very rapid response time for voltage regulation, due to
sudden and drastic variations in consumption by the load.
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3.5.1.2. Full-wave bridges and “four-quadrant” drives

In order to power a DC machine using all four quadrants
(in motor or generator mode, with two possible directions of
rotation), two full-wave thyristor bridges are needed, placed
top to tail, as shown in Figure 3.23 for two PD3 type bridges
(PD2 bridges may also be used for this purpose). Note that in
this figure, the two bridges are connected to a machine (on the
DC side) via an interphase winding, as seen in the previous
section.

ψ
2

Network

vdc

Interphasing reactor

Control organ

ψ
1

Figure 3.23. Four-quadrant thyristor converter

The latter component is optional in this case, but provides
improved dynamic performance. Using this element, the two
converters operate simultaneously, allowing the transition
“vdc > 0 ”→ “vdc < 0 » (or vice versa) to occur seamlessly. In a
configuration without this winding, bridges where “vdc > 0”
and “vdc < 0” are used successively, and a deadtime needs to
be included in the inversion logic used for global control in
order to ensure secure transition for the converter.

The choice between these two solutions is made based on
the following criteria:

– weight/space requirements of the winding;

– additional cost due to the winding;
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– complexity of control (inversion logic in the winding-free
configuration4);

– dynamic constraints of the application in mechanical
terms: are rapid changes to the direction of rotation required?

This final point is fundamental in the choice of any
converter used to power a DC machine, as it is always
possible to use a mechanical switch for the polarity inversion
function (changing the direction of rotation). This solution is
simple, robust and economical, and should not be ignored
during the design process, as it is largely sufficient in a
considerable number of cases.

vdc

vrec1

vrec 2

Bridge no. 1

Bridge no. 2

Double-wound 

transformer

Figure 3.24. Series association of two thyristor PD3s

3.5.2. Series association

The series association of rectifier assemblies (see
Figure 3.24) is the “dual” of the parallel association. While
parallel association is used for applications with high current

4 The version of the structure including winding is, in fact, simpler.
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values (with the exception of the four-quadrant configuration
seen above), series association is used for high voltages. The
best-known example of this type is in the transportation of
DC energy. Electrical energy is always carried over long
distances at high voltages, as since P = U.I (with the addition
of a coefficient dependent on the power supply type), at a
given power, high voltages lead to low currents. This makes it
possible to reduce the diameter of cables (although the
insulation between the cables needs to be reinforced, this is
lighter and less expensive).

REMARK 3.9.– The transportation of DC energy involves the
use of generating stations, where converters are used as
rectifiers; the opposite stations operate as inverters (assisted
inverters, in the case of thyristors). Converters are associated
in a four-quadrant configuration as shown in Figure 3.25, to
ensure continuous current circulation in DC links. This
structure is close to that shown in Figure 3.23.

The two PD3 bridges in the converter shown in
Figure 3.24 can be controlled independently. This means that
an infinite number of control strategies are possible.
However, offset control of phase angles (denoted as ψ1 and ψ2

for the two bridges) is preferred due to the power factor, as
shown in the graph of Figure 3.26 (a trace which leaves out
the buffer angles). In Figure 3.20, we saw that a rectifier
absorbs an “active power P /reactive power Q” element, which
describes a circle in the plane (P,Q) as a function of the
control angle. Consequently, in the case of common angle
control (ψ1=ψ2), a large circle is produced; if the two angles
are controlled separately with an offset, we expect to produce
two small circles, minimizing the reactive power. In theory,
this allows us to divide the reactive power taken from the
network by 2 using offset control of the two bridges. In
practice, the buffer angles of the two rectifiers mean that this
gain is reduced; however, it is not negligible, particularly in
the case of high-power applications.
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ψ1 = ψ2 = 180
◦

ψ1 = ψ2 = 0
◦

ψ1 = 180
◦

ψ2 = 0
◦

P

Qmax0

Qmax1 = Qmax0/2

ψ1 = ψ2

ψ2 variable

ψ1 variable

Q

ψ2 = 0
◦

ψ1 = 180
◦

Figure 3.26. Operating area of the series association of two PD3
thyristor bridges in the plane (P,Q) with a current source

3.6. Power factor correction

3.6.1. Single-phase PWM rectifier

The single-phase inverter presented in Chapter 2 is
potentially power-reversible, and can act as a rectifier. Note
the presence of the four free-wheel diodes, which (if the four
transistors are not controlled) constitute a double
single-phase PD2 bridge; however, the interest of this
converter in rectifier mode lies in the presence of transistors
which permit significant gains in terms of the power factor,
providing sinusoidal current input on the AC side. The payoff
for this gain is an increase in complexity. This type of
converter also enables significant levels of energy
recuperation during braking phases. They are notably used
in rail traction, in locomotives such as the BB36000 (as
shown in Figure 3.27).
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Figure 3.27. BB36000 locomotive

3.6.2. Three-phase rectifier

In the case of a three-phase rectifier, it is entirely
reasonable to use a three-phase transistor bridge for
sinusoidal current input. However, the gain in terms of the
power factor is reduced, and is only limited by the harmonic
pollution standards applicable to the network (and more
generally by electromagnetic compatibility issues in the
created equipment). This solution is rarely used, despite the
fact that its power reversibility properties during braking
lead to energy savings (there is no need for a braking chopper,
and no energy needs to be dissipated as heat in a resistor). It
should be noted, however, that this type of structure can only
effectively return energy to the network (and thus slow down
a mechanical load) if the network is operational. If a fault
occurs leading to a switch being flipped further back in the
circuit, the element will no longer be able to brake. In this
case, a rheostatic (chopper and braking resistance) and/or
mechanical braking system is required, and must always be
included as backup for safety reasons.
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3.6.3. Single-phase rectifier without power reversal

In applications where power reversibility is not required, a
diode rectifier may be used as the application input module
(in this case, we will consider a single-phase context with a
PD2 diode bridge). We therefore need to know whether
sinusoidal current input may be achieved by placing an
appropriate (and suitably controlled) converter between the
rectifier and the powered DC load. As a DC source is being
connected to a DC load, a DC/DC converter is clearly
required.

Qualitatively speaking, sinusoidal input is obtained as
long as the load associated with the converter behaves in the
same way as an equivalent resistance. Thus, the voltage
vrec(t) entering the DC/DC converter (or exiting the rectifier)
is expressed as follows:

vrec (t) = Vmax. |cos (ωt+ ϕ)| [3.102]

The voltage output from the DC/DC converter must be
quasi-constant (vs(t) = Vs = Cte). If the application requires
Vs > 05, two distinct possibilities are obtained:

– Vs < Vmax: the converter may operate by increasing or
reducing the voltage;

– Vs > Vmax: the converter can only increase the voltage.

In the first case (if the structure is not galvanically
isolated), an inductive storage chopper, known as a
buck-boost converter, is used. This converter type will not be
discussed further in this chapter, but will be covered in
Chapter 4. In this section, we will focus on the second
possible case, involving a parallel chopper, which is known as
a boost converter. Both types of converter implicated in this
specific context are known as power factor correctors (PFCs).

5 This arbitrary choice in no way limits the general nature of our study.
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3.6.3.1. Boost study

In the case of the boost converter (Figure 3.28), with Ve =
vrec(t), the output voltage can be shown to be always greater
than or equal to the input voltage, whatever the value of the
duty ratio α used to control the transistor T .

VD

iDiL

CT
LVe

Vs

isicD

VL

VT

Figure 3.28. Diagram of a boost converter

DC control is preferred for this type of converter. We may
study the converter by splitting the switching period Td as
before (but considering, in this case, that iL(0) �= 0).

Hence, for 0 ≤ t < αTd:

VT = 0 [3.103]

and thus:

VL = Ve [3.104]

leading to (for a current iL(0) = ILmin):

iL (t) = ILmin +
Ve

L
t [3.105]

In addition:

Vd = Ve − Vs [3.106]
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Hence, for this booster assembly (see the full study in
Chapter 1 of Volume 3 [PAT 15b]), Vs > Ve, and therefore
Vd < 0. Consequently, the diode is switched off:

Id = 0 [3.107]

With a voltage of Vs (presumed to be quasi-constant), the
capacitor C discharges in order to power the load connected to
the converter output:

Is = −Ic [3.108]

Next, considering the second phase of the switching period
(for αTd ≤ t < Td), where transistor T is open:

IT = 0 [3.109]

The continuity of the current in the inductance L means
that the diode enters into conduction, with an initial current
equal to iL(αTd) = ILmax:

iLmax = ILmin +
αTdVe

L
[3.110]

As diode Vd = 0 enters into conduction, then:

VL = Ve − Vs < 0 [3.111]

and:

Id = iL = Ic + Is [3.112]

Clearly, as VL < 0, current iL decreases to return to ILmin

(as ever, our study is based on the converter operating in
permanent mode). One consequence of this hypothesis is that,
classically:

〈VL〉 = 0 [3.113]
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and as:

〈VL〉 = 1

Td
(VeαTd + (Ve − Vs) . (1− α)Td) [3.114]

the following result is deduced:

Vs =
Ve

1− α
[3.115]

This converter therefore increases the voltage, whatever
the value of a (extreme case: Vs = Ve for α = 0).

However, to ensure rectification with sinusoidal input, a
deeper study should be apprehended, presuming that
sinusoidal input (in phase with the voltage
Ve(t) = Vemax. |sin (ωt)|) is achieved: this gives a fluctuating
power P (t) entering the converter:

P (t) =
Vemax.Iemax

2
(1− cos (2ωt)) [3.116]

The power taken from a 50Hz network therefore fluctuates
at 100Hz. To maintain a quasi-constant voltage output from
the converter, a high-value capacitor C is required. Assuming
that the output voltage is strictly constant (negligible ripple,
in particular for the component at 100Hz), the output power
(Ps), presumed to be constant, is equal to the average input
power.

Taking Ps as the input value for our problem, the following
expression of Iemax can be used:

Iemax =
2Ps

Vemax
[3.117]

From this, the “low-frequency” voltage at the terminals of
the inductance L in the boost converter may be deduced:

L
diL
dt

= L
d

dt
[Iemax. |cos (ωt+ ϕ)|] [3.118]
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The dimensioning of the inductance L is generally based on
a current ripple rate required by the specification (e.g. 10% of
the maximum value). On this basis, knowing the values of L,
Iemax and ω, we see that the voltage vT becomes negative for
time intervals in the vicinity of instants where the converter
input voltage Ve cancels out.

This is illustrated by the “low-frequency” waveforms as
shown in Figure 3.29. These traces were obtained for a
230V/50Hz network with an inductance of 1mH and an input
current with an amplitude of 1A. Polarity reversal in the
transistor is impossible in practice, in particular for a
MOSFET transistor (with integrated anti-parallel diode): this
leads to a slight loss of control over the converter, with a
subsequent slight distortion of the input current at these
instants.
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Figure 3.29. “Low-frequency” waveforms in the PFC transistor. For
a color version of the figure, see www.iste.co.uk/patin/power2.zip

Using these types of converters, we still reach almost
unitary power factors, and PFCs are increasingly used in
modern computer power supplies; these devices require high-
power levels, and often exceed the 600W power range where
EMC standards for low-frequency conducted disturbances are
the least restrictive. An example of a PFC controller is shown
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in Figure 3.30: the UC3854 circuit, developed by Unitrode. In
this diagram, the controller controls a boost-type converter,
powered by a rectifier with an integrated diode (the structure
of which is not shown). The control structure is made up of two
nested control loops:

– an internal loop to control current iL in the inductance
(measured using a 0.25Ω shunt connected to the circuit
ground);

– an external loop used to regulate the converter output
voltage vs.

As the objective is for the current to follow a “rectified
sinusoid” type profile in phase with the output voltage of the
diode rectifier, the output voltage is used to determine a
reference value for current iL.

The boost output voltage is then controlled based on a
modulation of the amplitude of the reference value.
Qualitatively, it is easy to see that the controller will increase
this amplitude if the output voltage is lower than the
reference value, and decrease this amplitude in the opposite
case.

3.6.4. Three-phase rectifier without power reversal

For three-phase rectifiers, we cannot use upstream current
regulation form the rectifier to ensure that the input currents
are sinusoidal. The reason for this is simple: the conduction
intervals of the diodes associated with each phase only cover
two-thirds of the network period. We therefore need to place
an element downstream from (or at least in parallel to) the
rectifier. The simplest solution published to date is known as
the Vienna rectifier, or Vienna bridge. This structure was
invented (and patented [KOL 93]) in 1993 by Prof. Johann W.
Kolar, who taught at the University of Vienna, hence the
name. A simplified diagram of the converter is shown in
Figure 3.31.
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Figure 3.30. PFC based on a boost converter,
controlled by a Unitrode UC3854 circuit

The switches S1, S2 and S3 used in this structure are four
segment switches (voltage- and current-reversible, with
controlled switching in both directions). This type of switch
was discussed briefly in Volume 1 [PAT 15a], Chapter 2, and
will also be discussed in Chapter 4 of the current volume in
the context of the PWM dimmer and matrix converters. These
switches allow the creation of a kind of active filter, which
operates in parallel to a classic diode rectifier, and absorbs
not only an active power but also a distorting power. Note
that the three switches are interconnected at the mid-point of
a capacitor bridge, made up of two capacitors of value C0 for
which the controller needs to ensure voltage balancing.
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Figure 3.31. Simplified diagram of a Vienna rectifier

In analyzing the operation of this converter, a list of
possible connection configurations (see Figure 3.32) between
the network and the DC bus can be created. Different types of
controllers (with fixed or variable frequency) can then be
proposed to obtain sinusoidal current input. One “simple”
method is to analyze the voltage vectors available as rectifier
inputs for each of the presented configurations. This analysis
is shown in Table 3.1, which also shows the conditions (for
currents) in which the relevant configuration may be
obtained. The rectifier output voltage is supposed to be equal
to U0, distributed equally between the two capacitors.

REMARK 3.10.– Note that the transformation used for
voltages vαN and vβN is the Clarke transform (which
preserves amplitudes – see Appendix 1).
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(100)

Figure 3.32. Possible configurations (for 1/6 of a network period)
of the Vienna rectifier

From Table 3.1, the number of accessible levels is
important – this converter is similar to multilevel inverters
(presented in Chapter 5) – but in this case, the voltage vαN is
always positive. This is due to the fact that the presented
configurations only represent part of the possible
combinations. In fact, there are three possibilities for each
half-bridge (upper diode ON or lower diode ON or switch
closed). Under these conditions, the full rectifier presents 27
possible configurations: the eight configurations presented
above represent only some of the possibilities. An exhaustive
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list of the voltage vectors available as input for the rectifier is
shown in the two-phase plane αβ in Figure 3.33. Several of
these voltage vectors allow production of a low-frequency
PWM-wave synchronous with the network voltage vector,
which is able to absorb a sinusoidal current vector without
low-frequency distortion (and with HF ripples which can be
eliminated easily using a compact EMC filter). The difficulty
in the control approach lies in the fact that voltage vectors
cannot be obtained unconditionally: the PWM strategy must
be limited to those points in the constellation which are
genuinely available. Figure 3.33 shows the names of the
“(xyz)”-type configurations presented in Table 3.1; most of the
rectifier configurations are linked to conditions concerning
the sign of the line currents.

Configuration vaN vbN vcN vαN/U0 vβN/U0 Conditions

(000) 2U0/3 −U0/3 −U0/3 2/3 0 ia > 0, ib < 0, ic < 0

(001) −U0/2 −U0/2 0 1/2 −

√

3/6 ia > 0, ib < 0

(010) U0/2 0 −U0/2 1/2
√

3/6 ia > 0, ic < 0

(011) U0/3 −U0/6 −U0/6 1/3 0 ia > 0

(100) U0/3 −U0/6 −U0/6 1/3 0 No conditions
(101) U0/6 −U0/3 U0/6 1/6 −

√

3/6 ib < 0

(110) U0/6 U0/6 −U0/3 1/6
√

3/6 ic < 0

(111) 0 0 0 0 0 ib < 0, ic < 0

Table 3.1. Partial list of possible configurations of the Vienna
rectifier, available input voltage vectors and operating conditions

For example, configuration (000) is only possible if ia is
positive and ib and ic are negative (this is the first
configuration presented at the top left of Figure 3.32). In fact,
the only configuration shown in the table which does not
require specific access conditions is (100). More details
concerning this rectifier and applicable control strategies may
be found in [VIS 07].

REMARK 3.11.– Another point to consider in designing a
control approach for these converters is the need to ensure
voltage balancing between the two capacitors (as in the case
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of multilevel inverters). For this reason, the current injected
by the three switches S1, S2 and S3 at the level of the
mid-point connecting the two capacitors must have a strictly
null average value.

 

Figure 3.33. Available input voltage vectors for the
Vienna bridge. For a color version of the figure,

see www.iste.co.uk/patin/power2.zip

In conclusion to our study of Vienna rectifiers, Figure 3.34
shows the non-simplified structure of the converter. Switches
S1, S2 and S3 are synthesized using three transistors (making
the converter easy to control, simply requiring three isolated
drivers), “encapsulated” in rectifier bridges to enable voltage
and current reversibility. This type of switch will be further
considered in the context of matrix converters in the next
chapter. However, while this solution offers the advantage of
simplicity in control terms, it results in reduced performances
in power terms. In the ON state, the voltage drop-off is high,
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including both the drop-off associated with the transistor and
the drop-offs introduced by the two diodes.
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Lr Lr Lr

a b c

N

Mia ib ic

Va Vb Vc

U0

U0

vs = U0

S1 S2 S3

D1 D2 D3

D4 D5 D6

Figure 3.34. Diagram of a real Vienna bridge



4

AC/AC Converters

4.1. Two categories

The alternating current/alternating current (AC/AC)
family of converters can be split into two distinct groups:

– dimmers, for which the input and output frequencies,
respectively, f1 and f2, are identical;

– cycloconverters, for which f2 ≤ f1.

Nowadays, we must also consider matrix-based converters;
however, these remain relatively scarce due to the complexity
of control in comparison to the AC/DC + DC/AC-type
structures traditionally used in variable speed drives. This
technology, currently undergoing major developments,
particularly in aeronautics, will be considered at the end of
this chapter.

4.2. Dimmers

4.2.1. Basic principles

A dimmer is an AC/AC-type converter with identical input
and output frequencies. In this case, the simplest structure
consists of placing a four-segment switch, allowing both
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voltage and current to be reversible, between a source
(generally a voltage source, in the form of the electrical
distribution network) and a load. Four-segment switches may
be obtained without synthesis (i.e. assembly of components)
in the form of a triac. This component, essentially available
for low voltages (230V) and low currents (from a few amperes
to tens of amperes at most), is perfectly suitable for use in
domestic applications, such as lighting, heating or low-cost
variable speed drives for universal motors1, particularly in
portable electrical equipment (e.g. wired electric drills).

Triacs can only be controlled during switch-on (by sending
a signal to the trigger), and switch off automatically when the
current cancels out. This behavior is close to that of the
thyristor (except in terms of voltage and current
reversibility). For high-power applications, it is possible to
replace a triac by two thyristors, placed top-to-tail. These
converters are used to start asynchronous motors in
industrial environments (in this case, the converters act as
starting components, and not as variable speed drives) and in
installations for dynamic compensation of reactive power
(static synchronous compensator (STATCOM)). The latter
application will be discussed in a separate section below.

4.2.2. Single-phase dimmer

4.2.2.1. Structure

The simplest structure for a single-phase dimmer is based
on a triac. The power structure of this converter is very simple,
as shown in Figure 4.1 (with a resistive load, in this case).

1 Universal motors are direct current (DC) motors with series excitation,
which develop a torque proportional to the square of the current. They are,
therefore, not sensitive to current reversal, and are thus entirely suitable
for use with AC current power supplies.
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Triacs are bidirectional in terms of both voltage and
current, with controlled switch-on and spontaneous switch-off
when the current through the component cancels out. This
means that these components are controlled (via the trigger)
by generating control pulses synchronous with the input
voltage ve(t) = Vemax. sin (ωt) for each half-period. If we
consider an angle varying between 0 and 2π for a period, it is
possible to identify the instants at which control pulses are
triggered by a unique angle ψ such that pulses occur at
instants corresponding to the angles ψ and π + ψ.

vT

T

ve
R

is

vs

Figure 4.1. Single-phase triac dimmer

4.2.2.2. Case of resistive load

Over a resistive load (staying with the diagram in
Figure 4.1), we see that:

is =
vs
R

[4.1]

and only two modes of operation are possible:

– if T is OFF, we have is = 0 and thus vs = 0;

– if T is ON, we have vT = 0; hence vs = ve = Vemax. sin (ωt)
and thus is =

Vemax
R · sin (ωt).

The waveforms corresponding to an angle ψ = 30° are
shown in Figure 4.2. Theoretically speaking, the control angle
ψ may vary between 0 and 180°; in practice, however,
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limitations are often imposed either by the control
mechanism or by the triac itself. If the current circulating in
the component in the ON state is not sufficient (notably,
when voltage ve is close to 0), the triac switches off
immediately after the end of the control pulse train.

0 30 60 90 120 150 180 210 240 270 300 330 360
−400

−200

0

200

400

 

 

0 30 60 90 120 150 180 210 240 270 300 330 360
−8

−6

−4

−2

0

2

4

6

8

θ = ω

i s

v
e

v
s

ψ = 30°

Network 

Charge

V
o
lt

ag
e 

(V
)

C
u
rr

en
t 

  
 (

A
)

Angle         .t (°)

Figure 4.2. Voltage/output current waveforms for a single-phase
triac dimmer over a resistive load

From this simple case, we may calculate the active,
reactive and apparent powers and the power factor, and even
cosϕ1 (considering the fundamental component of the
absorbed current alone). It is also possible to evaluate the
harmonic distortion rate of the voltage and current supplied
to the load.

