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Preface

The objective of this book is to provide a simple introduction to mathemat-
ical analysis with applications in economics. There is increasing use of real
and functional analysis in economics, but few books cover that material at
an elementary level. Our rationale for writing this book is to bridge the gap
between basic mathematical economics books (which deal with introductory
calculus and linear algebra) and advanced economics books such as Stokey
and Lucas� Recursive Methods in Economic Dynamics that presume a work-
ing knowledge of functional analysis. The major innovations in this book
relative to classic mathematics books in this area (such as Royden�s Real
Analysis or Munkres� Topology) are that we provide: (i) extensive simple
examples (we believe strongly that examples provide the intuition necessary
to grasp difficult ideas); (ii) sketches of complicated proofs (followed by the
complete proof at the end of the book); and (iii) only material that is rel-
evant to economists (which means we drop some material and add other
topics (e.g. we focus extensively on set valued mappings instead of just point
valued ones)). It is important to emphasize that while we aim to make this
material as accessible as possible, we have not excluded demanding mathe-
matical concepts used by economists and that the book is self-contained (i.e.
virtually any theorem used in proving a given result is itself proven in our
book).

Road Map

Chapter 1 is a brief introduction to logical reasoning and how to construct
direct versus indirect proofs. Proving the truth of the compound statement
�If A, then B� captures the essence of mathematical reasoning; we take the
truth of statement �A� as given and then establish logically the truth of
statement �B� follows. We do so by introducing logical connectives and the

9
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idea of a truth table.
We introduce set operations, relations, functions and correspondences

in Chapter 2 . Then we study the �size� of sets and show the differences
between countable and uncountable inÞnite sets. Finally, we introduce the
notion of an algebra (just a collection of sets that satisfy certain properties)
and �generate� (i.e. establish that there always exists) a smallest collection
of subsets of a given set where all results of set operations (like complements,
union, and intersection) remain in the collection.
Chapter 3 focuses on the set of real numbers (denoted R), which is one

of the simplest but most economic (both literally and Þguratively) sets to
introduce students to the ideas of algebraic, order, and completeness prop-
erties. Here we expose students to the most elementary notions of distance,
open and closedness, boundedness, and simple facts like between any two real
numbers is another real number. One critical result we prove is the Bolzano-
Weierstrass Theorem which says that every bounded inÞnite subset of R has
a point with sufficiently many points in any subset around it. This result
has important implications for issues like convergence of a sequence of points
which is introduced in more general metric spaces. We end by generating the
smallest collection of all open sets in R known as the Borel (σ-)algebra.
In Chapter 4 we introduce sequences and the notions of convergence, com-

pleteness, compactness, and connectedness in general metric spaces, where
we augment an arbitrary set with an abstract notion of a �distance� function.
Understanding these �C� properties are absolutely essential for economists.
For instance, the completeness of a metric space is a very important property
for problem solving. In particular, one can construct a sequence of approxi-
mate solutions that get closer and closer together and provided the space is
complete, then the limit of this sequence exists and is the solution of the orig-
inal problem. We also present properties of normed vector spaces and study
two important examples, both of which are the used extensively in economics:
Þnite dimensional Euclidean space (denoted Rn) and the space of (inÞnite
dimensional) sequences (denoted !p). Then we study continuity of functions
and hemicontinuity of correspondences. Particular attention is paid to the
properties of a continuous function on a connected domain (a generalization
of the Intermediate Value Theorem) as well as a continuous function on a
compact domain (a generalization of the Extreme Value Theorem). We end
by providing Þxed point theorems for functions and correspondences that
are useful in proving, for instance, the existence of general equilibrium with
competitive markets or a Nash Equilibrium of a noncooperative game.
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Chapter 5 focuses primarily on Lebesgue measure and integration since
almost all applications that economists study are covered by this case and
because it is easy to conceptualize the notion of distance through that of
the restriction of an outer measure. We show that the collection of Lebesgue
measurable sets is a σ-algebra and that the collection of Borel sets is a subset
of the Lebesgue measurable sets. Then we provide a set of convergence
theorems for the existence of a Lebesgue integral which are applicable under
a wide variety of conditions. Next we introduce general and signed measures,
where we show that a signed measure can be represented simply by an integral
(the Radon-Nikodyn Theorem). To prepare for the following chapter, we end
by studying a simple function space (the space of integrable functions) and
prove it is complete.
We study properties such as completeness and compactness in two impor-

tant function spaces in Chapter 6: the space of bounded continuous functions
(denoted C(X)) and the space of p-integrable functions (denoted Lp(X)). A
fundamental result on approximating continuous functions in C(X) is given in
a very general set of Theorems by Stone and Weierstrass. Also, the Brouwer
Fixed Point Theorem of Chapter 4 on Þnite dimensional spaces is generalized
to inÞnite dimensional spaces in the Schauder Fixed Point Theorem. Mov-
ing onto the Lp(X) space, we show that it is complete in the Riesz-Fischer
Theorem. Then we introduce linear operators and functionals, as well as
the notion of a dual space. We show that one can construct bounded linear
functionals on a given set X in the Hahn-Banach Theorem, which is used to
prove certain separation results such as the fact that two disjoint convex sets
can be separated by a linear functional. Such results are used extensively
in economics; for instance, it is employed to establish the Second Welfare
Theorem. The chapter ends with nonlinear operators and focuses particu-
larly on optimization in inÞnite dimensional spaces. First we introduce the
weak topology on a normed vector space and develop a variational method of
optimizing nonlinear functions. Then we consider another method of Þnding
the optimum of a nonlinear functional by dynamic programming.
Chapter 7 provides a brief overview of general topological spaces and

the idea of a homeomorphism (i.e. when two topological spaces X and Y
have �similar topological structure� which occurs when there is a one-to-one
and onto mapping f from elements in X to elements in Y such that both f
and its inverse are continuous). We then compare and contrast topological
and metric properties, as well as touch upon the metrizability problem (i.e.
Þnding conditions on a topological space X which guarantee that there exists
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a metric on the set X that induces the topology of X).

Uses of the book

We taught this manuscript in the Þrst year PhD core sequence at the Uni-
versity of Pittsburgh and as a PhD class at the University of Texas. The
program at University of Pittsburgh begins with an intensive, one month re-
medial summer math class that focuses on calculus and linear algebra. Our
manuscript was used in the Fall semester class. Since we were able to quickly
explain theorems using sketches of proofs, it was possible to teach the entire
book in one semester. If the book was used for upper level undergradu-
ates, we would suggest simply to teach Chapters 1 to 4. While we used the
manuscript in a classroom, we expect it will be beneÞcial to researchers; for
instance, anyone who reads a book like Stokey and Lucas� Recursive Meth-
ods must understand the background concepts in our manuscript. In fact, it
was because one of the authors found that his students were ill prepared to
understand Stokey and Lucas in his upper level macroeconomics class, that
this project began.



Chapter 1

Introduction

In this chapter we hope to introduce students to applying logical reasoning
to prove the validity of economic conclusions (B) from well-deÞned premises
(A). For example, A may be the statement �An allocation-price pair (x, p)
is a Walrasian equilibrium� and B the statement � the allocation x is Pareto
efficient�. In general, statements such as A and/or B may be true or false.

1.1 Rules of logic

In many cases, we will be interested in establishing the truth of statements
of the form �If A,then B.� Equivalently, such a statement can be written
as: �A⇒ B�; �A implies B�; �A only if B�; �A is sufficient for B�; or �B is
necessary for A.� Applied to the example given in the previous paragraph, �If
A,then B� is just a statement of the First Fundamental Theorem of Welfare
Economics. In other cases, we will be interested in the truth of statements of
the form �A if and only if B.� Equivalently, such a statement can be written:
�A ⇒ B and B ⇒ A� which is just �A ⇔ B�; �A implies B and B implies
A�; �A is necessary and sufficient for B�; or �A is equivalent to B.�
Notice that a statement of the form �A⇒ B� is simply a construct of two

simple statements connected by �⇒�. Proving the truth of the statement
�A⇒ B� captures the essence of mathematical reasoning; we take the truth
of A as given and then establish logically the truth of B follows. Before
actually setting out on that path, let us deÞne a few terms. A Theorem or
Proposition is a statement that we prove to be true. A Lemma is a theorem
we use to prove another theorem. A Corollary is a theorem whose proof is

13
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obvious from the previous theorem. A DeÞnition is a statement that is true
by interpreting one of its terms in such a way as to make the statement true.
An Axiom or Assumption is a statement that is taken to be true without
proof. A Tautology is a statement which is true without assumptions (for
example, x = x). A Contradiction is a statement that cannot be true (for
example, A is true and A is false).
There are other important logical connectives for statements besides �⇒�

and �⇔�: �∧� means �and�; �∨� means �or�; and �∼� means �not�. The
meaning of these connectives is given by a truth table, where �T� stands for
a true statement and �F� stands for a false statement. One can consider the
truth table as an Axiom.

Table 1
A B ∼ A A ∧ B A ∨ B A⇒ B A⇔ B
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

To read the truth table, consider row two where A is true and B is false.
Then ∼ A is false since A is true, A ∧ B is false since B is, A ∨ B is true since
at least one statement (A) is true, A⇒ B is false since A can�t imply B when
A is true and B isn�t. Notice that if A is false, then A⇒ B is always true
since B can be anything.
Manipulating these connectives, we can prove some useful tautologies.

The Þrst set of tautologies are the commutative, associative, and distributive
laws. To prove these tautologies, one can simply generate the appropriate
truth table. For example, the truth table to prove (A∨ (B∧C)⇔ ((A∨B)∧
(A ∨C)) is:
A B C B ∧ C A ∨ (B ∧C) A ∨ B A ∨C (A ∨ B) ∧ (A ∨C)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F
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Since every case in which A ∨ (B ∧C) is true or false, so is (A∨B)∧(A∨C),
the two statements are equivalent.

Theorem 1 Let A, B, and C be any statements. Then

(A ∨ B)⇔ (B ∨A) and (A ∧ B)⇔ (B ∧A) (1.1)

((A ∨ B) ∨C)⇔ (A ∨ (B ∨C)) and ((A ∧ B) ∧C)⇔ (A ∧ (B ∧C)) (1.2)

(A∨(B∧C)⇔ ((A∨B)∧(A∨C)) and (A∧(B∨C))⇔ (A∧B)∨(A∧C)) (1.3)

Exercise 1.1.1 Complete the proof of Theorem 1.

The next set of results form the basis of the methods of logical reasoning
we will be pursuing in this book. The Þrst (direct) approach (1.4) is the
syllogism, which says that �if A is true and A implies B, then B is true�. The
second (indirect) approach (1.5) is the contradiction, which says in words
that �if not A leads to a false statement of the form B and not B, then A is
true. That is, one way to prove A is to hypothesize ∼ A, and show this leads
to a contradiction. Another (indirect) approach (1.6) is the contrapositive,
which says that �A implies B is the same as whenever B is false, A is false�.

Theorem 2

(A ∧ (A⇒ B))⇒ B (1.4)

((∼ A)⇒ (B ∧ (∼ B)))⇒ A (1.5)

(A⇒ B)⇔ ((∼ B)⇒ (∼ A)) . (1.6)

Proof. Before proceeding, we need a few results (we could have established
these in the form of a lemma, but we�re just starting here). The Þrst result1

we need is that
(A⇒ B)⇔ ((∼ A) ∨ B) (1.7)

and the second is
∼ (∼ A)⇔ A. (1.8)

1The result follows from
A B A⇒ B ∼ A ∨ B
T T T T
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In the case of (1.4), (A ∧ (A⇒ B)) (1.7)⇔ (A ∧ ((∼ A) ∨ B)) (1.3)⇔ (A ∧ (∼
A)) ∨ (A ∧ B))⇒ B by table 1.1.
In the case of (1.5), ((∼ A)⇒ (B ∧ (∼ B))) (1.7)⇔ (A ∨ (B ∧ (∼ B))) ⇒ A

by table 1.1.

In the case of (1.6), (A ⇒ B) (1.7)⇔ ((∼ A) ∨ B) (1.1)⇔ (B ∨ (∼ A)) (1.8)⇔
(∼ (∼ B) ∨ (∼ A)) (1.7)⇔ ((∼ B)⇒ (∼ A)).
Note that the contrapositive of �A⇒ B� is not the same as the converse

of �A⇒ B�, which is �B⇒ A�.
Another important way to �construct� complicated statements from sim-

ple ones is by the use of quantiÞers. In particular, a quantiÞer allows a
statement A(x) to vary across elements x in some universe U . For example,
x could be a price (whose universe is always positive) with the property that
demand equals supply. When there is an x with the property A(x), we write
(∃x)A(x) to mean that for some x in U, A(x) is true.2 In the context of the
previous example, this establishes there exists an equilibrium price. When
all x have the property A(x), we write (∀x)A(x) to mean that for all x, A(x)
is true.3There are obvious relations between �∃� and �∀�. In particular

∼ ((∃x)A(x))⇔ (∀x) (∼ A(x)) (1.9)

∼ ((∀x)A(x))⇔ (∃x) (∼ A(x)) . (1.10)

The second tautology is important since it illustrates the concept of a coun-
terexample. In particular, (1.10) states �If it is not true that A(x) is true
for all x, then there must exist a counterexample (that is, an x satisfying
∼ A(x)), and vice versa. Counterexamples are an important tool, since
while hundreds of examples do not make a theorem, a single counterexample
kills one.
One should also note that the symmetry we experienced with �∨� and

�∧� in (1.1) to (1.3) may break down with quantiÞers. Thus while
(∃x) (A(x) ∨ B(x))⇔ (∃(x)A(x) ∨ ∃(x)B(x)) (1.11)

can be expressed as a tautology (i.e. �⇔�), it�s the case that
(∃x) (A(x) ∧ B(x))⇒ (∃(x)A(x) ∧ ∃(x)B(x)) (1.12)

2Thus, we let �∃� denote �for some� or �there exists a�.
3Thus, we let �∀� denote �for all�.
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cannot be expressed that way (i.e. it is only �⇒�). To see why (1.12) cannot
hold as an �if and only if� statement, suppose x is the set of countries in the
world, A(x) is the property that x is above average gross domestic product
and B(x) is the property that x is below average gross domestic product, then
there will be at least one country above the mean and at least one country
below the mean (i.e. (∃(x)A(x) ∧ ∃(x)B(x)) is true), but clearly there cannot
be a country that is both above and below the mean (i.e. (∃x) (A(x) ∧ B(x))
is false).
We can make increasingly complex statements by adding more variables

(e.g. the statement A(x, y) can vary across elements x and y in some universeeU). For instance, when A(x, y) states that �y that is larger than x� where
x and y are in the universe of real numbers, the statement (∀x)(∃y)(x < y)
says �for every x there is a y that is larger than x�, while the statement
(∃y)(∀x)(x < y) says �there is a y which is larger than every x�. Note,
however, the former statement is true, but the latter is false.

1.2 Taxonomy of Proofs

While the previous section introduced the basics of the rules of logic (how to
manipulate connectives and quantiÞers to establish the truth of statements),
here we will discuss broadly the methodology of proofs you will frequently
encounter in economics. The most intuitive is the direct proof in the form of
�A⇒ B�, discussed in (1.4). The work is to Þll in the intermediate steps so
that A⇒ A1 and A1 ⇒ A2 and ... An−1 ⇒ B are all tautologies.
In some cases, it may be simpler to prove a statement like A ⇒ B by

splitting B into cases. For example, if we wish to prove the uniqueness of the
least upper bound of a set A ⊂ R, we can consider two candidate least upper
bounds x1 and x2 in A and split B into the cases where we assume x1 is the
least upper bound implying x1 ≤ x2 and another case where we assume x2
is the least upper bound implying x2 ≤ x1. But (x1 ≤ x2) ∧ (x2 ≤ x1) ⇒
(x1 = x2) so that the least upper bound is unique. In other instances, one
might want to split A into cases (call them A1 and A2), show A⇔ (A1 ∨A2)
and then show A1 ⇒ A and A2 ⇒ A. For example, to prove

(0 ≤ x ≤ 1)⇒ ¡
x2 ≤ x¢

we can use the fact that

(0 ≤ x ≤ 1)⇔ (x = 0 ∨ (0 < x ≤ 1))
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where the latter case allows us to consider the truth of B by dividing through
by x.
Another direct method of proof, called induction, works only for the nat-

ural numbers N ={0, 1, 2, 3, ...}. Suppose we wish to show (∀n ∈ N)A(n) is
true. This is equivalent to proving A(0)∧ (∀n ∈ N) (A(n)⇒ A(n+ 1)) . This
works since A(0) is true and A(0) ⇒ A(1) and A(1) ⇒ A(2) and so on. In
the next chapter, after we introduce set theory, we will show why induction
works.
As discussed before, two indirect forms of proof are the contrapositive

(1.6) and the contradiction (1.5). In the latter case, we use the fact that
∼ (A⇒ B) ⇔ (A ∧ (∼ B)) and show (A ∧ (∼ B)) leads to a contradiction
(B ∧ (∼ B)) . Since direct proofs seem more natural than indirect proofs, we
now give an indirect proof of the First Welfare Theorem, perhaps one of the
most important things you will learn in all of economics. It is so simple, that
it is hard to Þnd a direct counterpart.4

DeÞnition 3 Given a Þnite vector of endowments y, an allocation x is fea-
sible if for each good k, X

i

xi,k ≤
X
i

yi,k (1.13)

where the summation is over all individuals in the economy.

DeÞnition 4 A feasible allocation x is a Pareto efficient allocation if
there is no feasible allocation x0 such that all agents prefer x0 to x.

DeÞnition 5 An allocation-price pair (x, p) in a competitive exchange econ-
omy is aWalrasian equilibrium if it is feasible and if x0i is preferred by i
to xi, then each agent i is maximized in his budget setX

k

pkx
0
i,k >

X
k

pkyi,k (1.14)

(i.e. i�s tastes outweigh his pocketbook).

Theorem 6 (First Fundamental Theorem of Welfare Economics) If (x, p)
is a Walrasian equilibrium, then x is Pareto efficient.

4See Debreu (1959, p.94).
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Proof. By contradiction. Suppose x is not Pareto efficient. Let x0 be a
feasible allocation that all agents prefer to x. Then by the deÞnition of
Walrasian equlibrium, we can sum (1.14) across all individuals to obtain

X
i

ÃX
k

pkx
0
i,k

!
>
X
i

ÃX
k

pkyi,k

!
⇔
X
k

pk

ÃX
i

x0i,k

!
>
X
k

pk

ÃX
i

yi,k

!
.

(1.15)
Since x0 is a feasible allocation, summing (1.13) over all goods we haveX

k

X
i

pkx
0
i,k ≤

X
k

X
i

pkyi,k. (1.16)

But (1.15) and (1.16) implyX
k

X
i

pkyi,k >
X
k

X
i

pkyi,k,

which is a contradiction.
Here B is the statement �x is Pareto Efficient�. So the proof by contra-

diction assumes ∼ B, which is �Suppose x is not Pareto Efficient�. In that
case, by deÞnition 4, there�s a preferred allocation x0 which is feasible. But
if x0 is preferred to x, then it must cost too much if it wasn�t chosen in the
Þrst place (this is 1.14). But this contradicts that x0 was feasible.

1.3 Bibliography for Chapter 1

An excellent treatment of this material is in McAffee (1986, Economics 241
handout). See also Munkres (1975, p. 7-9) and Royden (1988, p. 2-3).
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Chapter 2

Set Theory

The basic notions of set theory are those of a group of objects and the idea of
membership in that group. In what follows, we will Þx a given universe (or
space) X and consider only sets (or groups) whose elements (or members)
are elements of X. We can express the notion of membership by �∈ � so that
� x ∈ A� means �x is an element of the set A� and � x /∈ A� means �x is not
an element of A�. Since a set is completely determined by its elements, we
usually specify its elements explicitly by saying �The set A is the set of all
elements x in X such that each x has the property A (i.e. that A(x) is true)�
and write A = {x ∈ X : A(x)}.1 This also makes it clear that we identify
sets with statements.

Example 7 Agent i0s budget set, denoted Bi(p, yi) = {xi ∈ X :
P

k pkxi,k ≤P
k pkyi,k}, is the set of all consumption goods that can be purchased with

endowments yi.

DeÞnition 8 If each x ∈ A is also in the set B (i.e. x ∈ A⇒ x ∈ B), then
we say A is a subset of B (denoted A ⊂ B). If A ⊂ B and ∃x ∈ B such
that x /∈ A, then A is a proper subset of B. If A ⊂ B, then it is equivalent
to say that B contains A (denoted B ⊃ A).

DeÞnition 9 A collection is a set whose elements are subsets of X. The
power set of X, denoted P(X), is the set of all possible subsets of X (it has
2#(X) elements, where #(X) denotes the number of elements (or cardinality)

1In those instances where the space is understood, we sometimes abbreviate this as
A = {x : A(x)}.

21
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of the set X). A family is a set whose elements are collections of subsets of
X.

DeÞnition 10 Two sets are equal if (A ⊂ B)∧ (B ⊂ A) (denoted A = B).

DeÞnition 11 A set that has no elements is called empty (denoted ∅).
Thus, ∅ = {x : x ∈ X : A(x) ∧ (∼ A(x))}.

The empty set serves the same role in the theory of sets as 0 serves in the
counting numbers; it is a placeholder.

Example 12 Let the universe be given by X = {a, b, c}. We could let
A = {a, b}, B = {c} be subsets of X, C = {A,B},D = {∅},P(X) =
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},X} be collections, and F = {C} be a
family.

The next result provides the Þrst example of the relation between set
theory and logical rules we developed in Chapter 1. In particular, it relates
�⊂� and �⇒� as well as �=� and �⇔�.

Theorem 13 Let A = {x ∈ X : A(x)} and B = {x ∈ X : B(x)}.Then (a)
A ⊂ B ⇔ (∀x ∈ X)(A(x) ⇒ B(x)) and (b) A = B ⇔ (∀x ∈ X)(A(x) ⇔
B(x)).

Proof. Just use deÞnition (8) in (a) A ⊂ B ⇔ x ∈ A ⇒ x ∈ B ⇔ A(x) ⇒
B(x) and deÞnition (10) in (b) A = B ⇔ (A ⊂ B) ∧ (B ⊂ A) ⇔ (∀x ∈
X)(A(x)⇔ B(x)).
The following are some of the most important sets we will encounter in

this book:

� N = {1, 2, 3, ...},the natural or �counting� numbers.
� Z = {...,−2,−1, 0, 1, 2, ...}, the integers. Z+ = {0, 1, 2, ...},the non-
negative integers.

� Q = {m
n
: m,n ∈ Z, n 6= 0}, the rational numbers.

� Chapter 3 will discuss the real numbers, which we denote R. This set
just adds what are called irrational numbers to the above rationals.
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The are several important results you will see at the end of this chapter.
The Þrst establishes that there are fundamentally different sizes of inÞnite
sets. While some inÞnite sets can be counted, others are uncountable. These
results are summarized in Theorem 71 and Theorem 80. The second re-
sult establishes that there always exists a smallest collection of subsets of a
given set where all results of set operations (like complements, union, and
intersection) remain in the collection (Theorem 87).

2.1 Set Operations

The following operations help us construct new sets from old ones. The Þrst
three play the same role for sets as the connectives �∼�, �∧�, and �∨� played
for statements.

DeÞnition 14 If A ⊂ X, we deÞne the complement of A (relative to
X) (denoted Ac) to be the set of all elements of X that do not belong to A.
That is, Ac = {x ∈ X : x /∈ A}.
DeÞnition 15 If A,B ⊂ X, we deÞne their intersection (denoted A∩B)
to be the set of all elements that belong to both A and B. That is, A ∩ B =
{x ∈ X : x ∈ A ∧ x ∈ B}.
DeÞnition 16 If A,B ⊂ X and A ∩ B = ∅,then we say A and B are
disjoint.

DeÞnition 17 If A,B ⊂ X, we deÞne their union (denoted A ∪ B) to be
the set of all elements that belong to A or B or both (i.e. or is inclusive).
That is, A ∪B = {x ∈ X : x ∈ A ∨ x ∈ B}.
DeÞnition 18 If A,B ⊂ X, we deÞne their difference (or relative com-
plement of A in B) (denoted A\B) to be the set of all elements of A that
do not belong to B. That is, A\B = {x ∈ X : x ∈ A ∧ x /∈ B}.
Each of these deÞnitions can be visualized in Figure 2.1.1 through the

use of Venn Diagrams. These deÞnitions can easily be extended to arbitrary
collections of sets. Let Λ be an index set (e.g. Λ = N or a Þnite subset of N)
and let Ai, i ∈ Λ be subsets of X. Then ∪i∈ΛAi = {x ∈ X : (∃i)(x ∈ Ai)}.
Indexed families of sets will be deÞned formally after we develop the notion
of a function in Section 5.2.
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2.1.1 Algebraic properties of set operations

The following commutative, associative, and distributive properties of sets
are natural extensions of Theorem 1 and easily seen in Figure 2.1.2.

Theorem 19 Let A, B, C be any sets. Then (i) (C) A ∩ B = B ∩ A,
A∪B = B∪A;(ii) (A) (A∩B)∩C = A∩(B∩C), (A∪B)∪C = A∪(B∪C);
and (iii) (D) A∩(B∪C) = (A∩B)∪(A∩C), A∪(B∩C) = (A∪B)∩(A∪C).
Exercise 2.1.1 Prove Theorem 19.This amounts to applying the logical con-
nectives and above deÞnitions. Besides using Venn Diagrams, we can just use
the deÞnition of ∩ and ∪. For example,to show A∩B = B∩A, it is sufficient
to note x ∈ A∩B ⇔ (x ∈ A) ∧ (x ∈ B) 1.1⇔ (x ∈ B) ∧ (x ∈ A)⇔ x ∈ B∩A.
The following properties are used extensively in probability theory and

are easily seen in Figure 2.1.3.

Theorem 20 (DeMorgan�s Laws) If A, B, C are any sets, then (a) A\(B∪
C) = (A\B) ∩ (A\C), and (b) A\(B ∩ C) = (A\B) ∪ (A\C).
Proof. (a) 2 parts.
(i,⇒) Suppose x ∈ A\(B∪C). Then x ∈ A and x /∈ (B∪C). Thus x ∈ A

and (x /∈ B and x /∈ C). This implies x ∈ A\B and x ∈ A\C. But this is
just x ∈ (A\B) ∩ (A\C).
(ii,⇐) Suppose x ∈ (A\B) ∩ (A\C). Then x ∈ (A\B) and x ∈ (A\C).

Thus x ∈ A and ( x /∈ B or x /∈ C). This implies x ∈ A and x /∈ (B ∪ C).
But this is just x ∈ A\(B ∪ C).
Exercise 2.1.2 Finish the proof of Theorem 20.

2.2 Cartesian Products

There is another way to construct new sets out of given ones; it involves the
notion of an �ordered pair� of objects. That is, in the set {a, b} there is no
preference given to a over b;i.e. {a, b} = {b, a} so that it is an unordered
pair. We can also consider ordered pairs (a, b) where we distinguish between
the Þrst and second elements.2

2Don�t confuse this notation with the interval consisting of all real numbers such that
a < x < b.
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DeÞnition 21 If A and B are nonempty sets, then the cartesian product
(denoted A×B) is just the set of all ordered pairs {(a, b) : a ∈ A and b ∈ B}.
Example 22 A = {1, 2, 3}, B = {4, 5}, A×B = {(1, 4), (1, 5), (2, 4), (2, 5),
(3, 4), (3, 5)}.
Example 23 A = [0, 1] ∪ [2, 3], B = [1, 2] ∪ [3, 4], A×B in Figure 2.2.1

This set operation also generalizes to Þnite and inÞnite index sets.

2.3 Relations

To be able to compare elements of a set, we need to deÞne how they are
related. The general concept of a relation underlies all that will follow. For
instance, just comparing the real numbers 1 and 2 requires such a deÞnition.
Furthermore, a correspondence or function is just a special case of a relation.
In what follows, our deÞnitions of relations, correspondences, and functions
are meant to emphasize that they are simply special kinds of sets.

DeÞnition 24 Given two sets A and B, a binary relation between mem-
bers of A and members of B is a subset R ⊂ A × B. We use the notation
(a, b) ∈ R to denote the relation R on A×B and read it �a is in the relation
R to b�. If A = B we say that R is the relation on the set A.

Example 25 Let A = {Austin, Des Moines, Harrisburg} and B = {Texas,
Iowa, Pennsylvania}. Then the relation R = {(Austin, Texas), (Des Moines, Iowa),
(Harrisburg, Pennsylvania)} expresses �is the state capital of�.
In general, we can consider n-nary relations between members of sets

A1, A2, ..., An which is just the subset R ⊂ A1 ×A2 × ...×An.
A relation is characterized by a certain set of properties that it possesses.

We next consider important types of relations that differ in their symmetry
properties.

2.3.1 Equivalence relations

DeÞnition 26 An equivalence relation on a set A is a relation � ∼0 hav-
ing the following three properties: (i) Reßexivity, x ∼ x, ∀x ∈ A; (ii) Sym-
metry, if x ∼ y, then y ∼ x, ∀x, y ∈ A;and (iii) Transitivity, if x ∼ y and
y ∼ z, then x ∼ z, ∀x, y, z ∈ A.
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Example 27 Equality is an equivalence relation on R.

Example 28 DeÞne the congruence modulo 4 relation �M 0 on Z by ∀x, y ∈
Z, xMy if remainders obtained by dividing x and y by 4 are equal. For ex-
ample, 13M65 because dividing 13 and 65 by 4 give the same remainder of
1.

Exercise 2.3.1 Show that congruence modulo 4 is an equivalence relation.

DeÞnition 29 Given an equivalence relation ∼ on a set A and an element
x ∈ A, we deÞne a certain subset E of A called the equivalence class de-
termined by x by the equation E = {y ∈ A : y�x}. Note that the equivalence
class determined by x contains x since x�x.

Example 30 The equivalence classes of Z for the relation congruence mod-
ulo 4 are determined by x ∈ {0, 1, 2, 3} where Ex = {z ∈ Z : z = 4k + x, k ∈ Z}
(i.e. x is the remainder when z is divided by 4).

Equivalence classes have the following property.

Theorem 31 Two equivalence classes E and E0 are either disjoint or equal.

Proof. Let E = {y ∈ A : y�x} and E0 = {y ∈ A : y�x0}. Consider E ∩E0. It
can be either empty (in which case E and E0 are disjoint) or nonempty. Let
z ∈ E ∩E0. We show that E = E0. Let w ∈ E. Then w�x. Since z ∈ E ∩E0,
we know z�x and z�x0 so that by transitivity x�x0. Also by transitivity w�x0

so that w ∈ E0. Thus E ⊂ E. Symmetry allows us to conclude that E0 ⊂ E
as well. Hence E = E0.
Given an equivalence relation on A, let us denote by E the collection of

all equivalence classes. Theorem 31 shows that distinct elements of E are
disjoint. On the other hand, the union of all the elements of E equals all of
A because every element of A belongs to an equivalence class. In this case
we say that E is a partition of A.
DeÞnition 32 A partition of a set A is a collection of disjoint subsets of
A whose union is all of A.

Example 33 It is clear that the equivalence classes of Z in Example (30) is a
partition since, for instance, E0 = {...,−8,−4, 0, 4, 8, ...}, E1 = {...,−5,−1, 1, 5, ...},
E2 = {...,−6,−2, 2, 6, ...}, E3 = {...,−7,−3, 3, 7, ...} are disjoint and their
union is all of Z. Another simple example is a coin toss experiment where the
sample space S = {Heads, Tails} has mutually exclusive events (i.e.Heads∩
Tails = ∅).
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2.3.2 Order relations

A relation that is reßexive and transitive but not symmetric is said to be an
order relation. If we consider special types of non symmetry, we have special
types of order relations.

DeÞnition 34 A relation �R� on A is said to be a partial ordering of
a set A if it has the following properties: (i) Reßexivity, xRx, ∀x ∈ A; (ii)
Antisymmetry, if xRy and yRx, then x = y,∀x, y ∈ A; and (iii) Transitivity,
if xRy and yRz, then xRz, ∀x, y, z ∈ A.We call (R,A) a partially ordered
set.

Example 35 � ≤� is a partial ordering on R and �⊂� is a partial ordering on
P(A). It is clear that ≤ is not symmetric on R; just take x = 1 and y = 2.
It is also clear that ⊂ is not symmetric on P(A); if A = {a, b}, then while
{a} ⊂ A it is not the case that A ⊂ {a}. Finally, �-1� on R× R given by
(x1, x2) -1 (y1, y2) if x1 ≤ y1 and x2 ≤ y2 is a partial ordering since it is
clear that -1 is not symmetric on R×R because ≤ is not symmetric even
on R.

DeÞnition 36 A partially ordered relation �R� on A is said to be a total (or
linear) ordering of A if (i) Completeness, for any two elements x, y ∈ A
we have either xRy or yRx.We call (R,A) a totally ordered set. A chain
in a partially ordered set is a subset on which the order is total.

Thus, a total ordering means that any two elements x and y in A can
be compared, unlike a partial ordering where there are elements that are
noncomparable.

Exercise 2.3.2 Show that if A ⊂ B and B is totally ordered, then A is
totally ordered.

We write x ≺ y if x ¹ y and x 6= y, and call �≺� a strict partial or strict
total ordering.

Example 37 �<� is a strict total ordering on R while �≤� is a total ordering
on R, both of which follow by the completeness axiom of real numbers. �⊂� is
not a total ordering on P(A) since if A = {a, b}, there is no inclusion relation
between the sets {a} and {b}. � -1�on R×R given in Example 35 is not a
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total ordering because we can�t compare elements where x1 ≤ y1 and x2 ≥ y2.
However, a line passing through the origin having positive slope is a chain.
On the other hand, the relation �-2� on R×R given by (x1, x2) -2 (y1, y2) if
x1 ≤ y1 or if x1 = y1 and x2 ≤ y2 is a total ordering.3 This is also known as
a lexicographic ordering since the Þrst element of the totally ordered set has
the highest priority in determining the ordering just as the Þrst letter of a
word does in the ordering of a dictionary. We compare � -1� to �-2� in Figure
2.3.1 for the following four elements x =

¡
1
4
, 1
4

¢
, y =

¡
1
2
, 1
2

¢
, z =

¡
1
4
, 3
4

¢
in

R×R. There are 3 pairwise comparisons for each relation. First consider �
-1� . We have x -1 y, x -1 z but y and z are not comparable under �-1�,
which is why we call it a partial ordering. Next consider � -2� where each
pair is comparable (i.e. we have x -2 z, x -2 y, and z -2 y) which is why
we call it a total ordering. Notice that by transitivity they can be ranked (all
can be placed in the dictionary).

There are other types of order relations.

DeÞnition 38 A weak order relation assumes: (i) transitivity; (ii) com-
pleteness; and (iii) non symmetry (just the negation of symmetry deÞned in
26. 4

Weak order relations form the basis for consumer choice.

Example 39 Preference relations: We can represent consumer preferences
by the binary relation % deÞned on a non-empty, closed, convex consumption
set X. If (x1, x2) ∈% or x1 % x2 we say �consumption bundle x1 is at least
as good as x2�. We embody rationality or consistency by completeness and
transitivity.5

Exercise 2.3.3 Why aren�t preference relations just total orderings? Why
are they weak orderings? Show why indifference is an equivalence relation.

Because elements of a partially ordered set are not necessarily comparable,
it may be the case that a maximum and/or minimum of a two element set
doesn�t even exist. We turn to this next.

3Don�t be confused that we have left out a case (i.e. x1 > y1) by considering only
x1 ≤ y1 or if x1 = y1 and x2 ≤ y2. For instance, if the two elements we are considering
are (2, 3) and (1, 7), simply take x = (1, 7) and y = (2, 3). The point is that any two real
numbers can be compared using �≤�.

4Reßexivity is implied by completeness.
5Experiments show that transitivity is often violated.
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DeÞnition 40 Let - be a partial ordering of X. An upper bound for a set
A ⊂ X is an element u ∈ X satisfying x - u, ∀x ∈ A. The supremum
of a set is its least upper bound and when the set contains its supremum we
call it a maximum. A lower bound for a set A ⊂ X is an element l ∈ X
satisfying l - x, ∀x ∈ A. The inÞmum of a set is its greatest lower bound
and when the set contains its inÞmum we call it a minimum.

DeÞnition 41 A set S is bounded above if it has an upper bound; bounded
below if it has a lower bound; bounded if it has an upper and lower bound;
unbounded if it lacks either an upper or a lower bound.

We deÞne the operators x ∨ y to denote the supremum and x ∧ y the
inÞmum of the two point set {x, y}.6 If X is a total order, then x and y
are comparable, so that one must be bigger or smaller than the other in
which case x ∨ y = max{x, y} and x ∧ y = min{x, y}. However, if X is a
partial order, then x and y may not be comparable but we can still Þnd their
supremum and inÞmum.

DeÞnition 42 A lattice is a partially ordered set in which every pair of
elements has a supremum and an inÞmum.

Exercise 2.3.4 Show that: (i) every Þnite set in a lattice has a supremum
and an inÞmum; and (ii) if a lattice is totally ordered, then every pair of
elements has a minimum and a maximum. Hint: (i) sup{x1, x2, x3} =
sup{sup{x1, x2}, x3}.

Exercise 2.3.5 Show that a totally ordered set L is always a lattice.

Next we give examples of partially oredered sets that are not totally
ordered yet have a lattice structure. For any set X, an example is P(X) with
⊂ is a lattice where if A,B ∈ P(X), then A∨B = A∪B and A∧B = A∩B..

Example 43 Let X = {a, b},so that P(X) = {∅, {a}, {b}, {a, b}}. Then,
for instance, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ∅, {a} ∧ {a, b} = {a}, and
{a} ∨∅ = {a}.

6Here�s another place where we don�t have enough good symbols to go around. Don�t
confuse �∨� and �∧� here with the logical connectives in Chapter 1.
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Example 44 R× R is a lattice with the ordering �¹1�. The inÞmum and
supremum of any two points x, y are given by x∨y = (max{x1, y1},max{x2, y2})
and x ∧ y = (min{x1, y1},min{x2, y2}). See Figure 2.3.2 where we consider
the noncomparable elements x = (1, 0) and y = (0, 1).

Example 45 The next example shows that not every partially ordered set is
a lattice. We show this by resorting to the following subset X = {(x1, x2) ∈
R : x21 + x22 ≤ 1}. For -1on X, sup{(0, 1), (1, 0)} does not exist. See Figure
2.3.3.

While the next result is stated as a lemma, we will take it as an axiom.7

It will prove useful in separation theorems which are used extensively in
economics.

Lemma 46 (Zorn) If A is a partially ordered set such that each totally or-
dered subset (a chain) has an upper bound in A, then A has a maximal
element.

Example 47 (1, 1) is the maximal element of �-1� on A = [0, 1]×[0, 1]. The
upper bounds of each chain in A are given by the intersection of the lines
(chains) with the x = 1 or y = 1 axes. See Figure 2.3.4.

ADD WELL ORDERING???

2.4 Correspondences and Functions

In your Þrst economics classes you probably saw downward sloping demand
and upward sloping supply functions, and perhaps even correspondences (e.g.
backward bending labor supply curves). Given that we have already intro-
duced the idea of a relation, here we will deÞne correspondences and functions
simply as a relation which has certain properties.

DeÞnition 48 Let A and B be any two sets. A correspondence G, de-
noted G : A→→ B, is a relation between A and P(B) (i.e. G ⊂ A×P(B)).
That is, G is a rule that assigns a subset G(a) ⊂ B to each element a ∈ A.

7It is can be shown to be equivalent to the Axiom of choice.
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DeÞnition 49 Let A and B be any two sets. A function (or mapping)
f, denoted f : A → B, is a relation between A and B (i.e. f ⊂ A × B)
satisfying the following property: if (a, b) ∈ f and (a, b0) ∈ f, then b = b0.
That is, f is a rule that assigns a unique element f(a) ∈ B to each a ∈ A.
A is called the domain of f,sometimes denoted D(f). The range of f ,
denoted R(f), is {b ∈ B : ∃a ∈ A such that (a, b) ∈ f}. The graph of f is
G(f) = {(a, b)∈f : ∀a ∈ A}.
Thus, a function can be thought of as a single valued correspondence. A

function is deÞned if the following is given: (i) The domain D(f). (ii) An
assignment rule a → f(a) = b, a ∈ D(f). Then R(f) is determined by
these two. See Figure 2.4.1a for a function and 2.4.1b for a correspondence,
as well as Figure 2.4.2a and Figure 2.4.2b for another interpretation which
emphasizes �mapping�.

Example 50 A sequence is a function f : N→ B for some set B.

DeÞnition 51 Let f be an arbitrary function with domain A and R(f) ⊂ B.
If E ⊂ A,then the (direct) image of E under f , denoted f(E), is the subset
{f(a)|a ∈ E ∩D(f)} ⊂ R(f). See Figure 2.4.3a.
Theorem 52 Let f be a function with domain A and R(f) ⊂ B and let
E,F ⊂ A. (a) If E ⊂ F , then f(E) ⊂ f(F ). (b) f(E ∩ F ) ⊂ f(E) ∩ f(F ),
(c) f(E ∪ F ) = f(E) ∪ f(F ), (d) f(E\F ) ⊂ f(E).
Proof. (a) If a ∈ E,then a ∈ F so f(a) ∈ f(F ). But this is true ∀a ∈ E,
hence f(E) ⊂ f(F ).
Exercise 2.4.1 Finish the proof of Theorem 52.

DeÞnition 53 If H ⊂ B, then the inverse image of H under f , denoted
f−1(H), is the subset {a|f(a) ∈ H} ⊂ D(f). See Figure 2.4.3b.
It is important to note that the inverse image is different from the inverse

function (to be discussed shortly). The inverse function need not exist when
the inverse image does. See Example 65.

Theorem 54 Let G,H ⊂ B. (a) If G ⊂ H,, then f−1(G) ⊂ f−1(H). (b)
f−1(G ∩ H) = f−1(G) ∩ f−1(H), (c) f(G ∪ H) = f−1(G) ∪ f−1(H), (d)
f−1(G\H) = f−1(G)\f−1(H).
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Proof. (a) If a ∈ f−1(G), then f(a) ∈ G ⊆ H so a ∈ f−1(H).

Exercise 2.4.2 Finish the proof of Theorem 54.

Exercise 2.4.3 Let f : A→ B be a function. Prove that the inverse images
f−1({a}) and f−1({a0}) are disjoint. FIX

2.4.1 Restrictions and extensions

Example 55 Let A = R\{0} and f(a) = 1
a
. Then R(f) = R\{0}. See

Figure 2.4.4a

To deal with the above �hole� in the domain of f in Example 55, we can
employ the idea of restricting or extending the function to a given set.

DeÞnition 56 Let ∆ ⊂ D(f). The restriction of f to the set ∆, which
we will denote f |r∆, is given by {(a, b) ∈ f : a ∈ ∆}. Let ∆ ⊃ D(f).
The extension of f on the set ∆, which we will denote f |e∆, is given by½
(a, b) : b =

½
f(a) a ∈ D(f)
g(a) a ∈ ∆\D(f)

¾
.

Example 57 See Figure 2.4.4b for a restriction of 1
a
to ∆ = R++ and Figure

2.4.4c for an extension of 1
a
on ∆ = R is

½
b =

½
1
a
a 6= 0

0 a = 0

¾
.

Note that extensions are not generally unique.

2.4.2 Composition of functions

DeÞnition 58 Let f : A → B and g : B0 → C. Let R(f) ⊂ B0. The
composition g ◦ f is the function from A to C given by g ◦ f = {(a, c) ∈
A× C : ∃b ∈ R(f) ⊂ B0 3 (a, b) ∈ f and (b, c) ∈ g}.8 See Figure 2.4.5.

Note that order matters, as the next example shows.

Example 59 Let A ⊂ R, f(a) = 2a, and g(a) = 3a2 − 1. Then g ◦ f =
3(2a)2 − 1 = 12a2 − 1 while f ◦ g = 2(3a2 − 1) = 6a2 − 2.

8Alternatively, we create a new function h(a) = g(f(a)).
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2.4.3 Injections and inverses

DeÞnition 60 f : A → B is one-to-one or an injection if whenever
(a, b) ∈ f and (a0, b) ∈ f for a, a0 ∈ D(f), then a = a0.9

DeÞnition 61 Let f be an injection. If g = {(b, a) ∈ B × A : (a, b) ∈ f},
then g is an injection with D(g) = R(f) and R(g) = D(f). The function g
is called the inverse to f and denoted f−1. See Figure 2.4.6.

2.4.4 Surjections and bijections

DeÞnition 62 If R(f) = B, f maps A onto B (in this case, we call f a
surjection). See Figure 2.4.7

DeÞnition 63 f : A→ B is a bijection if it is one-to-one and onto (or an
injection and a surjection).

Example 64 Let E = [0, 1] ⊂ A = R, H = [0, 1] ⊂ B = R, and f(a) = 2a.
See Figure 2.4.8. R(f) = R so that f is a surjection, the image set is
f(E) = [0, 2],the inverse image set is f−1(H) = [0, 1

2
], f is an injection and

has inverse f−1(b) = 1
2
b, and as a consequence of being one-to-one and onto,

is a bijection. Notice that if F = [−1, 0], then f(F ) ∩ f(E) = {0} and
f(E ∩F ) = f(0) = {0},so that in the special case of injections statement (b)
of Theorem 52 holds with equality.

Example 65 Let E = [0, 1] ⊂ A = R, H = [0, 1] ⊂ B = R, and f(a) = a2.
See Figure 2.4.9. R(f) = R+ so that f is not a surjection, the image set is
f(E) = [0, 1],the inverse image set is f−1(H) = [−1, 1], f is not an injection
(since, for instance, f(−1) = f(1) = 1), and is obviously not a bijection.
However, the restriction of f to R+ or R− (in particular, let f+ ≡ f |rR+ and
f− ≡ f |rR−) is an injection and f−1+ (b) =

√
b while f−1− (b) = −

√
b. Finally,

notice that if F = [−1, 0], then f(F ) ∩ f(E) = [0, 1] but that f(E ∩ F ) =
f(0) = 0,which is why we cannot generally prove equality in statement (b) of
Theorem 52.

The next theorem shows that composition preserves surjection. It is useful
to prove that statements about inÞnite sets.

9Alternatively, we can say f is one-to-one if f(a) = f(a0) only when a = a0.
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Theorem 66 Let f : A→ B and g : B → C be surjections. Their composi-
tion g ◦ f is a surjection.

Exercise 2.4.4 Prove Theorem 66. Answer: We must show that for g ◦ f :
A→ C given by (g ◦ f) (a) = g(f(a)),it is the case that ∀c ∈ C, there exists
a ∈ A such that (g ◦ f) (a) = c. To see this, let c ∈ C. Since g is a surjection,
∃b ∈ B such that g(b) = c. Similarly, since f is a surjection, ∃a ∈ A such
that f(a) = b. Then (g ◦ f) (a) = g(f(a)) = g(b) = c.

2.5 Finite and InÞnite Sets

The purpose of this section is to compare sizes of sets with respect to the
number of elements they contain. Take two sets A = {1, 2, 3} and B =
{a, b, c, d}. The number of elements of the set A (also called the cardinality
of A, denoted card(A)) is three and of the set B is four. In this case we say
that the set B is bigger than the set A.
It is hard, however, to apply this same concept in comparing, for instance,

the set of all natural numbers N with the set of all integers Z. Both are
inÞnite. Is the �inÞnity� that represents card(N) smaller than the �inÞnity�
that represents card(Z)? One might think the statement was true because
there are integers that are not real numbers (e.g. −1,−2,−3, ...). We will
show however that this statement is false, but Þrst we have to introduce a
different concept of the size of a set known as countability and uncountablity.
To illustrate it, one of the authors placed a set of 3 coins in front of his 3
year old daughter and asked her �Is that collection of coins countable?�. She
proceeded to pick up the Þrst coin with her right hand, put it in her left
hand, and said �1�, pick up the second coin, put it in her left hand, and said
�2�, and pick up the Þnal coin, put it in her left hand, and said �3�. Thus, she
put the set of coins into a one-to-one assignment with the Þrst three natural
numbers. We will now make use of one-to-one assignments between elements
of two sets.

DeÞnition 67 Two sets A and B are equivalent if there is a bijection
f : A→ B.

DeÞnition 68 An initial segment (or section) of N is the set ªn = {i ∈
N : i ≤ n}.



2.5. FINITE AND INFINITE SETS 35

DeÞnition 69 A set A is Þnite if it is empty or there exists a bijection
f : A→ ªn for some n ∈ N. In the former case A has zero elements and in
the latter case A has n elements.

Lemma 70 Let B be a proper subset of a Þnite set A. There does not exist
a bijection f : A→ B.

Proof. (Sketch) Since A is Þnite, ∃f : A→ ªn. If B is a proper subset of A,
then it contains m < n elements. But there cannot be a bijection between n
and m elements.

Exercise 2.5.1 Prove lemma 70 more formally. See lemma 6.1 in Munkres.

Lemma 70 says that a proper subset of a Þnite set cannot be equivalent
with the whole set. This is quite clear. But is it true for any set? Let�s
consider N = {1, 2, 3, 4, ...} and a proper subset N\{1} = {2, 3, 4, ...}. We
can construct a one-to-one assignment from N onto N\{1} (i.e. 1 → 2,
2→ 3, ...). Thus, in this case, it is possible for a set to be equivalent with its
proper subset. Given Lemma 70, we must conclude the following.

Theorem 71 N is not Þnite.

Proof. By contradiction. Suppose N is Þnite. Then .f : N→ N\{1} deÞned
by f(n) = n + 1 is a bijection of N with a proper subset of itself. This
contradicts Lemma 70.

DeÞnition 72 A set A is inÞnite if it is not Þnite. It is countably inÞ-
nite if there exists a bijection f : N→ A.

Thus, N is countably inÞnite since f can be taken to be the identity
function (which is a bijection).

DeÞnition 73 A set is countable if it is Þnite or countably inÞnite. A set
that is not countable is uncountable.

Next we examine whether the set of integers, Z, is countable. That is,
are N and Z equivalent? This isn�t apparent since N = {1, 2, ...} has one
end of the set that goes to inÞnity, while Z = {...,−2,−1, 0, 1, 2, ...} has two
ends of the set that go to inÞnity. But it is possible to reorganize Z in a
way that looks like N since we can simply construct Z = {0, 1,−1, 2,−2, ...}.
One can think of this set as being constructed from two rows {0, 1, 2, ...}
and {−1,−2, ...} by alternating between the Þrst and second rows. This is
formalized in the next example.
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Example 74 The set of integers, Z, is countably inÞnite. The function
f : Z→ N deÞned by

f(z) =

½
2z if z > 0

−2z + 1 if z ≤ 0
is a bijection.

Exercise 2.5.2 Prove that a Þnite union of countable sets is countable.

Next we examine whether N×N ∼ N. As in the preceding example where
we had two rows, we can think about enumerating the set N×N in Figure
2.5.1. As in the preceding example, each row has inÞnitely many elements
but now there are an inÞnite number of rows. Yet all of the elements of
this �inÞnite matrix� can be enumerated if we start from (1, 1) and then
continue by following the arrows. This enumeration provides us with the
desired bijection as shown next.

Example 75 The cartesian product N×N is countably inÞnite. First, let
the bijection g : N×N→A, where A ⊂ N× N consists of pairs (x, y) for
which y ≤ x, be given by g(x, y) = (x+ y − 1, y). Next construct a bijection
h : A→ N given by h(x, y) = 1

2
(x− 1)x+ y. Then the composition f = h ◦ g

is the desired bijection.

We can actually weaken the condition for proving countability of a given
set A. The next theorem accomplishes this.

Theorem 76 Let A be a non-empty set. The following statements are equiv-
alent: (i) There is a surjection f : N→A. (ii) There is an injection g : A→
N. (iii) A is countable.

Proof. (Sketch) (i)⇒(ii). Given f , deÞne g : A → N by g(a) =smallest
element of f−1({a}). Since f is a surjection, the inverse image f−1({a}) is
non-empty so that g is well deÞned. g is an injection since if a 6= a0, the sets
f−1({a}) and f−1({a0}) are disjoint (recall Exercise 2.4.3), so their smallest
elements are distinct proving g : A→ N is an injection.
(ii)⇒(iii). Since g : A→ R(g) is a surjection by deÞnition, g : A→ R(g)

is a bijection. Since R(g) ⊂ N, A must be countable.
(iii)⇒(i). By deÞnition.
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Exercise 2.5.3 Finish parts (ii)⇒(iii) and (iii)⇒(i) of the proof of Theorem
76. See Munkres 7.1 (USES WELL ORDERING).

Example 77 The set of positive rationals, Q++, is countably inÞnite. DeÞne
a surjection g : N×N→ Q++ by g(n,m) = m

n
. Since N×N is countable

(Example 75), there is a surjection h : N→ N×N. Then f = g◦h : N→ Q++
is a surjection (Theorem 66) so by Theorem 76, Q++ is countable.

The intuition for the preceding example follows simply from Figure 2.5.1
if you replace the �,� with �/�. That is, replace (1, 1) with the rational 1

1
,

(1, 2) with the rational 1
2
, (3, 2) with the rational 3

2
, etc.

Theorem 78 A countable union of countable sets is countable.

Proof. Let {Ai, i ∈ Λ} be an indexed family of countable sets where Λ is
countable. Because each Ai is countable, for each i we can choose a surjection
fi : N→Ai. Similarly, we can choose a surjection g : N→ ¤. DeÞne h :
N× N→∪i∈Λ Ai by h(n,m) = fg(n)(m), which is a surjection. Since N×N
is in bijective correspondence with N (recall Example 75), the countability
of the union follows from Theorem 76.
The next theorem provides an alternative proof of example 75.

Theorem 79 A Þnite product of countable sets is countable.

Proof. Let A and B be two non-empty, countable sets. Choose surjective
functions g : N → A and h : N → B. Then the function f : N× N→A× B
deÞned by f(n,m) = (g(n), h(m)) is surjective. By Theorem 76, A × B is
countable. Proceed by induction for any Þnite product.
While it�s tempting to think that this result could be extended to show

that a countable product of countable sets is countable, the next Theorem
shows this is false. Furthermore, it gives us our Þrst example of an uncount-
able set.

Theorem 80 Let X = {0, 1}. The set of all functions x : N→X, denoted
Xω, is uncountable.10

10An alternative statement of the theorem is that the set of all inÞnite sequences of X
is uncountable.
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Proof. We show that any function g : N→Xω is not a surjection. Let
g(n) = (xn1, xn2, ..., xnm, ...) where each xij is either 0 or 1. DeÞne a point
y = (y1, y2, ..., yn, ...) of X

ω by letting

yn =

½
0 if xnn = 1
1 if xnn = 0

.

Now y ∈ Xω and y is not in the image of g. That is, given n, g(n) and y
differ in at least one coordinate, namely the nth. Thus g is not a surjection.

The diagonal argument used above (See Figure 2.5.2) will be useful to
establish the uncountability of the reals, which we save until Chapter 3.

Exercise 2.5.4 Consider the following game known as �matching pennies�.
You (A) and I (B) each hold a penny. We simultaneously reveal either
�heads� (H) or �tails� (T ) to each other. If both faces match (i.e. both
heads or both tails) you receive a penny, otherwise I get the penny. The ac-
tion sets for each player are SA = SB = {H,T}. Now suppose we decide
to play this game every day for the indeÞnite (inÞnite) future (we�re opti-
mistic about medical technology). Before you begin, you should think of all
the different combinations of actions you may employ in the inÞnitely re-
peated game. For instance, you may alternate H and T starting with H in
the Þrst round. Prove that although the number of actions you play in the
inÞnitely repeated game is countable and the set of actions SA is Þnite, the
set of possible combinations of actions (SA × SA × ...) is uncountable.

2.6 Algebras of Sets

An algebra is just a collection of sets (which could be inÞnite) that is closed
under (Þnite) union and complementation. It is used extensively in proba-
bility and measure theory.

DeÞnition 81 A collection A of subsets of X is called an algebra of sets
if (i) Ac ∈ A if A ∈ A and (ii) A ∪B ∈ A if A,B ∈ A.
Note that ∅,X ∈ A since, for instance, A ∈ A⇒ Ac ∈ A by (i) and then

A ∪ Ac = X ∈ A by (ii). It also follows from De Morgan�s laws that (iii)
A∩B ∈ A if A,B ∈ A. The deÞnition extends to larger collections (just take
unions two at a time).
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Theorem 82 Given any collection C of subsets of X, there is a smallest
algebra A which contains C.
Proof. (Sketch) It is sufficient to show there is an algebra A containing
C such that if B is any algebra containing C, then B ⊃ A. Let F be the
family of all algebras that contain C (which is nonempty since P(X) ∈ F).
Let A = ∩{B : B ∈ F}. Then C is a subcollection of A since each B in F
contains C. All that remains to be shown is that A is an algebra (i.e. if A
and B are in A, then A ∪ B and Ac are in ∩{B : B ∈ F}). It follows from
the deÞnition of A that B ⊃ A. See Figure 2.6.1
Exercise 2.6.1 Finish the proof of Theorem 82 .If A and B are in A, then
for each B ∈ F , we have A ∈ B and B ∈ B. Since B is an algebra, A ∪ B
∈ B. Since this is true for every B ∈ F , we have A ∪ B ∈ ∩{B|B ∈ F}.
Similarly, if A ∈ A, then Ac ∈ A.
We say that the smallest algebra containing C is called the algebra gen-

erated by C. By construction, the smallest algebra is unique. Notice the
proof makes clear that the intersection of any collection of algebras is itself
an algebra.

Example 83 Let X = {a, b, c}. The following three collections are algebras:
C1 = {∅,X}, C2 = {∅, {a}, {b, c}, X}, C3 = P(X). The following two collec-
tions are not algebras: C4 = {∅, {a}, X} since, for instance, {a}c = {b, c} /∈
C4 and C5 = {∅, {a}, {b}, {b, c},X} since {b}c = {a, c} /∈ C5. However, the
smallest algebra which contains C4 is just C2. To see this, we can apply the
argument in Theorem 82. Let F = {C2,P(X)} be the family of all algebras
that contain C4. But A = C2 ∩ P(X) = C2.
Exercise 2.6.2 Let X = N. Show that the collection A = {Ai : Ai is Þnite
or N\Ai is Þnite} is an algebra on N and that it is a proper subset of P(N).
The next theorem proves that it is always possible to construct a new

collection of disjoint sets from an existing algebra with the property that its
union is equivalent to the union of subsets in the existing algebra. This will
become very useful when we begin to think about probability measures.

Theorem 84 Let A be an algebra comprised of subsets {Ai : i ∈ Λ}.11 Then
there is a collection of subsets {Bi : i ∈ Λ} in A such that Bn ∩Bm = ∅ for
n 6= m and ∪i∈ΛBi = ∪i∈ΛAi.
11Note that the index set Λ can be countably or even uncountably inÞnite.
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Proof. (Sketch)The theorem is trivial when the collection is Þnite (see Ex-
ample 85 below). When the collection is indexed on N, we let B1 = A1 and
for each n ∈ N\{1} deÞne

Bn = An\ [A1 ∪A2 ∪ ... ∪An−1]
= An ∩Ac1 ∩Ac2 ∩ ... ∩Acn−1.

Since the complements and intersections of sets in A are in A, Bn ∈ A and
by construction Bn ⊂ An. The remainder of the proof amounts to showing
that the above constructed sets are disjoint and yield the same union as the
algebra.

Exercise 2.6.3 Finish the proof of Theorem 84 above. See Royden Prop2 p.
17.

Note that Theorem 84 does not say that the new collection {Bi : i ∈ Λ}
is necessarily itself an algebra. The next example shows this.

Example 85 Let X = {a, b, c} and algebra A = P(X) with A1 = {a},
A2 = {b}, A3 = {c}, A4 = {a, b}, A5 = {a, c}, A6 = {b, c}, A7 = ∅, A8 = X.
Let B1 = A1. By construction B2 = A2\A1 = {b}, B3 = A3\{A1 ∪ A2} =
{c}, Bn = An\{A1 ∪ A2 ∪ ... ∪ An−1} = ∅ for n ≥ 4. Note that the new
collection {{a}, {b}, {c}} is not itself an algebra, since it�s not closed under
complementation and that if we chose a different sequence of Ai we could
obtain a different collection {Bi : i ∈ Λ}.
In the next chapter, we will learn an important result: any (open) set

of real numbers can be represented as a countable union of disjoint open
intervals. Hence we cannot guarantee that the set is in an algebra, which
is closed only under Þnite union, even if all the sets belong to the algebra.
Thus we extend the notion of an algebra to countable collections that are
closed under complementation and countable union.

DeÞnition 86 A collection X of subsets of X is called a σ−algebra of sets
if (i) Ac(= X\A) ∈ X if A ∈ X and (ii) ∪n∈NAn ∈ X if each An ∈ X .
As in the case of algebras, ∅, X ∈ X and ∩∞n=1An = (∪ =∞n=1 Acn)c ∈ X

which means that a σ-algebra is closed under countable intersections as well.
Furthermore, we can always construct the unique smallest σ-algebra con-

taining a given collection X (called the σ-algebra generated by X ) by forming
the intersection of all the σ-algebras containing X ). This result is an exten-
sion of Theorem 82.
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Theorem 87 Given any collection X of subsets of X, there is a smallest
σ-algebra that contains X .

Exercise 2.6.4 Prove Theorem 87.

Exercise 2.6.5 Let C , D be collections of subsets of X. (i) Show that
the smallest algebra generated by C is contained in the smallest σ-algebra
generated by C. (ii) If C ⊂ D , show the smallest σ-algebra generated by C is
contained in the smallest σ-algebra generated by D.



42 CHAPTER 2. SET THEORY
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2.8 End of Chapter Problems.

1. Let f : A → B be a function. Prove the following statements are
equivalent.

� (i) f is one-to-one on A.
� (ii) f(C ∩D) = f(C) ∩ f(D) for all subsets C and D of A.

� (iii) f−1[f(C)] = C for every subset C of A.
� (iv) For all disjoint subsets C and D of A, the images f(C) and
f(D) are disjoint.

� (v) For all subsets C and D of A with D ⊆ C,we have f(C\D) =
f(C)\f(D).

2. Prove that a Þnite union of countable sets is a countable set.

.



Chapter 3

The Space of Real Numbers

In this chapter we introduce the most common set that economists will en-
counter. The real numbers can be thought of as being built up using the
set operations and order relations that we introduced in the preceding chap-
ter. In particular we can start with the most elementary set N (the counting
numbers we all learned in pre-kindergarten) upon which certain operations
like �+� and �·� are deÞned. The naturals are closed (i.e. for any two counting
numbers, say n1 and n2, the operation n1 + n2 is contained in N). However,
N is not closed with respect to certain other operations like �−� since for
example 2− 4 /∈ N. To handle that example we need the integers Z, which
is closed under �+�, �·�, and �−� (i.e. 2 − 4 ∈ Z). However, Z can�t handle
operations like dividing 2 pies between 3 people (i.e. 2

3
/∈ Z). To handle that

example we need the rationals Q, which is closed under �+�,�−�, �·�, and �÷�.
(i.e. 2

3
∈ Q). But the rationals can�t handle something as simple as Þnding

the length of the diagonal of a unit square. That is,
√
2 /∈ Q. To extend Q

to include such cases, besides the operations �+�,�−�, �·�, and �÷�, we could
use Dedekind cuts which makes use the order relation �≤�. A Dedekind cut
in Q is an ordered pair (D,E) of nonempty subsets of Q with the properties
D ∩E = ∅, D ∪E, and d < e, ∀d ∈ D and ∀e ∈ E. An example of a cut in
Q is, for ξ ∈ Q,

D = {x ∈ Q : x ≤ ξ}, E = {x ∈ Q : x > ξ}.

In this case, we say that ξ ∈ Q represents the cut (D,E). If a cut can be
represented by a rational number, it is called a rational cut. It is simple
to see that there are cuts in Q which cannot be represented by a rational
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number. For example, take the cut

D0 = {x ∈ Q : x ≤ 0 or x2 ≤ 2}, E0 = {x ∈ Q : x > 0 and x2 > 2}.

As we will show in this chapter, (D0, E0) cannot be represented by a rational
number. Such cuts are called irrational cuts. Each irrational cut deÞnes a
unique number. The set of all such numbers is called the irrational numbers.
In this way, we can extend the rationals by adding in these irrationals.
Rather than build up the real numbers as discussed above, our approach

will simply be to take the real numbers as given, list a set of axioms for
them, and derive properties of the real numbers as consequences of these
axioms. The Þrst group of axioms describe the algebraic properties, the sec-
ond group the order properties, and we shall call the third the completeness
axiom. With these three groups of axioms we can completely characterize
the real numbers. In the next chapter we will focus on important issues like
convergence, compactness, completeness, and connectedness in spaces more
general than the real numbers. However, to understand those concepts it is
often helpful to provide examples from R,which is why we start here.
In this chapter we focus on four important results in R. The Þrst (see

Theorem 108)is that any open set in R can be written in terms of a countable
union of open intervals. The next two results are proven using the Nested
Intervals Property (see Theorem 116) which says that a decreasing sequence
of closed, bounded, nonempty intervals �converges� to a nonempty set. The
Þrst important result that this is used to prove is the Bolzano-Weierstrass
Theorem (118) which says that every bounded inÞnite subset of R has a point
with sufficiently many points in any subset around it. It is also used to prove
the important �size� result (see Theorem 122) that open intervals in R are
uncountable.

3.1 The Field Axioms

The functions or binary operations �+� and �·� on R×R to R satisfy the
following axioms. It shouldn�t be surprising that we require the operations
to satisfy commutative, associative, and distributive properties as we did in
Chapter 2 with respect to the set operations �∪� and �∩�.

Axiom 1 (Algebraic Properties of R) x, y, z ∈ R satisfy:
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A1. x+ y = y + x.

A2. (x+ y) + z = x+ (y + z)

A3. ∃0 ∈ R 3 x+ 0 = x, ∀x ∈ R

A4. ∀x ∈ R, ∃w ∈ R 3x+ w = 0

A5. x · y = y · x

A6. (x · y) · z = x · (y · z)

A7. ∃1 ∈ R 3 1 6= 0 and x · 1 = x, ∀x ∈ R

A8. ∀x ∈ R 3 x 6= 0,∃w ∈ R 3x · w = 1

A9. x · (y + z) = x · y + x · z

Any set that satisÞes Axiom 1 is called a Þeld (under �+� and �·�). If
we have a Þeld, we can perform all the operations of elementary algebra,
including the solution of simultaneous linear equations. It follows from A1
that the 0 in A3 is unique, which was used in formulating A4, A7, and A8.
It also follows that the w in A4 is unique and denoted �−x�. Subtraction
�x − y� is deÞned as �x + (−y)�. That 1 in A7 is unique follows from A5.
The w in A8 can also be shown to be unique.

Exercise 3.1.1 Let a, b ∈ R. Prove that the equation a + x = b has the
unique solution x = (−a) + b. With a 6= 0, prove that the equation a · x = b
has the unique solution x =

¡
1
a

¢ · b. (This is Theorem 4.4 of Bartle).

In what follows, we drop the �·� to denote multiplication and write xy
for x · y. Furthermore, we write x2 for xx and generally xn+1 = (xn)x with
n ∈ N. It follows by mathematical induction that xn+m = xnxm for x ∈ R
and n,m ∈ N. We shall also write x

y
instead of

³
1
y

´
·x. Recall that we deÞned

the rationals as Q = {m
n
: m,n ∈ Z, n 6= 0}.

Theorem 88 There does not exist a rational number q ∈ Q such that q2 = 2.
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Proof. Suppose not. Then
¡
m
n

¢2
= 2 for m,n ∈ Z, n 6= 0. Assume, without

loss of generality, that m and n have no common factors. Since m2 = 2n2

is an even integer,then m must be an even integer.1 In that case we can
represent it as m = 2k for some integer k. Hence (m2 =) 4k2 = 2n2 or
n2 = 2k2 which implies that n is also even. But this implies that m and n
are both divisible by 2, which contradicts the assumption that m and n have
no common factors.
Theorem 88 says that the cut (D0, E0) in the introduction to this chapter

is not rational.

DeÞnition 89 All of the elements of R which are not rational numbers are
irrational numbers.

In Section 3.3 we provide a complementary result to Theorem 88 to es-
tablish the existence of irrational numbers.

3.2 The Order Axioms

The next class of properties possessed by the real numbers have to do with
the fact that they are ordered. The order relation �≤� deÞned on R is a
special, and most important, case of the more general relations discussed in
Chapter 2.2

Axiom 2 (Order Properties of R) The subset P of positive real numbers
satisÞes3

B1. If x, y ∈ P , then x+ y ∈ P.
B2. If x, y ∈ P , then x · y ∈ P.
B3. If x ∈ R, then one and only one of the following holds: x ∈ P , x = 0,

or −x ∈ P.
Note that B3 implies that if x ∈ P , then −x /∈ P. More importantly, B3

guarantees that R is totally ordered with respect to the order relation �≤�.
1Otherwise, if m is odd we can represent it as m = 2k+1 for some integer k. But then

m2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is odd, contradicting the fact that m2 is even.
2In fact, the order relations in Chapter 2 were developed to generalize these concepts

to more abstract spaces than R.
3Later, we will associate P with the notation R++.
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DeÞnition 90 Any system satisfying Axiom 1 and Axiom 2 is called an
ordered Þeld.

By deÞnition then, R is an ordered Þeld.

DeÞnition 91 Let x, y ∈ R. If x− y ∈ P , then we say x > y and if x− y ∈
P ∪ {0}, then we say x ≥ y. If −(x − y) ∈ P , then we say x < y and if
−(x− y) ∈ P ∪ {0}, then we say x ≤ y.
Exercise 3.2.1 Show that (R,≤) is a totally ordered set.
The following properties are a consequence of Axiom 2.

Theorem 92 Let x, y, z ∈ R. (i) If x > y and y > z, then x > z. (ii)
Exactly one holds: x > y, x = y, x < y. (iii) If x ≥ y and y ≥ x, then
x = y.

Proof. (i) If x− y ∈ P and y − z ∈ P, then B1⇒ (x− y) + (y − z) ∈ P or
(x− z) ∈ P
Exercise 3.2.2 Finish the proof of Theorem 92. (Bartle 5.4)

The next theorem is one of the simplest we will encounter, yet it is one of
the most far-reaching. For one thing, it implies that given any strictly positive
real number, there is another smaller and strictly positive real number so that
there is no smallest strictly positive real number!4

Theorem 93 (Half the distance to the goal line) If x, y ∈ R with x >
y, then x > 1

2
(x+ y) > y.

Proof. x > y ⇒ x+ x > x+ y and x+ y > y + y ⇒ 2x > x+ y > 2y.
Now we deÞne a very useful functoin on R that assigns to each real number

its distance from the origin.

DeÞnition 94 If x ∈ R, the absolute value of x, denoted | · | : R→ R+,
is deÞned by

|x| =
½

x if x ≥ 0
−x if x < 0

4Another thing it proves is that even if a defense is continuously penalized half the
distance to the goal line, the offense will never score unless they Þnally run a play.
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This function satisÞes the well-known property of triangles; that is, the
lenght of any side of a triangle is less than the sum of the lengths of the other
two sides.

Theorem 95 (Triangle Inequality) If x, y ∈ R, then|x+ y| ≤ |x|+ |y|.

Proof. (Sketch) Since x ≤ |x| and y ≤ |y| , then |x| − x ∈ P ∪ {0} and
|y| − y ∈ P ∪ {0}. By Axiom B1, (|x|− x) + (|y|− y) ∈ P ∪ {0}. But
(|x|− x) + (|y|− y) = (|x|+ |y|)− (x+ y), so (|x|+ |y|)− (x+ y) ∈ P ∪ {0}
or (x+ y) ≤ (|x|+ |y|) . But then |x+ y| ≤ |x|+ |y|.

3.3 The Completeness Axiom

This axiom distinguishes R from other totally ordered Þelds like Q. To
begin, we use the deÞnition of upper and lower bounds from 40 with the
order relation �≤� on R. If S ⊂ R has an upper and/or lower bound, it has
inÞnitely many (e.g. if u is an ub of S, then u + n is an ub for n ∈ N).
Supremum and inÞmum that were deÞned in 40 for the general case, can be
characterized in R by the following lemma.

Lemma 96 Let S ⊂ R. Then u ∈ R is a supremum (or sup or least
upper bound (lub)) of S iff (i) s ≤ u, ∀s ∈ S and (ii) ∀ε > 0, ∃s ∈ S such
that u−ε < s.5 Similarly, ! ∈ R is an inÞmum (or inf or greatest lower
bound (glb)) of S iff (i) ! ≤ s, ∀s ∈ S and (ii) ∀ε > 0, ∃s ∈ S such that
s < !+ ε. See Figure 3.3.1.

Proof. (⇒) (i) holds by deÞnition (just use �≤� on R in 40). To see (ii),
suppose u is the least upper bound. Because u − ε < u, then u − ε cannot
be an upper bound. This implies ∃s ∈ S such that u− ε < s.
(⇐) (i) implies u is an upper bound again by deÞnition. To see that (ii)

implies u is the least upper bound, consider v < u. Then u− v = ε > 0 (or
v = u− ε). By (ii), ∃s ∈ S such that u− ε = v < s, hence v is not an upper
bound.
In the case where S does not have an upper (lower) bound, we assign

supS =∞ ( inf S = −∞).
5Statement (i) makes u an ub while (ii) makes it the lub.



3.3. THE COMPLETENESS AXIOM 51

Example 97 A set may not contain its sup. To see this, let S = {x ∈ R :
0 < x < 1} and S0 = {x ∈ R : 0 ≤ x ≤ 1}. Any number u ≥ 1 is an ub for
both sets, but while S0 contains the ub 1, S does not contain any of its ub!
Also, it�s clear that no number c < 1 can be an ub for S. To see this, just
apply our famous Theorem 93 . That is, since c < 1, then ∃s = 1+c

2
> c and

s ∈ S.

Theorem 98 There can be only one supremum for any S ⊂ R.

Proof. If u1 and u2 are lub, then they are both ub. Since u1is lub and u2 is
ub, then u1 ≤ u2. Similarly, since u2 is lub and u1is ub, then u2 ≤ u1. Then
u1 = u2.
The next axiom is critical to establish that R does not have any �holes� in

it. In particular, it will be sufficient to establish that the set R is �complete�
(a term that will be made precise in Chapter 4). Don�t be fooled however, it
takes more work than just stating the Axiom to establish completeness.

Axiom 3 (Completeness Property of R) Every non-empty set S ⊂ R
which has an upper bound has a supremum.

From the completeness axiom, it is easy to establish that every non-empty
set which has a lower bound has an inÞmum.
A consequence of Axiom 3 is that N (a subset of R) is not bounded above

in R.

Theorem 99 (Archimedian Property) If x ∈ R, ∃nx ∈ N such that x <
nx.

Proof. Suppose not. Then x is an ub for N and hence by Axiom 3 N has a
sup, call it u, and u ≤ x.6 Since u− 1 is not an ub, ∃n1 ∈ N 3 u− 1 < n1.
Then u < n1 + 1 and since n1 + 1 ∈ N, this contradicts that u is an ub of N.

It follows from Theorem 99 that there exists a rational number between
any two real numbers.

Theorem 100 If x, y ∈ R with x < y, ∃q ∈ Q such that x < q < y.
6Note that u is not necessarily in N, which is why we choose to subtract 1 ∈ N in the

next statement.
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Exercise 3.3.1 Prove Theorem 100. (Royden p.35)

The following theorem complements the result that there are elements
of R which are not rational in Theorem 88 of section 3.1. It provides an
existence proof of an irrational. We present it since it makes use of Axiom
3. Without the Axiom, the set S = {y ∈ R+ : y2 ≤ 2} does not have a
supremum.

Theorem 101 ∃x ∈ R+ such that x2 = 2.

Proof. Let S = {y ∈ R+ : y2 ≤ 2}. Clearly S is non-empty (take 1) and S is
bounded above (take 1.5). Let x = sup S,which exists by Axiom 3. Suppose
x2 6= 2. Then either x2 < 2 or x2 > 2. First take x2 < 2. Let n ∈ N be
sufficiently large so that 2x+1

n
< 2 − x2. Then ¡x+ 1

n

¢2 ≤ x2 + 2x+1
n

< 2.7

This means x + 1
n
∈ S which contradicts that x is an upper bound. Next

take x2 > 2. Let m ∈ N be sufficiently large so that 2x
m
< x2 − 2. Then¡

x− 1
m

¢2
> x2− 2x

m
> 2. Since x = supS,then ∃s0 ∈ S such that x− 1

m
< s0.

But this implies (s0)2 >
¡
x− 1

m

¢2
(or (s0)2 > 2) which contradicts s0 ∈ S.

Exercise 3.3.2 Why doesn�t S = {y ∈ R+ : y2 + 1 ≤ 0} work?

The next theorem complements the result in Theorem 100 and establishes
that between any two real numbers there exists an irrational number.

Theorem 102 Let x, y ∈ R with x < y. If ι is any irrational number, then
∃q ∈ Q such that the irrational number ιq satisÞes x < ιq < y.

Exercise 3.3.3 Prove Theorem 102. (Bartle)

In fact, there are inÞnitely many of both kinds of numbers between x and
y

7The Þrst weak inequality holds with equality only if n = 1.
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3.4 Open and Closed Sets

In this section we deÞne the most common subsets of real numbers and
determine some of their properties.

