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Foreword

It is indeed an honor, privilege, and pleasure to write this foreword at the invitation of the 
authors of this book. I sincerely hope that this novel and state-of-the-art book on power 
electronics and motor drives gets wide and enthusiastic acceptance from the professional 
power electronics community consisting of R&D professionals, practicing engineers, uni-
versity professors, and even graduate students. I would like to congratulate the authors for 
writing such an excellent book.

Power electronics and motor drive technology is a very complex and multidisciplinary 
field, and it has gone through dynamic evolution over the last several decades through 
many inventions in power semiconductor devices, converters, PWM techniques, electri-
cal machines, motor drives, and advanced control and simulation techniques. In recent 
years, the frontier of power electronics has advanced further with the advent of arti-
ficial intelligence (AI) techniques, such as expert systems, fuzzy logic systems, neural 
networks, and genetic algorithms (or evolutionary computation). Power electronics has 
now been established as a major discipline in electrical engineering, and its tremendous 
impact is obvious not only in global industrialization and general energy systems, but 
also in energy conservation, renewable energy systems, bulk energy storage, and elec-
tric/hybrid vehicles in the twenty-first century. The widespread applications of power 
electronics in industry have effected an unprecedented revolution in industrial engi-
neering. The role of power electronics in this new era will be as important as, if not more 
important than, that of computers, communication, and information technology.

I have devoted a number of years of my career to the state-of-the-art development of AI 
applications in power electronics and motor drives, particularly for expert systems, fuzzy 
logic, and neural networks. I have also written a number of chapters on these areas for my 
books. I am truly excited to see the growth and development in these areas and in their 
applications in industry. Among all the AI techniques, neural networks have emerged 
as the most important area for complex system identification, control, and estimation in 
power electronics and motor drives. In the future, they are expected to have widespread 
applications in industry.

This state-of-the-art book, authored by Maurizio Cirrincione, Marcello Pucci, and 
Gianpaolo Vitale, is the first book that systematically explores the application of neural 
networks in the field of power electronics. It emphasizes, particularly, neural network 
applications in sensorless control of AC drives, including their applications in active power 
filtering.

Broadly, the content of the book is classified in 4 parts consisting of 11 chapters. Chapter 1, 
the introductory chapter, presents space-vector theory as well as instantaneous power theory. 
Suffice it to say that concepts of space-vector theory are very important in modern power 
electronics and drives. Part I (Chapters 2 and 3) provides a general description of voltage-
fed converters and their control (open-loop and closed-loop controls) and deals with PWM 
algorithms in detail. Both voltage-oriented control (VOC) and power-oriented control (POC) 
methods are introduced. In addition, power quality control with shunt active and series active 
filters are discussed. Part II (Chapters 4 through 7) deals with induction and permanent mag-
net synchronous motor drives. It includes dynamic model descriptions of AC machines, and 
scalar, vector (or field-oriented), and DTC control of induction and synchronous motors. The 
sensorless control of induction machine (IM) drives in Chapter 6 is particularly important. 



xvi Foreword

Part III (Chapter 8) and Part IV (Chapters 9 through 11) form the core of this book in that 
they describe the theoretical aspects of linear neural networks, particularly the EXIN family 
(jointly developed by one of the authors) and their applications, ranging from neural-based 
parameter estimation and sensorless control (which includes MRAS observers, full-order 
Luenberger adaptive observers, and reduced-order observers) to neural-based distributed 
generation systems from renewable sources and active power filters. Each chapter contains 
extensive references, including major textbooks in the area. Extensive simulation and experi-
mental results are also provided to validate the theories. As far as I know, this part IV of the 
book is unique and is not available in any other book.

A reader of this book should have a general background in power electronics and motor 
drives, including some knowledge of linear algebra. Some background in neural networks 
is also desirable but not essential.

For whom would this book be useful? In my opinion, the book is suitable primarily for 
graduate students (as a one-semester course) and researchers. Portions of Parts I and II can 
also be taught in undergraduate courses. Selected portions of the book could also be useful 
for practicing engineers.

Finally, I wish the book great success and hope it becomes readily accepted by the pro-
fessional community.

Dr. Bimal K. Bose
Life Fellow, IEEE

Condra Chair of Excellence/Emeritus in Power Electronics
Department of Electrical Engineering and Computer Science

The University of Tennessee
Knoxville, Tennessee
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Preface

Power electronics and electrical drives are heavily characterized by a strong interdiscipli-
narity. A thorough knowledge of the field involves being proficient in

•	 Electrical machines
•	 Circuit theory
•	 Control system theory
•	 Signal processing system
•	 Electronics
•	 Electromagnetic fields
•	 Numerical analysis
•	 Solid-state physics
•	 Power plants

A recent trend for the development of these disciplines is the application of artificial intel-
ligence (AI) tools, such as expert systems (ES), artificial neural networks (ANN), fuzzy logic 
systems (FLS), genetic algorithms (GA), and, more recently, multi-agent systems (MAS). These 
tools have been proven to be able to boost the performance of these systems in real-world 
and industrial applications thanks to features such as “learning,” “self-organization,” and 
“self-adaptation.”

With particular regard to ANNs for nonlinear function approximation, in power elec-
tronics and electrical drives applications, they are used for control and identification, such 
as the multilayer perceptron (MLP) or the radial basis function (RBF). Another kind of 
neuron that has also been applied recently is linear neurons (ADALINE), whose simplicity 
has given surprisingly good results.

On the other hand, the detailed unified mathematical treatment of space-vectors has 
made it possible to embed the theory of linear neural networks, resulting in improve-
ments, both theoretical and experimental, of classical approaches in electrical drives and 
power electronics. This standpoint is the goal of the book: to present in a systematic way 
the classical theory based on space-vectors in identification, control of electrical drives and 
of power converters, and the improvements that can be attained when using linear neural 
networks.

With this outlook, this book is divided into four parts:

•	 Part I deals specifically with voltage source inverters (VSI) and their control.
•	 Part II deals with AC electrical drive control, with particular attention to induction 

and permanent magnet synchronous motor drives.
•	 Part III deals with theoretical aspects of linear neural networks.
•	 Part IV deals with specific applications of linear neural networks to electrical 

drives and power quality.
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Outline of the Book

Chapter 1 presents the theory of space-vectors and instantaneous power. This chapter is 
fundamental for understanding the rest of the book.

Chapter 2 describes the open-loop and closed-loop control of voltage source inverters. 
With regard to open-loop techniques it also explains the different kinds of pulsewidth 
modulation (PWM) strategies, and with regard to closed-loop techniques it analyzes both 
current and power control of VSIs. Voltage-oriented control (VOC) and direct power con-
trol (DPC) are also presented. Chapter 3 explains the fundamentals of power quality; par-
allel active filters (PAFs) and series active filters (SAFs), with reference to their operating 
principle and control strategies, are investigated. Passive and hybrid filter configurations 
are also analyzed.

Chapter 4 deals with induction machine (IM) static and dynamic space-vector models. 
The dynamic model of the IM, including saturation effects, is shown. Finally, the space-
vector dynamic model of the IM, including rotor and stator slotting effects, is described. 
Chapter 5 describes, first, scalar control strategies of IM drives with impressed voltages 
and currents. It then derives field-oriented control (FOC) strategies, with reference to 
rotor, stator, and magnetizing flux linkage orientations. Related flux models are also 
presented. Finally, direct torque control (DTC) strategies are presented, particularly 
the classic switching table (ST) DTC, the space-vector modulation (SVM) DTC, and the 
electromagnetically compatible (DTC). The so-called direct self-control (DSC) is also 
described. Chapter 6 covers sensorless control of IM drives, with particular reference to 
both model-based and anisotropy-based techniques. With regard to model-based tech-
niques, the following estimators/observers are described: open-loop speed estimators, 
model reference adaptive systems (MRAS), full-order Luenberger adaptive observer 
(FOLO), full-order sliding-mode observer, reduced-order adaptive observer (ROO), and, 
finally, the extended Kalman filter. With reference to anisotropy-based techniques, the 
following methodologies have been described: revolving Carrier techniques, pulsating 
carrier techniques, and high-frequency excitation techniques. Chapter 7 derives the per-
manent magnet synchronous motor space-vector model. Field-oriented control (FOC) 
with both impressed voltage and currents is described. Various control strategies are 
presented to maximize the electromagnetic torque production or the drive efficiency. 
The DTC of the PMSM is also presented. Finally, both anisotropy- and model-based sen-
sorless techniques are explained.

Chapter 8 deals with the theory of linear neural networks, particularly the neural EXIN 
family. Starting from the adaptive linear neuron (ADALINE) structure, it presents more 
recent and performing linear neural networks: the TLS EXIN neuron, the Ge-TLS EXIN 
neuron, the MCA EXIN neuron, and, finally, the MCA EXIN + neuron.

Chapter 9 covers, first, the sensitivity analysis of the classic flux models of IM drives 
versus parameter variations. It then presents some on-line parameter estimation tech-
niques of IMs by the least-squares (LS) technique, including both unconstrained and 
constrained estimations. Finally, it shows the neural self-commissioning of IM drives. 
Chapter 10 deals with the application of neural adaptive filtering to distributed genera-
tion (DG) and active power filter (APF) systems. The ADALINE design criteria for the 
fundamental frequency extraction and the harmonic load current compensation are pre-
sented. The stability issues of the entire system are included. Experimental verification 
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of the neural approach is presented in comparison with classic approaches. Chapter 11 
presents some applications of LS-based techniques to speed estimation of IMs. In partic-
ular, the following neural-based observers are presented and discussed: the MCA EXIN 
+ MRAS observer, the TLS EXIN full-order Luenberger adaptive observer, and, finally, 
the reduced order adaptive observer. The general approach of this book is presenting ini-
tially the theoretical background of each subject immediately followed by a set of simu-
lations of experimental results supporting the analytical part. It is the authors’ opinion 
that the presence of many results should help the reader in understanding better the 
treated theoretical aspects.

How to Use This Book

This book can be used in different ways, depending on the background of the reader. 
Instructors for undergraduate students can use Chapters 1, 2, 4, 5, and 7 for a one-semester 
course in power electronics and electrical drives. Postgraduate and PhD students could 
also cover Chapters 3 and 6. Researchers involved in applications of ANNs to power elec-
tronics and drives would find it more interesting to go through Chapters 9 through 11. 
Theoreticians will find a comprehensive coverage of linear neural networks in Chapter 8. 
Figure P.1 suggests different paths for reading this book.

Chapter 1 should be read first, since it provides the basic tools. The power electronics path 
consists of Chapters 2, 3, and 10. The IM drives path includes Chapters 4 through 6 and 11 
(electrical machine approach) or, alternatively, Chapters 2, 5, 6, and 11 (power converter 
approach). The PMSM drives path includes Chapters 2 and 7 (or directly Chapter 7). The 
IM identification path includes Chapters 4 and 9. Finally, the ANN path includes Chapters 
8 through 11.

Ch.9

Ch.11

Ch.10Ch.3Ch.2

Ch.5Ch.4

Ch.1

Paths:
Power electronics: 2-3-10
IM drives (elect. mach.): 4-5-6-11
IM drives (power conv.): 2-5-6-11
PMSM drivers: 2-7
IM identif.: 4-9
ANN: 8-9-10-11

Ch.7

Ch.6

Ch.8

FIGURE P.1
Different paths for reading the book.



xx Preface

Prerequisites

To read this book, a basic knowledge of electrical machines and power electronics is 
required as well as some familiarity with notions of control systems and signal processing. 
To fully understand the fundamentals of linear neural networks, notions of linear algebra 
and numerical analysis are necessary; however, no a priori knowledge of neural networks 
is needed.

Remark

Nowadays, writing a book follows a logic contrary to what is usually demanded from 
researchers. Researchers are increasingly encouraged to submit as many projects as pos-
sible and to find money and publish papers at the earliest. They are not expected to dedi-
cate time to writing a systematic treatise of their activities, despite the fact that this is a 
fundamental task for further improving research on a more solid foundation.

Unfortunately, public institutions find it difficult to understand the importance of devot-
ing time to write. A remark like this amounts to heresy, but it represents a solid base for 
future generations.

For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1
Review of Basic Concepts: 
Space-Vector Analysis

1.1  Introduction

The development of any control system requires the knowledge of the mathematical 
model describing it. As for electric machines, before the 1950s, only sinusoidal steady-
state models were used [1–3]. In these models, the rotating speed is assumed con-
stant, while the voltage or the current supply is sinusoidally time varying. Afterward, 
dynamic models have been developed, particularly for AC machines [4–6]. These mod-
els permit the analysis of the motor behavior during both steady-state and transients 
with any time-varying waveform of the supply voltage or current. Thus dynamic mod-
els have been playing a key role in properly designing control systems of electric drives 
so that the stability can be achieved with desired time and frequency performance. At 
the same time, even the electronic power converters have been initially studied only 
with reference to their input-output steady-state relationship [7]. Afterwards, their 
dynamic models have been developed which permitted the analysis and design of suit-
able high-performance control systems as well as novel pulsewidth modulation (PWM) 
techniques [8–14]. Such control techniques have been adopted in the area of the active 
rectifier [11–13], the active power filters (APF) [14–16], and the distributed generation systems 
from renewable sources [17].

A big step ahead in the dynamic modeling of the systems mentioned earlier has been 
done made thanks to the space-vector theory. This theory has been initially developed 
with reference to electric machine dynamic study [4–6], but has been then extended to the 
study of any three-phase system, among which the power converters, for several applica-
tions. It is for this reason that, also in this chapter, the space-vector quantity will be ini-
tially defined with reference to an AC electric machine, because of its physical meaning, 
and then extended to other three-phase variable systems. Space-vector theory has been the 
core around which the all the vector control techniques for electric machines, like field-
oriented control (FOC) and direct torque control (DTC) [18–23], as well as for three-phase 
active rectifiers, like voltage-oriented control (VOC) and direct power control (DPC) [8], 
have been developed. Finally, it has been the necessary tool for developing the well-known 
set of space-vector modulation techniques [24–29].

In the following, the theory of space-vectors is briefly presented, since it is a most useful 
framework for studying AC machine and power converter dynamic models.



2 Power Converters and AC Electrical Drives with Linear Neural Networks

1.2  Space-Vector Definition

Let a generic three-phase system be considered. The system can be represented by a three-
phase winding (Figure 1.1), which could be the stator winding of an AC electric machine, 
whose phases are called sA, sB, and sC. Let isA(t), isB(t), and isC(t) be the instantaneous val-
ues of the stator currents for each stator phase, and t is time. No zero-sequence current is 
assumed to be present, as, for example, if the neutral point of the stator three-phase system 
is isolated. This means that instantaneously

	 i t i t i tsA sB sC( ) ( ) ( )+ + = 0 	 (1.1)

The axes of the three phases are mutually displaced in space of 120°, with the sA axis super-
imposed to the real axis of the complex plane. Each phase winding, if interested by a time-
varying sinusoidal current, is assumed to create a space-varying sinusoidal distribution of 
the magnetomotive force (mmf). It means that the distributed phase windings are assumed 
to have a sinusoidal winding density. Each phase current component therefore creates a 
specific sinusoidal mmf distribution, whose amplitude is proportional to the amplitude of 
the current itself and whose spatial orientation is determined by the spatial position of the 
winding axis and by the current polarity. If only the phase sA is energized with a positive 
current isA, a sinusoidal current density distribution is created which is spatially displaced 
90° with respect to the sA winding axis. This representation is sketched in Figure 1.2 [30], 
where the sinusoidality of the stator winding is represented with a varying cross section of 
the winding conductors or alternatively with two half-moon-shaped segments.

The global resultant mmf is due to the superposition of the current densities of the three 
phases. If each phase winding is sinusoidal, even the global current density will present 
a sinusoidal spatial distribution. The amplitude and spatial orientation of such a distri-
bution will be dependent on the instantaneous amplitude of each phase current isA, isB, 
or isC. Since a three-phase system is characterized by time-varying current waveforms, the 
current density field will modify in time both its amplitude and its spatial distribution. 
Coherently, it is well known from classic electric machine theory that a three-phase set of 
equilibrated currents circulating on a three-phase symmetric winding generates a sinu-
soidal mmf of constant amplitude, rotating in time with a constant velocity equal to the 
supply pulsation (the so-called Galileo Ferraris’ field).

FIGURE 1.1
Sketch of a three-phase winding.
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The superimposition of the current density profiles can be represented by the spatial 
addition of each phase current. For this purpose, the space-vector of stator current can be 
defined in this way:

	 i is sA sB sC s
j

sD sQt k i t ai t a i t e i t ji ts( ) ( ) ( ) ( ) ( ) ( )[ ]= + + = = +2 a 	 (1.2)

where
j is the imaginary unit
a = ej2 π/3 is a complex operator that makes a vector rotate 2π/3 rad in the counter-clock-

wise direction
|is| is the amplitude of the stator current space-vector
αs is the angle of the stator current space-vector from the sD axis
isD(t) and isQ(t) are, respectively, the instantaneous values of the sD and sQ components of 

the stator current space-vector corresponding to the real and imaginary components 
of the space-vector in the complex plane

In Equation 1.2, since a (a2) represents a complex vector of unitary amplitude lying in the 
direction of the sB (sC) axis, then the quantity aisB(t) (a2isC(t)) represents the sinusoidal spa-
tial distribution generated by the phase current isB (isC). Figure 1.3 shows the resultant sinu-
soidal current density distribution in the stator windings of the machine, when all the 

sQ

sD

isAej0

FIGURE 1.2
Current density distribution in a stator winding with only 
phase sA energized.

sQ

sD

is αs ω

FIGURE 1.3
Resultant current density distribution is a stator winding 
with all phases energized.
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three phases are energized, and consequently, the stator current space-vector presents an 
angular displacement with respect to the sD axis equal to αs.

In Equation 1.2, k is a constant factor that can take several values; consequently, the 
space-vector quantity presents different characteristics. If k = 2/3, then the so-called asym-
metrical form (non-power-invariant form) of the stator current space-vector results, which 
has the property that the amplitude of the space-vector has the same value of the peak 
sinusoidal value. If k /= 2 3 , then the so-called symmetrical (or power-invariant) form of 
the space-vector would result, whose property is that no additional factor is used, when 
instantaneous power is dealt with by means of space-vectors. Finally, if k = 3/2 is adopted, 
another power invariant form is used.

By assuming a symmetrical three-phase operation in sinusoidal steady-state, whereby 
currents, voltages, and flux linkages are sinusoids and form a positive sequence, then, for 
example, the instantaneous stator currents, if Is is the rms value of the current and ω is its 
angular frequency and t the time, can be expressed as follows:

	

i t I t

i t I t

i t I t

sA s

sB s

sC s

( ) cos( )

( ) cos

( ) cos

=

= −⎛
⎝⎜

⎞
⎠⎟

= −

2

2
2
3

2

w

w p

w 44
3
p⎛

⎝⎜
⎞
⎠⎟

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

	 (1.3)

By substituting (1.3) into Equation 1.2, the corresponding stator current space-vector is obtained:

	 i is s
j t

s
j tt e I e( ) = =w w 	 (1.4)

Thus, the space-vector is equal to the time rotating vector (phasor) of phase-A current, and 
it rotates in space with a constant amplitude with angular speed equal to ω (synchronous 
speed) in the positive direction. This is coherent with the Galileo Ferraris’ field descrip-
tion. Given a set of equilibrated stator currents of unitary amplitude like in (1.3), a graphical 
description of the space-vector quantity can be given, as in Figure 1.4. If ω = 0, corresponding 

isA

isB isC

isA sA sA

sC isC = –0.5 sC isC = –0.77

isB = –0.5

isA= 1

  isB = –0.17

αisB α2isC
isA αisB

isA= 0.94

isA

isC
isB

ωt = 2ωt = π/2

isA + αisB + α2isC
isA + αisB + α2isC α2isC

sBsB

FIGURE 1.4
(See color insert.) Graphical description of the space-vector quantity.
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to the positive peak of the sA stator current, then the resultant stator current space-vector 
lies in the sD axis. Some instants later, when ω = π/9, the stator current space-vector has 
maintained the same amplitude, but its phase angle modified from 0° to 20°, according to the 
earlier theoretical description.

Because of the earlier emphasized physical meaning, the space-vector quantity has been 
historically defined with reference to the AC electric machine currents. Its application can, 
however, be extended to any three-phase time-varying quantity, being it not related to 
electric machines. Given therefore a set of three-phase quantities xA(t), xB(t), and xC(t), the 
corresponding space-vector could be defined in this way:

	 x x( ) ( ) ( ) ( ) ( ) ( )[ ]t k x t ax t a x t e x t jx tA B C
j

D Q
x= + + = = +2 a 	 (1.5)

1.3  3 → 2 and 2 → 3 Transformations

Let x(t) = xD(t) + jxQ(t) be a generic space-vector. It should be remarked that its direct and 
quadrature components xD(t) and xQ(t) can be directly computed from the three-phase 
variables xA(t), xB(t), and xC(t) and vice versa. The transformation from the three-phase into 
the biphase variables is called 3 → 2 transformation, while that from the biphase into the 
three-phase variables is called 2 → 3. Both these transformations are linear and depend 
on the constant factor k in the definition of the space-vector (see Equation 1.2). In the 
following, three different transformations according to the choice of k are described.

1.3.1  Non-Power-Invariant Form Ver.1

In this case, if the D and Q components are to be computed from the A, B, and C ones, the 
3 → 2 transformation is the so-called two-axis Park, given by

	

x x x x

x x x

D A B C

Q B C

= − −⎛
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⎪
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3

	 (1.6)

If the A, B, and C components are to be computed from the D and Q ones, the 2 → 3 
transformation is the so-called inverse Park, given by

	

x x
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A D

B D Q
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	 (1.7)
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If no zero-sequence is present, the non-power-invariant form permits the instantaneous 
values of the phase variables to be reconstructed as projection of the corresponding 
space-vector into the axis of each phase, as

	

x t Re

x t Re a

x t Re a

A

B

C

( ) ( )

( ) ( )

( ) ( )

=

=

=

⎧

⎨
⎪⎪

⎩
⎪
⎪

x

x

x

2 	 (1.8)

This kind of transformation is more frequently adopted in electric drive control [18–22]. The 
main characteristic of such a transformation is that the D and Q components of the space-vector 
present the same amplitude as the A, B, and C phase ones, different from the other forms.

In this book, the asymmetrical form (non-power-invariant form with k = 2/3) will be 
always used, if not stated otherwise.

1.3.2  Power-Invariant Form

In this case, if the D and Q components are to be computed from the A, B, and C ones, the 
3 → 2 transformation is the so-called two-axis Clarke, given by
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	 (1.9)

If the A, B, and C components are to be computed from the D and Q ones, the 2 → 3 
transformation is the so-called inverse Clarke, given by
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If no zero-sequence is present, this form permits the instantaneous values of the phase vari-
ables to be reconstructed on the basis of the projection of the corresponding space-vector into 
the axis of each phase, as
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This kind of transformation is more frequently adopted in APF control [14–16].
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1.3.3  Non-Power-Invariant Form Ver.2

In this case, if the D and Q components are to be computed from the A, B, and C ones, the 
3 → 2 transformation is the following:
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If the A, B, and C components are to be computed from the D and Q ones, the 2 → 3 trans-
formation is the following:

	

x x

x x x

x x x

A D

B D Q

C D Q

=

= − +( )

= − −( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

2
3

1
3

3

1
2

3

	 (1.13)

If no zero-sequence is present, this form permits the instantaneous values of the phase 
variables to be reconstructed on the basis of the projection of the corresponding space-
vector into the axis of each phase, as

	

x t Re

x t Re a

x t Re a

A

B

C

( ) ( )

( ) ( )

( ) ( )

=

=

=

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

2
3
2
3
2
3

2

x

x

x

	 (1.14)

This kind of transformation is more frequently adopted in electric drive control [23].

1.4  Coordinate Transformation

Another very important feature offered by the space-vector quantity is the possibility to 
perform a coordinate transformation by means of a vector rotation. This characteristic 
is particularly important for all the vector-based control techniques. Let us consider a 
generic space-vector x x( ) ( ) ( )t e x t jx tj

D Q
x= = +a  and let us assume to represent this space-

vector quantity in a generic reference frame rotating at the speed ωg = dθg/dt, where θg is 
the angle between the direct axis x of the generalized reference frame and the direct axis 
sD (Figure 1.5).
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A nonlinear transformation is needed to retrieve the space-vector xg
x
g

y
gx jx= +  expressed 

in this generic reference frame rotating at the speed ωg from the corresponding x(t) = xD + jxQ 
expressed in the stationary reference frame:

	 x xg
x
g

y
g jx jx e g= + = − q 	 (1.15)

Decomposing Equation 1.15 in its real and imaginary components, it is possible to compute 
xx
g, xy

g starting from the corresponding components in the stationary reference frame xD, xQ as

	

x x x sen

x x sen x

x
g

D g Q g

y
g

D g Q g

= +

= − +

⎧
⎨
⎪

⎩⎪

cos( ) ( )

( ) cos( )

q q

q q
	 (1.16)

If, among the infinite reference frames, that synchronous with the space-vector itself is 
chosen (the x axis lying in the same direction of x), which implies θg = αs, then

	 x x x xg
x
g

y
g j j jx jx e e eg s g= + = = =− −q a q 	 (1.17)

It means that, in this particular reference frame, the space-vector is a real number coinciding 
with its amplitude.

If the space-vector in the stationary reference frame x(t) = xD + jxQ has to be computed 
from that in the generic reference frame xg

x
g

y
gx jx= + , then the nonlinear transformation 

inverse of that in Equation 1.15 should be adopted:

	 x x= −g je gq 	 (1.18)

Decomposing Equation 1.18 into its real and imaginary components, it is possible to com-
pute xD, xQ starting from the corresponding components in the stationary reference frame 
as xx

g, xy
g:

	

x x x sen

x x sen x

D x
g

g y
g

g

Q x
g

g y
g

g

= −

= +

⎧
⎨
⎪

⎩⎪

cos( ) ( )

( ) cos( )

q q

q q
	 (1.19)

FIGURE 1.5
Generalized reference frame: vector diagram.
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1.5  Instantaneous Real and Imaginary Powers

In general, the input “instantaneous three power p3φ(t)” in three-phase systems with a 
neutral wire is given by Akagi et al., [14]

	 S t u t i t u t i t u t i t u t i tA A B B C C3 0 03j ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + 	 (1.20)

where
ia(t), ib(t), ic(t) and ua(t), ub(t), uc(t) are the input phase currents and voltages
i0(t) and u0(t) are the zero-sequence current and voltage

Equation 1.20 can be expressed in terms of the corresponding non-power-invariant space-
vectors u and i as follows:

	
p t u t i t p t u t i t3 0 0 0 0

3
2

3 3j ( ) Re( ) ( ) ( ) ( ) ( ) ( )= + = +ui* 	 (1.21)

where
* symbol stands for the conjugate operator
p(t) = (3/2)Re(ui*) is called “instantaneous real power”

If no neutral wire exists, then there is no zero-sequence current component and p3φ(t) = p(t), 
while s(t) = ui* is defined as the instantaneous complex power.

In particular, if the space-vector is expressed in the rectangular components D and Q, 
where D and Q form a monometric orthogonal frame reference (like the one of Figure 1.1 
where D and Q coincide with sD and sQ, respectively), then

	

u

i

= +

= +

u ju

i ji
D Q

D Q
	 (1.22)

which, by using (1.21), yields

	
p t u i u iD D Q Q( ) ( )= +

3
2

	 (1.23)

if no zero-sequence is present. The physical result is easy to interpret, since the instantaneous 
power is given by the sum of the powers of the fictitious D and Q phases.

In a three-phase system in “sinusoidal steady-state,” without any zero-sequence component, 
the complex power can be defined as

	
S ui*=

3
2

	 (1.24)
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By bearing in mind (1.4), since the sinusoidal steady-state is considered, and the analogous 
for the voltage, the active power P and the reactive power Q can be introduced as

	

P

Q

= =

= =

⎧

⎨
⎪⎪

⎩
⎪
⎪

Re( ) Re( ) ( . a)

Im Im( ) ( . b)

S ui*

S ui*

3
2

1 25

3
2

1 25( )

If the current space-vector i lags the voltage space-vector u by the angle φ, then (1.25a and 
1.25b) become the well-known

	

P UI

Q UI

=

=

⎧
⎨
⎩

3 1 26
3 1 26

cos ( . a)
sin ( . b)

j

j

The earlier definition entails the introduction of a novel variable, called “instantaneous 
imaginary power” as follows:

	
q t( ) Im( )=

3
2

ui* 	 (1.27)

It should be remarked that the literature also gives the definition of q as

	
q t j( ) Re( )= − = ∧

3
2

3
2

ui u i* 	 (1.28)

which is the vector product of the voltage space-vector u with the space-vector i in accordance 
with the definition of the instantaneous real power as their scalar product:

	
p t T( ) Re( )= = ⋅ =

3
2

ui* u i u i 	 (1.29)

In the following, this definition, which entails a difference in sign with the definition of Q 
in sinusoidal steady-state, will not be adopted.

To summarize, in a three-phase system, the instantaneous real and imaginary power 
have been introduced (p(t) and q(t), respectively), along with the instantaneous complex 
power s(t):

	

Non-power invariant

*

*:

( ) Re( ) ( . a)

( ) Im( ) ( .

p t

q t

=

=

3
2

1 30

3
2

1 3

ui

ui 00

1 30

b)

( ) ( . c)s t =

⎧

⎨

⎪
⎪

⎩

⎪
⎪

ui*

However, it should be remarked that the earlier equations have been obtained by using 
the non-power-invariant form of the space-vectors, as defined, for example, by (1.6), 
where the factor 2/3 is present.
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If however the power-invariant form of the space-vector is chosen, characterized by the 
factor 2 3/ , then the following equations are obtained:

	

Power invariant:

( ) Re( ) ( . a)

( ) Im( ) ( . b)

( )

p t

q t

s t

=

=

=

ui*

ui*

1 31

1 31

uui* ( . c)1 31

⎧

⎨
⎪⎪

⎩
⎪
⎪

where it should be borne in mind that the involved space-vectors are not the same as those 
of (1.30a through 1.30c), for the reasons explained above. It would be therefore recom-
mended to specify always if the power-invariant or the non-power-invariant form of the 
space-vector is used.

(1.22), (1.25), and (1.30b) yield for the non-power-invariant space-vectors:

	
q t u i u iQ D D Q( ) ( )= −

3
2

	 (1.32)

while (1.9), (1.28), and (1.32) yield for the power-invariant space-vectors:

	 q t u i u iQ D D Q( ) ( )= − 	 (1.33)

By using the Clark transformation (1.9), (1.32) can be transformed into

	
q t u u i u u i u u ib c a c a b a b c( ) ( ) ( ) ( )[ ]= − + − + −

1
3

	 (1.34)

In Chapters 2 and 3, it will be more useful to use the power definitions (1.31) derived from 
the power-invariant form. For this reason, some further considerations will be developed 
in the following by using these space-vectors, but simple computations can be easily made 
to obtain the counterpart in case the non-power-invariant space-vectors were used.

Now (1.31a) and (1.31b) can be written in matrix form as

	

p

q

u u

u u

i

i
D Q

Q D

D

Q

⎡

⎣
⎢
⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ 	 (1.35)

Since the matrix is orthogonal, the following relationship can be easily inverted to obtain

	

i

i u u

u u

u u

p

q
D

Q D Q

D Q

Q D

⎡

⎣
⎢

⎤

⎦
⎥ = + −

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

1
2 2 	 (1.36)

which can be rewritten as

	
i =

⎡

⎣
⎢

⎤

⎦
⎥ = +

⎡

⎣
⎢

⎤

⎦
⎥ +

−

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟ =

i

i u u

u

u
p

u

u
q

i

i
D

Q D Q

D

Q

Q

D

Dp

Q

1
2 2

Δ

pp

Dq

Qq
p q

i

i
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥ = +i i 	 (1.37)

where
ip is the instantaneous active current
iq is the instantaneous reactive current
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From (1.37), the components of these currents on the axis D and Q can be computed. 
Specifically,

	
i

u
u u

pDp
D

D Q
=

+2 2 instantaneous active current on the D-axis 	 (1.38)

	
i

u
u u

pQp
Q

D Q
=

+2 2 instantaneous active current on the Q-axis 	 (1.39)

	
i

u
u u

qDq
Q

D Q
=

+2 2 instantaneous reactive current on the D-axis 	 (1.40a)

	
i

u
u u

qQq
D

D Q
=

−
+2 2 instantaneous reactive current on the Q-axis 	 (1.40b)

Then, since

	 p t u i u i u i u i u i uD D Q Q
T T

p q
T

p
T

q D Dp D Dq Q Qp( ) ( )= + = = + = + = + + +u i u i i u i u i QQ Qqi 	 (1.41)

using (1.38) and (1.39), it results that

	
p t

u u
u p u p u u q u u q

D Q
D Q D Q D Q( ) ( )=

+
+ + −

1
2 2

2 2 	 (1.42)

From (1.41), it is clear that p(t) is only given by the terms corresponding to uDiDp + uQiQp, that 
is, the sum of the product of the D component of the voltage space-vector and the instan-
taneous active current on the D axis and the product of the Q component of the voltage 
space-vector and the instantaneous active current on the Q axis. That is why (1.38) and 
(1.39) are called instantaneous active currents.

The last two terms of the sum of (1.42), uDuQq − uDuQq, sum up to zero and correspond to 
the term uQiQp + uQiQq of (1.42). This means that the terms depending on q (1.40a and 1.40b) 
do not give any “instantaneous” power contribution between the source and the load. That 
is why (1.40) are called instantaneous reactive currents. Remark that the instantaneous 
contribution of these currents in terms of power is null, not the average flow of the power, 
as in the case of reactive power in sinusoidal steady-state.

On the basis of what was written earlier, the powers can be separated as follows:

	
p u i

u
u u

pDp D Dp
D

D Q
= =

+

2

2 2 instantaneous active power on the D axis 	 (1.43a)

	
p u i

u
u u

pDq Q Qp
Q

D Q
= =

+

2

2 2 instantaneous active power on the Q axis 	 (1.43b)

	
p u i

u u
u u

qDq D Dq
D Q

D Q
= =

+2 2 instantaneous reactive power on the D axiss 	 (1.44a)

	
p u i

u u
u u

qQq Q Qq
D Q

D Q
= =

−
+2 2 instantaneous reactive power on the Q axiis 	 (1.44b)
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By inspection of (1.44a and 1.44b) and the last two terms of the sum of (1.42), uDuQq − 
uDuQq, it can be concluded that the instantaneous imaginary power q “is proportional to 
the quantity of energy that is being exchanged between the phases of the system. It does 
not contribute to the energy transfer between the source and the load at any time” [14].

Figure 1.6 summarizes the physical meaning of the instantaneous real and imaginary 
powers.

In a symmetrical three-phase doubly fed electric machine, which is where both the 
stator and the rotor circuits are supplied, the total instantaneous input power is the sum of 
the contribution of the stator and the rotor circuits, which gives

	 p t s s r r( ) Re( * *)= +u i u i 	 (1.45)
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2
Pulsewidth Modulation of Voltage Source Inverters

2.1  Fundamentals of Voltage Source Inverters

The three-phase voltage source pulsewidth modulation (PWM) converter, also called 
voltage source inverter (VSI), can perform the connection between the DC side and the AC 
side of a source/load coupling: if the energy flows from the DC side to AC side, the con-
verter behaves like an inverter; otherwise, it behaves like a rectifier (see Figure 2.1).

The circuit is based on the so-called switch mode operation of semiconductor devices. 
They are suitably driven to be either in the ON or in the OFF state. In the ON state, each 
device, in the ideal case, has a null voltage, and its current depends on the external cir-
cuit; in the OFF state, the current is null, and the voltage depends on the external circuit. 
Differently from a classical switch, power electronic devices allow the current to flow only 
in one direction. An antiparallel diode is therefore added when reverse current flow is nec-
essary; this is current a common situation in supplying inductive loads. This diode placed 
antiparallel to the power switch is commonly called free-wheeling diode.

No operation in the active region of the power switch occurs; this behavior is similar to 
that of a conventional switch, and, being nonlinear, the whole circuit is nonlinear.

In real cases, power devices will be characterized by the maximum allowable voltage 
in the OFF state, the maximum current in the ON state, the turn-on time, that is the time 
needed to commutate from OFF to ON state, and the turn-off time, that is, the time needed 
to commutate them from ON to OFF. It is also noteworthy that a circuit (known as driver 
circuit is further needed), which converts the logic signal into an electric signal is able to 
drive the power device.

Manufacturers have been trying to improve these parameters by designing devices with 
high blocking voltage and high conduction current or lower turn-on and turn-off time 
requiring a cheap driver; these efforts have yielded power devices such as BJT, MOSFET, 
IGBT, and so on.

The devices in each leg (A, B, and C) in Figure 2.1 must in a complementary way; the 
ON state of a device must correspond to the OFF state of the complementary device in the 
same leg and vice versa so as to avoid the short circuit of the DC side. This condition must 
be valid also during commutation. In order to prevent this undesired condition, known as 
shoot-through, an additional time interval, known as dead time, before ON commutation 
of each device, is introduced; during the dead time, both power devices of a leg are in OFF 
state, and the effects due to the storage charge are definitively canceled. The dead time is 
small compared to the switching time of the power devices, but it must be a bit greater 
of the time needed to commutate from ON to OFF and vice versa in the power devices. 
The contemporary OFF state of two devices on the same leg is admissible; however, such 



18 Power Converters and AC Electrical Drives with Linear Neural Networks

condition does not allow the voltage to be controlled at the correspondent output and is 
usually avoided for long time intervals. In IGBT-based power converters with power rat-
ings of few kilovolt-amperes, the dead time is usually set between 1 and 4 μs, depending 
on the speed of the device itself.

The state of each device is usually indicated by using the binary notation: convention-
ally the ON state corresponds to “1,” while the OFF state to “0.” To identify the status of 
the converter, only three bits are sufficient because, by indicating the status of the upper 
device, the status of the lower device is implicitly defined (it is its negation as explained 
above) and so is the inverter output voltage. Table 2.1 gives all possible values of the phase 
voltage with respect to the middle point 0 of the DC link (see Figure 2.1) and to the neutral 
point N of the load.

In Table 2.1, the second column represents the status of the upper devices. A gray code 
(with the less meaningful bit on the left) is recognizable going from u0 to u7. The usefulness 
of this characteristic will be clarified in the section dedicated to the space-vector modula-
tion (SV-PWM).

The voltage uN0 is the so-called common-mode voltage common mode voltages (CMVs) 
and is given by (usA0 + usB0 + usC0)/3 if the load is balanced.

Ud/2

Ud/2

0

Energy �ow for recti�er operation

SC–

SC+

SB–

SB+

SA–

SA+

N

Energy �ow for inverter operation

FIGURE 2.1
Schematics of VSI with energy flow direction for inverter and rectifier behavior.

TABLE 2.1

Possible Values of the Phase Voltage with Respect to the Middle Point 0 
of the DC Link

(Sa Sb Sc) usA0 usB0 usC0 usAN usBN usCN uN0

u0 (000) −Ud/2 −Ud/2 −Ud/2 0 0 0 −Ud/2
u1 (100) Ud/2 −Ud/2 −Ud/2 2Ud/3 −Ud/3 −Ud/3 −Ud/6
u2 (110) Ud/2 Ud/2 −Ud/2 Ud/3 Ud/3 −2Ud/3 Ud/6
u3 (010) −Ud/2 Ud/2 −Ud/2 −Ud/3 2Ud/3 −Ud/3 −Ud/6
u4 (011) −Ud/2 Ud/2 Ud/2 −2Ud/3 Ud/3 Ud/3 Ud/6
u5 (001) −Ud/2 −Ud/2 Ud/2 −Ud/3 −Ud/3 2Ud/3 −Ud/6
u6 (101) Ud/2 −Ud/2 Ud/2 Ud/3 −2Ud/3 Ud/3 Ud/6
u7 (111) Ud/2 Ud/2 Ud/2 0 0 0 Ud/2
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A voltage space-vector* can be associated with each inverter configuration uk:

	
u us s= + + = + =

2
3

2[ ( ) ( ) ( )] ( ) ( )u t au t a u t u t ju t esA sB sC sD sQ
j sα 	 (2.1)

where usA(t), usB(t), and usC(t) are the voltages, with respect to the middle point, of the phase 
A, B, and C, respectively.

A VSI can generate eight voltage space-vectors as it is clear from Table 2.1. Two of these 
vectors, corresponding to u0 (all lower devices in ON state) and u7 (all upper devices in 
ON state), give zero voltage with respect to the N-point. For these reasons, they are called 
zero vectors.

If the N-point is isolated, then the sum of the load currents on the three phases is null, 
isA(t) + isB(t) + isC(t) = 0; the phase voltages are directly linked to the logic state of the upper 
devices as follows:

	

u
u
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u
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u

S S S
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a b c
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⎧

⎨
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⎪
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3
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( )
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⎪⎪

⎩

⎪
⎪
⎪

	 (2.2)

The voltage space-vector is then given by replacing (2.2) into (2.1), which yields the 
following:

	
us = + +

2
3

2ud a b cS aS a S[ ] 	 (2.3)

The six active configurations (uk, k = 1,…, 6) give voltage space-vectors with amplitude 
equal to 2ud/3 and phase equal to qk = (k − 1)π/3. Then from (2.3), the generable voltage 
space-vectors therefore are as follows:

	

u
0

s =
=

=

⎧

⎨
⎪

⎩⎪

−( )2
3

1 2 6

0 7

1 3ud
j ke k

k

π/ , , ...,

,
	 (2.4)

The vertices of the nonnull six vectors define the so-called characteristic hexagon of the 
VSI, as shown in Figure 2.2.

Even if the inverter is a highly nonlinear circuit, it is operated like a linear amplifier: its 
output must follow an input reference signal with the same shape and magnified ampli-
tude. This task is performed through a suitable control strategy of the power devices, 
called PWM technique. Several PWM techniques have been proposed in literature whose 
performance can be assessed using the criteria given in the following section [1,2].

*	 In this chapter, the nonpower invariant definition of the space-vector is used (see Chapter 1).



20 Power Converters and AC Electrical Drives with Linear Neural Networks

2.1.1  Performance Criteria

In real working conditions, the desired output of the inverter is different from the ideal 
behavior of a linear amplifier: several parameters, like the distortion of the current wave-
form, the harmonic losses in the power converter and in the load, the oscillation of the 
electromagnetic torque (if the load is a rotating machine drive), and the common mode 
voltages (CMVs), are to be considered in the performance criteria, which are therefore 
important guidelines for the correct choice of the PWM strategy [2,3].

2.1.1.1  Current Harmonics

The rms harmonic current is defined as follows:

	

I
T

i t i t dth rms

T
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1

1

2
[ ( ) ( )] 	 (2.5)

where
i1(t) is the time domain fundamental current
T is the period

It should be noted that this parameter depends on both the modulation algorithm and on 
the load impedance. This last dependence can be avoided using a normalized harmonic 
current (distortion factor):
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in which the harmonic current Ih rms is referred to the current Ih rms six-step obtained with the 
same load but operating by repeating the sequence u1 − u2 − u3 − u4 − u5 − u6 (see Table 2.1) 
with the same period of the fundamental output waveform or six-step operation: in this 
case the obtained line-to-line output voltage waveform exhibits six steps.

At six-step operation, d = 1, however, this parameter can be greater than unity.
The harmonic current of a space-vector trajectory can be computed as follows:
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where the (*) stands for complex conjugate.

FIGURE 2.2
Characteristic hexagon of a VSI inverter.
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The copper losses in the load are proportional to the square of the harmonic current and, 
as a consequence d2 represents the loss factor.

2.1.1.2  Harmonic Spectrum

The synchronized PWM occurs when the switching frequency can be expressed as fs = Nf1, 
where f1 is the fundamental frequency and N is an integer. In this case, the spectrum is com-
posed of discrete current components hi(k · f1) with k the order of the harmonic component:
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It should be noted that all components are normalized as in Equation 2.6 so they do not 
depend on the load.

For nonsynchronized PWM, a continuous amplitude frequency spectrum hd(f) can be 
defined by dividing current spectrum amplitude for the harmonic current in six-step mode. 
The continuous spectrum contains both periodic and nonperiodic components; the hd(f) 
function, differently from a discrete spectrum that is dimensional, is measured in [Hz−1/2].

The normalized harmonic current can be calculated starting from Equation 2.6 for a 
discrete spectrum and for amplitude density spectrum as follows:
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Moreover, multiplying the distortion factor and the switching frequency of the inverter, 
another figure of merit is obtained. This parameter allows comparing different PWM algo-
rithms operated at different switching frequency; the pulse number N must be greater 
than 15, and, for lower values of N, the relation is nonlinear.

2.1.1.3  Maximum Modulation Index

A modulation index can be defined as the normalized fundamental voltage:

	
M

u
u six step

= 1

1( )-
	 (2.11)

where
u1 is the amplitude of the fundamental voltage obtained with the selected PWM
u1(six-step) is the amplitude of the fundamental voltage in six-step operation
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It is verified when the relation 0 ≤ M ≤ 1 is valid and M = 1 means six-step mode operation. 
The maximum achievable modulation index Mmax can vary even of 25%, in dependence of 
which PWM technique is chosen.

It should be noted that the maximum modulation index is important because the power 
delivered by a PWM inverter is proportional to the maximum voltage at the AC side.

2.1.1.4  Torque Harmonics

Torque harmonics are responsible for vibrations and noise in electric drives, whose miti-
gation is important both in civil (e.g., passenger’s comfort) and military (e.g., acoustic 
discretion) applications.

In general, vibrations can have aerodynamic, mechanical, or electromagnetic origin; 
torque harmonics are mainly tied to electromagnetic causes and particularly to harmonic 
currents.

The torque ripple can be expressed as
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where
Temax is the maximum air-gap torque
Teav is the average air-gap torque
TL is the rated machine load torque
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where
Te0 is the desired torque
Tei is the torque at the ith sample time
N is the number of samples

2.1.1.5  Switching Frequency and Switching Losses

Losses in a power switch occur during the conduction and during commutation.
During conduction, lost energy is given by the product of the conduction current (i0), 

the voltage drop of the device (vON), and the conduction time (TON). The mean power 〈PON〉 
during a switching period is given by the following:

	
〈 〉 = =P

i v T
T

i v T fON
ON ON

sw
ON ON sw

0
0 	 (2.13)

where Ts is the switching time duration whose inverse is the switching frequency fsw = 1/Tsw.
During the commutation from conduction to interdiction, the voltage across the device 

rises from vON to the maximum value, and the current falls to zero. During this transient, 
both the voltage and the current are nonnull resulting in power losses.

Power losses during commutation can be described considering the triangle defined by 
the voltage rise, and the current fall, having as the base the sum of the rising time of the 
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voltage (trv) and the falling time of the current (tfi). It is shown in Figure 2.3. Commutation 
is usually delayed respect to the command (td) because of the electronic circuitry needed 
for the command of the power devices.

The energy lost during the transition is given with a good approximation by the area of 
the triangle:

	
E v i t tON OFF rv fi→ = +

1
2 0 0( ) 	 (2.14)

where
v0 is the voltage acting on the power switch during the OFF state
i0 represents its current during the ON state

The analysis of this figure shows that the faster the commutation, the lower the area of the 
aforementioned triangle, the lower the switching losses in the device.

Similar considerations are valid for the transition from interdiction to conduction, con-
sidering now the rise time of the current (tri) and the decay time of the voltage (tfv). In this 
way the mean power loss 〈PSW〉 can be computed:
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It should be noted that both (2.13) and (2.15) depend on switching frequency. The higher 
the fsw, the higher the power losses, and more attention is to be paid to electromagnetic 
compatibility of the system; on the other hand, the dynamic performance of the converter 
is improved, and the size of the filtering reactive devices is less bulky.

Other power losses occur during ON state. In particular, the mean power in a switching 
period is given by 〈PON〉 = i0vontonfsw, where von is the drop voltage due to the conduction cur-
rent i0 and ton is the time in which the power device is in conduction state. However, this 
term is usually negligible compared to the switching losses and the power losses during 
OFF state in which the current is practically null.

Finally, currents depending on switching frequency produce magnetostrictive mechani-
cal deformations in magnetic materials resulting in possible generation of acoustic noise, 
in the range of audible frequencies, between 50 Hz and 10 kHz, where the peak of human 
sensitivity is around 1–2 kHz.
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FIGURE 2.3
Time domain waveform in a power device 
during a commutation from ON to OFF state.
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2.1.1.6  Common-Mode Voltage (CMV)

The CMV at the output of the inverter, defined as uN0 = (uSa + usB + usC)/3, is one of the 
effects of the nonideality of the inverter considered as a linear amplifier. Particularly, even 
if the input references are sinusoidal and represent a symmetrical three-phase system, the 
CMV will be different from zero due to nonideality of the VSI. For each inverter configura-
tion, a value of uN0 is identified in Table 2.1. The spectrum of this waveform depends both 
on the switching frequency and on the speed of commutations.

High-level CMV variations cause high-frequency common-mode currents flowing to the 
ground through the parasitic capacitances between the different parts of the VSI load and 
the ground. In particular, for electric drives with induction machine (IM), these (CMVs) 
can cause the drive to be less reliable: the ball bearings can deteriorate, unexpected fault 
relay tripping can occur, or nearby electronic equipments can be disturbed.

Various kinds of solutions have been devised so far to diminish the common-mode 
emissions. Some of them are hardware solutions based on the application of either passive 
filters [4] or active cancellers adding additional power devices to the converter structure 
[5]. Another idea for lessening the common-mode emissions is to employ modified con-
verter structures, for example, four-leg inverters [6], or to properly design the electrical 
machine [7]. All of the previous solutions imply, however, an increase of the overall cost 
of the drive and a reduction of its reliability. Another approach consists in limiting the 
cause of the common-mode disturbance by proper selection of the switching pattern of 
the inverter [8–10]. This PWM technique is more deeply described in Section 2.2.4.

2.2  Open-Loop PWM

According to the control strategy and particularly the presence or not of a feedback, the 
modulation techniques can be at first classified on open-loop schemes and closed-loop 
schemes as shown in Figure 2.5. The open-loop schemes are based on the application 
of  the voltages generated by inverter on the basis of a reference value on a load (see 
Figure 2.4).

Four main categories can be recognized. The first, named “carrier based”, comprises five 
methods: suboscillation method, modified suboscillation method, sampling techniques, 
SV-PWM, and modified SV-PVM. The second and the third are known as “carrierless 

FIGURE 2.4
Representation of a VSI with open-loop 
control strategy.
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PWM” and “overmodulation” techniques. Finally, the “optimized open loop” is divided 
into harmonic elimination, objective function, and optimal subcycle methods.

2.2.1  Carrier-Based PWM

2.2.1.1  Suboscillation Method

This method employs an individual modulator for each of the three phases. Three sinusoi-
dal voltage references are needed usAref, usBref, and usCref for phase sA, sB, and sC, respectively, 
representing a symmetrical three-phase system; they can be obtained from the reference 
vector usref using the following equations (see Chapter 1):
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These references are compared with a triangular carrier (the same for each phase) whose 
frequency is much higher than the frequency of the references. The result of the com-
parison is a logic signal for each leg of the inverter controlling the complementary power 
switches shown in the block diagram of Figure 2.6. An example of triangular carrier and 
two reference voltages corresponding to ratios between the carrier and the reference 
respectively equals to 1 and to 0.5 in Figure 2.7.

This PWM technique does not exploit the DC link voltage at the best. As a matter of fact, 
the maximum allowed modulation index (see Equation 2.11) is reached when the ampli-
tude of the carriers equals that of the reference that corresponds to Mmax = (π/4) = 0.785, 
obtained with m = 1. In this case, usA0 = Ud/2; taking into account that for six-step opera-
tion, usA0 = (Ud/2)(4/π), it follows that Mmax = π/4 = 0.785. As a consequence, the DC link 
is not fully exploited, and the maximum amplitude of the line-to-line voltage is equal to 
√3Ud/2 = 0.866 Ud. It should be noted that when the switches SA+ and SB− are in the ON state, 
the line-to-line voltage between phases sA and sB is equal to Ud.

Open-loop schemes

Carrier based Carrierless
PWM Overmodulation Optimized

open loop

Modi�ed
space-vector
modulation

Space-vector
modulation

Sampling
techniques

Harmonic
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Modi�ed
suboscillation

method

Suboscillation
method

FIGURE 2.5
Classification of open-loop control strategy.
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2.2.1.2  Modified Suboscillation Method

The above method exploits the DC link poorly; a higher maximum value of the funda-
mental voltage can be achieved by adding to the reference value a waveform with zero 
sequence. As a matter of fact, in the phase voltage, no triple harmonics are present (this 
holds for the general case of three-phase symmetrical PWM waveforms), and because all 
triple harmonics form zero sequences, if the star point of the load is not connected, no cor-
responding current is produced on the load.

A distorted reference with added zero sequence can be obtained in infinite ways, for 
example, if a third harmonic with amplitude equal to 25% of the fundamental is added, the 
maximum modulation index rises to ʹ =Mmax 0.882  [11]. In this case, the technique is called 

Motor

usAref

usBref

usCref

SA
SB+

+

+

–

–

– SC2

3

Triangular
carrier

Udc/2

0

Udc/2
SA–

SA+ SB+ SC+

SC–SB–

FIGURE 2.6
PWM with suboscillation method.
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third-harmonic injection PWM (THI-PWM). If a rectangular waveform of triple funda-
mental frequency is used, the modulation index further increases to ʹ́ = √ =Mmax 3 / 9 7π 6 0 0.  ; 
it represents the maximum value achievable adopting this technique and consequently 
the best DC link exploitation [12]. If a triangular zero sequence with ¼ amplitude of the 
fundamental is added, then the obtained PWM corresponds to the conventional (analog) 
SV-PWM with symmetrical placement of the zero vectors (naturally sampled SV-PWM). 
Figure 2.8 shows a circuit for the implementation of analog SV-PWM [13]. In this scheme, 
the three-phase voltages are rectified to produce their envelope magnitude. This magni-
tude, scaled of a factor 0.5, is added as an offset to each reference voltage.

Figure 2.9 shows the fundamental reference waveform on phase sA, the zero-sequence 
third-harmonic sinusoidal sequence, and the global reference as obtained when the modu-
lation index m = 0.7 and a 25% sinusoidal third harmonic is added, as obtained with the 
THI-PWM.
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Figure 2.10 shows the fundamental reference waveform on phase sA, the zero-sequence 
third-harmonic triangular sequence, and the global reference as obtained when the modu-
lation index m = 0.7 and a 25% third harmonic is added, as obtained with the SV-PWM 
with symmetrical placement of the zero vectors.

2.2.1.3  Sampling Techniques

In the previous suboscillation method, the reference signal is continuously compared with 
the triangular carrier. This is easy to implement by analog circuits but becomes time con-
suming with microprocessor-based circuits. In the following, it is assumed that the carrier 
signal has unitary amplitude while the reference voltage signal is normalized (it takes a 
value between 0 and 1).

In Figure 2.11, a representation of the reference and carrier signal is sketched.
Under this assumption, considering that the slope of the triangular carrier is equal to 

2/TPWM, the equation of the straight line that represents the carrier during 0 < t < TPWM/2 is 
ucarrier = −1 + (4/TPWM)t. If the time t is expressed as t = (TPWM/4)(ucarrier(t) + 1), the switching 
instants t1n and t2n can be computed by imposing that the carrier is equal to the reference 
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signal sampled at time tsn (with sampling frequency fs = fPWM = 1/TPWM), that is, usnref(tsn) = 
ucarrier(t1n) = ucarrier(t2n). To compute t2n, the carrier equation during TPWM/2 < t < TPWM should 
be considered. As a result, the switching instants are the following:
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where the reference signal is assumed to be constant during the time interval TPWM and 
equal to its sampled value; this does not introduce an appreciable error because the fre-
quency of the carrier is typically higher than the frequency of the reference, which means 
that usn(tsn) ≈ usn(t1n) ≈ usn(t2n).

The switching time interval can be therefore computed as follows:
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The timing of the command signal to be applied to the power device is the complementary 
with respect to TPWM. The duty cycle of the phase-n inverter leg δsn = (ton/TPWM), represent-
ing the ratio between the on time ton of its upper device and the TPWM, can be therefore 
computed as follows:
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This last case is known as “symmetrical regular sampling.” If the reference signal is sam-
pled at double sampling frequency 2fs, the method is referred as “asymmetrical regular 
sampling” whose advantages are an improvement of the dynamic response and of the 
harmonic distortion content of the load currents.

Equation 2.19 is derived under the assumption of carrier of unitary magnitude and nor-
malized reference voltage. If the reference voltage is not normalized and the carrier pres-
ents a peak-to-peak amplitude equal to the DC link voltage Ud, which has precise physical 
meaning, the following duty cycle expression can be found:
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This last expression represents the well-known duty cycle of the so-called sinusoidal PWM 
(SPWM). This last expression is more suited for digital implementation of SPWM.

2.2.1.4  Space-Vector Modulation

Space-vector modulation (SV-PWM) has been proposed in mid-80s [14–16]. It differs sig-
nificantly from the previously described SPWM in one main aspect: while the SPWM 
requires separate modulators for each phase of the VSI, the SV-PWM treats the reference 
voltage space-vector as a unitary complex quantity. SV-PWM permits, with respect to the 
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classic SPWM, a lower distortion of the stator voltages and currents as well as a higher 
value of the amplitude of the fundamental component of the stator voltage. This technique 
can be easily implemented in programmable hardware structures (DSP, ASIC, FPGA). As a 
result, a higher flexibility of the control system, a reduction of the number of components, 
and a more compact structure can be achieved. The basic idea of the SV-PWM is to recon-
struct in discrete form the space-vector of the reference voltage usref, which generally does 
not coincide with any of the six active voltage space-vectors that the VSI can generate, in a 
time interval equal to TPWM.

As a matter of fact, when the desired output us does not coincide with one of the space 
state vectors of the characteristic hexagon, it can be built during a time interval equal 
to the modulation time, called TPWM, by using a linear combination of these vectors. In 
Figure 2.12, the vector usref is composed as the weighted sum of the space-vectors u1 and u2 
and a null vector.

The sum of the weighing time intervals is equal to TPWM, and the weights are defined as 
follows:

	

0 u us= −∫ [ ( ) ( )]t t dt
TPWM

sref
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where
usref is the reference voltage space-vector
us is the voltage space-vector generated by the inverter: since it comes from the space-

vectors generated by the inverter, it is a step constant function

The vector usref is rebuilt by using two generable space-vectors belonging to the boundar-
ies of the sector in which usref lies and by null vectors. The crossing from a configuration to 
the following must take place by commuting only one switch of the inverter, resulting in the 
least number of commutations. This explains the use of gray code introduced in Section 2.1.

Equation 2.18 can be rewritten as follows:
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FIGURE 2.12
Decomposition of the reference voltage usref into two vectors 
u1(100) and u2(110).
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where
uk and uk+1 are the nonnull voltage space-vectors to be generated in sequence
u0 and u7 are the null space voltage vectors
Tk, Tk+1, and T0 are, respectively, their weights, or the time during while each uk must be 

operated with the condition that TPWM = Tk + Tk+1 + T0

Because uk and uk+1 are constant during their operation time Tk and Tk+1, Equation 2.19 
can be rewritten as follows:

	 T T TPWM k ku u usref k k 1= + + +1 	 (2.23)

The Equation 2.18 can be split into the two components on the real and imaginary axes; 
this, together with Equation 2.4, results in two equations, while Tk and Tk+1 can be obtained 
as follows:
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where
usDref and usQref are the direct and quadrature components of the reference voltage (in a 

fixed reference system)
|usref| is the module of this vector
αref is the angle that it forms with the direct-axis sD

Finally, the operation time of the null vector is given by the following:

	 T T T TPWM k k0 1= − − + 	 (2.26)

The nonnull space voltage vectors are generally used symmetrically in respect to the 
instant t = TPWM/2. In this case, it is called SV-PWM with symmetrical placement of the 
zero vectors.

Moreover, since the transition from an inverter configuration to the next one must occur 
with a unique commutation, the null vector uo is used at the beginning and at the end of 
the modulation time TPWM, and the null vector u7 is used in the middle of the modulation 
time. Finally, between these two null vectors, first, the vector with odd k and the vector 
with even k are used during the first half time of TPWM; during the second half, they are 
applied symmetrically. Figure 2.13 shows an example of the driver signal on the upper 
devices of the inverter, Ta, Tb, and Tc, to obtain a voltage space-vector inside the first sector 
(0 < αsref < π/3).

The values of Ta, Tb, and Tc depend on the operation time Tk and Tk+1, of nonnull voltage 
space-vectors uk and uk+1, and on the time T0 of null voltage space-vectors u0 and u7. 
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Applying the space-vectors symmetrically with respect to the instant t = TPWM/2, it can be 
noted from Figure 2.13 that, if the reference space state vector lies on the first sector, the 
following equations are valid:
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In practice, since the Equations 2.24 and 2.25 are computationally cumbersome, simpler 
equations giving directly the operation time of the upper devices of the inverter, based on 
the three reference phase voltages, can be utilized under the hypothesis of SV-PWM with 
symmetrical zero vector placement. During the modulation time TPWM, the expression of 
the operation time, Tsn, of the upper device connected to the phase n (n = A, B, C) is given 
by the following:
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FIGURE 2.13
Time domain waveforms of driver signals of VSI upper devices during TPWM.
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where usnref (usnref = usAref, usBref, usCref) is the amplitude of the reference voltage of the phase n 
and u* is given by the following:

	
u u u

n
snref

n
snref* max( ) min( )= − +⎡

⎣⎢
⎤
⎦⎥

1
2

	 (2.29)

The zero-sequence voltage u* corresponds to a triangular third harmonic of amplitude 1/4 
of the fundamental, as shown in Figure 2.10.

The previously described algorithm allows any voltage space-vector to be generated 
with an amplitude lying inside the characteristic hexagon of the inverter.

The corresponding duty cycle of δsn of the phase-n leg is as follows:

	
dsn

snref

d

u u
U

= +
+1

2

*
	 (2.30)

This last expression is valid in the linear range.
If the reference voltages represent a symmetrical three-phase system, the generated volt-

age space-vector draws a circle in the complex plane. The maximum amplitude of the phase 
space voltage vector that can be generated for any value of the angle αsref is given by the 
radius of the circle inscribed in the hexagon, and it is equal to the following (see Figure 2.2):

	
umax . .= = =

2
3 2

1 15
2

0 577
U U

Ud d
d 	 (2.31)

It should be noted that when the reference voltage coincides with one of the space-vectors 
u1 – u6, it can be obtained directly, and the obtained voltage amplitude is equal to Umax, and 
when a smaller amplitude is necessary, it is realized by combining it with the null vector.

The maximum amplitude of the achievable fundamental harmonic of the phase voltage 
is 15% greater than the one obtainable with the traditional suboscillation method (SPWM) 
described in Section 2.2.1.1.

As for the null vector, two redundant vectors are available. The u0 (u7) null vector is used 
when the previous used vector is u2, u4, or u6 (u1, u3, or u5) so that only half bridge com-
mutation occurs.

The method described earlier strongly depends on the modulation time TPWM, while 
some further considerations are necessary. A small value of TPWM improves the reconstruc-
tion of the reference voltage, as long as it is greater than the sampling time of the control 
system; this means 1/TPWM = fPWM = fsampling. In addition, because the modulation frequency 
1/TPWM = fPWM must be also less than the switching frequency of the power devices, the 
upper limit for fPWM is given by the minimum value between the sampling frequency of 
the control system and the switching frequency of the power devices fPWM < min( fsw1, ffs). 
As a consequence, the vector modulation is suitable for those VSIs with fast-power devices 
like IGBTs and MOSFETs.

The vector modulation can be further classified into synchronous and asynchronous 
modulation. With reference to an electric drive, in the asynchronous modulation, fPWM is 
constant no matter what the value of the supply frequency of the stator is. On the contrary, 
in the synchronous modulation, fPWM is tied to the supply frequency of the stator f1 so that 
the ratio fPWM/f1 = p is maintained constant and equal to an integer number p.

The synchronous vector modulation is usually employed in high-power electric drives 
(GTO inverters) where switching losses, which increase with the switching frequency, 
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attain significant values. This is the reason why in these kinds of inverters, the value of p 
is low (actually for f1 constant, a low p means a low fPWM, resulting in a possible low fsw).

The asynchronous vector modulation is used in low-power electric drives working at 
high fsw (IGBT inverters). In this case, p is higher, and fPWM is synchronized with the sam-
pling frequency of the control system. In this case, TPWM is generally chosen to be as much 
as twice the sampling time (TPWM = 2Ts) so that the stator current signals can be sampled 
in the middle of the interval times in which the null vector is applied. With this strategy, 
stator current signals need not be filtered analogically before sampling [17,18].

2.2.1.5  Discontinuous Pulsewidth Modulation

In PWM techniques based on zero-sequence signal injection, the voltage linearity, the 
waveform quality (current ripple), and the switching losses are strongly influenced by 
the choice of the zero-sequence signal (zero-state partitioning). On the basis of these con-
siderations, many researchers have investigated high-performance PWM techniques, 
among which the so-called discontinuous PWM (DPWM). DPWM is also called two-phase 
SV-PWM and is a particular kind of carrier-based technique, where the zero-sequence 
signals are added in such a way that only two phases are switched at the same time. Each 
phase is de facto clamped either to the upper or to the lower DC link bus for a certain angle 
typically (60° or 120°). It adopts only one zero voltage vector for the entire TPWM period. 
Figure 2.14 shows typical switching patterns of the inverter phase sA leg as obtained with 
the DPWM when the phase sA is linked to the upper side of the DC link (DPWMMAX).
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FIGURE 2.14
Switching patterns of the inverter phase sA leg with DSPWM.
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As a result, DPWM permits a 33% reduction of the effective switching frequency. 
However, switching losses depend strongly also on the load power factor, which permits a 
further reduction of the switching losses.

Depenbrock [17] developed a DPWM technique, later called discontinuous, in the fol-
lowing referred as DPWM1. Since, during each carrier cycle, one phase is not modulated, 
and correspondingly it is clamped to the upper or lower DC link terminal, DPWM1 per-
mits a wider linearity range than SPWM, reduced switching losses, and superior high 
modulation range current waveform quality.

The poor low modulation range performance, like narrow pulse problems and poor 
current waveform quality as well as a certain complexity in its implementation, limited 
its practical application. Ogasawara et al. [16] developed a direct digital method with 
superior high modulation range waveform quality and reduced switching losses. It was 
later discovered that this space-vector-theory-based method has a triangle-intersection-
implementation-based DPWM equivalent [18], in the following referred as DPWM2. This 
modulator has been later reinvented and called “minimum switching losses PWM” [19]. 
These last two DPWMs as well as the main ones in literature [20,21] are described by the 
voltage waveforms in Figure 2.15.

As far as DPWMMIN and DPWMMAX techniques are concerned, the zero-sequence 
signal to be added to the sinusoidal reference is described by the following equations:
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ud

n
snref0 2

= − −min( ) for DPWMMIN 	 (2.32)
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snref0 2

= −max( ) for DPWMMAX 	 (2.33)

It means that with DPWMMIN, the lower sections of the three-phase envelopes are 
clamped to the lower DC bus; with DPWMAX, the higher sections of the three-phase enve-
lopes are clamped to the upper DC bus. With these DPWMs, all the phases are connected 
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Modulation waveforms for different PWM techniques.
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only to one side of the DC bus, respectively, the upper or the lower. Moreover, each phase 
is connected to the DC bus for an electrical angle equal to 120°.

As far as DPWM0, DPWM1, and DPWM2 are concerned, the idea is to clamp each phase 
alternatively on the upper and on the lower DC bus for an electrical angle of 60°. The dif-
ference among these techniques lies on the angle in correspondence to which each phase is 
connected to the DC bus. Specifically, DPWM0 clamps with a leading angle of 30°, DPWM1 
clamps with voltage peaks, and DPWM2 clamps with a lagging angle of 30°. Since the main 
difference between them lies in the angle, an attempt to unify them has led to the develop-
ment of a generalized DPWM (GDPWM) technique [22,23]. To properly describe GDPWM, 
a modulator phase angle ψ is defined, whose value zero is defined in correspondence to 
the intersection point between the two reference sinusoidal modulation waves at ωt = π/6. 
From ψ to ψ + π/3, the zero sequence is defined as the difference between the satura-
tion voltage (Ud/2 or −Ud/2) and the reference sinusoidal modulation signal that success-
fully passes the so-called maximum magnitude test. The three-phase modulation signal usnref 
(n = A, B, C) is phase shifted by ψ − π/6 giving three new signals usnrefx; the maximum 
amplitude of these new signals determines the zero-sequence signal in this way:

	
u sign u

U
usnref

d
snref0 2

= −( * ) 	 (2.34)

where usnref*  is the shifted phase voltage usnrefx currently presenting its maximum value in 
absolute terms, | * | max (| |)u usnref

n
snrefx= .

Adding this zero-sequence signal to the three original modulation waves usnref, the 
GDPWM waves are generated. The only control variable is the angle ψ, whose variation 
range is between 0 and π/3. Figure 2.16 shows the modulation and zero-sequence wave-
forms for four values of ψ. It can be noted that DPWM0 corresponds to ψ = 0, DPWM1 
corresponds to ψ = π/6, and DPWM2 corresponds to ψ = π/3.
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Modulation and zero-sequence waveforms obtained with GDPWM for four values of ψ.
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2.2.1.6  General Expression of the Duty Cycle in Carrier-Based PWM Techniques

Equation 2.20, rewritten here for easy readability, describes the expression of the duty 
cycle δsn to be applied to the n-th phase of the inverter leg in the case of SPWM [24]:
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= +
1
2

	 (2.35)

THI-PWM and DPWM can be obtained by Equation 2.35 by adding a suitable zero-
sequence signal to the reference. The following expression of the duty cycle can be 
therefore obtained:
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where u0 = f(3ωt ) is a zero-sequence signal to be determined according to the assigned 
target conditions. The expression of the duty cycle with the standard SV-PWM is given in 
Equation 2.30, rewritten here for readability:
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where
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A general expression for the expression of the duty cycle synthetizing the most carrier-
based PWM techniques can therefore be found modifying the value of u* in Equation 2.37 
in this way:
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where
k is a parameter taking into consideration the unequal null-state sharing
g is a parameter permitting to take into consideration even the DPWM techniques

As a matter of fact, the unequal share of null vectors at the beginning and the end of each 
subcycle allows obtaining different carrier-based PWM techniques [18,25].

If g = 0 and k is selected on the basis of this equation
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then the classic SPWM is obtained. If g = 0 and k = 0.5, then the standard SV-PWM is 
obtained. If g = 1 and if k = 1, then the DPWMMAX is obtained, while if g = −1 and if 
k = 0, then the DPWMMIN is obtained. The GDPWM [26] can be obtained by switching k 
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between 0 and 1 and correspondingly g between −1 and 1 at each interval of π/3 electrical 
degrees and changing only the phase with respect to the reference frame.

2.2.1.7  Modified Space-Vector Modulation

As shown in Figure 2.10, the SV-PWM utilizes a vector sequence in which the null vector is 
present both at the beginning and at the end of each subinterval of time TPWM/2.

The modified SV-PWM uses the null vector only at the beginning of the first subinterval 
of time TPWM/2 and at the end of the second subinterval. While the SV-PWM implies three 
switching states for each subinterval of time TPWM/2, the modified SV-PWM has only two 
switching states; consequently their duration is reduced to maintain the same duration 
TPWM. A comparison between the two sequences is shown in Table 2.2.

The choice between these two techniques depends on the value of the reference vec-
tor and implies different harmonics of the inverter output current. It can be seen that by 
adopting the modified switching sequence, the harmonic content is lower at a high modu-
lation index; on the contrary, using SV-PWM, a low harmonic current occurs with a low 
modulation index.

2.2.1.8  Synchronized Carrier Modulation

The synchronized carried modulation is a particular case of the aforementioned modula-
tion techniques and implies an integer value of the ratio between carrier frequency and 
fundamental inverter output frequency.

In a carrier-based modulation, the carrier frequency is usually fixed, but the frequency 
of the reference signal can vary; this is identified as asynchronous modulation. As a conse-
quence, the switching sequence can be nonperiodic, and the Fourier spectrum of the output 
waveform contains also subharmonics whose frequency is lower than the carrier sidebands.

Using this technique, the sampling instants in a period of the fundamental are equally 
spaced and are given by tsn = (n/N · f1); n = 1, 2…N, and the reference signal value is in p.u. 
u*(tsn) = m · sin(2πf1tsm), where f1 is the fundamental output frequency. In a microprocessor-
based control system, these values can be calculated, stored in a memory, and then utilized 
in Equation 2.17 to determine the switching instants.

2.2.2  Carrierless PWM

All the modulation techniques described in the last section are based on the use of a time 
base. Some of these suboscillation methods, for example, use a triangular carrier; others like 

TABLE 2.2

Comparison between SV-PWM and Modified SV-PWM Sequences

SV-PWM

Vector u0 u1 u2 u7 u7 u2 u1 u0

Time T0/2 T1 T2 T0/2 T0/2 T2 T1 T0/2
TPWM/2 TPWM/2

Modified SV-PWM

Vector — u0 u1 u2 u2 u1 u0 —
Time — T0/3 2T1/3 T2/3 T2/3 2T1/3 T0/3 —

TPWM/2 TPWM/2
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sampling techniques adopt directly a set of equations; in any case, the time interval in which 
the driving pulse is built remains constant (in Figure 2.9, it is indicated as TPWM for SV-PWM). 
This results in a periodical signal and in the presence of harmonics with frequencies equal 
to the fundamental of the carrier and its harmonics. This phenomenon has not only electri-
cal consequences, but also effects connected with the use of machines and electric drives in 
civil (e.g., passenger’s comfort) and military (e.g., acoustic discretion) applications.

In order to avoid the harmonic energy to be concentrated around the carrier fundamen-
tal frequency, it is possible to vary it in a random manner. With reference to suboscillation 
method this means keeping constant the triangular shape with a linear slope and modi-
fying the period according to a random number generator. Finally, to avoid anomalous 
thermal stress to power devices, the average switching frequency must be constant. The 
resulting spectrum in case of random modulation exhibits the lack of steep peaks on the 
contrary, the spectrum is almost continuous maintaining the overall energy level. In this 
way, noise is not concentrated, but it appears as a “white noise” [2].

2.2.3  Overmodulation

In Section 2.2.1.1, which deals with the suboscillation method, it has been shown that when 
the amplitude of the reference signal is equal to the amplitude of carrier, then m = 1 and uSA0 = 
(Ud/2). By increasing the amplitude of reference signal, the six-step operation could be hypo-
thetically reached, to which corresponds a generated voltage equal to uA0 = (Ud/2)(4/π).

When m < 1, the amplitude of the phase voltage increases linearly with m; for m > 1, the 
relationship becomes nonlinear. The operating region in correspondence to which m > 1 is 
called overmodulation region.

As far as SV-PWM is concerned, the overmodulation behavior can be considered in this 
way [27,28]. It is almost apparent from averaging the voltage space-vector to be synthesized, 
that the higher the modulation index M, the lower the application times T0 and T7 of the 
zero voltage vectors u0 and u7. The overmodulation region starts when the circular path of 
the reference voltage vector usref coincides with the circle inscribed in the inverter hexagon. 
The condition T0 = 0 is reached when M = Mmax2, which happens when the circular path 
of usref touches the inverter hexagon itself (see Figure 2.17). At this point, the controllable 
region of linear modulation finishes. On the other hand, the six-step mode corresponds to 
the maximum generable voltage, to which corresponds M = 1. The control of the voltage in 
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FIGURE 2.17
Overmodulation mode 1: trajectory of the output average 
voltage vector.



40 Power Converters and AC Electrical Drives with Linear Neural Networks

the region Mmax < M < 1 is achieved by overmodulation. Overmodulation techniques are 
subdivided into two modes, called modes 1 and 2. In mode 1, the trajectory of the average 
voltage space-vector follows a circle of radius M > Mmax2 as long as the circle arc is located 
inside the hexagon, tracking the hexagon itself in the remaining part of the path.

In this case, if uk and uk+1 are the voltage vectors that should synthesize the reference volt-
age vector usref, whose angular position is αref; then the respective application times Tk and 
Tk+1, when the reference trajectory lies on the inverter hexagon, are computed as follows:
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Overmodulation mode 2 is reached when M > Mmax3 = 0.952, in correspondence to which 
the length of the arcs reduces to zero and the trajectory of the average stator voltage vec-
tor becomes purely hexagonal. In this mode, the speed of the average voltage vector is 
controlled along the linear trajectory by varying the duty cycle. The higher the duty cycle, 
the higher the speed of the voltage vector in the middle of the central part of the hexagon 
path and the lower the speed in correspondence to the corners. In synthesis, the higher 
the duty cycle, the closer the behavior of the SV-PWM to the six-step operation. Ideally, 
when six-step operation is reached, the speed at the center is infinite while the speed at the 
corners is null.

A way to perform overmodulation mode 2 has been proposed in Ref. [29]. In this case, 
the trajectory of the average voltage vector changes smoothly between the inverter hexa-
gon and the six-step operation. To achieve that, both the magnitude and the phase of the 
reference voltage vector are to be modified. The current angular position αref becomes αrefp, 
which can be computed as follows:
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where αh is defined as in Figure 2.18. In a nutshell, the modified vector is held at the ver-
texes of the hexagon for a certain angle αh, while it tracks the hexagon itself for the remain-
ing part of the switching period TPWM. αh, defines the time inside which the voltage vector 
remains at the vertexes, and is a nonlinear function of the modulation index M, which can 
be piecewise linearized as follows [29]:
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2.2.4  SV-PWM for the Minimization of the Common-Mode Emissions

The fast switching frequency of PWM techniques when used in variable speed drives 
has, among other detrimental effects, the drawback of generating high-level CMV varia-
tions. As a result, high-frequency common-mode currents flowing to the ground through 
the parasitic capacitances between the different parts of the drive and the ground occur, 
resulting in the drive itself to be less reliable. The ball bearings can deteriorate, unex-
pected fault relay tripping can occur, or nearby electronic equipments can be disturbed. In 
general, the faster the variation of the CMV, the smaller the machine-to-ground common-
mode capacitive impedance: in this respect, the trend to increase the switching frequency 
of the power devices causes an unavoidable increase of these effects.

A possible way to reduce the variation of the CMV and consequently of the common-
mode currents is to act directly on the switching pattern of the VSI and then on the PWM 
strategy. In this regard, two PWM strategies have been devised for the reduction of the 
common-mode emissions [8]. The first PWM technique, although effectively reducing the 
common-mode currents, is affected by a heavy limitation on the maximum generable sta-
tor voltage. The second PWM technique permits an increase of the maximum allowable 
stator voltage at the cost of a slight increase of the common-mode currents.

2.2.4.1  Common-Mode Voltage

In a star-connected three-phase electric machine, the CMV uN0 is given by the following:

	
u

u u u
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0

0 0 0

3
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where usA0, usB0, and usC0 are the inverter output phase voltages referred to the medium 
point of the DC link bus, which in this case is assumed to be connected to ground. The 
lack of this connection to ground causes an additional voltage term. If the machine is sup-
plied with a symmetric sinusoidal three-phase voltage, uN0 is instantaneously equal to 
zero. However, when the machine is supplied by an inverter, the CMV is always different 
from zero, and its instantaneous value can be computed on the basis of the DC link voltage 
(Ud) and the switching pattern of the inverter, as shown in Table 2.3 (ui stands for the ith 
stator voltage space-vector).
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2.2.4.2  Switching Strategy

Table 2.3 shows that if only even or only odd active voltage vectors are used (uk, with k, 
respectively, even or odd), no CMV variation is generated. If a transition from an even volt-
age vector to an odd one (or vice versa) occurs, a common-mode variation of amplitude 
Ud/3 is generated. If a transition from an odd (even) voltage vector to the zero (seventh) 
voltage vector occurs, a common-mode variation of amplitude Ud/3 is generated. Finally, if 
a transition from an odd (even) voltage vector to the seventh (zero) voltage vector occurs, a 
common-mode variation of amplitude 2Ud/3 is generated. Thus, from the point of view of 
common-mode emissions, the worst case is a transition from an odd (even) voltage vector 
to the seventh (zero) voltage vector. For this reason, whatever inverter control technique 
is devised to minimize the common-mode emissions of the drive, the exploitation of both 
null voltage vectors (zero and seventh) should be avoided.

The best way to minimize the variations of the CMV is to devise a PWM technique in 
which either only an odd or only an even voltage space-vector is used. In this way, basi-
cally no variation of the CMV occurs, as clearly apparent from Table 2.3. In this case, if a 
space-vector averaging approach is adopted and the odd vectors are chosen, the following 
expression holds:

	 T T T TPWM refu u u u= + +1 1 3 3 5 5 	 (2.44)

with

	 T T T TPWM = + +1 3 5 	 (2.45)

With such a PWM technique, the CMV is maintained constant at the value −Ud/6. 
Alternatively, the same kind of equations could be written with the even voltage space-
vectors, and the CMV would be maintained at the value Ud/6. With such an approach, 
the linear region achievable with this PWM technique is defined by the circle inscribed in 
the triangle, as shown in Figure 2.19. The maximum sinusoidal phase voltage that can be 
synthesized is Ud/3, which is quite limited.

TABLE 2.3

Inverter States and CMVs

State usA0 usB0 usC0 uN0

u0 (0, 0, 0) −ud/2 −ud/2 −ud/2 −ud/2
u1 (1, 0, 0) ud/2 −ud/2 −ud/2 −ud/6
u2 (1, 1, 0) ud/2 ud/2 −ud/2 ud/6
u3 (0, 1, 0) −ud/2 ud/2 −ud/2 −ud/6
u4 (0, 1, 1) −ud/2 ud/2 ud/2 ud/6
u5 (0, 0, 1) −ud/2 −ud/2 ud/2 −ud/6
u6 (1, 0, 1) ud/2 −ud/2 ud/2 ud/6
u7 (1, 1, 1) ud/2 ud/2 ud/2 ud/2

Source:	 Cirrincione, M. et al., New direct power control 
strategies of three-phase VSIs for the minimization 
of common-mode emissions in distributed genera-
tion systems, in The Forty-Second Annual Meeting of 
the IEEE Industry Applications Society (IAS 2007), 
New Orleans, LA, September 23–27, 2007.
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In order to increase the maximum value of generable voltage, a second PWM strategy 
has been developed. The complex plane has been divided into six sectors of π/3 ampli-
tude, which, however, has been rotated of an angle π/6 in the positive angular direction. 
Whenever the voltage reference vector lies in the kth sector, the kind of vectors to be used 
to synthesize it is defined by the sector itself. In details, when the voltage reference vector 
lies in the first sector, then only odd voltage vectors are used, while if it lies in the second 
sector, then only even voltage vectors are used. In this way, only six pulses of the CMV are 
generated inside a period of the fundamental waveform. Equations 2.44 and 2.45, and the 
corresponding ones written for the even space-vectors are thus used when the reference 
vector lies, respectively, in an odd or in an even sector. As a result, the average voltage 
space-vector is limited by the six-point star as in Figure 2.20. Correspondingly, the maximum 
sinusoidal phase voltage that can be synthesized is increased to ( )2 3 9Ud / .