First, note that the RMS voltage provided by the network is
equal to Vemax

√

2
. If we wish to calculate the RMS value IsRMS of

the current is (both as input and output from the converter),
the following general definition is required:

IsRMS = IeRMS =

√√√√ 1

T

ˆ T

ψT
2π

(
Vemax

R

)2

sin2 (ωt) .dt [4.2]
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After changing the variable (and following integration for a
half-period), we obtain the following result:

IsRMS =
Vemax

R

√
1

2π

ˆ π

ψ
(1− cos (2θ)) .dθ [4.3]

IsRMS =
Vemax

R

√
1

2π

(
π − ψ +

sin (2ψ)

2

)
[4.4]

Using this result, we can give an expression of the active
power entering and exiting the converter, which is presumed
to be ideal (Pe = Ps):

Pe = Ps = R.I2sRMS =
V 2
emax

R

[
1

2π

(
π − ψ +

sin (2ψ)

2

)]
[4.5]

We can also calculate the apparent input power Se:

Se =
Vemax√

2
IeRMS =

V 2
emax√
2R

√
1

2π

(
π − ψ +

sin (2ψ)

2

)
[4.6]

From this, we deduce the expression of the input power
factor Fpe:

Fpe =
Pe

Se
=

√
1

π

(
π − ψ +

sin (2ψ)

2

)
[4.7]

We can easily verify the operating point at ψ = 0° for which
the load R is constantly connected to the network. Thus, we
obtain:⎧⎪⎪⎪⎨⎪⎪⎪⎩

IsRMS = IeRMS = Vemax

R
√

2

Pe = Ps =
Vemax
2R

Se = Pe =
Vemax
2R

Fpe = 1

[4.8]



166 Power Electronics Applied to Industrial Systems and Transports 2

We may also consider the fundamental component ie1(t) of
the current absorbed as input into the converter, with the
expression:

ie1 (t) = Id. sin (ωt) + Iq. cos (ωt) [4.9]

where:

Id =
2

T

ˆ T

0
ie1 (t) . sin (ωt) .dt [4.10]

and:

Iq =
2

T

ˆ T

0
ie1 (t) . cos (ωt) .dt [4.11]

It then becomes possible to calculate the two components Id
and Iq after a classic change of variable (θ = ωt):{

Id = 2
π

´ π
ψ

Vemax
R sin2 θ.dθ

Iq =
2
π

´ π
ψ

Vemax
R sin θ. cos θ.dθ

[4.12]

As before, we may use classic trigonometric formulas to
transform the functions under the

´
sign:{

sin2 θ = 1
2 (1− cos (2θ))

sin θ. cos θ = 1
2 sin (2θ)

[4.13]

hence:{
Id = Vemax

πR

´ 2π
ψ (1− cos (2θ)) .dθ = Vemax

πR

(
π − ψ + 1

2 sin (2ψ)
)

Iq =
Vemax
πR

´ 2π
ψ sin (2θ) .dθ = Vemax

πR (1− cos (2ψ))

[4.14]

These results are illustrated in Figure 4.3. Giving closer
consideration to the trace of location (Iq(ψ), Id(ψ)), we see that
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component Iq is placed on the X axis and Id on the Y axis; the
phase reference is the Y axis, as the power voltage supplied
to the dimmer is in “sine” form. Note that the “current” vector
presents a systematic lag in relation to the “voltage” vector
(with the exception of the specific cases where ψ = 0° and ψ =
180°). Clearly, in the context of the approximation to the 1st

harmonic (i.e. the fundamental), the dimmer, associated with
a resistive load, behaves in the same way as an inductive load
consuming a reactive power Q > 0.

4.2.2.3. Case of inductive loads
The layout of the structure using a purely inductive load L

remains identical to that shown in 4.1. However, the
relationship between the output voltage vs and the current
ie = is is no longer vs = R.is, but rather:

is =
1

L

ˆ
vs (t) .dt [4.15]

To ensure correct control of this element, we begin by
considering that the control angle ψ takes the form
π
2 + ψ̃ + kπ (where ψ̃ ≥ 0 and k ∈ Z).

In the case where ψ = π
2 + kπ, we see that the current only

cancels out at instants, corresponding to θ = ω.t = π
2 + kπ,

and not over time intervals, giving a permanent connection of
inductance L to the network. When ψ̃ is non-null, the
operating mode includes non-intermittent current canceling
phases. To study the behavior of the converter in this case, we
begin by noting the expression of ve(t) = Vemax. sin(θ), which
is then integrated to calculate is in accordance with [4.15]:

is (θ) =
Vemax

Lω

ˆ θ

π
2
+ψ̃

sin(ξ).dξ =
Vemax

Lω
[− cos ξ]θπ

2
+ψ̃

[4.16]

This gives us:

is (θ) =
Vemax

Lω

(
cos
(π
2
+ ψ̃

)
− cos θ

)
[4.17]
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The triac is, therefore, in a state of conduction over an
angular interval from θ1 = π

2 + ψ̃ to θ2 = 3π
2 − ψ̃. For the

negative alternation, the triac effectively enters into
conduction over the interval

[
3π
2 + ψ̃; 5π2 + ψ̃

]
. An example of

waveforms is shown in Figure 4.4 for ψ = 120° (for
Vemax = 230V ; f = 50Hz; L = 100mH).
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Figure 4.4. Example of operation of a single-phase triac dimmer
using an inductive load

4.2.2.4. Dissymmetry in triacs

Triacs present a drawback which can be problematic when
using inductive loads of the “transformer + secondary load”
type, in the form of dissymmetric behavior with low load
currents. These components require a minimum current in
order to switch on effectively after the gate has received a
pulse: if the minimum current is not reached, the triac opens
spontaneously immediately after the end of the control pulse.
This is only really problematic due to the difference in the
minimum current threshold for positive and negative
half-waves. In practice, a triac may allow a low current to
pass in one half-wave (for example, positive), but remains
closed for the other half-wave under the same operating
conditions. In cases involving powering the primary of a
transformer, this behavior is problematic as it leads to the
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application of a non-null average voltage; this causes a
modification in the average state of the magnetic core, which
rapidly leads to saturation. In this situation, the value of the
magnetizing inductance of the transformer falls, leading to a
very high current draw. This almost systematically leads to
the destruction of either the triac or the fuse used to protect
the component: in both cases, the converter will fail.

One solution to this problem consists of using a thyristor,
placed in the “continuous” diagonal of a Graetz bridge (see
Figure 4.5). The single thyristor is always used in the same
way for both directions of current circulation, and no
dissymmetry is present in this configuration.

Th

D3 D4

D1 D2

Figure 4.5. Triac alternative using a thyristor

REMARK 4.1.– It is also possible to use two thyristors, placed
head-to-tail, notably in cases with high power levels.
However, this solution poses the same problem as the triac.
Dispersion may occur from one component to another (with
the same reference) for the value of the minimum current
needed to maintain conduction.

4.2.3. Three-phase situation

Three-phase dimmers are used in soft starters for
induction machines. These devices limit the current draw
from the network during starting, and limit torque ripples in
the mechanical load of the machine. This starting technique
allows a more progressive increase in the power supply
voltage than in “star–delta” starters, or than obtained by
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removing statoric resistors (or rotoric resistors in the case of
wound rotor machines). These components are based on
antiparallel associations of thyristors, essentially due to the
power values involved (normally higher than those
encountered with triac dimmers). A variety of assemblies are
possible, using star or delta connections. The subject of
three-phase converters is relatively complex due to phase
coupling. Note, however, that in certain conditions, we
encounter a situation equivalent to that found using three
independent single-phase dimmers. The readers may wish to
consult [ROM 86], which is devoted to AC/AC conversion with
a focus on dimmers.

4.2.4. STATCOM

One application of dimmers is in the static compensation
of reactive power. This is achieved using STATCOM, in
contrast with electromechanical compensators, i.e.
synchronous machines. Our aim is to reduce the reactive
power drawn from the network; as we will see, the dimmer
allows us to implement rapid changes in the reactive power.
The same effect is achieved in wound-inductor synchronous
machines by controlling the excitation current.

An electrical installation classically consumes a certain
reactive power (generally positive, due to the inductive
behavior of many loads, such as electrical machines and
transformers). This power has an undesirable effect on the
dimensioning of all equipment located upstream within the
network (transformers, cables, general equipment,
alternators, etc.). The dimensioning of these elements is
based on the apparent power S of the installation and not on
the active power P which is actually consumed: the reactive
power Q is involved due to the following relationship (only
valid in sinusoidal mode):

S2 = P 2 +Q2 [4.18]
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Given the inductive character of the installation, it is
logical to place capacitors at the entry point in order to
compensate the consumed reactive power. We can then cancel
out the reactive power drawn from the network, allowing us
to optimize the system. In practice, we generally do not aim
to cancel out the reactive power, but to limit it to an
acceptable level (cosϕ = 0.93 or tanϕ = 0.5). This objective
may be hindered by a major issue: power consumption may
fluctuate, and in this case, the permanent inclusion of
capacitors does not solve the problem, and may even generate
new issues.

In this case, we need to analyze the behavior of
the installation in terms of the speed of fluctuation in
consumption. In the case of slow fluctuations (on a scale of
several hours), we may adjust the use of capacitors, connecting
or disconnecting them from the network as required. This
is known as a capacitor bank installation. Unfortunately,
this solution is not suitable for rapid fluctuations2 (from
approximately 1 min to 1 s) which may be encountered in
certain industrial applications (such as arc furnaces). This is
the context of application of STATCOMs. Section 4.2.2 has
already dealt with the behavior of a single-phase dimmer
connected to an inductance; this device may be used to
modulate consumption of reactive energy between a maximum
value QLmax = V 2

emax
Lω and 0 by simply adjusting the control

angle ψ of the dimmer within the range between 90 and
180°. This means of controlling reactive power is very fast
(of the order of 20ms for a 50Hz network). Therefore, we
need to characterize the electrical installation in which the
STATCOM is to be implemented, in terms of the minimum
Qmin and maximum Qmax acceptable consumption of reactive
power, before carrying out the following dimensioning process:

2 The connection of capacitors in a high-power network creates strong
current draws, which are particularly stressful for the switches involved.
This means that they cannot be switched too often.
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– choice of a capacitor (or group of capacitors) C able to
compensate Qmax (i.e. Qmax = CωV 2

emax);

– choice of an inductance L able to consume the excess
reactive power supplied by the capacitor when the network
is only consuming Qmin (i.e. Qmax −Qmin = V 2

emax
Lω ).

Thus, STATCOM implementation requires a measurement
of the reactive power upstream of the installation
(STATCOM, capacitors and the load “consuming” variable
reactive power), alongside regulation of this reactive power to
a null reference value Qref (or at least to a value which
respects the constraints imposed by the distribution
contract). An overview of the structure of this system is
shown in Figure 4.6.
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Figure 4.6. Overview of the STATCOM and control systems
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REMARK 4.2.– It is important to note that the operating
mode of the dimmer is not sinusoidal (except for the
operating point where ψ = 90°). This means that a harmonic
filtering issue remains after the installation of the
STATCOM. This may be resolved by the use of antiharmonic
filters for the most important components. For this, we simply
associate the capacitor C (split into several components, Ck)
with series inductances Lsk, which allow us to fix pulsation
resonances ωk = 1

√

LskCk
; these constitute low-impedance

traps for the corresponding harmonic currents.

4.2.5. PWM dimmers

The main problem associated with the use of triac- or
thyristor-based dimmers, as seen above, is the impossibility
of controlled switch-off; this means that the switching
frequency is imposed by the frequency of the “network”
voltage. As this frequency is low, the generated harmonics are
close to the fundamental (useful) frequency, making the
filtering difficult. From an application perspective, this may
be negligible due to high inertia (for example, for lighting or
furnace power supplies); from a network perspective,
however, harmonics may lead to disturbances (conductions)
which are incompatible with electro magnetic compatibility
(EMC) standards. Transistor-based pulse-width modulation
(PWM) dimmers may be particularly interesting from this
perspective, as they permit high frequency (HF) switching
(from approximately 10 to 100 kHz); this makes filtering
considerably easier (with a consequent, and considerable,
reduction in the size of components required). Having said
that, single-phase PWM dimmers are considerably more
complex than their triac equivalents, as shown in Figure 4.7.

If we apply a sinusoidal input voltage ve(t) = Vemax. sin (ωt)
and we control switch pairings (K1,K4) and (K2,K3) in a
complementary manner, as in the case of a four-quadrant
chopper, we obtain a voltage waveform vs of the type
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presented in Figure 4.8. This result was obtained for a
230VRMS, 50Hz network (frequency denoted as Fnet) with a
switching frequency Fd of 1kHz (a low value was selected for
this frequency to allow visualization of the division).

is

K1 K2

K3 K4

ve

vs

Figure 4.7. PWM dimmer with MOSFET transistors
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Figure 4.8. Waveform of the voltage output of a PWM dimmer

Using this type of control, we see that the amplitude Vs1max

of the fundamental component of the voltage vs is piloted in a
linear manner, as a function of the duty ratio α of the bridge
control and the effective “network” voltage Vemax:

Vs1max = α.Vemax [4.19]

Harmonic components are rejected around the switching
frequency Fd (at Fd, Fd + Fnet, Fd − Fnet, ...) and its multiples.

REMARK 4.3.– The diagram in Figure 4.7 shows a purely
resistive load. In practice, this is never the case (any resistive
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load is also potentially inductive, due to the connections or
the resistor technology involved). This can be problematic, as,
in classic converters using voltage switches (transistors), as
seen above, transistor switch-off is associated with
spontaneous diode conduction. However, using this new
converter technology, the free wheel phenomenon is no longer
possible; a current source circuit may, therefore, be open,
which is potentially destructive for components (due to
overvoltage). This problem will be discussed in section 4.5.3
in the context of the broader family of matrix converters,
which includes PWM dimmers.

4.3. Choice between PWM, phase angles and wave
trains

As we have seen, it is possible to create phase
angle-controlled dimmers using triacs or thyristors, which
allow us to control the output voltage of a converter at the
level of a network period (or, more precisely, a half-period, i.e.
10ms for a network at 50Hz). It is also possible to synthesize
a dimmer using transistors; in this case, the switching
frequency becomes much higher (easily reaching tens of kHz
for average power levels – i.e. the order of one kilowatt). A
further solution which has not yet been discussed in this
chapter, but which was mentioned in Chapter 1 of Volume 1
[PAT 15a], is operation using wave trains. This technique
(which is similar to chopping) consists of allowing M periods
of the network voltage to pass over a full wave train of N
periods. It is immediately evident that the response time of
this type of control is much longer than for the other two
options, and in this case, we may envisage the use of a
different type of switch: electromechanical networks can be
used if the switching frequency is sufficiently low. However,
as the ability to switch at zero voltage is desirable (due to the
generation of disturbances), electronic switches are still
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preferred (static relay3 – see Figure 4.9). Switching must be
sufficiently controlled in terms of switch reactivity.

Figure 4.9. Static relay

As an example, if we wish to obtain a fine-tuning
resolution of approximately 1%, we should choose a wave
train at N = 100, giving a control periodicity of 2 s for a 50Hz
network. In these conditions, switching remains fairly rapid,
and a mechanical switch would not be ideal. Moreover, we
need to guarantee switching for whole voltage periods in
order to avoid average current consumption in the network.

Based on these considerations, we see that control response
time is a key criterion for use in choosing between different
dimmer control techniques (which also impact the components
used in the power structure). This response time should be
adapted to suit the load response time:

– for a required response time of approximately 1 s (or
more), the wave train approach is entirely suitable;

– for a response time of around one-tenth of a millisecond,
phase angle control is most suitable;

– for response times of under one-tenth of a millisecond,
PWM control becomes necessary.

3 Using an AC current, this is often a photo-triac (with a galvanically
isolated control).



178 Power Electronics Applied to Industrial Systems and Transports 2

Evidently, PWM control may be used in all these cases, but
(for reasons of complexity) its cost is considerably higher than
that involved using static relays and wave train control, or in
phase angle-controlled dimmers.

4.4. Cycloconverters

Another type of AC/AC converter which we have not yet
considered is the cycloconverter. As shown in section 4.1, this
type of converter allows us to pass directly from an
alternating network to an alternating load using a different
frequency without needing to pass through an intermediary
DC bus (see Figure 4.10), which is not the case when using a
classic variable speed drive.

Power network

Machine windings

Figure 4.10. Three-phase cycloconverter

Cycloconverters for use with three-phase machines may be
seen as three antiparallel associations of PD3 thyristor
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rectifiers, as shown in Figure 3.23. These three associations
are used to power the three windings of a three-phase
machine, with one constraint: it is not possible to power the
machine with a frequency higher than that of a network. We
simply need to modulate the control angle ψ of the three
associations to produce a balanced three-phase power supply
(direct or inverse). Note, however, that this type of converter
is used increasingly rarely due to the progress made in power
electronics concerning other categories of components
(notably, IGBTs) and the limitations of this specific structure.

REMARK 4.4.– As we have seen, the structure of a
single-phase inverter is the same as that of a four-quadrant
chopper, but with a control which is no longer constant, but
takes place at a low frequency (in comparison with the
switching frequency). The same is true for the cycloconverter:
the association of two antiparallel thyristor rectifiers
constitutes a four-quadrant AC-DC converter which may be
used in variable mode. Note, however, that the switching
frequency used for this type of converter is very low;
consequently, the fundamental frequency is limited, and the
ratio between the two frequencies is low. This, therefore,
produces a power supply of limited quality (see the real
waveform VOF shown in Figure 4.11, for a reference value
denoted as VO). For this reason, this type of converter is only
used for very specific application types (high power levels and
low dynamic performance), as practically the only advantage
of the component lies in its low cost.

4.5. Matrix converters

4.5.1. Basic structure

Direct AC-AC conversion may be carried out using PWM
dimmers to regulate the amplitude of the voltage supplied to
the load without modifying the frequency. It is also possible to
carry out “cycloconverter”-type conversions using matrix
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converters. This technique involves the use of transistor
switches and diodes, operating at high frequencies and
offering far better performances than those offered by
converters such as those presented in Figure 3.24. Recent
developments concerning this converter type, notably in
aeronautics, suggest a bright future for the component. Its
main interest lies in offering an alternative to the classic
indirect solution used for variable speed drives, as shown in
Figure 1.1 of Chapter 1 of Volume 1 [PAT 15a], i.e. the
association of a rectifier and an inverter. In this structure, the
LC filter, and more precisely the electrolytic capacitor used
for voltage smoothing, is seen as an unacceptably weak point
for equipment where a high level of reliability is needed. As
we will see, matrix converters allow us to connect two
alternating sources directly, without the use of passive
intermediary elements. This offers gains not only in terms of
reliability, but also in terms of volume and weight in
electronic power converters: these parameters are also
fundamental criteria in dimensioning onboard equipment
generally, and particularly in the aeronautics industry.
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Figure 4.11. Waveform of the output voltage of a cycloconverter
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KAa KAb KAc

KBa KBb KBc

KCa KCb KCc

N

vA

vB

vC

Figure 4.12. 3× 3 matrix converter

The converter shown in Figure 4.12 connects three voltage
sources (three-phase network) to three current-source-type
loads (three-phase electrical machine). To do this, we use a
grid made up of nine switches (3 × 3). This type of converter
(and this topology) can easily be generalized to connect a
source using m phases to a load using n phases via a grid
made up of m× n switches.

The switches used in this type of converter must be
reversible in terms of both voltage and current. We, therefore,
use a synthesized switch similar to that shown in Chapter 2
of Volume 1 [PAT 15a], Figure 2.16. In practice, this switch is
modified to make it easier and less costly to use. Two
equivalent solutions (based on IGBT) are shown in Figure
4.13. In both cases, the intermediary points between the
transistor and the diode on both branches are connected,
which was not the case in the switch proposed in Volume 1:
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this changes nothing from a user perspective. Note that in
configuration “b”, the emitters of the two transistors are
connected to a common potential. This means that the two
transistors may be controlled using drivers powered by a
common floating source, simplifying close control and thus
reducing the overall cost of the converter, as this applies to all
of the switches in the converter (nine switches, in our specific
case).

Synthetic 4 segment switches 

Variation “a”   Variation “b”  

Figure 4.13. Synthesized four-segment switches (two variations)

Another type of four-segment switch exists, similar to that
proposed as a replacement for a triac in Figure 4.5; however,
this switch (see Figure 4.14) introduces a voltage drop-off
corresponding to three components, rather than two, as in the
case of the synthesized switches shown in Figure 4.13.

Figure 4.14. Synthesized four-segment switch with a single IGBT
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4.5.2. Operating principle

Let us presume that this converter is powered by an ideal
network with a phase voltage of 230V at 50Hz. The variation
band for the converter output voltage can be easily identified
based on the waveforms in Figure 4.15: for each instant, we
must simply identify the values of max(va, vb, vc) and
min(va, vb, vc).
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Figure 4.15. Three-phase (simple) voltage system Veff = 230V,
f = 50Hz. For a color version of the figure, see

www.iste.co.uk/patin/power2.zip

The system of output voltages may be described in matrix
form as a function of the system of input voltages and the state
of the switches, as in the case of inverters, in order to design
a satisfactory control strategy for this type of converter. Each
switch KXy is associated with a switching function fXy (X ∈
A,B,C and y ∈ a, b, c) with values of 0 or 1 corresponding to
an open or closed state. The converter input current vector iX
may be equated as a function of the output current vector iy
and the switching function matrix. This equation system is
easy to generalize, but in this specific case (3× 3), we have:⎛⎜⎝ iA

iB
iC

⎞⎟⎠ =

⎛⎜⎝ fAa fAb fAc

fBa fBb fBc

fCa fCb fCc

⎞⎟⎠ .

⎛⎜⎝ ia
ib
ic

⎞⎟⎠ [4.20]
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The source interconnection rules allow us to close several
switches from the same line; however, we may not close two
switches from the same column, as this would lead to a short-
circuit in several voltage sources. On the other hand, all of
the switches in the same column should not be left open, as
this leaves a current source in an open circuit. To summarize,
one single switch should be closed in each column, and each
column may be controlled independently of the others.

On this basis, we see that at each instant the voltages vyN
are defined with a value of va, vb or vc. In a general manner, it
is thus possible to write:⎧⎪⎨⎪⎩

vaN = fAa.va + fBa.vb + fCa.vc
vbN = fAb.va + fBb.vb + fCb.vc
vcN = fAc.va + fBc.vb + fCc.vc

[4.21]

There is no risk of error, as for each line only one connection
function fXy has a value of 1 (one function must always have
this value).

In matrix form, we obtain:⎛⎜⎝vaN
vbN
vcN

⎞⎟⎠ =

⎛⎜⎝fAa fBa fCa

fAb fBb fCb

fAc fBc fCc

⎞⎟⎠ .

⎛⎜⎝va
vb
vc

⎞⎟⎠ [4.22]

As for inverters, to characterize the power supply to a load
(as output), we do not consider voltages referenced in relation
to the neutral of the power supply (input) but in relation to
the neutral of the load, denoted by N’ in Figure 4.12, which
we presume to be connected using a star connection. If we
consider that the load is balanced and has a passive R-L
impedance (and not made up of ideal current sources), we
may apply Millmann’s theorem to calculate the potential
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vN ′N of the neutral N’ of the load in relation to the neutral N
of the input source:

vN ′N =
vaN + vbN + vcN

3
[4.23]

The difficulty in this case, compared to the inverter, lies
in the fact that these values are not constant. The voltages
encountered by the load are thus written (for x ∈ a, b, c):

vxN ′ = vxN − vN ′N [4.24]

In matrix form, this gives:⎛⎜⎝vaN ′

vbN ′

vcN ′

⎞⎟⎠ =

⎡⎢⎣I3 − 1

3

⎛⎜⎝1 1 1

1 1 1

1 1 1

⎞⎟⎠
⎤⎥⎦ .

⎛⎜⎝fAa fBa fCa

fAb fBb fCb

fAc fBc fCc

⎞⎟⎠ .

⎛⎜⎝va
vb
vc

⎞⎟⎠ [4.25]

This corresponds to the classic matrix:⎛⎜⎝vaN ′

vbN ′

vcN ′

⎞⎟⎠ =
1

3

⎛⎜⎝ 2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎠
︸ ︷︷ ︸

G

.

⎛⎜⎝fAa fBa fCa

fAb fBb fCb

fAc fBc fCc

⎞⎟⎠ .

⎛⎜⎝va
vb
vc

⎞⎟⎠ [4.26]

Next, we factorize the matrix G, as in the case of the three-
phase inverter, and we note that the voltages (va, vb, vc) form a
direct balanced system, giving us an expression of the form:⎛⎜⎝vaN ′

vbN ′

vcN ′

⎞⎟⎠ =
2Vmax

3
C32C

t
32.

⎛⎜⎝fAa fBa fCa

fAb fBb fCb

fAc fBc fCc

⎞⎟⎠ .C32.

(
cosωt

sinωt

)
[4.27]
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It is then possible to carry out a Clarke transformation to
define the two-phase voltages applied to the load (denoted as
vαN ′ and vβN ′ and combined in a vector denoted as v2N ′):

v2N ′ =
2Vmax

3
Ct
32.

⎛⎜⎝fAa fBa fCa

fAb fBb fCb

fAc fBc fCc

⎞⎟⎠ .C32.