DeÞnition 103 If a, b ∈ R, then the set {x ∈ R : a < x < b} ({x ∈ R : a ≤
x ≤ b}, {x ∈ R : a ≤ x < b}) is called a open (closed, half-open) cell
denoted (a, b) ( [a, b], [a, b) ) respectively with endpoints a and b. If a ∈ R,
then the set {x ∈ R : a < x} ({x ∈ R : a ≤ x}) is called an open (closed)
ray denoted (a,∞) ( [a,∞) ), respectively. An interval in R is either a
cell, a ray, or all of R.

A generalization of the notion of an open interval is that of an open set.

DeÞnition 104 A set O ⊂ R is open if for each x ∈ O, there is some δ > 0
such that the open interval Bδ(x) = {y ∈ O : |x− y| < δ} ⊂ O.

Example 105 (0, 1) ⊂ R is open since for any x arbitrarily close to 1 (i.e.
x = 1 − ε, ε > 0 arbitrarily small), there is an open interval B ε

2
(1 − ε) ⊂

(0, 1) by Theorem 93. (0, 1] is not open since there does not exist δ > 0 for
which Bδ(1) ⊂ (0, 1]. That is, no matter how small δ > 0 is, there exists
x0 = 1 + δ

2
∈ Bδ(1) by Theorem 93 which is not contained in (0, 1]. See

Figure 3.4.1.

Theorem 106 (i)∅ and R are open. (ii) The intersection of any Þnite col-
lection of open sets in R is open. (iii) The union of any collection of open
sets in R is open.

Proof. (i)∅ contains no points, hence DeÞnition 104 is trivially satisÞed.8 R
is open since all y 6= x are already in R.
(ii) Let {Oi : Oi ⊂ R, Oi open, i = 1, ..., k} be a Þnite collection of open

sets. We must show O = ∩ki=1Oi is open. Assume x ∈ R. By deÞnition of an
intersection, x ∈ Oi,∀i = 1, ..., k. Since each Oi is open, we can Þnd Bδi(x) ⊂
Oi for each i. Let δ = min{δi : i = 1, ..., k}. Then Bδ(s) ⊂ Bδi(s) ⊂ Oi,∀i.
This implies Bδ(s) ⊂ O.
(iii) Take x ∈ O = ∪i∈ΛOi, where Λ is either a Þnite or inÞnite index set.

Since Oi is open, ∃Bδ(x) ⊂ Oi ⊂ ∪i∈ΛOi.
8In particular, the statement x ∈ ∅ is always false. Thus, according to the truth table,

any implication of the form x ∈ ∅⇒ P (x) is true.
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Example 107 Property (ii) of Theorem 106 does not necessarily hold for
inÞnite intersections. Consider the following counterexample. Let On =
{x ∈ R : − 1

n
< x < 1

n
, n ∈ N}. Then ∩∞n=1On = {0}, but a singleton set is

not open since there does not exist δ > 0 such that Bδ(0) ⊂ {0}. See Figure
3.4.2.

The following theorem provides a characterization of open sets in R.

Theorem 108 (Open Sets Property in R) Every open set in R is the
union of a countable collection of disjoint open intervals.

Proof. The proof is in several steps. First, construct an open interval around
each y ∈ O. Let O be open. Then, for each y ∈ O, ∃ an open interval (x, z)
such that x < y < z and (x, z) ⊂ O. Let b = sup{z : (y, z) ⊂ O} and
a = inf : (x, y) ⊂ O}. Then a < y < b and Iy = (a, b) is an open interval
containing y.
Second, show the constructed interval is contained in O. Take any w ∈

(a, b) with w > y. Then y < w < b and by the deÞnition of b (i.e. it is
the sup), we know w ∈ O. An identical argument establishes that if w < y,
w ∈ O.
Third, show the constructed interval is open (i.e. a, b /∈ O). If b ∈ O,then

since O is open, ∃ε > 0 such that (b− ε, b+ ε) ⊂ O and hence (y, b+ ε) ⊂ O
which contradicts the deÞnition of b.
Fourth, show the union of constructed intervals is O. Let w ∈ O. Then

w ∈ Iw and hence w ∈ ∪y∈OIy
Fifth, establish that the intervals are disjoint. Suppose y ∈ (a1, b1) ∩

(a2, b2). Since b1 = sup{z : (y, z) ⊂ O} and (y, b2) ⊂ O, then b1 ≤ b2. Since
b2 = sup{z : (y, z) ⊂ O} and (y, b1) ⊂ O, then b2 ≤ b1. But b1 ≤ b2 and
b1 ≥ b2 implies b1 = b2. A similar argument establishes that a1 = a2. Thus,
two different intervals in {Iy} are disjoint.
Sixth, establish that {Iy} is countable. In each Iy, ∃q ∈ Q such that

q ∈ Iy by Theorem 100. Since Iy are disjoint, q ∈ Iy and q0 ∈ Iy0 , for y 6= y0
implies q 6= q0. Hence there exists a one-to-one correspondence between the
collection {Iy} and a subset of the rational numbers. Thus, {Iy} is countable
by an argument similar to that in Example 77.
Figure 3.4.3 illustrates the theorem for the open set O = O1 ∪O2 where

O1 = (−1, 0) and O2 = (
√
2,∞). Part (a) of the Þgure illustrates steps 1

to 4. For example, take y = −1
4
∈ O1. Then the supremum of the set of
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upper interval endpoints around −1
4
contained in O1 is b− 1

4
= 0 and the

inÞmum of the set of lower interval endpoints around −1
4
contained in O1 is

a−1
4
= −1 so that I− 1

4
= (−1, 0) which is just O1. Similarly take y = 3

2
.Then

the supremum of the set of upper interval endpoints around 3
2
contained in

O2 is b 3
2
=∞ and the inÞmum of the set of lower interval endpoints around

3
2
contained in O2 is a 3

2
=
√
2 so that I 3

2
= (
√
2,∞) which is just O2. Part

(b) of the Þgure illustrates step 6, where the injection is Þnite (and hence
countable).
Now we move on to closed sets.

DeÞnition 109 C ⊂ R is closed if its complement (i.e. R\C) is open.

Example 110 [0, 1] ⊂ R is closed since its complement R\[0, 1] = (−∞, 0)∪
(1,∞) is open since the union of open sets is open by Theorem 106. (0, 1] is
not closed since its complement, (−∞, 0)∪ [1,∞), is not open. The singleton
set {1} is closed since its complement, (−∞, 1) ∪ (1,∞) is open. The set
N is closed since its complement, (∪∞n=1(n− 1, n)) ∪ (−∞, 0), is a countable
union of open sets and hence by Theorem 106 is open.

There is another way to describe closed sets which uses cluster points.

DeÞnition 111 A point x ∈ R is a cluster point of a subset A ⊂ R if
any open ball around x intersects A at some point other than x itself (i.e.
(Bδ(x)\{x}) ∩A 6= ∅).

Note that the point x may lie in A or not. A cluster point must have
points of A sufficiently near to it as the next examples show.

Example 112 (i) Let A = (0, 1]. Then every point in the interval [0, 1] is a
cluster point of A.In particular, the point 0 is a cluster point since for any δ >
0, ∃y = δ

2
∈ Bδ(0) such that Bδ(0) ∩ A ⊂ A. (ii) Let A = { 1n , n ∈ N}. Then

0 is the only cluster point of A. To see why, for any δ, just take nδ =
1
δ
+ 1,

in which case for any δ > 0, ∃y = δ
1+δ

∈ Bδ(0) such that Bδ(0)∩A ⊂ A.(iii)
Let A = {0}∪ (1, 2). Then [1, 2] are the only cluster points of A since for any
δ ∈ (0, 1), Bδ(0)∩A = ∅. (iv) N has no cluster points for the same reason as
(iii). (v) Let A = Q. The set of cluster points of A is R. This follows from
Theorem 100 that between any two real numbers lies a rational. See Figure
3.4.4.
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We next use Axiom 3 to prove a very important property of R; every
nested sequence of closed intervals has a common point (and we can take
that common point to either be the sup of the lower endpoints or the inf of
the upper endpoints). First we must make that statement precise.

Example 113 Returning to Example 97 where the open interval S = (0, 1)
and the closed interval S0 = [0, 1] are both bounded (and hence both possess
a supremum by Axiom 3), only the closed interval S0 contains its supremum
of 1 (ie. has a maximum).

DeÞnition 114 A set of intervals {In, n ∈ N} is nested if I1 ⊃ I2 ⊃ ... ⊃
In ⊃ In+1 ⊃ ...

Example 115 A nested set of intervals does not necessarily have a common
point (i.e. ∩∞n=1In = ∅). For example, neither In = (n,∞) (so that (1,∞) ⊃
(2,∞) ⊃ ...) nor In = (0, 1

n
) (so that (0, 1) ⊃ (0, 1

2
) ⊃ ...) have common

points. Why? It follows from the Archimedean Property 99 that for any
x ∈ R,∃n ∈ N such that 0 < 1

n
< x.See Figure 3.4.5.

Theorem 116 (Nested Intervals Property in R) If {In, n ∈ N} is a set
of non-empty, closed, nested intervals in R, then ∃x ∈ R such that ∩∞n=1In 6=
∅.

Proof. Let In = [an, bn] with an ≤ bn. Since I1 ⊃ In, then b1 ≥ bn ≥ an.
Hence {an : n ∈ N} is bounded above and let α be its sup. To establish the
claim, it is sufficient to show α ≤ bn,∀n ∈ N. Suppose not. Then ∃m ∈
N 3bm < α. Since α = sup{an : n ∈ N}, ∃ap > bm. Let q = max{p,m}.
Then bq ≤ bm < ap ≤ aq. But bq < aq contradicts Iq is a non-empty interval.
Thus an ≤ α ≤ bn or α ∈ In, ∀n ∈ N. If In is not closed, then the last
statement (α ∈ In) doesn�t necessarily hold.
See Figure 3.4.6. Note that the same arguments can be applied so that

β = inf{bn|n ∈ N} is in every interval.

Example 117 Let us return to Example 115. Instead of the open interval
In = (0, 1

n
) consider the closed interval In = [0, 1

n
] for which sup{an|n ∈

N} = 0. But it is clear that 0 is indeed in every nested interval. Another
example of Theorem 116 may be In = [− 1

n
, 1 + 1

n
]. Obviously this is nested

since [−1, 2] ⊃ [−1
2
, 3
2
] ⊃ [−1

3
, 4
3
] ⊃ ... In this case the sup{an : n ∈ N} =

sup{−1,−1
2
,−1

3
, ...} = 0,which is again in every interval. See Figure 3.4.7.
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We need the following important result to show that R doesn�t have any
�holes� in it. 9In Section 4.2, we will show the precise meaning of this
�absence of holes� property known as completeness. For now, one should
simply recognize that to rule out holes, we need to draw out the implications
of the Completeness Axiom 3. We do this through the next theorem.

Theorem 118 (Bolzano-Weierstrass) Every bounded inÞnite subset A ⊂
R has a cluster point.

Proof. (Sketch) If A is bounded, then there is a closed interval I such
that A ⊂ I.Bisect I. There are inÞnitely many elements in at least one of
the bisections. Denote such a bisection I1 ⊂ I.Bisect I1. Again, there are
inÞnitely many elements in at least one of the bisections. Denote such a
bisection I2 ⊂ I1.By continuing this process we construct a set {In, n ∈ N}
of non-empty, closed, nested intervals in R. By Theorem 116, there is a point
x∗ ∈ ∩∞n=1In, which is a cluster point of A.

Exercise 3.4.1 Show that x∗ ∈ ∩∞n=1In in Theorem 118 is a cluster point of
A to Þnish the proof.

In the proof we enclosed A in a closed interval I = [a, b] and showed that
any inÞnite subset of I has a cluster point. This special property of [a, b] is
called the Bolzano-Weierstrass property.

DeÞnition 119 A subset A ⊂ R has the Bolzano-Weierstrass property
if every inÞnite subset of A has a cluster point belonging to A.

We did not show that any inÞnite subset of A has a cluster point. The
next example illustrates this.

Example 120 Let A = (a, b) with b−a > 1.DeÞne B = {a+ 1
n
, n ∈ N} ⊂ A.

The only cluster point of B is a,which doesn�t belong to A. Thus open sets
like (a, b) don�t have the Bolzano-Weierstrass property. Boundedness is also
important. Let A = R. Then N is an inÞnite subset of R which does not have
a cluster point.

9In Section 4.2, we will show the preceise meaning of the �absence of holes� property
known as completeness. For now, one should simply recognize that to rule out holes, we
need to draw out the implications of the completeness axiom. We do this through the
Bolzano-Weierstrass Theorem.
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We next present a necessary and sufficient condition for a subset of R to
have the Bolzano-Weierstrass property. This important result is known as
the Heine-Borel theorem.10

Theorem 121 (Heine-Borel) A ⊂ R has the Bolzano-Weierstrass prop-
erty iff A is closed and bounded.

Proof. (⇐) If A is Þnite, then A has the B-W property since inÞnite subsets
of a Þnite set is a false statement.11Let A be inÞnite and let B be an inÞnite
subset of A. Since B is bounded, it can be enclosed in a closed interval. Using
the same procedure as in Theorem 118 we construct a cluster point x∗ of B
and hence also of A. Since A is closed, x∗ ∈ A.
(⇒) �closedness�. Let x∗ be a cluster point of A.Then for each δ = 1

n
,

∃xn ∈ A such that |x∗ − xn| < 1
n
. The set {xn}n∈N is an inÞnite subset of A

which has the B-W property so that x∗ ∈ A.
�boundedness�. By contradiction. Suppose A is unbounded. Then for

any n, ∃xn ∈ A such that xn > n. Then {xn} is an iniÞnite subset of A
which doesn�t have a cluster point (since |xn+2− xn| > 1 for all n). But this
contradicts the B-W property.
We next use the Nested Intervals Property in R (Theorem 116) to estab-

lish the uncountability of the set of real numbers.

Theorem 122 [0, 1] is uncountable.

Proof. Suppose not. Then there exists a bijection b : N → [0, 1]. Then
all elements from [0, 1] can be numbered {x1, x2, ..., xn, ...}. Divide [0,1] into
three closed intervals: I11 = [0,

1
3
], I12 = [

1
3
, 2
3
], I13 = [

2
3
, 1]. This implies x1 is

not contained in at least one of these three intervals.12 WLOG, say it is I11 .
Divide I11 into three closed intervals: I

2
1 = [0,

1
9
], I22 = [

1
9
, 2
9
], I13 = [

2
9
, 1
3
]. This

implies ∃I2 such that x2 /∈ I2. Notice that I2 ⊂ I1 and that x1, x2 /∈ I2. In
this way we can construct a sequence {In}∞n=1 with the following properties:
(i) In is closed; (ii) I1 ⊃ I2 ⊃ ... ⊃ In ⊃ ... (i.e. nested intervals); and
(iii) xi /∈ In, ∀i = 1, ..., n. From (i) and (ii), Theorem 116 implies ∃x0 ∈
∩∞n=1In ⊂ [0, 1]. So we have found a real number x0 ∈ [0, 1] which is different
10Those of you experienced readers may associate Heine-Borel with compactness. Since

we wanted to keep this section simple, we�ll put off the treatment of compactness until we
work with more general metric spaces in Section 4.3.
11And from a false statement, the implication is true by the truth table.
12It is possible x1 is an element of 2 closed intervals (e.g. x1 =

1
3 ).
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from any xi, i = 1, 2, ... This contradicts our assumption that {x1, x2, ...} are
all real numbers from [0, 1].
While the above theorem establishes that [0, 1] is uncountable (i.e. and

hence really big in one sense), we next provide an example of an uncountable
subset of [0, 1] that is somehow small in another sense. This concrete example
is known as the Cantor set and is constructed in the following way (see Figure
3.4.8). First, divide [0, 1] into three �equal� parts: [0, 1

3
], (1

3
, 2
3
), [2

3
, 1].13

DeÞne F1 = [0,
1
3
] ∪ [2

3
, 1] or equivalently F1 = [0, 1]\A1 where A1 = (13 , 23).

That is, to construct F1 we take out the center of [0, 1]. Second, divide each
part of F1into three equal parts (giving us now 6 intervals). DeÞne F2 =
[0, 1

9
]∪[2

9
, 3
9
]∪ [6

9
, 7
9
]∪[8

9
, 1] or F2 = [0, 1]\A2 where A2 = (19 , 29)∪(39 , 69)∪(79 , 89).

That is, to construct F2 we take out the center of each of the two intervals
in F1. By this process of removing the open �middle third� intervals, we
construct Fn, ∀n ∈ N. The Cantor set is just the intersection of the sets Fn.
That is,

F =
\
n∈N

Fn

Ã
≡ [0, 1]\

[
n∈N

An

!
.

The Cantor set has the following properties:

1. F is nonempty (by Theorem 116).

2. F is closed because it is the intersection of closed intervals Fn (by (iii)
of Corollary ??, each Fn is closed because it is the union of Þnitely
many closed intervals).

3. F doesn�t contain any interval (a, b) with a < b (by construction).

4. F is uncountable (by the same argument used in the proof of Theorem
122).

There are two important things to note about the Cantor set. First, while
Theorem 108 says that any open set can be expressed as a countable union
of open intervals, properties (1)-(4) of the Cantor set shows that there is no
analogous result for closed sets. That is, a closed set may not in general be
written as a countable union of closed intervals. In this sense, closed sets

13The sense in which we mean equal parts is that while the sets are different (some are
closed, some open), they have the same distance between endpoints of 13 (more formally,
they have the same measure).
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can have a more complicated structure than open sets. Second, property (4)
above shows that even though Fn seem to be getting smaller and smaller in
one sense (i.e. that it has many holes in it) in Figure 3.4.9, F is uncountable
(and hence large in another sense).

3.5 Borel Sets

Since the intersection of a countable collection of open sets need not be open
(e.g. Example 107), the collection of all open sets in R is not a σ-algebra. By
Theorem 87, however, there exists a smallest σ-algebra containing all open
sets.

DeÞnition 123 The smallest σ-algebra generated by the collection of all
open sets in R, denoted B, is called the Borel σ−algebra in R.
Just as Example 83 showed in the case of algebras, even though B is the

smallest σ-algebra containing all open sets, it is bigger than just the collection
of open sets. For example, we have to add back in singleton sets like those
in Example 107 (i.e. the closed set {0} = ∩n∈N(− 1

n
, 1
n
)) in order to keep it

closed under countable intersection.14 In fact, almost any set that you can
conceive of is contained in the Borel σ-algebra: open sets, closed sets, half
open intervals (a, b], sets of the form ∩n∈NOn with On open (which we saw
is not necessarily open), sets of the form ∪n∈NFn with Fn closed (which we
saw is not necessarily closed), and more. On the other hand, while Þnding
a subset of R which is not Borel requires a rather sophisticated construction
(see p.??? of Jain and Gupta (1986)), the size of the collection of non-Borel
sets is much bigger than the size of B. Loosely speaking, B is as thin in P(R)
as N is in R (as we will see in Chapter 5).

Exercise 3.5.1 Prove that the following sets in R belong to B: (i) any closed
set; (ii) (a, b].

Borel sets can be generated by even smaller collections than all open sets
as the next theorem shows.
14Recall in Example 83, for underlying set X = {a, b, c}, we showed that while C4 =

{∅, {a},X} was not an algebra (just as the collection of all open sets is not an algebra), we
can create an algebra generated by {a} (whose analogue is the Borel σ-algebra) which is
just C2 = {∅, {a}, {b, c},X} ⊂ P(X) and is �bigger� in the sense of C4 ⊂ C2 (where {b, c}
plays the anologue of the other sets we have to add in).
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Theorem 124 The collection of all open rays {(a,∞) : a ∈ R} generates B.

Proof. It is sufficient to show that any open set A can be constructed in
terms of open rays. By Theorem 108, we know that A = ∪∞n=1In where In are
disjoint open intervals. But (a, b) = (a,∞)\ £∩∞n=1 ¡b− 1

n
,∞¢¤ with a < b.

Exercise 3.5.2 Using the same idea, show that B can be generated by the
collection of all closed intervals {[a, b] : a, b ∈ R, a < b}.
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Figures for Chapter 3
Figure 3.3.1: ub, lb, sup, inf

Figure 3.4.1: Open and Half-open unit intervals
Figure 3.4.2: Example where Countable Intersection of Open Intervals is

not Open
Figure 3.4.3a&b:Open Sets as a Countable Union of Disjoint Intervals

Figure 3.4.4: Examples of Cluster points
Figure 3.4.5: Examples of Nested Cells without a Common Point

Figure 3.4.6: Nested Cells Property
Figure 3.4.7: Example of a Common Point in Nested Cells

Figure 3.4.8 Cantor Set
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3.6 Bibilography for Chapter 3

Sections 3.1 to 3.3 are based on Bartle (Sec 4 -6) and Royden (Ch 2., Sec 1
and 2).
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3.7 End of Chapter Problems.

1. Let D be non-empty and let f : D → R have bounded range. If D0 is
a non-empty subset of D, prove that

inf{f(x) : x ∈ D} ≤ inf{f(x) : x ∈ D0} ≤ sup{f(x) : x ∈ D0} ≤ sup{f(x) : x ∈ D}

2. Let X and Y be non-empty sets and let f : X × Y → R have bounded
range in R. Let

f1(x) = sup{f(x, y) : y ∈ Y }, f2(y) = sup{f(x, y) : x ∈ X}

Establish the Principle of Iterated Suprema:

sup{f(x, y) : x ∈ X, y ∈ Y } = sup{f1(x) : x ∈ X} = sup{f2(y) : y ∈ Y }

(We sometimes express this as supx,y f(x, y) = supx supy f(x, y) =
supy supx f(x, y)).

3. Let f and f1be as in the preceding exercise and let

g2(y) = inf{f(x, y) : x ∈ X}.

Prove that

sup{g2(y) : y ∈ Y } ≤ inf{f1(x) : x ∈ X}

(We sometimes express this as supy infx f(x, y) ≤ infx supy f(x, y)).



Chapter 4

Metric Spaces

There are three basic theorems about continuous functions in the study of
calculus (upon which most of calculus depends) that will prove extremely
useful in your study of economics. They are the following:

1. The Intermediate Value Theorem. If f : [a, b]→ R is continuous and if
r ∈ R such that f(a) ≤ r ≤ f(b),then ∃c ∈ [a, b] such that f(c) = r.

2. The Extreme Value Theorem. If f : [a, b] → R is continuous, then
∃c ∈ [a, b] such that f(x) ≤ f(c), ∀x ∈ [a, b].

3. The Uniform Continuity Theorem. If f : [a, b]→ R is continuous, then
given ε > 0,∃δ > 0 such that |f(x1)− f(x2)| < ε, ∀x1, x2 ∈ [a, b] for
which |x1 − x2| < δ.

These theorems are used in a number of places. The intermediate value
theorem forms the basis for Þxed point problems such as the existence of equi-
librium. The extreme value theorem is useful since we often seek solutions to
problems where we maximize a continuous objective function over a compact
constraint set. The uniform continuity theorem is used to prove that every
continuous function is integrable, which is important for proving properties
of the value function in stochastic dynamic programming problems.
While we write these theorems in terms of real numbers, they can be

formulated in more general spaces than R. To this end, we will introduce (al-
literatively) the 6 C�s: convergence, closedness, completeness, compactness,
connectedness, and continuity. In this chapter, we formulate these properties
in terms of sequences. Each of the C properties uses some notion of distance.

65
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For instance, convergence requires the distance between a limit point and
elements in the sequence to eventually get smaller.Our goal in this chapter,
is to consider theorems like those above but for any arbitrary set X. To do
so however, requires X to be equipped with a distance function.
How will we proceed? First we will clarify what is meant by a distance

function on an arbitrary set X. Then using the notion of convergence, which
relies on distance, we will deÞne closed sets in X. Then the collection of all
closed (or by complementation open) sets is called a topology on a set X and
it is the main building block in real analysis. That means properties such as
continuity, compactness, and connectedness are deÞned directly or indirectly
in terms of closed or open sets and for this reason are called topological
properties. While there is an even more general way of deÞning a topology
on X that doesn�t use the notion of distance, we will wait until Chapter 7 to
discuss it.

DeÞnition 125 A metric space (X, d) is a nonempty set X of elements
(called points) together with a function d : X×X → R such that ∀x, y, z ∈ X :
(i) d(x, y) ≥ 0; (ii) d(x, y) = 0 iff x = y; (iii) d(x, y) = d(y, x); and (iv)
d(x, z) ≤ d(x, y) + d(y, z). The function d is called a metric.

Example 126 We give three examples. First, let X be a set (e.g. X =
{a, b, c, d}) and deÞne a metric d(x, y) = 0 for x = y, and d(x, y) = 1
for x 6= y. This is called the �discrete metric�. It is easy to check that
(X, d) is a metric space. Second, (R, | · |), where d is simply the abso-
lute value function and property (iv) is simply a statement of the trian-
gle inequality. Thus, Chapter 3 should be seen as a special case of this
chapter. Third, let X be the set of all continuous functions on [a, b] and
d(f, g) = sup {|f(x)− g(x)|, x ∈ [a, b]} .In Chapter 6, we will see this as well
as other metrics are valid metric spaces.

It should be emphasized that a metric space is not just the set of pointsX
but the metric d as well. To see this, we introduce the notion of the cartesian
product of metric spaces. Let (X, dx) and (Y, dy) be two metric spaces, then
we can construct a metric d onX×Y from the metrics dx and dy. In fact, there
are many metrics we can construct: d2(x, y) =

q
(dx(x1, y1))

2 + (dy(x2, y2))
2

and d∞(x, y) = sup {dx(x1, y1), dy(x2, y2)} .

Exercise 4.0.1 Show that d2 and d∞ are metrics in X × Y.
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Next, metrics provide us with the ability to measure the distance between
two sets (if one of the sets is a singleton, then we can measure the distance
of a point from a set).

DeÞnition 127 Let A ⊂ X and B ⊂ X. The distance between sets A
and B is d(A,B) = inf{d(x, y), x ∈ A, y ∈ B}.

We note that any subset of a metric space is a metric space itself.

DeÞnition 128 If (X, d) is a metric space and H ⊂ X, then (H, d|rH) is
also a metric space called the subspace of (X, d).1

Example 129 ([0, 1], | · |) is a metric space which is a subspace of (R, | · |).

In a metric space, we can extend the notion of open intervals in DeÞnition
(104).

DeÞnition 130 For x ∈ X, we call the set Bδ(x) = {y ∈ X : d(x, y) < δ}
an open ball with center x and radius δ. In this case, G is open if
∀x ∈ G, Bδ(x) ⊂ G.2

Don�t assume that an open ball is an open set. We still don�t know what
an open set is. We will prove this in the next section. Also note that a ball
is deÞned relative to the space X, so that if for example X = N, then a ball
of size δ = 1.5 around 5 is just {4, 5, 6}. The next example shows that balls
don�t need to be �round�. Their shape depends on their metric.

Example 131 In R2, Figure 4.1 illustrates a ball with metric d1(x, y) =
|x1 − y1|+|x2 − y2|, one with a Euclidean metric d2(x, y) =

p
(x1 − y1)2 + (x2 − y2)2,

and one with a sup metric d∞(x, y) = sup {|x1 − y1|, |x2 − y2|} .

Before proceeding, we brießy mention some of the important results that
you will see in this chapter. Here we extend the Heine Borel Theorem 121
of Chapter 3 to provide necessary and sufficient conditions for compactness
in general metric spaces in Theorem 198. We also introduce the notion of a
Banach space (a complete normed vector space) and for the Þrst time give
an example of an inÞnite dimensional Banach space. In many theorems that

1Note that we restrict the metric function to the set H using DeÞnition 56.
2Don�t assume that an open ball is an open set. We will prove this in Section X.
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follow, the dimensionality of a Banach space plays a crucial role. Another
important set of results pertain to the properties of a continuous function on
a connected domain (a generalization of the Intermediate Value Theorem is
given in Theorem 254) as well as a continuous function on a compact domain
(a generalization of the Extreme Value Theorem is given in Theorem 261 and
the Uniform Continuity Theorem in general metric spaces is given in The-
orem ??). Since many applications in economics result in correspondences,
we spend considerable time on upper and lower hemicontinuous correspon-
dences. Probably one of the most important theorems in economics is Berge�s
Theorem of the Maximum 295. The chapter concludes with a set of Þxed
point theorems that are useful in proving the existence of general equilibrium
or existence of a solution to a dynamic programming problem.

4.1 Convergence

In this section we will build all the topological properties of a metric space
in terms of convergent sequences (as an alternative to building upon open
sets). In many cases, the sequence version (of deÞnitions and theorems) is
more convenient, easier to verify, and/or easier to picture.

DeÞnition 132 If X is any set, a Þnite sequence (or ordered N -tuple)
in X is a function f : ΨN → X denoted < xn >

N
n=1. An inÞnite sequence

in X is a function f : N→ X denoted < xn >
∞
n=1(or < xn > for short).

When there is no misunderstanding, we assume all sequences are inÞ-
nite unless otherwise noted. We use the < xn > notation to reinforce the
difference from {xn|n ∈ N} since order matters for a sequence.
Example 133 There are many ways of deÞning sequences. Consider the
sequence of even numbers < 2, 4, 6, ... > . One way to list it is < 2n >n∈N.
Another way this is to specify an initial value x1 and a rule for obtaining
xn+1from xn. In the above case x1 = 2 and xn+1 = xn + 2, n ∈ N.
It is possible that while a sequence doesn�t have some desired properties,

but a subset of the sequence has the desired properties.

DeÞnition 134 A mapping g : N→ N is monotone if (n > m) implies
(g(n)) > (g(m)). If f : N→X is an (inÞnite) sequence, then h is an (inÞnite)
subsequence of f if there is a monotone mapping g:N→ N such that h =
f ◦ g, denoted < xg(n) >.
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Example 135 Consider the sequence f : N→{−1, 1} given by < (−1)n >n∈N
. If g(n) = 2n for n ∈ N (i.e. the even indices), then the subsequence h = f◦g
is simply < 1, 1, ... > while if g(n) = 2n− 1 (i.e. the odd indices), then the
subsequence is < −1,−1, ... >. See Figure 4.1.1.
DeÞnition 136 A sequence < xn > from a metric space (X, d) converges
to the point x ∈ X (or has x as a limit), if given any δ > 0,∃N (which
may depend on δ) such that d(x, xn) < δ, ∀n ≥ N(δ). In geometric terms,
this says that < xn > converges to x if every ball around x contains all but
a Þnite number of terms of the sequence. We write x = limxi or xi → x
to mean that x is the limit of < xi >. If a sequence has no limit, we say it
diverges.

Example 137 To see an example of a limit, consider the sequence f :
N→ R given by < ( 1

n
) >n∈N . In this case the lim < ( 1

n
) >n∈N= 0. To

see why, notice that for any δ > 0, it is possible to Þnd an N(δ) such that
d(0, xn) = |xn| < δ, ∀n ≥ N(δ). For instance, if δ = 1, then N(1) = 2
(respects the strict inequality), if δ = 1

2
, then N

¡
1
2

¢
= 3, etc. In general, let

N(δ) = w
¡
1
δ

¢
+1 where w(x) denotes an operator which takes the whole part

of the real number x. Such natural numbers always exist by the Archimedean
Property (Theorem 99). See Figure 4.1.2.

Theorem 138 (Uniqueness of Limit Points) A sequence in (X, d) can
have at most one limit.

Proof. Suppose, to the contrary, x0 and x00 are limits of < xn > and x0 6=
x00. Let Bδ(x0)(= {x ∈ X : d(x, x0) < δ}) and Bδ(x00) be disjoint open balls
around x0 and x00, respectively.3 Furthermore, let N 0, N 00 ∈ N be such that
if n ≥ N 0 and n ≥ N 00, then xn ∈ Bδ(x0) and xn ∈ Bδ(x00),respectively. Let
k = max{N 0, N 00}. But then xk ∈ Bδ(x0) ∩Bδ(x00), a contradiction.
Lemma 139 If < xn > in (X, d) converges to x ∈ X, then any subsequence
< xg(n) > also converges to x.

Proof. By deÞnition 136, ∃N(δ) such that d(x, xn) < δ, ∀n ≥ N(δ). Let
< xg(n) > be a subsequence of < xn >. Since g(n) ≥ n,then g(n) ≥ N(gd)
in which case d(x, xg(n)) < δ.
The next deÞnition gives another notion of convergence to a point which

is the sequential version of DeÞnition 111.

3It is always possible to construct such disjoint balls. Just let δ = 1
4d(x

0, x00).
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DeÞnition 140 A sequence < xn > from a metric space (X, d) has a clus-
ter point x∗ ∈ X if given any δ > 0 and given any N,∃n ≥ N such that
d(x∗, xn) < δ. In geometric terms, this says that x∗ is a cluster point of
< xn > if each ball around x

∗ contains inÞnitely many terms of the sequence.

Thus if x = lim < xn >, then it is a cluster point.
4 However, if x∗ is a

cluster point, it need not be a limit. To see this, note that the key difference
between DeÞnitions 136 and 140 lie in what terms in the sequence qualify
as a limit or cluster point. If x is a limit point we know ∃N(δ) for which
d(x, xn) < δ for n ≥ N(δ). For a cluster point, given N, it is sufficient
to Þnd just one term in the sequence xn sufficiently far out that satisÞes
d(x∗, xn) < δ. But then just take n in deÞnition 140 as n = max{N(δ),
N}.To see this, consider the next example.

Example 141 Consider the sequence < (−1)n >n∈Nfrom Example 135. This
sequence has no limit point but two cluster points. To see why, notice that the
only candidate limit points are {−1, 1}. Consider x = 1. For all δ ∈ (0, 1),
d(1, xi) = |1 − xi| > δ for any odd index i = 2n − 1, n ∈ N. A similar
argument holds for x = −1. To see why x∗ = 1 satisÞes the deÞnition of a
cluster point, notice that for any N, there exists i = 2N + 1 (an odd index)
such that for any δ > 0, d(1, xi) < δ. For this particular sequence, there are
actually an inÞnite number of such indices. See Figure 4.1.1.

Example 141 provides a sequence which does not have a limit point (and
hence the assumption of Lemma 139 does not apply). However, it is easy
to see that there is a subsequence


(−1)g(n)®

n∈Nof odd indices that has a
limit point (which is one of the cluster points of the original sequence). The
following theorem applies to such cases.

Lemma 142 x∗ is a cluster point of < xn > iff there exists a subsequence
< xnk >⊂< xn > such that < xnk >→ x∗ as k →∞.

Proof. (⇒) If x∗ is a cluster point, then ∀ 1
k
> 0, ∃xnk such that d(x∗, xnk) <

1
k
for any N. (⇐) is trivial.
4One shouldn�t be confused between cluster points for a set and for a sequence. For

instance, singletons like {1} do not have cluster points, whereas the constant sequence
< 1, 1, 1, ... > does (which is 1).
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DeÞnition 143 Let (X, d) be a metric space and A ⊂ X. A is closed if any
convergent sequence of elements from A has its limit point in A.

Theorem 144 (Closed Sets Properties) (i) ∅ and X are closed. (ii) The
intersection of any collection of closed sets in X is closed. (iii) The union
of any Þnite collection of closed sets in X is closed.

Proof. (i) Trivial.
(ii) Let A = ∩i∈ΛAi where Ai ⊂ X is closed ∀i ∈ Λ, which is any index

set. Take any convergent sequence from A and show its limit point is in A
as well. That is, let < xn >⊂ A and < xn >→ x. Then < xn >⊂ Ai ∀i ∈ Λ
and because Ai is closed < xn >→ x and x ∈ Ai ∀i ∈ Λ implies x ∈ ∩i∈ΛAi.
(iii) Let A = ∪ni=1Ai where Ai ⊂ X is closed ∀i ∈ {1, ..., n}. Again, take

any convergent sequence from A and show its limit point is in A as well.
In particular, let < xn >⊂ A and < xn >→ x. There exists Aj containing
inÞnitely many elements of < xn > (i.e. Aj contains a subset < xnk > .By
lemma 139, < xnk >→ x and because < xnk >⊂ Aj and Aj is closed, then
x ∈ Ajimplies x ∈ A = ∪ni=1Ai.

Example 145 Property (iii) of Theorem 144 does not necessarily hold for
inÞnite union. Consider the following counterexample. Let Fn = [−1,− 1

n
] ∪

[ 1
n
, 1]. Then ∪∞n=1Fn = [−1, 0) ∪ (0, 1]. See Figure 4.1.3.

Closed sets can also be described in terms of cluster points.

Theorem 146 A subset of X is closed iff it contains all its cluster points.

Proof. 5(⇒) By contradiction. Let x be a cluster point of a closed set A
and let x /∈ A. Then x ∈ X\A. Because X\A is open, there exists an open
ball Bδx(x) such that Bδx(x) ⊂ X\A.Thus Bδx(x) is a neighborhood of x
having empty intersection with A.This contradicts the assumption that x is
a cluster point of A.
(⇐) Let x ∈ X\A. Then x is not a cluster point of A since A contains

all its cluster points by assumption. Then there exists an open ball Bδx(x)
such that A∩Bδx(x) = ∅. This implies Bδx(x) ⊂ X\A or that X\A is open,
in which case A is closed.

5From Munkres Theorem 6.6, p. 97.
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Exercise 4.1.1 Explain why a singleton set {x} is consistent with Theorem
146.

We now introduce another topological notion that permits us to charac-
terize closed sets in other terms.

DeÞnition 147 Given a set A ⊂ X, the union of all its points and all its
cluster points is called the closure of A, denoted A (i.e. A = A ∪A0 where
A0 is the set of all cluster points of A).

Notice that A is not a partition since A and A0 are not necessarily disjoint.
Take (iii) of Example 112 where A = {0} ∪ (1, 2), in which case A0 = [1, 2]
and A = {0} ∪ [1, 2].
As an exercise, prove the following theorems.

Theorem 148 Let A ⊂ X. x ∈ A iff any open ball around x has a non-
empty intersection with A.

Theorem 149 The closure of A is the intersection of all closed sets con-
taining A.

Theorem 150 A is closed iff A = A.

Exercise 4.1.2 Prove that A ⊂ A and (A ∪B) = A ∪ B. Give an example
to show that (A ∩B) = A ∩B may not hold.

Example 151 (i) A = {2, 3}.Then A = {2, 3}. (ii) A = N. Then A = N.
(iii) A = (0, 1]. Then A = [0, 1]. (iv) A = {x ∈ Q : x ∈ (0, 1)}. Then
A = [0, 1].

Intuitively, one would expect that a point x lies in the closure of A if there
is a sequence of points in A converging to x. This is not necessarily true in a
general topological space, but it is true in a metric space as the next lemma
shows.

Lemma 152 Let (X, d) be a metric space and A ⊂ X.Then x ∈ A iff it is a
limit point of a sequence < xn > of points from A (i.e. ∃ < xn >⊂ A such
that < xn >→ x).
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Proof. (⇒) Take any x ∈ A. By Theorem 148, ∀δ = 1
n
> 0, ∃xn ∈ A such

that xn ∈ B 1
n
(x). Hence this sequence < xn >→ x (a limit point). (⇐) If

< xn >→ x such that < xn >⊂ A, then in every open ball around x there
is xn (actually, inÞnitely many of them) inside this ball. Then by Theorem
148 x ∈ A.
Exercise 4.1.3 (i) Show that if A is closed and d(x,A) = 0,then x ∈ A.Does
(i) hold without assuming closedness of A? (ii) Show that if A is closed and
x0 /∈ A, then d(x0, A) > 0.
In the previous Example 151, we see that in some cases the closure of a

set is: the set itself (i); �brings� Þnitely many new points to the set (iii); or
brings uncountably many points (iv). This leads us to the notion of density.

DeÞnition 153 Given the metric space (X, d),a subset A ⊂ X is dense in
X if A = X.

Example 154 To see that Q is dense in R, we know that in any ball around
x ∈ R there is a rational number. Hence by Theorem 148 x is from Q.Thus
we have R ⊂Q. Obviously, R ⊃Q as well, so R =Q. A similar argument
establishes that the set of irrationals is dense in R.

Intuitively, if A is dense in X then for any x ∈ X, there exists a point in A
that is sufficiently close to (or approximates) x.From the previous example,
since Q is dense in R, any real number can be approximated by a rational
number which is countable. More importantly for applied economists, we
might take X to be the set of continuous functions and A the set of poly-
nomials with rational coefficients which is again countable. Then, provided
the set of such polynomials is dense in the set of all continuous functions,
working with polynomials will yield a good approximation to the continuous
function we are interested in.

DeÞnition 155 A metric space (X, d) is separable if it contains a dense
subset that is countable.

Example 156 (R, | · |) is separable since Q is a countable dense subset of
R.

So far in a general metric space we have dealt only with closed sets. Now
we can introduce open sets as follows.
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DeÞnition 157 A set A ⊂ X is open if its complement is closed.

Exercise 4.1.4 Show that an open ball is an open set.

Example 158 Let A = {(0, 1) × {2}} = {(x, y) : 0 < x < 1, y = 2} ⊂ R2
equipped with d2. A is not open since no matter how small δ is, there exist
y0 = 2 ± δ

2
such that (x, y0) ∈ Bδ((x, 2)) is not contained in A. See Figure

4.1.4.

We could have proven the properties of open sets as we did in Theorem
106, but we will not repeat it. Here we will simply mention a few concepts
that will be useful. The Þrst concept is that of a neighborhood.

DeÞnition 159 A neighborhood of x ∈ X is an open set containing x.

Sometimes it is more convenient to use the concept of a neighborhood of
x rather than an open ball around x,but you should realize that these two
concepts are equivalent since an open ball Bε(x) is a neighborhood of x and
conversely, if Vx is a neighborhood of x,then there is a Bε(x) ⊂ Vx. See Figure
4.1.5.
There is another way to describe closed sets which uses boundary points.

DeÞnition 160 A point x ∈ X is a boundary point of A if every open
ball around x contains points in A and in X\A (i.e.(Bδ(x) ∩A) ∩ (Bδ(x) ∩
(X\A)) 6= ∅) . A point x ∈ X is an interior point of A if ∃Bδ(x) ⊂ A.
See Figure 4.1.6.

Note that a boundary point need not be contained in the set. For example,
the boundary points of (0, 1] are 0 and 1.

Example 161 The set of boundary points of Q is R since in any open ball
around a rational number there are other rationals and irrationals by Theo-
rems 100 and 102.

The next theorem provides an alternative characterization of a closed set.

Theorem 162 A set A ⊂ X is closed iff it contains its boundary points.
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Proof. (⇒) Suppose A is closed and x is a boundary point. If x /∈ A,
then x ∈ X\A (which is open), contrary to x being a boundary point. (⇐)
Suppose A contains all its boundary points. If y /∈ A, then ∃Bδ(y) a proper
subset of X\A. Since this is true ∀y /∈ A, X\A is open so A is closed.
Unlike properties like closedness and openness, boundedness is deÞned

relative to the distance measure and hence is a metric property rather than
a topological property.

DeÞnition 163 Given (X, d), A ⊂ X is bounded if ∃M > 0 such that
d(x, y) ≤M , ∀x, y ∈ X.

Boundedness cannot be deÞned only in terms of open sets. It requires
the notion of distance. Thus it is not a topological property.

Theorem 164 A convergent sequence in the metric space (X, d) is bounded.

Proof. Taking δ = 1, we know by DeÞnition 136, ∃N(1) such that |xn − x| <
1, ∀n ≥ N(1).6 By the triangle inequality, we know |xn| = |xn − x+ x| ≤
|xn − x| + |x| < 1 + |x| ,∀n ≥ N(1). Since there are a Þnite number of
indices n < N(1), then we setM = sup{|x1|, |x2|, ..., |xN(1)−1|, |x|+1}. Hence,
|xn| ≤M, ∀n ∈ N, so that < xi > is bounded.

4.1.1 Convergence of functions

While we will focus on convergence of functions in Chapter 6, it will be
necessary for some results in the upcoming sections to introduce a form of
functional convergence. A sequence of functions is simply a sequence whose
elements fn(x) contain two variables, n and x, where n indicates the order in
the sequence and xis the variable of a function. For example, < fn(x) >=<
xn >=< x, x2, x3, ... > for x ∈ [0, 1].
What does it mean for a sequence of functions to be convergent? There

are basically two different answers to this question. If we work in a metric
space whose elements are functions themselves with a certain metric, then
convergence of functions is nothing other than convergence of elements (the
element being a function) with respect to the given metric. We will deal
with this type of convergence in Chapter 6 on function spaces. The second

6Since the sequence converges, we are free to choose any ε > 0. Here we simply choose
ε = 1.
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approach is to take any set X along with a metric space (Y, dY ) and let
fn : X → Y for all n. Fix x0 ∈ X. Then hfn(x0)i is a sequence of elements
(the element being a point) in Y. If this sequence is convergent, then it
converges to a certain point y0 (i.e. hfn(x0)i → y0 = f(x0). This leads to
the following deÞnition.

DeÞnition 165 Given any set X and a metric space (Y, dY ), let < fn > be a
sequence of functions from X to Y. The sequence < fn > is said to converge
pointwise to a function f : X → Y if for every x0 ∈ X, limn→∞ fn(x0) =
f(x0). We call f a pointwise limit of < fn > . In other words, < fn >
converges pointwise to f on X if ∀x0 ∈ X and ∀ε > 0, ∃N(x0, ε) such that
∀n > N(x0, ε) we have dY (fn(x0), f(x0)) < ε.

Notice that if x0 is Þxed, then < fn(x0) > is simply a sequence of elements
in the metric space (Y, dY ).

Example 166 Let fn : R→ R given by fn(x) =
x
n
and f : R→ R given

by f(x) = 0. Thus, this example is a simple generalization of Example 137.
Then < fn > converges pointwise to f since we can always Þnd a natural
number N(x, ε) = w

¡¯̄
x
ε

¯̄¢
+1 by the Archimedean Property. See Figure 4.1.7.

Example 167 Let fn : [0, 1]→ R given by fn(x) = xn and f : [0, 1]→ R
given by

f(x) =

½
0 0 ≤ x < 1
1 x = 1

.

It is clear that when x = 1, then fn(x) = 1
n = 1 = f(x) so that fn(1) → 1

trivially. To see that for x ∈ [0, 1), fn(x) → f(x) note that if we write x =
1
1+a

with a > 0 then we can use Bernoulli�s inequality that (1+a)n ≥ 1+na,
then 0 < xn =

¡
1
1+a

¢n ≤ 1
1+na

< 1
na
so that we can take N(x, ε) = w

¡
1
aε

¢
+1.

See Figure 4.1.8.

Notice that the rate of convergence N(x0, ε) can be very different for
each x0. In Example 166, the rate is very low for very large x (we say the
rate of convergence is smaller the larger is N). However, if we restict the
domain for fn, say fn : [0, 2]→ R, then the smallest possible rate for a given
ε is N(2, ε) = w

¡¯̄
x
ε

¯̄¢
+ 1. If it is possible, for a given ε, to Þnd the rate

independently of x,then we call this type of convergence uniform.
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DeÞnition 168 Given X and a metric space (Y, dY ), let < fn > be a se-
quence of functions from X to Y. The sequence < fn > is said to converge
uniformly to a function f : X → Y if ∀ε > 0, ∃N(ε) such that ∀n > N(ε)
we have dY (fn(x), f(x)) < ε, ∀x ∈ X.

It is apparent from the deÞnition that uniform convergence implies point-
wise convergence, but as Examples 166 and 167 show the converse does not
necessarily hold (i.e.the above two sequences of functions do not converge
uniformly but do converge pointwise). In the Þrst case, ∀ε > 0 and ∀n ∈ N,
∃x0 ∈ R such that x0 > ε

n
by the Archimedean property X so that x0

n
> ε.

Similarly, in the second example, ∀ε ∈ (0, 1) and ∀n ∈ N, we have 1 > ε 1n > 0.
Then ∃x0 ∈ (0, 1) such that 1 > x0 > ε 1n > 0 in which case xn0 > ε. On the
other hand, if we restrict the domain of the Þrst example to [−1, 1] (or for
that matter any bounded set) fn is uniformly convergent since for any ε we
can take N = 1

ε
+ 1.

4.2 Completeness

The completeness of a metric space is a very important property for problem
solving. For instance, to prove the existence of the solution of a problem,
we usually manage to Þnd the solution of an approximate problem. That
is, we construct a sequence of solutions that are getting closer and closer
to one another via the method of successive approximations. But for this
method to work, we need a guarantee that the limit point exists. If the space
is complete, then the limit of this sequence exists and is the solution of the
original problem. For this reason, we turn to establishing when a given space
is complete.

DeÞnition 169 A sequence < xn > from a metric space (X, d) is a Cauchy
sequence if given δ > 0,∃N(δ) such that d(xm, xn) < δ, ∀m,n ≥ N(δ).

Note that if < xn > is convergent, then there is a limit point x to which
elements of < xn >eventually approach. If < xn > is Cauchy, then elements
of < xn > eventually approach a point which may or may not exist. Hence all
Cauchy sequences can be divided into two different classes: those for which
∃x such that < xn >→ x (i.e. convergent Cauchy sequences); and those for
which @x such that < xn >→ x (i.e. nonconvergent Cauchy sequences).
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Example 170 Suppose we did not know that there existed a limit in example
137 where < ( 1

n
) >n∈Nin (R, |·|).We can however, establish that this sequence

of real numbers is a Cauchy sequence and hence has a limit. Let m,n ≥ N(δ)
and without loss of generality let m ≤ n. Then d(sn, sm) =

¯̄
1
m
− 1

n

¯̄
< 1

m
.

Hence a sufficient condition for this sequence to be Cauchy for any δ > 0 is
that N(ε) = w

¡
1
δ

¢
+ 1.

Example 171 Consider the metric space (X, d) with X = (0, 1] and d = |x|.
Then by Example170, we�ve established that < ( 1

n
) >n∈Nis a Cauchy sequence

that converges (in R ) to a limit 0 /∈ X.

We now list some results that are not so useful in and of themselves but
will be used repeatedly to prove important theorems in the next few sections.

Lemma 172 Given (X, d),if < xn > converges, then < xn > is a Cauchy
sequence.

Proof. Let x = lim < xn > . Then given δ > 0,∃N ¡ δ
2

¢
such that if

n ≥ N ¡ δ
2

¢
, then d(x, xn) <

δ
2
. Thus if n,m ≥ N ¡ δ

2

¢
, then

d(xm, xn) ≤ d(xm, x) + d(x, xn) < δ

2
+
δ

2
.

Lemma 173 If a subsequence < xg(n) > of a Cauchy sequence < xn >
converges to x, then < xn > also converges to x.

Exercise 4.2.1 Prove Lemma 173.

Lemma 174 A Cauchy sequence in (X, d) is bounded.

Exercise 4.2.2 Prove Lemma 174. It is similar to Lemma 164 in the pre-
ceding section.

The converse of Lemma 172 is not necessarily true. Those spaces for
which the converse of Lemma 172 is true are called complete.

DeÞnition 175 If (X, d) has the property that every Cauchy sequence con-
verges to some point in the metric space, then (X, d) is complete.
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Establishing a metric space is complete is a difficult task since we must
show that every Cauchy sequence converges. In fact, due to Lemma 173 we
can (somewhat) weaken this deÞnition, which gives us the following lemma.

Lemma 176 (X, d) is complete if every Cauchy Sequence has a convergent
subsequence.

Proof. It is sufficient to show that if < xn > is a Cauchy sequence that
has a subsequence < xg(n) > which converges to x, then < xn > converges
to x. Since < xn > is a Cauchy sequence, given δ > 0,we can choose N

¡
δ
2

¢
large enough such that d(xm, xn) <

δ
2
, ∀m,n ≥ N

¡
δ
2

¢
by DeÞnition 169.

Since < xg(n) > is a convergent subsequence, given δ > 0, we can choose
N
¡
δ
2

¢
large enough such that d(xg(n), x) < δ, ∀g(n) ≥ N

¡
δ
2

¢
by DeÞnition

136. Combining these two facts and using (iv) of DeÞnition 125, d(xn, x) ≤
d(xn, xg(n)) + d(xg(n), x) < δ.
Another useful fact is that if we know a space is complete, then we know

a closed subspace is complete.

Theorem 177 A closed subset of a complete metric space is complete.

Proof. Any Cauchy sequence in the closed subset is a Cauchy sequence in
the metric space. Since the metric space is complete, it is convergent. Since
the subset is closed, the limit also must be from this set.
Establishing that a metric space is not complete is an easier task since

we must only show that one Cauchy sequence does not converge to a point
in the space. Just take ((0, 1], | · |) in Example 171 since the limit of < ( 1

n
) >

is 0 which is not contained in (0, 1].

Example 178 Consider the sequence f : N→ R given by < (1+ 1
n
)n >n∈N .It

can be shown that this sequence is increasing and bounded above. Then by the
Monotone Convergence Theorem 324, which is proven in the End of Chapter
Exercises, this sequence converges in (R, | · |). The limit of this sequence
is called the Euler number e (e=2.71828...), which is irrational. But then
(Q, |·|) is not complete; the sequence < (1+ 1

n
)n >n∈N ⊂ Q is Cauchy (because

it is convergent in R ) but is not convergent in Q.

Example 179 While Q is not complete, N is complete because the only
Cauchy sequences in N are constant sequences (e.g. < 1, 1, 1, ... >), which
are also convergent.
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We next take up the important question of completeness of (R, | · |). This
takes some work.

Theorem 180 (Bolzano-Weierstrass for Sequences) A bounded sequence
in R has a convergent subsequence.

Proof. Let A =< xn > be bounded. If there are only a Þnite number
of distinct values in the sequence, then at least one of these values must
occur inÞnitely often. If we deÞne a subsequence < xg(n) > of < xn > by
selecting this element each time it appears we obtain a convergent (constant)
subsequence.
If the sequence < xn >contains inÞnitely many distict values, then A =<

xn > is inÞnite and bounded. By the Bolzano-Weirstrass Theorem 118 for
sets (which rested upon the Nested Cells Property, which in turn rested upon
the Completeness Axiom), there is a cluster point x∗ of A =< xn > . Then
by Theorem 142 there is a subsequence < xg(n) >→ x∗.

Theorem 181 (Cauchy Convergence Criterion) A sequence in R is con-
vergent iff it is a Cauchy sequence.

Proof. (⇒) is true in any metric space by Lemma 172.
(⇐) Let < xn > be a Cauchy sequence in R.Then it is bounded by Lemma

174 and by Theorem 180 there is a convergent subsequence < xnk >→ x.
Then by Lemma 173, the whole sequence < xn > converges to x.
Hence, since completeness requires that any Cauchy sequences converges,

we know from Theorem 181 that (R, | · |) is complete.

4.2.1 Completion of a metric space.

Every metric space can be made compete. The idea is a simple one. Let
(X, d) be a metric space that is not complete. Let CS[X] be the set of
all Cauchy sequences on the incomplete metric space and let < an >,<
bn >∈ CS[X]. DeÞne (as in DeÞnition 26) the equivalence relation �∼ � by
< xn >�< yn > iff limn→∞ d(xn, yn) = 0. This relation forms a partition of
CS[X] where in every equivalence class there are all sequences which have
the same limit. Let X∗ be the set of all equivalence classes of CS[X]. Then
X∗ with the metric bd([< an >], [< bn >]) = limn→∞ d(an, bn) is a complete
metric space.
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Example 182 Reconsider Example 171. The completion of ((0, 1), | · |) is
([0, 1], |·|). Notice that we added two Cauchy sequences < 1

n
> and < 1− 1

n
>.

Next we demonstrate the process of completion of a metric space (Q, | · |),
which we know by example 178 is not complete since

¡
1 + 1

n

¢n®
is a non-

convergent Cauchy sequence (in Q). Let CS(Q) be the set of all Cauchy
sequences. An equivalence relation, deÞned in 26, partitions CS(Q) into
classes like those shown in Figure 4.2.1: classes of convergent Cauchy se-
quences such as


1 + 1

n

®
and


1− 1

n

®
(which converges to the rational num-

ber 1) and classes of non-convergent (in Q) like
¡
1 + 1

n

¢n®
(which converges

to e which is not in Q). Loosely speaking, we can then assign the number
1 to the class of convergent Cauchy sequences and can assign e to the non-
convergent Cauchy sequence. How can we compare two metric spaces with
completely different objects (e.g. one containing classes of Cauchy sequences
and the other containing real numbers)?

DeÞnition 183 Let (X, dX) and (Y, dY ) be two metric spaces. Let f : X →
Y have the following property

dX(x, y) = dY (f(x), f(y)). (4.1)

A function f having this property is called an isometry.

By (4.1) it is clear that an isometry is always an injection. If f is also
a surjection, then it is a bijection and in this case we say that (X, dX) and
(Y, dY ) are isometric. Two isometric spaces might have completely different
objects, but due to (4.1) and the fact that f is a bijection, they are exact
replicas of one another. Their objects just have different names.

Getting back to our example, consider the spaces (R, | · |) and (CS(Q), bd).
Let f : R→ CS(Q) given by f(x) = {< xn >1, < xn >2, ...} where< xn >1→
x, < xn >

2→ x,etc. are Cauchy sequences of one class converging to x (e.g.
< xn >

1=

1 + 1

n

®
and < xn >

2=

1− 1

n

®
which converge to 1). f is a

surjection because (R, | · |) is complete. One can show that f is an isometry.
Thus, these two metric spaces are isometric. The above construction implies
the fact that for every real number x ∈ R there exists a sequence < xn > of
rational numbers converging to x (i.e. limxn = x where xn ∈ Q).
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4.3 Compactness

When we listed the three important theorems at the beginning of this chap-
ter, there was a common assumption; the domain of f was taken to be the
closed interval [a, b]. What properties of [a, b] guarantee the validity of these
theorems? What properties of the domain of f are necessary for the valid-
ity of comparable theorems in more general metric spaces? In more general
metric spaces, closed intervals may not even be deÞned. If we replaced the
closed interval above with a closed ball, would the results continue to hold?
As we will see later in the Chapter, they may not.
In Chapter 3 we showed (Theorem 121) that [a, b] has the Bolzano-

Weierstrass property such that any sequence of elements of [a, b] has a sub-
sequence that converges to a point in [a, b]. As we will see, this property can
also be deÞned for a subset A of a general metric space (X, d) to guarantee
the validity of the theorems we�re interested in. In fact, if we dealt with
metric spaces only, we could have deÞned compactness only in terms of sets
which satisfy the Bolzano-Weierstrass property. The more general approach
we take next, which can be applied in any topological space, uses a different
deÞnition which is seemingly unrelated to the Bolzano-Weierstrass property.

DeÞnition 184 A collection C = {Ai : i ∈ Λ, Ai ⊂ X} covers a metric
space (X, d) if X = ∪i∈ΛAi. C is called an open covering if its elements
Ai are open subsets of X.

DeÞnition 185 A metric space (X, d) is compact if every open covering C
of X contains a Þnite subcovering of X.7 A subset H of (X, d) is compact if
every open covering of H by open sets of X has a Þnite subcovering of H.

In order to apply this deÞnition to show that a set H is compact we must
examine every open covering of H and hence it is virtually impossible to use
it in determining compactness of a set. The exception is the case of a Þnite
subset H of a metric space X. For if every point xn ∈ H is in some open set
Ai ∈ C, then at most m carefully selected subsets of C will have the property
that their union contains H. Thus any Þnite subset H ⊂ X is compact.
On the other hand, to show that a set H is not compact, it is sufficient

to show only one open covering cannot be replaced by a Þnite subcollection
that also covers H.

7That is, if every open covering C of X contains a Þnite subcollection {Ai1 , Ai2 , ...., Aik}
with Aij ∈ C that also covers X.
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Example 186 Let (X, d) = (R,| · |) and H = {x ∈ R : x ≥ 0} = [0,∞). Let
C = {An : n ∈ N, An = (−1, n)} so that every An ⊂ R and H ⊂ {∪n∈NAn}.
If {An1 , An2 , ..., Ank} is a Þnite subcollection, let M = max{n1, n2, ..., nk} so
Anj ⊂ AM and hence AM = ∪kj=1Anj . However, since An is open, M /∈ AM
and hence the real number M > 0 does not belong to a Þnite open subcovering
of H. Thus we have provided one particular covering of H by open sets
(−1, n) which cannot be replaced by a Þnite subcollection that also covers
H. This was sufficient to show that H is not compact. This example shows
that boundedness of a set is a likely necessary condition for compactness.8See
Figure 4.3.1.

Lemma 187 Let H ⊂ X. If H is compact, then H is bounded.

Proof. Let x0 ∈ H.Let Am = {x ∈ X : d(x0, x) < m}. Here we construct an
increasing nested sequence of open sets Am whose countable union contains
H.That is, H ⊂ ∪∞m=1Am = X and A1 ⊂ A2 ⊂ ... ⊂ Am ⊂ ... It follows
from the deÞnition of compactness that there is a Þnite numberM such that
A1 ⊂ A2 ⊂ ... ⊂ AM covers H. Then H ⊂ AM and hence bounded.

Example 188 H = [0, 1) cannot be covered by a Þnite subcollection of sets
An =

¡−1, 1− 1
n

¢
for n ∈ N. It is simple to see that H ⊂ {∪n∈NAn} and each

An ⊂ R. However, if {An1, An2, ..., Ank} is a Þnite subcollection and we let
M = sup{n1, n2, ..., nk},then Anj ⊂ AM and hence AM = ∪kj=1Anj . However,
since An is open, 1− 1

M
/∈ AM and hence the real number 1− 1

M
∈ H does not

belong to a Þnite open subcovering of H. This example shows that closedness
of a set is a likely necessary condition for compactness.9Figure 4.3.2.

Lemma 189 Let H ⊂ X. If H is compact, then H is closed.

Proof. H is closed ⇔ X\H is open. Let x ∈ X\H and construct an
increasing nested sequence of open sets Ak around but not including x with
the property that their countable union is H\{x}. That is, Ak = {y ∈ X :
d(x, y) > 1

k
, k ∈ N} in X. Then {H\{x}} = ∪k∈NAk.Since x /∈ H, each

element of H is in some set Akby an application of Corollary 100 so that H ⊂
8Unboundedness in this example was really just an application of the Archimedean

Theorem 99.
9Lack of closedness in this example was really just an application of the Corollary to

the Archimedean Theorem 100.
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∪k∈NAk.SinceH is compact, it follows from the deÞnition of compactness that
there is a Þnite K ∈ N such that H ⊂ ∪Kk=1Ak = AK .In that case, there is
an open ball around x such that B 1

K+1
(x) ⊂ X\H with B 1

K+1
(x) ∩ H = ∅.

Since x was arbitrary, each point in the complement of H is contained in an
open ball in X\H. Thus X\H is open in which case H is closed. See Figure
4.3.3.

Theorem 190 A closed subset of a compact set is compact.

Proof. Let X be compact and H ⊂ X be closed. Let C = {Ai} be an
open covering of H. Then G = {Ai}∪ (X\H) is an open covering of X since
X\H is open (because H is closed). Since X is compact, there exists a Þnite
subcollection F of G covering X.Since F also covers H, then F\{X\H} also
covers H and is a subcollection of C. Then H is compact.
Lemmas 187 and 189 provide necessary conditions for a set to be compact.

But we would like to have sufficient conditions that guarantee compactness
of a set. To that end, Theorem 190 is useful but has limited applicability.
The original space has to be compact in order to be able to use it. Are
the necessary conditions of Lemmas 187 and 189 in fact sufficient? Not
necessarily, as the next example shows.

Example 191 Consider the metric space (R, d0) with d0(x, y) = min{|x −
y|, 1}.In this case, R is bounded since |x− y| ≤ 1, ∀x, y ∈ R. We also know
that R is closed. It is clear, however, that R is not compact in (R, d0) since
a collection A = {(−n, n), n ∈ N} covers R but it doesn�t contain a Þnite
subcollection that also covers R.

Exercise 4.3.1 Show that d0 is a metric on R.

The space (R, | · |) provides a clue as to a set of sufficient conditions to
establish compactness. Since Lemmas 187 and 189 apply to any metric space,
we know compactness implies boundedness and completeness. But in (R, | ·
|), boundedness and completeness is equivalent to the Bolzano-Weierstrass
property by Theorem 121 (which we attributed to Heine-Borel). Thus, isn�t
the Bolzano-Weierstrass property sufficient for compactness? In (R, |·|),this is
true and we now show that the Bolzano-Weierstrass property is also sufficient
in any metric space. Before we do this, we begin by formulating compactness
in terms of sequences (consistent with the approach we are taking in this
chapter).
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DeÞnition 192 A subset H of a metric space X is sequentially compact
if every sequence in H has a subsequence that converges to a point in H.

Next we turn to establishing that the Bolzano-Weierstrass property, se-
quential compactness, and compactness are equivalent in any metric space.

Theorem 193 Let (X, d) be a metric space. Let H ⊂ X. The following are
equivalent: (i) H is compact; (ii) Every inÞnite subset of H has a cluster
point; (iii) Every sequence in H has a convergent subsequence.

Proof. (Sketch) (i ⇒ ii) It is sufficient to prove the contrapositive that if
A ⊂ H has no cluster point, then A must be Þnite. If A has no cluster
point, then A contains all its cluster points (because the set of cluster points
is empty and every set contains the empty set.). Therefore A is closed.
Since A is a closed subset of a compact space H, it is compact. For each
x ∈ A,∃ε > 0 such that Bε(x) ∩ {A\{x}} = ∅ since x is not a cluster point
of A by DeÞnition 140. Thus, the collection {Bε(x), x ∈ A} forms an open
covering of H. Since H is compact, it is covered by Þnitely many Bε(x).
Since each Bε(x) contains only one point of H, H is Þnite.
(ii ⇒ iii)Given < si >, consider the set S = {si ∈ H : i ∈ N}. If S

is Þnite, then s∗ = si for inÞnitely many values of i in which case < si >
has a subsequence that is constant (and hence converges automatically). If
S is inÞnite, then by (ii) it has a cluster point s∗. Since s∗ is a cluster point,
we know by DeÞnition 140 that ∀ε = 1

n
there exist xin ∈ B 1

n
(s∗) such that

sin 6= s∗. This allows us to construct a subsequence < si1, si2, ... > which
converges to s∗.10

(iii ⇒ i) First, we show that ∀ε > 0, ∃ a Þnite subcovering of H (by
ε-balls). Once again, it is sufficient to prove the contrapositive: If for some
ε > 0, H has no Þnite subcover, then H has no convergent subsequence.
If H cannot be covered with a Þnite number of balls, construct < si > as
follows: Choose any s ∈ H,say s1. Since Bε(s1) is not all of S (which would
contradict that S has no Þnite subcover), choose s2 /∈ Bε(s1). In general,
10More speciÞcally, deÞne the subsequence < sg(i) > approaching s∗ inductively as

follows: Choose i1such that si1 ∈ B1(s∗). Since s∗ is a cluster point of the set X, it is
also a cluster point of the set S2 = {si ∈ S : i ∈ N, i ≥ 2} obtained by deleting a Þnite
number of elements of S. Therefore, there is an element si2 of S2 which is an element
of B 1

2
(s∗) with i2 > i1. Continuing by induction, given in−1, choose in > in−1such that

sin ∈ B 1
n
(s∗).
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given < s1, s2, ..., sn >, choose xn+1 /∈ Bε(s1) ∪ Bε(s2) ∪ ... ∪ Bε(sn) since
these balls don�t cover S. By construction d(sn+1, si) ≥ ε for i = 1, ..., n.
Thus, < si > can have no convergent subsequence. The above procedure can
be used to construct a Þnite subcollection that covers S.11 .

When we put this theorem together with the result that every closed and
bounded set has the Bolzano-Weierstrass Property we get a simple criterion
for determining compactness of a subset in (R, | · |).In particular, all we have
to do is establish that a set in (R, | · |) is closed and bounded to know it is
compact.

Corollary 194 (Heine-Borel) Given (R, | · |), H ⊂ R is compact iff H is
closed and bounded.

Proof. Follows from Theorem 193 together with the Heine Borel Theorem
121.

Corollary 194 is the �more familiar� version of the Heine-Borel Theorem
and can easily be extended to Rn with the Euclidean metric.
Is there any relation between compactness and completeness? While it

may not appear so by their deÞnitions, the next result establishes that they
are in fact related.

Lemma 195 Let (X, d) be a metric space. If X is compact, then it is com-
plete.

Proof. From Theorem 193 every Cauchy sequence has a convergent subse-
quence. Completeness follows by Lemma 173.

The converse of Lemma 195 does not necessarily hold; that is, it doesn�t
follow that if X is complete, then it is compact as Example 191 shows.
We need a stronger condition than boundedness to prove an analogue of
the Heine-Borel Corollary 194 for general metric spaces. The condition was
actually already used in part (iii) of Theorem 193.

DeÞnition 196 A metric space (X, d) is totally bounded if ∀ε > 0, there
is a Þnite covering of X by ε−balls.
11See the Lebesgue Number Lemma, p. 179, of Munkres for this construction. For the

case of X = Rn, see Bartle Theorem23.3 p. 160.
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As we can see, the deÞnition of total boundedness is quite similar to
DeÞnition 185 of compactness. One might ask how to check if a metric
space is totally bounded. Though there is no satisfactory answer in a general
metric space, there are various criteria for speciÞc spaces. For instance, total
boundedness in Rn is equivalent with boundedness.
Total boundedness of a metric space implies boundedness, but the con-

verse is not true.

Example 197 While we established that (R, d0) with d0(x, y) = min{|x −
y|, 1} was bounded in Example 191, it is not totally bounded. This follows
because all of R cannot be covered with Þnitely many balls of radius, say 1

4
.

Next we establish an analogue of the Heine-Borel Theorem for general
metric spaces.

Theorem 198 A metric space (X, d) is compact iff it is complete and totally
bounded.

Proof. (⇒) Completeness follows by Lemma 195. Total boundedness follows
from DeÞnition 196 given X is compact.
(⇐) By Theorem 193 it suffices to show that if < xn > is a sequence in

X, then there exists a subsequence < xg(n) > that converges. Since X is
complete, it suffices to construct a subsequence that is Cauchy. Since X
is totally bounded, there exist Þnitely many ε = 1 balls that cover X. At
least one of these balls, say B1contains yn for inÞnitely many indices. Let
J1 ⊂ N denote the set of all such indices for which sn ∈ B1. Next cover X
by Þnitely many ε = 1

2
balls. Since J1 is inÞnite, at least one of these balls,

say B2 contains yn for inÞnitely many indices. Let J2 ⊂ J1 denote the set of
all such indices for which n ∈ J1 and yn ∈ B2. Using this construction, we
obtain a sequence < Jk > such that Jk ⊃ Jk+1. If i, j ≥ k,then ni,nj ∈ Jk
and yni, xnj are contained in a ball Bk of radius

1
k
. Hence < xni > is Cauchy.

See Figure 4.3.4.
So how does one test for total boundedness? ???EXAMPLE????

4.4 Connectedness

Connectedness of a space is very simple. A space is �disconnected� if it can
be broken up into separate globs, otherwise it is connected. More formally,
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DeÞnition 199 Let (X, d) be a metric space. S ⊂ X is disconnected
(or separated) if there exist a pair of open sets T,U such that S ∩ U and
S ∩T are disjoint, non-empty and have union S. S is connected if it is not
disconnected. See Figure 4.4.1.

Example 200 (a) Let (X, d) = (R, | · |) and H = N. Then N is disconnected
in R since we can take T = {x ∈ R: x > 3

2
} and U = {x ∈ R: x < 3

2
}.

Then T ∩ N 6= ∅ 6= U ∩ N, (T ∩ N) ∩ (U ∩N) = ∅, and N = T ∪ U . (b) Let
(X, d) = (R, | · |) and H = Q+. Then Q+ is disconnected in R since we can
take T = {x ∈ R: x > √2} and U = {x ∈ R: x < √2}.See Figure 4.4.2.

Theorem 201 I = [0, 1] is a connected subset of R.

Proof. Suppose, to the contrary, that there are two disjoint non-empty open
sets A,B whose union is I. Since A and B are open, they do not consist of
a single point. WLOG let a ∈ A and b ∈ B such that 0 < a < b < 1. Let
c = sup{x ∈ A : x < b}, which exists by Axiom 3. Since 0 < c < 1, c ∈ A∪B.
If c ∈ A, then c 6= b and since A is open, there is a point a1 ∈ A with c < a1
such that [c, a1] is contained in {x ∈ A : x < b}. But this contradicts the
deÞnition of c. A similar argument can be made if c ∈ B.
This result can easily be extended to any (open, closed, half open, etc.)

subset of R and to show R itself is connected. Furthermore, it is possi-
ble to construct cartesian products of connected sets which are themselves
connected.12

4.5 Normed Vector Spaces

Before moving onto the next topological concept (continuity), we give an
example of a speciÞc type of metric space called a normed vector space.
Normed vector spaces are by far the most important type of metric space
we will deal with in this book. A normed vector space has features that a
metric space doesn�t have in general; it possesses a certain algebraic structure.
Elements of a vector space (called vectors) can be added, subtracted, and
multiplied by a number (called a scalar). See Figure 4.5.1 for the relation
between metric spaces and vector spaces.

12See Munkres p.150.
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DeÞnition 202 A vector space (or linear space) is a set V of arbitrary
elements (called vectors) on which two binary operations are deÞned: (i)
closed under vector addition (if u, v ∈ V , then u + v ∈ V ) and (ii) closed
under scalar multiplication (if a ∈ R and v ∈ V, then av ∈ V ) which satisfy
the following axiom(s):

C1. u+ v = v + u, ∀u, v ∈ V

C2. (u+ v) + w = u+ (v + w), ∀u, v, w ∈ V
C3. ∃0 ∈ V 3 v + 0 = v = 0 + v, ∀v ∈ V

C4. For each v ∈ V, ∃(−v) ∈ V 3 v + (−v) = 0 = (−v) + v

C5. 1v = v, ∀v ∈ V

C6. a(bv) = (ab)v, ∀a, b ∈ R and ∀v ∈ V
C7. a(u+ v) = au+ av, ∀u, v ∈ V

C8. (a+ b)v = av + bv, ∀a, b ∈ R and ∀v ∈ V

Example 203 R is the simplest vector space. The elements are real numbers
where �+� and �·� were introduced in Axiom 1. R2 is also a vector space whose
basic elements are 2−tuples, say (x1, x2).We interpret (x1, x2) not as a point
in R2 with coordinates (x1, x2) but as a displacement from some location. For
instance, the vector (1, 2) means move one unit to the right and two units up
from your current location. See Figure 4.5.2a for an example of the vector
(1, 2) from two different initial locations. Often we take the inital location
to be the origin. Vector addition (see Figure 4.5.2b.) is then deÞned as
(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and scalar multiplication (see Figure
4.5.2c.) is deÞned as a(x1, x2) = (ax1, ax2). Let F(X,R) be the set of all real
valued functions f : X → R. Then we can deÞne (f + g)(x) = f(x) + g(x)
and (αf)(x) = αf(x). These two operations satisfy Axioms C1 − C8 and
hence F(X,R) is a vector space. We will consider such sets extensively in
Chapter 6.

DeÞnition 204 A vector subspace U ⊂ V is a subset of V which is a
vector space itself.
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Example 205 Let V = R2 = {(x, y) : x, y ∈ R} and U = {(x, y) : y = 2x,
where x, y ∈ R}.Then U is a vector subspace of V. Note that Z = {(x, y) :
y = 2x + 1, where x, y ∈ R} is a subset of V but it is not a vector subspace
of V since 0 /∈ Z.

The algebraic structure of a vector space by itself doesn�t allow us to
measure distance between elements and hence doesn�t allow us to deÞne
topological properties. This can be accomplished in a vector space through
a distance function called the norm.

DeÞnition 206 If V is a vector space, then a norm on V is a function
from V to R, denoted k · k : V → R, which satisÞes the following properties
∀u, v ∈ V and ∀a ∈ R : (i) kvk ≥ 0, (ii) kvk = 0 iff v = 0, (iii) kavk =
|a| kvk, and (iv) ku + vk ≤ kuk + kvk. A vector space in which a norm has
been deÞned is called a normed space.

Notice that the algebraic operations vector addition and scalar multipli-
cation are used in deÞning a norm. Thus, a norm cannot be deÞned in a
general metric space which is not equipped with these operations. But a
vector space equipped with a norm can be seen as a metric space and a met-
ric space which has a linear structure is also a normed vector space. The
following theorem establishes this relationship.

Theorem 207 Let V be a vector space then
(i) If (V, d) is a metric space then (V, k.k) is a normed vector space with

the norm k.k :V → R deÞned kxk = d(x, 0), ∀x ∈ V
(ii) If (V, k.k) is a normed vector space then (V, ρ) is a metric space with

the metric ρ : V × V → R deÞned ρ(x, y) = kx− yk, ∀x, y ∈ V

Exercise 4.5.1 Prove Theorem 207.

Note that whenever a metric space has the additional algebraic structure
given in 202, we will use the norm rather than the metric and hence work in
normed vector spaces.

Exercise 4.5.2 RedeÞne convergence, open balls, and boundedness in terms
of normed vector spaces.

DeÞnition 208 A complete normed vector space is called a Banach space.



4.5. NORMED VECTOR SPACES 91

Some vector spaces are endowed with another operation, called an inner
(or dot) product that assigns a real number to each pair of vectors. The
inner product enables us to measure the �angle� between elements of a vector
space.13

DeÞnition 209 If V is a vector space, then an inner product is a function
< ·, · >: V ×V → R which satisÞes the following properties ∀u, v, w ∈ V and
∀a ∈ R : (i) < v, v >≥ 0, (ii) < v, v >= 0 iff v = 0, (iii) < u, v >=< v, u >,
(iv) < u, (v + w) >=< u, v > + < u,w >, (v) < (au), v >= a < u, v >=<
u, (av) >. A vector space in which an inner product has been deÞned is called
an inner product space.

The inner product can be used to deÞne a norm (in particular the Eu-
clidean measure of distance) in the following way.