Figure 2.21 shows the switching pattern of the inverter when the voltage reference lies in 
the first sector. It could be noted that, differently from the other PWM techniques, there is 
never a time interval in which two legs present the same switching configuration.

2.2.5  Optimized Open-Loop PWM

For high-power inverters, some precautions are necessary for avoiding high-power losses. 
Firstly, low switching frequencies are used, (see Equation 2.5); then only synchronized 
pulse schemes are adopted to minimize the generation of subharmonic components, and 
there are some switching instants that are generally computed off-line to create a priori 
optimal switching patterns. These patterns differ depending on the optimization objective. 
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FIGURE 2.19
Linear region obtainable with the first modified PWM strategy.
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FIGURE 2.20
Linear region obtainable with the second modified 
PWM strategy.
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The performance is usually optimized in steady-state conditions because transients sel-
dom occur. Three main techniques can be recognized: harmonic elimination, objective 
functions, and optimal subcycle method.

The harmonic elimination technique focusses on a specific harmonic value to be elimi-
nated. This is mandatory, for example, in case of mechanical resonance in electric drives 
excited by torque harmonic induced by the inverter supply [30].

The objective function techniques try to minimize a target parameter: it can be the loss 
factor d2 defined in Equation 2.6 and (2.9) [31] or the highest pulse of the phase current [32] 
or the maximization of the efficiency of inverter/machine system [33].

The optimal subcycle method is based on the variation of TPWM to build the output 
voltage in SV-PWM. The target is to nullify the instantaneous distortion current at the 
beginning and at the end of each TPWM/2 in which Tk, Tk+1, and T0 are calculated. Some 
sets of optimal sequences for Tk, Tk+1, and T0 are calculated in advance and utilized 
depending on the reference signal [3].

2.2.6  Experimental Verification of Open-Loop PWM Techniques

This section shows some simulation and experimental results of two PWM techniques, the 
SPWM, explained in Section 2.2.1.1, and the SV-PWM explained in Section 2.2.1.4.

Simulations have been performed in MATLAB®–Simulink® environment; experimental 
results have been carried out on a 7 kW three-phase IGBT inverter prototype. The PWM 
frequency has been set to 5 kHz. The inverter supplies an IM, and is driven by a simple 
scalar control based on impressed voltage.

Figure 2.22 shows the numerical simulation of the logic command signals, in one PWM 
period, of the upper IGBTs of the three inverter legs when the SV-PWM with symmetrical 
zero vectors is used. Figure 2.23 shows the waveforms of the reference voltage and of the 
phase voltage synthesized by the inverter when a reference voltage of amplitude equal 
to 103 V corresponding to a rotating speed of the machine of 50 rad/s has been given, 
obtained, respectively, with the SPWM and the SV-PWM. Figure 2.24 shows the experi-
mental waveforms of the logic command signals, in one PWM period, of the upper IGBTs 

FIGURE 2.21
Switching pattern of the VSI when the voltage 
reference vector lies in the first sector.
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of the three inverter legs when the SV-PWM is used. It should be noted a good correspon-
dence between the simulated and the experimental waveforms of the command signals.

A comparison between Figures 2.22 and 2.24 shows that the SV-PWM is characterized 
by a time interval, centered in the middle of TPWM, in which the zero vector u7 is applied.

Figure 2.25 shows the experimental waveforms of both the reference and measured 
phase voltages obtained, respectively, with SPWM and SV-PWM. The tests have been done, 
as in simulation, by imposing a reference voltage of amplitude equal to 103 V correspond-
ing to a rotating speed of the machine of 50 rad/s. By observing these waveforms in time 
domain, any difference is hardly noticeable; on the contrary, in frequency domain, the 
spectral composition (obtained with FFT) exhibits the presence of harmonics around the 
switching frequency (5 kHz) whose amplitudes are lower in the case of SV-PWM both in 
the low and in the high frequency range, see Figures 2.26 and 2.27. Moreover, the SV-PWM 
offers lower frequency fundamental harmonic and correspondingly a lower THD% (8.56% 
for SV-PWM against 11.94% for SPWM).
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SV-PWM: simulation of the logic command sig-
nals, in one PWM period, of the upper IGBTs of 
the three inverter legs.
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Figures 2.28 and 2.29 show the duty cycles, obtained with both SPWM and SV-PWM, 
under the same working condition. It should be noted that as far as SPWM is concerned, 
the duty cycles are sinusoidal waveforms, while as far as SV-PWM is concerned, the duty 
cycles present the typical triangular triple harmonic content added to the fundamental.

Finally, Figures 2.30 and 2.31 show the reference and measured phase voltage obtained 
with the SV-PWM in the overmodulation mode 1 working region, obtained, respectively, 
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in numerical simulation and experimentally. In particular, they refer to a reference volt-
age of amplitude equal to 357 V corresponding to a working speed of 172 rad/s; the test 
corresponds to a voltage space-vector whose amplitude is comprised between the circle 
inscribed in the inverter hexagon and the inverter hexagon itself. This is confirmed by 
Figure 2.32, showing the reference and real average voltage space-vectors loci during this test. 
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It can be observed that the average voltage vector coincide in some parts with the reference 
while in others lies on the inverter hexagon, as expected.

Figure 2.33 shows the spectrum obtained with the FFT of the inverter phase voltage. The 
THD% in this case is equal to 4.56. Finally, Figure 2.34 shows the duty cycles obtained with 
SV-PWM in the same working condition. It is clearly observable the saturation duty cycle 
to one in a long time interval as expected.

FIGURE 2.32
Loci of the reference and average voltage space-vector 
in overmodulation.
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2.3  Closed-Loop Control of VSIs

Closed-loop schemes, differently from open-loop ones, inject currents; this approach 
requires a feedback in which load currents are sensed and compared with the desired ones.

In the case of grid inverter connection, when a renewable supply is available, the grid 
represents a load that imposes the voltage. The inverter is required to inject current that 
depends on the power given by the source.

A schematic representation of inverter with current feedback is given in Figure 2.35. The 
currents are measured and compared with reference ones; the error signal is given to the 
controller/modulator block whose outputs are the driving power switch signal. The struc-
ture of this block is connected with the loop control strategy.

It should be noted that in any case the resulting current is obtained on the basis of a 
voltage applied to the load impedance; as a consequence, a dependence on this impedance 
is expected. This situation is different from current source inverters (CSIs); however, the 
most applications are based on VSIs rather than CSIs mainly because of the characteristics 
of power switches.

2.3.1  Classification of Closed-Loop Control Strategy

Figure 2.36 shows a classification of closed-loop control strategies. Closed-loop PWM con-
trol can be divided into nonoptimal methods and closed-loop PWM with real-time opti-
mization. Nonoptimal methods include hysteresis current control, suboscillation current 
control, and space-vector current control. Closed-loop PWM with real-time optimization 
methods contains predictive current control, pulsewidth control with field orientation, 
and trajectory tracking control.
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2.3.1.1  Hysteresis Current Control

Hysteresis current control belongs to the so-called on-off controllers; each measured cur-
rent is compared to the desired one, and the error signal is fed to a two-level hysteresis 
comparator whose output is the driving signal of the corresponding inverter leg. The dia-
gram of this control strategy is shown in Figure 2.37. By comparing this last figure with 
Figure 2.35, it can be noted that the controller/modulator block is represented by the hys-
teresis comparators.

Three hysteresis comparators are present, one for each phase. The switching status of 
each leg does not depend on the other legs. The error of each current is maintained within 
the hysteresis bandwidth. Among advantages of these strategies, there are the inherent 
simplicity and the good dynamic performance. On the other hand, some disadvantages are 
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that the switching frequency varies with load parameters and AC voltage, and the opera-
tion is influenced by the randomness of hysteresis controllers that are independent to each 
other. Due to these reasons, the current error in isolated neutral system can be twice of 
the hysteresis band. Finally, subharmonics can be generated. Figure 2.38 shows the wave-
forms of the reference and measured stator currents, as well as the bandwidth limits of the 
hysteresis controller, obtained in numerical simulation on an FOC drive based on injected 
currents where current controllers are based on hysteresis comparators. The parameters of 
the machine under tests are given in Table 4.1. The upper and lower limits of the hysteresis 
controllers have been set equal to almost 10% of the reference current amplitude. It can be 
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observed that the real current is inside the limits of the bandwidth controller, as expected. 
It should be also noted that the reference current is not perfectly sinusoidal but more irreg-
ular, as expected since it is generated by the output of the flux and speed controllers.

2.3.1.2  Suboscillation Current Control

In this strategy, the error signal is processed by a proportional integral (PI) controller, and 
then the driving signals are obtained by a comparison with a triangular carrier. The PWM 
is the one described in the suboscillation method; however, in this case, the current ripple 
is fed back, and it influences the switching times (Figure 2.39). This interaction can be 
minimized by a high gain in the PI controller while the integral part reduces the error at 
low frequency. A steady-state tracking error is to be expected; the higher the proportional 
gain of the PI, the lower the tracking error.

For correct operation, the slope of the error signal must be lower than the slope of the 
carrier. Considering the representation for a phase as in Figure 2.40, where the connection 
to an IM is accounted for, the motor is modelled by a series of the transient stator induc-
tance Ls with rotor resistance Rs, the PWM inverter is represented by a constant gain K, the 
counter electromotive force by Es, and the PI controller has a gain KI and a time constant T.
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As it will be explained in Chapter 10, the same consideration holds for the connection 
of the inverter to a grid. In this case, instead of the stator inductance, the interconnecting 
inductance with its parasitic resistance while, instead of the counter electromotive force, 
the grid voltage have to be considered.

The condition that ties on the slope current error and the carrier slope is as follows:

	

d
dt

i i V fsAref A t t( )
max

− < 4 ˆ 	 (2.46)

where V̂t and ft are the carrier amplitude and frequency, respectively.

The maximum slope of the reference current is given by the following:
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The maximum slope of inverter current is obtained when the voltage across the induc-
tance is maximum:
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The condition (2.28) becomes
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sAref t t

+
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2
2 4π ˆ ˆ 	 (2.49)

Once the grid inductance is known, (2.31) allows the triangular carrier parameters, V̂t and 
ft, to be chosen.

2.3.1.3  Space-Vector Current Control

As explained in Section 2.2.1.4, the SV-PWM utilizes the null vector at the beginning, at the 
end, and at the center of TPWM. In simple words, if the current signal is always sampled at 
t = TPWM/2 (see Figure 2.13), one is sure that the null vector is applied, and it implies that 
harmonic current is not present in the signal to be compared with the reference one. This 
overcomes one of the main limits of the other two techniques in which the harmonic cur-
rent can influence the control strategy performance.

Among PI controllers that utilize space-vector theory, three techniques are recogniz-
able: stationary vector controller, synchronous vector controller, and stationary resonant 
controller.

2.3.1.3.1  Stationary Vector Controller

In a three-phase system with isolated neutral, the knowledge of only two currents is neces-
sary; in this case, the controller can be based on two PIs and a 3 → 2 coordinate transforma-
tion as described in (1.24). A scheme of the stationary PI controller is drawn in Figure 2.41. 
Comparing this scheme with that of Figure 2.39, it should be noted that only two PIs are used; 
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on the other hand, two coordinate transformation blocks are necessary. Moreover, this strat-
egy acts on AC current components; therefore a steady-state tracking error is to be expected.

2.3.1.3.2  Synchronous Vector Controller

The steady-state tracking errors can be eliminated by using a synchronous vector controller. 
Differently from the stationary one, currents are converted in a rotating synchronous refer-
ence frame; as a consequence, they are DC quantities, and the PI controllers are able to con-
trol the steady-state error to zero. On the other hand, this scheme is more complicated than 
the stationary controller and requires the knowledge of the angle needed for the coordinate 
transformation. A scheme of the synchronous vector controller is drawn in Figure 2.42.

An equivalent synchronous controller in stationary coordinates (sD and sQ) has been pro-
posed in Ref. [34]; this solution generates the reference voltages even if the corresponding 
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error is null, thus avoiding steady-state error; however, it has a dynamic performance 
worse than that of the synchronous controller due to the cross coupling of sD and sQ com-
ponents. The corresponding scheme is shown in Figure 2.43.

2.3.1.3.3  Stationary Resonant Controller

In the stationary reference frame, the PI compensators of Figure 2.41 are substituted by a 
controller that has the same DC control response but centered on the control frequency.

The transfer function of PI controller in a synchronous reference frame is given by 
the following:

	
G s K

K
s

( ) = +1
2 	 (2.50)

if it is converted from the synchronous to the stationary frame the transfer function of the 
resonant controller is obtained.
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+

1
2

2 2w
	 (2.51)

Equation 2.33 exhibits an infinite gain at the resonant frequency defined by ωs ; this is the 
condition that gives a zero steady-state tracking error [35]. The resonant controller scheme 
is shown in Figure 2.44.

2.3.1.4  Closed-Loop PWM with Real-Time Optimization

Closed-loop PWM techniques with real-time optimization tend to be used mainly in high-
power industrial and traction AC drives [36], where power devices are predominantly thyris-
tors or, at increasing powers, even GTOs. For such applications, power converter switching 
losses play a relevant part among the overall losses. For such a reason, switching frequency 
is typically maintained low, around hundreds of Hertz. The reduction of the switching 
frequency is, on the other hand, the cause of increase of the stator current harmonics and 
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correspondingly of the torque ripple as well as of further machine losses. A suitable trade-off 
between the reduction of the switching losses and the current harmonics is the adoption of 
optimal switching strategies for the inverter control. A simple way to do that is to determine 
the optimal switching patterns off-line [37]. The algorithm, in this case, optimizes the switch-
ing angles (see Figure 2.45) under the hypothesis of steady-state behavior of the machine. The 
switching angles are stored on a look-up tables (in a memory of the drive system) and then 
recalled on-line by the inverter control system. This method obviously provides very good 
results at steady-state and quasi steady-state, but presents several limitations during dynamic 
behavior. Better results can be achieved with the predictive control, the pulsewidth control 
with field orientation, and the trajectory tracking control, as shown in the following [37].

2.3.1.5  Predictive Current Control

Among the closed-loop PWM techniques with real-time optimization, an interesting solu-
tion is the so-called predictive current control [38–40]. Predictive current control presents 
some common features with methodologies based on look-up tables. These methodologies 
have been applied mainly in electric drive control. In both techniques, the underlying idea 
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is to control the stator current by suitably limiting it within some boundaries. One way is 
to select a boundary of circular shape centered on the apex of the reference stator current 
space-vector isref (see Figure 2.46). Whenever, during the operation of the drive, the stator 
current space-vector is touches or overcomes instantaneously its circular boundary, then the 
subsequent switching configuration of the inverter is determined in two phases: a predic-
tion and an optimization phase. During the prediction phase, the loci of the stator current 
space-vector for each switching pattern of the inverter are computed, and, correspondingly, 
the time needed for reaching again the circular boundary is predicted. The prediction is 
made on the basis of a simplified mathematical model of the machine. The control system 
takes into consideration the movement of the circular boundary in the sD–sQ plane due to 
the modification of the reference current. The prediction of the times in which the stator 
current space-vector lies inside its boundary is made for all the inverter switching patterns. 
Finally, the switching pattern ensuring the maximum crosswalk time inside the current 
error boundary is selected as the optimal choice. This kind of selection, providing the longest 
possible duration between two subsequent switching instants, permits the switching fre-
quency to be minimized. This optimization can be performed, taking into consideration the 
next two inverter switching patterns. The entire algorithm, run on a DSP, typically requires 
a sampling time of about 20 μs. This delay time can be dealt with by the system only at 
low switching frequencies. At increasing frequencies, a so-called double prediction method 
should be used. The prediction of trajectories is made by adopting a lower sampling time on 
the basis of the prediction of the switching pattern at the following boundary intersection. 
Figure 2.47 shows the block diagram of the predictive current control system of an AC drive.

2.3.1.6  Pulsewidth Control with Field Orientation

To further reduce the inverter switching frequency, which could be needed for very high-
power drives, a rectangular current error boundary could be devised instead of a circular 
one [36,41]. The rectangular boundary should be aligned with the rotor flux space-vector 
of the machine (see Figure 2.48). The idea is to transfer the biggest part of the stator current 
harmonic distortion on the rotor flux axis, where it does not provide a significant influence 
on the machine electromagnetic torque. In this way, the harmonic content of the stator 
quadrature component isyry  is negligible. At the same time, since in the rotor flux-oriented 
reference frame the system is represented on the direct x axis by a first-order system with 
time constant equal to the machine rotor time constant Tr, its typical big value is able to 
filter with a low pass behavior the residual effect caused by the harmonics in the stator 
direct current component isxry  on the rotor flux amplitude. On the basis of the earlier consid-
erations, a current trajectory-oriented control scheme can be devised which is able to force 
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tive boundary.
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a small tracking error on isyry , while permitting a high tracking error on isxry . As a matter of 
fact, to do that, the error boundary on the x axis (aligned with the rotor flux space-vector) is 
much longer than that on the y axis. In this way, the system is devised so that the switching 
on the direct x axis will be avoided as long as possible.

Also in this case, the choice of the switching patterns is made on the basis of a prediction, 
satisfying the criterion of minimization of the switching frequency. It has been demon-
strated that the use of a rectangular boundary instead of a circular one leads to a further 
reduction of the switching frequency of the inverter [36].

2.3.1.7  Trajectory Tracking Control

The idea of trajectory tracking control arises from the following considerations. The off-
line optimization method [36] imposes a priori the entire set of switching patterns of the 
inverter within a period of the fundamental. This feature makes the dynamic performance 
of the system poor, so poor to be sometimes unfeasible. This is due to the fact that, dur-
ing transient operation, the VSI reference voltage becomes nonsinusoidal. The switching 
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pattern is, even in these conditions, assembled on the basis of precalculated switching pat-
terns, which are, however, correctly associated only with steady-state working conditions. 
As a result, the optimization process fails, and the so-called dynamic modulation error 
arises, which can take values as big as the stator current fundamental component, result-
ing in  big torque pulsations. Since the assumption that a PWM system behaves as a linear 
amplifier is valid only if the switching frequency is much higher than the bandwidth of the 
voltage reference signal, high-power drives supplied by VSI with low switching frequency 
typically do not match this condition. In such cases, the so-called dynamic modulation 
error occurs [42], deriving from the difference between the reference and actual integrals 
of the inverter voltage space-vectors: ∫usref(t)dt ≠ ∫us(t)dt. As a result, a stator current error 
term, called dynamic modulation error δ(t), arises, which is a component of the stator cur-
rent space-vector that is generated by the PWM in transient operation.

All the on-line optimization methods [38–40] take as basis of the optimization process 
the next or the next two switching patterns. This limiting assumption does not permit the 
optimization process to be properly fulfilled and, in addition, does not allow a synchro-
nous switching.

The above considerations call for a proper integration of off-line methods, to cope for the 
steady-state behavior, with on-line methods, to cope for transient operation. A potential 
solution can exploit the advantages of both methods, as proposed in [42], which adopts the 
trajectory tracking method as a solution for eliminating the dynamic modulation error. 
The trajectory tracking approach in [42] utilizes the steady-state trajectories of the sta-
tor current space-vector, computed from the optimal switching patterns, as template. A 
tracking controller then reacts if the actual current vector deviates from the given path 
during transient operation. Whenever a dynamic modulation error occurs, the VSI switch-
ing pattern is modified so that the modulation law is respected. Several methods for pat-
tern modification could be used, among which the step-by-step minimization method, the 
dead-beat control, and the pulse insertion method, each of them presenting advantages 
and disadvantages on the basis of the modulator working operating condition. In [42], 
a generalized algorithm, of which the above algorithms can be considered subsets, has 
been adopted. In addition, the decomposition of the stator current space-vector into its 
components enables the identification of the fundamental component of the stator current, 
permitting the implementation of a fast current control system.

2.3.2  From the Six-Pulse Rectifier to the Active Rectifier

The operation of the active rectifier can be conceptually considered as an extension of the 
classical six-pulse rectifier.

A great part of the early efforts in power electronics have focused on the conversion 
from a sinusoidal to a DC voltage. One of the reasons was the necessity to utilize the 
energy produced by synchronous generators to supply load that required constant voltage, 
as DC motors, particularly for railway applications.

First applications were based on motor-generator (an M-G set or a dynamotor for dynamo-
motor) in which a sinusoidal voltage supplied an IM coaxial with a DC motor utilized as gen-
erator. Its brushes give a rectification effect allowing the output voltage to become unipolar.

The same concept is utilized in static rectifiers where no moving parts are present. First 
high-power rectifiers were mercury arc rectifiers in which the mercury was heated to 
become a gas in a glass tube: a unidirectional current could therefore flow from a steel 
(or coal) electrode to the remaining part of the liquid mercury. These devices were uti-
lized for about 40 years starting from 1920. To obtain a low ripple at the output voltage, 
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several electrodes have been used that utilize three-, six-, or polyphase supply obtained 
with suitable transformers. Figure 2.49 shows an example of a mercury arc rectifier and 
Figure 2.50 its equivalent circuit. It should be noted that it is a common cathode circuit, 
because there can be several steel anodes but only one liquid mercury cathode.

Due to the evolution of semiconductor power diodes, the common cathode rectifier has 
been replaced by the bridge topology, which ensures a lower voltage ripple. Figure 2.51 
shows the electric scheme of a traditional three-phase uncontrolled six-pulse rectifier 
supplied by the grid and with a current generator as a load. This generator represents 
the behavior of a high inductive load, which is a common situation in power electronics 
applications.

It should be borne in mind that all rectifier solutions described earlier are based on ele-
ments that allow the current to flow only in one direction and are nonlinear elements. 
As a consequence, the circuit should be studied as a nonlinear circuit, and because of the 
presence of a sinusoidal supply, harmonics are to be expected. Section 3.1 explains the 
consequence of nonlinear loads.

To understand the operation of the circuit drawn in Figure 2.51, it should be noted that, 
among the top devices (D1, D3, D5), the diode with anode higher potential will conduct, and, 
among the bottom devices (D2, D4, D6), the diode with cathode lower potential will conduct.

FIGURE 2.49
Three-phase mercury arc rectifier.

FIGURE 2.50
Equivalent scheme of three-phase mercury arc rectifier.
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In Figure 2.52, the characteristic waveforms obtained by a six pulse rectifier are shown, 
in particular, the phase supply voltage (referred to neutral), the load voltage, and the cur-
rent supplied by the grid. The fundamental frequency has a period of 20 ms. It should be 
noted that the load voltage is composed of six-pulse-shaped elements for each period of 
the fundamental. This is the reason why the rectifier is called six-pulse rectifier. The load 
voltage us has a frequency that is six times the fundamental frequency, and its instanta-
neous value is given by (ugx = A,B,C − ugy = A,B,C), thus representing a line-to-line voltage. If this 
maximum value is ULL(max), then its mean value is given by the following:
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where
ULL(rms) is its rms value
θ = ωt where t is the time and ω the pulsation of the supply

D1 D3 D5 +us

is

D2D6D4

ugA
igA

igB

igC

ugB
n

ugC

FIGURE 2.51
Electric scheme of a three-phase uncon-
trolled six-pulse rectifier.

500

500

450

550

20

0

–20

0

–500
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

u g
A

,B
,C

 (V
)

i gA
 (A

)
u s

 (V
)

Time (s)

Time (s)

Time (s)

ugA ugB ugC

FIGURE 2.52
Phase to neutral supply voltage, load voltage and current supplied by the grid obtained with the six-pulse recti-
fier shown in Figure 2.51.



64 Power Converters and AC Electrical Drives with Linear Neural Networks

As for the current supplied by the grid, since the load current is constant, each diode 
allows the current to flow for 2 π/3, and the line current is given by the following:
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If the parasitic elements are neglected, the commutation can be considered instantaneous. 
The rms value of the current supplied by each phase is as follows:

	
I I Ig rms s d( ) .= =

2
3

0 816 	 (2.54)

By Fourier analysis, the fundamental value of the current can be evaluated; its fundamen-
tal value and its rms value are, respectively, as follows:
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	 (2.55)
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6
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	 (2.56)

The spectrum has no even harmonics and multiple of the triple because of the sym-
metry of the time waveform; the other harmonics have amplitudes Igh = Ig1/N, being h the 
order of the harmonic.

The time domain current with its fundamental harmonic and phase voltage are shown in 
Figure 2.53. It should be noted that, when the load is a pure current generator, the fundamen-
tal harmonic of the current delivered by the grid is in phase with the grid voltage. However, 
many current harmonics are present; the corresponding spectrum is shown in Figure 2.54.

If the diodes of the circuit of Figure 2.51 are replaced with thyristors, a controlled recti-
fier is obtained (the term controlled rectifier is also used for a single thyristor). By control-
ling the firing angle α, it is possible to vary the average value of the load voltage, which is 
then given by the following:

	
u U U Us LL rms LL rms doa p

a a a= = =
3 2

1 35( ) ( )cos( ) . cos cos( ) 	 (2.57)

where
ULL(rms) is the rms value of the line-to-line voltage
Udo is the mean voltage obtained with six-pulse diode rectifier (see (2.34))

Consequently the average power supplied to the load is as follows:

	 P u I U Is s LL s= =a a1 35. cos( ) 	 (2.58)

The (2.57) gives (2.52) for α = 0; moreover, it can be noted that the power that flows from 
the grid to the load for 0 < α < π/2 is null for α = π/2 and flows from the load to the grid 
for π/2 < α < π.
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With a controlled rectifier, it is possible the inversion of power flow. Since only the voltage 
can change its sign, it corresponds to a two-quadrant operation.

It should be borne in mind that this analysis is valid for a load that can supply power as 
in this case. With a generic passive load, the inversion of the voltage sign is possible only 
instantaneously, but the mean value in a period of the fundamental remains positive (from 
the grid to the load).

A further improvement has been devised with the controlled rectifier that has the same 
topology of the circuit of Figure 2.51 adopting controlled power switches (BJT, MOSFET, 
and IGBT). More precisely in this case, the circuit becomes an active rectifier.
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Active rectifiers present this additional advantage of their bidirectional power flow. 
They can be properly used also when a renewable source is utilized to supply the grid; 
this is the case of distributed generation (DG).

Most common control strategies of active rectifiers are based on current control of VSIs 
[43]. Among these, one of the most adopted is the so-called voltage-oriented control (VOC), 
where the current control is performed in the grid voltage space-vector oriented reference 
frame [44,45]. Another approach is based on the idea of directly controlling the active and 
reactive powers by choosing the proper switching patterns on the basis of the instanta-
neous position of the grid voltage space-vector [46]. This technique has been called direct 
power control (DPC). On the basis of a parallelism between the electrical grid and an 
electrical machine, both VOC and DPC have been further improved in their virtual flux 
(VF)-based versions, called, respectively, virtual flux-oriented control (VF-OC) and virtual 
flux direct power control (VF-DPC) [47,48].

2.3.3  Current Control of VSIs

2.3.3.1  Voltage-Oriented Control (VOC)

The VOC has been directly derived from the field-oriented control (VOC), formerly devised 
for the control of electric drives. Like in the drive control counterpart, the VOC is based 
on the idea to find a rotating reference frame in which the current control corresponds to 
the active and reactive power control. On this basis, first, the VOC has been developed, 
where the direct axis lies in the direction of the grid voltage space-vector, and second, the 
VF-OC has been developed, where the direct axis lies in the direction of a virtual flux, 
obtained on the basis of the time integration of the grid voltage components. Obviously, 
since the virtual flux lies in quadrature with respect to the grid voltage, the direct and 
quadrature components of the injected currents are displaced of 90° with respect to the 
VOC. In the following, it is assumed that the power is positive when it is absorbed by the 
DC source from the grid: therefore, powers generated by renewable sources are assumed 
negative (the load is studied with the user’s sign convention).

A voltage-controlled bridge converter is shown in Figure 2.55a. It can be seen that the 
inverter is connected on the DC side with a load and via an inductance with its parasitic 
resistance (sketched in the dotted box) to the grid. A different solution could be to connect 
the VSI to the power grid via an LC filter (Figure 2.55b) or by an LCL filter (Figure 2.55c). 
The first solution is the simplest solution as for the number of components; on the other 
hand, to reduce the current harmonics around the switching frequency, a high value of 
input inductance should be selected. This, for applications above several kilowatts, implies 
a high cost and poor system dynamical performance.

The solution with an LC filter allows lower values to be adopted and improves the low-
pass behavior of the filter that becomes a second-order filter. With the use of LCL filter, the 
main inductance can be lowered, and a better decoupling of the inverter behavior from the 
grid impedance is achieved. With both the LC and LCL solutions, however, particular care 
has to be taken to avoid resonances [49].

The operation can be explained with the aid of the single-phase representation of Figure 
2.56. The inverter acts as a current source because it is obtained as the difference between 
the generated voltage, depending of the power switch states, and the grid voltage applied 
to the inductance L. The resulting current can be injected both to the grid and to the load.

Some characteristic situations are sketched in Figure 2.57 using a vector diagram valid in 
sinusoidal steady-state. In particular, Figure 2.57a shows a generic operating condition. The 
grid voltage ug is obtained as the sum of inverter voltage phasor us, the drop on inductance 



67Pulsewidth Modulation of Voltage Source Inverters

jωLis, and the drop on the parasitic resistance Ris. Figure 2.57b represents a rectification at 
unity power factor. With the imposed inverter voltage us, the sum of the drop on induc-
tance and of the drop on resistance makes the current is in phase with the grid voltage ug. 
The power flow goes from the grid to inverter representing the rectifier behavior. Finally, 
Figure 2.57c shows the inversion at unity power factor. In this last case, the grid voltage 
space-vector and current space-vector are in opposition. It should be borne in mind that in 
Figure 2.54, the resistive drop has been exaggerated for the sake of clarity.

2.3.3.1.1  Circuital Analysis of the Active Rectifier

With reference to Figure 2.55, three main parts are recognizable: the inverter, the grid, 
and the RL circuit. The analysis can be performed by writing the grid voltage, the inverter 
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voltage, and the Kirchhoff’s voltage law equations (KVL) from which the current supplied 
by the active rectifier can be calculated. The equations can be written for each phase, in the 
stationary and synchronous reference frame.

The phase grid voltages and currents are as follows:
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The phase voltage generated by the active rectifier depends on the state of its power devices 
as expressed by (2.2) here rewritten for the sake of clarity:
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The KVL are as follows:
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Finally, a further equation for the DC link voltage and current can be added:
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2.3.3.1.2  Stationary Reference Frame Analysis

In the stationary reference frame, the grid voltages are obtained by (2.59) with the Clarke 
transformation (1.9):
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The inverter voltages can be deduced by applying (1.9) to the vector of inverter voltages 
written for each phase:
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The KVL are as follows:
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The DC link Equation 2.63 becomes the following:
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It should be noted that in the stationary reference, the quantity (SA · isA + SB · isB + SC · isC) 
corresponds to (isDSD + isQSQ), where (SD,SQ) are the Clarke transformation of the switch 
status considered as space-vectors.

The active and reactive power are given by the following:
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2.3.3.1.3  Synchronous Reference Frame Analysis

In the synchronous reference frame, the grid voltage can be deduced by the equation writ-
ten in stationary reference frame (2.64) after a vector rotation:
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The inverter voltage can be obtained by the transformation from stationary to synchro-
nous frame:
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In synchronous coordinates, the DC vector component isd is responsible of the active power 
flow; the quadrature current vector component isq determinates the reactive power. These 
two terms can be controlled independently. If the vector isd is aligned with the grid voltage ug, 
then the unitary power factor condition is reached. By imposing the direct-axis of the rotating 
coordinates on the grid voltage vector, a simplified dynamic model can be obtained.

The KVL voltage space-vector equations of the system on the direct (d) and quadrature 
(q) axis give the following:

	

u u Ri L
di
dt

Li

u u Ri L
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Li

gd sd sd
sd
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gq sq sq
sq

sd

= + + −

= + + +
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ω
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	 (2.72)

Equation 2.72 shows that the direct (quadrature) component of the injected currents 
depends on the direct (quadrature) component of the inverter voltages. However, like 
in the electric drive counterpart, there are some coupling terms on both axis equations, 
which should be compensated with feed-forward control terms. The same consideration 
is true for the direct component of the grid voltage, which should be compensated with a 
suitable feed-forward term.

Finally, the active and reactive powers can be written as follows:
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= −
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3
2

3
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If the target is to control directly the active and reactive power, the current references can 
be obtained on the basis of the reference active and reactive power.

A control scheme is shown in Figure 2.58. The grid voltages (ugA, ugB, and ugB) and inverter 
currents (isA, isB, and isC) are first sampled by analog/digital converters; they are converted 
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FIGURE 2.58
Control scheme of a controlled rectifier in the synchronous reference frame. (From Pucci, M. et al., Electric Power 
Syst. Res., 81(4), 830, April 2011, doi: 10.1016/j.epsr.2010.11.007.)
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in stationary D–Q coordinates and then in rotating d–q coordinates. The reference values 
of direct, id, and quadrature current, iq, are obtained on the basis of active and reactive 
reference power Pref and Qref by using (2.73). The error signal is processed by PI regula-
tors; in particular, the error on DC processed by PI regulator is added to the feed-forward 
term, −ωLisq, and to the direct component of grid voltage, the error on quadrature current 
processed by PI regulator is added to the feed-forward term ωLisd.

The direct and quadrature components of the inverter voltages are then computed as 
follows:

	

u Li u u

u Li u

sd sq gd sd

sq sd sq

= + +

= − +

ω

ω

Δ

Δ
	 (2.74)

where the parasitic resistance of the inductance grid is neglected, and PI controllers are 
used for controlling the current error to zero in this way, forcing the current error on both 
axes to zero:
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The entire control scheme is shown in Figure 2.58, which exhibits the well-known decou-
pling terms. However it is slightly different from [46–50] where the direct component of 
the reference current is computed as the output of a DC link voltage controller. Current 
control is performed in the grid voltage reference frame by means of PI controllers.

2.3.3.2  Virtual Flux-Oriented Control

To use the control techniques typical the electric motors, deeply studied in literature, also 
in the sectors of the DG and the active rectifiers has lead to the concept of “virtual motor.” 
It is possible to consider the electric grid as an equivalent virtual motor characterized by a 
transient leakage inductance (motor) equivalent to the connecting filter inductance of the 
inverter (active rectifier) and the back-electromotive force (motor) equivalent to the grid volt-
ages (active rectifier). On the basis of this abstraction, the concept of virtual flux, equivalent 
to the magnetic flux of an electric motor, can be defined as the time integral of the grid volt-
ages. The virtual flux is phase shifted of 90° with respect to the grid voltage. The direct and 
quadrature components of the virtual flux in the stationary reference frame are as follows:
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The use of the virtual flux in the VOC technique is based on the orientation of the rotat-
ing reference frame on the vector of the virtual flux rather than on the vector of the 
grid voltage. The estimation of the virtual flux for experimental applications requires 
an open-loop integration. A simple way to solve this problem is to approximate the 
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pure integrator with a first-order low-pass filter (see Chapter 6). The practical imple-
mentation of (2.76) is shown in Figure 2.59.

2.3.3.3  Experimental Results with VOC and VF-OC

The VOC control technique with its virtual flux corresponding version has been implemented 
in MATLAB®–Simulink® environment. In particular, for the circuital scheme analysis, the 
PLECS® has been adopted. The PLECS® software has been used for the IGBT three-phase 
inverter, the interconnecting inductance, and the voltage and current sensors. The control 
algorithm has been implemented in classic Simulink®, in the discrete domain. A sampling 
frequency of 10 kHz with a SV-PWM frequency of 5 kHz has been adopted both for the VOC 
and VF-OC. Figures 2.60 and 2.61 show the steady-state inverter current time waveforms and 
their corresponding spectra calculated with the FFT (Fast Fourier Transform) up to the 40th 
harmonics, obtained, respectively, with the VOC and VF-OC when Pref = −2 kW, Qref = 0 VAR 
have been given as references. As expected, VF-OC exhibits a slightly better harmonic con-
tent of the injected current, both considering a harmonic-by-harmonic analysis and consid-
ering the %THD equal, respectively, to 0.77% for the VOC and 0.72% for the VF-OC.

Figure 2.62, referring to an experimental test, shows a set of transients of the inverter-gener-
ated direct and quadrature current, obtained with a VOC-based wind generator under a set of 
step wind variations corresponding to active power variations. The quadrature current com-
ponent has been controlled to zero, as usual, to avoid reactive power exchange with the grid. 
Figure 2.63 shows the corresponding waveforms of the generated active and reactive powers.

2.3.4  Power Control of VSIs

2.3.4.1  Direct Power Control

DPC has been directly derived from its counterparts devised for the control of electric 
drives called direct torque control (DTC). DPC is based on the idea to find instantaneously 
a switching pattern of the inverter permitting to increase or decrease directly, without 
current control, and in a decoupled way the active and reactive power exchanges between 
the DC stage and the grid. Even in this case, the VF DPC has been developed as a further 
improvement, where active and reactive powers are estimated on the basis of the virtual 
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FIGURE 2.59
Block diagram of the VF estimator. (From Giglia, G. et al., Comparison of control techniques for three-phase 
distributed generation based on VOC and DPC, in International Conference on Renewable Energy and Power Quality 
(ICREPQ’08), Santander, Spain, March 12–14, 2008.)
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flux components instead of the voltage ones. Like Malinowski et al., [48] and [50] only the 
behavior as generator is addressed, since the behavior of the control systems as a controlled 
load or a generation system is not perfectly symmetric, particularly in the DPC case.

2.3.4.2  Switching Table DPC

DPC is based on the idea to control directly and in a decoupled way the active and reactive 
power exchanged by the inverter with the electrical grid, avoiding any current control. The 
optimal switching pattern is to be selected on the basis of the active and reactive power 
demand and depends on the instantaneous position of the grid voltage space-vector. It can 
be shown that if the grid voltage vector ug lies instantaneously in the sector k, the effect on 
the active and reactive power, P and Q, exchanged with the grid caused by the application 
of any VSI voltage vector can be summarized in Table 2.4, which takes also into consider-
ation each subsector inside a sector (A is the first and B the second subsector in the rotating 
sense of the grid voltage vector [24]). In the table, a single arrow means a small variation 
while a double arrow a big variation.

Figure 2.64 shows the effects of the application of any active voltage vector on the active 
and reactive powers exchanged with the grid after a sampling time of the control system Ts. 
This figure is drawn when the grid voltage vector ug(t) lies in the first sector and each 
inverter active voltage vector is applied. Under the assumption that the control system is 
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correctly working and therefore the injected current is(t) in the time instant t is in phase 
with the grid voltage, the voltage drop on the series inductance L, neglecting its parasitic 
resistance, is the vector difference ug(t) − us(t). The current vector is(t + Ts) after a sampling 
time of the control system is thus obtained as the vector sum of is(t) and an additional term 
in phase with the inductance voltage drop.

On the basis of Table 2.4, the optimal switching table (ST) proposed by Noguchi et al., 
[46] can be directly deduced. This ST, shown in Table 2.5, has been used here for the experi-
mental application of the methodology.

The active and reactive power for control feedback is estimated instantaneously on the 
basis of the following equations:

	 P u i u i u isA sA sB sB sC sC= + + 	 (2.77)

	
Q u u i u u i u u isB sC sA sC sA sB sA sB sC= − + − + −

1
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(( ) ( ) ( ) ) 	 (2.78)
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FIGURE 2.63
Active (P) and reactive (Q) power flowing to the power grid.

TABLE 2.4

Effect of the VSI Voltage Vectors on P and Q

u0 uk uk+1 uk+2 uk+3 uk−1 uk−2

P ⇑⇑ ⇓⇓ ⇑⇑ ⇑⇑ ⇑⇑ ⇑ ⇑⇑
Q ⇑A ⇓B ⇑A ⇓B ⇑⇑ ⇑ ⇓A⇑ B ⇓⇓ ⇓

Source:	 Cirrincione, M. et al., New direct power control strategies of 
three-phase VSIs for the minimization of common-mode 
emissions in distributed generation systems, in The Forty-
Second Annual Meeting of the IEEE Industry Applications Society 
(IAS 2007), New Orleans, LA, September 23–27, 2007.
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The three-phase quantities of the inverter voltages and currents have been used for the 
computation of the active and reactive powers, and so no coordinate variation is needed 
differently from the VOC. The entire control scheme is shown in Figure 2.65. Active and 
reactive power control is performed by two-level hysteresis controllers. A sector and sub-
sector finding algorithm permits computing where the grid voltage vector instantaneously 
lies, with the approximation of π/6 rad.
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FIGURE 2.65
Block diagram of the DPC control schemes. (From Pucci, M. et al., Electric Power Syst. Res., 81(4), 830, April 2011, 
doi: 10.1016/j.epsr.2010.11.007.)

TABLE 2.5

Optimal ST

Sub A Sub B

P ⇑ Q ⇑ u0 u0

Q ⇓ uk−1 u0

P ⇓ Q ⇑ uk uk+1

Q ⇓ uk−1 uk

Source:	 Cirrincione, M. et al., New direct power con-
trol strategies of three-phase VSIs for the min-
imization of common-mode emissions in 
distributed generation systems, in The Forty-
Second Annual Meeting of the IEEE Industry 
Applications Society (IAS 2007), New Orleans, 
LA, September 23–27, 2007.
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2.3.4.3  Virtual Flux Direct Power Control

The use of the virtual flux in the DPC technique allows the active and reactive powers to 
be calculated using the virtual flux rather than the grid voltage that is more noisy. The 
estimation of the power based on the virtual flux is based on the following equations:

	

P i i

Q i i

gD sQ dQ sD

gD sD gQ sQ

= −

= +

⎧

⎨
⎪⎪

⎩
⎪
⎪

3
2
3
2

ω ψ ψ

ω ψ ψ

( )

( )
	 (2.79)

The advantages introduced with the virtual flux are a reduction of the harmonics in the 
grid current and in the ripples of the active and reactive powers.

2.3.4.4  Experimental Results with DPC and VF-DPC

The two control techniques described above—DPC with its virtual flux corresponding 
version—have been implemented in MATLAB–Simulink and PLECS environment for the 
IGBT three-phase inverter, the interconnecting inductance, and the voltage and current 
sensors. All the control algorithms have been implemented in classic Simulink, in the dis-
crete domain. In this case, a sampling frequency of 15 kHz has been adopted.

Figures 2.66 and 2.67 show the steady-state inverter current time waveforms and 
their  corresponding spectra under the same working conditions of Section 2.3.3.2 
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Inverter current and its FFT at Pref = −2 kW, Qref = 0 VAR with DPC. (From Giglia, G. et al., Comparison of 
control techniques for three-phase distributed generation based on VOC and DPC, in International Conference on 
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(Pref = −2 kW, Qref = 0 VAR), respectively, with the DPC and the VF-DPC. As expected, 
VF-DPC exhibits a slightly better harmonic content of the injected current, both consider-
ing a harmonic-by-harmonic analysis and considering the %THD equal, respectively, to 
11.47% for the DPC and 10.68% for the VF-DPC.

2.3.4.5  DPC EMC (Electromagnetic Compatible)

In Section 2.1, Table 2.1 shows the CMV for each inverter state. It can be seen that, if only even 
or only odd active voltage vectors are used (uk, with k, respectively, even or odd), no CMV 
variation is generated. If a transition from an even voltage vector to an odd one (or vice versa) 
occurs, the variation of the CMV is equal to Ud/3 is generated. If a transition from an odd (even) 
voltage vector to the zero (seventh) voltage vector occurs, a common-mode variation of ampli-
tude Ud/3 is generated. Finally, if a transition from an odd (even) voltage vector to the seventh 
(zero) voltage vector occurs, a common-mode variation of amplitude 2Ud/3 is generated.

The step shape exhibited by CMV variation causes the presence of harmonics that propa-
gate toward the grid. The frequency of these harmonics depends both on the switching 
time of power devices and on the repetition of step variation of CMV.

Thus, from the point of view of common-mode emissions, the worst case is a transition 
from an odd (even) voltage vector to the seventh (zero) voltage vector.

For this reason, whatever inverter control technique is devised, to minimize the 
generated common-mode emissions of the drive, the exploitation of both null voltage 

10
8
6
4
2
0

–2
–4
–6
–8

–10
2.86 2.88 2.9 2.92 2.94

VFDPC

Time (s)

i sA
 (A

) 

2.96 2.98 3

A
m

pl
itu

de
 (A

)

0.6

0.5

0.4

0.3

0.2

0.1

0
0 200 400 600 800 1000

Frequency (Hz)
1200 1400 1600 1800 2000

THD% = 10.6849

FIGURE 2.67
Inverter current and its FFT at Pref = −2 kW, Qref = 0 VAR with VF-DPC. (From Giglia, G. et al., Comparison of 
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vectors (zero and seventh) should be avoided. If a DPC technique is used, this consid-
eration is helpful also from the control point of view. As a matter of fact, the original 
DPC [46] has been devised so that the zero voltage vector is adopted when a P increase 
is required when both a Q increase and decrease are needed. In Table 2.6, a first ver-
sion of this technique, called DPC-EMC 1, is shown [51–54]; it can be noted that, when 
the grid voltage vector lies in the k-th sector, the application of the k-th voltage vector 
produces a high decrease of the absorbed active power and a low increase (subsector A) 
or decrease (subsector B) of the reactive power. On the contrary, the application of the 
uk+2 voltage vector produces a slight increase both of the active and reactive power while 
the uk−2 voltage vector produces a slight increase of the active power and a decrease of 
the reactive power.

In case of VOC, the harmonic content of the CMV is basically in the fPWM = 1/TPWM frequency 
range, in particular, a strong component at fPWM is present and its odd multiples, and its ampli-
tude decreases with a sin(x)/x law with frequency. Figure 2.68 shows the amplitude of the CMV 
spectrum versus frequency for different values of the duty cycle (δ1) and fPWM = 4 kHz obtained 
with VOC. It should be noted that the harmonics starting from the fPWM frequency can be 
found up to 100 kHz with significant amplitude.

The spectrum of the CMV that is generated by DPC-EMC 1 is easily predictable; as 
a matter of fact, the theoretical steady-state CMV, uN0, neglecting all parasitic effects 
and the rise/fall time, is a periodic waveform, with a period equal to 1/3 of the period 
of the fundamental of the grid voltage. Figure 2.69 shows the theoretical time domain 
waveform of the CMV obtainable with the DPC-EMC 1. Its harmonic spectrum can be 
analytically inferred by computing the coefficients of its Fourier series expansion as 
functions of the DC link voltage Ud and the fundamental pulsation of the grid volt-
age ω:
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n tN
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n

0

1
3

3=
=

∞

∑ π
ωsin( ) 	 (2.80)

On this basis, the harmonic content of the CMV is basically in the low frequency region, 
in particular, the amplitudes of the third harmonic of the fundamental (150 Hz in Europe) 

TABLE 2.6

Optimal ST of DPC-EMC 1

Sect. k

P ⇑ Q ⇑ uk+2

Q ⇓ uk−2

P ⇓ Q ⇑ uk

Q ⇓ uk

Source:	 Cirrincione, M. et al., New direct power con-
trol strategies of three-phase VSIs for the 
minimization of common-mode emissions in 
distributed generation systems, in The Forty-
Second Annual Meeting of the IEEE Industry 
Applications Society (IAS 2007), New Orleans, 
LA, September 23–27, 2007.
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and its odd multiples (3rd, 9th, 15th, 25th, etc., of the fundamental) decrease with inverse 
proportionality with the frequency itself. Such a controlled generator, therefore, shows a 
common-mode harmonic content that is quite low; its spectrum presents a low harmonic 
content compared to traditional modulation technique.

On the other hand, this technique has the drawback to consider only the common voltage 
spectrum optimization, which implies a high ripple of P and Q waveforms and of injected cur-
rent, and the presence of a bias in the controlled reactive power in generating mode. As a matter 
of fact, the poor control of the reactive power in generating mode is due to the fact that both the 
uk+2 and uk−2 voltage vectors cause small variations of the reactive power. On the contrary, uk+1 
and uk−1 voltage vectors cause high variations of the reactive power (see Table 2.4).
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FIGURE 2.68
Amplitude of the CMV spectrum versus frequency for different values of the duty cycle (δ1) in VOC. (From 
Pucci, M. et al., Electric Power Syst. Res., 81(4), 830, April 2011, doi: 10.1016/j.epsr.2010.11.007.)
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A trade-off between these two constraints is achieved with a modified version of DPC-
EMC 1 called DPC-EMC 2.

The DPC-EMC 2 technique, has been devised to improve the drawbacks of DPC-EMC 1 
by using a four-level hysteresis controller (Figure 2.70) for Q control, instead of a two-level 
one. In this way, when the Q error is low, the output of the controller is ±1 and thus vectors 
uk±2 are used (the controller coincides with that of the DPC-EMC 1). On the contrary, when 
the Q error is high, the output of the controller is ±2 and thus vectors uk±1 are used. The 
control strategy is summarized in Table 2.7.

The result is a better capability to control the Q error to zero (no reactive power exchanged 
with the grid), lower ripple in the P and Q waveforms, and lower harmonic content of the 
injected currents. With regard to the CMV, the result is a waveform, which is the six-step 
one of DPC-EMC 1 with few additional spikes due to the rare application of vectors uk±1. 
However, the harmonic content of the CMV at frequencies about some kilohertz slightly 
increases with respect to that of DPC-EMC 1, but this deterioration is negligible, and in any 
case, much lower than that of classic DPC.

Differently from DPC-EMC 1, DPC-EMC 2 presents a CMV waveform, which is a square 
wave at 150 Hz with some internal spikes; as a result, its spectrum presents lower values of 
the low frequency harmonics and slightly higher values of the harmonics around higher 
frequencies than DPC-EMC 1.

2

1

–1

–2

FIGURE 2.70
Four-level hysteresis controller. (From Pucci, M. et al., Electric Power Syst. Res., 81(4), 830, April 2011, doi: 10.1016/ 
j.epsr.2010.11.007.)

TABLE 2.7

Optimal ST of DPC-EMC 2

Sect. k

P ⇓ Q ⇑ uk

Q ⇓ uk

P⇑ Q ⇑⇑ uk+1

Q ⇓⇓ uk−1

P⇑ Q ⇑ uk+2

Q ⇓ uk−2

Source:	 Cirrincione, M. et al., New direct power control 
strategies of three-phase VSIs for the minimization 
of common-mode emissions in distributed genera-
tion systems, in The Forty-Second Annual Meeting of 
the IEEE Industry Applications Society (IAS 2007), New 
Orleans, LA, September 23–27, 2007.
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2.3.4.6  Simulation Results with DPC-EMC 1 and DPC-EMC 2

The DPC-EMC 1, the DPC-EMC 2, and their virtual flux versions VF-DPC-EMC 1 and 
VF-DPC-EMC 2 control techniques have been implemented in MATLAB–Simulink and 
PLECS environment for the IGBT three-phase inverter, the interconnecting inductance, 
and the voltage and current sensors. All the control algorithm has been implemented in 
classic Simulink, in the discrete domain.

Figures 2.71 and 2.72 show the steady-state inverter current time waveforms and their 
corresponding spectra under the same working conditions Section 2.3.3.2 (Pref = −2 kW, 
Qref = 0 VAR), respectively, with the DPC-EMC 1 and the VF-DPC-EMC 1. Also in this case, 
VF-DPC-EMC 1 exhibits a slightly better harmonic content of the injected current, both 
considering a harmonic-by-harmonic analysis and considering the %THD equal, respec-
tively, to 8.93% for the DPC-EMC 1 and 8.36% for the VF-DPC-EMC 1. Finally, Figures 2.73 
and 2.74 show the steady-state inverter current time waveforms and their correspond-
ing spectra under the same working conditions, respectively, with the DPC-EMC 2 and 
the VF-DPC-EMC 2. Also in this case, VF-DPC-EMC 2 exhibits a slightly better harmonic 
content of the injected current, both considering a harmonic-by-harmonic analysis and 
considering the %THD equal, respectively, to 7.77% for the DPC-EMC 2 and 6.70% for the 
VF-DPC-EMC 2. As a global comparative analysis, the %THD of the injected current versus 
the generated power has been drawn for all control techniques.
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FIGURE 2.71
Inverter current and FFT at Pref = −2 kW, Qref = 0 VAR with DPC-EMC1. (From Giglia, G. et al., Comparison of 
control techniques for three-phase distributed generation based on VOC and DPC, in International Conference on 
Renewable Energy and Power Quality (ICREPQ’08), Santander, Spain, March 12–14, 2008.)
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2.3.4.7  Comparative Experimental Analysis of DPC, DPC-EMC 1, and DPC-EMC 2

All DPC control techniques have been tested experimentally on a properly devised test 
setup. It is composed of the following items:

•	 A 7.5 kVA, three-phase VSI
•	 An electronic card with voltage and current sensors (model LEM CV3-1000 and 

LEM LA-55P)
•	 A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a floating-point 

DSP TMS320F240
•	 A DC voltage source of 560 V, emulating a voltage renewable source
•	 A 100 V sinusoidal grid
•	 An interconnection series inductance of 12 mH with a parasitic resistance of 0.9 Ω

The sampling frequency of all control strategies has been set to fs = 20 kHz. Figures 2.75 
and 2.76 show, respectively, the electrical scheme and the photograph of the test setup. The 
CMV has been measured with a capacitor divider (Cm = 1 nF in Figure 2.75).

The DC supply configuration corresponds to Ud = 560 V. Figures 2.77 through 2.79 
show, respectively, with DPC-EMC 1, DPC-EMC 2, and the classic DPC, the reference 
and estimated P and Q when steps Pref = −1000 W and Qref = 0 VAR are given and the 
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Inverter current and FFT at Pref = −2 kW, Qref = 0 VAR with VF-DPC-EMC1. (From Giglia, G. et al., Comparison 
of control techniques for three-phase distributed generation based on VOC and DPC, in International Conference 
on Renewable Energy and Power Quality (ICREPQ’08), Santander, Spain, March 12–14, 2008.)
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corresponding time waveforms of the three injected currents are also given. Experimental 
results are consistent with those obtained with the simulations. Particularly, all DPC 
strategies present a good dynamic performance as for the P step command, with no 
appreciable differences. Between the DPC-EMC 1 and the DPC-EMC 2, there is no appre-
ciable difference in controlling the reactive power due to the high DC link voltage value 
of Ud = 560 V. It should be borne in mind that, if the DC link voltage is below a certain 
threshold, the system starts to have a bias in the controlled Q when DPC-EMC 1 is 
used, which is not present with DPC-EMC 2. In the following, only tests with a higher 
DC link voltage value are shown for stability reasons of the control system. On the 
contrary, the classic DPC exhibits a significant ripple with negative peaks on the esti-
mated Q, which are present also in simulation. With regard to the harmonic content of 
the injected currents, results are summarized in Figure 2.80, which shows the %THD 
versus the generated power with all DPC techniques including, for comparison, also 
the VOC results and the limit of 5% required by the international IEEE Standard [55]. 
As expected, VOC outperforms all the other techniques, always remaining below the 
prescribed limit, except at very low generated power. All of the DPC techniques present 
THDs decreasing for increasing generated power, with the DPC-EMC 1 and the DPC-
EMC 2 with very similar results.

In particular, the DPC-EMC 1 is significantly worse for low generated power levels 
(THD% almost equal to 70%) while it is almost the same at increasing power. The clas-
sic DPC has a better behavior among DPC techniques for low generated power almost 
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Inverter current and FFT at Pref = −2 kW, Qref = 0 VAR with DPC-EMC2. (From Giglia, G. et al., Comparison of 
control techniques for three-phase distributed generation based on VOC and DPC, in International Conference on 
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FIGURE 2.75
Electrical scheme of the DG generation unit. (From Pucci, M. et al., Electric Power Syst. Res., 81(4), 830, April 2011, 
doi: 10.1016/j.epsr.2010.11.007.)
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complying with the standard for increasing value of generator power. It is evident that 
none of the DPC techniques fully complies with the standard; however, it should be borne 
in mind that the high value of THD is mainly caused by the presence in the current spec-
trum by high-frequency harmonics. Since the THD is computed considering up to 40th 
harmonics and all ST-DPC techniques present harmonics in the range from 20th to 40th, 
this effect is expected. In a real world application, this limitation could be coped with, fil-
tering the line currents by a low-pass power line filter at the output of the inverter.

FIGURE 2.76
Photograph of the test setup. (From 
Pucci, M. et al., Electric Power Syst. 
Res., 81(4), 830, April 2011, doi: 10.1016/ 
j.epsr.2010.11.007.)
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It should be noted that this filter makes all DPC techniques equivalent from the point of 
view of standard compliance; it means that the proposed DPC techniques can abate the com-
mon-mode spectrum content without worsening the THD in compliance with the standard.

Moreover, it is to be expected that increasing the sampling frequency of the control sys-
tem by optimizing its software implementation or the use of a more performing program-
mable hardware can further contribute to reduce the harmonic content of the line current. 
As a matter of fact, the current variation Δi at each sampling time of the system is propor-
tional to the sampling time itself. The lower the sampling time, the lower the Δi with ripple 
reduction and reduced harmonic content. In this case, a sampling frequency of 20 kHz has 
been used but a higher sampling frequency is expected to be implementable with more 
dedicated hardware structures like FPGAs.

It should be noted that even if the VOC has a better performance in terms of %THD of 
the inverter current, it presents the worst behavior in terms of common-mode emissions. 
On the other hand, DPC techniques would be able to minimize the common-mode emis-
sions and also have the well-known advantages of lower complexity and computational 
demand. This is particularly interesting for the exploitation of renewable sources.

Finally, Figures 2.80 through 2.82 show the steady-state CMV time waveforms and their 
FFT obtained, respectively, with the DPC-EMC 1, the DPC-EMC 2, and the classic DPC. 
Experimental results are in agreement with the simulations and with the theory. In par-
ticular, it is to be expected that the Fourier series expansion of the CMV obtained with 
DPC-EMC 1 shows harmonics basically in the low frequency region, in particular, third 
harmonic of the fundamental (150 Hz in Europe) and its odd multiples (3rd, 9th, 15th, 25th, 
etc., of the fundamental), with amplitudes decreasing with inverse proportionality with the 
frequency. DPC-EMC 2 is expected to present a harmonic content that is slightly higher in 
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the frequency range of kilohertz, remaining, however, very close to that of DPC-EMC 1. On 
the contrary, in the classic DPC, the switching pattern of the power devices of the inverter 
is commanded by the control law itself, and therefore the CMV variation is unpredictable.

The analysis of results shows that the classic DPC presents the worst behavior with spec-
tral lines of high magnitude in a frequency range from 2 to 10 kHz. On the contrary, the 
best behavior is shown by the DPC-EMC 1, whose CMV waveform is a square wave with 
the fundamental frequency at 150 Hz and harmonics only at low frequency, followed by 
DPC-EMC 2, which is slightly worse [56].

2.3.4.8  Standard Compliance: Comparative Analysis

A comparative analysis of all previously presented techniques has been made. The operat-
ing condition is Pref = −2 kW and Qref = 0 VAR. In particular, in Figure 2.83, the %THD of the 
injected current versus generated power is shown.

It should be noted that, in general, VOC and VF-OC present better performances, espe-
cially for low values of the generated power. Among the different DPC techniques, the 
worst is the DPC while the best is the DPC-EMC 2. Each of them presents an improvement 
in its VF version. In general, whatever technique is used, the lower the generated power, 
the higher the harmonic content. It should be noted that only VOC and VF-OC satisfy the 
requirements of the American [55] and European standards [57], equal in both cases to 5%.

Figure 2.84 shows %THD of the injected current versus DC link voltage. The knowledge 
of the power quality issues related to the DC link value is particularly important, espe-
cially when this value cannot be considered constant. This figure shows that only VOC 
and VF-OC always respect the standards’ limit. Other techniques are not complying with 
it for all values of voltage. With regard to DPC-EMC 1 and DPC-EMC 2, the trend is a sig-
nificant increase of the THD for decreasing values of Ud. Same considerations are true for 
VOC, which, however, present a slight increase of the THD at lower values of Ud. Finally, 
DPC does not present significant variations of the THD for the different values of Ud.
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List of Symbols

fs	 switching frequency
f1	 fundamental frequency
fswitch	 switching frequency
Ih rms	 rms harmonic current
Ih rms six step	 rms harmonic current in six-step operation
isA,isB,isC	 stator phase currents
is = isD + jisQ	 space-vector of the stator currents in the stator reference frame
is = isx + jisy	 space-vector of the stator currents in a generic rotating reference frame
ʹ = +ir i jird rq	 space-vector of the rotor currents in the stator reference frame

〈PON〉	 mean power loss during a switching period
〈Psw〉	 mean power loss during a commutation
Sa, Sb, Sc	 command signals of the VSI legs
Ts	 sampling time of the control system
TON	 conduction time of the power switch
tri	 rise time of the power switch current
trv	 rise time of the power switch voltage
tfi	 fall time of the power switch current
tfv	 fall time of the power switch current
TPWM =	 pulsewidth modulation period
uN0	 common mode voltage (CMV)
usA,usB,usC	 stator phase voltages
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FIGURE 2.84
%THD of the injected current versus DC link voltage. (From Giglia, G. et al., Comparison of control techniques 
for three-phase distributed generation based on VOC and DPC, in International Conference on Renewable Energy 
and Power Quality (ICREPQ’08), Santander, Spain, March 12–14, 2008.)
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us = usD + jusQ	 space-vector of the stator voltages in the stator reference frame
us = usx + jusy	 space-vector of the stator voltages in a generic rotating reference frame
Ud	 DC link voltage
vON	 voltage drop of the power switch

All quantities with ref in pedex are reference quantities.
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3
Power Quality

3.1  Nonlinear Loads

3.1.1  Current Source Type of Harmonic Sources (Harmonic Current Sources)

The classic harmonic current source (CS) is the thyristor rectifier with a series inductance, 
which maintains the load current constant, as shown in Figure 3.1. The switching opera-
tion of the diodes makes the source current periodic (three-step square wave) but nonsi-
nusoidal; as a consequence, a distortion on voltage source (VS) occurs due to the voltage 
drop on its impedance. Since this kind of load imposes the distorted current to the source, 
it is called harmonic CS. In this case, the load current is not significantly dependent on the 
AC side, so it can be considered a CS. Figure 3.2 shows the typical time waveform of the 
load voltage and current obtained with a three-phase diode rectifier connected to a highly 
inductive load. The voltage waveform appears quasi-sinusoidal because of the reduced 
voltage drop on the line impedance represented by the series Rg, Lg. Figure 3.3 shows the 
corresponding spectrum of the current, obtained with the fast Fourier transform (FFT). 
The spectrum exhibits the presence of only odd harmonics with amplitudes decreasing 
with the frequency, as theoretically expected.

3.1.2  Voltage Source Type of Harmonic Sources (Harmonic Voltage Sources)

When a diode rectifier is connected to a smoothing capacitance, as shown in Figure 3.4, the 
required current is highly distorted, as in the case of a harmonic current load. Differently 
from it, dually, the magnitude of the load current is significantly dependent on the source 
impedance and the distortion of the voltage source if present. On the other hand, the 
voltage on the AC side is less dependent on the source: that is why it can be considered a 
harmonic voltage load. Figure 3.5 shows the typical time waveforms of the load voltage 
and current obtained with a three-phase rectifier connected to a highly capacitive load. As 
expected, both the load voltage and current present significant distortion. Figure 3.6 shows 
the voltage spectrum obtained with the FFT. As in the harmonic current load counterpart, 
this spectrum exhibits only odd harmonics, with amplitudes decreasing with frequency.

3.2  Harmonic Propagation on the Distribution Network

Harmonics started being present in distribution networks in the 1920s due to the necessity 
to convert electric energy delivered by three-phase AC systems to supply DC motors. 
At that time, rectifiers were built with mercury arc rectifier. With the use of thyristors 
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since the 1950s and then with modern switching power devices, harmonic propagation 
has become more and more important. Nowadays, about 80% of the generator output sup-
plies nonlinear converters.

In general, the operation of switching power devices implies the presence of harmonics 
due to their intrinsic nonlinearity, so in a distribution network, the presence and mutual 
interaction of several harmonic generators have to be accounted for. Among these, besides 
rectifiers, considered previously, and inverters, there are also static VAR compensators and 
power transformers.

The most common source of harmonics and harmonic problems in power systems is the 
three-phase Graetz bridge. It produces harmonics of order n = 6k ± 1 where n is the harmonic 
order and k is an integer (see Figures 3.3 and 3.6). Such a rectifier can supply the DC side of 
an inverter, for example, in an induction drive, or can generate DC voltage for a high volt-
age direct current (HVDC) conversion system. In this last case, harmonics can be reduced 
by increasing the pulse number of the rectifier as in the 12-pulse rectifier where two 6-pulse 
rectifiers are used connected in series on the DC side and in parallel on the AC side. In this 
way, some of the produced harmonics can be canceled.

Pulsewidth modulated (PWM) three-phase inverters commonly used in variable speed 
drives are supplied by a DC link, which is the output of a rectifier described earlier.

Static VAR compensators are used in power systems to control voltage at the end of long 
transmission lines: if well designed, they should have little impact on the grid.

Power transformers generate low harmonic levels at steady-state; however, when they 
are initially energized, the presence of the so-called inrush current implies the presence of 
a harmonic current, including a DC term, which can be as high as 60% of the transformer 
rated current of the transformer.

Finally, several kinds of low-power sources are commonly present, whose cumulative 
effect can be relevant: for example, ballast inductors for fluorescent light and converters for 
consuming electronics like PCs and TVs.

Besides harmonics multiple of the fundamental harmonic, some additional terms are 
commonly present, known as interharmonics. The term “interharmonic” covers a wide 
range of frequencies generated by nonlinear static conversion systems, that are not integer 
multiples of the fundamental frequency [1].

Interharmonics often appear where two AC systems that are joined by the same DC link 
operate at different frequencies. In case of electric variable speed drives, both the power 
supplying AC system and the motor will experience interharmonics, including frequen-
cies that are below the fundamental value. This can be explained considering that the DC 
link does not decouple the two systems perfectly: its voltage is not constant and contains 
a superimposed ripple.

Harmonic pollution results both from large nonlinear loads such as variable speed 
drives and power converter and from a great number of small nonlinear loads due to their 
cumulative effect.

Three main groups of small nonlinear loads can be identified. The first group contains 
loads that utilize the single-phase capacitor-filtered diode bridge rectifier (DBR): these cir-
cuits require a pulsed current that is rich in harmonics. In this group, there are computers, 
TVs, battery chargers, and small adjustable speed drives for heat pumps. The second group 
contains loads that use phase angle voltage controllers in which the input voltage is con-
trolled by using a thyristor. Light dimmers, heaters, and single-phase induction machines 
(IMs) belong to this group. Finally, the third group contains the compact fluorescent lamps 
employing magnetic ballast. The contribution, in this case, results from the non linearity 
of gas discharges.
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The cumulative effect of the loads mentioned earlier is made more complicated by their 
interconnection to the power grid.

With reference to Figure 3.7, in which a linear load and a nonlinear one are parallely 
connected and supplied by the grid generator Vg by its impedance Zg, it can be noticed that 
if the grid impedance is negligible, the voltage at bus #2 is sinusoidal, and the nonlinear 
load represents the unique source of current harmonics. On the contrary, if the inductive 
impedance Zg is not neglected, the distorted current due to the nonlinear load creates a 
harmonic voltage drop on Zg. As a consequence, the voltage on bus #2 is distorted as well; 
the linear load is then supplied by a distorted voltage and a resulting distorted current 
and the total current supplied by the grid generator is highly polluted as for its harmonic 
contents [2].

A real distribution system should be considered as made up of a large number of 
converters coupled through DC links, transformers, and bus-bars. Figure 3.8 shows 
a typical real system in an industry. There are several PCCs (points of common cou-
pling). PCCI represents the connection of the main transformer to the distribution 
network. At PCC2, nonlinear loads are connected to a step-down distribution trans-
former. At PCC3, a DC motor converter and an IM drive are connected in parallel to 
the other step-down transformer. The separate effects of each of these two loads can be 
compensated (or calculated) at the corresponding PCCs. It is apparent that such a situ-
ation requires appropriated methods to foresee the harmonic pollution and providing 
remedies to avoid harmonic propagation [3].
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FIGURE 3.7
Example of linear and nonlinear load sup-
plied by the same power grid.
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Many techniques for harmonic analysis have been devised. The simplest is the “fre-
quency scan”: it is based on the response of a network in a particular bus or node: a 1 
per unit sinusoidal current (or voltage) is injected into the bus, and the corresponding 
response is calculated. The injection is repeated using discrete frequency step in the inter-
val of interest. Mathematically, it is equivalent to solve the network equation

	 [ ] [ ] [ ]Y V In n⋅ = n 	 (3.1)

where
In is the vector of injected currents
Vn is the bus voltage vector to be computed
Yn is the admittance matrix, while n indicates the number of considered harmonic

This technique allows resonances to be detected, and it is useful for filter design.
The “harmonic iteration” method considers a harmonic-producing device that acts as a 

supply voltage–dependent CS following a function in the form

	 I f V V V c n hn n= ( ) =1 2 1 2, , , , , , ,… … 	 (3.2)

where
V1, V2,…, Vn are the harmonic phasors of the supply voltage
c is a set of control variables as converter firing angle or output powers

At the first iteration, (3.2) is solved with an estimated supply voltage; then the result is 
used as a CS in (3.1), which gives voltage harmonics. They are introduced in (3.2), and the 
process is repeated until the convergence is reached.

Another method consists in solving simultaneously (3.1) and (3.2) using a Newton-based 
algorithm. In this case, generally, the devices have to be modeled in a closed form or in 
a form that allows derivatives to be calculated. If the starting point is chosen close to the 
final point, the convergence is better than that obtained with the previous method.

Finally, the analysis can be performed in time domain by electromagnetic transient 
programs such as EMTP [4,5].

Limits to the distortion at the PCC are specified by the IEEE standard [6]. To comply with 
this standard, compensating circuits have to be connected to the PCC of the distorting system. 
These circuits can be passive or active or both; they are illustrated in the following sections.

3.3  Passive Filters

Passive filters are built by passive components such as capacitors, inductors, and/or resis-
tors. Their aim is to block a single harmonic (tuned filter) or a set of harmonics whose 
frequency is higher than a threshold. In general, they are connected in parallel with the 
nonlinear load [7]: in this case, they are called parallel passive filters (PPFs). Figure 3.9 
shows the electric schemes of some passive filters. Figure 3.9a, in particular, shows a sin-
gle-tuned filter: the frequency to be eliminated is given by the values of C and L, while R 
is the parasitic inductor resistance. Figure 3.9b shows a double-tuned filter. In Figure 3.9c 
through e, HPFs of the first, second, and third orders are sketched, respectively.
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Figure 3.10 shows the frequency responses of each component of a bank of PPF, composed 
of filters tuned at the 5th harmonic, a filter tuned at the 7th harmonic, and an HPF tuned to let 
harmonics above the 11th pass. Figure 3.11 shows the overall frequency response of the bank 
of filters, presenting the expected resonances at the 5th and 7th harmonics, while the 11th 
HPF acts above the 11th harmonic. Table 3.1 shows the parameters of the filter components [7].

In practice, for several reasons, the characteristic parameters may differ from the theo-
retical ones. With reference to the circuit of Figure 3.9a, in which the resistance R repre-
sents the parasitic resistance of the inductor, the impedance is given by

	
Z R L

C
= + −⎛
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FIGURE 3.9
Electric schemes of some passive filters: (a) single-tuned filter, (b) double-tuned filter, (c) first order high-pass 
filter, (d) second order high-pass filter, (e) third order high-pass filter.

f/f1

101 102

102

102

f/f1

101

100

100

100

–20

–20
–40

0

0

20

20
40

–20
–40

0
20
40

ab
s(

Z H
P)

 (d
B)

ab
s(

X 7
) (

dB
)

ab
s(

X 5
) (

dB
)

f/f1

101

FIGURE 3.10
Frequency response of the single component of a PPF.



104 Power Converters and AC Electrical Drives with Linear Neural Networks

It presents a minimum value at the resonance pulsation

	
ωr

LC
=

1
	 (3.4)

by using the definition of “quality factor of the inductor” as follows:

	
Q

L
R

r
r=

ω 	 (3.5)

the 3 dB bandwidth can be expressed as

	
B

Q
r

r
3 2dB =

ω
π

	 (3.6)

where reasonable values for Qr range from 20 to 100.
In practice, both ωr and Qr may vary for several reasons. Considering, for example, a 

situation in which the series-tuned filter is connected with a voltage generator, which has 
an equivalent series internal impedance with a resistor Rg and an inductance Lg, the new 
values of ωr and Qr are modified as follows:
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FIGURE 3.11
Frequency response of the overall PPF.

TABLE 3.1

Parameters of the PPF Components

Inductance (mH) Capacitance (μF)

Fifth-order filter 1.2 340 Q = 14
Seventh-order filter 1.2 170 Q = 14
HPF 0.26 300 R = 3 Ω
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It should be noted that the presence of a real voltage generator implies that the resonant 
pulsation is decreased and the band of the filter is broadened. Moreover, the filter has to be 
connected to a load, which further contributes to variation in its performance.

Finally, the resonant pulsation is affected by the variation of the parameters. Indeed, the 
variation of ωr due to the tolerance of the inductor and the capacitor yields
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Therefore the relative variation of ωr is proportional to the relative variation of the capaci-
tor and to the inductance value, as follows:

	

Δ Δ Δ Δω
ω

r

r
C

L
L

L
C
C

L C
C

= − +⎛
⎝⎜

⎞
⎠⎟
≈ −

1
2 2

	 (3.10)

Similar consideration can be extended to the other circuits of Figure 3.8b through e.

3.4  Active Power Filters

3.4.1  Introduction on APFs

As known, harmonics have a negative impact on distribution networks and influence the 
behavior of system components and loads, for example, conductors suffer from losses and 
skin effects; eddy current losses can have detrimental effects on transformers, with conse-
quent equipment overheating; capacitors may be affected by resonance phenomena with 
potential breakdown; and machines can suffer from vibration phenomena.

Over the last few years, active power filters (APFs) have drawn great attention and are 
expected to be a suitable remedy for the problem of harmonic pollution  [7–9], thanks to the 
recent advances in semiconductor technology.

The basic theory on active filters was proposed about 40 years ago [10–15]; researchers 
have been applying them ever increasingly, thanks to the progress of technology both 
of power electronic devices and microprocessors for signal processing and control algo-
rithm implementation.

In particular, power devices like insulated gate bipolar transistors (IGBTs) and power 
MOSFETs with fast switching capability and insulated gate structure have allowed the 
use of fast modulation frequencies and simple and low-power-consuming driving cir-
cuits. Moreover, by using new less expensive microprocessors like digital signal proces-
sors (DSPs) and field-programmable gate arrays (FPGAs), the algorithm’s performance has 
been increased as well [15–20].

Nowadays, the trend is to substitute traditional passive harmonic filters with active 
harmonic filters.
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“Active filtering” is something included inside the more general term of “power condi-
tioning” used to take into consideration several features in addition to harmonic filtering 
like harmonic damping, harmonic isolation, harmonic termination, reactive power con-
trol for power factor correction and voltage regulation, load balancing, and voltage-flicker 
reduction.

The main features of active filters are sketched in Figure 3.12. First, they can be divided 
into single-phase and three-phase active filters. The first typology is used for low-power 
applications and for electric traction and rolling stock. The second has been recently draw-
ing more attention from industries and researchers due to their wide range of applications. 
The active filter configurations can be further divided into pure or hybrid. This last config-
uration is obtained by a pure active filter adopted in combination with traditional passive 
filters. Finally, the power circuit can be a PWM converter in a VS configuration adopting a 
capacitor on the DC side or a CS with a series inductance.

The widest spread active filters employ a PWM in VS configuration due to its advantages 
like lower cost, physical size, and efficiency; hybrid configuration is preferred for both 
viability and economical reasons as explained in the following.

Two main categories of pure APFs exist: shunt filters, also called parallel active filters 
(PAFs), and series active filters (SAFs). PAFs are effective for those nonlinear loads that can 
be considered as current harmonic sources (see Section 3.1.1); they are therefore used to 
generate harmonic currents to compensate load harmonic currents. SAFs are effective in 
generating harmonic voltages to compensate load harmonics and grid voltage harmonics 
and are suitable for compensating voltage harmonic sources [7].

Power circuit:

Grid connection:

(a) Single phase
(b) �ree phase

Active
filters’

characteristics

Configuration:
Pure/hybrid

(a) Voltage source PWM
    conv. with capacitor

(b) Current source PWM
       conv. with inductance

FIGURE 3.12
Classification of filtering strategies.
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Three-phase APFs have historically drawn more attention. In this case, three “optimal” 
compensation targets can be addressed by the APF controller, from which three control 
strategies derive [7]:

•	 Constant instantaneous source power control
•	 Sinusoidal current control
•	 Generalized Fryze current control

As demonstrated by the instantaneous active-reactive (p-q) power theory (see Chapter 1) [7,8], 
only under three-phase undistorted balanced voltages is it possible to simultaneously per-
form these three control actions, otherwise, one out of the three is to be chosen.

Active filters can be installed by individual consumers or in substations and/or distribu-
tion feeders [19]. In the first case, the consumer aims to compensate harmonics produced by 
its own loads so as to present the grid an equivalent load complying with the standard. Due 
to harmonic propagation through the grid, the presence of an active filter in a substation 
and/or power feeders can perform harmonic damping and compensate voltage imbalance.

3.4.2  Basic Operating Issues of Parallel and Series Filters

Figure 3.13 shows a typical connection of a PPF to a CS nonlinear load. In this case, tuned 
filters is devised to present a low impedance to the harmonic to be suppressed; the filter 
would then represent a sink for the correspondent harmonic current. In practice, the sup-
pression acts on a frequency range which depends on the quality factor of the inductor  
as explained above [22]. Second-order HPFs exhibit good filtering performance but cause 
higher fundamental frequency losses compared to single-tuned ones.

It should be noted that the PPF is composed of two single-tuned filters and an HPF [23]. 
The first two filters aim to block a single frequency by having a low impedance at those 
harmonics (e.g., the 5th and the 7th). The HPF exhibits a low impedance for harmonics 
higher than the 11th.

It should be borne in mind that the presence of a tuned passive filter can imply some prob-
lems. With reference to Figure 3.13, the first problem is that the filter impedance depends 

Electrical grid Nonlinear load

Rg Lg

PCC

iF ZF

PPF

5th 7th 11th High-pass

VLVg ig iL

FIGURE 3.13
Basic scheme of PPF.



108 Power Converters and AC Electrical Drives with Linear Neural Networks

on the load impedance which is not constant. Then, the filter can become a sink also for 
frequencies different from the tuned ones; correspondingly, a current, whose frequency is 
ωi, will flow through the loop composed of the filter, the grid impedance Żg, and the grid 
voltage generator. This will cause a distorted voltage drop on the source impedance with 
a consequent load voltage distortion. Finally, the contemporary presence of both the filter 
inductance and the grid impedance can cause a parallel resonance, with a consequent high 
voltage at frequency ωi appearing on the load at frequency ωi.

On the basis of what is mentioned earlier it is clear that the grid impedance plays an 
important role in harmonic compensation. Its value should be high at frequency values 
corresponding to the harmonics to be compensated; in addition, it should have a low value 
at the fundamental frequency to avoid the voltage drop at the fundamental frequency. 
Both requirements can be fulfilled with a hybrid filter, as shown in the following.

Figure 3.14 shows the basic configuration of a series passive filter (SPF) [18,24]. The filter 
is connected in series with the power grid. Differently from the PPF, the SPF acts as a block 
versus the voltage grid harmonics. SPFs are typically composed of parallel-resonant cir-
cuits and high-block (HB) circuits. The tuned filters are designed to block specific harmon-
ics, while the HB filter blocks harmonics above a certain order.

3.4.3  Shunt Active Filters

A shunt active filter or a PAF is placed in parallel with a load considered as the harmonic 
generator [7,8]. The PAF injects a harmonic current whose amplitude is the same as that of 
the load with opposite phase: for this purpose, the load harmonic current has to be detected 
through a dedicated circuit. As a consequence, an inner loop is present in this kind of filter.

The basic diagram is shown in Figure 3.15. In this figure, the PAF is represented as a CS İC; 
the injected current depends on the load current İL and a gain factor G. In case of a harmonic 
current load, it can be represented by the Norton equivalent circuit as in Figure 3.15 [25,26]. If 
the load is considered as a voltage harmonic generator, it can be represented by the Theʾvenin 
equivalent circuit as in Figure 3.16. The two circuital representations are equivalent; however, 
their adoption depends on the load characteristics, as explained later in the text. The following 
analysis has been done under the hypothesis of sinusoidal steady-state for the generic har-
monic of order h; in this way, phasor quantities are associated with each electric variable.

3.4.3.1  Harmonic Current Source Compensation by PAF

With reference to Figure 3.15, the current supplied by the filter can be expressed as

	
� �I GIC L= 	 (3.11)

FIGURE 3.14
Basic scheme of SPF.

Electrical grid Nonlinear load

SPF

5th 7th 11th
High-block

PCC
ZD

iL
VLigVg

Rg Lg
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while the grid current can be written as
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and the load current as
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As for the generic harmonic of order h, the İ gh (the hth order harmonic of the grid current) 
can be made null if the following equation holds:
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In this case, Equations 3.11 through 3.13 can be rewritten as

	
� �I IC Lh= 	 (3.15)

Parallel active
filter

Harmonic current
source load

AC power grid

Ig IL

G ZLIcVg IL0

Zg

FIGURE 3.15
Basic principle of PAF for harmonic 
current load.