(
cosωt

sinωt

)
[4.28]

This result is visibly different from that found for a
three-phase inverter, despite the fact that the equation
process follows a similar approach. Note that the result is
dependent on the instant because of the variable network
voltages and thus of the dependences in cosωt and sinωt.
Furthermore, this converter offers more possible control
inputs than a simple inverter; the nine switching functions
defined in matrix (fXy) give us 27 authorized combinations.
Figure 4.16 shows that, despite this increase in the number
of degrees of freedom, the accessible zones in the plane αβ are
still regular hexagons (centered on the origin of the frame of
reference); however, the size of these hexagons fluctuates over
time. It is therefore useful to determine the least favorable
case in order to assess the maximum amplitude which may
be delivered to a load in permanent sinusoidal mode; this
corresponds to the radius of the circle drawn in the smallest
of the available hexagons. In order to remain within the
linear operating zone, the amplitude of the output voltages
must always be less than or equal to

√

3
2 times the amplitude

of the applied input voltages (whether phase or
phase-to-phase voltages).

We then need to develop PWM strategies similar to those
used for inverters, notably by means of a vector-based
approach.
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4.5.3. Switch commutation

Switching in four-segment switches, such as those shown
in Figure 4.13, is not as simple as switching transistors in a
chopper or an inverter. When a transistor opens in these
converters, a free wheel diode switches on spontaneously. In a
two-transistor switch, we must be able to ensure
instantaneous conduction in another transistor when one
transistor switches off. This is problematic, and the
commutation process requires certain precautions to be
taken; the process may be divided into four steps (four-step
current commutation strategy [WHE 04]). This commutation
is also referred to as “semi-soft” in [MOR 07]. To analyze this
commutation process, we will consider the simplest possible
case, using two four-segment switches to connect two voltage
sources and a current source. This topology is illustrated in
Figure 4.17.

Let us suppose we wish to switch from a state where
(K1,K2) is closed (with (K3,K4) open) to a state where
(K3,K4) is closed (with (K1,K2) open). Two cases are
possible, depending on the sign of the current Is.

Taking current Is as positive:

1) the transistor of K2 is opened (transparent for the
system, as this transistor was not carrying a current);

2) the transistor of K3 is closed: this does not necessarily
mean that a current will immediately circulate through the
component (this is dependent on the sign of V1 − V2);

3) the transistor of K1 is then opened (this time, current Is
is guaranteed to circulate in the transistor of K3 and the diode
of K4);

4) the transistor of K4 is closed in order to guarantee that
the current will continue to circulate even if the sign changes.
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V2

K3 K4

K1 K2

Is

V1

Figure 4.17. Elementary AC-AC commutation structure

A negative value of Is gives the following situation:

1) the transistor of K1 is opened (which is still transparent
for the system, as the current is null);
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2) the transistor of K4 is closed;

3) the transistor of K2 is opened;

4) the transistor of K3 is closed.

We clearly see that four successive steps are involved in
the commutation process for each situation. This is also true
for switching in the opposite direction.

K mn

Each switch       is controlled by two signals:Kin

KN
in

I n

Vm

V2

V1

K 1n

K 2n

KP
in- A signal        for the transistor managing a positive current

- A signal        for the transistor managing a negative current

Figure 4.18. Generic commutation structure for an output current

The general commutation principle is shown in
Figure 4.19. This is based on the structure defined in
Figure 4.18. The state graph clearly illustrates the
combinatory and sequential aspect of the commutation
process. The preferred targets for implementing gate drive
logic circuitry of a matrix converter are generally
programmable logic devices, such as CPLD and FPGA.

4.5.4. Switch protection

A priori, safe operation is ensured by controls, using the
algorithm presented in Figure 4.19. However, this safety
element is based on the hypothesis that the measurement of
the current In is reliable. This measurement is provided by a
sensor (for example, a Hall effect active sensor), which may
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malfunction or deliver false information due to measurement
noise. Physical protection is therefore required as backup in
the case of an operational safety failure in the program. To do
this, the converter structure needs to include a protection
device, such as a varistor, as shown in Figure 4.20. In normal
operating mode, these components are “invisible”, and are
only switched on in the case of overvoltage. They should be
chosen with regard to the switch rating (at intermediate
level, between the nominal usage voltage and the rated
voltage of the switches). These components are able to
dissipate moderate energy, and we must ensure that the
magnetic energy stored in the load is compatible with the
components used; otherwise, other alternatives should be
considered, using diode rectifiers and RC circuits (see
[MOR 07]).
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Figure 4.19. Four-step commutation flowchart
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Figure 4.20. Matrix converter protected by varistors



5

Introduction to Multi-level Converters

5.1. Context and scope of the study

Multilevel and multicellular converters are currently the
subject of extensive research activity, with a considerable
number of publications in scientific journals and multiple
conference papers on the subject. The primary objective of
multilevel converters is to enable high voltages to be used
with components with ratings which prevent the use of the
converter topologies presented in Chapters 1 and 2. The basic
idea is the same as for the series association of rectifier
assemblies (Chapter 3), switches are used together in order to
produce a high voltage on the load side. However, we do not
simply synthesize high-voltage switches as substitutions for
elementary switches; we also benefit from an increased
number of degrees of freedom, provided by each elementary
switch in the structure, to improve the performance of the
converter. This notably allows us to increase the apparent
switching frequency on the load side, in order to reduce
harmonic distortion in the injected currents.

A variety of converter topologies have been proposed to
achieve these results. As we have already seen, a strong
resemblance exists between choppers and inverters, thus we
will concede that this is also the case for multilevel
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converters; these may be used in the context of both direct
current (DC)/DC and DC/alternating current (AC) conversion.
In this context, we will analyze the operation of different
multilevel half-bridge topologies, which are used as the
building blocks for four-quadrant choppers and three-phase
inverters (higher numbers of phases may also be used).

Converter structures may be divided into three distinct
families:

– cascaded power converters (galvanic isolation on either
the “load side” or the “source side”;

– diode-clamped cells;

– imbricated cells.

This chapter is not intended to provide an exhaustive
presentation of these structures and the associated control
approaches, but simply to highlight the advantages and
drawbacks of this type of converter, and to present elements
of control approaches. We will identify control principles
which are common to classic converters, as seen in the
previous chapters, alongside specific control methods used to
overcome the difficulties associated with the exponential
increase in degrees of freedom due to the use of additional
switches.

5.2. Cascaded power converters

We will begin by considering cascaded structures, as this
structure is closest to the converters described in previous
chapters. This structure simply involves coupling classic
(two-level) inverters/choppers, in order to add the voltages
produced by the two components and increase the number of
possible converter output voltages. A generic structure for
this type of converter is shown in Figure 5.1.
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Note that this multilevel converter uses multiple full
H-bridge output points, associated with a series
configuration. For this configuration to be possible, isolated
continuous voltages are needed (denoted as Vdc1 to Vdc3 here).
Isolated DC–DC converters must therefore be placed at each
entry point to each converter. This result may be obtained in
different ways (transformers with multiple secondaries
followed by rectifiers and filters, single continuous voltage
used to power multiple isolated DC–DC converters1).

Another solution consists of associating several H bridges,
powered by a common continuous voltage, and coupling their
outputs using transformers connected by their secondary
windings (providing both galvanic isolation and voltage
aggregation). This structure, as shown in Figure 5.2, is also
known as a polygonal inverter [FOC 98].

These converters are not particularly difficult to control,
and the same techniques used for choppers and inverters may
be employed.

However, there is an obvious limitation in the use of
polygonal inverters: the presence of transformers between
the converter output and the load means that DC–DC
conversion is not possible, and also prevents operation at low
output frequencies. This solution is generally unsatisfactory
for powering electrical machines requiring variable speeds
(the structure shown in Figure 5.1 is preferred in this case).
This type of converter is better suited to active filtering
and/or stabilization/energy management functions in
electrical networks at medium voltage levels (notably within
flexible AC transmissions systems (FACTS) or unified power
flow controllers (UPFCs)).

1 This solution is interesting, as the isolation transformers of each DC–
DC converter can then be dimensioned at a high frequency (switching
frequency) and not at network frequency, as in the case of the first solution
(representing gains in terms of volume and mass).
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Figure 5.1. Cascaded converter (isolated input)

5.2.1. Diode-clamped cells

Compared to cascaded power converters, clamped diode
cell structures present the advantage of not requiring
galvanic isolation in order to operate. A pyramid structure,
proposed in [YUA 00], provides a clear illustration of a
generic form of neutral point clamping (NPC) half-bridge:
this structure is shown in Figure 5.3(a).

Figure 5.3(b) shows the specific case of a three-level
inverter. For this configuration, it is possible to create a table
(Table 5.1) showing the possible control inputs of switches K1,
K2, K ′

1 and K ′

2, with the associated output voltage values (in
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this case, we presume that voltage Vdc is distributed equally
between two capacitors C1 and C2, which must have identical
values). This output voltage vout is then denoted as the
product Vdc.fm, where fm is a modulation function (note that
this is not a binary function, as in the case of the switching
functions used to model two-level inverters and choppers).

Vdc

vout

Figure 5.2. Cascaded converter (isolated output)

REMARK 5.1.– The modulation function is a generalization of
the notion of a connection function, as seen in the previous
chapters. It takes discrete values from a set of n elements for
an inverter with n levels. Note that in the cases seen above,
these levels are equidistant; however, this is not an absolute
rule, and levels may be distributed in a non-uniform manner
if required (although this is rare in practice).

Five of the possible control inputs do not require a
modulation function, and thus the voltage vout. In reality, the
states of the diodes determine the state of the inverter. For
these five cases, we therefore need to determine the obtained
modulation function based on the sign of the current iout in
the load. These results are shown in Table 5.2. In practice,
these control inputs are not desirable, as in the case of classic
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inverters, where half-bridges should not be left in a fully
uncontrolled state.

Figure 5.3. NPC inverter: a) generic pyramid structure
and b) three-level structure

For desirable control inputs, two possibilities are
systematically available for each of the three accessible
values of the modulation function (0, 1/2, 1). Values fm = 0
and fm = 1 give “unbalanced” inputs, for which three switches
are open. These inputs should be avoided. The simplest
solution covering all of the required cases consists of using
complementary signals for K1 and K ′

1, on the one hand, and
for K2 and K ′

2. This gives a simple solution, which may be
summarized as follows (where ON = 1 and OFF = 0):

– K1 = K ′

1 = 0 and K2 = K ′

2 = 0 =⇒ fm = 0 and thus
vout = 0;

– K1 = K ′

1 = 0 and K2 = K ′

2 = 1 =⇒ fm = 1/2 and thus
vout = Vdc/2;

– K1 = K ′

1 = 1 and K2 = K ′

2 = 1 =⇒ fm = 1 and thus
vout = Vdc.
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State of K1 State of K2 State of K′
1 State of K′

2 Modulation function
fm (and vout)

off off off off State dependent on
direction of iout

off off off on State dependent on
direction of iout

off off on off State dependent on
direction of iout

off off on on fm = 0 (vout = 0)
off on off off State dependent on

direction of iout
off on off on fm = 1/2 (vout =

Vdc/2)
off on on off fm = 1/2 (vout =

Vdc/2)
off on on on forbidden

configuration (short
circuit of C2)

on off off off State dependent on
direction of iout

on off off on State dependent on
direction of iout

on off on off State dependent on
direction of iout

on off on on fm = 0 (vout = 0)
on on off off fm = 1 (vout = Vdc)
on on off on fm = 1 (vout = Vdc)
on on on off forbidden

configuration (short
circuit of C1 )

on on on on forbidden
configuration (short
circuit of vdc)

Table 5.1. Switch control inputs and output voltages
for a three-level NPC inverter

5.3. Imbricated cell converters

Imbricated cell or multicellular cell converters were
developed by Foch and Meynard, and are presented in
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[MEY 93]. The generic form of this topology is shown in
Figure 5.4. The structure consists of associating classic
switching cells (two transistors with antiparallel diodes); a
capacitor is inserted between each imbricated cell, and a
fraction of the input voltage Vdc of the whole converter is
applied to the terminals of this capacitor. For an inverter
with n cells, a voltage of Vdc/n will be present at the
terminals of capacitor C1 (the capacitor of the “innermost”
cell, which we will denote as cell number 1, i.e. the cell
connected to the load). For capacitor C2, we have a voltage of
2Vdc/n. This is then generalized with a voltage of kVdc/n at
the terminal of any capacitor Ck.

State of K1 State of K2 State of K′
1 State of K′

2 Sign of iout Modulation
functionfm

off off off off + 0
off off off on + 0
off off on off + 0
off on off off + 1
on off off off + 0
on off off on + 0
on off on off + 0
off off off off - 1
off off off on - 1
off off on off - 1/2
off on off off - 1
on off off off - 1
on off off on - 1
on off on off - 1/2

Table 5.2. Switch control inputs and associated connection functions

Any cell k > 1 may be seen as a loop made up of two
switches (Kk and K ′

k) and two capacitors, Ck and Ck−1. If the
load connected to the converter output is of the “current
source” type, one of the two switches in each cell must be
switched on. From this, we see that the open switch must be
able to withstand the voltage difference required by the
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capacitor pair, i.e. Vdc/n. This general result shows that the
rated voltage required for each switch is inversely
proportional to the number of cells used; this is particularly
interesting for high voltages. However, the closer the
capacitor ratings are to the converter input, the higher they
will be selected to be used in this structure; capacitor C1 will
have a rated voltage equivalent to that of the switches.

Figure 5.4. Imbricated cell inverter

For illustrative purposes, let us consider an example with
two cells (equivalent to the NPC converter shown in
Figure 5.3(b)). We have a voltage Vdc at the terminals of
capacitor C2, while at the terminals of C1, the voltage has a
value of Vdc/2. One switch in each cell (the upper switch,
denoted as Ki for cell i, or the lower switch, K ′

i) must be on in
order to guarantee a continuous current in the load, which we
will consider to be a source of current (such as a machine
winding). It is therefore reasonable to use complementary
switch control inputs for each cell (K ′

i = Ki). We thus obtain
four possible states, as shown in the diagrams of Figure 5.5.

5.4. Control structures

A significant advantage of multilevel converters lies in
their ability to present a high apparent switching frequency
on the load side alongside a lower effective switching
frequency in the switches. This facilitates voltage filtering,
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notably when the components used are slow and require a
low switching frequency. This is particularly true in
high-power applications (such as rail traction), using
components such as high-voltage insulated-gate bipolar
transistors (IGBTs) (with a rating of VCE ≥ 1700V) or gate
turn-off thyristor (GTO)/integrated gate-commutated
thyristors (IGCTs).

Vdc Vdc/2

Vout = Vdc/2

Vdc Vdc/2 Vdc Vdc/2

Vdc Vdc/2

Vout = 0

Vout = Vdc/2 Vout = Vdc

K2 = 0 K1 = 0

K′
2 = 1 K′

1 = 1

K2 = 0 K1 = 1

K′
2 = 1 K′

1 = 0

K2 = 1 K1 = 0

K′
2 = 0 K′

1 = 1

K2 = 1 K1 = 1

K′
2 = 0 K′

1 = 0

Configuration No. 1 Configuration No. 2

Configuration No. 3 Configuration No. 4

Figure 5.5. Configurations of a two-cell imbricated inverter

As an illustration, we will test two possible control
structures for the three-level NPC inverter presented in
section 5.2.1.

5.4.1. “Unipolar” intersective PWM

The first of these structures (as shown in Figure 5.6)
consists of using two triangular carriers of frequency Fd to
control the two pairs (K1,K ′

1) and (K2, K ′

2).

The first carrier, denoted as p1(t), varies between 0 and 1/2;
the second, denoted as p2(t), varies between 1/2 and 1. The
simplest solution consists of stating that p2(t) = p1(t) + 1/2.
The two carriers are then compared to a sinusoidal modulation
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signal m(t) oscillating at a maximum frequency of Fm between
0 and 1. Typically, a modulation index km ≤ is defined such
that:

m(t) =
1

2
(1 + km. cos (2πFmt+ ϕm)) [5.1]

1+

−

Td

p1(t)

p2(t)

m(t)

−

K2

K1

K
′

2

K
′

1

1

1/2

0

p1(t)

t

1/2

+
+

+

Figure 5.6. Unipolar control scheme for an NPC inverter

Figure 5.7 shows the waveforms of control inputs Ki and
K ′

i obtained using this control structure for two values of
m(t). We begin by applying m = 1/4, followed by m = 3/4, in
order to show the two operating zones of the modulator. The
modulation function is also shown, in accordance with the
results presented in Table 5.2.

The waveform of the modulation function takes the form of
a three-level signal, and the spectrum is therefore less rich
than that produced by a two-level PWM approach at the
same amplitude. However, we see that the apparent
switching frequency is the same as that of the switches
(frequency Fd = 1/Td). A different strategy may also be used,
based on interleaved carriers; this second strategy allows the
apparent frequency to be increased, which consequently
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improves the quality of the current injected into a load for a
switching frequency required by the switches. This
interleaved PWM approach will be discussed in the following
section, and the two strategies will be compared in spectrum
analysis terms in section 5.4.3 for the sinusoidal modulation
signal given in equation [5.1].

m(t)

t

t

t

t

t

Td

t

K2

K1

K
′

2

K
′

1

fm

1/2

1

p2(t)

p1(t)

Figure 5.7. Waveforms for a unipolar control scheme

5.4.2. Interleaved PWM

Interleaved PWM techniques are not well suited to the NPC
structure discussed earlier, as when switches are grouped
into pairs, (K1,K

′

1) and (K2,K
′

2), using complementary control,
four different combinations are theoretically possible:

– K1 = 0, K ′

1 = 1, K2 = 0, K ′

2 = 1;

– K1 = 1, K ′

1 = 0, K2 = 0, K ′

2 = 1;

– K1 = 0, K ′

1 = 1, K2 = 1, K ′

2 = 0;

– K1 = 1, K ′

1 = 0, K2 = 1, K ′

2 = 0.
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The second configuration leads to an unknown state
(dependent on the direction of the current iout injected into
the load). An imbricated topology is therefore better suited to
use with interleaved strategies; as we saw in section 5.3, each
cell provides a contribution of Vdc/2 to the output voltage Vout,
with no real restrictions in terms of control.

Consequently, we must simply compare the full amplitude
modulator with a full amplitude carrier for each cell in order
to obtain a modulation of the output voltage between 0 and
Vdc. However, there are no constraints imposing a link
between the carriers used for the two cells, with the exception
of the amplitude. The two carriers may thus be
“complementary”, with one at its maximum value, while the
other is at its minimum value. Thus, taking p1(t) as a
symmetrical triangular carrier used for cell 1, with a
variation fixed, by convention, between 0 and 1, cell 2 may
use a carrier p2(t) expressed as:

p2(t) = 1− p1(t) [5.2]

The structure of the PWM controller is shown in
Figure 5.8 and the associated waveforms for the control
inputs and the modulation function are shown in Figure 5.9.
These illustrations use the same conditions applied in Figure
5.7, i.e. a modulating signal m(t) which is constant by
intervals (m = 1/4 followed by m = 3/4). We see that the
apparent frequency of switching in the modulation frequency
is doubled using this control scheme. In the following section,
we will compare the spectrums obtained in the two cases for a
sinusoidal modulator.

5.4.3. Spectrum comparison of the two strategies

So far, we have considered a unipolar strategy applied to
an NPC inverter and an interleaved PWM strategy used with
an imbricated cell inverter. From an operational perspective,
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these two converters and strategies are equivalent. At
spectrum level, however, the output voltage wave (or, simply,
the modulation function wave) presents significant
differences, even when the same switching frequency is used
in the switches.

1

1

−

p1(t)

p2(t)

+

+

+
−

−

1
t

Td

1

K1

K ′

1

K2

K ′

2

m(t)

Figure 5.8. Interleaved control signals for a
two-cell imbricated inverter

For comparison purposes, we will consider a modulating
signal with the form designed by equation [5.1], taking
km = 0.9 (a high-amplitude mode, but one which remains
within the linear operating zone). In order to obtain a
satisfactory modulation frame, we will use a ratio of
Fd/Fm = 40. The simulated waveforms of the modulation
function and the associated spectra are shown in Figure 5.10.
The results of unipolar PWM are presented on the left, with
interleaved PWM on the right. We clearly see that the latter
strategy presents significant improvements in the spectrum
of the voltage wave; the first harmonics appear at twice the
switching frequency, and for a “first-order low-pass”-type
load, we can expect an additional damping of −6dB (as
harmonics appear in the octave above); this represents a
factor 2 reduction in the amplitude of the first current
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harmonics. Moreover, we see that the group of rays at
approximately 2kHz for interleaved PWM presents a lower
amplitude than the group of rays at 1kHz for unipolar PWM
(these are the first ray groups for each approach).

1

t

t

t

t

t

Td

K2

K1

K
′

2

K
′

1

m(t)

p2(t)

p1(t)

t

fm

1/2

Figure 5.9. Waveforms for interleaved control approaches

5.4.4. Voltage balancing

In NPC and imbricated cell structures, intermediate
voltages are supplied by capacitors and not by constant
voltage sources. These voltages may therefore vary, and we
need to ensure that they are balanced by means of control
inputs and/or the use of auxiliary equipment.

For the NPC inverter (see Figure 5.11), we therefore need
to ensure that the current arriving at the node connecting the
two capacitors has an average value of zero. Note that this
capacitance bridge may be shared by three NPC half-bridges
for a three-phase inverter. In this context, and with a
three-wire load power supply, this behavior is easier to
maintain. This structure is relatively economical in terms of
the improvements it provides in terms of the quality of
voltages produced when compared to a two-level inverter.
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Figure 5.11. Interconnection between two imbricated cells

For the imbricated cell inverter, we may use the generic
diagram of a cell i shown in Figure 5.12. Switches Ki and K ′

i

are controlled in a complementary manner2, and we suppose
that the switched current (equal to iout, current injected into
the load) remains constant over a switching period Td.
Consequently, switch Ki (a transistor if iout > 0, a diode
otherwise) will be traversed by this current during a time
interval αi.Td (where αi is a control input duty ratio attached
to the switching cell i) while switch K ′

i (a transistor if iout < 0,
a diode otherwise) will be traversed by the same current
during a time interval (1 − αi).Td. This allows us to write the
dynamic of the sliding average voltage 〈vCi〉Td

(for a time
window of duration Td) at the terminals of capacitor Ci as
follows:

Ci

d 〈vCi〉Td

dt
=
〈
iKi+1

〉
Td

− 〈iKi〉Td
= (αi+1 − αi) .iout [5.3]

2 This is also applicable to Ki+1 and K′

i+1.
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The voltage at the capacitor terminals will be stable if
αi+1 − αi = 0. This is clearly verified in the switching period if
we use identical carriers for each cell, but also when the
carriers are interleaved, as in the case shown in Figure 5.9.
This solution is (almost) systematically chosen, due to the
increase in the apparent frequency of the capacitor output.
Generally speaking, n carriers are used with a phase shift of
2π/n for a converter with n imbricated cells.

vCi

Ki+1
iKi

iKi+1

Ki

K
′

iK
′

i+1

Ci

iCi

Figure 5.12. Interconnection between two imbricated cells

This idealized study should not be seen as an exhaustive
study of the problem of voltage stabilization at capacitor
terminals, and even less for the case of balancing voltages
between capacitors in converters using more than two cells.
While imbricated cell converters do possess natural balancing
properties, readers interested in this specific issue in the
context of these converter topologies may wish to consult
some of the diverse publications on the subject, for example
[SHU 11].