Theorem 210 Let V be an inner product space and deÞne kvk = √< v, v >.
Then k · k : V → R is a norm which satisÞes the Cauchy-Schwartz inequality
< u, v >≤ kukkvk.

Proof. (Sketch) Since < v, v >≥ 0 by part (i) of deÞnition 209, √< v, v >
exists and exceeds zero, establishing part (i) of deÞnition 206. Part (ii) also
follows from (ii) of deÞnition 209. By part (v) of deÞnition 209,

p
< (av), (av) > =p

a2 < v, v > = |a|√< v, v > = |a|kvk, establishing part (iii). To establish
Cauchy-Schwartz, let w = au − bv for a, b ∈ R and u, v∈V . By deÞnition
209, w ∈ V. Then

0 ≤ < w,w >= a2 < u, u > −2ab < u, v > +b2 < v, v >
= kvk2kuk2 − 2kvkkuk < u, v > +kuk2kvk2
= 2kukkvk (kukkvk− < u, v >)

where the second equality follows by letting a = kvk and b = kuk,which were
free parameters in the Þrst place.
To get some intuition for this result, notice that if θ is the angle between

vectors u and v, then the relationship between the inner product and norms
of the vectors is given by < u, v >= kvkkuk cos θ.The inequality then follows
since cos θ ∈ [−1, 1].See Figure 4.5.6 for this geometric interpretation of the
Cauchy Schwartz inequality.

13For instance, orthogonality is just < u, v >= 0.
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Exercise 4.5.3 Finish the proof of Theorem 210 (i.e. establish the triangle
inequality in part (iv) of deÞnition 206).

Whereas some norms (eg. the Euclidean norm) can be induced from an
inner product, other norms (eg sup norm) cannot be.

DeÞnition 211 A complete inner product space is called a Hilbert space.

Note that a Hilbert space is also a Banach space.

4.5.1 Convex sets

DeÞnition 212 We say that a linear combination of x1, ..., xn ∈ V is
{Pn

i=1 αixi, αi ∈ R, i = 1, ..., n}.We say that a convex combination of
x1, ..., xn ∈ V is {Pn

i=1 αixi, αi ≥ 0,
Pn

i=1 αi = 1, i = 1, ..., n}.

DeÞnition 213 A subset S of a vector space V is a convex set if for every
x, y ∈ S,the convex combination αx+ (1− α)y ∈ S, for 0 ≤ α ≤ 1. 14

Example 214 In R, any interval (e.g. (a, b)) is convex but (a, b) ∪ (c, d)
with b < c is not convex. See Figure 4.5.3 for convex sets in R2.

DeÞnition 215 The sum (difference) of two subsets S1 and S2 of a vector
space V is S1 ± S2 = {v ∈ V : v = x± y, x ∈ S1, y ∈ S2}.See Figure 4.5.4.

Theorem 216 (Properties of Convex Sets) If K1 and K2 are convex
sets, then the following sets are convex: (i) K1 ∩K2; (ii)λK1; (iii) K1±K2.

Proof. (iii) Let x, y ∈ K1 + K2 so that x = x1 + x2, x1 ∈ K1, x2 ∈ K2,
y = y1 + y2, y1 ∈ K1, y2 ∈ K2. Then αx + (1 − α)y = α (x1 + x2) + (1 −
α) (y1 + y2) = (αx1 + (1− α)y1)+(αx2 + (1− α)y2) ≡ z1+z2. Since K1 and
K2 are convex, z1 ∈ K1, z2 ∈ K2. Thus, x+ y ∈ K1 +K2.

Example 217 It is simple to show cases where K1 and K2 are convex sets,
but K1 ∪K2 is not convex. See Example 214 in R.

14For instance, for x1, ..., xn ∈ S, the convex combination is
nX
i=1

αixi,where
nX
i=1

αi = 1

and αi ≥ 0.
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As we will see later, convexity of a set is a desirable property. If a set S
is not convex, we may replace it with the smallest convex set containing S
called the convex hull.

DeÞnition 218 Let S ⊂ V. The convex hull of S is the set of all convex
combinations of elements from S, denoted co(S). That is, co(S) = {x ∈ V :
x =

Pn
i=1 αixi, xi ∈ S, αi ≥ 0,

Pn
i=1 αi = 1}.

Example 219 In Rn, consider two vectors A 6= B. Then co({A,B}) is just
a line segment with endpoints A, B. If A,B,C do not lie on the same line,
then co({A,B,C}) is the triangle A,B,C. See Figure 4.5.5.

Exercise 4.5.4 Show that if V is convex, then (i) co(V ) = V, and (ii)if
S ⊂ V , then co(S) ⊂ V is the smallest convex set containing S.

4.5.2 A Þnite dimensional vector space: Rn

The most familiar vector space is just Rn, with n ∈ N and n < ∞. Rn
is the collection of all ordered n-tuples (x1, x2, ..., xn) with xi ∈ R, i =
1, 2, ..., n. Vector addition is deÞned as (x1, x2, ..., xn)+(y1, y2, ..., yn) = (x1+
y1, x2+y2, ..., xn+yn) and scalar multiplication is deÞned as a(x1, x2, ..., xn) =
(ax1, ax2, ..., axn).

Exercise 4.5.5 Verify Rn is a vector space under these operations.

Example 220 Since (R, | · |) is a complete metric space with absolute value
metric, it is a Banach space with the norm kxk = |x|. Since (Rn, kxk) is
a complete metric space with Euclidean metric, it is a Banach space with
Euclidean norm kxk2 =

pPn
i=1(xi)

2. Since (Rn, kxk∞) is a complete metric
space with supremum metric, it is also a Banach space with sup norm kxk∞
= max{|x1|, ....|xn|}.

The next result provides a useful characterization of the relationship be-
tween kxk∞ and kxk.

Theorem 221 If x = (x1, ..., xn) ∈ Rn, then kxk∞ ≤ kxk2 ≤ √nkxk∞.
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Proof. Since (kxk2)2 =
Pn

i=1(xi)
2, it is clear that |xi| ≤ kxk2, ∀i. Similarly,

if M = max{|x1|, ....|xn|}, then (kxk2)2 ≤ nM2, so kxk ≤ √nM .
Example 220 shows that Rn can be endowed with two different norms.

One might ask if these two normed vector spaces are somehow related and
if so, in what sense? Distances between two points with respect to these
two norms are generally different. See Figure 4.5.7 In this case, these two
normed vector spaces are not isometric. On the other hand these two spaces
have identical topological properties like openness, closeness, compactness,
connectedness, and continuity. In this case, we say that these two normed
vector spaces are homeomorphic or topologically equivalent.
To show that two metric spaces (or normed vector spaces according to

Theorem 207) are topologically equivalent it suffices to show that the collec-
tions of open sets in both spaces are identical. This is because all topological
properties can be deÞned in terms of open sets. The fact that open sets
are identical follows Theorem 221. To see this, let A be open in Rn under
Euclidean norm. Then ∀x ∈ A, ∃ε > 0 such that {y ∈ Rn : ky − xk <
ε} ⊂ A. But from the Þrst part of the inequality in Theorem 221 we know
{y ∈ Rn : ky − xk∞ ≤ ky − xk < ε} ⊂ A. Hence A is open in Rn under the
sup norm. The inverse can be shown the same way using the second part
of the inequality. We will discuss this at further length after we introduce
continuity.

Example 222 In Rn, deÞne < (x1, x2, ..., xn), (y1, y2, ..., yn) >= x1y1+x2y2+
...+ xnyn. Rn with inner product deÞned this way is a Hilbert space.

Exercise 4.5.6 Verify the dot product in Example 222 deÞnes an inner prod-
uct on Rn.

Theorem 223 In the Euclidean space Rna sequence of vectors < xm > con-
verges to a vector x = (x1, ...., xn) if and only if each component < xim >
converges to xi , i = 1, ..., n.

Exercise 4.5.7 Prove Theorem 223.

We next introduce the simplest kind of convex set in Rn.

DeÞnition 224 A nondegenerate simplex in Rn is the set of all points

S = {x ∈ Rn : x = α0v0+α1v1+....+αnvn, α0 ≥ 0, ..., αn ≥ 0 and
nX
i=0

αi = 1}
(4.2)
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where v0, v1, ......, vn are vectors from Rn such that v1 − v0, v2 − v0, ....., vn −
v0 are lineary independent. Vectors v0, v1, ....., vn are called vertices. The
numbers α0, ..., αn are called barycentric coordinates (the weights of the
convex combinations with respect to n+ 1 Þxed vertices) of the point x.

Example 225 A nondegenerate simplex in R1 is a line segement, in R2
is a triangle, in R3 is a tetrahedron. In R3, for example, the simplex is
determined by 4 vertices, any 3 vertices determine a boundary face, any 2
vertices determine a boundary segment. See Figure 4.5???(4.8.2.???)

A simplex is just the convex hull of the set of all vertices V = {v0, v1, ...., vn}.
By the following theorem, any point of a convex hull of V can be expressed as
a convex combination of these vertices. Do not confuse the n+1 barycentric
coordinates (the αi) of x with the n cartesian coordinates of x.

Theorem 226 (Caratheodory) IfX ⊂ Rnand x ∈ co(X),then x =
n+1X
i=1

λixi

for some λi ≥ 0,
n+1X
i=1

λi = 1, xi ∈ X, ∀i.

Proof. (Sketch) Since x ∈ co(X),it can be written as a convex combination
of m points by Theorem ??. If m ≤ n + 1, we are done. If not, then the
generated vectors ·

x1
1

¸
,

·
x2
1

¸
, ...,

·
xm
1

¸
are linearly dependent, so a combination of them will be zero (i.e.

mX
i=1

µi

·
xi
1

¸
= 0

with µi not all zero. If λi are coefficients of xi, we can choose α to reduce the
number of vectors with nonzero coefficients below m by setting θi ≡ λi−αµi.

We know that in Rn each vector can be written as a linear combination

of n-linearly independent vectors (called a basis). That is, x =
nX
i=1

αixi,
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{x1, ..., xn} is a basis. There is no restriction on the coefficients αi. In The-
orem 226 there are additional assumptions put on αi (i.e.

nX
i=1

αi = 1 and

αi ≥ 0). Now adding one more variable (from n to n + 1) to the system
yields a unique solution for vectors belonging to the co(V ) and no solution
for other vectors.
The following two examples demonstrate the difference between cartesian

coordinates and barycentric coordinates in R2.

Example 227 Let V = {(0, 1), (1, 0), (1, 1)}. Say we want to express the
vector (2

3
, 2
3
) as a linear combination of (0, 1) and (1, 0), two basis vectors.

That is (2
3
, 2
3
) = 2

3
(1, 0) + 2

3
(0, 1), but this is not a convex combination since

2
3
+ 2

3
= 4

3
6= 1.But any point from co(S) can be uniquely expressed as the

convex combination of vectors from S. For instance,

(
2

3
,
2

3
) = α(1, 0) + β(0, 1) + (1− α− β)(1, 1)

where 0 ≤ α, β ≤ 1. Letting α = β = 1
3
, we have

(
2

3
,
2

3
) =

1

3
(1, 0) +

1

3
(0, 1) +

1

3
(1, 1)

On the other hand, a vector outside co(V ) (like (1
3
, 0)) cannot be expressed

as a convex combination of vectors from V. See Figure 4.5.8.

Example 228 Let the Þxed vertices be given by v0 = (0, 1) , v1 = (0, 3) , v2 =
(2, 0) and consider the point x1 = (1, 1) on the interior of the simplex. See
Figure 4.5????(4.8.3.) The barycentric coordinates of x1 with respect to
vertices v0, v1 , v2 are

¡
1
4
, 1
4
, 1
2

¢
since (1, 1) = 1

4
(0, 1) + 1

4
(0, 3) + 1

2
(2, 0) .

In the case of x2 = (0, 2) , the barycentric coordinates are
¡
1
2
, 1
2
, 0
¢
since

(0, 2) = 1
2
(0, 1)+ 1

2
(0, 3)+0 (0, 2) . In the case of x3 = (2, 0) , the barycentric

coordinates are (0, 0, 1) since (2, 0) = 0·(0, 1)+0·(0, 3)+1·(2, 0) . Notice that
x1 is an interior point of the simplex so that all its barycentric coordinates
are positive, that x2 is on the boundary so that one barycentric coordinate is
0, and x3 is a vertex so that it has 2 barycentric coordinates which are zeros.
In this section, we will always mean by αi barycentric coordinates of a point
inside the Þxed simplex (including boundary points).
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The next result, while purely combinatorial, will be used in the proof of
Brouwer�s Fixed Point Theorem 302. While this can be proven for Rn, here
we present it for R2. First we must introduce an indexing scheme for points
in the simplex as follows. Let Z be a set of labels in R2 given by {0, 1, 2}.
While the index function I : S → Z can obtain any value from Z for points x
inside the simplex, it must satisfy the following restrictions on the boundary:

I(x) =


0 or 1 on the line segment (v0, v1)

0 or 2 on the line segment (v0, v2)

1 or 2 on the line segment (v1, v2)
(4.3)

For example on the boundary (v0, v1), I (x) can�t obtain the value 2. Thus

I (X) = 0 or 1 on the line segment (v0, v1). See Figure 4.5???(4.8.6???). Note

that the (4.3) implies that I(v0) = 0, I(v1) = 1, and I(v2) = 2 at the vertices.

Lemma 229 (Sperner) Form the barycentric subdivision of a nondegener-
ate simplex. Label each vertex with an index I (x) = 0, 1, 2 that satisÞes the
restrictions (4.3)on the boundary. Then there is an odd number of cells (thus
at least 1 ) in the subdivision that have vertices with the complete set of labels
0, 1, 2.

Proof. By induction on n. We show just the Þrst step (i.e. for n = 1) to
get the idea. If n = 1,a nondegenerate simplex is a line segment and a face
is a point. To obey the restrictions (4.3), one end has label 0 the other has
label 1, and the rest is arbitrary. See Figure 4.5(4.8.11????). Next deÞne a
counting function F, where by F (a, b) we mean the number of elements in the
simplex of type (a, b) . For example, in Figure 4.5(4.8.11????), F (0, 0) = 2,
F (0, 1) = 3, F (1, 1) = 1, F (0) = 4, F (1) = 3. Permutations don�t matter
(i.e. (0, 1) and (1, 0) are the same type which is why F (0, 1) = 3 since we have
two occurences of (0, 1) and one of (1, 0). Consider the single points labeled
0. Two labels 0 occur in each cell of type (0, 0) , one label 0 occurs in each cell
of type (0, 1) . The sum 2F (0, 0)+F (0, 1) counts every interior 0 twice, since
every interior 0 is the point that is shared by two cells and the sum counts
every boundary 0 once. Therefore 2F (0, 0)+F (0, 1) = 2Fi (0)+Fb (0) where
Fi (0) is the number of i (for interior) 0

0s and Fb (0) is the number of b (for
boundary) 00s. Clearly Fb (0) = 1. Hence

F (0, 1) = 2[Fi (0)− F (0, 0)] + 1. (4.4)
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In Figure 4.5(4.8.9????) these numbers are F (0, 1) = 3, Fi (0) = 3, F (0, 0) =
2. In 1 dimension the number of cells having vertices with the complete set of
labels 0, 1 is F (0, 1) and from (4.4) we see that it is always an odd number.

Example 230 The values of counting functions F for the simplex in Figure
4.5(4.8.9????) are:

F (0) = 7, F (0, 0) = 4, F (1, 1) = 8, F (0, 0, 0) = 0

F (1) = 9, F (0, 1) = 16, F (1, 2) = 8, F (0, 0, 1) = 5

F (2) = 5, F (0, 2) = 8, F (2, 2) = 1, F (0, 0, 2) = 2

F (0, 1, 1) = 6, F (0, 2, 2) = 1, F (1, 1, 1) = 2, F (2, 2, 2) = 0

F (0, 1, 2) = 7, F (1, 1, 1) = 2, F (1, 2, 2) = 0

4.5.3 Series

The fact that a normed vector space is the synthesis of two structures -
topological and algebraic - enables us to introduce the notion of an inÞnite
sum (i.e. a sum containing inÞnitely many terms). These objects are called
series. As we will see in the subsection on !p spaces, norms will be deÞned
in terms of functions of inÞnite sums so understanding when they converge
or diverge is critical.
Let (V, k·k) be a normed vector space and let < xn > be a sequence in V.

We can deÞne a new sequence < yn > by yn =
nX
i=1

xi. The sequence < yn > is

called the sequence of partial sums of < xn > . Since X is also a metric space,
we can ask if < yn > is convergent (i.e. if there exists an element y ∈ X such
that < yn >→ y or equivalently kyn − ykX → 0. If such an element exists

we say that the series
∞X
i=1

xi is convergent and write y =
∞X
i=1

xi. If < yn > is

not convergent, we say that
∞X
i=1

xi is divergent.

Example 231 Consider (R, | · |) and let < xn >=

1
2n

®
, which is just a

geometric sequence with quotient 1
2
. The sequence of partial sums is y1 =

1
2
,
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y2 =
1
2
+ 1
4
= 3

4
, y3 =

1
2
+ 1
4
+ 1
8
= 7

8
, ..., yn =

1
2
+ 1
4
+...+ 1

2n
= 1

2

³
1− 1

2n

1− 1
2

´
= 1− 1

2n
.

Since < yn >=

1− 1

2n

®→ 1, we write
∞X
i=1

1
2i
= 1.

Example 232 While we have already seen that < 1
n
> converges (to 0), the

harmonic series
P∞

i=1
1
n
diverges (i.e. is not bounded). To see this, note

∞X
n=1

1

n
= 1 +

1

2
+
1

3
+
1

4
+
1

5
+
1

6
+
1

7
+
1

8
+ ...

≥ 1 +
1

2
+
1

4
+
1

4
+
1

8
+
1

8
+
1

8
+
1

8
+ ...

= 1 +
1

2
+
1

2
+
1

2
+ ...

The right hand side is the sum of inÞnitely many halves which is not bounded.
Elements of a series can also be functions. We will deal with series of

functions in Chapter 6.

4.5.4 An inÞnite dimensional vector space: !p

The example in the above subsection is of a Þnite dimensional vector space;
that is, the Euclidean space Rn with either norm (there are at most n lineary
independent vectors in Rn ). Now we introduce an inÞnite dimensional vector
space. As you will see, results from Þnite dimensional vector spaces cannot
be generalized in inÞnite dimensional vector spaces.

DeÞnition 233 Let Rω be the set of all sequences in R. Let 1 ≤ p ≤ ∞
and let !p be the subset of Rω whose elements satisfy the

∞P
i=1

|xi|p <∞.15 The
!p-norm of a vector x ∈ !p is deÞned by

kxkp = (
∞X
i=1

|xi|p)
1
p for 1 ≤ p <∞

and !∞ is the subset of all bounded sequences equipped with the norm

kxk∞ = sup{|x1|, ...., |xn|, ...}.
15Recall, Rω = {f : N→ R} where ω = card(N).
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We note that there is a set of inÞnitely many linearly independent vectors
in !p,namely {ei =< xj >, i ∈ N where xj = 0 for i 6= j and xj = 1 for i = j}
which is called a basis.
Before proving that !p is a Banach space, we use the following exam-

ple to illustrate some differences between Þnite dimensional Euclidean space
Rn and inÞnite dimensional !2. In particular, convergence by components is
not sufficient for convergence in !2 (i.e. the result of Theorem 223 is not
necessarily true).

Example 234 Let K = {ei =< xj >, i ∈ N where xj = 0 for i 6= j and
xj = 1 for i = j}. That is,

e1 = < 1, 0, 0, 0, ... >
e2 = < 0, 1, 0, 0, ... >
e3 = < 0, 0, 1, 0, ... >
e4 = < 0, 0, 0, 1, ... >
. . . . .
. . . . .

↓ ↓ ↓ ↓
0 0 0 0

Observe that each component < xin > converges to 0 in (R , | · |) for each
i ∈ N . But the sequence < ei > doesn�t converge to 0 since kei − 0k2 = 1,
∀i ∈ N. In fact < ei > has no convergent subsequence since the distance
between any two elements ei and ej, i 6= j, is kei−ejk2 =

√
2. Thus according

to Theorem 193, K is not compact in !2. But notice that K is both bounded
and closed and these two properties are sufficient for compactness in Rn.
Notice that K is not totally bounded. For if ε = 1

2
, the only non-empty

subsets of K with diameter less than ε are the singleton sets with one point.
Accordingly, the inÞnite subset K cannot be covered by a Þnite number of
disjoint subsets each with diameter less than 1

2
.

Now we prove that the !p space is a complete normed vector space (and
hence that it is a Banach space for any p satisfying 1 ≤ p ≤ ∞) and that
!2 is a Hilbert space with the inner product deÞned by < x, y >=

∞P
i=1

xiyi.

First, we need to show that k·kp deÞnes a norm. On !p, 1 ≤ p ≤ ∞. The
important role in investigating !p plays another space !q whose exponent q
is associated with p by the relation 1

p
+ 1

q
= 1 where p, q are non-negative
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extended real numbers. Two such numbers are called (mutually) conjugate
numbers. If p = 1 the conjugate is q = ∞ since 1

1
+ 1

∞ = 1 + 0 = 1. Also
notice that q = p

p−1 > 1 for p > 1. If p = 2, then q = 2. It is straightforward
to show that k·kp satisÞes the Þrst three properties of a norm. The triangle
property is a tricky one. Before showing it we shall establish some important
inequalities.

Lemma 235 Let a, b > 0 and p, q ∈ (1,∞) with 1
p
+ 1
q
= 1. Then ab ≤ ap

p
+ bq

q
,

with equality if ap = bq.

Proof. Since the exponental function is convex, we have exp (λA+ (1− λ)B) ≤
λ expA + (1 − λ) expB, for any real numbers A and B. By substituting
A = p log a, λ = 1

p
, B = q log b, and 1− λ = 1

q
, we get the desired inequality.

See Figure 4.5.9.
The next result is the analogue of Cauchy-Schwartz in inÞnite dimensions.

Theorem 236 (H�older inequality) Let p, qd [1,∞] with 1
p
+ 1

q
= 1. If the

sequences hxni ∈ !p and hyni ∈ !q, then hxnyni ∈ !1 and
∞X
n=1

|xnyn| ≤ khxnikp khynikq
³
= kxkp kykq

´
(4.5)

where x = hxni and y = hyni
Proof. For p = 1, q =∞, we have

∞X
i=1

|xiyi| ≤
(
sup {yn, ndN} ·

∞X
n=1

|xn|
)
= khxnik1 khynik∞ .

Next, let p, qd (1,∞) . If hxni or hyni is a zero vector, we have equality in
(4.5). Now let hxni 6= 0, hyni 6= 0.16 Substituting xn = |hxN i|

kxkp , yn =
|hyN i|
kykq for

ab in lemma 235, we have
∞X
n=1

|hxni|
kxkp

· |hyni|kykq
≤ 1

p

∞X
n=1

µ |hxni|
kxpk

¶p
+
1

q

∞X
n=1

Ã
|hyni|
kykq

!q
≤ 1

p

1³
kxkp

´p · ³kxkp´p + 1q 1³
kykq

´q · ³kykq´q
≤ 1

p
+
1

q
= 1.

16Note this means that not all terms in the sequence equal 0 (i.e. there is at least one
term different from 0).
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By multiplying kxkp · kykq we get the result.
Note that if p = q = 2, Inequality (4.5) is called the Cauchy-Schwartz

inequality.
Now we can prove that the k·kp norm satisÞes the triangle inequality.

Theorem 237 (Minkowski) Let 1 ≤ p ≤ ∞, x = hxni , y = hyni ∈ !p.
Then

kx+ ykp ≤ kxkp + kykp . (4.6)

Proof. If p = 1 or p = ∞, the proof is trival. Let p ∈ (1,∞) . By
multiplying both sides of (4.6) by

³
kx+ ykp

´p−1
we get the equivalent in-

equality
³
kx+ ykp

´p
≤
³
kxkp + kykp

´³
kx+ ykp

´p−1
. A simple calculation

shows this is equivalent to
P∞

i=1 |xi| (|xi + yi|)p−1 +
P∞

i=1 |yi| (|xi + yi|)p−1 ≤
kxkp ·

³
kx+ ykp

´p−1
+ kykp ·

³
kx+ ykp

´p−1
. Due to symmetry of x, y, it now

suffices to show that

∞X
i=1

|xi| (|xi + yi|)p−1 ≤ kxkp ·
³
kx+ ykp

´p−1
. (4.7)

Let zi = (|xi + yi|)p−1 then kzkq = (
P∞

i=1 (zi)
q)

1
q =

³P
(|xi + yi|)(p−1)q

´ 1
q
=

(
P∞

i=1 |xi + yi|p)
p−1
p = kx+ ykp−1p where we used the fact that q (p− 1) = p

and 1
q
= p−1

p
. Now by Hýolder inequality (4.5), we have

P∞
i=1 |xi · zi| ≤

kxkp · kzkq which by plugging in zi yields
P∞

i=1 |xi| (|xi + yi|)p−1 ≤ kxkp ·³
kx+ ykp

´p−1
is just inequality (4.7).

Now that we showed that for 1 ≤ p ≤ ∞, !p with k·kp is a normed vector
space, we ask �Is it complete?� The answer is yes as the following theorem
shows.

Theorem 238 For 1 ≤ p ≤ ∞, the !p space is a complete normed vector
space (i.e. a Banach space).

Proof. First we show it for 1 ≤ p < ∞. Let hxmi be a Cauchy sequence
in !p, where xm =

D
ξ
(m)
i

E
(Note that hxmi is a sequence of sequences) such
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that
P∞

i=1

¯̄̄
ξ
(m)
i

¯̄̄p
< ∞ (m = 1, 2, ) . Since hxmi is Cauchy with respect

to k·kp , this means that for ε ∈ (0, 1), ∃ N such that

kxm − xnkp =

Ã ∞X
i=1

¯̄̄
ξ
(m)
i − ξ(n)i

¯̄̄p! 1
p

< ε,∀m,n ≥ N (4.8)

=⇒
¯̄̄
ξ
(m)
i − ξ(n)i

¯̄̄
< ε,∀m,n ≥ N, i = 1, 2.

This shows that for each Þxed i the sequence
D
ξ
(m)
i

E∞
m=1

( ith compement of

hxni ) is a Cauchy sequence in R. Since (R, | · |) is complete, it converges in
R. Let ξ(m)i → ξ∗i as m→∞ which generates a sequence x =< ξ∗1, ξ

∗
2, .... > .

We must show that x ∈ !p and xn → x with respect to the k·kp norm. From
(4.8) we have

Pk
i=1

¯̄̄
ξ
(m)
i − ξ(n)i

¯̄̄p
< εp for m,n ≥ N, k ∈ N. Letting n→∞

we obtain
Pk

i=1

¯̄̄
ξ
(m)
i − ξi

¯̄̄p
≤ εp,∀m ≥ N, k ∈ N and letting k →∞ gives

∞X
i=1

¯̄̄
ξ
(m)
i − ξ∗i

¯̄̄p
≤ εp ≤ ε,∀m ≥ N. (4.9)

This shows that xm − x =
D
ξ
(m)
i − ξ∗i

E
∈ !p . Since xm ∈ !p, it fol-

lows by the Minkowski Theorem 237 that kxkp = kxm + (x− xm)kp ≤
kxmkp + k(x− xm)kp for x ∈ !p. Furthermore, if p = ∞, from (4.9) we
obtain kxm − xkp < ε , ∀m ≥ N which means xm → x with respect to the
k·kp norm.
The proof works by taking a Cauchy sequence in !p (say << x1 >,<

x2 >, ... < xm >, .. >) and showing that a sequence of components (say the
Þrst one is < ξ11, ξ

2
1, ..., ξ

m
1 , ... >) is also Cauchy in R (converging to say ξ

∗
1).

Then we show the original sequence of sequences converges to the sequence
< ξ∗1, ξ

∗
2, ..., ξ

∗
m, ... > . .

The following theorem shows that !p spaces can be ordered with
respect to the set relation �⊂ �. That is, if a sequence belongs to !1, then it
belongs to !2, etc. For example, <

1
n
>/∈ !1, but < 1

n
>∈ !p for p > 1.

Theorem 239 If 1 < p < q < ∞, then !1 ⊂ !p ⊂ !q ⊂ !∞ and khxnikq ≤
khxnikp.
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Proof. Start with !p ⊂ !∞. Let x ∈ !p (i.e.
P∞

i=1 |xi|p <∞) so that < |xn| >
is bounded. Then sup {|xn| , n ∈ N} <∞ so that x ∈ !∞. We also have

∀j , |xj|p ≤
∞X
i=1

|xi|p ⇐⇒ |xj| ≤
Ã ∞X
i=1

|xi|p
! 1

p

.

Therefore sup {|xj| , j ∈ N} ≤ (
P∞

i=1 |xi|p)
1
p or kxk∞ ≤ kxkp .

Next we show !p ⊂ !q for p < q and 1 ≤ p, q <∞.³
kxkq

´q
=

∞X
i=1

|xi|q =
³
kxkp

´q ∞X
i=1

Ã
|xi|
kxkp

!q

≤
³
kxkp

´q ∞X
i=1

Ã
|xi|
kxkp

!p
=

³
kxkp

´q kxkpp
kxkpp

=
³
kxkp

´q
.

where the inequality follows since |xi|
kxkq ≤ 1 and q > p.Taking the q-root of

the above inequality gives kxkq ≤ kxkp . Now if x ∈ !p (i.e. kxkp <∞),then
kxkq <∞ and x ∈ !q.

Example 240 Note that the inclusion lp ⊂ lq for p < q is strict. To see

this, consider the sequence hxni =
D

1

n
1
p

E∞
n=1

. It is simpler to work with the

pth power of a norm to avoid using the pth root. Hence, take

µ°°° 1

n
1
p

°°°
p

¶p
=P∞

n=1

³
1

n
1
p

´p
=
P∞

i=1
1
n
which is inÞnitely large (we showed this in the exam-

ple of a harmonic series). Hence,
D

1

n
1
p

E∞
n=1

/∈ !p. However
D

1

n
1
p

E∞
n=1

∈ !q. To

see this,

µ°°° 1

n
1
p

°°°
q

¶q
=
P∞

n=1
1

n
q
p
where q

p
> 1, this series is bounded (this can

be shown by using the integral criterion - See Bartle).

The fundamental difference between !p with 1 ≤ p < ∞ and l∞ is the
behavior of their tails. While it�s easy to see that for 1 ≤ p ≤ ∞ if x ∈ !p
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then limn−→∞
P∞

i=n |xi|p = 0. It is not true in !∞. For instance the sequence
hxii = h1, 1, ....1, .....i ∈ !∞ but the norm of its tail is 1. This is the reason
why there are properties of !∞ that are different from those of !p, 1 ≤ p <∞.
One of these properties is separability (i.e. the existance of a dense countable
subset.)

Theorem 241 !p is separable for 1 ≤ p <∞.

Proof. Let {ei, idN} be a basis of unit vectors. Then the set of all linear
combinations H = {Pn

i=1 αiei, αidQ} is countable and dense in !p because if
x = (x1, x2, ......) ∈ !p, then the tail of x (given by)°°°°°x−

nX
i=1

xiei

°°°°°
p

=

Ã ∞X
i=n+1

|xi|p
! 1

p

n−→∞
→ 0.

Thus, x is approximated by an element of H.

Theorem 242 !∞ is not separable.

Proof. Let S be the set of all sequences containing only 0 and 1; that is S =
{0, 1}N . Clearly S ⊂ !∞ and if x = hxni , y = hyni are two distinct elements
of S, then kx− yk∞ = 1. Hence B 1

2
(x)∩B 1

2
(y) = ∅ for any x, y ∈ !∞, x 6= y.

Let A be a dense set in !∞. Then for ε = 1
2
and given x ∈ S ⊂ !∞, there

exists an element a ∈ A such that kx− ak∞ < 1
2
. Because S is uncountable

A must be uncountable, thus any dense set in !∞ must be uncountable.

4.6 Continuous Functions

Now we return to another important topological concept in mathematics that
is employed extensively in economics. Before deÞning continuity, we amend
DeÞnition 49 of a function in Section 5.2 in terms of general metric spaces.

DeÞnition 243 A function f from a metric space (X, dX) into a metric
space (Y, dY ) is a rule that associates to each x ∈ X a unique y ∈ Y .
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DeÞnition 244 Given metric spaces (X, dX) and (Y, dY ),the function f :
X → Y is (pointwise) continuous at x if, ∀ε > 0, ∃δ(ε, x) > 0 such that if
dX(x

0, x) < δ(ε, x), then dY (f(x), f(x0)) < ε. The function is continuous
if it is continuous at each x ∈ X. See Figure 4.6.1.

Example 245 Let (X, dX) = ((−∞, 0)∪ (0,∞), | · |), (Y, dY ) = (R, | · |), and
deÞne

f(x) =

½
1 if x > 0
−1 if x < 0

.

Then f : X → Y is continuous on (X, dX).See Figure 4.6.2.

Example 246 Let (X, dX) = (R, | · |), (Y, dY ) = (R, | · |), and deÞne f(x) =
bx, b ∈ R\{0}. Then f : X → Y is continuous on (X, dX) since we can
simply let δ(ε, x) = ε

|b| . Then, for any ε > 0, if |x0 − x| < δ(ε, x) we have

|bx0 − bx| = |b||x0 − x| < ε. Notice that in the case of linear functions, δ is
independent of x. Figure 4.6.3.

Example 247 Let (X, dX) = (R\{0}, | · |), (Y, dY ) = (R, | · |), and deÞne
f(x) = 1

x
. For any x ∈ X, then

|f(x0)− f(x)| =
¯̄̄̄
1

x0
− 1
x

¯̄̄̄
=
|x0 − x|
|xx0| .

We wish to Þnd a bound for the coefficient of |x0 − x| which is valid around
0. If |x0 − x| < 1

2
|x|, then 1

2
|x| < |x0| in which case

|f(x0)− f(x)| ≤ 2

|x|2 |x
0 − x|.

In this case, δ(ε, x) = inf{1
2
|x|, 1

2
ε|x|2}.Figure 4.6.4.

There is an equivalent way to deÞne pointwise continuity in terms of the
inverse image (DeÞnition 53) and in terms of sequences.

Theorem 248 Given metric spaces (X, dX) and (Y, dY ),the following state-
ments are equivalent: (i) function f : X → Y is continuous; (ii) if for each
open subset V of Y , the set f−1(V ) is an open subset of X; and (iii) if for
every convergent sequence xi → x in X,the sequence f(xi)→ f(x).
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Proof. (Sketch)(ii⇒i) Any ε-ball around f(x) is open so there is a δ-ball
around x inside f−1(Bε(f(x)). (iii)⇒(ii) If not, then there is an x ∈ f−1(V )
such that for any 1

n
neighborhood of it , we can Þnd a point xn such that

f(xn) /∈ V . But < xn > contradicts (iii). (i)⇒(iii) From (i) for xn close
enough to x, f(xn) will be as close to f(x) as we want, so that f(xn)→ f(x).

The previous two examples go against �conventional wisdom� that the
graph of a continuous function is not interupted and may raise the question
of the existence of a function that is not continuous. The following example
provides such a function.

Example 249 Let (X, dX) = (R, | · |), (Y, dY ) = (R, | · |), and deÞne17

f(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

.

Then f−1((−1
2
, 1
2
)) = {0}, the inverse image of an open set is closed, therefore

this function is not continuous in (X, d).See Figure 4.6.5.

Next we show that the composition of continuous functions preserves
continuity.

Theorem 250 Given metric spaces (X, dX), (Y, dY ),and (Z, dZ), and con-
tinuous functions f : X → Y and g : Y → Z, then h : X → Z given by
h = g ◦ f is continuous.

Proof. Let U ⊂ Z be open. Then g−1(U) is open in Y and f−1(g−1(U) is
open in X. But f−1(g−1(U) = (g ◦ f)−1.
It follows that certain simple operations with continuous functions pre-

serve continuity.

Theorem 251 Given a metric space (X, dX) and a normed vector space
(Y, dY ), and continuous functions f : X → Y and g : X → Y, then the
following are also continuous: (i) f ± g; (ii) f · g; (iii) f

g
; (iv) |f | .

Exercise 4.6.1 Prove Theorem 251.

17This is known as the �sgn� function.
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It should be emphasized that Theorem 250 does not say that if f is
continuous and U is open in X then the image f(U) = {f(x), x ∈ U} is open
in Y .

Example 252 Let (X, dX) = (R, | · |), (Y, dY ) = (R, | · |), and deÞne f(x) =
x2. Then f((−1, 1)) = [0, 1) is the image of an open set which is not open.
See Figure 4.6.7.

Therefore continuity does not preserve openness. It does not preserve
closedness either as the next example shows.

Example 253 Let (X, dX) = (R\{0}, | · |), (Y, dY ) = (R, | · |), and deÞne
f(x) = 1

x
. Then f([1,∞)) = (0, 1] is the image of a closed set which is not

closed. See Figure 4.6.8.

There are, however, important properties of a set which are preserved
under continuous mapping. The next subsections establish this.

4.6.1 Intermediate value theorem

Theorem 254 (Preservation of Connectedness) The image of a con-
nected space under a continuous function is connected.

Proof. Let f : X → Y be a continuous function on X and let X be
connected. We wish to prove that Z = f(X) is connected. Assume the
contrary. Then there exists open disjoint sets A and B such that Z =
(A ∩ Z) ∪ (B ∩ Z) and (A ∩ Z) , (B ∩ Z) is a separation of Z into two dis-
joint, non-empty sets in Z. Then f−1(A∩Z) = f−1(A)∩f−1(Z) = f−1(A)∩
X = f−1(A) and f−1(B ∩ Z) = f−1(B) are disjoint sets whose union is
X (= f−1(A ∩ Z) ∪ f−1(B ∩ Z)). They are open in X because f is continu-
ous and non-empty because f : X → f(X) is a surjection. Therefore f−1(A)
and f−1(B) form a separation of X which contradicts the assumption that
X is connected.
In the special case where the metric space (Y, dY ) = (R, | · |) then the

corollary of this theorem is the well-known Intermediate Value Theorem.

Corollary 255 (Intermediate Value Theorem) Let f : X → R be a
continuous function of a connected space X into R. If a, b ∈ X and if r ∈ Y
such that f(a) ≤ r ≤ f(b), then ∃c ∈ X such that f(c) = r. See Figure 4.6.9.
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Exercise 4.6.2 Prove Corollary 255.

Note that it is connectedess that is required for the Intermediate value
theorem and not compactness.

Example 256 Let (X, dX) = ([−2,−1] ∪ [1, 2], | · |), (Y, dY ) = (R, | · |), and
deÞne

f(x) =

½
1 if x ∈ [1, 2]
−1 if x ∈ [−2,−1] .

Then f : X → Y is continuous on the compact set X but for r = 0, there
doesn�t exist c ∈ X such that f(c) = 0.

A nice one dimensional example of how important the intermediate value
theorem is for economics, is the following Þxed point theorem.

Corollary 257 (One Dimensional Brouwer) Let f : [a, b] → [a, b] be a
continuous function. Then f has a Þxed point.

Proof. Let g : [a, b] → R be deÞned by g(x) = f(x) − x. Clearly g(a) =
f(a)− a ≥ 0 since f(a) ∈ [a, b] and g(b) = f(b)− b ≤ 0 for the same reason.
Since g(x) is a continuous function18 with g(b) ≤ 0 ≤ g(a), we know by
the Intermediate Value Theorem 255 that ∃x ∈ [a, b] such that g(x) = 0 or
equivalently that f(x) = x.
The proof is illustrated in Figure 4.6.10. For a more general version of

this proof, see Section 4.8.
The next series of examples shows how connectedness of R+ can be used

to construct a continuous �utility� function u(x) that represents a preference
relation %. Before establishing this, however, we need to deÞne continuity in
terms of relations.

DeÞnition 258 The preference relation % on X is continuous if for any
sequence of pairs < (xn, yn) >

∞
n=1with xn % yn ∀n, x = limn→∞ xn,and y =

limn→∞ yn, then x % y.
18To see g(x) is a continuous function, we must show ∀ε > 0 and x, y ∈ [a, b],∃δg > 0

such that if |x− y| < δg then |g(x)− g(y)| < ε. But
|g(x)− g(y)| = |(f(x)− f(y))− (x− y)| ≤ |f(x)− f(y)|+ |x− y|

by the triangle inequality. Continuity of f implies ∀ε > 0,∃δf > 0 such that |x− y| < δf
and |f(x)− f(y)| < ε. Thus, let if we let δg = min{δf , ε}/2, then |g(x)− g(y)| < ε.
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An equivalent way to state this notion of continuity is that ∀x ∈ X, the
upper contour set {y ∈ X : y % x} and the lower contour set {y ∈ X : x % y}
are both closed; that is, for any < yn >

∞
n=1 such that x % yn, ∀n and

y = lim yn,we have x % y (just let xn = x,∀n).
There are some preference relations that are not continuous as the fol-

lowing example shows.

Example 259 Lexicographic preferences (on X = R2+) are deÞned in
the following way: x % y if either �x1 > y1� or �x1 = y and x2 ≥ y2�. To see
they are not continuous, consider the sequence of bundles < xn = ( 1

n
, 0) >

and < yn = (0, 1) >. For every n we have xn Â yn. But limn→∞ yn = (0, 1) Â
(0, 0) = limn→∞ xn. That is, as long as the Þrst component of x is larger than
that of y, x is preferred to y even if y2 is much larger than x2. But as soon as
the Þrst components become equal, only the second components are relevant
so that the preference ranking is reversed at the limit points.

Now we establish that we can �construct� a continuous utility function.

Example 260 If the rational preference relation % on X is continuous, then
there is a continuous utility function u(x) that represents %. To see this, by
continuity of %, we know that the upper and lower contour sets are closed.
Then the sets A+ = {α ∈ R+ : αe % x} and A− = {α ∈ R+ : x % αe},where
e is the unit vector, are nonempty and closed. By completeness of %, R+ ⊂
(A+ ∪A−) . The nonemptiness and closedness of A+ and A−, along with the
fact that R+ is connected, imply A+ ∪ A− 6= ∅. Thus, ∃α such that αe ∼ x.
By monotonicity of %, α1e Â α2e whenever α1 > α2. Hence, there can be at
most one scalar satisfying αe ∼ x. This scalar is α(x),which we take as the
utility function.

4.6.2 Extreme value theorem

The next result is one of the most important ones for economists we will
come across in the book.

Theorem 261 (Preservation of Compactness) The image of a compact
set under a continuous function is compact.

Proof. Let f : X → Y be a continuous function on X and let X be
compact. Let G be an open covering of f(X) by sets open in Y . The
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collection {f−1(G), G ∈ G} is a collection of sets covering X. These sets
are open in X because f is continuous. Hence Þnitely many of them, say
f−1(G1), ..., f−1(Gn) cover X. Then the sets G1, ..., Gn cover f(X).
Again in the special case where (Y, dY ) = (R, | · |),a direct consequence of

this theorem is the well known Extreme Value Theorem of calculus.19

Corollary 262 (Extreme Value Theorem) Let f : X → R be a con-
tinuous function of a compact space X into R. Then ∃c, d ∈ X such that
f(c) ≤ f(x) ≤ f(d) for every x ∈ X. f(c) is called the minimum and f(d) is
called the maximum of f on X.

Proof. Since f is continuous andX is compact, the setA = f(X) is compact.
We show that A has a largest element M and a smallest element m. Then
since m and M belong to f(X), we must have m = f(c) and M = f(d) for
some points c and d of X.
If A has no largest element, then the collection {(−∞, a), a ∈ A} forms an

open covering ofA. SinceA is compact, some Þnite subcollection {(−∞, a1), ...,
(−∞, an)} covers A. Let aM = max{a1, ...an} then aM ∈ A belongs to none
of these sets, which contradicts the fact that they cover A.
A similar argument can be used to show that A has a smallest element.

Exercise 4.6.3 Let X = [0, 1) and f(x) = x.Why doesn�t a maximum exist?
See Figure 4.6.11.

4.6.3 Uniform continuity

One might believe from part (iii) of the Theorem 248 that if < xn > is
Cauchy and if f is continuous, then < f(xn) > is also Cauchy. The following
examples show this is false if f is pointwise continuous.

Example 263 Take the sequence < xn >=
D
(−1)n
n

E
and consider the func-

tion f deÞned in Example 245. While < xn > is Cauchy in (−∞, 0)∪(0,∞),
< f(xn) >=< −1, 1,−1, 1, .... > which is not Cauchy. See Figure 4.6.12.
Example 264 Let f(x) = 1

x
on (0, 1] which was shown to be pointwise con-

tinuous in Example 247. Consider the Cauchy sequence < 1
n
> on (0, 1]. It

is clear that < f(xn) >=< n >, which is obviously not Cauchy.See Figure
4.6.13.

19Sometimes this is called the Maximum and Minimum Value Theorem. Since in the
next section we will introduce the Maximum Theorem, we choose the above terminology.
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For the above intuition to hold, we need a stronger concept of continuity.

DeÞnition 265 Given metric spaces (X, dX) and (Y, dY ),the function f :
X → Y is uniformly continuous if ∀ε > 0, ∃δ(ε) > 0 such that ∀x, x0 ∈ X
with dX(x

0, x) < δ(ε), then dY (f(x), f(x0)) < ε.

While this deÞnition looks similar to that of pointwise continuity in Def-
inition 244, the difference is that while δ generally depends on both ε and x
in the case of pointwise continuity, it is independent of x in case of uniform
continuity.

Theorem 266 Given metric spaces (X, dX) and (Y, dY ), let the function
f : X → Y be uniformly continuous. If < xn > is a Cauchy sequence in X,
then < f(xn) > is a Cauchy sequence in Y.

Proof. Let < xn > be a Cauchy sequence in X. Because f : X → Y is
uniformly continuous then ∀ε > 0, ∃δ(ε) > 0 such that ∀x, x0 ∈ X with
dX(x

0, x) < δ(ε), then dY (f(x), f(x0)) < ε. Since < xn > is Cauchy for given
δ(ε) > 0 there ∃N such that ∀m,n ∈ N with m,n > N then dX(xm, xn) <
δ(ε). But then dY (f(xm), f(xn)) < ε. Hence < f(xn) > is a Cauchy sequence
in Y.

According to this theorem the functions in Examples263 and 264 are not
uniformly continuous. Notice that the domains of each of the functions in
the examples are not compact in (R, | · |). Let�s consider another example.
Example 267 Let f : [0,∞) → R given by f(x) = x2. This function
is continuous on R. Is it uniformly continuous? No. We show this by
Þnding an ε > 0 such that ∀δ > 0, ∃x1, x2 such that dX(xn, x) < δ and
dY (f(x1)), f(x2)) ≥ ε. Let ε = 2 and take any δ > 0. Then ∃n ∈ N such that
1
n
< δ. DeÞne x1 = n+

1
n
and x2 = n. Then dX(x1, x2) = (n+

1
n
−n) = 1

n
< δ

and dY (f(x1)), f(x2)) = (n+
1
n
)2 − n2 = 2 + 1

n2
> 2. Notice that the domain

of this function [0,∞) is not compact in (R, | · |).
If the domain of a continuous function is compact, then the function is

also uniformly continuous as the following theorem asserts.

Theorem 268 (Uniform Continuity Theorem) Let f : X → Y be a
continuous function of a compact metric space (X, dX) to the metric space
(Y, dY ). Then f is uniformly continuous.
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Proof. (Sketch) For a given ε > 0, by continuity of f around any x ∈ X we
can Þnd a δ(1

2
ε, x)-ball such that for x0 ∈ Bδ( 1

2
ε,x)(x) we have dY (f(x)), f(x

0)) <
1
2
ε. Since the collection of such open balls is an open covering of X and X is
compact, there exists a Þnite (say n) subcover of them. Then for x, x0 ∈ X
such that dX(x

0, x) < δ(ε) = 1
2
min{δ(1

2
ε, x1), ...., δ(

1
2
ε, xn)}, there exists k

such that x ∈ Bδ( 1
2
ε,xk)

(xk) and x
0 ∈ Bδ( 1

2
ε,xk)

(xk). Therefore by the triangle

inequality dY (f(x)), f(x
0)) < ε.

The number δ(ε) that we constructed in the proof of Theorem 268, is
called the Lebesgue number of the covering G.

Exercise 4.6.4 Why is f(x) = 1
x
not uniformly continuous on X = (0, 1]

but it is on [10−1000, 1]?

4.7 Hemicontinuous Correspondences

Many problems in economics result in set-valued mappings or correspon-
dences as deÞned in Section 2.3. For instance, if preferences are linear, a
household�s demand for goods may described by a correspondence and in
game theory we consider best response correspondences.
Before deÞning hemicontinuity, we amend DeÞnition 48 of a correspon-

dence in Section 2.3 in terms of general metric spaces.

DeÞnition 269 A correspondence Γ from a metric space (X, dX) into
a metric space (Y, dY ) is a rule that associates to each x ∈ X a subset
Γ(x) ∈ Y . Its graph is the set A = {(x, y) ∈ X × Y : y ∈ Γ(x)} which
we will denote Gr(Γ). The image of a set D ⊂ X, denoted Γ(D) ⊂ Y, is
the set Γ(D) = ∪x∈DΓ(x). A correspondence is closed valued at x if the
image set Γ(x) is closed in Y. A correspondence is compact valued at x if
the image set Γ(x) is compact in Y.See Figure 4.7.1.

Unlike a (single-valued) function, there are two ways to deÞne the inverse
image of a correspondence Γ of subset D.

DeÞnition 270 For Γ : X ³ Y and any subset D ⊂ Y we deÞne the in-
verse image (also lower or weak) as Γ−1 (D) = {xdX : Γ (x) ∩D 6= 0} and
the core (also upper or strong inverse image) Γ+1 (D) = {xdX : Γ (x) ⊂ D} .
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It is clear that Γ+1 (D) ⊂ Γ−1 (D) . Also observe that

Γ+1 (Y \D) = X − Γ−1 (D) and
Γ−1 (Y \D) = X\Γ+1 (D) .

See Figure 4.7.2. These two types of inverse image naturally coincide when
Γ is single-valued.
To make the notion of correspondence clearer we present a number of

examples (see Figure 4.7.3a-3f).

Example 271 Γ : [0, 1]³ [0, 1] deÞned by Γ (x) =

 1 if x < 1
2{0, 1} if x = 1

2

0 if x > 1
2

.

Example 272 Γ : [0, 1]³ [0, 1] deÞned by Γ (x) =

 1 if x < 1
2

[0, 1] if x = 1
2

0 if x > 1
2

.

Example 273 Γ : [0, 1]³ [0, 1] deÞned by Γ(x) = [x, 1] .

Example 274 Γ : [0, 1]³ [0, 1] deÞned by Γ (x) =

½ £
0, 1

2

¤
if x 6= 1

2

[0, 1] if x = 1
2

.

Example 275 Γ : [0, 1]³ [0, 1] deÞned by Γ (x) =

½
[0, 1] if x 6= 1

2£
0, 1

2

¤
if x = 1

2

.

Example 276 Γ : [0,∞)³ R deÞned by Γ (x) = [e−x, 1] .

We next deÞne a set valued version of continuity.

DeÞnition 277 Given metric spaces (X, dX) and (Y, dY ), the correspon-
dence Γ : X ³ Y is lower hemicontinous (lhc) at x ∈ X if Γ(x)
is non-empty and if for every open set ???CHANGE TO S,TV ⊂ Y with
Γ(x)∩V 6= ∅, there exists a neighborhood U of x such that Γ(x0)∩V 6= ∅ for
every x0 ∈ U .The correspondence is lower hemicontinuous if it is lhc at
each x ∈ X.20 See Figure 4.7.4.
20There are various names given to this concept. In many math books, this is called

semicontinuity.
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Note that the correspondences presented in Examples 273, 275, and 276
are Ihc.
As in the case of continuity of a function, there are equivalent characteri-

zations of Ihc in terms of open (closed) sets or sequences as the next theorem
shows.

Theorem 278 Given metric spaces (X, dX) and (Y, dY ), for a correspon-
dence Γ : X ³ Y the following statements are equivalent. (i) Γ is Ihc; (ii)
Γ−1 (V ) is open in X whenever V ⊂ Y is open in Y ; (iii) Γ+1 (U) is closed
in X whenever U ⊂ Y is closed in Y ; and (iv) ∀xdX, ∀y ∈ Γ(x) and every
sequence < xn >→ x, ∃N such that < yn >→ y and yn ∈ Γ(xn), ∀n ≥ N .

Proof. (i)⇐⇒ (ii)Let V be open in Y , Γ−1 (V ) = {x ∈ X : Γ (x) ∩ V 6= 0}
and take x0 ∈ Γ−1 (V ) . Since Γis Ihc at x0 then ∃ U open such that, X0 ∈ U,
Γ (x0) ∩ V 6= 0 for every x0 ∈ U. Hence U ⊂ Γ−1 (V ) so that Γ−1 (V ) is open.
(ii)⇐⇒ (iii) follows immediatly from X\Γ−1 (U) = Γ+1 (Y \U) .
(i) ⇐⇒ (iv) First start with (⇒). Let < xn >→ x and Þx an arbitrary

point y ∈ Γ(x). For each k ∈ N, B 1
k
(y) ∩ Γ(x) 6= ∅. Since Γ is lhc at x, ∀k

there exists an open set Uk of x such that ∀x0k ∈ Uk we have Γ(x0k)∩B 1
k
(y) 6= ∅.

Since < xn >→ x, ∀k we can Þnd nk such that xn ∈ Uk, ∀n ≥ nk and they
can be assigned so that nk+1 > nk. Also, since xn ∈ Uk, ∀n ≥ nk, then
Γ(xn) ∩ B 1

k
(y) 6= ∅. Hence we can construct a companion sequence < yn >,

with yn chosen from the set Γ(xn)∩B 1
k
(y) for each n ≥ nk. As k, and hence n,

increases the radius of the balls B 1
k
(y) shrinks to zero, implying < yn >→ y.

Next we prove (⇐). In this case, it is sufficient to prove the contrapositive.
Assume Γ is not lhc at x. Then ∃V with Γ(x) ∩ V 6= ∅ such that every
neighborhood U of x contains a point x0u with Γ(x

0
u) ∩ V = ∅. Taking a

sequence of such neighborhoods, Un = B 1
n
(x) and a point in each of them,

we obtain a sequence < xn >→ x by construction and has the property
Γ(xn) ∩ V = ∅. Hence every companion sequence < yn > with yn ∈ Γ(xn) is
contained in the complement of V, and if < yn >→ y then y is contained in
the complement of V since Y \V is closed. Thus no companion sequence of
< xn > can converge to a point in V.
Thus, Γ is lhc at x if any y ∈ Γ(x) can be approached by a sequence from

both sides. Also, if the correspondence F is a function, then F−1 (U) is the
inverse image of a function so (ii) states F is Ihc iff F is continuous.
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DeÞnition 279 Given metric spaces (X, dX) and (Y, dY ), the correspon-
dence Γ : X ³ Y is upper hemicontinous (uhc) at x ∈ X if Γ(x)
is non-empty and if for every open set V ⊂ Y with Γ(x) ⊂ V , there exists a
neighborhood U of x such that Γ(x0) ⊂ V for every x0 ∈ U . The correspon-
dence is upper hemicontinuous if it is uhc at each x ∈ X. See Figure
4.7.5.

The correspondences presented in Examples 271-276 are uhc.
Again, uhc can be characterized in terms of open (closed) sets or se-

quences.

Theorem 280 Given metric spaces (X, dX) and (Y, dY ), for a correspon-
dence Γ : X ³ Y the following statements are equivalent: (i) Γ is uhc; (ii)
Γ+1 (V ) is open in X whenever V ⊂ Y is open in Y ; (iii) Γ−1 (U) is closed in
X whenever U ⊂ Y is closed in Y ; and if Γ is compact valued, then (iv) for
every sequence < xn >→ x and every sequence < yn > such that yn ∈ Γ(xn),
∀n, there exists a convergent subsequence < yg(n) >→ y and y ∈ Γ(x).

Proof. (Sketch)(i) and Γ compact⇒(iv). First, we must show that the
the companion sequence < yn > is bounded. Since < yn > is bounded, it is
contained in a compact set so that by Theorem 193, there exists a convergent
subsequence. Finally, we must show that the limit of this subsequence is in
Γ(x).
(i)⇐(iv) Again, it is sufficient to prove the contrapositive; If Γ is not uhc

at x,then there is no subsequence converging to a point in Γ(x).

Exercise 4.7.1 Finish the proof of Theorem 280. 21

???Thus, Γ is uhc at x if any y ∈ Γ(x) can be approached by a sequence
from ????.
If the correspondence F is a function, then F+1 (U) = F−1 (U) is the

inverse image of the function and so by (ii) , F is uhc iff F is continuous.
Each type of hemicontinuity can be interpreted in terms of the restrictions

of the �size� of the set Γ(x) as x changes.

� Suppose Γ is uhc at x and Þx V ⊃ Γ(x). As we move from x to a
nearby point x0, the set V gives an �upper bound� on the size of Γ(x0)

21de la Fuente (Theorem 11.2, p. 110).
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since we require Γ(x0) ⊂ V . Hence uhc requires the image set Γ(x)
does not �explode� with small changes in x, but allows it to suddenly
�implode�.

� Suppose Γ is lhc at x. As we move from x to a nearby point x0, the set V
gives a �lower bound� on the size of Γ(x0) since we require Γ(x0)∩V 6= ∅.
Hence lhc requires the image set Γ(x) does not �implode� with small
changes in x, but allows it to suddenly �explode�.

DeÞnition 281 Given metric spaces (X, dX) and (Y, dY ), a correspondence
Γ : X ³ Y is continuous at x ∈ X if it is both lhc and uhc at x.

The correspondences in Examples 273 and 276 are continuous.

Example 282 Consider the following example of a best response correspon-
dence derived from game theory. The game is played between two individuals
who can choose between two actions, say go up (U) or go down (D). If both
choose U or both choose D, they meet. If one chooses U and the other chooses
D,they don�t meet. Meetings are pleasurable and yield each player payoff 1,
while if they don�t meet they receive payoff 0. This is known as a coordination
game. The players choose probability distributions over the two actions: say
player 1 chooses U with probability p and D with probability 1−p while player
2 chooses U with probability q and D with probability 1−q. We represent this
game in �normal form� by the matrix in Table 4.7.1. Agent 1�s payoff from
playing U with probability p while his opponent is playing U with probability
q is denoted π1(p, q) and given by

π1(p, q) = p · [q · 1 + (1− q) · 0] + (1− p) · [q · 0 + (1− q) · 1]
= 1− q − p+ 2pq

Agent 1 chooses p ∈ [0, 1] to maximize π1(p, q). We call this choice a best
response correspondence p∗(q). It is simple to see that: for any q < 1

2
, proÞts

are decreasing in p so that p∗ = 0 is a best response, for any q > 1
2
, proÞts

are increasing in p so that p∗ = 1 is a best response, and at q = 1
2
, proÞts

are independent of p so that any choice of p∗ ∈ [0, 1] is a best response.22
22To see this, note that dπdp = 2q − 1 so that

dπ
dp < 0 if q < 1

2
dπ
dp = 0 if q = 1

2
dπ
dp > 0 if q > 1

2

.
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Obviously, p∗(q) is a correspondence. It is not lhc at q = 1
2
since if we

let V = (1
4
, 3
4
), then p∗(1

2
) ∩ V 6= ∅ and there exists no neighborhood U

around 1
2
such that p∗(q) ∩ V 6= ∅ for q ∈ U (e.g. for any 1

2
≥ ε > 0,

p∗(1
2
− ε) = 0 /∈ (1

4
, 3
4
) and p∗(1

2
+ ε) = 1 /∈ (1

4
, 3
4
)). It is, however, uhc

at q = 1
2
since we must take V = (a, b) with a < 0 and b > 1 to satisfy

p∗(1
2
) = [0, 1] ⊂ V. But then there exist many neighborhoods U around 1

2
such

that p∗(q) ⊂ V for q ∈ U (e.g. for any 1
2
≥ ε > 0, p∗(1

2
− ε) = 0 ∈ (a, b)

and p∗(1
2
+ ε) = 1 ∈ (a, b)). See Figure 4.7.6. Finally, you should recognize

that this game is symmetric so that agent 2�s payoffs and hence best response
correspondence is identical to that of agent 1.

Table 4.7.1

player 2 q 1− q
1 U D
p U 1, 1 0, 0

1− p D 0, 0 1, 1

Just as it was cumbersome to apply DeÞnition 185 to establish compact-
ness, it is similarly cumbersome to apply DeÞnitions 277 and 279 to establish
hemicontinuity. In the case of compactness, we provided simple sufficient
conditions (e.g. the Heine-Borel Corollary 194). Here we supply another set
of simple sufficient conditions to establish hemicontinuity.

Theorem 283 Let Γ : X ³ Y be a non-empty valued correspondence and
let A be its graph. If (i) A is convex and (ii) for any bounded set bX ⊂ X,
there is a bounded set bY ⊂ Y such that Γ(x) ∩ bY 6= ∅, ∀x ∈ bX, then Γ is lhc
at every interior point of X.

Proof. Let bx be an interior point ofX, by ∈ Γ(bx), and < xn >⊂ X with xn →bx. Since xn is convergent, choose ε > 0 such that bX = Bε(bx) ⊂ X. Let D
denote the boundary set of bX.We can represent xn as a convex combination
of bx and a point in D. That is, ∃αn, dn such that xn = αndn+(1−αn)bx where
αn ∈ [0, 1] and dn ∈ D. Since D is a bounded set, αn → 0 as xn → bx. ChoosebY such that Γ(x) ∩ bY 6= ∅,∀x ∈ bX. Then for each n, choose byn ∈ Γ(dn) ∩ bY
so that yn = αnbyn + (1 − αn)by. Since (dn, byn) ∈ A,∀n, (bx, by) ∈ A, and A is
convex, then (xn, yn) ∈ A,∀n. Since αn → 0 and byn ∈ bY , yn → by. Hence
< (xn, yn) >⊂ A and converges to (bx, by).
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Theorem 284 Let Γ : X ³ Y be a non-empty valued correspondence and
let A be its graph. If (i) A is closed and (ii) for any bounded set bX ⊂ X, the
set Γ( bX) is bounded, then Γ is compact valued and uhc.
Proof. Compactness follows directly from (i) and (ii). Let xn → x ∈ X
with < xn >⊂ X. Since Γ is non-empty, ∃yn ∈ Γ(xn),∀n. Since xn → x,

there is a bounded set bX ⊂ X such that < xn >⊂ bX with x ∈ bX by
Theorem 164. Then by (ii), Γ( bX) is bounded. Hence < yn >⊂ Γ( bX) has a
convergent subsequence, < yg(n) >→ y. Thus, < (xg(n), yg(n)) > is a sequence
in A converging to (x, y). Since A is closed, (x, y) ∈ A.
In a future section we will use the following relationship between uhc of

a correspondence and the closedness of its graph.

Theorem 285 The graph of an uhc correspondence Γ : X ³ Y with closed
values is closed.

Proof. We have to prove that X ×Y \Gr (Γ) is open. Take (x, y) dX ×
Y \Gr (Γ) so that y /∈ Γ (x) . Now we can choose an open neighborhood Vy of
y in Y and VΓ(x) of Γ (x) in Y such that Vy∩VΓ(x) = ∅. By (ii) of Theorem 280,
Ux = Γ

+1
¡
VΓ(x)

¢
is an open neighborhood of x in X, consequently Ux×Vy is

an open neighborhood of (x, y) in X × Y . Because Ux× Vy ∩Gr (Γ) = ∅ we
have Ux× Vy ⊂ X × Y \Gr (Γ) and hence X × Y \Gr (Γ) is open. See Figure
4.7.7.
The converse of this theorem doesn�t hold as the following example indi-

cates.

Example 286 Consider the function F : R→ R given by

F (x) =

½
1
x
, x 6= 0

0 , x = 0
.

F has a closed graph but is not uhc since it is clear that for an open set (−ε, ε)
in R, Γ+1(−ε, ε) = (−∞,−1

ε
) ∪ {0} ∪ (1

ε
,∞), which is not open. However if

the image F (X) is compact, or a subset of a compact set, then the converse
of Theorem 285 holds (i.e. a closed graph implies uhc). Hence, closedness of
the graph can be used as a criterion of uhc. See Figure 4.7.8.

Theorem 287 Let Γ : X ³ Y be a correspondence such that Γ (X) ⊂ K
where K is compact and the graph Gr(Γ) is closed. Then Γis uhc.
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Proof. Assume to the contrary that Γ is not uhc at x0. Then there exists
an open neighborhood VΓ(x0) of Γ (x0) in Y such that for every open neigh-
borhood Ux0 of x in X we have that Γ (Ux0) is not contained in VΓ(x0). We
take Ux0 = B 1

n
(x0) , n ∈ N. Then for every n we get a point xndB 1

n
(x0) such

that Γ (xn) is not contained in VΓ(x0). Let yn ∈ Γ (xn) and yn /∈ VΓ(x0). Then
we have hxni→ x0 and hyni ⊂ K. Since K is compact, there exists a subse-
quence


yg(n)

® → y ∈ K. Since yn /∈ VΓ(x0), ∀n, this implies yn ∈ Y \VΓ(x0).
Since Y \VΓ(x0) is closed, then y ∈ Y \VΓ(x0) so that y /∈ VΓ(xo).Then we have
xn, yg(n)

® ⊂ Gr(Γ) and

xn, yg(n)

® → (x, y) . Since the Gr (Γ) is closed,
(x, y) dGr (Γ) . But this contradicts y /∈ VΓ(x0).
Now we state a few lemmas that will be very useful in the next chapter.

DeÞnition 288 Let (X, d) be a metric space and (Y, k·k) be a normed vector
space. Let Γ : X ³ Y be a correspondence. Then we can deÞne two new
correspondences: Γ(the closure of Γ) and co(Γ) (the convex hull of Γ) by the
following

Γ : X ³ Y given by Γ (x) = Γ(x), ∀xdX
co(Γ) : X → Y given by (co(Γ) )(x) = coΓ(x), ∀xdX.

Note Γ is by deÞnition always closed valued and co(Γ) is by deÞnition
always convex valued.

Example 289 Γ : [0, 1]³ R given by Γ(x) = [0, x). Then Γ(x) = [0, x]. See
Figure 4.7.9.

Example 290 Γ : [0, 1] ³ R given by Γ(x) = {0, 1}. Then co(Γ(x)) =
[0, x].See Figure 4.7.10.

Lemma 291 If Γ : X ³ Y is lhc then Γis also lhc.

Proof. The proof uses the following result:

If G is open in Y and if A ⊂ Y, then A ∩G 6= ∅ iff Ā ∩G 6= ∅. (4.10)

Since A ∩ G ⊂ Ā ∩ G, one direction is clear. Let Ā ∩ G 6= ∅.If X ∈ Ā ∩ G,
then X ∈ Ā and if X ∈ G, then ∃ < xn >→ x and xn ∈ A, ∀n ∈ N. Since G
is open, ∃ε such that Bε(x) ⊂ G. Since < xn >→ x, we have xndBε(x) ⊂ G,
∀n sufficiently large. Hence xn ∈ A ∩G so that A ∩G 6= ∅.
Now we need to prove that Γ

−1
(V ) is open in X if V is open in Y. But

from (4.10), Γ
−1
(V ) = Γ−1(V ) which is open because Γ is lhc.
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Lemma 292 If Y is a normed vector space and Γ : X ³ Y is lhc, then
co(Γ) is lhc.

Proof. Let x ∈ X, < xn >→ x, and y ∈ co(Γ (x)). We need to show that
∃ < yn > such that < yn >→ y and yn ∈ co(Γ(xn)). Since y ∈ co(Γ(x)),
then y =

Pm
i=1 λiy

i , where yi ∈ Γ(x) and
Pm

i=1 λi = 1. Since Γ is lhc,
∃ < yin >∞n=1such that yin ∈ Γ(xn) and < yin >→ yi for each i = 1, ...,m. Let
yn =

Pm
i=1 λiy

i
n. Then < yn >→ y and yn ∈ co(Γ(xn)).

Given two correspondences Γ1 : X ³ Y and Γ2 : X ³ Y , provided that
Γ1(x) ∩ Γ2(x) 6= ∅,∀xdX, we can deÞne a new correspondence

Γ1 ∩ Γ2 : X ³ Y

given by
(Γ1 ∩ Γ2)(x) = Γ1(x) ∩ Γ2(x)

Also let (X, d) be a metric space and A ⊂ X. The subset A can be
expanded by a non-negative factor β denoted by β + A where β + A =
∪aDABβ(a) = {x ∈ Xi : d(xi, A) < β}.23. See Figure 4.7.11. Then for a
correspondence Γ : X ³ Y where Y is a normed vector space, we have β+
Γ(x) = {y ∈ Y : kΓ(x)−yk < β}.We say that β+ Γ(x) is a β− band around
the set Γ(x). See Figure 4.7.12.
We need the following lemma for Michael�s selection theorem which is

critical for the proof of a Þxed point of a correspondence.

Lemma 293 If Y is a normed vector space, if a correspondence F is deÞned
by F (x) = β + f(x) where f is a continuous function from X to Y, and if
Γ : X ³ Y is a lhc correspondence, then F∩ Γ is lhc.24

Proof. If < xn >−→ x and y ∈ F (x)∩ Γ(x), then y ∈ Γ (x). Since Γ is
lhc, ∃ < yn > such that yn ∈ Γ(xn) and < yn >→ y. We need to show that
yn ∈ F (xn) (i.e.yn ∈ (f(xn)− β, f(xn) + β) for n large enough. But by the

triangle property of a norm, we have

k yn − f(xn)k ≤ kyn − yk+ ky − f(x)k+ kf(x)− f(xn)k. (4.11)

23Note that this distance between a point and a set is deÞned in 127.
24Remember that F is a correspondence not a function; F (x) = (f(x) − β, f(x) + β)

which is an interval for every x.
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The Þrst term is sufficiently small because < yn >→ y and the third term
is sufficiently small because < xn >−→ x and f is continuous. Since y ∈
F (x) = (f(x)−β, f(x)+β), the second term is less than β.Hence for n large
enough, the right hand side of (4.11) is less than β and thus yn ∈ F (xn).

4.7.1 Theorem of the Maximum

In economics, often we wish to solve optimization problems where households
maximize their utility subject to constraints on their purchases of goods or
Þrms maximize their proÞts subject to constraints given by their technology.
In particular, consider the following example.

Example 294 A household has preferences over two consumption goods (c1, c2)
characterized by a utility function U : R2+ → R given by U(c1, c2) = c1 + c2.
The household has a positive endowment of good 2 denoted ω ∈ R+. The
household can trade its endowment on a competitive market to obtain good
1 where the price of good 1 in terms of good 2 is given by p ∈ R+. The
household�s purchases are constrained by its income; its budget set is given
by

B(p, ω) = {(c1, c2) ∈ R2+ : pc1 + c2 ≤ ω}.
Taking prices as given, the household�s problem is

v(p, ω) = max
(c1,c2)∈B(p,ω)

U(c1, c2) (4.12)

The Þrst question we might ask is does a solution to this problem exist? When
is it unique? How does it change as we vary parameters? The maximum
theorem gives us an answer to these questions.

Before turning to the theorem, let us continue to work with Problem
(4.12). First, let us establish properties of the budget set. In particular,
we establish that if p ∈ R++, then B(p, ω) is a compact-valued, continuous
correspondence. In this case, we will establish that the graph of the budget
correspondence A = {(p, ω, c1, c2) ∈ R2+ × R2+ : (c1, c2) ∈ B(p, ω)} satisÞes
the conditions of Theorems 283 and 284 only when p > 0. It is obviously
non-empty since (0, 0) ∈ B(p, ω) for any (p, ω) ∈ R2+. The problem is that

for any bounded set bX ⊂ R2+ of prices and incomes, there may not be a
bounded set bY ⊂ R2+ of consumptions. In particular, if p > 0, B(p, ω) is
bounded since 0 ≤ c2 ≤ ω and 0 ≤ c1 ≤ ω

p
but if p = 0, c1 is unbounded.
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See Figure 4.7.13. Under the assumption that p > 0, however, we have that
B(p, ω) is a non-empty, compact valued, continuous correspondence.
Next we establish continuity of the utility function U. In particular, we

show that ∀ε > 0, ∃δ > 0 such that ifp
(c1 − x1)2 + (c2 − x2)2 < δ, (4.13)

then
|U(c1, c2)− U(x1, x2)| < ε. (4.14)

Now rewrite the lhs of (4.14) as

|c1 + c2 − x1 − x2| ≤ |c1 − x1|+ |c2 − x2|

where the inequality follows from the triangle inequality. If we let δ = ε
2
,

then (4.13) implies (4.14), establishing continuity of U . It is also instructive
to graph the level sets (or �indifference curves�) of U. These are just given by
the equations c2 = U − c1 in Figure 4.7.14 as we vary U. In the same Þgure
we also plot budget sets with p > 1, p = 1, and 0 < p < 1. It is simple to see
from the Þgure that the solution, which we denote by �∗�, to the household�s
problem (4.12) is given by the demand correspondence

(c∗1, c
∗
2) =


(0, ω) if p > 1
(x, ω − x) with x ∈ [0, ω] if p = 1
(ω
p
, 0) if p < 1

.

That is, if goods 1 and 2 are perfect substitutes for each other from the
household�s preference perspective, then if good 1 is expensive (inexpensive),
the household consumes none of (only) it, while if the two goods are the
same price the possibilities are uncountable! Notice that the value function
is continuous and increasing

v(p, ω) =

½
ω if p ≥ 1
ω
p
if 1 > p > 0

.

There is a more formal way of establishing the existence of a solution to
such mathematical programming problems and how the solution varies with
parameters. In general, let X ⊂ Rn, Y ⊂ Rm, f : X × Y → R be a single
valued function, Γ : X ³ Y be a non-empty correspondence and consider
the problem supy∈Γ(x) f(x, y). If for each x, f(x, ·) is continuous in y and the
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set Γ(x) is compact, then we know from the Extreme Value Theorem 262
that for each x the maximum is attained. In this case,

v(x) = max
y∈Γ(x)

f(x, y) (4.15)

is well deÞned and the set of values y which attain the maximium

G(x) = {y ∈ Γ(x) : f(x, y) = v(x)} (4.16)

is non-empty (but possibly multivalued). The Maximum theorem puts fur-
ther restrictions on Γ to ensure that v and G vary in a continuous way with
x. The proof works in the following way. Consider a convergent sequence of
elements in the constraint set xn → x ∈ X (which we can always Þnd since Γ
is compact valued). By the extreme value theorem, there is a corresponding
sequence of optimizing choices yn ∈ G(xn) and yn → y. We must show that
the limit of that sequence y is the optimizing choice in the constraint set
deÞned at x. There are two parts to demonstrating this result. First we
must show that y is in the constraint set ( y ∈ Γ(x)). Then we must show y
is the optimizing choice in Γ(x).

Theorem 295 (Berge�s Theorem of the Maximum) LetX ⊂ Rn, Y ⊂
Rm, f : X×Y → R be a continuous function, and Γ : X ³ Y be a nonempty,
compact-valued, continuous correspondence. Then v : X → R deÞned in
(4.15) is continuous and the correspondence G : X → Y deÞned in (4.16) is
nonempty, compact valued, and uhc.

Proof. The Extreme Value Theorem 262 ensures that for each x the max-
imum is attained and G(x) is nonempty. Since G(x) ⊂ Γ(x) and Γ(x) is
compact, G(x) is bounded. To show G(x) is closed, we suppose yn → y
with yn ∈ G(x),∀n and need to show that y ∈ G(x).25 Since Γ(x) is closed,
y ∈ Γ(x). Since v(x) = f(x, yn)∀n and f is continuous, then v(x) = f(x, y)
and y ∈ G(x). Thus, G(x) is nonempty and compact for each x.
To see that G(x) is uhc, let xn → x and choose yn ∈ G(xn). We need

to show that there exists a convergent subsequence < yg(n) >→ y and y ∈
G(x). Since Γ is uhc, ∃ < yg(n) > converging to y ∈ Γ(x) by Theorem 280.
Consider an alternative z ∈ Γ(x). Since Γ is lhc, ∃ < zg(n) > converging
to z with zg(n) ∈ Γ(xg(n)), ∀g(n) by Theorem 278. Since f(xg(n), yg(n)) ≥
25This follows from DeÞnition 111.
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f(xg(n), zg(n)),∀g(n) by optimality and f is continuous, f(x, y) ≥ f(x, z).
Since this holds for any z ∈ Γ(x), then y ∈ G(x),satisfying uhc.
To see that v(x) is continuous, Þx x and let xn → x. Choose yn ∈

G(xn), ∀n. Let v = lim sup v(xn) and v = lim inf v(xn). We can choose
< xg(n) > (a subsequence corresponding to < yg(n) > above) such that
v = lim f(xg(n), yg(n)). Since G is uhc, ∃ < yh(g(n)) > converging to y ∈ G(x).
Hence v = lim f(xh(g(n)), yh(g(n))) = f(x, y) = v(x). An analogous argument
establishes that v = v(x). Hence < v(xn) > converges to v(x).
The next three examples illustrate the Maximum theorem with simple

mathematical problems.

Example 296 Let X = R, Y = R, f : Y → R be given by f(y) = y and
Γ : X³Y be given by

Γ(x) =

½
[0, 1] if x ≤ 1
1
2

x > 1
.

Consider the problem v(x) = maxy∈Γ(x) f(y). Then

v(x) =

½
1 if x ≤ 1
1
2

x > 1
and G(x) =

½
1 if x ≤ 1
1
2

x > 1
.

Notice that v(x) is not continuous and that G(x) is not uhc. What condi-
tion of Theorem 295 did we violate? The constraint correspondence is not
continuous; in particular, while Γ(x) is uhc, it is not lhc. See Figure 4.7.15.