Parallel active
filter

Harmonic voltage
source load

AC power grid

Vg

Ig IL

G VL

ZL

Ic

Zg

FIGURE 3.16
Basic principle of PAF for harmonic voltage 
load.
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and
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Note that if (1 − G)|h = 0, the condition (3.14) is always verified and the source current İg is 
sinusoidal. (1 − G)|h = 0 or (3.14) can thus be considered the basic conditions of operation of 
a PAF. However remark that (3.14) contains the grid impedance Żg and the load impedance: 
the ratio between these two quantities contributes to the filter performance (as in the case 
of passive filter). It should be noticed also that for a pure current source where |ŻL| >> |Żg|, 
Equations 3.12 and 3.13 are reduced to
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From what was shown earlier, the PAF performance improves when the load impedance 
is bigger than the grid impedance as, for example, for highly inductive thyristor rectifiers. 
This last condition depends on the grid and load configuration. Moreover, the contribu-
tion of the PAF consists of a gain G able to discriminate between the fundamental and 
harmonic currents. For practical cases, (1 − G)|h ranges from 0.1 to 0.3.

In summary, the capability of the APF to cancel the load current harmonics depends therefore 
not only on the filter itself (G) but also on the load (ŻL) and source (Żg) impedences. However, 
if (1 − G)|h ≈ 0, the harmonic compensation capability is independent from the system imped-
ances. On the contrary, if (1 − G)|h ≠ 0, the ratio |ŻL|/|Żg| must be taken into account.

Figure 3.17 shows a set of curves representing the low frequency harmonic amplitudes of 
the line current, in percent of the fundamental of the load current (assumed to be a square 
waveform), versus the active filter gain for a fixed value of the ratio |ŻL|/|Żg| = 30. It shows 
that with G = 0, the harmonic content of the line current is obviously the greatest, and no 
current harmonic compensation occurs. According to Equation 3.14, the higher the gain G, 
the lower the harmonic of the line current. When G approaches 1, all the harmonics of the 
line current become close to 0, independent of the harmonic order and the ratio |ŻL|/|Żg|. 
Figure 3.18 shows a set of curves representing the third harmonic amplitude of the grid 
current versus the active filter gain for different values of the ratio |ŻL|/|Żg|. It shows that, 
for lower values of G, there is a dependency of the third harmonics on the grid impedance. 
The higher the ratio |ŻL|/|Żg|, the lower this dependency as explained earlier. For values of 
G close to 1, the third harmonic amplitude is almost independent from the impedance ratio.

On the other hand, some common situations occur in which the load impedance is 
low for some harmonics. It is the case of loads that present a highly capacitive bank or 
with a passive filter. As a consequence, the PAF performance will depend on the grid 
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characteristics; in addition, from (3.17), it is evident that the difference between the hth 
harmonic of the load current İLh and the hth harmonic of the Norton equivalent generator 
load current İL0h depends strongly on the load impedance. In particular, if the load imped-
ance tends to become infinite, then İL0h ≅ İLh. On the other hand, for low values of the load 
impedance (stiff grid), İLh becomes high, and the filter must be correspondingly designed.

3.4.3.2  Harmonic Voltage Source Compensation by PAF

Given the Thevenin equivalent circuit in Figure 3.16 [27,28], the equations describing the 
circuit are
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If the following condition is satisfied,
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the grid current is sinusoidal. In this case, it happens that
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Equation 3.24 is the dual equation of (3.14); it should be noted, however, that a harmonic 
VS has usually a low internal impedance, and the operation of PAF makes null the grid 
impedance seen by the load side (see Equation 3.23 when (1 − G) ≈ 0). From Equation 3.25, 
it is clear that the harmonic current injected by PAF flows into the load and, finally from 
(3.27), that the distortion of the grid voltage V̇gh will cause harmonic current into the load, 
independent of the filter itself. As a consequence, especially for low load impedance, the 
required volt-ampere rating of the filter has to be increased.

3.4.3.3  Control of PAF Based on p-q Theory

Among the different control methods for APFs, the technique based on the p-q power 
theory is one of the most performing [7,8]. The complete scheme of a PAF based on the p-q 
controller is sketched in Figure 3.19.

Two main blocks can be identified: the controller that calculates the compensating cur-
rent reference and the power converter that amplifies it and performs the injection into the 
power grid.

Harmonic currents can be generated both by load nonlinearity and by harmonic volt-
ages (see Sections 3.1 and 3.2) in the power system. In such a case, the grid voltage is 
composed of the term at fundamental frequency and additional terms with frequencies 
multiple of the fundamental.

Since the shunt active filter usually is used to compensate the harmonic current intro-
duced by the load, it gives a compensating current with the same amplitude and opposite 
phase of the harmonic current of the load. However, the voltage at the PCC can be dis-
torted by the presence of the harmonic voltage generated by the grid. When the filter com-
pensates both the grid and load harmonic components, the voltage at the PCC becomes 
sinusoidal.

It should be remarked that if the load impedance is low (or the power system has a high 
short-circuit capacity), the filter should deliver a high current, which could be unfeasible. 
In such a case, other solutions such as series filters could be exploited.
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3.4.3.3.1  PWM Converters for Shunt Active Filters

The power converter shown in Figure 3.19 is a voltage source converter (VSC); however, 
other topologies can be adopted such as the current source converter (CSC) shown in 
Figure 3.20; both of the converters can behave as controlled CSs. The storage element 
(a capacitor for the VSC, an inductance for the CSC) is sufficient to supply the inverter. 
Ideally, the exchanged energy is null; in reality, inverter losses require that the storage 
element voltage be controlled to keep the DC voltage (current) constant.

It should be noted that since all inverters are sources of harmonics, in order to avoid 
harmonic propagation through the grid, a passive RC wye-connected low-pass filter (LPF) 
is usually added at the inverter’s output. Usually, a small passive filter is required because 
the switching frequency of the inverter is high. If, instead of a three leg inverter, three 
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PAF scheme based on a p-q controller.
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H bridges are adopted, they should have in common the storage element as shown in 
Figure 3.21. This last configuration is employed in the SAFs.

The CSC exhibits a high robustness [27–28], but the VCS has a low initial cost, high effi-
ciency, and smaller size [8,9]. At present, manufacturers provide six IGBT modules with 
antiparallel free-wheeling diode, and as a consequence, the VCS is more practical and 
cheaper to realize.

3.4.3.3.2  Active Filter Controllers Using p-q Theory

The use of p-q theory is a very satisfactory strategy to design an active filter controller; 
however, it is demonstrated [7] that when the power system contains voltage harmonics 
and/or imbalances at the fundamental frequency, the three main targets of compensa-
tion—(a) to draw a constant instantaneous active power from the grid, (b) to draw a sinu-
soidal current from the grid, and (c) to draw the minimum rms value of the current that 
transports the same energy to the load with minimum losses along the transmission line 
(unit power factor)—cannot be simultaneously satisfied.

For this reason, three fundamental compensation strategies can be identified [7]:

	 1.	Constant instantaneous power control strategy
	 2.	Sinusoidal current control strategy
	 3.	Generalized Fryze current control strategy

Under sinusoidal, balanced system voltages, the three control strategies can produce the 
same results.

Figure 3.19 shows the most important parts of a three-phase, three-wire shunt active 
filter for current compensation. The input variables of the controller are the phase voltages 
vg(a,b,c), measured at the PCC, and the load current iL(a,b,c) flowing into the load to be com-
pensated. The DC link voltage Ud is measured in order to compensate the inverter losses. 
The controller outputs six gate signals to drive the inverter power switches.

FIGURE 3.20
Electric scheme of a CSC.

L

Idc

FIGURE 3.21
Electric scheme of the H bridge configuration.
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The sampled input signals are processed as follows: voltages and currents are prelimi-
narily converted from the three-phase to the biphase system by means of the Clarke trans-
formation to obtain the corresponding variables in the D-Q reference frame. Afterward, 
both the instantaneous active power p and reactive power q are calculated. The compen-
sating current is finally obtained on the basis of the grid voltage components vgD, vgQ in 
the D-Q reference, the reactive power q, the oscillating active power p̃, and the power 
term due to the losses ploss. The obtained compensating current is finally converted by 
the inverse Clarke transformation into the three reference values. A current controller is 
always present, which commands a PWM providing the six signals to drive the inverter 
power switches. Several current control methods can be devised, working in both the sta-
tionary and rotating reference frames [29]. Finally, an LPF (not shown in Figure 3.19) could 
be placed before the voltage grid measurement in order to avoid problems of instability or 
resonance; it is adopted with the constant instantaneous power control strategy method 
explained in the following text.

3.4.3.3.3  Constant Instantaneous Power Control Strategy

The goal of this strategy consists in drawing a constant instantaneous power from the 
source. The filter has to be connected as close as possible to the load. In terms of p-q theory, 
this means that the oscillating real power p̃ will be compensated by the filter.

The current supplied by the filter is the oscillating part of the active current on the D and 
Q axis computed on the basis of p̃ as follows:
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where the sign of the power is positive when it flows into the load such as in the “load 
current convention.”

When the filter operates, the supply source (the grid) gives the constant value of the 
real power p–. The compensation of p̃ by the filter implies exploiting the capacitor sup-
plying the inverter DC link. Its value should be designed so as to avoid large DC volt-
age, which however should be always higher than the peak value of the grid voltage. 
Moreover, because of the presence of a small amount of average real power (Ploss), due to 
switching and ohmic inverter losses, the DC voltage must be controlled with an addi-
tional control loop to maintain the DC link voltage constant.

The current reference calculated by Equation 3.28 and (3.29) can be added with a further 
term to compensate the instantaneous reactive current on D and Q axis:
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The separation between the average p– and the oscillating part p̃ of the power is performed 
by an LPF (Figure 3.19). It influences the active filter dynamical performance because it 
introduces a delay [7], so its cutoff frequency has to be chosen carefully.
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3.4.3.3.4  Sinusoidal Current Control Strategy

The goal of this strategy is to make the grid current sinusoidal and balanced. This require-
ment cannot be accomplished with a compensated constant power supplied to the load in 
the presence of a voltage imbalance or voltage distortion. This is the reason why, in this 
last case, a choice between the two described methods must be made.

In this method, the filter has to compensate the currents that differ from the fundamen-
tal positive-sequence current i+1. The strategy consists in determining the fundamental 
positive sequence of the load current. In this sense, the scheme of Figure 3.19 needs to be 
modified by inserting a positive-sequence detector block [7] to process the voltage before 
the Clarke transformation. On the other hand, the presence of the low-pass filter on the 
phase voltage measurement is not necessary.

3.4.3.3.5  Generalized Fryze Current Control Strategy

The Fryze method aims to minimize the rms value of the compensated currents; in this case, 
the ohmic losses are minimized too, and the average active power supplied by the grid remains 
the same as the power given by the original current. Moreover, this method does not utilize the 
p-q theory, but directly exploits the three grid voltages vg(a,b,c) and load currents iL(a,b,c), and, 
consequently, the calculation effort is lower than the other methods.

The scheme of the Fryze controller is shown in Figure 3.22. The ratio between voltage and 
current is maintained equal to a conductance defined as the mean instantaneous power on 
the three phases divided by the square of the sum of the rms values of the phase voltages:
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FIGURE 3.22
PAF scheme based on the Fryze controller.
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If Equation 3.32 is used, the speed of the method is affected by the need of calculation 
in one period T; however, an LPF can be utilized as shown in Figure 3.22. Moreover, a 
further term to take into account losses on the DC link has to be added. This last term 
is obtained by the error values between the desired DC link voltage and the real one 
processed with a PI.

The obtained quantity G–e + G–loss multiplied to the phase voltages gives the generalized 
Fryze currents iw–(A,B,C). Then the reference currents iCref(A,B,C) are obtained by subtract-
ing the load current.

3.4.4  Series Active Filters

The series active power filter (SAF) is an active system which should be placed between 
the AC source and the nonlinear load (either current or voltage type), in series with both 
of them [7,24]. Figure 3.23 shows the basic diagram of an SAF, with a typical voltage har-
monic nonlinear load, which can be valid for both three-phase (three wires) systems and 
single-phase ones. The three-phase SAF is composed of a suitably controlled three-phase 
PWM VS inverter (or three single-phase inverters), connected in series with the load and 
the power line by a three-phase transformer (or three single-phase transformers). The SAF 
is basically a controlled voltage generator, and therefore PWM inverter typically does not 
present any inner current loop, different from the PAF.

The basic idea of the SAF is to block harmonics by generating proper compensating 
voltages. To avoid the current harmonics from flowing between the AC source and the 
nonlinear load, the SAF must present a high impedance at the harmonic frequencies, while 
presenting a zero impedance at the fundamental frequency.

As in the case of the PAF, the effectiveness of the SAF in cases of current harmonic loads 
and voltage harmonic loads should be evaluated. The SAF can be more properly used for 
compensating harmonic voltage nonlinear loads, as in the case of a three-phase rectifier 
with a capacitive load.

3.4.4.1  Harmonic Current Loads

As in the case of the PAF, the complete system composed by the AC source, the nonlin-
ear current harmonic load, and the SAF can be represented by the corresponding Norton 
equivalent circuit, as in Figure 3.24 [25,26]. The power grid is represented by a voltage 
generator V̇g in series with an impedance Żg, the current type load with a current gen-
erator providing İL0 in parallel with its equivalent impedance ŻL, and finally, the SAF is 
represented by a controlled voltage generator V̇C.
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Rg Lg
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FIGURE 3.23
Basic schematics of the SAF.
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The voltage equation of the system at any frequency (fundamental or harmonic of order h) 
can be written as

	
� � � � �V I Z V Vg g g c L= + + 	 (3.33)

where

	
� �V KGIc g= 	 (3.34)

with G representing the equivalent transfer function of the current harmonic detection 
system, including its dynamics and delay times, and K is a gain quantity (dimensionally 
in [Ω]). The value of G should be almost 0 at the fundamental frequency, G|1 = 0, while its 
value should be almost equal to 1 at any harmonic h to be compensated, G|h = 1.

The load voltage can be written as

	
� � � �V I I ZL g L L= −( )0 	 (3.35)

After substituting Equations (3.33) and (3.34) in (3.32), the following expression of the grid 
current İg can be obtained:

	

�
� � �

� �I
V I Z

Z Z KG
g

g L L

g L

=
+

+ +
0 	 (3.36)

If the value of K satisfies the following hypothesis for each harmonic of order h to be 
compensated,
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Schematics of an SAF for current harmonic 
compensation.
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then the component of the source current at harmonic h, İgh, from Equation 3.36 becomes

	
�Igh ≅ 0 	 (3.38)

while the component of the voltage generated by the SAF for the harmonic h, V̇Ch, becomes

	
� � � �V Z I VCh Lh L h gh≅ +0 	 (3.39)

where
V̇gh is the hth harmonic component of the source voltage
İL0h is the hth harmonic component of the load current

Equations 3.37a and 3.37b are therefore the required operating conditions of the SAF, 
which demands that the value of K should be high enough, while the load impedance 
for the hth harmonic |ŻL|h should be sufficiently low. If these requirements are fulfilled, 
Equation 3.38 confirms that the source (grid) current becomes almost equal to 0, which 
means that the SAF prevents the load harmonic current from flowing into the grid, and 
Equation 3.39 confirms that the voltage generated by the SAF properly compensates both 
the voltage drop of the load harmonic current into the load impedance and the VS har-
monics, that will not be transmitted on the load. Unfortunately, real cases of typical cur-
rent loads, like conventional phase-controlled thyristor rectifiers, have a very high value of 
|ŻL|h, which makes the requirements in Equation 3.26 not properly satisfied with resulting 
bad operation of the SAF. This is confirmed by Equation 3.31, which shows that, in this 
case, the voltage required to the SAF tends to become infinite. The pure SAF is therefore 
not suitable for real current type nonlinear loads. A solution for using the SAF in case of 
these kinds of loads is to supplement the SAF with a passive filter placed in parallel with 
the load, trying to reduce its equivalent impedance, shown in the following.

3.4.4.2  Voltage Harmonic Loads

To analyze the behavior of the SAF in case of harmonic voltage nonlinear loads, the 
complete system composed by the AC source, the nonlinear voltage harmonic load, and 
the SAF can be represented by the corresponding Thévenin equivalent circuit, as shown 
in Figure 3.25 [25,26].
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FIGURE 3.25
Schematics of an SAF for voltage harmonic 
compensation.
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The voltage equation of the system at any frequency, fundamental or harmonic of 
order h, can be written as

	
� � � � � �V I Z Z V Vg g g L c L= + + +( ) 	 (3.40)

where

	
� �V KGIc g= 	 (3.41)

with G representing the equivalent transfer function of the current harmonic detection 
system, including its dynamics and delay times, and K is a gain quantity (dimensionally 
in [Ω]). Substituting Equation 3.41 into 3.40, the grid current can be obtained as

	

�
� �

� �I
V V

Z Z KG
g

g L

g L

=
−

+ +
	 (3.42)

Equation 3.42 confirms that if K is sufficiently high at the hth harmonics, the resulting 
source current becomes null:

	
�Igh ≅ 0 	 (3.43)

and the voltage V̇Ch generated by the SAF at the hth harmonics is

	
� � �V V VCh gh Lh≅ − 	 (3.44)

A sufficiently high value of K, ideally infinite, is the required operating condition of the 
SAF in the presence of nonlinear voltage loads. There are several ways to try and obtain 
such a condition. The easiest is to control the current with a hysteresis controller. In this 
case, sketched schematically in Figure 3.26, the value of the gain K → ∞. Another way is to 
directly control the SAF hth harmonic voltage V̇Ch, trying to compensate the load voltage 
V̇Lh on the basis of the source current İgh, as shown in Figure 3.27.

From Figure 3.27, the SAF reference voltage at the V̇Cref can be written as

	
� � �V G KI VCref g L= −( ) 	 (3.45)
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FIGURE 3.26
Hysteresis control of the SAF.
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FIGURE 3.27
Carrier-based control of the SAF.
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Assuming the voltage is properly controlled, that is, V̇C = V̇Cref, and recalling Equation 3.41, 
the grid current can be computed as

	

�
� �
� �I
V V G
Z Z KG

g
g L

g L

=
− −

+ +

( )1
	 (3.46)

Under the hypothesis of sufficiently low source (grid) voltage harmonics, that is, V̇gh ≅ 0, if 
the value of G at the hth harmonic satisfies the following condition,

	 ( )1 0− ≅G
h

	 (3.47)

then the source current hth harmonic is almost null, independent of the ratio between K 
and |Żg + ŻL|h, that is, independent of the value of the load, that is:

	

�
�

�I
G V

Z Z KG
gh

Lh

g L

= −
−

+ +
≅

( )1
0

	
(3.48)

If the VS harmonics are nonnull, then an uncompensated term appears which, on the con-
trary, depends on the load impedance. Equation 3.47 is then the operating condition of the 
SAF for nonlinear voltage loads. It can be observed that the behavior and the effectiveness 
of the SAF in case of nonlinear voltage loads are dually equivalent to those of the PAF in 
case of nonlinear current loads.

3.4.4.3  Control of SAF Based on the p-q Theory

The classic control strategy for SAFs is based on the p-q theory [7]. The complete control 
scheme with the electric scheme typical of a three-phase three-wire system is drawn in 
Figure 3.28. It is based on three single-phase converters with common DC link capacitor. 
The underlying assumption is that no zero-sequence current component exists. The goal of 
the control action is to generate a set of voltages to compensate the harmonic load voltage 
components which are the cause of oscillating active and reactive power components on 
the load side. Such a control scheme permits the grid voltages and currents to have pure 
sinusoidal waveforms.

In this system, the instantaneous values of the load currents iL(a,b,c) and voltages vL(a,b,c) 
are measured and are then given as inputs to the SAF controller. Starting from the three-
phase variables, exploiting the Clarke transformation, the corresponding D-Q variables 
are obtained, respectively (iLD, iLQ) and (vLD, vLQ). On this basis, the instantaneous active (p) 
and reactive (q) power components are computed. The oscillating active p̃ and reactive q̃ 
power components are then computed after subtracting their average values obtained by 
a low-pass (LP) filter. The zero-sequence power components are assumed equal to 0, since 
the zero-sequence current is equal to 0 as seen before. Given the oscillating power compo-
nents, the instantaneous voltages to be generated by the SAF to compensate the load volt-
age harmonics can be computed and given as references to the power converter. Another 
important underlying assumption is that the power converter is ideal, that is, no power 
losses exist, which implies no theoretical need to control the DC link voltage. In real-world 
application, an additional term Δp– should be added to p̃ for suitably compensating the 
losses. Furthermore, any displacement between load voltages and currents, resulting in a 
nonnull average reactive power q–, cannot be taken into consideration, or else an additional 
term should be added.
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3.4.5  Comparison between PAFs and SAFs

The analysis of PAFs and SAFs has shown that each of them works for a certain kind of 
load, with a precise required operating condition, and that between them, a dual relation 
exists. The main characteristics of both of them can be summarized in the following:

•	 Basic operating principle: PAF works as a CS while SAF works as a VS.
•	 Nonlinear load type: PAF works for inductive or harmonic CSs, like phase control-

ler rectifiers, while SAF works for capacitive or harmonic VSs, like diode rectifiers 
with smoothing capacitors.
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FIGURE 3.28
Control scheme of SAF based on the p-q theory.
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•	 Operating condition: PAF works properly with high values of the load impedance 
and when (1 − G)|h << 1, while SAF works properly with low values of the load 
impedance and when (1 − G)|h << 1.

•	 Compensation properties: PAF presents an excellent compensation for current har-
monic loads, independent from the grid impedance only when the load imped-
ance is high, while SAF presents an excellent compensation independent from 
both the grid and the load impedances only for harmonic voltage loads, depend-
ing on the load impedance for harmonic current loads.

•	 Applicative issues: PAF injects current on the load, which can cause overcurrents 
when applied to a voltage harmonic load, while SAF needs a low impedance paral-
lel branch when used with a harmonic current load.

3.4.6  Hybrid Active Filters

There are some conditions which make the use of an active filter impractical or not 
proper [7]. The reasons are the following:

•	 Sometimes the design and construction of an active filter of high power rating is 
not reasonable from the technical point of view.

•	 The cost of an active filter is high compared to that of a passive filter.

With specific regard to the PPFs, some considerations should be further done:

•	 Their filtering performance depends on the power grid impedance, which could 
not be properly known in advance and could be time-varying, due to the modifi-
cations of the power grid structure.

•	 The higher the power grid impedance at the given current harmonic, the better 
the PPF filtering performance; it is, however, in contrast with the need to have a 
low value of the grid impedance at the fundamental frequency to limit the voltage 
drops on the power line.

The earlier considerations suggest the idea of combining properly active and passive fil-
ters. The resulting filter is typically called hybrid active. Hybrid active filters are the com-
binations of active and passive filters, with the goal of increasing the performance of the 
compensation and reducing the power rating of the active part [7, 21 and 26].

Figure 3.29 shows the parallel combination of a PAF with a PPF, which is suitable for 
harmonic current loads. In this case, the PAF is used to compensate low-order current 
harmonics, typically fifth and seventh, because of the limitations coming from the switch-
ing frequency of the inverter and its rating, while the PPF is used to compensate current 
harmonics above the 11th, permitting a more compact design of it. In general, in such a 
configuration, a good rule is to adopt the PAF to compensate low-order harmonics and the 
SAF to compensate high-order ones. PAF is then adopted to avoid resonance phenomena 
between the power grid and the PPF.

The dual configuration is shown in Figure 3.30 and is obtained by combining in series an 
SAF with an SPF, suitable for harmonic voltage loads. Even in this case, SAF and SPF share 
the compensation tasks, working the SAF for low-order voltage harmonics and the SPF for 
high-order voltage harmonics.

Figure 3.31 shows the scheme of a combination of an SAF with a PPF [7,25,26,30]. In this 
case, the main filter is the PPF, which works as a current harmonic sink, while the SAF is 
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designed with a smaller rating with respect to it. The SAF is basically adopted to avoid 
resonance phenomena between the power grid and the PPF and also to enhance the per-
formance of the PPF.

The basic idea in this case is not to directly compensate the harmonic voltages but to help 
the PPF by properly blocking harmonics. The SAF should thus present a high equivalent 
impedance at high frequencies and a low (ideally 0) impedance at fundamental frequency. 
Practically, the SAF behaves as an “active impedance,” offering zero impedance at funda-
mental frequency and an impedance K at load or grid harmonic frequencies. To evaluate 
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FIGURE 3.29
Parallel combination of a PAF with a PPF.
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the effectiveness of this kind of hybrid filters, the ratio between the grid current harmonic 
amplitude and the load current harmonic amplitude is usually chosen [7,30]:
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Z Z K

gh

Lh

F

g F

=
+ +

	 (3.49)

This ratio, depending on the active resistance K, is computed under the assumption of 
null grid voltage harmonics (Vgh = 0) and is called distribution factor. This parameter is 
called distribution factor. Figures 3.32 and 3.33 show the distribution factor versus the 
normalized frequency for different values of K (0, 1, 2 Ω) and for two different values 
of grid inductances, respectively Lg = 0.04 H and Lg = 0.112 H. These graphs have been 
drawn with the PPF made up of two filters, tuned, respectively, for the fifth and seventh 
fundamental harmonics, and an HPF as shown in Figure 3.32 (the parameters of the PPF 
are shown in Table 3.1). The condition K = 0 corresponds to the absence of the SAF, which 
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FIGURE 3.32
Distribution factor for the grid inductance of Lg = 0.04 H.
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means that only the PPF is working. It can be observed that, in this condition, resonances 
occur at the fourth and sixth fundamental harmonics, with amplification factors of more 
than 22 dB. When the SAF is working, with K equal respectively to 1 or 2, the distribution 
factor can be significantly reduced over the entire frequency range. The best results are 
obtained with K = 2.

The dual configuration is shown in Figure 3.34, referring to the combination of a PAF 
with an SPF. In this case, the main filter is the SPF, blocking the current harmonics, while 
the low rating PAF is used to enhance the SPF performance, as well as to avoid resonance 
phenomena between the power grid and the SPF.

Figure 3.35 shows the series combination of a PAF with a PPF. In this case, the PAF injects 
current harmonics to compensate the load current ones. It is also controlled to generate a 
fundamental current component permitting the fundamental grid voltage to be applied 
only on the PPF and not at all on the PAF. This feature permits reducing the power rating 
of the PAF significantly, still maintaining its excellent compensation performance.

Figure 3.36 presents the dual circuit, composed of the parallel combination of an SAF 
with an SPF. In this case, the power rating of the SAF can be reduced by permitting the 
fundamental current to flow in the SPF, since the passive filter is designed to be a short 
circuit at the fundamental frequency.

The ideal configuration for the compensation of a harmonic current load is sketched in 
Figure 3.37. The PAF is used to inject harmonic currents to compensate the load ones, while 
the SAF is used to block the harmonic currents from flowing through the power grid. 

FIGURE 3.34
Combination of a PAF with an SPF.
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In practice, the SAF creates a distorted voltage waveform to make the power line see a lin-
ear sinusoidal load. This system is potentially able not only to cancel the effect of the load 
harmonic currents but also to provide a pure sinusoidal voltage on the load, independent 
of the harmonics present in the power grid voltage or its fluctuations.

The dual configuration is shown in Figure 3.38, which is based on the combination of an 
SAF with a PAF for a typical harmonic voltage load. In this case, the system can block any 
current harmonic, ensuring at the same time a pure sinusoidal voltage on the load.

Configurations for the ideal compensation of current or voltage harmonic loads can also 
be obtained also with passive filter configurations. Figures 3.39 and 3.40 show, respectively, 
the two systems.

Since active filter applications to high-power systems present some problems, one 
of the targets is to reduce their power rating. To this aim, several solutions have 
been devised, whose schemes are drawn in Figures 3.41 through 3.48. In particular, 
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FIGURE 3.36
Parallel combination of an SAF with an SPF.
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Combination of a PAF with an SAF for 
current harmonic loads.
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Combination of an SAF with a PAF 
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FIGURE 3.39
Combination of a PPF with an SPF 
for current harmonic loads.
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FIGURE 3.40
Combination of an SPF with a PPF for 
voltage harmonic loads.
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FIGURE 3.41
PAF with fundamental voltage reduction: scheme 1.
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PAF with fundamental voltage reduction: scheme 2.
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Figures  3.41 through 3.44 refer to PAFs, while Figures 3.45 through 3.48 refer to 
SAFs. In the scheme in Figure 3.41, the reduction of the voltage acting on the PAF is 
obtained with an L/C voltage divider; the voltage across the PAF, depending on the 
ratio between the capacitive and inductive reactances XL and XC, can be reduced by 
the ratio XL/(XL + XC). The dual scheme for the SAF is sketched in Figure 3.45, where 
L and C determine a current divider; also in this case, the current flowing in the SAF 
can be reduced by the ratio XL/(XL + XC). In the scheme in Figure 3.45, an LC circuit 
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FIGURE 3.43
PAF with fundamental voltage reduction: scheme 3.
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PAF with fundamental voltage reduction: scheme 4.
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with resonance tuned at the grid fundamental frequency is used to increase the 
impedance ratio, so as to further decrease the fundamental voltage across the PAF 
by the factor XL/(XP + XC). The dual scheme for the SAF is sketched in Figure 3.46, 
where the current divider depends on a series LC circuit resonating at the grid funda-
mental frequency; also in this case, the current flowing in the SAF can be reduced by 
the factor XS/(XS + XC). Figures 3.43 and 3.44 show schemes permitting to reduce the 
fundamental voltage across the PAF to be reduced to 0, with a suitable control of the fun-
damental current generated by the PAF. The drawback of such a scheme is the voltage 
drop caused by the harmonic current generated by the PAF on the reactance XP or XC. 
The dual schemes for the SAF are shown in Figures 3.47 and 3.48, and they both per-
mit a zero fundamental current to flow through the SAF, with a proper control of the 
SAF fundamental voltage. The drawback, in these cases, is that the harmonic voltages 
produced by the SAF cause harmonic currents to flow in XP or XC.

FIGURE 3.46
SAF with fundamental current reduction: 
scheme 2.
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SAF with fundamental current reduction: 
scheme 3.
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SAF with fundamental current reduction: scheme 4.
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List of Symbols

İg	 phasor of the power grid current
İL0	 phasor of the current of the ideal current generator
iC = iCD + jiCQ	 space-vector of the converter current
ig = igD + jigQ	 space-vector of the power grid current
iL = iLD + jiLQ	 space-vector of the load current
p	 instantaneous active power
p̃	 instantaneous oscillating active power
p–	 instantaneous average active power
q	 instantaneous reactive power
q̃	 instantaneous oscillating reactive power
q–	 instantaneous average reactive power
V̇C	 phasor of the voltage generated from the APF
V̇g	 phasor of the AC power grid voltage
vg = vgD + jvgQ	 space-vector of the power grid voltage
vL = vLD + jvLQ	 space-vector of the load voltage
ŻF	 filter impedance
Żg	 impedance of the AC power grid
ŻL	 equivalent impedance of the load

Pedex h is given to variables, referring to any harmonic of order h.
Pedex ref is given to reference control variables.
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4
Dynamic and Steady-State Models 
of the Induction Machine

4.1  Introduction

Scientific literature about induction machine (IM) modeling is huge [1–15]. This chapter 
describes the dynamic and steady-state models of the IM, which consists of the differential 
equations describing the electromagnetic relationships of the stator and of the rotor as well 
as the equation of motion.

These equations will be written by using the space-vector theory [1–3,11–14] described 
in Chapter 1 and under the same assumptions. It should be remarked that these equa-
tions are of course valid for any three-phase AC machine, but in this chapter, they will 
be oriented to IMs. These equations will be presented in the stator reference frame, in 
the rotor reference frame, and in a general reference frame. By using this last general 
reference frame, the equations will be also written in the stator flux-linkage reference 
frame, the rotor flux-linkage reference frame, and the magnetizing flux-linkage refer-
ence frame.

4.2  Definition of the Machine Space-Vector Quantities

Let a three-phase electric machine be considered with cylindrical structure, smooth air-
gap, and one pole pair, with three-phase windings both on the stator and the rotor, whose 
cross surface is shown in Figure 4.1. The following assumptions are made:

•	 Infinite permeability of iron.
•	 Radial direction of the flux density in the air-gap.
•	 Stator and rotor slotting effects are neglected.
•	 Stator and rotor losses are neglected.
•	 Each stator and rotor three-phase winding is considered as a full-pitch multi-turn 

winding.
•	 The axes of each stator three-phase winding (sA, sB, and sC) are displaced by the 

angle 2π/3 from each other in space around the stator periphery.
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•	 The axes of each rotor three-phase winding (ra, rb, and rc) are displaced by the 
angle 2π/3 from each other in space around the rotor periphery. The electric angle 
between the axis of the rotor a phase (ra) and the stator A phase (sA) is θr, and the 
rotor speed in electric rad/s is given by ωr = dθr/dt.

No zero-sequence stator current is present, as, for example, if the neutral point of the stator 
three-phase system is isolated. This means that

	 i t i t i tsA sB sC( ) ( ) ( )+ + = 0 	 (4.1)

where
t is the time variable
isA(t), isB(t), and isC(t) are the instantaneous values of the stator currents for each stator phase

Under these assumptions, the time and space waveform fs(θ,t) of the resultant total mmf 
(magnetomotive force) caused by the three stator phases can be expressed as follows [11]:

	
f t N i t i t is se sA sB sCq q q p q p

, ( )cos( ) ( )cos cos( ) = + −⎛
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⎤

⎦
⎥ 	 (4.2)

where
θ is the electric angle coordinate along the stator periphery from the “sD” axis, coinci-

dent with the axis of phase sA (Figure 4.1)
Nse is the number of effective turns of each stator winding (given by the number of turns 

Ns multiplied by the winding factor kws of the stator winding)

If complex numbers are used, (4.2) can be rewritten as follows:

	
f t N i t ai t a i t es se sA sB sC

j( , ) Re ( ) ( ) ( )q q= + +⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

−3
2

2
3

2 	 (4.3)

where
Re means “real part”
j is the imaginary unit
a = ej2π/3 is a complex operator that makes a vector rotate of 2π/3 rad

FIGURE 4.1
Cross section of a three-phase machine.
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sÁ

sB́

sA

sC΄

sD

sB
ra΄

rc΄rc

rb

rarb΄



137Dynamic and Steady-State Models of the Induction Machine

From (4.3), it is possible to define the stator current space-vector in the stationary reference 
frame, coincident with the stator reference frame “sD-sQ,” as follows:

	
i is s( ) ( ) ( ) ( ) ( ) ( )t i t ai t a i t e i t ji tsA sB sC

j
sD sQ

s= + +⎡⎣ ⎤⎦ = = +
2
3

2 a 	 (4.4a)

where
|is| is the amplitude of the stator current space-vector
αs is the angle of the stator current space-vector from the sD axis
isD(t) and isQ(t) are, respectively, the instantaneous values of the sD and sQ components of 

the stator current space-vector

It should be, however, remarked that isD(t) and isQ(t) can be directly computed from the 
phase variables by the so-called two-axis Park transformation (also called 3 → 2 transfor-
mation), given by the following:
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	 (4.4b)

It should be emphasized that since the current is time varying, also the amplitude and the 
angle of the stator current space-vector are time varying.

The stator current space-vector then encompasses, thanks to its complex representation, 
the instantaneous amplitude and angle of the sinusoidal mmf distribution produced by 
the three stator currents.

The previous considerations permit the definition of the stator mmf space-vector as 
follows:

	 f iss set N t( ) ( )= 	 (4.5)

By analogy with the stator currents and mmf, the rotor current space-vector and the rotor 
mmf space-vector can be defined in a similar way.

Actually if ira(t), irb(t), and irc(t) are the instantaneous values of the rotor currents in the 
three rotor phases and if Nre is the number of effective turns of each rotor winding (given 
by the number of turns Nr multiplied by the winding factor kwr of the rotor winding), under 
the assumption that there are no zero-sequence rotor currents, the space and time mmf 
distribution produced by the rotor currents is given by the following:

	
f t N i t i t ir re ra rb rc( , ) ( )cos( ) ( )cos cosq a a p a p
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where α, which is a function of the angle θ, is the electric angle coordinate along the rotor 
periphery from the “rα” axis, coincident with the axis of phase “ra” (Figure 4.1). If complex 
numbers are used, (4.6) can be rewritten as follows:

	
f t N i t ai t a i er re ra rb rc
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It is possible to define the rotor current space-vector in the rotor reference frame, coinci-
dent with the reference frame “rα-rβ,” as follows:

	
i ir ra rb rc r

j
r rt i t ai t a i t e i t ji tr( ) ( ) ( ) ( ) ( ) ( )= + +⎡⎣ ⎤⎦ = = +

2
3

2 a
a b 	 (4.8)

where
|ir| is the amplitude of the rotor current space-vector
αr is the angle of the rotor current space-vector from the rα axis
irα(t) and irβ(t) are, respectively, the instantaneous values of the rα and rβ components of 

the rotor current space-vector

With a rotational transformation of θr, the rotor current space-vector can be expressed in 
the stationary reference frame as follows:

	 ʹ = = = = ++i i i ir r r r( ) ( ) ’ ( ) ( )( )t t e e e i t ji tj j j
rd rq

r r r rq q a a 	 (4.9)

where
αr′ = αr + θr is the angle of the rotor current space-vector from the direct sD axis of the 

stationary reference frame
ird(t) and irq(t) are, respectively, the instantaneous sD and sQ components of the rotor cur-

rent space in the stationary reference frame

The rotor mmf space-vector can be likewise defined as follows:

	 f ir r( ) ( )t N tre= 	 (4.10)

In the same way, the stator flux-linkage space-vector and the rotor flux-linkage space-
vector can be defined. Particularly the stator flux-linkage space-vector is defined from the 
instantaneous value of the total flux linkage in the stator phases sA, sB, and sC, that is, ψsA(t), 
ψsB(t), and ψsC(t) in the stationary reference frame, as follows:

	
y s = + +

2
3

2( ( ) ( ) ( ))y y ysA sB sCt a t a t 	 (4.11)

The total flux linkage in the stator phases due to the combined effect of stator and rotor 
currents is given by the following relationships:
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where
L
–

s is the self-inductance of each stator phase (assumed equal for each phase for symme-
try reasons)

M
–

s is the mutual inductance between one stator winding and one of the other two stator 
windings (also in this case assumed equal for each phase for symmetry reasons)

M
–

sr is the maximum value of the mutual inductance between the stator and the rotor 
windings

Due to symmetry reasons, this value is constant whatever stator and rotor winding is 
considered. However, the mutual inductance between the stator and the rotor windings 
varies with the rotor angle.

By using (4.12a through 4.12c) and (4.11) and some algebra, the stator flux-linkage space-
vector can be expressed as a function of the stator current space-vector and the rotor cur-
rent space-vector in the stator reference frame:

	
y s s r s ri i i i= + ʹ = + = +L L L L e t j ts m s m

j
sD sQ

rq y y( ) ( ) 	 (4.13)

where
Ls = L

–
s − M

–
s is the total three-phase stator self-inductance

Lm = 3/2M
–

sr is the three-phase magnetizing inductance
ψsD(t) and ψsQ(t) are, respectively, the instantaneous values of the sD and sQ components 

of the stator flux-linkage space-vector

Equation 4.13 shows that the stator flux linkage is made up of two terms: one is the stator 
self-flux linkage Lsis due only to the stator currents and the other is the mutual flux com-
ponent Lm �ir  due only to the rotor currents which link the stator winding.

Likewise, the rotor flux-linkage space-vector is defined from the instantaneous value of 
the total flux linkage in the rotor phases ra, rb, and rc, that is, ψra(t), ψrb(t), and ψrc(t), in the 
rotor reference frame as follows:

	
y r ra rb rct a t a t= + +

2
3

2( ( ) ( ) ( ))y y y 	 (4.14)

Also in this case, the total flux linkage in the rotor phases due to the combined effect of 
stator and rotor currents is given by the following relationships:
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where
L
–

r is the self-inductance of each rotor phase (assumed equal for each phase for symmetry 
reasons)

M
–

r is the mutual inductance between one rotor winding and one of the other two rotor 
windings (also in this case assumed equal for each phase for symmetry reasons)
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By using (4.15a through 4.15c) and Equation 4.14 and some algebra, the rotor flux-linkage 
space-vector can be expressed as a function of the stator current space-vector and the rotor 
current space-vector in the rotor reference frame:

	 y r i i i i= + ʹ = + = +−L L L L e t j tr r m s r r m s
j

r r
rq

a by y( ) ( ) 	 (4.16)

where
Lr = L

–
r − M

–
r is the total three-phase rotor self-inductance

ʹ = −i is se
j rq  is the stator current space-vector in the rotor reference frame

ψrα(t) and ψrβ(t) are, respectively, the instantaneous values of the rα and rβ components of 
the rotor flux-linkage space-vector

The rotor flux-linkage space-vector in the stator reference frame can be expressed by the 
following:

	 y y¢ y yq
r r r si i= = ʹ + = +e L L t j tj

r m rd rq
r ( ) ( ) 	 (4.17)

where ψrd(t) and ψrq(t) are, respectively, the instantaneous values of the sD and sQ compo-
nents of the rotor flux-linkage space-vector.

Similar to the previous definition, the stator voltage space-vector and the rotor voltage 
space-vector can be introduced. Thus, in the absence of zero-sequence stator voltages, the 
stator voltage space-vector in the stator reference frame is defined as follows:

	
us = + +⎡⎣ ⎤⎦ = +

2
3

2u t au t a u t u t ju tsA sB sC sD sQ( ) ( ) ( ) ( ) ( ) 	 (4.18)

where
usA(t), usB(t), and usC(t) are the instantaneous values of the voltages in the stator phases 

sA, sB, and sC
usD(t) and usQ(t) are, respectively, the instantaneous values of the sD and sQ components 

of the stator voltage space-vector

Likewise, in the absence of zero-sequence rotor voltages, the rotor voltage space-vector in 
the rotor reference frame is defined as follows:

	
ur ra rb rc r ru t au t a u t u t ju t= + + = +

2
3

2[ ( ) ( ) ( )] ( ) ( )a b 	 (4.19)

where
ura(t), urb(t), and urc(t) are the instantaneous values of the voltages in the rotor phases 

ra, rb, and rc

urα(t) and urβ(t) are, respectively, the instantaneous values of the rα and rβ components of 
the rotor voltage space-vector

The rotor voltage space-vector in the stator reference frame is given by the following:

	 ʹ = = +u ur re u t ju tj
rd rq

rq ( ) ( ) 	 (4.20)

where urd(t) and urq(t) are, respectively, the instantaneous values of the sD and sQ compo-
nents of the rotor voltage space-vector.
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4.3  Phase Equations of the IM

In the stator reference frame, the equations describing the AC machine for each stator 
phase are the following:

	

u t R i t
d t
dt

u t R i t
d t
dt

sA s sA
sA

sB s sB
sB

( ) ( )
( )

( . a)

( ) ( )
( )

(

= +

= +

y

y

4 21

44 21

4 21

. b)

( ) ( )
( )

( . c)u t R i t
d t
dt

sC s sC
sC= +

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

y

where
Rs is the resistance of each stator winding and the stator flux linkages
ψsA, ψsB, and ψsC are functions of stator and rotor currents (see Equations 4.12a through 4.12c)

Similarly, in the rotor reference frame, the equations describing the AC machine for each 
stator phase are the following:
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where
Rr is the resistance of each rotor winding and the rotor flux linkages
ψra, ψrb, and ψrc are functions of stator and rotor currents (see Equations 4.15a through 4.15c)

The equation of motion is given by the following:

	
t t t t J

d t
dt

D te l m
m

m( ) ( )
( )

( )− = +
w

w 	 (4.23)

where
te is the electromagnetic torque
tl the load torque
Jm is the inertia of the rotating masses
D is the damping constant which accounts for losses due to friction and windage
ωm is the mechanical rotor speed expressed in mechanical angles*

*	 The rotor speed expressed in electrical angles ωr is related to the rotor speed expressed in mechanical angles 
ωm by the relationship ωr = pωm, where p is the number of pair poles of the machine.
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Equations 4.21a through 4.21c and 4.22a through 4.22c together with Equations 4.12a 
through 4.12c and 4.15a through 4.15c as well as the equation of the motion (4.23) constitute 
the so-called “phase-variable” dynamic mathematical model of the IM. In this model, the 
input-output relationship between currents and voltages requires a matrix impedance of 
36 terms, half of which are time-dependent because of the presence of cosine functions of 
the rotor position. However, this model can be significantly simplified by using the theory 
of space-vectors described in Chapter 1.

4.4  Space-Vector Equations in the Stator Reference Frame

The differential Equations 4.21a through 4.21c and 4.22a through 4.22c can be eas-
ily rewritten by using the space-vector theory in the stator or stationary reference 
frame, which yields the following two equations, written for the stator and the rotor, 
respectively:
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s= +R
d
dt

s
y

	 (4.24)
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jr r r
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The stator and rotor flux linkages can be expressed as a function of the rotor and stator 
currents by using Equations 4.13 and 4.17 rewritten as follows for convenience:

	 y s s r s ri i i i= + ʹ = + = +L L L L e t j ts m s m
j

sD sQ
rq y y( ) ( ) 	 (4.26)

	 ʹ = = ʹ + = +y yr r r si ie L L t j tj
r m rd rq

rq y y( ) ( ) 	 (4.27)

By replacing the flux linkages of (4.26) and (4.27) into Equations 4.24 and 4.25 results in 
the differential equations relating rotor and stator voltage space-vectors to rotor and stator 
current space-vectors:
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The previous two equations (4.28) and (4.29) together with the equation of the motion (4.23) 
constitute the dynamic model of the IM expressed with space-vectors in the stator refer-
ence frame.
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The electromagnetic torque te created by the IM can be written, by using space-vectors 
in the stator reference frame, as a function of the stator (or rotor) flux linkage and the rotor 
or stator current, or directly as a function of only the stator and rotor currents, as shown 
in the following:

	
t
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where
p is the number of pair poles of the machine
“∧” is the symbol of vector product for complex numbers*

4.5  Space-Vector Equations in the Rotor Reference Frame

The differential equations (4.21a through 4.21c) and (4.22a through 4.22c) or (4.24) and (4.25) 
can be easily rewritten by using the space-vector theory in the rotor reference frame, which 
yields the following two equations, written for the stator and the rotor, respectively:
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The stator and rotor flux linkages can be expressed in the rotor reference frame as a func-
tion of the rotor and stator currents as follows:
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	 y r r r m s r rL L t j t= + ʹ = +i i y ya b( ) ( ) 	 (4.34)

By replacing the flux linkages of (4.33) and (4.34) into Equations 4.31 and 4.32 results in 
the differential equations relating rotor and stator voltage space-vectors to rotor and stator 
current space:
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*	 The vector product between two complex numbers x and y is given by the scalar x ∧ y = Re(j x y*) = –Im (x y*) 
and is not obviously commutative.
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The previous two equations (4.35) and (4.36) together with the equation of the motion (4.23) 
constitute the dynamic model of the IM expressed with space-vectors in the rotor reference 
frame.

The electromagnetic torque te created by the IM can be written, by using space-vectors 
in the rotor reference frame, as a function of the stator (or rotor) flux-linkage and the rotor 
or stator current, or directly as a function of only the stator and rotor currents, as shown 
below:

	
t

pL
L

pL
L

pLe
m

s

m

r
m= − ʹ ∧ = ∧ ʹ = − ʹ ∧

3
2

3
2

3
2

y ys r r s s ri i i i 	 (4.37)

4.6  Space-Vector Equations in the Generalized Reference Frame

If a general reference frame is adopted, rotating at a speed ωg = dθg/dt, where θg is the angle 
between the direct axis x of the generalized reference frame and the direct axis sD of the 
stator reference frame (Figure 4.2), the corresponding differential equations for the stator 
and the rotor can be found once the expressions of voltages, currents, and flux linkages are 
found in this reference frame.

Particularly it is possible to express the stator current space-vector in the generalized ref-
erence frame as a function of the stator current space-vector in the stator reference frame 
as follows:

	 i i is
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sx
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ge e e i t ji tg s g= = = +− −q a q ( ) ( ) 	 (4.38)

where
is
g is the stator current space-vector in the generalized reference frame

is is the stator current space-vector in the stator reference frame
αs is the angle of the stator current space-vector with respect to the real axis of the stator 

reference frame, while isx
g  and isy

g  are, respectively, the components of the vector is
g on the 

direct axis xg and the quadrature axis yg in the generalized reference frame (Figure 4.2)

In the same fashion, the stator voltage and stator flux-linkage space-vectors in the general-
ized reference frame can be obtained:

	 u us
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s
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FIGURE 4.2
Generalized reference frame: vector diagram.
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where
us
g is the stator voltage space-vector in the generalized reference frame

us is the stator voltage space-vector in the stator reference frame
usx
g  and usy

g  are, respectively, the components of the vector us
g on direct axis xg and the 

quadrature axis yg in the generalized reference frame
y s

g  is the stator flux-linkage space-vector in the generalized reference frame
ψs is the stator flux-linkage space-vector in the stator reference frame
y sx

g  and y sy
g  are, respectively, the components of the vector y s

g on the direct axis xg and 
the quadrature axis yg in the generalized reference frame

It is possible to express the rotor variable space-vectors in the generalized reference frame, 
considering that the angle between the direct axis xg of the generalized reference frame and 
the direct axis rα of the rotor reference frame is equal to θg − θr. This yields the following:
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where
ir
g is the rotor current space-vector in the generalized reference frame

ir is the rotor current space-vector in the rotor reference frame
αr is the angle of the rotor current space-vector with respect to the real axis of the rotor 

reference frame
irx
g  and iry

g  are, respectively, the components of the vector ir
g  on the direct axis xg and the 

quadrature axis yg in the generalized reference frame
ur
g is the rotor voltage space-vector in the generalized reference frame

ur is the rotor voltage space-vector in the rotor reference frame
urx
g  and ury

g  are, respectively, the components of the vector ur
g on the direct axis xg and the 

quadrature axis yg in the generalized reference frame
y r

g is the rotor flux-linkage space-vector in the generalized reference frame
ψr is the rotor flux-linkage space-vector in the rotor reference frame
y rx

g  and y ry
g  are, respectively, the components of the vector y r

g  on the direct axis xg and 
the quadrature axis yg in the generalized reference frame

The vector Equations 4.24 and 4.25 can be therefore written in the generalized reference 
frame as follows:

	
u is
g

s s
g s

g

g s
gR

d
dt

j= + +
y

yw 	 (4.44)

	
u ir
g

r r
g r

g

g r r
gR

d
dt

j= + + −
y

y( )w w 	 (4.45)



146 Power Converters and AC Electrical Drives with Linear Neural Networks

where the stator and rotor flux linkages can be expressed as a function of the stator and 
rotor current space-vectors in the generalized reference frame by using the following 
equations:
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By replacing Equations 4.46 and 4.47 into Equations 4.44 and 4.45, the following differen-
tial equations can be obtained between the stator and rotor currents and voltages:
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Equations 4.48 and 4.49 together with the equation of the motion (4.23) constitute the 
dynamic model of the IM in the general reference frame.

The electromagnetic torque te of the machine can be expressed also either by using the 
stator or rotor flux-linkage space-vectors or by using the stator or rotor current space-
vectors or both, as follows in the generalized reference frame:
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In the following, these equations in the generalized reference frame will be rewritten 
when using either the stator flux-linkage, or the rotor flux-linkage, or the magnetizing 
flux-linkage reference frame.

4.6.1  Mutually Coupled Magnetic Circuits

Whatever reference frame is chosen, in general Equations 4.46 and 4.47 represent in gen-
eral two magnetic circuits mutually coupled by the total mutual inductance Lm. Note that 
three stator circuits along with three rotor circuits are represented, thanks to the use of 
space-vectors. These equations are written again in the following for convenience:
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If the parameter n is introduced, these equations can be rewritten as follows:
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This means that the equivalent circuit of these equations can be represented as in Figure 4.3.
The parameter n can have various values according to the assumptions made for describ-

ing the AC machine. If n = Nse/Nre, where Nse is the number of stator effective turns and 
Nre is the number of rotor effective turns, then Ls − nLm and Lr − Lm/n represent, respec-
tively, the stator and rotor leakage inductances Lsσ and Lrσ, nLm the magnetic inductance, 
and i i im

g
s
g

r
g n= +( ) the magnetizing current.

If n = Lm/Lr, then the “rotor magnetizing current” can be defined, referred to the stator, 
as follows:
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2 / s  is the stator transient inductance.

In particular, if Nse = Nre, then Equation 4.55 can be written as i i imr
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r( ),1 s  where σr = Lrσ/Lm is the “rotor leakage factor“ since in this case Lr = Lrσ + Lm.
If n = Ls/Lm, then the “stator magnetizing current” can be defined, referred to the rotor, 

as follows:
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In particular, if Nse = Nre, then Equation 4.55 can be written as i ims
g

s
g

s m r
gL L= + i

= + +i is
g

s r
g( ) ,1 s  where σs = Lsσ/Lm is the “stator leakage factor“ since in this case Ls = Lsσ + Lm.

4.6.2  Space-Vector Equations in the Rotor Flux-Linkage Reference Frame

This paragraph describes the equations of the IM in the rotor flux-linkage reference frame. 
This reference frame is also called “field reference frame” or simply “rotor-flux reference 
frame.” This reference frame is a key issue for explaining the “rotor-flux-oriented vector 
control” for AC machines, which is one of the versions of the so-called field-oriented con-
trol (FOC). This kind of control strategy will be deeply described in Chapter 5. This refer-
ence frame is defined as having the quadrature-axis component of the rotor flux-linkage 
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ψ g
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– ψ g
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–

FIGURE 4.3
Equivalent circuit of mutually coupled mag-
netic circuits.
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space-vector equal to 0 y y
ry
r =( )0 , that is, the x-axis is parallel to the direct-axis component 

the rotor flux-linkage space-vector.
Let ρr be the angle between the direct axis x of the rotor flux-linkage reference frame and 

the direct axis sD of the stator reference frame and let ωmr = dρr/dt be the angular speed 
of the rotor flux-linkage space-vector under the assumption that the machine has a linear 
magnetic behavior. Then Equations 4.44 and 4.45 can be rewritten in the rotor flux-linkage 
reference frame as follows:
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where
us

ry  and ur
ry  are, respectively, the stator and rotor voltage space-vectors in the rotor flux-

linkage reference frame
is ry  and ir

ry  are the stator and rotor current space-vectors in the rotor flux-linkage refer-
ence frame

Let imr be the rotor magnetizing current space-vector in the rotor flux-linkage reference 
frame defined as in Equation 4.55 and rewritten here for convenience in the case Nse = Nre, 
where the apex g is replaced with ψr to indicate the rotor flux-linkage reference frame:
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As explained earlier, this selection of reference frame means that the rotor magnetiz-
ing current space-vector is coaxial with the direct axis of the rotor flux-linkage reference 
frame. This means that imr coincides with a real number whose value is equal to its modulus, 
that is, imr = |imr|.

Equations 4.57 and 4.58 can be therefore written in the following form, considering 
u 0r

ry = , and after some manipulation:
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where
Ts = Ls/Rs is the stator time constant
ʹ = ʹT L Rs s s/  is the stator transient time constant

Tr = Lr/Rr is the rotor time constant

It should be remarked that this choice of reference frame results in the appearance of the 
stator transient time constant and the stator transient inductance, that is, the assumption 
n = Lm/Lr as explained in Section 4.6.1.
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Equations 4.60a and b, if projected onto the direct x-axis and quadrature y-axis of the 
rotor flux-linkage reference frame, yield the following:
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where
usxry  and usyry  are the x-axis and y-axis components of the stator voltage space-vector
isxry  and isyry  are the x-axis and y-axis components of the stator current space-vector in the 

rotor flux-linkage reference frame

The electromagnetic torque te can be then easily written from (4.50) in the following form 
by using the rotor flux-linkage space-vector and the stator current space-vector in the field:
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In this reference frame, the torque is the given only by the product of the direct-axis com-
ponent of the rotor flux-linkage space-vector and the quadrature-axis component of the 
stator current space-vector: it resembles the torque equation of a separately excited DC cur-
rent machine, and it should be noted that these components are constant in steady-state. 
This is the key factor of the field oriented control of IMs (see Chapter 5).

Figure 4.4 shows the block diagram of the dynamic model of the IM in the rotor flux-
linkage reference by using (4.61a and 4.61b), (4.62a and 4.62b), and the equation of their 
motion (4.23). In Figure 4.4, s is the complex Laplace variable.

4.6.3  Space-Vector Equations in the Stator Flux-Linkage Reference Frame

This paragraph describes the equations of the IM in the stator flux-linkage reference frame 
and is the basis for the “stator-flux-oriented vector control.” This reference frame is defined 
as having the quadrature-axis component of the stator flux-linkage space-vector equal to 0 
y y

ry
s =( )0 , that is, the x-axis is parallel to the direct-axis component of the stator flux-linkage 

space-vector.
Let ρs be the angle between the direct axis x of the stator flux-linkage reference frame 

and the direct axis sD of the stator reference frame and let ωms = dρs/dt be the angular 
speed of the stator flux-linkage space-vector under the assumption that the machine has a 
linear magnetic behavior. Then Equations 4.44 and 4.45 can be rewritten in the stator flux-
linkage reference frame as follows:
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FIGURE 4.4
(See color insert.) Block diagram of the dynamical model of the IM in the rotor flux-linkage reference frame.
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where
us

sy  and ur
sy  are, respectively, the stator and rotor voltage space-vectors in the stator flux-

linkage reference frame
is

sy  and ir sy  are the stator and rotor current space-vectors in the stator flux-linkage refer-
ence frame

Let ims be the stator magnetizing current space-vector in the stator flux-linkage reference 
frame defined as in (4.56) and rewritten here for convenience in the case Nse = Nre, where 
the subscript g is replaced with ψs to indicate the stator flux-linkage reference frame:
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As explained earlier, this selection of reference frame means that the stator magnetiz-
ing current space-vector is coaxial with the direct axis of the stator flux-linkage reference 
frame. This means that ims coincides with a real number whose value is equal to its modu-
lus, that is, ims = |ims|.

Now if a squirrel-cage IM is considered, for which the rotor current is not accessible, the rotor 
current space-vector should be eliminated by using Equation 4.32, which yields the following:
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which substituted into (4.30) gives
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Notice that this equation could be also derived from Equation 4.44 expressed in the stator 
flux-linkage reference frame. By resolving (4.68) into the direct and quadrature compo-
nents, the following equations are formed:
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Equation 4.32 can be written in the following form considering u 0r
sy =  in the squirrel-cage 

IM, and after some manipulation:

	
0 i i

i i
i= −

⎡

⎣
⎢

⎤

⎦
⎥ + −

ʹ
+ −

ʹ
R

L
L

L
d
dt

L L
L

d
dt

j Lr ms
s

m
s r

ms s r

m

s
sl r ms

s
s

y
y

w LL L
L
s r

m
s
siy

⎡

⎣
⎢

⎤

⎦
⎥ 	 (4.70)

It should be noted that on the one hand, (4.68) is much simpler than Equation 4.60a, but 
on the other hand, (4.70) is more involved than the counterpart Equation 4.60b. Thus, the 
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choice of the stator flux-linkage reference frame for the control of the IM results in a sim-
plification of the stator voltage equation (no derivative of the stator current, no stator leak-
age inductance, further simplification if the stator magnetizing current is kept constant); 
however, a decoupling circuit is necessary to eliminate the coupling between |ims| and the 
torque-producing current component isysy .

This is apparent if Equation 4.70 is resolved into its direct and quadrature components:
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where
ʹ = ʹT L Rr r s/  is the transient rotor time constant
ʹ =L Lr rs

The electromagnetic torque te can be then easily written in the following form (4.50) by 
using the stator flux-linkage space-vector and the stator current space-vector in the field:
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In the reference frame, the torque is given only by the product of the direct-axis component 
of the stator flux-linkage space-vector and the quadrature-axis component of the stator 
current space-vector: in a way, it resembles the torque equation of an independent excita-
tion DC current machine. This is the key factor of the stator flux oriented control of IMs 
(see Chapter 5).

If a doubly fed IM is considered, then it is more convenient to express is
sy  in terms of 

|ims| and ir sy , which yields the following:
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Then the stator voltage Equation 4.30 becomes as follows:
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This gives the following equation by resolving it into its direct and quadrature compo-
nents and after some algebra:
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These equations, in respect with Equation 4.69a and 4.69b, contain the rotor currents, 
which can be controlled in stator-flux-oriented control.
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By substituting (4.65) into the stator voltage Equation 4.74 and by defining the angular 
slip frequency as ωsl = ωms − ωr yields the following:

	
u i

i i
i ir r r r

r m

s

ms
sl

m

s
r r r

s s
s

s sR L
d
dt

L
L

d
dt

j
L
L

Ly y
y

y yw= + ʹ + + + ʹ
⎡

⎣

2 2

⎢⎢
⎤

⎦
⎥ 	 (4.76)

and by resolving (4.76) into its direct and quadrature components, the following equations 
are obtained:
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which are very similar to Equations 4.69a and 4.69b and can be used for the stator-flux-
oriented control if the rotor currents are not impressed.

4.6.4  Space-Vector Equations in the Magnetic Flux-Linkage Reference Frame

This paragraph describes the equations of the IM in the magnetic flux-linkage reference 
frame and is the basis for the “magnetizing-flux-oriented” vector control. This reference 
frame is defined as having the quadrature-axis component of the magnetizing flux-linkage 
space-vector equal to 0 y y

my
m =( )0 , that is, the x-axis is parallel to the direct-axis component 

the magnetizing flux-linkage space-vector. In this case, in this reference frame, the magne-
tizing current space-vector is given by imm = |imm|.

From (4.50) and the assumption that Nse = Nre, the expression of the torque in the magne-
tizing reference frame can be obtained, given by
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And this formula is the basis for the so-called magnetizing-flux-oriented vector control.
Similar to the earlier two paragraphs, let ρm be the angle between the direct axis x of the 

magnetizing flux-linkage reference frame and the direct axis sD of the stator reference frame 
and let ωmm = dρm/dt be the angular speed of the magnetizing flux-linkage space-vector 
under the assumption that the machine has a linear magnetic behavior. Then Equations 
4.48 and 4.49 can be rewritten in the stator flux-linkage reference frame as follows:
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where
us

my  and ur
my  are, respectively, the stator and rotor voltage space-vectors in the magnetiz-

ing flux-linkage reference frame
is my  and ir my  are the stator and rotor current space-vectors in the magnetizing flux-linkage 

reference frame
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Let imm be the magnetizing current space-vector in the magnetizing flux-linkage reference 
frame in the case Nse = Nre, in accordance with Section 4.6.1 where the apex g is replaced 
with ψm to indicate the magnetizing flux linkage reference frame:
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m
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L
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y y y 	 (4.81)

As explained earlier, this selection of reference frame means that the stator magnetiz-
ing current space-vector is coaxial with the direct axis of the stator flux-linkage reference 
frame. This means that imm coincides with a real number whose value is equal to its modu-
lus, that is, imm = |imm|.

From (4.80), the rotor current can be eliminated, and considering also Section 4.6.1, (4.79) 
becomes as follows:
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while the rotor equations, in case a squirrel-cage motor is considered, are as follows:
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And by resolving Equations 4.48 and 4.49 into their direct and quadrature components, the 
following equations are obtained. For the stator equation,
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and for the rotor equation,
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Both (4.84) and (4.85) have a coupling term, which requires a decoupling circuit in the mag-
netizing flux-linkage vector control.

4.7 � Mathematical Dynamic Model of the IM Taking 
into Account Magnetic Saturation

This section shows the mathematical dynamic model of the IM which takes into account 
the magnetic saturation of the iron paths in the rotor flux-linkage reference frame [16–18]. 
As a matter of fact, some electric parameters of the IM, as the magnetizing inductance, 
as well as the stator and rotor inductances, and the leakage factors σs, σr, and σ vary with 
the magnetic saturation. In the following, the effect of the magnetizing inductance is 
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considered by using the relationship linking the three-phase magnetizing inductance and 
the rotor magnetizing current, as defined in Section 4.6.1. The analysis is therefore made 
in the rotor flux-linkage reference frame, but it could not be made in any reference frame.

For this purpose, Equations 4.48 and 4.49 are used, that is, the machine stator and rotor 
equations after expressing them in the rotor flux-linkage reference frame. In Equations 
4.48 and 4.49, the three-phase magnetizing inductance Lm varies with the magnetic satu-
ration as well as Ls = Lm + Lsσ and Lr = Lm + Lrσ. The stator and rotor leakage inductances 
Lsσ and Lrσ are considered constant and not affected therefore by the magnetic saturation.

The magnetizing inductance is assumed to be a nonlinear function of the rotor magne-
tizing current imr through the relationship Lm = Lm(|imr|). From Equation 4.55, Lm can be 
defined as the ratio between the amplitude of the rotor flux-linkage vector space and the 
amplitude of the rotor magnetizing current space-vector imr. This results in the following:

	
Lm =

y r
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	 (4.86)

Remark that Lm is also called static inductance.
The dynamic or incremental inductance L is the derivative of the amplitude of the rotor 

flux-linkage vector space with respect to the amplitude of the rotor magnetizing current 
space-vector imr, that is,
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From (4.87), the following relationship results:
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From (4.88), it is apparent that under linear conditions, Lm and L coincide and are both 
independent of time.

Let also Tr*, the “modified rotor time constant,” be defined as follows:
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Equation 4.89 shows that under the linearity assumption, the modified rotor time constant 
coincides with the rotor time constant.

After algebraic manipulation of Equations 4.48 and 4.49, it is possible to obtain equations 
describing the behavior of the machine in magnetic saturation. Thanks to the definition of 
dynamic inductance and modified rotor time constant, these equations are formally analo-
gous to Equations 4.60a and 4.60b, which are valid under the linear magnetic assumption. 
The following vector equations are therefore obtained [11–14]:
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Stator Equation 4.90 shows that the magnetic saturation results not only in the variation of 
the transient time constant �Ts  with respect to the rotor magnetizing current but also in an 
additive term given by
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Under linearity conditions, this term �is ry  is null, and Equation 4.90 coincides with 
Equations 4.60a and b.

Rotor Equation 4.91 shows that magnetic saturation effect results not only in the variation 
of the rotor time constant Tr with respect to the rotor magnetizing current but also in the 
appearance of the modified rotor time constant Tr*, which also varies with the rotor magne-
tizing current but differently from how Tr does. Actually Tr* is linked both to the dynamic 
inductance L and the static inductance Lm, while Tr is only linked to the static inductance Lm. 
Under magnetic linearity conditions, T Tr r

* = , and (4.91) coincides with Equation 4.60b.
Equations 4.91 and 4.92, resolved into the axes x and y of the rotor flux-linkage reference 

frame, yield the following:
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The electromagnetic torque in magnetic saturation conditions is the same as the one given 
by Equation 4.63, taking into account of the variations of Lm and Lr with imr.

Figure 4.5 shows the block diagram of the mathematical model of the IM including iron 
path saturation effects. It includes Equations 4.93a and 4.93b, 4.94a and 4.94b), and the 
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(See color insert.) Block diagram of the mathematical model of the IM including iron path saturation effects. (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 
52(5), October 2005.)
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equation of motion (4.23). For numerical simulation purposes the effect of the magnetic 
saturation can be taken into account by lookup tables linearly interpolated, which give 
the nonlinear relationship between the electric parameters Lm, L, σ, σs, and σr and the rotor 
magnetizing current space-vector.

4.8  Steady-State Space-Vector Model of the IM

The steady-state stator and rotor equations of the IM and the corresponding space-vector 
equivalent circuit, describing the steady-state operation of the machine under symmetrical 
three-phase sinusoidal supply at constant pulsation ω1, can be deduced from the previ-
ously illustrated space-vector dynamic model.

Starting from the space-vector dynamic equations written in the stationary reference 
frame in Equations 4.24 and 4.25, the following steady-state equations can be deduced. 
Passing from the dynamic to the steady-state analysis, the derivation operator becomes 
d( )/dt = jω1( ). On this basis, the stator and rotor equations become as follows [11]:
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where s = (ω1 − ωr)/ω1 is the slip and all the symbols in upper case mean the steady-state 
values of the corresponding variables written in lower case.

Correspondingly, the relationships between the flux linkages and the stator and rotor 
currents are as follows:
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Equations 4.96 and 4.97 can be implemented by the space-vector equivalent circuit in 
Figure 4.6, once the stator and rotor leakage inductances are defined as Lsσ = Ls − Lm and 
Lrσ = Lr − Lm.

The equivalent circuit drawn in Figure 4.6 can be suitably used to obtain the expression 
of the steady-state electromagnetic torque as well as some power components. To do that, 

FIGURE 4.6
Steady-state space-vector equivalent 
circuit of the IM.
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the air-gap power Pgap is expressed as the difference between the input power P1 and the 
stator joule losses Ps:

	 P P P e Rgap s s s s s= − = ℜ −1
23 3( * )U I I 	 (4.98)

where * denotes the complex conjugate operator. The air-gap power is balanced by the sum 
of the mechanical power Pmech and the rotor joule losses Pr:

	 P P P P Rgap mech r mech r r= + = + ʹ3 2I 	 (4.99)

The steady-state electromagnetic torque Te can be expressed on the basis of the air-gap 
power as follows:
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The air-gap power and the rotor joules losses are in relationship as follows:

	 P R T s sPr r r e gap= ʹ = =3 2
1I w 	 (4.101)

The electromagnetic torque Te can be therefore written as follows:
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To express the electromagnetic torque as a function of the supply voltage, the following 
relationship between the rotor current and the stator voltage can be deduced from the 
equivalent circuit in Figure 4.6:
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where Xsσ = jω1Lsσ and ʹ =X j Lr rs sw 1  are, respectively, the stator and rotor leakage reactances 
and σs = Xsσ/Xm is the stator leakage factor.

The following expression can finally be found [11]:
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where ʹ = ʹ + +X X Xr s ss s s( )/1  is the transient rotor reactance.
The maximum air-gap electromagnetic torque can be developed by the machine at a 

specific pulsation slip smax, equal to the following:
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In correspondence to such a pulsation slip, the maximum electromagnetic torque is 
equal to the following:
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where the positive (negative) sign is valid in case of motoring (generating) operation.
From the earlier discussion, it can be deduced that the maximum value of the electro-

magnetic torque is proportional to the square of the stator voltage amplitude. Moreover, in 
absolute terms, the maximum torque as generator is bigger than that as motor. The physi-
cal reason is that in generating operation, because of the voltage drop of the stator current 
on the stator impedance, the resulting back emf is higher. Correspondingly, even the stator 
flux amplitude in generating mode will be higher. This difference, which is due to the non-
null value of the stator resistance, can be usually neglected in large machines.

Figure 4.7 shows the steady-state torque versus slip characteristic of a 2.2 kW, 4 poles 
IM (parameters in Table 4.1) obtained under a 220 V RMS, 50 Hz supply. The three slip 

TABLE 4.1

Parameters of the 2.2 kW IM

Rated power, Prated [kW] 2.2
Rated voltage, Urated [V] 220
Rated frequency, frated [Hz] 50
Rated speed [rad/s] 149.75
Pole pairs 2
Stator resistance, Rs [Ω] 3.88
Stator inductance, Ls [mH] 252
Rotor resistance, Rr [Ω] 1.87
Rotor inductance, Lr [mH] 252
Three-phase magnetizing inductance, Lm [mH] 236
Moment of inertia, J [kg · m2] 0.0266
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FIGURE 4.7
Steady-state characteristic torque versus slip of a 2.2 kW IM.
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intervals corresponding to the behavior of the machine as motor, generator, and brake can 
be clearly observed. Moreover, the difference between the maximum torques as genera-
tor and motor could be noted as well. Figure 4.8 shows the corresponding characteristic 
torque versus rotational speed.

Figure 4.9 shows the steady-state current versus speed characteristic of the same 
machine. It can be observed that the maximum current is absorbed when the machine is at 
standstill, decreasing with the speed down to the no-load current at slip equal to 0.

Figure 4.10 shows the steady-state percent efficiency versus slip of the same machine. 
As expected, the maximum efficiency (about 70%) is at slip null, decreasing with the slip 
down to about 45% at the pullout torque slip.

Finally, Figure 4.11 shows the Heyland diagram of the same machine, describing the 
steady-state trajectory of the stator current space-vector in the complex plane, according to 
the variation of the slip.
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4.9 � Experimental Validation of the Space-Vector Model of the IM

In this section, the results of the numerical simulation of the previously described space-
vector model of the IM are shown, in comparison with the corresponding experimen-
tal results in order to validate the numerical model [19]. The software adopted for the 
numerical simulation is MATLAB®–Simulink® of Mathworks. Both the classic dynamic 
model considering the machine linear from the point of view of its magnetic characteristic 
(Figure 4.4) and the model taking into consideration the magnetic saturation in the iron 
core (Figure 4.5) have been implemented and tested.

FIGURE 4.11
Heyland diagram of a 2.2 kW IM.
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With regard to the classic dynamic model considering the machine linear from the point 
of view of its magnetic characteristic, the parameters of the machine under test are shown 
in Table 4.1.

A start-up of the IM under a sinusoidal voltage supply 220 V RMS, 50 Hz at no load has 
been simulated. Figure 4.12a shows the time simulated and experimental waveform of the 
machine speed during the start-up. Figure 4.12b through d shows the corresponding time 
waveforms of the absorbed stator phase current of the electromagnetic torque and of the 
rotor flux-linkage amplitude. All these figures show a good matching between the simu-
lated and experimental waveforms. Finally, Figure 4.13 shows the dynamic torque versus 
speed characteristics of the machine during the start-up. Even in this case, there is a good 
matching between the two curves.

With regard to the dynamic model taking into consideration the magnetic saturation in 
the iron core, the parameters of the machine under test are shown in Table 4.2. Figure 4.14 
shows the magnetic characteristic of the machine, rotor magnetizing current imr versus 
rotor flux-linkage amplitude ψr. Figure 4.15 shows the corresponding waveforms of the 
static Lm and dynamic L inductances of the machine, as well as the stator σs, rotor σr, and 
global σ leakage factors as a function of the rotor magnetizing current. In the following, 
the numerical simulations of the model taking into consideration the magnetic saturation 

180

160

140

120

100

80

60

40

20

0

ω m
 (r

ad
/s

)

Experimental
Simulation

Experimental
Simulation

0 0.2 0.4 0.6
Time (s)(a) (b)

(c) (d)Time (s) Time (s)

Time (s)
0.8 1

50

40

30

20

10

0

–10

–20

–30

–40

I sa
 (A

)

0 0.2 0.4 0.6 0.8 1

70
60
50
40
30
20
10

t e (
N

 m
)

0
–10
–200 0.2 0.4 0.6 0.8 1

1.2

1

0.8

0.6

0.4

0.2

0

|Ψ
r| 

(W
b)

Experimental
Simulation

0 0.2 0.4 0.6 0.8 1

Experimental
Simulation

FIGURE 4.12
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(c) Electromagnetic torque of the IM during the start-up at no load. (d) Rotor flux-linkage amplitude of the IM 
during the start-up at no load.



164 Power Converters and AC Electrical Drives with Linear Neural Networks

TABLE 4.2

Parameters of the 22 kW IM

Rated power, Prated [kW] 22
Rated voltage, Urated [V] 220
Rated frequency, frated [Hz] 50
Rated speed [rad/s] 150
Pole pairs 2
Stator resistance, Rs [Ω] 0.18
Stator inductance, Ls [mH] 44.8 × 10−3

Rotor resistance, Rr [Ω] 0.26
Rotor inductance, Lr [mH] 45.6 × 10−3

Three-phase magnetizing inductance, Lm [mH] 43.7 × 10−3

Moment of inertia, J [kg · m2] 0.19

FIGURE 4.14
Magnetization curve of the IM.
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and the model not taking the saturation into consideration are compared. With regard to 
the linear model, the parameters of the machine are assumed to be constant and equal to 
those in Table 4.2.

A start-up of the IM under a sinusoidal voltage supply 220 V RMS, 50 Hz at no load has 
been simulated, with a step torque insertion of 90 N m at 0.7 s. Figure 4.16a shows the time 
simulated waveforms of the machine speed during the start-up as obtained with the two 
models. Figure 4.16b through e shows the corresponding time waveforms of the absorbed 
stator phase current, of the electromagnetic torque, of the rotor flux-linkage amplitude, 
and of the rotor magnetizing current amplitude. Figure 4.17 shows the dynamic torque 
versus speed characteristics of the machine during the start-up. A good matching between 
the two models could be noted; it could also be observed how the magnetic saturation of 
the iron core is cause of a delay in the time response of the machine. Moreover, while the 
rotor flux amplitude is equal with both models, the rotor magnetizing current obtained 
with the model taking into consideration the saturation is lower. This is due to fact that, for 
the adopted supply voltage, the steady-state working point on the magnetic characteristic 
corresponds lower than the intersection point between the nonlinear and linear magnetic 
characteristic (Figure 4.18).

4.10  IM Model Including Slotting Effects

The previously described dynamic model of the IM is based on the basic assumption that 
only the fundamental of the mmf is taken into consideration. This model cannot thus 
consider several aspects of a real IM, among which the distributed windings, stator and 
rotor slotting effects, slot shapes, etc. [22–24]. There is, on the contrary, a need of models 
dealing with some magnetic saliencies of the machine. It arises from the increasing trend 
to try to estimate the machine speed/position by tracking one or some of its magnetic 
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saliencies  [25–27]. Among the others, the main ones are certainly the saturation of the 
main flux and the so-called rotor slotting effects. For this purpose, the principal slot har-
monics (PSH) of some electric variables of the machine (stator current, common-mode 
voltages or currents) should be detected and suitably processed. However, to take into 
consideration the slotting effects, only simplified models have been used so far for con-
trol applications; in any case, these models are valid only under a high frequency supply 
(signal injection techniques or test vectors); they consider only the variation of the leakage 
stator inductance with the rotor slotting and cannot be used at the fundamental frequency 
supply. They therefore present some important limitations if used to test sensorless algo-
rithms. An attempt to develop a space-vector dynamic model of the IM considering the 
slotting effect has been done in Refs [28,29]: this model considers a variation of the mutual 
inductance with the stator/rotor slotting but does not develop a space-vector state formu-
lation, useful for control applications.

This paragraph presents, in fact, a space-vector dynamic model of the IM including sta-
tor and rotor effects [20,30]. In accordance with Refs. [26,27], the slotting effect has been 
considered only in the stator and rotor leakage variations.
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Model assumptions
The IM space-vector model including slotting effects is based on the following assump-
tions, which extend those used in Section 4.2:

•	 Infinite permeability of iron
•	 Radial direction of flux density in the air-gap
•	 Concentrated stator and rotor windings, shifted 120° from one another
•	 Stator windings with a star connection
•	 Stator and rotor slotting effects taken into consideration in the stator and rotor 

leakage inductance variations

The model has been developed for a machine with one pole pair, but obviously the results 
can be easily extended to multi-pole-pair machines.

Comments on the model assumptions
This model is first derived considering both the stator and rotor slotting effects. Then, for the 
space-state representation, only the rotor slotting effects have been considered (scheme in 
Figure 4.19a). This first simplification arises from the practical consideration that IMs are usu-
ally designed and constructed with a number of stator slots per pole pair which is a multiple 
of three, and therefore, no stator slot harmonics (SSHs) are observable on the stator current.

The second simplification is that the stator and rotor slotting effects have been consid-
ered only in the stator and rotor leakage inductance variations. More rigorously, also the 
mutual inductance should vary according to the rotor slotting effect. However, this sim-
plification has been suggested by the fact that it permits a significant reduction of the 
complexity of the resulting space formulation without implying an important reduction of 
the model accuracy. As a matter of fact, it can be observed that, if the rotor slotting effect 
is considered also in the mutual inductance, a set of terms appear which are proportional 
to the second and third powers of the slotting inductance Lh: all these terms are practically 
negligible, and in any case, the result of this simplification can be easily evaluated. The 
comparison of simulation and experimental results in Ref. [20] shows that the rotor slot har-
monics (RSHs) obtained by adopting the model are exactly those obtainable theoretically 
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Schematics of the IM including rotor slotting effects (a) and stator and rotor slotting effects (b) with concentrated 
windings. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008; Cirrincione, M. et al., Space-vector 
state model of induction machines including rotor and stator slotting effects, in IEEE IEMDC ‘07, Antalya, 
Turkey, pp. 673–682, May 3–5, 2007.)
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from literature and in agreement with those measured experimentally. Moreover, these 
harmonics shift with frequency as expected. This means that, as a worst case, a slight 
phase angle error in the stator slotting current could be caused by the adopted simplifica-
tion, which is an acceptable compromise to avoid a huge increase in the complexity of the 
model, especially in view of devising an observer based on this model.

4.10.1 � Space-Vector Model of the IMs Including Stator and Rotor Slotting Effects

If the slotting effects influence only the stator and rotor leakage inductances, the AC motor 
inductances can be written as follows for each phase:
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where
L
–

s and L
–

r are, respectively, the vector of the stator and of the rotor self-inductances of the 
three phases of the motor

L
–

rs and L
–

sr are the mutual inductance matrices
L
–

σs is the mean stator leakage inductance
L
–

σr is the mean rotor leakage inductance
L
–

sm is the maximum mutual inductance between two stator phases
L
–

rm is the maximum mutual inductance between two rotor phases
L
–

sr is the maximum mutual inductance between one phase of the rotor and one phase of 
the stator

L
–

mh is the slot inductance
qs is the number of stator slots per pole pair
qr is the number of rotor slots per pole pair
θr is the angular position of rotor a-phase with respect to stator a-phase (positive if 

counterclockwise)
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The values that can be taken on by qs and qr are 3n, 3n + 1, or 3n − 1 with n ∈ N. Thus, nine 
possible different models in function of the stator and rotor slots per pole are possible.