5.5. Note on vector PWM

Vector PWM techniques may also be applied to multilevel
inverters. The main difficulty associated with this type of
converter lies in the increased complexity of control due to
increases in the number of degrees of liberty. However, a
Clarke or Concordia transformation may be used to produce a
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constellation of points instantaneously accessible in the plane
αβ. In the case of our three-level inverter, we may write:

v3M = Vdc.fm3 [5.4]

where v3M is the vector of the inverter output voltages,
referenced in relation to the negative terminal of the input
voltage source (as with voltage Vout in the single-phase
diagrams in Figure 5.5). fm3 is the vector of the modulation
functions applied to each of the single-phase inverters
making up the three-phase inverter. Note that these
modulation functions take values of 0, 1/2 and 1 for this
three-level inverter.

From this point on, the equation structure is entirely
conventional; if we wish to determine the expressions of the
phase voltages applied to the load (i.e. with regard to the real
or virtual neutral of the load), we must suppose that the load
is balanced, and that we have:

vaN + vbN + vcN = 0 [5.5]

where a, b and c are the phases of the load and N is the neutral
of the load.

Consequently, the equation model produces the same result
as obtained for a two-level inverter:

v3N =
Vdc

3

⎛⎜⎝ 2 −1 −1

−1 2 −1

−1 −1 2

⎞⎟⎠ .fm3 [5.6]

except for the fact that the control input vector is no longer
composed of binary variables (0 or 1). For each component, we
have three possible values, giving a total of 33 = 27 possible
combinations for the control input vector. We must then
consider the way in which these combinations affect the
voltages instantaneously available in the plane αβ. To do
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this, we simply use a Concordia transformation (for a zero
sequence component of zero):

T32.v2N = Vdc.T32.T
t
32.fm3 [5.7]

Thus, multiplying this equality from the left by T t
32, we

obtain:

v2N = VdcT
t
32.fm3 [5.8]

Note that these Concordia components do not retain the
amplitudes of the real three-phase values, and have an
amplitude which is

√
3/2 times higher. Once this result has

been established (the result is, in fact, the same as that
obtained for the two-level three-phase inverter), we may
produce an exhaustive list of voltages available in the plane
αβ (see Figure 5.13).
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Figure 5.13. Constellation of instantaneous voltages in
the plane αβ for Vdc = 600 V

We immediately see that the number of points in the
constellation of available voltages (19) is lower than the
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number of control inputs available for the inverter (27). This
was also the case for the two-level inverter, where two of the
input combinations produced a null vector; in this new
converter, we encounter more duplication. The number of
control inputs associated with each point is shown in the
constellation.
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Case Study – The
Variable Speed Drive

6.1. Objective

This chapter is a case study of a full converter used to
control a three-phase electrical machine, either synchronous
or asynchronous. For the purposes of this study, we shall only
consider the power components (including filtering and
braking apparatus) and the gate drivers used to control
switches (IGBT). The overall structure under consideration
was presented in Figure 1.1 of Volume 1 [PAT 15a],
Chapter 1.

Before beginning this study, a specification characterizing
the power source and the load should be defined:

– source: three-phase network at 230/400V – 50Hz;

– load: bipolar synchronous machine with non-salient poles,
230V per winding, 3kW, all losses are neglected: cosϕ = 0.91.

1 For the purposes of this study, we shall presume that the machine
windings present negligible resistance in comparison to the inductance.
Moreover, we shall limit ourselves to linear modeling of the machine (i.e.
a Behn–Eschenburg model).
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We shall presume that the load and the converter must be
able to withstand transitory operation at a power of 6kW for
10 s. As we wish to avoid energy being returned to the
network, a diode rectifier is entirely suitable; after filtering, a
brake chopper is used to dissipate the energy sent back to the
DC bus by the three-phase inverter connected to the machine.

As the source and the load are imposed, we first need to
verify their adequacy. Secondly, we shall design the inverter
and analyze the gate driver technologies which are currently
available on the market. We shall then consider rectification
and filtering of the DC bus voltage. To conclude the electrical
aspect of the study, we shall calculate the parameters of the
brake chopper and the way in which it is controlled.

Following on from this (idealized) electrical study, the
losses associated with the switches shall be considered,
leading to a thermal modeling of the assembly in order to
design an appropriate cooling system (covering both
permanent and transitory modes).

6.2. Adequacy of the source/load

6.2.1. Source and rectifier

As a three-phase network is used to power the variator, a
PD3 rectifier is the natural choice. This is a non-controlled
(diode) rectifier; based on the results established in Chapter
3, we know that the average output voltage 〈Vrec〉 is expressed
as:

〈Vrec〉 = 2Vmax
q

π
sin

(
π

q

)
[6.1]
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where Vmax is the amplitude of the phase voltages and q the
number of phases. In this case, we have:{

Vmax = 230
√
2 [V]

q = 3
[6.2]

We thus obtain an average rectifier output voltage of 538V.
We presume that the voltage after LC filtering (at the
inverter input point) is strictly constant, and almost equal to
this value.

6.2.2. Inverter and load

From the results established in Chapter 2, we know that,
if the DC bus voltage is U0, the maximum amplitude of the
phase voltages supplied to the load is 2

πU0 for “full-wave”
control, and U0

√

3
for linear vector PWM (i.e. without

overmodulation). Given that our load requires phase voltages
of 230VRMS, the inverter must be able to supply voltages with
an amplitude of 230

√
2 = 325V. In the case of full-wave PWM,

this implies that the minimum voltage in the DC bus should
be 510V; if we wish to avoid overmodulation in the inverter
(i.e. to remain within the limits of linear PWM), a voltage of
563V is required.

6.2.3. Summary

Our calculations show that the source and the load are
suitable to be used together, based on the rectifier/inverter
association alone. Clearly, the inverter cannot be used solely
in PWM, and overmodulation is necessary to attain the
maximum voltage amplitude required by the load, but we do
not require any additional elements. If the voltages for this
source and this load were not suited to be used together,
an additional element would need to be inserted into the
conversion chain. This might be:
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– a transformer at the rectifier input point;

– a buck or boost converter on the DC bus (between the
rectifier and the inverter).

Another possibility would be to place a transformer
between the inverter and the machine, but this is not
desirable, as it would complicate couple and/or speed control
of the machine. Moreover, the transformer would need to be
suited to operations at variable frequency (generally not the
case for classic 50 or 60Hz transformers2).

6.3. Inverter

6.3.1. Current/voltage characteristics

In the previous section, we established that the DC bus
voltage is 538V. This allows us to calculate the voltage levels
which the transistors and diodes in the inverter must be able
to withstand. In practice, a safety coefficient of 2 is applied in
order to guarantee continued successful operation even
during switching, when overvoltages may briefly occur at
component terminals. Under these conditions, the transistors
and diodes used must be able to withstand a minimum of
1 076V. In practice, the standard IGBT voltage ratings are
600 and 1 200V. Clearly, switches with a rated voltage of 600V
leave insufficient margin, so 1 200V components should be
used. The most suitable technology for this voltage and power
range is IGBT. At this point, we need to characterize the
rated current in order to select components (which may be
integrated into a full “three-phase inverter” module,
potentially including the rectifier and the brake chopper).

To do this, we begin by calculating the current which
needs to be injected into the load, based on the characteristics

2 Although, theoretically speaking, this would be entirely possible.
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laid out in the introduction. We know that the inverter must
be able to supply 3kW in permanent mode and 6kW for
periods of 10 s. For the switches, it is best to assimilate the
10 s in transient mode to a permanent mode, due to the low
thermal inertia of components; the components will therefore
be designed for this transient mode (although this will not be
the case for other components, such as the heatsink or the
smoothing choke):

P = 3V.I. cosϕ [6.3]

Taking V = 230V, cosϕ = 0.9 and P = 6kW, we obtain:

I = 9.66A [6.4]

This gives us a current with an amplitude of up to
Imax=13.7A.

In terms of switch design, the most important parameter
depends on the technology used. For a MOSFET, which
presents a resistive behavior in the ON state, it is important
to evaluate the effective value of currents, as conduction
losses PMOS

cond take the form RDSon.I
2
RMS. IGBTs present not

only dynamic resistance RT
d but also a voltage dropoff VTO

when switched on, independently of the current. In these
conditions, the conduction losses are expressed as:

P IGBT
cond = VTO. 〈I〉+RT

d .I
2
RMS [6.5]

where 〈I〉 is the average current circulating in the switch.

Therefore, not a single parameter exists which may be
used for selecting a rated current (which is subject to
essentially thermal limitations). Manufacturers specify a
permanent nominal current for components, corresponding to
a maximum acceptable loss level. Our device needs to operate
using variable currents: for this reason, we will consider a
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“hybrid” parameter for rating selection, based on the following
simplifying hypotheses:

– operation with a unitary power factor (load);

– design based on the inverter operating in full-wave mode.

This second hypothesis is relatively restrictive. A high
safety margin should be used with regards to losses. In this
case, losses are practically limited to conduction losses (with
only two switching operations per fundamental period and
per half-bridge); when using PWM, switching losses must
also be taken into account.

It is then easy to calculate the average current and the
effective current in a transistor3, insofar as this corresponds
to a half-wave rectification waveform. Thus:

〈I〉 = 1

2π

ˆ π

0
Imax. sin θ.dθ =

Imax

π
[6.6]

and:

IRMS =

√
1

2π

ˆ π

0
I2max sin

2 θ.dθ

=

√
I2max

4π

ˆ π

0
(1− cos 2θ) .dθ =

Imax

2
[6.7]

A possible component choice criterion thus consists of
calculating the corresponding losses for currents specified in
manufacturer documentation, labeled P ref

cond, then calculating
losses [6.5] using the average and effective current losses

3 With a unitary power factor and using full-wave modulation, the diodes
never enter into conduction.
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established in [6.6] and [6.7]. We then apply a safety
coefficient K to determine the design criterion:

P IGBT
cond ≥ K.P ref

cond [6.8]

A coefficient of order 10 is used: note that this coefficient is
applied to the power, and not to the current. Moreover, as the
reference power is dissipated in “static” mode, a considerable
margin is required for switching losses, as we shall see below.
The safety margin K = 10 corresponds to a considerably lower
coefficient in terms of current.

For the purposes of our case study, let us verify that the
Semikron SKiiP12AC126V1 module is suitable for our
application. Based on the datasheet available at
www.semikron.com, the IGBT modules withstand 22A in
permanent mode at 70°C (this is a priori the running surface
temperature for a junction temperature of 125°C): a
characteristic IC(VCE) is supplied (shown in Figure 6.1).

Figure 6.1. Graph IC(VCE) – Semikron documentation
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Using this graph, we may evaluate the reference power
dissipated by the transistor during conduction:

P ref
cond = 2, 5 [V]× 22 [A] = 55 [W] [6.9]

For our application, we know that the maximum current is
13.7A. At 125°C, the transistor parameters are:{

RT
d = 75mΩ

VTO = 0.75V
[6.10]

Hence:

P IGBT
cond = 6.79W [6.11]

There is a ratio of 8:1 between the reference power and the
power which is actually dissipated during conduction by our
application, giving a considerable safety margin.

This preliminary calculation may be seen as the first step
in establishing a “loss budget”, where 12.4% of the available
resource is allocated to effective conduction losses. Allocations
should also be made for switching losses and for the safety
margin. As the “small” module discussed above appears to be
sufficient for our requirements, we shall continue our study
using this element.

6.3.2. Switching frequency

The switching frequency Fd should be chosen based on a
compromise between the quality of the power supply to the
load (minimization of HF currents by increasing the switching
frequency) and switching losses introduced into components
(which may be considered to be proportional to the switching
frequency).

It is relatively easy to calculate losses in IGBT transistors
compared to MOSFETs, as constructors (particularly
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Semikron) specify switching losses for switch-on EON and
switch-off EOFF (noted WON and WOFF in certain other
manufacturer datasheets). These values (noted in mJ) are
specified for reference values of switched voltages Vref and
currents Iref ; the latter do not necessarily correspond to the
values in the target application (voltage and current noted
Vapp and Iapp respectively). This data is adapted using a
simple proportionality rule:

Eapp
ON =

Vapp.Iapp
Vref .Iref

· EON and Eapp
OFF =

Vapp.Iapp
Vref .Iref

· EOFF [6.12]

In practice, as the inverter is powered using a constant
voltage U0, we may consider that the voltage Vapp is a
constant (Vapp = U0 = cte). However, the switched current is
assumed to be sinusoidal. Classic PWM strategies (such as
sinusoidal or vector PWM) consist of provoking switching in
one half-bridge of the inverter twice per switching period,
Td = 1/Fd. These strategies all produce the same results in
terms of switching losses (Pcom). We may write that,
generally:

Pcom = 3 · EON + EOFF

Tm
· Vapp

Vref .Iref

N∑
k=1

|ia (k.Td)| [6.13]

where Tm is the fundamental period of the sinusoidal
voltages supplied to the load, and N the number of switching
periods per fundamental period (i.e. N = Tm/Td). Clearly, this
equation covers the total losses in the converter, as it includes
the factor 3 at the beginning of the expression. In this case,
we assume that the chosen strategy balances the three
half-bridges (this is true for the cited strategies, and is
normally valid for all strategies used in practice).
Consequently, our calculations are carried out using current
ia alone (the choice of phase a is arbitrary).
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Assuming that the number of switching periods within the
fundamental period is sufficiently high, it is possible to
substitute the following integral for the discrete sum:

Pcom = 3 · EON + EOFF

Td.Tm
· Vapp

Vref .Iref

ˆ Tm

0
|ia (t)| .dt [6.14]

We then change a variable, taking θ = ωmt, where ωm =
2πFm, and we obtain:

Pcom =
3

2π
· EON + EOFF

Td
· Vapp

Vref .Iref

ˆ 2π

0
|ia (θ)| .dθ [6.15]

Finally, supposing that the current ia is purely sinusoidal
with amplitude Imax, we obtain:

Pcom =
6

π
· EON + EOFF

Td
· Vapp.Imax

Vref .Iref
[6.16]

In our case study, if we wish to eliminate any risk of
acoustical disturbance induced by the “converter/machine”
system, a switching frequency of 20kHz (Td = 50μs) would be
ideal, if this choice is reasonable with regard to switching
losses. Generally speaking, this is not problematic at
relatively low power levels, as in this case. However, at high
power levels (such as for rail traction) this choice may be
critical; the slower switches used in these cases are not able
to tolerate high-frequency switching.

In our case, considering the SKiiP12AC126V1 module,
parameters EON and EOFF take the following values:{

EON = 1.7mJ

EOFF = 1.9mJ
[6.17]

These values are specified in the datasheet for a reference
voltage Vref of 600 V and a current Iref of 15A. Taking the least



Case Study – The Variable Speed Drive 225

favorable case in terms of current amplitude (Imax = 13.7A for
transitory mode, over 10 s @ 6kW), we obtain:

Pcom = 112.6W [6.18]

Note that the DC bus voltage is 538V, and that this value
represents the total switching losses in the inverter.

REMARK 6.1.– We have seen that operating at maximum
amplitude only occurs in cases of overmodulation (or in
full-wave mode). However, it is wise to evaluate losses on the
basis of linear PWM operation.

As the calculated power is dissipated in the whole inverter,
we may evaluate transistor losses at 18.77 W. The first
observation to make is that switching losses represent a
significant part of the overall losses in the transistor. Note,
however, that we have not considered losses in the diodes; in
cases of operation with PWM switching, diodes must
necessarily be in a state of conduction during certain phases.
However, this calculation provides a good approximation of
real losses: this point will be developed further in
section 6.5.1. Note that this choice of module is coherent with
the typical application indications (5.5kW machine) given on
the first page of the module documentation.

REMARK 6.2.– The decision to use a power module when
designing a full variable speed drive is not only based on the
simplicity and robustness of connections, but also on the
choice of components. The diodes associated with IGBTs are
perfectly suited to the target application, and so their rating
does not need to be determined.

6.3.3. Gate drivers

As we saw in Chapter 4 of Volume 1 [PAT 15a], an
IGBT/MOSFET gate driver is required. This kind of device
injects currents of the order of one ampere (or more) into
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transistor gates to ensure rapid switching. In the case of
converters using half-bridges with “high” side transistors
(choppers or inverters), we encounter an additional problem
concerning the control of the voltage VGE (the voltage
between the gate and the collector of an IGBT, responsible for
switch-on and switch-off), as the emitter has a floating
potential.

As we have seen, various solutions exist, with varying
levels of integration, performance and cost. The most
widespread (and cheapest) option consists of “building” a
floating power supply with a diode pump. This element
includes a diode, used with a bootstrap capacitor, which
provides small-scale energy storage. Floating power supplies
for gate control in MOSFET or IGBT transistors do not need
to be particularly powerful, as gate control is non-dissipative:
once switched on or off, no power is required in the
component gates. This means that a simple load transfer
from a capacitor to the transistor gate is sufficient.

Note, however, the limitations of this type of gate control:

– the bootstrap capacitor voltage is only quasi-constant if
its capacitance is high in relation to that of the transistor gate
to power;

– the bootstrap capacitor voltage must be recycled regularly
to compensate for self-discharge in the capacitor (current
leakage).

We therefore need to evaluate the capacitance of the
transistor gate in order to choose a capacitor with a value at
least ten times (and preferably one hundred times) higher.
Moreover, we must ensure that half-bridges switch with
sufficient regularity; this means that modulator saturation
should be avoided, or at least take place for controlled
durations. This problem is generally not critical for inverters
used to modify duty ratios in fundamental periods which are
often relatively short when overmodulation occurs (full
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wave = overspeed). However, hysteresis control of a chopper
can prevent a driver of this type from working at all.

The capacitance of a transistor gate is generally evaluated
by observing the characteristic VGE(QG), which shows the
load required to attain a sufficient gate voltage for transistor
control. This curve, shown in Figure 6.2 for the SKiiP
12AC126V1 module, shows that a load of around 108nC is
required for satisfactory control of transistors at 15V.

Consequently, if we use a capacitor with an initial load of
15V, it must be able to provide Q = 108nC, limiting, for
example, the voltage dropoff at ΔU = 2V4. In this way, we
can calculate the required bootstrap capacitance Cboot:

Cboot =
Q

ΔU
= 54nF [6.19]

Figure 6.2. Graph VGE(QG) – Semikron documentation

The required capacitance is thus relatively low. It is best to
increase this value by a factor of ten, or even one hundred,

4 This guarantees control will take place without reducing efficiency with
regard to the power circuit.
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which can generally be done without the size of the capacitor
becoming problematic: a non-polarized capacitor of 1μF
withstanding 15V has a volume of less than 1 cm3.

REMARK 6.3.– Note that the gate capacitance of the
transistor in question is particularly low (of the order of an
nC) and that the characteristic VGE(QG) begins by applying a
negative voltage VGE (switch-off zone).

To complete the design of gate driver circuitry, we
generally need to calculate the resistance placed between the
driver and the transistor gate (MOSFET or IGBT). A simple
method may be used to approximately evaluate switching
time as a function of this resistance. By fixing a value for the
switching time, we may therefore determine the appropriate
resistance. We may also wish to limit the current injected
into the gate in response to the limitations of the driver. In
this case, the issue does not arise, as the manufacturer
specifies a required gate resistance: RGon = RGoff = 30Ω5 (we
can verify that using 15V, the pulse current injected into the
gate will never exceed 0.5A).

6.4. Rectifier and filter

6.4.1. Behavior of the rectifier

We have already seen that, in our application, the average
rectifier output voltage is 538V. We can also calculate the
peak-to-peak ripple of the voltage directly at the rectifier
(PD3 type) output point, following the waveforms established
in Chapter 3:

ΔVrec = Vmax

√
3
(
1− cos

(π
6

))
= Vmax

√
3

(
1−

√
3

2

)
[6.20]

5 It is possible to differentiate between the gate resistances used in switch-
on and switch-off (using current directing diodes), although this is not
necessary here.
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In this case, we obtain:

ΔVrec = 75.5V [6.21]

To guarantee a voltage ripple of the order of ±1% at the
inverter input point, the ripple needs to be reduced to 10.8V
peak-to-peak, i.e. a reduction by a factor of 7 (around 17dB).

In parallel, we also wish to smooth the current delivered
by the rectifier. We shall base our approach on the filtering
study in Chapter 3, but this time for a three-phase rectifier.
Firstly, we must calculate the average current 〈Irec〉 which will
be supplied by the rectifier; in this case, we use the case of
permanent mode, with a load (machine) of 3kW. In this case,
the inverter is presumed to be ideal, so we consider that the
power Prec provided by the rectifier is also of 3kW. Hence:

〈Irec〉 = Prec

〈Vrec〉 =
3kW

538V
= 5.58A [6.22]

We may, therefore, choose to maintain a peak-to-peak
current ripple of the order of 10% of the average value (for
example), in this case, 558mA.

6.4.2. Choke dimensioning

We now need to determine the instants (or angles) at which
the instantaneous rectified voltage vrec(θ) = Vmax cos θ exceeds
the average value 〈Vrec〉:

θ1/2 = ± arccos

( 〈Vrec〉
Vmax

√
6

)
= 0.301 rad i.e. 17.3° [6.23]

Next, we calculate the ripple ΔiL of current iL in the choke,
taking:

ΔiL =
1

Lω

ˆ θ2

θ1

(vrec (θ)− 〈Vrec〉) .dθ [6.24]
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hence:

L =
1

ΔiLω

ˆ θ2

θ1

(vrec (θ)− 〈Vrec〉) .dθ = 58mH [6.25]

A choke of 58mH is therefore required, and should not
saturate (even in transitent mode at 6kW, i.e. with a current
of 11.2A).

6.4.3. Capacitance calculation (rectifier)

We have established that the voltage ripple (at 300Hz for a
50Hz network) at the filter output point needs to be reduced
by 17dB. It is arguably safer, and simpler, to work with a
reduction of 20dB (factor 10). To do this, we note that our LC
filter presents a 2nd order behavior, with an eigenfrequency:

f0 =
1

2π
√
LC

[6.26]

The reduction slope is −40dB/decade for this type of filter,
so a half-decade will be sufficient to produce a factor 10 ripple
reduction, on the assumption that this is purely sinusoidal at
300Hz (this simplifying hypothesis was also used in Chapter
3). The resonant frequency of the filter should therefore be
placed a half-decade lower than the frequency of the ripple; a
half-decade corresponds to a factor of 101/2 =

√
10 = 3.16. We

therefore take:

f0 =
300

3.16
= 94.9 [Hz] =

1

2π
√
LC

[6.27]

As we have already calculated the value of L required to
satisfy the ripple criterion for the current supplied by the
rectifier, we simply need to determine the required
capacitance:

C = 48.5μF [6.28]
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6.4.4. Inverter/capacitor interactions

The capacitor calculations above were based purely on
filtering the ripple of the voltage produced by a diode rectifier
placed upstream. Unfortunately, this capacitor is also subject
to current stress imposed by the inverter, placed downstream.
In certain applications, this represents the most limiting
aspect of the problem, and this element needs to be dealt with
in order to ensure correct dimensioning of the overall
converter.

We shall begin by calculating the reactance produced by L
at 20kHz (switching frequency used by the inverter):

XL = L.ω = 2πL.Fd = 7.29 kΩ [6.29]

In the same way, we can evaluate the reactance introduced
by C at the same frequency:

XC = − 1

Cω
= −0.164Ω [6.30]

In a three-phase inverter, the current drawn from the DC
bus is purely constant in the LF (low frequency) domain, as
the fluctuating power is null6. Consequently, the chopped
current entering the inverter only includes HF components
located around the switching frequency and multiples of this
frequency.