Example 297 Let X = R, Y = R, f : Y → R be given by f(y) = cos(y),
and Γ : X³Y be given Γ(x) = {y ∈ Y : −x ≤ y ≤ x for x ≥ 0 and
x ≤ y ≤ −x for x < 0}. Consider the problem v(x) = maxy∈Γ(x) f(y). Then

v(x) = 1,∀x and G(x) =


{0} −2π < x < 2π

{−2π, 0, 2π} −4π < x < 4π
{−4π,−2π, 0, 2π, 4π} −6π < x < 6π

etc etc

.

Notice that G(x) is uhc but not lhc since, for example, if we take V = (2π−
ε, 2π + ε) with 2π > ε > 0, then G(2π) ∩ V 6= ∅ but ∀δ > 0 ∃x0 ∈ Bδ(2π)
such that G(x0)∩ V = ∅ (in particular all those x0 < 2π). See Figure 4.7.16.
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Example 298 Let X = R, Y = R, f : Y → R be given by f(y) = y2 and
Γ : X³Y be given Γ(x) = {y ∈ Y : −x ≤ y ≤ x for x ≥ 0 and x ≤ y ≤ −x
for x < 0}. Consider the problem v(x) = maxy∈Γ(x) f(y). Then

v(x) = x2,∀x and G(x) = {−x, x}.

Notice that G(x) is uhc and lhc but not convex valued. See Figure 4.7.17.

If we put more restrictions on the objective function and the constraint
correspondence we can show that the set of maximizers G(x) is single-valued
and continuous.

Theorem 299 Let X ⊂ Rn, Y ⊂ Rm. Let Γ : X ³ Y be a nonempty,
compact- and convex- valued, continuous correspondence. Let A be the graph
of Γ and assume f : X → R is continuous function and that f(x, ·) is strictly
concave, for each x ∈ X.26If we deÞne

g∗(x) = arg max
y∈Γ(x)

f(x, y),

then g∗(x) is a continuous function. If X is compact, then g∗(x) is uniformly
continuous.

Exercise 4.7.2 Prove Theorem 299.

We illustrate Theorem 299 through the next exercise.

Exercise 4.7.3 In Example 294 let the utility function U : R2+ → R be given
by u(c1)+u(c2) where u : R+ → R is a strictly increasing, continuous, strictly
concave function. Establish the following: (i) The objective function U(c1, c2)
is continuous and strictly concave on R2; (ii) The budget correspondence
B(p, y) is compact and convex; (iii) Existence and uniqueness of the set of
maximizers; (iv) v(p, y) is increasing in y and decreasing in p; (iv) v(p, y) is
continuous (try this as a proof by contradiction).

26We say f : R→ R is strictly concave if f(αx + (1 − α)z) > αf(x) + (1 − α)f(z) for
x, z,∈ R and α ∈ [0, 1].
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4.8 Fixed Points and Contraction Mappings

One way to prove the existence of an equilibrium of an economic environment
amounts to showing there is a zero solution to a system of excess demand
equations. In the case of Example 294, households take as given the relative
price p and optimization may induce a continuous aggregate excess demand
correspondence ED(p) for good 1. If there is excess demand (supply), prices
rise (fall) until equilibrium ( ED(p) = 0) is achieved. We may represent this
�tatonnement� process by the mapping f(p) = p+ ED(p). In that case, an
equilibrium is equivalent to a Þxed point p = f(p).

DeÞnition 300 Let (X, d) be a metric space and f : X → X be a function
or correspondence. We call x ∈ X a Þxed point of the function if x = f(x)
or of the correspondence if x ∈ f(x).

We now present four different Þxed point theorems based upon different
assumptions on the mapping f .

4.8.1 Fixed points of functions

The Þrst Þxed point theorem does not require continuity of f but uses only
the fact that f is nondecreasing.

Theorem 301 (Tarsky) Let f : [a, b]→ [a, b] be a non-decreasing function
(that is, if x > y for x, y ∈ [a, b], then f(x) ≥ f(y)), ∀a, b ∈ R with a < b.
Then f has a Þxed point.

Proof. Let P = {x ∈ [a, b] : x ≤ f(x)}. We prove this in 4 parts. (i) Since
f(a) ∈ [a, b] implies a ≤ f(a),then a ∈ P and hence P is non-empty. (ii)
Since P ⊆ [a, b] and [a, b] is bounded, then P is bounded. Therefore, by the
Completeness Axiom 3, x = supP exists. (iii) Since ∀x ∈ P, x ≤ x by (ii), we
have f(x) ≤ f(x) because f is nondecreasing. Since x ∈ P, x ≤ f(x) ≤ f(x)
so that f(x) is an upper bound of P . Therefore, x ≤ f(x) since x is the least
upper bound and hence x ∈ P . (iv) Since x ≤ f(x) implies f(x) ≤ f [f(x)],
we know f(x) ∈ P . Therefore, x ≥ f(x) since x is an upper bound of P .
Given that x ≤ f(x) and x ≥ f(x) we know that x = f(x). Note that we
have not ruled out that there may be other points x0 such that x0 = f(x0).
If so, then for all such points x0 ∈ P . Our solution x is the maximal Þxed
point.
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The proof is illustrated in Figure 4.8.1. For a more general version of this
proof, see Aliprantis and Border (1999, Theorem 1.8).
The next result by Brouwer requires that f be a continuous function. We

saw a one dimensional version of it in section 4.6 which used the Intermediate
value Theorem 255. That proof was very simple but the method we used
there cannot be extended to higher dimensions. As it turns out proving it
in Rn where n ≥ 2 is quite difficult. There are proofs that use calculus but
we are going to present an elementary one based on simplexes which were
introduced in section 4.5.2. Brouwer�s Þxed point theorem could be stated
for a non-empty convex, compact subset of Rn. Because a nondegenerate
simplex is homeomorphic with (i.e. topologically equivalent to) a nonempty,
convex, compact subset of Rn it suffices to state Brouwer�s theorem for the
simplex.

Exercise 4.8.1 Show that a simplex is homeomorphic with a nonempty, con-
vex, compact subset P = {(p1, p2) ∈ R2 : 0 ≤ p1, p2 ≤M,M Þnite}.

For notational simplicity and better intuition we prove Brouwer�s theorem
in R2 but this simpliÞcation has no effect whatsoever on the logic of the
proof. The proof for general Rn can be replicated with only minor notational
changes.

Theorem 302 (Brouwer) If f (x) maps a nondegenerate simplex continu-
ously into itself then there is a Þxed point x∗ = f (x∗) .

Proof. (Sketch) The farther a point is from a vertex, the smaller is its
barycentric coordinate. Thus, in Figure 4.8.12, a0s largest barycentric coor-
dinate is the Þrst one while b�s largest barycentric coordinate is the second
one. For a given f , we introduce an indexing function I(x) as follows. Let
y = f(x) and I(x) = min {i : xi > yi} .If b = f(a),then I(a) = 0 because
a0 > b0. (the arrow connecting a with f(a) points away from the vertex v0).
x∗ is a Þxed point of f if α∗i = β

∗
i , i = 0, 1, 2 where α

∗
i and β

∗
i = fi (x

∗)
are barycentric coordinates of x∗ and f(x∗). See Figure 4.8.4. In the case
of barycentric coordinates, instead of equality (4.24) it suffices to show the
following inequalities:

α∗i ≥ β∗i , i = 0, 1, 2 (4.17)

because α∗i ≥ 0, β∗i ≥ 0 and
P2

i=0 α
∗
i = 1 =

P2
i=0 β

∗
i .SpeciÞcally, If f doesn�t

have a Þxed point, then I(x) is well deÞned for all x ∈ S and obtains values
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0, 1, or 2 with certain restrictions on the boundary. Divide the simplex into
m2 equal subsimplexes and index all the vertices of the the subsimplexes using
I(x) obeying restrictions on the boundary. Sperner�s lemma guarantees that
for each m there is at least one simplex with a complete set of indices (i.e.
arrows originating at these verteces point inside the triangle). By choosing
one vertex of such simpex for each m we get an inÞnite sequence of poins
from S that is the sequence is bounded. Hence by the Bolzano-Weierstrass
theorem there exists a convergent subsequence with the limit point x∗ ∈ S.
As m → ∞, a triangle collapses into one point (which is x∗) (at this point
all arrows point inside itself). Since f is continuous, it preserves inequalities
so that x∗is a Þxed point of f.
In Chapter 6, we will introduce an inÞnite dimensional version of Brouwer�s

Þxed point theorem by Schauder.

Example 303 (On Existence of Equilibrium) Consider the following 2
period t = 1, 2 exchange problem with a large number I of identical agents.
Let cit, y

i
t, qt denote an element (date t) of agent i�s consumption and en-

dowment vector, as well as the price vector, respectively. Let a represen-
tative agent i�s budget set be given by B(q, yi) = {ci ∈ R2 :

P2
t=1 qtc

i
t ≤P2

t=1 qty
i
t}. Notice that an agent�s budget set is homogeneous of degree zero

in q.27That is, B(λq, yi) = B(q, yi). Thus, we are free to take λ = 1P2
t=1 qt

> 0

and set p =
³

q1P2
t=1 qt

, q2P2
t=1 qt

´
.This deÞnes a one dimensional price sim-

plex S1 =
©
p ∈ R2t :

P2
t=1 pt = 1

ª
.Let the representative agent i�s utility

function be given by U(ci) =
P2

t=1 log(c
i
t). Exercise 4.7.3 establishes that

B(p, yi) is a non-empty, compact- and convex-valued continuous correspon-
dence and that U(ci) is strictly concave. Thus by version 299 of the The-
orem of the Maximum the set of maximizers {ci1(p, y), ci2(p, y)} are single
valued and continuous functions. Since the sum of continuous functions is
continuous, the aggregate excess demand function z : S1 → R2 given by
z(p) =

PI
i=1 c

i(p, y) − yi is continuous. It is a consequence of Walras Law
that the inner product < p, z(p) >= 0. To prove existence of equilibrium, we
need to show that at the equilibrium price vector p∗ there is no excess demand
(i.e. z(p∗) ≤ 0).SpeciÞcally, we must show that if z : S1 → R2 is continuous
and satisÞes < p, z(p) >= 0, then ∃p∗ ∈ S1 such that z(p∗) ≤ 0 (in the

27We say a function f(x) is homogeneous of degree k = 0, 1, 2... if for any λ > 0,
f(λx) = λkf(x).
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case that all goods are desireable, this is z(p∗) = 0). To this end, deÞne the
mapping which raises the price of any good for which there is excess demand:

ft(p) =
pt +max(0, zt(p))

1 +
P2

j=1max(0, zj(p))
for t = 1, 2.

Notice that ft(p) is continuous since zt and max(·, ·) are continuous func-
tions and that f(p) lies in S1 since

P2
t=1 ft(p) = 1. By Brouwer�s Fixed

Point Theorem 302, there is a Þxed point where f(p∗) = p∗. But this can be
shown (by applying Walras Law) to imply that zt(p

∗) ≤ 0.You should con-
vince yourself that with these preferences and endowments, the markets for
current and future goods are cleared if p∗ implies q2

q1
= y1

y2
so that the relative

price of future goods in terms of current goods is lower the more plentiful
future goods or less plentiful current goods are. Since 1

1+r
= q2

q1
, this means

that interest rates are higher the smaller is current output relative to future
output. In other words, identical (representative) agents would like to borrow
against plentiful future output to smooth consumption if current output is
low; this would drive up the interest rate.

4.8.2 Contractions

Note that while the above theorems proved existence, they said nothing about
uniqueness. The next set of conditions on f provide both.

DeÞnition 304 Let (X, d) be a metric space and f : X → X be a function.
Then f satisÞes a Lipschitz condition if ∃γ > 0 such that d(f(x), f(ex)) ≤
γd(x, ex), ∀x, ex ∈ X. If γ < 1,then f is a contraction mapping (with
modulus γ).

One way to interpret the Lipschitz condition is as a restriction on the
slope of f . That is, ∆y

∆x
= d(f(x),f(ex))

d(x,ex) ≤ γ. Then a contraction is simply a
function whose slope is everywhere less than 1. If f is Lipschitz, then it is
uniformly continuous since we can take δ(ε) = ε

γ
in which case d(x, ex) < δ ⇒

d(f(x), f(ex)) < ε. On the other hand, if f is uniformly continuous, it may
not satisfy the Lipschitz condition as the next example shows.

Example 305 Let f : [0, 1] → R be given by f(x) =
√
x. To see that f is

uniformly continuous, for any ε > 0, let δ(ε) = ε2

2
. Then if |x−y| < δ, we have
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|√x−√y| ≤p2|x− y| <q2 · ε2
2
= ε where the weak inequality follows since¡√

x−√y¢2 = x−2√xy+y ≤ 2 (max{x, y}−min{x, y}) = 2|x−y|. To see
that f is not Lipschitz, suppose so. Then for some γ > 0, |√x−√y| ≤ γ|x−y|
or

|√x−√y|
|x−y| ≤ γ, ∀x, y ∈ [0, 1]. But

|√x−√y|
|x−y| =

|√x−√y|
|√x−√y||√x+√y| =

1
|√x+√y| .

Choose x = 1
(1+γ)2

and y = 0 so x, y ∈ [0, 1]. Then 1
|√x+√y| = 1 + γ which

contradicts
|√x−√y|
|x−y| ≤ γ.

The next result establishes conditions under which there is a unique Þxed
point and provides a result on speed of convergence helpful for computational
work.

Theorem 306 (Contraction Mapping) If (X, d) is a complete metric space
and f : X → X is a contraction with modulus γ,then f has a unique Þxed
point x ∈ X and (ii) for any x0 ∈ X, d(x, fn(x0)) ≤ γn

1−γd(f(x0), x0) where
fn are iterates of f .28

Proof. Choose x0 ∈ X and deÞne < xn >
∞
n=0 by xn+1 = f(xn) so that xn =

fn(x0). Since f is a contraction d(x2, x1) = d(f(x1), f(x0)) ≤ γd(x1, x0).
Continuing by induction,

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ γd(xn, xn−1) ≤ γnd(x1, x0), n = 1, 2, ...
(4.18)

For any m > n,

d(xm, xn) ≤ d(xm, xm−1) + ...+ d(xn+2, xn+1) + d(xn+1, xn) (4.19)
≤ £

γm−1 + ...+ γn+1 + γn
¤
d(x1, x0)

= γn[γm−n−1 + ...+ γ + 1]d(x1, x0)

≤ γn

1− γd(x1, x0)

where the Þrst line uses the triangle inequality and the second uses (4.18). It
follows from (4.19) that < xn > is a Cauchy sequence. Since X is complete,
xn → x. That x is a Þxed point follows since

d(f(x), x) ≤ d(f(x), fn(x0)) + d(f
n(x0), x)

≤ γd(x, fn−1(x0)) + d(fn(x0), x)

28The iterates of f (mappings {fn}), are deÞned as n-fold compositions f0(x) = x,
f1(x) = f(x), f2(x) = f(f1(x)), ..., fn(x) = f(fn−1(x)).
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where the Þrst line uses the triangle inequality and the second simply uses
that f is a contraction. Since γ < 1, (4.18) implies limn→∞ d(x, fn−1(x0)) =
0 = limn→∞ d(fn(x0), x) so that d(f(x), x) = 0 or x is a Þxed point.
To prove uniqueness, suppose to the contrary there exists another Þxed

point x0. Then d(x0, x) = d(f(x0), f(x)) ≤ γd(x0, x) implies γ ≥ 1, contrary
to γ < 1 for a contraction.
Finally, the speed of convergence follows since

d(x, fn(x0)) ≤ d(x, fm(x0)) + d(f
m(x0), f

n(x0))

≤ γn

1− γd(f(x0), x0)

where the Þrst line follows from the triangle inequality and the second from
(4.19) and limm→∞ d(x, fm(x0)) = 0.See Figure 4.8.13.
Sometimes it is useful to establish a unique Þxed point on a given space

X and then apply Theorem 306 again on a smaller space to characterize the
Þxed point more precisely.

Corollary 307 Let (X, d) be a complete metric space and f : X → X be
a contraction with Þxed point x ∈ X. If X 0 is a closed subset of X and
f(X 0) ⊂ X 0, then x ∈ X 0.

Proof. Let x0 ∈ X 0. Then < fn(x0) > is a sequence in X 0 converging to x.
Since X 0 is closed, x ∈ X 0.

4.8.3 Fixed points of correspondences

In considering Þxed points of correspondences we would like to utilize Þxed
point theorems (particularly Brouwer�s Þxed point theorem) of functions.
How can we reduce multiple valued case to the single-valued one? This can
be done by means of selection (i.e. a single-valued function that is selected
from a multiple valued correspondence). Depending on circumstances we
might have extra conditions on these choice functions. For instance, we
might look for a continuous choice function (called continuous selection) or
for a measurable choice function (called measurable selection, which we will
deal with next chapter).

DeÞnition 308 Let Γ : X ³ Y be a correspondence, then the single-valued
function Γ0 : X −→ Y such that Γ0(x) ∈ Γ(x),∀x ∈ X is called a selection.
See Figure 4.8.14.
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The existence of a Þxed point of a function proven by Brouwer requires
continuity. Hence in this section we will deal with the problem of continuous
selection. After proving the existence of a continuous selection, we will use
Brouwer�s Þxed point theorem for functions to show that the selection has a
Þxed point, which is then obviously, a Þxed point for the original correspon-
dence. There are two main results of this subsection, Michael�s continuous
selection theorem and Kakutani�s Þxed point theorem for correspondences.
First we introduce a new notion, a partition of unity, that will be used in

the proof of the selection theorem. Existence of a partition of unity is based
on a well-known result from topology.

Lemma 309 (Urysohn) Let A,B be two disjoint, closed subsets of a metric
space X. Then there exists a continuous function f : X −→ [0, 1] such that
f(x) = 0,∀x ∈ A and f(x) = 1,∀x ∈ B.

For a proof, see Kelley (1957).
To continue we need to introduce the following topological concept.

DeÞnition 310 Let X be a metric space and let {Gi, idΛ} be an open cover
of X. Then a partition of unity subordinate to the cover {Gi} is a
family of continuous real-valued functions ϕi : X −→ [0, 1] such that ϕi(x) =
0,∀x ∈ X\Gi, and such that ∀x ∈ X,

P
iDΛ ϕi(x) = 1.

Example 311 Let X = [0, 1], G1 = [0,
2
3
), G2 = (

1
3
, 1] be an open cover of

[0, 1].Let

ϕ1 =

 1 , 0 ≤ x ≤ 1
3−3 ¡x− 2

3

¢
, 1
3
< x ≤ 2

3

0 , 2
3
< x ≤ 1


ϕ2 =

 0 , 0 ≤ x ≤ 1
3

3
¡
x− 1

3

¢
, 1
3
< x ≤ 2

3

1 , 2
3
< x ≤ 1


See Figure 4.8.15. Then {ϕ1, ϕ2} is partition of unity subordinate to {G1, G2}.

Lemma 312 (Partition of unity) Let X be a metric space and let {G1,
...., Gn} be a Þnite open cover of X. Then there exists a partition of unity
subordinate to this cover.
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Proof. We begin by constructing a new cover {H1, ...,Hn} of X by open sets
such that (i) Hi ⊂ Hi ⊂ Gi for i = 1, 2, ..., n and (ii) {Hi : i ≤ j} ∪ {Gi, i >
j} is a cover for each j. This is done inductively. Let F1 = X\∪ni=2Gi. Then
F1 is closed and F1 ⊂ G1.The sets F1 and X\G1 are closed disjoint subsets
of the metric space X and hence can be separated by two disjoint open sets
(see the separation axioms in Chapter 7), H1 and X −H1. We have

F1 ⊂ H1 ⊂ H1 ⊂ G1.
This satisÞes (ii) for j = 1.Now suppose H1,H2, ...,Hk−1 have been con-
structed. Then since {Hi : i ≤ k − 1} ∪ {Gi : i > k − 1} is a cover for X,
Fk = X\(

¡∪k=1i=1Hi
¢ ∪ ¡∪ni=k+1Gi¢) ⊂ Gk. Again by separating Fk and X\Gk

we get Hk such that Fk ⊂ Hk ⊂ Hk ⊂ Gk. Clearly the collection {H1, ..., Hk}
satisÞes (ii) with j = k. By Urysohn�s lemma 309we can construct real-valued
functions ψi on X such that ψi(x) = 0 if x ∈ X\Gi and ψi(x) = 1 if x ∈ Hi
and 0 ≤ ψi ≤ 1. Finally, let

ϕi(x) =
ψi(x)

(Σnj=1ψj(x))
.

Since the collection {Hi, i = 1, 2, ...., n} is a cover, we have
Pn

j=1 ψj (x) 6= 0
for each x and hence ϕi (x) is well-deÞned. {ϕi}ni=1 is the partition of unity
subordinate to cover {Gi}ni=1 .

Theorem 313 (Michael) Let X be a metric space and Y be a Banach
space, Γ : X ³ Y be lhc and Γ (x) closed and convex for every x ∈ X.
Then Γ admits a continuous selection.

Proof. We prove the theorem under a stronger assumption, that X is a
compact metric space, than is necessary.29 We Þrst show that for each pos-
itive real number β there exists a continuous function fβ : X −→ Y such
that fβ (x) ∈ β + Γ (x) for each x ∈ X. The desired selection will then be
constructed as a limit of a suitable Cauchy sequence in such functions (that�s
why we need Y to be a complete normed vector space). For each y ∈ Y ,
let Uy = Γ

−1 (Bβ (y)) where Bβ (y) is an open ball around y of diameter β.
Since Γ is lhc and Bβ (y) is open in Y , Uy is open in X. The collection

29To prove the more general version we would need to use the concept of paracom-
pactness which goes beyond the scope of this book. For the more general result, see
Aubin-Frankowska (1990).
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{Uy, y ∈ Y } is then an open cover of X. Since X is compact there exists a
Þnite subcollection {Uyi, i = 1, ....., n, yi ∈ Y } which by Lemma 312 (requir-
ing a Þnite collection) has a partition of unity {πi, i = 1, ..., n} subordinate
to Uy. Let fβ be deÞned by fβ (x) =

Pn
i=1 πi (x) yi , where yi is chosen in

such a way that πi = 0 in X\Uyi. Since fβ (x) is the sum of Þnitely many
continuous functions it is a continuous function from X to Y. fβ is a convex
combination of those points yi for which πi (x) 6= 0. But πi (x) 6= 0 only if
xdUyi. Thus Γ (x) ∩ Bβ (yi) 6= ∅ and so yi ∈ β + Γ (x) . Thus fβ is a convex
combination of points yi which lie in the convex set β + Γ (x) and so fβ is
also in that set (i.e. fβ ∈ β + Γ (x)).
Next we construct a sequence of such functions fi to satisfy the following

two conditions:

fi (x) ∈ 1

2i−2
+ fi−1 (x) , i = 2, 3, 4, ..... (4.20)

fi (x) ∈ 1

2i
+ Γ (x) , i = 1, 2, 3, ..... (4.21)

For f1 we take the function fβ already constructed with β =
1
2
. Suppose

that f1, f2, .......fn have already been constructed. Let Γn+1 (x) = Γ (x) ∩¡
1
2n
+ fn (x)

¢
. Then since fn (x) satisÞes condition (4.21), Γn+1 (x) is non-

empty and being the intersection of two convex sets is convex. Moreover
Γn+1 (x) is lhc (see Lemma 293). Therefore by the Þrst part of the proof and
with β = 1

2n+1
, there exists a function fn+1 with the property that fn+1 (x) ∈

1
2n+1

+ Γn+1 (x) . Since Γn+1 (x) ⊂ Γ (x) , we have fn+1 (x) ∈ 1
2n+1

+ Γ (x) so
that condition (4.21) is satisÞed. Furthermore, since Γn+1 (x) ⊂ 1

2n
+ fn (x)

we have fn+1 (x) ∈
¡
1
2n
+ 1

2n+1

¢
+ fn (x) ⊂ 1

2n−1 + fn (x) which means that
condition (4.20) is satisÞed. We constructed the sequence hfi, i ∈ Ni of func-
tions for which kfn+1 (x)− fn (x)kY < 1

2n+1
for all n and all x. Therefore

supxDX kfm (x)− fn (x)kY < 1
2n−2 for all m,n with m > n. Thus the sequencehfii is a Cauchy sequence in the space of bounded continuous functions from

X to Y which is complete because Y is complete (which we will see in Theo-
rem 452 in Chapter 6). Then there exists a continuous function f : X −→ Y
such that hfii −→ f (with respect to the sup norm). Since (4.21) states that
kfn (x)− Γ (x)k < 1

2n
for all n, it follows that the limit function f has the

property that f (x) ∈ Γ (x) (the closure of Γ). By assumption that Γ (x) is
closed we have f (x) ∈ Γ (x) since Γ (x) = Γ (x) .
Note that a correspondence that is uhc does not guarantee a continuous

selection. See Example 272.
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Combining Brouwer�s Þxed point theorem 302 with Michael�s selection
theorem 313 we immediately get the existence of a Þxed point for lhc corre-
spondences.

Corollary 314 Let K be a non-empty, compact, convex subset of a Þnite
demensional space Rm and let Γ : K ³ K be a lhc, closed, convex valued
correspondence. Then Γhas a Þxed point.

Kakutanis theorem is usually stated with the condition that the corre-
spondence Γ be uhc and closed valued. However, since we are dealing with
a compact set K , by Theorems 285 and 287, uhc together with the closed
valued property are equivalent to having a closed graph. It seems that this
condition is somewhat easier to check.
In order to make the switch from uhc (or equivalently from closedness of

graph) to lhc, we use the following lemma.

Lemma 315 Let X and Y be compact subsets of a Þnite dimensional normed
vector space Rm and let Γ : X ³ Y be a convex-valued correspondence
which has a closed graph (or equivalently is closed-valued and uhc). Then
given β > 0 , there exists a lhc, convex-valued correspondence F : X ³ Y
such that Gr (F ) ⊂ β +Gr(Γ).

Proof. Consider Þrst the new correspondences bFε deÞned for all ε > 0 bybFε (x) = ∪bx∈X,kx−bxk<εΓ (bx) . To see that bFε is lhc at x0,consider an open set
G such that bFε (x0)∩G 6= ∅. Then there exists bx ∈ X with kbx− x0k < ε and
Γ (bx)∩G 6= ∅. If µ is sufficiently small (µ < ε− kbx− x0k) and if kx0 − xk < µ,
then kbx− xk < ε, and so bFε (x) ∩ G 6= ∅ because Γ (bx) ⊂ bFε (x) . Thus bFε
is lhc at an arbitrary x0dX and hence lhc on X. It follows from Lemma 292
that Fε = co( bFε) is also lhc. Since Fε is certainly convex-valued the proof
is Þnished by showing that Gr (Fε) ⊂ β + Gr(Γ) if ε is sufficiently small.

Suppose that it is not so. That is, for some β > 0 and all n ∈ N , Gr
³
F 1
n

´
is not contained in β +Gr (Γ) . Then there exists a sequence h(xn, yn) , ndNi
in X × Y such that (xn, yn) ∈ Gr

³
F 1
n

´
but d ((xn, yn) , Gr (Γ)) ≥ β. To

say that (xn, yn) ∈ Gr
³
F 1
n

´
means that yn =

Pm+1
i=1 λn,iyn,i with λn,i ≥ 0

,
Pm+1

i=1 λn,i = 1, and yn,idΓ (bxn,i) where kbxn,i − xnk < 1
n
. Here we used

Caratheodory�s theorem 226 saying that in Rm if yn is a convex combination
of certain points, it can always be expressed as a convex combination of
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different ( (m+ 1) points). Since X and Y are compact and λn,id [0, 1] (which
is also compact) all the above sequences contain subsequences (we will use the
same indexes for subsequences) that converge, that is hxni → x, hyni → y ,
hλn,ii→ λi and hbxn,ii→ bxi. Since kbxn,i − xnk < 1

n
, bxi = x, for i = 1, ...,m+1.

We also have that
Pm+1

i=1 λi = 1 and yn =
Pm+1

i=1 λn,iyn,i →
Pm+1

i=1 λiyi =

y. Now (bxn,i, yn,i) ∈ Gr (Γ) and so (bxi, yi) = (x, yi) ∈ Gr (Γ) = Gr (Γ)
(since Gr (Γ) is closed). Thus yi ∈ Γ (x) and, since Γ (x) is convex, y ∈
Γ (x) (being a convex combination of yi ). Hence (x, y) dGr (Γ) . But since
d ((xn, yn) , Gr(Γ)) ≥ β for all n, this is not possible. This contradiction
completes the proof.

Corollary 316 In Lemma 315 we may also take F to be closed-valued.

Proof. Let F = F ε for sufficiently small ε. Then by lemma 291, F is
lhc. It is of course still convex-valued and if Gr (Fε) ⊂ β

2
+ Gr (Γ) , then

Gr (F ) ⊂ β +Gr (Γ) .

Theorem 317 (Kakutani) Let K be a non-empty, compact, convex subset
of Þnite-dimensional space Rm and let Γ : K ³ K be a closed, convex
valued, uhc correspondence (or convex valued with closed graph). Then Γ has
a Þxed point.

Proof. By lemma 315 and corollary 316, for each n ∈ N there exists a lhc
correspondence Fn : K ³ K such that Gr (Fn) ⊂ 1

n
+ Gr (Γ) and Fn has

values which are closed and convex. Then by Michael�s selection theorem
313, there is a continuous selection fn for Fn. The function fn is continous
mapping of K into itself and so, by Brouwer Þxed point theorem 302, there
exists xndK with fn (xn) = xn. The compactness ofK means that there exists
a convergent subsequence of the sequence hxni such that


xg(n)

®→ x∗. Since
(xn, xn) ∈ Gr (Fn) ⊂ 1

n
+Gr (Γ) , it follows that (x∗, x∗) ∈ Gr (Γ) = Gr(Γ).

Thus x∗ ∈ Γ (x∗) is a Þxed point of Γ.
We now use an example to illustrate an important result due to Nash

(1950). Nash�s result says that every Þnite strategic form game has a mixed
strategy equilibrium.

Example 318 Reconsider the Þnite action coordination game in Example
282. We say that the mixed strategy proÞle (p∗, q∗) is a Nash Equilibrium
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if π1(p
∗, q∗) ≥ π1(p, q∗) and π2(p∗, q∗) ≥ π2(p∗, q), ∀p, q ∈ [0, 1]. In Example

282, we showed

p∗(q) =

 0 if q < 1
2

[0, 1] if q = 1
2

1 if q > 1
2

and q∗(p) =

 0 if p < 1
2

[0, 1] if p = 1
2

1 if p > 1
2

.

Given that the two agents are symmetric, to prove that the above game has
a mixed strategy equilibrium, it is sufficient to show that p∗ : [0, 1] ³ [0, 1]
has a Þxed point p ∈ p∗(p). From Kakutani�s theorem, it is sufficient to check
that p∗(p) is a non-empty, convex-valued, uhc correspondence all of which
was shown in Example 282. See Figure 4.8.16.

Exercise 4.8.2 Using Kakutani�s theorem, prove Nash�s result generally.
See Fudenberg and Tirole p.29.

4.9 Appendix - Proofs in Chapter 4

Proof of Caratheodory Theorem 226. . x ∈ co(X) implies x =Pm
i=1 λixi, (x1, ..., xm) ∈ X, λi > 0 ∀i, and Pm

i=1 λi = 1 by Theorem ??.
Suppose m ≥ n+ 2. Then the vectors·

x1
1

¸
,

·
x2
1

¸
, ...,

·
xm
1

¸
∈ Rn+1

are linearly dependent. Hence there exist µ1, ..., µm, not all zero, such that

mX
i=1

µi

·
xi
1

¸
= 0

(i.e.
mX
i=1

µixi = 0 and
mX
i=1

µi1 = 0). Let µj > 0 for some j, 1 ≤ j ≤

m. DeÞne α =
λj
µj
= min

n
λi
µi
: µi 6= 0

o
so that λj − αµj = 0.If we deÞne

θi ≡ λi − αµi,then θj = 0,
mX
i=1

θi =
mX
i=1

λi − α
mX
i=1

µi = 1 − α0 = 1, and

mX
i=1

θixi =
mX
i=1

λixi − α
mX
i=1

µixi =
mX
i=1

λixi = x. Hence we expressed x as a
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convex combination of m− 1 points of X with θj = 0 for some j, reducing it
from m points. If m− 1 > n+1, then the process can be repeated until x is
expressed as a convex combination of n+ 1 points of X.
Proof of Theorem 248.. (i ⇒ ii) Let a ∈ f−1(V ). Then ∃y ∈ V such
that f(a) = y. Since V is open, then ∃ε > 0 such that Bε(y) ⊂ V . Since f is
continuous for this ε, ∃δ(ε, a) > 0 such that ∀x ∈ X with dX(x, a) < δ(ε, a)
we have dY (f(x), f(a)) < ε. Hence f(Bδ(a)) ⊂ Bε(f(a)) or equivalently
Bδ(a) ⊂ f−1(Bε(f(a))) ⊂ f−1(V ).
(ii⇒ iii) Let < xn >→ x. Take any open ε-ball Bε(f(x)) ⊂ V. Then x ∈

f−1(Bε(f(x))) and f−1(Bε(f(x))) is open (by assumption ii). Now ∃δ > 0
such that Bδ(x) ⊂ f−1(Bε(f(x))). Since < xn >→ x,∃N such that n ≥ N ,
xn ∈ Bδ(x) ⊂ f−1(Bε(f(x))). Hence f(xn) ∈ Bε(f(x)) ∀n ≥ N so f(xn) →
f(x). See Figure 4.6.5.
(iii⇒ i) It is sufficient to prove the contrapositive. Thus, suppose ∃ε > 0

such that ∀δ = 1
n
, ∃xn such that dX(xn, x) < 1

n
and dY (f(xn)), f(x)) ≥ ε.

Thus we have a sequence < xn >→ x but none of the elements of < f(xn) >
is in an ε-ball around f(x)). Hence < f(xn) > doesn�t converge to f(x).

30

Proof of Theorem 268.. In the Þrst step, for a given ε > 0,we construct
δ that depends only on ε. Thus, take ε > 0. Since f is continuous on X,
then for any x ∈ X there is a number δ(1

2
ε, x) > 0 such that if x0 ∈ X and

d(x, x0) < δ(1
2
ε, x), then dY (f(x)), f(x

0)) < 1
2
ε. The collection of open balls

G ={Bδ( 1
2
ε,x)(x), x ∈ X} is an open covering of X. Since X is compact there

exists a Þnite subcollection, say {B(x1), ...B(xn)} of these balls that covers
X. Then deÞne δ(ε) = 1

2
min{δ(1

2
ε, x1), ...., δ(

1
2
ε, xn)} which is obviously

independent of x.
In the second step, we use the δ(ε) constructed above to establish uni-

form continuity. Suppose that x, x0 ∈ X and dX(x
0, x) < δ(ε). Because

{B(x1), ...B(xn)} covers X, x ∈ B(xk) for some k. That is

dX(x, xk) <
1

2
δ(
1

2
ε, xk). (4.22)

By the triangle inequality it follows that

dX(x
0, xk) ≤ dX(x0, x) + dX(x, xk) ≤ 2δ(ε) ≤ δ(1

2
ε, xk). (4.23)

30Munkres p.127 Th10.1, sequences see Munkres p. 128, Th 10.3.
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Then (4.22) and continuity of f at xk imply dY (f(x)), f(xk)) <
1
2
ε, while

(4.23) and continuity of f at xk imply dY (f(x
0)), f(xk)) < 1

2
ε. Again by the

triangle inequality it follows that

dY (f(x)), f(x
0)) ≤ dY (f(x)), f(xk)) + dY (f(x0)), f(xk)) < 1

2
ε+

1

2
ε = ε.

Thus, we have shown that if x, x0 ∈ X for which dX(x
0, x) < δ(ε), then

dY (f(x)), f(x
0)) < ε.

Proof of Brouwer�s Fixed Point Theorem 302. (in R2 ). Let f : S −→
S be continuous, where S is a Þxed nondegenerate simplex with vertices
v0, v1, v2. x∗ = f (x∗) implies that

α∗i = β
∗
i , i = 0, 1, 2 (4.24)

where α∗i and β
∗
i = fi (x

∗) are barycentric coordinates of x∗ and f(x∗). See
Figure 4.8.4. In the case of barycentric coordinates, instead of equality (4.24)
it suffices to show the following inequalities.

α∗i ≥ β∗i , i = 0, 1, 2 (4.25)

(4.24) and (4.25) are equivalent because α∗i ≥ 0, β∗i ≥ 0 and
P2

i=0 α
∗
i = 1 =P2

i=0 β
∗
i . To see this, note that

α0 ≥ β0 ≥ 0,
α1 ≥ β1 ≥ 0,
α2 ≥ β2 ≥ 0,

α0 + α1 + α2 = β0 + β1 + β2 (= 1) ,

and (α0 − β0) + (α1 − β1) + (α2 − β2) = 0

implies α0 = β0, α1 = β1, α2 = β2.

Let y = f (x) . If y 6= x, then some coordinates βi 6= αi. Therefore, sinceP
αi =

P
βi we must have both some αk > βk and some αi < βi. Focus

on the Þrst inequality, αk > βk ; this cannot occur when αk = 0.In other
words this cannot occur on the boundary segment opposite vertex vk (see the
calculations in Example 228). For example, on the boundary line segment
joining v0 and v1 opposite v2 (we will denote this line segment (v0, v1), the
inequality α2 > β2 cannot occur because α2 = 0 for all these points but
0 > β2 ≥ 0 is false. See Figure 4.8.5.
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Now we introduce an indexing scheme for points in the simplex as follows.
Given functions y = f (x) (f : S −→ S) , for each x ∈ S such that x 6= y =
f (x) we have seen that xi > yi for some i. Now deÞne I (x) as the smallest
such i (that is, I (x) = min {i : αi > βi}). Hence I (x) can obtain values
0, 1, 2 (in our case for R2). These values depend on the function y = f (x) of
course but on the boundary, we know that I (x) is restricted. For example
on the boundary (v0, v1) where α2 = 0 we can�t have α2 > β2 so that I (x)
can�t obtain 2. Thus I (x) = 0 or 1 on the line segment (v0, v1). In general,
I(x) satisÞes the same set of restrictions as I(x) in (4.3) in Section 4.5.2 and
hence we can use the results of Sperner�s Lemma 229.

Why are we doing this? We are looking for a Þxed point of y = f (x) .
That is a point x whose barycentric coordinates satisfy all the inequalities
α0 ≥ β0, α1 ≥ β1, α2 ≥ β2.To do so, for m = 2, 3, 4, ..., we form the mth
barycentric subdivision of our simplex S. For example, see Figure 4.8.7 for
m = 2.The vertices in the subdivision are points z = 1

2
(µ0, µ1, µ2) where the

µi are integers (and
µi
2
, i = 0, 1, 2 are barycentric coordinates with respect

to the mth subdivision) with all µi ≥ 0 and
P2

j=0 µj = 2. In general for the

m− th subdivision, the vertices are the points x = 1
m
(µ0, µ1, µ2) . Where µi

are integers satisfying all µi ≥ 0 ,
P2

i=0 µi = m. We will call a little shaded
triangle a cell. The original simplex is the whole body. For m = 5 we see 25
cells in Figure 4.8.8. Each cell is small; the diameter of each cell is 1

5
of the

diameter of the body. In general, in the m− th subdivision of a simplex, the
number of cells m2 tends to inÞnity as m −→ ∞ and the diameter of each
cell tends to zero. If ∆ is the diameter of the body, then the diameter of
each cell is ∆

m
.

We are given a continuous function y = f (x) that maps the simplex into
itself. We assume that f (x) has no Þxed point and we show that this leads
to contradiction. Since we assume x 6= y = f (x) (i.e. no Þxed point) we
may use the indexing function I (x) for each point x ∈ S. The index takes
one of the values 0, 1, 2 at each point of the body and on the boundary of
the simplex. The index satisÞes the restrictions (??). For example in Figure
4.8.9 there are 21 vertices. Label each vertex x with an index I (x) = 0, 1, 2
arbitrarily except that this indexing has to obey the restrictions (??) on the
boundary. That means you must use I = 0 or 1 on the bottom side, I = 0
or 2 on the left and I = 1 or 2 on the right. Also I = 0 at v0, I = 1 at v1
and I = 2 at v2 . This leaves 6 interior vertices, each to be labeled arbitralily
0, 1, or 2. Try to label these vertices such that none of the 25 cells has all the
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labels 0, 1, 2. No matter how hard you try, at least one of the cells must have
a complete set of labels. This is guaranteed by Sperner�s Lemma 229 which
follows immediately after this proof. In particular, the lemma guarantees
that for any m, in the m-th subdivision there is a cell with a complete set of
labels, say

I = 0 at the vertex x0 (m) (4.26)

I = 1 at the vertex x1 (m)

I = 2 at the vertex x2 (m)

What does this mean for the function y = f (x)? If I = j then for barycentric
coordinates of the points x and y we have αj > βj. Therefore, (4.26) implies

α0 > β0 at x
0 (m) (4.27)

α1 > β1 at x
1 (m)

α2 > β2 at x
2 (m)

If m is large all the vertices of the cell are close to each other, since the
diameter of the cell is ∆

m
. Therefore

max
0≤i<j≤2

¯̄
xi (m)− xj (m)¯̄ = ∆

m
−→ 0 as m −→∞. (4.28)

As m → ∞, what can be said about the vertices (say x0 (m))? This vertex
might move unpredictably through the simplex in some bounded inÞnite
sequence. See Figure 4.8.10. Since S is compact, by the Bolzano-Weierstrass
Theorem 180 this sequence contains a subsequence that has a limit, say
x0 (ms)→ x∗ as s→∞. The limit point x∗ ∈ S because S is closed.
But because of the closeness of the vertices, (4.28) implies that all tend

to x∗ as ms → ∞. xp (ms) → x∗ as s → ∞, p = 0, 1, 2. Now the continuity
of f (x) implies f (xp (ms)) → f (x∗) = y∗ as s → ∞, p = 0, 1, 2. But the
barycentric coordinates of a point x depend continuously on x. Therefore, if
we let m = ms →∞ in (4.27) we obtain the limiting inequalities

α0 ≥ β0 at the limit x
∗ ⇐⇒ α∗0 ≥ β∗0 = f0 (x∗)

α1 ≥ β1 at the limit x
∗ ⇐⇒ α∗1 ≥ β∗1 = f1 (x∗)

α2 ≥ β2 at the limit x
∗ ⇐⇒ α∗2 ≥ β∗2 = f2 (x∗)

But we know by (4.25) that these inequalities imply equalities, thus x∗ =
y∗ = f (x∗) .
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Proof. Figures for Sections ?? to 4.8
Figure ??.1: Open Sets

Figure ??.2: Sup Balls and Open Neighborhoods
Figure ??.3: (0, 1) vs (0, 1]

Figure ??.4: {(x, y)|0 < x < 1, y = 2}
Figure ??.5: Closure and Boundary Points

Figure 4.1.1: On Cluster points and the Limit of < (−1)n >
Figure 4.1.2: On the Limit of <

¡
1
n

¢
>

Figure 4.1.3: On the Limit of <
¡
x
n

¢
>

Figure 4.1.4: On the Limit of < xn >
Figure 4.3.1: Construction of (⇒)H closed.

Figure 4.3.2: Compactness for General Metric Spaces.
Figure 4.4.1: A disconnected set

Figure 4.6.1: Pointwise continuity in R
See Figure 4.7.1: Lower Hemicontinuity
See Figure 4.7.2: Upper Hemicontinuity

See Figure 4.7.3: Best Response Correspondence
See Figure 4.7.4: Budget Sets with p = 0 and p > 0

See Figure 4.7.5: Demand Correspondence with Linear Preferences
Figure 4.8.1: Tarski�s Fixed Point Theorem in [a, b]
Figure 4.8.2: Brouwer�s Fixed Point Theorem in [a, b]

Figure 4.8.3: Fixed Point of a Contraction Mapping in [a, b]
Figure 4.8.4: Kakutani�s Fixed Point Theorem in [a, b]

Figure 4.8.5: Existence of Nash Equilibria
Figure 4.5.1: Open Sets
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4.10 Bibilography for Chapter 4

Sections ?? to are based on Royden (Chapters 2 and 7) and Bartle (Sections
9,14-16). Section 4.2 is based on Royden (Chapter 7, Section 4) and Munkres
(Chapter 7, Section 1). Section 4.3 is based on Munkres (Chapter 3, Sections
5 and 7, Chapter 7, Section 3), Royden (Chapter 7, Section 7), and Bartle
(Chapter 11). Section 4.6 is based on Munkres (Chapter 3, ). Section 4.5 is
from Bartle (Sec 8).
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4.11 End of Chapter Problems

1) The next results (from DeÞnition 319 to Theorem 164) require a total
ordering of a set X, so we restrict X to be R.

DeÞnition 319 Let < xn > be a bounded sequence in R. The limit su-
perior of < xn >, denoted lim supxn or limxn, is given by infn supk≥n xk.
The limit inferior of < xn >, denoted lim inf xn or limxn, is given by
supn infk≥n xk.

That is, l ∈ R is the limit superior of < xn > iff given ε > 0, there are
at most a Þnite number n ∈ N such that l+ ε < xn but there are an inÞnite
number such that l− ε < xn.The limit superior is just the maximum cluster
point and the limit inferior is just the minimum cluster point.

Example 320 Recall Example 141 where we considered the sequence < (−1)n >
which had two cluster points. There, lim inf xn = −1 and lim supxn = 1.
To see why the limit inferior is −1, consider: n = 1 has infk≥1 xk = −1,
n = 2 has infk≥2 xk = −1; and any given n has infk≥n xk = −1.But then the
sup{−1,−1, ...} is just −1.

Theorem 321 Let < xn > be a bounded sequnce of real numbers. Then
limxn exists iff lim inf xn = lim supxn = limxn.

Exercise 4.11.1 Prove Theorem 321.

While Theorem 321 hinges on the fact that R is totally ordered, a similar
result holds for any totally ordered set.

Example 322 Recall Example 137 where we considered the sequence <
¡
1
n

¢
>

. It is simple to see that it has a cluster point at 0 since any open ball
around 0 of size δ has an inÞnite number of elements in the sequence past
N(δ) = w(1

δ
) + 1 contained in it. Furthermore, lim inf xn = 0 = lim supxn.

To see why the limit superior is 0, consider: n = 1 has supk≥1 = 1, n = 2 has
supxk =

1
2
; and any given n has supxk =

1
n
.But then the inf{1, 1

2
, ..., 1

n
, 1
n+1
, ...}

is just 0.
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Example 323 Consider

(−1)n + 1

n

®
n∈N . Then < xn >=

−2, 3
2
,−2

3
, 5
4
,−4

5
, 7
6
, ...
®
.

See Figure 4.1.5. The cluster points of < xn > are −1 and 1, which are also
the limit inferior and limit superior, respectively. Notice that the subsequence
of odd numbered indices hx2k−1i =


(−1)2k−1 + 1

2k−1
®∞
k=1

=
−2,−2

3
,−4

5
, ...
®

→ −1 and the subsequence of even numbered indices hx2ki =

(−1)2k + 1

2k

®∞
k=1

=
3
2
, 5
4
, 7
6
, ...
® → 1.

Note that while a limit point is unique, we saw in Example 141 that a
sequence can have many cluster points. In that case, the smallest cluster
point is called the limit inferior and the largest cluster point is called the
limit superior.
2) We provide another useful criterion in R to establish convergence,

which is true only because R is totally ordered and complete.

Theorem 324 (Monotone Convergence) Let < xn > be a monotone in-
creasing sequence (i.e. x1 ≤ x2 ≤ ... ≤ xi ≤ xi+1 ≤ ....) in the metric space
(R, | · |).31 Then < xn > converges iff it is bounded and its limit is given by
limxn = sup{xn|n ∈ N}.
Proof. (⇒) Boundedness follows by Lemma 164, so all we must show is x =
sup{xn}. Convergence implies x− δ < xn < x+ δ, ∀n ≥ N(δ) by deÞnition
136. As a property of the supremum, we know that if xn < yn,∀n ∈ N,
then supxn ≤ sup yn,∀n ∈ N. This implies x − δ ≤ sup{xn} ≤ x + δ or
| sup{xn}− x| ≤ δ.
(⇐) If < xn > is a bounded, monotone increasing sequence of real

numbers, then by the Completeness Axiom 3.3 its supremum exists (call
it x0 = sup{xn}). Since x0 is a sup, x0 − δ is not an ub and ∃K(δ) ∈ N such
that x0 − δ < xK(δ) for any δ > 0.32 Since < xn > is monotone, x0 − δ <
xn ≤ x0 < x0 + δ, ∀n ≥ K(δ) or |xn − x0| < δ.
Example 325 Re-consider Example 137 where < 1

n
>n∈N . It is clear that

this sequence is monotone decreasing with inÞmum 0, which is also its limit.

Exercise 4.11.2 Consider the sequence f : N→ R given by < (1+ 1
n
)n >n∈N

.Show that this sequence is increasing and bounded above so that by the Mono-
tone Convergence Theorem 324, the sequence converges in (R, | · |).
31That is, x1 ≤ x2 ≤ ... ≤ xi ≤ xi+1 ≤ ....
32Existence of this index follows from property (ii) in the footnote to deÞnition ?? of a

supremum.
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3)

Exercise 4.11.3 Let (X, d) be totally bounded. Show that X is separable.
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Chapter 5

Measure Spaces

Many problems in economics lend themselves to analysis in function spaces.
For example, in dynamic programming we deÞne an operator that maps
functions to functions. As in the case of metric spaces, we need some way to
measure distance between the elements in the function space. Since function
spaces are deÞned on uncountably inÞnite dimensional sets, the distance
measure involves integration.1 In this chapter we will focus primarily on
Lebesgue integration. Since Lebesgue integration can be applied to a more
general class of functions than the more standard Riemann approach, this
will allow us to consider, for example, successive approximations to a broader
class of functional equations in dynamic programming.

To understand Lebesgue integration we focus on measure spaces. This
has the added beneÞt of introducing us to the building blocks of probability
theory. In probability theory, we start with a given underlying set X and
assign a probability (just a real valued function) to subsets of X. For in-
stance, if the experiment is a coin toss, then X = {H,T} and the set of all
possible subsets is given by P(X) = {∅, {H}, {T},X} described in DeÞnition
9. Then we assign zero probability to the event where the ßip of the coin
results in neither an H nor a T (i.e. µ(∅) = 0), we assign probability one
to the event where the ßip results in either H or T (i.e. µ(X) = 1), and we
assign probability 1

2
to the event where the ßip of the fair coin results in H

(i.e. µ(H) = 1
2
).

1In Section 4.5, we saw that in the (Ip) space of (countably) inÞnite sequences, the dis-

tance measure involved countable sums; that is, d(< xn >,< yn >) = (
P∞
n=1(xn − yn)p)

1
p .

Integration is just the uncountable analogue of summation.

149
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One of the important results we show in this Chapter is that the collec-
tion of Lebesgue measurable sets is a σ-algebra in Theorem 341 and that
the collection of Borel sets is a subset of the Lebesgue measurable sets in
Theorem 346. Then we introduce the concept of measurability of a function
and a correspondence and deÞne the Lebesgue integral of measurable func-
tions. Then we provide a set of convergence theorems for the existence of a
Lebesgue integral which are applicable under different conditions. These are
the Bounded Convergence Theorem 386, Fatou�s Lemma 393, the Monotone
Converge Theorem 396, the Lebesgue Dominated Convergence Theorem 404,
and Levi�s Theorem 407. Essentially these provide conditions under which
a limit can be interchanged with an integral. Then we introduce general
and signed measures. Here we have two important results, namely the Hahn
Decomposition Theorem 427 of a measurable space with respect to a signed
measure and the Radon-Nikodyn Theorem 434 where a signed measure can
be respresented simply by an integral. The chapter is concluded by introduc-
ing an example of a function space (which is the subject of the next chapter
6). In particular, we focus on the space of integrable functions, denoted L1,
and prove it is complete in Theorem 443.

5.1 Lebesgue Measure

Before embarking on the general deÞnition of a measure space, in the context
of a simple set X = R we will introduce the notion of length (again just a
real-valued function deÞned on a subset of R), describe desireable properties
of a measure space, and describe a simple measure related to length.

DeÞnition 326 A set function associates an extended real number to each
set in some collection of sets. In R, the length l(I) of an interval I ⊂ R
is the difference of the endpoints of I.2 Thus, in the case of the set function
length, the domain is the collection of all intervals.

We would like to extend the notion of length to more complicated sets
than intervals. For instance, we could deÞne the �length� of an open set to
be the sum of the lengths of open intervals of which it is composed. Since the
collection of open sets is quite restrictive, we would like to construct a set

2That is l(I) = b−a with a, b ∈ R∪{−∞,∞}, a < b, and I = [a, b], (a, b), [a, b), (−∞, b],
etc.
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function f that assigns to each set E in the collection P(R) a non-negative
extended real number fE called the measure of E (i.e. f : P(R)→R+∪{∞}).

Remark 1 The �ideal� properties of the set function f : P(R)→R+ ∪ {∞}
are: (i) fE is deÞned for every set E ⊂ R; (ii) for an interval I, fI = l(I);
(iii) f is countably additive; that is, if {En}n∈N is a collection of disjoint sets
(for which f is deÞned), f(∪En∈N) =

P
n∈N fEn; and (iv) f is translation

invariant; that is, if E is a set for which f is deÞned and if E + y is the set
{x + y : x ∈ E} obtained by replacing each point x ∈ E by the point x + y,
then f(E + y) = fE.3

Unfortunately, it is impossible to construct a set function having all four
of the properties in Remark 1. As a result at least one of these four properties
must be weakened.

� Following Henri Lebesgue, it is most useful to retain the last three
properties (ii)-(iv) and to weaken the property in (i) so that fE need
not be deÞned on P(R).

� It is also possible to weaken (iii) by replacing it with Þnite addi-
tivity (i.e., require that for each Þnite collection {En}Nn=1, we have
f(∪ENn=1) =

PN
n=1 fEn).

5.1.1 Outer measure

Another possibility is to retain (i),(ii),(iv), and weaken (iii) in Remark 1 to
allow countable subadditivity (i.e., f(∪En∈N) ≤

P
n∈N fEn). A set function

which satisÞes this is called the outer measure.

DeÞnition 327 For each set A ⊂ R, let {In}n∈N denote a countable collec-
tion of open intervals that covers A (i.e. collections such that A ⊂ ∪n∈NIn)
and for each such collection consider

P
n∈N l(In). The outer measure m

∗ :
P(R)→R+ ∪ {∞} is given by

m∗(A) = inf
{In}n∈N

(X
n∈N

l(In) : A ⊂ ∪n∈NIn
)
.

3For instance, translation invariance simply says the length of a unit interval starting
at 0 should be the same as a unit interval starting at 3.
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Thus, the outer measure is the least overestimate of the length of a given
set A. The outer measure is well deÞned since each element of P(R) (i.e.
subset A ⊂ R) can be covered by a countable collection of open intervals
which follows from Theorem 108. We establish the properties of the outer
measure in the next series of theorems.

Theorem 328 (i) m∗(A) ≥ 0. (ii) m∗(∅) = 0. (iii) If A ⊂ B, then m∗(A) ≤
m∗(B) (i.e. monotonicity). (iv) m∗(A) = 0 for every singleton set A. (v)
m∗ is translation invariant.

Exercise 5.1.1 Prove Theorem 328. Theorem 2.2, p. 56 of Jain and Gupta.

The next theorem shows that we can extend the notion of length that is
deÞned for any subset of R.

Theorem 329 The outer measure of an interval is its length.

Proof. (Sketch) Let {In} be an open covering of [a, b]. Then by the Heine-
Borel Theorem 194 there is a Þnite subcollection of intervals that also covers
[a, b]. Arrange them such that their left endpoints form an increasing sequence
a1 < a2 < ... < an. See Figure 5.1.1. Since [a, b]is connected, intervals must
overlap which means that ∪Ni=1(ai, bi) = (a1, bk) for some k with 1 ≤ k ≤ N
and [a, b] ⊂ (a1, bk). Thus b− a ≤ (bk − a1) ≤

P∞
n=1
!(In).

DeÞnition 330 Let {An} be a countable collection of sets with An ⊂ R. We
say m∗ is countably subadditive if m∗ (∪n∈NAn) ≤

P
n∈Nm

∗An.

Theorem 331 Let {An} be a countable collection of sets with An ⊂ R. Then
m∗ is countably subadditive.

Proof. (Sketch) By the inÞmum property, for a given ε > 0, there is a
countable collection of intervals {Ink }k∈N covering An (i.e. An ⊂ ∪k∈NInk )
such that

P
k∈N l(I

n
k ) ≤ m∗(An) + ε

2n
. Notice that ∪n∈NAn must be covered

by ∪n∈N (∪k∈NInk ) which is a countable union of countable sets and hence
countable. By monotonicity of m∗ we have

m∗ (∪n∈NAn) ≤
X
n∈N

m∗(An) + ε
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since
P∞

n=1
ε
2n
= ε. Subadditivity follows since ε ≥ 0 was arbitrary and we

can let ε→ 0.
There are also two important corollaries that follow from Theorem 331.

The Þrst important point is that there are unbounded sets with with Þnite
outer measure.

Corollary 332 If A is a countable set, then m∗(A) = 0.

Proof. Since A is countable, it can be expressed as {a1, a2, ..., an, ...}. Given
ε > 0, we can enclose each an in an open interval In with l(In) =

ε
2n
to get

m∗(A) ≤
X
n∈N

l(In) =
X
n∈N

ε

2n
= ε.

The result follows as we let ε→ 0.
One important example of this is to let A = Q (i.e. the rationals are a

set of outer measure zero). The contrapositive of Corollary 332, that a set
with outer measure different from zero is uncountable, is obviously true.

Corollary 333 [0, 1] is uncountable.

Proof. Suppose, to the contrary, that [0, 1] is countable. Then by Corollary332,
m∗([0, 1]) = 0 in which case l([0, 1]) = 0 by Theorem 329, which leads to the
contradiction.
The converse of Corollary 332, that a set with outer measure zero is count-

able is not always true. To see this, consider the Cantor set F constructed
in Section 3.4. In particular,

F =
\
n∈N

Fn

Ã
≡ [0, 1]\

[
n∈N

An

!

where

� A1 = (13 , 23)
� A2 = (19 , 29) ∪ (39 , 69) ∪ (79 , 89)
� A3 = ( 127 , 227) ∪ (19 , 29) ∪ ( 727 , 827)∪ (13 , 23) ∪ (1927 , 2027) ∪ (79 , 89) ∪ (2527 , 2627),
� etc.
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But

� m∗(A1) = 1
3

� m∗(A2) = 1
9
+ 1

3
+ 1

9
= 21 · ¡1

3

¢2
+ 20 · ¡1

3

¢1
� m∗(A3) = 1

27
+ 1

9
+ 1

27
+ 1

3
+ 1

27
+ 1

9
+ 1

27
= 22 · ¡1

3

¢3
+21 · ¡1

3

¢2
+20 · ¡1

3

¢1
and in general

m∗(An) = 2n−1 ·
µ
1

3

¶n
+ 2n−2 ·

µ
1

3

¶n−1
+ ...+ 21 ·

µ
1

3

¶2
+ 20 ·

µ
1

3

¶1
=

1

3

"µ
2

3

¶n−1
+

µ
2

3

¶n−2
+ ...+

µ
1

3

¶1
+ 1

#

=
1

3
·
"
1− ¡2

3

¢n
1− ¡2

3

¢ # = 1−µ2
3

¶n
.

Since F1 ⊃ F2 ⊃ ... ⊃ Fn ⊃ ... and m∗(F1) = 2
3
<∞, by Theorem 344.

m∗(F ) = lim
n→∞

m∗(Fn) = lim
n→∞

m∗([0, 1]\An) = lim
n→∞

[m∗([0, 1])−m∗(An)]

= 1− lim
n→∞

m∗(An) = 1− lim
n→∞

1−
µ
2

3

¶n
= 1− 1 = 0.

Hence, the Cantor set presents an example of an uncountable set with outer
measure zero.
Sets of outer measure zero provide another notion of �small� sets. From

the point of view of cardinality, F is big (uncountable) while Q is small
(countable). From the topological point of view, F is small (nowhere dense)
while Q is big (dense). From the point of view of measure, both F and Q
are small (measure zero).

5.1.2 L−measurable sets
While the outer measure has the advantage that it is deÞned for P(R), Theo-
rem 331 showed that it is countably subadditive but not necessarily countably
additive. In order to satisfy countable additivity, we have to restrict the do-
main of the function m∗ to some suitable subset, call it L (for Lebesgue) of
P(R). The members of L are called L-measurable sets.
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DeÞnition 334 A set E ⊂ R is (Lebesgue) L-measurable if ∀A ⊂ R we
have m∗(A) = m∗(A ∩ E) +m∗(A ∩Ec).
The deÞnition of L-measurability says that the measurable sets are those

(bounded or unbounded) which split every set (measurable or not) into two
parts that are additive with respect to the outer measure.
Since A = (A ∩ E) ∪ (A ∩Ec) and m∗ is subadditive, we always have

m∗(A) ≤ m∗(A ∩E) +m∗(A ∩Ec).
Thus, in order to establish that E is measurable, we need only show, for any
set A, that

m∗(A) ≥ m∗(A ∩E) +m∗(A ∩Ec). (5.1)

Inequality (5.1) is often used in practice to determine whether a given set E
is measurable where A is called the test set.
Since DeÞnition 334 is symmetric in E and Ec, we have that Ec is L-

measurable whenever E is. Clearly, ∅ and R are L-measurable.
Lemma 335 If m∗(E) = 0, then E is L-measurable.
Proof. Let A ⊂ R be any set. Since A ∩ E ⊂ E we have m∗(A ∩ E) ≤
m∗(E) = 0. Since A∩Ec ⊂ A we have m∗(A) ≥ m(A∩Ec) = m∗(A∩Ec) +
m∗(A ∩E) which follows from above. Hence E is L-measurable.
Corollary 336 Every countable set is L-measurable and its measure is zero.
Proof. From Lemma 335 and Corollary 332.

Exercise 5.1.2 Show that if m∗(E) = 0,then m∗(E ∪A) = m∗(A) and that
if in addition A ⊂ E, then m∗(A) = 0.

Lemma 337 If E1 and E2 are L-measurable, so is E1 ∪ E2.
Proof. Since E1 and E2 are L-measurable, for any set A,we have

m∗(A) = m∗(A ∩ E1) +m∗(A ∩Ec1)
= m∗(A ∩ E1) +m∗ ([A ∩ Ec1] ∩E2) +m∗ ([A ∩ Ec1] ∩Ec2)
= m∗(A ∩ E1) +m∗ (A ∩E2 ∩Ec1) +m∗ (A ∩ [E1 ∪E2]c)
≥ m∗ (A ∩ [E1 ∪E2]) +m∗ (A ∩ [E1 ∪E2]c)
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where the Þrst equality follows from DeÞnition 334 and the fact that E1
is measurable, the second equality follows from the deÞnition and taking
the test set to be A ∩ Ec1 and E2 is measurable, the third equality follows
from simple set operations like DeMorgan�s law, and the inequality follows
from the subadditivity of m∗ and the fact that [A ∩E1] ∪ [A ∩E2 ∩Ec1] =
A∩ [E1 ∪E2].4 But this satisÞes (5.1), which is sufficient for L-measurability.

Corollary 338 The collection L of all L-measurable sets is an algebra of
sets in P(R).
Proof. Follows from DeÞnition 81, the symmetry (w.r.t. complements) in
DeÞnition 334, and Lemma 337

Lemma 339 Let A ⊂ R be any set and {En}Nn=1 be a Þnite collection of
disjoint L-measurable sets in R. Then m∗ ¡A ∩ £∪Nn=1En¤¢ = PN

n=1m
∗(A ∩

En).

Proof. The result is clearly true for N = 1. Consider an induction on N .
Suppose the result is true for N−1. Since the En are disjoint, A∩

£∪Nn=1En¤∩
EN = A ∩EN and A ∩

£∪Nn=1En¤ ∩EcN = A ∩ £∪N−1n=1 En
¤
. Then

m∗ ¡A ∩ £∪Nn=1En¤¢ = m∗(A ∩EN) +m∗ ¡A ∩ £∪N−1n=1 En
¤¢

= m∗(A ∩EN) +
N−1X
n=1

m∗(A ∩En)

where the Þrst equality follows from DeÞnition 334 and the second follows
since the result is true for N − 1.
Corollary 340 If {En}Nn=1 is a Þnite collection of disjoint L-measurable sets
in R, then m∗ ¡∪Nn=1En¢ =PN

n=1m
∗En.

Proof. Taking A = R, the result follows from Corollary 338 and Lemma
339.
The result in Corollary 340 veriÞes that m∗ restricted to L is Þnitely

additive. However, we would like to extend it to the more general case of
countable additivity. First, we must show that L is a σ-algebra (as discussed
in section 2.6) so that (∪∞n=1En) ∈ L for any {En, En ∈ L} so that the m∗ is
well deÞned.

4That is, we know m∗ ([A ∩E1] ∪ [A ∩E2 ∩Ec1]) = m∗ (A ∩ [E1 ∪E2]) and subadditiv-
ity implies m∗ ([A ∩E1] ∪ [A ∩E2 ∩Ec1]) ≤ m∗ ([A ∩E1]) +m∗([A ∩E2 ∩Ec1])
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Theorem 341 The collection L of all L-measurable sets is a σ-algebra of
sets in P(R).

Proof. (Sketch) Let E = ∪n∈NEn. First we use the fact that L is an algebra:
i.e. ∪n∈NEn ∈ L and that

¡∪Nn=1En¢c ⊃ (∪n∈NEn)c = Ec. Hence
m∗(A) ≥

NX
n=1

m∗(A ∩En) +m∗(A ∩Ec).

By letting N →∞ and using countable subaddivity of m∗ we get where the
Þrst equality follows by DeÞnition 334, the inequality follows since F cN ⊃ Ec5,
and the last equality follows by Lemma 339. Since the left hand side of (5.13)
is independent of N,letting N →∞ we have

m∗(A) ≥ m∗(A ∩E) +m∗(A ∩Ec).

DeÞnition 342 The set function m : L→R+∪{∞}, obtained by restricting
the functions m∗ to the σ-algebra L ⊂ P(R) is called the Lebesgue mea-
sure. That is, m = m∗|rL.6

The next result shows that after relaxing point (i) in Remark 1 we can
satisfy property (iii) with the Lebesgue measure.

Theorem 343 If {En}n∈N is a countable collection of disjoint sets in R,
then m (∪n∈NEn) =

P
n∈Nm(En).

Proof. Since
¡∪Nn=1En¢ ⊂ (∪n∈NEn) ,∀N ∈ N, and both sets are L−measurable

by Theorems 338and 341, we havem (∪n∈NEn) ≥ m
¡∪Nn=1En¢ =PN

n=1m(En)
where the equality follows by Corollary 340. Since the left hand of the
inequality is independent of N , letting N → ∞ we have m (∪n∈NEn) ≥P

n∈Nm(En). Since the reverse inequality holds by countable subaddivity in
Theorem 331, the result follows.
The next property will be useful in proving certain convergence properties

in upcoming sections and can be viewed as a continuity property of the
Lebesgue measure.

5Recall by DeMorgan�s Law that F cN =
£∪Nn=1En¤c = ∩Nn=1Ecn.

6This follows from DeÞnition 56.
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Theorem 344 Let < En > be an inÞnite decreasing sequence of L−measurable
sets (i.e. En+1 ⊂ En, ∀n). LetmE1 be Þnite. Thenm (∩∞i=1Ei) = limn→∞m(En).
Proof. Since L is a σ-algebra, ∩∞n=1En ∈ L. The set E1\ ∩∞n=1 En can be
written as the union of mutually disjoint sets {En\En+1} (see Figure 5.1.2)

E1\ ∩∞n=1 En = (E1\E2) ∪ (E2\E3) ∪ ... ∪ (En\En+1) ∪ ...
Then using countable additivity of m we have

m(E1)−m(∩∞n=1En) = m(E1\ ∩∞n=1 En) = m(∪∞n=1En\En+1)

=
∞X
n=1

m(En\En+1) =
∞X
n=1

[m(En)−m(En+1)]

= m(E1)− lim
n→∞

En.

Comparing the beginning and end we have m(∩∞n=1En) = limn→∞En.

5.1.3 Lebesgue meets borel

Now that we know that L is a σ-algebra, we might ask what type of sets
belong in L? For example, are open and/or closed sets in L?
Lemma 345 The interval (a,∞) is L−measurable.
Proof. (Sketch) Take any Let A.The open ray (a,∞) splits A into two dis-
joint parts A1 = (a,∞)∩A andA2 = (−∞, a]. According to (5.1), it is suffices
to show m∗(A) ≥ m∗(A1) +m∗(A2). For ε > 0, there is a countable collec-
tion {In} of open intervals which covers A satisfying

P∞
n=1 l(In) ≤ m∗(A)+ε

by the inÞmum property in DeÞnition 327. Again, (a,∞) splits each inter-
val In ∈ {In} into two disjoint intervals I 0n and I 00n. Clearly {I 0n} covers A1,
{I 00n} covers A2, and

P
n !(In) =

P
n !(I

0
n) +

P
n !(I

00
n). By monotonicity and

subaddivity of m∗we have

m∗(A1) +m∗(A2) ≤ m∗(∪nI 0n) +m∗(∪nI 00n)

≤
∞X
n=1

!(I 0n) +
∞X
n=1

!(I 00n)

=
∞X
n=1

!(In) ≤ m∗(A) + ε.
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But since ε > 0 was arbitrary, the result follows.
The next result shows that every open or closed set in R is L-measurable.

Theorem 346 Every Borel set is L−measurable.
Proof. The result follows from Theorem 124 that the collection of all open
rays generates B
Thus, the Lebesgue measure m is deÞned for Borel sets. Hence we can

work with sets we know a lot about. While it is beyond the scope of the book,
we note that there are examples of sets that show B Ã L and L Ã P(R).7
The next theorem gives a useful characterization of measurable sets. It

asserts that a measurable set can be �approximated� by open and closed
sets. See Figure 5.1.3.

Theorem 347 Let E be a measurable subset of R. Then for each ε > 0,
there exists an open set G and a closed set F such that F ⊂ E ⊂ G and
m(G\F ) < ε.
Proof. Since E is measurable, m(E) = m∗(E).We use the inÞmum property
for sets E and Ec.Given ε

2
, there exist open sets G and H (remember that

the union of open intervals is an open set) such that

E ⊂ G and m(G) < m(E) +
ε

2

and Ec ⊂ H and m(H) < m(Ec) +
ε

2
.

Set F = Hc. See Figure 5.1.4. Then by the properties of complements,
we have that F is closed, E ⊃ F , and m(E) − m(F ) < ε

2
. Thus we have

F ⊂ E ⊂ G and
m(G\F ) = m(G)−m(F ) = m(G)−m(E) +m(E)−m(F ) < ε

2
+
ε

2
= ε.

The Þrst equality is due to additivity and the second is simply an identity.

5.1.4 L-measurable mappings
Before we actually begin to integrate a mapping, we must know that a given
mapping is integrable. We break this topic up into two parts: functions and
correspondences.

7For an example of a non-measurable set see p. 289 of Carothers (2000).
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functions

Roughly speaking, a function is integrable if its behavior is not too irregular
and if the values it takes on are not too large too often. We now introduce
the notion of measurability which gives precisely the conditions required for
integrability, provided the function is not too large.

DeÞnition 348 Let f : E → R ∪ {−∞,∞} where E is L-measurable. Then
f is L-measurable if the set {x ∈ E : f(x) ≤ α} ∈ L, ∀α ∈ R.
It is clear from the above deÞnition that there is a close relation between

measurability of a function and the measurability of the inverse image set.
In particular, it can be shown that f is L-measurable iff for any closed set
G ⊂ R, inverse image f−1(G) is a measurable set. See Figure 5.1.4.1.
As α varies, the behavior of the set {x ∈ E : f(x) ≤ α} describes how

the values of the function f are distributed. The smoother is f , the smaller
the variety of inverse images which satisfy the restriction on f .

Example 349 Consider an indicator or characteristic function χA :
R→ R given by

χA(x) =

½
1 if x ∈ A
0 if x /∈ A .

with A ⊂ R. Then χA is L-measurable iff A ∈ L. To see this, note that

{x ∈ R : χA(x) ≤ α} =
 ∅ if α < 0
R\A if 0 ≤ α < 1
R 1 ≤ α

.

But {∅, Ac,R} ∈ L. Figure 5.1.4.2a.
Example 350 Let the function f : [0, 1]→ R be given by

f(x) =

 1 if x = 0
1
x
if 0 < x < 1

2 if x = 1
.

Notice that this function is neither continuous nor monotone. To see that f
is L-measurable, note that

{x ∈ R : f(x) ≤ α} =


∅ α < 1
{0} α = 1
[ 1
α
, 1) ∪ {0} 1 < α < 2

[ 1
α
, 1] ∪ {0} 2 ≤ α

.
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Again, all these sets are in L. See Figure 5.1.4.2b. This example shows that
an L-measurable function need not be continuous.
The next result establishes that there are many criteria by which to es-

tablish measurability of a function.

Theorem 351 Let f : E → R ∪ {−∞,∞} where E is L-measurable. Then
the following statements are equivalent: (i) {x ∈ E : f(x) ≤ α} is L-
measurable ∀α ∈ R; (ii) {x ∈ E : f(x) > α} is L-measurable ∀α ∈ R;
(iii) {x ∈ E : f(x) ≥ α} is L-measurable ∀α ∈ R; (iv) {x ∈ E : f(x) < α}
is L-measurable ∀α ∈ R; These statements imply (v) {x ∈ E : f(x) = α} is
L-measurable ∀α ∈ R ∪ {−∞,∞}.
Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i) can be established from

{x ∈ E : f(x) > α} = E\{x ∈ E : f(x) ≤ α}
{x ∈ E : f(x) ≥ α} = ∩∞n=1

½
x ∈ E : f(x) > α− 1

n

¾
{x ∈ E : f(x) < α} = E\{x ∈ E : f(x) ≥ α}
{x ∈ E : f(x) ≤ α} = ∩∞n=1

½
x ∈ E : f(x) < α+ 1

n

¾
where each operation follows since L is a σ-algebra (which is closed under
complementation and countable intersection).
Next, if α ∈ R, then {x ∈ E : f(x) = α} = {x ∈ E : f(x) ≤ α} ∩

{x ∈ E : f(x) ≥ α}. If α = ∞, then since {x ∈ E : f(x) = ∞} =
∩∞n=1 {x ∈ E : f(x) ≥ n} we have (iii) ⇒(v). A similar result holds for α =
−∞.where the Þrst line follows since L is a σ-algebra (which is closed under
countable intersection) and the second follows since the difference of two
measurable sets is measurable.
Next we present some properties of L-measurable functions

Lemma 352 (i) If f is an L-measurable function on the set E and E1 ⊂ E
is an L-measurable set, then f is an L-measurable function on E1. (ii) If f
and g are L-measurable functions on E, then the set {x ∈ E : f(x) < g(x)}
is L-measurable.
Proof. (i) follows since {x ∈ E1 : f(x) > α} = {x ∈ E : f(x) > α} ∩ E1
and the intersection of two L-measurable sets is measurable. (ii) DeÞne
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Aq = {x ∈ E : f(x) < q < g(x)} with q ∈ Q whose existence is guaranteed
by Theorem 100. Then Aq = {x ∈ E : f(x) < q} ∩ {x ∈ E : g(x) > q} and
{x ∈ E : f(x) < g(x)} = ∪q∈QAq, which is a countable union of L-measurable
sets.
The next theorem establishes that certain operations performed on L-

measurable functions preserve measurability.

Theorem 353 Let f and g be L-measurable functions on E and c be a
constant. Then the following functions are L-measurable: (i) f ± c; (ii) cf ;
(iii) f ± g; (iv) |f |; (v) f2; (vi) fg.

Proof. (i) {x ∈ E : f(x)± c > α} = {x ∈ E : f(x) > α0} with α0 = α∓ c so
f ± c is L-measurable when f is.
(ii) If c = 0, then cf is L-measurable since any constant function is L-

measurable. Otherwise

{x ∈ E : cf(x) > α} =
½ {x ∈ E : f(x) > α0} if c > 0
{x ∈ E : f(x) < α0} if c < 0

with α0 = α
c
is L-measurable since f is L-measurable.

(iii) {x ∈ E : f(x) + g(x) > α} = {x ∈ E : f(x) > α− g(x)}. Since α− g
is L-measurable by (i) and (ii), then f + g is L-measurable by Lemma 352.
(iv) Follows since

{x ∈ E : |f(x)| > α} =
½
E if α < 0
{x ∈ E : f(x) > α} ∪ {x ∈ E : f(x) < −α} if α ≥ 0

and both sets on the rhs are L-measurable since f is L-measurable.
(v) Follows from

{x ∈ E : (f(x))2 > α} =
½
E if α < 0
{x ∈ E : |f(x)| > α} if α ≥ 0

and (iv).
(vi) Follows from the identity fg = 1

2
[(f + g)2 − f2 − g2] and (ii), (iii),

(v).
Parts (ii) and (iii) of Theorem 353 imply that scaled linear combinations

of indicator functions deÞned on measurable sets are themselves measurable
functions. This type of function, known as a simple function, will play an
important role in approximating a given function. As we will see in the next
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section, unlike the standard (Riemann) way of approximating the integral of
f by calculating the area under f based on partitions of the domain, in this
chapter we will be approximating the integral of f by calculating the area
under f based on partitions of the range. See Figure 5.1.4.2c.