It should be noted that in Equation 4.107, the mutual inductance matrices L
–

rs and L
–

sr vary 
with the rotor position for the normal coupling due to the rotation (no qr term appears in 
the mutual inductance).
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If the following phase vectors are introduced for the stator flux linkages, rotor flux link-
ages, stator currents, and rotor currents
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then the following flux-linkage equations can be written in phase coordinates:
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Now it should be recalled that, to obtain the space-vector form of a variable from its phase 
coordinates, it is enough to make the scalar product between the phase vector and the fol-
lowing complex vector:
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Thus, by pre-multiplying (4.108) by aT and remembering that
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Then the following equations are obtained:
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where
the upper sign refers to the case qr = 3n − 1, qs = 3m − 1 and the lower one to the case 

qr = 3n + 1. qs = 3m + 1, with n,m ∈ N
�ir and ir are the rotor current space-vectors, respectively, in the stator and rotor reference 

frame
is and �is are the stator current space-vectors, respectively, in the stator and rotor reference 

frame
Ψs is the stator flux-linkage space-vector in the stator reference frame
�Y r  and Ψr are the rotor flux-linkage space-vectors, respectively, in the stator and rotor 
reference frame
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Note that ʹ =i ir
j

re rJ , ʹ =Y Yr
j

re rJ , and ʹ = −i is
j

se rJ

while

L L Ls s sm= +s
3
2

 is the total three-phase stator inductance without slotting

L L Lr r rm= +s
3
2

 is the total three-phase rotor inductance without slotting

L Lm sr=
3
2

 is the three-phase magnetizing inductance

L Lh mh=
3
2

 is the three-phase slot inductance

4.10.2 � Space-Vector State Model of IM Including Rotor Slotting Effects

Starting from Equations 4.109, if only the rotor slotting effects are considered (qs = 3m), 
which is the most usual case, the following equations can be deduced where all rotor 
quantities are transformed into the stator reference frame:
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After substituting the expression of �ir from the equation of the rotor flux linkage into that 
of the stator flux linkage, the following equation is deduced:
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A modified global leakage factor including rotor slotting effects can be defined in this way:
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After computing the time derivative of Equation 4.111, considering that dϑr/dt = ωr and 
substituting this derivative into the stator equation of the IM

	
u is s= +R

d
dt

s
sY 	 (4.113)

where Rs is the resistance of a stator winding, the following expression can be deduced:
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which can be also written in a simplified way:
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where the complex functions fi(ϑr), with i = 1, 2, 3, 4, are obviously defined. Equation 4.115 
gives a new definition of the so-called “voltage” flux model of the IM in the stator reference 
frame, including the rotor slotting effects. Figure 4.20 shows the block diagram of this flux 
model. It should be observed that in the classical “voltage” flux model, no feedback exists 
between the output and the input of the model (open-loop integration) and the rotor flux 
does not depend on the rotor speed; in contrast to it, the model including rotor slotting 
effects presents both a feedback term depending on the rotor speed and on the vector 
function f4(ϑr) and a forward term depending also on the rotor speed and the function 
f2(ϑr). If Lh = 0, this model coincides with the classical one.

The “current” flux model, based on the rotor equations of the machine in the stator refer-
ence frame including the rotor slotting effects, can be similarly derived as follows:
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Figure 4.21 shows the block diagram of the corresponding “current” flux model.
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FIGURE 4.21
Block diagram of the “current” flux model in the stator reference frame including rotor slotting effects (plotted 
for the case qr = 3n − 1). (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008.)

FIGURE 4.20
Block diagram of the “voltage” flux model 
including rotor slotting effects (plotted for the 
case qr = 3n − 1). (From Cirrincione, M. et al., 
IEEE Trans. Ind. Appl., 44, 1683, 2008.)
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A modified rotor time constant including rotor slotting effects can be defined as follows:
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The “current” flux model including the rotor slotting effects can be derived also in the 
rotor-flux-oriented reference frame. This last model is particularly employed for flux esti-
mation in FOC since it does not require open-loop integration. Since Ψ Ψr r

r rey r= ʹ − , where 
Ψr

ry  is the rotor flux vector in the rotor-flux-oriented reference frame and ρr is its angle with 
respect to the sD axis, from (4.116), the following space-vector rotor equation is obtained:
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where is ry  is the stator current space-vector in the rotor-flux-oriented reference frame and 
ωsl = ωmr − ωr is the slip pulsation, the difference between the speed of the rotor flux vector 
and the rotor speed (in electric angles).

Equation 4.117 can be split into the direct (x) and quadrature (y) axis so that the following 
equation can be obtained:
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Figure 4.22 shows the block diagram of the corresponding “current” flux model in the 
rotor-flux-oriented reference frame.

Equations 4.118a and 4.118b and Figure 4.22 show that, even if the rotor flux vector 
depends directly on the stator and rotor currents, it usually does not exhibit significant 
PSH components caused by the slotting effect because the amplitude of the rotor flux vec-
tor is low pass filtered by a first-order system with a time constant equal to Trslot, whose 
inverse is much lower than the lower PSH.
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FIGURE 4.22
Block diagram of the “current” flux model in the rotor-flux-oriented reference frame including rotor slotting 
effects (plotted for the case qr = 3n − 1). (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008.)
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Equations 4.118a and 4.118b show also that, in rotor flux coordinates, field orientation 
always causes decoupling of the flux and torque current components. Remark, however, 
that, differently from the classical model, in steady-state, the amplitude of rotor fluxes is 
not constant any longer because of the occurrence of slotting higher order harmonics vary-
ing in time with the position of the rotor.

4.10.3  Space-State Model of IM Including Rotor Slotting Effects

To retrieve the full-state space-vector model of the IM including rotor slotting effects, the 
first complex equation is derived from Equation 4.114, rewritten as a function of dis/dt, 
where d dtr�Y /  is obtained from the “current” model (4.116). The second complex equation is 
the “current” model. The obtained full-state space-vector equation is therefore as follows:
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Remark that the coefficients of matrix A and vector B are complex numbers and depend 
not only on the parameters of the machine but also on the rotor speed and angle. In 
particular, A11 and A12 present additional terms depending on the rotor speed which are 
not present in the classical fundamental harmonic model. If Lh = 0, all the coefficients 
become real numbers and coincide with the parameters of the classic full-state model of 
the IM. The previous full-order space-state model is particularly interesting since it can 
be employed as a full-order state observer in high-performance IM drives, by adding 
the correction Luenberger term driven by the difference between the measured and esti-
mated stator currents. In this case, the estimated current would take into consideration 
also the RSH terms present in the stator current. Moreover, this model can also be used 
for implementing position sensorless techniques of IM drives. Indeed, this space-vector 
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state model encompasses, in addition to the information about the rotor speed like the 
classical model, also the information about the rotor angle, which can be retrieved by 
adopting proper numerical techniques.

Most terms of the space-vector state model are combinations of exponential terms 
depending on the rotor angle θr and the number of rotor slots per pole pair qr, and this 
could result in a high computational burden. However, since they are all periodic com-
plex functions with the same period 2π, they can be straightforwardly implemented on a 
DSP for real-time applications by employing linearly interpolated look-up tables, having in 
input the rotor angle, which would require just a slightly higher increase of the complexity 
of the observer.

Because of the rotor slotting effect, the eigenvalues of the A matrix of the state represen-
tation modify when changing from the classical model. Figure 4.23 shows the eigenvalue 
locus of matrix A, according to the variation of the rotor speed ωr, obtained with the clas-
sic space-state model neglecting the slotting effects and the locus of the eigenvalues of 
matrix A obtained with the proposed model according to the variation of the rotor angle θr 
for a single value of ωr (85 rad/s). It can be observed that the eigenvalue locus for each rotor 
speed value modifies from a single point into a helix turning around the value obtained 
with the classic model. The number of turns of this helix is equal to the number of the 
rotor slots for pole pair qr. This means that in this case, each eigenvalue of the classical 
model becomes a branchpoint of qr Riemann surfaces in the complex plane when the rotor 
effects are accounted for in the model. In addition, the presence of this helix also implies 
that, even if the locus of the eigenvalues of the classical model lies on the left s-plane, the 
actual path of the pole in a Riemann surface can go into the right s-plane, with resulting 
instability.

This remark is of course a theoretical possibility: this instability phenomenon can hap-
pen if the eigenvalues of the classic model are very close to the imaginary axis, which is 
not the case in real-world IMs.
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(See color insert.) Eigenvalue locus of matrix A obtained with the fundamental mmf model and the model tak-
ing into consideration the rotor slotting effects. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008.)
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4.10.4 � Space-State Model of IM Including Stator and Rotor Slotting Effects

Starting from Equation 4.109, if both the stator and the rotor slotting effects are considered 
(Figure 4.19b), a procedure similar to that followed in Section 4.10.2 can be followed to 
retrieve the state space-vector model of the IM [30]. In this case, if Lsh and Lrh are, respec-
tively, the three-phase stator and rotor slot inductances, the equations describing the “volt-
age model” in the stationary reference frame are the following:
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where the + and − signs follow the same logic explained in Section 4.10.2.
In the same manner, the equation of the “current model” in the stationary reference 

frame is the following:

	

d
dt

R L
L L e L e

j
R

L L e
r r m

r rh
jq

sh
jq s r

r

r rh
jqr r s r r r

ʹ
=

+ +
+ −

+ +± ± ±

Ψ
θ θ θi w

LL esh
jq rs r±

⎛
⎝⎜

⎞
⎠⎟

ʹθ Ψ 	 (4.122)

With regard to the state formulation, following the same procedure of Section 4.10.3, these 
are the parameters of the space-state model:
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It should be remarked that, even in this case, the coefficients of matrix A and vector B are 
complex numbers and depend not only on the parameters of the machine but also on the 
rotor speed and angle. In particular, A11 and A12 present additional terms depending on 
the rotor speed which are not present in the classical fundamental harmonic model. If 
Lsh = 0, the parameters of the state model coincide with those in Equation 4.120. If Lrh = 0, 
all the coefficients become real numbers and coincide with the parameters of the classic 
full-state model of the IM. Figure 4.24 shows the eigenvalue locus of matrix A, according to 
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(See color insert.) Eigenvalue locus of matrix A obtained with the fundamental mmf model and the model 
taking into consideration the stator and rotor slotting effects. (From Cirrincione, M. et al., Space-vector state 
model of induction machines including rotor and stator slotting effects, IEEE IEMDC ‘07, Antalya, Turkey, 
pp. 673–682, May 3–5, 2007.)
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the variation of the rotor speed ωr, obtained with the classic space-state model neglecting 
the slotting effects and the locus of the eigenvalues of matrix A obtained with the model 
considering both the stator and rotor slotting effects, according to the variation of the rotor 
angle θr for a single value of ωr (85 rad/s). It can be observed that the eigenvalue locus for 
each rotor speed value modifies from a single point into a helix turning around the value 
obtained with the classic model. The same considerations written in Section 4.10.3 could 
be made in this case.

4.10.5 � Experimental Validation of the Space-Vector Model 
Considering the Stator and Rotor Slotting Effects

4.10.5.1  Stator Current Harmonics Caused by the Stator and Rotor Slotting Effect

In an IM, the RSHs and the static and dynamic eccentricity-related harmonics are essen-
tially a function of the number of pole pairs, the number of rotor slots per pole pair, and 
the speed. In a compact form, RSH is given by the following [21–24]:
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where
f1 is the fundamental harmonic of the supply voltage
s is the slip
p is the number of pole pairs
qr is the number of rotor slots for pole pair
nd is the eccentricity order (nd = 0 in case of static eccentricity and nd = 1, 2, 3 … in case if 

dynamic eccentricity)
r is any positive integer which gives the order of the space harmonic
ν = 1, 3, 5 … is the order of the stator time harmonics present in the power supply driv-

ing the motor

If the time harmonics of the stator and rotor currents as well as the static and dynamic 
eccentricities are neglected, the RSHs are obtained by Equation 4.124 with nd = 0, ν = 1, and 
k = 1. In this case, the rotor slotting effects are at frequencies:

	 f q f s fRSH r= −1 11( )∓ 	 (4.125)

Therefore, in a healthy machine supplied at frequency f1, two slotting frequencies 
appear in the stator current spectrum. Alger [5] gives a proof of the creation of the 
previous frequency components caused by rotor slotting.

Identically, the stator slotting effects are at frequencies:

	 f q f s fSSH s= −1 11( )∓ 	 (4.126)

It should be noted, however, that the harmonics as described by the former equations 
are not present in a real machine for any combination of the number of rotor slots and pole 
pairs [31–33]. These time harmonics result from the corresponding space harmonics of the 
resulting mmf which are of order qr ± 1 and qs ± 1. Since qr = 3n ± 1 and qs = 3m ± 1 (with 
n and m integer), this also implies that, both for RSH and SSH, one of the two space har-
monics is always a multiple of three, and therefore, it never induces a time harmonic in a 
healthy machine (e.g., balanced three-phase winding).
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As far as the machine under test in the following section is considered, since the adopted 
motors have 2 pole pairs, 36 stator slots (qs = 18 = 3m), and 28 rotor slots (qr = 14 = 3n − 1), 
at no load (s = 0) with a pure sinusoidal supply and under the assumption of the model, 
only the 13th and 15th time harmonics should be expected, corresponding to spectral lines 
at 650 and 750 Hz under a 50 Hz fundamental supply. These two time harmonics in the 
current spectrum are originated from the two 13th and 15th space harmonics of the mmf, 
generated by the slots in the rotor. The 15th space harmonic cannot, in any case, induce 
any time harmonic because of the balanced three-phase winding [5]. On the contrary, 
since qs = 18 no SSH can be observed.

Furthermore, it should be noted that, while at no load, the time harmonic components 
caused by the slotting effect lie at frequencies which are integral multiple of the funda-
mental (qr ± 1 and qs ± 1) and that in loaded conditions, the same harmonic components 
lie at frequencies which are nonintegral multiple of the fundamental, which affects in a 
significant way also the locus of the stator currents, as will be shown in the following.

To validate the model and to make the stator slotting effect observable in the simulation 
test, a motor with qs = 17 has been considered. Therefore, in simulation at no load (s = 0), the 
16th and 18th harmonics should be expected, corresponding to spectral lines at 800 and 
900 Hz. As explained before, the 900 Hz harmonic is not present.

4.10.5.2  Results

With regard to the numerical simulation, the model has been implemented in the 
MATLAB®–Simulink® environment. With regard to the experimental verification of 
the  model, three motor prototypes have been built with the same stator and differ-
ent rotors. All the three motors have 2 pole pairs, 36 stator slots, and 28 rotor slots. 
Particularly, motor 1 has a skewed rotor, motor 2 has an unskewed rotor, and motor 3 has an 
unskewed rotor with open rotor slots. Figure 4.25 shows the photograph of the three rotors. 

FIGURE 4.25
Photograph of the three rotors, skewed (left), unskewed (center), and unskewed with open slots (right). (From 
Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008.)
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The parameters of the motor are shown in Table 4.3, as measured with the usual no-load 
and locked-rotor tests.

To assess the proposed model, two kinds of representation have been made. At first, after 
supplying the motor both in numerical simulation and experimentally with a sinusoidal 
waveform at the rated frequency of 50 Hz and voltage of 220 V RMS, in the first representation, 
the steady-state stator current spectrum has been computed. In the second, the stator current 
space-vector locus at steady-state has been drawn (isQ versus isD). If supplied with a pure sinu-
soidal voltage, neglecting all the spatial harmonics in the machine, the stator current locus 
would be a circle. In the presence of the RSH and the SSH, the stator current locus deviates 
from a circle. However, while on the basis of the model assumptions, only the RSHs and SSHs 
are to be expected as well as the fundamental in the stator current spectrum of the simulated 
machine; in the real machine, also other harmonics are to be expected, in particular, those gen-
erated by the distributed stator winding, which have usually a higher amplitude than those 
of RSH and SSH. For this reason, the experimentally obtained stator current locus is expected 
to be quite different from the simulated one. To make the experimentally obtained stator cur-
rent locus comparable with the simulated one, the stator current signals have been properly 
filtered and reconstructed to contain only the fundamental and the RSH components (no SSH 
is present in the experimental current signature). This has been obtained with the scheme 
shown in Figure 4.26. The three current signals have been acquired by a Dspace DS1103 board, 
then converted from three to two phases in the stator reference frame. The obtained isD and 
isQ components have been processed by two select-band digital filters, tuned, respectively, on 
the fundamental (50 Hz) and on the RSH (only 650 Hz at no load), and then summed. In this 
way, the filtered current sD and sQ components contain only the fundamental and the RSH 
components. It should be noted that the employed filters do not cause any phase distortion of 
the signal, since the phase characteristics of the filter is 0 at the selected band.

TABLE 4.3

Parameters of the 2.2 kW IM with the Three Different Rotor Configurations

Motor 1 Motor 2 Motor 3

Rated power, Prated [kW] 2.2 2.2 2.2
Rated voltage, Urated [V] 220 220 220
Rated frequency, frated [Hz] 50 50 50
Pole pairs 2 2 2
Stator resistance, Rs [Ω] 2.9 2.9 2.9
Stator inductance, Ls [mH] 275.1 270.0 203.0
Stator leakage inductance, Lσs [mH] 10.7 8.2 6.2
Stator leakage factor, σs 0.0406 0.0314 0.0317
Rotor resistance, Rr [Ω] 2.7 1.54 1.54
Rotor inductance, Lr [mH] 285.8 278.2 209.3
Rotor leakage inductance, Lσr [mH] 21.4 16.4 12.5
Rotor leakage factor, σr 0.0811 0.0628 0.0634
Three-phase magnetizing inductance, Lm [mH] 264.4 261.8 196.8
Global leakage factor, σ 0.1111 0.0877 0.0886
Slotting inductance, Lh [mH] 1.32 1.30 0.98
Moment of inertia, J [kg · m2] 0.0048 0.0048 0.0048

Source:	 Cirrincione, M. et al., Space-vector state model of induction machines 
including rotor and stator slotting effects, in IEEE IEMDC ‘07, Antalya, Turkey, 
pp. 673–682, May 3–5, 2007.
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In the numerical test, Lsh = Lrh have been assigned the value of 0.5% Lm; with such a value, 
the simulation results match the experimental ones well. Figure 4.27 shows the steady-state 
stator current on phase sA obtained in numerical simulation and its spectrum, obtained 
with the fast Fourier transform (FFT), at steady-state at no load. The time waveform of the 
stator current shows a distortion which is caused by the RSH and SSH. As written earlier, 
since qr = 14 and qs = 17 (only in simulation), at no load (s = 0), the 13th (RSH) and 16th (SSH) 
harmonics are present, corresponding to spectral lines at 650 and 800 Hz. This is confirmed 
by the results in Figure 4.27, and it is in agreement with literature [22–24,34]. The same test 
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Stator current waveform and its spectrum at no load (numerical simulation). (From Cirrincione, M. et al., 
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has been made by applying a constant load torque of 10 N m, corresponding to a slip of 
6.37%. Figure 4.28 shows the steady-state stator current on phase sA obtained in numerical 
simulation and its spectrum at steady-state at the earlier load. As expected, both the RSH 
and the SSH have a frequency shift caused by the slip equal, respectively, to qr f1s and qs f1s: 
as a result, the line at 650 Hz moves to 605 Hz, and the line at 800 Hz moves to 746 Hz.

To check the accordance of the proposed model with the different rotor constructions, 
the same test with no load has been done with the three rotors. Figures 4.29 through 4.31 
show the steady-state stator current on phase sA and its spectrum obtained experimen-
tally with the FFT with the three motors. All spectra show that in the experimental case, 
only the 13th at 650 Hz is present.

It should be remarked that the lowest slotting harmonic is obtained with motor 1 (skewed 
rotor), then with motor 2 (unskewed rotor), and finally with motor 3 (unskewed rotor with 
open slots), as expected: the proposed model matches the real motor construction bet-
ter with unskewed rotors than with skewed ones and, even better, with open rotor slots. 
Obviously, while in the simulated test, only the rotor slotting harmonics are present as 
well as the fundamental; in the experimental one, other harmonics are also present. As 
a matter of fact, in a real machine the stator and rotor windings are distributed while in 
the proposed model they are concentrated, a real machine can have some small static or 
dynamic eccentricities, and finally, the supply voltage from the grid is never purely sinu-
soidal with consequent time harmonics in the stator currents. All these reasons account for 
the presence of some other harmonics in the stator current signature of a real machine, in 
particular, the 5th, 7th, 11th, and 13th, as explained in Cameron et al. [22].
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Figure 4.32 shows the steady-state current components of motors 2 and 3 supplied at the 
rated frequency of 50 Hz and voltage of 220 V, respectively, and the measured and the fil-
tered one so to show only the RSH. Measurements have been done only on motors 2 and 3 
since motor 1 does not exhibit any significant PSH (see Figure 4.29). Figure 4.32 shows that 
filters do not modify the phase position of the notch frequency, thus avoiding undesir-
able phase distortion. By this filtering process, any effect on the stator current locus of the 
significant 5th, 7th, 11th, and 13th has been canceled. The stator current locus obtained in 
numerical simulation is not a circle but presents some lobes caused by the 650 Hz (605 Hz) 
RSH and 800 Hz (756 Hz) SSH at no load (10 N m load), as shown in Figure 4.33a and b. The 
locus has been drawn three times: considering the effect only of the stator slotting effects, 
only of the rotor slotting effects, and both the stator and rotor slotting effect. The presence 
of slotting in all three cases can be observed by the lobes in the current locus. However, 
when considering either the stator or the rotor slotting, the current locus is regular in 
steady-state presenting a polar symmetry; when both stator and rotor slotting are consid-
ered, the locus presents lobes but is not regular anymore and does not present a polar sym-
metry. Figure 4.34a and b shows the steady-state stator current space-vector locus obtained 
experimentally on motors 2 and 3 under the same supply at no load. Two loci are shown 
that obtained with the measured currents and that obtained with the filtered currents. 
The loci obtained with the measured currents are quite irregular and different from the 
theoretical ones (obtained in simulation). The lobes of the dominant harmonics hide those 
due to the slotting. The loci of the filtered currents, however, which contain only the infor-
mation on the fundamental and the RSH show a shape quite similar to that obtained in 
numerical simulation and confirm that the two motors with an unskewed rotor exhibit a 
significant slotting effect.
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List of Symbols

isA,isB,isC	 stator phase currents
is = isD + jisQ	 space-vector of the stator currents in the stator reference frame
is

g = +i jisx
g

sy
g 	� space-vector of the stator currents in a generic rotating reference 

frame
ʹ = +ir i jird rq	 space-vector of the rotor currents in the stator reference frame

ir
g = +i jirx

g
ry
g 	� space-vector of the rotor currents in a generic rotating reference 

frame
imr = imrD + jimrQ	� space-vector of the rotor magnetizing current in the stator reference 

frame
ims = imsD + jimsQ	� space-vector of the stator magnetizing current in the stator reference 

frame
imm = immD + jimmQ	 space-vector of the magnetizing current in the stator reference frame
Ls	 stator inductance
�Ls	 stator transient inductance

Lr	 rotor inductance
Lm	 total static magnetizing inductance
Lsσ	 stator leakage inductance
Lrσ	 rotor leakage inductance
p	 number of pole pairs
Rs	 resistance of a stator phase winding
Rr	 resistance of a rotor phase winding
te	 electromagnetic torque
Ts	 stator time constant
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Tr	 rotor time constant
�Ts 	 stator transient time constant
�Tr 	 rotor transient time constant

Trσ	 rotor leakage time constant
usA,usB,usC	 stator phase voltages
us = usD + jusQ	 space-vector of the stator voltages in the stator reference frame
us

g = +u jusx
g

sy
g 	 space-vector of the stator voltages in a generic rotating reference frame

ρr	� phase angle of the rotor flux-linkage space-vector with respect to the 
sD axis

ρs	� phase angle of the stator flux-linkage space-vector with respect to the 
sD axis

ρm	� phase angle of the magnetizing flux-linkage space-vector with respect 
to the sD axis

σ	 1 − Lm
2 /(LsLr) total leakage factor

σr	 rotor leakage factor
σs	 stator leakage factor
ϑr	 angular position of the rotor with respect to the sD axis
ʹ = +y r rd rqjψ ψ 	 space-vector of the rotor flux linkages in the stator reference frame

ψs = ψsD + jψsQ	 space-vector of the stator flux linkages in the stator reference frame
ωmr	 angular speed of the rotor flux space-vector
ωms	 angular speed of the stator flux space-vector
ωmm	 angular speed of the magnetizing flux space-vector
ωsl	 angular slip speed
ωr	 angular rotor speed (in electric angles per second)
ωm	 angular rotor speed (in mechanical angles per second)

The symbols ʹψ ψ ψr s m, ,  in apex mean the reference frame in which the variables are 
expressed.
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5
Control Techniques of Induction Machine Drives

5.1  Introduction on Induction Machine (IM) Control

This chapter mainly deals with high-performance control techniques of IM drives. Control 
techniques of IMs can be divided into two main categories: scalar and vector controls. Scalar 
control is based on the steady-state model of the IM and therefore permits regulating at 
steady-state only the magnitudes and frequency of the stator voltages, currents, flux link-
ages, and electromagnetic torque. Since it does not act on the angular position of the space-
vectors of the control variables, it does not permit the best dynamic performance to be 
achieved. On the contrary, vector controls are based on the dynamic model of the machine; 
they permit the drive to achieve its best dynamic performance in terms of electromagnetic 
torque control, thanks to their feature to take into consideration the instantaneous angular 
position of the stator voltages, currents as well as of the flux linkages.

According to these characteristics, vector controls can be obtained in several ways. The 
most popular method is well-known as field-oriented control (FOC), alternatively called 
vector control, and has been proposed by Hasse [1] and Blaschke [2]. Other methods 
based on modern nonlinear control [3–5] have been more recently proposed. Marino 
et al. [6] have proposed a nonlinear transformation of the motor state variables so that, in 
the new coordinates, the speed and rotor flux amplitude can be decoupled by feedback; 
the method is called feedback linearization control (FLC) or input–output decoupling 
[6]. A similar approach has been proposed by Krzeminski [7], which is based on a mul-
tiscalar model of the IM. A different possible approach, called passivity-based control 
(PBC), is based on the variation theory and energy shaping and has been only recently 
focused [8]. To do that, the machine is modeled in terms of the Euler–Lagrange equations 
in generalized coordinates.

During the mid-1980s, while FOC philosophy was gradually becoming the industrial 
standard for industrial high-performance drive control, completely new ideas came up 
from Takahashi and Noguchi [9] and Depenbrock [10–12]. The underlying idea was always 
in the direction to develop a suitable coordinate transformation permitting the drive to 
be controlled in a decoupled way similarly with DC motor control. The decoupling con-
trol typical of FOC has been replaced by a bang-bang control, which suitably matches the 
typical on–off command of the inverter power devices. This control strategy has been 
called direct torque control (DTC), and since 1985, it has been continuously developed and 
improved. Figure 5.1 shows the classification of the most common control techniques for 
IMs [13].
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5.2  Scalar Control of IMs

Some kinds of mechanical loads exist which do not require a high dynamic performance. 
Typical examples are fans and pumps where it is sufficient to regulate the speed of the IM 
with adequate efficiency over a wide speed range. This implies that it is sufficient to use 
the steady-state model of the IM instead of the dynamic one, as far as the control system 
design is concerned. The machine is supposed to be supplied by a pulsewidth modula-
tion (PWM) voltage source inverter (VSI), able to generate a set of three-phase voltages 
whose fundamental component is characterized by the desired amplitude and frequency. 
Scalar control of IMs was born with the idea to have at disposal as a simple methodol-
ogy for regulating the speed of an AC machine as that adopted for controlling the DC 
machine.

5.2.1  Scalar Control with Impressed Voltages

Starting from the steady-state space-vector equations of the IM, the air-gap electromag-
netic torque can be written as follows [14]:
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FIGURE 5.1
Classification of IM control techniques (NFO = natural field orientation).
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where
U1 is the steady-state space-vector of the stator voltages
ω1 is the fundamental supply pulsation
Rs and Rr are, respectively, the stator and rotor resistances
σs = Xsσ  /Xm is the stator leakage factor, Xsσ and Xm are the stator leakage and magnetiz-

ing reactances
ʹ = ʹ + +X X Xr s ss s s( )/1  is the transient rotor reactance, Xrσ is the rotor leakage reactance

s = the expression of the pulsation is the pulsation slip

The maximum air-gap electromagnetic torque can be developed by the machine at a spe-
cific pulsation slip smax equal to the following:
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In correspondence to such a pulsation slip, the maximum electromagnetic torque is equal 
to the following:
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where the positive (negative) sign is valid in case of motoring (generating) operation.
If the VSI is commanded so as to keep a constant ratio between the stator voltage ampli-

tude and the stator fundamental pulsation

	

U Us srat

ratw w1 1
= 	 (5.4)

where the “rat” pedex is referred to the rated values of the corresponding variables; then 
so long as the stator resistance Rs is neglected, the stator flux amplitude at steady-state is 
kept constant as well, since
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where Ψs is the steady-state space-vector of the stator flux linkage.

At the same time, the maximum electromagnetic air-gap torque Te max is kept constant as appar-
ent from Equation 5.3, while the electromagnetic air-gap torque can be rewritten as follows:
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Equation 5.6 implies that the steady-state torque, for different values of the supply fre-
quency, depends only on the slip, being the relationship almost linear for small values of 
the speed itself (close to the synchronous speed). In this case [14],

	

T
T

s
s

e

emax max
≅ 2 	 (5.7)

On the basis of above, the easiest way to control the speed of the IM is to open-loop  
regulate its fundamental supply pulsation ω1 simultaneously keeping constant the 
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ratio  |Us|/ω1. This corresponds to varying only the synchronous speed of the drive, 
without the need of measuring the machine speed on the one hand but without the 
possibility to compensate any variation of the speed caused by the load torque on the 
other hand. Figure 5.2 shows a set of ideal steady-state torque versus speed character-
istics of a 2.2 kW machine, obtained for different values of the supply frequency under 
the assumption of null stator resistance. It clearly shows that the higher the supply fre-
quency, the higher the synchronous speed of the machine, as expected. Moreover, the 
lower the supply frequency, the higher the starting torque. Finally, the maximum torque 
is maintained constant, while varying the supply frequency.

Since scalar control does not take into consideration the dynamic relationships of the 
machine, it suffers besides the above mentioned limited dynamic performance, from other 
drawbacks. In particular, sudden frequency variations could be the cause of the following 
phenomena:

•	 High overcurrents in the motor
•	 Oscillations of the stator currents, fluxes, and torque amplitudes
•	 Potential instability phenomena since the slip can overcome that corresponding to 

the maximum torque

To properly attenuate these drawbacks, frequency variations can be applied with a ramp 
instead of with a step. A ramp with a time constant close to the electromechanical one of 
the motor permits its speed to track the frequency changes more closely, with consequent 
reduction of the oscillations. Moreover, a better behavior changes more closely from the 
point of view of the stability of the system can be further achieved.

Figure 5.3a shows the block diagram of the open-loop scalar control scheme [15]. In this 
scheme, the gradient limiter reduces the bandwidth of the stator frequency command. 
The band-limited stator frequency signal then generates the stator voltage reference mag-
nitude while its integral determines the phase angle. The amplitude and phase of the 
reference stator voltage space-vector constitute the input of the PWM system that, in turn, 
establishes the switching pattern of the inverter synthesizing the reference voltages. 
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Set of ideal steady-state speed versus torque characteristics for different supply frequencies.
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Even  if theoretically no stator current sensor is needed, since no direct current control 
is performed, in practical terms, it is frequently mounted to inhibit the switching of the 
inverter power devices for overload protection in the presence of overcurrents. Since this 
control system behaves as a feed-forward action, the mechanical speed of the motor will 
differ from the reference one in the presence of a load torque. The maximum speed track-
ing error depends on the nominal slip of the machine, almost equal to 3 ÷ 5% for low-
power machines and even lower for higher ratings. A way to overcome this disadvantage 
is to implement a load-current-dependent slip compensation scheme [16].

Alternatively, a closed-loop control of the rotor speed can be achieved with the scheme 
in Figure 5.3b [17]. In this case, the reference speed ωmref is compared with the measured 
one ωm, being the error processed by a PI controller. The output of such a controller is the 
reference slip speed ω2ref which, added to the measured speed, provides the stator pulsa-
tion reference ω1ref. The reference slip speed must be properly limited to the range where 
the speed/torque relationship is almost linear, to avoid pull-out phenomena.

With reference to the voltage-frequency relationship, some further remarks should be 
made. The |Us|/ω1 ratio defines the rate of change of the linear function in Figures 5.3 and 
5.4 and is usually set equal to the rated stator flux amplitude of the machine, (|Us|/ω1) = 
const = |Ψsrat|, when the motor speed remains below the rated one. Above the rated speed, 
field weakening can be simply achieved by limiting the voltage amplitude to the rated 
voltage of the machine, |Us| = |Usrat|. At very low stator frequency, there is a preset mini-
mum value of the stator voltage programmed to account for the resistive stator voltage 
drop, |Us| = |Us min|. This is due to the fact that, because of a nonnull value of the stator 
resistance, as long as the voltage-frequency reduces, the stator flux amplitude reduces too. 
This can be clearly observed from Figure 5.4, showing the stator flux amplitude versus 
of the rotor speed of a 2.2 kW machine for a fixed value of the ratio (|Us|/ω1) = 0.7 at slip 
equal to 0.

This implies a reduced torque capability of the drive at decreasing supply frequencies, 
as apparent from Figure 5.5, showing the real (with nonnull stator resistance) torque ver-
sus speed characteristics of a 2.2 kW machine for different values of the supply frequency. 
The lower the supply frequency, the lower the maximum electromagnetic torque of the 
machine. Instead of setting a minimum value of the stator voltage at low speed, a more 
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sophisticated method [17] is to correct the stator voltage reference on the basis of such a 
relationship, compensating the stator resistance ohmic drop:
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or, if the operating range has to be extended at low speeds,
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Figure 5.6a shows two voltage versus pulsation frequency curves: the ideal one and that 
obtained with the Rs compensation method in Equation 5.9, respectively.

Finally, the stator flux amplitude decreases also, for a given supply frequency, for increas-
ing values of the slip as observable from Figure 5.6b, showing the stator flux amplitude 
versus the slip for a fixed value of the voltage-frequency ratio. The slip variation during 
typical operation is limited, but its increase with the load is always a cause of decreased 
flux amplitude with consequent torque capability reduction. This further complicates the 
behavior of such a control system at low speeds.

The open-loop scalar control ensures high robustness at the expense of reduced dynamic 
performance. The absence of closed-loop control and the restriction to low dynamic perfor-
mance make controlled drives very robust. For very high-speed applications like centri-
fuges and grinders, open-loop control can also be an advantage: as a matter of fact, the 
current control system of closed-loop schemes tends to destabilize when operated at field 
weakening up to 5–10 times the nominal speed [15].

The particular attraction of scalar-controlled drives is their extremely simple control struc-
ture which favours an implementation with few highly integrated electronic components. 
These cost-saving aspects are most important for applications at low power below 5 kW.

5.2.1.1  Experimental Results with Open-Loop Scalar Control with Impressed Voltages

In the following, some experimental results of open-loop scalar-controlled IM drive with 
impressed voltages are presented. The scalar control scheme in Figure 5.3a has been 
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adopted where, however, no limitation either of the rate of change of the reference speed 
or of the stator current amplitude has been implemented to show the corresponding detri-
mental effects. A test setup with a 2.2 kW IM has been used for this test (see Appendix 11.A). 
Figure 5.7a shows the reference and measured speed during a speed reversal of the type 
100 → −100 rad/s. Figure 5.7b shows the corresponding waveform of the electromagnetic 
torque and rotor flux-linkage amplitude. Figure 5.7c shows the corresponding waveform of 
the three-phase stator currents. These figures confirm the previous considerations. Firstly, 
the speed reversal is followed by significant uncontrolled oscillations of the speed, which 
die out in a time interval longer than 0.5 s. The oscillations in the speed result in oscillations 
of the electromagnetic torque and rotor flux amplitude, both of which are uncontrolled 
variables. Finally, the three-phase uncontrolled currents attain very high values (over 50 
A), significantly higher than the rated ones (around 10 A). Some oscillations in the stator 
current amplitude occur in correspondence of the speed oscillations.

5.2.2  Scalar Control with Impressed Currents

Open-loop scalar control with impressed voltages is sensitive to stator resistance varia-
tions, occurring with temperature changes. The dependence of the control performance 
on the stator resistance and leakage reactance can be eliminated using a scheme with 
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impressed stator currents instead of voltages. Moreover, the assumption of sinusoidal sup-
ply is certainly more realistic with currents than with voltages for a switched converter.

If the motor is assumed to be supplied with sinusoidal currents, it is preferable to control 
the rotor flux-linkage amplitude, instead of the stator or magnetizing one. The reason is 
that, in this way, any variation of both the stator resistance and leakage inductance does 
not affect the control action at all. From the equivalent circuit of the IM, it is possible to 
compute the stator current steady-state space-vector needed to maintain constant the mag-
nitude of the rotor flux linkage, resulting in [14] the following:
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To maintain the rotor flux amplitude constant, the stator current amplitudes must follow a 
function depending on the slip speed ω2 and on rotor parameters only
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This can be obtained with a function generator having as input the slip speed ω2. Figure 5.8 
shows the current versus slip speed curves for two values of Tr.

The steady-state torque can be expressed as a function of the stator currents in this 
form [14]:
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Equation 5.12 confirms that, as long as the rotor magnitude is maintained constant with 
the technique described above the steady-state torque depends linearly on the slip speed, 
and therefore, torque control can be directly performed by acting on the slip speed itself. 
Figure 5.9 shows the block diagram of a closed-loop speed scalar control with impressed 
currents [17]. The reference speed ωmref is compared with the measured one ωm, and the 
error is processed by a PI controller. The output of such a controller is the reference slip 
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speed ω2ref which, added to the measured speed, provides the stator pulsation reference 
ω1ref. The integral of the stator pulsation reference gives the stator angle. The ω2ref signal is 
fed to the function generator implementing the stator current versus slip speed relation-
ship, whose output is the stator current reference. Both the stator current amplitude and 
the angle are then fed to a two-phase oscillator, at the output of which the two instan-
taneous reference currents are obtained. A current control system permits the instanta-
neous currents to be controlled to their reference values.

The scalar control scheme with impressed currents is certainly more complex than the cor-
responding with impressed voltages. It requires the knowledge of the parameters contained 
in the current versus slip speed relationship (Lm and Tr). Moreover, it requires the motor to be 
controlled in current, which offers the advantages of a quicker response in the current and 
torque commands, since the dynamic relationship of the stator is not accounted for.

5.3  FOC of IMs

Scalar control of IMs, although yet successfully employed in industry, is not adoptable for 
those application requiring high dynamic performance (e.g., servo drives, flying shears, 
rolling mills, robotic manipulators). The open-loop control of the magnetic flux linkage, 
typical of scalar control, makes the generation of the rated electromagnetic torque of the 
machine basically impossible at very low and zero speed.

FOC of IM drives was introduced almost 30 years ago [1,2], but it has been intensively 
studied and over the last few years [17–33], becoming nowadays the industrial standard 
as far as high-performance IM drives are concerned. Its development has been a signifi-
cant breakthrough in the field of control of electrical drives with IM since it has permitted 
the use of this kind of motor for applications where only DC motors offered adequate 
dynamic performance. FOC permits the IMs to be controlled with dynamic performance 
comparable with that achievable with DC motor drives, but without the drawbacks caused 
by the brushes.

The application of FOC has been possible, even at an industrial level, thanks to the devel-
opment of power electronics, resulting in reliable, cheap and fast-switching off-the-shelf 
power devices along with powerful low cost digital programmable architectures. As a 
matter of fact, today, IM drives are a valid alternative to DC motor drives, also from an 
economical point of view.

5.3.1  Principle of Field-Oriented Control

The DC motor with separate excitation is easily controllable with high dynamic perfor-
mance, thanks to its structure that is naturally decoupled. As a matter of fact, in the DC 
machine, acting on the excitation current, it is possible to control the magnetic flux, while 
acting on the armature current, it is possible to control the electromagnetic torque and so 
the angular speed and the angular position.

FOC permits the IM to be controlled as a DC motor with separate excitation, with equiv-
alent dynamic performance. It can be demonstrated, by adopting the space-vector theory 
explained in Chapter 1, that the choice of a suitable rotating reference frame with the 
direct axis lying on the direction of the rotor flux-linkage space-vector (or equivalently the 
stator or the magnetization flux linkage) makes it possible to write the instantaneous value 
of the electromagnetic torque as the product of the amplitude of the rotor (or stator or 
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magnetization) flux linkage and the quadrature component of the stator current expressed 
in the same reference frame. The electromagnetic torque can be therefore expressed, in 
these reference frames, in the following ways [18]:

	 t c ie r r sy
r= 1 y y rotor flux-linkage-oriented reference frame 	 (5.13)

	 t c ie s s sy
s= 1 y y stator flux-linkage-oriented reference frame 	 (5.14)

	 t c ie m m sy
m= 1 y y magnetization flux-linkage-oriented reference fraame 	 (5.15)

where
c1r, c1s, and c1m are constants depending on the machine parameters
|ψr|, |ψs|, and |ψm| are the amplitudes of, respectively, the rotor, stator, and magnetization 

flux linkages
isyry , isysy , and isymy  are the quadrature components of the stator current space-vector in the 

rotor flux-oriented, stator flux-oriented, and magnetization flux-oriented reference 
frames (in the following just called field reference frame)

Equations 5.13 through 5.15 are similar to the electromagnetic torque equation of the DC 
motor with independent excitation. This suggests that the control of the electromagnetic 
torque should be performed, once the amplitude of the rotor (stator or magnetization) flux-
linkage amplitude is fixed, by acting on the quadrature components of the stator current 
space-vector in the chosen field reference frame.

The control of the rotor (stator or magnetization) flux-linkage amplitude can be per-
formed by acting, on the contrary, on the direct component of the stator current in the field 
reference frame. Decoupled control of the magnetic flux and electromagnetic torque can 
then be obtained in FOC, by acting, respectively, on the direct and quadrature components 
of the stator currents in one of the field reference frames. To implement FOC the stator cur-
rent space-vector can be thus transformed into the corresponding reference frame. In any 
of the field reference frames, the direct and quadrature components of the stator current 
play the same role of the excitation and armature currents in the DC motor. FOC is usually 
implemented in the rotor flux-linkage reference frame. As a matter of fact, in this refer-
ence frame, the rotor flux linkage is dependent only on the direct component of the stator 
current, with a consequent natural decoupling in current. If any of the other two field ref-
erence frames is adopted, the flux linkage does not depend only on the direct component 
of the stator current, with consequent coupling terms. This calls for feed-forward control 
terms, called decoupling circuits, which however make the overall control system more 
complex. The implementation of the FOC, with orientation in any field reference frame, 
requires information on the electric angle between the direct-axis sD in the stationary ref-
erence frame and the space-vector of the adopted flux linkage. As far as rotor flux-oriented 
control is concerned, there are two ways to obtain the amplitude and phase of the rotor 
flux space-vector. When the so-called direct field-oriented control (DFOC) is used, also 
called flux feedback, these quantities are either directly measured (by Hall effect sensors, 
additional windings, etc.) or more commonly they are computed on the basis of the flux 
models. When the so-called indirect field-oriented control (IFOC) is used, the amplitude 
and phase of the rotor flux space-vector are obtained, respectively, by the reference values 
of the direct and quadrature components of the stator current and by the machine angular 
speed measured on the shaft. In particular, in the IFOC, the phase of the rotor flux space-
vector is obtained as the sum of the measured rotor position θr and the computed slip 
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angle θsl. The slip angle θsl gives the angular position of the rotor flux space-vector with 
respect to the direct-axis rα in the rotor reference frame. This angle can be computed on 
the basis of the direct and quadrature components of the reference stator current space-
vector in the field reference frame, whose accuracy in the estimation strongly depends on 
the correct knowledge of the rotor time constants. The incorrect knowledge of this param-
eters leads to a wrong field orientation.

5.3.2  Rotor Flux-Oriented Control

The rotor flux-oriented control is suited for motors directly supplied in current. If the 
machine is supplied by a current generator, the dynamic model of the system is signifi-
cantly simplified. Supplying the machine with impressed currents, it is possible to take 
into consideration, in the control system, simply the rotor space-vector equations of the 
machine, without considering the stator ones.

Adopting the rotor flux-oriented reference frame, the rotor space-vector equation 
becomes:
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where
is ry  is the space-vector of the stator current in the field reference frame
imr is the space-vector of the rotor magnetization current defined as imr = ψr/Lm, where Lm 

is the three-phase magnetization inductance, ψr is the rotor flux-linkage space-vector
Tr is the rotor time constant
ωr is the speed of the machine in electrical angles
ωmr is the speed of the rotor flux linkage in electrical angles

The space-vector Equation 5.16 can be decomposed into the direct x and quadrature y 
axes of the field reference frame, giving the following scalar equations:
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where isxry  and isyry  are the direct and quadrature components of the stator current space-
vector in the field reference frame.

The expression of the electromagnetic torque in the rotor flux-linkage reference frame, as 
a function of imr and isyry , is as follows:
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where σr is the rotor leakage factor.
Figure 5.10 shows the vector diagram with the different variables.
Equation 5.17a suggests that since the rotor magnetizing current depends only on the 

direct component of the stator current isxry , it is possible to control the rotor flux linkage act-
ing directly on this last component isxry . It should be noted that imr and isxry  are related by a 
dynamic relationship of the first order, governed by the rotor time constant Tr.
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Equation 5.18 highlights that the electromagnetic torque can be controlled by acting 
either on the rotor magnetization current imr or on the quadrature component of the sta-
tor current isyry . To obtain the best dynamic performance, it is more convenient, when the 
machine works below the rated speed, to maintain at a constant value the amplitude of 
the rotor flux linkage (or equally of the rotor magnetizing current), that is, to maintain at a 
constant value the direct component of the stator current isxry . The electromagnetic torque, 
in the same range of speed, can be controlled by acting on the quadrature component of 
the stator current isyry . To obtain the correct decomposition of the stator current space-vector 
into its components isxry  and isyry , it is necessary to know the instantaneous value of the angu-
lar position of the rotor flux-linkage space-vector ρr with respect to the direct-axis sD of 
stationary reference frame. In the DFOC, the value of ρr is provided by the flux model. It 
should be noted that, in the rotor flux-linkage reference frame, at steady-state, the direct and 
quadrature components of the stator current, isxry  and isyry , are constant variables.

5.3.3  Rotor Flux-Linkage Acquisition

As far as a DFOC with rotor flux orientation is concerned, a distinction should be made 
between the case where the rotor flux is measured and the case where the rotor flux is 
estimated by a flux model.

A direct measurement of the magnetic flux can be made by inserting on the stator inner 
periphery properly displaced on it, some magnetogalvanic or magnetoresistive sensors 
like those based on the Hall effect. By interpolating the local measurements of the flux 
density, it is possible to have the amplitude and angular position of the magnetic flux den-
sity at the air-gap. On the basis of this measurement, measuring also the stator currents, it 
is possible to compute the rotor flux-linkage space-vector. The direct measurement of the 
rotor flux presents, however, some drawbacks [17]:

	 1.	 It is not possible to use an off-the-shelf motor, since the sensors must be inserted 
during the construction of the machine.

	 2.	The Hall effect sensors are fragile from both a mechanical and thermal point of 
view and present an additive cost besides the assembling problems.

	 3.	There exist problems connected to the thermal offset of the Hall effect sensors 
and consequent processing of the signals at their output because of the harmonics 
caused by the rotor slots. This implies the need of adopting a proper filtering.

	 4.	The electromagnetic torque estimation by the direct measurement of the flux with 
few measurement points on the stator periphery is not very reliable.
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Another possibility is to use some additional windings on the stator, to determine the 
magnetic flux on the basis of the integration of the induced electromotive forces. Such a 
solution implies a structural modification of the motor and causes problems at low speed 
because of the offset of the integrators and the variations of the resistance with the tem-
perature. Moreover, the measurement of the induced electromotive forces requires reliable 
and accurate sensors, besides a suitable signal filtering.

The most common solution is the adoption of the so-called flux models. Flux models are 
mathematical models based on the equations describing the behavior of the machine, and 
they permit the estimation of the magnetic flux on the basis of the measurement of some 
electrical (e.g., stator voltages and currents) or mechanical (e.g., rotor speed) variables.

5.3.3.1  Voltage Flux Models

Flux models are typically divided into voltage and current flux models. The first are based 
on the stator equations, while the second are based on the rotor equations of the machine. 
Flux models are open-loop estimators.

The voltage flux model, as recalled earlier, is based on the stator equations of the machine. 
After processing Equation (4.35), expressing the rotor current space-vector as a function 
of the stator current and the rotor magnetizing current space-vectors, the following space-
vector equation can be obtained:
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where
Ts is the stator time constant
�Ts  is the transient time constant of the machine

σ is the global leakage factor
us is the stator voltage space-vector in the stationary reference frame
is is the stator current space-vector in the same reference frame

The space-vector equation (5.19) can be decomposed into the direct and quadrature com-
ponents in the stationary reference frame in this way:
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where
imrD and imrQ are the direct and quadrature components of the rotor magnetization space-

vector in the stationary reference frame
isD and isQ are the direct and quadrature components of the stator current
usD and usQ are the direct and quadrature components of the stator voltage in the same 

reference frame

Figure 5.11a shows the block diagram of the voltage flux model described by Equations 
5.20a and 5.20b.
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In Figure 5.11a, s denotes the Laplace variable. This flux model requires the measurement 
of the stator voltages and currents, while it does not need the measurement of the angular 
speed of the machine. The electrical parameters of the machine to be known for the imple-
mentation of such flux model are the stator resistance, the stator inductance, and the global 
leakage factor. The block identified as 3/2 in Figure 5.11a permits the three-phase variables 
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to be transformed into the 2−phase stationary reference frame. The equations describing 
such transformations are as follows:
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where usA, usB, usC and isA, isB, isC are the phase voltages and currents of the machine.
The block identified as R/P (rectangular-polar) in Figure 5.11a performs the coordinate 

transformation from Cartesian to polar, by means of the following equations:
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This model presents the following drawbacks [18,19]:

	 1.	Offset of the integrators caused by the open-loop integration of the flux
	 2.	Sensitivity of the model at low speed to the variation of Rs with the temperature, 

which requires a compensation of the voltage drop on Rs before the integration
	 3.	Need of the measurement of the stator voltages with proper sensors, which are 

typically expensive, and need of filtering voltage signals before sampling (anti-
aliasing filters)

On the contrary, it presents the following advantages:

	 1.	No need of speed measurement
	 2.	Robustness to parametric variations at high speeds
	 3.	Dependence of the estimation only on the stator parameters of the machine

5.3.3.2  Current Flux Models

Current flux models are, on the contrary, described by the rotor equations of the machine. 
Several current flux models exist, depending on how the equations are rewritten and on 
which reference frame is adopted. The two most common current flux models are those 
adopting, respectively, the rotor flux-linkage reference frame and the stator reference frame. 
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The flux model based on the rotor equations in the rotor flux-oriented reference frame is 
described by Equation 5.16, given by:
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This equation gives rise to the following scalar equations on the direct x and quadrature 
y axes:
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Equations 5.25a and 5.25b are valid under the hypothesis of linearity from the point of view 
of the magnetic behavior of the machine. They highlight that, in the rotor flux reference 
frame, the quadrature component of the stator current acts only on the slip speed ωmr − ωr, 
while the rotor magnetizing current (rotor flux) is linked only to the direct component of 
the stator current. Figure 5.11b shows the block diagram of the flux model described by 
Equations 5.25a and 5.25b.

The block identified as e j r− r  permits the transformation of the stator current components 
isD and isQ in the stationary reference frame into the corresponding isxry  and isyry  in the rotor 
flux-oriented reference frame on the basis of the knowledge of the angle ρr .

The equations describing this transformation are as follows:
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The block diagram in Figure 5.11b highlights that the direct component of the stator cur-
rent isxry  is linked to the rotor magnetizing current imr by a dynamic relationship of the first 
order. At steady-state, therefore, when imr is constant, the rotor magnetizing current coin-
cides with the direct component of the stator current in the field reference frame.

The main advantages of such a flux model are as follows:

•	 Simple equations
•	 Closed-loop integration for the flux computation
•	 Constant variables at steady-state

It should, however, be noted that in the model described by Equations 5.25a and 5.25b, 
both the amplitude and angle of the rotor magnetizing current depend significantly on 
the correct knowledge of the rotor time constant of the machine. A wrong knowledge of 
it causes undesired couplings between variables on the x and y axes. This coupling can 
result in the reduction of the dynamic performance of the drive, the reduction of its load 
capability and can finally lead the drive to an unstable behavior.
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The flux model based on the rotor equations in the stationary reference frame is described 
by the following vector equation:
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where �imr is the rotor magnetizing current space-vector in the stationary reference frame. 
From this equation, the two scalar equations on the direct sD and quadrature sQ axes can 
be obtained:
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The block diagram of the flux model described by Equations 5.28a and 5.28b is drawn in 
Figure 5.11c. Even in this case, the block 3/2 performs the transformation of the stator cur-
rents isA, isB, and isC from the three-phase system to the biphase one in the stationary refer-
ence frame, providing isD and isQ, while the block R/P performs the transformation from 
Cartesian to polar coordinates. The correct estimation of the amplitude and phase of the 
rotor magnetizing current depends, even in this case, on the correct knowledge of the rotor 
time constant of the machine.

Different from the model described by Equations 5.25a and 5.25b, this flux model pres-
ents the following disadvantages:

•	 Open-loop integration for the flux computation
•	 AC electrical variables
•	 Higher estimation errors with respect to those obtainable with the current model 

in the field reference frame

As a matter of fact, manipulating Equation 5.27 and considering the steady-state values of 
all variables, the rotor magnetizing current �Imr can be computed as a function of the stator 
current Is and the pulsation of the stator current ω1:
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s

r rj T1 1( )w w
	 (5.29)

Equation 5.29 confirms that, for high values of the rotor speed and low values of the slip, 
a slight error in the rotor speed measurement can lead to a big error in the estimation of 
�imr  and mainly of ρr. Some flux models based on a proper combination of the current and 

voltage models of the IM have been then devised, which are not very sensitive to errors on 
the measurement of the rotor speed [18,19].

5.3.3.3  Rotor Flux-Oriented Control with Impressed Currents

Rotor flux-oriented control with impressed currents can be obtained by employing a 
current-controlled cycloconverter, a current source converter (CSI) supplied by a control-
lable AC/DC converter, or adopting a current-controlled VSI, CRPWM (current-regulated 
PWM) supplied by an AC/DC converter.
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The current-controlled cycloconverter is typically used only for high-power drives. This 
converter requires, in fact, the use of at least 36 thyristors. Moreover, its big limit is the 
maximum value of the fundamental frequency f1 that is able to generate. The maximum 
achievable value is usually variable in the range 0 < f1 < pu · f1max/15, where pu is the number 
of pulses of the converter [17]. In case of a power grid at fundamental frequency of 50 Hz 
with a three-phase bridge converter (pu = 6), then f1max ≈ 20 Hz. If a higher rated frequency 
power grid is available, as in the case of ship propulsion supplied by turbines or diesel 
engines, the frequency range at the converter output consequently increases.

Also the CSI supplied by an AC/DC converter with a smoothing inductor is usually 
adopted in high-power drives. In this case, the control of the magnitude of the stator current 
is performed by acting on the current at the DC level with a controlled AC/DC converter. 
The control of the fundamental frequency of the stator current is performed by acting on 
the CSI. The CSI requires the adoption of 12 thyristors, not necessarily of high switching 
frequency. As a matter of fact, the switching frequency of such a converter cannot be in any 
case very high. The dynamic response of the converter to any current reference variation 
strongly depends on the smoothing inductance on the DC side, on the machine inductance, 
on the gain of the current control loop on the DC side, on the rated value of the output volt-
age of the AC/DC converter, and, finally, on the load torque [18]. The commutation time can 
be suitably reduced by choosing a motor with a low leakage inductance. It should be noted 
that, with such a converter, the current absorbed by the motor has a square waveform, 
while the voltage on the motor windings exhibits a quasi-sinusoidal waveform, except for 
some spikes generated in the commutation instants of the current. The harmonic content 
of the stator current is therefore very high and this is further cause for a significant ripple 
present in the electromagnetic torque, which can be problematic at low rotating speed. This 
is the reason why this converter is not suitable for electrical drives to be used in machine 
tools where a continuous precise control of the angular position is required. When high 
dynamic performance are required to the drive, a CRPWM-controlled VSI is the best solu-
tion. If the DC link voltage is sufficiently high, it is possible to design the current control 
loop with a very high gain, permitting the measured currents to properly track their refer-
ences. As recalled earlier, the current control permits avoiding the use of the dynamic rela-
tionship described by the stator equations of the machine. The control system is therefore 
highly simplified with respect to the case of voltage controlled VSI. A simple way to control 
the three stator currents is based on the hysteresis comparators. Figure 5.12 shows the block 
diagram of a stator current control system based on hysteresis comparators.

The phase stator currents isA, isB, and isC are instantaneously compared with the corre-
sponding reference values isAref, isBref, and isCref provided by the control system, and the error 
is processed by hysteresis comparators. If the positive error is higher than half of the hys-
teresis band, then the upper device of the inverter leg is commanded; otherwise, if the 
negative error is lower than half of the hysteresis band, then the lower device of the inverter 
leg is commanded. The adoption of hysteresis comparators with reduced band permits the 
stator currents to be shaped with a very low harmonic content. On the contrary, the disad-
vantage is that the switching frequency of the converter is variable, which can be problem-
atic from the point of view of a potential interference with other systems. The switching 
frequency depends on how quickly the stator current goes from the lower to the higher 
limit of the hysteresis band and vice versa. It depends on the magnitude of the DC link volt-
age, on the value of the back electromotive force offered by the motor and by the inductance 
of the motor itself. The switching frequency is, however, limited to few kilohertz if bipolar 
devices are used (e.g., BJT), while it can overcome even 16 kHz, above the acoustic frequen-
cies, in case IGBTs or MOSFETs are used [17]. The use of MOSFETs permits the significant 
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increase of the switching frequency of the converter, from which a stator current wave-
form with lower harmonic content results, but it imposes an upper limit to the maximum 
power of the drive. For this reason, FOC with impressed current by a CRPWM converter 
can be a solution only in low-/medium-power drives. A suitable way to maintain constant 
the switching frequency is to adopt, instead of the hysteresis comparators, simple on–off 
comparators and to consequently command the device commutation at constant frequency. 
The constant frequency command of the converter is obviously the cause of an increase 
of the harmonic content of the stator current. Finally, another way to control the VSI with 
constant switching frequency is sketched in Figure 5.13 [19]. The actual value of each phase 
current is compared with its corresponding reference. The current error is processed by a 
PI controller, whose output is compared with a triangular carrier waveform (ucarr in Figure 
5.13) with fixed frequency. The error is processed by a comparator which, on the basis of its 
sign, commands the upper or lower devices of the inverter leg. This technique, compared to 
the simple use of on–off comparators, permits the reduction of the harmonic content of the 
stator current, maintaining a constant switching frequency of the converter.

Figure 5.14 shows the block diagram of a rotor flux-oriented drive with impressed cur-
rents IM. The IM is supplied by a frequency converter, composed by a diode three-phase 
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FIGURE 5.12
Block diagram of stator current control by hysteresis comparators.
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Block diagram of a current control system with constant switching frequency.
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rectifier plus an IGBT-based VSI. The VSI is current controlled by high gain control loops. 
The block “current control” describes a current control system based on hysteresis com-
parators. This block could be substituted with the block diagram of the current control 
with constant switching frequency shown in Figure 5.13.

It can be observed that a closed-loop control of both the machine speed ωm and the 
amplitude of the rotor flux ψr is made. The motor speed, assumed to be measured with an 
incremental encoder, is compared with its reference ωmref. The speed error is then processed 
by a PI controller including an anti-wind-up system.* The output of the speed controller 
is the reference value of the quadrature component of the stator current space-vector isyrefry  
in  the rotor flux-oriented reference frame. The control of the reference flux, below and 
above the rated speed of the motor, is made by the closed-loop control of the voltage u0. 
Given the voltage reference u0ref, this is compared with the actual voltage u0, computed as 
the product of the estimated value of the amplitude of the rotor flux for the absolute value 
of the measured rotor speed. The tracking error is processed by an integrator, whose out-
put is the rotor reference flux ψrref. The integrator output is limited to the value of the rotor 
flux in which the machine is assumed to work for rotating speeds below the rated one. 
This value is typically chosen in correspondence of the knee of the magnetic characteristic 
of the machine.† Below the rated speed of the machine, therefore, the rotor flux linkage 
is kept constant and equal to the limit value provided to the integrator. Above the rated 
speed, on the contrary, the control system reduces the reference rotor flux linkage so as to 
maintain the value of the product |ωr| · ψr constant and equal to the reference voltage u0ref.

An alternative method, even if less efficient for the exploitation of the inverter is to open-
loop control the reference rotor flux linkage. The reference flux linkage is, in this case, 
selected by a function generator having as input the current value of the rotor speed.

The reference rotor flux linkage ψrref is then compared with the estimated rotor flux link-
age ψr, computed by the so-called flux model. The tracking error is processed by a PI con-
troller. The output of the flux controller is the reference value of the direct component of the 
stator current space-vector isxrefry  expressed in the rotor flux-linkage reference frame.

The block “flux model” in Figure 5.14 can represent any of the flux models previously 
described. Typically, the current flux model based on the rotor equations in the rotor flux-
linkage reference frame is used, as described by the block diagram in Figure 5.11b. The flux 
model has as output the angular position ρr, representing the angular displacement between 
the rotor flux-linkage space-vector and the direct axis in the stationary reference frame sD. 
The instantaneous value of ρr is necessary to correctly perform the field orientation and is the 
input of the block e j rr  in Figure 5.14. This block performs the transformation of the reference 
direct and quadrature components of the stator current space-vector isxrefry  and isyrefry  in the rotor 
flux-linkage reference frame into the corresponding components isDref and isQref in the station-
ary reference frame. This transformation is described by the following equations:
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*	 The anti-wind-up system permits the action of the PI integrator to be mullified in the time interval when the 
output of the controller is limited by a saturator. This system permits the overshoot of the output of the control 
system to be significantly reduced.

†	 The magnetic characteristic of the machine is intended for the curve which gives the rotor flux linkage as a 
function of the rotor magnetizing current.
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Finally, the block 2/3 in Figure 5.14 permits the reference current components isDref and isQref 
in the stationary reference frame to be transformed into the reference currents isAref, isBref, 
and isCref in the three-phase system.

5.3.3.4  Rotor Flux-Oriented Control with Impressed Voltages

FOC with impressed voltages is typically adopted in servo drives of rated power higher 
than 100 kW, requiring very high dynamic performance. At these power levels, VSIs 
with BJTs or, at increasing powers, GTOs or even thyristors could be adopted. The 
maximum switching frequency of these devices is usually between 100 Hz and some 
kilohertz. If the VSI were controlled in current at so low switching frequency, the har-
monic content of the stator current would be too high. For such application, then, the 
VSI should be controlled in voltage by a proper PWM technique. This implies the neces-
sity to take into consideration, in the control system, even the stator equations of the 
machine. Current control is therefore performed in the rotor flux-linkage space-vector 
reference frame, in correspondence to which the steady-state values of the currents 
are constant.

The relationship between the stator voltages and currents in the field-oriented reference 
frame is described by the vector equation (4.49) of Chapter 4, rewritten in the following for 
the sake of simplicity:
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See the list of symbols for their interpretation.
If Equation 5.31 is decomposed into the direct x and quadrature y axes in the field-

oriented reference frame, the following equations can be obtained:
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Equations 5.32a and 5.32b show that, with respect to the current components isxry  and isyry , 
the machine behaves as a first-order system with a time constant equal to the transient 
time constant of the machine and a gain equal to the inverse of the stator resistance. It 
should be noted, however, that an undesired coupling between the dynamic systems on 
the x and y axes exists [17,18]. This means that a variation of the voltage usxry  determines 
the desired variation of the current isxry  but also an undesired variation of the current isyry . 
The two control variables usxry  and usyry  cannot thus be considered decoupled for the control 
of the rotor flux linkage and the electromagnetic torque. The current components isxry  and 
isyry  can be controlled independently only if the coupling terms of Equation 5.32 are elimi-
nated. The coupling term in Equation 5.32a is w y

mr s syT i r� , while that one in Equation 5.32b is 
− ʹ − − ʹ( )w wy

mr s sx s s mr mrT i T Tr i .
If the delay times of the signal processing are neglected and if the system is assumed 

to work at constant rotor flux amplitude, the decoupling of the direct and quadrature axis 



214 Power Converters and AC Electrical Drives with Linear Neural Networks

systems can be achieved by adding at each sampling time of the control system the follow-
ing voltage terms udxr

y  and udyr
y  to the outputs ûsxry  and ûsyry  of the current controllers:
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The voltage components usxrefry  and usyrefry  which the control system gives to the PWM are then 
as follows:
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Figure 5.15 shows the block diagram of the decoupling circuit described by Equations 5.33.
The values of isxry  and isyry  to be adopted by the decoupling circuit are obtained by the mea-

surements of the real currents of the machine, while the values of imr and ωmr are computed 
by the flux model. Other decoupling circuits, different from that in Figure 5.18, can be derived 
having as input the stator voltages ûsxry  and ûsyry  instead of the stator currents isxry  and isyry  [18]. 
Furthermore, some decoupling circuits taking into consideration also the delay times intro-
duced by the power converter and the signal processing system have been introduced [18]. 
It is noteworthy that an undesired coupling between the x and y axis systems could be a cause 
of instability of the drive and, in any case, of a significant worsening of the dynamic perfor-
mance of the FOC. The effectiveness of the decoupling circuit is high in dependance of the 
accuracy in the knowledge of the parameters Ls and σ of the motor. These parameters can vary 
during the normal operation of the drive, because of the variations of the rotor flux-linkage 
amplitude (e.g., in a field-weakening region). The output of the control system is the value of 
the voltage that the inverter should generate. For this purpose several PWM techniques could 
be used, among which the carrier-based and the space-vector techniques (see Chapter 2 for 
more details).

Figure 5.16 shows the block diagram of a rotor flux-oriented IM drive with impressed 
voltages. The control scheme is, in this case, much more complex than that with impressed 
currents. In particular, it should be noted that current control is performed here in the 
field-oriented reference frame, and a decoupling circuit is present (see Figure 5.15). A con-
trol of both the angular speed of the drive ωm and the amplitude of its rotor flux linkage ψr 
is adopted in this scheme.

FIGURE 5.15
Block diagram of the decoupling circuit.
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On the direct axis, three controllers are present. The voltage u0, equal to the product 
between the absolute value of the machine speed ωr and the amplitude of the rotor flux 
linkage ψr, is kept constant by an integral (I) controller. The output of this controller is the 
reference value of the rotor flux-linkage amplitude ψrref. The rotor flux-linkage amplitude 
ψr is closed-loop controlled by a PI controller, whose output is the reference value of the 
direct component of the stator current in the field-oriented reference frame isxrefry . The rotor 
flux amplitude ψr is estimated by the block “flux model,” which implements any of the flux 
models previously described. The flux model computes also the angle ρr, expressing the 
angular position of the rotor flux-linkage space-vector, necessary for performing the field 
orientation by the coordinate rotations. The direct component of the stator current isxry  is 
closed-loop controlled by a PI controller, whose output is the reference value of the direct 
component of the stator voltage in the field-oriented reference frame ûsxry . For the reasons 
explained above to this last term, a voltage component udxr

y  coming from the decoupling 
circuit is added to obtain the voltage term usxrefry , that is, the reference direct component of 
the stator voltage in the field-oriented reference frame.

On the quadrature axis, two controllers are present as well. The motor speed ωm is 
closed-loop controlled to its reference ωmref by a PI controller. The output of this controller 
is the reference value of the quadrature component of the stator current in the field-oriented 
reference frame isyrefry . The quadrature component of the stator current isyry  is closed-loop con-
trolled by a PI controller, whose output is the reference value of the quadrature component 
of stator voltage in the field-oriented reference frame ûsyry . For the reasons explained above 
to this last term, a voltage component udyr

y  coming from the decoupling circuit is added to 
obtain the voltage term usyrefry , that is, the reference quadrature component of the stator volt-
age in field-oriented reference frame.

The block e j rr  performs a vector rotation from the field-oriented to the stationary refer-
ence frame on the basis of the instantaneous knowledge of the rotor flux-linkage angle ρr, 
provided by the flux model. This transformation, described by the following equations, 
permits the voltage components usxrefry  and usyrefry  to be transformed into usDref and usQref:
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Finally, the block 2/3 permits the voltage components usDref and usQref to be transformed into 
the corresponding three-phase components usAref, usBref, and usCref.

5.3.3.5  Experimental Results on a Rotor Flux-Oriented Drive with Impressed Voltages

In the following, some experimental results of a rotor flux-oriented IM drive with impressed 
voltages are presented. The rotor flux-oriented scheme in Figure 5.16 has been adopted.

Firstly, a test setup with a 2.2 kW IM has been adopted (see Table 4.1 for the parameters of 
the machine). The test is composed of the following speed step references 0 → 100 → −100 → 
0 rad/s. Correspondingly, the following step load torques have been applied: at t = 0.5 s, a step 
load torque of 6 N m has been applied; at t = 1 s, the load torque has been set to 0; at t = 2 s, a 
step load torque of −6 N m has been applied; and at t = 2.5 s, the load torque has been set to 0.

Figure 5.17 shows the reference and measured speed during this test. It can be observed 
that the measured speed property tracks its reference, with a quick response to any sud-
den application of the load torque. Figure 5.18 shows the reference and measured isx and 
isy current components. It can be observed that the direct component of the stator current 
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is controlled to a constant value, according to a constant magnetic rotor flux amplitude 
command. The quadrature component of the stator current presents a step variation at 
each speed transient or at any sudden application of the load torques, as expected. This is 
confirmed by Figure 5.19, showing the load and electromagnetic torque of the drive.

Secondly, a test setup with a 22 kW IM has been adopted (see Table 4.2 for the parameters 
of the machine). The test is composed of the following speed step references, including 
the field-weakening region: 0 → −188 → −63 → 63 → 188 → 0 rad/s. Correspondingly, the 
following step load torques have been applied: at t = 5 s, a step load torque of −60 N m has 
been applied; at t = 6 s, the load torque has been set to 0; at t = 8 s, a step load torque o 60 N 
m has been applied; and at t = 9 s, the load torque has been set to 0.

Figure 5.20 shows the reference and measured speed during this test. It can be observed 
that the measured speed property tracks its reference, with a quick response to any sudden 
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application of the load torque. Figure 5.21 shows the measured isx and isy current compo-
nents. It can be observed that the direct component of the stator current is controlled to a 
constant value, according to a constant magnetic rotor flux amplitude command, except 
when the machine works in field-weakening region where the isx is reduced. The quadra-
ture component of the stator current presents a step variation at each speed transient or at 
any sudden application of the load torque, as expected. This is confirmed by Figure 5.22, 
showing the load and electromagnetic torque of the drive.

5.3.4  Stator Flux-Oriented Control

This section describes the stator flux-linkage-oriented control of the IM. Since there are 
several similarities between rotor flux and stator flux orientation, only the significant dif-
ferences are emphasized.

Equation 5.14, rewritten in the following for the sake of simplicity, shows that the 
electromagnetic torque is proportional to the product between the stator flux-linkage 
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amplitude and the quadrature component of the stator current, expressed in the stator 
flux-oriented reference frame:

	
t p i pL ie s sy m ms sy

s s= =
3
2

3
2

y y yi 	 (5.36)

where
ψs is the stator flux-linkage space-vector
isysy  is the quadrature component of the stator current in the stator flux-oriented reference 

frame
ims is the stator magnetizing current space-vector, defined as follows:
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The apex term ψs denotes the stator flux reference frame in which all the variables are 
expressed. Figure 5.23 shows the vector diagram with the different variables.

Even in this case, if the machine is supplied by a current generator, the dynamic model 
of the system is significantly simplified. Supplying the machine with impressed currents, 
it is possible to take into consideration, in the control system, simply the rotor space-vector 
equations of the machine, without considering the stator ones.

Adopting the stator flux-oriented reference frame, the rotor space-vector equation is the 
following:
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where ωsl = ωms − ωr is the slip pulsation, equal to the difference between the stator flux-
linkage speed ωms and the rotor speed ωr.

The space-vector Equation 5.38 can be split into the direct x and quadrature y axes of the 
field reference frame, giving the following scalar equations:
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where �Tr  is the rotor transient time constant. A comparison between Equations 5.38 
and 5.16 shows that the rotor equation in the stator flux reference frame is quite more 
complicated than the corresponding one in the rotor flux reference frame. In particu-
lar, there exists a coupling between the two axes: a variation occurring on the torque 
current component isysy  will cause a transient variation on the flux component isxsy . This 
undesired coupling is to be compensated with a decoupling circuit that, differently 
from the rotor flux orientation, acts on the current components control instead of on the 
voltage references. Under the assumption that the stator flux magnitude is fed back in 
the control system, a current component idxs

y  should then be added to the output of the 
flux controller îsxsy  to provide the reference direct component of the stator current isxrefsy . 
It can be therefore written as follows:

	 i i isx sx dx
s s sy y y= +ˆ 	 (5.40)

FIGURE 5.23
Representation of the stator flux-linkage space-
vector and the stator current.
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The idxs
y  term can be easily computed after substituting Equation 5.40 in Equation 5.39a, 

obtaining the following equation:

	
i

T
sT

idx sl
r

r
sy

s sy yw= ʹ
+ ʹ1

	 (5.41)

where s is the Laplace variable. Equation 5.41 requires the knowledge of the slip pulsation 
ωsl, that can be obtained from Equation 5.39b as follows:
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Equation 5.41, together with Equation 5.42, defines the decoupling circuit to be adopted 
in a stator flux-oriented control with impressed currents. Figure 5.24 shows the block dia-
gram of a stator flux-oriented IM drive with impressed currents. It is basically the same 
scheme of Figure 5.17, with few differences. The main difference is that, being the orien-
tation on the stator flux vector, all vector rotations need the knowledge of the stator flux 
space-vector angle ρs instead of the rotor one. This angle is provided by the flux model, 
estimating, in this case, both the amplitude and the angular position of the stator flux 
space-vector. Moreover, the output of the PI flux controller îsxsy  is added to the decoupling 
term idxs

y , defined as in Equation 5.41.
If the machine is supplied by a voltage generator, also the stator equations of the IM 

should be considered. If the stator equation (4.48) in Chapter 4 (written in the general ref-
erence frame) is expressed in the stator flux-linkage reference frame, the following space-
vector equations can be obtained:

	
u i

i
is s s m
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ms m ms

s sR L
d
dt

j Ly y w= + + 	 (5.43)

obtained by rewriting the rotor vector as a function of the stator current and the stator 
magnetizing space-vectors. It can easily be observed that Equation 5.43 is much simpler 
than the corresponding Equation 5.31, written in the rotor flux reference frame. Equation 
5.43 does not contain the derivative of the stator current, differently from Equation 5.31. 
If the stator magnetizing current amplitude is kept constant, Equation 5.43 is significantly 
simplified; decomposing it into the direct and quadrature axes, the following two scalar 
equations are obtained:
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Equations 5.44a and 5.44b are much simpler than Equations 5.32a and 5.32b written in the 
rotor flux reference frame. Like in the rotor flux orientation counterpart, usxsy  and usysy  cannot 
be considered as decoupled variables for the control of the stator flux and electromag-
netic torque. As a matter of fact, some coupling terms appear, which are, however, much 
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simpler than the corresponding counterparts in the rotor flux-linkage orientation scheme. 
The decoupling voltage terms that must be added at the output of the current controllers 
are the following:
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0
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A simple decoupling circuit can therefore be used, having at input just the amplitude of 
the stator magnetizing current space-vector |ims|, or in the same manner the stator flux 
amplitude, and its rotational speed ωms. Both of these terms are provided by the flux model. 
Figure 5.25 shows the block diagram of a stator flux-oriented IM drive with impressed 
voltages. It can be observed that some decoupling terms at the output of the flux controller 
(Equation 5.45) and at the output of the quadrature axis current controller (Equation 5.41) 
are present, as expected on the basis of the earlier considerations. Besides the different 
decoupling terms, the control scheme is basically the same as the one obtained with the 
rotor flux orientation, with the main difference that all vector rotations are based on the 
knowledge of the stator flux-linkage angle ρs.

5.3.4.1  Stator Flux-Linkage Acquisition

Like rotor flux orientation, the stator flux linkage is hardly measured by proper sensors. It 
is usually estimated by the so-called flux models. Even in this case, there are several pos-
sible solutions. The main solutions are the so-called voltage and current models. The first 
is based on the stator equations, while the second on the rotor equations of the IM.

With regard to the voltage model, after processing Equation 4.48, expressing the rotor 
current space-vector as a function of the stator current and the stator magnetizing current 
space-vectors, the following space-vector equation can be obtained based on the stator 
equations of the machine, written in the stationary reference frame:
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The space-vector equation (5.46) can be decomposed into the direct and quadrature com-
ponents in the stationary reference frame:
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Figure 5.26 shows the block diagram of the voltage model, representing Equations 5.47a 
and 5.47b. Advantages and disadvantages of such model are the same of those summa-
rized in Section 5.3.3.1.

Another model can be deduced, which is based on the stator equations of the machine, 
but written in the stator flux-linkage reference frame. Figure 5.27 shows the block diagram 
of this flux model. In this case, the stator voltage components in stator reference frame 
are subtracted of the ohmic drops, obtaining the terms dψsD/dt and dψsQ/dt. These two 
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terms are then transformed in the stator flux reference frame by means of the vector rota-
tion e j s− r . The resulting direct component is further integrated to obtain the amplitude of 
the stator flux space-vector. The resulting quadrature component, equal to u R isy s sy

s sy y− , is 
further divided by |ψs| to obtain the angular speed of the stator flux vector ωms. Its inte-
gration provides the angular position of the stator flux vector ρs. The main advantage of 
this scheme is the closed-loop integration of the stator flux with consequent absence of 
the problems of DC drift and open-loop integration. This is obviously paid back with an 
increase of the complexity and the computational demand of such a model.

5.3.5  Magnetizing Flux-Oriented Control

This section describes the magnetizing flux-linkage-oriented control of the IM [18]. Since 
there are several similarities between rotor flux and magnetizing flux orientation, only the 
significant differences are emphasized.
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Equation 5.15, rewritten in the following for the sake of simplicity, shows that the elec-
tromagnetic torque is proportional to the product between the magnetizing flux-linkage 
amplitude and the quadrature component of the stator current, expressed in the magnetiz-
ing flux-oriented reference frame:

	
t p i pL ie m sy m mm sy

m m= =
3
2

3
2

y y yi 	 (5.48)

where
ψm is the magnetizing flux-linkage space-vector
isymy  is the quadrature component of the stator current in the magnetizing flux-oriented 

reference frame
imm is the magnetizing current space-vector, defined as follows:
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The apex term ψm denotes the magnetizing flux reference frame in which all the variables 
are expressed. Figure 5.28 shows the vector diagram with the different variables.

If the machine is supplied by a current generator, the dynamic model of the system is 
significantly simplified. Supplying the machine with impressed currents, it is possible to 
take into consideration, in the control system, simply the rotor space-vector equations of 
the machine, without considering the stator ones.

Adopting the magnetizing flux-oriented reference frame, the rotor space-vector equation 
is the following:
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where
ωmm is rotational speed of the magnetizing space-vector
Lrσ is the rotor leakage inductance

FIGURE 5.28
Representation of the magnetizing flux-linkage 
space-vector and the stator current.
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The space-vector equation (5.50) can be split on the direct x and quadrature y axes of the 
field reference frame, giving the following scalar equations:
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where
Trσ = Lrσ/Rr is the rotor leakage time constant
ωsl = ωmm − ωr is the slip speed, equal to the difference between the magnetizing flux 

space-vector and the rotor speed

Equations 5.51a and 5.51b shows that there is an undesired coupling between the two 
equations: as a consequence, |imm| will be modified by any change of the torque current 
component isymy . This undesired coupling is to be compensated with a decoupling circuit 
that acts on the current components. Under the assumption that the magnetizing flux 
magnitude is fed back in the control system, a current component idxm

y  should thus be 
added to the output of the flux controller îsxmy  to provide the reference direct component of 
the stator current isxrefmy . It can be thus written as follows:

	 i i isx sx dx
m m my y y= +ˆ 	 (5.52)

The idxm
y  term can be easily computed after substituting Equation 5.52 in Equation 5.51a, 

obtaining the following:
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The correct decoupling term to be added is thus as follows:
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where s is the Laplace variable. Equation 5.54 requires the knowledge of the slip pulsation 
ωsl, that can be obtained from Equation 5.51b as follows:
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Equation 5.54, together with Equation 5.55, defines the decoupling circuit to be adopted in 
a magnetizing flux-oriented control with impressed currents. Figure 5.29 shows the block 
diagram of a magnetizing flux-oriented IM drive with impressed currents. It is basically 
the same scheme of Figure 5.17, with few differences. The main difference is that, being the 
orientation on the magnetizing flux vector, all vector rotation needs the knowledge of 
the magnetizing flux space-vector angle ρm instead of the rotor one. This angle is provided 
by the flux model, estimating, in this case, both the amplitude and the angular position 
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of the magnetizing flux space-vector. Moreover, the output of the PI flux controller îsxmy  is 
added the decoupling term idxm

y , defined as in Equation 5.54.
If the machine is supplied by a voltage generator, also the stator equations of the IM 

should be considered. If the stator equation (4.48) in Chapter 4 (written in the general refer-
ence frame) is particularized in the magnetizing flux-linkage reference frame, the following 
space-vector equations can be obtained:
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where Lsσ = Ls − Lm is the stator leakage inductance. This last equation is obtained by rewrit-
ing the rotor vector as a function of the stator and magnetizing current space-vectors. 
Comparing Equation 5.56 with Equation 5.43, it is noteworthy that the stator equation 
written in the magnetizing flux reference frame is much more complicated than the one 
written in the stator flux one. As a matter of fact, Equation 5.56 contains the derivative of 
the stator current space-vector and a separate stator leakage voltage drop, whereas the cor-
responding equation in the stator flux reference frame does not.

After decomposing Equation 5.56 into the direct and quadrature axes, the following sca-
lar equations are obtained:
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where Tsσ = Lsσ/Rs is the stator leakage time constant. Like in the rotor flux orientation 
counterpart, usxmy  and usymy  cannot be considered as decoupled variables for the control of 
the magnetizing flux and electromagnetic torque. As a matter of fact, some undesired 
coupling terms appear. The decoupling voltage terms that must be added at the output of 
the current controllers are the following, under the assumption that the magnetizing flux 
amplitude is kept constant by the controller:
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These equations are very similar to Equations 5.33a and 5.33b, written for the rotor flux-
linkage orientation, and the corresponding block diagram describing the decoupling cir-
cuit is sketched in Figure 5.30. This decoupling circuit has as input the amplitude of the 
magnetizing current space-vector |imm| and its rotational speed ωmm as well as the direct 
and quadrature components of the stator current isxmy  and isymy . Both of these terms are pro-
vided by the flux model. Figure 5.31 shows the block diagram of a stator flux-oriented IM 
drive with impressed voltages. It can be observed that some decoupling terms at the out-
put of the flux controller (Equation 5.54) and at the output of the quadrature axis current 
controller (Equation 5.58) are present, as expected on the basis of the earlier considerations. 
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Besides the different decoupling terms, the control scheme is basically the same as the one 
obtained with the rotor flux orientation, with the main difference that all vector rotations 
are based on the knowledge of the magnetizing flux-linkage angle ρm.