As we have seen, there is a considerable difference
between the reactances of the capacitor and the inductance at
20kHz (this difference is even greater at higher frequencies).
In this case, the HF current drawn from the DC bus by the
inverter can only circulate in the capacitor. We must ensure
that the voltage ripple remains low (the effect is added to
that produced by the rectifier), but also take account of the

6 This is not the case in a single-phase structure.
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nominal operating current of the capacitor (from
manufacturer data), which must be lower than the current
imposed by the inverter.

For APWM strategies using two adjacent active vectors
during each switching period (sine PWM and classic vector
PWM, as seen in Chapter 2, the effective current RMS (Ic) in
the capacitor may be expressed in analytical form in the
following manner:

RMS (Ic) = Imax.

√√√√√
3m

4π
+

(√
3m

π
− 9m2

16

)
cos2 ϕ [6.31]

where Imax is the amplitude of currents in the load, cosϕ the
power factor of the load and m the modulation depth used for
PWM (amplitude, normalized between 0 and 1, of the
reference voltage for sinusoidal PWM7). A normalized
cartography RMS (Ic) /Imax as a function of m and ϕ is shown
in Figure 6.3.

Figure 6.3. Cartography of RMS (Ic) /Imax as a function
of m and ϕ for APWM strategies

7 This definition means that m may be greater than 1 for PWM with zero
sequence injection (vector PWM or level 3 harmonic).
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This cartography clearly shows the most critical operating
points (i.e. the points of highest stress) for a capacitor with a
high power factor (ϕ = 0) and a modulation depth of the order
of 0.6. Assuming (as we are dealing with a normalized
characteristic) that the maximum current obtained for a
power of 6kW (i.e. 13.7A) can be injected into the load at this
operating point, we deduce that:

RMS (Ic) = Imax × 0.45 = 6.17A [6.32]

It is therefore important to verify that the capacitor(s)
used will withstand this effective current value. If not, the
current will need to be distributed across a greater number of
elements; in this case, the critical design element is the
processed current, rather than the capacitance (this is
particularly true for applications with low voltages and high
currents, and in the case of electrolytic capacitor
technologies).

6.4.5. Capacitor life expectancy

The life expectancy of DC link capacitors depends on a
number of factors, including:

– the technology used (aluminum or tantalum electrolytic,
plastic film, ceramic, etc.);

– the operating voltage compared to the rated voltage of the
component;

– the operating current compared to the rated current of the
component;

– the ambient temperature.

Temperature is a key element in the aging of capacitors
(particularly for aluminum electrolytic capacitors). This
element is not only determined by the ambient temperature
(which may be high or very high in a vehicle, due to proximity
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to a heat engine, for example), but also by self-heating of the
component due to Joule losses resulting from their equivalent
series resistance (ESR). Aging in a capacitor involves
progressive evaporation of the electrolyte, and an increase in
the ESR for a given temperature8.

A formula for calculating the life expectancy D (in hours)
is provided in manufacturer documentation issued by Kemet
[KEM 12]:

D = A.2
Tref−T

C [6.33]

where A and C are the component parameters in hours and
in °C respectively. Tref is the reference temperature specified
by the manufacturer for a range of components, whilst T is the
real operating temperature. We may verify that if T = Tref , the
life expectancy will be equal to A.

To take an example, let us consider a capacitance of 50μF,
calculated above to satisfy the filtering requirements of a
component with a rectifier output at 300Hz. Two 100μF
capacitors from the Kemet ALS30 range, with a nominal
voltage of 350V, used in series, will be sufficient. This
association corresponds to an equivalent capacitance of 50μF
supporting 700V; in our application, the DC bus operates at a
voltage of 538V (the element is therefore over-dimensioned by
around 30%). However, for this voltage range (350V), the
lowest available capacitance value is 330μF, giving an overall
capacitance of 165μF after integration into a series.

We must then ensure that the capacitors are able to
withstand the current circulating through them, i.e.:

– a component at 300Hz with a peak-to-peak amplitude of
558mA (i.e. 0.2ARMS.);

8 Note that ESR varies considerably as a function of temperature. From
manufacturer documentation, we see that “cold” ESR (@25°C) may be three
times higher than that for a nominal temperature (for example 85 or 105°C).
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– a component, which we shall assume to be concentrated
at the switching frequency, with an effective value of 6.17A.

The data supplied by the manufacturer concerning these
acceptable currents is as follows:

– component at 100Hz of 2.4A;

– component at 10kHz of 5A.

We note that the capacitor is perfectly suitable with regards
to the “low frequency” component, but is a priori insufficient
to deal with the required HF current. It would therefore be
better to use the next capacitor in the range (470μF), which is
able to withstand:

– 3.4A at 100Hz;

– 7.2A at 10kHz.

Finally, we may make use of an on-line tool
(www.kemet.com:8080/elc) to evaluate the life expectancy of a
capacitor. This tool gives a more precise result than formula
[6.33], taking account of the actual operating voltage of the
capacitor, and linking the internal temperature of the
capacitor to the ambient temperature and to heating (as a
function of current) based on a thermal model for the
relevant capacitor model (in our case, an ALS30A471DE350
capacitor). The results of this analysis are given in Figure 6.4
and show that, based on our choices, the component has a life
expectancy of 165.37krs (i.e. 18.86 years of constant use). The
capacitor is used well below the maximum specifications,
with a maximum core temperature of 53.11°C. On the other
hand, the maximum authorized temperature is 105°C.

REMARK 6.4.– The Kemet life expectancy calculations are
based on doubling of the ESR, and not on full failure of the
capacitor (such as a short-circuit or destruction).
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Figure 6.4. On-line simulation of capacitor
life expectancy (source: Kemet)

6.4.6. Brake chopper

For the brake chopper, we need to evaluate the ability of the
capacitance to dissipate a power of the order of 6kW. Braking
is generally a transient phenomenon; while the inverter is able
to withstand this power value, this is not necessarily the case
for the chopper, as in this case the power travels through a
single transistor.

We should begin by determining the operating mode of the
chopper. Classically, hysteresis control (see Figure 6.5) of the
voltage at the capacitor terminals enables robust and simple
control. As the nominal voltage U0 is 538V, we may fix a
chopper switch-on voltage at Umax = 1.1 × U0 = 592V
(conserving a safety margin greater than 2 with regards to
the rated voltage of the components) and a switch-off voltage
of Uoff = 1.05 × U0 = 565V. The two hysteresis thresholds
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must both be higher than the nominal voltage as, based on
the equivalent model of the system presented in Figure 6.6,
the bus voltage can never be lower than U0: calibration at
Uoff < U0 would mean that the brake chopper would never be
switched off once it has been switched on (this is clearly not
desirable). The voltage difference between the two thresholds
must be sufficient to moderate the switching frequency, and
thus to limit switching losses.

 

 

Figure 6.5. Hysteresis control of the DC bus voltage

Figure 6.6. Electrical model of the DC bus and the brake chopper

REMARK 6.5.– When braking has finished, the voltage does
not remain at Uoff indefinitely, even if the inverter does not
return to motor operating mode. Capacitor leaks will lead to
discharge until U0 is reached.

We may thus calculate the average voltage Uav during
operation of the chopper:

Uav =
Umax + Uoff

2
= 578V [6.34]
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From this, we may deduce the current Ibrake which needs
to circulate in the brake resistance to ensure dissipation of
Pbrake = 6kW:

Ibrake =
Pbrake

Uav
= 10.38A [6.35]

We can thus determine the brake resistance. This allows a
dissipation of 6kW with an average voltage of 578V, and takes
the value:

Rbrake =
U2
av

Pbrake
= 55.7Ω [6.36]

Given the model of the brake chopper transistor (which we
shall suppose to be identical to that of the inverter
transistors9 – VTO = 0.75V and RT

d = 75mΩ), we can calculate
the conduction losses:

P brake
cond = 15.7W [6.37]

The acceptable loss budget for this transistor is around
55W. This figure leaves a considerable margin for switching
losses. Taking a maximum dissipatable power value of 6kW,
the chopper will not switch, and so there will be no losses of
this type. Switching losses will only occur for lower effective
braking powers.

Detailed analysis of switching may become complex, as it
is highly dependent on the load (mechanical inertia) and on
the control technique (e.g. field-oriented control – FOC) used
for the “converter/machine” system. However, we may
analyze behavior at a particular operating point at

9 NB: the chosen module (SKiiP12AC126V1) only includes a three-phase
inverter, and does not contain a brake chopper or a rectifier. However, we
shall use the same characteristics for the transistor and diode in the brake
chopper as for the components integrated into the inverter (in both electrical
and thermal terms).
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half-power (i.e. 3kW). To do this, given the low voltage ripple
(between 105 and 110% of the nominal voltage), we may
assimilate the “converter/machine” assembly to an equivalent
current source as Idc = −3000[W]

578[V] = −5.2A from the
perspective of the DC bus.

Two distinct configurations are possible:

1) “chopper OFF” mode, where the current source Idc
charges the capacitor C with voltage Uoff at voltage Umax;

2) “chopper ON” mode, where the current source Idc is
connected not only to C, but also toRbrake, leading to voltage
dropoff.

We therefore need to calculate the operating times in each
mode to determine the switching frequency (and the
associated losses).

6.4.6.1. “Chopper OFF” mode

If the chopper is switched off (open), the system evolves in
a configuration where a current source (presumed to be
constant) charges a capacitor. Thus:

ΔU

TOFF
= −Idc

C
[6.38]

where TOFF is the duration of this operating phase, ΔU =
Umax − Uoff = 27V, Idc = −5.2A and C = 48.5μF. Hence:

TOFF = −C.ΔU

Idc
= 252μs [6.39]

6.4.6.2. “Chopper ON” mode

If the chopper is closed, we obtain an association in
parallel to the current source −Idc, with a resistance Rbrake

and a capacitor C. The equation model of this circuit gives us:

−Rbrake.Idc = U (t) +RbrakeC
dU (t)

dt
[6.40]
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where U(t) is the DC bus voltage. We know that this operating
phase begins with an initial condition U(0) = Umax.

Introducing a time constant τ = RbrakeC, solution U(t) to
equation [6.40] may be written in the form:

U(t) = −Rbrake.Idc +A.e−t/τ [6.41]

thus:

U (0) = −Rbrake.Idc+A=Umax⇒A = Umax+Rbrake.Idc [6.42]

We thus obtain the expression of U(t), but we are more
interested in the value of time TON allowing us to reach Uoff :

U(TON )=−Rbrake.Idc+ (Umax+Rbrake.Idc) .e
−TON/τ =Uoff [6.43]

From this, we deduce the expression of TON :

TON = −τ. ln

(
Uoff +Rbrake.Idc
Umax +Rbrake.Idc

)
= 253μs [6.44]

6.4.6.3. Braking summary
We thus obtain quasi-symmetrical operation (duty ratio

50%) with a full cycle of 505μs. The switching frequency is
therefore slightly less than 2 kHz (ten times lower than that
used for the inverter)10.

The conduction losses in this case are equal to 15.7W for
half of the time period, giving an average power of 7.85W.
However, we need to add in switching losses. To do this, we
calculate corrected switch-on and switch-off energies (taking
Vapp = 578V and Iapp = 10.38A):

Eapp
ON =

Vapp.Iapp
Vref .Iref

· EON = 1.13mJ [6.45]

10 Noise disturbance should therefore be expected during braking periods.
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Eapp
OFF =

Vapp.Iapp
Vref .Iref

· EOFF = 1.27mJ [6.46]

In these conditions, we may deduce the switching losses for
a frequency Fd = 2kHz:

PBrake
com =

(
Eapp

ON + Eapp
OFF

)
.Fd = 4.8W [6.47]

The total losses (12.7W) are therefore acceptable for the
brake chopper when compared to the reference power value
(55W at 22A) deduced from the nominal operation presented
in the documentation for each IGBT.

REMARK 6.6.– A free-wheel diode is used in the brake
chopper in order to process the (inevitable) inductive
behavior of the dissipation resistance and the associated
cables. Loss calculations are generally not required for this
component, as it is only used for very brief periods. Moreover,
the switching losses have been significantly overestimated; in
normal circumstances, only switch-off will be dissipative, as
the load does not carry a current during switch-on (even after
multiple switching cycles); the load is essentially resistive
(and not particularly inductive).

6.5. Losses and thermal aspects

We have shown that the semiconductors in our chosen
module (Semikron SKiiP 12AC126V1) are able to
permanently withstand a power of 6kW, intended to occur in
transient mode and for a duration limited to 10 s. However, in
studying thermal dissipation aspects, we shall carry out
dimensioning in permanent mode at 3kW. This choice is
clearly arbitrary, but it allows us to study the behavior of the
assembly in transient mode in order to analyze temperature
increase phenomena, essentially linked to the thermal
capacitance of the heatsink. The heatsink is the largest and,
often, the heaviest element in a converter, and is directly
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affected by the nominal power of the converter via the total
losses in the switches P tot

semi in this case, as it must be able to
exchange these losses with the ambient air in permanent
mode, maintaining an acceptable temperature for the chips in
the module.

For the purposes of this study, let us suppose that:

– the application requires natural cooling (without fans);

– the imposed maximum junction temperature in the
semiconductors is +125°C for transistors;

– the base of the module is thermally equipotential
(uniform temperature) and the plastic casing is not involved
in dissipation;

– the ambient air may reach a maximum temperature of
+40°C without derating of the variable speed drive.

6.5.1. Summary of losses in the inverter

We calculated the values of losses in transistors during the
module selection phase in order to verify adequacy. However,
we did not take account of diode behavior in calculating
conduction (or switching) losses. If we look more closely at the
behavior of a conducting diode, the (affine) model VD(ID) is
similar to that of a transistor, but using different parameters:

VD = VDO +RD
d .ID [6.48]

where VDO = 1V and RD
d = 111mΩ (max. @ 150°C); this

should be compared to the transistor parameters (VTO = 0.8V
and RT

d = 110mΩ).

In full-wave calculations, we consider that, at each instant,
a transistor conducts through a half-bridge, and so losses are
always of the form:

P IGBT
cond = VTO. 〈I〉+RT

d .I
2
RMS [6.49]
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In “PWM” mode, however, a transistor and a diode conduct
for α.Td and (1− α) .Td respectively, or vice versa, according to
the sign of the current exiting the half-bridge. We may
therefore expect to see a difference between the loss values
obtained in “full wave” mode, calculated above, and those
obtained taking account of dissociated transistor and diode
losses.

REMARK 6.7.– Note that losses are calculated using a unitary
power factor in the case of the full wave, in order to
guarantee that transistors alone will enter into conduction;
even without switching, if there is a lag between the
sinusoidal phase current wave and the corresponding phase
voltage wave, a diode will begin conducting if the signs of the
two quantities are different.

Detailed study of losses using switching is difficult, and it
is best to use computer-based methods for evaluation
purposes. Semikron has created an on-line tool, known as
SEMISEL, for this purpose, which may be used for full
dimensioning (including cooling equipment). Table 6.1 shows
a comparison (in transient mode @ 6kW) of the results
obtained in our earlier calculations and the results produced
by the on-line program (the “Transistor” and “Diode” results
correspond to one component).

Powers (in Watts) Simplified calculation Semikron result
“Transistor” conduction losses 6.79 7.57
“Transistor” switching losses 18.77 19

Total “transistor” losses 25.56 27
“Diode” conduction losses – 0.71
“Diode” switching losses – 4.45

Total “diode” losses – 5.16
Total “inverter” losses 153.36 191

Table 6.1. Comparison between simplified calculations and results
produced using the Semikron program
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REMARK 6.8.– The total “converter” losses are obtained by
multiplying the losses in a single transistor and a single
diode by six. However, the result produced by the Semikron
program presents a slight inconsistency (191W, instead of
192.96W, obtained by adding together the individual loss
values11). This difference is hard to explain, as the program
operates as a “gray box”. Note, however, that the program is
particularly efficient, producing a usable result in around a
minute, compared to the fifteen minutes required to extract
the necessary information from the relevant documentation
and carry out highly approximative calculations. This
approximation is highly satisfactory (with a difference of
5.3% compared to the Semikron result for transistor losses)
and is entirely suitable for use in the design process. Care
should be taken, however, as successful application to a
specific example is not proof of systematic validity.

6.5.2. Summary of losses in the brake chopper

Losses in the brake chopper have been evaluated with a
reasonably high degree of precision in two particular contexts:

– continuous operation (not in switch mode) at full power
(6kW), with losses evaluated as 15.7W;

– switch-mode operation (2kHz)at half power (3kW) with
losses evaluated as 7.85W (conduction) + 4.8W (switching),
giving a total of 12.7W.

REMARK 6.9.– In this case, losses are located in the
transistor alone; in an ideal situation, the powered load
(dissipation resistance) is purely resistive, and will only
present weak internal (and cabling) inductance. In these
conditions, losses in the free wheel diode are negligible. Note,

11 There is even a degree of incoherence between the total losses in a
transistor and the sum of conduction and switching losses.
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moreover, that for the two operating points, losses remain
effectively constant, and we shall therefore use a value of
20W systematic losses in the braking chopper (on the
condition that the element is working correctly!).

6.5.3. Calculation of losses in the rectifier

Finally, we need to evaluate losses in the rectifier. To do
this, we note that the diodes are crossed by a continuous
current (a good approximation is obtained by applying 10%
smoothing to the rectifier output current). The DC bus
voltage is 538V in nominal operating mode, so we can
calculate the average current supplied by the rectifier at 3
and 6kW:{

〈Irec〉P=3kW = 5.58A

〈Irec〉P=6kW = 11.2A
[6.50]

Let us consider the parameters of the rectifier diodes
(VDO = 0.8V and RD

d = 34mΩ at 125°C), which, like the brake
chopper, are not dependent on the chosen inverter (i.e. the
components are not included in the same device). We obtain a
direct voltage drop VF of 990mV at 3kW and 1.18V at 6kW.

As two diodes are permanently in conduction in a
full-wave bridge (PDn, where n is any given value), we may
directly write the expression of losses P rec

cap:

P rec
cap = 2VF . 〈Irec〉 [6.51]

i.e. 11W at 3kW and 26.3Wat 6kW.

Considering losses per individual diode, we obtain values of
1.84W and 4.39W for the two operating points.
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6.5.4. Summary of losses

We can now provide an overall vision of losses in the
converter, as shown in Table 6.2, using Semikron program
data for the inverter.

Powers (in Watts) @ 3 kW @ 6 kW

Total “Inverter Transistor” losses 12 27
Total “Inverter Diode” losses 3.07 5.16

Total “Brake Transistor” losses 12.7 15.7
Total “Rectifier Diode” losses 1.84 4.39

Total “Variable speed drive” losses 114.2 235

Table 6.2. Summary of total losses

REMARK 6.10.– The total losses shown for the variable speed
drive include those associated with the brake chopper. In
motor mode, the brake transistor losses should be subtracted
from the total. Note that in “motor” mode, the converter
efficiency is 96.7% at 3 kW and 96.5% at 6 kW, presuming
that these reference values are possible variator output
powers (3 and 6kW supply to the load, respectively).

6.5.5. Thermal model and heatsinks

This detailed study of the distribution of losses between
different components in the module allows us to calculate
the junction temperatures of individual elements. Clearly,
this depends on the level of precision used in the technical
documentation, which should specify the thermal resistances
linking the chips to the metal base of the casing. In our case,
the documentation provides us with the following values:

– thermal resistance of an inverter transistor: 1.3K/W;

– thermal resistance of an inverter diode: 1.92K/W;

– thermal resistance of a chopper transistor: 1.3K/W ;

– thermal resistance of a rectifier diode: 1.5K/W.
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These resistances apply to the junction between the
semiconductor chip and the heatsink. The latter, requires
strong contact (using thermal grease) and correct attachment
of the module to the heatsink (torque of between 2 and
2.5Nm, specified in the documentation).

 

    

 

 

 

 

Figure 6.7. Thermal (electrical) diagram of the inverter

Based on this information, we can establish a thermal
diagram (“electrical” equivalent), shown in Figure 6.7 which
includes the resistance Rth(s−a) of the heatsink under
consideration. We can then express our problem in equations,
linking the junction temperatures of the different components
to the thermal resistance of the heatsink. This allows us to
identify a critical component (generally the transistors in the
inverter, as they dissipate considerably more power than the
other components) and to determine a value for Rth(s−a) based
on the maximum acceptable temperature for the component.
In this specific case, a node (θs) appears, traversed by a heat
flux Ptot of 101.5W, originating in all of the components. The
temperature in the heatsink is therefore:

θs = θa +Rth(s−a).Ptot [6.52]
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The evaluation of the junction temperature of a transistor
in the inverter gives us:

θT inv
j = θs + 1.15× 12 = 313 +Rth(s−a) × 101.5 + 1.15× 12

� Rth(s−a) × 101.5 + 326.8
[6.53]

If we impose a maximum junction temperature of 125°C
(398K) for the transistors, a heatsink with a thermal
resistance of 0.702K/W is required. In these conditions, the
heatsink temperature is equal to 111°C (protection should
therefore be put in place to avoid direct contact with users, or
users should be made aware that the element becomes hot
during use).

Clearly, we need to ensure that the selected heatsink
model (profile shown in Figure 6.8 over a length of 110mm) is
compatible with the packaging of the component (or model)
requiring cooling. In this case, the base of the module
(41.6mm x 39.5mm) has a central M4 threaded screw, which
can easily be placed on the flange-free side of the heatsink, as
in the case of the rectifier and the brake chopper. A rectifier
may also be placed in this area. Moreover, we need to ensure
that the heatsink is used with the flanges oriented vertically
in order to maximize cooling efficiency in cases where fans
are not used to force air to circulate.

6.5.6. Transient study

We may now consider the behavior of the “variable speed
drive + heatsink” assembly for a transient period at 6kW in
order to determine whether this transition will induce an
unacceptable temperature increase. In our specific case, the
junction temperature for the transistors in the inverter in
permanent mode is set at 125°C. Manufacturer
documentation for the module states that the element may be
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used with no risk of damage12 at temperatures of up to 150°C.
This leaves us a margin of 25°C for the transient mode.

Figure 6.8. Extract from manufacturer documentation
for a range of heatsinks (source: SEEM)

We therefore need to consider the thermal dynamics of the
temperature in this case, and to do this, we must analyze the
thermal capacitance(s) present in the system. For the
purposes of our model, we shall only consider the heatsink,
which is the element with the highest mass, and thus the
element with the greatest thermal inertia. We need to know
the material used (aluminum) in order to obtain the specific
heat value (897 J/kg/K) and the mass of the heatsink. The
linear density of the profile is not specified in the
documentation, and we need to calculate the mass of the
heatsink by calculating its volume and multiplying this value
by the density of aluminum (2 700kg/m3). Unfortunately, we
only obtain an approximate value, as the rating of the profile
is incomplete with regards to the flanges (in this case, we
shall presume that the flanges have a thickness of 3mm). We
shall also use a profile length of 110mm for our calculations.

12 With the exception of accelerated aging
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We thus obtain the following volume V:

V [mm3
]
= 8× 125× 110︸ ︷︷ ︸

volume of plate

+10× 3× 42× 110︸ ︷︷ ︸
volume of flange

= 248 600 [6.54]

This volume of 248.6 × 10−6m3 gives us a mass of 671 g for
the heatsink, and therefore a thermal capacitance Cth(s−a) of
602J/K. We can thus modify the thermal model by placing this
thermal capacitance in parallel to Rth(s−a).