DeÞnition 354 A function ϕ : E → R given by

ϕ(x) =
nX
i=1

aiχEi(x) (5.2)

is called a simple function if there is a Þnite collection {E1, ..., En} of
disjoint L−measurable sets with ∪ni=1Ei = E and a Þnite set of real numbers
{a1, ..., an} such that ai = ϕ(x),∀x ∈ Ei for i = 1, ..., n where χEi(x) is an
indicator function introduced in Example 349. The right hand side of (5.2)
is called the representation of ϕ.

We note that the real numbers {ai} and the sets {Ei} in this representa-
tion are not uniquely determined as the next example shows.

Example 355 Let {E1, E2, E3} be disjoint subsets of an L-measurable set E.
Consider the two simple functions 2χE1 + 5χE2 + 2χE3 and 2χE1∪E3 + 5χE2.
Clearly these two simple functions are equal. Notice that the coefficients
in the Þrst representation are not distinct. Since a simple function obtains
only a Þnite number of values {a1, ..., an} on E we can construct the inverse
image sets {Ai} as Ai = {x ∈ E : x = ϕ−1({ai})}, i = 1, ..., n, n ∈ R.
In this example, A1 = {x ∈ E : x = ϕ−1({2})} = E1 ∪ E3 and A2 =
{x ∈ E : x = ϕ−1({5})} = E2, both of which are L-measurable, disjoint
sets. To avoid such problems with non-uniqueness, we use this construction
to deÞne the canonical (or standard) representation of ϕ : E → R by
ϕ(x) =

Pk
i=1 aiχAi(x) where the Þnite collection {A1, ..., Ak}of L−measurable

sets are disjoint with ∪ki=1Ai = E and the Þnite set of real numbers {a1, ..., ak}
are distinct and nonzero.

The next theorem and exercise provide sufficient conditions for L-measurability.

Theorem 356 A continuous function deÞned on an L-measurable set is L-
measurable.
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Proof. Let f be a continuous function deÞned on E (which is L-measurable).
Consider the set A = {x ∈ E : f(x) > α} which is the inverse image of the
open ray (α,∞). Since f is continuous, Theorem 248 implies f−1((α,∞)) is
open and hence L-measurable.

Exercise 5.1.3 Show that any monotone function f : R→ R is L-measurable.

Next we consider how sequences of L-measurable functions behave.

Theorem 357 Let < fn > be a sequence of functions on a common do-
main E. Then the functions max{f1, ..., fn}, min{f1, ..., fn}, supn fn, infn fn,
lim supn fn, and lim infn fn are all L-measurable.

Proof. If g(x) = max{f1(x), ..., fn(x)},then {x ∈ E : g(x) > α} = ∪ni=1{x ∈
E : fi(x) > α} and L-measurability of each fi implies g is L-measurable. Sim-
ilarly, if h(x) = supn fn(x), then {x ∈ E : h(x) > α} = ∪∞i=1{x ∈ E : fi(x) >
α}. A similar argument, along with the fact that infn fn = − supn(−fn)
and (ii) of Theorem 353, establishes the corresponding statements for inf .
To establish the last results, note that lim infn fn = − lim supn(−fn) =
supn(infk≥n fk).
Using the above results, for any function f : E → R, we can construct

non-negative functions f+ = max{f, 0} and f− = max{−f, 0}. The function
f is L-measurable iff both f+ and f− are L-measurable. It is also easy to
verify that f = f+ − f−and |f | = f+ + f−. See Figure 5.1.4.3.

Corollary 358 (i) If < fn > is a sequence of L-measurable functions con-
verging pointwise to f on E, then f is L-measurable. (ii) The set of points
on which < fn > converges is L-measurable.

Proof. (i) Since fn → f, we have lim supn fn = lim infn fn = f by Theorem
321 and the result thus follows from Theorem 357 above. (ii) From (i), the
set {x ∈ E : lim supn fn− lim infn fn = 0} is L-measurable by (v) of Theorem
351.
In some cases, two functions may be �almost� the same in the sense of

L-measurability. The next deÞnition helps us make that precise.

DeÞnition 359 A property is said to hold almost everywhere (a.e.) if
the set of points where it fails to hold is a set of measure zero.
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Example 360 Let f : [0, 1]→{0, 1} be given by

f(x) =

½
1 if x ∈ Q
0 otherwise

known as the Dirichlet function. While this function is famous since it is
everywhere discontinuous (which we will use in Section 5.2.1, here we simply
use it to illustrate the concept of almost everywhere. In particular, f(x) = 0
a.e. since {x ∈ [0, 1] : f(x) 6= 0} = {x ∈ [0, 1] : x ∈ Q} and m({x ∈ [0, 1] :
x ∈ Q}) = 0 which follows from the countability of the rationals established
in Example 77 and Corollary 336..

Theorem 361 Let f and g have domain E and let f be an L-measurable
function. If f = g a.e., then g is measurable.

Proof. Let D = {x ∈ E : f(x) 6= g(x)}. Then mD = 0 by assumption. Let
α ∈ R, and consider

{x ∈ E : g(x) > α} = {x ∈ E\D : f(x) > α} ∪ {x ∈ D : g(x) > α}
= [{x ∈ E : f(x) > α}\{x ∈ D : g(x) ≤ α}] ∪ {x ∈ D : g(x) > α}

Since f is L-measurable, the Þrst set is L-measurable. Furthermore, since
the other two sets are contained in D, which has measure 0, they are L-
measurable by Lemma 335 and Exercise 5.1.2.
Now we consider a weaker notion of continuity than considered in Theo-

rem 356.

Theorem 362 If a function f deÞned on E (which is L-measurable) is con-
tinuous a.e., then f is L-measurable on E.
Proof. Follows from Theorem 356.
Theorem 362 thus establishes the sufficient condition such that the dis-

continuous and non-monotone function in Example 350 is L-measurable.
Now we consider a weaker version of convergence than considered in

Corollary 358.

DeÞnition 363 A sequence < fn > of functions deÞned on E is said to
converge a.e. to a function f if limn→∞ fn(x) = f(x),∀x ∈ E\E1 where
E1 ⊂ E with mE1 = 0.
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Theorem 364 If a sequence < fn > of L-measurable functions converges
a.e. to the function f , then f is L-measurable.

Proof. Follows from Corollary 358.

Example 365 Let < fn > be given by < xn > on [0, 1] which converges
pointwise to

f =

½
0 if x ∈ [0, 1)
1 if x = 1

and f is L-measurable since it is the constant (zero) function almost every-
where.

The next theorem establishes that if a sequence of functions converges
pointwise, then we can isolate a set of points of arbitrarily small measure
such that on the complement of that set the convergence is uniform.

Theorem 366 Let E be an L-measurable set with mE <∞ and < fn > be
a sequence of L-measurable functions deÞned on E. Let f : E → R be such
that ∀x ∈ E, fn(x)→ f(x). Then given ε > 0 and δ > 0, ∃ an L-measurable
set A ⊂ E with m(A) < δ and ∃N such that for n ≥ N and x /∈ A we have
|fn(x)− f(x)| < ε.

Proof. Let Gn = {x ∈ E : |fn(x)− f(x)| ≥ ε and Ek = ∪∞n=kGn = {x ∈ E :
|fn(x)− f(x)| ≥ ε for some n ≥ k}. Thus Ek+1 ⊂ Ek and for each x ∈ E
there must be some set Ek such that x /∈ Ek otherwise we would violate the
assumption fn(x)→ f(x),∀x ∈ E. Thus < Ek > is a decreasing sequence of
L-measurable sets for which ∩∞k=1Ek = ∅ so that by Theorem 344 we have
limk→∞mEk = 0. Hence given δ > 0,∃N such that mEN < δ; that is,
m{x ∈ E : |fn(x)− f(x)| ≥ ε for some n ≥ N} < δ. If we write A for this
EN ,then mA < δ and

E\A = {x ∈ E : |fn(x)− f(x)| ≥ ε,∀n ≥ N}.

The next theorem says that for any L-measurable function f there exists
a sequence of �nice� functions (more speciÞcally simple functions) that con-
verge pointwise to f . Moreover, on the subdomain where f is bounded, this
convergence is uniform. This means that a bounded measurable function can
be approximated by a simple function.
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Theorem 367 Let f be an L-measurable function deÞned on a set E. Then
there exists a sequence < fn > of simple functions which converges pointwise
to f on E and converges uniformly to f on any set where f is bounded.
Furthermore, if f ≥ 0, then < fn > can be chosen such that 0 ≤ fn ≤ fn+1,
∀n ∈ N.
Proof. (Sketch) We can assume that f ≥ 0. If not, then let f = f+ − f−
where f+ and f−are non-negative. For n ∈ N,we divide the range of f
(which can be unbounded) into two parts: [0, 2n) and [2n,∞). See Figure
5.1.4.4. Then divide [0, 2n) into 22n − 1 equal parts. Let Fnbe the inverse
image of [2n,∞) and En,k be the inverse images of [k2−n, (k + 1)2−n] for
k = 0, 1, ..., 22n − 1. Since f is measure, Fn and En,k are measurable. DeÞne
a simple function

ϕn = 2
nχFn +

22n−1X
k=0

k2−nχEn,k . (5.3)

Note that 0 ≤ ϕn ≤ f and 0 ≤ f − ϕn ≤ 2−n on ∪2
2n−1
k=1 En,k. For any x ∈ E,

there exists n large enough such that f(x) < 2n. Hence x ∈ ∪En,k implies that
f(x)−ϕn(x) ≤ 2−n and thus ϕn(x)→ f(x). Moreover, if f is bounded, there

exists an n large enough such that E = ∪22n−1k=1 En,k and f(x)−ϕn(x) < 1
n
for

each x ∈ E, thus < ϕn > converges uniformly to f.
Exercise 5.1.4 Show that ϕn increases in (5.3). Hint: En,k = En+1,2k ∪
En+1,2k+n.

The next deÞnition will be useful in Chapter FS.

DeÞnition 368 Let f be an L-measurable function. Then inf{α ∈ R : f ≤
α a.e.} is called the essential supremum of f, denoted ess sup f, and
sup{α ∈ R : f ≥ α a.e.} is called the essential inÞmum of f, denoted
ess inf f .

Example 369 Let f : [0, 1]→{−1, 0, 1} be given by

f(x) =

 1 if x ∈ Q++
0 if x is irrational
−1 if x ∈ Q−

which is a simple generalization of the Dirichlet function. Given the results
in Example 360 we have ess sup f = ess inf f = 0.
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correspondences

Let Γ : X ³ Y be a correspondence where X = R or a subset of R equipped
with the Lebesque measure and L (X) is a σ− algebra of all L -measurable
subsets of X and Y is a complete, separable metric space. We will introduce
the concept of measurablility of correspondences the same way we deÞned
measurability of single-valued functions (i.e. through inverse images). We
know a function f : X −→ Y is L -measurable if f−1(V ) is L -measurable
for every open set V ⊂ Y or equivalently f−1 (U) is L -measurable for every
closed set U ⊂ Y.

DeÞnition 370 Consider a measurable space (X,L) where X ⊂ R (or X =
R ), Y is a complete separable metric space Y, and Γ : X ³ Y is a closed-
value correspondence. Γ is measurable if the inverse image of each open
set is a L -measurable set. That is, for every open subset V ⊂ Y we have
Γ−1 (V ) = {x ∈ X : Γ (x) ∩ V 6= ∅} ∈ L.

Notice that measurability is deÞned only for closed valued correspon-
dences.
Given a correspondence Γ : X ³ Y we can ask under what conditions

there exists a measurable selection of Γ (i.e. a single-valued, L−measurable
function f : X −→ Y such that f (x) ∈ Γ (x) for all xdX. The following
theorem says that every L−measurable correspondence has a measurable
selection provided the spaces X and Y have certain properties.

Theorem 371 (Measurable Selection) Let (X,L) be a Lebesgue measur-
able space, let Y be a complete separable metric space, and let Γ : X ³ Y be a
L−measurable, closed valued correspondence. Then there exists a measurable
selection of Γ.

Proof. (Sketch) By induction, we will deÞne a sequence of measurable
functions fn : X −→ Y such that
(i) fn(z) is sufficiently close to Γ(z) (i.e. d (fn (z) ,Γ (z)) <

1
2n
) and

(ii) fn(z) and fn+1(z) are sufficiently close to each other (i.e. d (fn+1 (z) , fn (z)) ≤
1

2n−1 on X for all n).
Then we are done, since from (ii) it follows that hfn(z)i is Cauchy for

each z and due to completeness of Y there exists a function f : X −→ Y
such that fn (z) −→ f (z) on X pointwise and by Corollary 358 the pointwise
limit f of a sequence of measurable functions is measurable. Hence we take f



5.1. LEBESGUE MEASURE 169

as a measurable selection. Condition (i) guarantees that f (z) ∈ Γ (z) ,∀z ∈
X (here we use the fact that Γ(z) is closed and d(f(z),Γ(z)) = 0 implies
f(z) ∈ Γ(z)) by Exercise 4.1.3
Now we construct a sequence hfni of measurable functions satisfying (i)

and (ii) .Let {yn, n ∈ N} be a dense set in Y (since Y is separable such a
countable set exists). DeÞne fk(z) = yp where p is the smallest integer such
that the ball with center at yp with radius

1
k
has non-empty intersection with

Γ(z). See Figure 5.1.4.5. It can be shown that fk is measurable and < fk >
satisfy (i) and (ii).
How is measurability of a correspondence related to upper or lower hemi-

continuity? We would expect that hemicontinuity implies measurability and
we now show that this is true (a result similar to that for functions in Theo-
rem 356. In the case of lower hemicontinuity we get the result immediately.

Lemma 372 Under the assumptions of Theorem 371 if Γ : X ³ Y is lhc,
then Γ is measurable.

Proof. Since Γ is lhc, then f−1 (V ) is open for V ⊂ Y open. Since open sets
are L -measurable, then f−1 (V ) ∈ L so that f is L -measurable.
To show that uhc implies measurability, we show that open sets can be

replaced by closed sets in DeÞnition 370.

Lemma 373 Under the assumption of the Theorem 371,Γ : X ³ Y is mea-
surable iff f−1 (U) is L -measurable for every closed subset U ⊂ Y.
Proof. �⇐= � Let V be an open subset of Y. DeÞne the closed sets Cn =©
xdY, d (x, Y \V ) ≥ 1

n

ª
. Then V = ∪n∈NCn. Consequently Γ (x) ∩ V 6= ∅ iff

Γ (x) ∩ Cn 6= ∅ for some n. This yields Γ−1 (V ) = ∪n∈NΓ−1 (Cn) ∈ L because
Γ−1 (Cn) ∈ L by assumption (because Cn is closed) and ∪n∈NΓ−1 (Cn) ∈ L
(because L is σ- algebra).
�=⇒ � We omit this direction since it would require introducing measur-

ability on the Cartesian product X × Y. [See Aubin-Frankowske Section 8.3
pg.319].

Lemma 374 Under the assumption of Theorem 371, if Γ : X ³ Y is uhc
then Γis measurable.

Proof. Since Γ is uhc, then f−1 (U) is closed for U closed and closed sets
are L -measurable. Hence f−1 (U) ∈ L. Thus f is L -measurable by Lemma
373.
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5.2 Lebesgue Integration

In introductory calculus classes, you were introduced to Rieman integration.
While simple, it has many defects. First, the Rieman integral of a function
is deÞned on a closed interval and cannot be deÞned on an arbitrary set.
Second, a function is Rieman integrable if it is continuous or continuous
almost everywhere. The set of continuous functions, however is relatively
small. Third, given a sequence of Rieman integrable functions converging to
some function, the limit of the sequence of the integrated function may not
be the Rieman integral of the limit function. In fact the Rieman integral of
the limit function may not even exist. These defects are absent in Lebesgue
integration. To see these problems we begin by brießy reviewing the Riemann
integral.

5.2.1 Riemann integrals

Consider a bounded function f : [a, b] → R and a partition P = {a = x0 <
x1 < ... < xn−1 < xn = b} of [a, b]. Let Υ be the set of all possible partions.
For each P , deÞne the sums

S(P ) =
nX
i=1

(xi − xi−1)Hi and s(P ) =
nX
i=1

(xi − xi−1)hi

where Hi = sup{f(x) : x ∈ (xi−1, xi]} and hi = inf{f(x) : x ∈ (xi−1, xi]},
∀i = 1, ...n. The sums S(P ) and s(P ) are known as step functions. See
Figure 5.2.1.1. Then the upper Riemann integral of f over [a, b] is de-

Þned by Ru
R b
a
f(x)dx = infP∈Υ S(P ) and the lower Riemann integral

of f over [a, b] is deÞned by Rl
R b
a
f(x)dx = supP∈Υ s(P ). If R

u
R b
a
f(x)dx =

Rl
R b
a
f(x)dx, then we say the Riemann integral exists and denote itR

R b
a
f(x)dx.

We state without proof (since it would take us far aÞeld) the following
Proposition which characterizes the �class� of Riemann integrable functions.8

Proposition 375 A bounded function is Riemann integrable iff it is contin-
uous almost everywhere.

We next provide explicit examples of functions that are and are not Rie-
mann integrable.

8See Jain and Gupta (1986), Appendix 1.
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Example 376 Consider the Riemann integral of Dirichlet�s function intro-
duced in Example 360. Then Ru

R 1
0
f(x)dx = 1 and Rl

R 1
0
f(x)dx = 0 so the

Riemann integral does not exist. Intuitively, this is because in any partition
P, however Þne, there are both rational and irrational numbers which follows
from the density of both sets established in Example 154. Formally, to see
that the Dirichlet function (while bounded) is not continuous anywhere (and
hence does not satisfy the requirements of the Proposition 375), consider the
following argument. If q ∈ Q ∩ [0, 1], let < xn > be a sequence of irrational
numbers converging to q (the existence of such a sequence follows from The-
orem 102). Since f(xn) = 0, ∀n ∈ N, the sequence < f(xn) > does not
converge to f(q) = 1 so f is not continuous at a ∈ Q. Similarly, if ι is an
irrational number, let < yn > be a sequence of rational numbers converging to
ι (the existence of such a sequence again follows from Theorem 102). Since
f(yn) = 1, ∀n ∈ N, the sequence < f(yn) > does not converge to f(ι) = 0 so
f is not continuous at ι ∈ R\Q. See Figure 5.2.1.2.

Example 377 Next consider the Riemann integral of f : [0, 1] → {0, 1}
given by

f(x) =

½
1 if x = 1

n

0 otherwise
.

Hence this function takes on the value 1 on the rationals { 1
n
, n ∈ N} rather

than the bigger set Q = {m
n
, m,n ∈ N}. We begin by noting that one can

show that { 1
n
, n ∈ N} is not dense in [0, 1]. As in the preceding example,

it is simple to show that f is discontinuous at { 1
n
, n ∈ N}. On the other

hand, f is continuous at D = [0, 1]\{ 1
n
, n ∈ N}. To see this, let x ∈ D\{0}.

Then ∃n ∈ N such that x ∈ ( 1
n+1
, 1
n
). Let δ = 1

2
min

©¯̄
x− 1

n

¯̄
,
¯̄
x− 1

n+1

¯̄ª
.

Then ∀x0 ∈ (x − δ, x + δ), we have f(x0) = 0. Thus, ∀ε > 0, ∃δ such that
∀x0 ∈ (x − δ, x + δ), we have |f(x)− f(x0)| = |0− 0| = 0 < ε. Since f
is discontinuous at a countable set of points, we know the Riemann integral
exists by Proposition 375 and is given by R

R 1
0
f(x)dx = 0. See Figure 5.2.1.3.

Example 378 Finally, let {qi} be the enumeration of all the rational num-
bers in [0, 1] and let Qn = {qi ∈ Q ∩ [0, 1] : i = 1, 2, ..., n}, n ∈ N. DeÞne,
for each n ∈ N, the function fn : [0, 1]→ {0, 1} by

fn(x) =

½
1 if x ∈ Qn
0 otherwise

.
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The function fn is discontinuous only at the n points of Qn in [0, 1]. Since fn
is continuous a.e. and is bounded, the Riemann integral exists and R

R 1
0
fn(x)dx =

0. Notice however that while fn → f, R
R 1
0
fn(x)dx does not converge to

R
R 1
0
f(x)dx since the latter doesn�t even exist!

5.2.2 Lebesgue integrals

Now that we�ve exposed some of the problems with the Riemann integral,
we take up a systematic treatment of the Lebesgue integral. As Proposition
375 suggests, the class of Riemann integrable functions is somewhat narrow.
On the other hand, the Lebesgue integrable functions are (relatively) larger.
This is because the Lebesgue integral replaces the class of step functions
(used in the construction of the Riemann integral) with the larger class of
simple functions that were deÞned in 354. The essential difference between
step functions and simple functions is the class of sets upon which they are
deÞned. In particular the collection of subsets upon which the step function
is deÞned is a strict subset of the collection of subsets upon which simple
functions are deÞned. We will construct Lebesgue integrals under three sep-
arate assumptions concerning boundedness of the function over which we are
integrating (f) and the Þniteness of the measure (m) of the sets (E) upon
which the function (f) is deÞned.

Assumption 1: f is bounded and m(E) <∞
Consider the representation ϕ : E → R deÞned in Example 355 given by
ϕ(x) =

Pk
i=1 aiχAi(x) where Ai ⊂ E ∈ L are disjoint and ai ∈ R\{0} are

distinct. Then we deÞne the elementary integral of this simple function to
be
R
ϕ(x)dx =

Pk
i=1 aim(Ai). This integral is well deÞned since m(Ai) <∞

∀i and there are Þnitely many terms in the sum. In this case, we call the
function ϕ an integrable simple function. To economize on notation, letR
E
ϕ ≡ R ϕ(x)dx.
Sometimes it is useful to employ representations that are not canonical

and the following lemma asserts that the elementary integral is independent
of its representation.

Lemma 379 Let ϕ =
Pn

i=1 aiχEi, with Ei ∩Ej = ∅ for i 6= j. Suppose each
Ei is an L-measurable set of Þnite measure. Then

R
E
ϕ =

Pn
i=1 aim(Ei).
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Proof. The set Aa = {x ∈ E : ϕ(x) = a} = ∪ai=aEi. Hence amAa =P
ai=a

aim(Ei) by additivity of m. Thus,
R
E
ϕ =

P
am(Aa) =

P
aim(Ei).

Next we establish two basic properties of the elementary integral.

Theorem 380 Let ϕ and ψ be simple functions which vanish outside a set
of measure zero.9 Then (i) integration preserves linearity:

R
E
(aϕ + bψ) =

a
R
E
ϕ + b

R
E
ψ and (ii) integration preserves monotonicity: if ϕ ≥ ψ a.e.,

then
R
E
ϕ ≥ R

E
ψ.

Exercise 5.2.1 Prove Theorem 380.

Let f : E → R be any bounded function and E an L-measurable set
with mE < ∞. In analogy with the Riemann integral, we deÞne the up-
per Lebesgue integral of f over E by Lu

R
E
f(x)dx = infψ≥f

R
E
ψ and

the lower Lebesgue integral of f over E is deÞned by Ll
R
E
f(x)dx =

supϕ≤f
R
E
ϕ where ψ and ϕ range over the set of all simple functions deÞned

on E. Notice that Lu
R
E
f(x)dx and Ll

R
E
f(x)dx are well deÞned since f is

bounded and m has Þnite measure on E. See Figure 5.2.2.1.

DeÞnition 381 If Lu
R
E
f(x)dx = Ll

R
E
f(x)dx, then we say the Lebesgue

integral exists and denote it
R
E
f(x)dx.

Notice that if f is a simple function, then infψ≥f = f and supϕ≤f = f
so that Lu

R
E
f(x)dx = Ll

R
E
f(x)dx. Hence simple functions are Lebesgue

integrable.

The next question is what other functions are Lebesgue integrable? The
next theorem provides necessary and sufficient conditions for integrability.
In particular, sufficiency shows that if one can establish that the function is
L-measurable (as well as the conditions under which this section is based),
then we know it is integrable. This is another theorem like Heine-Borel where
sufficiency makes one�s life simple.

Theorem 382 A bounded function f deÞned on an L-measurable set E of
Þnite measure is Lebesgue integrable iff f is L-measurable.

9We say a function f vanishes outside a set of measure zero ifm ({x ∈ E : f(x) 6= 0}) =
0 or outside a set of Þnite measure if m ({x ∈ E : f(x) 6= 0}) <∞.
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Proof. (Sketch) (⇐) Since f : E → R is bounded, −M ≤ f(x) ≤ M.
Divide [−M,M ] into n equal parts. Construct sets

Ek = f
−1
µ·
k − 1
n

M,
k

n
M

¶¶
(i.e. Ekis the set of all x ∈ Esuch that f(x) belongs to a slice

£
k−1
n
M, k

n
M
¢
.

See Figure 5.2.2.2. Ek is measurable because it is an inverse image of a
measurable function of an interval. DeÞne two simple functions ψn(x) =
M
n

Pn
k=−n kχEk(x) and ϕn(x) =

M
n

Pn
k=−n(k − 1)χEk(x). Then ϕ approxi-

mates f from below and ψ approximates f from above. Because ϕ and ψare
simple functions,

R
E
ϕ and

R
E
ψ are well deÞned. The upper (lower) Lebesgue

integrals of f on E, being the inÞmum (supremum) satisfyZ
E

ϕn ≤ Ll
Z
E

f ≤ Lu
Z
E

f ≤
Z
E

ψn.

As n gets larger, ϕn and ψn get closer to each other and hence so do their
integrals. Thus for n→∞ , Ll

R
E
f = Lu

R
E
f which means

R
E
f exists.

(=⇒)Let f be integrable. Then

inf
ψ≥f

Z
ψ(x)dx = sup

ϕ≤f

Z
ϕ(x)dx

where ϕ and ψ are simple functions. Then by the property of inÞmum
and supremum, for any n, there are simple functions ϕn and ψn such that
ϕn(x) ≤ f(x) ≤ ψn(x) andZ

ψn(x)dx−
Z
ϕn(x)dx <

1

n
. (5.4)

DeÞne ψ∗ = infn ψn and ϕ
∗ = supn ϕn, which are measurable by Theorem

357 and satisfy ϕ∗(x) ≤ f(x) ≤ ψ∗(x). But the set of x for which ϕ∗(x) differs
from ψ∗(x) (i.e. ∆ = {x ∈ E : ϕ∗(x) < ψ∗(x)}) has measure zero due to
(5.4). Thus ϕ∗ = ψ∗ except on a set of measure zero. Thus f is measurable
by Theorem 361.
Notice that the assumptions on boundedness and Þnite measure imply

MmE <∞ upon which the proof rests.
Next we establish that the Lebesgue integral is a generalization of the

Riemann integral.
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Theorem 383 Let f be a bounded function on [a, b]. If f is Riemann inte-

grable over [a, b], then it is Lebesgue integrable and R
R b
a
f(x)dx =

R
[a,b]
f(x)dx.

Proof. The proof rests on the fact that every step function (upon which Rie-
mann integrals are deÞned) is also a simple functions (upon which Lebesgue
integrals are deÞned), while the converse is not true. Then

Rl
Z b

a

f(x)dx ≤ sup
ϕ≤f

Z
[a,b]

ϕ(x)dx ≤ inf
ψ≥f

Z
[a,b]

ψ(x)dx ≤ Ru
Z b

a

f(x)dx

where the Þrst and third inequalities follow from the above fact and the
second follows from the fact that ϕ ≤ f ≤ ψ and (ii) of Theorem 380.
Of course, the converse is not true.

Example 384 In Example 376 we showed that the Dirichlet function was
not Riemann integrable. However, it is Lebesgue integrable by Theorem 382
since it is L-measurable (which is clear since it is a simple function). HenceR
[0,1]
f(x)dx = 1 ·m(Q∩[0, 1])+0 ·m([0, 1]\Q) =1 · 0 + 0 · 1.
Now we establish the following properties of Lebesgue integrals which

follow as a consequence of the fact that Lebesgue integrals are deÞned on
simple functions and elementary integrals preserve linearity and monotonicity
by Theorem 380.

Theorem 385 If f and g are bounded L-measurable functions deÞned on
a set Eof Þnite measure, then: (i)

R
E
(af + bg) = a

R
E
f + b

R
E
g; (ii) if

f = g a.e., then
R
E
f =

R
E
g; (iii) if f ≤ g a.e., then

R
E
f ≤ R

E
g and

hence
¯̄R
E
f
¯̄ ≤ R

E
|f |; (iv) if c ≤ f(x) ≤ d, then cm(E) ≤ R

E
f ≤ dm(E);

and (v) if A and B are disjoint L-measurable sets of Þnite measure, thenR
A∪B f =

R
A
f +

R
B
f.

Exercise 5.2.2 Prove Theorem 385.

We now prove a very important result concerning the interchange of limit
and integral operations of a convergent sequence of bounded L-measurable
functions.

Theorem 386 (Bounded Convergence) Let < fn > be a sequence of
L-measurable functions deÞned on a set E of Þnite measure and suppose
|fn(x)| ≤M , ∀n ∈ N and ∀x ∈ E. If fn → f a.e. on E, then f is integrable
and

R
E
f = limn→∞

R
E
fn..



176 CHAPTER 5. MEASURE SPACES

Proof. (Sketch) Since fn → f, f is measurable by Theorem 364. Since fn
is uniformly bounded, then f is bounded. Given ε, it is possible to split E
(by Theorem 366) into two parts E\A where fn → f uniformly and A with
m(A) < ε.Then,

lim
n→∞

Z
E

fn →
Z
E

lim
n→∞

fn =

Z
f

if ¯̄̄̄Z
E

fn −
Z
E

f

¯̄̄̄
=

¯̄̄̄Z
E

(fn − f)
¯̄̄̄

is sufficiently small. Split this integral into two parts:¯̄̄̄Z
E

(fn − f)
¯̄̄̄
≤
Z
E

|fn − f | ≤
Z
E\A

|fn − f |+
Z
A

|fn − f |

The Þrst inegral is sufficiently small because fn → f uniformly and the second
is sufficiently small because |fn − f | is bounded andm(A) is sufficiently small.

It is important to note that
R
E
f = limn→∞

R
E
fn only requires point-

wise convergence with Lebesgue integration. A similar result for Riemann
integration (i.e. R

R
E
f = limn→∞R

R
E
fn) requires uniform convergence.

Example 387 Here we return to Example 378. There we saw that the
bounded function fn was discontinuous at the n points of the L-measurable
set Qn = {qi ∈ Q ∩ [0, 1] : i = 1, 2, ..., n}, n ∈ N. While R

R 1
0
fn(x)dx = 0

along the sequence and while fn → f, we saw limn→∞R
R 1
0
fn(x)dx did not

exist. On the other hand, since the bounded function fn is L-measurable and
m[0, 1] < ∞, we know limn→∞

R 1
0
fn(x)dx exists and equals 0 by Example

384.

Assumption 2: f is nonnegative and m(E) ≤ ∞
In many instances, economists consider functions which are unbounded (e.g.
most utility functions we write down are of this variety). Hence, it would be
nice to relax the above assumption about boundedness. This section does
that, albeit at the cost that f must be nonnegative. Here we also do not
require E to be of Þnite measure.

DeÞnition 388 If f : E → R+ on an L-measurable set E is L-measurable,
we deÞne

R
E
f = suph≤f

R
E
h where h is a bounded, L-measurable function

which vanishes outside a set of Þnite measure.
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Notice that the integral is deÞned on any function h (not just sim-
ple functions) which satisÞes the conditions of the previous subsection and
suph≤f

R
E
h is similar to the deÞnition of the lower Lebesgue integral in the

previous subsection. That is, h is bounded andmH = m ({x ∈ E : h(x) 6= 0}) <
∞. Then R

E
h and suph≤f

R
E
h are well deÞned. Furthermore

R
E
h =

R
H
h+R

E\H h =
R
H
h.

DeÞnition 389 A nonnegative L-measurable function f deÞned on an L-
measurable set E is integrable (or summable) if

R
E
f <∞. If R

E
f =∞,

we say f is not integrable even though it has a Lebesgue integral.

Example 390 Let the function f : [0, 1]→ R+ be given by

f(x) =

½
1
x
if x ∈ (0, 1]

0 x = 0
.

While f is unbounded, consider the sequence of functions hn : [0, 1] → R
given by

hn(x) =

½
1
x
if x ∈ ( 1

n
, 1]

n x ∈ [0, 1
n
]

.

In this case hn ≤ f (except at hn(0) = n and f(0) = 0 but this is a set
of measure 0) and hn is a bounded, L-measurable function which vanishes
outside a set of Þnite measure. See Figure 5.2.2.3. Then

R
[0,1]
hn(x)dx =R

[0, 1
n
]
ndx +

R
( 1
n
,1]

1
x
dx = n · ( 1

n
− 0) + ln(1) − ln( 1

n
) = 1 + ln(n). Since {hn}

is contained in the set of all bounded h such that h ≤ f, as we take the sup
over all such functions, we know 1 + ln(n)→∞ as n→∞, so that f is not
integrable on [0, 1].

Exercise 5.2.3 Let the function f : [1,∞) → R be given by f(x) = 1
x
. Is f

bounded? Is m[1,∞) Þnite? Is f integrable?
Lemma 391 (Chebyshev�s Inequality) Let ϕ be an integrable function
on A and ϕ (x) ≥ 0 a.e. on A. Let c > 0. Then c ·m {x ∈ A : ϕ (x) ≥ c} ≤R
A
ϕ (x) dm.

Proof. Let bA = {x ∈ A : ϕ (x) ≥ c} .Then R
A
ϕ (x) dm =

R bA ϕ (x) dm +R
A\ bA ϕ (x) dm ≥ R bA ϕ (x) dm ≥ cm³ bA´ .See Figure 5.2.2.4.
As in the previous subsection, there are various linearity and monotonicity

properties associated with Lebesgue integrals of non-negative L-measurable
functions.



178 CHAPTER 5. MEASURE SPACES

Theorem 392 Let f and g be nonnegative L-measurable functions deÞned
on a set E. Then (i)

R
E
cf = c

R
E
f , c > 0; (ii)

R
E
(f + g) =

R
E
f +

R
E
g; and

(iii) if g ≥ f a.e., then R
E
g ≥ R

E
f .

Proof. (ii) Let h and k be bounded, L-measurable functions such that h ≤ f ,
k ≤ g and vanish outside sets of Þnite measure. Then h+ k ≤ f + g so thatR
E
h +

R
E
k =

R
E
(h + k) ≤ R

E
(f + g). Then suph≤f

R
E
h + supk≤g

R
E
k ≤R

E
(f + g) so by DeÞnition 388 we have (i.e.

R
E
f +

R
E
g ≤ R

E
(f + g)).

To establish the reverse inequality, let l be a bounded L-measurable func-
tion which vanishes outside a set of Þnite measure and is such that l ≤ f +g.
DeÞne h and k by setting h(x) = min(f(x), l(x)) and k(x) = l(x) − h(x).
Then h ≤ f (by construction) and k ≤ g also follows from l = h + k ≤
f + g. Furthermore, h and k are bounded by the bound for l and vanish
where l vanishes. Then

R
E
l =

R
E
h +

R
E
k ≤ R

E
f +

R
E
g. But this implies

supl≤f+g
R
E
l ≤ R

E
f +

R
E
g or

R
E
(f + g) ≤ R

E
f +

R
E
g.

Exercise 5.2.4 Let f be a nonnegative L-measurable function. Show that
f = 0 a.e. on E iff

R
E
f = 0.

As in the previous subsection, we now prove some important results con-
cerning the interchange of limit and integral operations. The bounded conver-
gence theorem has one restrictive assumption. It is that the sequence < fn >
is uniformly bounded. In the following lemma this assumption is dropped.
Instead we assume nonnegativity of < fn > and the result is stated in terms
of inequality rather than equality.

Theorem 393 (Fatou�s Lemma) Let < fn > be a sequence of nonnega-
tive L-measurable functions and fn(x) → f(x) a.e. on E. Then

R
E
f ≤

limn→∞
R
E
fn.

Proof. (Sketch) Let < fn >→ f pointwise on E. The idea of the proof is to
use the Bounded Convergence Theorem 386. To do so, we need a uniformly
bounded sequence of functions. Hence, let h be a bounded function such
that h(x) ≤ f(x), obtaining non-zero values only on a subset of E with Þnite
measure. DeÞne a new sequence < hn > by hn(x) = min(fn(x), h(x)).Then
hn(x) is uniformly bounded, hn(x) ≤ fn(x) and hn → h pointwise. Thus by
the bounded convergence theoremZ

E

h = lim
n→∞

Z
E

hn ≤ lim
n→∞

inf

Z
E

fn (5.5)



5.2. LEBESGUE INTEGRATION 179

where we use the lim inf since the limit of < fn(x) > may not exist. Since
(5.5) holds for any h with the given properties, it also holds for the supremum

sup
h≤f

Z
E

h ≤ lim
n→∞

inf

Z
E

fn. (5.6)

But the left hand side of (5.6) is by deÞntion
R
E
f.

The next example shows that the strict inequality may be obtained.

Example 394 Let the functions fn : [0, 1]→ R+ be given by

fn(x) =

½
n if 1

n
≤ x ≤ 2

n

0 otherwise

See Figure 5.2.2.5. In this case limn→∞ fn(x) = 0 a.e. and limn→∞
R
[0,1]
fn(x)dx =

supn→∞
h
infk≥n

R
[0,1]
fk(x)dx

i
= sup{< 1 >} = 1.10

To see that nonnegativity matters for Fatou�s lemma, consider the fol-
lowing example.

Example 395 Instead, let the functions fn : [0, 1]→ R+ be given by

fn(x) =

½ −n if 1
n
≤ x ≤ 2

n

0 otherwise
.

Again limn→∞ fn(x) = 0 a.e. and limn→∞
R
[0,1]
fn(x)dx = supn→∞

h
infk≥n

R
[0,1]
fk(x)dx

i
=

sup{−1,−2,−3, ...} = −1. Hence without nonnegativity we may have R
E
f >

limn→∞
R
E
fn.

The conclusion of Theorem 393 is weak. It is possible to strengthen it by
imposing more structure on the sequence of functions.

Theorem 396 (Monotone Convergence ) Let < fn > be an increasing
sequence of nonnegative L-measurable functions and fn(x) → f(x) a.e. on
E. Then

R
E
f = limn→∞

R
E
fn.

Proof. Since fn ≤ f,∀n we have
R
E
fn ≤

R
E
f by (iii) of Theorem 392. This

implies limn→∞
R
E
fn ≤

R
E
f . The result then follows from Theorem 393.

10In this example, it was not necessary to actually take the liminf
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Example 397 Let f : [0, 1]→ R be deÞned by

f(x) =

½ 1√
x
if x ∈ (0, 1]

0 x = 0
.

As in Example 390, while f is unbounded, consider a sequence of functions
hn : [0, 1]→ R given by

hn(x) =

½
f(x) if f(x) ≤ n
n if f(x) > n

.

or in other words

hn(x) =

½ 1√
x
if x ∈ [ 1

n2
, 1]

n x ∈ [0, 1
n2
)

.

In this case hn ≤ f (except at x = 0 but this is a set of measure 0) and hn
is a bounded, L-measurable function which vanishes outside a set of Þnite
measure. Furthermore, hn is monotone since hn(x) ≤ hn+1(x),∀x ∈ [0, 1].
Then

R
[0,1]
hn(x)dx =

R
[0, 1

n2
]
ndx+

R
( 1
n2
,1]

1√
X
dx = n·( 1

n2
−0)+2(1− 1

n
) = 2− 1

n
.

Then as n→∞, R
[0,1]
hn(x)dx = 2. By the Monotone Convergence Theorem,R

[0,1]
f(x) = 2.

Example 397 is known as an improper integral when regarded as a Rie-
mann integral since the integrand is unbounded.11 On the other hand, it
is perfectly proper when regarded as a Lebesgue integral. In this example,
the two integrals are equal. Furthermore, we note that while Example 397
provides a case in which an unbounded nonnegative L-measurable function
is integrable, Example 390 provides an instance of a closely related function
which is not integrable.

Assumption 3: f is any function and m(E) ≤ ∞ (general lebesgue
integral)

DeÞnition 398 An L-measurable function f is integrable over E if f+

and f− are both integrable over E. In this case,
R
E
f =

R
E
f+ − R

E
f−.

Theorem 399 A function f is integrable over E iff |f | is integrable over E.
11We also say that a Riemann integral is improper if its interval of integration is un-

bounded.
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Proof. (⇒) If f is integrable over E,then f+and f−are both integrable over
E. Thus,

R
E
|f | = R

E
f+ +

R
E
f− by Theorem 392. Hence |f | is integrable.

(⇐) If R
E
|f | <∞, then so are R

E
f+ and

R
E
f−.

Example 400 Consider a version of the Dirichlet function f : [0, 1] →
{−1, 1} given by

f(x) =

½
1 if x ∈ Q ∩ [0, 1]
−1 otherwise

.

Observe that |f | = 1 and hence Riemann integrable while f is not.

Lemma 401 Let A ∈ L, m(A) = 0,and f be an L-measurable function.
Then

R
A
f = 0.

Proof. We show it Þrst for a simple function. Let f =
Pn

i=1 χEi where{Ei} is a collection of L-measurable sets that are disjoint. Then fχA =Pn
i=1 αiχA∩Ei, where A∩Ei are disjoint andm(A∩Ei) = 0 (sincem(A∩Ei) ≤

m(A) = 0. Thus
R
fχA =

Pn
i=1 αim(A ∩Ei) = 0.

If f is a non-negative measurable function, then by Theorem 367 there is a
non-decreasing sequence < fn > of simple functions that converges pointwise
to f . Then by Theorem 396Z

A

f = lim
n→∞

Z
A

fn = lim
n→∞

Z
fχA = 0.

Finally, if f is an arbitrary measurable function, then fχA = f
+χA−f−χA

and
R
A
f =

R
A
f+ − R

A
f− = 0− 0 = 0.

Lemma 402 Let f be an L-measurable function over E. If there is an in-
tegrable function g such that |f | ≤ g, then f is integrable over E.

Proof. From f+ ≤ g,it follows that R
E
f+ ≤ R

E
g, and so f+is integrable on

E. Similarly, f− ≤ g implies integrability of f−. Hence f is integrable over
E.

Theorem 403 Let f and g be integrable functions deÞned on a set E. Then
(i) the function cf where c is Þnite is integrable over E and

R
E
cf = c

R
E
f ;

(ii) the function f + g is integrable over E and
R
E
(f + g) =

R
E
f +

R
E
g; (iii)

if g = f a.e., then
R
E
g =

R
E
f ;(iv) if g ≥ f a.e., then R

E
g ≥ R

E
f ; and (v) If

E1and E2are disjoint L-measurable sets in E, then
R
E1∪E2 f =

R
E1
f +

R
E2
f .
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Exercise 5.2.5 Prove Theorem 403.

In considering when we could interchange limits and integrals, we saw ei-
ther we had to impose bounds on functions (Bounded Convergence Theorem
386) or consider monotone sequences of nonnegative functions (Monotone
Convergence Theorem 396). In the general case, we simply must bound the
sequence of functions by another (possibly unbounded) function.

Theorem 404 (Lebesgue Dominated Convergence Theorem) Let g be
an integrable function on E and let < fn > be a sequence of L-measurable
functions such that |fn| ≤ g on E and limn→∞ fn = f a.e. on E. ThenR
E
f = limn→∞

R
E
fn.

Proof. (Sketch) By Lemma 402, f is integrable. We want to use Fatou�s
Lemma 393 which requires a sequence of non-negative functions, which is
not assumed in this theorem. However we can deÞne two sequences, namely
hn = fn + g and kn = g − fn for which < hn >→ f + g and < kn >→
g − f where both are non-negative. Hence by Fatou�s Lemma, we haveR
E
(f + g) ≤ lim infn→∞

R
E
(fn + g) and

R
E
(g − f) ≤ lim infn→∞

R
E
(g − fn).

The Þrst inequality implies
R
E
f ≤ lim infn→∞

R
E
fn and the second impliesR

f ≥ lim supn→∞
R
fn by Theorem 403. Combining these two we have

lim inf
n→∞

Z
E

fn ≥
Z
f ≥ lim sup

n→∞

Z
fn

which implies the desired result.
The above theorem requires that the sequence < fn > be uniformly dom-

inated by a Þxed integrable function g. However, the proof does not need
such a strong restriction. In fact, the requirements can be weakened to con-
sider a sequence of integrable functions < gn > which converge a.e. to an
integrable function g and that |fn| ≤ gn.

Example 405 Let fn : [0, 1] → R be given by fn(x) = nxn. See Figure
5.2.2.6. Then limn→∞ fn(x) = 0 a.e. and

R
[0,1]
fn(x)dx =

R
[0,1]
nxndx =

n
n+1
xn+1|10 = 1

1+ 1
n

so that limn→∞
R
[0,1]
fn(x)dx = 1. On the other hand,R

[0,1]
f(x)dx = 0.

Notice in the above example that the sequence of functions has no dom-
inating function.
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Example 406 Let fn : [0, 2]→ R be given by

fn(x) =

½ √
n if 1

n
≤ x ≤ 2

n

0 otherwise

See Figure 5.2.2.7. Then limn→∞ fn(x) = f(x) = 0 ∀x ∈ [0, 2] so thatR
[ 1
n
, 2
n
]
f(x)dx = 0. Note that |fn(x)| ≤ g(x) ∀x ∈ [0, 2] where

g(x) =

( q
2
x
if 0 < x ≤ 2

0 if x = 0

which is integrable over [0, 2]. It is also simple to see
R
[ 1
n
, 2
n
]
fn(x)dx =√

n
¡
2
n
− 1

n

¢
= 1√

n
so that limn→∞

R
[ 1
n
, 2
n
]
fn(x)dx = 0.

Finally we state a convergence theorem that differs from the previous
ones in the sense that we don�t assume that < fn >→ f . Instead the
theorem guarantees the existence of a function f to which < fn > converges
a.e. given < fn > is a non-decreasing sequence of integrable functions with
corresponding sequence of their integrals

R
fndm

®
being bounded.

Theorem 407 (Levi) Let hfni be a sequence on A ⊂ R and f1 ≤ f2 ≤
..... ≤ fn ≤ ...... where fn is integrable and

R
A
fndm ≤ K. Then there exists

f s.t. f = limn−→∞ fn a.e. on A , f is integrable on A and
R
A
fndm −→R

A
fdm .

Proof. (Sketch) Without loss of generality, assume f1 ≥ 0. DeÞne f(x) =
limn→∞ fn(x). Since hfni is non-decreasing, f(x) is either a number or +∞.Using
the Chebyshev�s inequality (Lemma 391), it is easy to show thatm ({x ∈ A : f(x) = +∞}) =
0, which implies fn → f pointwise a.e. In order to use the Lebesgue Domi-
nated Convergence Theorem 404, we need to construct an integrable function
ϕ on A that dominates fn (i.e. fn ≤ f ≤ ϕ on A. See Figure 5.2.2.8. Let
Ar = {x ∈ A : r−1 ≤ f(x) < r} and ϕ(x) =

P∞
r=1 rχAr . Clearly fn ≤ f(x) ≤

ϕ. Is ϕ integrable on A = ∪∞r=1Ar (i.e. is
R
A
ϕ =

P∞
r=1 rm(Ar) < ∞)? For

s ∈ N, deÞne Bs = ∪sr=1Ar . Since ϕ (x) ≤ f (x) + 1 and both fn and f are
bounded on Bs, we have

sX
r=1

rm (Ar) =

Z
Bs

ϕdm ≤
Z
Bs

f (x) dm+m (A) = lim
n−→∞

Z
Bs

fn (x) dm+m (A) ≤ K+m (A) .
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Boundedness of partial sums of an inÞnite series
P∞

r=1 rm (Ar)
¡
=
R
A
ϕdm

¢
guarantees integrability of ϕ.
We can also state a �series version� of Levi�s theorem. It says that un-

der certain conditions on the series, integration and inÞnite summation are
interchangeable.

Corollary 408 If < gk > is a sequence of non-negative functions deÞned on
A such that

P∞
k=1

R
A
gk(x)dm <∞ , then the inÞnite series

P∞
k=1 gk(x) con-

verges a.e. on A. That is,
P∞

k=1 gk(x)→ g(x) a.e. and
P∞

k=1

R
A
gk(x)dm =R

A

P∞
k=1 gk(x)dm

¡
=
R
A
g(x)dm

¢
.

Proof. Apply Levi�s Theorem to the functions fn(x) =
Pn

k=1 gk(x).

5.3 General Measure

In the preceding sections, we focussed on R (or subsets thereof) as the under-
lying set of interest. From this set, we constructed the Lebesgue σ-algebra
denoted L. Then we deÞned the Lebesgue measurem on elements of L. That
is, we studied the triple (R, L, m) known as the Lebesgue measure space.
These ideas can be extended to general measure spaces.

DeÞnition 409 The pair (X,X ), where X is any set and X is a σ-algebra
of its subsets is called a measurable space. Any set A ∈ X is called a
(X -)measurable set.

DeÞnition 410 Let (X,X ) be a measurable space. A measure is an ex-
tended real valued function µ : X → R∪{∞} such that: (i) µ(∅) = 0;
(ii) µ(A) ≥ 0,∀A ∈ X ; and (iii) µ is countably additive (i.e. if {An}n∈N
is a countable, disjoint sequence of subsets An ∈ X , then µ(∪n∈NAn) =P

n∈N µ(An)).

DeÞnition 411 A measure space is a triple (X,X , µ).

DeÞnition 412 Let (X,X ) be a measurable space. A measure µ is called
Þnite if µ (X) <∞. µ is called σ-Þnite if there is a countable collection of
sets {Ei}∞i=1 in X with µ (Ei) <∞ for all i and X = ∪∞i=1Ei.
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Example 413 (i) If X = R, then Lebesgue measure is not Þnite because
m (−∞,∞) = ∞ but it is σ-Þnite because (−∞,∞) = ∪∞n=1 (−n, n) and
m ((−n, n)) = 2n. (ii) If X = [0, 100] , then Lebesgue measure is Þnite because
m ([0, 100]) = 100.

Exercise 5.3.1 Let X = (−∞,∞) , X = P (X) and µ (E) =
½
# of elements if E is Þnite
∞ if E is inÞnite

.Show

that (X,X , µ) is a measure space and that µ is not σ-Þnite.
Lebesgue measure has one important property that follows from Exercise

5.1.2. That is, if E is a Lebesgue measurable set with measure 0 and ifA ⊂ E,
then A is also Lebesgue measurable and m (A) = 0. In general, however, we
can have a situation that E ∈ X (is X -measurable) with µ (E) = 0, A ⊂ E
but A may not be in X .
Example 414 Let (X,X , µ) be a measure space deÞned as follows: Let X =
{a, b, c} , X = {∅, {a, b, c} , {a, b} , {c}} ; µ (∅) = µ ({a, b}) = 0 , µ({c}) =
µ({a, b, c}) = 1, {a} ⊂ {a, b} but {a} is not X -measurable.
DeÞnition 415 Let (X,X , µ) be a measure space. µ is complete on X if
for any E ∈ X with µ (E) = 0 and for A ⊂ E then A ∈ X and µ (A) = 0.

That is, µ is complete in X if any subset of a zero measurable set is
measurable and has measure zero.
If we consider Lebesgue measure restricted to the Borel σ-algebra (i.e

(R,B,m)) then m is not complete on B.To show this would necessitate more
machinery (the Cantor set can be used to illustrate the idea). However, if

µ is not complete on X , then there exists a completion of X denoted by eX .
For example, the completion of (R,B,m) is (R,L,m) .
Exactly the same way we built the theory of Lebesgue measure and

Lebesgue integral in Sections 5.1 to 5.2.2, the theory of general measure
and integral can be constructed. The space (R,L,m) can be replaced by
(X,X ,m) and instead of L -measurability and L-integrability we will have
X -measurability and X -integrability.

5.3.1 Signed Measures

Although we have introduced a general measure space (X,X , µ) , the only
non-trivial measure space that we have encountered so far is the Lebesgue
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measure space (R,L,m) , where Lebesgue measuremwas constructed through
the outer measure in Section 5.1. Can we construct other non-trivial measures
µ on a general measure space (X,X )? Consider a measure space (X,X , µ)
and let f be a non-negative X -measurable function. DeÞne λ : X −→ R
by λ (E) =

R
E
fdµ. Then the following theorem establishes that this set

function λ is a measure.

Theorem 416 If f is a non-negative X -measurable function then

λ (E) =

Z
E

fdµ (5.7)

is a measure. Moreover if f is X -integrable, then λ is Þnite.

Proof. λ (E) =
R
E
fdµ =

R
X
fχEdµ ≥ 0 for all E ∈ X (where χE is the

characteristic function of E). Let {Ei}∞i=1 be a collection of mutually disjoint
sets and ∪∞i=1Ei = E. Then χE =

P∞
i=1 χEi. Let gn = fχEn and fn =

Pn
i=1 gn.

Since gn ≥ 0, the sequence hfni is non-decreasing. fn is also measurable for all
n because the sum and the product of measurable functions is measurable.
fn converges pointwise to f because

Pn
i=1 χEi → χE =

P∞
i=1 χEi. Then

according to the monotone convergence theorem 396

λ (E) =

Z
E

fdµ =

Z
fχEdµ =

Z
f

∞X
i=1

χEi =
∞X
i=1

Z
fχEidµ =

∞X
i=1

Z
Ei

fdµ =
∞X
i=1

λ (Ei)

Hence λ is σ-additive. If f is integrable, then λ (X) =
R
X
fdµ < ∞ and

hence f is Þnite.
This theorem provides us with a method of how to construct new mea-

sures on a measure space (X,X , µ) . Actually any non-negative X -integrable
function represents a Þnite measure given by 5.7. Thus, given a measure space
(X,X , µ) ,there is a whole set of measures deÞned on X .
Are all measures on (X,X , µ) of the type given by 5.7? In other words,

let E be the set of all measures on (X,X , µ) .Can any measure ν ∈ E be rep-
resented by an integrable function g such that ν(E) =

R
E
gdµ? The answer

is contained in a well-known result: the Radon-Nikodyn theorem. We could
pursue this problem in our current setting; namely we could deal with mea-
sures only (i.e. with non-negative σ-additive set functions deÞned on X ). We
can, however, work in an even more general setting. Instead of dealing with
non-negative σ-additive set functions (measures) we can drop the assumption
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of non-negativity and work with the σ-additive set functions which are ei-
ther positive or negitive or both. These functions are called signed measures.
This generalization is useful particularly when working with Markov pro-
cesses. ???NEED AN EXAMPLEWITH A MARKOV PROCESS HERELet
us now deÞne the notion of signed measure rigorously.

DeÞnition 417 Let (X,X ) be a measurable space. Let µ : X −→ R ∪
{−∞,∞} with the following properties: (i) µ (∅) = 0 ; (ii) µ obtains at
most one of the two symbols +∞,−∞ ; (iii) µ is σ-additive. Then µ is
called a signed measure on X .

In the text that follows when we refer to a �measure� (without the preÞx
�signed�) we mean measure in the sense of DeÞnition 410(i.e. a non-negative
set function).

Example 418 Given a measure space (X,X , µ) , an example of a signed
measure is the set function

ν (E) =

Z
E

fdµ (5.8)

where f is any X -integrable function. In Theorem 416 we showed that if f is
a non-negative integrable function then P is a Þnite measure. Here we just
assume that f is integrable and put no restrictions on non-negativity. We
can also assume that f is the �only� measurable function for which

R
fdµ

exists (i.e. at least one of the functions f+, f− is integrable). Thus, if f in
(5.8) is an integrable function, then ν is a Þnite signed measure and if f is
a X−measurable function for which R fdµ exists, then ν is a signed measure
(though not necessarily Þnite).

Example 419 Let (R,L,m) be a Lebesgue measure space. In the Þrst case,
let f : R→ R be given by f (x) = x

(1+x2)2
.Then we have f+ (x) =

½ x
(1+x2)2

, x ≥ 0
0 , x < 0

,

f− (x) =
½

0 , x ≥ 0
− x
(1+x2)2

, x < 0 ,
R∞
−∞ f

+dm =
R∞
−∞ f

−dm = 1
2
, f is integrable

and ν (E) =
R
E
fdm =

R∞
−∞

x
(1+x2)2

· χE (x) dm is a Þnite signed measure.
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Example 420 Let g : R → R be given by g (x) =
½

x , x ≥ 0
x

(1+x2)2
, x < 0 .Then

we have g+ (x) =

½
x , x ≥ 0
0 , x < 0

, g− (x) =
½

0 , x ≥ 0
− x
(1+x2)2

, x < 0 ,
R∞
−∞ g

+dm =

+∞ ,
R∞
−∞ g

−dm = 1
2
, g is measurable but not integrable. However, the

integral exists since
R∞
−∞ gdm =

R∞
−∞ g

+dm − R∞−∞ g−dm = +∞− 1
2
= +∞,

ν (E) =
R
E
g · dm =

R∞
−∞ g · χEdm is a signed measure (but not Þnite).

Example 421 Let h : R→ R be given by h (x) = x. Then we have h+ (x) =½
x , x ≥ 0
0 , x < 0

, h− (x) =
½

0 , x ≥ 0
−x , x < 0 ,

R∞
−∞ h

+dm = +∞ ,
R∞
−∞ h

−dm =

+∞. Hence R∞−∞ hdm = R∞−∞ h+dm−R∞−∞ h−dm =∞−∞ is not deÞned, the
Lebesgue integral doesn�t exist, and thus this function doesn�t deÞne a signed
measure.

The previous examples show that if a signed measure ν is deÞned by
expression (5.8) using an integral then it can be written as a difference of
two measures:

ν (E) = ν1 (E)− ν2 (E) where
ν (E) =

Z
E

fdµ , ν1 (E) =

Z
E

f+dµ and ν2 (E) =

Z
f−dµ

We now show that such a decomposition is possible for any arbitrary
signed measure. This decomposition is known as the Jordan decomposition
of a signed measure. First we need to prove some lemmas. However, in
order to avoid introducing complicated terminology which does not help to
understand the main ideas, in the remainder of this chapter we will deal
only with Þnite signed measures. All theorems and proofs can be adopted to
σ-Þnite signed measures.

Lemma 422 Let ν be a Þnite signed measure on X . Then any collection of
disjoint sets {Ei} , for which ν (Ei) > 0 (ν (Ei) < 0) is countable.

Proof. Let E ⊂ X be a collection of disjoint sets {Ei} for which ν (Ei) > 0.
For n = 1, 2, ... let En =

©
Ei ∈ E : ν (Ei) > 1

n

ª
. Then E = ∪∞n=1En. For each

n, En is Þnite. If it were not, we would have a sequence hEki∞k=1 of disjoint sets
from E with ν (Ek) > 1

n
for k = 1, 2, ....Then ν (∪∞k=1Ek) =

P∞
i=1 ν (Ek) ≥
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P∞
k=1

1
n
= ∞ , which leads to a contradiction, that ν is Þnite. Then En is

Þnite and hence E = U∞n=1En is countable.
Let ν be a signed measure on X and let ν (E) > 0. Let F ⊂ E.What can

be said about the sign of ν(F )? As the next example shows, not much can
be said about the signed measure of a subset of a set whose signed measure
is positive.

Example 423 Let X = {1, 2, 3, ......} ,X = P (X) .For E ∈ X , deÞne
ν (E) =

P
nDE (−1)n 1

2n
. For E = {1, 2, 3} , ν (E) = −3

8
< 0. If F =

{2} ⊂ E , ν (F ) = 1
4
> 0. But notice that each singleton subset C of

set B = {1, 3, 5, ....} has ν (C) < 0 and each singleton subset D of the
set A = {2, 4, 6, ......} has ν (D) > 0. Moreover A and B are disjoint and
A ∪B = X.
Example 424 Let X = [−1, 1] and X be all L-measurable subsets of [−1, 1] .
For E ⊂ [−1, 1] , let v (E) = R

E
xdx. For E =

£−1
2
, 1
¤
, then ν (E) =R 1

− 1
2
xdx = 3

8
. For F =

£−1
2
, 0
¤ ⊂ £−1

2
, 1
¤
, ν (F ) =

R 0
− 1
2
xdx = −1

8
. Thus

the sign measure of the set E is positive but its subset F has negative sign
measure. But for each subset C of the set B = [−1, 0) , ν (C) < 0 and
for each subset D of the set A = [0, 1] , ν (D) > 0 where A ∩ B = ∅ and
A ∪B = X.
DeÞnition 425 A X -measurable set E is positive (negative) with respect
to a signed measure ν, if for any X -measurable subset F of E , ν (F ) ≥ 0 ,
(ν (F ) ≤ 0) .
Thus sets A in Examples 423 and 424 are positive while B are negative.

Notice that ν(G) > 0 (or ν(G) < 0) doesn�t mean that G is positive (nega-
tive) as E in Examples 423 and 424 show. We will show that the existence of
sets A and B for a signed measure D in these examples is not a coincidence.

DeÞnition 426 An ordered pair (A,B), where A is a positive and B is a
negative set, with respect to a signed measure ν and A∩B = ∅ , A∪B = X
is called the Hahn decomposition with respect to ν of a measurable space
(X,X ) .
Theorem 427 (Hahn Decomposition) Let ν be a Þnite signed measure
on a measurable space (X,X ) . Then there exists a Hahn decomposition of
(X,X ) .



190 CHAPTER 5. MEASURE SPACES

Proof. (Sketch)Let S be a family of collections of subsets of X whose el-
ements A are collections of disjoint measurable sets E ⊂ X with ν(E) < 0.
Since �⊂� is a partial ordering on S satisfying the assumptions of Zorn�s
lemma 46 (namely that every totally ordered subcollection {Ai} has a max-
imal element A = ∪iAi), then there is a maximal element E of S. Moreover
E is countable (by Lemma 422). Let B = ∪{E ∈ E}. Then B is measurable
and negative (by construction all of its subsets have negative measure). Let
A = X\B. We have A ∩ B = ∅, A ∪ B = X, and A is measurable. If
we show that A is positive, then we would be done since (A,B) would be a
Hahn decomposition. Hence we need to show that A (as a complement of a
maximal negative set) is positive. The idea is that if we assume that A is not
positive, then we can construct a negatie set with negative measure outside
the set B. This would violate the maximality of B. While the construction
of such a set is given in the formal proof of this theorem in the appendix to
the chapter, see Figure 5.3.1.
In the special case where a signed measure ν is deÞned by the integral

ν (E) =
R
E
fdµ, the Hahn decomposition is given by A = {x : f (x) ≥ 0}

and B = {x : f (x) < 0} as we have seen in Example 424. It is easily seen
that the Hahn decomposition is not unique. We can, for example, set A1 =
{x : f (x) > 0} , B1 = {x : f (x) ≤ 0}. But the following theorem shows that
the choice of a Hahn decomposition doesn�t really matter.

Theorem 428 Let (A1, B1) , (A2, B2) be two Hahn decompositions of a mea-
surable space (X,X ) with respect to a signed measure ν. Then for each E ∈ X
we have ν (E ∩A1) = ν (E ∩A2) and ν (E ∩B1) = ν (E ∩B2) .
Proof. From E ∩ (A1\A2) ⊂ E ∩ A1 we have ν (E ∩ (A1\A2)) ≥ 0 and
from E ∩ (A1\A2) ⊂ E ∩B2 we have ν (E ∩ (A1\A2)) ≤ 0. Combining these
two inequalities we have ν (E ∩ (A1\A2)) = 0. Analogously we can show that
ν (E ∩ (A2\A1)) = 0.Hence ν (E ∩A1) = ν((E ∩ (A2\A1))∪(E ∩ (A1 ∩A2))) =
0+ ν (E ∩A1 ∩A2) . If we start with ν (E ∩A2) , we arrive by similar rea-
soning with 0+ ν (E ∩A1 ∩A2) . Hence, v(E ∩ A1) = ν(E ∩ A2). Similarly
we can show that ν (E ∩B1) = ν (E ∩B2) .
Theorem 429 Let ν be a Þnite signed measure on X and let (A,B) be an ar-
bitrary Hahn decomposition with respect to ν. Then ν (E) = ν+ (E)− ν− (E)
for any E ∈ X where ν+ (E) = ν (E ∩A) and ν− (E) = − ν (E ∩B) are
both measures on X and don�t depend on the choice of Hahn decomposition
(A,B).
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Proof. The independence of ν+ and ν− on the choice of Hahn decomposition
follows from Theorem 428. Since ν is a signed measure, ν is σ-additive and
thus ν+ and ν− are as well. Since A is a positive set and E ∩ A ⊂ A, then
ν (E ∩A) ≥ 0. Since B is a negative set and E ∩B ⊂ B, then ν (E ∩B) ≤ 0
so that − ν (E ∩B) ≥ 0. Thus ν+ and ν− are measures on X . Since E =
E ∩ X = E ∩ (A ∪B) = (E ∩A) ∪ (E ∩B) ,we have ν (E) = ν (E ∩A)+
ν (E ∩B) = ν+ (E)− ν− (E) .

DeÞnition 430 ν = ν+− ν− is called the Jordan decomposition of a
signed measure ν. The measure ν+ (ν−) is called a positive (negative)
variation of ν. |ν| (E) = ν+ (E)+ ν− (E) is also a measure on X and is
called the total variation of a signed measure ν.

Exercise 5.3.2 Let (X,X , µ) be a measure space and let f be X -integrable.
If ν (E) =

R
E
fdµ , show that ν+ (E) =

R
E
f+dµ , |ν| (E) = R

E
|f | dµ.

Exercise 5.3.3 Show that a countable union of positive (negative) sets is a
positive (negative) set.

If a signed measure ν is deÞned as the integral of an integrable function
ν (E) =

R
E
fdµ then by Lemma 401 it has the following property. If E ∈ X

and µ (E) = 0, then ν (E) = 0. As we will soon see, this property of a signed
measure is very important and we formulate if for any signed measure (not
only the one given by an integral).

DeÞnition 431 Let ν be a Þnite signed measure and let µ be a measure on
(X,X ) . If for every A ∈ X , µ (A) = 0 implies ν (A) = 0 , then we say that
ν is absolutely continuous with respect to µ , written ν << µ.

Hence by Lemma 401, ν (E) =
R
E
fdµ is absolutely continuous with re-

spect to µ. Now we prove two simple lemmas.

Lemma 432 Let ν be a Þnite signed measure and µ be a measure on X .
Then the following are equivalent:(i) ν << µ, (ii) ν+ << µ, ν− << µ, (iii)
|ν| << µ.

Proof. (i) =⇒ (ii) . Let (A,B) be a Hahn decomposition with respect to ν.
Let E ∈ X and µ (E) = 0.Then µ (E ∩A) = 0 and because ν is absolutely
continuous with respect to µ, we have ν (E ∩A) = ν+ (E) = 0. This implies
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ν+ << µ. Similarly ν− << µ. The other two implictations follow immediately
from these equalities:

|ν| (E) = ν+ (E) + ν− (E)
ν (E) = ν+ (E)− ν− (E) .

Lemma 433 Let µ, λ be Þnite measures on X , λ << µ and λ (E0) 6= 0
for at least one set E0 ∈ X . Then there exists ε > 0 and a set E ∈ X
that is positive with respect to the signed measure λ− εµ and λ (E) > 0 and
µ (E) > 0.

Proof. Let (An, Bn) for n ∈ N be a Hahn decomposition of X with respect
to λ− 1

n
µ. Set A = ∪∞n=1An , B = ∩∞n=1Bn. Since B ⊂ Bn and Bn is a negative

set with respect to λ− 1
n
µ then

¡
λ− 1

n
µ
¢
(B) ≤ 0⇐⇒ 0 ≤ λ (B) ≤ 1

n
µ (B)

, for n ∈ N. Thus λ (B) = 0. Since λ (X) 6= 0, then λ (A) = λ (X\B) =
λ (X) − λ (B) = λ (X) > 0. As λ << µ we have µ (A) > 0. Finally set
E = An0 and ε =

1
n0
.

Now we are ready to tackle the main problem of this section, which you
can think of as a representation theorem.12 Given a measure space (X,X , µ) ,
consider the set function ν (E) =

R
E
fdµ where f is X -measurable and X

-integrable. Under certain conditions, this speciÞc signed measure on X
represents all signed measures (i.e. there are no other signed measures on
X that cannot be represented as the integral of the X -measurable function
f). This is established formally in the Radon-Nikodyn Theorem which states
that under certain conditions any signed measure on X can be represented
by the integral of a measurable function. The Radon-Nikodyn Theorem will
be used in the Riesz Representation Theorem in the next chapter.

Theorem 434 (Radon-Nikodyn) Let (X,X , µ) be a measure space, µ be
a σ-Þnite measure, ν be a Þnite signed measure on X and ν << µ. Then
there exists a X -integrable function f on X such that ν (E) =

R
E
fdµ for

any E ∈ X . Moreover f is unique in the sense that if g is any X -measurable
function with this property, then g = f a.e. with respect to µ.

12In general, a representation theorem provides a simple way to characterize (or repre-
sent) a set of elements using certain properties that actually extends to the entire collection
of elements under given assumptions.
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Proof. (Sketch) By Theorem 429, a Þnite signed measure ν can be decom-
posed into ν+ and ν− where ν−, ν+ are both measures and by (ii) of Lemma
432 they are both absolutely continuous with respect to µ (if ν is). Hence it
suffices to prove the theorem under the assumption that ν is a (non-negative)
measure. Also, since µ is σ-Þnite, then X can be decomposed into countably
many disjoint sets {Ei} for which µ(Ei) <∞. Hence it suffices to prove the
theorem with µ Þnite. In summary, we take µ, ν both Þnite measures with
ν << µ.
Let G be the set of all non-negative X -measurable, integrable functions

g satisfying Z
E

gdµ ≤ ν(E), ∀E ∈ X . (5.9)

Among these functions g, we want to Þnd a function f which satisÞes (5.9)
with equaility. Since

R
X
gdµ ≤ ν(X), ∀g ∈ G (because ν is Þnite), the set of

real numbers
©R
gdµ, g ∈ Gª is bounded (by ν(X)) and hence its supremum

exists. Let α = supg∈G
R
gdµ. f is constructed (using Levi�s Theorem 407)

as a limit function of a sequence < fn > that attains this supremum (i.e.
α =

R
fdµ ).13

Because f ∈ G, we know that R
E
fdµ ≤ ν(E), ∀E ∈ X . We claim thatR

E
fdµ = ν(E), ∀E ∈ X . If this were not true, then there would exist a

set E such that
R
E
fdµ < ν(E). Then by Lemma 433, we could construct a

function g0 = f + εχE0belonging to G for which
R
g0dµ > α. But this would

violate the fact that α is the supremum.
The assumption in the Radon-Nikodyn theorem that µ is σ-Þnite is im-

portant as the next exercise shows.

Exercise 5.3.4 Let X = R and let X be a collection of all subsets of
R that are countable or that have countable complement. DeÞne µ (E) =½
# of elements of E if E is Þnite

∞, otherwise and ν (E) =

½
0 if E is countable

1 if X\E is countable . (i)

Show that µ, ν are measures on X and that ν << µ. (ii) Show that µ is not
σ-Þnite. (iii) Show that the Radon-Nikodyn theorem doesn�t hold.

13In particular, by the supremum property, there exists a sequence < gn > from G such
that limn→∞

R
gndµ = α. DeÞne a sequence < fn > by fn = max{g1, ..., gn}, fn ∈ G.

Since < fn > is a non-decreasing sequence of integrable functions with
R
fndµ ≤ α, then

by Levi�s theorem there exists an integrable function f = lim fn a.e. with
R
E
fdµ =

limn→∞
R
E
fndµ ≤ ν(E) (because fn ∈ G) and hence f ∈ G and

R
fdµ ≤ α. On the

other hand, because gn ≤ fn we have
R
E
fdµ = limn→∞

R
E
fndµ ≥ limn→∞

R
gndµ = α.

Combining these two inequalities gives
R
fdµ = α.
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5.4 Examples Using Measure Theory

5.4.1 Probability Spaces

DeÞnition 435 If µ(X) = 1,then µ is a probability measure and (X,X , µ)
is called a probability space. In this case, X is called the sample space,
any measurable set A ∈ X is called an event, and µ(A) is called the prob-
ability of the event A. For a probability space, we say almost surely
(a.s.) interchangeably with almost everywhere (a.e.).

We next illustrate measure spaces through some basic properties of prob-
ability.

DeÞnition 436 Let (X,X , P ) be a probability space. Let Λ be an arbitrary
index set and let Ai, i ∈ Λ be events in X . The Ai are independent if and
only if for all Þnite collections {Ai1, Ai2 , ..., Aik} we have

P (Ai1 ∩Ai2 ∩ ... ∩Aik) = P (Ai1)P (Ai2) · · · P (Aik).
The next deÞnition makes clear that a random variable is nothing other

than a measurable function.

DeÞnition 437 A random variable Y on a probability space (X,X , P ) is
a Borel measurable function from X to R (i.e. Y : X×X → R×B(R)). If Y
is a random variable on (X,X , P ), the probability measure induced by
Y is the probability measure PY on B(R) given by PY (B) = {x ∈ X : Y (x) ∈
B}, B ∈ B(R).
The numbers PY (B), B ∈ B(R), completely characterize the random vari-

able Y in the sense that they provide the probabilities of all events involving
Y . This information can be captured by a single function from R to R as
the next deÞnition suggests.

DeÞnition 438 The distribution function of a random variable Y is the
function F : R→ R given by F (y) = P{x ∈ X : Y (x) ∈ B}.
DeÞnition 439 If Y is a random variable on (X,X , P ), the expectation
of Y is deÞned by E[Y ] =

R
X
Y dP provided the Lebesgue integral exists.

The next result gives a good illustration of simple functions, monotone
convergence theorem.
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Theorem 440 Let Y be a random variable on (X,X , P ) with distribution
function F . Let g : R→ R be a Borel measurable function. If Z = g ◦ Y ,
then E[Z] =

R
R g(y)dF (y)

¡
=
R
R gdPY

¢
Exercise 5.4.1 Prove Theorem 440 (Theorem 5.10.2 p. 223 in Ash)

One of the most remarkable results in probability is Kolmogorov�s strong
law of large numbers.

Theorem 441 (Strong Law of Large Numbers) If Y1, Y2, ... are indepen-
dent and identically distributed random variables and E[|Y1|] <∞ , then

lim
n→∞

1

n

nX
i=1

Yi = E[Y1] a.s.

5.4.2 L1

Let us denote the collection of L-integrable functions f deÞned on X ⊂ R by
L1(X). For instance, X can be all of R in which case L1(R) is any measurable
subset of R. Hence L1(X) is the collection of all L-measurable functions f
deÞned on X for which

R
X
|f | < ∞. It is straightforward to see that L1(X)

is a vector space.

Exercise 5.4.2 Show that L1(X) is a vector space. Hint: Use Theorem 403.

Can L1(X) be equipped with a norm? Let us deÞne a function k·k1 =
L1(X)→ R given by kfk1 =

R
X
|f |. Does this function satisfy the properties

of a norm given in DeÞnition 206?

Exercise 5.4.3 Show that k·k1 satisÞes properties (i) kfk1 ≥ 0, ∀f ∈ L1(X),
(iii) kαfk1 = |α| kfk1 ,∀α ∈ R, f ∈ L1(X), (iv) kf + gk1 ≤ kfk1 + kgk1 ,∀
f, g ∈ L1(X) of the deÞnition of a norm and the part of (ii) that f = 0 ⇒
kfk1 = 0.

The next example makes it clear that the converse of part (ii) is not true.

Example 442 If f is the Dirichlet function of Example 360, then kfk1 = 0
but f 6= 0 everywhere.
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To overcome this problem, we will deÞne a relation �∼ � on the set of all
integrable functions. Let f, g ∈ L1, deÞne f ∼ g iff f = g a.e. This relation is
an equivalence and hence by Theorem 31 L1can be partitioned into disjoint
classes ef of equivalent functions (i.e. functions that are equal a.e.). Figure
5.4.1???

Exercise 5.4.4 Prove f ∼ g iff f = g a.e is an equivalence relation using
DeÞnition 26.

By Theorem 403, for any two functions from the same equivalence class,

the norm kfk1 = kgk1 ≡
°°° ef°°°

1
. Then the space L1 consisting of equivalence

classes with the k·k1 norm is a normed vector space.
To keep notation and terminology simple in what follows, we will refer to

the elements of L1 as functions rather than equivalence classes of functions.
But you should keep in mind that when we refer to a function f we are
actually referring to all functions that are equal a.e. to f .
The most important question we must ask of our new normed vector

space is �Is it complete?� The next theorem provides the answer.

Theorem 443 (L1, k·k1) is a complete normed vector space (i.e. a Banach
space).

Before proving completeness of L1,we note that one strategy used in pre-
vious sections is to: Þrst, take a Cauchy sequence < fn > in a given function
space and note that for a given x ∈ X, < fn(x) > is Cauchy in R and
limn→∞ fn(x) = f(x) exists for each x since R is complete; second, prove
that fn → f with respect to the norm of the normed function space. Un-
fortunately, this procedure cannot be used in L1since for a Cauchy sequence
< fn > in L1 a pointwise limit of < fn(x) > may not exist for any point x
as the following example shows.

Example 444 Let a sequence < fn > of functions on [0, 1] be given by

f1 = χ[0, 1
2
], f2 = χ[ 1

2
,1],

f3 = χ[0, 1
4
], f4 = χ[ 1

4
, 2
4
], , f5 = χ[ 2

4
, 3
4
], f6 = χ[ 3

4
,1],

f7 = χ[0, 1
8
], f8 = χ[ 1

8
, 2
8
], ..., f13 = χ[ 6

8
, 7
8
], f14 = χ[ 7

8
,1],

f15 = χ[0, 1
16
], ...
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See Figure 5.4.2. This sequence is Cauchy in L1([0, 1]) but there is no point
x ∈ [0, 1] for which limn→∞ fn(x) exists. In other words, < fn > doesn�t
converge pointwise at any point x ∈ [0, 1].
Proof. (Sketch)Let < fn > be a Cauchy sequence in L1. In order to Þnd a
function to which the sequence converges, in light of example 444, we need to
take a more sophisticated approach. The fact that < fn > is Cauchy means
we can choose a subsequence < fnk > such that the two consecutive terms are
so close to each other (i.e.