5.4  DTC of IM

DTC has been developed around mid-80′s [9–13,18]. The ABB company has been, however, 
the first and unique company which, in 1995, introduced in the marked an electrical drive 
based on a DTC.

By means of the DTC, it is possible, like the FOC, to control instantaneously and in a 
decoupled way the magnetic flux of the machine and its electromagnetic torque. The con-
trol actions, in this case, aim to track the references of magnetic flux and electromagnetic 
torque, by means of the application of suitable values of stator voltages of the machine. 
On this basis, DTC can be implemented by adopting a simple VSI and does not require 
the adoption either of hysteresis comparators for current control (typical of FOC with 
impressed currents) or of PWMs (typical of FOC with impressed voltages). This is the rea-
son for the significant simplification of the control system, with the corresponding advan-
tages in terms of cost reduction and increase of the system reliability.

In DTC electrical drives with IM supplied by VSIs, it is possible to directly control the 
stator (or rotor or even magnetizing) flux linkage and the electromagnetic torque by the 
selection of optimal switching configurations of the inverter. The selection of such switch-
ing configurations is made so as to maintain instantaneously the loci of the stator flux link-
age and electromagnetic torque inside hysteresis bands centered on the relative reference 
values. This kind of control results in high dynamic performance in the torque response, 
low switching frequency of the inverter, and low losses due to the harmonics.

5.4.1  Electromagnetic Torque Generation in the IM

The electromagnetic torque developed by an IM can be expressed as a function of the sta-
tor and rotor flux-linkage space-vectors as follows [18]:
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See the list of symbols for their interpretation. Equation 5.59 shows that the electro-
magnetic torque depends on the product between the amplitudes of the stator and 

FIGURE 5.30
Block diagram of the decoupling circuit.
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rotor flux linkages as well as on the sin of their angular displacement γ (cross-product 
between the space-vector flux linkages).

Figure 5.32 shows the reciprocal position of both the stator and rotor flux linkages as 
well as their position with respect to the stationary reference frame.

After expressing the stator and rotor flux-linkage space-vectors in the rotor reference 
frame, the following relationship between the same space-vectors can be found:
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m s
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where s is the Laplace variable. Equation 5.60 clearly shows that the rotor flux linkage 
adapts itself to the variation of the stator flux linkage by means of a dynamic relation-
ship typical of first-order systems. The rotor flux linkage, therefore, changes more slowly 
than the stator one.

The analysis of Equations 5.59 and 5.60 clearly shows that it is possible to make the 
machine generate an electromagnetic torque by modifying the instantaneous angular 
position of the stator flux-linkage space-vector. As a matter of fact, the modification of 
the angular position of the stator flux linkage creates an instantaneous variation of the 
electromagnetic torque. This variation is limited by the fact that the rotor flux-linkage 
space-vector tends to adapt itself to the variations of the stator flux-linkage space-vector, 
with a delay governed by the dynamic relationship (type low-pass) described by Equation 
5.60. The angle γ between the two space-vectors tends to become zero in time. If the stator 
flux-linkage space-vector is therefore accelerated along the positive direction (direction of 
motion of the rotor) to amplify the value of dρs/dt and if, at the same time, the amplitude 
of the stator flux-linkage space-vector is kept constant, it is possible to achieve the fastest 
torque response of the machine. On the contrary, if the stator flux-linkage space-vector is 
accelerated along the negative direction, an electromagnetic torque of opposite sign is then 
generated, which is able to brake the machine.

5.4.2 � Relationship between the Stator Flux-Linkage Space-Vector 
and the Inverter Configurations

If the stator equation of the IM in the stationary reference frame is considered and the 
ohmic drop on the stator resistance is neglected, then the following equation is obtained:
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FIGURE 5.32
Reciprocal position of the stator and rotor flux linkages.
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Since the voltage space-vector us is applied for a finite time interval Δt, then Equation 5.61 
can be rewritten in the following way:

	 Δ Δy s su= t 	 (5.62)

Equation 5.62 shows that, neglecting the ohmic drops on the stator resistance and con-
sidering sufficiently small time intervals, the space-vector of the variation of the stator 
flux linkage Δψs has the same direction and the same orientation as the stator voltage 
space-vector.

If the stator voltage space-vector is expressed as a function of the logic command signals 
to the upper devices of the three legs of the inverter, it is possible to obtain the relationship 
between the space-vector of the variation of the stator flux linkage and the inverter state 
configurations:

	
Δ Δy s = + +

2
3

2U S aS a S td a b c[ ] 	 (5.63)

where
Sa, Sb, and Sc are the logic command signals to the upper devices of the three legs of the 

inverter
Ud is the DC link voltage

On this basis, the expression linking the space-vector at the time instant t + Δt to that at the 
time instant t and to the inverter state configurations is as follows:
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The stator flux-linkage space-vector can be therefore maintained in its position (neglecting 
the ohmic drop on the stator resistance that tends to reduce the flux) by applying a null 
voltage vector; alternatively, it can be driven in one of the six directions corresponding to 
the six nonnull stator voltage space-vectors that can be generated by the inverter.

The application of any nonnull stator voltage space-vector modifies, in general, both 
the amplitude and the initial angular position of the stator flux-linkage space-vector. In 
details, to modify the amplitude of the stator flux-linkage vector, it is necessary to apply 
stator voltage vectors with adequate radial components (with respect to the direction of 
the stator flux-linkage space-vector), while to modify its angular position, it is necessary 
to apply voltage vectors with adequate tangential components. A proper selection of the 
most suitable voltage space-vector permits modifying both the amplitude and the angular 
position of the stator flux vector in the desired way. The decoupled control of the magnetic 
flux and the electromagnetic torque is achieved by separately acting on the radial and tan-
gential components of the stator flux-linkage space-vector.

Since both the amplitude and the angular position of the stator flux vector are directly 
linked to the supply voltage and the stator current (once the stator resistance value is 
known), in classic DTC, the stator flux-linkage vector is chosen as the controlled variable. 
In this way, a low sensitivity of the control action versus the parameter variations of the 
machine is achieved. It is, however, possible to perform the control of either the rotor or 
the magnetization flux vector. It can be demonstrated that, by controlling the rotor flux-
linkage space-vector, a higher torque overloading of the drive can result even if at the 
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expenses of a higher sensitivity to the machine parameter variation [34]. The control of 
the magnetizing flux-linkage vector, which offers intermediate characteristics in terms of 
torque overloading and parameter mismatch sensitivity with respect to stator or rotor flux 
vector controls, is usually adopted when a direct measurement of the air-gap magnetic 
flux is made by means of Hall effect sensors.

5.4.3  Criteria for the Selection of the Voltage Space-Vectors and Control Strategies

The control of the stator flux amplitude and the electromagnetic torque, performed on 
the basis of the criteria described in Section 5.4.2, is not intrinsically decoupled since the 
application of any nonnull voltage vector modifies at the same time both the amplitude 
and angular position of the stator flux vector itself. The suitable selection, at each sampling 
time of the control system, of a voltage vector able to minimize the tracking errors on 
both the flux amplitude and the electromagnetic torque, permits implementing de facto 
a decoupled control of the two variables. The voltage vector to be applied depends on the 
instantaneous angular position of the stator flux-linkage space-vector.

For determining the control strategy, it is necessary to ideally divide the complex 
plane on which the voltage space-vectors lie into sectors of amplitude π/3, each cen-
tered on one of the nonnull voltage space-vectors. If, in a generic instant, the stator 
flux vector lies inside a generic sector k (k = 1, 2,…, 6), the applicable voltage vectors 
produce the following effects [34]:

•	 The voltage space-vector uk increases the amplitude of the stator flux linkage and 
maintains almost unchanged the angular position (radial positive configuration).

•	 The voltage space-vector uk+1 increases the amplitude of the stator flux linkage and 
rotates it in the counterclockwise direction (direct positive configuration).

•	 The voltage space-vector uk+2 reduces the amplitude of the stator flux linkage and 
rotates it in the counterclockwise direction (direct negative configuration).

•	 The voltage space-vector uk+3 reduces the amplitude of the stator flux linkage and 
maintains almost unchanged the angular position (radial negative configuration).

•	 The voltage space-vector uk−1 increases the amplitude of the stator flux linkage and 
rotates it in the clockwise direction (inverse positive configuration).

•	 The voltage space-vector uk−2 reduces the amplitude of the stator flux linkage and 
rotates it in the clockwise direction (inverse negative configuration).

•	 The voltage space-vectors u0 and u7 maintain almost unchanged the amplitude 
and the angular position of the stator flux linkage.

On this basis, given the reference values of the stator flux amplitude and electromagnetic 
torque, four cases can be encountered:

	 1.	The electromagnetic torque should be increased, and the flux should be increased: a voltage 
vector with positive tangential component and positive radial component should 
be chosen.

	 2.	The electromagnetic torque should be increased, and the flux should be reduced: a voltage 
vector with positive tangential component and negative radial component should 
be chosen.
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	 3.	The electromagnetic torque should be reduced, and the flux should be increased: a voltage 
vector with negative or null tangential component and positive radial component 
should be chosen.

	 4.	The electromagnetic torque should be reduced, and the flux should be reduced: a voltage 
vector with negative or null tangential component and negative radial component 
should be chosen.

In case the torque should be increased, the configuration to be applied is always the one 
corresponding to a voltage vector with positive tangential and nonnull radial compo-
nents. On the contrary, in case the torque should be reduced, the choice is not unique 
since, if the rotational speed of the machine is nonnull, a reduction of the angular dis-
placement between the stator and rotor flux-linkage space-vectors can be obtained by 
applying either the configurations with null voltage space-vectors or those implementing 
inverse configurations. Several strategies for the control of the electromagnetic torque and 
flux can be devised. With reference to a stator flux vector lying in the sector k at a certain 
time instant, Table 5.1 synthesizes the most usual strategies for the control of the torque 
and stator flux [34].

Figure 5.33 shows the voltage space-vectors to be applied, in the four possible cases, 
when the stator flux space-vector lies in each of the six quadrants, under the hypothesis to 
adopt the control strategy called D in Table 5.1.

Different characteristics of the drive can be achieved in terms of torque and flux ripple, 
switching frequency, harmonic content of the stator currents, DC link current, behavior 
in regenerative phase, behavior at low speed and dynamic performance according to the 
choice of the strategy. In particular, the following could be observed:

•	 Strategy A utilizes the direct configurations for the increase of the torque and null 
configurations for the reduction of the torque. When a reduction of the torque is 
to be obtained, the application of the null voltage vector blocks the position of 
the stator flux linkage. The braking action varies with the rotational speed of the 
motor and is less efficient at lower rotating speed. This strategy presents a good 
behavior at high speed and is characterized by switching frequencies lower than 
other possible strategies.

•	 Strategy B utilizes the radial positive configurations, instead of the null ones, 
for the reduction of the electromagnetic torque. In this way, the flux reduction 
of the machine at low speed can be avoided. The switching frequency is higher 
than that achievable with strategy A, and the locus of the stator flux space-vector 
is in general more irregular, because of the adoption of the radial positive com-
ponents. Torque control does not present significant differences with respect to 
strategy A.

TABLE 5.1

Possible Control Strategies for DTC

te ⇑ |ψs| ⇑ te ⇑ |ψs| ⇓ te ⇓ |ψs| ⇑ te ⇓ |ψs| ⇓

Strategy A uk+1 uk+2 u0, u7 u0, u7

Strategy B uk+1 uk+2 uk u0, u7

Strategy C uk+1 uk+2 uk uk+3

Strategy D uk+1 uk+2 uk−1 uk−2
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•	 Strategy C does not adopt null configurations. Torque reduction is obtained apply-
ing only radial configurations (positive or negative), which block the stator flux 
space-vector. The adoption of only radial configurations influences significantly 
the shape of the stator flux vector locus that must be strongly corrected to lie inside 
the hysteresis band. This is a cause of an increase of the switching frequency.

•	 Strategy D adopts the direct configurations to increase the electromagnetic torque 
and only the inverse configurations to reduce them. Adopting such strategy, the 
reduction of the electromagnetic torque is performed by a rotation of the stator 
flux vector in an opposite direction with respect to the rotation of the machine. In 
this way, it is possible to achieve fast torque reduction even at low speed. On the 
contrary, this strategy causes a significant increase of the switching frequency.

By a proper selection of the voltage vectors to be generated, DTC permits the stator flux and 
torque references to be tracked with the bang-bang type technique which is very similar to 
a sliding-mode control [38]. In order to properly limit the switching frequency, hysteresis 
bands centered on the reference values of the stator flux and torque are usually adopted.

Figure 5.34 shows how the stator flux vector modifies, in each quadrant, because of 
the application of the suitable voltage space-vectors (strategy D), while always keeping 
inside the hysteresis band 2ΔBψs centered on the reference flux ψsref. The underlying 
assumption is that the control system always requires an increase of the electromag-
netic torque.
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If the control system is made analogically, in the absence of hysteresis, the switching 
frequency can take very high values (up to tens of kilohertz). If the control system is made 
digitally, on the contrary, the maximum switching frequency coincides with the sampling 
frequency of the control system. If a hysteresis control is adopted, however, there is a direct 
correspondence between the hysteresis bands and the switching frequency. The frequency 
of the commutation driven by the flux and torque control system is inversely proportional 
to the amplitudes of the corresponding hysteresis bands (2ΔBte, 2ΔBψs).

5.4.4  Estimation of the Stator Flux and Electromagnetic Torque

In DTC, to properly track the stator flux and electromagnetic torque references, it is nec-
essary to know the instantaneous values of these variables. The direct measurement of 
such variables by means of suitable sensors (e.g., Hall effect sensors for the magnetic flux 
and torquemeters for the electromagnetic torque) is very rarely accepted at an industrial 
level, not matching the requirements in terms of economizing, simplicity of construction, 
and reliability.

It is therefore more common to estimate such variables by the so-called flux and torque 
models. They are mathematical models based on the differential equations of the machine, 
permitting the estimation of the magnetic flux and the electromagnetic torque on the basis 
of the measurements of some electrical (stator voltages and/or currents) or mechanical 
(angular speed) variables.

In DTC, the amplitude of the stator flux linkage is usually obtained by the so-called volt-
age model based on the integration of the stator voltages, taking into account the ohmic 
drop on the stator resistance.

From Equation 4.24, stator flux-linkage space-vector can be obtained from the measure-
ments of the stator voltages and currents as follows:

	
y s s su i= −∫ ( )R dts 	 (5.65)
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After decomposing the vector equation (5.65) into its real sD and quadrature sQ compo-
nents in the stationary reference frame, the following scalar equations can be obtained:
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For a correct interpretation of the symbols, see the list. The direct and quadrature compo-
nents of the stator voltages and currents can be obtained from the three-phase values by 
means of the following transformations:
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The electromagnetic torque can be computed from the estimated values of the stator flux-
linkage components and from the stator currents, by means of the following relationship:
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Figure 5.35 shows the block diagram of the flux and torque model described by Equations 
5.66 and 5.69. In this figure, s represents the Laplace variable.

The flux model sketched in Figure 5.35 presents, besides a significant simplicity, a weak 
robustness to the parameter variations of the machine, especially at low speed. As a matter 
of fact, the value of the stator resistance is not properly known at each time instant since it is 
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variable with the temperature of the stator winding. When the machine works at high speed, 
the ohmic drop is negligible with respect to the supply voltage and an error in the knowledge 
of Rs does not significantly affect the stator flux estimation. At low speed, on the contrary, 
the ohmic drop on the stator resistance is comparable with the supply voltage, and so an 
error in the knowledge of Rs influences strongly the estimation of both the stator flux and the 
torque. The sensitivity analysis of such a flux model versus the variations of the Rs is shown 
in Chapter 9. The scheme in Figure 5.35 can be modified by adopting a low-pass filter in place 
of pure integrators. The blocks with transfer function equal to 1/s in Figure 5.35 would then 
be substituted with blocks having transfer function equal to T/(1 + sT), where T is a properly 
chosen time constant. This solution permits partially solving the problems of DC drift and 
initial conditions of the integrator (detailed analysis and solutions in Chapter 6).

The flux model in Figure 5.35 requires the adoption of voltage sensors for the measure-
ment of the stator voltage, which is not typically accepted at an industrial level. It is, how-
ever, possible to modify such a scheme by, computing the stator voltage on the basis of the 
measurement of the DC link voltage Ud and of the knowledge of the working configuration 
of the inverter, represented by the logic command signals Sa, Sb, and Sc.

Equations 5.70a through 5.70c permit the stator voltages to be computed on the basis of 
the switching configuration of the inverter:
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It is noteworthy that a scheme where the phase voltages are computed on the basis of the 
measurement of the DC link voltage and the knowledge of the logic command signals to 
the upper devices of the inverter legs is sensitive to the following:

•	 Errors on the estimation of the voltage, due to the protection time to be considered 
(the effect is more significant at low speed)

•	 The voltage drops on the power devices of the inverter
•	 Fluctuations of the DC link voltage Ud

•	 Stator resistance variations (this variation can identically occur in case of direct 
measurement of the phase voltages)

On the contrary, the adoption of such a solutin requires only one voltage sensor, instead 
of two as in the case of direct measurement of the stator voltage, with lower bandwidth 
since the DC link voltage presents slight variations because of the presence of the capaci-
tors. The phase voltages are characterized by a very high dynamics and so require more 
sophisticated and expensive sensors. This solution is globally cheaper than that with the 
direct measurement of the stator voltages.

While, in FOC, the knowledge of the instantaneous angular position of the rotor flux-
linkage space-vector ρr is required, in DTC, the knowledge of the instantaneous angular 
position of the stator flux-linkage space-vector ρs is needed. The knowledge of ρs is nec-
essary to recognize in which quadrant the stator flux-linkage vector instantaneously 
lies, in order to choose the optimal command pattern to drive the inverter devices.
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The value of ρs can be computed on the basis of the knowledge of the direct and quadra-
ture components of the stator flux space-vectors ψsD and ψsQ as follows:
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As a matter of fact, classic DTC does not require an accurate knowledge of the angular 
position of the stator flux space-vector, because it is sufficient to find of the quadrant in 
which this vector lies. It is then possible to characterize the sector in which the stator flux 
vector lies on the basis of the sign of the components ψsD and ψsQ. This permits avoiding 
the use of transcendent functions as the tan−1. As far as only the signs of ψsD and ψsQ are 
considered, it is not possible to discriminate between sectors n° 1 and n° 6, between n° 1 and 
n° 2, between n° 3 and n° 4, and finally between n° 4 and n° 5. To distinguish, for example, 
if the stator flux vector lies in the sector n° 1 or n° 2, it must be checked if ρs is higher or 
lower than π/6 rad; if ρs > π/6 rad, then the stator flux vector lies in sector n° 2, otherwise 
in sector n° 1. Practically, after defining ʹ =ψ ψ π ψsQ sD sQtan /6 ,( )  is compared with ʹψ sQ ; if 
ψ ψsQ sQ> ʹ , then the stator flux vector lies in sector n° 2, if ψ ψsQ sQ< ʹ  in sector n° 1.

In the same way, the indetermination problem in the other sectors is solved. Figure 5.36 
shows the flow chart of the algorithm for the sector determination.

5.4.5  DTC Scheme

Figure 5.37 shows the block diagram of DTC IM drive. In this case, the closed-loop control 
of the machine speed ωm and the stator flux ψs is performed. The machine measured speed 
ωm is compared with its reference ωmref, and the tracking error is processed by the PI con-
troller. The output of the speed controller is the torque reference teref which is compared 
with the estimated torque te, computed by the flux and torque model, being the tracking 
error processed by a hysteresis comparator, whose output is one of the inputs of the block 
“inverter optimal switching table.”

The stator flux reference ψsref is compared with the estimated one ψs, computed also in 
this case with the flux and torque model, and the tracking error is processed by a hysteresis 
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FIGURE 5.36
Flow chart of the algorithm for the sector determination.
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comparator, whose output is the other input of the block “inverter optimal switching table.” 
The flux and torque model is represented in Figure 5.35. In this scheme, the phase voltages 
have been reconstructed by the knowledge of the DC link voltage Ud and the switching 
patterns of the inverter Sa, Sb, and Sc. The block “inverter optimal switching table” chooses, 
at each sampling time of the control system, the optimal configuration of the inverter on 
the basis of the angular position of the stator flux-linkage space-vector. The algorithm 
adopted for the quadrant identification is shown in Figure 5.36. The control strategy is 
usually the D, as defined in Table 5.1, since it permits the best dynamic response.

5.4.6  DTC EMC

Recently, [35] a new switching-table DTC strategy has been devised, called DTC EMC (electro-
magnetically compatible), with the aim to reduce the common-mode emissions of the drive. In 
general, the inherent fast switching frequency of both PWM fed and DTC drives has, among 
other detrimental effects, the drawback of generating high-level common-mode voltage varia-
tions with resulting high-frequency common-mode currents flowing to the ground through 
the parasitic capacitances between the different parts of the drive and the ground, thus causing 
the drive itself to be less reliable; for example, the ball bearings can deteriorate, unexpected 
fault relay tripping can occur, or nearby electronic equipments can be disturbed.

DTC EMC reduces the common-mode emissions of the drive by alternatively using only 
even or only odd voltage vectors in each of the six sectors of the inverter hexagon, without 
using any null vector. This approach permits the common-mode emissions to be reduced in 
comparison with the classic DTC algorithm, at the expense of a slight increase of the torque 
and flux ripples as well as in the harmonic content of the voltage and current waveforms.

5.4.6.1  Common-Mode Voltage

In a star-connected three-phase electric machine, the common-mode voltage ucom is given 
by the following:

	
u

u u u
com

sA sB sC=
+ +0 0 0

3
	 (5.72)

where usA0, usB0, and usC0 are the inverter output phase voltages referred to the medium 
point of the DC link bus, which in this case is assumed to be connected to ground. The 
lack of this connection to ground results in an additional voltage term. If the machine is 
supplied with a symmetric sinusoidal three-phase voltage, ucom is instantaneously equal to 
zero. However, when the machine is supplied with an inverter, the common-mode voltage 
is always different from zero, and its instantaneous value can be computed on the basis 
of the DC link voltage (Ud) and the switching pattern of the inverter, as shown in Table 5.2 
(ui stands for the ith stator voltage space-vector).

5.4.6.2  Switching Strategy

Table 5.2 shows that, if only even or only odd active voltage vectors are used (uk, with k, 
respectively, even or odd), no common-mode voltage variation is generated. If a transi-
tion from an even voltage vector to an odd one (or vice versa) occurs, a common-mode 
variation of amplitude Ud/3 is generated. If a transition from an odd (even) voltage vec-
tor to the zero (seventh) voltage vector occurs, a common-mode variation of amplitude 
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Ud/3 is generated. Finally, if a transition from an odd (even) voltage vector to the seventh 
(zero) voltage vector occurs, a common-mode variation of amplitude 2Ud/3 is generated. 
Thus, from the point of view of common-mode emissions, the worst case is the transition 
from an odd (even) voltage vector to the seventh (zero) voltage vector. For this reason, 
whatever inverter control technique is devised to minimize the common-mode emis-
sions of the drive, the exploitation of both null voltage vectors (zero and seventh) should 
be avoided. If a DTC technique is used, this consideration is helpful also from the control 
point of view.

DTC EMC has been devised on the basis of the earlier considerations, and its basic idea 
is shown in the flow chart of Figure 5.38. When the stator flux space-vector lies in the kth 

TABLE 5.2

Inverter States and Common Voltages

State usA0 usB0 usC0 ucom

u0 (0, 0, 0) −Ud/2 −Ud/2 −Ud/2 −Ud/2
u1 (1, 0, 0) Ud/2 −Ud/2 −Ud/2 −Ud/6
u2 (1, 1, 0) Ud/2 Ud/2 −Ud/2 Ud/6
u3 (0, 1, 0) −Ud/2 Ud/2 −Ud/2 −Ud/6
u4 (0, 1, 1) −Ud/2 Ud/2 Ud/2 Ud/6
u5 (0, 0, 1) −Ud/2 −Ud/2 Ud/2 −Ud/6
u6 (1, 0, 1) Ud/2 −Ud/2 Ud/2 Ud/6
u7 (1, 1, 1) Ud/2 Ud/2 Ud/2 Ud/2

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Appl., 
42(2), 504, 2006.

Output of
the flux controller

Output of
the torque
controller

Select
vector uk

Select
vector uk–2

Select
vector uk+2

High

High

Low

Low

Ψs lies in
the kth sector

FIGURE 5.38
Flow chart of the DTC EMC algorithm. 
(From Cirrincione, M. et al., IEEE Trans. Ind. 
Appl., 42(2), 504, 2006.)
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sector, if an increase in the flux is required, then the kth voltage vector is applied; other-
wise, if an increase (decrease) in the torque is required, then the (k + 2)th (respectively, the 
(k − 2)th) voltage vector is applied.

Actually, when the stator flux linkage lies in the kth sector, the application of the kth voltage 
vector produces an increase in the flux amplitude and a slight decrease of the electromagnetic 
torque, the application of the (k + 2)th voltage vector produces a slight decrease in the flux 
amplitude and an increase in the electromagnetic torque, while the application of the (k − 2)th 
voltage vector produces a slight decrease in the flux amplitude and a decrease in the electro-
magnetic torque. As an example, Figure 5.39 shows that when the stator flux vector ψs(t) lies 
in the first sector and one of the voltage vectors u1, u3, and u5 is applied, the flux vector result-
ing after a sampling time of the control system Tsp becomes, respectively, y s spt T1( ),+  y s spt T3( ),+  
or y s spt T5( )+ . In particular, the application of u1 causes a strong increase of the flux ampli-
tude and a slight decrease of the torque, the application of u3 causes a slight decrease of the 
flux amplitude and a strong increase of the torque, and, finally, the application of u5 causes a 
strong decrease of the flux amplitude and a strong decrease of the torque. With such a control 
law, flux control should be performed before torque control (see Figure 5.38); otherwise, the 
machine cannot be magnetized at zero speed without load torque (zero speed operation), or 
at steady-state gets demagnetized rapidly after a series of torque commands. Moreover, it is 
apparent that a reduction of the flux always results in torque variation.

This means that when the flux lies in the odd (even) sector, only odd (even) voltage vec-
tors are employed, as summarized in Figure 5.40 where all the possible configurations as 
obtained both with the classic DTC and with the DTC EMC are shown.

In the end, it is clear that, as long as the stator flux linkage lies in one sector, no common-
mode voltage variation occurs. Each commutation of the common-mode voltage appears 
only when the stator flux linkage goes from one sector to the adjacent one. Moreover, at each 
sector crossing, the common-mode voltage variation is the minimum achievable, equal in 
magnitude to Ud/3. Thus, in steady-state, theoretically only six variations of the common-
mode voltage of amplitude Ud/3 appear in each period of the fundamental of the voltage 
waveform. It should be noted, however, that in a real-world application of this control strat-
egy, some undesirable further commutations of the common-mode voltage, with consequent 
spikes of the common-mode current, can occur during each sector crossing. It can happen 
that if a torque decrease or even simply a flux increase is commanded by the control system 
when the stator flux vector lies at the beginning of a sector, the stator flux itself goes back in 
the antecedent sector. In this case, instead of a simple commutation of the common-mode 
voltage, at least three commutations occur with consequent common-mode current spikes, 
as it will be shown both in the simulation and experimental results.

FIGURE 5.39
Effect of the application of the vectors u1, u3, and 
u5 in the first sector. (From Cirrincione, M. et al., 
IEEE Trans. Ind. Appl., 42(2), 504, 2006.)
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However, the benefits of a significant reduction of the common-mode emissions of the 
drive are paid back with a poorer exploitation of the DC link capability of the inverter 
(no zero voltages are employed), with higher ripples both in the flux and torque wave-
forms and finally with higher harmonic contents of the stator voltages and currents. 
The resulting increase of the stator flux and torque ripples can be easily deduced also 
from Figure 5.41 which shows the locus of the stator flux vector during a positive torque 
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FIGURE 5.40
Map of the voltage vectors with DTC EMC and classic DTC. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 
42(2), 504, 2006.)
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Locus of the stator flux vector during a positive torque command with classic DTC (a) and DTC EMC (b). (From 
Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(2), 504, 2006.)
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command with the classic DTC and the DTC EMC. It highlights that the flux locus with 
the DTC EMC is sharper than that obtained with the classic DTC, given the sampling 
time of the control system and the amplitude of the hysteresis bands of the flux controller.

5.4.6.3  Common-Mode Voltage Spectrum of DTC EMC

In DTC EMC, the theoretical steady-state common-mode voltage ucom, neglecting the unde-
sired commutation of the common-mode voltage at sector crossings, all parasitic effects, 
and the rise/fall time, is a periodic waveform (Figure 5.42), with a period equal to 1/3 of the 
period of the fundamental harmonic of the supply voltage of the drive.

Thus it exhibits a harmonic spectrum which can be analytically inferred by computing 
the coefficients of its Fourier series expansion as functions of the DC link voltage Ud and 
the fundamental pulsation of the supply voltage ω:

	
u

U
n

n tcom
d

n

=
∞

∑ 2
3

3
π

ωsin( ) 	 (5.73)

where
n is the harmonic order (only odd in this case)
t is time

On this basis, the harmonic content of the common-mode voltage is basically in the low 
frequency region, in particular, the 3rd harmonic of the fundamental and its odd multiples 
(3rd, 9th, 15th, 25th, etc., of the fundamental), and its amplitude decrease with inverse pro-
portionality with the frequency itself. Such a drive, therefore, exhibits a common-mode 
harmonic content which is quite low and depends on the rotor speed of the drive.

5.4.7  Experimental Results with Classic DTC and DTC EMC

In the following, some comparative experimental results between the classic DTC [9] and 
the DTC EMC are presented [35]. These tests have been done on an experimental rig with 
a 2.2 kW IM (details regarding the test setup in Appendix 11.A of Chapter 11).

–2π 
3ω

–π 
3ω

π 
3ω

2π 
3ω

Ud
6

–Ud
6

Time

ucom

FIGURE 5.42
Theoretical waveform of the common-mode voltage. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(2), 
504, 2006.)
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Figures 5.43 and 5.44 show the rotor speed and the electromagnetic torque with the 
classic DTC and the DTC EMC, when a step speed reference of 100 rad/s at no load is 
given. It is apparent the increase of the torque ripple with DTC EMC, as expected.

Figures 5.45a and b and 5.46a and b show the common-mode voltage waveforms and 
the corresponding spectra, computed with the FFT, obtained at constant speeds of 110 and 
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2 rad/s with the DTC EMC technique. These figures clearly confirm that the main harmonic 
component of the common-mode voltage is the third harmonic of the supply frequency of 
the machine, around 130 and 3 Hz, respectively, at the reference speeds of 110 and 2 rad/s 
with a 12% slip. Figure 5.47a and b show the common-mode voltage waveforms and the 
corresponding spectrum obtained with the FFT, in the case of the classic DTC. The spec-
tra present a series of harmonic clusters. A comparison between Figures 5.45b and 5.46b 
with  5.47b shows a strong reduction of the common-mode voltage harmonic content, 
achievable with the DTC EMC with respect to the classic DTC.
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FIGURE 5.45
Common-mode voltage waveform (a) and its FFT (b) at the reference speed of 110 rad/s with the DTC EMC 
(0.12 slip). (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(2), 504, 2006.)
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5.4.8  DTC-SVM

The classic DTC consists essentially in the bang-bang control of the electromagnetic torque 
and flux, and it is therefore characterized by a fast response to the control commands. 
However, in steady-state operation especially at low speeds, the DTC control results in 
chaotic switching patterns of the inverter with resulting torque ripple and undesirable 
acoustic and vibration effects associated with it. To optimize the steady-state switch-
ing process, various methods have been devised [36,37], among which one of the most 
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(0.12 slip). (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(2), 504, 2006.)
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interesting employs the well-known space-vector modulation (SVM) associated with the 
DTC strategy [37–39]. Such switching patterns result in low-ripple stator currents, as well 
as smooth flux and torque waveforms. On this basis, the classical DTC has been improved 
so that the control system can generate a stator voltage reference, instead of directly indi-
cating the next switching pattern of the inverter. The stator voltage is then synthesized 
with the SVM.

The control law comes directly from the direct and quadrature stator equations of the IM 
in the stator flux-oriented reference frame:

	
u R i

d
dt

sx s sx
ss sψ ψ= +

⎛

⎝⎜
⎞

⎠⎟
y

	 (5.74)
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	 u R isy s sy ms s
s sψ ψ ω= + y 	 (5.75)

For the symbols, see the list. The last equation can be rewritten as a function of the electro-
magnetic torque as follows:

	
u

p
R

t
sy s

e

s
ms s

sψ ω= +
3

2 y
y 	 (5.76)

where the angular speed of the stator flux ωms has been estimated in a discrete form from 
the last two temporal samples k and k − 1 of the stator flux components ψsD and ψsQ in the 
stator reference frame, as follows:

	
ω

ψ ψ ψ ψ
ms

sQ sD sD sQ

s

k k k k

T
=

− − −( ) ( ) ( ) ( )1 1
2

y s

	 (5.77)

with Ts sampling time of the control system.
From Equation 5.75, it can be seen that the usxsy  component of the stator voltage can control the 

stator flux amplitude, while from Equation 5.76, that usysy  can control the electromagnetic torque.
Figure 5.48 shows the block diagram of the DTC-SVM IM drive.
In this scheme, a closed-loop control of both the stator flux-linkage amplitude and the 

rotor speed is performed. Speed control is achieved by employing a PI controller for pro-
cessing the speed error resulting from the comparison between the reference and the 
measured speed. The output of the speed controller is the reference torque, which is com-
pared with the estimated one, being the tracking error processed by a PI controller. The 
output of the torque controller is further added to the decoupling term in Equation 5.76, 
yielding the quadrature axis reference voltage usysy . On the direct axis, the stator flux ref-
erence is compared with the estimated flux, being the tracking error processed by a PI 
controller. The stator flux amplitude and the electromagnetic torque are estimated by 
a flux and torque estimator, as described earlier. The output of the flux controller is the 
direct-axis reference voltage usxsy . The reference voltages are then transformed from the 
stator flux linkage to the stationary reference frame by means of a vector rotation on the 
basis of the knowledge of the stator flux angle ρs. The stator voltages are finally synthe-
sized by a PWM VSI.

5.4.9  Experimental Results with a DTC-SVM Drive

In the following, some experimental results of a DTC-SVM motor drive are presented. The 
rotor flux-oriented scheme in Figure 5.48 has been adopted. A test setup with a 2.2 kW IM 
has been adopted (details regarding the test setup in Appendix 11.A of Chapter 11). The 
drive has been given a speed step reference of 100 rad/s at no load. Figure 5.49 shows the 
reference and measured speed obtained during this test, while Figure 5.50 shows the cor-
responding waveform of the reference and estimated electromagnetic torque. Comparing 
Figure 5.50 with Figure 5.43, it can be clearly observed how DTC-SVM permits a significant 
reduction of the torque ripple with respect to classic DTC.
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5.4.10  Direct Self-Control

The direct self-control (DSC) [10–12] has been proposed by Depenbrock in 1985, almost con-
temporary with DTC. DSC is more suited for high-power drives supplied by VSIs, where 
slow-power devices are adopted (e.g., GTOs) and consequently low switching frequencies. 
In DSC, the VSI is commanded in a quasi-square waveform, with occasional zero states. 
Zero states are not adopted at all when the drive operates above the rated speed, in field 
weakening. Even if DSC is frequently presented as a subcase of DTC, its working principle 
is different. The underlying idea is that, even if the time waveform of the voltage gener-
ated by a VSI is discontinuous, its time integral is continuous [37]. These time integrals 
are called virtual fluxes and can be controlled in a feedback way by hysteresis comparators. 
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In this way, the square-way operation of the inverter can be obtained without any external 
signal (from which the word “self” in its name). Based on stator virtual flux components 
ψsβA, ψsβB, and ψsβC, the flux comparators generate the digitized variables dA, dB, and dC, 
which correspond to active voltage vectors for six-step operation. The hysteresis torque 
controller, on the other hand, generates the digitized signal d0 that determines the zero 
states duration. Figure 5.51 shows the block diagram of a DSC IM drive.

The main characteristics of DSC are as follows [13]:

	 1.	PWM operation in the constant flux region and six-step operation in the field-
weakening region.

	 2.	Nonsinusoidal stator flux and current waveforms that, with the exception of the 
harmonics, are identical for both PWM and six-step operation.

	 3.	Stator flux vector moves along a hexagon path also under PWM operation.
	 4.	No voltage supply reserve is necessary, and the inverter capability is fully utilized.
	 5.	The inverter switching frequency is lower than in the ST-DTC scheme.
	 6.	Excellent torque dynamics in constant and field-weakening regions.

The behavior of a DSC scheme can be reproduced by a ST-DTC scheme when the hysteresis 
band of the stator flux comparator is properly set [40].

5.4.11  Comparison between FOC and DTC

FOC and DTC are today the most important control techniques, capable of ensuring high 
dynamic performance of IM drives. For this reasons, most drive manufacturers adopt one 
of the two solutions. Both industrial and academic environment have been discussing for 
many years which of the two techniques is the best. Plenty of scientific papers have been 
written about the comparison between such techniques. It is certainly true that each of the 
two presents some features making itself preferable to the other. In the following, the main 
advantages and disadvantages of each control technique are summarized.

The main characteristics of DTC are as follows [18]:

	 1.	Direct control of magnetic flux and electromagnetic torque by the selection of the 
optimal configuration of the inverter

	 2.	 Indirect control of the stator voltages and currents
	 3.	Stator fluxes and currents almost sinusoidal
	 4.	Possibility to reduce the torque ripple depending on the time interval of the null 

voltage vectors
	 5.	High dynamic performance
	 6.	Variability of the switching frequency of the inverter, depending on the amplitude 

of the hysteresis bandwidth and on the flux and torque comparators

The main advantages of DTC are as follows [18]:

	 1.	Absence in the control algorithm of coordinate transformation, required on the 
contrary in FOC

	 2.	Absence of PWM blocks, required on the contrary in FOC
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	 3.	Absence of voltage decoupling circuits, required, on the contrary, in FOC with 
impressed voltages

	 4.	Presence of few controllers in the control scheme, while in FOC with impressed 
voltages, at least four controllers are required

	 5.	Necessity of determining only the sector where the stator flux linkage lies, and not 
necessarily the actual instantaneous position of this space-vector

	 6.	Low rise time in the response of the torque loop

On the contrary, the main disadvantages of DTC are as follows:

	 1.	Potential problems at the start-up, at low rotating speeds, and during fast varia-
tions in torque command

	 2.	Necessity of flux and torque models (same problems occur in FOC)
	 3.	Variability of the inverter switching frequency
	 4.	High torque ripple

It is, however, possible to overcome many of the previously described drawbacks of DTC, 
like the problems at start-up, at low speed, and the torque ripple. Torque ripple in DTC is 
caused, from one side, by the fact that normally none of the voltage vectors that the inverter 
can generate exactly coincide with the voltage vector required by the control system to 
perform the suitable variation of magnetic flux and torque and, from the other side, that 
the voltage vector is applied for a time interval equal to the sampling time of the control 
system, and consequently the control action has a duration equal to this entire period. As a 
result, for low values of the torque tracking errors, the developed torque overcomes its ref-
erence value in a very brief time interval, much lower than the sampling time of the control 
system, tending to move away from the reference for the remaining duration of this period.

A solution could be obtained applying the stator voltage space-vector not for the entire 
sampling time period, but for a fraction of it (called in relative terms duty ratio), applying 
for the remaining part of the period the null voltage vector. The value of the duty ratio 
should be selected, at each time sample, on the basis of the value of the torque tracking 
error and of the actual angular position of the stator flux-linkage space-vector. To this aim, 
some algorithms based on Fuzzy logic have been proposed [36].

Torque ripple can be limited by adopting high switching frequencies of the inverter 
or different inverter structures. The switching frequency increase results in, however, an 
increase of the switching losses of the converter, and so this technique cannot be used in 
high-power drives. Moreover, a high value of the switching frequency requires the adop-
tion of powerful but more expensive microprocessors, reducing the sampling time of the 
control system at increasing switching frequency.

List of Symbols

is = isD + jisQ	 space-vector of the stator currents in the stator reference frame
is = isx + jisy	 space-vector of the stator currents in a generic rotating reference frame
isA,isB,isC	 stator phase currents
ʹ = +ir i jird rq	 space-vector of the rotor currents in the stator reference frame
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ir = irx + jiry	 space-vector of the rotor currents in a generic rotating reference frame
imm = immD + jimmQ	 space-vector of the magnetizing current in the stator reference frame
imr = imrD + jimrQ	� space-vector of the rotor magnetizing current in the stator reference frame
ims = imsD + jimsQ	� space-vector of the stator magnetizing current in the stator reference 

frame
Lm	 total static magnetizing inductance
Lr	 rotor inductance
Lrσ	 rotor leakage inductance
Ls	 stator inductance
�Ls	 stator transient inductance

Lsσ	 stator leakage inductance
p	 number of pole pairs
Rr	 resistance of a rotor phase winding
Rs	 resistance of a stator phase winding
Sa, Sb, and Sc	 command signals of the VSI legs
te	 electromagnetic torque
Tr	 rotor time constant
�Tr 	 rotor transient time constant

Trσ	 rotor leakage time constant
Ts	 stator time constant
Tsp	 sampling time of the control system
�Ts 	 stator transient time constant

ucom	 common-mode voltage
us = usD + jusQ	 space-vector of the stator voltages in the stator reference frame
us = usx + jusy	 space-vector of the stator voltages in a generic rotating reference frame
usA,usB,usC	 stator phase voltages
Ud	 DC link voltage
ρr	� phase angle of the rotor flux-linkage space-vector with respect to the 

sD axis
ρs	� phase angle of the stator flux-linkage space-vector with respect to the 

sD axis
ρm	� phase angle of the magnetizing flux-linkage space-vector with respect 

to the sD axis
σ	 1 − L2

m/(LsLr) = total leakage factor
σr	 rotor leakage factor
σs	 stator leakage factor
ϑr	 angular position of the rotor with respect to the sD axis
ψsβA, ψsβB, ψsβC	 stator phase virtual fluxes
ʹ = +y r rd rqjψ ψ 	 space-vector of the rotor flux linkages in the stator reference frame

ψs = ψsD + jψsQ	 space-vector of the stator flux linkages in the stator reference frame
ωmr	 angular speed of the rotor flux space-vector
ωms	 angular speed of the stator flux space-vector
ωmm	 angular speed of the magnetizing flux space-vector
ωsl	 angular slip speed
ωr	 angular rotor speed (in electrical angles per second)

All quantities with ref in pedex are reference quantities.
The symbols �y y yr s mand, ,  in apex mean the reference frame in which the variables are 

expressed.
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6
Sensorless Control of Induction Machine Drives

6.1  Introduction on Sensorless Control

In the last decade, there has been a strong interest in eliminating the speed or position sen-
sor in the shaft of induction machine (IM) drives, while preserving, however, the high 
dynamic performance of vector-controlled drives. The techniques for the speed or posi-
tion estimation of the rotor are called in literature sensorless or encoderless [1–5]. The 
main advantages of sensorless-controlled drives are the reduced hardware complexity, 
the lower cost, the reduced size of the drive machine, the elimination of the sensor cables, 
the better noise immunity, the increased reliability, and the lower maintenance require-
ments [6]. Moreover, a motor without a speed sensor is suitable for dangerous or even 
hostile environments. Actually, high-performance applications require high accuracy in 
speed estimation, wide speed ranges, high bandwidth of the speed control loop, robust-
ness to load torque perturbations, and correct zero-speed operation both at no load and at 
load. A great deal of schemes have been proposed for sensorless control of IMs so far [1–6]; 
among these, the two main categories are those based on magnetic saturation or in gen-
eral on machine anisotropies and those based on the fundamental magnetomotive (mmf) 
force dynamic model of the IM. Table 6.1 summarizes a schematic overview of the dif-
ferent techniques applied to speed sensorless control [6]. Fundamental model techniques 
are based either on open-loop estimators or on closed-loop observers and are limited by 
zero stator frequency. In these conditions, the back electromotive force (emf) is zero and 
the machine speed is unobservable. However, in the low-speed range anisotropies of the 
machine can provide useful information on the main field angle or on the position of the 
rotor. An accurate speed estimation can be given, exploiting the voltages induced in 
the stator windings by the spatial rotor slot harmonics. Proper excitation signals can be 
either injected signals at frequencies higher than the fundamental or transients is caused 
by the switching of the inverter. The response of the motor is used to identify either the 
field angle or the position angle.

6.2  Model-Based Sensorless Control

A great deal of model-based sensorless techniques have devised over the last few years. 
Scientific literature regarding these methods is huge; thus, in the following, only the 
milestone ideas are given. The first attempt to estimate the rotor speed is probably pro-
posed by Joetten and Maeder [7], where the slip speed is estimated on the basis of the 
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state equations of the IM. Afterward, [8] adopted for the first time an MRAS (model refer-
ence adaptive system) scheme. Then, [9] adopted a combination of a reduced-order observer 
(ROO), used as reference model, and the simple current model, used as adaptive model, 
to estimate the rotor speed. The proposed adaptation mechanism was, however, exactly 
the same as what is proposed in [8]. A suitable gain matrix choice was proposed for the 
reduced-order poles allocation. Other possible choices for the poles allocation of ROOs 
have been analyzed in [10,11]. Almost at the same time [12] proposed a full-order Luenberger 
adaptive observer for the simultaneous estimation of both the rotor flux and the rotor speed 
of the machine. In [12], an on-line estimation of the stator and rotor resistances was also 
presented. This kind of observer presents, however, some drawbacks about the stability 
of its adaptation law, especially in regenerative mode low-speed operation, and about 
the accuracy in low-speed regions and at zero speed. To overcome the first kind of dif-
ficulties, some methods have been come up with [13–16]. Another approach by [17] pro-
poses a speed sensorless control using parameter identification for the speed estimation. 
A design method of robust adaptive sliding observers is further proposed.

6.3  Anisotropy-Based Sensorless Control

Anisotropy-based sensorless techniques exploit those machine properties which are not 
reproduced in the fundamental mmf model. As far as signal injection methods are con-
sidered, the injected signals excite the machine at frequencies higher than the fundamen-
tal. The resulting high-frequency currents generate flux linkages which close through the 
leakage paths both in the stator and in the rotor, leaving the fundamental flux of the fun-
damental wave almost unaffected. The high-frequency effects can be therefore considered 
superimposed to the fundamental behavior of the machine. A magnetic anisotropy can be 
caused by the saturation of the leakage path through the fundamental field. Other aniso-
tropic structures are the discrete rotor bars in the cage motor. Otherwise, a motor can be 
also custom designed so as to emphasize some saliencies or exhibit periodic variations 

TABLE 6.1

Issues of the Different Sensorless Techniques

Fundamental Model Exploited Anisotropies

Additional 
signal 
injection

No No No Yes Yes Yes/no

Principle Open-loop 
models

Observers Rotor slot 
harmonics

Main 
inductance 
saturation

Artificial 
saliency

Rotor slot 
leakage

Minimum 
frequency

Close to or 
temporarily 
zero

Close to or 
temporarily 
zero

Below 1 Hz Theoretically 
zero

Theoretically 
zero

Zero

Maximum 
speed 
error

Half-rated 
speed

Half-rated 
speed

Theoretically 
zero

Half-rated 
speed

Small Theoretically 
zero

Position 
error

— — — — — Theoretically 
zero
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within a pole pitch of local magnetic or electrical properties. Typical cases are the varia-
tions of the widths of the rotor slot openings [18], of the depths at which the rotor bars are 
buried below the level of the rotor, or of the resistance of the outer bars of a double cage 
or deep bar rotor [19]. There are, in general, more anisotropies in the motor. The various 
anisotropies present different spatial orientations such as the angular position of the fun-
damental field, the position of the rotor bars within a rotor bar pitch, and if possible, the 
position of a custom-designed rotor within a fundamental pole pair. The response to an 
injected high-frequency signal necessarily reflects all the anisotropies, dependant on or 
position. The injected signals can be periodic, creating either a high-frequency revolving 
field or an alternative field in a specific predetermined spatial direction. Such signals are 
called carriers. The carrier signals, mostly created by additional components of the stator 
voltages, get modulated by the actual orientation in space of the machine anisotropies.

Other kinds of excitation signals are the PWM-switching signals of the inverter. Each com-
mutation of the power devices of the inverter excites repetitive transients in the machine. 
All flux components, apart from the fundamental one, present high-frequency content 
and therefore do not penetrate sufficiently into the rotor to create a mutual flux linkage. 
These fluxes, on the contrary, contribute to the total leakage flux. Among the techniques 
for retrieving the rotor position from anisotropies, the most important are the so-called 
INFORM (INdirect Flux detection by On-line Reactance Measurements) and the instantaneous 
rotor position measurement [6]. The INFORM method, developed by Schroedl [20], is based 
on the measurement of the rate of change of the stator current during a short interval. Two 
opposite voltage vectors are applied in two consecutive short intervals to compensate the 
ohmic voltage drop on the stator resistance and the back emf. The estimated field angle can 
be retrieved on the basis of the rate of change of the stator current measured on the two 
consecutive short intervals. The instantaneous rotor position measurement method exploits 
the rotor slot anisotropy to identify the rotor position angle, and the magnetic saturation is 
considered as a disturbance. The methods developed by Jiang [21], Holtz [22,23] [21–23] are 
based on the instantaneous measurements of anisotropy signals from the terminal voltage 
between the feeding inverter and the star point of the machine [23].

6.4  Model-Based Sensorless Techniques

Before starting with the description of the most important model-based sensorless tech-
niques, the main problematic issues related to the implementation of model-based tech-
niques will be treated. In particular, the open-loop integration, the inverter nonlinearity, 
and the machine parameter mismatch will be addressed, with some proposals for solving 
the related problems.

6.4.1  Open-Loop Integration

It is well known that the main problem of the numerical integration in some flux estima-
tors, when used in high-performance electrical drives, is the presence of DC biases at the 
input of the integrators themselves. The speed observers suffering from this problem are 
those employing open-loop flux estimators, for example, open-loop speed estimators and 
MRAS systems, while speed estimators employing closed-loop flux integration, like the 
ROO and the full-order Luenberger adaptive observer, do not have this problem. In particular, 
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DC drifts are always present in the signal before they are integrated, which causes the 
integrator to saturate with a resulting inadmissible estimation error, and also after the 
integration because of the initial conditions [24,25]. The open-loop integration problem at 
low speed can become even more crucial than the possible detuning of the estimator at 
the same speeds. Some alternative solutions have been conceived to solve this problem, 
for example, the integrator with saturation feedback [24], the integrator based on cascaded 
low-pass filters (LPFs) [26,27], the integrator based on the offset vector estimation, and 
compensation of residual estimation error [28–30]. In the following, these solutions pro-
posed by literature are analyzed.

6.4.1.1  Low-Pass Filter

In general, first-order LPFs are used instead of a pure integrator, with very low cutoff 
frequency. However, the behavior of any estimator in low-frequency ranges, close to the 
cutoff frequency of the LPF, is greatly affected by errors in the amplitude and the phase of 
the estimated flux [3]. Figure 6.1 shows the Bode diagram of a first-order LPF with cutoff 
frequency equal to 15 rad/s. It can be observed that the phase angle error becomes signifi-
cant just below 10 Hz. This makes the LPF solution unsuitable for low-speed operation of 
sensorless drives.

Moreover, the cutoff frequency of the LPF cannot be reduced too much, since at lower 
cutoff frequencies, the DC drift filtering effect reduces. It can be easily shown by comput-
ing, in the Laplace domain s, the steady-state value of the output of the LPF GLP(s) to a step 
input of amplitude Edr:
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Equation 6.1 clearly shows that, the lower the cutoff frequency ωc of the LPF, the higher the 
undesired effect of the DC drift at the output.
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FIGURE 6.1
Bode diagram of a first-order LPF with cutoff frequency of 15 rad/s.
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As explained in [25], to solve the problems connected with the use of pure integra-
tors and LPFs, new integration methods have been developed which can be generally 
expressed as [24]

	
Ψ Ψ=

+
+

+
1

s
e

sc

c

cω
ω
ω

	 (6.2)

where
e and ψ are, respectively, the input and the output of the integrator
ωc is the cutoff frequency of the LPF

In the case under study, e represents the emf and ψ the corresponding flux linkage. To 
obtain the approximate z-domain transfer function from the s-domain, the approximation

	
s

z
Tsp

=
−1

	 (6.3)

has been used, where Tsp is the sampling time of the control system. Then (6.2) can be writ-
ten in the z-domain in the following way:
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where b w= −e Tsp c. The idea is to express the integrator as the sum of two terms: a feed-
forward and a feed-back term. The block diagram of the integrator in the z-domain, 
sketched in Figure 6.2, is thus obtained. From this block diagram, two algorithms are 
derived [24], as explained in the following.

Algorithm 1
If the ψ signal in the second term of the right-hand side of (6.4) is followed by a saturation 
function of amplitude L, the first algorithm of [24] is obtained. In the following, it will be 
simply called algorithm 1, and its block diagram is shown in Figure 6.3 in the z-domain.

Figure 6.4 shows the locus of the rotor flux linkage experimentally measured on a 2.2 kW 
IM drive (see Chapter 11 for details on the adopted test setup) when the algorithm 1 has 
been adopted in open-loop flux integration (no flux feedback). Results show the correct 
behavior of the algorithm.

e

Feed-forward

Feed-back

Ts
Z – β

1 – β
z – β

Ψ+

+

FIGURE 6.2
Block diagram of the integrator in the z-domain. (From Cirrincione, M. et al., IEEE Trans. Power Electron., 19(1), 
25, 2004.)
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Algorithm 2
An improvement to algorithm 1 can be obtained by limiting only the magnitude of the flux 
as shown in Figure 6.4. Further details can be found in [24]. In the following, it is simply 
called algorithm 2. Figure 6.4 shows the block diagrams of the algorithm 2 in the z-domain. 
This algorithm is specifically targeted to the integration of the emf space-vector to obtain 
the flux-linkage space-vector, so in this case, the direct and quadrature components (sub-
scripts D and Q) of both space-vectors are the output of the system.

In algorithms 1 and 2, as explained in [24], the saturation limit L must be chosen close to 
the reference value (Figure 6.5).

Figure 6.6 shows the locus of the rotor flux linkage experimentally measured on a 2.2 kW 
IM drive (see Chapter 11 for details on the adopted test setup) when the algorithm 2 has been 
adopted in open-loop flux integration (no flux feedback). Results show the correct behavior 
of the algorithm, with performance very close to those obtainable with algorithm 1.

Algorithm 3
In this algorithm, the flux linkage ψ is obtained from emf e by an integration method accom-
plished by a programmable cascaded low-pass filter (PCLPF) implemented by a hybrid neural 
network consisting of a recurrent neural network (RNN) and a feed-forward artificial neural 
network (FFANN). Here, only the fundamentals are described, in accordance with [26,27].
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FIGURE 6.3
Block diagram of the integration algorithm 1. (From Cirrincione, M. et al., IEEE Trans. Power Electron., 19(1), 
25, 2004.)

FIGURE 6.4
Locus of the rotor flux linkage with algorithm 1.
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If two identical LPFs are cascaded (PCLPF) with transfer functions in the z-domain 
given by
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−a a
and 	 (6.5)

where
E(z), Ψ1(z), and Ψ(z) are, respectively, the z-transforms of the input signal e(k), the output 

of the first filter ψ1(k), and the output of the second filter ψ(k)
α = (1 − Tsp/τ), Ts is the sampling time, τ is the time constant of each component filter

K T Gsp= ( )/ /t, G is the amplitude of the compensation gain of the PCLPF
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Block diagram of the integration algorithm 2. (From Cirrincione, M. et al., IEEE Trans. Power Electron., 19(1), 
25, 2004.)
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Then the following discrete-time equation results, expressed in matrix notation:
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An equivalent RNN is then suggested which results in the following matrix equation:
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where W11, W21, W22, and W13 are the weights of the RNN, which is shown in Figure 6.7. 
Although W11 = W22 = α and W21 = W13 = K, all the weights are considered as independent 
variables and a function of frequency. These weights can be supplied, for each frequency, 
by a look-up table with interpolation properties, which can be implemented by an FFANN, 
for example, a multilayer perceptron. To obtain the training set for the FFANN, the weights 
W11, W21, W22, and W13 of the RNN at every supply frequency are tuned so that the input 
voltage wave and the corresponding flux output wave match precisely with a very low 
error. In this way, the input (frequency)—output (weights of the RNN) pairs for training 
FFANN are obtained. During the integration process, the FFANN is fed by the estimated 
frequency of the input signal e and produces the corresponding set of weights for the 
RNN, so that this will integrate the input signal e correctly. However, the RNN weights are 
dependent on the sampling frequency of the control system: this means that a retraining 
of the RNN is required if the sampling frequency varies.

Different ways can be followed to train the RNN: either a first- or second-order method 
or an extended Kalman filter (EKF) [26,27,31]. Figure 6.8 shows the locus of the rotor flux 
linkage experimentally measured on a 2.2 kW IM drive (see Chapter 11 for details on the 
adopted test setup) when the algorithm 3 has been adopted in open-loop flux integration 
(no flux feedback). Results show the correct behavior of the algorithm, with performance 
slightly worse than both algorithms 1 and 2. As a matter of fact, the locus in this case tends 
to degenerate on a hexagon instead of a circle.

FIGURE 6.7
Block diagram of the integration algorithm 3. 
(From Cirrincione, M. et al., IEEE Trans. 
Power Electron., 19(1), 25, 2004.)
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Algorithm 4
A different approach has been proposed by [28–30], which is based on the estimation of 
the offset vector and compensation of residual estimation error. In this case, the integrand 
emf e expressed in the stationary reference frame is integrated to obtain the flux (in [28,29], 
it is applied to stator flux, but the considerations are general). The resulting flux ψ is lim-
ited inside a circular boundary of radius ψ*, providing ψ̂. The contribution to the offset 
voltage term to be subtracted to the emf e is computed as

	
e

t
off =

+ˆ ˆmax miny y
Δ

	 (6.8)

where
Δt is the time interval between zero crossings of the flux components ψ̂, equal to the 

fundamental period
ψ̂max, ψ̂min are, respectively, the maximum and minimum values of the flux ψ̂ direct and 

quadrature components in the time interval Δt

In practice, at each period of the fundamental, the average offset voltage causing a drift in 
the flux is estimated and then subtracted. To improve the behavior of the system, the offset 
voltage term is low-pass filtered before being subtracted from the emf e. A further noise 
compensator term ehf is subtracted from the emf e to cope the nonlinearities resulting from 
switching harmonics, inverter dead-time effects, and, in general, all system nonlinearities 
characterized by a frequency much higher than the fundamental. An efficient way to com-
pensate these effects is to force the radial component of ψ̂ to go close to its reference ψref by 
a fast proportional closed-loop control. Since the tangential component of ψ̂ is not altered 
at all, there is no interaction of this compensation with the flux estimator. Figure 6.9 shows 
the block diagram of such a compensation scheme.

Figure 6.10 shows the locus of the stator flux linkage experimentally measured on a 
2.2 kW IM drive (see Chapter 11 for details on the adopted test setup) when the algorithm 4 
has been adopted in open-loop flux integration (no flux feedback). Results show the correct 
behavior of the algorithm, with performance similar to both algorithms 1 and 2.
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Locus of the rotor flux linkage with algorithm 3.
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6.4.2  Inverter Nonlinearity

The power devices of the inverter present a finite voltage drop in “on state,” due to their 
forward nonlinear characteristics. This voltage drop has to be taken into consideration at 
low frequency (low fundamental voltage amplitude) where it becomes comparable with 
the stator voltage itself, giving rise to distortion and discontinuities in the voltage wave-
form. An interesting method for the compensation of the inverter device voltage drops has 
been proposed in [28–30]. This technique is based on modeling the forward characteristics 
of each power device with an average threshold voltage uth and an average differential 
resistance Rd. Figure 6.11 shows, for example, the characteristic ic versus vce of an IGBT 
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Block diagram of the algorithm 4.

FIGURE 6.10
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module (model Semikron SMK 50 GB 123), the measured (dotted) and the modeled 11 (con-
tinuous). This characteristic has been used in the experimental tests shown in Chapter 11. 
In this case, the characteristic has been approximated with a threshold voltage of uth = 1.8 V 
and a differential resistance of Rd = 0.02 Ω.

It could be easily demonstrated that in each leg of the inverter, the effect of the threshold 
voltage depends on the sign of the phase current, since there is always a power device 
that is forward biased. The threshold voltage on phase sA can be therefore written as 
uthsign(isA). The threshold voltage space-vector can be then defined as

	
u secth th sA th sB th sC thu i u i u i u= + +( ) =2

3
4
3

2sign sign sign( ) ( ) ( )α α (( )is 	 (6.9)

where

	
sec i( ) ( ) ( ) ( )s sA sCi i i= + +( )1

2
2sign sign signsBα α 	 (6.10)

sec(is) is the function defining the unity vector marking the 60° sector in which the stator 
current lies.

In general, the stator voltage space-vector us* can be obtained as the difference between 
the reference stator voltage usref, given to the PWM modulator, the forward voltage space-
vector uth, and the ohmic drop Rdis:

	 u u u iss sref th dR* = − − 	 (6.11)

Figure 6.12a and b shows the locus of the stator voltage space-vector us*, obtained as the 
difference between usref and uth during both a motoring (a) and a generating (b) phases. 
Due to the nonlinearity of the inverter, the trajectories of the stator voltage space-vector us* 
are distorted and discontinuous. Figure 6.13 shows the block diagram of the compensation 
methodology proposed in Refs [28–30]. Finally, Figure 6.14 shows the experimental time 
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waveforms, obtained on a 2.2 kW IM drive, of the direct and quadrature components of the 
uth voltage space-vector during a constant speed reference of 1 rad/s.

6.4.3  Machine Parameter Mismatch

A further source of error in flux estimation is the mismatch of the stator and rotor resis-
tances of the observer with their real values because of heating/cooling of the machine. 
The load-dependent variations of the winding temperature may lead up to 50% error in 
the modeled resistance. Stator and rotor resistances should be therefore estimated on-line 
and tracked during the operation of the drive. A great deal of on-line parameter estimation 
algorithms have been devised, requiring low complexity and computational burden when 
used in control systems. In any case, it should be emphasized that steady-state estima-
tion of the rotor resistance cannot be performed in sensorless drives; thus, rotor resistance 
variations must be deduced from stator resistance estimation.

Literature offers several methodologies for the estimation of the electrical parameters of 
IM. Chapter 9 is devoted to the description of the simultaneous estimation of all the elec-
trical parameters of the IM by means of linear neural networks, in particular the so-called 
TLS EXIN neuron. In the following, three recently proposed efficient algorithms for the 
on-line stator resistance estimation are briefly described [12,28,29].

Algorithm 1
Algorithm 1 is based on the concept that at steady-state, the stator flux vector and the 
induced voltage are orthogonal [28]:

	 y ys s s s s sR⋅ ⋅e u i= − =( ) 0 	 (6.12)

Equation 6.12 intrinsically depends on the stator resistance and can therefore be 
exploited to estimate on-line the stator resistance itself. To make the estimator less cum-
bersome from the computational point of view, Equation 6.12 is transformed from the 
stationary reference frame into a reference frame aligned with the stator current space-
vector, on the basis of the vector rotation e j s− a , where αs is the stator current space-vector 
angle. From this standpoint, the stator resistance can be estimated on the basis of this 
equation:
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where
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and u esy
i

i s s
s = −cos( )α ρ  with ei = ωs|ψs| at steady-state.

Figure 6.15 shows the block diagram of the stator resistance estimator.

Algorithm 2
Algorithm 2 permits the on-line stator resistance Rs estimation on the basis of the minimi-
zation of the error between the measured isxsψ  and estimated îsxsψ  direct components of the 
stator current space-vector expressed in the stator flux reference frame [29].
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If the stator equations of the IM in the stator flux linkage reference frame are consid-
ered, after considering them at steady-state (d/dt ≅ 0), the following set of equations can 
be obtained:
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In particular, after eliminating ωr from the above equations, îsxsψ  is estimated on the basis of 
the following relationship:
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Equation 6.16 does not depend on the stator resistance, and it can be therefore used as ref-
erence model of a proper MRAS. isxsψ  is obtained by the current measurements on the basis 
of the transformation from the stationary reference frame to the stator flux reference frame 
(block e j s− r  in Figure 6.16), according to the knowledge of the stator flux angle ρs, given by 
the flux model. The tracking error between the two currents is then processed by an adap-
tive controller or more simply by a proportional integral (PI) controller. Figure 6.16 shows 
the block diagram of the previously described algorithm.

Algorithm 3
Algorithm 3 permits the stator resistance to be computed, by exploiting the estimation of the 
stator current space-vector in the stator reference frame. This method can suitably be inte-
grated with the full-order Luenberger observer (FOLO) in this way, as proposed in Ref. [12].

In particular, Rs is estimated on the basis of the measured isD and isQ and estimated 
î sD and î sQ stator current components in the stationary reference frame by means of the 
following update law:
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FIGURE 6.15
Block diagram of the algorithm 1 for the stator resistance 
on-line estimation algorithm.
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where λ is a properly chosen positive constant. In practice, the rate of change of the estimated 
stator resistance is proportional to the scalar product between the stator current estimation 
error and the estimated current space-vectors. On the contrary, since the same estimation 
scheme cannot be applied to rotor resistance estimation in sensorless drives, Rr can be esti-
mated considering its variation proportional to that of the Rs on the basis of the following law:

	
ˆ ˆR R Rr srn s= 	 (6.18)

where Rsrn is the ratio between the rated values of the stator and rotor resistances. It is there-
fore assumed that both the resistances vary with the operating temperature of the machine.

6.4.4  Estimators and Observers

In general, an estimator is defined as a dynamic system whose state variables are estimates 
of some other system (in the case under study, an electrical machine). There are basically 
two forms of implementation of an estimator: open loop and closed loop, the distinction 
between the two being whether or not a correction term, involving an estimation error 
term, is exploited to adjust on-line the response of the estimator [1]. A closed-loop estima-
tor is called an observer. In general, observers are preferable to open-loop estimators, since 
they permit to robustness to parameter variations and noise.

Observers can be classified in accordance with the kind of representation used for the 
plant to be observed. If the plant is considered deterministic, correspondingly, the observer 
is a deterministic observer; otherwise, it must be considered a stochastic observer. As a 
matter of fact, the FOLO and the ROO are deterministic, while the Kalman Filter (KF) is 
stochastic. The classic KF can be applied only to linear stochastic systems, while the EKF 
should be used if a nonlinear stochastic system has to be dealt with. On the other hand, 
the basic Luenberger observer can be applied only to linear time-invariant deterministic 
systems, while the extended Luenberger observer (ELO) should be used if a nonlinear 
time-variant deterministic system has to be dealt with. In summary, both the ELO and 
the EKF are nonlinear estimators, to be applied, respectively, to deterministic and sto-
chastic systems. The ELO represents a good alternative for the real-time implementation 
in industrial drive systems because of the simple algorithm and its ease of tuning, making 
it preferable to EKF [1].
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Block diagram of the algorithm 2 for the stator resistance on-line estimation algorithm. (From Cirrincione, M. 
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6.4.5  Open-Loop Speed Estimators

Various rotor speed and slip speed open-loop estimators can be obtained by rewriting the 
stator and rotor equations of the IM. A pioneering work about open-loop speed estimators 
has been made in [7], where a speed estimator simply based on the voltages and currents 
measurements has been presented. In [1], five open-loop sensorless schemes are described, 
which are all based on the stator and rotor equations of the IM, differing from one another 
by the reference frame in which the equations are expressed. All of these schemes estimate 
the speed on the basis of the rotor flux-linkage estimation. Some of them are also currently 
employed in commercial sensorless drives. Analogous open-loop speed estimators can be 
devised with the speed estimation on the stator flux linkage, rather than on the rotor one 
[3]. Consequently, equations can be written in the rotor-flux- or stator-flux-oriented refer-
ence frames.

If the stator flux linkage is estimated, the rotor speed can be computed as the difference 
of the stator flux-linkage speed ωms and the slip speed ωsls, as follows:
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The stator flux-linkage speed is obtained with the division between the vector product of 
the stator flux-linkage vector and its derivative and the square of the stator flux amplitude 
itself. The slip speed is obtained on the basis of the direct and quadrature components of 
the stator current in the stator flux–oriented reference frame, i isx sy

s sψ ψ, ; for this reason, a coor-
dinate transformation is needed for this estimator. Figure 6.17 shows the block diagram 
of the open-loop speed estimator based on Equation 6.19. The correct field orientation is 
influenced by the accurate estimation of the angle ρs that, depending on the open-loop 
flux estimation, suffers from both the integration problem and the sensitivity to the stator 
resistance variation. Moreover, the computation of the slip speed needs the time deriva-
tive di dtsy

sψ / ; it should be noted, however, that the derivative operation amplifies the high-
frequency noise in the signal.

The open-loop speed estimator in Figure 6.17 has been experimentally implemented 
in a 2.2 kW flux-oriented controlled (FOC) IM drive (see Appendix 11.A) on a test setup 
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(see Appendix 11.B). Figure 6.18 shows the experimental time waveform of the refer-
ence, measured, and estimated speed as well as the speed estimation error. In this 
case, open-loop flux integration has been performed by adopting an LPF (see Figure 
6.1). The test refers to a speed reversal from 100 to −100 rad/s at no load. Results show 
a good tracking of the estimated speed at steady-state, but big estimation errors occur 
during the transient phase, mainly caused by the presence of the time derivative 
di dtsy

sψ /  term.
If the rotor flux linkage is estimated, the rotor speed can be computed as the difference 

of the rotor flux-linkage speed ωmr and the slip speed ωslr, as follows:
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The rotor flux-linkage speed is obtained with the division between the vector product of 
the rotor flux-linkage vector and its derivative and the square of the rotor flux amplitude. 
The slip speed is obtained on the basis of the vector product of the rotor flux and the sta-
tor current vectors. Figure 6.19 shows the block diagram of the open-loop speed estima-
tor based on Equation 6.20. Unlike the scheme based on the stator flux estimation, here 
no coordinate transformation is needed, with resulting reduction of the computational 
demand of the estimator. Also in this case, the open-loop flux estimation suffers from 
both the integration problem and the sensitivity to the stator resistance variation. On the 
contrary, different from the scheme based on the stator flux estimation, here, no current 
derivative is necessary, while the rotor flux derivative is needed, which is less problematic 
than the current one since the flux is an integral signal, and thus this derivative term is an 
available signal.
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Figure 6.20 shows the experimental time waveform of the reference, measured, and 
estimated speed as well as the speed estimation error, obtained on the same 2.2 kW FOC 
IM drive where the open-loop speed estimator in Figure 6.19 has been implemented. In 
this case, open-loop flux integration has been done by adopting an LPF (see Figure 6.1). 
The test refers to a set of speed reference step variations with this sequence: 0 → 100 → 
−100 → 0 rad/s at no load. Results show a good tracking of the estimated speed both 
during the steady-state and the transient phase, with a peak transient estimation error 
of 10 rad/s.

In general, however, the effectiveness of any open-loop estimator highly depends on 
the accuracy in the knowledge of the machine parameters. At low speed, in particular, a 
reduction of the speed estimation accuracy is to be expected in all these schemes due to 
a mismatch between the real and estimated flux linkage caused by a wrong model of the 
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stator  resistance. The  misknowledge of the rotor time constant, on the contrary, mainly 
influences the estimation of the slip speed and therefore is critical at high loads. This is 
confirmed by the sensitivity analysis of the flux models to parameter mismatch [32] (see the 
sensitivity analysis in Chapter 9). Parameter mismatch has, in these schemes, a big influ-
ence on the steady-state and transient behavior of the sensorless drive.

6.4.6  Model Reference Adaptive Systems

Both the steady-state and transient accuracy of the speed estimation can be significantly 
increased by adopting closed-loop speed estimators (observers) instead of the open-
loop ones.

An important category of observers is that of MRASs. In this framework, several speed 
observers have been developed.

6.4.6.1  Classic MRAS

All of the MRAS observers are based on the idea of a reference model and an adaptive model. 
Some state variables of the IM are estimated at the same time with both the reference 
and the adaptive models; the difference between these two estimations is then processed 
by a adaptation mechanism, which yields the estimated speed by adjusting the adap-
tive model so that its output coincides with that of the reference model. The various MRAS 
schemes differ from one another by the chosen state variables. From this standpoint, 
some schemes have been developed, either based on the rotor flux ʹψr [8] or on the back 
emf e [33]. The appropriate adaptation law can be derived by the Popov’s hyperstability 
criterion [1]. The differences between the state variables estimated, respectively, with the 
reference and adaptive models are fed to a speed tuning signal ɛ, and then processed by a PI 
(proportional integral) controller, whose output is the rotor speed. Three main schemes 
have been developed, where the speed tuning signals are, respectively, εω = Im( *)y yʹ ʹr r

ˆ  
[8], ɛe = Im(eê*) [33], and εΔe = −Im(( ) )e e isˆ *  [33]: all the quantities with ∧ are related to the 
adaptive model and the * operator denotes the complex conjugate. The speed tuning sig-
nals are, in these cases, respectively, the vector product between the two estimated fluxes 
(ɛω), the vector product between the two estimated back emfs (ɛe), and finally the vector 
product between the back emf error and the stator current (ɛΔe). The angular difference 
of the outputs from the two estimators is then fed to a PI controller, which gives a non-
linear stable feedback system. Basically, the PI controller drives the phase errors between 
the two state estimates to zero by aligning the adaptive model estimate with the reference 
model one. The pioneering work has been [8], while [33] improves [8] because, thanks to 
the employment of the back emf instead of the flux, the speed estimation does not suffer 
from the problem of the open-loop flux integration, with resulting wider bandwidth of 
the speed loop. It should be noted that, in any case, all the control schemes where the flux 
loop is closed must deal with the open-loop integration problem. Figure 6.21 shows the 
block diagram of the classic MRAS scheme [8] (in brackets the variables adopted in the 
other schemes [33]). The tuning of the PI influences the dynamics of the estimation and, 
therefore, the bandwidth of the observer; optimal PI tuning can be done analytically so as 
to achieve the desired observer bandwidth. In other words, the estimated speed is modi-
fied in the adjustable model in such a way that the difference between the outputs of the 
reference and adaptive models becomes zero; only in this condition does the estimated 
speed coincide with the real one.
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If the classic MRAS scheme based on the rotor flux error is considered, the reference model 
is described by the stator voltage equations in stator reference frame, rewritten here for the 
sake of simplicity:
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while the adaptive model is based on the rotor equations in the stator reference frame, which 
is the so-called current model:
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In this case, the speed is estimated as

	
ˆ ˆ ˆ ˆ ˆω ψ ψ ψ ψ ψ ψ ψ ψr p rq rd rd rq i rq rd rd rqK K dt= −( ) + −( )∫ 	 (6.23)

Figure 6.22, which shows the block diagrams of the reference and adaptive models, clearly high-
lights that the reference model suffers from the open-loop integration problem. This problem 

FIGURE 6.21
Block diagram of the classic MRAS observer.
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has been solved in Ref. [8] by adopting an LPF instead of a pure integrator, which causes, 
however, a poor flux amplitude and angle estimation as well as a poor speed estimation at 
low frequency, around the cutoff frequency of the LPF (usually a few Hertz). This consider-
ation highly limits the minimum working speed of the drive and the correct field orientation, 
with consequent reduction of the torque performances at low speed. Alternative solutions to 
be adopted for the open-loop flux integration have been shown in Section 6.4.1. Furthermore, 
at low speeds, the stator voltage amplitude is small, and thus, an accurate value of the stator 
resistance is required by the model to have a satisfactory response.

If the MRAS scheme based on the back emf error is considered, the reference model can 
be written in this way:
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The corresponding back emf equations for the adaptive model can be written in this way:

	

ˆ
ˆ ˆ ˆ

ˆ
ˆ

e
L
L

d
dt

L
L

L i T

T

e
L
L

d
dt

d
m

r

rd m

r

m sD rd r r rq

r

q
m

r

rq

= =
− −( )

=

ψ ψ ω ψ

ψ
==

− +( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

L
L

L i T

T
m

r

m sQ rq r r rd

r

ˆ ˆψ ω ψ
	 (6.25)

In this case, the speed is estimated as

	
ˆ ˆ ˆ ˆ ˆωr p q d d q i q d d qK e e e e K e e e e dt= −( ) + −( )∫ 	 (6.26)

As expected, the back emf components can be obtained without any integration, different 
from the previous scheme. When this last MRAS observer is used in sensorless drives, 
satisfactory performance can be achieved even at low speeds [1]. What is critical in this 
scheme is the correct knowledge of the stator resistance, which can influence significantly 
both the stability and the performance of the entire system at low speed.

An MRAS scheme which is insensitive to the stator resistance variations can be obtained 
by using a speed tuning signal which depends on a quantity that does not contain the 
stator resistance term. To achieve that, the speed tuning signal is deliberately chosen as 
Im(( ) *) Im( * *)e e i ei ei− = −ˆ ˆs s s

.
From this standpoint, the following variable is estimated by the reference model:
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while the equivalent one is estimated by the adaptive model:

	
ˆ ^ ˆ ˆ ˆ ( ) (y e i e i

L
L T

i i is q sD d sQ
m

r r
rd sQ rq sD r rd sD r= = − = − + −i e

1
ψ ψ ω ψ ψ qq sQi )

⎡

⎣
⎢

⎤

⎦
⎥ 	 (6.28)



282 Power Converters and AC Electrical Drives with Linear Neural Networks

In this case, the speed is estimated as:

	
ˆ ˆ ˆωr p iK y y K y y dt= −( ) + −( )∫ 	 (6.29)

It could be observed that the tuning signal is independent from the stator resistance, and 
thus, the speed estimation is insensitive to its variations. It permits the drive to obtain a 
satisfactory performance even at low speeds [33].

The classic MRAS scheme based on the flux error (Figure 6.21) has been experimentally 
implemented in a 2.2 kW FOC IM drive (see Appendix 11.A) on a test setup (see Appendix 
11.B). Figure 6.23 shows the experimental time waveform of the reference, measured, and 
estimated speed as well as the speed estimation error. In this case, open-loop flux integra-
tion has been done by adopting an LPF (see Figure 6.1). The test refers to a set of speed 
reference step variations with this sequence: 20 → 15 → 13 → 10 rad/s at no load. Results 
show a good tracking of the estimated speed at 10 rad/s. Below 10 rad/s, the speed estima-
tion error increases dramatically, mainly because of the open-loop integration performed 
by LP filtering.

6.4.6.2  Closed-Loop MRAS

The CL-MRAS (Closed Loop) integrates the characteristics of a closed-loop flux observer 
(CLFO) with those of an MRAS, including also a mechanical system model [34–36]. The 
CLFO, proposed in Refs [32,37], combines the voltage and the current models of the IM, 
but rather than proposing an abrupt switching between the two models at a certain speed, 
it provides a smooth and continuous transition from one model to the other. Figure 6.24 
shows the block diagram of the CL-MRAS observer. The rotor flux is estimated as the 
sum of high-pass-filtered and low-pass-filtered flux, estimated, respectively, by the volt-
age and the current models. This leads to a correction term which depends on the differ-
ence between the two estimated fluxes, subsequently processed by a PI controller. The 
resulting observer presents a smooth transition between current and voltage model flux 
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estimation which is ruled by the closed-loop eigenvalues of the observer, determined by 
the parameters of the PI controller. At rotor speeds below the bandwidth of the observer, 
its sensitivity to the parameters corresponds to that of the current model, while at high 
speeds, its sensitivity corresponds to that of the voltage model. [35,36] applies an MRAS 
CLFO based on a PI controller–based minimization of the cross product between the 
rotor fluxes, estimated, respectively, by the voltage model and the current model. In this 
observer, which is an evolution of [34], the closed-loop topology provides the necessary 
feedback for the voltage model integration, so that in the voltage model an LPF is not 
required to cancel the DC drift, different from [8]. However, this results in a bad behavior 
of the observer at low speeds: in fact, as clearly written in [35,36], on the one hand, the 
current model has no DC constant output, and therefore, the flux-coupling PI controller 
ensures zero DC level at the output. On the other hand, as frequency approaches to zero, 
the cross product also approaches to zero, and speed estimate forcing is lost. A mechani-
cal model of the machine for compensating this aspect is then to be used, which permits 
the flux and the speed to be estimated also when the vector product between the fluxes 
approaches to zero. The structure of the mechanical model is such that the electromag-
netic torque is estimated, and it is fed to a first-order mechanical model. This is also 
driven by the fluxes vector product through a PI controller, helping compensate model 
errors. A feed-forward term (Kp1 in Figure 6.24) weights the effect of the CLFO and the 
mechanical model on the speed estimation. If the mechanical model is not properly tuned, 
simply a reduction of the performance of the observer is obtained, but in any case, there 
is still an improvement over the case where no mechanical model is used at all [35,36]. 
Obviously, this is paid with an increase of the complexity of the observer. Moreover, this 
observer requires two coordinate transformations, respectively, from the stator- to the 
rotor-oriented reference frame and vice versa, and the flux estimation is dependent on the 
speed estimation, different from [8].
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6.4.7  Full-Order Luenberger Adaptive Observer

To develop the structure of the full-order Luenberger adaptive observer, firstly, a state 
estimator has been developed, which can be used to estimate the state variables of the 
IMs. Among the various choices, the rotor flux linkage and the stator current components 
have been chosen in Ref. [12] since they are the most suitable for integrating the observer in 
rotor flux–oriented control. The state estimator can be further modified so as to include the 
speed estimation, giving rise to an adaptive speed estimator (in general a speed-adaptive 
flux observer). The adaptation mechanism has been derived so as to guarantee the stability 
of the system, exploiting the state-error dynamic equations of the machine together with 
the Lyapunov stability theorem.