 

 

Figure 6.9. Simplified transient thermal diagram

For the purposes of this transient study, it is simpler to
combine all of the power sources initially (see Figure 6.9) to
evaluate the heatsink temperature, then to calculate the
junction temperatures of the different components a
posteriori. The selected operating point corresponds to the
critical case, with a power of 6kW in braking mode and total
losses Pmax

tot of 189.6W. The equation model of the equivalent
system, taking Δθ = θs − θa, gives us:

Pmax
tot =

Δθ

Rth(s−a)
+ Cth(s−a) ·

dΔθ

dt
[6.55]

The solution to this differential gives us (taking τth(s−a) =
Rth(s−a).Cth(s−a)):

Δθ (t) = Rth(s−a).P
max
tot +A.e−t/τth(s−a) [6.56]
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where A is dependent on the initial conditions. In the least
favorable case, we need to consider that this transient period
does not start from cold, but following prolonged operation in
permanent mode (with a heatsink at 111°C and an ambient
temperature of 40°C – i.e. Δθ(0) = 71°C). We therefore take:

A = Δθ (0)−Rth(s−a).P
max
tot � −82, 7°C [6.57]

We can then evaluate the evolution of Δθ after 10 s of
operation in this mode:

Δθ (10s) = 72.9°C [6.58]

This shows that transient operation at 6kW for a period of
10 s only produces an increase of 1.9°C in the heatsink,
thanks to the thermal time constant of the element
(τth(s−a) = 422.6 s). We may then consider the temperatures of
the different components included in the heatsink, to check
that none of these elements exceeds a critical threshold. If
these thresholds are not respected, the heatsink will need to
be modified, or a different cooling technology may be used
(see Volume 1 [PAT 15a], Chapter 3).



Appendix 1

Formulas for Electrical Engineering
and Electromagnetism

A1.1. Sinusoidal quantities

A1.1.1. Scalar signals

A1.1.1.1. Definitions
Sinusoidal waveforms are extremely widespread in

electrical engineering, both for voltages and for currents. In
this case, we will consider a generic signal of the form:

x (t) = Xmax cos (ωt− ϕ) [A1.1]

This real signal is associated with an equivalent complex
signal:

x (t) = Xmax.e
j(ωt−ϕ) [A1.2]

This vector may be represented in the complex plane. We
obtain a circular trajectory of radius Xmax with a vector
rotating at a constant speed ω in a counterclockwise
direction. This representation (which is widespread in
electrical engineering) is known as a Fresnel diagram (or,
more simply, a vector diagram).
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REMARK A1.1.– Derivation and integration calculations are
greatly simplified in the complex plane, as they are replaced,
respectively, by multiplying or dividing by jω. To return to the
real domain, we simply take the real part of the corresponding
complex signal: x(t) = Re [x (t)].

The rotating component ejωt of the complex vectors is
meaningless when studying linear circuits; the amplitudes
and the relative phases between the different quantities
under study are the only important elements. Note that an
absolute phase for a sinusoidal value would be meaningless;
the choice of a reference value of the form Xref . cos(ω.t),
associated with the vector Xref .e

jωt, is purely arbitrary.

Complex vectors are also often represented (in the
literature) using the RMS value of the real value in question
as the modulus, and not the real amplitude.

A1.1.1.2. Trigonometric formulas

When making calculations using complex values, we need
Euler’s formulas:{

cos θ = ejθ+e−jθ

2

sin θ = ejθ−e−jθ

2j

[A1.3]

These two formulas can be used to give the four basic
trigonometric formulas used in electrical engineering:⎧⎪⎪⎪⎨⎪⎪⎪⎩

cos (a+ b) = cos a cos b− sin a sin b

cos (a− b) = cos a cos b+ sin a sin b

sin (a+ b) = sin a cos b+ cos a sin b

sin (a− b) = sin a cos b− cos a sin b

[A1.4]

These four equations allow us to establish four further
equations:

cos a cos b =
1

2
(cos (a+ b) + cos (a− b)) [A1.5]
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos a cos b = 1

2 (cos (a+ b) + cos (a− b))

sin a sin b = 1
2 (cos (a− b)− cos (a− b))

sin a cos b = 1
2 (sin (a+ b) + sin (a− b))

cos a sin b = 1
2 (sin (a+ b)− sin (a− b))

[A1.6]

A1.1.2. Vector signals (three-phase context)

A1.1.2.1. Reference frame (a, b, c)

Three-phase systems are very much common in electrical
engineering, particularly balanced three-phase systems. A
vector (x3) = (xa, xb, xc)

t with three balanced components is
therefore expressed as:

(x3) = Xmax

⎛⎜⎝ cos θ

cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
⎞⎟⎠ where θ = ω.t+ φ0 [A1.7]

in the case of a direct system, or:

(x3) = Xmax

⎛⎜⎝ cos θ

cos
(
θ + 2π

3

)
cos
(
θ − 2π

3

)
⎞⎟⎠ where θ = ω.t+ φ0 [A1.8]

in the inverse case.

DEFINITION A1.1.– A balanced three-phase system is thus
made up of three sinusoids of the same amplitude and same
frequency, with a phase deviation of 2π

3 .

A direct three-phase system is characterized by the fact
that, taking phase 1 as a reference point (i.e. first
component), the second component has a delay of 120° (in a
balanced situation) and the third component presents a delay
of 120° in relation to the second component.

An inverse three-phase system is characterized by the fact
that, taking phase 1 as a reference point (i.e. first
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component), the third component has a delay of 120° (in a
balanced situation) and the second component presents a
delay of 120° in relation to the third component. A direct
system can be converted into an inverse system (and
vice versa) by permutations of two components.

A1.1.2.2. Three-phase to two-phase transformation (α, β)

It is important to note that a balanced three-phase system
(whether direct or inverse) presents an important property in
that the sum of the components is null:

xa + xb + xc = 0 [A1.9]

This sum is classically referred to as the zero sequence
component (denoted as x0). A balanced three-phase system is
therefore not linearly independent in that, given two of the
components, we may calculate the value of the third
component. It is therefore possible to propose a three-phase
to two-phase transformation without any information loss.
The simplest transformation, known as the Clarke
(abc-to-αβ) transformation, allows us to associate an initial
vector (x3) = (xa, xb, xc)

t with an equivalent two-phase vector
(xαβ) = (x2) = (xα, xβ)

t using components of the same
amplitude as those in the initial vector. This operation
introduces the Clarke matrix C32:

Xmax

⎛⎜⎝ cos θ

cos
(
θ + 2π

3

)
cos
(
θ − 2π

3

)
⎞⎟⎠ = Xmax.

⎛⎜⎝ 1 0

−1/2
√
3/2

−1/2 −√
3/2

⎞⎟⎠
︸ ︷︷ ︸

C32

.

(
cos θ

sin θ

)
[A1.10]

This gives the following direct transformation:

(x3) � C32. (x2) [A1.11]
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The Clarke transformation may be extended by taking
account of the zero sequence component x0, presented in
[A1.9]:

(x3) � C32. (x2) + C31.x0 [A1.12]

with:

C31 =

⎛⎜⎝1

1

1

⎞⎟⎠ [A1.13]

Noting certain properties of matrices C32 and C31:

Ct
32C32 =

3
2

(
1 0

0 1

)
; Ct

31C31 = 3

Ct
32C31 =

(
0

0

)
; Ct

31C32 =
(
0 0
) [A1.14]

we can establish the inverse transformation:

(x2) �
2

3
Ct
32. (x3) [A1.15]

and:

x0 �
1

3
Ct
31. (x3) [A1.16]

A1.1.2.3. Concordia variant

A second three-phase to two-phase transformation is also
widely used in the literature, with properties similar to those
of the Clarke transformation. This variation does not retain
the amplitudes of the transformed values, but allows us to
retain powers. This operation is known as the Concordia
transformation and is based on two matrices, denoted T32 and
T31, deduced from C32 and C31:

T32 =

√
2

3
C32 ; T31 =

1√
3
C31 [A1.17]
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The properties of these matrices are deduced from those
established in [A1.14]:

T t
32T32 =

(
1 0

0 1

)
; T t

31T31 = 1

T t
32T31 =

(
0

0

)
; T t

31T32 =
(
0 0
) [A1.18]

This produces a direct transformation of the form:

(x3) � T32. (x2) + T31.x0 [A1.19]

with the following inverse transformation:

(x2) � T t
32. (x3) [A1.20]

and:

x0 � T t
31. (x3) [A1.21]

A1.1.2.4. Park transformation

The Park (abc-to-dq) transformation consists of associating
the Clarke (or Concordia) transformation with a rotation in
the two-phase reference plane (α, β) onto a reference frame
(d, q). This operation is carried out using the rotation matrix
P (θ), defined as:

P (θ) =

(
cos θ − sin θ

sin θ cos θ

)
[A1.22]

Thus, if we associate a vector (xdq) = (xd, xq)
t with the

initial two-phase vector (xαβ) = (x2) (obtained from a Clarke
or Concordia transformation), we obtain the following
relationship:

(xαβ) = (x2) � P (θ) . (xdq) [A1.23]
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The choice of a frame of reference involves the definition of
angle θ, selected arbitrarily. Generally, the chosen reference
frame is synchronous with the rotating values (sinusoidal
components with an angular frequency ω), but this is not
obligatory.

The following (non-exhaustive) list shows a number of
properties of matrix P (θ):

P (0) =

(
1 0

0 1

)
= I2 ; P

(
π
2

)
=

(
0 −1

1 0

)
= J2 such that J2 = −I2

[A1.24]

P (α+ β) = P (β + α) = P (α) .P (β) = P (β) .P (α)[A1.25]

P (α)−1 = P (α)t = P (−α) [A1.26]

d
dt [P (α)] = dα

dt · P (α+ π
2

)
= dα

dt · P (α) · P (π2 )
= J2

dα
dt · P (α)

[A1.27]

A1.1.2.5. Phasers or complex vectors
The matrix formalism of the Clarke, Concordia and Park

transformations may be replaced by an equivalent complex
representation. Evidently, a rotation of the frame of reference
by angle θ may be obtained by using a complex coefficient ejθ

as easily as with a rotation matrix P (θ). To this end, we use a
“phaser” xs defined in a stationary frame of reference:

xs = xα + j.xβ [A1.28]

The phaser is also defined in a rotating frame (xr):

xr = xd + j.xq [A1.29]

Note that these complex representations may be obtained
using matrix transformations. The real transformations seen
in the previous sections each have an equivalent complex
transformation, as shown in Table A1.1.
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Real transformation Complex transformation
Clarke Fortescue

Concordia Lyon
Park Ku

Table A1.1. Correspondence between real and complex
transformations (names)

A1.2. General characteristics of signals in electrical
engineering

This section presents the formulas used for calculating the
general characteristics of periodic signals traditionally
encountered in electrical engineering. However, it does not
cover formulas related to spectral analysis, which are covered
in Appendix 2 of this Volume and Volume 4 [PAT 15c].

In this section, we will therefore cover the formulas used
to calculate the average and RMS values of given quantities,
applied to two widespread signal types: sinusoids and the
asymmetric square signal of duty ratio α.

A1.2.1. Average value

A1.2.1.1. General definition

The average value 〈x〉 of a T -periodic signal x(t) is defined
generally by the integral:

〈x〉 = 1

T

ˆ T

0
x(t).dt [A1.30]

REMARK A1.2.– In this case, the integration limits are
chosen arbitrarily. Only the interval between the two limits is
important, and it must be equal to T .

A1.2.1.2. Sinusoids

In the case of sinusoids, we evidently obtain an average
value of zero.



Appendix 1 261

A1.2.1.3. Asymmetric square

The T -periodic asymmetric square x(t) studied here has a
certain value X0 during a period αT , then 0 for the rest of the
period. We can therefore write the average value 〈x〉 directly:

〈x〉 = 1

T

ˆ T

0
x(t).dt =

1

T

ˆ αT

0
X0.dt = α.X0 [A1.31]

A1.2.2. RMS value

A1.2.2.1. General definition

The RMS value Xrms of a T -periodic signal x(t) is defined
generally by the integral:

Xrms =

√
1

T

ˆ T

0
x2(t).dt [A1.32]

REMARK A1.3.– When calculating the average value, the
integration limits are chosen arbitrarily. Only the interval
between the two limits is important, and it must be equal to
T .

A1.2.2.2. Sinusoids

For a sinusoid of amplitude Xmax, the RMS value is Xrms =
Xmax
√

2
.

A1.2.2.3. Asymmetric square

The T -periodic asymmetric square x(t) defined in section
A1.2.1 presents an RMS value expressed as:

Xrms =

√
1

T

ˆ αT

0
X2

0 .dt =
√
α.X0 [A1.33]
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A1.3. Energy and power

A1.3.1. Energy

In mechanics, energy is obtained by the operation of a
force over a certain distance. In electrical engineering, this
term corresponds to the movement of a charge following a
variation in electrical potential. In particle physics, a unit
known as an electron-volt (eV) is used for energy values at
the atomic level. The energy formulas used in power
electronics (expressed in Joules (J)) correspond to the energy
stored in an inductance or a capacitor.

In an inductance, the energy EL (magnetic energy) depends
on the current I and the inductance L:

EL =
1

2
LI2 [A1.34]

For a capacitor, the energy EC (electrostatic energy)
depends on the voltage V and the capacitance C:

EC =
1

2
CV 2 [A1.35]

A1.3.2. Instantaneous power

The instantaneous power p(t) given – or provided to – the
dipole is linked, according to the passive sign convention
(PSC), to the voltage v(t) at its terminals and the current i(t)
passing through it as follows:

p(t) = v(t).i(t) [A1.36]

This power is defined in watts (W). It is linked to the
energy consumed E (in J) between two instants t1 and t2 by
the following integral:

E =

ˆ t2

t1

p(t).dt [A1.37]
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The instantaneous power p(t) is connected to the variation
in energy e(t) which can also be defined (up to an additive
constant) as a function of time. In this case, we obtain:

p (t) =
de (t)

dt
[A1.38]

A1.3.3. Average power

As for any T -periodic signal, the average power P is
obtained using the following formula:

P =
1

T

ˆ T

0
p(t).dt =

1

T

ˆ T

0
v(t).i(t).dt [A1.39]

In the case of a resistive charge R, we can establish the
following relationship (Ohm’s law):

v(t) = R.i(t) [A1.40]

This allows us to formulate two possible expressions for this
power:

P =
R

T

ˆ T

0
i2(t).dt = R.I2rms [A1.41]

and:

P =
1

RT

ˆ T

0
v2(t).dt =

V 2
rms

R
[A1.42]

where Vrms and Irms are the RMS values of the voltage and the
current, respectively.
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A1.3.4. Sinusoidal mode

A1.3.4.1. Single phase

In single phase sinusoidal operating mode, we can,
generally speaking, consider a voltage v(t) of the form:

v(t) = Vrms

√
2 cos (ωt) [A1.43]

as the phase reference, with a current, with a phase deviation
angle ϕ (the lag in relation to the voltage), expressed as:

i(t) = Irms

√
2 cos (ωt− ϕ) [A1.44]

Calculating the instantaneous power obtained using these
two values, we obtain:

p(t) = VrmsIrms (cos (2ωt− ϕ) + cosϕ) [A1.45]

We thus obtain two terms:

– a constant term, which is, evidently, the average power,
referred to in this context as active power;

– a variable term, with an angular frequency of 2ω, known
as fluctuating power.

The first interesting result is, therefore, the expression of
the average (active) power P :

P = VrmsIrms cosϕ [A1.46]

In terms of voltage dimensioning (thickness of insulation)
and current dimensioning (cross-section of conductors) of
equipment, the real power value used for design purposes is
known as the apparent power S , and is obtained by directly
multiplying the RMS voltage value by the RMS current
value:

S = VrmsIrms [A1.47]
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To emphasize the “fictional” character of this power, it is
not given in W, but in volt-amperes (VA).

In electrical engineering, we then use the notion of reactive
power Q, which allows us to establish a connection between
the active power P and the apparent power S. This is
expressed as:

Q = VrmsIrms sinϕ [A1.48]

The connection between P , Q and S is thus:

S2 = P 2 +Q2 [A1.49]

As in the case of apparent power, this power value is
fictional; it is not measured in W, or in VA, but rather in volt
ampere reactive (VAR).

REMARK A1.4.– Equation [A1.49] is only valid if the voltage
and the current are sinusoidal. In non-sinusoidal mode, we
introduce an additional power, denoted D, known as the
deformed power. This is used to establish a new equation as
follows:

S2 = P 2 +Q2 +D2 [A1.50]

The instantaneous power is always positive (respectively,
negative) when ϕ = 0° (respectively, ϕ = 180°), but if ϕ takes a
different value, p(t) cancels out, changing the sign. In these
conditions, the direction of transfer of electronic energy
between the source and the load is reversed.

A1.3.4.2. Three phase

In a three-phase context, using the “voltage” vector (v3) as
a point of reference, and more specifically as the first
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component, we take (based on the hypothesis of a direct
balanced system):

(v3) = Vrms

√
2

⎛⎜⎝ cos (ωt)

cos
(
ωt− 2π

3

)
cos
(
ωt+ 2π

3

)
⎞⎟⎠ [A1.51]

From this, we deduce the “current” vector (i3), with a lag
in each component when compared to the corresponding
components in (v3):

(i3) = Irms

√
2

⎛⎜⎝ cos (ωt− ϕ)

cos
(
ωt− 2π

3 − ϕ
)

cos
(
ωt+ 2π

3 − ϕ
)
⎞⎟⎠ [A1.52]

A matrix formalism may be used to obtain the expression
of the instantaneous power p(t):

p(t) = (v3)
t . (i3) [A1.53]

In this case, the Park factorization of the “voltage and
current” vectors is particularly effective:

(v3) = Vrms

√
2.C32

(
cos (ωt)

sin (ωt)

)

= Vrms

√
2.C32.P (ωt) .

(
1

0

)
[A1.54]

(i3) = Irms

√
2.C32

(
cos (ωt− ϕ)

sin (ωt− ϕ)

)

= Irms

√
2.C32.P (ωt− ϕ) .

(
1

0

)
[A1.55]
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Hence:

p(t) = 2Vrms.Irms

(
1 0
)
.P (−ωt) .Ct

32.C32.P (ωt− ϕ) .

(
1

0

)
[A1.56]

After simplification, this gives us:

p(t) = 3Vrms.Irms cosϕ [A1.57]

Note that we obtain the instantaneous power, and not an
average value. This highlights a notable property of
three-phase systems: there is no globally fluctuating power in
this configuration.

The active power P is therefore defined as follows:

P = p(t) = 3Vrms.Irms cosϕ [A1.58]

The notions of reactive power Q and apparent power S are
also used in three-phase contexts, with the following
expressions:{

Q = 3Vrms.Irms sinϕ

S = 3Vrms.Irms
[A1.59]

Relationship [A1.49] is therefore still valid in a three-phase
context:

S2 = P 2 +Q2 [A1.60]

Note that variants exist, notably where the notion of
line-to-line voltage is used. Voltage Vrms is the RMS
line-to-neutral voltage (i.e. between the phase and the
neutral); the neutral is not always accessible, so the notion of
line-to-line voltage is often preferred , with an RMS voltage,
denoted Urms. In the case of a balanced three-phase system,
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the relationship between the RMS line-to-neutral and
line-to-line voltage is:

Urms =
√
3Vrms [A1.61]

jca

ia ib ic

jab jbc

Figure A1.1. Line and branch currents for a triangular connection

A second point, which may lead to a different formulation
of expression [A1.58], is concerned with currents. Generally
speaking, we always have access to line currents, and thus to
the RMS value Irms. A second type of current can appear when
using a load with a triangle connection (see Figure A1.1): this
branch current presents an RMS value Jrms with the following
expression as a function of Irms:

Jrms =
Irms√

3
[A1.62]

A1.4. Mathematics for electromagnetism

A1.4.1. The Green–Ostrogradsky theorem

The Green–Ostrogradsky theorem (also known as the
flux–divergence theorem) establishes a connection between
the integral of the divergence of a field with vector E in a
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volume Ω and the integral of the flux of E on the closed
surface ∂Ω delimiting the volume Ω:

˚

Ω

divE.dω =

‹
∂Ω

E · ds [A1.63]

where dω is a volume element, while ds is a normal vector1

with a surface element (infinitesimal) ds of the complete
surface ∂Ω.

A1.4.2. Stokes–Ampère theorem

The Stokes–Ampère theorem establishes a connection
between the the flux curl of the magnetic field H on a surface
Σ and the integral of the circulation of H along the closed
contour ∂Σ delimiting surface Σ:

¨
Σ
curlH · ds =

‰
∂Σ

H · dl [A1.64]

where ds is a normal vector2 with a surface element
(infinitesimal) ds of the complete surface Σ. Element dl is a
vector (whose norm is dl) tangent to the closed contour ∂Σ.

A1.4.3. Differential and referential operators

The definition of the differential operators used in
electromagnetism (primarily grad, div and curl) is dependent
on the chosen frame of reference. Using the Cartesian

1 Oriented toward the outside of volume Ω.
2 Oriented in accordance with the right-hand rule as a function of the choice
of orientation of contour ∂Σ.
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coordinate system, the nabla operator (vector), ∇, allows us
to easily write these operators as:

∇ =

⎛⎜⎝
∂
∂x
∂
∂y
∂
∂z

⎞⎟⎠ [A1.65]

and we know that:⎧⎪⎨⎪⎩
gradV = ∇V

divE = ∇ ·E
curlH = ∇×H

[A1.66]

where the symbol “·” is the scalar product and “×” is the vector
product.

If we want to write these operators using spherical or
cylindrical coordinates, the ∇ operator is no longer suitable;
in these cases, it is better to use intrinsic definitions (which
are independent of the chosen frame of reference). For the
gradient, we have:

dV = (gradV ) · dr [A1.67]

where dV is the exact total differential of V and dr is an
infinitesimal shift (vector) away from the considered point in
the space (defined by vector r from the origin of the reference
frame).

For the “divergence” and “curl” operators, we simply use the
two theorems presented in sections A1.4.1 and A1.4.2. First,
we obtain:

dφ = divE.dω [A1.68]

where dφ is the flux of E across the surface of the volume dω
under consideration.
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We can then write:

dC = curlH · n.dS [A1.69]

where dC is the circulation of field H along a closed contour
enclosing a surface dS, and with an orientation allowing us
to define a normal (unitary) vector n (in accordance with the
right-hand rule).
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Elements of Spectral Analysis

A2.1. Periodic signals

A2.1.1. Fourier series decomposition

A Fourier series decomposition consists of writing a
T -periodic signal x(t) (i.e. with a frequency F = 1/T ) as an
infinite (discrete) sum of sinusoids with frequency k.F (where
k ∈ N). This Fourier series decomposition is convergent at all
points, on the condition that certain mathematical conditions
are met; in this context, we will consider these conditions to
be met by ensuring the continuity of signal x(t).
Mathematically speaking, in the opposite case, convergence is
not guaranteed but is still “almost always” obtained1. Thus,
we may use the following equation:

x (t) = a0 +
+∞∑
k=1

ak. cos (2πkF.t) + bk. sin (2πkF.t) [A2.1]

1 While this definition is simplistic from a mathematical perspective, it is
largely sufficient when studying power electronics, and may be used more
widely in electrical engineering.
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where (taking k > 1):

a0 =
1

T

ˆ T

0
x (t) .dt [A2.2]

ak =
2

T

ˆ T

0
x (t) . cos (2πkFt) .dt [A2.3]

bk =
2

T

ˆ T

0
x (t) . sin (2πkFt) .dt [A2.4]

Note that the amplitude Ak of the sinusoid of frequency k.F
is obtained by combining the “cos” and “sin” terms, i.e.:

Ak =
√

a2k + b2k [A2.5]

Another Fourier series formulation is possible, using the
complex exponential ej2kπFt, where k ∈ Z, in the place of the
“cos” and “sin” functions:

x(t) =

+∞∑
k=−∞

ck.e
j2kπFt [A2.6]

with:

ck =
1

T

ˆ T

0
x (t) .ej2kπFt.dt [A2.7]

Note that in this case the ck coefficients of the Fourier series
are complex numbers.