°°fnk+1 − fnk°°1 < 1
2n
) that their inÞnite sum (i.e.P∞

k=1

R |fnk+1 − fnk |dm converges a.e. on X (i.e. the sum is Þnite). Then
by the Corollary of Levi�s Theorem 408, the inÞnite sum

P∞
k=1 |fnk+1 − fnk |

also converges a.e. and because fnk+1 − fnk ≤ |fnk+1 − fnk |, ∀k,the inÞnite
sum

P∞
k=1 fnk+1 − fnk converges a.e. as well. But the sum of the differences

of two consecutive terms in the subsequence itself

fn1 + (fn2 − fn1) + (fn3 − fn2) + ...+ (fnk − fnk−1) = fnk .
Thus the subsequence < fnk > converges a.e. on X.
Let f be the function < fnk > which converges a.e. on X.We need to

show that < fnk >→ f with respect to k·k1 and that f ∈ L1(X). To prove the
former we can use Fatou�s Lemma 393 (since < fnk >→ f a.e.) and to prove
the latter we can use the the estimate kfk1 ≤ kf − fnkk1+kfnkk1 ≤ ∞. The
Þrst term in this inequality is bounded by Fatou�s Lemma and the second is
bounded since fnk ∈ L1,∀k.
Then we have a Cauchy sequence < fn > in L1(X) whose subsequence

< fnk >→ f in L1(X). Then by Lemma 173, the whole sequence < fn >→ f
in L1(X).

Approximation in L1

The next theorem establishes that the simple and continuous functions are
dense in L1(X).

Theorem 445 Let f be an L-integrable function on R and let ε > 0. Then
(i) there is an integrable simple function ϕ such that

R |f − ϕ| < ε and (ii)
there is a continuous function g such that g vanishes (i.e. g = 0) outside
some bounded interval and such that

R |f − g| < ε
2
.

Proof. (of i) Without loss of generality, we may assume that f ≥ 0 (other-
wise f = f+ − f− where f+ and f− are non-negative). If f is L-integrable,
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then using the supremum property in DeÞnition 388 for ε > 0,there exists
a bounded L-measurable function h that vanishes outside a set E of Þnite
measure (i.e. m(E) <∞) such that h ≤ fand ¡R f¢−ε < h⇔ R

(f−h) < ε.
Then by Theorem 367 there is a non-decreasing sequence (since h is bounded)
of simple functions < hn > converging uniformly to h. Then for

ε
2m(E)

> 0,

∃N such that |hn(x)− h(x)| < ε
2m(E)

for all x ∈ E. HenceZ
E

|f − hN | ≤
Z
E

|f − h|+
Z
E

|hN − h| ≤ ε

2
+

ε

2m(E)
m(E) = ε.

(of ii)Given: g , ∃ continuous function h s.t. g (x) = R (x) , except on a
set ≤ ε

3
.f is integrable Z

X

fdx = inf
ψ≥f

Z
X

ψdx (5.10)

,∀d > 0, ∃ R |f − ψ| dx < d. Referring to equation (5.10).ψ is a simple
function i.e.ψ(x) =

Pn
i=1 aiχEi(x), µ(Ei) < ∞, ∀i if µ is Lebesgue mea-

sure. µ(M) < ∞, then for ε > 0, ∃ FM closed and GM open such that
FM ⊂M ⊂ GM , µ(GM)− µ(FM) < ε.Let�s deÞne

ϕε(x) =
ρ (x,R\GM)

ρ (x,R\GM) + ρ (x, FM)
If

ϕε (x) = 0 if xεR\GM
ϕε (x) = f if xεFMϕε (x) is continuous because ρ (x,R\GM) and ρ (x, FM)
are continuous and ρ (x,R\GM) + ρ (x, FM) 6=.Function

χM − ρε =≤ xεGM\FM

χM − ρε = 0xεR\ (GM\FM) HenceZ
|χM (x)− ρε (x)| dµ < ε

Thus χM is approximated by a continuous function ρε .
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Separability of L1(X)

In the next chapter we will show that ifX is compact, then L1(X) is separable
with the countable dense set being the set of all polynomials with rational
coefficients. But if X is an abitrary L-measurable set including X with
m(X) =∞ (i.e. X = R) we need to Þnd a different countably dense set. We
will show that the set M of all Þnite linear combinations of the form

nX
i=1

ciχIi (5.11)

where the numbers ci, i = 1, ..., n are rational and Ii are all intervals (open,
closed, and half-open) with rational endpoints is a countably dense set in
L1(X).
Countability of M is obvious. We need to show that M is dense in

L1(X). By Theorem 445 we know that the set of all integrable simple func-
tions is dense in L1(X). But every such function can be approximated ar-
bitrarily closely by a function of the same type taking only rational values.
Thus given f ∈ L1(X) and ε > 0 there is an integrable simple function
ϕ =

Pn
i=1 yiχEiwhere yi are rational coefficients, Ei are mutually disjointL-measurable sets, and ∪ni=1Ei = X such that

R
X
|f − ϕ| dm < ε. If the

function ϕ were of the type (5.11) we would be done. Unfortunately it is not
because it requires Ei to be intervals (recall that the collection of all intervals
with rational endpoints is countable whereas the collection of L-measurable
subsets of X may not be countable). Hence we need to show that every
simple integrable function ϕ can be approximated by functions of the form
(5.11). Here we use the fact that if a set E is L-measurable then it can be
approximated by an interval (i.e. given ε > 0, there is an interval I such
that14

m((E\I) ∪ (I\E)) < ε. (5.12)

Now using (5.12) for sets {Ei}ni=1 we can construct {Ii}ni=1 such thatm((E\Ii)∪
(Ii\E)) < ε for i = 1, ..., n.Let bIi = Ii\∪j<i Ij, i = 1, ..., n.Then bIi are mutu-
ally disjoint. DeÞne a function

ψ(x) =

(
yi if x ∈ bIi
0 if x ∈ X\ ∪ni=1 bIi .

14We proved a similar result in Theorem 347 where a measurable set E is approximated
by open and closed sets.
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The function ϕ and ψ differ from each other on a set B with sufficiently small
measure, namely m(B) = m(x ∈ X : ϕ(x) 6= ψ(x)) < nε. Hence

kϕ− ψk1 =

Z
X

|ϕ(x)− ψ(x)|dm =
Z
B

|ϕ(x)− ψ(x)|
≤ sup

n
|yn|m(B) < (n sup

n
|yn|)ε

can be made arbitrarily small by choosing ε sufficiently small. Thus ψapproximates
ϕ and ψ is of the form (5.11). Thus we have the following theorem.

Theorem 446 L1(X) is separable.

Proof. The countable dense set in L1(X) is the set given by (5.11).

5.5 Appendix - Proofs in Chapter 5

Proof of Theorem 329. Take a closed Þnite interval [a, b]. Since [a, b] ⊂
(a − ε

2
, b + ε

2
), then m∗([a, b]) ≤ l(a − ε

2
, b + ε

2
) = b − a + ε,∀ε > 0 so

that m∗([a, b]) ≤ b − a. Next we will show that m∗[a, b] ≥ b − a. But
this is equivalent to showing that if {In}n∈N is an open covering of [a, b],
then

P
n∈N l(In) ≥ b − a. By the Heine-Borel Theorem 194 there is a Þnite

subcollection that also covers [a, b]. Since the sum of the lengths of the Þnite
subcollection can be no greater than the lengths of the original collection, it
suffices to show

PN

n=1
l(In) ≥ b − a for N Þnite. It is possible to construct

a Þnite sequence of open intervals < (ak, bk) >
K
k=1with ak < bk−1 < bk such

that a ∈ (a1, b1) and b ∈ (aK, bK).15 Thus

X
n∈N

l(In) ≥
KX
k=1

l(ak, bk)

= bK − (aK − bK−1)− (aK−1 − bK−2)− ...− (a2 − b1)− a1
≥ bK − a1
≥ b− a.

or m∗([a, b]) ≥ b− a. Thus m∗([a, b]) = b− a.
15Since a ∈ ∪Nn=1In, ∃(a1, b1) such that a ∈ (a1, b1). If b1 ≤ b, then since b1 /∈ (a1, b1),

∃(a2, b2) such that b1 ∈ (a2, b2). Continue by induction.
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To complete the proof we simply need to recognize that if I is any Þnite
interval, then for a given ε > 0, there is a closed interval [a, b] ⊂ I such that
l(I)− ε < l([a, b)]. Hence,

l(I)− ε < l([a, b]) = m∗([a, b]) ≤ m∗(I) ≤ m∗ ¡I¢ = l(I) = l(I)
where the Þrst equality follows from the Þrst part of this theorem, the Þrst
weak inequality follows from monotonicity in Theorem 328, the second weak
inequality follows from the deÞnition of closure, and the next two equalities
follow from the deÞnition of length. Since l(I)− ε < m∗(I) ≤ l(I) and ε > 0
is arbitrary, taking ε → 0 gives m∗(I) = l(I). If I is an inÞnite interval,
m∗(I) =∞.
Proof of Theorem 331. If m∗(An) = ∞ for any n, then the inequality
holds trivially. Assume m∗An < ∞, ∀n. Then given ε > 0, boundedness
implies that for each n, we can choose intervals {Ink }k∈N such that An ⊂
∪k∈NInk (i.e. the intervals cover An) and

P
k∈N l(I

n
k ) ≤ m∗(An) + ε

2n
.16But

the collection {Ink }n,k = (∪n∈N{Ink }k∈N) is countable, being the union of a
countable number of countable collections and covers ∪n∈NAn (i.e. ∪n∈NAn ⊂
∪n∈N ∪k∈N Ink ). Hence

m∗ (∪n∈NAn) ≤
X
n∈N

X
k∈N

l (Ink ) ≤
X
n∈N

³
m∗(An) +

ε

2n

´
=
X
n∈N

m∗(An) + ε.

Subadditivity follows since ε ≥ 0 was arbitrary and we can let ε→ 0.
Proof of Theorem 341. .Corollary 338 already established that L is
an algebra. Hence it is sufficient to prove that if a set E = ∪n∈NEn where
each En is L-measurable, then E is L-measurable. By Theorem 84, we may
assume without loss of generality that the En are mutually disjoint sets.
Let A be any set and FN = ∪Nn=1En. Since L is an algebra and E1, ..., EN

are in L, the sets FN are L-measurable. For any set A, we have

m∗(A) = m∗(A ∩ FN) +m∗(A ∩ F cN) (5.13)

≥ m∗(A ∩ FN) +m∗(A ∩Ec)

=
NX
n=1

m∗(A ∩En) +m∗(A ∩ Ec)

16Existence of the countable collection follows from Theorem 108 and the inequality
holds by the property of the inÞmum that x = inf A⇒ ∀ε > 0,∃x ∈ A such that x < x+ε.
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where the Þrst equality follows by DeÞnition 334, the inequality follows since
F cN ⊃ Ec17, and the last equality follows by Lemma 339. Since the left hand
side of (5.13) is independent of N,letting N →∞ we have

m∗(A) ≥
∞X
n=1

m∗(A ∩En) +m∗(A ∩Ec) (5.14)

≥ m∗(A ∩E) +m∗(A ∩Ec)
Here the second inequality follows from Theorem 331. But (5.14) is simply
the sufficient condition for E to be L-measurable.
Proof of Theorem 345. Let A be any set, A1 = A ∩ (a,∞), and A2 =
A ∩ (−∞, a]. According to (5.1), it is sufficient to show m∗(A) ≥ m∗(A1) +
m∗(A2). If m∗A =∞, the assertion is trivially true. If m∗(A) <∞, then for
each ε > 0 there is countable collection {In} of open intervals which cover A
and for which

P∞
n=1 l(In) ≤ m∗(A)+ε by the inÞmum property in DeÞnition

327. Let I 0n = In∩ (a,∞) and I 00n = In∩ (−∞, a]. Then I 0n∪ I 00n = In∩R = In
and I 0n ∩ I 00n = ∅. Therefore, l(In) = l(I 0n) + l(I 00n) = m∗(I 0n) +m

∗(I 00n). Since
A1 ⊂ (∪∞n=1I 0n) , thenm∗(A1) = m∗ (∪∞n=1I 0n) ≤

P∞
n=1m

∗(I 0n). Similarly, since
A2 ⊂ (∪∞n=1I 00n) , then m∗(A2) = m∗ (∪∞n=1I 00n) ≤

P∞
n=1m

∗(I 00n). Thus,

m∗(A1) +m∗(A2) ≤
∞X
n=1

[m∗(I 0n) +m
∗(I 00n)]

≤
∞X
n=1

l(In) ≤ m∗(A) + ε.

But since ε > 0 was arbitrary, the result follows.
Proof of Measurable Selection Theorem 371. By induction, we will
deÞne a sequence of measurable functions fn : X −→ Y such that
(i) d (fn (z) ,Γ (z)) <

1
2n
and

(ii) d (fn+1 (z) , fn (z)) ≤ 1
2n−1 on X for all n.

Then we are done, since from (ii) it follows that hfni is Cauchy and
due to completeness of Y there exists a function f : X −→ Y such that
fn (z) −→ f (z) on X and by Corollary 358 the pointwise limit of a sequence
of measurable functions is measurable. Condition (i) guarantees that f (z) ∈
Γ (z) ,∀z ∈ X where f is a measurable selection (here we use the fact that
Γ(z) is closed and d(f(z),Γ(z)) = 0 implies f(z) ∈ Γ(z)).
17Recall by DeMorgan�s Law that F cN =

£∪Nn=1En¤c = ∩Nn=1Ecn.
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Now we construct a sequence hfni of measurable functions satisfying (i)
and (ii) .Let {yn, n ∈ N} be a dense set in Y (since Y is separable such a
countable set exists). DeÞne f0 (z) = yp where p is the smallest integer such
that Γ (z) ∩ B1 (yp) 6= ∅ ( f0 (z) is well deÞned because {yn, n ∈ N} is dense
in Y ). Since Γ is measurable then

f−10 (yp) =
£
Γ−1 (B1 (yp))

¤ \ £∪m<pΓ−1 (B1 (ym))¤ ∈ L.
Let V be open in Y . Then f−10 (V ) is in at most a countable union of such
f−10 (yp) . Hence f

−1
0 (V ) is measurable so that f0 is measurable. Suppose

we already have fk measurable. Then z ∈ f−1k (yi) ≡ Di implies fk (z) = yi
and d (fk (z) ,Γ (z)) <

1
2k
(i.e. Γ (z) ∩ B2−k (yi) 6= ∅). Therefore we can

deÞne fk+1 (z) = yp for z ∈ Di where p is the smallest integer such that
Γ (z)∩B2−k (yi)∩B2−k−1 (yp) 6= ∅. Thus fk+1 is deÞned on X = ∪i≥1Di, it is
measurable, and we have d (fk+1 (z) ,Γ (z)) <

1
2k+1

and d (fk+1 (z) , fk (z)) ≤
1
2k
+ 1

2k+1
≤ 1

2k−1 on X.
Proof of Theorem 382. (⇐) If f is L-measurable and bounded by M ,
then we can construct sets

Ek =

½
x ∈ E : kM

n
≥ f(x) > (k − 1)M

n

¾
,−n ≤ k ≤ n

which are measurable, disjoint, and have union E. Thus
Pn

k=−nmEk = mE.
DeÞne simple functions ψn(x) =

M
n

Pn
k=−n kχEk(x) and ϕn(x) =

M
n

Pn
k=−n(k−

1)χEk(x). Then ψn(x) ≥ f(x) ≥ ϕn(x). Thus

Lu
Z
E

f(x)dx = inf
ψ≥f

Z
E

ψ(x)dx ≤
Z
E

ψn(x)dx =
M

n

nX
k=−n

kmEk (5.15)

and

Ll
Z
E

f(x)dx = sup
ϕ≤f

Z
E

ϕ(x)dx ≥
Z
E

ϕn(x)dx =
M

n

nX
k=−n

(k − 1)mEk. (5.16)

Then (5.15)-(5.16) implies

0 ≤ Lu
Z
E

f(x)dx− Ll
Z
E

f(x)dx ≤ M

n

nX
k=−n

mEk =
M

n
mE.

Since mE <∞ by assumption, limn→∞ M
n
mE = 0.



204 CHAPTER 5. MEASURE SPACES

Proof of Bounded Convergence Theorem 386. Since f is the limit
of L-measurable functions fn it is L-measurable by Theorem 364 and hence
integrable. By Theorem 366 we know that given ε > 0, ∃N and an L-
measurable set A ⊂ E with mA < ε

4M
such that for n ≥ N and x ∈ E\A

we have |fn(x)− f(x)| < ε
2mE

. Furthermore, since |fn(x)| ≤ M , ∀n ∈ N
and ∀x ∈ E, then |f(x)| ≤ M , ∀x ∈ E and |fn(x)− f(x)| ≤ 2M , ∀x ∈ A.
Therefore,¯̄̄̄Z

E

fn −
Z
E

f

¯̄̄̄
=

¯̄̄̄Z
E

(fn − f)
¯̄̄̄

≤
Z
E

|fn − f |

=

Z
E\A

|fn − f |+
Z
A

|fn − f |

<
ε

2mE
m(E\A) + 2MmA < ε,∀n ≥ N.

where the Þrst inequality follows by monotonicity (i.e. (iii) of Theorem 385)
and the second equality follows from (v) of Theorem 385). Hence

R
E
f =

limn→∞
R
E
fn.

Proof of Fatou�s Lemma 393. WLOG we may assume the convergence
is everywhere since integrals over sets of measure zero are zero. Let h be
a bounded L-measurable function such that h ≤ f and vanishes outside
a set H = {x ∈ E : h(x) 6= 0} of Þnite measure (i.e. mH < ∞). De-
Þne a sequence of functions hn(x) = min{h(x), fn(x)}. Then hn is bounded
(by the bound for h) and vanishes outside H. Moreover, limn→∞ hn(x) =
limn→∞min{h(x), fn(x)} = min{h(x), f(x)} = h(x) on H. Since < hn >
is a uniformly bounded sequence of L-measurable functions such that hn →
h,then limn→∞

R
H
hn =

R
H
h by the Bounded Convergence Theorem 386.

Since h vanishes outside H, then
R
E
h =

R
H
h.

While fn → f a.e., we do not have that the sequence <
R
E
fn(x) > is

convergent. However,Z
E

h = lim
n→∞

Z
H

hn = limn→∞

Z
H

hn ≤ limn→∞
Z
E

fn

where the second equality follows from the fact that liminf=limsup at a
limit point and the inequality follows since hn(x) ≤ fn(x) by construction.18
18We chose liminf rather than limsup since this gives a tighter bound.
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Taking the supremum over all h ≤ f we have

sup
h≤f

Z
E

h =

Z
E

f ≤ limn→∞
Z
E

fn

where the equality uses DeÞnition 388.
Proof of Lebesgue Dominated Convergence Theorem 404. By
Lemma 402, fn is integrable over E. Since limn→∞ fn = f a.e. on E and
|fn| ≤ g, then |f | ≤ g a.e. on E. Hence f is integrable over E.
Now consider a sequence < hn > of functions deÞned by hn = fn + g

which is nonnegative by construction and integrable for each n. Therefore,
by Fatou�s Lemma 393, we have

R
E
(f+g) ≤ limn→∞

R
E
(fn+g), which impliesR

E
f ≤ limn→∞

R
E
fn by (ii) of Theorem 403.

Similarly, construct the sequence < kn > of functions deÞned by kn =
g− fn which is again nonnegative by construction and integrable for each n.
Therefore, by Fatou�s Lemma 393, we have

R
E
(g − f) ≤ limn→∞

R
E
(g − fn),

which implies
R
E
f ≥ limn→∞

R
E
fn by (ii) of Theorem 403.

Proof of Levi�s Theorem. 407Assume that f1 ≥ 0 (otherwise we
would consider f̄n = fn − f1 ). DeÞne Ω = {x ∈ A : fn (x) −→ +∞} .
Then Ω = ∩∞r=1 ∪∞n=1 Ω(r)n , where Ω

(r)
n = {x ∈ A : fn (x) > r} . Using the

Chebyshev�s inequality (Lemma ??) m
³
Ω
(r)
n

´
≤ K

r
.Since Ω

(r)
1 ⊂ Ω

(r)
2 ⊂

...... ⊂ Ω
(r)
n ⊂ ...., this implies m

³
∪∞n=1Ω(r)n

´
≤ K

r
. But for any r we have

Ω ⊂ ∪∞n=1Ω(r)n . Then m (Ω) ≤ K
r
. Since r was arbitrary, we have m (Ω) =

0. Thus we have proved that hfni → f a.e. on A. Let�s deÞne Ar =
{x ∈ A : r − 1 ≤ f (x) < r, r ∈ N} and let ϕ (x) = r on Ar. If we prove that
ϕ is integrable on A then using the Lebesgue Dominated Convergence Theo-
rem 404 we can conclude that Levi�s theorem holds. Let Bs = ∪sr=1Ar . Since
on Bs, fn and f are bounded and ϕ (x) ≤ f (x) + 1, we have

R
Bs
ϕ (x) dm ≤R

Bs
f (x) dm +m (A) = limn−→∞

R
Bs
fn (x) dm +m (A) ≤ K +m (A) whereR

Bs
ϕ (x) dm =

Ps
r=1 rm (Ar) . Hence we have

Ps
r=1 rm (Ar) ≤ K + m (A)

for any s. Boundedness of partial sums of a series means that the inÞnite
series

P∞
r=1 rm (Ar) exists and equals

R
A
ϕ (x) dm.

Proof of Hahn Decomposition Theorem 427. Due to Zorn�s lemma
a maximal system E of disjoint measurable sets E with ν (E) < 0 exists.
Moreover E is countable (by Lemma 422). Put B = ∪ {E ∈ E} . Then
B is measurable and negative (because all of its subsets have negative sign
measure).
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Let A = X\B . We have A ∩ B = ∅, A ∪ B = X and A is measurable.
We have to show that A is positive. By contradiction assume that A is not
positive. Then there exists

E0 ∈ X such that E0 ⊂ A and ν (E0) < 0. (5.17)

Let E0 denote the maximal collection of disjoint measurable sets F ⊂ E0 for
which ν (F ) > 0 (at least one such set F exists because otherwise E0 would
be negative and would contradict maximality of E ). Due to Lemma 422 the
collection E0 is countable. Let F0 = ∪ {F ∈ E0} . We have

ν (F0) > 0 and F0 ⊂ E0. (5.18)

It follows that E0\F0 is negative because, by construction, it doesn�t contain
a positive measurable set. Then from the equality E0 = (E0\F0) ∪ F0 we
have

ν (E0) = ν (E0\F0) + ν (F0) . (5.19)

From (5.17),(5.18), and (5.19) we have ν (E0\F0) < 0. The set E0\F0 is then
negative, with negative measure, and (E0\F0)∩B = ∅ which contradicts the
maximality of set B.
Proof of Radon-Nikodyn Theorem 434. By (ii) of Lemma 432, it
suffices to deal with ν which is non-negative (i.e. a measure). Also since µ is
σ-Þnite, the whole space X can be decomposed into countably many disjoint
sets {Ei} for which µ (Ei) < ∞. Hence in the proof we can assume that µ
and ν are both Þnite measures on X .Let G be the set of all non-negative,
X−measurable, integrable functions g for whichZ

E

gdµ ≤ ν (E) , ∀E ∈ X .

Setting E = X we haveZ
X

gdµ ≡
Z
gdµ ≤ ν (X) , ∀g ∈ G.

Hence the set of real numbers
©R
gdµ, g ∈ Gª is bounded from above by

ν (X) and thus there exists a real number α such that

α = sup
g∈G

Z
gdµ.
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Then by the supremum property, there exists a sequence hgni∞n=1 from G such
that

lim
n−→∞

Z
gndµ = α.

Let us set for n ∈ N, fn = max {g1, ......, gn} . Clearly fn ≤ fn+1 for n ∈ N.
Next we show that fn ∈ G. It suffices to show that if g1, g2 ∈ G,then

max {g1, g2} ∈ G. Given a set E ∈ X , deÞne

F = {x ∈ E : max (g1, g2) (x) = g1 (x)}
G = {x ∈ E : max (g1, g2) (x) = g2 (x) 6= g1 (x)} .

Then because F andG are disjoint we have
R
E
max (g1, g2) dµ =

R
F∪Gmax (g1, g2) dµ =R

F
g1dµ+

R
G
g2dµ ≤ ν (F )+ ν (G) = ν (E) . Thus max (g1, g2) ∈ G and con-

sequently each function fn , n ∈ N belongs to G.
Since α = supgDG

R
gdµ, then

R
fndµ ≤ α , for n ∈ N.Let f : X → R be

deÞned as f (x) = limn−→∞ fn (x) . This is a well deÞned function because for
any x ∈ X, the sequence hfn (x)i is non-decreasing and hence lim fn (x) exists.
Then by Levi�s Theorem 407 f is integrable and

R
fdµ = limn→∞

R
fndµ.

We next show that f ∈ G. For E ∈ X and n ∈ N we have χEfn ≤ χEfn+1
and limn−→∞ χE (x) fn (x) = χE (x) f (x) for all x ∈ X . ThenZ
E

fdµ =

Z
fχEdµ =

Z
lim
n−→∞

fnχEdµ = lim
n−→∞

Z
fnχEdµ = lim

Z
E

fndµ ≤ ν (E) .
(5.20)

This shows that f ∈ G and hence R fdµ ≤ α because fn ≥ gn for n ∈ N we
have

R
fdµ = limn−→∞

R
fndµ ≥ limn−→∞

R
gndµ = α.Combining the last

two inequalities we have
R
fdµ = α.

We now show that
R
E
fdµ = ν (E) for all E ∈ X . By contradiction,

assume this equality doesn�t hold. Then due to (5.20),
R
E
fdµ < ν (E) and

then the set function

ν0 (E) = ν (E)−
Z
E

fdµ (5.21)

is a Þnite measure not indentically equal to zero. Since ν0 << µ (because
ν << µ and

R
fdµ << µ ) using Lemma 433 there exists ε > 0 and E0 ∈ X

such that µ (E0) > 0 and

εµ (E0 ∩ F ) ≤ ν0 (E0 ∩ F ) ,∀F ∈ X . (5.22)
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Set g0 = f+ εχE0 . We have
R
g0dµ =

R
fdµ+ εµ (E0) >

R
fdµ = α. If we

show that g0 ∈ G this would contradict the fact that α = supgDG
R
gdµ.For

any F ∈ X and using (5.21) and (5.22) we have R
F
g0dµ =

R
F

¡
f + εχE0

¢
dµ =R

F
fdµ+εµ (E0 ∩ F ) ≤

R
F
fdµ+ ν0 (E0 ∩ F ) =

R
F
fdµ+ ν (E0 ∩ F )−

R
E0∩F fdµ =R

F\(E0∩F ) fdµ+ ν (E0 ∩ F ) ≤ ν (F\ (E0 ∩ F ))+ ν (E0 ∩ F ) = ν (F ) . Hence

g0 ∈ G, which leads to the contradiction. The uniqueness of f (except on a
set of measure zero) follows from Exercise 5.2.4.
Proof of Theorem 443. Let < fn > be a Cauchy sequence in L1 so
that kfm − fnk1 → 0 as m,n → ∞. Then we can Þnd a sequence of indices
< nk > with n1 < n2 < ... < nk < ... such that°°fnk − fnk−1°°1 = Z

X

|fnk − fnk−1 |dm <
1

2k
, k = 1, 2, ... (5.23)

DeÞne a sequence < gk > by gk = fnk − fnk−1 for k = 2, 3, ... with g1 =
fn1 .Then (5.23) is simply

R
X
|gk|dm < 1

2k
and taking the inÞnite sum of both

sides yields
∞X
k=1

Z
X

|gk|dm ≤
∞X
k=1

1

2k
= 1.

Thus by the Corollary of Levi�s Theorem 408,
P∞

k=1 |gk| converges a.e. on
X.Since gk ≤ |gk|, then

P∞
k=1 gk converges a.e. on X (i.e. there exists a

function f such that
P∞

k=1 gk → f a.e. on X). But

f =
∞X
k=1

gk = lim
J→∞

JX
k=1

gk = lim
J→∞

(g1 + g2 + ...+ gJ)

= lim
J→∞

£
fn1 + (fn2 − fn1) + (fn3 − fn2) + ...+ (fnJ − fnJ−1)

¤
= lim

J→∞
fnJ .

Hence < fnk >→ f a.e. on X.
Now we show that < fnk >→ f with respect to k·k1 and that f ∈ L1(X).

Since < fnk > is Cauchy in L1(X) (and a subsequence of a Cauchy sequence
is Cauchy), given ε > 0, Z

|fnk − fnl |dm < ε (5.24)

for sufficiently large k and l. Hence by Fatou�s Lemma 393 we can take the
limit as l→∞ behind the integral in (5.24) obtainingZ

|fnk(x)− f(x)|dm = kf − fnkk1 ≤ ε.
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Since

kfk1 = kf − fnk + fnkk1 ≤ kf − fnkk1 + kfnkk1 ≤ ε+ kfnkk1 <∞

it follows that f ∈ L1(X) and < fnk >→ f in L1(X). But by Lemma 173,
if a Cauchy sequence contains a subsequence converging to a limit, then the
sequence itself converges to the same limit. Hence < fn >→ f in L1(X).
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Figures for Sections X to X
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Chapter 6

Function Spaces

In this chapter we will consider applications of functional analysis in eco-
nomics such as dynamic programming, existence of equilibrium price func-
tionals, and approximation of functions. In the Þrst case, we can represent
complicated sequence problems such as the optimal growth model by a sim-
ple functional equation. In particular, a representative household�s lifetime
utility, conditional on an initial level of capital k is denoted by the function
v(k) which solves

v(k) = max
k0∈[0,K]

u(f(k)− k0) + βv(k0)

where k0 denotes next period�s choice of capital which lies in some compact
set X = [0,K], u : R+→ R is an increasing, continuous function representing
the household�s preferences over consumption which is just output that is
not saved for next period (i.e. f(k) − k0) and β ∈ (0, 1) represents the fact
that households discount the future. We can think of the above equation
as deÞning an operator T which maps continuous functions deÞned on a
compact set (the v(k0) on the right hand side of the above equation) into
continuous functions (the v(k) on the left hand side). If we let C(X) denote
the set of continuous functions deÞned on the compact set X, then we have
T : C(X)→ C(X). In this chapter we analyse under what conditions solutions
to such functional equations exist. Another simple example of such operators
from mathematics are differential equations.
Let (X, dX) and (Y, dY ) be metric spaces. In Chapter 4 we studied func-

tions f that took points in a metric space (X, dX) into points in a metric
space (Y, dY ). Now let F(X,Y ) denote the collection of all such functions

213
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f : X → Y . Let B(X,Y ) be a subset of F(X,Y ) with the property that for
each pair f, g ∈ B(X,Y ), the set {dY (f(x), g(x)) : x ∈ X} is bounded. We
say B(X,Y ) is the collection of all bounded functions.

DeÞnition 447 Given B(X,Y ), deÞne a metric d : B×B→ R by

d(f, g) = sup{dY (f(x), g(x)) : x ∈ X}.

This metric is called the sup (supremum) metric. See Figure 6.1

Exercise 6.0.1 Show that d is a metric. To do so, see DeÞnition 125.

Example 448 The existence of the metric d (i.e. of the supremum) is guar-
anteed only if the space is bounded. It should be clear that there are many
functions which do not belong to B(X,Y ) and hence that there are many
functions upon which d cannot be applied. For one example, let f : (0, 1)→ R
be given by f(x) = 1

x
and g(x) = 0.

We saw in chapter 4 that a fundamental property of a metric space is its
completeness. What can be said about the completeness of (B, d)?

Theorem 449 Let (X, dX) and (Y, dY ) be metric spaces. If (Y, dY ) is com-
plete, then the metric space (B, d) of all bounded functions f : X → Y with
sup norm d is complete.

Exercise 6.0.2 Prove Theorem 449.Hint: To prove the theorem, the follow-
ing method of constructing f is useful. Let < fn > be a Cauchy sequence
in (B, d). Then ∀x ∈ X,the sequence < fn(x) > is Cauchy in Y and since
(Y, dY ) is complete we have < fn(x) > converges to f(x) in Y, ∀x ∈ X. Show
that f : X → Y deÞned by limn→∞ fn(x),∀x ∈ X, is the function that < fn >
converges to with respect to the sup norm.

If Y is a vector space, then the metric space (Y, dY ) is also a normed
vector space by Theorem 207. Then F(X,Y ) is a vector space where (f +
g)(x) = f(x) + g(x) and (αf)(x) = αf(x). Its subspace of all bounded
functions B(X,Y ) ⊂ F(X,Y ) is a normed vector space (B, k·k) with the
norm kfk = d(f, 0) = sup {kf(x)k , x ∈ X} . This norm is called the sup
norm. Theorem 449 states that if (Y, k·kY ) is complete, then (B, k·k) is also
complete.
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A sequence < fn > converges to f : X → Y in B with respect to the sup
norm if

kfn − fk = sup {kfn(x)− f(x)k , x ∈ X}→ 0 as n→∞.
In Chapter 4 we introduced two types of convergence of a sequence of func-
tions: pointwise and uniform. These two types of convergence are deÞned in
terms of the metric (norm) of the space Y (e.g. if (Y, dY ) = (R, | · |),then in
terms of the absolute value). Now we introduced (B, d) where d is the metric
on B(X,Y ). As in any metric space we deÞne convergence of elements (in
this case functions) with respect to its metric (in this case d).The question is,
�Is convergence with respect to d related to pointwise or uniform convergence
respectively?�. The following theorem addresses this question.

Theorem 450 Let < fn > be a sequence of functions in B(X,Y ).Then
< fn >→ f ∈ B(X,Y ) with respect to the sup norm if and only if < fn >→ f
uniformly on X.

Exercise 6.0.3 Prove Theorem 450.

In light of Theorem 450, one might wonder if there exists a metric d on
F(X,Y ) or on a subspace such that convergence of < fn > with respect to
this metric would be equivalent to pointwise convergence. Unfortunately, no
such metric exists.
Before proceeding, we list the principal results of the chapter. Here we

introduce two important function spaces: the space of bounded continuous
functions (denoted C(X)) and p-integrable functions (denoted Lp(X)). We
give necessary and sufficient conditions for compactness in C(X) in Ascoli�s
Theorem 458. Then we deal with the problem of approximating continuous
functions. The fundamental result is given in a very general set of Theorems
by Stone and Weierstrass (the lattice version is 464 and the algebraic version
is 468) which provide the conditions for a set to be dense in C(X). Next the
Brouwer Fixed Point Theorem 302 of Chapter 4 on Þnite dimensional spaces
is generalized to inÞnite dimensional Banach spaces in the Schauder Fixed
Point Theorem 475. Next we introduce the Lp(X) space and show that it
is complete in the Riesz-Fischer Theorem 481. Among Lp spaces, we show
that L2 is a Hilbert space (i.e. that it is a complete normed vector space
with the inner product) and consider the Fourier series of a function in L2.
Then we introduce linear operators and functionals, as well as the notion of
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a dual space of a normed vector space. We construct dual spaces for most
common spaces: Euclidean, Hilbert, !p, and most importantly for Lp in the
Riesz Representation Theorem 532. Next we show that one can construct
bounded linear functionals on a given space X in the Hahn-Banach Theorem
539 which is used to prove certain separation results such as the fact that two
disjoint convex sets can be separated by a linear functional in Theorem 549.
Such results are used extensively in economics; for instance, it is employed
to establish the Second Welfare Theorem. The chapter ends with nonlinear
operators. First we introduce the weak topology on a normed vector space
and develop a variational method of optimizing nonlinear functions in The-
orem 572. Then we consider another method of Þnding the optimum of a
nonlinear functional by dynamic programming.

6.1 The set of bounded continuous functions

Let C(X,Y ) denote the set of all continuous functions f : X → Y . In order to
deÞne a normed vector space, we need to equip this set with a norm. We Þrst
consider the sup norm. Since a continuous function can be unbounded (e.g.
f : (0, 1]→ R given by f(x) = 1

x
), the sup norm may not be well deÞned on

the whole set C(X,Y ). Hence we will restrict attention to a subset of C(X,Y )
that contains only bounded continuous functions, which we denote BC(X,Y ).
Next we consider important properties of this space (BC(X,Y ), k·k∞) where
k·k∞ is the sup norm.

6.1.1 Completeness

Even if (Y, dY ) is complete, we cannot directly use Theorem 449 to prove
that (BC(X,Y ), k·k∞) is complete because (BC(X,Y ), k·k∞) is a subspace
of the complete space (B(X,Y ), k·k∞). But if we show that BC(X,Y ) is
closed in B(X,Y ), then the fact that a closed subspace of a complete space
is complete by Theorem 177 in Chapter 4 would imply that (BC(X,Y ), k·k∞)
is complete.

Lemma 451 BC(X,Y ) is closed in B(X,Y ); that is, if a sequence < fn >
of functions from BC(X,Y ) converges to a function f : X → Y , then f is
continuous.
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Proof. (Sketch) We need to show that f is continuous at any x0 ∈ X
(i.e. if ∀ε > 0, ∃δ > 0 such that ∀x ∈ X with dX(x, x0) < δ we have
dY (f(x), f(x0)) < ε). By the triangle inequality

dY (f(x), f(x0)) ≤ dY (f(x), fn(x)) + dY (fn(x), fn(x0)) + dY (fn(x0), f(x0)).

The Þrst and third terms on the right hand side are arbitrarily small (i.e. ε
4
)

since fn → f with respect to the sup norm and the second term is arbitrarily
small ( ε

2
) since fn is continuous.

The next theorem establishes that (BC(X,Y ), k·k∞) is a Banach space.

Theorem 452 The normed vector space (BC(X,Y ), k·k∞) is complete.

Proof. Follows from Lemma 451 and Theorem 177. That (BC(X,Y ), k·k∞)
is a Banach space follows from DeÞnition 208.
In the remainder of this section, we will assume that X is a compact set

and (Y, dY ) = (R, | · |). In this case f ∈ C(X,R) is bounded by Theorem 261.
Hence, instead of (BC(X,R), k·k∞) we will simply use the notation C(X).
Just remember, whenever you see C(X) we are assuming that X is compact,
Y is R, and we are considering the sup norm.
While uniform convergence implies pointwise convergence, we know the

the converse does not hold (e.g. fn : [0, 1] → R given by fn(x) = xn). In
C(X), however, there is a sufficient condition for uniform convergence (and
hence for convergence with respect to the sup norm) in terms of pointwise
convergence.

Lemma 453 (Dini�s Theorem) Let < fn > be a monotone sequence in
C(X) (e.g. fn+1 ≤ fn,∀n). If the sequence < fn > converges pointwise to a
continuous function f ∈ C(X), it also converges uniformly to f .

Proof. (Sketch)Let < fn > be decreasing, fn → f pointwise, and deÞne
fn = fn − f . Then


fn
®
is a decreasing sequence of non-negative functions

with fn → 0 pointwise. Given ε > 0, for each x ∈ X, pointwise convergence
guarantees we can Þnd an index N(ε, x) for which 0 ≤ fN(ε,x)(x) < ε. Due
to continuity of fN(ε,x) there is a δ(x) neighborhood around x such that

0 ≤ fN(ε,x)(x0) < ε for each x0of this neighborhood and due to monotonicity
of

fn
®
we have 0 ≤ fn(x0) < ε for n ≥ N(ε, x). Since X is compact, there

are Þnitely many points xi ∈ X whose neighborhoods Bδ(xi)(xi) cover X.
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From Þnitely many corresponding indices N(ε, xi) we can Þnd the minimum
N(ε) required for uniform convergence.
It is clear from the above example fn(x) = x

n that the requirement that
f be continuous is essential. In the above case, f is clearly not continuous
since

f(x) =

½
0 if x ∈ [0, 1)
1 if x = 1

.

6.1.2 Compactness

While Theorem 193 established (necessary and) sufficient conditions (com-
pleteness and total boundedness) for compactness in a general metric space
(and hence a general normed vector space), total boundedness was difficult
to establish. As in the case of the Heine-Borel Theorem 194 (which provided
simple sufficient conditions for a set in Rn to be compact), here we develop
the notion of equicontinuity which will be included as a sufficient condition
for compactness.

DeÞnition 454 Let (X, dX) and (Y, dY ) be metric spaces. Let D be a sub-
set of the function space BC(X,Y ). If x0 ∈ X, the set D of functions is
equicontinuous at x0 if ∀ε > 0, ∃δ(x0, ε) such that ∀x ∈ X, dX(x, x0) < δ
implies dY (f(x), f(x0)) < ε, ∀f ∈ D. If the set D is equicontinuous at x0 for
each x0 ∈ X, then it is equicontinuous on X.
Notice that the primary difference between the deÞnition of equicontinuity

and that of continuity in 244 is that here dY (f(x), f(x0)) < ε must hold for
all f ∈ D, while in the former this condition must hold only for the given
function f .

Example 455 Let fn : [0, 1] → R be given by fn(x) = xn and D = {fn}.
At what points is D equicontinuous and at what points does it fail to be
equicontinuous? It fails at x = 1. To see this, let x0 = 1. Given ε >
0,there exists N ∈ N such that for x ∈ [0, 1] with dX(x, 1) < δ we have
|fN(x) − fN(1)| = 1 − xN ≥ ε . Take the logs of both sides of 1 − ε ≥ xn

and notice that log(x) < 0 on [0, 1] to yield n ≥ ln(1−ε)
ln(x)

(by the Archimedean

property such an n exists) so that we can take N = w
³
ln(1−ε)
ln(x)

´
+ 1.

In general δ in DeÞnition 454 depends on both ε and x. If, however, the
choice of δ is independent of x we say that the set of functions D is uniformly
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equicontinuous on X if ∀ε > 0, ∃δ(ε) such that ∀x, x0 ∈ X, dX(x, x0) < δ
implies dY (f(x), f(x

0)) < ε, ∀f ∈ D.
If X is compact, then these two notions are equivalent as the following

lemma shows.1

Lemma 456 Let X be compact. A subset D ⊂ C(X) is equicontinuous iff it
is uniformly equicontinuous.

Proof. (Sketch) (⇒)Since D ⊂ C(X) is equicontinuous at x ∈ X, then
given ε we can Þnd δ(ε, x). Then the collection {Bδ(ε,x)(x), x ∈ X} covers
X and because X is compact, there exists a Þnite subcollection covering X
and a corresponding Þnite set of {δ(ε, xi), i = 1, ..., k}. Then there exists a
smallest δ(ε) that doesn�t depend on x.
Equicontinuity is related to total boundedness when both X and Y are

compact as the following lemma shows.

Lemma 457 Let X be compact and Y ⊂ R be compact. Let D be a subset of
C(X,Y ). Then D is equicontinuous iff D is totally bounded in the sup norm.

Proof. (Sketch) (⇐) Let D be totally bounded. Given ε > 0, choose
ε1 > 0 and ε2 > 0 such that 2ε1 + ε2 < ε. Then for given ε1, there are
Þnitely many functions {fi, i = 1, ..., k} such that ε1 balls around them cover
D. Since any Þnite collection of continuous functions is equicontinuous (see
Exercise 6.1.1), given x0 and ε2, there exists δ such that if dX(x, x0) < δ,
then dY (fi(x), fi(x0)) < ε2 for i = 1, ...k. We make a similar �estimate� for
any f ∈ D. But because there is an fi which is �ε1-close� to f,then we split
dY (f(x), f(x0)) into three parts (using the triangle inequality)

dY (f(x), f(x0)) ≤ dY (f(x), fi(x)) + dY (fi(x), fi(x0)) + dY (fi(x0), f(x0))

≤ ε1 + ε2 + ε1 < ε.

The Þrst and third terms are sufficiently small because fiis �ε1-close� to f .
The second term is sufficiently small because {fi, i = 1, ..., k} is equicontin-
uous. 2

1This lemma is similar to the result that a continuous function on a compact set is
uniformly continuous.

2Notice that we haven�t used compactness of X nor Y in this direction. Thus total
boundedness always implies equicontinuity.
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(⇒) Since X is compact and D is equicontinuous, then by Lemma 456 D
is uniformly equicontinuous. Then given ε1there exists δ(ε1) and Þnitely
many points {xi ∈ X, i = 1, ..., k} such that {Bδ(εi)(xi)} covers X and
dY (f(xi), f(x)) < ε1 for x ∈ Bδ(εi)(xi) for all f ∈ D.Since Y is compact,
then Y is totally bounded by Theorem 198. Then given ε2 there exist Þnitely
many points {yi ∈ Y, i = 1, ...,m} such that {Bε2(yi), i = 1, ..,m} covers Y .
Let J be the set of all functions α such that α : {1, ..., k}→ {1, ...,m}. The
set J is Þnite (it contains mk elements). For α ∈ J , choose f ∈ D such
that f(xi) ∈ Bε2(yα(i)) and label it fα (for example, the index α of the func-
tion fα in Figure 6.1.1 is α(1, 2, 3, 4) = (2, 3, 1, 1) because f(x1) ∈ Bε2(y2),
f(x2) ∈ Bε2(y3), f(x3) ∈ Bε2(y1), f(x4) ∈ Bε2(y1)). Then the collection of
open balls {Bε(fα), α ∈ J} with ε ≤ 2ε1 + ε2 is a Þnite ε-covering of D. Let
f ∈ D. Then f(xi) ∈ Bε2(yα(i)) for i = 1, ..., k. Choose this index α and
corresponding fα.Then one must show that f ∈ Bε(fα). Let x ∈ X. Then
there exists i such that x ∈ Bδ(ε1)(xi) where
dY (f(x), fα(x)) ≤ dY (f(x), f(xi)) + dY (f(xi), fα(x)) + dY (fα(xi), fα(x))

≤ ε1 + ε2 + ε1 ≤ ε.
The Þrst and third terms are sufficiently small becauseD is uniformly equicon-
tinuous and the second term is sufficiently small because f(xi), fα(xi) ∈
Bε2(yα(i)).

Exercise 6.1.1 Show that a set which contains Þnitely many continuous
functions is equicontinous. Hint: Since the collection of fi is Þnite, there are
Þnitely many δi associated with each one and hence the minimum of those δi
is well deÞned.

Thus dY
³
f (x) , fj(i) (x)

´
< ε holds for any x ∈ X. Hence there are Þnitely

many open balls {Bε(fj(i)), i = 1, ..., k} covering D. Before stating the main
theorem of this subsection, we point out something about boundedness in
C(X). In a normed vector space (X, k·k) a subset A is said to be bounded if
it is contained in a ball (i.e. ∃M such that kfk ≤M, ∀f ∈ A). Since in C(X)
we have kfk = supx |f(x)|, this is equivalent to ∃M such that |f(x)| ≤ M,
∀f ∈ D, ∀x ∈ X. This is sometimes called uniform boundedness of a set of
functions D. However, in terms of the normed vector space C(X) it is just
the normal deÞnition of boundedness.
Analogous to the Heine-Borel theorem in R, we now state necessary and

sufficient conditions for compactness in C(X).
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Theorem 458 (Ascoli) Let X be a compact space. A subset D of C(X) is
compact iff it is closed, bounded, and equicontinuous.

Proof. Step 1: If D is bounded, then |f(x)| ≤ M, ∀f ∈ A, ∀x ∈ X. Then
D is a subset of the ball BM(0). Let Y be the closure of BM(0). Then Y is
a closed, bounded subset of R and hence compact. Then D ⊂ C(X,Y ) with
both X and Y compact.
Step 2: (⇒) Suppose D ⊂ C(X,Y ) is compact. Then by Lemma 189,

D is closed. By Lemma 187, D is bounded. By Theorem 198, D is to-
tally bounded. But with X and Y compact (step 1) total boundedness is
equivalent to equicontinuity.
Step 3: (⇐) Suppose D is closed, bounded and equicontinuous (or to-

tally bounded). By Theorem 177 a closed subset of a complete normed
vector space C(X) is complete. By Theorem 198, completeness and total
boundedness is equivalent to compactness.

Example 459 Is the unit ball in C(X) a compact set? Without loss of gen-
erality we can take X = [0, 1]. The unit ball B1 in C([0, 1]) is B1(0) = {f ∈
C([0, 1]) : kfk ≤ 1}. B1(0) is clearly bounded and closed. Is it equicontinuous?
In Example 455 we showed that {xn, n ∈ N} was not equicontinuous. But
since kxnk = supx∈[0,1] |xn| = 1 for each n ∈ N, then {xn, n ∈ N} ⊂ B1(0).
Thus B1(0)contains a subset which is not equicontinuous so that B1(0) is not
equicontinuous. Then by Ascoli�s Theorem 458, B1(0)is not compact.

In the previous example, how can the unit ball be closed if it contains a
sequence < xn > converging to a function that doesn�t belong to B1(0)? It
is because < xn > is not convergent in C([0, 1]).

6.1.3 Approximation

For many applications it is convenient to approximate continuous functions
by functions of an elementary nature (e.g. functions which are piecewise
linear or polynomials).

DeÞnition 460 Let f ∈ F(X,Y ) with norm k·kF . Given ε > 0, we say
g (ε-)approximates f on X with respect to k·kF if kf − gkF < ε. If
f ∈ C(X), then since we are using the sup norm, this is equivalent to ∀ε > 0,
supx∈X{|f(x)− g(x)|} < ε in which case it is clear that the approximation is
uniform. See Figure 6.1.2.
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The concept of approximation can be stated in terms of dense sets. Let
H be a subset of C(X). Recall from DeÞnition 153 that H is dense in C(X)
if the closure of H, denoted H, satisÞes H = C(X). But by Theorem 148,
f ∈ H iff for any ε > 0, there exists g ∈ H such that kf − gk < ε. In other
words, a function f ∈ C can be approximated by a function g ∈ H ⊂ C(X)
if H = C(X).
An alternative way to see this, is suppose we are trying to approximate a

continuous function f : X→ R with X compact and suppose we know that
the set of all polynomials is dense (we will prove this later). Then we could
think about starting with a large degree of approximation error (say ε1 = 1)
and ask what polynomial function (call it P1,n(x) = a0+a1x+a2x

2+...+anx
n)

bounds the error within ε1 (i.e. kP1,n(x)− f(x)k < ε1). If this error is
too large, we could choose a smaller one, say ε2(=

1
2
) < ε1 and look for

another polynomial function P2,n(x) such that kP2,n(x)− f(x)k < ε2. We
could letH = {P1, P2, ...} Ã C(X). Approximation is essentially constructing
a sequence of polynomials < Pn > that converges to f with respect to the
sup norm (i.e. uniformly).
The most general approximation theorem is known as the Stone-Weierstrass

Theorem which provides conditions under which a vector subspace of C(X)
is dense in C(X). There are two versions of this result: one uses lattices and
the other is algebraic.
We begin by noting that the space C(X) has a lattice structure. If f, g ∈

C(X), so are the �meet� and �join� functions f ∧ g and f ∨ g deÞned as
(f ∧ g)(x) = min[f(x), g(x)] and (f ∨ g)(x) = max[f(x), g(x)]. To see that
f ∧ g and f ∨ g are continuous, note that

(f ∧ g)(x) = 1

2
(f + g)− 1

2
|f − g| =

½
1
2
(f + g)− 1

2
(f − g) if f > g

1
2
(f + g) + 1

2
(f − g) if f < g

and

(f ∨ g)(x) = 1

2
(f + g) +

1

2
|f − g|.

But linear combinations of continuous functions are continuous by Theorem
251. Recall from DeÞnition 42, a subset H of C(X) is a lattice if for every
pair of functions f, g ∈ H, we also have f ∧ g and f ∨ g in H.

DeÞnition 461 A subset H of C(X) is called separating (or H separates
points) if for any two distinct points x, y ∈ X,∃h ∈ H with h(x) 6= h(y).
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Example 462 H1 = {all constant functions f : X → R} is a lattice but is
not separating. To see this, let f(x) = κ, κ ∈ R be a constant function. Then
H1 is a totally ordered set (since for any two distinct elements κ1 and κ2 in
R we have, say, κ1 < κ2). Furthermore, these two elements have a maximum
and a minimum. However, this set is not separating since f(x) = f(y) = κ
for x 6= y.

The lattice version of the Stone-Weierstrass theorem is the consequence
of the following lemma.

Lemma 463 Suppose X has at least two elements. Let H be a subset of
C(X) satisfying: (i) H is a lattice; (ii) Given x1, x2 ∈ X, x1 6= x2, α1, α2 ∈ R,
there exists h ∈ H such that h(x1) = α1 and h(x2) = α2. Then H is dense in
C(X).

Proof. (Sketch) Take f ∈ C(X) and ε > 0. We want to Þnd an element of
H that is within ε of f .
First, Þx x ∈ X. By assumption (ii), ∀y 6= x, ∃ηy ∈ H such that ηy(x) =

f(x) and ηy(y) = f(y). For y 6= x, set Oy = {x0 ∈ X : ηy(x
0) > f(x0) − ε}.

This set is open since ηy and f are continuous and as y varies, ∪y 6=xOy is an
open covering of X. Since X is compact, there exists Þnitiely many sets Oy
such that X = ∪Nj=1Oyj with yj 6= x, ∀j. Then let vx = max{ηy1, ..., ηyN}.
Since H is a lattice, vx ∈ H with the same properties as the ηy�s; namely,
vx(x) = f(x) and vx(x

0) > f(x0)− ε,∀x0 ∈ X.
Second, let x vary. For each x ∈ X, let Ωx = {x0 ∈ X : vx(x

0) < f(x0)+ε}.
By exactly the same argument as the Þrst step, there exists Þnitely many
sets Ωx1, ...,ΩxJ covering X. Set v = min{vx1, ..., vxJ}. Then v ∈ H and
f(x0)− ε < v < f(x0) + ε, ∀x0 ∈ X. This means kf − vk ≤ ε.
Assumption (ii) in Lemma 463 appears hard to verify. But as we will

show, if H separates points in X and if H contains all constant functions,
then H satisÞes assumption (ii) of Lemma 463.

Theorem 464 (Stone-Weierstrass L) If: (i) H is a separating vector
subspace of C(X); (ii) H is a lattice; (iii) H contains all constant functions.
Then H is dense in C(X).

Proof. To apply the previous lemma, we must show that assumptions (i)
and (iii) of the Theorem imply assumption (ii) of Lemma 463.
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Let x1, x2 ∈ X with x1 6= x2. Since H is separating, ∃h ∈ H such that
h(x1) 6= h(x2). Let α1, α2 ∈ R, then the system of linear equations

α1 = µ+ λh(x1)

α2 = µ+ λh(x2)

has a unique solution (µ, λ) ∈ R2 since

rank

·
h(x1) 1
h(x2) 1

¸
= 2

because h(x1) 6= h(x2). Set g(x) = µ + λh(x). Since H is a vector subspace
containing constant functions, g ∈ H. Moreover, we see that g(x1) = α1 and
g(x2) = α2 so that assumption (ii) of Lemma 463 is satisÞed.

3

The Stone-Weierstrass theorem is very general and covers many classes
of elementary functions to approximate continuous functions. We now state
the algebraic version of the Stone-Weierstrass theorem. Following this, we
will apply whichever version is more suitable to some concrete examples.

DeÞnition 465 We call a vector subspace H ⊂ C(X) an algebra of func-
tions (not to be confused with an algebra of sets) if it is closed under multi-
plication.

Hence H ⊂ C(X) is an algebra of functions if: (i) ∀f, g ∈ H and α, β ∈ R,
we have αf +βg ∈ H; (ii) ∀f, g ∈ H, we have f ·g ∈ H (where f ·g is deÞned
as (f · g)(x) = f(x) · g(x),∀x ∈ X).
Before stating the algebraic version of the Stone-Weierstrass Theorem,

we prove the following set of lemmas.

Lemma 466 A vector subspace H ⊂ C(X) is a lattice iff for every element
h ∈ H, the function |h| ∈ H as well.

Proof. (⇒) Let h ∈ H. Then |h| = max(h, 0)−min(h, 0) and since H is a
lattice as well as a vector subspace, then the r.h.s. is from H.Thus |h| ∈ H.
(⇐) We can write max(f, g) = 1

2

£
(f + g) + 1

2
|f − g|¤ and min(f, g) =

1
2

£
(f + g)− 1

2
|f − g|¤ . The right hand sides hold since f, g ∈ H, the absolute

value is fromH, and H is a vector space.

3Instead of assuming that H contains all constants it is sufficient to assume that H
contains just the constant c = 1. Since H is a vector space, it contains all scalar multiples
of 1.
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Note that Lemma 466provides a very convenient way of checking that a
subset of functions is a lattice. In the next lemma we construct a sequence
of polynomials < Pn > converging uniformly to |x| on [−1, 1].

Lemma 467 There exists a sequence of polynomials < Pn > that converges
uniformly to f(x) = |x| on [−1, 1].

Proof. (Sketch) We construct the sequence < Pn(x) > on [−1, 1] by in-
duction: for n = 1, P1(x) = 0; given Pn(x), we deÞne Pn+1(x) = Pn(x) +
1
2
(x2 − P 2n(x)) ,∀n ∈ N. Then show that (i) Pn(x) ≤ Pn+1(x), ∀x ∈ [−1, 1]
(i.e. Pn is nondecreasing) and (ii) Pn(x)→ |x| pointwise on [−1, 1].Since the
limit function |x| is continuous, by Dini�s Theorem 453 < Pn(x) > converges
to |x| uniformly on [−1, 1].

Theorem 468 (Stone-Weierstrass A) Every separating algebra of func-
tions H ⊂ C(X) containing all the constant functions is dense in C(X).

Proof. If H is a separating subalgebra of C(X) containing constant func-
tions, then so is its closure H. Therefore it suffices to show that H is a lattice
and apply Theorem 464.
Let f ∈ H be nonzero. By Lemma 467, ∃ < Pn > of polynomials that

converges uniformly on [−1, 1] to f(x) = |x|. Since −1 ≤ f
kfk ≤ 1,the se-

quence of fuctions
D
Pn
³

f
kfk
´E

converges uniformly to
¯̄̄
f
kfk

¯̄̄
= |f |

kfk . But¿
Pn

µ
f

kfk
¶À

→ |f |
kfk ⇔

¿
kfkPn

µ
f

kfk
¶À

→ |f |.

Since H is an algebra, all terms in this sequence are in H (because an algebra
is closed under linear combination and multiplication). Since H is closed,
|f | ∈ H. By Lemma 466, H is a lattice.

Exercise 6.1.2 Prove that if H is a separating subalgebra of C(X), then H
is as well.

Both versions of the Stone-Weierstrass Theorem are a very general state-
ment about the density of a subset H in C(X)or equivalently about approx-
imation in C(X). As some of the next examples show, it covers all known
approximation theorems of continuous functions.
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Example 469 Let H2 be the set of Lipschitz functions h : X → R given
by |f(x)− f(y)| ≤ CdX(x, y), ∀x, y ∈ X and C ∈ R. First, we must
establish H2 is a vector subspace of C(X) containing constant functions.
That is we must establish H2 is closed under addition and scalar multipli-
cation. To see this, suppose f, g ∈ H2 so that |f(x)− f(y)| ≤ C1dX(x, y)
and |g(x)− g(y)| ≤ C2dX(x, y). Then

|(f + g)(x)− (f + g)(y)| = |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ (C1 + C2)dX(x, y)

so that H2 is closed under addition. Similarly, for α ∈ R,
|αf(x)− αf(y)| = |α| |f(x)− f(y)| ≤ |α|C1dX(x, y)

so that H2 is closed under scalar multiplication. Second, we must establish
that H2 is a lattice. To see this, notice

||h(x)|− |h(y)|| ≤ |h(x)− h(y)|
by the triangle inequality. Finally, we must establish that H2 is separating.
To see this, for x 6= y, the function h(z) = dX(x, z) is Lipschitz with constant
1 satisfying h(x) = dX(x, x) = 0 and h(y) = dX(x, y) > 0. Thus H2 is dense
in C(X) by Theorem 464.

Example 470 Let H3 be the set of continuous piecewise linear functions
h : [a, b]→ R given by h(x) = bk + akx for ck−1 ≤ x < ck, k = 0, 1, ..., n with
a = c0 < c1 < ... < cn = b and where ak−1ck + bk−1 = akck + bk, ∀k keeps
h continuous. It is easy to show that H3 : is a vector subspace of C([a, b])
containing constant functions; is a lattice because |g(x)| ∈ H3 iff g ∈ H3; and
is separating since g(x) = x ∈ H3. Thus H3 is dense in C([a, b]).
Example 471 Let H4 be the set of all polynomials h : X → R where X is
a compact subset of Rn. It is easy to show that H4 is a subalgebra of C(X)
containing the constants and is separating. Thus H4 is dense in C(X).To see
H4 is a subalgebra, note that if we multiply two polynomials, the product is
still a polynomial.

A special case of Example 471 is X = [a, b] known as the Weierstrass
Approximation Theorem. Notice that all the previous examples guarantee
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the existence of a dense set in C(X) but don�t present a constructive method
of approximating a continuous function. The next example shows how to Þnd
a sequence of polynomials hn(x; f) converging uniformly to f(x) on [0, 1].

4

Example 472 Let H5 be the set of Bernstein polynomials bn(f) : [0, 1]→ R
for a function f : [0, 1]→ R where

bn(x; f) =
nX
k=0

f

µ
k

n

¶
·
µ
n
k

¶
xk(1− x)n−k

with

µ
n
k

¶
= n!

k!(n−k)! and n! = n · (n− 1) · ... · 2 · 1.

Example 473 Let H6 be the set of all continuous functions differentiable to
order p = ∞ on X ⊂ Rn (denoted C∞(X)). It is easy to show that C∞(X)
is a separating algebra containing constant functions. Thus C∞(X) is dense
in C(X).

6.1.4 Separability of C(X)
To see that C(X) is separable we must show that there exists a countable
subset S ⊂ C(X) that is dense in C(X) (i.e. S = C(X)). Consider the set
S of all polynomials deÞned on X with rational coefficients. From Example
471, we know that the set of all polynomials is dense in C(X). But any
polynomial can be uniformly approximated by polynomials with rational
coefficients since Q is dense in R.

Corollary 474 if X is compact, the set S of all polynomials in X with
rational coefficients (which is a countable set) is dense in C(X).Hence, C(X)
is separable.

6.1.5 Fixed point theorems

In Chapter 4 we proved Brouwer�s Þxed point Theorem 302 for continuous
functions deÞned on a compact subset of Rn. But this theorem holds true in
a more general setting. In particular, we don�t need to restrict it to a Þnite
dimensional vector space; it can be extended to inÞnite dimensional vector
spaces (i.e. function spaces).

4See Carothers p. 164 for a proof of uniform convergence.
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Theorem 475 (Schauder) Let K be a non-empty, compact, convex subset
of a normed vector space and let f : K → K be a continuous function. Then
f has a Þxed point.

Proof. (Sketch) Since K is compact, K is totally bounded. Hence, given
ε > 0, there exists a Þnite set {yi, i = 1, ..., n} such that the collection
{Bε(yi), i = 1, ..., n} covers K. Let Kε = co ({y1, ..., yn}) . Since K is convex
and yi ∈ K for all i = 1, ..., n, then Kε ⊂ K (by Exercise 4.5.4). Note that
Kε is Þnite dimensional and since it is also closed and bounded, it is compact
(by Heine-Borel).
DeÞne the �projection� function pε : K → Kε by Pε(y) =

Pn
i=1 θi(y)yi

such that the functions θi : K → R are continuous for i = 1, ..., n, θi(y) ≥ 0,
and

Pn
i=1 θi = 1.The construction of θi is given in the proof in the ap-

pendix to this chapter. By construction, Pε(y) is an ε-approximation of y
(i.e. kPε (y)− yk < ε,∀ydK). Now for the function f : K → K deÞne
fε : Kε → Kε by fε(x) = Pε(f(x)),for all x ∈ Kε. The function fε satisÞes all
the assumptions of Brouwer�s Fixed Point Theorem 302. Hence there exists
xε ∈ Kε such that xε = fε(xε).
Set f(xε) = yε and choose a sequence < εi > converging to zero. We

must show that the approximating sequence < xε > and < yε > converge to
the same point. By construction < yεi > is a sequence in K and since K is
compact, there exists a convergent subsequence

< yg(εi) >→ y ∈ K. (6.1)

All that�s left is to show that < xε >=< fε(xε) > also converges to y.

kxε − yk = kyε + xε − yε − yk = kyε + fε (xε)− yε − yk
= kyε + Pε (yε)− yε − yk ≤ kPε (yε)− yεk+ kyε − yk .

The Þrst term is sufficiently small because Pε (y) approximates y and the
second term is sufficiently small since < yε >→ y. Hence < xε >→ y. Since
f is continuous, then f (xε) → f (y) . Combining this and (6.1) we have
f (y) = y or that y is a Þxed point of f .
Schauder�s Fixed Point Theorem requires compactness of a subset K of

the function space C(X).We will now state it in a slightly different form that
is more suitable for applications in function spaces (i.e. the assumptions of
the following theorem are easier to verify).
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Theorem 476 Let F ⊂ C(X) be a nonempty, closed, bounded, and convex
set with X compact. If the mapping T : F → F is continuous and if the
family T (F ) is equicontinuous, then T has a Þxed point in F .

Proof. T (F ) ⊂ F by assumption. Set H = co
³
T (F )

´
(i.e. H is the convex

hull of the closure of T (F )). By deÞnition H is closed and convex. If we show
that H is equicontinuous we are done since then by Ascoli�s Theorem 458 H
is compact and T is continuous. By Schauder�s Theorem 475 T : H → H
has a Þxed point.

We need to show that if T (F ) is equicontinuous, then co
³
T (F )

´
is

equicontinuous. Let f ∈ co
³
T (F )

´
.Then f =

Pk
i=1 λif

i such that f i ∈
T (F ), λi > 0, and

Pk
i=1 λi = 1 (which obviously implies λi ≤ 1 for i =

1, ..., k). f i ∈ T (F ) implies that ∃ < f in >∞n=1→ f i where f in ∈ T (F ). Since

kf(x)− f(y)k =

°°°°°
kX
i=1

λif
i(x)−

kX
i=1

λif
i(y)

°°°°°
≤

kX
i=1

°°f i(x)− f i(y)°°
≤

kX
i=1

£°°f i(x)− f in(x)°°+ °°f in(x)− f in(y)°°+ °°f in(y)− f(y)°°¤ .
This expression is arbitrarily small for x, y close because it is the sum of
Þnitely (k) many expressions which are arbitrarily small. In particular, the
Þrst and third terms are arbitrarily small because < f in >→ f i and the
second term is sufficiently small becuase f in ∈ T (F ) and T (F ) is uniformly
equicontinuous.

6.2 Classical Banach spaces: Lp

In the previous section we analysed the space of all bounded continuous
functions f : X → R equipped with the (sup) norm kfk∞ = sup{|f(x)|, x ∈
X}. There we showed that (BC(X,R), k·k∞) is complete.
There are some potential problems using this normed vector space. Con-

vergence with respect to the sup norm in the set BC(X,R) is uniform con-
vergence (by Theorem 450), which is quite restrictive. For example, the



230 CHAPTER 6. FUNCTION SPACES

sequence < fn(x) >=< xn > on X = [0, 1] is not convergent in the space
C([0, 1]. That is, in Example 455 we showed that < xn > does not converge
uniformly. We also mentioned that a metric (and hence a norm) that would
induce pointwise convergence does not exist.
Does there exist a norm on the set C([0, 1]) for which < xn > would be

convergent? Since x ∈ [0, 1], < xn > is bounded and xn → 0 pointwise a.e.
(i.e. except at x = 1). The sequence <

R
[0,1]
xn > also converges (to 0) since

lim
n→∞

kxn − 0k1 = lim
n→∞

Z
[0,1]

xn =

Z
lim
n→∞

xn =

Z
[0,1]

0 = 0

where the second equality follows from the Bounded Convergence Theorem
386. Thus < xn > on [0, 1] converges with respect to the norm k·k1 to f = 0.
While we have deÞned a norm on C(X) that does not require strong

convergence restrictions on a given sequence, we must establish whether C(X)
equipped with k·k1 is complete. The next example shows this is not the case.

Example 477 Take C([−1, 1]) with fn : [−1, 1]→ R given by

fn(x) =

 1 if x ∈ [−1, 0]
1− nx if x ∈ (0, 1

n
)

0 if x ∈ [ 1
n
, 1]

.

See Figure 6.2.1. The sequence < fn(x) > is Cauchy. To see this, we must
show kfn(x)− fm(x)k1 → 0, with n ≥ m and m sufficiently large. Is it
convergent in C([−1, 1]) with respect to the norm k·k1? Let f(x) be its limit.
Then we must show

kfn − fk1 =

Z
[−1,1]

|fn(x)− f(x)|dx

=

Z
[−1,0]

|1− f(x)|dx+
Z
(0, 1

n
)

|1− nx− f(x)|dx+
Z
[ 1
n
,1]

|0− f(x)|dx

vanishes as n → ∞. Since all the integrands on the right hand side are
nonnegative, so is each integral. Hence kfn − fk1 → 0 would imply each
integral on the right hand side approaches zero as n→∞. Consequently

lim
n→∞

Z
[−1,0]

|1− f(x)|dx = 0 and lim
n→∞

Z
[ 1
n
,1]

|0− f(x)|dx = 0
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implies

f(x) =

½
1 if x ∈ [−1, 0]
0 if x ∈ (0, 1] .

But then f(x) is not continuous on [−1, 1] and hence f(x) /∈ C([−1, 1]) so
that < fn(x) > is not convergent. This proves that (C([−1, 1]), k·k1) is not a
complete normed vector space.

To summarize, we have seen that the function space C(X) can be equipped
with two norms: the sup norm and k·kp=1. In the former case, (C(X), k·k)
is complete but in the latter case, (C(X), k·k1) is not complete. Now we
will introduce the space of all L−measurable functions f : X → R that are
p−integrable. We will show that this space, known as the Lp space, is the
completion of C(X) with respect to the k·kpnorm (just as, for instance, R was
the completion of Q). Consider, then, the measure space (R,L,m) where L is
a σ-algebra of all Lebesgue measurable sets and m is the Lebesgue measure.
While we will work here with (R,L,m), it can be extended to more general
measure spaces (X,X ,µ).

DeÞnition 478 For any p ∈ [1,∞),we deÞne Lp(X) with X ⊂ R to be the
space of all L-measurable functions f : X → R such that

R
X
|f(x)|pdx < ∞

and L∞(X) to be the space of all essentially bounded L-measurable functions
(i.e. functions which are bounded almost everywhere - See Figure 6.2.2)
Furthermore, deÞne the function k·kp : Lp(X)→ R as

kfkp =
( ¡R

X
|f |p¢ 1p p ∈ [1,∞)

ess sup |f | p =∞ .

We shall establish that k·kp deÞnes a norm on Lp(X). For p ∈ [1,∞), this
norm is called the Lp-norm or simply the p − norm or Lebesgue norm. To
show that k·kp satisÞes the triangle inequality property required of a norm,
we use the same procedures as we used in !p spaces in Chapter 4.

Theorem 479 (Riesz-Holder Inequality) Let p, q be nonnegative conju-
gate real numbers (i.e. 1

p
+ 1
q
= 1). If f ∈ Lp(X) and g ∈ Lq(X),then fg ∈ L1

and
R
X
|fg| ≤ kfkp kgkq , with equality iff α|f |p = β|g|q a.e. where α, β are

nonzero constants.
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Proof. When p = 1, then q = ∞. Take f ∈ L1and g ∈ L∞. Then g is
bounded a.e. so that |g| ≤ M a.e. Now |fg| ≤ M |f | a.e. so that fg ∈ L1.
Integrating we have Z

X

|fg| ≤M
Z
X

|f | = kfk1 kgk∞ .

Next assume p, q ∈ (1,∞). If either f = 0 a.e. or g = 0 a.e., we have

equality. Let f 6= 0 a.e. and g 6= 0 a.e. Substituting for a = |f(x)|
kfkp and

b = |g(x)|
kgkq in Lemma 235, we have

|f(x)g(x)|
kfkp kgkq

≤
µ
1

p

¶ |f(x)|p³
kfkp

´p +µ1
q

¶ |g(x)|q³
kfkq

´q .
Then fg ∈ L1and by integrating we getR

X
|f(x)g(x)|
kfkp kgkq

≤
µ
1

p

¶ R
X
|f(x)|p³
kfkp

´p +µ1
q

¶ R
X
|g(x)|q³
kfkq

´q = 1

p
+
1

q
= 1

or
R
fg ≤ kfkp kgkq . By Lemma 235 equality holds when ap = bq, which

means
³
kgkq

´q
|f |p =

³
kfkp

´p
|g|q.

Now we need to show that k·kp satisÞes the triangle inequality property
of a norm.

Theorem 480 (Riesz-Minkowski) For p ∈ [1,∞] and f, g ∈ Lp, kf + gkp ≤
kfkp + kgkp .
Proof. For p = 1 and p =∞, it follows trivially from |f + g| ≤ |f |+ |g|. Let
p ∈ (1,∞) and let h = |f + g|p−1. Since p− 1 = p

q
, it follows that h ∈ Lq and³

khkq
´q
=
R |f + g|p = ³kf + gkp´p . Now³
kf + gkp

´p
=

Z
|f + g|1+ p

q =

Z
|f + g| |f + g|pq

≤
Z
|f |h+

Z
|g|h

≤
³
kfkp + kgkp

´
khkq

=
³
kfkp + kgkp

´³
kf + gkp

´p
q



6.2. CLASSICAL BANACH SPACES: LP 233

where the second inequality follows from Theorem 479. Since p − p
q
= 1,

dividing both sides by
³
kf + gkp

´p
q 6= 0, we have kf + gkp ≤ kfkp + kgkp .

Finally, if kf + gk = 0, then the inequality holds trivially.

As in L1 considered in section 5.4, we stress that the function k·kp satisÞes
all properties of a norm except the zero property (i.e. kfkp = 0 does not
imply f = 0 everywhere). Using equivalence classes of functions rather than
functions themselves, it can be shown as in the previous section that kfkp is
a norm on Lp.
Again, the most important question we must ask of our new normed

vector space is �Is it complete?� The next theorem provides the answer.

Theorem 481 (Riesz-Fischer) For p ∈ [1,∞], (Lp, k·kp) is a complete
normed vector space (i.e. a Banach space).

Proof. (Sketch) The proof for p = 1 was already given in Theorem 443.
The proof for p ∈ (1,∞) is virtually identical. Finally, let p = ∞ and let
< fn > be a Cauchy sequence in L

∞. For x ∈ X,

|fk(x)− fn(x)| ≤ kfk − fnk∞ (6.2)

except on a set Ak,n ⊂ X with mAk,n = 0 by DeÞnition 368 of the es-
sential supremum . If A = ∪k,nAk,n, then mA = 0 and |fk(x) − fn(x)| ≤
kfk − fnk∞ ,∀k, n ∈ N with k > n and ∀x ∈ X\A. Since < fn(x) > is
Cauchy in R, there exists a bounded function f(x) that < fn(x) > converges
to ∀x ∈ X\A. Moreover this convergence is uniform outside A as (6.2) indi-
cates.
Now we would like to establish how Lp spaces are related to one another

and also how they are related to the set of continuous functions C(X,Y ).Before
doing that, however, we present an example which shows that continuity does
not guarantee that a function is an element of Lp.

Example 482 Let f : (0, 1) → R be given by f(x) = 1
x
. The function f is

continuous on (0, 1) but is not p-integrable for any p. Hence f ∈ C((0, 1),R)
but f /∈ Lp((0, 1)).

Lemma 483 BC(X,R) ⊂ L∞(X).
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Proof. If a function is bounded and continuous, it must be essentially
bounded.

Note that from DeÞnition 478, if the function is continuous, then the ess
sup is just the sup. That is, if f ∈ BC(X), then kfk∞ is the extension (in
the sense of DeÞnition 56) from BC(X) to L∞(X) of the sup norm. This
also justiÞes why we used the prior notation k·k∞ for the sup norm. Thus
convergence in L∞(X) is equivalent to uniform convergence oustide a set of
measure zero. Note that if X is compact, then C(X) ⊂ L∞(X).
If we make additional assumptions about the domain X, however, there

are inclusion relations among the Lp(X) spaces and their associated norms.

Theorem 484 If m(X) < ∞, then for 1 < p < q < ∞ we have L∞(X) ⊂
Lq(X) ⊂ Lp(X) ⊂ L1(X) and kfk1 ≤ c1 kfkp ≤ c2 kfkq ≤ c3 kfk∞ where ci
are constants which are independent of f .

Proof. L∞(X) ⊂ Lq(X) for 1 < q <∞ andm(X) <∞ since if f is bounded
a.e. (i.e. f ∈ L∞) and measurable, then since mX is Þnite we have that f is
integrable by Theorem 382.

Assume 1 < p < q < ∞. Let f ∈ Lq. Then fp ∈ L q
p
. Set λ =

q
p
. Since

q > p, we have λ > 1. Choose µ such that 1
λ
+ 1

µ
= 1. Then

Z
|f |p =

Z
|f |p · 1 ≤

µZ
|f |pλ

¶ 1
λ

·
µZ

1

¶ 1
µ

=

µZ
|f |q

¶p
q

· (mX) 1µ <∞

where the Þrst inequality follows from Holder�s Inequality (Theorem 479)
and taking the p-th root of both sides of the above inequality we obtain

kfkp ≤ [m(X)]
1
pµ kfkq .Hence f ∈ Lp(X).