6.4.7.1  State-Space Model of the IM

If the stator current and the rotor flux-linkage space-vectors are chosen as state variables, 
the state equations of the IM in the stationary reference frame can be written as [12]
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In the above state representation, x is= ʹ[ ],ψ r  is the state vector, composed of the stator cur-
rent and rotor flux-linkage direct and quadrature components in the stationary reference 
frame, us is the input vector composed of the stator voltage direct and quadrature compo-
nents in the stationary reference frame, A is the state matrix (4 × 4 matrix) depending on 
the rotor speed ωr, B is the input matrix, and finally C is the output matrix.
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6.4.7.2  Adaptive Speed Observer

The full-order Luenberger state observer can be obtained from Equations 6.30 and 6.31 if 
a correction term is added, containing the difference between the actual and estimated 
states. In particular, since the only measurable state variables are the stator currents, the 
correction term involves only the error vector on the stator current err = (is − îs), as in the 
following:

	

d
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x

Ax Bu G i is s s= + + − 	 (6.32)

where
∧ means the estimated values
G is the observer gain matrix which is designed so that the observer is stable

To ensure the stability in the whole speed range, it is convenient to select the observer 
poles proportional to the motor poles [12] by a suitable constant k ≥ 1. In this way, the 
observer dynamics can be made faster than that of the motor, even if small values of k are 
usually chosen to make the observer more robust against noise. Adopting the classic pole-
placement technique, the gain matrix G (2 × 4) can be selected as
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where the four gain terms can be obtained from the eigenvalues of the IM as
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From Equation 6.34, it can be observed that the gain matrix G depends on the estimated 
speed 𝜔̂r. Such a choice guarantees that the estimated states converge toward the actual 
ones in the whole speed range.

Figure 6.25a shows the loci of the machine and observer poles, according to the variation 
of the machine speed, when the observer poles have been selected twice as much as the 
machine ones.

A slightly different approach for the gain matrix selection has been proposed by Maes and 
Melkebeek [38], where the observer poles sobs have been selected by shifting the machine 
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poles smot to the left in the s plane of an amount equal to ks(a11 + a22). Since a11 and a22 are nega-
tive quantities, the observer poles are

	 s sobs s motk a a= + +( )11 22 	 (6.35)

with ks, a positive quantity. The resulting gain matrix components are
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The gains, depending also in this case from the estimated speed, can be either computed 
on-line or off-line and stored in the memory of the microprocessor, to be used during 
operation. Figure 6.25b shows the loci of the machine and observer poles, according to the 
variation of the machine speed, when the observer poles have been shifted with ks = 0.5 
with respect to the machine ones.

As highlighted in Ref. [38], the following main advantages can be achieved by adopting 
such gain matrix choice:

•	 At low speed, the slowest pole of the classical method is closer to the imaginary 
axis, thereby giving slower error decrease.

•	 At high speed, the classical pole-placement method results in poles with a very large 
imaginary part, and they can cause instability when representing the observer in 
discrete time.

It can be further observed that the state matrix Â presents the ∧ symbol, since it is a func-
tion of the estimated speed 𝜔̂r. In this case, the estimated speed is considered as a param-
eter of Â, different from the EKF where it is considered as a state variable [1].

In order to find the speed-adaptive law, the Lyapunov stability theorem has been used. 
After defining the following Lyapunov function V,
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where λ is a positive constant. From the time derivative of (6.37), it is possible to find the 
following speed tuning signal:
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In order to improve the dynamics of the speed estimation, the error term eω can be cor-
rected by a PI controller as

	
ˆ ( ˆ ) ( ˆ ) ( ˆ ) (ω ψ ψ ψ ψr p rq sD sD rd sQ sQ i rq sD sD rd sK i i i i K i i i= − − −( ) + − − QQ sQi dt−( )∫ ˆ ) 	 (6.39)

The block diagram of the full-order Luenberger adaptive observer is shown in Figure 6.26. 
It has been experimentally implemented in a 2.2 kW FOC IM drive (see Appendix 11.A) 
on a test setup (see Appendix 11.B). The observer has been integrated with the Rs and Rr 
estimation algorithm called algorithm 3 in Section 6.4.3.

The first test refers to a set of speed reference step variations with this sequence: 0 → 100 → 
−100 → 0 rad/s at no load. Figure 6.27a shows the experimental time waveform of the reference, 
measured, and estimated speed as well as the speed estimation error. Figure 6.27b and c shows 
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FIGURE 6.26
Block diagram of the full-order 
Luenberger adaptive observer.
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the corresponding waveforms of the rotor flux amplitude, electromagnetic torque, as well as 
the estimated and measured, isD and isQ, current components. Results show a very good track-
ing of the estimated speed both during the steady-state and the transient phase, with a peak 
transient estimation error lower than 20 rad/s and a good matching between the estimated and 
measured current components.

The second test refers to a constant speed reference at low speed at no load. The drive 
has been run at 5 rad/s at no load. Figure 6.28a shows the experimental time waveform of 
the reference, measured, and estimated speed as well as the speed estimation error. Figure 
6.27b shows the corresponding waveforms of the isD and isQ current components as well 
as the estimated Rs and Rr. These figures highlight that the speed estimation error is more 
than 26% at 5 rad/s, even if the stator current components are properly estimated and even 
if the stator and rotor resistance are well estimated. Moreover, the estimated speed pres-
ents a significant ripple.

6.4.8  Full-Order Sliding-Mode Observer

A sliding-mode controller can be suitably adopted to tune the observer for speed and rotor 
flux estimation, permitting the increase of the effective gains of the error compensator. 
A full-order sliding-mode observer has been proposed in Ref. [17]. Figure 6.29 shows the 
block diagram of this observer. The sliding hyperplane is defined in this case on the basis 
of the current estimation error e1 = Δis = (îs − is), as

	
ξ = [ ] = − =ξ ξ1 2

T sdi
dt

di
dt

0s
ˆ

	 (6.40)

The switching signal z of the of the sliding-mode observer is defined as

	 z e= −K sign1 1( ) 	 (6.41)
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The estimation error is forced to zero by the high-frequency nonlinear switching con-
troller of Equation 6.41. The output of the switching controller is directly used to tune 
on-line the observer matrix gain, while it is low pass filtered before being processed by 
the speed estimation algorithm. The robustness offered by the sliding-mode approach 
guarantees a null error in the estimation of the stator current. Furthermore, an H∞ 
approach has been adopted in Ref. [17] for the design of the observer pole placement 
in order to maximize the robustness of the observer itself to parameter variations. 
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This has been done in evaluating the H∞ norm of the transfer function starting from 
the disturbances to the flux estimation error.

The speed estimation has been done in [17], adopting the following adaptation law:

	

d
dt

g
L L
pL

r s r

m

Tω̂ σ
= − z J rŷ ʹ 	 (6.42)

with g being positive adaptive gain.
A further improvement of [17] has been proposed by [39], adopting a sliding-mode 

observer which, however, completely avoids the use of any speed adaptation scheme. 
In [39] the speed is computed in an open-loop way as the difference between the rotor flux-
linkage speed and the slip speed, being the last one computed on the basis of the estimated 
torque.

6.4.9  Reduced-Order Adaptive Observer

The ROO permits the rotor flux-linkage components of the induction to be estimated by 
exploiting an observer of reduced dynamic order (2 instead of 4). The consequent main 
advantage is obviously the reduction of the complexity and the computational demand 
required for its implementation.

6.4.9.1  Reduced-Order Observer Equations

Starting from the state-space representation of the IM model, the matrix equations of 
the reduced-order flux observer, with a voltage error used for corrective feedback, can be 
deduced [9–11,40–43]:

	

d
dt

d
dt

sy y yˆ ˆ ˆʹ ʹ ʹr 22 r 21 s s 12 r 11 s

22

A A i G i A A i B u

A

= + + − − −⎛
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= −

1

GGA A GA i GB u G i12 r 21 11 s 1 s( ) + −( ) − +ŷ ʹ s
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dt

	 (6.43)
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where
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where all space-vectors are in the stator reference frame:

is = [isD  isQ]T is the stator current vector
us = [usD  usQ]T is the stator voltage vector

ŷ ŕ rd rq
T

= ⎡⎣ ⎤⎦ˆ ˆψ ψ  is the rotor flux vector

I J=
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1 0
0 1
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1 0

,

ωr is the rotor speed
G is the observer gain matrix

6.4.9.2  Possible Choices of the Observer Gain Matrix

The choice of a suitable gain matrix G of the observer has been a problem largely dis-
cussed in literature [9,10,41–43]. It is well known [9] that the poles of the ROOs are the pair 
of eigenvalues α ± jβ of the matrix (A22 − GA12), where

	
α

σ σ
ω= − − −p

L
L L

p g
L
L L

gr
m

s r
r re
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s r
r im

	
β ω

σ
ω
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= + −r
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s r
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s r
r im

L
L L

g
L
L L

p g

and

	 G G G I J= + = +re im re img g

Figure 6.30 shows the observer pole locus, the amplitude of poles versus the rotor speed, 
and the damping factor ζ versus the rotor speed, obtained with five different gain choices 
of the matrix gain.

Choice 1: In Ref. [44] a criterion for choosing the locus of the observer poles is to make 
their amplitude constant, in respect to the rotor speed. This criterion leads, as one possible 
solution if α2 + β2 = constant, to a semicircle pole locus with center in the origin, with radius 
R, and lying in the complex semiplane with negative real part. In this last case, then the 
poles placement varies in this locus with the rotor speed, to avoid instability phenomena, a 
maximum rotor speed ωrx must be properly chosen, in correspondence to which the poles 
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of the observer lie on the imaginary axis. The matrix gain choice which guarantees this 
condition is the following:

	

G G G I= + = − +
+ +
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2 2 2 2 ωω ωrx r r rp
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p2 2 2 2+ +
J 	 (6.45)

This matrix gain is dependent on the rotor speed, and therefore, the observer requires the 
correction term dG/dt. With such a matrix gain choice, the poles are complex with a con-
stant amplitude R, but with a damping factor ζ which drastically decreases, from 1 at zero 
speed to about 0 at rated speed and above.

Choice 2: Ref. [43] proposes the following matrix gain choice:

	
G G I= = −re

s m r

s

L L p
R

σ
	 (6.46)

With such a matrix gain choice, the poles of the observer are imaginary with magnitude 
increasing with the rotor speed and the damping factor ζ drastically reducing at increasing 
speed, from 1 at zero speed to about 0 at rated speed and above. This choice cancels from 
the observer in Equation 6.43 the contribution of the stator current. It has the advantage 
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that the gain matrix is not dependent on the rotor speed and therefore it is simpler than 
other solutions; for the same reason, it does not even require the correction term dG/dt.

Choice 3: Ref. [9] proposes the following matrix gain choice:
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This matrix gain is dependent on the rotor speed, and therefore, the observer requires 
the correction term dG/dt. With such a matrix gain choice, the poles of the observer are 
complex with magnitude increasing with the speed and the damping factor ζ reducing at 
increasing speed, from 1 at zero speed to about 0.7 at rated speed and above. However, in 
[9], it is claimed that this matrix gain choice reduces the sensitivity of the observer to rotor 
resistance variations.

Choice 4: Ref. [43] proposes also the following matrix gain choice:
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This matrix gain is dependent on the rotor speed, and therefore, the observer requires the 
correction term dG/dt. With such a matrix gain choice, the poles of the observer are real 
and lie on the negative real semiaxis with magnitude increasing with the speed and a 
damping factor ζ constant with rotor speed and always equal to 1.

Choice 5: Ref. [10] proposes the following matrix gain choice:
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	 (6.49)

Assigned two threshold values ω1 and ω2 to the rotor speed, the gain matrix G has three 
discrete values. Below ω1, no correction feedback is given to the observer, and it behaves as 
the simple “current” model of the IM, based on its rotor equations. Above ω2, the correction 
feedback given to the observer is a constant multiplied with identity matrix, and it behaves 
as the simple “voltage” model of the IM, based on its stator equations. Between ω1 and ω2, 
the gain matrix G linearly varies from the two limit conditions. For this reason, it has been 
called current voltage model (CVM), since it gives rise to a smooth transition from the “cur-
rent” to the “voltage” model according to the increase of the rotor speed. With such a choice, 
the poles of the observer are complex, with magnitude firstly increasing and then decreas-
ing with the rotor speed, and a damping factor ζ drastically reducing at increasing speed, 
from 1 at zero speed to about 0 at rated speed and above. As mentioned earlier, however, 
this solution makes the observer work as a simple open-loop estimator both at low and high 
speeds, with the consequent DC drift integration problems. This is not the case in the other 
four ones. See [10] for the choice of ω1 and ω2.



295Sensorless Control of Induction Machine Drives

A slightly different approach is the one developed in the framework of the CL-MRAS 
[37] (see Section 6.4.6), which proposes an observer where the rotor flux is estimated as 
the sum of high-pass-filtered and low-pass-filtered flux, estimated, respectively, by the 
“voltage” and the “current” models. This leads to a correction term that depends, differ-
ent from the other choices discussed earlier, on the difference between the two estimated 
fluxes, which are subsequently processed by a PI controller. The resulting observer pres-
ents a smooth transition between “current” and “voltage” model flux estimation which is 
ruled by the closed-loop eigenvalues of the observer, determined by the parameters of the 
PI controller. At rotor speeds below the bandwidth of the observer, its sensitivity to the 
parameters corresponds to that of the “current” model, while at high speeds, its sensitivity 
corresponds to that of the “voltage model.” In this sense, it behaves like choice 5.

Table 6.2 summarizes the features of all five choices, mainly focusing on the variations 
of the observer pole amplitude with the rotor speed, the variation of the damping factor ζ 
with the rotor speed, the dependence on the matrix gain G by the rotor speed, and the DC 
drift integration problems. From the standpoint of the pole amplitude variation, choice 1 
is the best since it permits the amplitude to be constant, choices 2, 4, and 5 permit a low 
variation of the pole amplitudes, and choice 3 causes a high variation. As for the damping 
factor variation, choice 4 is the best since it keeps ζ always equal to 1, choice 3 permits a low 
decrease of ζ at increasing rotor speeds, and choices 1, 2, and 5 cause a strong reduction of ζ. 
As for the dependence of G on the rotor speed, all the choices except choice 2 suffer from 
this variation. As for the DC drift integration problems, only choice 5 presents this negative 
issue, especially at low and high rotor speeds.

6.4.9.3  Speed Estimation

The reduced-order adaptive observer proposed in [9] adopts an MRAS system based on 
flux error processing to estimate the rotor speed. As a matter of fact, it adopts the ROO as 
reference model and a current model, like in [8], as adaptive model. In this way, the refer-
ence model is a combination of the voltage and current models, depending on the rotor 
speed estimation, while the adaptive model is the current model itself.

In this case, the speed is therefore estimated as

	
ˆ ˆ ˆ̂ ˆ ˆ̂ ˆ ˆ̂ ˆ ˆ̂ω ψ ψ ψ ψ ψ ψ ψ ψr p rq rd rd rq i rq rd rd rqK K dt= −( ) + −( )∫ 	 (6.50)

Figure 6.31 shows the block diagram of the reduced-order adaptive observer.

TABLE 6.2

Issues of 5 Selected Matrix Gain Choices

Pole Amplitude 
Varying with ωr ζ Decreasing with ωr G Depending on ωr

DC Drift 
Integration 
Problems

Choice 1 No Yes (high) Yes No
Choice 2 Yes (low) Yes (high) No No
Choice 3 Yes (high) Yes (low) Yes No
Choice 4 Yes (low) No Yes No
Choice 5 Yes (low) Yes (high) Yes Yes

Source:	 From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 54(1), 2007.
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6.4.10  Extended Kalman Filter

The use of the EKF is a further approach for the speed estimation of IM drives [45]. EKF is 
suitable for high-performance drive, permitting a good accuracy in the speed estimation 
in a wide speed range, including low speeds. Moreover, it can be further adopted for joint 
state and parameter estimation. As a counterpart, it is computationally more demanding 
than the full-order adaptive observer and obviously also than the reduced-order adaptive 
observer. The EKF is a recursive optimum stochastic state estimator, which can be used 
for the joint state and parameter estimation of nonlinear dynamic systems in real time by 
using noisy monitored signals that are affected by random noise. The underlying assump-
tion is that the measurement noise and the disturbance noise are uncorrelated, taking the 
noise sources into account including measurement and modeling inaccuracies. Different 
from the full-order adaptive observer, it permits the noise to be taken into consideration 
in the estimation process, since it is a stochastic estimator. Furthermore, the EKF assumes 
the speed as a state variable, whereas the full-order adaptive observer assumes it as a 
parameter.

The main steps for the design of a speed sensorless IM drive adopting an EKF are [1]

	 1.	Selection of the time-domain IM model
	 2.	Discretization of the IM model
	 3.	Determination of the noise and state covariance matrices Q, R, and P
	 4.	 Implementation of the discretized EKF and tuning

With regard to the time-domain model, the most adopted is that assuming the stator cur-
rents and the rotor flux linkages as state variables, expressed in the stationary reference 
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frame (see Equations 6.30a and 6.30b). If this model is augmented with the estimated quan-
tity, the rotor speed in this case, the obtained state vector equation is the following:
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A is the system matrix, and C is the output matrix. It should be further noted that the sys-
tem matrix A is nonlinear, depending it on the state variable ωr, that is, A = A(x).

The EKF estimation x̂ is obtained by the predicted values of the states x, and this is cor-
rected recursively by using a correction term, which is the product of the Kalman gain K 
and the deviation of the estimated measurement output vector from the actual one (y − ŷ). 
The Kalman gain has to be chosen to provide the optimal estimated states. The filter algo-
rithm contains two main stages, the prediction stage and the filtering stage [1]. During the 
prediction stage, the next predicted values of the states x(k + 1) are obtained by using the 
machine mathematical model (state equations) and the previous values of the estimated 
states. Furthermore, the predicted state covariance matrix P is obtained before the new 
measurements are made; for this purpose, the mathematical model and the covariance 
matrix of the system Q are adopted. During the filtering stage, the next estimated states x̂(k 
+ 1) are obtained from the predicted estimates x(k + 1) by adding a correction term K(y − ŷ) 
to the predicted value. This correction term is a weighted difference between the actual 
output vector y and the predicted output vector ŷ where K is the Kalman gain. The pre-
dicted state estimation (and the covariance matrix) is corrected by a correction scheme, 
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making use of the real measurement quantities. The Kalman gain is chosen to minimize 
the estimation error variances of the states to be estimated.

The EKF vector equation is the following:

	

d
dt

s s
ˆ

( ˆ )ˆ ( ˆ )
x

A x x Bu K i i= + + − 	 (6.53)

6.5  Anisotropy-Based Sensorless Techniques

6.5.1  Signal Injection Techniques

6.5.1.1  Revolving Carrier Techniques

In this kind of sensorless technique, a polyphase rotating carrier at pulsation ωc is usually 
added to the fundamental voltage generated by the pulsewidth modulation (PWM) system 
[3,6,18,46], as shown in Figure 6.32. This term is of the type

	 uc c
j tu e c= ω 	 (6.54)

where uc is the amplitude of the revolving carrier.
The interaction of such a voltage component with the machine anisotropies causes the 

presence of a current space-vector ic at carrier frequency ωc appearing as a component of 
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the stator current space-vector is. To be further processed by the speed estimation algo-
rithm, the ic component is extracted by a band-pass filter centered at the carrier frequency, 
which separates it from both the fundamental current component and the high-frequency 
components due to the switching. Moreover, the stator current is is low pass filtered before 
being fed to the current controllers, to cutoff the ic component.

As far as the anisotropies are concerned, a single anisotropy with a spatial cycle per 
pole pitch is typical of saturation effects, both of the main flux and slotting ones as well as 
of custom-designed machines. If a system of coordinates x–y rotating at the speed of the 
anisotropy ωx to be detected is considered, to compute the response of the motor to the 
carrier voltage, the voltage term must be transformed into the reference frame rotating at 
speed ωx by multiplying the voltage in (6.54) with the term e j x− w . The resulting voltage equa-
tion, valid only for studying the high-frequency behavior of the machine, is the following:
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σ 	 (6.55)

where
the apex x means that the corresponding terms are expressed in the reference frame 

rotating at speed ωx

Lσ
x  is the total leakage inductance tensor

icx is the stator current space-vector due to the corresponding voltage

The total leakage inductance tensor can be written as
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If Equation 6.55 is solved for icx, considering that ωc >> ωx, the following solution can be 
obtained [3]:
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where Lσd and Lσq are the direct and quadrature leakage inductance components in the ωx 
reference frame. Equation 6.57 shows that, as effect of the application of a rotating voltage 
carrier, two sidebands appear centered around ωc at distance ωx from it. If Equation 6.57 is 
transformed back in the stationary reference frame:
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As a result, a first current space-vector rotating at carrier frequency ωc (positive sequence) 
appears, as well as a second space-vector that rotates at the angular velocity −ωc + 2ωx (neg-
ative sequence). This last component has the information on the speed ωx of the anisotropy 
to be detected. The space-vector given by Equation 6.58 describes an elliptical path trajec-
tory, being the axis ratio of such ellipse Lσq/Lσd (ranging typically between 0.9 and 0.96). 
It is very difficult to determine the angular inclination of the ellipse and, therefore, the 
angular orientation of the anisotropy. As a matter of fact, the component in to be retrieved 
is very small, significantly smaller than the positive one ip and further contaminated by 
the presence of other anisotropies and noisy signals. Finally, it is literally hidden inside the 
fundamental component of the stator current is1 [3].
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If the anisotropy to be detected is the saturation of the main flux, then ωx = ωr, where ωr 
is the speed of the machine in electrical angles; if it is the rotor slot saliency, then 2ωx = qrωr, 
where qr is the number of rotor slots for pole pair.

The original idea of this technique has been proposed in [47], where a spatial modula-
tion of the rotor leakage inductance had been obtained by creating a periodic variation 
of the rotor slot opening width. The wide slot openings create high-reluctance flux paths 
(low inductance), while narrow openings create low-reluctance paths (high inductance). 
Closed-slot rotor bridges are considered undesirable in this case because of the saturation 
effects. In [48], the possibility to track saturation-induced saliencies has been explored. 
Saturation effects are usually associated with the main flux created by the magnetizing 
current or with localized leakage flux created by slot currents. Both forms of saturations 
are capable of spatially modulating the stator transient inductance. A further improve-
ment has been proposed in [18] in which a custom-designed anisotropy of one pole pair 
periodicity is tracked, taking into consideration the rotor slotting–modulated harmonics 
as disturbance. The adopted carrier frequency is 250 Hz. Figure 6.33 shows the block dia-
gram of such a system, which implements a so-called phase-locked loop (PLL).

The input of the system is the carrier-based component of the stator current ic, extracted 
by the band-pass filter in Figure 6.32. It is firstly transformed into the +ωc reference frame, 
in which the ip component appears as a constant. ip is canceled by an integrator in feedback 
configuration. The remaining part of the signal, theoretically only in containing all nega-
tive-sequence components, is transformed into a −ωc reference frame (the frequency origin 
is so shifted to −ωc). The unbalance disturbance is compensated by an estimated current 
vector ˆ ˆiu u

ji e u= ϕ . After such a coordinate transformation, in contains signals at frequencies 
2ωr and qrωr (slotting modulated harmonic). Two anisotropy models are then adopted to 
generate a synchronization signal:

	 s i in r
j
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j qe er r r slotˆ ˆ ˆˆ ˆ ˆ ˆ

ϑ ϑ ϕ ϑ ϕ( ) = ++( ) +( )
2

2 2 	 (6.59)

This synchronization signal depends on the estimated rotor position ϑ̂r. sn(ϑ̂r) is phase 
locked with the transformed negative component in. The error signal is the vector product 
ɛ = in

∧sn(ϑ̂r), which is forced to zero by a proportional integral derivative (PID) controller, 
which provides the estimated acceleration of the motor. A mechanical model of the system 

e jx

e jxe–jx

e jxislot

i2

inic PID

sn(θr)

   slot

qr

22
+

++

+

1

+ ++
ˆ

ˆ

–
+
–

+
–

sτ

1
s

1
sτm

1
s

ωc

tL

+ ωc reference frame – ωc reference frame
Mechanical model

Built-in saliency

Slotting e�ect

Stator reference
frame

ωct

ε θr

ˆ ωrˆ
ˆ

   u

ˆ

iu
j  uˆ

FIGURE 6.33
(See color insert.) Block diagram of the rotor position estimator based on PLL for anisotropy tracking.



301Sensorless Control of Induction Machine Drives

is then used to compute both the angular speed and position. An estimated torque signal 
t̂e can be used to further improve the dynamics of the observer. This approach does not 
take into consideration the saturation caused by the main flux, and therefore, it can be 
suitably used in unsaturated machines. As a matter of fact, it would be difficult to separate 
custom-made and saturation-induced harmonics, considering that they present very close 
harmonics (ωs ≅ ωr). To overcome this problem, [49] proposes a methodology based on the 
tracking of the rotor slotting anisotropy, trying to compensate the saturation effects con-
sidered as disturbances. A saturation model of the machine is suitably developed, generat-
ing a signal, taking into consideration the effects of both the excitation and load current 
components. Figure 6.22 shows the block diagram of such a scheme.

The input of the system is the carrier-based component of the stator current ic, extracted 
by the band-pass filter in Figure 6.32. It is firstly transformed into the −ωc reference frame, 
where an LPF permits the retrieval of the negative current component in, containing all 
negative-sequence components as îsat, îslot, and îu. The saturation current component îsat is 
treated as a disturbance, and thus, it is attenuated. It is estimated by two complex functions 
f2(is1) and f4(is1), generating, respectively, the second and fourth spatial harmonics, both 
referred to the fundamental field. The input signal of such functions is the fundamental 
stator current in field coordinates, characterizing in its direct component the main flux and 
in its quadrature component the load. As a matter of fact, the saturation of the machine is 
influenced by both current components. These two functions are machine dependent and 
must determined off-line by an identification process [49]. Since the current harmonics are 
difficult to be compensated by working in the frequency domain, a suitable off-line identi-
fication method has been developed [50], permitting the generation of time waveforms of 
this functions in a time interval equal to one electrical revolution: one waveform for each 
value of excitation and load current. If saturation effects, inverter nonlinearities, and signal 
unbalances, represented by the corresponding space-vectors îsat, îinv, and îu, are properly 
compensated, the remaining signal should depend only on the rotor slotting:

	
ˆ ˆ ( ˆ ˆ )islot slot

j qi e r r slot= +ϑ ϕ 	 (6.60)

If this signal does not contain many other disturbing harmonics, instead of using a PLL, 
a direct computation of the phase angle of îslot can be obtained, as shown in Figure 6.34. 
Since, to obtain the rotor speed, the corresponding position should in any case be differen-
tiated, a PLL is, in general, preferable.

As an example, Figure 6.35a and b shows, respectively, the steady-state stator current 
space-vector locus and its relative spectrum (computed with a fast Fourier transform [FFT] 
and referred to the fundamental component amplitude) of a 2.2 kW motor. These results 
have been obtained by a finite-element analysis (FEA) (see Section 6.5.1.2 for details) under 
a working fundamental frequency of 1 Hz and a carrier frequency of 1500 Hz at no load 
with an open-slots machine. The inverter switching effects have not been considered in this 
analysis. Figure 6.35a clearly shows that the stator current locus, ideally a circle, presents 
several additional lobes due to the carrier excitation. Figure 6.35b shows the two harmonic 
components of the stator current caused by the rotor slotting effect (qr = 14), precisely ip 
at 1500 Hz (ωc) and in at 1486 Hz (ωc − qrωr), as expected. It further shows that while the ip 
amplitude is almost 16% of the fundamental, the in amplitude is less than 0.68%, making 
its detection quite difficult.

A completely different approach has been proposed by [51], where the rotating carrier 
is used to modulate the saturation level of the air-gap flux. The underlying idea is that, 
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since the leakage inductances are affected by the main flux by saturation, an unbalance 
of the phase leakage voltages contains the information of the air-gap flux angle. Since the 
unbalance of the leakage voltages reflects in the existence of zero sequences in the sta-
tor voltage, this quantity is measured either between the midpoint of the DC link of the 
inverter and the neutral of the stator winding or with an artificially constructed neutral 
(e.g., resistors). For this reason, this technique has been called ZST (zero-sequence tech-
nique). In this case, the carrier frequency is not constant but variable as ωc = ω0 + ωs, where 
ω0 = 2π500 rad/s and ωs is the stator fundamental frequency. The zero-sequence voltage 
presents, thus, a constant frequency equal to ωc − ωs = ω0. The flux amplitude is computed 
on the basis of the precommissioned look-up table. It is even possible to eliminate the use 
of current sensor, replacing them with current estimators as demonstrated in Ref. [51]. 
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A further paper of the same authors [52] focuses on the issues related to the presence 
of the additional high-frequency field and predicts the resulting harmonic content of the 
zero-sequence voltage by using three different approaches such as analytical calculations, 
computer simulation, and FEA. Moreover, an expression is introduced for generalizing the 
results in the presence of different kinds of injections, both pulsating and rotating carriers, 
demonstrating the different nature of the ZST.

6.5.1.2  IM Saliency Analysis under Rotating Carrier by FEA

How significantly the machine saliency is excited by the carrier supply is a crucial issue 
for the estimation of the machine speed/position. The correct choice of the parameter of 
the machine giving proper information on the saliency is a key point. As far as sensorless 
control based on high-frequency voltage carrier injection is concerned, the amplitude of 
the carrier voltage is the cause of the excitation, while the corresponding current harmonic 
content is the effect. None of the two is, thus, the best parameter to be chosen.

One of the parameters to consider is the space harmonic of the machine stator induc-
tance, in particular its space harmonic responsible for the saliency excited by the carrier. In 
the following, it is the rotor slotting saliency of the machine which is to be tracked.

The machine stator inductance under fundamental sinusoidal supply has a spatial harmonic 
due to the rotor slotting effect at frequency ωr(qr − 1). The existence of the high-frequency 
voltage carrier in addition to the fundamental frequency, however, modifies the magnetic 
structure of the machine, generating new space harmonics of the stator inductance. In par-
ticular, if the machine rotates at steady-state at the speed ωr, a spatial harmonic of the stator 
inductance at ωc ± ωrqr appears (the sign depending on the qr equal to 3n + 1 or 3n − 1).

The ratio between the amplitude of this spatial harmonic and the amplitude of the funda-
mental spatial harmonic of the stator inductance, defined Lhexc, can be an interesting index 
for evaluating the response of the machine to the carrier excitation [53,54]. The best way 
to obtain this parameter is by the FEA of the machine, which permits finding the exact 
stator spatial flux distribution at speed steady-state (ϑr = ωrt) in the presence of only the 
fundamental and the carrier frequency supply. Figure 6.36a and b shows the magnetic flux 
density lines obtained with the FEA (software Flux-2D®) of two IMs of rated power 2.2 kW, 
suitably constructed with identical stators and two rotor configurations, respectively, in case 
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of closed and open rotor slots with unskewed bars (see Figure 6.37). The test has been done 
with the machine running at steady-state at no load supplied at fundamental frequency of 
1 Hz, at the rated rotor flux linkage of 1 Wb, and with a voltage carrier frequency at 1500 Hz.

The space-vector of the stator inductance Ls can be defined on the basis of quantities 
coming from the FEA:
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FIGURE 6.36
(See color insert.) (a, b) Magnetic flux density lines in the closed-slots (a, left) and open-slots (b, right) machines. 
(From Pucci, M. and Serporta, C., IEEE Trans. Magn., 46(2), 2010.)

FIGURE 6.37
Photograph of the three rotors, skewed (left), unskewed (center), and unskewed with open slots (right). (From 
Cirrincione, M. et al., IEEE Trans. Ind. Appl., 44, 1683, 2008.)
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Figure 6.38a shows the locus of the stator inductance space-vector, obtained with the two 
motors, respectively, with closed and open slots, under a pure sinusoidal supply at 1 Hz at no 
load while Figure 6.38b shows the same locus when the rotating voltage carrier is added to 
the fundamental supply. It can be clearly observed that the presence of the carrier modifies 
significantly the stator inductance space-vector locus, introducing additional lobes in it.

As a result from the FEA test, Figure 6.39 shows the relative Lhexc under different carrier fre-
quencies. The magnitude of the revolving voltage carrier has been increased linearly with its 
frequency starting from a value of 20 V at 400 Hz to maintain the stator current signal almost 
constant. Figure 6.39 plots the relative Lhexc versus the carrier frequency in a frequency interval 
ranging from 400 to 3000 Hz. Results highlight firstly that the relative Lhexc of the machine with 
open rotor slots is always higher than that of the machine with closed rotor slots for any value 
of the carrier frequency, as expected. Moreover, for both kinds of motors, the relative Lhexc 
increases with the carrier frequency up to a certain value, beyond which, it starts decreasing.
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The behavior of the machine under different load conditions has been analyzed. All the tests 
have been done at the carrier frequency of 1500 Hz, where the slotting effect in the machine is 
the maximum (see Figure 6.39). In particular, the machine has been supplied at voltage values 
increasing in amplitude and frequency with the load torque, so as to make the machine work 
always at the same rotating speed of 30 rpm (corresponding to the supply frequency of 1 Hz at 
no load). Figure 6.40 plots the relative Lhexc versus the load torque in an interval ranging from 
2 to 10 N m (close to the rated one). Results highlight firstly that Lhexc of the machine with open 
rotor slots is always higher than that of the machine with closed rotor slots for any value of 
the load, as expected. Moreover, for both kinds of motors, the relative Lhexc decreases with the 
load up to a certain value (8 N m in the motors under test), above which the relative Lhexc starts 
increasing. Above a certain load, both kinds of machines start increasing their saliency effects.

Also the behavior of the machine after some modifications of the rotor structure has 
been studied [54]. Also in this case, the tests have been done at the carrier frequency of 
1500 Hz. In particular, two kinds of rotor structure modifications have been taken into 
consideration: (a) the variation of the rotor bar cross-section area and (b) the variation 
of the depth of the rotor slot opening. With regard to point (a), the rotor bar shape has 
been modified so as to maintain the ratio between the quantities a and b (see Figure 6.41) 
constant. In this way, it can be observed that the bar cross-section area maintains almost 
constant, according to the variations of a and b from their corresponding values of the pro-
totype aprot and bprot. This has been done to maintain the current density in the bar almost 
constant. With regard to point (b), the slot depth c (see Figure 6.41) has been increased 
starting from the value of the machine prototype cprot. Figure 6.42 shows the Lhexc versus the 
ratio a/aprot, while Figure 6.43 shows the Lhexc versus the ratio c/cprot.

In synthesis, the following considerations could be done:

	 1.	An optimal carrier frequency range exists where the machine shows at the best its 
rotor slotting effects. This threshold carrier frequency is higher in the open-slots 
machine than in the closed-slots machine.

	 2.	Reducing the rotor flux linkage during the operation of the machine, especially in 
open-slots machine, amplifies the slotting effect.
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FIGURE 6.41
Variations of the bar cross-section area (a) and slot depth (b). (From Pucci, M. and Serporta, C., Electric Power 
Syst. Res., (81), 318, 2011.)
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	 3.	 Increasing the load torque reduces the slotting effect of the machine up to a certain 
load above which the slotting effect starts increasing; this effect is more observ-
able in open slots machine than in closed-slots ones.

	 4.	A suitable design criterion for the rotor to amplify the slotting effect is to build the 
rotor bar thinner.

	 5.	A suitable design criterion for the rotor to amplify the slotting effect is to build the 
rotor slot deeper.

6.5.1.3  Pulsating Carrier Techniques

Rotating carrier-based techniques permit the entire machine circumferential profile of 
asymmetries to be properly scanned. An alternative approach is to inject not a rotating but 
pulsating carrier, variable in time, but fixed in space. The direction in which the carrier 
should be oriented must be selected so as to maximize the sensitivity of the method versus 
the anisotropy to be detected.

A first kind of techniques is based on the balance of quadrature impedances [55]. This 
method tries to extract the information of the flux angle, during low- or zero-speed opera-
tion. In this case, a high-frequency carrier signal is added to the control input of the PWM, 
written in this way in field coordinates:

	 us
F

sx
F

c c sy
Fu u t ju( ) ( ) ( )( )cos( )= + +ω 	 (6.62)

The signal (6.62) excites the machine in the direct axis x. The estimated direct axis 𝜌 
can be different from the real one ρ of the quantity (𝜌  − ρ), being the difference small, 
since it is assumed that the estimated angle is going to converge toward the real one. 
Because of the anisotropic impedance of the machine, the high-frequency current due 
to the corresponding voltage develops a spatial displacement γ with respect to the 
real flux angle, corresponding to a phase angle γ + (𝜌  − ρ) with respect to the injected 
voltage. It can be observed that, when operated in saturated conditions, the machine 
offers an impedance Żc at carrier frequency ωc, function of the circumferential angle α 
in field coordinates. This impedance presents its maximum value Żx on the direct axis 
x and its minimum Ży on the quadrature axis y. It should be noted that the impedance 
Żc is related to the total leakage inductance, and not to the stator or the rotor leakage 
inductances. The estimated angle 𝜌  is thus different from both the stator and rotor flux 
angle, resulting in a need of correction for correctly performing the field orientation. 
The tracking of the x-axis is based on the symmetry of the Żc characteristic, that is, 
Żc(α) = Żc(−α), as shown in Figure 6.44.

Moreover, an orthogonal x-y coordinate system is introduced, with its real axis displaced 
by −π/4 with respect to the estimated x-axis and by −(π/4 − γ) with respect to the real x-axis. 
Figure 6.45 shows the block diagram of the proposed method. The carrier component of 
the stator current ic as well as the excitation signal ucx is transformed into the aforemen-
tioned x-y reference frame. They are then converted in complex vectors characterized in 
magnitude by their own RMS values and in phase by their proper phase. From these, the 
complex impedance is obtained as
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Żx and Ży would be equal in condition of proper alignment of the x-y reference frame with 
the flux, resulting in γ = 0. Since a positive error angle γ is a cause of an increase in Żx and 
a decrease in Ży, the following error signal can be used:

	 e g g= −� �Z Zy x( ) ( ) 	 (6.64)

A PI controller finally processes the error signal ɛ to retrieve the estimated angle 𝜌.
A different approach has been followed by Consoli et al., [56], which is, however, in the 

framework of the ZST [51]. It proposes an improvement of the sensorless scheme based 
on the injection of a low-frequency (50/100 Hz) sinusoidal component to the normal stator 
current reference. This low-frequency component is stationary in space, meaning that it is 
applied on a constant angular position and generates a sinusoidal mmf interacting with 
the main rotating field. As a result, a modulation of the saturation level of the machine core 
which depends on the position of the air-gap flux is obtained. Consequently, a component 
of the zero-sequence voltage is produced, containing information about the position of the 
air-gap flux. The main difference of this approach is that low-frequency (0 ÷ 5 Hz) signal 
demodulation is achieved, thus avoiding any approximation generated by high-frequency 
signal demodulation.
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6.5.1.4  High-Frequency Excitation Techniques

The underlying idea of such techniques is that the switching of a PWM inverter imposes to 
the machine a set of repetitive transient excitations. Correspondingly, the transient flux com-
ponents cannot penetrate the rotor sufficiently to create a mutual flux linkage. The resulting 
flux is the superimposition of separate leakage fluxes, linking, respectively, with the stator 
and rotor windings, thus contributing to the total leakage flux. In Ref. [50], it has been clearly 
demonstrated that the fundamental flux linkage and the transient one, caused by the step-
like transient excitation, can be treated separately, under the assumption of linearization of 
the magnetization curve. On this basis, a separate analysis referring only to the transient 
flux linkage can be made. The transient flux-linkage space-vector ψσtr can be written as

	 y σ σtr tr= L i 	 (6.65)

where
itr is the current component caused by the transient voltage utr

Lσ is the tensor of the total leakage inductance (see Equation 6.56)

If the stator resistance is neglected, the voltage equation during a switching transient can 
be written as

	 u u utr s s= − 1 	 (6.66)

where us1 is the space-vector of the fundamental stator voltage existing at steady-state just 
before the activation of the switching. This transient voltage will cause a variation of the 
leakage flux space-vector:

	
u L

i
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L
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tr tr
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d
dt

d
dt

d
dt

= = +
y σ

σ
σ 	 (6.67)

that must be added to the leakage flux ψσ1 caused by the fundamental voltage. As far as the 
classic model of the IM based on the fundamental mmf is concerned, the leakage inductances 
of each phase are considered balanced. The presence of various kinds of anisotropies in the 
machine is a cause of an unbalance of the phase leakage inductances; as a result, each phase 
can present instantaneously a different value of inductance. It means that the application of 
the transient voltage causes the variation of the transient current in a spatial direction, which 
differs from that of the applied voltage. It obviously implies the representation of the leakage 
inductance as a tensor, instead of a simple scalar, as already mentioned.

To make a proper analysis, the machine is supposed to be saturated on a defined angular 
position δ with respect to the direct axis in the stationary reference frame (see Figure 6.46a). 
Moreover, the machine is assumed at no load. If the voltage vector, us

( )1 , is instantaneously 
activated, the corresponding transient current itr( )1  can be computed from Equation 6.56, con-
verted in the stationary reference frame considering that us1 is null because Rs ≅ 0 and 
dLσ /dt ≅ 0 since δ is constant. To obtain itr( )1 , the global leakage tensor should previously be 
inverted, giving rise to
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On this basis, the transient current can be written as

	

d
dt

L L L L j L Ltr
d q d q d q

i( )

[( ) ( )cos( ) ( )sin( )]
1 1

2
2 2= + − − + −σ σ σ σ σ σδ δ uus

1( ) 	 (6.69)

Equation 6.69 shows that, if different values of δ are considered, the transient current 
derivative space-vector is centered on the apex of the voltage vector us

( )1 , describing a circle 
displaced by an angle 2δ from the direct axis (see Figure 6.46b).

A real IM, besides the saturation effect, presents also the slotting effect. This last effect, 
more visible in open-slots machines than in closed-slots ones, presents a periodicity of 
qrϑr. As a consequence, the saturation and the slotting anisotropies sum their effects, with 
a resulting vector d dttr ri( )( , )1 ϑ δ /  whose apex describes an epicyclical curve centered on the 
apex of the voltage vector us

( )1 . The spatial high-frequency component of such a curve is 
due to the rotor slotting effect, and is displaced by an angle qrϑr around the center point of 
the circle.

If the machine is further loaded, then dϑr/dt ≠ dδ/dt because of the slip frequency. This 
is a cause of a modification in time of the d dttr ri( )( , )1 ϑ δ /  trajectory, maintaining, however, 
the same kind of shape.

If, instead of the us
( )1  space-vector, the us

( )3  is applied, then the resulting d dttr ri( )( , )3 ϑ δ /  
vector will present an epicyclical curve centered on the apex of the voltage vector us

( )3  (sB 
axis of the machine). Finally, the us

( )5  is applied, then the resulting d dttr ri( )( , )5 ϑ δ /  vector will 
present an epicyclical curve centered on the apex of the voltage vector us

( )5  (sC axis of the 
machine).

6.5.1.4.1  INFORM Technique

The INFORM technique has been proposed by Schroedl [20]. Let’s consider the stator equa-
tion of an anisotropic AC machine written in the stationary reference frame [6]:

	
u i L

i
s s

s r

r
r r rR

d
dt

k
T

j T= + + −σ σ ω( )1 y ʹ 	 (6.70)

where
Lσ is the inductance tensor, taking into consideration the saturation-induced anisotropy
kr = Lm/Lr is the coupling factor of the rotor
R R k Rs r rσ = + 2  is the equivalent resistance

The time derivative of the stator current space-vector can be obtained in discrete terms 
as Δis/Δt, on the basis of the difference Δis during the finite time interval Δt, assuming 
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Effect of the anisotropies on the derivative of 
the transient current.
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that the stator voltage space-vector us remains constant during the same time interval. 
The effect of the stator resistance voltage drop and of the back emf in Equation 6.69 
can be canceled by applying consecutively two voltage space-vectors in equal direction 
and opposite orientation. The two subsequent switching configurations in a time inter-
val Δt could then be u us

1
s
4( ) ( )→ , with u us

1
s
4( ) ( )= − , or u us

2
s
5( ) ( )→ , with u us

2
s
5( ) ( )= − , or finally 

u us
3

s
6( ) ( )→  with u us

3
s
6( ) ( )= − . The underlying assumption is also that, during the time inter-

val, the fundamental components of both the stator current is and of the rotor flux-linkage 
y �r space-vectors do not vary significantly. As far as the switching commutation u us

1
s
4( ) ( )→  

is concerned, if each of the two voltage space-vector terms is inserted in Equation 6.70, 
after making the difference, the following equation can be obtained:
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(6.71)

Since both us
( )1  and us

( )4  lie on the direct axis, it is significant to study principally the real 
component of the resulting stator current derivative space-vector. This can be deduced 
from Equation 6.71 after substituting the expression of the inverse of the global leakage 
inductance tensor in Equation 6.68 and finally taking the real component of the resulting 
space-vector. As a result, the following equation is deduced:

	 ℜ − = + − −e s s d q d q sL L L L t( ) ( ) ( )cos( )( ) ( ) [ ]Δ Δ Δi i u4 1 2σ σ σ σ δ 	 (6.72)

Analogous expression of the stator current variation can be obtained for the switching 
commutations u us

2
s
5( ) ( )→  and u us

3
s
6( ) ( )→ , taking from the resulting stator current space-

vectors only the components lying in the direction of the forcing voltage (sB axis for us
( )3  

and sC axis for us
( )5 ). A space-vector of the variation of the stator currents can then be 

defined in this way:
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The resulting expression of the stator current variation space-vector is

	
f = − +1

2
2( ) ( )L L ted q s

j
σ σ

δ πu Δ
ˆ

	 (6.74)

The space-vector f depends on the difference between the direct and quadrature leakage 
inductances, null if these inductances coincide; moreover, it can be computed on-line on 
the basis of the instantaneous measurements of the stator phase currents. Its phase is twice 
the flux phase, except for the constant phase shift equal to π.

As a result, the estimated flux angle is

	

ˆ (arg( ) )δ π= −
1
2

f 	 (6.75)

To make this technique work properly, the machine should have closed rotor slots. The 
closing of the slots, in fact, shields the rotor bars from the high-frequency leakage flux, 
therefore reducing the effect of the slotting which, in this case, is a disturbance and then 
should be properly reduced.
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6.5.1.4.2  Instantaneous Rotor Position Measurement

This technique is based on the idea of exploiting the information linked to the rotor slotting for 
the retrieval of the rotor position. In this sense, different from INFORM method, the rotor slot-
ting is the anisotropy to be tracked and the saturation of the main flux is a disturbance. This 
technique has been proposed in Refs [21,22] and relies on the instantaneous measurement of 
the stator voltage, between the inverter terminals and the star point of the machine [23].

As mentioned earlier, the presence of anisotropies in the machine is the cause of an 
unbalance of the phase leakage inductances. If the rotor slotting effect is accounted for, 
this effect is visible whenever the number of rotor slots for pole pair is not a multiple of 3. 
This is a normal design criterion of IMs because machines with the number of rotor slots 
for pole pair that is a multiple of 3 present a significant torque ripple.

For each phase k of the machine, the dependence of the leakage inductance from the rotor 
slotting effect can be suitably modeled considering only its fundamental component as [22]
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where
Lσ0 is the average leakage inductance
Lσslot0 is the amplitude of the slotting leakage inductance variation

At the same time, the saturation caused on the stator and rotor teeth by the magnetizing 
component of flux density distribution, in proximity of its spatial distribution maximum, 
causes a variation of each phase leakage inductance. This variation can be modeled, for 
each phase k, in this way:
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where
Lσ0 is the average leakage inductance
Lσsat0 is the amplitude of the magnetizing leakage inductance variation
δ is the field angle

Finally, φsat is the angular displacement between the magnetizing fields with respect to 
phase sA. Saturation affects, on the one hand, the permeance of the leakage paths as a 
function of the flux density distribution and, on the other hand, the value of Lσslot0 itself.

The combined effect of the saturation- and slotting-based anisotropies can be repre-
sented taking into consideration a saturation-dependent amplitude modulation factor.

As a result, the total leakage phase inductances can be written, for each phase k, as a 
function of the rotor angle ϑr and of the field angle δ:
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where km = 0.2,…,0.5 is a machine-dependent coefficient.
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One way to acquire the anisotropy-based signal is to measure the zero-sequence voltage 
of the stator winding, defined as the average value of the three phase voltages:

	
u

u u u
s

sA sB sC
0

3
=

+ +
	 (6.79)

Since the back emfs do not present any zero-sequence component,

	 e e esA sB sC+ + = 0 	 (6.80)

with esA, esB, and esC being the back emfs of the three phases, and then it can be written as
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where LσA, LσB, and LσC are the phase leakage inductances, defined as (6.78).
If the transient generated by the switching of the voltage space-vector u us s

( ) ( )1 4= −  is 
considered, the zero-sequence voltage can be written as
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where
The positive (negative) sign is related to the application of u us s

( ) ( )( )1 4

Ud is the DC link voltage

The term us0i takes into account the effects due to the rotor-induced voltages esA, esB, and esC 
and can be written as
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The term us0i can be neglected at low speed, while it can be properly compensated at high speeds, 
taking the difference signal u u us A s s0 0

1
0
4= ( ) ( )−  or u u us B s s0 0

2
0
5= ( ) ( )−  or u u us C s s0 0

3
0
6= −( ) ( ), in dependence 

of which the switching pattern of the inverter is commanded. Since these three voltages form a 
symmetric pattern, a complex space-vector depending on the rotor position can be defined as

	
p( ) ( ) ( )[ ]ϑ α α ϑ ϑr s A s B s C sD r sQ ru u u p jp= + + = +

2
3 0 0

2
0 	 (6.84)

The information about the rotor position is contained in the phase of such a signal, while 
its amplitude does not play any role in it. The position-dependent signal in (6.84) can be 
further compensated by the saturation disturbing term, giving rise to a signal depending 
only on the rotor position [22].

6.6  Conclusions on Sensorless Techniques for IM Drives

A definitive judgment on which among the several sensorless techniques proposed in lit-
erature is the best is a hard task. Some conclusions could, however, be drawn. All the 
techniques based on the fundamental mmf model of the IM are preferable in terms of 
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simplicity and computational demand, even if they must adopt complex models and must 
be integrated with suitable signal processing methodologies for compensating machines 
and inverter nonlinearities, as long as low-speed operation is the target. Suitable param-
eter estimation algorithms must be integrated as well to make them properly work in a 
wide range of working conditions with full torque capability. In general, model-based 
techniques can operate in a wide speed range, whereas saliency-based methods can be 
operated only at very low operating speed or at zero speed. On the contrary, saliency-
based techniques can properly work at very low and zero speed, even in loaded conditions, 
where the model-based techniques fail since the machine speed becomes unobservable 
[3,6]. Moreover, saliency-based techniques permit the drive to be operated in closed-loop 
position control, whereas model-based techniques can be operated basically only in closed-
loop speed control.

Saliency-based techniques can track several saliencies of the motor. Closed-slots machine 
exhibit basically only the main flux magnetic saturation saliency. Its angular orientation 
can be detected and tracked, taking properly into consideration its modification with the 
load. Open-slots machines present further saliencies to be tracked, like the rotor slotting 
effects. Tracking this saliency gives rise to a high-resolution position signal with high 
dynamic bandwidth. In this case, however, the main flux saturation should be considered 
as a disturbance and consequently compensated.

With specific regard to saliency-based sensorless techniques, an extensive theoretical 
and experimental comparison among the main methods has been proposed in Ref. [58]. 
The following conclusions have been carried out [57,58]:

	 1.	All the saliency-based techniques could be suitably adopted for rotor position 
estimation and field orientation, since both slotting effect and saturation-induced 
saliencies give rise to measurable effects.

	 2.	Almost all the methods present the same limits and restrictions, with specific 
regard to those methods tracking the rotor slotting saliency.

	 3.	Saturation-induced saliencies in the zero-sequence-voltage methods, independent 
from the kind of excitation (carrier signal or PWM switching), depend on the main 
flux for the case of open and semiclosed rotor slot machines, suggesting that they 
should be suitably used for flux angle estimation (more difficult in closed rotor slot 
machines).

	 4.	Zero-sequence-voltage carrier-based methods and PWM-switching zero-
sequence-voltage-based methods are based on the same physical principles and 
basically give same kind of results. The differences concern several implementa-
tion issues. It is hard to say definitely which is the best.

	 5.	The inverter nonlinearities, as well as other undesired effects like high-frequency 
phenomena caused by long cables lengths, shielding, and grounding practices, 
influence all the methods in different ways, giving rise to significantly different 
performances of the methods themselves with specific regard to robustness and 
accuracy issues.

	 6.	Significant machine-oriented issues give new prospects to the research, such as 
the effect of motor design on attainable accuracy and resolution, and the number 
of harmonics needed to achieve a specified accuracy. These issues influence also 
the simplicity/complexity of the implementation.
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7
Permanent Magnet Synchronous Motor Drives*

7.1  Introduction

Over the last two decades, permanent magnet synchronous motors (PMSMs) have drawn an 
ever-increasing attention. The idea of substituting the electrical excitation winding of a syn-
chronous machine with the magnets dates back to nineteenth century [1], but the PMSM starts 
to be interesting for practical applications only with the discovery of rare-earth magnets.

Nowadays, PMSMs are widely used in many applications for the following reasons:

•	 No rotor windings are present, so the only electrical contacts are the stator ones; in 
this way, PMSM can be used even in environments with explosion risks.

•	 The absence of excitation windings reduces electrical losses, entailing a higher 
motor efficiency and, at the same time, a lower cooling demand.

•	 Both the torque density and the power density are higher in PMSMs than in exter-
nally excited synchronous motors and in induction machines (IMs).

•	 Since PMSM can achieve higher air-gap flux density, better dynamic performance 
can be obtained with respect to the externally excited synchronous motors.

Nevertheless, they present some drawbacks because of the presence of the permanent 
magnets (PMs):

•	 Being the PM usually made from rare-earth materials, their cost is usually higher 
than externally excited synchronous motors and in IMs.

•	 They present a mechanical fragility that makes the PMSM unsuitable in applica-
tions with heavy mechanical stress.

•	 Finally, the PMs may lose their magnetic properties if exposed to high tempera-
ture; this limits the overloading capability of the PMSM.

PMSMs are usually divided into two categories, DC brushless and AC brushless [2]:

•	 DC brushless synchronous motors are PMSMs with a trapezoidal air-gap flux distribution.
•	 AC brushless synchronous motors are PMSMs with a sinusoidal air-gap flux.

Differences between the two categories lie in mechanical characteristics, control method-
ology, and achievable dynamic performance.

*	 By Angelo Accetta Institute of Intelligent Systems for the Automation (ISSIA), Palermo, Italy-National Research 
Council (CNR).
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7.1.1  DC Brushless Motors

The PM generates a trapezoidal or quasitrapezoidal magnetic flux. On the stator, armature 
windings are usually concentrated, and only two windings at a time are commanded to 
let current flow through them. The primary energy source is generally a DC one, and the 
controller ensures that the DC flows only through two windings, resulting in a square-
waveform current in each armature winding. Each current pulse has a duration equivalent 
to 120°, and it is centered with the back electromotive force (emf), as shown in Figure 7.1.

Obviously, the control methodology for a DC brushless requires the information of 
the shaft position to ensure the correct switching sequence for the armature windings. 
However, it is not required a high precision; the current pulse must be centered about the 
trapezoidal back emf and each stator winding is not allowed to have a current when the 
back emf is changing polarity: only the center of the back emf should be detected. Three 
Hall effect sensors can be therefore used to provide the correct timing pulse for the sta-
tor winding switching sequence [3]. The dynamic performance that can be obtained from 
such motors is strictly dependent on the adopted control methodology; for example, a DC 
brushless fed by a DC commutator can be suitable for PC application like CD players or 
hard disk motors, but the same motor fed by a PWM inverter and another control strategy 
can be used in many servo applications.

7.1.2  AC Brushless Motors

They differ from their DC counterpart in many aspects; the quasisinusoidal distribution 
of the air-gap flux is obtained both by the design of the rotor magnet and of the armature 
windings. The latter are sinusoidally distributed over the pole arc [4], while the PMs are 
usually tapered at the pole edges and shortened in order to occupy a smaller pole arc 
(120°). AC brushless motors are widely used in automotive applications, especially when 
high dynamic performance and accurate positioning are the main goals. Vector control is 
the main control methodology for this kind of motors since it permits obtaining perfor-
mance comparable with classic DC machine.

Another criterion for classifying brushless motors is the location of PMs. Actually, 
they can be placed either on the surface of the rotor, and then the machine will be called 

FIGURE 7.1
Back emf and current pulses for control of DC brushless.
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surface  mounted, or buried inside the rotor, and in this case, it is called interior-mounted 
motor; in Figure 7.2, a scheme of the two magnet displacements is shown.

The surface-mounted motor is theoretically an isotropic machine, being the magnet’s 
magnetic permeability almost equal to the corresponding value of the air. However, the 
speed limit is lower than that of the interior-mounted motor since the magnet is usually 
glued to the rotor surface.

On the other hand, the interior-mounted motor is an anisotropic machine, and because 
of the magnet placement, the reluctance of the direct axis, that is, the axis collinear with 
the direction of the magnetic flux, is greater than that of the quadrature axis. This con-
sideration, as shown in the following, results in a negative reluctance torque. Methods to 
avoid this effect will be explained in this chapter.

PMs can also be used to improve the efficiency and the power factor of a reluctance 
motor: this motor is usually called PM-assisted reluctance (PMAR) motor or simply inte-
rior permanent magnet (IPM) motor. The synchronous reluctance machines (without PM) 
are motors with high dynamic performance and have also a good torque-to-mass ratio; 
nevertheless, their application is limited because of a low power factor. PMs can correct 
their power factor [5].

Actually, the rotor of an IPM motor has usually several flux barriers per pole, where the 
PMs are placed, as shown in Figure 7.3.

These flux barriers have different thicknesses to improve the air-gap flux distribution, 
and the power factor can be increased by properly selecting the PM flux so that the stator 
flux linkage is in quadrature with the current vector, as shown in Figure 7.4 [6].

Indeed, the IPM and PMAR motors typologies should refer to different machines: if 
the flux produced by the PMs is greater than the reluctance flux, the machine should be 
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Magnet placement in a PMSM.

FIGURE 7.3
PMAR motor scheme.
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called IPM motor, PMAR motor otherwise [7]. This difference has an influence also in 
the machine modeling: since the direct axis of the synchronous reference frame is placed 
along the direction of the main flux (the PM flux for the classic PMSM), IPM motors have 
the direct axis superimposed to the PM flux, while the PMAR motors have the direct axis 
coincident with the maximum permeance direction [7].

Nevertheless, IPM motors present, like all synchronous reluctance motors, a higher 
torque ripple than other PM motors [8,9]. In Ref. [10], it has been shown that rotor skewing 
is not sufficient to reduce the torque ripple and that the only suitable way is to uniformly 
distribute the barrier along the rotor, similarly to the stator slot distribution. Also in Ref. [9], 
two rotor configurations, called “Romeo and Juliet” and “Machaon,” has been proposed, 
whose results show a reduction of the torque ripple.

7.1.3  Permanent Magnets

PMs are a particular kind of magnetic material that, after a magnetization process, can 
maintain their magnetization level.

The residual magnetization Br and the coercive field Hc are the two main parameters used to 
describe the behavior of the magnets. The residual magnetization is the value of the mag-
netic field produced by the magnet after the external magnetizing field has been removed. 
The coercive field is the minimum value of an external opposite magnetic field that can 
demagnetize the PM. Indeed, the coercive field should be properly divided into coercive 
field HcB and intrinsic coercive field HcJ. The intrinsic coercive field HcJ represents the external 
field that should be applied to the magnet in order to make it lose all its magnetic proper-
ties, while the coercive field HcB is the external field that nullifies the PM field. In other 
words, the intrinsic coercive field is a measure of how “permanent” is the magnet: if, theo-
retically, a magnet would have HcJ = ∞, then that magnet will never lose its magnetic field. 
Obviously, for every PM, HcB < HcJ.

PMs are used to generate a magnetic field across an air-gap. The operating point of a 
magnet, that is, the resulting value of the magnetic field produced when the magnet is 
placed in a magnetic circuit, is given by the intersection between its hysteresis curve and 
the load line, given by the geometry of the system. As a consequence, the higher the coer-
cive field, the higher the resulting magnetic field.

Another useful parameter is the maximum energy product, equal to the maximum value of 
the product BH, whose value is calculated with the help of the hysteresis curve of a specific 
PM. For this reason, the maximum energy product corresponds to a specific point on the 
hysteresis curve. If a PM has its operating point equal to the maximum energy point, then 
that magnet has the minimum volume.

FIGURE 7.4
IPM vector scheme.
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Different materials can have very different values of these two parameters; for example, 
Alnico 5 has a residual magnetization almost equal to 1.22 Wb/m2 and a coercive field equal 
to 49 kA/m. Electrical steel M-5 has a similar value of residual magnetization (1.4 Wb/m2) 
but a very smaller value of coercive field (7 A/m). Also magnetic ferrites are used to pro-
duce PM; they are usually composed by iron oxide and strontium or barium carbonate. 
They have a residual magnetization lower than the alnico magnets but a higher coercive 
field. More recent materials used for PMs are the samarium-cobalt, whose hysteresis curve 
is shown in Figure 7.5, a rare earth made from an alloy of samarium and cobalt that has a 
great maximum energy product, and the neodymium, whose hysteresis curve is shown in 
Figure 7.6, an alloy made from neodymium, iron, and boron that has both high residual 
magnetization and coercive field along with good mechanical properties that make it suit-
able for the production of motor-designed PMs (Table 7.1).

7.2  Space-Vector Model of Permanent Magnet Synchronous Motors

The most general case for modeling the PMSM is the anisotropic machine; as represented 
in Figure 7.7, for simplicity, only the case of one pole pair will be considered. It can be 
proven that the self-inductance of each stator winding must have a 2θr periodicity, where 
θr = pθm is the position of the rotor, measured in electric radians, with p being the pole pair 
number and θm the position of the rotor, measured in mechanical radians.
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FIGURE 7.7
PMSM vector scheme.
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TABLE 7.1

Properties of Various Magnetic Materials

Material Br (mT) HcB (kA/m) HcJ (kA/m) BHmax (kJ/m3)

N35 1195 899 955 275
Alnico G2 720 45 160 12.7
Ferrite c12 400 290 318 32
Recoma 20 900 700 2400 160
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If the rotor direct axis is parallel with the axis of the stator winding named A, then the 
respective magnetizing inductance LmA attains its minimum value, since the air-gap is the 
largest in this configuration, equal to
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where
μ0 is the magnetic permeability of the air
Ns is the number of winding turns
r is the rotor radius
l is the rotor length
gmax is the maximum air-gap
Lmd is the magnetizing inductance of the direct axis of the PM reference frame

When θ = π/2, the air-gap is minimum, then the magnetizing inductance of the A winding 
reaches its maximum value:
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with gmin being the minimum value of the air-gap. Taking into account the leakage induc-
tance Lsl, assumed equal for each winding, the self-inductance of the A winding can be 
expressed as

	 L L L LsA r sl s s r( ) cos( )q q= + +0 2 2 	 (7.3)

where [3]
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Direct- and quadrature-axis inductances Ld and Lq can be therefore expressed as
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As for the self-inductance of the B and C phase windings, they can be easily deduced from (7.3):
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The mutual inductances between two stator phases can be obtained in a similar way, and 
their general expression is
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where α is the angle between the axes of the two windings. Taking into account the A and 
the B windings, when θ = 0, the mutual inductance can be expressed as
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while, if θ = π/2,
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Even in this case, it should be remarked that the mutual inductances show a 2θr periodic-
ity, with the maximum value attained when the rotor d axis coincides with the bisector 
of the angle between the two phases, so the following relationships for the three mutual 
inductances can be written:
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A matrix formulation can be used to represent the model of PMSM in a compact form. If Rs 
is the value of the stator phase resistance, the phase voltages on each stator winding can 
be obtained as
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where ψsn (n = A, B, C) is the nth phase stator flux linkage. Each flux linkage is generated 
both by the self-inductance of each phase and the mutual inductance between the three 
phases. In a matrix form,
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where ψPM is the magnetic flux produced by the PMs. It is possible to rewrite Equation 7.12 
in order to emphasize the inductance terms depending on θr:
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or, in a more compact form,
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where T is a matrix and t is a vector defined through the fundamental Euler’s formula:

	

T =

⎡

⎣

e e e

e e e

e e e

j j j

j j j

j j j

r r r

r r r

r r r

2 2 2 2

2 2 2 2

2 2 2 2

q q q

q q q

q q q

a a
a a
a a

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

− − −

− − −

−

e e e

e e e

e

j j j

j j j

r r r

r r r

2 2 2 2

2 2 2 2

2

q q q

q q q

a a
a a
a jj j j

j

j

j

r r r

r

r

r

e e

e

e

e

2 2 2

2

q q q

q

q

q

a

a
a

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

t

⎥⎥

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

−

−

e

e

e

j

j

j

r

r

r

q

q

q

a
a 2

	 (7.15)

The space-vector of the stator flux can be obtained by premultiplying the vector ψ by 
2/3 · [1  α  α2] = 2/3αT, thus leading to
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Taking into account each term in Equation 7.16,
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Gathering the earlier terms, the space-vector of the stator flux is written as
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Multiplying Equation 7.17 by e j r− q , the space-vector of the stator flux is expressed in the 
synchronous reference frame, rotating at ωr, with direct axis lying on the direction of the 
flux vector of the PMs.
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Recalling Equation 7.11, using the space-vectors, the stator voltage us can be obtained as
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Using the space-vectors in the synchronous reference frame, Equation 7.19 can be also 
written as
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Decomposing each vector in its direct and quadrature-axis components, we obtain
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(7.21)

According to Equation 7.5, it is possible to obtain a more readable form for Equation 7.21, 
using direct and quadrature-axis inductances, Ld and Lq, defined as

	

L L L L

L L L L

d sl s s

L

q sl s s

L

md

mq

= + −

= + +

3
2

3
2

3
2

3
2

0 2

0 2

� ������ ������

� ������� ������

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪



330 Power Converters and AC Electrical Drives with Linear Neural Networks

obtaining
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The “instantaneous complex power” drawn by the PMSM can be computed considering 
that no neutral wire exists:
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Then the “instantaneous real power” is given by Equation 1.21, considering that non–
power invariant form is used:
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Given Equation 7.22, Equation 7.24 can be further expanded:
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(7.25)

where
Pje represents stator losses, caused by the stator resistance
Pem is the electromagnetic power
Pmag is the magnetic power stored in the stator windings

The electromagnetic torque can be therefore computed by dividing the electromagnetic 
power Pem by the synchronous speed, leading to
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where p is the pole pair number. The first term is the reluctance torque; according to Equations 
7.1 and 7.2, in the PMSM, Ld < Lq; therefore, the reluctance torque is a resistive torque. For 
this reason, if no flux weakening is mandatory, the direct-axis current is controlled to zero, 
to nullify the effect of the reluctance torque. More details will be given in Section 7.3.
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7.3  Control Strategies of PMSM Drives

Control of PMSM drives is relatively simpler than that of IM drives. To decouple torque 
and flux controls, a flux model is not strictly required, since the rotor flux is produced by 
the PM, and thus, it is perfectly known once the rotor position is known. In most cases, the 
PMSM can work with the maximum possible torque angle, since flux weakening is only 
required when the speed must exceed the base speed.

In this section, various control strategies will be examined, developed on the basis of the 
PMSM model described in Section 7.2.

7.3.1  Field-Oriented Control of PMSM Drives

The effectiveness of the field-oriented control (FOC) lies in the possibility of controlling a 
PMSM as a DC machine, with the same dynamic performance. As known, the DC motor 
permits a decoupled control of both flux and torque: maintaining constant the field cur-
rent, the regulation of the torque component of the armature current permits the con-
trol of the torque produced by the machine. In the PMSM, the control can be exploited 
only through the stator windings; given the three-phase stator currents, isA, isB, and isC, the 
two-phase current components, isdPM

y  and isqPMy , in the PMs reference frame can be obtained. 
Firstly, the three-phase current is transformed in the stationary reference frame by the 
3 → 2 transformation given by Equation 1.6 (non–power invariant form, the two-axis Park 
transformation):
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Then, the stator current space-vector is, expressed in the stationary reference frame, must 
be converted into the synchronous reference frame, whose direct axis lies in the direction 
of the PM flux vector (Figure 7.8):
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332 Power Converters and AC Electrical Drives with Linear Neural Networks

By applying the space-vector theory to the PMSM, a DC-equivalent model can be obtained: 
for a constant value of the direct-axis current component isdPM

y , the machine flux is constant, 
and the quadrature-axis current component isqPMy  controls the electromagnetic torque, as 
shown in Equation 7.26:
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If the PMs are mounted on the rotor surface, the machine can be approximately considered 
isotropic, since the direct and quadrature-axis inductances have practically the same value 
and no reluctance torque is present: the direct-axis current component has no influence 
on the torque, which is perfectly controlled by the quadrature-axis current component. In 
these conditions, the torque equation simplifies to
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In interior-mounted PM motors, the two-axis reluctances Ld and Lq are different, and the 
reluctance torque is always present. The value of this torque depends on both isdPM

y  and isqPMy , 
and its effect can be easily eliminated by imposing isdPM

y = 0.
Nevertheless, some applications may require a value of isdPM

y < 0; in fact, as shown in 
Figure 7.9, if both isdPM

y  and isqPMy  are properly controlled, a higher torque can be achieved. In 
fact, given the torque angle δ, defined as
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when its value is greater than 90°, the reluctance torque becomes positive, since isdPM
y < 0. 

The resulting effect on the total torque is an increase, despite the decrease in the isqPMy  cur-
rent component.

It should be also remarked that the value of the torque angle in which the maximum 
torque is attained varies with the value of stator currents [11]. In Figure 7.9, various torque 
characteristics for is PMy  varying from 0.1 to 1.0 p.u. are shown.

As for the flux control, it follows from Equation 7.18 that both current components influ-
ence the stator flux linkage. In fact, it is possible to infer from Equation 7.18:
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Thus, the flux control must act on both components, being the stator flux-linkage module 
equal to
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while its phase ϕ is equal to
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7.3.2  Torque-Controlled Drives

Torque-controlled drives are commanded with two input signals: the torque reference teref 
and the flux reference y sref

PMy ; these two signals can be provided by a speed controller or 
directly imposed as reference signals.

Various control schemes can be used, depending on the PMSM anisotropy, the control 
variables chosen, and the inverter typology used, that is either the current source inverter 
(CSI) or the voltage source inverter (VSI). In the following, some solutions will be exam-
ined, both for the surface-mounted and interior-mounted PMSM.

7.3.2.1  Surface-Mounted PMSM

Torque control of surface-mounted PMSMs is simple: as a result of the absence of the reluc-
tance torque, the torque depends only on isqPMy , while the stator flux linkage depends on 
both components of the stator current space-vector.

7.3.2.1.1  FOC with Impressed Currents

The electromagnetic torque value and the stator flux-linkage vector amplitude may be 
written, from Equations 7.29 and 7.32, as
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Given the torque reference, the reference value of the quadrature-axis component 
of the stator current vector, in the PM reference frame, isqrefPMy , can be obtained, from 
Equation 7.34a, as
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From Equation 7.35 and the flux reference, the reference value of the direct-axis component 
of the stator current vector, isd,ref, is computed:
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The torque angle δ and the module of the stator current space-vector is PMY  can be easily 
computed, given its components in the PM reference frame:
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In Figure 7.10, a scheme of the torque control is shown. The polar coordinates of the sta-
tor current space-vector with a current-controlled VSI are derived by using the earlier 
equation [11]. The torque and the flux reference are provided as input signals and then 
used to compute the reference values of the amplitude and of the angle (torque angle) 
of the stator current space-vector, expressed in the PM flux reference frame. Adding 
the torque angle δref to the instantaneous rotor position, multiplied by the pole pairs 
number p, the angle of the stator current space-vector in the stationary reference frame 
is obtained:

	 q d qsref ref r= + 	 (7.38)
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Finally, the reference values of the three-phase currents can be easily obtained, given 
the angle θsref:
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Equation 7.39 is computed from Equation 1.8 after suitable manipulation. It should be 
remarked that in Equation 7.39, the amplitude of the stator current space-vector is that 
computed in the PM reference frame, while it should have been expressed in the station-
ary reference frame; since the Park transformation is amplitude invariant, both values are 
equal. These reference currents are provided to the inverter, usually current controlled 
through hysteresis controllers, as explained in Chapters 2 and 5.

The computation of the module and of the angle of the stator current space-vector can 
be avoided. In fact, given the components of the space-vector isrefPM

y  in the PM reference 
frame, the current references in the stationary reference frame can be obtained through 
the inverse Park transformation:
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Finally, the two-phase components of isref can be transformed in the three-phase references 
by means of the 2 → 3 transformation, Equation 1.7:
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These three-phase current references can be fed to a current-controlled VSI to obtain the 
desired torque and flux in the PMSM, see Figure 7.11.
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7.3.2.1.2  FOC with Impressed Voltage

Using a PWM-VSI, current control can be performed in the PM reference frame, where cur-
rents components are DC quantities. Thanks to that, simple PI controllers can be used (see 
Figure 7.12) for the two components of the stator current space-vector to obtain the voltage 
references usdrefPMy  and usqrefPMy . These references are then transformed, using the rotation matrix 
shown in Equation 7.40:
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And then, the reference voltages usAref, usBref, and usCref are obtained by Equation 1.7 and fed 
to the VSI which will synthetize them by the adopted PWM technique:
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For more details on the voltage control of the inverter, the reader should refer to Chapters 
2 and 5.

7.3.2.2  Interior-Mounted PMSM

If a magnetic saliency is present, then resolution of Equations 7.26 and 7.31 is involved, so 
a real-time computation of i f tsdref eref s

PM PMy y= ( ),y  and i g tsqref eref s
PM PMy y= ( ),y  is more difficult. 

To adopt the same approach as in previous paragraph, iterative methods should be used 
to obtain an off-line resolution and then store the results in a look-up table to be used in 
real-time control. To take into account parameter variation, further look-up tables should 
be derived and implemented.

The simplest torque control strategy for the interior-mounted PMSM is based on forcing 
the torque angle δ to be equal to π/2, that is, setting the isdrefPMy  equal to zero. In this way, the 
stator flux linkage is not controlled, and the torque relies only on isqrefPMy . Torque control can 
therefore be exploited similarly to that of surface-mounted PMSM. Obviously, this control 
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method does not permit the drive to obtain an optimal dynamic performance, since the 
torque does not attain its maximum value; moreover, the maximum speed is limited by 
the base speed of the machine, since no flux weakening is possible.

Alternatively, FOC for interior-mounted PMSM can be achieved by properly controlling 
both components of the stator current space-vector, expressed either in the stator flux-
linkage synchronous reference frame or in the PM synchronous reference frame [2]. Both 
these reference frames rotate at synchronous speed, but their respective direct axes cre-
ate the load angle ρs, as shown in Figure 7.13, where the vector diagram of the interior-
mounted PMSM is drawn. Vector control in the stator flux-linkage reference frame has the 
advantage that flux and torque controls are easily decoupled but requires that the instan-
taneous phase angle ρs between the PM flux and the stator flux linkage has to be known. 
The vector control in the PM flux reference frame requires only the knowledge of PM flux 
vector position, or the rotor position, but torque and flux control are cross coupled.

Given Equation 7.31, it is possible to rewrite Equation 7.27 in the following form:
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where isqsy  is the quadrature-axis component of the stator current space-vector in the sta-
tor flux-linkage reference frame. Equation 7.44 and Figure 7.13 show that the electromag-
netic torque can be controlled through the isqsy  component, while the stator flux linkage is 
affected by the isds

y  component.
Figure 7.14 shows the vector control scheme in the PM reference frame. In this refer-

ence frame, torque and stator flux linkage are cross coupled, so independent control of 
these two quantities is not possible. Given the torque reference, both isdrefPMy  and isqrefPMy  are 
computed, according to a predetermined control strategy, usually the maximum torque 
per ampere (MTPA) control strategy, whereby the dynamic performance of the PMSM 
drive is optimized. It should be remarked that correspondingly the efficiency of the drive 
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is not optimized. Indeed, although the stator losses are minimized, the core losses are not 
optimized and affect the overall efficiency of the drive [11].

If isb is the base value of the stator current, given by
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the base value of the electromagnetic torque is equal to
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and this is used to compute the per unit value of the torque:
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For a given value of the normalized torque, Equation 7.47 is in the form
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For each value of k, Equation 7.48 is a hyperbola, and the locus of their points closest to the 
origin is the locus that satisfies the MTPA control strategy, as shown in Figure 7.15.
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The MTPA criteria ensure minimal ohmic losses, since the same torque value is achieved 
with the minimum possible value of current. If the PMSM is considered to be surface 
mounted, then this criteria lead to isdrefPMy = 0, in order to use the whole current for torque 
production. According to Equations 7.33 and 7.34, the stator flux-linkage amplitude refer-
ence can be computed as
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As already explained in Section 7.3.2, for an interior-mounted PMSM, the torque equation 
contains also a reluctance term, so forcing isdPM

y = 0 does not permit obtaining the maxi-
mum torque per unit current.

7.3.2.3  Feed-Forward Control

Recalling Equation 7.22 rewritten here for sake of simplicity, it should be remarked that 
some coupling terms appear in both voltage equations:
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In a current-controlled inverter scheme, these coupling terms are automatically compen-
sated by the control. If a VSI with impressed voltages is used, then a feed-forward compen-
sation term should be used, to decouple flux and torque equivalent circuit. This problem 
also arises in the vector control of IM drives, as shown in Section 5.3.3.4.

Neglecting the delay introduced by the signal processing, a feed-forward action can be 
used to effectively decouple the torque and the flux control. This is obtained by adding to 
the reference voltages usdrefPMy  and usqrefPMy  generated by the voltage PI controllers the following 
terms:
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The decoupling terms can be obtained through the measurement of the stator current and 
the rotating speed. Not taking into account the feed-forward action may result in worse 
dynamic performance of the drive and even in unstable behavior of the drive.

7.3.3  Speed-Controlled Drives

Speed vector control for the PMSM can be achieved by adding a speed control loop to the 
torque control loop (Figure 7.16).
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The speed reference ωmref is provided as input signal; the difference between this refer-
ence signal and the real speed ωm of the drive is the speed error eω = ωmref − ωm. This error 
signal is the input of the speed PI controller. The output of the PI speed controller is the 
torque reference teref.

The speed reference is also used to compute the flux reference for the PMSM; in fact, if 
the speed reference is lower than the base speed, that is, the speed in which the back emf is 
equal to the external applied voltage, then the flux reference is equal to the rated flux y y

srat
PM 

of the machine:

	 w w y yy y
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PM PM≤ ⇒ = 	 (7.50)

On the contrary, if the speed reference is higher than the base speed, then flux weakening 
is required. Imposing a flux reference lower than the rated flux corresponds to imposing a 
flux-producing current reference isdref < 0, thus producing a flux opposite to that produced 
by the PMs.
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In this way, the back emf is reduced, leading to a potential risk, since the machine can 
absorb a current higher than the rated value, resulting in a dangerous overheating. For this 
reason, the torque-producing current reference isqrefPMy  must be reduced with the same ratio:
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The electromagnetic power is therefore constant and equal to the rated value in the flux 
weakening region; in fact,
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7.3.3.1  Experimental Results

The FOC scheme with impressed voltages has been experimentally verified on a frac-
tional horsepower PMSM, whose test setup is described in Appendix 7.A. The adopted 
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FIGURE 7.16
Current speed control in polar coordinates.
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control scheme is sketched in Figure 7.12, to which the speed control loop has been 
added. Figures 7.17 and 7.18 show the speed and current waveforms, respectively, that 
have been measured from a PMSM drive with vector control in speed control mode (see 
Appendix).

The drive has been given a speed reversal command at a speed value equal to half the 
rated speed. As shown in Table 7.2, the PMSM is an interior-mounted PMSM, since Ld < Lq, 
although it has a low saliency ratio. The control has been performed with impressed 
voltages. The isdrefPMy  has been set equal to zero, so the torque angle δ has been set equal to 
90°. As explained earlier, in this condition, the torque depends only on isqPMy , so Figure 
7.18 shows also the waveform of the electromagnetic torque. The test has been per-
formed at no load; as a consequence, the isqPMy  current component has a very low value 
at steady-state because of the natural friction load, while its value reaches its maximum 
rated value during transient to maximize the torque and consequently the dynamic 
performance.

7.3.4  Direct Torque Control

The direct torque control (DTC) strategy is based on the selection of a proper stator voltage 
space-vector to directly control the stator flux space-vector and, therefore, the produced 
electromagnetic torque. DTC is also usually implemented in the control of IM, as shown in 
Chapter 5. In this section, DTC is devised to PMSM drives.

As seen in Section 7.3.2, FOC can be performed with both impressed currents and 
voltages, depending on the final control variables: the first case, the three-phase current 
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references while, in the second, the three-phase voltage references. DTC permits a high 
dynamic performance to be obtained, without using either hysteresis current compara-
tors or pulsewidth modulators (PWM); indeed, by applying a proper switching patter to 
the inverter, the stator flux linkage, and consequently the electromagnetic torque, can be 
controlled. Obviously, the DTC is based on the knowledge of the space-vector of the stator 
flux linkage, in terms of both its amplitude and phase, and of the electromagnetic torque 
produced.
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Speed vector control of a PMSM drive—current components.

TABLE 7.2

Parameters of the Test PMSM Drive

Parameter Value

Rated power 15.7 W
Rated voltage 36 V
Maximum continuous torque (up to 5000 rpm) 30 mN m
Maximum continuous current 913 mA
Rated speed 6000 rpm
Pole pair 1
Stator resistance 4.3 Ω
Direct-axis inductance 0.359 mH
Quadrature-axis inductance 0.433 mH
Moment of inertia 10 × 10−7 kg · m2

PM flux 24.35 mWb
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7.3.4.1  Electromagnetic Torque Production in the PMSM

Similarly to Equation 5.59, taking into account Equations 7.26 and 7.30, the electromagnetic 
torque produced by the PMSM can be expressed as
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Neglecting the saliency term, Equation 7.43 can be rewritten as

	
t p

L
e

dq
s PM
PM PM= ∧( )3

2
1

y yy y 	 (7.55)

According to Equation 7.55, the electromagnetic torque can be controlled by acting on the 
amplitude and phase position of the stator flux linkage [12]; Figure 7.13 shows the vector 
diagram of the PMSM. By keeping the amplitude of stator flux-linkage constant and by 
quickly varying its angular position, a torque variation is produced. It should be remarked 
that, unlike the IM, there is not a first-order delay dependence between the stator flux link-
age and the PM flux. As a consequence, if the electromagnetic torque should be reduced, the 
angle between stator flux-linkage vector and PM flux vector must be actively reduced, since 
it will tend to remain constant. Apart from this difference, the control strategy remains the 
same as in IM drives. If the stator flux-linkage space-vector is accelerated in the positive 
direction, keeping its amplitude constant, a fast torque increase occurs. On the contrary, 
if the stator flux-linkage space-vector is accelerated in the negative direction, the electro-
magnetic torque is reduced, or even a torque of opposite sign, which is able to brake the 
machine, can be generated if the angle between the two flux vectors changes its sign.