A2.1.2. Properties

A2.1.2.1. Symmetries
In the case of an even x(t) signal, i.e. such that x(−t) = x(t),

it is easy to verify that:

∀k ∈ N, bk = 0 [A2.8]
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For an odd x(t) signal, such that x(−t) = −x(t), it is easy to
verify that:

∀k ∈ N, ak = 0 [A2.9]

More specifically, if we have symmetry “in T/2 and T/4”, the
Fourier series decomposition is simplified, with a reduction in
the number of coefficients to calculate.

If (axial) symmetry exists in T/2, then the decomposition
only includes non-null odd coefficients (a2p = b2p = 0).

In the same way, if (central) symmetry exists in T/4, then
the odd coefficients which are multiples of 3 will be null
(coefficients 3, 9, 15, etc.).

For example, consider the case of the waveform of the
line-to-line voltage output of a three-phase inverter under
“full wave” command (see Chapter 2, Figure 2.13, of this
volume). In this case, both types of symmetry are present,
and only the odd components which are not multiples of 3
will have non-null amplitudes. This is easy to verify for
learning purposes.

More generally, we may wish to consider the properties of
the complex Fourier series decomposition. In this case, we
note that the ranks are relative integers (positive, negative or
null), whereas in the case of a “cos/sin” breakdown, the ranks
are always natural integers (positive or null). If the signal
x(t) is real (i.e. a function of R in R)2, the Fourier
decomposition presents a property known as Hermitian
symmetry, which consists of noting that:

∀k ∈ Z, c
−k = c∗k [A2.10]

2 This is the most common situation encountered in power electronics.
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A2.1.2.2. Integration/derivation

The integration
´
x(t).dt and the derivation ẋ(t) of a signal

x(t) with a known Fourier series decomposition allow
immediate calculation of the Fourier series of

´
x(t).dt and

ẋ(t). If we consider the following complex decomposition of
x(t):

x(t) =
+∞∑

k=−∞

ck.e
j2kπFt [A2.11]

we deduce:
ˆ

x(t).dt =
+∞∑

k=−∞

ck
j2kπF︸ ︷︷ ︸

γk

· ej2kπFt [A2.12]

and:

ẋ(t) =
+∞∑

k=−∞

j2kπF.ck︸ ︷︷ ︸
δk

· ej2kπFt [A2.13]

A2.1.2.3. Temporal dilation/contraction

Temporal dilation or contraction consists of transforming
an initial signal x(t) into a signal x(a.t) where a ∈ R+∗. This
type of transformation has no effect on the Fourier series
decomposition or the way in which it is calculated. We must
simply remember that the fundamental frequency F = 1/T
has been modified (along with the harmonics k.F ), becoming
a.F (respectively, a.k.F ).

A2.1.3. Parseval’s theorem

The RMS value Xrms of a signal x(t) may be obtained by
direct integration, applying the following definition:

X2
rms =

1

T

ˆ T

0
x2 (t) .dt [A2.14]
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This is also possible using a link to coefficients a0 and ck of
the Fourier series:

X2
rms = a20 +

+∞∑
k=1

(
a2k + b2k

)
=

+∞∑
k=−∞

ck.c
∗

k [A2.15]

This formula is known as Parseval’s theorem.

A2.1.4. Total harmonic distortion

Parseval’s theorem is extremely useful for calculating the
total harmonic distortion (THD) of a non-sinusoidal value
which we wish to compare to a pure sinusoid.

Two definitions of THD are used in two different standards:

– THD− F (IEEE or DIN standards) related to the
fundamental of the value (which may be greater than 1):

THD− F =

√∑+∞

k=2

(
a2k + b2k

)√
a21 + b21

; [A2.16]

– the TDH− F (IEC standard) related to the overall RMS
value (always less than or equal to 1):

THD− F =

√∑+∞

k=2

(
a2k + b2k

)√∑+∞

k=1

(
a2k + b2k

) . [A2.17]

REMARK A2.1.– Note that, as a general rule, TDH− F (X = F
or G) is calculated using quantities with a null continuous
component (i.e. for a0 = 0) or at least that the continuous
component is not taken into account in calculating the THD.
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A2.2. Double Fourier series and PWM

A2.2.1. Context of study

Before considering the spectral analysis of non-periodic
signals, which will be covered in section A2.3, we will focus on
one particularly important class of periodic signals
encountered in power electronics: MLI signals, obtained by
the modulation of a triangular (or sawtooth) carrier of
frequency Fd using a periodic modulation sequence (not
necessarily sinusoidal) of frequency Fm. The effective
determination of a Fourier series in this case is subject to
significant calculation problems. The desired result may be
obtained using a method based on a double Fourier series,
proposed in [BEN 33] in 1933 and in [BLA 53] in 1953.

A2.2.2. Double Fourier series

The double Fourier series is a generalization of the Fourier
series to periodic functions of two variables of the type f(x, y),
with a period of 2π along the two axes3. As in the case of [A2.1],
it is possible to write:

f (x, y) = A00 +
∑

∞

n=1 (A0n. cos (ny) +B0n. sin (ny))

+
∑

∞

m=1 (Am0. cos (mx) +Bm0. sin (mx))

+
∑

∞

n=1

∑
±∞

m=±1 (Amn. cos (mx+ ny)

+Bmn. sin (mx+ ny))

[A2.18]

where ∀m ∈ N, n ∈ Z:

Amn =
1

2π2

ˆ 2π

0

ˆ 2π

0
f (x, y) . cos (mx+ ny) .dx.dy [A2.19]

3 This does not limit the generality of the method, as this specific case can
always be attained by changing a variable.
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and:

Bmn =
1

2π2

ˆ 2π

0

ˆ 2π

0
f (x, y) . sin (mx+ ny) .dx.dy [A2.20]

A2.2.3. PWM and the “wall model”

The “wall model” is based on the duplication of a time
motif in the modulator across a series of vertical bands, with
a width equal to the amplitude of the carrier, as shown in
Figure A2.1. In this case, we will consider the simplest
possibility using a sawtooth carrier: this type of carrier
corresponds to an oblique line (AB) cutting across the copies,
with regular modulator steps, for each switching instant of
the PWM signal cpwm(t) for which we wish to calculate the
spectrum. We must simply note that, when this line “travels
through” the hatched zones, cpwm = 1; in the white zones,
cpwm = 0.

Based on this representation, it is evidently possible to
define a function f(x, y) such that:

f (x, y) =

⎧⎨⎩1 in the hatched zone

0 otherwise
[A2.21]

This function is periodic along both axes by construction:
it can, therefore, be decomposed to produce a double Fourier
series, as described in section A2.2.2. Finally, we must simply
analyze the spectrum obtained along the line (AB) to obtain
the RMS spectrum of the PWM signal. To do this, we note the
relationship between variable x = ωmt and y = ωdt4 to obtain
the desired result.

4 With these two variables x and y, function f(x, y) is 2π-periodic along both
axes.
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0

Modulante

Porteuse

Tm = 1/Fm

t

cpwm(t)

B

Td = 1/Fd

A

x

y

1

Figure A2.1. Creation of a two-dimensional function for Fourier
series decomposition. For a color version of the figure, see

www.iste.co.uk/patin/power2.zip

REMARK A2.2.– This particularly elegant method avoids the
(major) difficulty of direct calculation of a PWM spectrum.
However, the calculation is still relatively cumbersome, and
involves Bessel functions of the first time, which can only be
calculated approximately. We then simply read the curves
produced by this family of functions to obtain an exact
spectral representation of a given PWM signal.
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Figure A2.2. Bessel functions of the first kind of order 0–5. For a
color version of the figure, see www.iste.co.uk/patin/power2.zip

A2.2.4. Bessel functions

The Bessel function of the first kind of order n is defined by
the general formula:

Jn(x) =
j−n

2π

ˆ 2π

0
ejx cos(α)ejn·αdα [A2.22]

The effective determination of the value of a Bessel
function for any given argument is generally based on
numerical calculations, or by reading the curves presented in
Figure A2.2.

A2.2.5. Analytical spectra for different PWMs

In this section, we will consider the Fourier series
decompositions of a number of widespread PWM signal types:

– PWM with unipolar sawtooth (increasing) carrier;
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– PWM with bipolar sawtooth (increasing) carrier;

– PWM with unipolar triangular (symmetrical) carrier;

– PWM with bipolar triangular carrier.

When noting PWM parameters, we will consider that the
modulator (presumed, in this case, to be sinusoidal) takes the
following form:

m (t) = M0 +Mmax. cos (ωmt+ φm0) [A2.23]

The carrier has a peak-to-peak amplitude Pmax and may
be unipolar (varying between 0 and Pmax) or bipolar (varying
between −Pmax and Pmax), of frequency Fd. Note that a
distinction is commonly made between the definitions of the
PWM signal cpwm in these two cases:

– for unipolar PWM, cpwm ∈ {0, 1};

– for bipolar PWM, cpwm ∈ {−1/2, 1/2} (but this may also be
{−1, 1}).

Using these bases, we can define an average PWM signal
c0 = M0

Pmax
, whatever the strategy (unipolar or bipolar) and the

depth of modulation m = 2Mmax
Pmax

(once again, this is
independent of the modulation type).

REMARK A2.3.– Using PWM signals with a unitary
peak-to-peak amplitude for unipolar and bipolar PWM
strategies makes it easier to carry out comparisons.

Furthermore, the instantaneous phase of the carrier is
denoted as φp (t) = ωpt+ φp0 where ωp = 2πFp.

More information on PWM spectra may be found in [BLA
53], which also covers the case of decreasing sawtooth carriers.
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A2.2.5.1. PWM with a unipolar sawtooth carrier
In this case, the signal cpwm is decomposed as follows:

cpwm (t) = c0 +
m

2
cos (ωmt+ φm0)

+

∞∑
k=1

1

kπ
[sin (k (ωpt+ φp0))

−J0 (kmπ) . sin (k (ωpt+ φp0)− 2kc0π)]

+
∞∑
k=1

±∞∑
l=±1

Jl (kmπ)

kπ
sin

(
lπ

2
− k (ωpt+ φp0)

−l (ωmt+ φm0) + 2kc0π) [A2.24]

where we usually have c0 = 1/2.

A2.2.5.2. PWM with a bipolar sawtooth carrier
In this case, we have (for c0 = 0):

cpwm (t) =
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

1

kπ
[cos (kπ)− J0 (kmπ) . sin (k (ωpt+ φp0))]

+

∞∑
k=1

±∞∑
l=±1

Jl (kmπ)

kπ
sin

(
lπ

2
− k (ωpt+ φp0)

−l (ωmt+ φm0)

)
[A2.25]

A2.2.5.3. PWM with a unipolar triangular carrier
Using this new carrier, we obtain:

cpwm (t) = c0 +
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

2

kπ
· J0

(
kmπ

2

)
· sin (kπc0) cos (k (ωpt+ φp0))
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+

∞∑
k=1

±∞∑
l=±1

2

kπ
· Jl
(
kmπ

2

)

· sin
(
(2kc0 + l)π

2

)
cos (k (ωpt+ φp0) + l (ωmt+ φm0)) [A2.26]

As in the case of PWM with a unipolar sawtooth carrier, we
generally take c0 = 1/2.

A2.2.5.4. PWM with a bipolar triangular carrier

In this final case, we obtain (for c0 = 0):

cpwm (t) =
m

2
cos (ωmt+ φm0)

+
∞∑
k=1

2

kπ
· J0

(
kmπ

2

)
· sin

(
kπ

2

)
cos (k (ωpt+ φp0))

+

∞∑
k=1

±∞∑
l=±1

2

kπ
· Jl
(
kmπ

2

)

· sin
(
(k + l)π

2

)
cos (k (ωpt+ φp0) + l (ωmt+ φm0))

[A2.27]

A2.2.5.5. Qualitative summary

In practice, triangular carrier PWMs are less rich in
harmonic components (at least around frequency Fd) than
those using a sawtooth carrier. Furthermore, unipolar PWM,
for which we use voltage levels of 0 and U0 during the positive
alternations of the modulator and 0 and −U0 for negative
alternations, produces spectral content which is less rich
than that produced by bipolar PWM (with the use of ±U0 over
a switching period): this point is clearly illustrated in
Chapter 2 of this volume.
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A2.3. Non-periodic signals

A2.3.1. Fourier transformation

Fourier series can be extended to non-periodic signals using
the notion of Fourier transformation. Any given signal x(t) is
associated with a Fourier transform X (f) defined as follows:

X (f) = F [x(t)] =

ˆ
R

x(t).e−j2πft.dt [A2.28]

A2.3.2. The Dirac impulse

The unitary element of the Fourier transformation is a
Dirac impulse δ (t). This is a distribution (generalization of
mathematical functions) which can be assimilated, from a
physical perspective, to a passage at the limit of a “gateway”
function πT (t), defined as follows:

πT (t) =

⎧⎨⎩
1
T pour |t| ≤ T/2

0 for |t| > T/2
[A2.29]

Note, based on this definition, that:

∀T ∈ R
+∗,

ˆ
R

πT (t) .dt = 1 [A2.30]

The passage at the limit value leading to the Dirac impulse
is thus:

δ (t) = lim
T→0

πT (t) [A2.31]

One important property of the Dirac impulse in the case of
a function f(t) which is continuous in 0 is that:

ˆ
R

δ (t) .f(t).dt = f (0) [A2.32]
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This enables us to establish the Fourier transform of the
Dirac impulse Δ(f) = F [δ (t)]:

Δ(f) = 1 [A2.33]

Thus, we see that the spectral content of this impulse is
uniform, and the spectral range is infinite. This is simply a
mathematical tool, which has no physical reality in absolute
terms: a Dirac impulse is impossible to obtain in practice, but
remains useful for simplified modeling of brief events (which
may be considered to be instantaneous5 for the purposes of
initial analysis).

A2.3.3. Properties

A2.3.3.1. Linearity

As the Fourier transformation is an integral, its linearity is
easy to verify:

∀(λ, μ)∈R
2,F [λ.p(t)+μ.q(t)] =λ.F [p(t)] +μ.F [q(t)] [A2.34]

A2.3.3.2. Integration/derivation

Let us consider a signal x(t), with a known Fourier
transform denoted as X (f) = F [x (t)]. We will begin by
establishing the expression of the Fourier transform of´ t
−∞

x(τ).dτ :

F
[ˆ t

−∞

x(τ).dτ

]
=

ˆ
R

ˆ t

−∞

x(τ).dτ.e−j2πft.dt [A2.35]

REMARK A2.4.– The formula for integration by parts can be
deduced from the product derivation formula:

(uv)′ = u′v + uv′ [A2.36]

5 Switching, for example, in the context of power electronics.
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This gives us the following result:
ˆ

uv′ = [uv]−
ˆ

u′v [A2.37]

Using [A2.37], based on [A2.35], we obtain the following
result:

F
[ˆ t

−∞

x(τ).dτ

]
=

[ˆ t

−∞

x(τ).dτ · e
−j2πft

−j2πf

]+∞

−∞

+
1

j2πf
·
ˆ
R

x(t).e−j2πft.dt [A2.38]

Supposing that the integrated function tends toward zero
toward infinity (i.e. in ±∞), the first term disappears. Hence:

F
[ˆ t

−∞

x(τ).dτ

]
=

1

j2πf
·
ˆ
R

x(t).e−j2πft.dt =
X (f)

j2πf
[A2.39]

For derivation, we wish to calculate the Fourier transform
of ẋ(t) = dx

dt :

F [ẋ(t)] =

ˆ
R

ẋ(t).e−j2πft.dt [A2.40]

Similarly to the case of integration, we can establish the
following relationship (using integration by parts):

F [ẋ(t)] = j2πf.X (f) [A2.41]

A2.3.3.3. Temporal dilatation/contraction

The problem of temporal dilation and contraction for the
Fourier transform is different from that encountered using
Fourier series for periodic signals. However, the starting
point for study still consists of replacing a signal x(t) with a
known Fourier transform X (f) by a signal x(a.t) with a
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strictly positive real coefficient a (i.e. a ∈ R+∗). We may begin
by defining the Fourier transform of the new signal:

F [x (a.t)] =

ˆ
R

x (a.t) .e−j2πft.dt [A2.42]

We then simply change a variable (τ = a.t and thus t = τ
a )

to obtain a result. First, note that dt = dτ
a ; as a > 0, integration

is always carried out from −∞ to +∞ (and not in the opposite
direction). Hence:

F [x (a.t)] =
1

a
X
(
f

a

)
[A2.43]

A2.3.3.4. Hermitian symmetry

Hermitian symmetry, as seen in the context of complex
Fourier series, also occurs in the case of the Fourier
transform. When the signal x(t) under study is real,
symmetry will be present between the value of the Fourier
transform X (f) in f and in −f . This is why the
representation of a signal spectrum is generally limited to a
unilateral representation for f ≥ 0, and not to the bilateral
form, which provides no additional information. To
demonstrate this symmetry, note the expression of the
Fourier transform of x(t):

X (f) =

ˆ
R

x(t).e−j2πft.dt [A2.44]

The conjugation operation (denoted asconj(z) = z∗) is linear
and can consequently be placed inside or outside of the

´
sign.

Thus:

X (f)∗ =

(ˆ
R

x(t).e−j2πft.dt

)
∗

=

ˆ
R

(
x(t).e−j2πft

)
∗

.dt [A2.45]
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The conjugation of a product is equal to the product of the
conjugations:

X (f)∗ =

ˆ
R

x(t)∗.ej2πft.dt [A2.46]

If x(t) is real, we have x(t) = x(t)∗ and thus:

X (f)∗ =

ˆ
R

x(t).ej2πft.dt = X (−f) [A2.47]

This result is known as the Hermitian symmetry of a
Fourier transform (of a real signal), and corresponds to the
continuous form of result [A2.10], obtained for complex
Fourier series.

A2.3.3.5. Time reversal

We have already considered the impact of temporal
dilation/contraction on the Fourier transform of a signal,
using a strictly positive temporal modification coefficient
(a > 0). We may also wish to consider the case where a is
negative (non-null), or the specific case where signal x(t) is
replaced by an opposite signal in relation to the time axis
x(−t). Note that the composition of the two effects produces a
general case, corresponding to a ∈ R∗:

F [x (−t)] =

ˆ
R

x (−t) .e−j2πft.dt [A2.48]

Once again, we must change a variable (τ = −t, and thus
dt = −dτ ). Note that, in this case, the direction of integration
is also reversed:

F [x (−t)] = −
ˆ

−∞

+∞

x (τ) .ej2πfτ .dτ =

ˆ +∞

−∞

x (τ) .ej2πfτ .dτ

= X (−f) [A2.49]
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Based on the Hermitian symmetry result established in the
previous section, we obtain:

F [x (−t)] = X (f)∗ [A2.50]

A2.3.3.6. Lag

When a signal x(t) with a known Fourier transform X (f) is
delayed for a duration t0, we can easily verify, by changing a
variable, that:

F [x (t− t0)] = X (f) .e−j2πft0 [A2.51]

A2.3.3.7. Frequency translation

When we multiply a signal x(t) with a known Fourier
transform X (f) by a complex exponential ej2πf0t, it is possible
to show that the convolution in terms of frequency leads to a
frequency translation:

F
[
x (t) .ej2πf0t

]
= X (f − f0) [A2.52]

A2.3.3.8. Convolution

The convolution product � is a mathematical operation
which is widely used in physics in relation to the solution of
ordinary differential equations (the tool may also be
generalized for the solution of partially derived equations,
with the addition of a Green node). Unfortunately, this
operation is hard to process directly in practice, as it concerns
the “sliding” integral of the product of two functions between
−∞ and +∞, as demonstrated by the following definition:

r(t) = (p � q) (t) =

ˆ
R

p (τ) .q (t− τ) .dτ [A2.53]

However, this operation may be carried out in a simplified
manner in an image domain: the Fourier (frequency) domain,
and more generally the Laplace domain (used in automatics,
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and discussed in Volume 3 [PAT 15b], Chapter 4, in the
context of switch-mode power supply transfer), may be
treated by introducing the Laplace variable p. The
simplification operation consists of noting that the
convolution product becomes a simple product (i.e. an
arithmetic multiplication) in this image domain.

Let us consider two signals p(t) and q(t), with Fourier
transforms denoted as P (f) and Q (f), respectively. The
product of convolution r(t) between p(t) and q(t), defined in
accordance with equation [A2.53], presents a Fourier
transform R (f) which may be expressed using the following
formula:

R (f) = P (f) .Q (f) [A2.54]

Note that, while this result appears to be simple, a
(potentially considerable) difficulty remains concerning the
return to the temporal domain. To do this, we need to use an
inverse Fourier transformation formula, and we must be able
to apply this formula to the result obtained in [A2.54].

In the case where one of the two functions is replaced by
the Dirac impulse, which is the neutral element of the
convolution product (here, using any given function f(t)),
calculation is simple:

(f � δ) (t) = (δ � f) (t) = f (t) [A2.55]

This is also valid in the frequency domain, as the Fourier
transform Δ(f) of the Dirac impulse has a value of 1, as
demonstrated in [A2.33].

REMARK A2.5.– The Fourier transform allows us to replace
the convolution product by a simple product, as shown above,
but the reverse is also true. A simple product may be replaced
by a convolution product using a Fourier transformation.
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A2.3.3.9. Inverse transformation

The inverse Fourier transformation will be defined below.
In this case, consider a Fourier transform X (f) from which we
wish to obtain the temporal original x(t):

x(t) =

ˆ
R

X (f) .ej2πft.df [A2.56]

REMARK A2.6.– The inverse Fourier transformation formula
is very similar to the direct transformation formula, and its
properties are similar, notably in relation to the convolution
product.

A2.3.3.10. Sinusoids

The Fourier transform of cos (2πf0t) can be obtained using
Euler’s formula:

cos (2πf0t) =
ej2πf0t + e−j2πf0t

2
[A2.57]

Consequently, the Fourier transformation gives us the
following result:

F [cos (2πf0t)] =
1

2

ˆ
R

(
e−j2π(f−f0)t + e−j2π(f+f0)t

)
.dt [A2.58]

A useful result consists of noting, based on [A2.33] and
[A2.56], that:

ˆ
R

ej2πft.df = δ (t) [A2.59]

In the same way, as δ (t) is even, we may also write:
ˆ
R

e−j2πft.df = δ (t) [A2.60]

Note also that the roles of t and f are completely
interchangeable in these results.
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Consequently, after changing the variable, we obtain:

F [cos (2πf0t)] =
1

2
(δ (f − f0) + δ (f + f0)) [A2.61]

In the case of the signal sin (2πf0t), we begin by noting:

sin (2πf0t) =
ej2πf0t − e−j2πf0t

2j
[A2.62]

We then deduce the spectrum, as in the case of [A2.61]:

F [cos (2πf0t)] =
1

2j
(δ (f − f0)− δ (f + f0)) [A2.63]

REMARK A2.7.– We see that Hermitian symmetry, as
described in [A2.47], is respected for the two results [A2.61]
and [A2.63].