Note, for instance, the proof gives a constructive way to obtain the con-

stant c2 = [m(X)]
1
pµ . Thus stating that for p < q, Lq(X) ⊂ Lp(X) means

that if f is q-integrable, then f is also p-integrable and kfkp ≤ c kfkq where c
is some constant. This inequality implies that if a sequence < fn > converges
in Lq(X), then < fn >⊂ Lp(X) and converges also in Lp(X). Note also that
in this theorem we compare normed vector spaces with different norms.

Putting the two previous lemmas together we have the following result.

Corollary 485 If m(X) <∞, BC(X) ⊂ Lp(X).
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Example 486 The inclusions in Theorem 484 are strict. For instance,
let 1 ≤ q < ∞ and take f : (0, 1) → R given by f(x) = 1

x
1
q
. Then

f ∈ Lp((0, 1)) for p < q but f /∈ Lq((0, 1)). In particular, take f(x) = 1√
x
.

Then
R
(0,1)

1√
x
dx = 2

√
x|10 = 2 so f ∈ L1((0, 1)) but

R
(0,1)

³
1√
x

´2
dx =R

(0,1)
1
x
dx = ln(x)|10 =∞ so f /∈ L2((0, 1)).

Example 487 The assumption that m(X) < ∞ is important. Take f :
[1,∞) → R given by f(x) = 1

x
1
p
with 1 ≤ p < ∞. Then f ∈ Lq([1,∞))

if q > p but f /∈ Lp([1,∞)). In particular, f(x) = 1
x
∈ L2([1,∞)) but

f /∈ L1([1,∞)).
Comparing Theorem 239 (in !p) and Theorem 484 (in Lp), one may won-

der why the order of !p spaces is exactly opposite that of Lp(X) spaces with
m(X) <∞. That is, for 1 < p < q <∞

!1 ⊂ !p ⊂ !q ⊂ !∞
L1 ⊃ Lp ⊃ Lq ⊃ L∞.

!p spaces are spaces of sequences and we know that a sequence is just a
function f : N→ R; that is, a function deÞned on an unbounded set. If
< xi >∈ !p, then

P∞
i=1 |xi|p < ∞. This inÞnite sum can only be Þnite if

|xi|p decreases �rapidly enough� to zero. Now if p < q, then |xi|q decreases
�more rapidly� than |xi|p (i.e. |xi|q < |xi|p). Hence if < xi >∈ !p, then
< xi >∈ !q. In the case of Lp(X) with mX < ∞, while X is bounded,
f : X → R may not be bounded. If f ∈ Lq(X), then

R
X
|f |q <∞. For p < q,

|f |p < |f |q ⇒ R
X
|f |p < R

X
|f |q <∞ and hence f ∈ Lp(X).

6.2.1 Additional Topics in Lp(X)

Approximation in Lp(X)

For Lp(X), p ∈ (1,∞) we have the following result which is similar to The-
orem 445 in L1(X).

Theorem 488 Let 1 < p <∞, X ⊂ R, f ∈ Lp(X) and ε > 0.Then (i) there
is an integrable simple function ϕ such that kf − ϕkp < ε; and (ii) there is
a continuous function g such that g vanishes (g = 0) outside some bounded
interval and such that kf − gkp < ε.
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Exercise 6.2.1 Prove Theorem 488. Hint: See Carothers p.350.

Note that here X can be equal to R so that the theorem also covers sets
of inÞnite measure.

Corollary 489 The set of all integrable simple functions is dense in Lp(X).
The set of all continuous functions vanishing outside a bounded interval is
dense in Lp(X).

Now consider the case where p = ∞.Let f ∈ L∞(X) in which case f
is bounded a.e. on X (i.e. there is a set E such that m(E) = 0 and f is
bounded on X\E.Then by Theorem 367, there exists a sequence of simple
functions < ϕn > converging uniformly to f on X\E.In other words, ϕn → f
uniformly a.e. on X. Thus, ϕn → f in L∞(X).

Corollary 490 The simple functions are dense in L∞(X).

If m(X) <∞, then any simple function is integrable. Thus we have:

Corollary 491 If m(X) <∞,then the integrable simple functions are dense
in L∞(X).

Notice that the condition m(X) < ∞ is critical here. For example, f =
1 ∈ L∞(R) cannot be approximated by an integrable simple function.

Separability of Lp(X)

If X is compact, then the set of all polynomials with rational coefficients
PQ(X) is dense in C(X) and because C(X) is dense in Lp(X) (by Corollary
474), then PQ(X) is also dense in Lp(X).Thus Lp(X) with X compact is
separable.
If X is not compact, then as we showed in L1(X), the set M of all Þnite

linear combinations of the form
Pn

i=1 ciχIi where ci are rational numbers and
Ii are intervals with rational endpoints is a countably dense set in Lp(X).

Theorem 492 Corollary 493 LP (X) is separable for 1 < p < ∞ .

Corollary 494 L∞ (X) is not separable for any X (either compact or not).
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Proof. Take two bounded functions χ[a,c] andχ[a,d]. Since kχ[a,c]−χ[a,d]k∞ = 1
for c 6= d, then

B 1
2

¡
χ[a,c]

¢ ∩B 1
2

¡
χ[a,d]

¢
= ∅ for c 6= d

where

B 1
2

¡
χ[a,c]

¢
=

½
fdL∞ : kf − χ[a,c]k∞ <

1

2

¾
.

Let F be an arbitrary set which is dense in L∞ ([a, c]) . Then for each c
with a < c < b there is a function fc ∈ F such that kχ[a,c] − fck∞ < 1

2
since

χ[a,c] ∈ L∞ (X) and F is dense in L∞(X). Because fc 6= fd for c 6= d.and there
are uncountably many real numbers between [a, b], F must be uncountable.

6.2.2 Hilbert Spaces (L2(X))

As we mentioned in Chapter 4, a Hilbert space is a Banach space equipped
with an inner product. Hence, a Hilbert space is a special type of Banach
space which posesses an additional structure: an inner product. This addi-
tional structure allows us, apart from measuring length of vectors (norms),
to measure angles between vectors. In particular it enables us to introduce
the notion of orthogonality for two vectors.

DeÞnition 495 We say that two vectors x and y of M are othogonal
(perpendicular) if their inner product < x, y >= 0 and we denote it x ⊥ y.
The set N ⊂ H is called an orthogonal set (or orthogonal system) if
any two different elements ϕ and ψ of N are orthogonal, that is < ϕ,ψ >= 0.
An orthogonal set N is called orthonormal if it is orthogonal and kϕk = 1
for each ϕ in N.

Example 496 Rn with the inner product deÞned by < x, y >= x1y1 + ....+
xnyn =

Pn
i=1 xiyi is a Hilbert space. The set N = {ei, i = 1, ..., n} where

ei = (0, ..., 0, 1, 0, ..., 0) is orthonormal.

Example 497 !2 with the inner product deÞned by < x, y >=
P∞

i=1 xiyi
where x = hxii , y = hyii is a Hilbert space. The set N = {ei, idN} is
orthonormal.
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Example 498 L2 ([0, 2π]) with inner product deÞned by < f, g >=
R 2π
o
f (x) g (x) dx

where f, gdL2 ([0, 2π]) is a Hilbert space. The set N =
n

1√
2π
, cos nx√

π
, sin nx

π
, ndN

o
is an orthonormal.

Exercise 6.2.2 Show that N in Example 498 is an orthonormal system.

Notice that the distance between any two distinct elements of an or-
thonormal system is

√
2. That is, kϕ− ψk2 = < (ϕ− ψ) , (ϕ− ψ) > =

< ϕ,ϕ > − < ϕ,ψ > − < ψ,ϕ > + < ψ,ψ > = kϕk2 + kψk2 = 1 + 1 = 2.

Lemma 499 If H is a separable Hilbert space, then each orthonormal set is
countable.

Proof. Let U = {eα, α ∈ A}, where A is an index set, be an uncountable
orthonormal set in H. Then the collection of balls around each element eα
with radius 1

2
(i.e. {B 1

2
( eα), α ∈ A would be an uncountable collection of

disjoint balls and hence H could not be separable.

DeÞnition 500 An orthonormal set {eα, α ∈ A} is said to be complete if
it is maximal.

In other words it is not possible to adjoin an additional element e ∈ H
with e 6= 0 to {eα, α ∈ A} such that {e, eα, α ∈ A} is an othonormal set in
H. The existence of a complete orthonormal set in any Hilbert space H is
guaranted by Zorn�s lemma because the collection {N} of all orthonormal
sets in H is partially ordered by set inclusion. Thus we have the following.

Theorem 501 Every separable Hilbert space contains a countable complete
orthonormal system.

The following theorem can be used to check if the orthonormal set is
complete.

Theorem 502 {eα, α ∈ A} is a complete orthonormal set in H iff x ⊥ eα,
∀α ∈ A implies x = 0.
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Proof. By contradiction. (⇒) Let {eα, ∀α ∈ A} be complete and ∃ x 6= 0
in H such that x ⊥ eα, ∀α ∈ A. DeÞne e = x

kxkso that kek = 1.Hence

{e, eα, α ∈ A} is orthonormal which contradicts the assumption that {eα, α ∈ A}
is complete (maximal).
(⇐) Assume that x ⊥ eα, ∀α ∈ A⇒ x = 0 and {eα, ∀α ∈ A} is not com-

plete. Then ∃ e ∈ H such that {e, eα, ∀α ∈ A} is an orthonormal sysytem
and e /∈ {eα, ∀α ∈ A} . Since e ⊥ eα, ∀α ∈ A and e 6= 0 (because kek = 1),
the assumption is contradicted.

Exercise 6.2.3 Show that the orthonormal systems in Rn, !2, and L2([0, 2π])
deÞned in examples 496 to 498 are complete.

Consider now a separable Hilbert space and let {ei} be an orthonormal
system in H. We know that {ei} is either a Þnite or countably inÞnite set.
We deÞne the Fourier coeÞcients with respect to {ei} of an element x ∈ H
to be ai =< x, e

i > .

Theorem 503 (Bessel�s Inequality) Let {ei} be an orthonormal system
in H and let x ∈ H.. Then

IX
i=1

a2i ≤ kxk2

where ai =< x, e
i > are the Fourier coefficients of x and I = N if {ei} is

Þnite or I =∞ otherwise.
Proof. 0 ≤ kx−Pn

i=1 aie
ik2 = kxk2−2Pn

i=1 ai < x, ei > +
Pn

i=1

Pn
i=1 aiaj <

ei, ej > = kxk2 −Pn
i=1 a

2
i . Thus

Pn
i=1 a

2
i ≤ kxk2 and since n was arbitrary,

we have
P∞

i=1 a
2
i ≤ kxk2 .

Now let ai be Fourier coefficients of xwith respect to {ei} and let
P∞

i=1 a
2
i <

∞ (i.e.
P∞

i=1 a
2
i converges). Then consider a sequence hzi deÞned by

zn =
nX
i=1

aie
i,

for m ≥ n
zm − zn =

mX
i=n

aie
i,
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and we have kzm − znk2 =
Pm

i=n

Pm
j=n aiaj < e

i, ej >=
Pm

i=n a
2
i . This term

can be made sufficiently small for m,n large enough because
P∞

i=1 a
2
i is con-

vergent. Hence hzni is a Cauchy sequence. Because H is a Hilbert space
(thus complete), there exists y ∈ H such that y =

P∞
i=1 aie

i. Since the inner
product is continuous, by the Cauchy-Schwartz inequality we have

< y, ei >= lim
n−→∞

< zn, e
i >=<

∞X
j=1

aje
j, ei >= ai.

Thus ai are Fourier coefficients of y, as well as of x (which we started with).
When does x equal y ? In other words, when are the elements with the
same Fourier coefficients equal? Let ai be the Fourier coefficients of two
elements x and y (i.e. ai =< y, ei >=< x, ei > . But this is equivalent to
0 =< y − x, ei >,∀i = 1, 2... This implies x = y iff the orthonormal system
{ei} is complete by Theorem 502.Hence we proved the following:

Theorem 504 (Parseval Equality) If {ei} is a complete orthonormal sys-
tem in a Hilbert spaceH then for each x ∈ H, x =P∞

i=1 aie
i
³
or x =

PN
i=1 aie

i
´

where ai =< x, e
i >. Moreover kxk2 =P∞

i=1 a
2
i .

To summarize the previous Þndings, let {ei} be a complete orthonormal
system of a Hilbert space H and let ai =< x, ei >, i = 1, 2, ... be Fourier coef-
Þcients of x with respect to {ei}. Then the Fourier seriesP∞

i=1 aie
i converges

to x (with respect to the norm of H). That is,

lim
n→∞

nX
i=1

aie
i = lim

n→∞

nX
i=1

< x, ei > ei = x

or equivalently °°°°°
nX
i=1

< x, ei > −x
°°°°°→ 0.

This implies that if x, y ∈ H have the same Fourier coefficients, then kx− ykH =
0 which means x = y. Depending on the space we deal with this may mean
that x = y a.e.

Example 505 Add L2([0, 2π])



6.3. LINEAR OPERATORS 241

6.3 Linear operators

In the previous two sections on C(X) and Lp(X) we studied normed vector
(linear) spaces whose elements were functions. In this section, we study
functions that operate between two normed vector spaces. We call these
functions operators (to distinguish them from the functions that are elements
of the normed vector spaces).
We will focus primarily on operators that preserve the algebraic structure

of vector (linear) spaces. These functions are called linear operators. Because
normed vector spaces are also metric spaces, we will also address the issue
of how linearity relates to continuity.

DeÞnition 506 Let (X, k·kX) and (Y, k·kY ) be normed vector spaces. A
function T : X → Y is called a linear operator if T (αx + βx0) = αTx +
βTx0, ∀x, x0 ∈ X and α, β ∈ R.

Example 507 Consider the Banach space (C([0, 1]), k·k∞). Assume that a
function g : [0, 1]× [0, 1]→ R is continuous. DeÞne T : C([0, 1]) → C([0, 1])
by (Tx) (t) =

R
[0,1]
g(t, s)x(s)ds. For instance, g(t, s) could be a joint density

function and x(s) = s. Then Tx(t) is the mean of s conditional on t. It is
easy to show that T is linear (due to the linearity of the integral).

We would like to characterize continuous linear operators. First we prove
an important fact about continuity of linear operators.

Theorem 508 Let X,Y be normed vector spaces and T : X → Y be a linear
operator. Then T is continuous on X iff T is continuous at any one element
in X.

Proof. (⇒) By deÞnition.
(⇐)Let T be continuous at x0 ∈ X and x ∈ X be arbitrary. Let < xn >⊂

X and xn → x. Then < xn − x + x0 >→ x0. Therefore, by Theorem 248,
T (xn−x+x0)→ Tx0 (because T is continuous at x0). But if T (xn−x+x0) =
Txn − Tx + Tx0 → Tx0 (where the equality follows from linearity of T ),
then Txn − Tx→ 0⇔ Txn → Tx. Hence T is continuous at x.
Here we stress that all one needs to establish continuity is that T is

continuity at one point. The result is a simple consequence of the linearity
of the operator T (just as we proved in earlier chapters that a linear function
is continuous). But one should not be confused; it is not the case that all
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linear operators are continuous since it may not be continuous at any points
in X (See Example 514).
Just as we considered restricting the space of all functions F(X,Y ) from

a metric space X to a metric space Y to the subset B(X,Y ) of all bounded
functions in the introduction to this chapter, now we introduce a bounded
linear operator and deÞne a new norm.

DeÞnition 509 Let X,Y be normed vector spaces and T : X → Y be a
linear operator. T is said to be bounded on X if ∃K ∈ R++ such that
kTxkY ≤ K · kxkX, ∀x ∈ X.
We note that this type of boundedness is different from that in DeÞnition

163. In that case, we would say ∃M such that kf(x)kY ≤ M,∀x ∈ X. The
next example shows how different they are.

Example 510 Let (X, k·kX) = (R, | · |) = (Y, k·kY ) and T : X → Y be given
by Tx = 2x. T as a linear function is not bounded on R with respect to k·kY
since 2x can be arbitrarily large. But T as a linear operator is bounded in
the sense of DeÞnition 509 since kTxkY ≤ K · kxkX ⇔ |2x| ≤ 2|x|,∀x ∈ X.
In the remainder of the book, when we say that a linear operator is

bounded, we mean it in the sense of DeÞnition 509.
The following result shows that a bounded linear operator is equivalent

to a continuous operator.

Theorem 511 Let T : X → Y be a linear operator. Then T is continuous
iff T is bounded.

Proof. (⇐) Assume that T is bounded and let kxnkX → 0.Then ∃K such
that kTxnkY ≤ K kxnkX → 0 as n → ∞. But this implies kTxnkY → 0 so
that T is continuous at zero and hence continuous on X by Theorem 508.
(⇒) By contraposition. In particular, we will prove that if T is not

bounded, then T is not continuous. If T is not bounded, then ∀n ∈ N,
∃xn ∈ X with xn 6= 0 such that kTxnkY > n kxnkX . But this implies°°°° Txn

n kxnkX

°°°°
Y

> 1.

Setting yn =
xn

n·kxnkX , we know kynkX → 0 as n → ∞.But kTynkY > 1,

∀n ∈ N. Thus Tyn cannot converge to 0 and T is not continuous at 0 (and
hence not continuous).
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Example 512 Consider the linear operator T : C([0, 1]) → C([0, 1]) deÞned
in Example 507 by (Tx) (t) =

R
[0,1]
g(t, s)x(s)ds. Since g : [0, 1]× [0, 1]→ R

is a continuous function on a compact domain, it is bounded or |g(x1, x2)| ≤
M1,∀(x1, x2) ∈ [0, 1] × [0, 1]. Also, x(t) : C([0, 1]) → C([0, 1]) is bounded by
virtue of being in C([0, 1]) or |x(t)| ≤M2, ∀t ∈ [0, 1]. Thus,

(Tx) (t) =

Z
[0,1]

g(t, s)x(s)ds ≤M1

Z
[0,1]

|x(s)|ds ≤M1M2.

DeÞnition 513 Let L(X,Y ) be the set of all linear operators T : X → Y
where X,Y are normed vector spaces. Let BL(X,Y ) be the set of all bounded
linear operators in L(X,Y ).

The next example shows thatBL(X,Y ) is a proper subset of L(X,Y ).Coupled
with Theorem 511 it also shows that not all linear operators are continuous.

Example 514 Consider the normed vector space of all polynomials P :
[0, 1] → R with the sup norm k·k∞ . DeÞne T : P ([0, 1]) → P ([0, 1]) by

(Tx)(t) = dx(t)
dt
, t ∈ [0, 1]. T is called the differentiation operator. It is easy to

check that T is linear (since the derivative of a sum is equal to the sum of the
derivatives). But T is not bounded. To see why, let < xn(t) >= t

n,∀n ∈ N.
Then kxnk∞ = sup{|tn|, t ∈ [0, 1]} = 1 and (Txn)(t) =

dxn(t)
dt

= n · tn−1.
Therefore, kTxnk∞ = sup{n|t|n−1, t ∈ [0, 1]} = n,∀n ∈ N. Then T is not
bounded since there is not a Þxed number K such that

kTxnk∞
kxnk∞ = n ≤ K. The

sequence of functions xn(t) = t
nconverges to

x0(t) =

½
0 t ∈ [0, 1)
1 t = 1

but the sequence of their derivatives x0n(t) = ntn−1 doesn�t converge to the
derivative of x0(t) (which actually doesn�t exist).

In the introduction to this Chapter we deÞned the sup norm onB(X,Y ) ⊂
F(X,Y ). What would be the consequences of equipping BL(X,Y ) with the
sup norm? More speciÞcally, how large would (BL(X,Y ), k·k∞) be? The
next example shows it would be very, very small.
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Example 515 Take X = Y = R.5 All linear functions f : R→ R are of
the form Tx = ax but these are not bounded with respect to the sup norm.
Hence the only element that would belong to BL(X,Y ) of all bounded linear
operators equipped with the sup norm would be Tx = 0, ∀x ∈ R.

DeÞnition 516 Let T ∈ BL(X,Y ). Then T is bounded by assumption so
∃K such that kTxkY ≤ K · kxkX, ∀x ∈ X. We call the least such K the
(operator) norm of T and denote it kTk where

kTk = inf {K : K > 0 and kTxkY ≤ K kxkX , x ∈ X} . (6.3)

Exercise 6.3.1 Prove that the function kTk in (6.3) is a norm onBL(X,Y ).

What is the relation between the sup norm and this new operator norm?
In the introduction to this Chapter we deÞned the sup norm on B(X,Y ) ⊂
F(X,Y ) of all bounded (linear and nonlinear) fuctions f : X → Y . Now we
have deÞned the operator norm on BL(X,Y ) of all linear operators (func-
tions) T : X → Y. We show in the next example that these two norms are
very different.

Example 517 In Example 510 we had (X, k·kX) = (R, | · |) = (Y, k·kY )
and T : X → Y be given by Tx = 2x. T is not bounded on R with re-
spect to the sup norm since k2xk∞ = sup{|2x|, x ∈ R} = ∞. However
the operator norm is bounded in the sense of DeÞnition 509 since k2xk =
inf {K : K > 0 and |2x| ≤ K|x|, x ∈ R} = 2.

In the remainder of this section and the next, when we refer to the norm of
a linear operator we mean the norm given in (6.3) if not speciÞed otherwise.
In the following theorem, we show that the norm of a linear operator can

be expressed in many different ways.

Theorem 518 The norm of a bounded linear operator T : X → Y can be
expressed as: (i) kTk = inf {K : K > 0 and kTxkY ≤ K kxkX , x ∈ X} ; (ii)
kTk = sup {kTxkY , x ∈ X, kxkX ≤ 1} ; (iii)kTk = sup {kTxkY , x ∈ X, kxkX = 1} ;
(iv)kTk = sup

n
kTxkY
kxkX , x ∈ X, x 6= 0

o
.

5We cannot take [−3, 3] ⊂ R since X is supposed to be a vector subspace but [−3, 3] is
not because, for instance, it is not closed under scalar multiplication (e.g. if we take the
scalar 4 we have [−12, 12] " [−3, 3]).
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Proof. Denote the right hand sides of expressions (i), (ii), (iii), and (iv) as
M1,M2,M3,M4. We want to show that M1 =M2 =M3 =M4.
From (i), we have kTxkY ≤ M1 kxkX ,∀x ∈ X. Now if kxkX ≤ 1,then

kTxkY ≤M1. Since M2is the supremum of such a set, then M2 ≤M1.
Since sup {kTxkY , x ∈ X, kxkX = 1} ⊂ sup {kTxkY , x ∈ X, kxkX ≤ 1} ,then

M3 ≤M2.

Next, since
kTxkY
kxkX =

°°°T ³ x
kxkX

´°°°
Y
for x 6= 0,if we let z = x

kxkX ,then

kzkX =
°°° x
kxkX

°°°
X
=

kxkX
kxkX = 1 and hence M3 =M4.

From the deÞnition of M4,it follows that if kxkX 6= 0,then kTxkY
kxkX ≤M4 or

kTxkY ≤M4 kxkX . Since M1is the inÞmum, we have M1 ≤M4.
Thus we have M1 ≤ M4 = M3 ≤ M2 ≤ M1, which implies the desired

result.

Corollary 519 Let X,Y be normed vector spaces and let T : X → Y be a
bounded linear operator. Then kTxkY ≤ kTk · kxkX .
The next theorem establishes the most important result of this section;

namely that BL(X,Y ) is a complete normed vector space provided that
(Y, k·kY ) is complete. We cannot use the previous result on completeness
in function spaces (Theorem 449) because BL(X,Y ) is equipped with a
different norm. However, the proof is similar to that used to establish that
B(X,Y ) is complete whenever (Y, k·kY ) is complete.
Theorem 520 The space BL(X,Y ) of all bounded linear operators from
a normed vector space X to a complete normed vector space Y is itself a
complete normed vector space.

Proof. (Sketch) Let < Tn > be a Cauchy sequence in BL(X,Y ). For
Þxed x ∈ X , < Tn(x) > is Cauchy in Y. Since Y is complete, < Tn(x) >
converges to an element in Y, call it Tx. Thus we can deÞne an operator
T : X → Y by Tx = limn→∞ Tn(x). It is easy to show that T is bounded
and that < Tn >→ T in BL(X,Y ).

6.4 Linear Functionals

In this section we study the special case of linear operators that map elements
(in this case functions) from a normed vector space to R.
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DeÞnition 521 Let (X, k·kX) be a normed vector space. A linear operator
F : X → R is called a linear functional. That is, a linear functional is
a real-valued function F on X such that F (αx + βx0) = αF (x) + βF (x0),
∀x, x0 ∈ X and α, β ∈ R

We note that if X is a Þnite dimensional vector space (e.g. Rn), then F
is usually called a function. The functional nomenclature is typically used
when X is an inÞnite dimensional vector space (e.g. !p, C(X), Lp).

DeÞnition 522 F : X → R is said to be bounded on X if ∃K ∈ R++ such
that |F (x)| ≤ K · kxkX, ∀x ∈ X.

Since a bounded linear functional is a special case of a bounded linear
operator, everything we proved in the previous Section 6.3 is also valid for
linear functionals. We summarize it in the following Theorem.

Theorem 523 Let F be a linear functional on a normed vector space X.
Then: (i) F is continuous iff F is continuous at any point in X; (ii) F
is continuous iff F is bounded; (iii) The set of all bounded linear func-
tionals is a complete vector space with the norm of F deÞned by kFk =
sup {|F (x)|, x ∈ X, kxkX ≤ 1} or by any other equivalent formula from The-
orem 518.

Proof. Follows proofs in the previous section. Part (iii) uses fact that
(R, | · |) is complete (so that the set of all bounded linear functionals is
always complete).
We note that the set of all bounded linear functionals on X has a special

name.

DeÞnition 524 Given a normed vector space X, the set of all bounded linear
functionals on X is called the dual of X, denoted X∗.

The next set of examples illustrate functionals on Þnite and inÞnite di-
mensional vector spaces.

Example 525 Let Rn be n-dimensional Euclidean space with the Euclidean
norm. Let a = (a1, ..., an) be a Þxed non-zero vector in Rn. DeÞne the �inner
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(or dot) product� functional F1 : Rn → R by F1 =< a, x >= a1x1+...+anxn.6
It is clear that F1 is linear since

F1(αx+ βx
0) = < a, (αx+ βx0) >

= α < a, x > +β < a, x0 >
= αF1(x) + βF1(x

0).

It is also easily established that F1 is bounded since by the Cauchy-Schwartz
inequality we have |F1(x)| = | < a, x > | ≤ kakX kxkX ,∀x ∈ Rn. Finally,
since kF1k = sup{|F1(x)|, x ∈ X, kxkX ≤ 1} ≤ kakX and kF1k ≥ |F1(a)|

kakX =
kak2X
kakX = kakX , we have kF1k = kakX . Figure 6.4.1 illustrates such functionals
in R2.

Example 526 Consider the Banach space (!1, k·k1). DeÞne the linear func-
tional F2 : !1 → R by F2(x) =

P∞
i=1 xi where x =< xi >

∞
i=1 . Then

|F2(x)| ≤
P∞

i=1 |xi| = kxk1 ,∀x ∈ !1. This implies that F2 is bounded and that
kF2k ≤ 1. Also for x = e1 = (1, 0, ...) ∈ !1 we have kF2k ≥ |F2(e1)|

ke1k1 = 1
1
= 1.

Combining these two inequalities yields kF2k = 1.

Example 527 Let X = C([a, b], k·k∞). DeÞne the functional F3 : X → R
by F3(x) =

R
[a,b]
x(ω)dω, x ∈ X. We can interpret this as the expectation of

a random variable drawn from a uniform distribution on support [a, b]. It is
clear that F3 is linear. To see that F3 is bounded, note that

|F3(x)| =
¯̄̄̄Z
[a,b]

x(ω)dω

¯̄̄̄
≤
Z
[a,b]

|x(ω)|dω
≤ sup

ω∈[a,b]
|x(ω)| · (b− a) = (b− a) · kxk∞ ,∀x ∈ X.

On the other hand, if x = x0where x0(ω) = 1 ∀ω ∈ [a, b], then kx0k∞ = 1

and |F3(x0)| =
R
[a,b]
1dω = b−a. Hence kF3k ≥ |F3(x0)|

kx0k∞ = b−a and combining
these inequalities kF3k = b− a.

Example 528 Reconsider Example 526 with a different norm. In particular,
let X = (!1, k·k∞) and let the linear functional F4 : !1 → R by F4(x) =P∞

i=1 xi where x =< xi >
∞
i=1∈ !1. In this case, F4 is unbounded. To see this

6We introduced this notation in DeÞnition 209.
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deÞned the sequence < xn >∈ !1 as a sequence of 1�s in the Þrst n places
and zeros otherwise (i.e. < xn >=< 1, ..., 1, 0, 0, ... > where the last 1 occurs
in the nth place). Then kxnk∞ = sup{|xi|, i ∈ N} =1 and F4(xn) = n. Thus,
|F4(xn)| = n · kxnk∞ , with kxnk∞ = 1,∀n ∈ N. Therefore, kF4k =∞.

6.4.1 Dual spaces

As you may have noticed from Examples 525 to 528, it is quite simple to
determine whether �something� is a bounded linear functional. But now we
move on to tackle the converse. Given a normed vector space X, is it possible
to represent (or characterize) all bounded linear functionals on X? In other
words, we want to determine the dual of X. Here we simply consider the dual
of some of the most common normed vector spaces.

The dual of the euclidean space Rn

In Example 525 of this section, we showed that a functional F1 : X → R
deÞned by F1(x) =< a, x > where x ∈ X = Rn and a ∈ Rn is a bounded
linear functional with kF1k = kakX . The functional F1 is represented by the
point a; that is, if we vary a, we vary F1. Let F be the set of all such F1.
In the case where X = R2, F1 are just planes and F is the set of all planes.
Obviously, F ⊂ X∗. Now we show that there are no others. That is, F ⊃ X∗

so that F = X∗.

Theorem 529 The dual space of Rn is Rn itself. That is, each bounded
linear functional G on Rncan be represented by an element b ∈ Rnsuch that
G(x) =< b, x > for all x ∈ Rn.

Proof. (Sketch)LetG ∈ (Rn)∗ (i.e. G is a bounded linear functional on Rn).
Let {e1, ..., en} be the natural basis in Rn. DeÞne bi = G(ei) for i = 1, ..., n.
Then the point b = (b1, ..., bn) ∈ Rn represents G. That is, for x ∈ Rn we
have

G(x) =< x, b > . (6.4)

By the Cauchy-Schwartz inequality we have kGk ≤ kbkX and by plugging
x = bin (6.4) we obtain kGk ≥ kbkX so that kGk = kbkX .
This equality establishes that an operator T : X∗ → X deÞned by T (G) :

(G(e1), ..., G(en)) = b is an isometry (see DeÞnition 171). This means that
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T preserves distances and hence it preserves topological properties of spaces
(X, k·kX) and (X∗, k·k).
It is easy to verify that T is a bijection and that T is a linear operator.

Hence T preserves the algebraic (in this case linear) structure of these two
spaces. In this case we say that T is an isomorphism.
Putting these two together we have that T is an isometric isomorphism

between (X, k·kX) and (X∗, k·k) and hence these two spaces are indistin-
guishable from the point of view of the number of elements, as well as the
algebraic and topological structure. Hence they are effectively the same space
with differently named elements.

The dual of a separable hilbert space

Since Euclidean space is a separable, complete inner product space, one might
like to know if there is a similar result to Theorem 529 for any separable
Hilbert space. The answer is yes.

Theorem 530 The dual of a separable Hilbert space H is H itself. That is,
for every bounded linear functional F on a separable, complete inner product
space H , there is a unique element y ∈ H such that: (i) F (x) =< x, y >,
∀x ∈ H; and (ii) kFk = kyk .

Proof. (Sketch) By Theorem 501a separable Hilbert space contains a
countable, complete orthonormal basis {ei, i ∈ N}. Let F be a bounded
linear functoinal on H. Set bi = F (ei), i = 1, 2, ... It is easy to show thatP∞

i=1 b
2
i ≤ kFk <∞. Hence by Parseval�s Theorem 504 there exists a b ∈ H

such that b =
P∞

i=1 bie
i where biare the Fourier coefficients of b. Moreover,

kbkH ≤ kFk . Let x = P∞
i=1 xie

i where xiare the Fourier coefficients of x.
Then by Parseval�s equality xn (=

Pn
i=1 xie

i) → x (=
P∞

i=1 xie
i) as n → ∞.

Furthermore because F is continous and linear

F (x) = lim
n→∞

F

Ã
nX
i=1

xie
i

!
= lim

n→∞

nX
i=1

xiF (e
i) = lim

n→∞

nX
i=1

xibi =
∞X
i=1

xibi =< x, b > .

so that kFk ≤ kbkH.
A similar result can be proven for a nonseparable, complete inner product

space. Thus we can conclude that the dual space of any Hilbert space is a
Hilbert space itself (i.e. H∗ = H).
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Since !2 and L2([a, b]) are separable Hilbert spaces, we have !
∗
2 = !2 and

L∗2([a, b]) = L2([a, b]). In the case of L2([a, b]), we can claim that for any
bounded, linear functional F : L2([a, b])→ R there exists a unique function
g ∈ L2([a, b]) such that F (f) =

R b
a
gfdx,∀f ∈ L2([a, b]).This will be shown

in Theorem 532.

The dual space of !p

While the previous section applied to inner product spaces, what about the
dual space to a complete normed vector space that is not a Hilbert space?
In this section, we consider the dual of !p for p 6= 2.
Let p ∈ [1,∞) and let z ∈ !q where p, q are conjugate. Then F : !p → R

given by

F (x) =
∞X
i=1

xizi for x =< xi >
∞
i=1∈ !p (6.5)

is a bounded linear functional on !p. This follows immediately from Holder�s
inequality (Theorem 479).
We now show that all bounded linear functionals on !p are of the form

(6.5).

Theorem 531 Let p ∈ [1,∞) and q satisfy 1
p
+ 1
q
= 1. If F ∈ !∗p, there exists

an element z =< zi >∈ !q such that

F (x) =
∞X
i=1

xizi

for all x =< xi >
∞
i=1∈ !pand kFk = kzkq .

Proof. (Sketch) Let F be a bounded linear functional on !p. Let {ei, idN}
be the set of vectors having the i-th entry equal to one and all other entries
equal to zero. Set F (ei) = zi, i ∈ N. Given x =< x1, x2, ... >∈ !p, let snbe the
vector consisting of the Þrst n coordinates of x (i.e. sn =

Pn
i=1 xie

i). Then
sn ∈ !p and kx− snkpp =

P∞
i=n+1 |xi|p −→ 0 as n → ∞. Due to linearity

and continuity of F , F (x) =
P∞

i=1 xiF (e
i) =

P∞
i=1 xizi and kFk ≤ kzkq . By

plugging x =< xi > where

xi =

½ |zi|q−2zi when zi 6= 0
0 when zi = 0
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we get that kzkq ≤ kFk . This shows that kFk = kzkq .
Theorem 531 establishes that !∗p = !q where p and q are conjugate. Thus,

the dual space of !1 is !∞. However, the reverse is not true. That is, the dual
space of !∞ is not !1 or !

∗
∞ ! !1. We show this in the next section.

The dual space of Lp

An important theorem, known as the Riesz representation theorem, estab-
lishes a result similar to Theorem 531 for Lp. Let X ⊂ R, 1 ≤ p <∞ and q
conjugate to p (i.e. 1

p
+ 1
q
= 1). Let g ∈ Lq(X).DeÞne a functional F : Lp → R

by

F (f) =

Z
X

fgdm

for all f ∈ Lp(X). It is easy to see that F is a bounded linear functional
on Lp(X). Linearity follows from linearity of the integral and boundedness
follows from the Holder inequality. Then we have the result that each linear
functional on Lp(X) can be obtained in this manner (i.e. L

∗
p = Lq).

Theorem 532 (Riesz Representation) Let F be a bounded linear func-
tional on Lp(X) and 1 ≤ p < ∞. Then there is a function g ∈ Lq(X) such
that

F (f) =

Z
X

fgdm

and kFk = kgkq .

Proof. (Sketch) Let F be a bounded linear functional on Lp. In all the
previous cases, in Þnding the element b that represents a given functional we
used the same procedure; we set bi = F (e

i) where {ei} is a basis. In Lp, we
use indicator functions.
First assume that m(X) < ∞ (later we relax this assumption). For any

E ⊂ X which is L-measurable (i.e. E ∈ L), χE ∈ Lp(X). Thus given F we
deÞne a set function ν : L→ R by ν(E) = F (χE) for E ⊂ L. ν is a Þnite
signed measure which is absolutely continuous with respect to m. Then by
the Radon Nikdodyn Theorem 434 there is an L−integrable function g that
represents ν (i.e. ν(E) =

R
E
gdm =

R
X
χEgdm. By linearity of F we have

F (ϕ) =

Z
X

gϕdm
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for all simple functions ϕ ∈ Lp(x) and |F (ϕ)| ≤ kFk kϕkp . Then it can
be shown that g ∈ Lq(X). Because the set of simple functions is dense in
Lp(X),then F (f) =

R
X
gfdm for all f ∈ Lp(X).

If m(X) = ∞, since m is σ-Þnite, there is an increasing sequence of L-
measurable sets < Xn > with Þnite measure whose union is X. Thus we
apply the result proven inthe Þrst part of the proof to deÞne < gn > on
Xn.Then show that gn → g and F (f) =

R
fgndm for all f ∈ Lp.

Here we note that the dual of L∞ (X) is not L1 (X) . That is, not all
bounded functionals on L∞ ([a, b]) can be represented by F (f) =

R
X
fg,

where g ∈ L1 (X) .The proof of this result is easier to see after some future
results on separation, so we wait until then.

6.4.2 Second Dual Space

In the previous section we showed that the dual space X∗ of all bounded
linear functionals deÞned on a normed linear space X is a normed linear
space itself. Then it is possible to speak of the space (X∗)∗ of bounded linear
functionals deÞned on X∗ which is called the second dual space X∗∗ of X. Of
course X∗∗ is also a normed vector space.
Let us try to deÞne some elements of X∗∗. Given a Þxed element x0 in

X we can deÞne a functional ψ : X∗ → R by ψx0 (f) = f (x0) where f runs
through all of X∗. Notice that ψ assigns to each element f ∈ X∗ its value at
a certain Þxed element of X. We have ψx0 (αf1 + βf2) = (αf1 + βf2) (x0) =
αf1 (x1)+βf2 (x2) = αψx0 (x1)+βψx0 (x2) (since f1, f2 are linear functionals)
and

¯̄
ψx0 (f)

¯̄
= |f (x0)| ≤ kfk kxk (since f is bounded). Hence ψx0 is a

bounded linear functional on X∗.
Besides the notation f (x) ,which indicates the value of the functional

f at a point x, we will Þnd it useful to employ the symmetric notation
f (x) ≡ hf, xi . It is not a coincidence that a value of a functional is denoted
the same way as the scalar product because any bounded linear functional
g deÞned on a Hilbert space can be represented by a scalar product (i.e.
∃y ∈ H such that g (x) = hy, xi , ∀x ∈ H by Theorem 530).
For Þxed f ∈ X∗ we can consider hf, xi as a functional on X and for Þxed

x ∈ X as a functional on X∗ (i.e. as an element of X∗∗). Let us deÞne a new
norm k·k2 on X by the following

kxk2 = sup
½ |hf, xi|
kfk , f ∈ X∗, f 6= 0

¾
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How is this norm related to the original norm k·kX on X ? We shall show
that kxkX = kxk2 . Let f be an arbitrary non zero element in X∗. Then

|hf, xi| ≤ kfk kxkX ⇔ kxkX ≥
|hf, xi|
kfk .

Since this inequality is true for any f then

kxkX ≥ sup
½ |hf, xi|
kfk , fdX∗, f 6= 0

¾
= kxk2 . (6.6)

Now to the converse inequality. By Theorem 540 of the next section, for
any element x ∈ X , x 6= 0 there is a bounded linear functional f0 such that

|hf0, xi| = kf0k kxkX ⇔
|hf0, xi|
kf0k = kxkX .

Consequently

kxk2 = sup
½ |hf, xi|
kfk , f ∈ X∗, f 6= 0

¾
≥ kxkX (6.7)

Combining inequalities (6.6) and (6.7), we have that kxk2 = kxkX .
Since hf, xi for Þxed x ∈ X is a linear functional on X∗, then by (iv)

of Theorem 518, the expression sup
n
|hf,xi|
kfk , f ∈ X∗, f 6= 0

o
is the norm of

this functional. But this expression is identical to k·k2 . If we now deÞne a
mapping J : X −→ X∗∗ by J (x) = hf, xi , f ∈ X∗, then by the virtue of
the identity kxkX = kxk2 = kJ (x)k , the space X is isometric with some
subset F of X∗∗ . See Figure 6.4.2.1. Thus X and F ⊂ X∗∗ are isometrically
isomorphic (i.e. they are indistinguishable so we may write X = F and
X ⊂ X∗∗).
There is a class of normed vector spaces X for which the mapping J :

X → X∗ is onto (i.e. X = X∗).

DeÞnition 533 The space X is said to be reßexive if X = X∗∗ .

As we will see later this property plays a very important role in optimiza-
tion theory. Let us check some known vector spaces for reßexivity.

Example 534 The Euclidean space Rn is reßexive. Why ? We showed in
the previous section (Theorem 529) that even the Þrst dual of Rn is Rn (i.e.
(Rn)∗ = Rn). Hence (Rn)∗∗ = ((Rn)∗)∗ = (Rn)∗ = Rn.
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Example 535 InÞnite dimensional Hilbert spaces (!2, L2) are reßexive. By
Theorem 530 we have that H ∗ = H which means that any Hilbert space is
reßexive. That is, !∗∗2 = !2 , L

∗∗
2 = L2.

What about !p , Lp when p 6= 2?

Example 536 If 1 < p <∞ , then by Theorem 531, !∗p = !q where
1
p
+ 1
q
= 1.

Thus !∗∗p =
¡
!∗p
¢∗
= !∗q = !p because p, q are mutally conjugate. Similarly

L∗∗p = Lp.

Thus if 1 < p < ∞ ,then !p, Lp are reßexive. If p = 1 by Theorem 531
!∗1 = !∞. But !

∗
∞ ) !1. Hence (!∗1)

∗ = !∗∞ ) !1 so that !1 is not reßexive. !∞
is also not reßexive. Similarly L1 , L∞ are not reßexive. We will show this
in the next section.

Example 537 It can be shown that the space C ([a, b]) of all continuous
functions on [a, b] is not reßexive.

Exercise 6.4.1 Show that X is reßexive iff X∗is reßexive.

6.5 Separation Results

In this section we state and prove probably the most important theorem in
functional analysis; the Hahn-Banach theorem. It has numerous applications.
We will concentrate on a geometric application and will formulate it as a
separation result for convex sets. Using this theorem we prove the existence
of a competitive equilibrium allocation in a general setting.

First we deÞne a new notion.

DeÞnition 538 Let X be a normed vector space. A functional P : X → R
is called sublinear if: (i) P (x + x0) ≤ P (x) + P (x0), ∀x, x0 ∈ X; and (ii)
P (αx) = αP (x), ∀x ∈ X and α ∈ R++.

Exercise 6.5.1 Let X be a normed vector space. Show that the norm k·kX :
X → R is a sublinear functional.
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The Hahn-Banach theorem provides a method of constructing bounded
linear functionals on X with certain properties. One Þrst deÞnes a bounded
linear functional on a subspace of a normed vector space where it is easy
to verify the desired properties. Then the theorem guarantees that this
functional can be extended to the whole space while retaining the desired
properties.

Theorem 539 (Hahn-Banach) Let X be a vector space and P : X → R
be a sublinear functional on X . LetM be a subspace of X and let f : X → R
be a linear functional on M satisfying

f(x) ≤ P (x),∀x ∈M. (6.8)

Then there exists a linear functional F : X → R on the whole of X such that

F (x) = f(x),∀x ∈M (6.9)

and
F (x) ≤ P (x),∀x ∈ X. (6.10)

Proof. (Sketch)Choose x1 ∈ X\M.DeÞne a linear subspaceM1 = {x : x = αx1 + y, y ∈M} .Let
F be an extension of f toM1. Since F is linear, then F (αx1 + y) = αF (x1)+
F (y) = αF (x1) + f(y). Thus F is completely determined by F (x1) .
Next we derive lower and upper bounds for F (x1) in order for F to satisfy

(6.9) and (6.10) for x ∈M1. Thus F is an extension of f fromM toM1where
M Ã M1. This process can be repeated and Zorn�s lemma guarantees that
F can be extended to the whole space X.
In order to apply Zorn�s lemma we deÞne a partial order on the set

S = {all linear functionals g : D → R where D is a subspace of X and
g(x) ≤ P (x), ∀x ∈ D} in the following way. Let g1, g2. Then g1 < g2 if
D (g1) ⊂ D (g2) and g1 (x) = g2 (x) , ∀x ∈ D (g1) . Then we must check that
every totally ordered subset of S has an upper bound (in which case the
assumptions of Zorn�s lemma are satisÞed).

At Þrst sight the Hahn-Banach Theorem 539 doesn�t look like a �big
deal�. Its signiÞcance in functional analysis, however, becomes apparent
through its wide range of applications, many of them involving a clever choice
of the subadditive functional P. We will state just three propositions.
The Þrst result says that a bounded linear functional deÞned on a vector

subspace can be extended on the whole vector space.
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Theorem 540 Let M be a vector subspace of a normed vector space X. Let
f be a bounded linear functional on M , then there exists a bounded linear
functional F on X s.t. F (x) = f (x) , ∀x ∈M and kFk = kfk .
Proof. The function P (x) = kfk kxk is a sublinear functional on X and
|f (x)| ≤ kfk kxk = p (x) (See Exercise 6.5.1). Then by Hahn-Banach The-
orem, ∃F (an extention of f on X) with property that |F (x)| ≤ p (x) =
kfk kxk , ∀x ∈ X. This means that F is bounded on X and also kFk ≤ kfk .
Because F is an extension of f, then kfk ≤ kFk . Hence kFk = kfk .
Exercise 6.5.2 Carefully compare the assumptions of the Hahn-Banach The-
orem 539 and Theorem 540.

Theorem 540 can be used to show that the dual of L∞ ([a, b]) is not
L1 ([a, b]) .

Lemma 541 Not all bounded functionals on L∞ ([a, b]) can be represented
by F (f) =

R
[a,b]
fg, where g ∈ L1 ([a, b]) . That is, (L∞([a, b]))∗ ! L1([a, b]).

Proof. C ([a, b]) is a vector subspace of L∞ ([a, b]) . Let F1 : C ([a, b]) −→ R
be a linear functional which assigns to each f ∈ C ([a, b]) the value f (a) (i.e.
F1 (f) = f (a)). Since kF1k = sup

n
|F1(f)|
kfkc([a,b]) , kfk 6= 0

o
= sup

n
|f(a)|

sup{|f(x)|,xD[a,b]}
o
≤

1, F1 is bounded and by Theorem 540 F1can be extended to a bounded linear
functional F on the whole set L∞ ([a, b]) . Let�s assume, by contradiction, that
there is g ∈ L1 ([a, b]) such that F can be represented by F (f) =

R b
a
fgdx,

∀f ∈ C ([a, b]) . Let hhni be a sequence of continuous functions on [a, b] which
are bounded by 1, have hn (a) = 1, and such that hn (x) → 0 for all x 6= a.
For example set hn (x) =

£
1
b−a (b− x)

¤n
. Then for each g ∈ L1,

R b
a
hng → 0

by the Bounded Convergence Theorem 386). Since F (hn) =
R b
a
ghn by as-

sumption, we have F (hn)→ 0. But F (hn) = hn(a) = 1 for all n, which is a
contradiction.

Corollary 542 L1(X) and L∞(X) are not reßexive.

Proof. We know by Theorem 532 that L∗1 = L∞ and by Lemma 541
that L∗∞ ! L1. Combining these two results we have the (L

∗
1)
∗ = L∗∞ !

L1.Furthermore since L1is not reßexive, neither is L∞ by Exercise 6.4.1.
The second result states that given a normed vector space X, its dual X∗

has �sufficiently� many elements (i.e. at least as many elements as X itself).
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Theorem 543 Let X be a normed vector space and let x0 6= 0 be any element
of X. Then there exists a bounded linear functional F on X such that kFk = 1
and F (x0) = kx0k .
Proof. Let M be the subspace consisting of all multiples of x0 (i.e. M =
{αx0, α ∈ R} . DeÞne f : M −→ R by f (αx0) = α kx0k . Then f is a linear
functional on M. DeÞne P : X −→ R by P (y) = kyk . P is a sublinear
functional on X satisfying f(x) ≤ P (x) for x ∈ M. Then by the Hahn-
Banach theorem there exists a linear functional F : X −→ R that is an
extention of f and F (x) ≤ P (X) = kxk ,∀x ∈ X. For −x, we have F (−x) ≤
k−xk = kxk in which case |F (x)| ≤ kxk , ∀x ∈ X. Thus F is bounded and
kFk = sup

n
|F (x)|
kxk ,∀x ∈ X,x 6= 0

o
= 1. Also, since F is an extension of f,

F (x0) = F (1 · x0) = 1 · kx0k = kx0k .
The third proposition is a geometric version of the Hahn-Banach theorem.

It is a separation result for convex sets. Before stating it we have to introduce
a few geometric concepts.

DeÞnition 544 Let K ⊂ X be convex. A point x ∈ K is an internal
point of a convex set K if given any y ∈ X, ∃ε > 0 such that x + δy ∈ K
for all δ satisfying |δ| < ε.
Geometrically, the statement that x is an internal point of K means that

the intersection of K with any line L through x contains a segment with x
as a midpoint. See Figure 6.5.1.

DeÞnition 545 Let 0 (a zero vector) be an internal point of a convex set
K. Then the support function P : X → R++ of K (with respect to 0) is
given by

P (x) = inf
n
λ :
x

λ
∈ K,λ > 0

o
.

The support function has a simple geometric interpretation. Let x ∈ X.
Draw the line segment (a ray) from 0 through x. There is a point y on this
segment that is a boundary point of K . Then the scalar λ for which λy = x
is P (x) so that P (x)y = x. See Figure 6.5.2.
We have the following properties for this support function.

Lemma 546 If K is a convex set containing 0 as an internal point then the
support function P has the following properties:(i) P (αx) = αP (x) for α ≥
0;(ii) P (x+ y) ≤ P (x) +P (y); (iii) {x : P (x) < 1} ⊂ K ⊂ {x : P (x) ≤ 1}
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Proof. (i) Let α > 0,

P (αx) = inf
n
λ :
αx

λ
∈ K,λ > 0

o
= inf

(
α
λ

α
:
x
λ
α

∈ K, λ
α
> 0

)

= inf

½
αβ :

x

β
∈ K,β > 0

¾
= α inf

½
β :

x

β
∈ K,β > 0

¾
= αP (x)

where β = λ
α
> 0.

(ii) Let α = inf
©
λ : x

λ
∈ K,λ > 0ª = P (x) and β = inf nµ : y

µ
∈ K,µ > 0

o
=

P (y). Take λ and µ such that x
λ
∈ K and y

µ
∈ K . Then α ≤ λ and β ≤ µ.

Since K is convex, µ
λ

λ+ µ

¶³x
λ

´
+

µ
µ

λ+ µ

¶µ
y

µ

¶
∈ K

because λ
λ+µ

+ µ
λ+µ

= 1 . Then x+y
λ+µ

∈ K. Thus P (x+ y) ≤ λ + µ (because
P (x+ y) is the inÞmum of such scalars). Hence

P (x+ y) ≤ λ+ µ ≤ α+ β = P (x) + P (y) .

(iii) It follows from the deÞnition of P .

Example 547 Let X = R2 with the Euclidean norm. Let K = {(x1, x2) ∈
R2 : k(x1, x2)k ≤ 1}. Obviously K (the unit ball) is convex. Consider a point
x1 = (2, 2) outside the ball. Then P ((2, 2)) =

©
λ : ( 2

λ
, 2
λ
) ∈ K,λ > 0ª . But

( 2
λ
, 2
λ
) ∈ K iff

°°( 2
λ
, 2
λ
)
°° ≤ 1⇐⇒ 4

λ2
+ 4
λ2
≤ 1 or λ ≥ √8, so P ((2, 2)) = √8 >

1. Now consider a point x2 = (1
2
, 1
2
) inside the ball. Then P ((1

2
, 1
2
)) =

q
1
2
<

1.See Figure 6.5.3.

DeÞnition 548 Two convex sets K1, K2 are separated by a linear func-
tional F if ∃α ∈ R such that F (x) ≤ α, ∀x ∈ K1 and F (x) ≥ α, ∀x ∈ K2.
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Theorem 549 (Separation) Let K1,K2 be two convex sets of a normed
vector space X. Assume that K1 has at least one internal point and that K2

contains no internal point of K1. Then there is a nontrivial linear functional
separating K1 and K2.

Proof. (Sketch) Let K1and K2 be two convex subsets of X and without
loss of generality let 0 ∈ K1and x0 ∈ K2. DeÞne K = x0 + K1 − K2.See
Figure 6.5.4. 0 is an internal point of K and x0 is not an internal point of
K (this latter fact follows since K2 contains no internal points of K1). Thus
by (iii) of Lemma 546 P (x) ≤ 1 for all x ∈ K and P (x0) ≥ 1 where P is a
support function of K.

Let M be a vector subspace (i.e. M = {x : x = αx0, α ∈ R}).DeÞne f :
M → R by f(x) = f (αx0) = αP (x0) . f is a linear functoinal that satisÞes
f(x) ≤ p(x) ∀x ∈M . Hence by the Hahn-Banach Theorem 539 there exists
an extension of f (i.e. a linear function F : X → R satisfying F (x) ≤ P (x)
∀x ∈ X. This functional F separates K1 and K2. Why? Take x ∈ K with
x = x0 + y − z where y ∈ K1 and z ∈ K2.Then F (x) ≤ P (x) ≤ 1 for x ∈ K.
Since F is linear

F (x0) + F (y)− F (z) ≤ 1⇐⇒ F (y) + (F (x0)− 1) ≤ F (z) (6.11)

Since x0 ∈M,

F (x0) = f(x0) = p(x0) ≥ 1⇐⇒ F (x0)− 1 ≥ 0 (6.12)

Combining (6.11) and (6.12) we have F (y) ≤ F (z) for any y ∈ K1and z ∈ K2.
Hence

sup
y∈K1

F (y) ≤ inf
z∈K2

F (z) .

Thus F separates K1, K2 and F is a non-zero functional (since F (x0) = 1).

There are several corollaries and modiÞcations of this important separa-
tion theorem.

Corollary 550 (Separation of a point from a closed set) IfK is a nonempty,
closed, convex set and x0 /∈ K, then there exists a continuous linear func-
tional F not identically zero such that F (x0) < infx∈K F (x).
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Proof. By translating by −x0, we reduce the Corollary to the case where
x0 = 0. Since x0 /∈ K and K is closed, then by Exercise 4.1.3 we have
0 < d = infx∈K kx0 − xk . Let B d

2
(x0) be the open ball around x0 with radius

d
2
. By the Separation Theorem 549 there exists a linear functional f such
that

sup
x∈B d

2
(0)

f(x) ≤ inf
y∈K

f(y) = α.

Thus f(x) ≤ α for x ∈ Bd
2
(x0). If x ∈ Bd

2
(x0), then −x ∈ Bd

2
(x0) which

implies that f(−x) = −f(x) ≤ α. Hence |f(x)| ≤ α for all x ∈ Bd
2
(x0). This

implies continuity at 0 and by Theorem 508 continuity everywhere.
To show strict inequality, take x ∈ B d

2
(x0) and λ > 0 such that λx ∈

B d
2
(x0) (this is possible since 0 is an internal point of Bd

2
(x0)). We have

0 < λf (x) = f(λx) ≤ α. Thus we have f(0) = 0 < α = infy∈K f(y). See
Figure 6.5.5.

Corollary 551 (Strict Separation) Suppose that a nonempty, closed, con-
vex set K1and a nonempty, compact convext set K2are disjoint. Then there
exists a continuous linear functional F, not identically zero , that strictly
separates them (i.e. supx∈K1

F (x) < infx∈K2 F (x)).

Proof. If K1, K2 are convex, then K1 − K2is convex. Since K1is closed
and K2 is compact, then K1 − K2 is closed. Since K1 ∩ K2 = ∅, then
0 /∈ K1 −K2.Now apply Corollary 550 with x0 = 0 and K = K1 −K2. See
Figure 6.5.6.
It doesn�t suffice to assume both sets K1and K2are closed. One of them

has to be compact. For an example of this, see Aliprantis and Border Exam-
ple 5.51. This doesn�t contradict the Separation Theorem as it might seem
because Theorem 549 requires the additional assumption of the existence of
an internal point of at least one of the sets.

Exercise 6.5.3 Show that if K1 is closed and K2 is compact, then K1−K2

is closed.

6.5.1 Existence of equilibrium

Let S be a Þnite dimensional Euclidean space with norm k·k = (Pn
i=1 |x2i |)

1
2 .

There are I consumers, indexed by i = 1, ..., I. Consumer i chooses among
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commodity points in a set Xi ⊂ S and maximizes utility given by ui : Xi →
R. There are J Þrms, indexed by j = 1, ..., J. Firm j chooses among points in
a set Yj ⊂ S describing its technological possibilities and maximizes proÞts.
We say that an (I + J)-tuple ({xi}Ii=1, {yj}Jj=1) describing the consump-

tion xiof each consumer and the production yj of each producer is an allo-
cation for this economy. An allocation is feasible if: xi ∈ Xi, ∀i; yj ∈ Yj,
∀j;andPI

i=1 xi−
PJ

j=1 yj ≤ 0 (where there is free disposal). An allocation is
Pareto Optimal if it is feasible and if there is no other feasible allocation
({x0i}Ii=1, {y0j}Jj=1) such that ui(x0i) ≥ ui(xi),∀i and ui(x0i) > ui(xi) for some i.
An allocation ({x∗i}Ii=1, {y∗j}Jj=1) together with a continuous linear functional
φ : S → R is a competitive equilibrium if: (a) ({x∗i }Ii=1, {y∗j}Jj=1) is feasi-
ble; (b) for each i, x ∈ Xi,and φ(x) ≤ φ(x∗i ) implies ui(x) ≤ ui(x∗i ); and (c)
for each j, y ∈ Yj implies φ(y) ≤ φ(y∗j ).

Theorem 552 (Second Welfare Theorem) Let: (A1) Xi is convex for
each i; (A2) if x, x0 ∈ Xi, ui(x) > ui(x0) and α ∈ (0, 1), then ui(αx + (1 −
α)x0) > ui(x0) for each i; (A3) ui : Xi → R is continuous for each i; (A4)
the set Y =

PJ
j=1 Yj is convex.

7 Under (A1) − (A4), let ({x∗i }Ii=1, {y∗j}Jj=1)
be a Pareto Optimal allocation. Assume that for some h ∈ {1, ..., I}, ∃bxh
such that uh(bxh) > uh(x∗h). Then there exists a continuous linear functional
φ : S → R, not identically zero on S, such that:

∀i, x ∈ Xi and ui(xi) ≥ ui(x∗i )⇒ φ(x) ≥ φ(x∗i ) (6.13)

and
∀j, y ∈ Yj ⇒ φ(y) ≤ φ(y∗j ). (6.14)

If
∀i,∃x0i such that φ(x0i) < φ(x∗i ), (6.15)

then
©
({x∗i }Ii=1, {y∗j}Jj=1), φ

ª
is a competitive equilibrium.

Proof. (Sketch) Since S is Þnite dimensional and the aggregate technolog-
ical possibilities set is convex (A4), for the existence of φ it is sufficient to
show that the set of allocations preferred to {x∗i }Ii=1 given by A =

PI
i=1Ai is

convex where Ai = {x ∈ Xi : ui(x) ≥ ui(x∗i )},∀i and that A does not contain
any interior points of Y . Then apply Theorem 549. To complete the proof,

7The assumption that S is Þnite dimensional is also important, but can be weakened
in the inÞnite dimensional case to assume that Y has an interior point.
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it is sufficient to show (b) holds in the deÞnition of a competitive equilibrium
which follows from contraposition of (6.13).
You should recognize that φ(x) =< p, x > can be considered an inner

product representation of prices.

6.6 Optimization of Nonlinear Operators

In this chapter we have dealt with linear operators and functionals. While
we showed very deep results in linear functonal analysis - the Riesz Rep-
resentation Theorem and the Hahn Banach Theorem to name just a few -
there are many problems in economics that involve nonlinear operators. For
instance, the operator in most dynamic programing problems, such as the
growth example suggested in the introduction to this chapter, does not satisfy
the linearity property of an operator. In particular, an operator T : X → Y
as simple as T (x) = a + bx does not possess the linearity property since
T (αx+ βx0) = a+ b(αx+ βx0) 6= αTx+ βTx0. Such a function does possess
a monotonicity property (i.e. if x ≤ x0, then Tx ≤ Tx0).
Nonlinear functional analysis is a very broad area covering topics such

as Þxed points of nonlinear operators (which we touched on a subsection of
6.1), nonlinear monotone operators, variational methods and optimization of
nonlinear operators. In this section, we show how variational methods and
Þxed point theory (in the form of dynamic programming) can be used to
prove the existence of an optimum of a nonlinear operator.

6.6.1 Variational methods on inÞnite dimensional vec-
tor spaces

Most books of economic analysis dealing with optimization focus on Þnding
necessary conditions for a function deÞned on a given set which is a subset
of a Þnite dimensional Euclidean space Rn. These conditions are called Þrst
order conditions (in the case of inequality or mixed constraints they are called
Kuhn-Tucker conditions). Our main focus of this chapter is the optimization
of functions deÞned on an inÞnite dimensional vector space (i.e. optimization
of functionals).
While we have already encountered linear functonals in Section 6.4, in

this section we will consider a broader class of functionals than linear ones;
we will consider continuous functionals which are concave (or convex as the
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case may warrant). Our main concern is existence theory (i.e. given an opti-
mization problem consisting in maximizing (minimizing) a concave (convex)
functional over some feasible set, usually deÞned by constraints, we want to
know whether an optimal solution can be found. Hence we will deal with
sufficient conditions. In the second part of the section we also touch upon the
problem of Þnding this optimal solution which means stating the necessary
conditions for an optimun.

Example 553 The types of problems we can consider are: the existence of
a Pareto-optimal allocation of an economy with an inÞnite commodity space;
the existence of an optimal solution of an inÞnite horizon growth model.

Sufficient Conditions for an Optimal Solution

In this subsection we address the fundamental question �Does a functional
have a maximum (or minimum) on a given set?� In Chapter 4, we proved a
very important result; the Extreme Value Theorem 262 stated that a con-
tinuous function deÞned on a compact subset of a metric space attains its
minimum and maximum. Does this theorem apply to functionals (functions
whose domain is a subset of an inÞnite-dimensional vector space)? Clearly
the answer is yes since a vector space is a metric space and dimensionality is
not mentioned in the theorem at all. Consider the following example.

Example 554 Let a functional f be deÞned on C ([0, 1]) by f (x) =
R 1

2
0
x (t) dt−R 1

1
2
x (t) dt. We want to solve the optimization problem max f (x) subject to

kxk ≤ 1.To establish continuity of f (x) , we need only establish boundedness
since f (x) is a linear functional and Theorem 511 establishes that bounded-
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ness is sufficient (and also necessary) for continuity. Hence

|f (x)| =
¯̄̄̄
¯
Z 1

2

0

x (t) dt−
Z 1

2

0

x (t) dt

¯̄̄̄
¯

≤
Z 1

2

0

|x (t)| dt+
Z 1

1
2

|x (t)| dt

=

Z 1

0

|x (t)| dt

≤
Z 1

0

sup
t[0,1]

|x (t)| dt

= sup
tD[0,1]

|x (t)|
Z 1

0

dt

= sup
tD[0,1]

|x (t)| = kxk .

Suppose now we want to Þnd the maximum of this continuous functional on
the closed unit ball in C ([0, 1]) . But the maximum cannot be attained. Why?
Our problem means maximizing the shaded area. See Figure 6.6.2.??? The
steeper the middle part of x (t) is the larger is the area. But this line cannot be
vertical because x (t) wouldn�t be a function. The steepest line clearly doesn�t
exist.

Exercise 6.6.1 Show the non-existence of a maximum in Example 554 rig-
orously. Hint: Use the geometric insight provided above.

What went wrong with establishing a maximum in Example 554? We
have a continuous functional on a closed unit ball that doesn�t attain its
maximum. Recall however by Example 459 that a closed unit ball is not
a compact set in C ([0, 1]) . In fact there is a theorem saying that a closed
unit ball in a normed vector space X is compact if and only if X is Þnite
dimensional.8

If a �nice� set like a closed unit ball is not compact, then compactness
must be an extremly restrictive assumption in inÞnite dimensional vector
spaces. And it really is. Compact sets in inÞnite dimensional vector spaces
doesn�t contain interior points. Thus the Extreme Value Theorem is practi-
cally unusable in optimizing functionals.

8See Rudin ????
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If Example 554 were formulated in L∞(0, 1), the maximum would be
attained by the discontinuous function

x (t) =

½
1 for 0 ≤ x < 1

2−1 for 1
2
≤ x ≤ 1 .

L∞(0, 1) is also inÞnite dimensional. Is this a contradiction to what we
claimed above? No. There are many optimizing problems in inÞnite dimen-
sional vector spaces that attain optima but an optimum cannot be guaranteed
by the assumptions of continuity and compactness. To this end, we will in-
troduce a new type of convergence in a vector space X.In terms of this new
convergence we�ll deÞne a new type of continuity and compactness so that
the collection of these �new types� of compact sets is much broader than the
collection of original compact sets. In particular, we will identify a class of
such vector spaces in which the closed unit ball is �weakly� compact.

Semicontinuous and concave functionals

Before introducing this �new type� of convergence, we deÞne certain prop-
erties of functionals. The concept of convexity and concavity for functionals
is analogous to the one for functions.

DeÞnition 555 Let K be a convex subset of a normed vector space X . A
functional f : K −→ R is called: (i) Concave if for any u, v ∈ K and for
any α ∈ [0, 1] , f (αu+ (1− α) v) ≥ αf (u) + (1− α) f (v) ;(ii) Convex if
f (αu+ (1− α) v) ≤ αf (u) + (1− α) f (v)

Exercise 6.6.2 Show that f is concave iff −f is convex.

Exercise 6.6.3 Verify that the functional f (x) =
R 1
0
(x2 (t) + |x (t)|) dt de-

Þned on L2 [0, 1] is convex.

Next we introduce the concept of semicontinuity of functionals (or func-
tions as the case may be). Why don�t we simply use continuity? Recall we
used the assumption of continuity in the Extreme Value theorem to guaran-
tee the existence of both a maximum and a minimum. Here we will show
that the assumption can be weakened at the cost of guaranteeing either a
maximum or a minimum.
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DeÞnition 556 A functional f deÞned on a normed vector space X is said
to be: (i) upper semicontinuous at x0 if given ε > 0, there is a δ > 0
such that f (x)− f (x0) < ε for kx− x0k < δ; (ii) lower semicontinuous
at x0 if f (x0)− f (x) < ε for kx− x0k < δ.

Exercise 6.6.4 Show that f is usc iff −f is lsc.

Exercise 6.6.5 Show that f is continuous at x0 if f is both usc and lsc at
x0.

Exercise 6.6.6 A sequence version deÞnition of semicontinuity is the fol-
lowing: (i) f is usc at x0 if for any sequence hxni converging to x0, lim supn→∞ f (xn) ≤
f (x0) ; (ii) f is lsc at x0 if lim infn→∞ f (xn) ≥ f (x0) .Show that the sequence
deÞnition is equivalent to that in 556.

Now the Extreme Value Theorem can be reformulated:

Theorem 557 An upper (lower) semicontinuous functional f on a compact
subset K of a normed vector space X achieves a maximum (minimum) on
K.

Proof. Let M = supx∈K f (x) ( M may be ∞ ). There is a sequence hxni
from K such that f (xn) → M. Since K is compact there is a convergent
subsequence hxnki → x0 ∈ K. Clearly, f (xnk) → M and since f is usc,
f (x0) ≥ lim supk→∞ f (xnk) = limk→∞ f (xnk) = M. Because x0 ∈ K, f (x0)
must be Þnite and because M is the supremum on K, f (x0) = M. Hence f
attains a maximum at x0 ∈M.
Hereafter, we will formulate our optimization problem in terms of maxi-

mization (i.e given a functional f deÞned on a subset K of a normed vector
space, Þnd maxxDK f (x)). In this case the underlying assumptions for f are
upper semicontinuity and concavity. The problem of Þnding minxDK g (x)
where g is lower semicontinuous and convex can be transformed to maximiz-
ing one by substitution f = −g because if g is lsc and convex, then −g is
usc and concave (see Exercise 6.6.2 and 6.6.4).

Weak convergence

We assume that X is a complete normed vector space (i.e. a Banach space).
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DeÞnition 558 Let hxni be a sequence of elements in X. We say that hxni
converges weakly to x0 ∈ X if for every continuous linear functional f ∈
X∗ we have hf, xni→ hf, x0i .We denote weak convergence with �p� (rather
than the standard �→�) and use notation < xn >p x0.

Since hf, xni is a value of the functional f at point xn, then hf, xni∞n=1 is
the sequence of real numbers. It is easy to prove that weak convergence has
usual properties namely.

Exercise 6.6.7 Show that: (i) If < xn >p x0 and < yn >p y0, then
< xn+yn >p x0+y0; (ii) Let hλni is a sequence of real numbers. If λn → λ0
and < xn >p x0, then λnxn p λ0x0; (iii) If xn → x0, then < xn >p x0; (iv)
a weakly convergent sequence has a unique limit. Hint for (iv): Apply the
corollary to the Hahn Banach Theorem to < f, x− y >= 0 for each f ∈ X∗.

Since there are now two types of convergence deÞned on X, the original
one (i.e. with respect to its norm) is sometimes called strong convergence as
opposed to (the newly introduced) weak convergence. Property (iii) of the
exercise states that if a sequence converges strongly, then it also converges
weakly. This statement cannot be reversed in general. That means there
are sequences that converge weakly but not strongly. We will see this in the
following set of examples where we demonstrate weak convergence in some
Banach spaces.

Example 559 In the Þnite dimensional vector space Rn, strong and weak
convergence coincides (i.e. for xn ∈ Rn, < xn >→ x0 iff < xn >p x0).To
see this, let e1 = (1, 0, ....., 0) , e2 = (0, 1, ....., 0) , en = (0, 0, ....., 1) , and
hxni p x0. Then by deÞnition hf, xni → hf, x0i where f is a continuous
linear functional on Rn. By Theorem 529 we know that each functional f is
represented by a scalar product i.e. given f there exists an element b of Rn s.t.
hf, xi = hb, xi , ∀xdX. (Just remeinder that hf, xi denotes the value of the
functional f at x (i.e. f (x)) and hb, xi is the scalar product of b and x ). If
we substitute ei for b we have hei, xni = 0x1n+ ...+1x2n+ ...+0xnn = xin → xi0,
∀ i = 1, 2, ..., n (i.e. the ith component of the vector xn tends to the ith
component of x0). Thus weak convergence in Rn means convergence by com-
ponents. But Theorem 223 says that then hxni→ x0 with respect to the norm
that means strongly.
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Example 560 Let X = !2 and hxni p x0. Then as in Example 559
hxn, eii = xin → hx0, eii = xi0 , ∀i = 1, 2, ..... Thus weak convergence in
!2 means that the i-th component of hxni converges to the i-th component of
x0. But as Example 234 shows this doesn�t imply strong convergence in !2.

Example 561 Let X = C( [a, b]). It can be shown that weak convergence of a
sequence of continuous functions hxnip x0 means that:(i) hxni is uniformly
bounded (i.e. ∃B such that |xn (t)| ≤ B for all n = 1, 2, ... and all t ∈
[a, b]); and (ii) hxni → x pointwise on [a, b] (i.e. ∀t ∈ [a, b] , hxn (t)i →
x (t) (as a sequence of real numbers)). Thus weak convergence in C( [a, b])
is pointwise convergence (we can say convergence by components) whereas
strong convergence (convergence with respect to the sup norm) is uniform.
As Examples 166 and 167 show these two don�t always coincide.

Using weak convergence allows us to deÞne weak closedness, weak com-
pactness, and weak continuity (or semicontinuity). We do it the same way we
did in Chapter 4 where all these notions were deÞned in terms of sequences.

DeÞnition 562 A subset K ⊂ X is weakly closed if for any sequence
hxni of elements from K that converges weakly to x0 (i.e. hxni p x0), then
x0 ∈ K.

What is the relation between strong and weak closedness? While one
would expect that if a set is strongly closed then it is weakly closed, actually
the reverse is true.

Theorem 563 If K is weakly closed then K is (strongly) closed.

Proof. Let hxni ⊂ K and hxni p x0. then hxni −→ x0 and because K is
weakly closed =⇒ x0 ∈ K. Hence K is (strongly) closed.
To see that Theorem 563 cannot be reversed, we present the following

example.9

Example 564 LetM ⊂ !2 whereM =
©heii∞i=1 , ei = (0, 0, ..., 1, 0, ...) , i = 1, 2, ....ª.

M is closed (why?) but it is not weakly closed because heii p h0i and
h0i /∈M.

9We cannot give an example in Rn because in Þnite dimensional space weak closedness
and closedness, of course, coincide.
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Theorem 563 and Example 564 say that weak closedness is a stronger
assumption then strong closedness. Thus one should be careful in drawing
conclusions.

DeÞnition 565 A set K ⊂ X is weakly compact if every inÞnite sequence
from K contains a weakly convergent subsequence.

This deÞnition 192 of sequential compactness is equivalent to the stan-
dard deÞnition of compactness by Theorem 193 in metric spaces. After our
experience with closedness, one may wonder how weak and strong compact-
ness are related. But if weak compactness were stronger assumption than
strong compactness (as in the case of closedness) there would be fewer weakly
compact sets than compact sets. Then the whole idea of building the weak
topology would be useless because the main purpose of the introduction of the
weak topology is to make closed unit balls (weakly) compact. Fortunately,
it is not the case.

Theorem 566 If K ⊂ X is (strongly) compact then it is weakly compact.

Proof. Let hxni be a sequence in K. Because K is compact then there is a
convergent subsequence hxnki and x0 ∈ K such that hxnki→ x0. But strong
convergence implies weak convergence so that hxnkip x0.
Theorem 566 cannot be reversed as the next example shows.

Example 567 LetK ⊂ !2 whereK =
©heii∞i=0 , e0 = (0, 0, ..., 0, ....) , ei = (0, ..., 1, 0, ...)ª

(note that K = M ∪ {h0i} when M is from Example 564 ). K is weakly
compact because any sequence from K contains a weakly convergent sub-
sequence (To see this note that since < xn >p x0, we have x

i
n → xi0

∀i = 1, 2, ..., < xin >⊂ {0, 1} and {0, 1} is compact in R. Then there is
xi0 and < x

i
nk
> such that < xink >→ xi0. Then x0 =< x

i
0, x

2
0, ..., x

i
0, ... > is

the point such that < xink >p x0.) But K is not compact because the dis-

tance between any two elements of K\ {h0i} is √2. Hence there doesn�t exist
a convergent subsequence (with respect to the norm k·k2).

Theorem 568 If M is weakly compact then M is weakly closed.

Exercise 6.6.8 Prove Theorem 568.
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DeÞnition 569 Let M ⊂ X and f be a functional deÞned on M. We say
that f is weakly upper semicontinuous (usc) on M if for any x0 ∈M
and any hxni∞n=1 ⊂M such that xn p x0, then f (x0) ≥ limn→∞ sup f (x0) .

One can deÞne weakly lower semicontinuity and weak continuity of func-
tionals in an analogous manner.
Again, there is a question about whether the assumption of weak up-

per semicontinuity of a functional is more restrictive than (strong) upper
semicontinuity.

Theorem 570 If f is a weakly usc functional on M, then f is usc.

Proof. Let x0 ∈ M and hxni ⊂ M such that hxni→ x0, then xn p x0 and
because f is weakly usc then limn→∞ sup f (xn) ≤ f (x0) so that f is usc.
The converse is not true as the next example shows.

Example 571 Let X = L2 [0, 1] and f (a) = 1+
R 1
0
a2 (x) dx. This functional

is continuous (and hence usc) but is not weakly usc.

Exercise 6.6.9 Show the functional in Example 571 is continuous but not
weakly usc.

Now we are ready to prove an important theorem which is analogous to
the Extreme Value Theorem 262 but uses the concept of the weak topology.
A weak topology on X is a topology built in terms of weak convergence
instead of (strong) convergence.

Theorem 572 Let K be a non-empty weakly compact subset of a Banach
space X. Let f be a weakly upper semicontinuous functional on K. Then f
attains its maximum on K. That is, ∃x0 ∈ K such that

f (x0) = sup
x∈K

f (x)

Proof. By the supremum property, ∃ hxni ⊂ K such that limn→∞ f (xn) =
supx∈K f (x) . Since K is weakly compact, there exists a subsequence hxnki
and x0 ∈ K such that xnk p x0. Because f is weakly usc then

f (x0) ≥ lim
n→∞

sup f (xnk) = lim
n→∞

f (xn) = sup
x∈K

f (x) .
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Obviously f (x0) ≤ supx∈K f (x) because x0 ∈ K. Thus combining these two
inequalities we have

f (x0) = sup
x∈K

f (x) .