As for the relationship between the stator flux-linkage space-vector and the inverter con-
figurations, no differences exist with respect to the IM counterpart (see Section 5.4.2).

7.3.4.2  Criteria for the Selection of the Voltage Space-Vectors and Control Strategies

It should be highlighted that, also for the PMSM, the DTC does not permit an intrinsic decou-
pling, since the application of a nonnull inverter configuration modifies both the amplitude 
and the angular position of the stator flux-linkage space-vector. The decoupling is obtained 
only if, for each sampling time interval, the correct inverter configuration is chosen to mini-
mize the error between the references and the actual values of the control variables.

The space-vector plane is divided into six regions, each having an angular amplitude 
equal to π/3, centered on the nonnull inverter voltage space-vectors. If the stator flux-
linkage vector is inside the sector k, at the nth instant of time, the possible voltage vectors 
produce the following effects [13]:

•	 The voltage space-vector uk increases the amplitude of the stator flux linkage and 
keeps almost unchanged the angular position (radial positive configuration).

•	 The voltage space-vector uk+1 increases the amplitude of the stator flux linkage and 
rotates it in the counterclockwise direction (direct positive configuration).

•	 The voltage space-vector uk+2 reduces the amplitude of the stator flux linkage and 
rotates it in the counterclockwise direction (direct negative configuration).
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•	 The voltage space-vector uk+3 reduces the amplitude of the stator flux linkage and 
maintains almost unchanged the angular position (radial negative configuration).

•	 The voltage space-vector uk−1 increases the amplitude of the stator flux linkage and 
rotates it in the clockwise direction (inverse positive configuration).

•	 The voltage space-vector uk−2 reduces the amplitude of the stator flux linkage and 
rotates it in the clockwise direction (inverse negative configuration).

The voltage space-vectors u0 and u7 maintain almost unchanged amplitude and the angu-
lar position of the stator flux linkage; therefore, unlike the IM, in the PMSM, they do not 
affect the electromagnetic torque. For this reason, they are not usually employed in the 
DTC of the PMSM. The following optimal inverter voltage space-vector chosen strategies 
can be derived:

•	 Both electromagnetic torque and stator flux linkage must be increased: a voltage space-
vector with positive tangential and radial component must be chosen, usually uk+1.

•	 Stator flux-linkage vector amplitude must be increased, but electromagnetic torque must be 
reduced: radial component must be positive, tangential component must be nega-
tive, so uk−1 is used.

•	 Stator flux-linkage vector amplitude must be reduced, but electromagnetic torque must be 
increased: radial component must be negative, while tangential component must be 
positive, so uk+2 is used.

•	 Both electromagnetic torque and stator flux linkage must be reduced: a voltage space-
vector with negative tangential and radial component is used, uk−2.

It should be remarked that the control strategy adopted for the DTC in the PMSM drives 
is the D strategy of the DTC in the IM drives; therefore, the same considerations made in 
Section 5.4.3 are also valid here: the torque response is very quick, since only direct and 
inverse configurations are used to affect it, but as a consequence, the switching frequency 
may reach high values.

With DTC, it is also possible to control only the isq component of the stator current space-
vector if the stator flux linkage is at the rated value, thus, forcing isdPM

y = 0 [2]. If the flux 
current isdPM

y  is equal to zero, then the stator flux linkage is given by the sum of the PM flux 
and the flux on the quadrature axis of rotor reference frame:

	 y s PM q sq
PM PMjL i,1

y yy= + 	 (7.56)

If only isqPMy  is varied by �isqPMy , then y s
PMy  has a variation only on the quadrature axis of the 

rotor reference frame, as the following:

	
y s PM q sq sq

PM PM PMjL i i,2
y y yy= + +( )Δ 	 (7.57)

Then, in each sampling time interval, the torque control is performed by selecting the 
inverter configuration that makes the stator voltage space-vector to be directed along the 
quadrature axis of the rotor reference frame; the sense of the voltage vector must be posi-
tive if the torque must be increased, negative otherwise. Obviously, in this case, the rotor 
position has to be measured or estimated, but the estimation of the amplitude of stator flux 
linkage can be avoided.
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7.3.4.3  Estimation of the Stator Flux and the Electromagnetic Torque

The estimation of the control variables in DTC of PMSM drives, stator flux linkage and 
electromagnetic torque, shares some similarities with the estimation of the same variables 
in IM drives (see Section 5.4.4).

From Equation 7.19, it follows that [2]

	
u i u is s s s s s s sR

d
dt

R dt= + ⇒ = −∫y y ( ) 	 (7.58)

Since Equation 7.47 is expressed in the stator reference frame, the components of ψs are

	

ψ

ψ

sD sD s sD

sQ sQ s sQ

u R i dt

u R i dt

= −

= −

⎧

⎨
⎪⎪

⎩
⎪
⎪

∫

∫

( )

( )
	 (7.59)

As it is known, only one parameter is required in Equation 7.59, the stator resistance Rs. 
However, this parameter is not perfectly known and varies with the temperature. At high 
speed, the ohmic voltage drop on the stator resistance is negligible, with respect to the sta-
tor voltage, and so does the parameter variation. On the contrary, at low speed, the ohmic 
drop and the stator voltage are comparable, and therefore, an error on the value of Rs heav-
ily affects the flux estimation (see the sensitivity analysis in Chapter 9).

An open-loop integration method is not therefore the best way to integrate Equation 
7.59. This is one of the reasons why a closed-loop scheme should be used, which is notori-
ously less affected by parameter variation. Moreover, apart from this problem, open-loop 
integration has some problems (DC drift, initial value) so closed-loop integration must be 
adopted to cope with these problems. A first-order low-pass filter (LPF) with a low cutoff 
frequency can be used, whose expression in the Laplace domain s is

	
G s

T
sT

( ) =
+1

	 (7.60)

where T is a time constant, chosen large enough to approximate an ideal integrator (see 
Figure 7.19). To further improve the flux estimation, a thermal model of the stator resistance 
should be used. Inaccurate flux estimation at frequencies below 1/T can be avoided using 
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FIGURE 7.19
Open-loop and closed-loop integration schemes.
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the reference value of the stator flux linkage instead of the estimated value; the following 
Equation 7.61 implements this strategy with a smooth transition below the cutoff frequency:

	
y

y
s

s s s srefT R
sT

=
− +

+

( )u i
1

	 (7.61)

In PMSM drives, the reference value of the stator flux linkage can be assumed equal to

	 y sref PM
je r= y q 	 (7.62)

For the adoption of the flux estimator represented by Equation 7.61, rotor position is nec-
essary; this solution can provide good results if a surface-mounted PMSM is used, but at 
very low rotating speed, other solutions are needed.

Another method for estimating the stator flux linkage can be obtained in the stator link-
age reference frame. Equation 7.19 gives the vector voltage equation in the stationary refer-
ence frame that yields

	

u i u i

u

s s s s s
j t

s s
j t

s
j tR

d
dt

e R e
d
dt

es ms s ms s ms= + ⇒ = + ( )

⇒

− − −y yy w y w y w

ss s s s ms s
s s s sR

d
dt

jy y y yw= + +i y y 	 (7.63)

Taking the real part of Equation 7.63, the time derivative of the stator flux-linkage vector 
amplitude can be computed, considering that y s sx

s sy yy= :

	

d
dt

u R is sd s sd
s s sy y y y= − 	 (7.64)

while its rotating speed, ωms, is obtained from the imaginary part of Equation 7.63:

	
w

y y

yms
sq s sq

s

u R is s

s
=

−

y
	 (7.65)

As shown in Figure 7.20, the angle ρs, needed for the coordinate transformation in the sta-
tor linkage reference frame, is obtained through the integration of the rotating speed ωms. 
Only one coordinate transformation is used in this scheme.

All the flux estimators presented above need the knowledge of the stator voltages, which 
can be retrieved by using the DC link voltage (see Chapter 5 for further details). DC link 
voltage Ud measurement requires cheap sensors, since it is normally slow varying. Three-
phase voltages can be then computed through Equations 5.70a through 5.70c, written in 
the following for convenience:
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	 (5.70a,b,c)
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It should be however remarked that, although some of the flux estimators above described 
permit obtaining an accurate estimation of the angle ρs of the stator flux-linkage vector, 
this is not strictly required in DTC. Indeed, since the application of the inverter voltage 
space-vector is limited to six different vectors, the precision required for the flux vector 
position is equal to π/3. That is why it is possible to avoid using inverse trigonometric func-
tions except for the estimator in Figure 7.20, where the angle ρs is needed for the coordinate 
transformation. In general, the sector in which the stator flux-linkage vector lies can be 
determined with the flowchart in Figure 5.36.

Finally, a good torque estimation is required to obtain a proper DTC; electromagnetic 
torque can be computed, without needing the rotor position information, transforming 
Equation 7.43 in the stationary reference frame, which yields

	
t p i ie sD sQ sQ sD= −⎡⎣ ⎤⎦

3
2

y y 	 (7.66)

The components of the stator flux linkage can be obtained by one of the earlier explained 
estimators; if the rotor position is also known, it is possible to adopt Equation 7.26 
which is in the PM reference frame, where direct and quadrature-axis inductances are 
present:

	
t L L i i ie d q sd sd sd PM

PM PM PM= − +⎡⎣ ⎤⎦
3
2

( ) y y y y 	 (7.67)

Saturation effects on these inductances should also be considered. A third method to esti-
mate the electromagnetic torque is to store in a look-up table the characteristics:

	 t fe r s= ( , )q i

With this method, the Ld and Lq inductances are not required, but a self-commissioning 
phase is necessary, where the electromagnetic torque is obtained as the rate of change of 
the machine coenergy. More details on this method are given in Ref. [2].

7.3.4.4  The Direct Torque Control Scheme

In Figure 7.21 a block diagram of the DTC for PMSM is shown. This control method has 
only one control input, the electromagnetic torque reference teref; its difference with the 
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Flux estimation in the stator linkage reference frame.
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estimated torque produced in the PM motor is the torque error et, which is fed to a hysteresis 
controller, whose output Δet is −1 or 1. The torque error is also used to compute the flux 
reference |ψsref|: two different approaches can be used, maximum torque per unit current 
or maximum torque per unit flux [2].

The stator flux-linkage reference is compared with the estimated amplitude, and the 
computed error eψ is given as input to another hysteresis comparator. Depending on 
the values of Δet and Δeψ, the optimal inverter configuration is selected and then fed to the 
VSI. In this scheme, two current sensors and one voltage sensor are needed: the rotor 
position is not to be acquired.

7.4  Sensorless Control of PMSM Drives

The main advantage of the adoption of the sensorless control techniques is the possibility 
to control the speed and/or the position of electrical machines without any speed/position 
sensor. Some of these techniques have been already presented for IM drives in Chapter 6. 
The removal of the encoder, or other speed/position sensors, permits a cost reduction, a 
size reduction, and an increased reliability for the whole drive, and these are the three 
main reasons why the sensorless control has been so deeply investigated in these years. In 
particular, the application of sensorless control is a key issue for the PMSM. Indeed, given 
the higher torque density, with respect to other electrical machines, the size of the encoder 
can be a significant part of the whole drive, especially for low-power PMSMs.

Two main categories of sensorless control can be described:

•	 Anisotropy-based sensorless techniques, which exploit the magnetic anisotropy of 
the PMSM to obtain an electrical signal containing the information for estimating the 
spatial position of the investigated anisotropy.

•	 Model-based sensorless techniques, which are based on the dynamic model of the PMSM. 
The position information is obtained through the emf estimation, or the deviation 
between the measured and estimated currents, or by solving some model-derived 
linear equations.

In the following section, the main techniques are examined, with their pros and cons.
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FIGURE 7.21
DTC scheme for PMSM.
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7.4.1  Anisotropy-Based Sensorless Techniques

The rotor position information can be retrieved by properly tracking the magnetic anisot-
ropy of the machine. By injecting a high-frequency signal into the stator windings, a high-
frequency leakage flux is created. A voltage signal injection is generally used; nevertheless, 
also a current signal injection may be employed [14]. Voltage carrier signal can be easily 
injected if a VSI is used, while a current carrier signal provides larger voltage signals due 
to the increase of the voltage magnitude resulting from the high frequency of the injected 
signal: that is why a lower frequency is used with current carrier signals, which however 
leads up to a larger torque ripple [15].

As a matter of fact, PMSMs do not present a sinusoidal air-gap flux distribution; even 
surface-mounted PMSMs exhibit a nonnull magnetic saliency ratio, since their pole arc is 
less than 180° [11]. As a result, a magnetic anisotropy linked with the rotor position can be 
tracked both in surface- and interior-mounted PMSMs: the higher the saliency ratio, the 
easier the extraction of the rotor position information.

The various techniques based on the saliency tracking can be classified as follows:

	 1.	Techniques based on the injection of a carrier signal
	 a.	 Injection of a rotating carrier signal
	 b.	 Injection of an alternating (or pulsating) carrier signal
	 2.	Techniques based on the selection of proper inverter switching pattern

These techniques can work also at low and zero speed, but they also tend to fail if the rotat-
ing speed exceeds a threshold value or if the saliency ratio is poor. Actually, if the “position 
signal” information entailed by the injection of the carrier signal has a little amplitude, the 
position information may be corrupted and the estimator may show an unstable behavior. 
In general, the position signal depends on the position estimation error, and the position 
signal can be therefore attenuated if its frequency exceeds the bandwidth of the estima-
tor during the transient.

In the following, the carrier signal injection technique will be examined and some 
state-of-the-art control schemes will be proposed.

7.4.1.1  Rotating Carrier Signal Injection

These sensorless techniques are based on the application of a rotating voltage carrier 
signal superimposed to the fundamental supply stator voltage. If ωc is the frequency of 
the voltage carrier signal, the carrier signal uc can be described in the stationary reference 
frame as [16,17]

	 uc c
j tu e c= w 	 (7.68)

The frequency ωc should be significantly higher than the fundamental frequency ωr. Since 
at a high frequency the ohmic drop on the stator resistance Rs is negligible compared to the 
flux variation, Equation 7.19 can be rewritten at the carrier frequency as

	
uc c

d
dt

= y 	 (7.69)
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By exploiting Equation 7.68, it follows that

	
y c c

c

c

jdt j
u

e c= = −∫u
w

q 	 (7.70)

where

	
w q

c
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= 	 (7.71)

With the help of Equation 7.17, the flux at the carrier frequency can be expressed in matrix 
form as
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One simple way of solving for the currents icD and icQ in Equation 7.72 takes into account 
Equation 7.18, expressed in the PM reference frame:

	
y c c c

c

c

jPM PM PM c rL L j
u

ey y y q q

w
= − = − −i iΔ * ( ) 	 (7.73)

Decomposing Equation 7.73 into the real and imaginary parts yields
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The direct- and quadrature-axis components of the carrier current space-vector ic PMy  in the 
PM reference frame can be easily obtained from Equation 7.74:
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The components of the ic vector in the stationary reference frame are therefore
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Substituting Equation 7.75 into 7.76 yields
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Equation 7.77 can be rewritten as follows:
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Equation 7.78 states that the ic vector has two components, icp and icn, rotating at different 
speeds and in opposite direction [17]. Figure 7.22 shows both these components: the rotat-
ing speed of the drive, in mechanical radians, is equal to ωm = 500 rpm, and the machine 
has three pole pairs; the carrier frequency is ωc = 400 Hz.

It is noteworthy that the rotating speed information is contained only in the icn component 
of the carrier current space-vector. The demodulation of the speed signal can be achieved 
in various ways. In the following, one typical demodulation technique is explained, which 
is the basis of many others.

In Figure 7.23, a first demodulation scheme is shown [18], adopting a PLL to observe the 
rotor position. After measuring the three-phase currents, the stator current space-vector 
is is obtained, then it is filtered by a band-pass filter, whose central frequency is ωc: in this 
way, the carrier current space-vector ic is isolated; ic is vector multiplied with a reference 
vector icref, and the amplitude of the resulting vector ɛ is extracted:
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where θ̂r is the estimated position. Equation 7.79 can be rewritten as
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The signal ɛ is then filtered by an LPF to eliminate the first term of Equation 7.80, as shown 
in Figure 7.23. The second term contains then the position error, which is fed to a PI 
controller to give the electromagnetic torque reference. If the mechanical model is used, 
the estimated rotating speed and the position are obtained and fed back in the PLL.

This rotating carrier signal injection sensorless scheme permits the drive to work even 
at low and zero speed but presents some drawbacks [18]. Firstly, it has a poor signal-to-
noise ratio, as well as a parameter dependence on the error demodulation, making this 
method unsuitable for low-saliency machines. Finally, the estimation fails if the rotating 
speed is too high since it attenuates the carrier signal as it is often the case in injection 
techniques.

Figure 7.24 shows the simulation results of a speed reversal test performed on an inte-
rior-mounted PMSM. Speed vector control with impressed voltages has been used. The 
described sensorless scheme is shown in Figure 7.12 to which a speed control loop has 
been added. Figures 7.17 and 7.18 show the speed and current waveforms, respectively, that 
have been measured from a PMSM drive with FOC in speed control mode.
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As shown in Figure 7.24a, the estimator is able to track the rotating speed of the drive: 
the steady-state speed error has a null mean value. When the speed reference changes, a 
transient speed estimation error occurs, governed by the bandwidth of the observer. As a 
consequence, the position error can be either increased or decreased.

7.4.1.2  Alternating Carrier Signal Injection

A pulsating carrier voltage signal is obtained by injecting in the estimated PM reference 
frame a signal at the frequency ωc:

	 uc c c
PM u tˆ cos( )y w= 	 (7.81)

This is then a signal acting as a pulsating signal along the direct axis of the PM reference 
frame. In the actual PM reference frame, Equation 7.81 becomes

	 uc c c
jPM r ru t ey q qw= −cos( ) ( )ˆ

	 (7.82)

Resolution of the simplified differential equation of the PMSM, as shown in the earlier 
paragraph, yields the following solution [19]:
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where the carrier current space-vector is expressed in the estimated PM reference frame. 
This carrier current has one component which is not useful for the position estima-
tion and  another term containing the information about the position error. Expressing 
Equation 7.83 in the stationary reference frame yields
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By decomposing Equation 7.83 into its real and imaginary parts, it is apparent that the 
quadrature-axis component, icqPMŷ , depends on the sinus of the position error, for small val-
ues of it can be treated as the position error itself. As a result, an algorithm can be devised 
using icqPMŷ  component as an error signal, as shown in Figure 7.26.



355Permanent Magnet Synchronous Motor Drives

Figure 7.25 shows the time waveform and the frequency content (obtained with the FFT) 
of the carrier current both in synchronized and desynchronized conditions. In synchro-
nized conditions, when ω̂r = ωr, the four terms in Equation 7.84 are overlapped, while in 
desynchronized conditions, all terms appear.

The sensorless scheme shown in Figure 7.26 [20] uses the stator current space-vector, 
expressed in the estimated PM reference frame, given the computed estimated position θ̂r. 
The resulting space-vector is PMŷ  is then band-pass filtered to extract the carrier space-vector 
ic PMŷ ; according to Equation 7.83, the digital filter should be centered about the carrier fre-
quency. Finally, the position estimation error is obtained from the icqPMŷ , multiplied for the 
sign function of the icdPM

ŷ  current.
Figure 7.27 shows the experimental results of a speed reversal at no load performed on 

the PMSM drive described in Appendix 7.A. Speed vector control with impressed voltages 
has been used. The adopted control scheme is described in Figure 7.12 to which a speed 
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control loop has been added. The speed reference is initially set to 60 rpm and suddenly 
changes to −60 rpm at 0.5 s. The whole test has a duration equal to 1 s. The injected volt-
age carrier signal has a frequency equal to 1 kHz and an amplitude equal to 5 V. After an 
initial convergence transient due to the fact that all the digital filters are starting from the 
zero state, the estimator is able to correctly track the rotating speed of the drive (see Figure 
7.27a). The estimated position, shown in Figure 7.27b, has a constant bias of 0.25 rad because 
of the initial speed convergence transient after which the position error remains constant.

7.4.1.2.1 � Experimental Application of Pulsating Voltage Carrier Estimator 
with the Adaptive Linear Neural Filter*

The pulsating carrier voltage carrier sensorless technique can be improved by using 
an adaptive linear neural filter (ADALINE), described in Chapter 8. The strategy to be 
employed with such digital filter is to change the bandwidth according to the working 
conditions of the drive; during the transient, the rotor position information may be attenu-
ated by the band-pass filter, so a wider bandwidth should be used. On the contrary, in 
steady-state, a narrower bandwidth should be used to increase the signal-to-noise ratio 
and obtain a more accurate estimation.

Figure 7.28 shows the experimental results obtained performing a speed reversal, from 60 to 
−60 rpm at load, on the PMSM drive described in the Appendix to this chapter. The load torque 

*	 See Ref. [21].
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applied is linearly varying with the rotating speed, since a friction load has been used. During 
the speed steady-state, it reaches the value of 18.4 mN m, almost equal to half the rated torque.

The speed estimation error is almost zero, except for the initial speed convergence tran-
sient. The position error, as seen in Figure 7.28b, remains almost constant, apart from the 
bias generated by the speed convergence transient.

Figures 7.29 and 7.30 show a high-speed reversal at no load, performed with both adap-
tive and not adaptive sensorless scheme. It should be remarked that, while the adaptive 
scheme is able to control the drive even in a speed reversal at 1/2 of the rated speed, the 
not adaptive scheme fails at 600 rpm, 1/10 of the rated speed.

7.4.1.3  INFORM Sensorless Technique

The indirect flux detection by on-line reactance measurement (INFORM) technique has 
been already described in Chapter 6 for the IM (see Ref. [20] in Chapter 6). The same tech-
nique can be conveniently used for the position estimation in the PMSM drive; hence, it is 
briefly summarized here.

Remembering Equations 7.17 and 7.19, the stator voltage space-vector equations in the 
stator reference frame can be expressed as
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or, in an equivalent form,
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= + + +( ) ( ) ( )2 2q w q w qΔ y 	 (7.85)

Assuming a short time interval Δt, the voltage space-vector can be considered constant; by 
applying two subsequent inverter voltage configurations, in order to obtain two inverter 
voltage space-vectors having the same direction but opposite orientation, both the ohmic 
drop on the stator resistance and the back emf terms can be neglected. If the two inverter 
voltage space-vectors are, for example, us

( )1  and us
( )4 , then Equation 7.85 can be rewritten, 

substituting the continuous time derivatives with their discrete-time counterpart, as
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	 (7.86)

Taking into account the inverse of the L(2θr) matrix, and extracting the real part of the vec-
tor solution, since both us

( )1  and us
( )4  lie on the direct axis of the stationary reference frame, 

the following solution can be found:
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The same procedure can then be applied for the other two pairs of opposite inverter volt-
age space-vectors, extracting only the component of the vector solution that lies on the 
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FIGURE 7.29
High-speed load test results for adaptive pulsating voltage carrier sensorless technique. (a) Rotor speed and 
(b) rotor position. (From Accetta, A. et al., IEEE Trans. Ind. Electron., 59(3), 1355, March 2012.)
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FIGURE 7.30
High-speed load test results for not adaptive pulsating voltage carrier sensorless technique. (a) Rotor speed and 
(b) rotor position. (From Accetta, A. et al., IEEE Trans. Ind. Electron., 59(3), 1355, March 2012.)
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direction of the forcing inverter voltage. Similarly to the IM, a space-vector of the stator 
current variation can be computed:

	
f

t
L L

L es
j r=

−
+1

2 2 2
2Δ

Δ
Δ u ( )q pˆ

	 (7.88)

from which the estimated rotor position can be obtained.
It should be however noted that the INFORM sensorless method requires the measurement 

of the current response to the application of the chosen inverter test vectors. Furthermore, 
the application of the test vector should be integrated with the PWM for normal operation. 
In order to reduce the algorithm complexity and the hardware requirements, hence the cost 
of the drive, an optimized INFORM measurement sequence should be chosen and the cur-
rent response be obtained through the measurement of the DC link current [22].

7.4.2  Model-Based Sensorless Techniques

Many sensorless techniques based on the fundamental excitation of the PMSM exist in 
literature. Actually, the PMSM dynamic model is well known and simple compared to the 
model of the IM, so suitable sensorless techniques can be derived. These techniques can be 
divided into the following:

•	 Open-loop estimators: Usually, the stator flux linkage is estimated, both in amplitude 
and phase. From the instantaneous value of its phase, it is possible to compute the syn-
chronous rotating speed of the drive. The current error between measured and esti-
mated values can be also used to correct the speed estimation. Also, the back emf can 
be used to obtain the position estimation, since it is strictly related to the rotor position.

•	 Observer-based estimators: An extended Kalman filter or a Luenberger observer can be 
used in high-performance PMSM drives. The main idea is the possibility to observe 
unmeasurable states, that is, speed and position, through measurable quantities, 
usually stator voltages and currents. Some schemes can avoid the voltages measure-
ment, and the consequent filtering, and use the reference three-phase voltages.

Fundamental excitation–based sensorless techniques for the PMSM present some diffi-
culties that have been already dealt with in Section 6.4 for the IM sensorless control and, 
briefly, in Section 7.3.4, regarding the DTC of the PMSM.

7.4.2.1  Open-Loop Estimators

Differently from the IM, in a PMSM, the stator flux linkage has the same rotating speed 
of the rotor, in electric radians. This can be easily exploited to obtain an estimation of the 
rotating speed, since the stator flux-linkage space-vector can be, in theory, computed from 
the stator voltages.

7.4.2.1.1  emf-Based Estimators

A sensorless scheme based on the estimation of the back emf for the PMSM drive has been 
presented for the first time in Ref. [23], and it has been since then analyzed and improved.

Given the stator voltages and current measurements, the back emf space-vector es can 
be obtained as follows:

	 e u is s s sR= − 	 (7.89)
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Integrating Equation 7.88, the stator flux linkage is then obtained:

	
y s s s s sdt R dt= = −∫ ∫e u i 	 (7.90)

From Equation 7.90, the stator flux-linkage angle ρs can be computed through a trigono-
metric inverse function or by the knowledge of sin(ρs) and cos(ρs) as well as the stator flux-
linkage space-vector amplitude.

Drift in the integration process is a common source of error between real and estimated 
rotor position. Ideally, in steady-state, the stator flux-linkage space-vector describes a cir-
cle, centered into the origin of the stationary reference frame; drift error shifts this circle, 
entailing a big position estimation error (130% at 0.4 p.u. drift [23]). Drift compensation can 
be performed with the method explained in Section 6.4.1.

It should be remarked that, at zero or close to zero speed, the back emf is too small to 
produce reliable position estimation. For this reason, this kind of sensorless technique 
tends to fail at low speed. As a consequence, the PMSM drive is not capable of self-starting, 
and also position control is not possible. This problem can be solved by providing a self-
starting open-loop strategy that controls the drive until the rotating speed exceeds the 
threshold level for obtaining a good position estimation. Alternatively, hybrid estimators, 
based both on the back emf and the signal injection, can be devised; however, the position 
estimations computed by the two algorithms must be properly managed [24,25].

Another issue with the back emf-based sensorless techniques is that they are only suit-
able for surface-mounted PMSM; indeed, in interior-mounted PMSMs, the saliency modi-
fies the machine model, and the position information is present not only in the back emf 
but also in the saliency term: some corrections are therefore to be made. Nevertheless, these 
correction terms can worsen the estimation and even cause instability in the algorithm.

Recently, an extended emf model for the sensorless control of interior-mounted PMSM 
has been proposed [26]. The extended emf is derived from the model of the IM-PMSM 
and takes into account both the position information contained in the back emf and in the 
saliency voltage:

	
eext d q r sd sq r E rL L i
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Remark that Equation 7.91 is valid for all the brushless synchronous machines. By forcing 
(Ld − Lq) = 0, the extended emf becomes equal to that of a surface-mounted PMSM, while if 
KE = 0, the back emf of a synchronous reluctance motor is obtained [26].

7.4.2.2  Observer-Based Estimators

Sensorless PMSM drive control can also be obtained with an observer, in which rotating 
speed and rotor position are considered as unmeasurable states. This observer permits 
estimating both quantities with measured stator currents and voltages.

7.4.2.2.1  Extended Kalman Filter

An extended Kalman filter can be chosen for sensorless control; it is a recursive optimum 
state estimator that can be used especially when the measured quantities are supposed to 
be affected by noise. The state estimation is performed in two phases. In the first, a rough 
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prediction is made on the basis of the mathematical model chosen for the drive; in the 
second, the estimation is corrected using a feedback scheme. In Ref. [2], details on how the 
Kalman filter can be designed for the sensorless control are given.

7.4.2.2.2  TLS EXIN Neuron–Based Speed Estimator

In Chapter 8, the TLS EXIN neuron has been deeply described; here, only its application 
to the sensorless control of PMSM is covered. This estimator arises from the application of 
the neural networks to the fundamental excitation–based model of the PMSM. The main 
idea is to consider the rotating speed of the PMSM drive as the solution of an overdeter-
mined linear system, based upon the PMSM model, and therefore obtain its estimation as 
a total least squares (TLS) solution of this system.

The PMSM stator voltage space-vector equation in the stationary reference frame, can be 
written as

	
u i L i L is s s r s r r s r PM rR

d
dt

= + + +( ) ( ) ( )2 2q w q w qΔ ψ 	 (7.92)
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Splitting Equation 7.84 into direct- and quadrature-axis components, the two following 
scalar equations can be found:
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Equation 7.94 can be rearranged, to put it in the form of a linear system, in the following way:
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Taking into account a discrete-time representation, choosing Tsp as sampling time, 
Equation 7.95 can be modified according to the following relationship between continu-
ous and discrete time:

	
s

z
Tsp

=
− −1 1

	 (7.96)

where
s is the Laplace variable
z the discrete-time variable, eventually obtaining
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where k is the actual time instant. The S vector is also called “data vector” and the q vector 
is called “observation vector.” Equation 7.97 represents a TLS problem, where the solution 
ω̂r(k) is the estimation of the rotating speed of the drive. It should be noted that the solu-
tion ω̂r(k) at the kth instant of time depends only on the stator current space-vector is(k) 
and is(k − 1), and on the estimated position θr(k). As a consequence, the TLS problem is 
perfectly known at the kth instant of time.

The TLS solution is the most viable way to compute the solution of Equation 7.97. In fact, 
it should be emphasized that both stator voltages and currents are required and that these 
measurements are affected by noise; therefore, noise is contained in both data and observa-
tion vectors. Ordinary, least squares methods consider only the observation vector affected 
by noise; thus, it is not suitable for this application (see Chapter 8 for further details).

The TLS EXIN neuron presented in the next chapter can solve the linear system described 
by Equation 7.97 that can be rewritten as a matrix linear equation:

	 S qŵ r ⊕

and find the TLS solution ω̂r.
Figure 7.31 shows the block scheme of this sensorless technique. Both three-phase voltages 

and currents must be acquired to obtain the data and observation vectors in Equation 7.96. 
From these measured quantities, the current and voltage space-vector in the stationary refer-
ence frame are obtained and then fed to the TLS EXIN algorithm to solve the correspondent 
TLS problem. The TLS estimated speed is then integrated to obtain the estimated position. 
The speed control scheme has already been presented in Section 7.3.3.
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The proposed TLS EXIN–based speed observer has been tested experimentally on the 
fractional power PMSM drive, whose experimental rig is described in Appendix 7.A.

7.4.2.2.2.1  Test 1: Speed Reversal at High Speed with No Load and with Load  The drive has 
been initially given a speed reversal from 1500 to −1500 rpm with no load torque applied 
on the shaft. Figure 7.32a shows the reference, measured and estimated speeds, as well as 
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FIGURE 7.32
TLS EXIN sensorless technique—test 1 results in no load. (a) Rotor speed and (b) rotor position.
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the speed estimation error, as obtained during this test. Figure 7.32b shows the correspond-
ing waveform of the measured and estimated position as well as the position estimation 
error. It can be observed that the estimated speed properly tracks the measured one and its 
reference. This is confirmed by the speed estimation error waveform, which is almost null 
in average at speed steady-state, getting high values only during the fast transient and in 
particular during the overshoot.

Also, the estimated position correctly tracks the measured one, with the position estima-
tion error being almost constant at speed steady-state and varying during the transient. 
This confirms that estimation errors mainly occur during the fast transient.

The drive has been further given the same speed reversal from 1500 to −1500 rpm, but 
with a load torque. The machine has been in this case loaded with a friction type load, 
whose amplitude is almost linearly increasing with the speed. Figure 7.33a shows the ref-
erence and measured and estimated speeds as well as the speed estimation error, while 
Figure 7.33b shows the corresponding waveform of the measured and estimated posi-
tion as well as the position estimation error. Even in loaded conditions, results show a 
proper behavior of the observer at speed steady-state with a significant estimation error 
in transient.

7.4.2.2.2.2  Test 2: Triangular Speed Reference with No Load and with Load  The drive has 
been given a speed triangular waveform of peak value 1500 rpm and frequency 1 Hz, 
respectively, with no load and with load. This test has been done to verify the correct 
behavior of the observer in case of continuously varying speed references. Figure 7.34a 
shows the reference, measured and estimated speeds, as well as the speed estimation 
error. Figure 7.34b shows the corresponding waveform of the measured and estimated 
position as well as the position estimation error. It can be observed that the estimated 
speed properly tracks the measured one and its reference during the entire test, with 
almost null estimation errors increasing only during each zero crossing, as expected. 
This is confirmed also by the position waveforms, showing an estimated position dis-
tant from the measured one of an almost constant quantity (position estimation error 
quasi constant), confirming that the distance between the two curves is due to the 
errors occurring during the initial transient. Figure 7.35a and b show the same wave-
forms obtained in loaded conditions. Even in this case, the load is a friction type, 
whose amplitude is almost linearly increasing with the speed. These waveforms show 
the correct behavior of the speed estimator also in loaded conditions. The main differ-
ence with the no-load curves is that speed estimation error during the zero crossing is 
higher, as expected.

7.4.2.2.2.3  Test 3: Speed Step Reference at Low Speed with No Load  To verify the proper 
behavior of the speed observer at very low speed, the drive has been given a speed step 
reference of 100 rpm with no load. Figure 7.36a shows the reference, measured and esti-
mated speeds, as well as the speed estimation error. Figure 7.36b shows the corresponding 
waveform of the measured and estimated position as well as the position estimation error. 
It could be observed that the estimated speed correctly tracks the measured one and its 
reference, even if after a slightly longer transient (0.1 s in this case) caused by the reduced 
bandwidth of the observer at lower speeds. The average speed estimation error is very low 
at steady-state, equal in percentage to 1.87%, while during the transient, this error is much 
bigger. It is confirmed by the position waveforms, showing a linear variation of the posi-
tion where the distance between the two curves of the estimated and measured position 
remains almost constant.
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FIGURE 7.33
TLS EXIN sensorless technique—test 1 results in load. (a) Rotor speed and (b) rotor position.
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FIGURE 7.34
TLS EXIN sensorless technique—test 2 results in no load. (a) Rotor speed and (b) rotor position.
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FIGURE 7.35
TLS EXIN sensorless technique—test 2 results in load. (a) Rotor speed and (b) rotor position.
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TLS EXIN sensorless technique—test 3 results. (a) Rotor speed and (b) rotor position.
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Appendix: Experimental Test Setup

The employed test setup is based on a PMSM drive consisting of

•	 A three-phase PMSM model MBE.300.E500, whose parameters are shown in Table 7.2
•	 A development system model Technosoft MSK28335 with a DSC motion controller 

model TMS320F28335
•	 A three-phase VSI model PM50 power module board with rated voltage 36 V, rated 

current 2.1 A, DC link voltage in a range 12–36 V, working at PWM frequencies up 
to 25 kHz

The photographs of the adopted test setup is shown in Figure 7.37.
The PMSM has a saliency ratio equal to 0.83 and is equipped with a 500 pulse per 

round quadrature incremental encoder. The efficiency of the PMSM at rated load torque 
is about 81%.
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8
Neural-Based Orthogonal Regression

8.1  Introduction: ADALINE and Least Squares Problems

This chapter introduces the well-known concept of linear neural network, in particular, the 
one made up of one neuron. In literature, it is called with the acronym ADALINE, which 
historically has two meanings; firstly introduced as ADAptive Linear Neuron, it changed 
its name when neural networks were less studied because of the attack of the famous book 
of Minsky and Papert [1] and got its name “ADAptive LINear Element” [2]. With respect to 
the general neural network model, the ADALINE, in its simplest form, consists only of the 
adaptive linear combiner, and its output is only the result of this summation. No output 
activation function is present, or, if preferred, the output function is the identity function. 
Figure 8.1 shows this simple general ADALINE model.

The output y can then be described by

	
b a xj ji i

i

n

j
T= =

=
∑

1

a x

	
(8.1a)

where
aji is the ith component of the aj vector given as input at the jth instant of time
xi is the ith component of the x weight vector
bj is the corresponding output at the jth instant of time

If the vector b = [b1…bj…bm]T ∈ ℜm is considered as well as the matrix A ∈ ℜmxn composed 
of m row vectors a j

T, then finding the weight vector x (the problem of linear parameter 
estimation) is generally equivalent to solving the following overdetermined set of linear 
equations, on the basis of the training set (TS) made up of the expanded matrix [A;b]:

	 Ax b⊕ 	 (8.1b)

Generally, A ∈ ℜmxn is called data matrix, and b ∈ ℜm is called observation vector. According to 
the classical ordinary least squares (OLS) approach, errors are implicitly assumed to be con-
fined to the observation vector. This assumption is however unrealistic. Actually, also the 
data matrix is affected by noise, like sampling errors, human errors, modeling errors, and 
measurement errors. In Refs [3,4], some methods are presented to estimate the influence of 
these errors on the OLS solution. The total least squares (TLS) method is a technique devised 
to make up for these errors. The TLS problem has been presented for the first time in 
Ref. [5], where it is solved by using the singular value decomposition (SVD), as proposed 
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in Ref. [4] and more completely in Ref. [36]. This estimation method stems historically from 
statistics literature, where it is called orthogonal regression or errors-in-variables (EIV) regres-
sion.* As a matter of fact, the problem of the regression straight line has been considered 
since last century [6]. The main contributions are in Refs [6–10]. About 30 years ago, this tech-
nique has been extended to multivariable cases and later to multidimensional cases (where 
several observation vectors b are treated), as in Refs [11] and [12]. A complete analysis of 
the TLS problem can be found in Ref. [13], where the algorithm of Ref. [5] is generalized to 
the nongeneric case (no, generic TLS), where the initial algorithm failed to find a solution. 
According to the data least squares (DLS) approach, errors are assumed to be confined only 
to the data matrix [14]. The DLS case is particularly suitable for certain deconvolution prob-
lems, like in system identification or channel equalization [14].

8.2  Approaches to the Linear Regression

8.2.1  OLS Problem

The least-square solution is the one minimizing

	
min ( )
ʹ∈ℜ

− ʹ ʹ ∈
b m

R Ab b b
2

with the constraint
	

(8.2)

where R(A) is the column space of A. When a minimum of b′ is found, every vector satisfying

	 A ʹ = ʹx b 	 (8.3)

is then called the OLS solution. It corresponds to the point minimizing the following cost 
function:

	 E x A AOLS
T( ) ( ) ( )= − −x b x b

	 (8.4)

8.2.2  DLS Problem

The least-square solution is the one minimizing

	
min ( )
ʹ́ ∈ℜ

− ʹ́ ∈ ʹ́
A Fmxn

A A R Awith the constraint b
	

(8.5)

*	 In EIV models, the true values of observed variables satisfy unknown but exact linear relationships.

FIGURE 8.1
Linear neuron network.
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where ∥…∥F is the Frobenius norm. Once a minimum A″ is found, every x″ satisfying

	 ʹ́ ʹ́ = ʹA x b 	 (8.6)

is called the DLS solution. In [15, p. 120], it is proved that it corresponds to the minimiza-
tion of the cost function:

	
E

A A
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T
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( ) ( )

x
x b x b

x x
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− −

	
(8.7)

8.2.3  TLS Problem

The least-square solution is the one minimizing
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When a minimum of [Â;b̂] is found, every x̂ satisfying

	
ˆ ˆ ˆAx b= 	 (8.9)

is called TLS solution. It minimizes the sum of orthogonal squared distances (weighted 
residues squared sum):
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(8.10)

which corresponds to the Raleigh quotient (RQ) of [A;b]T[A;b]:
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x
u b b u

u u
=

	
(8.11)

with the constraint un+1 = −1 (un+1 is the last component of the vector u), which represents 
a hyperplane in the space u, called TLS hyperplane. Equation 8.11 shows that the solution 
can be found by using the minor component analysis (MCA), followed by a normalization 
of the result.

It can be proven that the TLS solution is parallel to the right singular vector (∈ℜn+1 ) 
corresponding to the smallest singular value of [A;b].
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8.3  Minor Component Analysis and the MCA EXIN Neuron

The MCA is a technique extracting the second-order statistics of the input signal and plays 
an ever increasingly important role in data analysis and signal processing.

The minor components are the eigenvectors corresponding to the smallest eigenvalues of 
the data autocorrelation matrix [16].

8.3.1  Some MCA Applications

MCA has several applications, especially in adaptive signal processing. It has been applied 
to frequency estimation [17,18], bearing [19], beamforming [20], moving target detection [21], 
and clutter cancelation [22]. It has also been applied to TLS algorithms for parameter esti-
mation [23,24]; Reference [16] shows the relationship between the MCA and the function 
approximation with the TLS criterion, which enlarges the application domain of the MCA 
to several engineering areas as well as to cognitive science, for instance, computer vision.

8.3.2  Neural Approach

Several neural networks are able to solve the MCA problem. The only nonlinear neural 
network is the Hopfield network presented in Mathew et al. [17,18], which, however, has 
some serious drawbacks (see Cirrincione [15], p. 120). All other existing methods use only 
one linear neuron.

Let a linear neuron be considered with input vector x(t) = [x1(t),…, xN(t)]T and with output y(t):

	
y t w t x t t ti

i
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i
T( ) ( ) ( ) ( ) ( )= =

=
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1

w x

	
(8.12)

where w(t) = [w1(t),…, wN(t)]T is the weight vector. The RQ of the autocorrelation matrix of 
x(t) is the Liapounov function of these neurons, employing a gradient descent method for 
minimizing this function. The most important linear neurons are OJA, OJAn, OJA+ [16], 
LUO [29,41], FENG, FENG1 [32], and MCA EXIN [25,26,37–41]. This terminology has been 
introduced in Refs [25,26] and is currently used in literature. In Cirrincione et al. [25], the 
following propositions are proved by analyzing the RQ properties and the gradient flows of 
the corresponding ordinary differential equations (ODE) of the earlier neurons:

	 1.	The ODE of LUO, OJAn, and MCA EXIN are equivalent, since they differ only in 
the Riemann metrics. This implies a similar stability analysis, with the exception 
of the critical points.

	 2.	The RQ critical points are singular, since the Hessian matrix is not invertible in 
these points. Because of this, the RQ is not a Morse function* in every open space of 
the domain containing a critical point.

	 3.	As a result, the phase portrait of the gradient flows is only made up of straight lines 
along the direction of the RQ eigenvectors, that is, the critical points are not isolated.

*	 A function f: U → ℜ, where U is an open subset of ℜn, is a Morse function if all of its critical points x0 ∈ U are 
not singular.
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	 4.	 In case of a nonsingular critical point, the local stability properties of the gradient 
flow around this point do not change with the Riemann metrics. Nevertheless, in the 
case of a singular critical point, the local phase portrait of the gradient flow around 
the RQ critical point can change substantially with the Riemann metrics [27,28].

8.4  MCA EXIN Neuron

The learning law of the MCA EXIN neuron derives from discretization of the sequential 
version of the exact gradient flow of the RQ:

	
w w

w w
x

w
w w

( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

t t
t y t
t t

t
y t t

t tT T+ = − −
⎡

⎣
⎢

⎤

⎦
⎥1

α

	
(8.13)

where α(t) is the learning rate.

8.4.1  Convergence during the First Transient Phase

This analysis deals with the ODE MCA EXIN and is therefore limited by the ODE assump-
tions: it is a first approximation theory of the time behavior of the neuron, particularly 
until the minimum is reached for the first time. In Cirrincione et al. [25,26], the following 
theorem is proved:

Theorem 8.1 (Convergence of the MCA EXIN)

Let R be the n × n autocorrelation matrix input data, with eigenvalues 0 ≤ λN ≤ λN−1 ≤ … ≤ 
λ1 and correspondingly orthonormal eigenvectors zN, zN−1,…, z1. If w(0) satisfies wT(0)
zN ≠ 0 and λn is single, then, in the limits of validity of the ODE approximation, for MCA 
EXIN, it holds that

	
w w( ) ( )t t
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2

2

20 0≈ >
	

(8.14)
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2 	
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The phase portrait within the limits of the ODE approximation is explained in the following 
remarks [29,30] (also valid for the other neurons).

•	 The RQ has a critical direction which is a global minimum and a critical direction 
which is a global maximum. The other critical directions are saddles.

•	 The critical direction is a global minimum in the direction of any eigenvector with 
a larger eigenvalue and a maximum in the direction of any eigenvector with a 
smaller eigenvalue.

•	 The critical direction is a global minimum in the direction of any linear combina-
tion of eigenvectors with larger eigenvalues and a maximum in the direction of any 
linear combination of eigenvectors with smaller eigenvalues.
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•	 Every saddle direction has an infinity of cones of attraction, each with centers 
on this direction and containing the directions of the linear combinations of the 
eigenvectors with bigger eigenvalues than the saddle eigenvalue. It has also an 
infinity of cones of repulsion, each with axes orthogonal to the axes of the cones 
of attraction, with centers on the saddle direction and containing the directions 
(dimensions of escape) of the linear combinations of the eigenvectors with smaller 
eigenvalues than the saddle eigenvalue.

•	 The hyperplane through the origin and perpendicular to the minimum direction 
is made up of points which are maxima along the minimum direction (hypercrest 
along the minimum direction). The hyperplane through the origin and perpendic-
ular to the maximum direction is made up of points which are minima along the 
maximum direction (hypervalley along the maximum direction). The hyperplane 
through the origin and perpendicular to a saddle direction is made up of two 
kinds of points: points given by the intersection with the saddle cone of repulsion, 
which are minima along the saddle direction (hypervalley along the saddle direc-
tion), and points given by the intersection with the saddle cone of attraction, that 
is, all the other points, which are maxima along the saddle direction (hypercrest 
along the saddle direction).

Figure 8.2 shows a 3-D portrait of the RQ as a function of the MCA EXIN ODE.
If the weight vector modulus is less than unity, the weight vector of the MCA EXIN neu-

ron reaches the minor component direction more quickly than OJAn, which is quicker that 
LUO. The contrary is true if the weight vector modulus is greater than unity. If the weight 
vector lies on the unity sphere, the three neurons have the same speed. Moreover, their 
time constants are inversely proportional to λN−1 − λN: eigenvalues well far away from each 
other result in a quicker response. OJA and OJAn have the same time constant.

It seems that OJA and LUO can give better results than MCA EXIN if large initial conditions 
are chosen. Unfortunately, this is not a good choice because of the flatness of the RQ land-
scape and the fact that, for the learning laws of all the neurons different from the MCA EXIN 
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FIGURE 8.2
MCA EXIN ODE stability analysis and phase portrait (3-D case). (From Cirrincione, G. et al., IEEE Trans. Neural 
Netw., 13(1), 160, January 2002; Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The 
EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing, Communications and 
Control, Wiley & Sons, New York, 255pp., November 2010.)
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neuron, it is difficult to stop the algorithm (see the divergence analysis in Ref. [31]). From this 
analysis, the best choice for the MCA EXIN neuron would be null initial conditions. However, 
this is not possible, which can be easily verified. Moreover, too low values of the weight vector 
may lead up to strong oscillation (see Equation 8.13). In the following, it will be shown that the 
MCA neuron can be provided with a particular scheduling (DLS scheduling) which allows it 
to start from infinitesimal initial conditions, to keep low weight values for some time, and to 
follow a stable trajectory in the phase portrait: this version is called MCA EXIN+.

8.4.2  Dynamic Behavior of the MCA Neuron

The analysis of the temporal behavior of all MCA neurons can be carried out by using the 
stochastic discrete laws, since the mere use of the ODE approximation fails to reveal some 
important features of these neurons.

The weight vectors OJAn, LUO, and MCA EXIN have constant modulus during their 
temporal evolution according to the ODE approximation. Nevertheless, in Refs [25,26], it 
is shown that the modulus value always increases. With respect to other neurons, MCA 
EXIN has the largest increment for weight moduli less than unity: this accounts for its 
large transient oscillations and the fact that the MC direction (the global minimum of the 
RQ) is reached more rapidly with null or very low initial conditions. Moreover, the begin-
ning of the divergence, as shown in Ref. [31], implies large moduli: in this case, MCA EXIN 
has the smallest modulus increment, which means that its divergence is the slowest. In a 
nutshell, the dynamic behavior of all MCA neurons, with the exception of FENG, FENG1, 
and OJA+, is as follows (see Figure 8.3 for the 3-D case):

	 1.	An initial transient phase.
	 2.	There are fluctuations around the locus of constant modulus, but with an increasing 

bias; the fluctuations are functions of the learning rate.
	 3.	Ability to arrive in the direction desired.
	 4.	By increasing the modulus, the fluctuations push the weight to another critical 

point and so on, until ∞.
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FIGURE 8.3
Dynamic behavior of the weights for MCA EXIN, LUO, OJAn, and OJA (for particular initial conditions): 
3-D case. (From Cirrincione, G. et al., IEEE Trans. Neural Netw., 13(1), 160, January 2002; Cirrincione, G. and 
Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Netw., Series: Adaptive and Learning 
Systems for Signal Processing, Communications and Control, Wiley & Sons, New York, 255pp., November 2010.)
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In Refs [25,26,31], the existence of a “sudden divergence” at a finite time is proved for some 
linear neurons. For LUO, this time depends on the extension of the eigenvalue spectrum 
of the autocorrelation matrix R. For OJA and OJA+, it depends on the inverse of the small-
est eigenvalue of R, which means that noisy data can worsen the divergence phenomenon. 
Figure 8.4 shows an example: OJA has the worst performance, MCA EXIN diverges very 
slowly, and OJA+ converges. Figure 8.5 shows the deviation from the MC direction for 
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with initial conditions equal to the solution. (From Cirrincione, G. et al., IEEE Trans. Neural Netw., 13(1), 160, 
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LUO. The effects of the weight increments orthogonally to the MC direction and the begin-
ning of the sudden divergence are apparent.

Because of divergence, it is difficult to come up with a suitable stop criterion. In Refs 
[25,26], some techniques are developed to solve this problem for MCA EXIN as well as an 
analysis of FENG and FENG1, whose behaviors correspond to an anti-Hebbian law with 
resulting large oscillations around the solution, unlike MCA EXIN which has the smallest 
variance around the solution. Figure 8.6 shows an example of this.

8.4.3  Dynamic Stability and Learning Rate

In Refs [25,26], an original technique is shown for analyzing the fluctuations of the weight 
vector Ψ = w as a function of the learning rate α. With this regard, the time analysis of 
the weight vector subspace is presented in Refs [25,26] and Figure 8.7 shows an example. 
Particularly, the following facts have been proved:

•	 There exists a new form of divergence, the instability divergence.
•	 A small value of α results in a low learning time.
•	 It is difficult to find a good value of α for avoiding the instability divergence.
•	 Both the transient phase and the accuracy of the solution depend on the choice of α.

LUO, OJAn, and MCA EXIN are iterative algorithms with high variance and low bias. However, 
OJAn and, above all, LUO, require many more iterations to converge than MCA EXIN because 
they have more fluctuations around the MC direction and cannot be stopped earlier by a stop 
criterion that requires the flatness of the weight time evolution. On the contrary, OJA, OJA+, and 
FENG are algorithms with low variance and high bias. However, FENG has larger fluctuations 
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Smallest eigenvalue computation by MCA EXIN (lower curve) and FENG for a 3-D well-conditioned 
autocorrelation matrix. (From Cirrincione, G. et al., IEEE Trans. Neural Netw., 13(1), 160, January 2002; 
Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, Series: 
Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
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and is unreliable for near-singular matrices. Only in the case of MCA EXIN, the choice of low 
initial conditions results in a large variance in the first transient phase of the weights but not 
at the expense of the final accuracy, since, as seen in Refs [25,26], fluctuations go down to zero 
during the divergence phase.

8.4.4  Numerical Considerations

8.4.4.1  Computational Cost

The MCA learning laws are iterative algorithms with a different computational cost per 
iteration, shown in Table 8.1, showing that OJA has the lowest cost. All costs depend on the 
dimensionality n of the data: for high-dimensional data, all learning laws have the same 
cost with the exception of OJA which has as much as 33% fewer flops per iteration.

8.4.4.2  Quantization Errors

Quantization errors can worsen the solution of the gradient-based algorithms with respect 
to the performance achievable in infinite precision. These errors accumulate in time 
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TABLE 8.1

Cost per Iteration for the MCA Neurons

Flops per Iteration

OJA+ 8 n + 3
LUO 8 n + 1
EXIN 8 n + 1
OJAn 8 n
FENG 8 n − 1
OJA 6 n

Source:	 From Cirrincione, G. et al., IEEE Trans. 
Neural Netw., 13(1), 160, January 2002.
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without bound, leading in the long term (tens of millions of iterations) to an eventual over-
flow [32]. This kind of divergence is here called numerical divergence.

The degradation of the solution is proportional to the spread of the eigenvalue spectrum 
of the input autocorrelation matrix, which is relevant for near-singular matrices. An exam-
ple with FENG is shown in Figure 8.8 showing the computation of the smallest eigenvalue 
of a singular matrix whose eigenvalues are 0, 1, and 1.5. Notice the finite-time divergence 
as a result of numerical problems.

8.4.5  Acceleration Techniques

The MCA learning laws are instantaneous adaptive gradient algorithms and then work 
sequentially. Nonetheless, batch techniques can further accelerate the MCA. If incoming 
inputs are collected in blocks and are fed to the neuron, which changes its weights only 
after the whole block presentation, all methods typical of the batch learning can be used. 
Despite this, it is not practical to use Newton and quasi-Newton techniques because the 
RQ Hessian matrix at the minimum is singular and then the inverse does not exist. On the 
other hand, the conjugate gradient approach can face this problem [33, pp. 256–259] [34] 
and can be used for accelerating MCA EXIN in block mode [15].

8.4.6  Simulations

The following simulations use, as data, a zero mean Gaussian random vector x(t) gen-
erated by an autocorrelation matrix R whose spectrum is chosen in advance. The goal 
of this approach is the analysis of the behavior of the MCA laws with respect to the 
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dimensionality n of data and the conditioning of R. In the first group of simulations, the 
components of the initial weight vector are chosen randomly in [0, 1]. λn is always cho-
sen equal to 1. The other eigenvalues are given by the law λi = n − i, then the condition 
number κ2(R) = λ1/λn increases with n, but R always remains a well-conditioned matrix. 
Table 8.2 shows, for four MCA laws, the best results,* in terms of total flops cost obtained 
for each value of n. With the exception of EXIN, all other laws diverge for low values of 
n: from OJA which diverges for only n = 7 to LUO which diverges for n = 10. This problem 
can be explained by the choice of the initial conditions: by increasing the number of 
components, the initial weight modulus increases and quickly becomes greater than 1. 
About OJA, there is sudden divergence. About FENG, there is instability divergence. 
Indeed fluctuations only depend on the modulus and the data inputs. The modulus is 
large and remains so because of the too large oscillations which prevent the weights 
from approaching the MC direction. As a consequence, this generates more and more 
instability until the finite-time divergence. Obviously, for increasing n, the divergence 
is anticipated. About LUO, two explanations are possible: sudden and instability diver-
gence. Nevertheless, in these experiments, the divergence is due to instability, because 
it is accompanied by very large oscillations and certainly occurs before the sudden 
divergence. Figures 8.9 through 8.11 show some of these experiments for, respectively, 
n = 5, 11, and 100. Figure 8.9 confirms that FENG has instability divergence (see peaks 
before divergence). Figure 8.11 shows the good results obtained with MCA EXIN.

In order to avoid starting with too high initial conditions, a second group of experiments 
has been done where the initial weight vector is the same as in the first experiment, but after 
dividing its norm by 10. Table 8.3 shows the results about the divergence of all MCA laws 
with the exception of MCA EXIN, which always converges. Obviously, the divergence occurs 
later than in the first group of experiments because the weights are lower. Figures 8.12 and 
8.13 show some results. A deeper discussion of these results can be found in Refs [25,26].

*	 For each value of n, several experiments have been done by changing the learning rate (initial and final values, 
monotonic decreasing law) and only the best results have been reported.

TABLE 8.2

Total Cost of the MCA Learning Laws for 
Autocorrelation Matrices of Increasing Size

κ2 EXIN LUO FENG OJA

3 20 42726 37466 41133 20888
5 40 65966 59131 60345 42942
7 60 183033 640074 742346 div
8 70 205968 706075 830000 div
9 80 228681 965544 a div

10 90 252002 1061098 div div
15 140 366255 div div div
25 240 2003755 div div div
50 490 3725868 div div div
75 740 4488496 div div div

100 990 6258001 div div div

Source:	 From Cirrincione, G. et al., IEEE Trans. Neural Netw., 
13(1), 160, January 2002.

Note:	 div, divergence; a Inaccurate result.
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FIGURE 8.11
Computation of the smallest eigenvalue of a 100 × 100 autocorrelation matrix for the first choice of initial conditions. 
(From Cirrincione, G. et al., IEEE Trans. Neural Netw., 13(1), 160, January 2002.)

TABLE 8.3

Divergence of the MCA Learning Laws for 
Autocorrelation Matrices of Increasing Size

dim LUO FENG OJA OJAn OJA+

3 conv. conv. conv. conv. conv.
7 conv. conv. conv. conv. conv.
9 conv. 413 conv. conv. conv.

10 conv. 460 conv. conv. conv.
15 conv. 531 conv. conv. conv.
18 conv. 371 conv. conv. conv.
20 conv. 700 180 conv. 65
25 conv. 27 27 conv. 26
30 conv. 27 27 1848 17
40 conv. 400 17 975 12
50 conv. 370 6 670 12
60 conv. 540 3 550 14
70 conv. 260 7 520 12
80 545 220 5 400 6
90 8 7 8 355 8

100 8 8 8 250 5

Source:	 From Cirrincione, G. et al., IEEE Trans. Neural Netw., 
13(1), 160, January 2002.

Note:	 The numbers show at which iteration the divergence 
occurs; conv., convergence.
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FIGURE 8.13
Plot of the squared weight moduli in the case of a 10 × 10 autocorrelation matrix for the first choice of initial 
conditions. (From Cirrincione, G. et al., IEEE Trans. Neural Netw., 13(1), 160, January 2002.)
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8.4.7  Conclusions and Prospects for the MCA Neuron

The MCA is becoming ever increasingly important not only in signal processing but also 
in data analysis (orthogonal regression, TLS): important applications in electrical engi-
neering systems are the topic of this book, but others do exist, as in computer vision for the 
estimation of the parameters in the essential matrix (structure from motion) [15].

MCA EXIN is by far the best MCA law. It has the best convergence in the MC direction and 
the slowest divergence, and has neither sudden divergence nor instability divergence prob-
lems. It works properly in higher dimension spaces as well and has been used throughout 
this book in real applications. It is robust to outliers because of the presence of the squared 
modulus weight vector in the denominator of the weight increment law. Nevertheless, there 
exists a variant (NMCA EXIN [35]) which is robust to outliers since it implements the M 
estimators theory [36]. MCA EXIN can be easily stopped; it is a high-variance/small-bias 
algorithm with a good dynamic performance thanks to inertia due to high-modulus weight 
vectors. It has the same computational burden as the other MCA laws, except for OJA.

If the sign of the weight vector increment is changed in Equation 8.13, the PCA EXIN learn-
ing law is obtained [15] which performs the principal components analysis (PCA) of the data.

A variant of the MCA EXIN (with a different learning rate) which does not diverge is pre-
sented in Refs [37,38] and uses a new theory for analyzing the convergence. In Refs [39–41], 
the MCA EXIN neuron is used for implementing a nonlinear Volterra filter.

8.5  TLS EXIN Neuron

The complete theory of the TLS EXIN neuron can be found in Refs [15,26].
In Section 8.2.1, the cost function ETLS(x) has been introduced in (8.10), which is to be 

minimized to find the TLS solution and rewritten in the following for convenience:
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It is apparent then that this function is the RQ of [A;b]T[A;b] constrained to the TLS 
hyperplane xn+1 = −1, which means that the TLS solution is parallel to the right singular 
value ∈ ℜn+1 corresponding to the minimum singular value of [A;b]. Define
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with ai
T being the ith row of A and yi being the output of the MCA linear neuron of weight 

vector Ψ ∈ ℜn+1 and input ξi ∈ ℜn+1. Its learning law minimizes the RQ of the autocorrela-
tion matrix of the input data R which is equivalent to [A;b]T[A;b]/m where m is the number 
of rows. Indeed,
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Thus, to find the TLS solution, the MCA solution must be normalized to have the last 
component of the solution equal to −1. This way of finding the TLS solution poses two 
fundamental problems:

	 1.	An additional operation of division must be made because of the normalization of 
the output.

	 2.	All the problems on the behavior of the MCA neurons, cited in Section 8.4, are 
valid here too.

If the weight vector is constrained to lie on the TLS hyperplane (i.e., losing a degree of 
freedom), it can be argued that all the convergence problems, which are the consequence 
of the degeneracy property of the Rayleigh quotient, are no more valid because on the TLS 
hyperplane the only critical points are the intersections with the critical straight lines, and 
therefore, they are isolated (it implies the global asymptotic stability of the solution on the 
hyperplane plus the possible solution ∞). This reasoning, illustrated in Figure 8.14 for the 
3-D space Ψ ∈ ℜ3, derives from Section 8.5. Moreover, the MCA landscape changes in 
the following way:

•	 The MCA attraction and repulsion volumes become volumes of the same kind 
for each saddle point. The intersections of the hypervalleys and hypercrests with 
the hyperplane TLS result in (n − 1)-dimensional planes which are, respectively, 
constituted of either the minima or the maxima with respect to the direction of 
their orthogonal vector. In Figure 8.14, the TLS plane is divided into two zones: one 
attraction zone and one repulsion zone (partially shown in the figure). The straight 
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line passing in the saddle point and the maximum is a crest along the maximal 
direction. The straight line passing in the saddle point and the minimum is a 
valley along the minimal direction. The straight line passing in the minimum and 
the maximum is a crest in the saddle direction, except at the intersection with the 
repulsion zone which is a valley in the saddle direction.

•	 For MCA, the hypercrest along the minimal direction is not a barrier (limit of 
the attraction area) for the minimum. Indeed, if initial conditions are chosen for 
the learning law inside one of the half-spaces delimited by the hypercrest, the 
weight vector always converges toward the minimal direction in the orientation 
of the half-space containing the initial conditions. This reasoning is not valid 
any longer in the TLS case, since the crest is a barrier. In this case, there is only 
a minimum point and it is then compulsory to choose the initial conditions in 
the half-space containing this point. This crest is not the only TLS barrier: it is 
necessary to consider it with the saddle volumes.

Replacing in Equation 8.13 Ψ(t) = w(t) with [xT(t); −1]T and ξi with ai
T

i
T

b;⎡⎣ ⎤⎦ , i being the index 
of the [A;b] row presented as input to the neuron at the time t, and taking only the first n 
components yields

	 x x x( ) ( ) ( ) ( ) [ ( ) ( )] ( )t t t t t t ti+ = − +1 2a g a ga
	

(8.18)

where

	
g d

( )
( )

( ) ( )
t

t
t tT=

+1 x x 	
(8.19)

and

	 d( ) ( )t t bT
i i= −x a 	

(8.20)

This is the TLS EXIN learning law. The TLS EXIN neuron is a linear unit with n inputs 
(vector ai), n weights (vector x), one output (scalar yi = xTai), and one training error (scalar 
δ(t)). With this typology, the training is considered as supervised, being bi the target. The 
quantity in brackets is positive: it implies that the second term in Equation 8.18 is a reverse 
ridge regression.

TLS EXIN can work either sequentially or in batch and block modes. Several methods 
for accelerating the TLS EXIN convergence speed have been implemented (in mode block 
and batch).

•	 To improve conjugate gradient (CG) methods, the scaled conjugate gradient 
(SCG) [54] has been employed. It combines the CG with the trust region model 
of the Levenberg–Marquardt. SCG does not need an a priori parameter chosen 
by the user.

•	 The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [42] can be used, since 
Newton or quasi-Newton can be employed, since the n × n Hessian matrix of 
ETLS(x) is proven to be positive definite and therefore is not singular [15,26].
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8.5.1  Stability Analysis (Geometrical Approach)

Let the singular value decomposition (SVD) of the matrix [A;b] be

	 A B U VT;[ ] = Σ 	 (8.21)

where

	 Σ = ∈ℜ ≥ ≥ ≥+
+

+diag n
mx n

n( , , ) ,( )σ σ σ σ1 1
1

1 1 0… �
	 (8.22)
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(8.23)

And let the SVD of the matrix A be

	 A U V T= ʹ ʹ ʹΣ 	 (8.24)

where

	 ʹ = ʹ ʹ( ) ∈ℜ ʹ ≥ ≥ ʹ ≥+Σ diag n
mxn

nσ σ σ σ1 1 1 0, , ,… �
	 (8.25)
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1

1
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, , ,

…

… 	

(8.26)

Then it follows

	 A A V VT T= ʹ ʹ ʹΛ 	 (8.27)

where Λ Σ Σ= ( ) = ʹ = ʹdiag n
T

i iλ λ λ σ1
2, , ,… with .

The error function (8.10) can be considered as the ratio between two definite posi-
tive quadratic forms, which leads up to a geometrical analysis of the family of equilevel 
hypersurfaces:

	 ETLS( )x = γ 	 (8.28)

where γ plays the role of the family parameter.
If the unknown vector x is substituted by y + xc(γ) (translation), where

	
x bc

T
n

TA A I A( )γ γ= −⎡⎣ ⎤⎦
−1

	 (8.29)

coincides with the center of the hypersurface (hyperconic) with level γ, followed by a rota-
tion z = V′Ty, then the hyperconic with level γ is represented by

	
z zT

nI gΛ −[ ] =γ γ( )
	 (8.30)

where

	 g AV I V AT
n

T T( )γ γ γ= ʹ −[ ] ʹ − +
−b b b bΛ

1

	 (8.31)
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If the vector q ≡ [q1, q2,…, qn]T = V′ATb is introduced, then Equation 8.31 becomes

	
g

q
Ii

ii

n
T T

n
T( )γ

λ γ
γ γ=

−
− = −( ) + −

=

−∑
2

1

1b b q q b bΛ
	

(8.32)

The components qi are called convergence keys because of their fundamental role in the 
analysis of the TLS convergence domain.

The zeros of Equation 8.32 coincide with the squared singular values of the matrix 
[A;b] and with the values of ETLS(x) at its critical points (Corollary 92 of Ref. [26]). It can 
be therefore concluded that Equation 8.32 is a version of the secular TLS equation [3,11] 
and that the smallest zero of g(γ), that is, γ σmin = +n 1

2
, gives the level of the TLS solution. 

There exists one and only one value γmin of γ in the interval (0, λn) such that g(γmin) = 0. 
As a consequence, the equilevel hyperconics of Equation 8.30 are (n − 1)-dimensional 
hyperellipsoids ∀γ ∈ (γmin, λ). For γ = γmin, the hyperconic reduces into one point z = y = 0. 
This point corresponds to the unique minimum of ETLS(x), and its position is given by

	
ˆ ( )minx x b b= = −⎡⎣ ⎤⎦ = −( )−

+

−

c
T

n
T T

n
TA A I A A A I Aγ γ σ

1
1

2 1

	
(8.33)

that is the TLS solution [23].
The asymptotes of g(γ) are given by the squared SV ʹ =σ λi i

2  of the data matrix A. They 
are between the zeros s i

2, complying with the interlace theorem, as shown in Figure 8.15.
The cost function TLS EXIN of an n-dimensional unknown x has n + 1 critical points: 

one minimum, n − 1 saddle points, and one maximum.
Figure 8.16 shows an example of ETLS(x) for n = 2 (one minimum, one saddle point, and one 

maximum). The equilevel curves are better described in Figure 8.17 that also shows the critical 
points locus and one section of the cost function in the direction of the straight line passing 
along the minimum and the saddle point, which is a valley along the maximal direction. There 
appears also the barrier given by the saddle point in this section: a gradient descent method 
with initial conditions on the left of the saddle point cannot reach the minimum.

σ2n+1 σń2 σn–1 σ1́2σn σ1

g(γ)

γ

΄22 2

FIGURE 8.15
The g(γ) as a function of the ETLS(x) level. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal 
Data Fitting: The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing, 
Communications and Control, Wiley & Sons, New York, 255pp., November 2010.)
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8.5.2  Convergence Domain

The TLS domain of convergence is affected by the composed action of the following frontiers:

	 1.	The barriers (asymptotes): The TLS barrier convergence follows the z directions 
asymptotically: that is the direction of the eigenvalues �vj for j ≠ n. Furthermore, in 
every plane zizj with j < i, there is a unique barrier for the �vi direction, parallel to �v j. 
The origin always lies between the minimum and the barrier.
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FIGURE 8.16
TLS cost landscape and corresponding equilevel curves for an overdetermined system of the two unknowns x 
and y. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, 
Series Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
New York, 255pp., November 2010.)
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FIGURE 8.17
TLS equilevel curves for the benchmark overdetermined system with the corresponding critical points and 
the barrier of convergence, together with the section along the straight line passing through the minimum and 
the saddle. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural 
Networks, Series: Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
New York, 255pp., November 2010.)
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	 2.	The saddle cone projections (volumes) in the TLS hyperplane: These repulsive cone pro-
jections border that part of the frontier between the saddle and the corresponding 
barrier.

	 3.	The maximum locus tangent: If the maximum is close to the vertical asymptote, it 
approximately corresponds to this asymptote. With respect to a vertical asymptote 
corresponding to a far away eigenvalue λi (λi << λ1), its effect is not negligible.

	 4.	The saddle-maximum hypercrest projection: In the TLS hyperplane, the hyperplane rep-
resenting the maxima in the minimum direction projects onto an (n − 1)-dimensional 
plane which corresponds to a straight line in every plane zizj.

The origin of the TLS hyperplane is always between the saddle-maximum hypercrest 
projection and the TLS solution (Theorem 113 in Ref. [25]), as a consequence of which the 
fundamental theorem of the TLS EXIN (Theorem 114 in Ref. [25]) can be deduced.

Theorem 8.2 (Origin and TLS Domain of Convergence)

The TLS origin belongs to the TLS domain of convergence.

This theorem shows the existence of universal initial conditions: with null initial condi-
tions, the convergence is always ensured.

As an example, Figures 8.18 and 8.19 show the domain of convergence of the generic TLS 
benchmark problem shown in Figure 8.16. Figure 8.18 shows that the domain of conver-
gence for a certain number of initial conditions for the sequential TLS EXIN neuron (it is 
also valid for every gradient flow of the TLS energy): the initial conditions for which the 
neuron converges are green. The dark blue straight line represents the asymptote/barrier z1. 
The bottom part of the frontier is given by the asymptote because the maximum is close 
to it. For increasing x2, the frontier is given by the action of the saddle-maximum line and 

max
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Max locus tangent
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FIGURE 8.18
(See color insert.) The initial conditions map for the 2-D TLS problem: the green crosses represent the initial 
conditions by which a gradient flow algorithm converges, that is, the domain of convergence. The red crosses 
give divergence. The dark blue triangle has the critical points as its vertices. The dark blue straight line repre-
sents the asymptote/barrier z1. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: 
The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing, Communications and 
Control, Wiley & Sons, New York, 255pp., November 2010.)



399Neural-Based Orthogonal Regression

the repulsion area of the saddle. The latter is responsible for the upper part to the top part, 
given by the asymptote. Figure 8.19 shows the corresponding weight vector evolution by 
means of the blue lines. All the trajectories beginning from the green points go to the 
straight line through the minimum and the saddle (TLS projection of the saddle-minimum 
hypervalley) on the right side of the saddle and then converge to the minimum. All the 
trajectories beginning from the red points go to the same straight line on the left side of 
the saddle and then diverge in the direction of the straight line.

8.5.3  Nongeneric TLS Problem

The TLS problem (8.8) has no solutions if

	 σ σ σp p n n ip n v i p n> = = ≤ = = + ++ + +1 1 1 0 1 1� …, , , ,,and 	 (8.34)

This is the nongeneric TLS problem. In this case, the existence conditions are not satis-
fied. These problems occur when A is rank deficient ( ʹ ≈ +σ σp p 1 large). This last situation 
can be determined by examining the smallest σi for which vn+1,i ≠ 0. If this singular value 
is large, the user can turn down the problem and declare it as noncompatible with a 
linear modeling. Alternatively, the problem can be made generic by adding more equa-
tions. This is the case if the model is EIV and the observation errors are i.i.d (statistically 
independent and identically distributed, i.e., with the same variance). In the case of ʹ ≈σp 0, it 
is possible to cancel the dependence between the columns of A by eliminating some col-
umns of A so that the resulting submatrix is full rank. The TLS method is then applied 
to this subproblem (subset selection [43–45]). Although an exact nongeneric TLS problem 
is rare, practically close to nongeneric situations do occur. In these cases, the generic TLS 

6

5

4

3

2

1

0

–1

–2

–3

–4
–4 –3 –2 –1 0

x1

1 2 3 4

min

max

sl

x 2

Temporal evolutions

FIGURE 8.19
(See color insert.) The temporal evolution of the sequential TLS EXIN neuron for the generic 2-D TLS prob-
lem. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, 
Series: Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
New York, 255pp., November 2010.)
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solution can be still computed, but it becomes unstable and very sensitive to data errors 
as ʹ − +σ σp p 1 approaches zero [5].

If σn > σn+1 and vn+1,n+1 = 0, then [13]

	
σ σn n n n

n
v+ + +> ʹ =

± ʹ⎡

⎣
⎢

⎤

⎦
⎥1 1 1 0

; ,
v

	
(8.35)

The nongeneric TLS finds

and
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(8.36)

Once the minimum [Â;b̂] is found, every x̂  verifying

	
ˆ ˆ ˆAx b= 	 (8.37)

is called a nongeneric TLS solution.
The nongeneric TLS algorithm [13] must firstly identify the close to nongeneric or the 

nongeneric situations before applying the corresponding formula: the computation of the 
numerical rank of a noisy matrix is necessary. It can be proven that TLS EXIN solves auto-
matically this problem without changing the learning law [26]. From a geometric point of 
view (8.34), it means that the last n − p + 1 critical points (the smallest) go to infinity, that 
is, the corresponding zeros in g(γ) coincide with the first n − p + 1 asymptotes. The saddle 
associated with s p

2 is the first critical point not coincident with an asymptote.
This saddle is the nongeneric TLS solution. If σ σp p+ → ʹ1  (highly conflicting equations), 

the domain of convergence worsens because of the approaching of the saddle to the corre-
sponding asymptote (good equations have faraway saddles). Furthermore, the motor gap 
of the saddles is smaller, thus worsening the convergence speed of the iterative methods, 
and the maximum and the origin are much farther from the saddle/solution.

For p = n, the lowest critical point, associated with σn+1, goes to infinity in the direction of �vn. 
Equation 8.35 expresses the fact that the (n + 1)-dimensional vector vn+1 is parallel to the 
TLS hyperplane, just in the direction of �vn. Hence, the solution is contained in the hyper-
plane (nongeneric TLS subspace) through the origin and normal to the ATA eigenvector �vn.

The nongeneric TLS subspace has dimension n − 1, being n the dimension of the TLS hyper-
plane. In this subspace, the lower saddle, that is, the critical point corresponding to σn, loses its 
dimension of escape, and therefore, it represents a minimum. The most important consequence 
is the possibility to exactly repeat all the TLS stability analysis on this lower dimensional sub-
space. Figure 8.20 shows that, for every plane znzi, the saddle/minimum is always closer to the 
asymptote than the other inferior (t < λi) saddles. This implies that the origin is always between 
the saddle/solution and the maximum. Hence, the choice of initial conditions for every TLS 
gradient flow, just like TLS EXIN, assures the convergence. In addition, in every plane znzi, there 
exists a divergence straight line which is between the saddle/minimum and the maximum [15]. 
The convergence analysis for p < n is similar and can be found in Ref. [15] too.

Figure 8.21 shows an example of the TLS EXIN 2-D phase diagram for different initial 
conditions: The red (black) initial conditions give convergent (divergent) trajectories. 
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Solution/center locus in the plane znzi for the nongeneric TLS. The dashed line represents the divergence line. 
(From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, 
Series: Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
New York, 255pp., November 2010.)
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The black straight line passing through the red points contains the saddle/solution 
locus and coincides with the axis zi. The domain of convergence is given by the half 
line with origin the maximum (−1.2247, −1.2247) and containing the saddle/solution. 
All the nonconverging trajectories tend to the divergence straight line (dark blue thick 
line), which is the asymptote z2, and then diverge in the �v2 direction.

8.6  Generalization of Linear Least Squares Problems

The generalized TLS problem (GeTLS, [15,26,31,46,47]) deals with the case in which the 
errors Δaij in the data matrix A are i.i.d. with zero average and same variance s a

2, and the 
errors Δbi are also i.i.d. with zero average and same variance s b

2. This formulation is justi-
fied by the fact that b and A represent different physical quantities and, as a consequence, 
are often measured by methods of different accuracy. Solving GeTLS implies finding the 
vector x− by minimizing

	 ζ ζ ζΔ ΔA F F
2 2

1 1+ −( ) ≤ ≤b with 0 	 (8.38)

where

	

z
z

s
s1

2

2−
= a

b 	
(8.39)

Formulation (8.38) comprises the three problems: OLS, TLS, and DLS (Section 8.2). Indeed, 
ζ = 0 results in the OLS formulation because s a

2 0= , whereas ζ = 0.5 results in the TLS 
formulation because s s sa b v

2 2 2= = ; if ζ = 1, the DLS formulation is obtained because s b
2 0= . 

Equation 8.39 defines the problem for intermediate values of ζ: in an experiment, variances 
s a

2 and s b
2 are estimated under the spherical Gaussian assumption in order to compute the 

corresponding ζ by Equation 8.39.
The optimal solution of the problem (8.38) is given by minimizing the following error 

function:
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where u x b b= −⎡⎣ ⎤⎦ = [ ] [ ] =T T T
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For ζ = 0, 0.5 and 1, this error function is equal, respectively, to the OLS, TLS, and DLS. 
In Equation 8.40, it is apparent that the difference with the weighted TLS [48–50], which 
needs only a scalar parameter, is going to infinity to obtain the DLS solution. The same 
problem can be found in the generalization [51], which uses only one parameter. Hence, 
the need of a finite parameter in the numerical algorithms limits the accuracy. This does 
not happen in the GeTLS formulation because DLS is represented by a finite parameter.
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For 0 < ζ < 1, the error Equation 8.40 is the ratio of positive definite quadratic forms and 
represents the generalized Rayleigh quotient of the symmetric positive definite pencil 
(R,D) [52]. Its critical points solve the generalized eigenvalue problem Ru = γDu, that is,
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(8.41)

The last equation in Equation 8.41 yields the GeTLS EXIN secular equation:

	 b x b bT
crit

TA + −( ) − = ⇒2 1 0γ ζ 	 (8.42)

	 q q b bT
n

TI gΛ −( ) + −( ) − = ( ) =−2 2 1 01
γζ γ ζ γ ζ, 	

(8.43)

where
g(γ, ζ) is the generalization of g(γ) [15] (g(γ) = g(γ, 0.5)) and can be computed in the same 

way as g(γ) (compare with Equation 8.32)
xcrit is the value of x corresponding to γ, which is one of the critical values for EGeTLS(ζ, x)

The first n equations in (2.41) yield the GeTLS EXIN critical value corresponding to γ:
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2
1

gz
	

(8.44)

which is the generalization of Equation 8.29. Both Equations 8.43 and 8.44 are the bases of 
the GeTLS EXIN theory.

In conclusion, the GeTLS EXIN approach can be analyzed as a generalized eigenvalue 
problem (GEVD, generalized eigenvalue decomposition) because of the form of the error 
function Equation 8.40. This interpretation is important both from the theoretical point of 
view (new theorems and inequalities have been deduced) and the numerical point of view 
(other algorithms can be used, like the Wilkinson’s algorithm [52]).