A2.3.4. Fourier transform of periodic signals

Using the Fourier transform of any periodic signal, we
may expect to obtain a discrete spectrum (non-null only at
multiples of the fundamental frequency), corresponding to
the complex Fourier series decomposition.

Let us consider a signal mT (t) with a finite temporal
support T (i.e. non-null for an interval of width T alone). It is
interesting to note that the convolution of this signal by a
delayed Dirac impulse δt0 (t) = δ (t− t0) gives us a delayed
version of the signal:

(mT � δt0) (t) = mT (t− t0) [A2.64]

Based on this result, a T -periodic signal m(t) may be formed
using the motif mT (t) using convolution between this initial
signal and a Dirac comb (sampling function) of period T :

⊥T (t) =
∑
k∈Z

δ (t− kT ) [A2.65]
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Hence:

m (t) = (mT �⊥T (t)) [A2.66]

Next, if we wish to calculate the Fourier transform M (f)
of the obtained signal, we have:

M (f) = MT (f) .F
[∑
k∈Z

δ (t− kT )

]
[A2.67]

As the Fourier transformation is a linear operation, it may
be applied to each element under the

∑
sign separately:

M (f) = MT (f) .
∑
k∈Z

F [δ (t− kT )] [A2.68]

Using [A2.33] and [A2.51], we have:

F [δ (t− kT )] = e−j2kπfT [A2.69]

Hence:

M (f) = MT (f) .
∑
k∈Z

e−j2kπfT [A2.70]

The (frequency) periodicity 1/T of X (f) =
∑

k∈Z e
−j2kπfT is

easy to demonstrate. This spectrum may then be decomposed
to produce a Fourier series. Moreover, this expression
corresponds precisely to a complex decomposition in which all
of the coefficients ck (for any relative integer k) have a value
of 1. For a signal x(t), coefficient ck is expressed as:

ck =
1

T

ˆ T

0
x (t) .ej2kπFt.dt [A2.71]
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In the case of our frequency (with period 1/T ), this
corresponds to:

ck = T.

ˆ 1/T

0
X (f) .ej2kπTf .df [A2.72]

The integration interval should be of width 1/T , but the
boundaries may be modified: for example, we may choose an
interval centered on f = 0 (between − 1

2T and 1
2T ). In this case,

we wish to find a function X(f) such that:

∀k ∈ Z, ck = 1 [A2.73]

It is easy to verify that:

X (f) =
1

T
· δ (f) [A2.74]

is a solution in the interval
[− 1

2T ;
1
2T

]
. Its existence is,

therefore, proved, and in this case, unique. Consequently, the
global expression of X(f) (i.e. ∀f ∈ R) is:

X (f) =
1

T
·
∑
k∈Z

δ

(
f − k

T

)
[A2.75]

We see that the spectrum of a temporal Dirac comb is a
Dirac frequency comb. Expression [A2.70] of the spectrum of a
periodic signal becomes:

M (f) =
1

T
· MT (f) .

∑
k∈Z

δ

(
f − k

T

)
[A2.76]

We see that the continuous spectrum of the elementary
motif mT (t) (defined over a single period T ) is sampled at all
multiples of the fundamental frequency 1/T . This result is
perfectly coherent with the expected discrete spectrum, and
conforms to the complex Fourier series decomposition defined
in [A2.6]–[A2.7].
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A2.3.5. Fourier transform of sampled signals

The result presented in the previous section has a
counterpart associated with the Fourier transform of a
sampled signal. It is possible to demonstrate that a sampled
signal (with discrete temporal components) is associated with
a periodic frequency spectrum.

To do this, we associate a signal x(t) with its sampled
version x∗(t), obtained by multiplying x(t) by a temporal
Dirac comb of period T :

x∗(t) = x(t).
∑
k∈Z

δ (t− kT ) [A2.77]

The Fourier transform X∗(f) of this signal is obtained by
convolution of spectrum X(f) of x(t) by the spectrum of the
temporal Dirac comb:

X∗ (f) = X (f) � F
[∑
k∈Z

δ (t− kT )

]
[A2.78]

As the Fourier transform is a linear operation, we have:

F
[∑
k∈Z

δ (t− kT )

]
=
∑
k∈Z

F [δ (t− kT )] =
∑
k∈Z

e−j2kπfT

[A2.79]

Therefore, we can write:

X∗ (f) = X (f) �
∑
k∈Z

e−j2kπfT [A2.80]

Note that
∑

k∈Z e
−j2kπfT also appeared in equation [A2.70],

where it was identified as a Dirac frequency comb. In this
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case, the spectrum is convolved with X(f), giving the
following result:

X∗ (f) =
∑
k∈Z

X

(
f − k

T

)
[A2.81]

The spectrum of the sampled signal is thus a duplication
of the spectrum of the initial signal x(t) around each multiple
of the sampling frequency 1/T . Note that if the spectrum
X(f) is bounded by a maximum frequency denoted as fmax,
the inequality 2fmax ≤ 1/T must be respected to avoid overlap
in the duplicated motifs of spectrum X(f). This inequality is
known as Shannon’s theorem and the overlap phenomenon is
known as aliasing. This result is important not only in digital
signal processing but also in explaining certain phenomena
encountered in PWM, particularly the appearance of
subharmonics when the switching frequency is too low in
relation to the modulation frequency.

A2.3.6. Parseval’s theorem

As for Fourier series, Parseval’s theorem is applicable to
Fourier transformations. However, there is one important
nuance in this case: in the case of periodic signals, the
integration interval for the square of the signal is limited to
the period, whereas in the context of the Fourier
transformation, the integration interval covers the whole of
the real axis. The treated function must, therefore, be of class
L2 (i.e. a summable square function).

Let us take a signal of this type, x(t) (presumed to be
complex in this case to ensure generality). An identity exists
between the temporal and frequency integrals:

ˆ
R

|x (t)|2 .dt =
ˆ
R

|X (f)|2 .df [A2.82]
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A2.3.7. The Heisenberg–Gabor spectrum inequality

The result presented here provides an important basis not
only for signal theory, but also for quantum mechanics, where
it is known as the Heisenberg uncertainty principle
(established in 1927); Heisenberg was awarded the Nobel
prize in physics in 1933 for creating this new area of
research.

In qualitative terms, the result may be summarized as
follows: a short signal (in temporal terms) occupies a broad
range of frequencies. However, a signal which is highly
localized in terms of frequency is longer in terms of time.

This result is clearly shown in two of the examples seen
above:

– The Dirac impulse is the shortest possible signal, and, as
we have seen, its spectrum is uniform up to f → ∞.

– The sinusoid (with frequency f0) is a signal with a
spectrum (unilateral) limited to a single component at f = f0.
However, it occupies a time range from −∞ to +∞.

We will now consider the quantitative aspects of these
statements. To do this, we need to introduce the notions of
temporal and frequency dispersion.

A2.3.7.1. Temporal dispersion

The temporal dispersion σt of a signal ψ (t) is defined in a
way similar to the standard deviation of a random signal:

σt =

(´ (
t− t

)2
. |ψ (t)|2 .dt´ |ψ (t)|2 .dt

)1/2

[A2.83]

where t is the temporal barycenter of the signal:

t =

ˆ
t.ψ (t) .dt [A2.84]
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A2.3.7.2. Frequency dispersion

A similar approach is used to calculate the frequency
dispersion (or, more correctly, the dispersion of the angular
frequency ω = 2πf ):

σω =

(´
(ω − ω)2 . |Ψ(ω)|2 .dω´ |Ψ(ω)|2 .dω

)1/2

[A2.85]

where Ψ(ω = 2π.f) = F [ψ (t)] with a frequency barycenter ω
defined as follows:

ω =

ˆ
ω.Ψ(ω) .dω [A2.86]

A2.3.7.3. Heisenberg–Gabor inequality

This inequality, applied to any given signal ψ (t), may be
summarized as:

σt.σω ≥ 1

2
[A2.87]

REMARK A2.8.– The demonstration of this inequality lies
outside the scope of this book, but further details may be
found in [DEG 01].

A2.3.8. “Time/frequency” optimal signal

We may use inequality [A2.87] to consider the form of the
signal ψ (t) which allows us to reach a situation of equality,
which may be considered to be optimal. It is possible to verify
that this result is obtained for a Gaussian signal g(t):

g(t) =
1

σt
√
2π

.e
−

t2

2σ2
t [A2.88]

Note that this signal is centered on instant t = 0, and the
temporal dispersion σt appears explicitly in the expression.
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Moreover, the Fourier transform of a Gaussian signal is also
Gaussian:

G(ω) = e−σ2
t ω

2
[A2.89]

Using the analogy between the two expressions [A2.88]
and [A2.89], the angular frequency distribution σω may be
obtained without calculation:

σω =
1

2σt
[A2.90]

We, therefore, clearly see that the minimum boundary of
the product σt.σω is reached in this case.

A2.4. PWM and distortion analysis

In this section, we will consider the quality of the power
supply to a load in permanent sinusoidal load provided by
an inverter (in both single- and three-phase contexts). In this
case, we will presume that the inverter and power supply are
ideal:

– a strictly constant voltage source entering the inverter;

– instantaneous switch commutation;

– no deadtime in switching in half-bridges;

– zero voltage drop-off at the switch terminals in ON state.

Evidently, the voltage v(t) supplied to the load has a finite
number of possible values, due to the switching function of
the converter used in the power supply. This value is a
piecewise constant (i.e. constant for given time intervals).
However, using PWM, the sliding average of this voltage
needs to follow a reference sinusoid with fixed amplitude and
frequency values. The load, generally of the R, L, E type for
an electrical machine, behaves as a low-pass filter which
eliminates (or at least significantly limits) the high-frequency
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components of the current. This specific value is key in
evaluating the quality of the power supply to a machine, as it
is central to the torque generated by the machine in relation
to the mechanical load.

Since a machine is a complex piece of equipment, the
characterization of a PWM strategy in terms of distortion
requires the use of mathematical tools, which must be
sufficiently representative of the real load and sufficiently
simple to enable effective study. Generally, an evaluation of
the integral of the voltage wave is used to evaluate the
distortion created by a command in comparison with both the
ideal case and a number of other command techniques.

This methodology is applicable to both single- and
three-phase inverters. However, in the case of a three-phase
inverter, we use a vector-based approach to model the
inverter, with an equivalent two-phase representation of the
voltage (and current) output of the inverter. Despite this
difference, we will systematically consider an inverter output
voltage waveform v(t), in comparison with the desired
sinusoidal wave vref(t). The induced error, denoted as
Δ(t) = v(t) − vref (t), is then integrated to obtain a signal
denoted as Σ(t) =

´
Δ(t) .dt. We then evaluate the RMS

value of this signal over a period Fm of the reference wave
vref(t).

Clearly, a certain number of additional parameters have an
effect on the result:

– the direct current (DC) bus voltage Vdc powering the
inverter;

– the amplitude of the reference voltage V max
ref ;

– the switching frequency Fd.

In practice, these parameters may be condensed to give two
normalized parameters:
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– the modulation depth Km = 2V max
ref /Vdc;

– the frequency ration Kf = Fd/Fm.

A2.4.1. Single-phase inverters

In a single-phase context, only two fixed-frequency
command variations may be envisaged for an H-bridge, single-
phase inverter. Two types of PWM may be used:

– bipolar PWM (with complementary control of the two
half-bridges, giving a voltage of v(t) ∈ {−Vdc; +Vdc});

– unipolar PWM (with one half-bridge in the ON state for
each half-alternation of vref (t), giving a voltage of v(t) ∈
{−Vdc; 0; +Vdc}).

In comparing the two strategies, we have chosen to use the
THD of the integral of the error between v(t) and vref (t) (vref
is sinusoidal, with a period Tm = 1/Fm):

THDweighted =

√
1
Tm

´ Tm

0

(´ t
0 v(τ)− vref (τ)dτ

)2
.dt

V max
ref /

√
2

[A2.91]

The logarithm of this distortion rate (log (THDpond)) for both
modulation types is presented in Figure A2.3.

We immediately see that the distortion resulting from
unipolar PWM is significantly lower for a given pairing
(Kf ,Km) than the distortion involved in bipolar PWM. In
qualitative terms, this result can be explained by the fact
that the voltage peaks induced by unipolar PWM are half the
size of those induced by bipolar PWM (Vdc instead of 2Vdc), as
shown in Chapter 2 of this volume.
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Bipolar modulation
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Figure A2.3. Comparison of distortions resulting from
bipolar and unipolar PWM
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A2.4.2. Three-phase inverters

The same analytical approach may be used for three-phase
inverters, but it no longer applies to a scalar voltage v(t), but
rather to a two-phase voltage vector, expressed in the
stationary plane (α, β)6.

Several calculation methods have been proposed
[HAV 99, NAR 08, NAR 06, ZHA 10]; here, we have chosen to
use a method developed by Hava [HAV 98] due to its
simplicity of implementation.

Using the hypothesis Fd � Fm, the three reference
voltages are always considered to be constant at the level of
the switching period Td = 1/Fd. From a vector perspective in
the plane (α, β), the normalized reference vector (in relation
to Vdc

2 )
−→
V ∗ is, therefore, considered to be constant for each

switching period, and may be expressed using the equivalent
phaser V ∗:

V ∗ = m× ejθ [A2.92]

where θ = ωt, which is the angle between the reference vector
and axis α, and ω is the angular speed of rotation of the
reference vector.

In this case, the SVPWM strategy may be used to illustrate
this principle.

In sector I of the hexagon in the plane αβ, for a
raising-lowering-type carrier, the following symmetrical
sequence is applied for each switching period: 7-2-1-0-0-1-2-7
(where 7 represents the vector

−→
V7) (inverse configuration in

relation to that used in Figure 2.15 of this volume,

6 This approach can also be applied to quantities expressed in a rotating
plane (d, q): both formalisms are used in the literature on the subject, but
note that the results obtained are strictly equivalent.
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Chapter 2). When a normalized output vector of the inverter−→
Vi is applied, an instantaneous error vector (or harmonic
vector) is deduced using the following relationship:

−→
Δi =

vdc
2

× (
−→
Vi −

−→
V ∗)︸ ︷︷ ︸

−→

δi

[A2.93]

where
−→
δi , dependent on m, θ and

−→
Vi , is the normalized vector

in relation to Vdc/2 of vector
−→
Δi.

This voltage error
−→
Δi is, evidently, measured in volts, and

vector
−→
δi has no unit.

Figure A2.4. Trajectory of the harmonic flux during a switching
period for the SVPWM strategy

Figure A2.4 shows the different error vectors
corresponding to a reference vector situated in sector I of the
hexagon. We see that the amplitude and phase of the error
vectors are dependent on the amplitude (and thus the
modulation index m) and the position of the reference vector
(and thus on angle θ).



306 Power Electronics Applied to Industrial Systems and Transports 2

The cumulated voltage error is defined by the following
formula:

−→
Σ =

ˆ −→
Δidt =

vdc
2

×
ˆ −→

δi dt [A2.94]

This quantity
−→
Σ is the integral of a voltage, and is

equivalent (following Faraday’s law) to a magnetic flux. This
flux is known as the conceptual harmonic flux.

Using a classic R − L(−E) model of electrical machines
(this time using three phases), the role of the inductive
component is more important than that of the resistive
component at switching period level. As the origin of the
current harmonics is the error between the voltage applied at
the inverter output and the reference voltage, the following
relationship between the harmonics of the load currents Ih
and the integral of the voltage error vector reveals the nature
of the “conceptual” flux of vector Σ:

−→
Σ = L×−→

Ih [A2.95]

Consequently, the study of
−→
Σ is equivalent to the study of−→

Ih. Note that the calculation of the conceptual harmonic flow
requires no information concerning the load, and is
characteristic of the chosen PWM strategy. The trajectory of−→
Σ corresponding to the SVPWM strategy over a switching
period is illustrated in Figure A2.4. Let us suppose that, at
the start of the first switching period,

−→
Σ starts from 0: it

returns to 0 in the middle and at the end of the switching
period (this is repeated for all periods). The trajectory shown
in Figure A2.4 corresponds to the 7-2-1-0-0-1-2-7 sequence,
with equal application times for vectors

−→
V0 and

−→
V7. As

intersective PWM strategies with raising lowering-type
carriers only generate symmetrical switching sequences, it is
sufficient to calculate

−→
Σ for half of the switching period, and

the trajectory of
−→
Σ for the second half of the period is exactly
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symmetrical to that of the first half. Furthermore, each PWM
strategy involves a different distribution of the application
times of free wheel vectors; consequently, the trajectory of

−→
Σ

for each PWM strategy is unique (we do not, therefore, obtain
results by PWM family, as in the case of Idc).

We will now present the method used to calculate the RMS
value of the modulus of

−→
Σ over a fundamental period;

symmetry in the plane αβ means that only a sector of π
3 (60◦)

needs to be analyzed.

First, variable changes may be used to express the
harmonic flux over half a switching period as:

−→
Σ = Σ0 ×−→σ [A2.96]

where Σ0 = vdc
2

Td
2 is dependent on the DC bus voltage and the

switching period, and −→σ is the normalized vector in relation
to Σ0 of vector

−→
Σ .

For the SVPWM strategy, the analytical formulation of the
trajectory of phaser σ (associated with vector σ) is:

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−m× ejθ×y 0≤y ≤ y7

− 4

3
× ej

π

3 × y7 + ( 4
3
× ej

π

3 −m× ejθ)× y y7≤y≤y2

− 4

3
× ej

π

3 × y7 +
4

3
× (ej

π

3 − 1)× y2

+( 4
3
−m× ejθ)× y y2≤y≤y1

− 4

3
× ej

π

3 × y7 +
4

3
× (ej

π

3 − 1)× y2

+ 4

3
× y1 −m× ejθ × y y1 ≤ y≤1

[A2.97]

where y7 = t7
Td

, y2 = y7 + t2
Td

, y1 = y2 + t1
Td

are coefficients
imposed by projections of the reference vector onto the
vectors used during the switching period (in this case,

−→
V1 and−→

V2). Next, the switching period is filled in by applying the null
vectors

−→
V0 and

−→
V7 (used for the same periods as in classic

PWM).
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The RMS value of vector −→σ over a fundamental period,
which we will denote by ψf , may be calculated following the
method explained in Appendix 1. The relationship between
the RMS value of

−→
Σ over a fundamental period RMS(

∥∥∥−→Σ∥∥∥)
and ψf is as follows:

RMS(
∥∥∥−→Σ∥∥∥) = Σ0 × ψf [A2.98]

In other words, ψf is the normalized value in relation to
Σ0 of the RMS value of

−→
Σ over a fundamental period. In the

following, ψf will be used as a tool for comparing strategies.

Using the same PWM strategy, by increasing the switching
frequency, we reduce the value of Td, and consequently the
value of Σ0. In qualitative terms, this relates to the fact that
current harmonics are reduced as the switching frequency
increases. In order to compare different PWM strategies, the
same switching frequency must be used in all cases; this
comes down to comparing strategies using the value of ψf ,
which is independent of the switching frequency. Clearly,
from this perspective, the best strategies will present the
lowest value for ψf (reduced ripple in load currents).

The value of ψf for the SVPWM strategy may be obtained
using the following formula [HAV 98]:

ψf (m) =

√√√√ 3

π

[
π

36
m2 − 2

√
3

27
m3 +

(
π

32
− 3

√
3

128

)
m4

]
[A2.99]

This analytical expression is particularly interesting as
the SVPWM strategy is generally considered in published
literature as a benchmark for the evaluation of other
techniques.

Figure A2.5 shows its appearance as a function of m. This
curve is applicable for all values ϕ of the phase deviation
between currents and voltages in a load.
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A2.5. Spectral analysis of the DC bus current

The method presented in section A2.2.3 allows us not only
to calculate the spectrum of inverter output voltages but also
the spectrum of the inverter input current. Bierhoff et al.
[BIE 08] applied the method proposed by Black [BLA 53] for
different PWM strategies, based on the double Fourier series
decomposition. We will not go into detail concerning this
work here, but useful information on this subject may also be
found in [NGU 11a].

Figure A2.5. RMS value of the normalized harmonic flow for the
SVPWM strategy as a function of m in the linear zone
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Index

A
aliasing, 297
approximation to 1st

harmonic, 167
association

series, 143

B
Bessel (functions), 281
bridge rectifiers

double, 126
single, 101, 125

C
capacitors

bank installation, 172
compensation of reactive

power, 172
chopper

four quadrant, 29
current reversible, 22
series, 3
step-up, 12
voltage reversible, 25

Clarke transformation, 256

converters
AC/AC, 161
AC/DC, 101
DC/AC, 35
DC/DC, 1

current
branch (triangle), 268
line, 268

cycloconverters, 178

D

DC motors, 1
ΔΣ distortion

scalar, 301
criterion
vector-based, 305

differential operators, 269
dimmer

phase angle, 162
wave train, 176

dimmers, 161
PWM, 174

Dirac impulse, 285
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dispersion
frequency, 299
temporal, 298

E, F
encroachment, 132

equivalent resistance, 139
FACTS, 195
formulas

Euler, 254, 292
trigonometric, 254

Fourier series
convolution, 290
definition, 285
definitions, 273
double, 278
frequency translation, 290
Hermitian symmetry, 275,

288
inverse, 292
integration and derivation,

276, 286
lag, 290
linearity, 286
parity, 274
Parseval’s theorem, 276,

297
periodic signals, 293
symmetry in T/2 and T/4,

275
transformation
sinusoids, 292
temporal dilation and

contraction, 287
time reversal, 289

Fresnel diagram, 253
full wave modulation

three phase, 58

G, H, I
Graetz bridge, 108

Green–Ostrogradsky
(theorem), 268

Heisenberg–Gabor inequality,
298

integration by parts, 286
inverter

classification of
three-phase PWM, 78

closed loop control, 84
control in plane dq, 91
DC bus modeling, 73
direct current control, 87
hysteresis control, 86
polygonal, 195
predictive current control,

95
sigma–delta control, 93
single phase with H bridge,

35
single phase with half

bridge, 48
three phase, 50
vector Σ–Δ control, 98

M, N

modulation full wave
single phase, 36

multilevel, converters, 193
cascaded, 194

nabla, 270

P

phaser, 259
power

active, 264
apparent, 264
fluctuating, 264
reactive, 265
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Pulse Width Modulation
(PWM)
three phase sinusoidal, 55
three-phase vector, 61
precalculated, 44
single phase sinusoidal, 38
spectra, 281

R
rectifier bridges

double, 107
rectifiers

LC filters, 113
controlled, 125
four-quadrant operation,

142
non-controlled, 101
parallel association, 140
top capacitor filters, 118

S
Shannon theorem, 297
signal

Gaussian, 299
sinusoidal input, 146

PFC, 148
single-phase PWM rectifier,

146
three-phase PWM rectifier,

147
Vienna bridge, 153

spectrum inverter output
voltage, 41

starters

electronic (soft), 170
static relay, 177
Stokes–Ampère (theorem),

269
switching cell

common anode diodes, 107
common cathode diodes,

103
half-bridge (transistors,

diodes), 24

T, U
three-phase system

balanced, 255
direct, 255

total harmonic distortion
(THD), 277

transformation
Concordia, 257
Park, 258

UPFC, 195

V, W
value

average, 260
RMS, 261

vector PWM
digitization, 67
geometric approach, 69

voltage
line-to-line, 267
line-to-neutral, 267

wall model, 279
zero sequence component, 256