Comparing the assumptions of Theorem 572 with the Extreme Value
Theorem 262 we see that in Theorem 572 one assumption is weaker (that
being compactness) and one is stronger (that being semicontinuity). The
problem with this theorem is that it has basically non-veriÞable assumptions.
How should one check weak compactness and weak semicontinuity in an
inÞnite dimersional space? Our next step is to Þnd sufficient and at the
same time veriÞable assumptsions that would guarantee weak compactness
of a set K and weak usc of a functional f.
Let�s start with weak compactness. We already know that (strong) com-

pactness is sufficient for weak compactness but we also know that it is too
restrictive in inÞnite dimensional vector spaces. In order for a set K to be
weakly compact it has to be weakly closed (see Theorem 568). First we ex-
amine the conditions for a set K to be weakly closed. Theorem 563 says
that it must be closed but that�s not sufficient (see Example 564). There are
however quite simple assumptions that guarantee weak closedness of a set K.

Theorem 573 If K ⊂ X is closed and convex then it is weakly closed.

Proof. Let hxni ⊂ K and hxni p x0. Then we need to show that x0 ∈
K. Assume the contrary, that is x0 /∈ K. Then by Corollary 550 of the
Separation Theorem, there exists a non-zero continuous linear functional
f such that hf, x0i < infx∈K hf, xi . Let hf, x0i = c and infx∈K hf, xi = d
in which case c < d. Because f is a linear continuous functional we have
d ≤ limn−→∞ hf, xni =< f, x0 >= c < d. Hence d < d which is the desired
contradiction.
Theorem 573 says that closedness and convexity are sufficient assumptions

for weak closedness. However, we are looking for sufficient assumptions for
weak compactness. To make further progress, we have to restrict attention to
certain classes of normed vector spaces. In Section 6.4.2 we deÞned a reßexive
space as a space for which X∗∗ = X (see DeÞnition 533). We showed that,
for example, Rn, !p, Lp for 1 < p < ∞ are reßexive whereas !1, !∞, L1,
L∞, C( [a, b]) are not reßexive. From here on we will consider only reßexive,
normed vector spaces. Our next result is basically a Heine-Borel theorem for
inÞnite dimensional spaces.
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Theorem 574 (Eberlein-�Smuljan) A Banach space X is reßexive iff any
bounded weakly closed set K ⊂ X is weakly compact.

Proof. Can be found in Aliprantis (1985, Theorem 10.13, p.156, Positive
Operators).
Thus in a reßexive Banach space, weak closedness and boundedness are

sufficient assumptions for weak compactness and in any Banach space closed-
ness and convexity are sufficient assumptions for weak closedness. Putting
all these together we have sufficient assumptions for a set K to be weakly
compact in a reßexive Banach space X.

Theorem 575 Let X be a reßexive Banach space and K ⊂ X. If K is closed,
bounded and convex, then K is weakly compact.

Proof. Combine Theorems 573 and 574. Notice that all the assumtions of
the theorem are veriÞable.

Corollary 576 In a reßexive space X, the closed unit ball is a weakly com-
pact set.

Proof. B1(0) = {x ∈ X : k·k ≤ 1} is a closed, bounded, and convex subset
of a reßexive space X. Hence by Theorem 575.
Let�s turn now to the assumption of a �weakly upper semicontinuous

functional� and try to break it into veriÞable parts. We Þrst prove a lemma
that gives us a necessary and sufficient condition for a functional f to be
weakly upper semicontinuous.

Lemma 577 Let X be a Banach space and K ⊂ X be weakly closed. Let a
functional f be deÞned on M. Then f is weakly upper semicontinuous on K
iff ∀a ∈ R, E (a) = {υ ∈ K : f (υ) ≥ a} is weakly closed.

Proof. (=⇒) Let f be weakly usc on M , a ∈ R, and hxni∞n=1 ⊂ E (a)
such that xn p x0 ∈ M. Then f (x0) ≥ lim supn→∞ f (xn) ≥ a (because
xn ∈ E (a) ∀n ). Hence x0 ∈ E (a) and thus E (a) is weakly closed.
(⇐=) By contradiction. Let a ∈ R , E (a) be weakly closed, but f

not weakly usc. Then there exists x0 ∈ M and hxni∞n=1 ⊂ M such that
< xn >p x0 and lim supn→∞ f (xn) > f (x0) . Choose a ∈ R such that
lim supn→∞ f (xn) > a > f (x0) . Then there exists a subsequence hxnki of
hxni such that xnk ∈ E (a), k = 1, 2, ... Because E (a) is weakly closed and
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hxnkip x0 then x0 ∈ E (a) . Thus f (x0) ≥ a > f (x0) , which is a contradic-
tion.
Thus f is weakly usc if E (a) is weakly closed. But by Theorem 573

we know that if a set is closed and convex, then it is weakly closed. When
is E (a) closed? Since E (a) is just the inverse image of the interval [a,∞)
(i.e. E (a) = {υ ∈ K : f (υ) ≥ a} = f−1 ([a,∞))), if f is continuous then the
inverse image of a closed set is closed (by a modiÞcation of Theorem [200].
Thus if f is continuous, then E (a) is closed. When is E (a) is convex?

Exercise 6.6.10 Show that if f is concave, then E (a) is convex.

Combining these two results we have sufficient conditions for weak upper
semicontinuity.

Theorem 578 A continuous, concave functional f deÞned on a closed, con-
vex set K ⊂ X is weakly upper semicontinuous.

Now when we combine Theorems 575 and 578 with Theorem 572 we get a
theorem that guarantees the existence of a maximum and all its assumptions
are �easily� veriÞable.

Theorem 579 Let K be a non-empty, convex, closed and bounded subset
of a reßexive Banach space. Let f be a continuous and concave functional
deÞned on R. Then f attains its maximum on K (i.e. ∃x∗ ∈ K such that
f (x∗) = supx∈K f (x)).

First we note that minimization requires convexity of the functional f
instead of concavity while all other assumptions are the same. Second, we
want to stress that this is a nonlinear optimization problem. This means the
functional f doesn�t have to be linear (which is quite restrictive). The func-
tional f simply has to be continuous and concave in the case of maximization
and continuous and convex in the case of minimization.
Let us summarize what we have done in this section. In inÞnite dimen-

sional vector spaces the original Extreme Value Theorem 262 (requiring semi-
continuity of a functional and compactness of a set) which guarantees the
existence of an optimum cannot be used since the assumption of compactness
is too stringent (compact sets don�t contain interior points). By introducing
the weak topology on X we deÞne weak semicontinuity (an assumption that
is stronger than the continuity) and weak compactness (an assumption the
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is weaker than compactness). We also must enlist the extra assumptions of
concavity (or convexity) of a functional and reßexivity of the space X. Then
we showed that with these modiÞed assumptions an analogue of the Extreme
Value Theorem holds and this version �covers� more optimization problems
(e.g. optimizing over unit balls).

6.6.2 Dynamic Programming

An important and frequently used example of operators is dynamic program-
ming. In inÞnite horizon problems, dynamic programming turns the problem
of Þnding an inÞnite sequence (or plan) describing the evolution of a vector
of (endogenous) state variables into simply choosing a single vector value for
the state variables and Þnding the solution to a functional equation.

More speciÞcally, suppose the primitives of the problem are as follows.
Let X denote the set of possible values of (endogenous) state variables with
typical element x. We will assume that X ⊂ Rn is compact and convex. Let
Γ : X ³ X be the constraint correspondence describing feasible values for
the endogenous state variable. We will assume Γ(x) is nonempty, compact-
valued, and continuous. Let G = {(x, y) ∈ X × X : y ∈ Γ(x)} denote the
graph of Γ. Let r : G→ R denote the per-period objective or return function
which we assume is continuous. Finally let β ∈ (0, 1) denote the discount
factor. Thus, the �givens� for the problem are X,Γ, r, β. In this section we
establish under what conditions solutions to the functional equation (FE)

v(x0) = max
y∈Γ(x0)

r(x0, y) + βv(y) (FE)

�solve� the sequence problem that is our ultimate objective

max
<xt+1>∞t=0

∞X
t=0

βtr(xt, xt+1) (SP)

s.t. xt+1 ∈ Γ(xt),∀t, and x0 given.
First we should establish what we mean by �solve�. To begin with, we

need to know that (SP) is well deÞned. That is, we must establish conditions
under which the feasible set is nonempty and the objective function is well
deÞned for all points in the feasible set. To accomplish this, we need to



6.6. OPTIMIZATION OF NONLINEAR OPERATORS 275

introduce some more notation. Call the sequence < xt > a plan. Given
x0 ∈ X, let

F (x0) = {< xt >∞t=0: xt+1 ∈ Γ(xt), t = 0, 1, ...}
be the set of feasible plans from x0 with typical element χ = (x0, x1, ...) ∈
F (x0). Let ϕk : F (x0)→ R be given by

ϕk(χ) =
kX
t=0

βtr(xt, xt+1)

which is simply the discounted partial sum of returns from any feasible plan
χ. Finally, let ϕ : F (x0) → R be given by ϕ(χ) = limk→∞ ϕk(χ). While
ϕk is obviously well deÞned, ϕ may not be since there may be χ such that
ϕ(χ) = ±∞.10 The assumption that Γ(x) 6= ∅, ∀x ∈ X ensures that F (x0)
is nonempty for all x0 ∈ X. The assumptions that X is compact and Γ is
compact-valued and continuous guarantees |r(xt, xt+1)| ≤ M < ∞ so that
since β ∈ (0, 1) we have |ϕ(χ)| ≤ M

(1−β) < ∞, ∀χ ∈ F (x0),∀x0. Hence SP is
well deÞned and we can deÞne the function v∗ : X → R given by

v∗(x0) = max
χ∈F (x0)

ϕ(χ) (SP�)

which is just (SP). Thus by �solve� we mean that v∗(x0) deÞned in (SP�) is
equal to v(x0) deÞned in (FE).
Before providing conditions under which a solution to (FE) implies a �so-

lution� to (SP), we note the following consequences of the maximum function
deÞned in (SP�). In particular, by DeÞnition 96 we have

v∗(x0) ≥ ϕ(χ),∀χ ∈ F (x0) (6.16)

and ∀ε > 0,
v∗(x0) < ϕ(χ) + ε, for some χ ∈ F (x0). (6.17)

Similarly, v satisÞes (FE) if

v(x) ≥ r(x, y) + βv(y),∀y ∈ Γ(x) (6.18)

and ∀ε > 0,
v(x) < r(x, y) + βv(y) + ε, for some y ∈ Γ(x). (6.19)

Now we are ready to prove our main result that if we have a solution to
(FE), then we have a solution to (SP).

10More generally Stokey and Lucas (1989) consider ϕ in the extended reals.
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Theorem 580 If v is a solution to (FE) and satisÞes

lim
k→∞

βkv(xk) = 0,∀ < xt >∈ F (x0),∀x0 ∈ X, (6.20)

then v = v∗.

Proof. It suffices to show that if (6.18) and (6.19) hold, then (6.16) and
(6.17) are satisÞed. Inequality (6.18) implies that ∀χ ∈ F (x0),

v(x0) ≥ r(x0, x1) + βv(x1)

≥ r(x0, x1) + β [r(x1,x2) + βv(x2)]

≥ ϕk(χ) + β
k+1v(xk+1), k = 1, 2...

Taking the limit as k →∞ and using (6.20), we have (6.16).
Fix ε > 0 and choose < δt >

∞
t=1⊂ R+ such that

P∞
t=1 β

t−1δt ≤ ε. Inequal-
ity (6.19) implies there exists x1 ∈ Γ(x0), x2 ∈ Γ(x1), ... so that

v(xt) ≤ r(xt, xt+1) + βv(xt+1) + δt+1, t = 0, 1, ...
Then

v(x0) ≤ r(x0, x1) + βv(x1) + δ1

≤ r(x0, x1) + β [r(x1, x2) + βv(x2) + δ2] + δ1

≤ ϕk(χ) + β
k+1v(xk+1) +

kX
t=1

βt−1δt, k = 1, 2, ...

Taking the limit as k →∞ and using (6.20), we have (6.17).
Next we establish that a feasible plan which satisÞes (FE) is an optimal

plan in the sense of (SP).

Theorem 581 Let χ∗ ∈ F (x0) be a feasible plan from x0 which satisÞes the
functional equation

v∗(x∗t ) = r(x
∗
t , x

∗
t+1) + βv

∗(xt+1) (6.21)

with
lim
t→∞

maxβtv∗(x∗t ) ≤ 0, (6.22)

then χ∗ attains the maximum in (SP) for initial state x0.
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Proof. It follows by an induction on (6.21) that

v∗(x0) = r(x0, x
∗
1) + βv

∗(x∗1)
= r(x0, x

∗
1) + β [r(x

∗
1, x

∗
2) + βv

∗(x∗2)]

= ϕk(χ
∗) + βk+1v∗(x∗k+1), k = 1, 2, ...

Then as k →∞ using (6.22) we have v∗(x0) ≤ ϕ(χ∗). Since χ∗ ∈ F (x0), we
have v∗(x0) ≥ ϕ(χ∗) by (6.16). Thus χ∗ attains the maximum.
Now that we have established that a solution v to (FE) is a solution to

the (SP) problem we are interested in, we set out to establish the existence
of a solution to (FE). Since r is a real valued, bounded, and continuous func-
tion, it makes sense to look for solutions in the space of continuous bounded
functions C(X) with the sup norm kvk = sup {|v(x)|, x ∈ X} studied in sec-
tion 6.1. Furthermore, given a solution v ∈ C(X), we can deÞne the policy
correspondence γ : X → X by

γ(x) = {y ∈ Γ(x) : v(x) = r(x, y) + βv(y)}. (6.23)

This generates a plan since given x0, we have x1 = γ(x0), x2 = γ(x1), ...
To this end, we deÞne an operator T : C(X)→ C(X) given by

(Tf)(x) = max
y∈Γ(X)

[r(x, y) + βf(y)] . (6.24)

In this case (FE) becomes v = Tv. That is, all we must establish is that T
has a unique Þxed point in C(X).
Before actually doing that, we provide a simple set of sufficient conditions

to establish a given operator is a contraction.

Lemma 582 (Blackwell�s sufficient conditions for a contraction) Let
X ⊂ Rn and B(X,R) be the space of bounded functions f : X → R with the
sup norm. Let T : B(X,R)→ B(X,R) be an operator satisfying: (i) (mono-
tonicity) f, ef ∈ B(X,R) and f(x) ≤ ef(x) implies (Tf)(x) ≤ (T ef)(x),∀x ∈
X;(ii) (discounting) ∃ρ ∈ (0, 1) such that [T (f + a)](x) ≤ (Tf)(x) + ρa, a ≥
0, x ∈ X.11 Then T is a contraction with modulus ρ.
Proof. For any f, ef ∈ B(X,R), f ≤ ef + °°°f − ef°°° where we write f ≤ ef if
f(x) ≤ ef(x),∀x ∈ X. Then

Tf ≤ T
³ ef + °°°f − ef°°°´ ≤ T ef + ρ°°°f − ef°°°

11Note (f + a)(x) = f(x) + a.
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where the Þrst inequality follows from (i) and the second from (ii). Reversing

the inequality gives T ef ≤ Tf+ρ°°° ef − f°°° . Combining both inequalities gives°°°Tf − T ef°°° ≤ ρ°°°f − ef°°° .
Now we have the second main theorem of this section.

Theorem 583 In (C(X), k·k), T given in (6.24) has the following properties:
T (C(X)) ⊂ C(X); Tv = v ∈ C(X); and ∀v0 ∈ C(X),

kv − T nv0k ≤ βn

(1− β) kTv0 − v0k , n = 0, 1, 2... (6.25)

Furthermore, given v,the optimal policy correspondence γ : X → X deÞned
in (6.23) is compact-valued and u.h.c.

Proof. For each f ∈ C(X) and x ∈ X, the problem in (6.24) is to maximize
a continuous function [r(x, ·) + βf(·)] on a compact set Γ(x). Hence, by the
Extreme Value Theorem 262, the maximum is attained. Since both r and
f are bounded, Tf is also bounded. Since r and f are continuous and Γ, it
follows from the Theorem of the Maximum 295 that Tf is continuous. Hence
T (C(X)) ⊂ C(X).
It is clear that T satisÞes Blackwell�s sufficient conditions for a contraction

(Lemma 582) since: (i) for f, ef ∈ C(X) with f(x) ≤ ef(x),∀x ∈ X, by T
given in (6.24) we have (Tf)(x) ≤ (T ef)(x)⇔ maxy∈Γ(X) [r(x, y) + βf(y)] ≤
maxy∈Γ(X)

h
r(x, y) + β ef(y)i ; and (ii)
T (f + a)(x) = max

y∈Γ(X)
[r(x, y) + β (f(y) + a)]

= max
y∈Γ(X)

[r(x, y) + βf(y)] + βa

= (Tf)(x) + βa.

Since C(X) is a complete normed vector space by Theorem 452 and T is a
contraction, then T has a unique Þxed point v ∈ C(X) by the Contraction
Mapping Theorem 306 which satisÞes (6.25). The properties of γ follow from
the Theorem of the Maximum 295.
If we want to say more about v (and γ), we need to impose more structure

on the primitives. The next theorem illustrates this.



6.6. OPTIMIZATION OF NONLINEAR OPERATORS 279

Theorem 584 For each y, let r(·, y)be strictly increasing in each of its Þrst
n arguments and let Γ be monotone in the sense that x ≤ x0 implies Γ(x) ⊂
Γ(x0). Then v given by the solution to (FE) is strictly increasing.

Proof. Let bC(X) ⊂ C(X) be the set of bounded, continuous, nondecreasing
functions and eC(X) ⊂ bC(X) be the set of bounded, continuous, strictly
increasing functions. Since bC(X) is a closed subset of the Banach space
C(X),Corollary 307 and Theorem 583 imply it is sufficient to show T (bC(X)) ⊂eC(X), which is guaranteed by the assumptions on r and Γ.
Existence of solutions with unbounded returns

As we mentioned in the introduction, one application of dynamic optimiza-
tion in inÞnite dimensional spaces is the growth model. In that case the en-
dogenous state variable is capital, denoted kt at any point in time t = 0, 1, 2...,
with kt ∈ R+ and k0 > 0 given. It is typically not the case that we assume
kt lies in a compact set, which is very different from the assumptions of the
previous section. That is, the previous section relied heavily on the fact
that the return function was bounded (so that we could work in the space of
bounded functions).
To address this problem, here we will consider a speciÞc example. There

is a linear production technology where output yt = Akt, A > 0. Capital
depreciates over a period at rate δ > 0. Assume that eA = A + (1− δ) > 0.
A household is risk neutral (i.e. u(ct) = ct where ct denotes consumption

at time t) and discounts the future at rate β. Assume that β−1 > eA. Since
utility is strictly increasing in consumption, there is no free disposal and
the budget constraint implies that ct = Akt + (1 − δ)kt − kt+1. Hence the
household�s reward function is given by r(kt, kt+1) ≡ u(ct) = eAkt − kt+1.
The problem of the household is to choose a sequence of capital stocks to

maximize the present discounted value of future rewards which is just

v∗(k0) = sup
<kt+1>

∞X
t=0

βt[ eAkt − kt+1] (SP)

s.t. 0 ≤ kt+1 ≤ eAkt and k0 > 0 given.
We will attack this problem in several steps.
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1. Show that the constraint correspondence Γ : R+ → R+ given by Γ(kt) =
{kt+1 ∈ R+ : kt+1 ∈ [0, eAkt]} is nonempty, compact-valued, continuous,
and for any kt ∈ R+, kt+1 ∈ Γ(kt) implies λkt+1 ∈ Γ(λkt) for λ ≥ 0.
Furthermore, show that

for some α ∈ (0, β−1), kt+1 ≤ αkt,∀kt ∈ R+ and ∀kt+1 ∈ Γ(kt). (6.26)
Nonempty: kt+1 = 0 ∈ Γ(kt). Compact: By Heine-Borel, it is suf-
Þcient to check that Γ is closed and bounded. Boundedness follows
since given kt, kt+1 ∈ [0, eAkt]. To see Γ is closed, suppose < xn > is
a sequence such that xn ∈ Γ(kt) and xn → x. But xn ∈ Γ(kt) implies
xn ∈ [0, eAkt] and xn → x implies x ∈ [0, eAkt]. Thus x ∈ Γ(kt) so that Γ
is closed. Continuous: One way to establish this is to show Γ is uhc
and lhc. On the other hand, it is clear that since the upper endpoint is
linear in kt, it is continuous in kt and hence Γ(kt) is continuous. Ho-

mogeneity: If kt+1 ∈ Γ(kt), then 0 ≤ kt+1 ≤ eAkt. Multiplying by λ
implies 0 ≤ λkt+1 ≤ λ eAkt = eAλkt or λkt+1 ∈ Γ(λkt). Existence of
α : Since kt+1 ∈ Γ(kt), then kt+1 ≤ eAkt. Hence just take α = eA. By
assumption, eA < β−1 so α ∈ (0, β−1).

2. Show that the conditions you proved in part 1 implies that for any k0,

kt ≤ αtk0,
∀t and for all feasible plans < kt+1 >∈ F (k0) = {< kt+1 >: kt+1 ∈
Γ(kt), t = 0, 1, ...},the set of plans feasible from k0. To see this , from

1, kt+1 ≤ eAkt = αkt ≤ α(αkt−1) = α2kt−1 ≤ ... ≤ αt+1k0. Notice that
kt can be growing over time, though at rate less than β

−1.

3. Let G = {(kt, kt+1) ∈ R+ × R+ : kt+1 ∈ Γ(kt)}. Show that r : G→ R+
is continuous and homogeneous of degree one. Show that eAkt− kt+1 ≥
0,∀t and ∃B ∈ (0,∞) such thateAkt − kt+1 ≤ B (kt + kt+1) , ∀(kt, kt+1) ∈ G. (6.27)

Given that (kt, kt+1) ∈ R+ × R+, (6.27) assures a uniform bound on
the ratio of the return function u and the norm of its arguments. Con-
tinuous: We must show that ∀ε > 0, ∃δ(kt, kt+1, ε) > 0 such that
if q

(k0t − kt)2 + (k0t+1 − kt+1)2 < δ, (6.28)
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then ¯̄̄³ eAk0t − k0t+1´− ³ eAkt − kt+1´¯̄̄ < ε. (6.29)

But ¯̄̄³ eAk0t − k0t+1´− ³ eAkt − kt+1´¯̄̄ ≤ eA ¯̄k0t − kt¯̄+ ¯̄k0t+1 − kt+1¯̄
by the triangle inequality. If (6.28) is satisÞed, theneA ¯̄k0t − kt¯̄ ≤ eAq(k0t − kt)2 + (k0t+1 − kt+1)2 < eAδ

and
¯̄
k0t+1 − kt+1

¯̄ ≤
q
(k0t − kt)2 + (k0t+1 − kt+1)2 < δ.

Hence let δ = max
n
ε
2
, ε
2 eA
o
.Homogeneity: r(λkt, λkt+1) = eAλkt −

λkt+1 = λ
h eAkt − kt+1i = λr(kt, kt+1). Nonnegative returns: Since

kt+1 ∈ [0, eAkt], we know eAkt−kt+1 ≥ 0, ∀t. Boundedness: Inequality
(6.27) is established sinceeAkt − kt+1 ≤ eAkt + kt+1 ≤ max{ eA, 1} (kt + kt+1) ,∀(kt, kt+1) ∈ G
where B = max{ eA, 1}.

4. Show that the conditions you proved in the previous parts imply that
for any k0 and ∀ < kt+1 >∈ F (k0),

lim
n→∞

Σnt=0β
t[ eAkt − kt+1]

exists. This, along with the prior conditions you have proven, estab-
lishes that a solution to (SP) satisÞes the functional equation

v(kt) = sup
kt+1∈Γ(kt)

[ eAkt − kt+1] + βv(kt+1). (FE)

We start by noting
nX
t=0

βt[ eAkt − kt+1] ≤ nX
t=0

βtB [kt + kt+1]

≤ B
nX
t=0

βt[αtk0 + α
t+1k0]

= Bk0(1 + α)
nX
t=0

(αβ)t

≤ Bk0(1 + α)/(1− αβ)
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where the Þrst inequality follows from part 3, the second from part 2,
and the third since αβ < 1 from part 1. Since

Pn
t=0 β

t[ eAkt − kt+1] is
increasing and bounded, the limit exists.

5. Show that v∗ deÞned in (SP) is homogeneous of degree one (i.e. v∗(θk0) =
θv∗(k0)) and that for some η ∈ (0,∞), |v∗(k0)| ≤ ηk0, for any k0. To
see this, as in part 2, consider < kt+1 >∈ F (k0) and Let u(< kt+1 >
) = limn→∞

Pn
t=0 β

t[ eAkt − kt+1]. Then v∗(k0) = sup<kt+1>∈F (k0) u(<
kt+1 >). For θ > 0, θk0 ∈ R+ since R+ is a convex cone. Furthermore,
k1 ∈ Γ(k0) ⇒ θk1 ∈ Γ(θk0) as established in part 1. Continuing in
this fashion we can show that ∀ < kt+1 >∈ F (k0), < θkt+1 >∈ F (θk0).
Homogeneity: For θ > 0,

v∗(θk0) = sup
<θkt+1>∈F (θk0)

u(< θkt+1 >)

= sup
<θkt+1>∈F (θk0)

(
lim
n→∞

nX
t=0

βt[ eAθkt − θkt+1])

= sup
<θkt+1>∈F (θk0)

(
lim
n→∞

θ
nX
t=0

βt[ eAkt − kt+1])
= θv∗(k0).

Boundedness: Let D = B(1 + α)/(1 − αβ) > 0. Then ∀ < kt+1 >∈
F (k0), it was shown in part 4 that

|u(< kt+1 >)| =
¯̄̄̄
¯ limn→∞

nX
t=0

βt[ eAkt − kt+1]
¯̄̄̄
¯ ≤ Dk0.

Thus, ∀ < kt+1 >∈ F (k0),

|v∗(k0)| =
¯̄̄̄
¯ sup
<kt+1>∈F (k0)

u(< kt+1 >)

¯̄̄̄
¯ ≤ sup

<kt+1>∈F (k0)
|u(< kt+1 >)| ≤ Dk0.

6. As a converse to the above results, next consider seeking solutions to
(FE) in the space of functions (denoted H(R+)) that are continuous,
homogeneous of degree 1, and bounded in the sense that if f ∈ H(R+),
then |f(kt)|

kt
<∞. This notion of boundedness is consistent with DeÞni-

tion 522. Endow the space with the operator norm, which by Theorem
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518 can be of the form

kfk = sup
½ |f(kt)|

kt
, kt ∈ R+ , kt 6= 0

¾
. (6.30)

We must verify that k·k on the vector space H(R+) satisÞes the prop-
erties of a norm and that (H(R+), k·k) is complete. Normed Vec-
tor Space: We must show: (a)kfk ≥ 0 with equality iff f = 0;(b)
kafk = |a| · kfk ; and (c) kf + f 0k ≤ kfk+kf 0k . Complete: Consider
any Cauchy sequence < fn > in H(R+). For all x ∈ R+, < fn(x) >
is Cauchy in R and thus has a limit. DeÞne f : R+ → R by f(x) =
limn→∞ fn(x), ∀x ∈ R+. We must show that f ∈ H(R+) by verify-
ing that (i) f is homogeneous of degree 1; (ii) bounded in the sense

that |f(x)|
x
< ∞; and (iii) f is continuous. Starting with (i), for λ > 0

and x ∈ R+, since fn ∈ H(R+)∀n we have f(λx) = limn→∞ fn(λx) =
limn→∞ λfn(x) = λf(x). Next, for (ii) we know that f is bounded
since < kfnk > is a convergent sequence in R and thus bounded (i.e.
kfk ≤ kfNk+1 for some N ∈ N). Finally, for (iii) note that < fn >→ f
uniformly by the Cauchy criterion and that H(R+) ⊂ C(R+). But uni-
form convergence of continuous functions implies the limit function is
continuous.

7. Show that for any v ∈ H(R+), limn→∞ βtv(kt) = 0 which establishes
the conditions necessary to prove that a solution to (FE) implies a
solution to (SP). It follows directly from parts 2 and 6 that for any
f ∈ H(R+),

|f(kt)| ≤ kt · kfk ≤ αtk0
so that since αβ < 1, limn→∞ βtv(kt) = 0.

8. DeÞne an operator T on H(R+) by

(Tf)(k) = sup
k0∈Γ(k)

h eAk − k0 + βf(k0)i . (6.31)

Show that T maps functions in H(R+) to functions in H(R+). Conti-
nuity: Since r and f are continuous by part 3 and f ∈ H(R+), and Γ
is compact valued, we know Tf is continuous by the Theorem of the
Maximum. Boundedness: Since r and f are bounded by part 3 and
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f ∈ H(R+), Tf is bounded. Homogeneity: For θ > 0,

(Tf)(θk) = sup
θk0∈Γ(θk)

h eAθk − θk0 + βf(θk0)i
= θ sup

θk
0∈Γ(θk)

h eAk − k0 + βf(k0)i
= θ sup

k0∈Γ(k)

h eAk − k0 + βf(k0)i
= θ(Tf)(k)

since θk0 ∈ Γ(θk)⇐⇒ k0 ∈ Γ(k) by part 1.

9. Show that T satisÞes Blackwell�s sufficient conditions for a contraction
(and hence there exists a unique Þxed point of (FE) v = Tv).

6.7 Appendix - Proofs for Chapter 6

Proof of Dini�s Theorem 453. Let < fn > be decreasing, fn → f
pointwise, and deÞne fn = fn − f . Then


fn
®
is a decreasing sequence of

non-negative functions with fn → 0 pointwise. For a given x ∈ X and ε > 0,
∃N(ε, x) such that 0 ≤ fN(ε,x)(x) < ε. Since fN(ε,x) is continuous ∃δ(x)such
that 0 ≤ fN(ε,x)(x

0) < ε for all x0 ∈ Bδ(x)(x). Since fn is decreasing, 0 ≤
fn(x

0) < ε for all n ≥ N(ε, x) we have x0 ∈ Bδ(x)(x). Since the collection
{Bδ(x)(x), x ∈ X} is an open covering of X, there exists a Þnite subcovering
of X (i.e. X = ∪ki=1Bδ(xi)(xi)). DeÞne N(ε) = mini=1,...,k{N(ε, xi)} which is
well deÞned since N(ε) is just the minimum of a Þnite set. For a given ε,we
found N(ε) such that 0 ≤ fn(x) < ε for all n ≥ N(ε)and for all x ∈ X (i.e.
fn → 0 uniformly so that fn → f).

Proof of Lemma 456. (⇐=) This direction is apparent. ( =⇒) Let
D ⊂ C (X) be equicontinuous. Then given x ∈ X and ε > 0, ∃δ (ε, x)
such that |h (x0) − h (x) | < ε

2
for all x0 such that dX (x, x0) < δ for all

h ∈ D. The collection of open balls
n
B 1

2
δ(x, ε

2
) (x) , xdX

o
is an open cover-

ing of X and since X is compact there exists Þnitely many x1, ...., xk s.t.n
B 1

2
δ(xi,

ε
2
) (xi) , i = 1, ..., k

o
covers X. Let δ ≡ 1

2
min

©
δ
¡
xi,

ε
2

¢
, i = 1, ..., k

ª
.

For x ∈ X, then ∃i such that x ∈ Bδ(xi, ε2)(xi). Let y ∈ X such that dX (x, y) ≤
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δ. Then dX (y, xi) ≤ dX (y, x)+dX (x, xi) ≤ δ+ 1
2
δ
¡
xi,

ε
2

¢ ≤ δ ¡xi, ε2¢ . There-
fore for any h ∈ D, |h (x)−h (y) | ≤ |h (x)−h (xi) |+|h (xi)−h (y) | ≤ ε

2
+ ε
2
= ε

since D is equicontinuous at xi. Hence D is uniformly equicontinuous.
Proof of Lemma 457. (⇐=) Suppose that D is totally bounded. Let
ε > 0 be given and choose positive numbers ε1 and ε2 such that 2ε1 + ε2 ≤
ε. Total boundedness of D implies that there exist Þnitely many functions
f1, ....., fn such that the collection of open balls {Bε1 (fi) , i = 1, ..., n} covers
D. Fix x0. Because {fi,i = 1, ..., n} is equicontinuous at x0 (since a Þnite
subset of continuous functions is equicontinuous), there exists δ > 0 such
that dY (fi (x) , fi (x0)) < ε2 for all x such that d (x, x0) < δ and for all
i = 1, ..., n. To prove that D is equicontinous at x0 we need to show that
dY (f (x) , f (x0)) < ε for all x such that dX (x, x0) < δ and all f ∈ D.
Let f ∈ D. Because{Bε1 (fi) , i = 1, ..., n} covers D, then ∃ fi such that
f ∈ Bε1 (fi) . By the triangle inequality
dY (f (x) , f (x0)) ≤ dY (f (x) , fi (x)) + dY (fi (x) , fi (x0)) + dY (fi (x0) , f (x0))

≤ ε1 + ε2 + ε1 ≤ ε
holds true for all x such that dX (x, x0) < δ and for all f ∈ D. Notice that
this direction doesn�t require compactness of either X nor Y , hence total
boundedness always implies equicontinuity.
(=⇒) Suppose D is equicontinuous. Given ε > 0 we wish to cover

D by Þnitely many open ε− balls. Choose ε1 and ε2 such that 2ε1 +
ε2 ≤ ε.Using equicontinuity of D at x ∈ X, given ε1, ∃δ (ε1, x) such that
for x0 ∈ Bδ(ε1,x) (x) , d (f(x

0), f (x)) < ε1 for all f ∈ D. The collection©
Bδ(ε1,x) (x) , x ∈ X

ª
is an open covering of X. Since X is compact there

exist Þnitely many x1, ..., xk such that
©
Bδ(ε1,xi) (xi) , i = 1, ...., k

ª
covers X

and dY (f (x) , f (xi)) < ε1 holds for x ∈ Bδ(ε1,xi) (xi) and all f ∈ D. Now
cover Y by Þnitely many open balls {Bε2 (yj) , j = 1, ....,m} . Let J be the
set of all functions α : {1, ..., k} → {1, ...,m}. The set J is Þnite. Given
α ∈ J, if there exists a function f ∈ D such that f(xi) ∈ Bε2(yα(i)) for
each i = 1, ..., k,choose one such function and label it fα. The Þnite colle-
cion of open balls {Bε (fα) , α ∈ J} with ε ≤ 2ε1 + ε2 covers D. For each
i = 1, , ..., k,choose an integer α(i) such that f(xi) ∈ Bε2(yα(i)). For this
index α,the ε-ball around fα contains f (i.e. f ∈ Bε(fα)). Let f ∈ D. Then
f (xi) ∈ Bε2

³
yj(i)

´
for i = 1, ...., k because {Bε2 (yj) , j = 1, ....,m} covers all

of Y (which is possible since Y is compact and thus totally bounded). DeÞne
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the function fj(i) such that fj(i) (xi) dBε2

³
yj(i)

´
for i = 1, ...., k. Let x ∈ X.

Choose i such that x ∈ Bδ(ε1,xi) (xi) . Then
dY
³
f (x) , fj(i) (x)

´
≤ d (f (x) , f (xi)) + d (f (xi) , fα (xi)) + d (fα (xi) , fα (x))

≤ ε1 + ε2 + ε1 < ε.

Proof of Lemma 467. By construction. DeÞne Pn(x) on [−1, 1] by
induction: P1(x) = 0 and Pn+1(x) = Pn(x) +

1
2
(x2 − P 2n(x)) ,∀n ∈ N.

To prove that Pn(x)→ |x| on [−1, 1] uniformly, we will use Dini�s Lemma
453. In that case we must check: (i) Pn(x) ≤ Pn+1(x), ∀x ∈ [−1, 1]; and (ii)
Pn(x) converges to |x| pointwise on [−1, 1]. We check that 0 ≤ Pn(x) ≤
Pn+1(x) ≤ |x|, ∀x ∈ [−1, 1] by induction.
To show < Pn > is non-decreasing, suppose it holds for n ≥ 1 (n = 1

is clear). Then Pn+2(x) = Pn+1(x) +
1
2

¡
x2 − P 2n+1(x)

¢ ≥ Pn+1(x) because
0 ≤ Pn+1(x) ≤ |x|⇔ P 2n+1(x) ≤ |x|2.
To show Pn+2 ≤ |x|,use the identity

Pn+2 = |x|− (|x|− Pn+1(x))
µ
1− 1

2
[|x|+ Pn+1(x)]

¶
.

Since |x| − Pn+1(x) ≥ 0 by assumption, |x| + Pn+1(x) ≤ 2|x| and hence
1− 1

2
[|x|+ Pn+1(x)] ≥ 0.

Thus the sequence < Pn(x) > is increasing and bounded ∀x ∈ [−1, 1]
and therefore it converges to a function f(x). Taking the limit of Pn+1(x) =
Pn(x)+

1
2
(x2 − P 2n(x)) yields f = f+ 1

2
(x2 − f2) which implies f2(x) = x2 or

f(x) = |x| (which we know is continuous). By Dini�s lemma 453 < Pn(x) >
converges to |x| uniformly on [−1, 1].
Proof of Schauder�s Fixed Point Theorem 475.
Since K is compact, K is totally bounded. Hence, given any ε > 0, there

exists a Þnite set {yi, i = 1, ..., n} such that the collection {Bε(yi), i = 1, ..., n}
coversK.We now deÞne the convex hullKε = {θ1y1 + .......+ θnyn :

P
θi = 1, all θi ≥ 0} .

This is a subset of K since K is convex and K contains all the points yi.We
will now map all of K into Kε by a continuous function Pε (y) that approxi-
mates y (i.e. kPε (y)− yk < ε,∀ydK). To construct this function Pε (y) , we
must construct n continuous functions θi = θi (y) ≥ 0, with

Pn
i=1 θi = 1.

First, for i = 1, ....., n, we deÞne

ϕi (y) =

½
0 if |yi − y| ≥ ε

ε− |yi − y| if |yi − y| < ε , i = 1, ..., n.
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Each of these n functions ϕi (y) is continuous and the fact that the set
{y1, ...., yn} is dense in K guarantees ϕi (y) > 0 for some i = 1, ...., n. Now
construct continuous functions

θi (y) =
ϕi (y)Pn
i=1 ϕi (y)

, i = 1, ......, n, y ∈ K.

These functions are well-deÞned since
Pn

i=1 ϕi (y) > 0. The functions θi (y)
satisfy θi ≥ 0,

P
θi = 1. Finally we construct the continuous function

Pε (y) = θ1 (y) y1 + ........+ θn (y) yn.

This function maps K into Kε. From the construction of ϕi, θi (y) = 0 unless
kyi − yk < ε. Therefore Pε (y) is a convex combination of just those points
yi for which kyi − yk < ε. Hence

kPε (y)− yk =
°°°X θi (y) yi − y

°°° = °°°X θi (y) (yi − y)
°°° ≤X θi (y) kyi − yk < ε.

This establishes that Pε (y) approximates y. Now we map the convex set
Kε continuously into itself by the function fε : Kε → Kε where fε (x) ≡
Pε (f (x)) for all x ∈ Kε. Since Kε is a convex, compact, Þnite-dimensional
vector subspace spanned by the n points y1, ....., yn and fε : Kε → Kε is
continuous, there exists a Þxed point xε = fε (xε) in Kε due to Brouwer�s
Þxed point theorem 302. Now we take the limit as ε → 0. Set yε = f (xε) .
Since K is compact, we may let ε → 0 through some sequence ε1, ε2, .. for
which < yε > converges to a limit in K :

f (xε) = yε → y as εk → 0. (6.32)

We now write

xε = fε (xε) ≡ Pε (f (xε)) = Pε (yε)
xε = yε + [Pε (yε)− yε]

Then

kxε − yk = kyε + Pε (yε)− yε − yk = kPε (yε)− yk ≤ kPε (yε)− yεk+kyε − yk .
The Þrst term vanishes since Pε (y) approximates y and the second term
vanishes since yε converges to y as εk → 0 . Hence xε → y as ε = εk → 0.
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Now since f is continuous then f (xε)→ f (y) . Combining this and (??) we
have f (y) = y, for some y ∈ K.Hence y is a Þxed point of f .
Proof of Riesz-Fischer Theorem 481. The case for p = ∞ is in the
text.

Second, let p ∈ [1,∞). Let < fn > be a Cauchy sequence in Lp. In order
to Þnd a function to which the sequence converges in light of Example 444,
we need to take a more sophisticated approach than for p =∞. Since < fn >
is Cauchy we can recursively construct a strictly increasing sequence < nj >
in N such that kfk − fnkp < 2−j, ∀k, n ≥ nj and ∀j ∈ N. Then°°°°°

JX
j=1

¯̄
fnj+1 − fnj

¯̄°°°°°
p

≤
JX
j=1

°°fnj+1 − fnj°°p < JX
j=1

2−j < 1

for each J ∈ N by the Minkowski inequality in Theorem 480. Therefore,

Z
X

Ã ∞X
j=1

¯̄
fnj+1 − fnj

¯̄!p
=

Z
X

Ã
lim
J→∞

JX
j=1

¯̄
fnj+1 − fnj

¯̄!p

=

Z
X

lim
J→∞

Ã
JX
j=1

¯̄
fnj+1 − fnj

¯̄!p

= lim
J→∞

Z
X

Ã
JX
j=1

¯̄
fnj+1 − fnj

¯̄!p

= lim
J→∞

°°°°°
JX
j=1

¯̄
fnj+1 − fnj

¯̄°°°°°
p

p

≤ 1

where the third equality follows from the Monotone Convergence Theorem
396.This implies that the sum

PJ
j=1

¯̄
fnj+1 − fnj

¯̄
is Þnite a.e. This means

there exists a set A such that mA = 0 and
P∞

j=1

¯̄
fnj+1 − fnj

¯̄
converges on

X\A. Since fnj+1 − fnj ≤
¯̄
fnj+1 − fnj

¯̄
, we have

P∞
j=1 fnj+1 − fnj converges

on X\A. Let f(x), x ∈ X\A be the limit of this series. Then by Theorem 364
(the pointwise limit of measurable functions is measurable), f is measurable.

Finally, we need to show that f is also p -integrable. To do so, suppose
that ε > 0 is given and let N0 be an integer such that kfk − fnkp < ε for
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k, n ≥ N0. Then

kfn − fkp =

µZ
X

|fn − f |p
¶ 1

p

=

µZ
X

lim
j→∞

¯̄
fn − fnj

¯̄p¶ 1
p

≤
µ
lim
j→∞

inf

Z
X

¯̄
fn − fnj

¯̄p¶ 1
p

≤ ε,∀n ≥ N0

where the second equality follows since < fn > is Cauchy and the Þrst
inequality follows by Fatou�s Lemma 393. Since kfkp = kf − fn + fnkp ≤
kf − fnkp + kfnkp ≤ ε+ kfkp <∞, then f ∈ Lp and fn → f in Lp.
Proof of Theorem 520. Let < Tn > be a Cauchy sequence in BL(X,Y ).
For a Þxed x ∈ X we have

kTnx− TmxkY ≤ kTn − Tmk kxkX
so that < Tn(x) > is a Cauchy sequence in Y. Since Y is complete, < Tn(x) >
converges to an element y ∈ Y. Call this element Tx (Tx = limn→∞ Tn(x),
∀x ∈ X). Thus we can deÞne T : X → Y by Tx = limn→∞ Tn(x). We must
show that T is bounded and that < Tn >→ T as n→∞.
Since < Tn > is Cauchy, then given ε > 0 ∃N such that ∀m,n ≥

N we have kTn − Tmk < ε. Hence kTn − TNk < ε,∀n ≥ N or kTnk <
kTNk+ε,∀n ≥ N. Thus, kTxkY = limn→∞ kTnxkY ≤ limn→∞ (kTnk kxkX) ≤
(kTNk+ ε) kxkX . Thus T is bounded.
For each x ∈ X we have kTnx− TxkY = limm→∞ kTnx− TmxkY ≤

limm→∞ kTn − Tmk kxkX ≤ ε kxkX ,∀n ≥ N where the inequality follows
from Corollary 519. Thus kTn − Tk = sup {k(Tn − T )xkY , kxkX = 1} ≤
ε k1k = ε. Thus Tn → T in BL(X,Y ).
Proof of Theorem 529. Let G : X → R be any bounded linear functional
on Rn from X∗ (i.e. G ∈ X∗). Let {e1, ..., en} be the natural basis in Rn12
and deÞne bi = G(e

i) for i = 1, ..., n. For x = (x1, ..., xn) ∈ Rn we have

G(x) = G(x1e
1 + ...+ xne

n)

= x1G(e
1) + ...+ xnG(e

n)

= x1b1 + ...+ xnbn

= < x, b > .

12Recall that the natural (or canonical) basis in Rn is deÞned to be the set of vectors
{e1, ..., en} where ei = (0, ..., 1, ..., 0) with �10 in the ith place.
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Clearly the functional G is represented by the point b = (b1, ..., bn) ∈ Rn.
Next we show that kGk = kbkX . First,

|G(x)| ≤
nX
i=1

|xiG(ei)| ≤
Ã

nX
i=1

x2i

! 1
2
Ã

nX
i=1

G(ei)2

! 1
2

= kxkX kbkX

where the Þrst inequality follows from the triangle inequality and the sec-
ond inequality follows from the Cauchy-Schwartz inequality (Theorem 210).
Hence kGk ≤ kbkX by (iv) of Theorem 518. Second, choose x0 = (b1, ..., bn).
Then we have

kGk ≥ |G(x0)|
kx0kX

=
|G(b)|
kbkX

=
< b, b >

kbkX
=
kbk2X
kbkX

= kbkX
where the inequality follows from Corollary 519. Combining these two in-
equalities we have kGk = kbkX .
It is easy to show that each functional G ∈ X∗ is uniquely represented

by the point b ∈ Rn. To see this, it is sufficient to prove that an operator
T : X∗ → X deÞned by T (G) = (G(e1), ..., G(en)) = b is a bounded, linear
bijection such that G(x) =< b, x > . To see that T is bounded (and hence
continuous by Theorem 511) note

kTk = sup
½kTGkX
kGkX∗

, kGkX∗ 6= 0
¾
= sup

½kbkX
kbkX

, kbkX 6= 0
¾
= 1.

To see that T is linear, since < (αb + βb0), x >= α < b, x > +β < b0, x >,
we know T (αb+ βb0) = αT (b) + βT (b0). To see that T is a bijection, Þrst we
establish it is an injection (i.e. one-to-one). Let G1 6= G2. Then ∃x ∈ X such
that G1(x) 6= G2(x). Since x = x1e1 + ...+ xnen uniquely, we have

G1(x) = G1(x1e
1 + ...+ xne

n)

= x1G1(e
1) + ...+ xnGn(e

n)

= x1b
1
1 + ...+ xnb

1
n

and similarly
G2(x) = x1b

2
1 + ...+ xnb

2
n.

Then G1(x) 6= G2(x)⇒ b11 6= b21 or ... b1n 6= b2n so that TG1 6= TG2. To see T
is a surjection (onto), we must show that for any d ∈ X, ∃G ∈ X∗ such that
T (G) = d. But G(x) =< d, x >∈ X∗ and TG = d. 13

13For example, if X = R2 and we take d = (3, 4) ∈ X, then G(3,4)(x) = 3x1+4x2 ∈ X∗.
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Proof of Theorem 530. Let {ei, i ∈ N } is a complete orthonormal
system in H. Set bi = F (ei),∀i ∈ N. Then we have

nX
i=1

b2i = F (
nX
i=1

bie
i) ≤

kFkk
nX
i=1

bie
ik = kFk

Ã
nX
i=1

b2i

! 1
2

. Taking the square of both sides , we have

nX
i=1

b2i ≤ kFk2 for arbitrary n.Then
∞X
i=1

b2i ≤ kFk2 < ∞ which means

that the series
∞X
i=1

b2i is convergent. Then there exists an element y ∈
H whose Fourier coefficients are bi, i ∈ N. Since {ei, i ∈ N} is a com-
plete orthonormal system (by Parserval�s equality) we have b =

∞X
i=1

bie
i

and also kbk ≤ kFk.Let x be any element of H and let {xi; i ∈ N} be
its Fourier coeÞcients. Then

nX
i=1

xie
i → x by Parseval�s Theorem 504.

Since F is linear, F (x) = limn→∞ F

Ã
nX
i=1

xie
i

!
= limn→∞

nX
i=1

xiF (e
i) =

limn→∞
nX
i=1

xibi =
∞X
i=1

xibi =< x, b > . By the Cauchy-Schuartz inequality

| F (x) |≤ kxkkbk,∀x ∈ H, so that kFk ≤ kbk.Combining the two inequali-
ties, we have kFk = kbk.
Proof of Theorem 531. Suppose x = (x1, .....xn, ....) ∈ !p and F ∈ !∗p.
Set {ei, idN} where ei is the vector having the i-th entry equal to one and all
other entries equal to zero.
Let sn =

Pn
i=1 xie

i. Then sn ∈ !p and kx− snkpp =
P∞

i=n+1 |xi|p −→ 0 as

n→∞. Thus F (sn) = F (
Pn

i=1 xie
i) =

Pn
i=1 xiF (e

i) and |F (x)− F (sn)| =
|F (x− sn)| ≤ kFk kx− Snkp −→ 0 as n −→∞.Hence F (x) = limn−→∞ F (sn) =P∞

i=1 xiF (e
i) . Set zi = F (e

i) , i ∈ N and z = hz1, ..., zn, ...i . We must show
that z ∈ !q. For this purpose choose a particular x = hxii :

xi =

½ |zi|q−2zi when zi 6= 0
0 when zi = 0

.

For this case ksnkpp =
Pn

i=1 |xi|p =
Pn

i=1 |zi|p(q−1) =
Pn

i=1 |zi|2 . Moreover
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F (sn) =
Pn

i=1 xizi =
Pn

i=1 |zi|q and |F (sn)| ≤ kFk ksnkp ≤ kFk (
Pn

i=1 |zi|q)
1
p .

Hence
Pn

i=1 |zi|q ≤ kFk (
Pn

i=1 |zi|q)
1
p ⇔ (

Pn
i=1 |zi|q)

1
q ≤ kFk holds true for

arbitrary n. Thus z = hzii ∈ !q and kzkq ≤ kFk . On the other hand
by Hýolder�s inequality we have |F (x)| = |P∞

i=1 xizi| ≤ kxkp kzkq and thus
kFk ≤ kzkq . This shows that kFk = kzkq .
Proof of Riesz Representation Theorem 532. Let us Þrst consider
m(X) <∞. In that case χE ∈ Lp(X) for any E ⊂ X which is L-measurable
(i.e. E ∈ L). Then deÞned a set function ν : L→ R by ν(E) = F (χE)
for E ⊂ L. ν is a Þnite signed measure which is absolutely continuous with
respect to m. (Show it???). Then by the Radon Nikdodyn Theorem 434
there is an integrable function g such that ν(E) =

R
E
dm for all E ∈ L.

Thus we take F (χE) =
R
E
gdm for all E ∈ L. If ϕ is a simple function (i.e.

it is a Þnite linear combination of characteristic functions), then by linearity
of F we have

F (ϕ) = F

Ã
nX
i=1

ciχEi

!
=

nX
i=1

ciF
¡
χEi
¢
=

nX
i=1

ci

Z
Ei

gdm

=
nX
i=1

ci

Z
X

χEigdm =

Z
X

nX
i=1

ciχEi =

Z
X

gϕdm.

Since |F (ϕ)| ≤ kFk kϕkp we have that g ∈ Lq(X). (Show it???) Hence

there is a function g ∈ Lq(X) such that F (ϕ) =
R
gϕdm for all simple

functions ϕ. Since the subset of all simple functions is dense in Lp(X),then
F (f) =

R
X
gfdm for all f ∈ Lp(X). (Show it???) Also show that kFk =

kgkq. The function g is determined uniquely for if g1 and g2determine the
same functional F, then g1 − g2must determine the zero functional; hence
kg1 − g2kq = 0 which implies q1 = q2a.e.
Let m(X) =∞. Since mis σ-Þnite, there is an increasing sequence of L-

measurable sets < Xn > with Þnite measure whose union is X. By the Þrst
part of the proof for each nthere is a function gn ∈ Lq such that gnvanishes
outside Xn and F (f) =

R
fgndm for all f ∈ Lpthat vanish outside x. More-

over kgnkq ≤ F. Since any function gn is unique on Xn(except on sets of
measure zero), gn+1 = gn on Xn. Set g(x) = gn(x) for x ∈ Xn. Then g is a
well deÞned L-measurable function and |gn| increases pointwise to |g|. Thus
by the Monotone Convergence Theorem 396Z

|g|qdm = lim
n→∞

Z
|gn|qdm ≤ kF qk
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for g ∈ Lq. For f ∈ Lp deÞne

fn =

½
f(x) for x ∈ Xn
0 for x ∈ X\Xn .

Then fn → f pointwise and in Lp. By the Holder Inequality 479 |fg| is
integrable and |fng| ≤ |fg| so that by the Lebesgue Dominated Convergence
Theorem 404Z

fgdm = lim
n→∞

Z
fngdm = lim

n→∞

Z
fngndm = lim

n→∞
F (fn) = F (f).

Proof of Hahn-Banach Theorem 539. IfM = X, then there is nothing
to prove. Thus assume M Ã X. Then ∃x1 ∈ X which is not in M . Let

M1 = {w ∈ X : w = αx1 + x, α ∈ R, x ∈M} (6.33)

One can prove (see Exercise 6.7.1 below) that M1 deÞned in (6.33) is a
subspace of X and that the representation in (6.33) is unique.
Next, extend f toM1 and call this extension F . In order for F :M1 → R

to be a linear functional, it must satisfy

F (αx1 + x) = αF (x1) + F (x) = αF (x1) + f(x) (6.34)

whee the second equality follows since x ∈ M . Hence F is completely de-
termined by the choice of F (x1). Moreover, we must have αF (x1) + f(x) ≤
P (αx1 + x) for all scalars α and x ∈ X. If α > 0,this means

F (x1) ≤ 1

α
[p (αx1 + x)− f (x)] = p

³
x1 +

x

α

´
− f

³x
α

´
= p (x1 + z)−p (z)

where z = x
α
.If α < 0,we have

F (x1) ≥ 1

α
[p (αx1 + x)− f (x)] = f (y)− p (−x,+y)

where y = −x
α
.Combining these two inequalities we have

f (y)− p (y − x1) ≤ F (x1) ≤ p (x1 + z)− f (z) ,∀y, z ∈M???orM1 (6.35)

Conversely, if we can pick F (x1) to satÞsfy (6.35) then will satisfy (6.34) and
F will satisfy (6.10) on M1. For if F (x1) satisÞses (6.35) then for α > 0 we
have

αF (x1) + f (x) = α
h
F (x1) + f

³x
α

´i
≤ αp

³
x1 +

x

α

´
= p (αx1 + x)
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while for α < 0 we have

αF (x1)+f (x) = −α
h
−F (x1) + f

³
−x
α

´i
≤ −αp

³
−x
α
− x1

´
= p (αx1 + x) .

So we have now reduced the problem to Þnding a value F (x1) to satisÞy
(6.35) . In order for such a value to exist, we must have

f (y)− p (y − x1) ≤ p (x1 + z)− f (z) ,∀y, z ∈M (6.36)

In other words we need

f (y + z) ≤ p (x1 + z) + p (y − x1)

But this is true by (6.8) . Hence (6.36) holds. If we Þx y and let z run through
all elements of M, we have

f (y)− p (y − x1) ≤ inf
z∈M

{p (x1 + z)− f (z)} ≡ C.

Since this if true for any y ∈M, we have

c ≡ sup
y∈M

{f (y)− p (y − x1)} ≤ C.

We now pick F (x1) to satisÞy c ≤ F (xq) ≤ C. Note that the extention
is unique only when c = C. Thus we have extended f from M to M1. If
M1 = X we are done. Otherwise, there is an element x2 ∈ X not in M1. Let
M2 be the space spanned by M1 and x2 (M2 = αx2 + x, α ∈ R, x ∈M1) . By
repeating the process we can extend f to M2.
If we prove that the collection of all linear bounded functionals deÞned

on subspaces of X satisÞes the assumptions of Zorn�s lemma we are done
(because Zorn�s lemma guarantees the existence of a maximal element which
we will prove is the desired functional). Consider the collection L of all linear
functionals g : D (g) −→ R deÞned on a vector subspace of X such that the
vector subspace satisÞes: (i) D (g) ⊃ M ; (ii) g (x) = f (x) , ∀x ∈ M ; (iii)
g (x) ≤ p (x) , ∀x ∈ D (g) . Note that L is not empty since F belongs there.
Introduce a partial ordering �≺� in L as follows. If D (g1) ⊂ D (g2) and
g1 (x) = g2 (x) ∀x ∈ D (gn) , then g1 ≺ g2. One can prove (see Exercise 6.7.2
below) that �≺� deÞned above is a partial ordering in L.
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We have to check now that every totally ordered subset of L has an upper
bound in L. Let W be a totally ordered subset of L. DeÞne the functional h
by

D (h) = ∪gDWD (g)
h (x) = g (x) , g ∈W,x ∈ D (g) .

Clearly h ∈ L and it is an upper bound forW. Note that the deÞnition of h is
not ambiguous because if g1,g2 are any two elements ofW, then either g1 ⊂ g2
or g2 ⊂ g1 and in either case if x ∈ D (g1) ∩ D (g2) , then g1 (x) = g2 (x) .
Hence this shows that the assumptions of Zorn�s lemma are met and therefore
a maximal element F of L exists.
We must show that F is the desired functional. That means that D (F ) =

X. Suppose by contradiction that D (F ) ( X. Then ∃ x0 ∈ X\D (F ) and
by repeating the process that we used at the beginning we would construct
the extension h of F such that h ⊃ F and h 6= F. This would violate the
maximality of F.

Exercise 6.7.1 Prove that M1 deÞned in (??) is a subspace of X and that
the representation in (??) is unique.

Exercise 6.7.2 Prove that the relation �≺� deÞned in the proof of Theorem
539 is a partial ordering in L.

Proof of Separation Theorem 549. Suppose without loss of generality
that 0 is an internal point of K1. Then K1 −K2 = {x− y : x ∈ K1, y ∈ K2}
is convex by Theorem 216. Let x0 ∈ K2. Since 0 is an internal point of K1,
then 0−x0 = −x0 must be internal point of K1−K2. Let K = x0+K1−K2.
Then K is convex and 0 ∈ K is its internal point. See Figure 6.5.4.
We claim that x0 is not an internal point of K. Suppose it was. Then 0

would be an internal point of K1−K2. Then for any y 6= 0 and some positive
number α, the point αy would belong to K1−K2 (i.e. αy = k1−k2 for some
k1 ∈ K1 and k2 ∈ K2). This implies

αy+k2
1+α

= k1
1+α
. If y is a point of K2 then

the left-hand side represents a point in K2 because
α
1+α
y+ 1

1+α
k2 is a convex

combination of two points of a convex set K2. Furthermore, the right-hand
side is an internal point of K1 because k1 ∈ K1, 0 ∈ K1 and

1
1+α

< 1. This
contradicts the assumption that K2 contains no internal points of K1. Thus
if P (x) is the support function of K and x0 is not an internal point of K we
know by (iii) of Lemma 546 that P (x0) ≥ 1.
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Let M be a one-dimensional linear subspace spanned by x0 (i.e. M =
{x : x = αx0, α ∈ R} .DeÞne a linear functional f : M → R by f (αx0) =
αP (x0) .We must check that f satisÞes the assumptions of the Hahn-Banach
Theorem 539. Is f (αx0) ≤ P (αx0) for all α? If α ≤ 0, then f (αx0) ≤ 0 and
hence f(αx0) ≤ P (αx0) since P is non-negative. If α > 0, then f (αx0) =
αP (x0) = P (αx0) by property of (i) of P in Lemma 546. Now by the Hahn-
Banach Theorem f (x) can be extended to a linear functional F : X → R
satisfying F (x) ≤ P (x) for all x ∈ X. Thus for x ∈ K we have F (x) ≤ 1,
x = x0 + y − z with y ∈ K1 and z ∈ K2.Then x− y + x0 ∈ K and we have
F (x− y + x0) ≤ 1 and F (x)−F (y)+F (x0) ≤ 1. Since F (x0) ≥ 1, we have
F (x) ≤ F (y) for any x ∈ K1 and y ∈ K2. Then we have

sup
x∈K1

F (x) ≤ inf
y∈K2

F (y)

and hence F separates K1,K2 and F is a non-zero functional (since F (x0) ≥
1).???Check x, y, z ???
Proof of Second Welfare Theorem 552. Proof. Since S is Þnite
dimensional (A5) and the aggregate technological possibilities set is convex
(A4), for the existence of φ we must show that the set of allocations preferred
to {x∗i }Ii=1 given by A =

PI
i=1Ai is convex where Ai = {x ∈ Xi : ui(x) ≥

ui(x
∗
i )},∀i. Assumptions (A1) − (A3) are sufficient to guarantee that each

Ai is convex and so A is convex. Finally, we show that A does not contain
any interior points of Y. Suppose to the contrary that y ∈ intY and y ∈ A.
Thus, for some {xi}Ii=1 with xi ∈ Ai for all i, we have y =

PI
i=1 xi. By

assumption, there is some h ∈ {1, ..., I}, ∃bxh such that uh(bxh) > uh(x∗h). Let
xαh = αbxh + (1 − α)xh, α ∈ (0, 1). By A1 and A2, xαh ∈ Xh and uh(xαh) >
uh(x

∗
h). Let y

α =
P

i6=h xi + x
α
h . Since y ∈ intY, it follows that for some

sufficiently small ε, yε ∈ Y. In this case the allocation ¡{xi6=h}Ii=1 ∪ xεh, yε¢ is
feasible and satisÞes

xi ∈ Xi,∀i, ui(x) ≥ ui(x∗i ),∀i 6= h, and uh(xαh) > uh(x∗h)

which contradicts the Pareto Optimality of ({x∗i }Ii=1, {y∗j}Jj=1). Therefore the
conditions for Theorem 549 are met.
To complete the proof, it is sufficient to show (b) holds in the deÞnition

of a competitive equilibrium. By (6.15), suppose that xi ∈ Xi and φ(xi) <
φ(x∗i ). Hence it follows by contraposition of (6.13) that ui(x

α
i ) < ui(x

∗
i ) ∀α ∈

(0, 1). By A3, limα→0 ui(xαi ) = ui(xi) < ui(x
∗
i ).
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Chapter 7

Topological Spaces

This chapter is a brief overview of topological spaces; it does not go into
details nor prove theorems. Let�s start with an example about Þxed points.
In Chapter 4 there is a theorem 257 saying that if f : I −→ I is a continuous
mapping from a closed interval I into itself, then there exists a point x0 ∈ I
such that f (x0) = x0. Is the theorem still true if the line segment I is
distorted (i.e. if it is an arc or an arbitrary curve or a circle)? See Figure
7.1 Since every concept behind the theorem is a topological one, the theorem
remains true as long as the object change is homeomorphic.
We will explain the notions of topological properties and homeomor-

phisms, but at this stage we say that topological properties of an object
are those that are invariant with respect to various distortions like bending,
increasing (magnifying), decreasing (reducing)-all these transformations are
homeomorphic, but are not invariant, for example, to tearing or welding.
Thus the theorem remains true for an arc or an arbitrary curve but not for
the circle. The Þrst two objects have two ends but the circle does not have
any. Thus there is an �inside� and �outside� of the circle but not of the arc
or arbitrary curve. It is easy to see that in the case of a circle, the Þxed point
theorem doesn�t hold. Consider a revolution of the circle about an angle-it is
a continuous mapping of the circle into itself with no point remaining Þxed.
See Figure 7.2.????

DeÞnition 585 A set X together with a collectionO (for open sets) which
satisÞes the following conditions: (i) ∅ ∈ O, X ∈ O; (ii) (∪i∈ΥAi) ∈ O , for
Ai ∈ O (an arbitrary union of elements ofO belongs toO); (iii) (∩ni=1Ai) ∈ O
for Ai ∈ O (a Þnite intersection of elements ofO belongs toO).O is called a

299
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topology on X and its elements are called open sets.

Recall the following facts. A set B is called closed if X\B is open. Also
∅ and X are both open and closed. By using DeMorgan rules we can show
that (i) ∪ni=1Bi is closed for Bi closed and (ii) ∩i∈ΥBi is closed for Bi -closed.
The intersection of all closed sets containing a set C is called the closure of
C written C. Hence the closure of C is the smallest closed set containing C
and C ⊂ C̄.

Exercise 7.0.1 Show that C is closed iff C = C̄.

The union of all open sets contained in a set D is called the interior of D
(written intD) and it is the largest open set contained in D.

Exercise 7.0.2 Show that D is open iff intD = D.

Example 586 Let (R, | · |) be a metric space. The collection of all open sets
(see Def. 104)O satisÞes all three properties of Theorem 106 and hence | · |
deÞnes a topologyO in R. A topology is determined by its metric. You should
realize that two equivalent metrics determine the same topology (see notes
after the Theorem 221).

Hence any metric space is also a topological space. What about the
converse? Consider a topological space X with a topologyO. Does a metric
d on X exist that would generate a topologyO.

DeÞnition 587 If there exists a metric d on X that generates a topologyO
we say that this topological space is metrisable.

Using this deÞnition we can rephrase the question, is any topological
space metrisable? The answer is no, as we will see.

Example 588 Given a set X , letO be the collection of all subsets of X
(i.e.O is the power set of X). This is the largest possible topology on X. We
call it the discrete topology. The discrete topology is not very interesting.
All sets are open (and closed), any mapping from X is continuous. This
topological space is metrisable, put d (x, x) = 0, and d (x, y) = 1 for x 6= y
(i.e. the discrete metric).
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Example 589 Let X have at least two elements andO contain only ∅ and
X. This is the smallest possible topological space on X called the trival
topology on X. This topological space is not metrisable for the following
reason. In any metric space, a set containing just one element is closed. In
this topological space the closure of a one element set {x} is the whole space
X (since this is the only closed set containing x) and hence by Exercise 7.0.1
{x} is not closed.
Example 590 Let X be an inÞnite set. LetO contain ∅ and all subsets
A ⊂ X such that X\A is Þnite. This topology is called the topology of Þnite
complements.

Exercise 7.0.3 Show thatO in the preceding example 590 is a topology on
X and that the closure of a set A is

Ā =

½
A if A is Þnite
X if A is inÞnite

. This topological space is not metrizable as we will see in the next subsection
on separation axioms.

Now we will deÞne other topological properties the same way we did in
metric spaces. Naturally, we cannot use the notion of distance here; all new
objects and properties can be deÞned only in terms of open sets or in terms of
other objects and properties, originally deÞned by open sets. A neighborhood
of a point x is any open set containing x. A point x is a cluster point of a set
A if any neighborhood of x contains a point of A different from x.

Exercise 7.0.4 Show that A is closed iff A contains all its cluster points.

As in DeÞnition 153 we say that S ⊂ X is dense in X if S̄ = X. In many
cases it is rather difficult to deÞne the collection of all the open sets; we often
use a small subcollection of open sets to deÞne all open sets. This is exactely
the method that we used in a metric space, where open sets were deÞned in
terms of open balls (see DeÞnition 106).

DeÞnition 591 A collection Bx of open sets is called the local basis of X
if x ∈ B, ∀B ∈ Bx and if for any neighborhood U of x there exists B ∈ Bx
such that B ⊂ U. B is called the topological basis of X if for any x ∈ X
there exists Bx ⊂ B that is a local bases in x.



302 CHAPTER 7. TOPOLOGICAL SPACES

Hence B is a topological basis of X iff for any x ∈ X and for any neigh-
borhood U of X there exists B ∈ Bx such that x ∈ B and B ⊂ U.

Exercise 7.0.5 Show that the collection of open balls is the topological basis
of n dimensional Euclidean space Rn.

If B is a topological basis of a topological space X then it satisÞes the
following:(i) For any x ∈ X there exists B ∈ B such that x ∈ B; and (ii) If B1,
B2 ∈ B and x ∈ (B1 ∩B2) there existsB3 ∈ B such that x ∈ B3 ⊂ (B1 ∩B2) .
Assume now that we have a set X (without a topology) and a collection B
of subsets of X satisfying conditions (i) and (ii). We say that S ⊂ X is open
if for any x ∈ S there exists B ∈ B such that x ∈ B ⊂ S. The collection of
all these open sets is a topology on X.

Exercise 7.0.6 Prove the above statement.

The method of deÞning a topology onX through a basis is very important.
This method was used in Chapter 3 in deÞning a topology on R where the
basis B was the collection of all open intervals.

DeÞnition 592 Let X be a topological space with a topologyO and let X0 ⊂
X. Then we can deÞne a topology O0 on X0 as the collection of all sets of
the form O ∩ X0 where O ∈ O. O0 is called the relative topology on X0
created byO and X0 is called a topological subspace of X.

Example 593 Let X = R be a topological space with the usual topology in
DeÞnition 104. Let X0 = [0, 1) . Then the relative topologyO0 on X0 is the
collection of all sets of the form O∩ [0, 1) where O is open in R. For example
O0 =

£
0, 1

2

¢
is open in X0 because

£
0, 1

2

¢
= (−1, 1) ∩ £0, 1

2

¢
and (−1, 1) is

open in R.

7.1 Continuous Functions and Homeomorphisms

Let X,Y be topological spaces and f : X −→ Y be a function from X to Y.
We say that f is continuous at x0 ∈ X if for any neighborhood V of f (x0) in
Y the inverse image f−1 (V ) is a neighborhood of x0 in X. f is continuous on
X if f is continuous at every x ∈ X. This is similar to DeÞnition 244 where
neighborhood has been substituted for open ball.
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Exercise 7.1.1 Prove that f : X −→ Y is continuous iff f−1 (V ) is open
(closed) in X for any V open (closed) in Y.

DeÞnition 594 Let f : X −→ Y be a function from X to Y. Assume that
there exists an inverse function f−1 : Y −→ X and let both f and f−1

be continuous. Then we say that f is a homeomorphism of X onto Y
and that X and Y are homeomorphic. Homeomorphic means topologically
equivalent (i.e.the same from a topological point of view).

Example 595 Let X = R with a topology determined by the Euclidean met-
ric d2 (x, y) =

q
(x1 − x2)2 + (y1 − y2)2. Let Y = R with a topology deter-

mined by the sup metric d∞ (x, y) = max {|x1 − x2| , |y1 − y2|} . Then X and
Y are homeomorphic. Hence from a topological point of view a circle and a
square are indistinguishable.

We could deÞne other topological properties like compactness, connect-
edness, and separability but we will only touch upon them. All these notions
are deÞned in Chapter 4. Notice that although they are deÞned in a met-
ric space, these deÞnitions don�t use the notion of distance (they are simply
formulated in terms of open sets).

7.2 Separation Axioms

Since the notion of distance is very natural for us, a metric space is more
easily envisioned than a topological space. That is why we take for granted
many results. For instance, in a metric space given two different elements
x, y ∈ X , x 6= y there exists two disjoint open sets U, V each containing just
one element (i.e. x ∈ U , y ∈ V , and U ∩ V = ∅).See Figure 7.3. But this is
not necessarily true in a general topological space. Before we show this we
will state separation axioms

DeÞnition 596 A topological space X is called: (i)a T0-space if for any two
distinct elements x, y there exists a neighborhood U of x not containing y; (ii)
a T1-space if for any two distinct elements x, y there exists a neighborhood
U of x not containing y and a neighborhood V of y not containing x; (iii)
a T2-space (or Hausdorff space) if any two distinct elements x, y have
disjoint neighborhoods (i.e. there exist two open sets U, V such that x ∈ U ,
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y ∈ V and U ∩ V = ∅); (iv) a T3-space if any closed set A and an element
x /∈ A have disjoint neighborhoods (i.e. any point x and any closed set A
not containing x can be separated by disjoint open sets); (v) a T4 -space if
any two disjoint closed sets have two disjoint neighborhoods (i.e. any two
disjoint closed sets can be separated by disjoint open sets). These axioms can
be pictured in Figure 7.4. A regular space is a T3-space which is also a
T1-space. A normal space is a T4-space which is also a T1-space.

Note that there may be slightly different terminology in the literature
depending on the book you reference.

Exercise 7.2.1 Show that the following sequence of implications holds true:
Normal space=⇒ regular space=⇒ Hausdorff space=⇒ T1-space=⇒ T0-space.

Exercise 7.2.2 Show that any metric space is normal. Hint: A positive
distance can be always bisected.

Combining the statements of Exercises 7.2.1 and 7.2.2 we get that any
metric space satisÞes all the separation axioms. Now we are going to show
that none of the implications of Exercise 7.2.1 can be reversed.

Example 597 A set X containing at least two distinct elements with the
trivial the topology (deÞned in the Example 589) is not a T0 -space. To see
this, let x 6= y . x cannot be separated by an open set from y because the only
open set containing x is the whole set X (that also contains y ).

Before giving other examples it is useful to state the following theorem
that you should prove as an exercise.

Exercise 7.2.3 A topological space X is T1 iff every singleton is closed.

Example 598 Let X = {a, b} and O = {∅, {a},X} be a topology on X.
Note that by deÞnition, {a} is open. To show that O is a topology we must
satisfy the conditions in DeÞnition 585. Obviously ∅,X ∈ O by construction.
On closedness with respect to arbitrary union, {a} ∪ ∅ = {a} ∈ O and
{a}∪X = X ∈ O . On closedness with respect to Þnite intersection {a}∩X =
{a} ∈ O and {a} ∩∅ = ∅ ∈ O . Now O is a T0-space because for a 6= b, the
open set {a} is a neighborhood of the element a not containing b. Note that
{b} is closed. According to Exercise 7.2.3 O is not a T1-space because {a} is
not closed.
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Example 599 Let X = N with the topology of Þnite complements (deÞned
in Example 590). This is a T1-space because {x} is closed for x ∈ N (note
N\ {x} is inÞnite thus open). It is not Hausdorf since: an open set A con-
taining 1 has the form A = N\ {x1, ...., xm} where xi 6= 1; an open set B
containing 2 has the form B = N\ {y1, ....., yn} where gi 6= 2; and the sets
A,B are not disjoint.

Example 600 Let X = R and the topology O consists of: (i) all open sets
in the usual Euclidean topology (i.e. the topology induced by the Euclidean
metric); and (ii) all sets of the form U\K where K =

©
1
n
, ndN

ª
and U is

open in the usual Euclidean topology. This is a Hausdorff space because open
sets of type (i) can be used for separating two distinct points. It is not a
T3-space because K is closed and 0 /∈ K cannot be separated from K.

None of the topological spaces in Examples 597 to 600 are metrizable.
Why? Let (X,O)be a topological space which is metrizable by d. Then
(X, d) is a metric space. That is, let O0 be the collection of all open sets of
(X, d). Then O0 coincides with O (ie. this means that (X,O) is metrizable).
Then (X,O) and (X,O0) are identical topological spaces one of which is
not T0 and othe other is normal (because it is a metric space by Exercise
7.2.2).Hence, there is a contradiction. The same argument can be used in
the other examples. Hence being a normal topological space is a necessary
condition for the space to be metrizable. But this condition is not sufficient.
For further reading see Kelley (???)

7.3 Convergence and Completeness

In Section 4.1 the notion of the convergence of a sequence in a metric space
was deÞned. In DeÞnition 143 we characterize a closed set A as the set con-
taining limit points of all convergent sequences from A. DeÞning closed sets
we can also deÞne open sets as their complements. This means we can deÞne
a topology. That is, a topology in a metric space can be deÞned in terms of
convergence of a sequence (as we did in Chapter 4). Can this procedure be
used in a topological space? First, we must address whether convergence of
a sequence can be introduced in topological space? In DeÞnition 136 we see
that the concept of distance (metric) is used there (we say that hxni −→ x
if for any ε > 0, ∃N such that ∀n ≥ N , d (xn, x) < ε. In this deÞnition, ε
represents an ε -ball around x (i.e. a neighborhood of x). Hence the deÞnition
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can be reformulated as the following: hxni −→ x if for any neighborhood U
of x there exists N such that ∀n ≥ N , xn ∈ U. In this new version only topo-
logical notions are used and hence convergence of a sequence can be deÞned
in a topological space.
You may wonder if a topology can be built only in terms of convergence

of sequences (the same way it is done in a metric space). The answer is
not always. Loosely speaking it is possible in topological spaces that are
separable (i.e. containing a countably dense set). Thus separability of a
topological (metric) space is an important property.

Exercise 7.3.1 Show that if X has a countable basis then it is separable.

Among topological spaces that are not separable there exist spaces whose
topology cannot be fully built only in terms of convergence of sequences. If
we want to build a topology in these spaces in terms of convergence, then
the notion of sequence has to be replaced by the more general notion of a
net. We will not deal with it here (again see Kelley).
The last important property of a metric space is completeness. Is this

property topological? That is, can completeness be deÞned in terms of open
sets? As we know, deÞning completeness requires the notion of a Cauchy
sequence and DeÞnition 169 of a Cauchy sequence is based on the concept of
distance. It cannot be deÞned without a metric. In other words, a Cauchy se-
quence cannot be deÞned in a general topological space. Hence completeness
is not a topological property as the next example shows.

Example 601 Let X = (0, 1], |·|), Y = ([1,∞), |·|) be two metric spaces.
Then f : X → Y given by f (x) = 1

x
is a homeomorphism ( f is a bijection

and f and f−1 are continuous). Hence these two metric space are topologi-
cally equivalent but X is not complete whereas Y is.

Total boundedness is not a topological property either. Example 601
shows this since X is totally bounded whereas Y is not. Theorem 198 says
that compactness in a metric space is equivalent to completeness and to-
tal boundedness. Compactness is a topological property while completness
and total boundedness are not topological properties individually but if they
occur simultaneously they are a topological property.