In Ref. [26], the GEVD approach is used in order to study the OLS and DLS spectra:

OLS There are n infinite eigenvalues whose associated eigenvectors do not intersect the 
TLS hyperplane and one zero eigenvalue associated with the eigenvector which 
is the minimum of EGeTLS and intersects the TLS hyperplane in the OLS solution

DLS There is one infinite eigenvalue, whose associated eigenvector intersects the TLS 
hyperplane in the origin of the axes and represents the maximum of EGeTLS

8.7  GeMCA EXIN Neuron

In the case 0 < ζ < 1, R can be diagonalized by a D-orthogonal transformation [52]. Indeed,

	 D Z ZT= 	 (8.45)
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Define matrix K as
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and the corresponding eigendecomposition is given by

	 V KV diag DT
n= ( ) =+α α α1 1, ,… 	

(8.48)

The eigenvector matrix Y is defined as

	 Y Z Vn= ⎡⎣ ⎤⎦ =+
−y y1 1

1, ,… 	
(8.49)

and is D-orthogonal, that is,

	 Y DYT = 1 	 (8.50)

Hence, (αi, yi) is an eigenpair of the symmetric positive definite pencil (R,D).
From an MCA point of view, the aforementioned theory can be reformulated as a 

Rayleigh quotient:
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(8.51)

where

	 u = −Z 1n 	 (8.52)

The critical vectors vc of EMCA correspond to the columns of matrix V defined in Equation 
8.48. Hence, Equation 8.52 corresponds to Equation 8.49. From a numerical point of view, it 
means that an MCA algorithm, like the MCA EXIN algorithm (neuron) (basically a gradient 
flow of the Rayleigh quotient), can replace the GeTLS EXIN algorithm by using matrix K as 
autocorrelation matrix. The estimated minor component must be scaled by using Equation 
8.52 and normalized by constraining the last component equal to −1. Choosing K as autocor-
relation matrix implies that the MCA EXIN neuron is fed by input vectors mi defined as
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(8.53)

being ai the column vector representing the ith row of matrix A. The MCA EXIN neuron 
whose input is preprocessed by means of Equation 8.53 is called GeMCA EXIN neuron.
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8.7.1  Qualitative Analysis of the Critical Points of the GeMCA EXIN Error Function

Figure 8.22 resumes the analysis made in Ref. [26]. For visualization purposes, the GeTLS 
problem is 2-D (n = 2). The components of vector u are u1, u2, and u3. The plane normal to 
u3 has been drawn, together with the TLS hyperplane, whose equation is u3 = −1, which 
contains the axes x1 and x2 for the representation of the GeTLS solution x. All vectors 
point to the TLS hyperplane (the black dots), except the u axes and the dashed direc-
tions. All critical directions have been estimated by using Equation 8.51 and then scaled 
by means of Equation 8.52. The results for the three particular cases, namely, OLS, TLS, 
and DLS, are considered. All minima, that is, the GeTLS solutions, are shown. For DLS, 
the maximum is parallel to u3 = (0, 0, 1)T and corresponds to an infinite eigenvalue. For 
decreasing (decr.), the critical vector corresponding to a saddle or to a maximum tends 
to move toward a direction parallel to the TLS hyperplane (front plane in the figure) 
approaching the OLS case. For OLS, only the minimum vector intersects the TLS hyper-
plane and so yields the corresponding OLS solution. The other critical directions cor-
respond to infinite eigenvalues.

8.7.2  Analysis of the Error Function GeTLS (Geometrical Approach)

The analysis of the geometry of EGeTLS is the same as ETLS, as already anticipated in Section 8.4. 
In particular, Equation 8.44 becomes, by using decomposition (8.27),

	 x qc nV I( , )γ ζ γζ= ʹ −( )−Λ 2 1

	 (8.54)
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FIGURE 8.22
GeMCA EXIN and GeTLS EXIN critical directions and points. (From Cirrincione, G. and Cirrincione, M., Neural 
Based Orthogonal Data Fitting: The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal 
Processing, Communications and Control, Wiley & Sons, New York, 255pp., November 2010.)
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There is also a family of hyperconics (generalization of Equation 8.30):

	 z zT
nI gΛ −[ ] = ( )2γζ γ ζ, 	 (8.55)

which can be recast as

	
z zT

n
i

ii

n

I g
z
k

Λ −[ ] = ( )→ =
=
∑2 1

2

1

γζ γ ζ,
	

(8.56)

where
ki = g(γ, ζ)/λi − 2λζ
zi is the ith component of vector z and, also, the coordinate along the direction of the 

eigenvector �vi associated with the eigenvalue l si i= 2 because of the rotation z = V′Ty

This family has been analyzed in Ref. [15]. The main results are the following:

•	 The asymptotes of g(γ, ζ) with respect to γ are given by the values 
γ σ ζi i i n= ʹ( ) =( )2 2 1/ , ,… . They are located among the g(γ, ζ) zeros and vice versa 
(interlacing theorem [53] for ζ = 0.5).

•	 The GeTLS error function of an nth-dimensional unknown has n + 1 critical points: 
one minimum, n − 1 saddle points, and one maximum.

•	 The zeros of g(γ, ζ) are coincident with the heights of EGeTLS(x) at its critical points. 
In particular, the GeTLS solution, for each ζ, corresponds to the height γmin and is 
given by

	 x x bGeTLSsol c
T

n
TA A I A= = −⎡⎣ ⎤⎦

−
( , )min minγ ζ γ ζ2

1

	 (8.57)

•	 The zeros of g(   γ, 0.5) are coincident with the squares of the singular values of [A;b].

8.7.3  Critical Loci: Center Trajectories

Equation 8.54 represents the locus of the equilevel hypersurface centers in the x reference 
frame; in the z reference frame, after the application of the V′ rotation matrix around the 
origin, this equation becomes

	 z qc nI( , )γ ζ γζ= −[ ]−Λ 2 1

	 (8.58)

That is, for each component (i = 1,…, n),

	
z

q
ci

i

i

=
−λ λζ2 	

(8.59)

In every plane znzi, this locus is an equilateral hyperbola translated with respect to the 
origin:

	
z

q z
z q

i
i j

i j j j
=

− +( )l l 	
(8.60)
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All of these loci cross in the origin z which coincides with the origin x. Its asymptotes 
are given by

	
z

q
z

q
j

j
i

i
i j= − = = −

Δ Δ
Δ

λ λ
λ λ λand where

	
(8.61)

The asymptote of the hyperbolas parallel to zi (the component in the direction of the eigen-
vector �vi associated with λ σi i= ʹ2) is defined as “zi asymptote” in Ref. [15].

Under the assumption of distinct singular values of A, these loci tend to degenerate into 
two orthogonal straight lines for qj → 0 or qi → 0.

The global locus (8.59) is parameterized with the product γζ. The parameter t = 2γζ is 
used. With no a priori hypothesis, the effects of γ and ζ cannot be separated. The hyperbolas 
cross in the origin for t = ∞ and t = −∞.

The following interpretations can be done about the locus:

	 1.	 If ζ = constant, the hyperbolas, which refer to couples of coordinates, represent the 
locus of the corresponding coordinates of the centers of the equilevel hypersur-
faces for the energy cost of the GeTLS problem at hand.

	 2.	 If γ = constant, the hyperbolas express the way the variability of ζ moves the centers 
of the equilevel hypersurfaces, just giving an idea of the difficulties of the different 
GeTLS problems.

	 3.	 If ∀ζ, the zeros of g( γ, ζ ) are computed, the hyperbola is divided into loci (critical 
loci), representing the critical points.

Among these interpretations, the third is the most interesting from the point of view of the 
study of the domain of convergence and for the introduction of the principle of the GeTLS 
scheduling. The critical loci (see Figure 8.23) are

•	 The solution locus composed of the points having t ≤ λn and given ∀ζ by 2ζγmin 
( γmin is the smallest zero of g( γ, ζ )). This locus extends itself to infinity only if one 
plane coordinate is zn; if it is not the case, it represents the part of the hyperbola 
branch just until λn.

•	 The saddle locus composed of the points having λj ≤ t ≤ λj−1 and given ∀ζ by 
2ζγsaddle( γsaddle is the zero of g( γ, ζ ) in the corresponding interval); it represents this 
saddle for every GeTLS problem. It is represented by an entire branch of the hyper-
bola only in the plane zjzj−1; in all other planes, it represents the part of the branch 
between t ≤ λj and t ≤ λj−1.

•	 The maximum locus composed of the points having t ≥ λ1 and given ∀ζ by 2ζγmax 
( γmax is the largest zero of g( γ, ζ )). This locus extends itself to infinity only if one 
plane coordinate is z1; if it is not the case, it represents the part of the hyperbola 
branch from λ1 to ∞, corresponding to the origin. This point is attained only by the 
DLS maximum because, in this case, the zero of g( γ, 1) is at infinity: Equation 8.43 
shows that g(γ, 1) is monotonically increasing for t ≥ λ1 and tends to −bTb for t → ∞.

The position in the curve for t = 0 (origin of the parametric curve) coincides with the OLS 
solution and is the only center for the OLS equilevel hypersurfaces. The hyperbolas can be 
described as a function of this point [26].
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The value of the parameter t of a GeTLS solution (position in the solution locus with 
respect to the origin, which corresponds to the OLS solution) is proportional to the value 
of ζ . In particular, it means that tDLS ≥ tTLS ≥ tOLS = 0. In every saddle locus and in the maxi-
mum locus, the critical points have a position t on the corresponding locus proportional to 
the parameter ζ of the GeTLS problem.

In Refs [25,26], it is proven that the hyperbola branch positions in the plane zizj depend 
on the sign of the corresponding qi and qj. Hence, knowledge of the OLS solution indicates 
the quadrant containing the solution locus for every plane zizj.

8.8  GeTLS EXIN Neuron

The optimal solution of the problem (8.38) is obtained by minimizing the cost function 
Equation 8.40, which can be expressed as

	
E EGeTLS EXIN

i

i

m

( ) ( )x x= ( )

=
∑

1 	
(8.62)
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FIGURE 8.23
(See color insert.) Critical loci for j < I. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal 
Data Fitting: The EXIN Neural Networks, Series: Adaptive and Learning Systems for Signal Processing, 
Communications and Control, Wiley & Sons, New York, 255 pp., November 2010.)
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It follows
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(8.64)

And the corresponding steepest descent discrete-time formula is

	
x x x( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t ti+ = − + ⎡⎣ ⎤⎦1 2a g za ga

	
(8.65)

where
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t tT=
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(8.66)

Equation 8.65 represents the GeTLS EXIN learning law. Its analysis is similar to the TLS 
EXIN analysis.

8.8.1  GeTLS Domain of Convergence

The GeTLS domain of convergence is similar to the TLS domain of convergence, that is, it 
is bordered by the same barriers/asymptotes and the same maximum locus tangent [15].

For ζ = 0 (OLS), the domain of convergence is the whole x space. To increase ζ, the domain 
of convergence becomes smaller and smaller. It has been proved [13] that the origin of axes 
of the solution space x always belongs to the domain of convergence for ζ ∈ [0, 1], that is, 
the null initial conditions always guarantee the solution. In the DLS case, the origin is not 
a regular point of the cost function Equation 8.7 and then it can be used as initial condi-
tions. The shape of the domain depends on several factors: for instance, the position of the 
saddle points and the asymptotes of z influence the position of the frontier (convergence 
barrier). In the following, some considerations are given which are derived by the analysis 
of the critical loci.

The origin of the x space, which coincides with the origin of the z space, has some very 
important features, as a consequence of the existence of the hyperbolas:

	 1.	 In every parametric hyperbola, the origin corresponds to the point for t = −∞; 
recalling that there are no zeros between this point and the GeTLS solution, it 
follows that the origin is in the same branch of the solution locus, and no conver-
gence barriers (caused by saddles) exist between the origin and this locus.

	 2.	 In every parametric hyperbola, the origin also corresponds to the point for t = +∞; 
it follows that the origin is the superior limit of the maximum locus.

From these considerations, it follows the fundamental result that the origin of the TLS 
hyperplane is the best choice for the initial conditions of the GeTLS EXIN neuron if no a 
priori information is given.

The maximum is always nearer to the minimum (GeTLS solution) than every saddle 
in every plane znzi. In every plane zizj, the maximum is nearer to the minimum than all 
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saddles corresponding to t > λj. The origin is always positioned between the maximum 
and the solution locus, and therefore, the remarks about the maximum position are, a 
fortiori, even more valid for the origin. From the point of view of the convergence, the 
group of saddles for t < λj causes no problems if the origin is chosen as initial condition 
because the weight vector, if the learning rate is not too large, approximately follows 
the solution locus (it coincides with the locus of the centers of the equilevel hyperel-
lipsoids). Resuming, a scheduling of the parameter ζ, defined as a continuous func-
tion from 0 to 1, combined with not too high a learning rate, accelerates the DLS EXIN 
neuron and guarantees its convergence in the absence of a priori knowledge about the 
initial conditions, that is, the null initial conditions are the universal choice for the 
convergence.

8.8.2  Scheduling

From the point of view of the neural approaches and, more generally, of the gradient flows, 
the DLS problem (ζ = 1) is the most difficult (for b ≠ 0) for the following reasons:

•	 The domain of convergence is smaller.
•	 The cost function Equation 8.7 is the flattest.
•	 The DLS solution is the farthest GeTLS solution from the origin.
•	 The DLS error cost is not defined for null initial conditions, and every gradient 

flow algorithm diverges for this choice of initial conditions; hence, there is not a 
universal choice which guarantees the convergence as for the other GeTLS EXIN 
neurons.

In order to solve these problems, a novel technique of parametric programming, called 
scheduling [26], is proposed. It is a GeTLS EXIN neuron parameterized by a nonconstant ζ 
with a predefined temporal evolution. The GeTLS EXIN weight vector follows the solution 
locus toward the DLS solution if its parameter ζ is made variable and increasing from 0 to 
1 according to a predefined law (scheduling). The first iteration, for ζ = 0, is in the direction 
of the OLS solution (minimum): therefore, in a case where both the null initial conditions 
and the values of the weights at the first iteration are in the domain of convergence. This 
new position is also in the DLS domain because it is in the direction of the solution locus. 
Changing slowly ζ makes the weight vector follow the hyperbola branch containing the 
solution locus for every x plane (see Figure 8.24). Furthermore, the GeTLS neuron, for not 
too high an initial learning rate, begins with very low initial conditions from the first itera-
tion. This accelerates the learning law.

The following example shows a DLS hyperbolic scheduling:

	
z( )i

i
= −1

1

	
(8.67)

where i ≥ 1 is the iteration number. The initial conditions are null. Figure 8.25 shows the 
weight trajectory in the solution space. The weights approach the solution locus (param-
eterized by ζ) just before the TLS solution because the hyperbolic scheduling only yields a 
single learning step for ζ = 0. Note the attractive effect of the solution locus. The transient 
and the accuracy are very good.
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FIGURE 8.24
DLS scheduling. (From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN 
Neural Networks, Series: Adaptive and Learning Systems for Signal Processing, Communications and Control, 
Wiley & Sons, New York, 255 pp., November 2010.)
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FIGURE 8.25
Trajectory of the weights of DLS scheduling EXIN (hyperbolic scheduling and null initial conditions). 
The solution locus is indicated together with the OLS, TLS, and DLS solutions. (From Cirrincione, G. and 
Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, Series: Adaptive and 
Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, New York, 255pp., 
November 2010.)
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The DLS scheduling cannot have null initial conditions when the observation vector (b) 
is null; indeed, the first step (OLS ζ = 0) has xTATAx as energy function, which is null for 
null initial conditions. The problem of the lack of universal initial conditions can be cir-
cumvented by inserting one or more OLS learning steps in the scheduling in order to enter 
the domain of convergence. If the initial conditions are very small, one OLS step is enough 
to assure the convergence.

8.8.3  Accelerated MCA EXIN Neuron (MCA EXIN+)

The DLS scheduling EXIN can be used in order to improve the MCA EXIN neuron. Indeed, 
the DLS energy cost for b = 0 becomes (see Equation 8.7)

	
E

A A
r A ADLS

T T

T
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x x
x x

x x 0= = ( ) ∀ ∈ℜ −{ }1
2

1
2 	

(8.68)

that is, the Rayleigh quotient of ATA. Recalling that the neuron is fed with the rows of 
the matrix A and that the autocorrelation matrix R of the input data is equivalent to 
ATA/m, it follows that the DLS neural problem is equivalent to an MCA neural problem 
with the same inputs. This equivalence is only possible for DLS EXIN (GeTLS EXIN 
with ζ = 1) and MCA EXIN because both neurons use the exact error gradient in their 
learning law.

The DLS EXIN neuron fed by the rows of a matrix A and with null target is equivalent 
to the MCA EXIN neuron with the same input. Both neurons find the minor component 
of ATA, that is, the right singular vector associated with the smallest singular value of A. 
The drawback of the equivalence is the fact that, instead of MCA EXIN which always con-
verges, DLS EXIN is not guaranteed to converge. This equivalence allows using the DLS 
scheduling for improving MCA EXIN.

Definition 8.1 (MCA EXIN+)

MCA EXIN+ is a linear neuron with a DLS scheduling learning law, the same inputs of 
the MCA EXIN, and null target [26].

Large fluctuations of the weights imply that the learning law increases the estima-
tion error, and when this increase is too large, it will make the weight vector deviate 
drastically from the normal learning, which may result in divergence or an increased 
learning time. This is a serious problem for MCA EXIN when the initial conditions 
are infinitesimal. On the other hand, MCA EXIN converges faster for smaller initial 
conditions. These observations justify the MCA EXIN+ improvements with respect to 
MCA EXIN:

•	 A smoother dynamics because the weight path in every plane zizj remains near the 
hyperbola branch containing the solution locus

•	 A faster convergence because of the smaller DLS scheduling fluctuations which 
reduce the settling time

•	 A better accuracy because of the small deviations from the solution
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The next simulation deals with a 2-D problem for comparing MCA EXIN+ and MCA EXIN. 
The scheduling is linear. Figure 8.26 shows, for both neurons, the plot of an index param-
eter (expressed in decibels), which measures the accuracy and is defined as

	
r =

−w wi it

n

( ) *
2

2

	
(8.69)

where
wi(t) is the n dimensional neuron weight vector
w i* is the n dimensional desired weight vector

The figure stresses well the faster convergence and better accuracy of MCA EXIN+.
It follows a flowchart for the computer implementation of the MCA EXIN+ algo-

rithm [26].

	 1.	Goal: to find the minimum eigenvector x of the matrix A.
	 2.	 Inputs:
	 a.	 η(t): learning rate, decreasing to zero.
	 b.	 x(0): initial conditions (better as small as possible, but non null).
	 c.	 ζ(t): GeTLS parameter, increasing from 0 to 1.
	 d.	 a(t): the row of A which is input at instant t.
	 e.	 ɛ: stop threshold.
	 f.	 tmax: maximum number of iterations.

MCA-EXIN+ (red), MCA-EXIN (blue) (temporal average)
20

0

–20

–40ρ

–60

–80

–100
0 1000 2000 3000 4000 5000
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FIGURE 8.26
(See color insert.) Index ρ (expressed in dB) for MCA EXIN+ with scheduling (red) and MCA EXIN (blue). 
(From Cirrincione, G. and Cirrincione, M., Neural Based Orthogonal Data Fitting: The EXIN Neural Networks, 
Series: Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley & Sons, 
New York, 255 pp., November 2010.)
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	 3.	Algorithm:
	 a.	 For each t
	 i.	 Compute

	 x x a a( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t t+ = − + ⎡⎣ ⎤⎦1 2h g z h g
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	 iii.	 If ∥EGeTLS(t + 1) − EGeTLS(t)∥2 < ɛ for a certain number of iterations, then STOP.
	 iv.	 If t > tmax, then STOP.
	 v.	 Update η(t) and ζ(t).
Note that ζ(t) must be equal to 1 well before the algorithm is stopped.
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9
Least-Squares and Neural Identification 
of Electrical Machines

9.1  Parameter Estimation of Induction Machines (IMs)

The instantaneous knowledge of the electrical parameters of an IM, either supplied by the 
power grid or in the framework of a variable speed electric drive, is extremely important. It 
is proved by the huge amount of scientific papers published in the last 20 years in the field 
of on-line parameter estimation of IMs [1–80].

The instantaneous knowledge of the electrical parameters of an IM is useful in the power 
system analysis. It is well known that, in the analysis of such systems, the knowledge of the 
dependence of the loads from the power grid voltage and frequency is crucial for retriev-
ing the information about the behavior of the load themselves, especially in faulty condi-
tions. To this aim, IMs have been studied for their potential contribution to the short-circuit 
currents, whose dependence from the power grid voltage and frequency is not straightfor-
ward. The on-line estimation of the electrical parameters of the machine could be helpful 
for the computation of the contribution of the motor to the short-circuit currents.

Another case, in which the on-line estimation of the IM parameters is important, with par-
ticular reference to the estimation of the stator and rotor resistances, is that of motors directly 
supplied by the power grid, subject to frequent start-ups and braking phases. The stator and 
rotor resistance estimation gives useful information about the variations of the temperature 
of windings, which is useful for deciding whether and when the subsequent start-up should 
take place in security conditions for avoiding potential damages to the machine.

Furthermore, with reference to an IM variable speed drive, the instantaneous knowledge 
of the electrical parameters of the IM is crucial, since it significantly affects the performance 
and the stability of the control system. In particular, as far as the rotor-flux-oriented control 
is concerned, the estimation of the amplitude and phase of the rotor flux space-vector is 
usually made either with the “current model” (see Section 5.3.3.2), whose implementation 
requires the correct knowledge of the rotor time constant, or with the “voltage model” (see 
Section 5.3.3.1), whose implementation requires the correct knowledge of the stator resis-
tance. With reference to the direct torque control (DTC), the estimation of the amplitude 
and phase (or just the sector) of the stator flux space-vector is usually made by a “voltage 
model.” Also in this case, the correct knowledge of the stator resistance is necessary.

The electrical parameters of the machine, in rated working conditions, are usually 
measured with off-line methodologies at standstill (no-load and locked-rotor tests) [4,5]. 
During normal working conditions, however, these parameters can change. Particularly, 
the values of the stator and rotor resistances vary because of the heating or cooling of 
the machine, while the stator and rotor inductances as well as the leakage coefficients 



420 Power Converters and AC Electrical Drives with Linear Neural Networks

can vary with the magnetization level of the machine core (saturation of the main flux). 
However, while the variation of the resistances is quite slow, since it is determined by 
the thermal time constants of the machine, the variation of the magnetic parameters is 
very fast; moreover, the magnetic parameters vary whenever the machine works at speeds 
higher than the rated one, since in these working conditions the magnetic flux is reduced 
(field-weakening) with consequent variation of all of the magnetic parameters. The rotor 
time constant can thus vary because of both the heating/cooling effects and the modifica-
tion of the machine magnetization. In normal working conditions, the parameters could 
have percent variations even as much as 50% [1,2,5,6].

If the parameters of the machine vary while the corresponding values assigned to the 
flux models are kept constant, the so-called detuning of the flux model occurs. The detun-
ing of the flux model significantly modifies the performance of the electric drive and can 
even lead up to its instability. This requires the necessity for developing algorithms for the 
on-line estimation of the electrical parameters to be used for the on-line adaptation of the 
corresponding flux model with regard to the variations of the machine parameters.

9.2  Sensitivity of the Flux Model to Parameter Variations

In the following, a sensitivity analysis of the flux models to the variations of the electrical 
parameters of the machine is presented [6,8]. In particular, with regard to the “voltage” and 
“current” flux models usually adopted in field-oriented control (FOC) and DTC schemes, 
the variations of the following variables will be analyzed with respect to the load:

	 1.	The steady-state ratio between the amplitudes of the estimated and real rotor 
(stator) flux linkages

	 2.	The steady-state difference between the phases of the estimated and real rotor 
(stator) flux linkages

	 3.	The steady-state ratio between the estimated and real electromagnetic torque

9.2.1  Sensitivity of the Current Flux Model

The “current flux model” of the IM will be considered, written in the rotor-flux-oriented 
reference frame, where the ∧ symbol will indicate all the variables and parameters esti-
mated by the flux model, while the corresponding real variables of the machine are rep-
resented without ∧. For simplicity’s sake, the apex denoting the reference frame in which 
equations are written is not expressed in the following. They are supposed to be written in 
the rotor-flux-oriented reference frame.

The current flux model can be written in this form:
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with ψ̂r = L̂mîmr. For the symbols, see the list at the end of the chapter.
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The same equations, written for the machine, are as follows:
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with ψr = Lmimr.
Since the slip pulsation ωsl (in electrical angles) depends only on the load, the following 

equality is valid:
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Combining Equation 9.3 with Equations 9.1 and 9.2, the following steady-state space-vector 
relationship between the estimated and real rotor flux linkages can be found:
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From this vector equation, the following two scalar equations can be deduced, valid, 
respectively, for the amplitude and for the phase angle of the rotor flux space-vector:
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where δρr is the error in the estimation of the rotor flux-linkage phase position. 
Figure 9.1 shows the stator current space-vector and its decomposition on the x − y ref-
erence frame aligned with the real rotor flux as well as its decomposition on the x̂ − ŷ 
reference frame aligned with the estimated rotor flux. It sketches the situation when 
heating of the windings (and resulting increase of their resistances) or flux reduction 
of the machine occurs, as explained in the following.

Since βi = arc tan(isy/isx) = arc tan(ωslTr) and β̂ i = arc tan(î sy/î sx ) = arc tan(ωslT̂r), the follow-
ing conclusions can be drawn:

•	 In case of machine heating, the steady-state value of the rotor flux-linkage ampli-
tude tends to be larger than that of the model; therefore, Rr > R̂r, then Tr < T̂r, and 
βi < β̂ i: this means that the reference frame aligned with the estimated rotor flux 
lags the one aligned with the real rotor flux and the stator current components are 
wrongly estimated: isx > î sx and isy < î sy.
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•	 In case the machine works in the linear part of the magnetic characteristic (field-
weakening phase), the steady-state value of the rotor flux-linkage amplitude tends 
to be lower than that of the model; therefore, Lr > L̂r, then Tr > T̂r, and βi > β̂ i, result-
ing in the wrong estimation of the stator current components since, in this case, 
the estimated reference frame leads the real one: isx < î sx and isy > î sy.

The same conclusions can be drawn when studying the functions described by Equations 
9.4 and 9.5. Figure 9.2 shows the steady-state curves |ψr|/|ψ̂r| versus R̂r/Rr, drawn for a fixed 
value of îsy/ îsx. The parameters of the machine under study are shown in Table 9.1. All of 
the curves intersect in the point R̂r/Rr = 1 and |ψr|/|ψ̂r| = 1, in correspondence to which the 
flux model is correctly tuned. When R̂r/Rr < 1, then the machine is in condition of heating, 
and when |ψr|/|ψ̂r| > 1, the machine rotor flux is higher than that in the flux model. The 
opposite occurs when the machine temperature decreases and the real flux in the machine 
is lower than that in the flux model. The higher the difference of R̂r/Rr from 1, the higher the 
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Decomposition of the stator current space-vector in case of detuning of the flux model.
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difference between the real and the estimated fluxes. The higher the ratio îsy/i ̂ sx, that is, the 
higher the load, the higher the difference between the real and the estimated fluxes.

Figure 9.3 shows the |ψr|/|ψ̂r| versus the slip pulsation ωsl for fixed values of the ratio R̂r/
Rr. It can be observed that, if the load is null (ωsl = 0), the flux model, even if detuned, is able 
to correctly estimate the amplitude of the rotor flux linkage. The higher the load torque, the 
higher the difference between the estimated and the real fluxes. This means that, as far as the 
current model is concerned, the detuning of the model is apparent at load. Figure 9.4, show-
ing the surface |ψr|/|ψ̂r| versus R̂r/Rr and ωsl, summarizes the results of Figures 9.2 and 9.3.

Figure 9.5 shows the set of curves providing ρ̂r − ρr versus R̂r/Rr, for fixed values of the 
ratio î sy/î sx. All the curves intersect in the point R̂r/Rr = 1 and δρr = 0, in correspondence to 
which the flux model is correctly tuned. Figure 9.6 shows the set of curves providing δρr 
versus ωsl, for fixed values of T̂r/Tr. This curve shows that, if the load is null (ωsl = 0), the 
flux model, even if detuned, is able to correctly estimate the phase of the rotor flux-linkage 
space-vector. To a load torque increase corresponds firstly an increase of the flux angle 
error, followed by a reduction of it.

TABLE 9.1

K-Parameters of the IM and Results 
of the Estimation

OLS True Err. %

K1 188.6 189.0088 −0.2136
K2 1267 946.4266 33.8906
K31 127.1 127.5 −0.3765
K4 32.8 32.8711 −0.1550
K5 243.2 243.9244 −0.2913

Source:	 Cirrincione, M. and Pucci, M., Experimental 
verification of a technique for the real-time iden-
tification of induction motors based on the 
recursive least-squares, International Workshop 
on Advanced Motion Control (IEEE AMC’02), 
Maribor, Slovenia, 2002.
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Finally, Figures 9.7 through 9.10 show the same kind of curves, related to sensitivity of 
the current flux model to the variations of the three-phase magnetizing inductance and 
the rotor leakage factor.

The relationship between the estimated t̂e and real te electromagnetic torque can be writ-
ten, by using Equations 9.4 and 9.5 as follows:
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On the basis of Equation 9.7, the set of curves drawn in Figure 9.11 have been found, show-
ing the ratio te/t̂e versus R̂r/Rr, for fixed values of the ratio î sy/î sx. This figure has been 
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obtained under the hypothesis of linearity from the point of view of the magnetization of 
the machine. All of the curves intersect in the point R̂r/Rr = 1 and te/t̂e = 1, in correspon-
dence to which the flux model is correctly tuned. It can be further observed that there are 
working conditions in which, even if the flux model is detuned, the dynamic performance 
of the drive is better than that achievable when it is tuned. More precisely, if R̂r/Rr < 1 
(heating) and î sy / î sx is high (big load torque or low value of the magnetizing current), the 
real electromagnetic torque is much bigger than the estimated one. Finally, the relation-
ship between the electromagnetic torque and the estimated current components î sx and î sy 
is given by the following:
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Figure 9.12 shows the relationship between the real torque te and î sy, once î sx is fixed, for 
different values of the ratio R̂r/Rr. It highlights that the relationship between te and î sy is 
almost linear only for R̂r/Rr = 1, that is, in conditions of correct field orientation. For values 
of R̂r/Rr far different from 1, this relationship becomes nonlinear.

9.2.2  Sensitivity of the Voltage Flux Model

As in the case of the current flux model, it is possible to make an analysis of the sensitivity 
of the “voltage flux model” versus the variation of the parameters of the machine. Starting 
from Equation 5.19, it is possible to retrieve the relationship between the space-vectors of 
the estimated and real rotor flux linkages:
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FIGURE 9.9
|ψr|/|ψ̂r| versus ωsl parameterized 
with σ̂r/σr.

0.98

1

1.02

1.04

1.06

1.08

0 2 4 6 108
ωsl (rad/s)

ˆ
Ψ

r/Ψ
r 

σr = 3σrˆ

σr = 2σrˆ

σr = σrˆ
σr = 0.75σrˆ

σr = 0.5σrˆ

FIGURE 9.8
ρ̂ r − ρr versus L̂m/Lm and ωsl.

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0 5 10 15 20

ωsl (rad/s)

Lm =2Lm

ρ r
 –

 ρ
r (

ra
d)

ˆ

Lm =1.5Lm
ˆ

Lm =0.5Lm
ˆ

Lm = 0.75Lm
ˆ

Lm = Lm
ˆ

ˆ



427Least-Squares and Neural Identification of Electrical Machines

From the vector Equation 9.9, the following scalar equations can be deduced:
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îsy/îsx.



428 Power Converters and AC Electrical Drives with Linear Neural Networks

Figure 9.13 shows the set of curves |ψr|/|ψ̂r| versus the rotor speed ωr for fixed values of 
the ratio R̂s/Rs, drawn for a unique value of slip pulsation equal to 10 rad/s. This figure 
clearly shows that, if R̂s/Rs < 1 (heating of the machine), |ψr|/|ψ̂r| < 1, that is, the real 
flux is lower than the estimated one. Vice versa, if the machine cools down. The higher 
the difference R̂s/Rs from 1, the higher difference between the estimated and the real 
fluxes. Furthermore, the highest sensitivity to any variation of the stator resistance can 
be observed at low speeds, in correspondence to which the ohmic drop on the stator 
resistance plays a significant role. At increasing rotor speeds, the sensitivity of the flux 
model versus stator resistance variations reduces significantly. Figure 9.14 shows the set 
of curves ρr − ρ̂ r versus the rotor speed ωr for fixed values of the ratio R̂s/Rs, drawn for a 
unique value of slip pulsation equal to 10 rad/s. Also in this case, the error in the estima-
tion of the rotor flux angle is very high at low rotating speeds, and it reduces significantly 
at increasing speeds.

FIGURE 9.12
te versus î sy parameterized with R̂r/Rr.
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Similarly, a sensitivity analysis of the voltage model of the IM estimating the stator 
flux linkage, instead of the rotor one, can be performed. Such a flux model, which can 
be suitably adopted both in stator-flux-oriented vector-controlled and DTC drives, is 
described by Equation 5.46. Also in this case, it is possible to retrieve the steady-state 
relationship between the estimated and real stator flux-linkage space-vectors:
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From the vector Equation 9.12, the following scalar equations can be deduced:
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From Equations 9.13 and 9.14, the set of curves describing the sensitivity analysis of the 
voltage flux model can be drawn.
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Figure 9.15 shows the set of curves |ψs|/|ψ̂s| versus the rotor speed ωr for fixed values 
of the ratio R̂s/Rs, drawn for a unique value of slip pulsation equal to 10 rad/s. This figure 
clearly shows that, if R̂s/Rs < 1 (heating of the machine), |ψs|/|ψ̂s| < 1, that is, the real 
flux is lower than the estimated one. Vice versa, if the machine cools down. The higher 
the difference R̂s/Rs from 1, the higher difference between the estimated and the real 
fluxes. Furthermore, the highest sensitivity to any variation of the stator resistance can be 
observed at low speeds, in correspondence to which the ohmic drop on the stator resis-
tance plays a significant role. At increasing rotor speeds, the sensitivity of the flux model 
versus stator resistance variations reduces significantly.

Figure 9.16 shows the set of curves ρs − ρ̂s versus the rotor speed ωr for fixed values of 
the ratio R̂s/Rs, drawn for a unique value of slip pulsation equal to 10 rad/s. Also in this 
case, the error in the estimation of the rotor flux angle is very high at low rotating speeds, 
reducing significantly at increasing speeds.

FIGURE 9.15
|ψs|/|ψ̂s| versus ωr parameterized with 
R̂s/Rs.
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9.3 � Experimental Analysis of the Effects of Flux Model 
Detuning on the Control Performance

In this section, the experimental verification of the sensitivity analysis in Section 9.2 is 
proposed. With this regard, the machine under test is a 22 kW IM whose parameters 
are shown in Table 4.2. The adopted control scheme is a rotor-flux-oriented control with 
impressed voltages (see Figure 5.16). The adopted flux model is the current flux model in 
the rotor-flux-oriented reference frame (see Figure 5.11b).

The drive has been given a t = 0.1 s and a constant rotor flux amplitude of 1.5 Wb, cor-
responding to a working point on the knee of the magnetization curve (see Figure 4.14). 
Subsequently, at t = 0.6 s, the drive has been given a step speed reference of 10 Hz. The test 
has been performed twice, respectively, with the rotor resistance of the flux model equal 
to that of the motor (flux model correctly tuned) and with the rotor resistance of the flux 
model half of that of the motor (detuned flux model). Since the machine under test presents 
a wound rotor, its real resistance has been modified by adding in series a resistor whose 
resistance has a value equal to that of the winding itself (the rotor resistance doubles).

Figure 9.17 shows the curves of the rotor speed, the rotor flux amplitude, and the isy cur-
rent component during this test. The same test has been repeated with a rotor flux refer-
ence equal to 0.6 Wb, corresponding to a working point in the linear part of the magnetic 
characteristic. Figure 9.18 shows the same waveforms, obtained during this test. The analy-
sis of Figures 9.17 and 9.18 highlights that, if the flux model is not correctly tuned, when 
R̂r/Rr < 1 and the machine works in the saturation part of the magnetic characteristic, the 

10

1.5

0.5
1

0

80
60
40
20

0

5

0
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

 ω
m

 (H
z)

Ψ
r (

W
b)

i sy
 (A

)

Rr = Rr
Rr = 2Rr

ˆ
ˆ

Rr = Rr
Rr = 2Rr

ˆ
ˆ

Rr = Rr
Rr = 2Rr

ˆ
ˆ

FIGURE 9.17
Rotor speed, rotor flux, and isy with flux amplitude = 1.5 Wb.
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dynamic performance of the drive with detuned flux model is worse than the correspond-
ing with the flux model correctly tuned. On the contrary, when R̂r/Rr < 1 and the machine 
works in the linear part of the magnetic characteristic, the dynamic performance of the 
drive with detuned flux model is better than the corresponding with the flux model cor-
rectly tuned, as shown in Figure 9.11.

9.4  Methods for the On-Line Tracking of the Machine Parameter Variations

To properly cope with the negative effects on the flux models caused by the variation of 
the electrical parameters of the IM drive during on-line operation, several approaches have 
been devised. A simple flux (either rotor or stator) model can be used, supplemented with 
an algorithm for the on-line estimation of some IM parameters, typically the rotor time 
constant for current flux models and the stator resistance for voltage ones. Alternatively, 
the machine flux can be estimated with an observer whose estimation is robust to parame-
ter variations. Finally, an observer could be used, estimating simultaneously the flux link-
age and one (or several) electrical parameter(s) of the machine.

Figure 9.19 shows a classification of the main methodologies that can be adopted for the 
on-line tracking of the variations of the electrical parameters of the IM.

The first known papers in the literature have been dedicated to the formulation of identifica-
tion techniques using several steady-state measurements [4]. Then, other methods have been 
proposed on the basis of nonlinear formulation of the machine equations. The drawback of 

10

0.6

100

50
0

–50

0.5
0.4
0.3
0.2

5

0
0.5 1 1.5 2 2.5 3 3.5 4

0.5 1 1.5 2 2.5 3 3.5 4

0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

Time (s)

Time (s)

 ω
m

r (
H

z)
Ψ

r (
W

b)
i sy

 (A
) Rr = 2Rr

ˆ
Rr = Rr

ˆ

Rr = Rr
Rr = 2Rr

ˆ
ˆ

Rr = Rr
Rr = 2Rr

ˆ
ˆ

FIGURE 9.18
Rotor speed, rotor flux, and isy with flux amplitude = 0.6 Wb.
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these methods is well known, since the amount of necessary computations avoids them to be 
implemented on-line even with a powerful digital processor. Only in the last few years, from 
the 1980s onward, have new methods been developed, mainly for control purposes, such as 
recursive least squares (RLS) methods [20,84–87], extended Kalman filter (EKF) [25,81], and 
model reference adaptive system (MRAS) [2,51,82,83]. Their target was that of tracking the 
fluctuations of the machine parameters and keeping the system as it was initially tuned for 
both static and dynamic performance. However, both EKF and MRAS methods are more 
cumbersome from a numerical point of view with respect to RLS methods which, addition-
ally, have a more reliable theory as for convergence and stability issues of the algorithms. In 
particular, in Refs [84–92], a least squares (LS) approach has been developed that estimates 
the parameters on the basis of stator currents and voltages and the rotational speed. This 
method, however, has always proven difficult as auxiliary variables have been introduced 
in order to retrieve the physical parameters, and unfortunately, not all parameters are easy 
to detect. Only in Ref. [86], a more complete method has been developed to overcome this 
problem, but with more computation burden and without giving any proof of convergence. 
In Refs [93,94], emphasis has been therefore laid on the theoretical analysis of LS methods 
applied to the identification of an IM, which is the topic of the rest of this chapter.

9.5 � On-Line Estimation of the IM Parameters with the Ordinary 
Least Squares Method

This paragraph shows essentially how the LS methods can be applied to the estimation of 
the parameters of an IM, by using different kinds of LSs. Particularly it shows how the esti-
mation of the electrical parameters of the motor can be performed in an unconstrained way, 

Methods for on-line
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On-line estimation
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MRAS techniques Observers

Signal injection
based methods

Methods not based
on signal injection

(Least squares)
Deterministic observers

(Luenberger)
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FIGURE 9.19
Classification of methodologies for on-line tracking of electrical parameter variations.
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indirectly taking into consideration the constraints which inevitably arise when the well-
known stator and rotor voltage equations are rearranged so as to allow the application of 
the LS method. The assumptions under which this technique is valid are also presented as 
well as the identifiability criteria both for transient and sinusoidal steady-state. Moreover, 
some practical issues about the choice of the most suitable reference frame are also devel-
oped on the basis of numerical considerations. In the end, simulations under various load 
conditions are shown, and the results are discussed. All simulations have been carried out 
taking into consideration an IM directly connected to the utility grid: it is apparent that the 
same considerations can be extended also to the case of a motor in an AC drive.

9.5.1  Space-Vector Voltage Equations in the General Reference Frame

It is well known that the IM model can be described by the following stator and rotor 
space-vector voltage equations in the general reference frame, which rotates at a general 
speed ωg (in electrical angles per second) as described in Chapter 4:
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In the previous equations, the different parameters of the formulas could be constant 

or time and space variant depending on preliminary assumptions. With the important 
assumption that [86,93,94]
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that is, under the assumption that the motor be at standstill, in slow transients, or in sinu-
soidal steady-state, and expressing the direct and quadrature components by eliminating 
the space-vector of the rotor currents, which are not measurable quantities, the following 
two simplified scalar equations result:
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The following parameters, called K-parameters, are then defined, using the notations 
of [86]:
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Between these six parameters, a linear and a quadratic relationship exist, as shown in the 
following:

	 K K K1 31 32= + 	 (9.19a)

	 K K K K2 4 31 5= 	 (9.19b)

It may be useful to substitute one of the two relationships for a combination of them, 
that is,
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From the K-parameters, not all the five electrical parameters (Rs, Rr, Ls, Lr, Lm can be 
retrieved as no rotor measurements are available [86,93,94]: in fact, the K-parameters deter-
mine only four independent parameters, that is, Rs, Rr, σ, and β0 = 1/Tr, in the following way:
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As recalled in Ref. [86], Lm, Lr, and Rr cannot be obtained independently as rotor flux link-
ages are unknown: thus machines with identical rotor time constant and identical ratio 
L Lm r

2 /  have the same input/output (voltage/current) equations.
According to the reference frame that is chosen, both the equations and the relationships 

can be simplified, in the sense that the number of the relationships and the K-parameters 
can be reduced, as discussed in the following.

In the stationary reference frame fixed to the stator, the Equations 9.17a and 9.17b becomes
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The parameters to be estimated are then five, as the K32 is not present; the corresponding 
term in Equations 9.17a and 9.17b is null. As a result, only relationship (9.19b) holds. Also 
Equations 9.20a through 9.20d holds, but obviously, only the second members where K32 is 
not present can be used.

Conversely, in the rotating reference frame fixed to the rotor, the Equations 9.17a and b 
becomes
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Also in this case, the parameters to be estimated are then five, as the K31 is not present; 
the corresponding term in Equations 9.17a and 9.17b is null. As a result, only relationship 
(9.19c) holds. Also Equations 9.20a through 9.20d holds, but obviously, only the second 
members where K31 is not present can be used.
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In any case, the coefficients of the above differential equations are time varying. If the 
rotor speed is known, these equations can be expressed in matrix form as follows, where 
the coefficients of the matrix are all known:
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This matrix equation can be solved for by using the different LS methods presented in 
Chapter 8, in particular, the ordinary least squares (OLS) and the total least squares (TLS) 
methods.

It should be remarked that the previous equations have been obtained under the assump-
tion that the rotor speed varies slowly. From this standpoint, it would be more correct to 
use it in steady-state or slowly varying transient or at standstill, but even with less slowly 
varying rotor speed, these equations can be used as shown in the following. The draw-
back of the previous equation is also, as pointed out in Refs [86,88], that differentiators are 
required as well as voltage sensors, which requires that the derivatives be reconstructed 
by filtered differentiation, while the use of voltage sensors requires analog filtering.

It is to remark that expressing the Equation 9.17 in the reference frames fixed to the rotor 
and to the stator, the following matrix equations are determined:
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The use of Equations 9.23 through 9.25 gives rise to three different approaches for parameter 
estimation. The use of Equation 9.23 only has been used in Ref. [90], Equation 9.24 in Ref. 
[91], and Equation 9.25 in Ref. [88]. Equation 9.24 has also been used in Ref. [89]. However, 
all of these approaches consider the LS resolution of these equations as an unconstrained 
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optimization problem in the search of the minimum two-norm solution, while the presence 
of one or two constraints should be accounted for. As a matter of fact, [86] also considers 
an RLS with an algorithm for updating the K2 parameter by directly using the constraint, 
without giving any proof about the convergence of the algorithm. In this chapter, it is shown 
that the solutions can be retrieved by OLS in an unconstrained way, taking indirectly into 
consideration the constraint: in this way, no constrained minimization convergence is neces-
sary as the well-known results of LS methodology can be used.

It is apparent from the matrix Equation 9.23 (and obviously from Equations 9.24 and 9.25) 
that the two scalar equations that make it up are linearly independent. This means that in 
transient conditions or in nonsinusoidal steady-state, the data matrix is full rank, and the 
LS solution can be obtained. However, in sinusoidal steady-state, the data matrix has rank 2, 
and, thus, only two parameters can be computed. This means that the estimation of all the 
parameters cannot be made in steady-state.

One remark has to be made on the choice of the set of equations. In a synchronous refer-
ence frame (for instance, either in the rotor flux-linkage reference frame or in the stator flux-
linkage reference frame or in the magnetizing flux-linkage reference frame), all signals, at 
least in the steady-state, are constant or vary slower than those in the stationary reference 
frame fixed to the stator or to the rotor reference frame. Since faster varying signals have 
wealthier frequency information, either the stator or the rotor reference frame should be 
used for the purpose of parameter estimation. Indeed constant or slow-varying signals can 
give rise to an ill-conditioned problem as, in transient state, the data matrix can happen not 
to be full rank with resulting numerical problems. The choice of the stator (or rotor) reference 
frame is therefore caused by numerical reasons, as explained more fully in Section 9.5.2.

9.5.2  Estimation of the Magnetizing Curve

A direct consequence of the retrieval of the four electrical parameters given by Equation 9.20 
is the possibility to estimate the magnetizing curve of the machine, that is, the curve of the 
rotor flux-linkage amplitude versus the rotor magnetizing current amplitude |ψr| = f(|imr|). 
For this purpose, some tests should be made at different magnitudes of the supply voltage 
and at the same supply frequency in order to make the machine work under different mag-
netizing excitations. At each supply voltage after a speed transient from zero to steady-state 
speed (start-up test), the electrical parameters rotor time constant Tr, stator inductance Ls, 
stator resistance Rs, and global leakage factor σ are estimated. Either an unconstrained or 
constrained (see Section 9.6.1.2.1) LS method can be used. At the same time, the rotor magne-
tizing current |imr| can be computed by means of the well-known flux model based on the 
rotor equations of the IM in the rotor flux reference frame [1–3] (see Section 5.3.3.2). It should 
be remarked that, because the start-up tests are made at no-load, the steady-state value of 
the estimated |imr| does not suffer of any inaccurate guess in the Tr parameter needed by 
the flux estimator. In fact, the ratio between the true and the estimated rotor flux linkage 
is given by Equation 9.5, rewritten as follows in terms of rotor magnetizing currents [6,8]:
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where
the “ˆ” stands for estimated variables
ωsl is the slip pulsation, depending on the load torque
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From Equations 9.5 or 9.26 and from Figure 9.9, it is apparent that the magnetizing current 
estimation is independent from the parameter T̂r used in the flux model at no-load (slip 
frequency is 0), as in the case under test.

Afterward, from Ls and σ, Lm is computed for each operating point as explained in Section 
9.6.1.2.1. Finally, at the end of the tests at different voltage levels, the magnetization curve 
is estimated.

However, it should be noticed that only the global leakage factor can be estimated and 
not the stator or rotor leakage factors individually; consequently, the estimation of the 
static magnetizing inductance has been made under the usual assumption that σr = 2σs [5]. 
Under this assumption, σr and σs are computed from σ by the following [5]:
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Therefore, under each magnetic excitation, the total magnetizing inductance Lm is com-
puted from the estimated values of Ls and σ as follows:
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Finally, the magnetization curve of the machine, which gives the nonlinear relationship 
between the rotor magnetizing current and the rotor magnetic flux |ψr| = f(|imr|), is com-
puted as follows:

	 y r mr m mr mri L( ) ( )= i i 	 (9.29)

9.5.3  Ordinary Least Squares Identification

Any of the Equations 9.23 through 9.25 can be written in the form of Chapter 8:

	 Ak b⊕ 	 (9.30)

where k, the column vector of the unknown parameters, is in this case the K-parameters. 
At each instant of time, a couple of equations are processed. Because of the error in model-
ing, as a result of the neglecting of the terms depending on dωr/dt, the noisy measurements 
of the signals and all of the nonlinearities not accounted for by the linear dynamic model of 
the machine make the two terms of the equation only approximately equal [86]. This would 
then cause the matrix Equation 9.30 to have errors both in the observation vector as well as 
in the data matrix. The most suitable method of solution would then be using TLS rather 
than OLS [95–97]. In this paragraph, only the OLS estimation is presented, while that based 
on the TLS is presented subsequently.

For the implementation of the LS technique, it is necessary to use both analog and 
digital filters: this makes the errors in the data matrix less critical than those in the obser-
vation vector, which are more affected by error modeling (neglecting the terms depend-
ing on dωr/dt). This justifies then the use of OLS; however, more accurate results can be 
obtained with the TLS as shown later for comparison: see, however, also [98,99].
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The algorithm used here is the same RLS algorithm presented in Ref. [86]. However, a deeper 
analysis of the error estimate is developed, based on the classical linear regression theory.

In the following, the stationary reference frame will be used for parameter estimation: 
this choice will be made later on the basis of numerical analysis considerations.

9.5.4  RLS Algorithm

The target is to minimize the two-norm of the residual of Equation 9.30 (see also (8.2)), that is, 
∥Ak − b∥2, with k ∈ ℜn, A ∈ ℜ2mxn, b ∈ ℜ2m, ℜ being the set of real numbers, m the number 
of time instants in the interval time of observation (in this case, there are two observations 
picked out at each instant of time, so the total number of rows of the A matrix is 2m), 
and n the number of unknown variables (five K-parameters in this case). The unique 
minimum solution, in case the data matrix is full rank, is given by the following:
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where P is the autocorrelation matrix of the rows of the data matrix, while r is the cross-
correlation vector between the rows of the data matrix and the observation vector b. 
A recursive solution can be easily obtained for each instant of time. The A matrix can be 
partitioned into two submatrices of n columns. The first is the A matrix after m − 1 instants 
of time, called Ã and therefore composed of the first 2m − 2 rows, while the other is com-
posed of the two last rows of the A matrix. The same can be done for the observation vec-
tor b, which can be partitioned into b̃, of 2m − 2 components, and b̆ of 2 components. That is,
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Therefore, after m instants of time, the matrix P and the vector r can be computed as follows:

	

P A A A A A A P A A

r A b A b A

T T( ) ( ) ( . a)

( )

m m

m

T T

T T T

= = + = − +

= = +

� � � � � �

� � �
1 9 33

�� � �
b r A b= − +( ) ( . b)m T1 9 33

Then, after m instants of time, the OLS solution k′ is given by the following:

	 k P r’( ) ( ) ( )m m m= −1 	 (9.34)

As P is in general a matrix of order n × n, in this case, the inversion of a 5 × 5 matrix is 
required at each instant of time. However, as suggested by Stephen and Bodson [86], the 
strategy used consisted in updating P and r at each instant and the solution k′ at a lower 
rate, thus avoiding the computational burden of the inversion and permitting the continuous 
monitoring of the process for parameter estimation. Moreover, since the covariance matrix 
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of k, depending on the inverse of P, is of interest for giving a measure of the reliability of the 
estimation, the computation of the inverse of P is also of help.

By the inspection of Equations 9.24 and 9.25, it is easy to recognize that the second col-
umn of the A matrix has values which are pretty lower than those of the other columns. 
This means that the estimation of K2 is critical, which is also confirmed in the works [87,89].

As mentioned earlier, two ways can be followed now: either a constrained LS minimiza-
tion or a unconstrained one. The constrained minimization has been followed by Stephen and 
Bodson [86], but no proof about the convergence of the algorithm has been shown. More will 
be said in the following paragraph. As explained in the next few lines, the indirect use of 
the constraint allows an unconstrained minimization and therefore the employment of the 
sound theory of OLS. In Ref. [88], an LS constrained minimization has been suggested, but too 
many constraints are present due to the high order of the differential equations derived from 
Equation 9.15: from the discussion shown earlier, this minimization process would require only 
one constraint if the stator or rotor reference frame is chosen, which simplifies the computation.

The unconstrained minimization has been used by Boussak and Capolino [90]. However, 
the mere computation of the K-parameters, for the numerical issue mentioned earlier, causes 
errors if the additional constraint is not accounted for. As a matter of fact, it is not the computa-
tion of the K-parameters which is important, but that of the electrical parameters. If the con-
straint is used, these parameters are given explicitly from Equation 9.20 without making use 
of the K2. Therefore, the K-parameters can be computed with an unconstrained minimization, 
but then Equation 9.20 without using K2 is to be used at the same time. Finally, the use of an 
unconstrained method permits the adoption of the reliable theory of OLS, so no convergence 
problem exists. The choice of the reference frame most suitable for the parameter estimation 
is not trivial. One consideration has to be made. With regard to the estimation of all param-
eters, the worst case would be the steady-state, as the rank of the data matrix is only 2. This is 
because, in the frequency domain, all the information is given by the fundamental harmonic. 
It is true, however, that inverter-fed IMs are seldom fed by a single frequency voltage source 
because of the presence of time harmonics of the voltage source inverter (VSI), but in the iden-
tification scheme used in this work, all signals are filtered in such a way that any contribution 
of higher order time harmonics is almost irrelevant for the computation. In transient condi-
tion, it would be important to have an idea of how far the data matrix is from singularity, in 
other terms, how far the transient is from the steady-state. A natural measure of this distance 
would be the condition number of the data matrix, which is defined as follows:

Let A ∈ ℜm×n have full rank, then the condition number of A is as follows:

	
k( )A A A=

2 2

†

where
∥A∥2 is the two-norm of the matrix A
A† is the pseudoinverse of A

It should be remarked that the quantity 1/κ(A) represents, for a nonsingular matrix A, the 
relative distance of A from the set of all singular matrices of order m × n. Matrices with 
small (respectively, large) condition numbers are said to be well-conditioned (respectively, 
ill-conditioned). Numerical results, show that the condition number of the data matrix A 
obtained in the reference frame fixed to the stator is lower than the one obtained in the ref-
erence frame fixed to the rotor [95]. This could be explained by considering that in the fre-
quency domain the span of harmonics over the fundamental is larger in the stator reference 



442 Power Converters and AC Electrical Drives with Linear Neural Networks

frame than in the rotor reference frame: this is essentially due to the fact that in the rotor 
reference frame the frequencies of the fundamental and other harmonics are lower than 
the corresponding ones in the stator reference frame, so the harmonics obtained in the 
rotor reference frame are closer to one another and to the fundamental one than the ones 
obtained in the stator reference frame. This situation of “closeness” to the fundamental 
gives a measure of how far the transient is from the steady-state, that is, how far the data 
matrix is from singularity to solve the problem, a selection algorithm chooses the number 
of K-parameters, and thus of electrical parameters, which are to be calculated on the basis 
of the rate of change of the speed. During the first speed transient of the drive, the algo-
rithm calculates the five K-parameters and consequently the four electrical parameters, 
while, if the motor is in speed steady-state, the algorithm calculates only two K-parameters 
and the only electrical parameter that is selected on the basis of the requirements of the 
control system (typically Tr for FOC and Rs for DTC). It should be noted that, without 
this kind of selection algorithm, it is not possible to track the variation of any parameter 
of the motor in speed steady-state. Figure 9.20 shows the block diagram of the selection 
algorithm, derived to estimate at speed transient all the five K-parameters, and at speed 
steady-state only two K-parameters. The two K-parameters to be estimated at steady-state 
are chosen on the basis of the adopted flux model. If a current model is adopted, then the 
K-parameters depending Tr are chosen, while if the voltage model is adopted, then those 
depending on the stator resistance Rs are chosen. Therefore, the tuning of the decoupling 
circuit, which depends on Ls and σ, can be consequently updated at each speed transient 
of the drive, while the flux model, which depends on Tr or Rs, is updated at each instant.

9.5.5  Signal Processing System

Special care should be taken for processing the machine signals. The estimation algorithm 
needs the signals of the stator voltages and currents, their derivatives, up to the second 
order for the current and the first order for the voltage, and the machine speed.

Since the motor can be supplied both by the electric grid and by a VSI, low-pass analog 
filters for stator voltage and current signals are needed to avoid aliasing phenomena. The 
presence of filters, however, causes distortion and time delays of the processed signals 

FIGURE 9.20
Block diagram of the selection algorithm.
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which, therefore, at each time instant, should be synchronized with one another in order 
to respect the dynamic equation of the IM. Figure 9.21 shows the complete scheme used 
for processing all the signals needed by the identification algorithm. It is composed of the 
following [93,99,100]:

•	 Four analog low-pass antialiasing filters (B(s) block in Figure 9.21) that filter the 
stator voltage and current signals from the voltage and current sensors in the drive

•	 Four digital low-pass filters (F(z) block in Figure 9.21) reducing high-order har-
monics and the noise of the stator voltage and current signals that can be ampli-
fied by the following differentiator filters

•	 Six digital differentiator filters (D(z) block in Figure 9.21) that allow to obtain the 
derivatives of the stator voltages (up to the first order) and currents (up to the 
second order) of the drive

VSI
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FIGURE 9.21
Block diagram of the signal processing system. (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 52(5), 1391, 
October 2005.)



444 Power Converters and AC Electrical Drives with Linear Neural Networks

Since, in the application under study, the analog-to-digital converter (ADC) of the voltage 
and current signals has a sampling time Tsp = 100 μs (sampling frequency fs = 10 kHz), it 
is necessary to cut off all harmonics of these signals from 5 kHz upward to avoid aliasing 
phenomena. Bessel low-pass analog filters have been chosen for this task because they can 
be easily designed with an almost exactly linear phase characteristic.

Since the derivatives of voltage and current signals are necessary, digital finite impulse 
response (FIR) differentiator filters (blocks D(z) in Figure 9.21) have been designed. FIR 
filters have been chosen for their characteristic to have an exactly linear phase diagram. 
These filters implement the transfer function D(jω) = jω in the ω-domain. Finally, digital 
low-pass FIR filters have been chosen (blocks F(z) in Figure 9.21). Since all of the signals 
processed by the estimation algorithm must be synchronized, whenever a stator voltage 
or current signal is processed by the differentiator filter, the other signals, which are not 
differentiated and are used in the identification algorithm, must be delayed in time with 
the group delay of the differentiator filter. With reference to the experimental implementa-
tion of this methodology, an electronic card with six analog low-pass fourth-order Bessel 
filters has been built while all digital filters (low-pass FIR filters and differentiator FIR 
filters) along with the LS algorithm have been implemented by software on a digital signal 
processor (DSP).

In particular, Figure 9.22 shows the frequency response of the Bessel filter board which 
has been built together with the frequency response of the ideal filter. Figures 9.23 and 9.24 
show the frequency response of the digital low-pass FIR filter and of the differentiator FIR 
filter which have been implemented on the DSP.
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Frequency response of the low-pass analog Bessel filter. (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 
52(5), 1391, October 2005.)
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October 2005.)

10000 2000 3000 4000 5000
Frequency (Hz)

10000 2000 3000 4000 5000
Frequency (Hz)

2

1.5

1

0.5

0

200

100

0

–100

–200

×104

FIR filter
Ideal differentiator

M
ag

ni
tu

de
Ph

as
e (

°)

FIGURE 9.24
Frequency response of the differentiator FIR filter. (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 52(5), 
1391, October 2005.)



446 Power Converters and AC Electrical Drives with Linear Neural Networks

9.5.6  Description of the Test Setup for the Experimental Application

The test setup that has been built for the experimental verification of the parameter esti-
mation algorithm consists of the following [101]:

•	 One three-phase IM with rated values shown in Table 4.1
•	 One electronic power converter (three-phase diode rectifier and VSI composed of 

three IGBT modules without any control system) of rated power 7.5 kVA
•	 One electronic card with voltage sensors (model LEM LV 25-P) and current sen-

sors (model LEM LA 55-P) for monitoring the instantaneous values of the stator 
phase voltages and currents

•	 One voltage sensor (model LEM CV3-1000) for monitoring the instantaneous value 
of the DC link voltage

•	 One electronic card with analog fourth-order low-pass Bessel filters and cutoff 
frequency of 800 Hz

•	 One incremental encoder (model RS 256-499, 2500 pulses per round)
•	 One dSPACE card (model DS1103) with a floating-point DSP

The VSI is driven by an asynchronous space-vector pulsewidth modulation (SV-PWM) 
technique (switching frequency fPWM = 5 kHz) implemented by software on the dSPACE 
card, and the DC link voltage sensor permits taking into account the instantaneous value 
of the DC link voltage for the modulation. Figure 9.25 shows the electric scheme of the 
adopted test setup, while Figure 9.26 shows its photograph.

It should be noted that the current sensors employed in test setup present a percent accu-
racy of 0.65% with a linearity percent error less than 0.15% and with a − 1 dB bandwidth 
of 200 kHz, while the voltage sensors present a percent accuracy of 0.9% with a linearity 
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FIGURE 9.25
Electric scheme diagram of the experimental test setup. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 39(5), 
1247, September/October 2003.)
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percent error less than 0.2% and with a response time of 400 μs. Moreover, the six analog 
signals have been acquired with six 16 bit ADC, multiplexed in groups of three, with 1 μs 
sampling time for each channel, and therefore the associated percent quantization error, 
evaluated as 100/2N+1 with N number of bits of the ADC, is 7.6 10−4%. On the basis of the 
previous text, the quantization percent error is negligible in comparison with the trans-
ducers’ error: in particular, the global percent error associated with the acquisition of the 
current signals is 0.80076%, and the corresponding one associated with the voltage signals 
is 1.10076%.

9.5.7  Simulation and Experimental Results

The capability of the RLS algorithm to estimate, by exploiting a speed transient of the 
machine, all the electrical parameters of the IM (rotor time constant, stator resistance, sta-
tor inductance, global leakage factor) have been verified both numerically and experimen-
tally by using the previously described test setup [94,101]. The model of the IM for the 
simulation has the same parameters of the real motor, as shown in Table 4.1. Simulations 
have been performed in MATLAB®–Simulink® environment. In particular, the following 
test has been performed. The motor, both in simulation and in the experimental applica-
tion, has been supplied by the VSI, driven by means of the SV-PWM, to which a reference 
sinusoidal voltage of 220 V and 50 Hz has been provided. In both tests, the entire speed 
transient from zero speed to steady-state speed has been exploited to estimate all four 
electrical parameters of the IM.

Figure 9.27 shows the rotor speed and the isD and isQ stator currents during the start-up 
of the motor with no load in the simulated test. Figure 9.28 shows that the corresponding 
estimation of the parameters converges to the expected value after some iterations.

Figure 9.29 shows the rotor speed and the isD and isQ stator currents during the start-up 
of the motor with no load in the experimental test. Figure 9.30 shows that the correspond-
ing estimation of the parameters converges to the expected value after some iterations. The 
values of the electrical parameters of the machine assumed to be real are those measured 
with the usual no-load and locked-rotor tests. In both the simulated and experimental test, 
the K-parameters have been all set to one at the beginning of the estimation, but it has 
been verified that the final value of the estimated parameters is quite independent from 
the initial one.

FIGURE 9.26
Photograph of the test setup. (From Cirrincione, 
M. et al., IEEE Trans. Ind. Appl., 39(5), 1247, 
September/October 2003.)
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Table 9.1 shows the true and the estimated values of the K-parameters of the IM under 
test as well as the estimation errors in the simulation verification. It can be observed that 
except K2, which is not used for computing the electrical parameters of the machine, the 
percent estimation error on all K-parameters is always below 0.3%.

In general, this methodology presents the following advantages:

•	 It is simpler and less computationally cumbersome than the other algorithms in 
literature like EKF, ELO, and MRAS.

•	 It allows the four electrical parameters to be estimated during a speed transient of 
the machine and one electrical parameter in sinusoidal steady-state.

•	 It can be applied with few modifications for the off-line identification of the 
machine at standstill to be used in the self-commissioning of the drive.

•	 It does not require any a priori knowledge of the electrical parameters of the motor 
or its plate data.

•	 It can be applied both to FOC and DTC drive with slight modifications: this is use-
ful in industrial applications as it cuts down the development time.

•	 It permits computing the variation of the parameters due to different mag-
netic excitations: this feature is useful when the drive should work in the field-
weakening region.

•	 It can work at a much lower adapting rate than that of the control system and the 
flux model, and thereby the computational burden can be spread over more sam-
pling time intervals of the control system.
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Rotor speed, isD, and isQ waveforms (experimental results). (From Cirrincione, M. and Pucci, M., Experimental 
verification of a technique for the real-time identification of induction motors based on the recursive least-
squares, International Workshop on Advanced Motion Control (IEEE AMC’02), Maribor, Slovenia, 2002.)
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On the contrary, the method presents the following drawbacks:

•	 It requires a signal processing system that must be accurately designed and built.
•	 It requires differentiator filters that amplify high-frequency noise.
•	 It requires high-quality (high-bandwidth) stator voltage sensors that are much 

more expensive than current sensors.

9.6 � Constrained Minimization for Parameter Estimation of IMs 
in Saturated and Unsaturated Conditions

The matrix Equation 9.21 together with the constraint Equation 9.19 can be written in the 
following form [100,102]:

	

Ak b

k

≈

=

⎧
⎨
⎩ f ( ) 0

	 (9.35)
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where f(.) is the constraint function Equation 9.19. The first equation in Equation 9.35 
can be solved for the K-parameters both in steady-state and transient in real time by 
using an OLS method, because the main cause of error, the modeling error, is present 
in the observation vector, as explained in the earlier paragraph.

By the inspection of the Equation 9.21 or the like in the different reference frames 
(Equations 9.17 or 9.22), it is easy to recognize that the second column of the matrix has 
values which are lower than those of the other columns. This means two things:

	 1.	A gradient descent method is unsuitable, as it is too slow to converge.
	 2.	 If a constrained minimization is used, it is intuitive to realize that the difference 

between the true value, that is, the solution satisfying the constraints, and the two-
norm solution, that is, the unconstrained minimum, can be quite apart from each 
other along the direction of minimum gradient (K2).

This makes the estimation of K2 critical, which is also confirmed in Refs [86,90] (K2 prob-
lem). Two paths can be then followed to overcome this difficulty:

	 1.	The first employs an unconstrained minimization, which in a way, takes into 
account the constraint. This is the method followed by Stephen and Bodson [86], 
but no proof about the convergence of the algorithm has been shown. Also in 
Ref. [88], an LS constrained minimization has been suggested, but too many con-
straints are present, due to the high order of the differential equations derived from 
Equation 9.21, which makes the method unsuitable for real-world applications.

	 2.	The second method is a constrained analytical minimization adopted for over-
coming the K2 problem. This method is fully explained in Ref. [102] and is sum-
marized in the following.

9.6.1  Constrained Minimization: Analytical Solution

It is known that in parameter estimation, if the stator reference frame is chosen (the 
other reference frames can be chosen also, but the stationary reference frame is advis-
able for the previously mentioned numerical considerations), an equation as Ak = b 
appears, where A is an m × 5 matrix (data matrix), k is the vector of the five unknowns 
(K-parameters), and b is the m × 1 vector (observation vector). The k vector is com-
puted by an OLS algorithm, which means that the following function error should be 
minimized:

	

E Ak b (b Ak) (b Ak)

b b 2P k k Rk

2

2 T

T T T

= − = − −

= − +
	

(9.36)

where
R = ATA is the autocorrelation matrix (5 × 5)
pT = bTA is the mutual correlation vector (p ∈ R5×1)

However, between the ki (i = 1,…, 5) components, the following constraint exists:

	 k k k k2 4 3 5= 	 (9.37)
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This means that a constrained LS minimization should be performed. To perform this 
goal, two paths can be followed. One reduces the equations into a canonical form, which 
permits a geometrical insight into the problem and then uses a Lagrangian optimization 
technique in this new reference framework, fully explained in Ref. [100] and the other 
explained in Ref. [102], which is simpler to deduce but does not convey the same geo-
metrical meaning.

9.6.1.1  First Constrained Minimization Method

To perform the constrained LS minimization, Equation 9.35 should be transformed into a 
canonical form with a suitable reference frame and then accordingly the constraint should 
be modified. As explained in the following, three translations and one rotation are neces-
sary to achieve this goal [103].

	 1.	Translation
The expression in Equation 9.36 can be easily simplified into

	 z1 = − +2P k k RkT T 	 (9.38)

where

	
z E1 = − b bT

	 2.	Rotation
Let y = VTk and V the matrix whose columns are the normalized eigenvectors of R.

Then, by applying this rotation, it follows that

	 z 2P Vy y y1
T T

R= − + L 	 (9.39)

where ΛR = VTRV is a diagonal matrix formed by the eigenvalues of R, which are 
all real.

	 3.	Translation
Let now translate y by a vector h, that is,

	 y y h= +ˆ 	 (9.40)

The purpose is to determine the value of h so that no first-order term appears in 
(9.39). The method of the squares completion can be adopted. Indeed by substitut-
ing (9.40) into (9.39) and eliminating the first-order terms, it results

	 h V PR
1 T= −L 	 (9.41)

then (9.39) can be written as

	 z 2P Vh h h y y1
T T

R
T

R= − + +L Lˆ ˆ 	 (9.42)
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	 4.	Translation
From preceding text, it results

	 ˆ ˆ ˆz y yT
R= L 	 (9.43)

because

	 z 2P Vh h h y y1
T T

R
T

R+ − =L Lˆ ˆ

Now the constraint must be rewritten considering that k = Vy = V(ŷ + h). Let 
ei

T = ( )0 1 0� �  be the unit vector whose components are all null, save for the ith 
component which is one.

Then

	 ki = +e V(y h)i
T ˆ , , .with i = 1 5…

The constraint can be then so rewritten as

	 (y h) V e e V(y h) (y h) V e e V(y h)T T T Tˆ ˆ ˆ ˆ+ + = + +T T
2 4 3 5

which means that the constraint is as follows:

	 ( ) ( ) ( ) ( )y v h v y v h v y v h v y v h vT T T T T T T Tˆ ˆ ˆ ˆ2 2 4 4 3 2 5 5+ + = + + 	 (9.44)

where vi is the ith column of VT (i = 1,…,5).
Let now fi and f be as follows:

	 f ii i i= + =( ) ( , , )y v h vT Tˆ 1 5… 	 (9.45)

	 f f f f f= −2 4 3 5 	 (9.46)

The gradient of f ( gradŷ  f, from now on abbreviated as grad f  ) can be written as

	 grad f f grad f f grad f f grad f f grad f= + − −4 2 2 4 5 3 3 5( ) ( ) ( ) ( ) 	 (9.47)

But grad fi = vi and grad ẑ = 2ΛRŷ.
Let α be the Lagrangian multiplier and C(ŷ, α) the total cost function to be minimized, 

defined as follows:

	 C y y y fT
R( , )ˆ ˆ ˆa a= +Λ 	 (9.48)
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so

	 grad C grad f= +2L Rŷ a 	 (9.49)

Equation 9.47 can be developed in the following way:

	 grad f W W W WT T= + + +( ) ( )y hˆ 	 (9.50)

where

	 W T T= −v v v v2 4 3 5 	 (9.51)

Then to find the minimum of the cost function, it is necessary that grad C = 0, that is,

	

2 0

2 4 3 5

L R
T Ty W W y W W hˆ ( ) ˆ ( )+ + + + =

=

⎧
⎨
⎪

⎩⎪

a a

f f f f
	 (9.52)

With this regard, the constraint (9.41) can be rewritten as follows:

	

1
2

1
2

0ˆ ( ) ˆ ( ) ˆ ( )y W W y h W W y h W W hT T T+ + + + + =T T T 	 (9.53)

Equations 9.32 and 9.33 can therefore be written as follows:

	

2 9 54
1
2

L R
T T

T T

y W W y W W h 0

y W W y h W W y

ˆ ˆ ( . a)

ˆ ( ) ˆ ( ) ˆ

+ + + + =

+ + + +

a a( ) ( )

T T 11
2

0 9 54h W W hT( ) ( . b)+ =

⎧

⎨
⎪

⎩⎪
T

From (9.43a), it results that

	 ˆ [ ]y W W W W hR
T T= − + + +−a a2 1L ( ) ( ) 	 (9.55)

By substituting (9.55) into (9.54b), a nonlinear scalar equation with the scalar unknown α, which 
can be easily solved for by a numerical technique (e.g., the Newton–Raphson method, the 
bisection method, or even with the old “regula falsi,” a variation of the secant method 
[103], p. 338).

9.6.1.1.1  First Constrained Minimization Method: Simulation and Experimental Results

The capability of this method to estimate, by exploiting a speed transient of the machine, all 
the electrical parameters of the IM (rotor time constant, stator resistance, stator inductance, 
and global leakage factor) has been verified in simulation and experimentally [102], by 
using the test setup described earlier. The model of the IM for the simulation has the same 
parameters of the real motor, as shown in Table 4.1. Simulations have been performed in 
MATLAB®–Simulink® environment. In particular, the following test has been performed. 
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The motor, both in simulation and in the experimental application, has been supplied by 
the VSI, driven by means of the SV-PWM, to which a reference sinusoidal voltage of 220 V 
and 50 Hz has been provided. The entire speed transient from zero speed to steady-state 
speed has been exploited to estimate all four electrical parameters of the IM.

Figure 9.31 shows the rotor speed and the isD and isQ stator currents during the start-up of 
the motor with no load in the simulated test. Figure 9.32 shows the corresponding estima-
tion of the parameters, obtained with the constrained analytical solution.

Figure 9.33 shows the rotor speed and the isD and isQ stator currents during the start-up 
of the motor with no load in the experimental test. Figure 9.34 shows the corresponding 
estimation of the parameters, obtained with the constrained analytical solution.

The values of the electrical parameters of the real machine are measured with the usual 
no-load and locked-rotor tests and have been considered as the true values.

Tables 9.2 and 9.3 show the true and estimated values of the K-parameters of the IM under 
test, obtained with the constrained analytical solution in the simulation and experimen-
tal tests, respectively. The graphs show that the estimated electrical parameters converge 
quickly and smoothly to true ones. Moreover, the tables highlight the correct estimation of 
all the K-parameters, including K2.
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FIGURE 9.31
Rotor speed and isD, isQ waveforms (simulation results). (From Cirrincione, M. et al., Capolino, Constrained 
least-squares method for the estimation of the electrical parameters of an induction motor, COMPEL (The 
International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Special Issue: 
Selected papers from the International Conference on Electrical Machines (ICEM) 2002, Bruges, Belgium, Vol. 22(4), 
pp. 1089–1101, 2003.)
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9.6.1.2  Second Constrained Minimization Method

This method is in a way a simplified version of the previous method [101]. Let α be the 
Lagrangian multiplier and Ec the total cost function to be minimized, then from Equation 
9.35, it follows that

	 E k k k kc
T T T= − + + −b b p k k Rk2 2 4 3 5a ( ) 	 (9.56)

so the gradient of this cost function is given as follows:

	

grad

k

k

k

k

c( )E p Rk= − + + −
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Real and estimated electrical parameters of the motor (simulation results). (From Cirrincione, M. et al., 
Constrained least-squares method for the estimation of the electrical parameters of an induction motor, 
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If the following matrix E is introduced,

	

E =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

	 (9.58)

then the Equation 9.46 can be written as follows:

	 − + + =2 2 0p R k E ka 	 (9.59)

which implies

	 ( )2 2R E k p+ =a

Or if the inverse of the matrix exists, then

	 k R E p= + −( )2 21a 	 (9.60)
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Rotor speed, isD, and isQ waveforms (experimental results). (From Cirrincione, M. et al., Constrained least-
squares method for the estimation of the electrical parameters of an induction motor, COMPEL (The International 
Journal for Computation and Mathematics in Electrical and Electronic Engineering), Special Issue: Selected papers from 
the International Conference on Electrical Machines (ICEM) 2002, Bruges, Belgium, Vol. 22(4), pp. 1089–1101, 2003.)
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Real and estimated electrical parameters of the motor (experimental results). (From Cirrincione, M. et al., 
Constrained least-squares method for the estimation of the electrical parameters of an induction motor, 
COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Special 
Issue: Selected papers from the International Conference on Electrical Machines (ICEM) 2002, Bruges, Belgium, 
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TABLE 9.2

Steady-State Estimated K-Parameters 
(Simulation Results)

True Estim. Err. %

K1 189.0088 189.4606 0.2390
K2 946.4266 941.3659 −0.5347
K31 127.5398 128.0074 0.3666
K4 32.8711 32.9568 0.2609
K5 243.9244 242.3646 −0.6395

Source:	 From Cirrincione, M. et al., Constrained least-squares 
method for the estimation of the electrical parameters of 
an induction motor, COMPEL (The International Journal 
for Computation and Mathematics in Electrical and 
Electronic Engineering), Special Issue: Selected papers from 
the International Conference on Electrical Machines (ICEM) 
2002, Bruges, Belgium, Vol. 22(4), pp. 1089–1101, 2003.
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If the value k given in (9.60) is substituted into (9.56), a scalar equation in the unknown α is 
obtained, which can be easily solved for with a nonlinear numerical method (see Section 
9.6.1.1). Then the K vector is obtained with (9.60).

As for the error estimate, the same considerations made in respect with the uncon-
strained minimization can be made. If the unconstrained minimization is used, then the 
formula (42) in Ref. [86] can be applied, that is,

	 dki T
ii= Re A A*( ) 	 (9.61)

where
δki indicates the amount by which the ith component of k could vary without causing 

more than a doubling of the residual error (parametric error index)
Re* is defined as the value obtained by the residual error when k is obtained as the solu-

tion of the unconstrained LS method
()ii indicates the iith (diagonal) element of the matrix inside the brackets, that is, the mini-

mum residual error

Thanks to formula (9.60), a similar formula can be obtained from (9.61) for the constrained 
case, that is,

	 d akic c
T

ii= +Re A A E*( ) 	 (9.62)

where
dkic indicates the amount by which the ith component of k could vary without causing 

more than a doubling of the residual error (parametric error index)
Rec

* is defined as the value obtained by Ec when k is obtained by (9.60), that is, the mini-
mum residual error with a constraint

TABLE 9.3

Steady-State Estimated K-Parameters (Experimental 
Results)

True Estim. Err. %

K1 189.0088 212.2766 12.3104
K2 946.4266 995.9520 5.2329
K31 127.5398 147.4474 15.6089
K4 32.8711 41.2711 25.5544
K5 243.9244 278.7709 14.2858

Source:	 Cirrincione, M. et al., Constrained least-squares method 
for the estimation of the electrical parameters of an 
induction motor, COMPEL (The  International Journal for 
Computation and Mathematics in Electrical and Electronic 
Engineering), Special Issue: Selected papers from the 
International Conference on Electrical Machines (ICEM) 
2002, Bruges, Belgium, Vol. 22(4), pp. 1089–1101, 2003.
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From the definition of the matrix E, it results

	 d akic c
T

ii c
T

ii= + =Re A A E Re A A*( ) *( ) 	 (9.63)

and since Re Rec
* *< , it results that d dk ki

c
i< . This means that with the constrained mini-

mization the parametric error index diminishes. A large parametric error index indicates 
less accuracy in the results [86]. So with constrained minimization, the accuracy of the 
results is more than in the case of the unconstrained minimization. In any case, it should 
be remarked that with this OLS approach the errors are assumed to be confined mainly in 
the observation vector, assumption in a way acceptable because there exist second deriva-
tives in the observation vector. If also the uncertainty in the data matrix is to be accounted 
for, then a constrained TLS [95–97] technique should be used.

9.6.1.2.1  Second Constrained Minimization Method: Simulation and Experimental Results

The proposed methodology has been tested in simulation and experimentally to retrieve 
the electrical parameters of an IM under both linear and magnetically saturated working 
conditions [101], by using the dynamical models presented in Chapter 4 (Equations 4.23, 
4.63, 4.89, 4.88, 4.90, and 4.91). In particular, the nonlinear relationships between Lm, L, σ, 
σs, σr, and the rotor magnetizing current as obtained experimentally in Ref. [5] on the real 
IM will be used (see Figure 4.5).

9.6.1.2.1.1  Simulation Results  At first, a comparison has been made between the estima-
tion of the electrical and magnetic parameters obtained with the proposed algorithm (con-
strained minimization) and the classical OLS algorithm, like the one explained in Section 
9.5.4 and Refs [94,102,105].

In particular, various tests have been performed for verifying the capability of the param-
eter estimation algorithm to work correctly under both slow- and fast-speed transients and 
under different steady-state magnetization levels. Different steady-state magnetization 
levels in fact correspond to different values of the magnetic parameters of the machine. 
Since the equations employed for the identification model come from the mathematical 
model of the IM that does not take into consideration the effects of magnetic saturation of 
the iron path, the identification algorithm can compute only the steady-state values of the 
parameters themselves, that is, the values corresponding to the steady-state magnetization 
of the machine, as highlighted earlier and in Ref. [105].

For this purpose, a set of start-up tests has been done under different voltage levels at the 
frequency of 50 Hz, to make the machine work under different steady-state magnetization 
excitations, that is, with different values of |imr| and |ψr|. Correspondingly, both slow- 
and fast-speed transients have been created: low voltage/frequency ratios correspond to 
slow-speed transients, while high voltage/frequency ratios correspond to fast-speed tran-
sients. At the end of each test, the four electrical parameters Ls, σ, Tr, and Rs have been 
retrieved with both methods.

Figure 9.35 shows the rotor speed and the stator isA current waveforms during a start-
up test under a 155 V and 50 Hz supply. Figure 9.36 shows the corresponding curves of 
the estimated electrical parameters in comparison with the real ones, obtained with the 
constrained minimization. It shows that, as obviously expected, the magnetic parameters 
of the machine (Tr, Ls, and σ) vary during the speed transient of the machine from zero to 
speed steady-state because of the magnetization of the machine. It should be noted that 
the adopted identification model of the IM does not take into consideration the saturation 
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FIGURE 9.36
Estimated and real electrical parameters of the machine under a 155 V, 50 Hz supply (simulation). (From 
Cirrincione, M. et al., IEEE Trans. Ind. Electron., 52(5), 1391, October 2005.)
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Rotor speed and stator current at start-ups under 155 V, 50 Hz supply (simulation). (From Cirrincione, M. et al., 
IEEE Trans. Ind. Electron., 52(5), 1391, October 2005.)
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effects of the iron path of the machine, so the constrained minimization algorithm is able 
to retrieve only the steady-state values of the parameters, while no correct estimation is 
possible during the speed transient.

Tables 9.4 and 9.5 show the relative percent error of both estimations with reference to 
the true values of the parameters reported in the look-up tables of the model described in 
Figure 4.5. From these tables and Figure 9.37, it is apparent that the results obtained with 
the constrained minimization method are superior to those obtained with the classical 
unconstrained LS method.

The variation of the estimation error according to the load torque has been also investi-
gated. Figure 9.38 shows the percent estimation error of every K-parameter under different 
load conditions ranging from no load to rated load. It can be observed that both K1 and K4 
have a low percent error, which is almost independent from load conditions while K31 
and K5 depend heavily from them and moreover have higher percent errors in respect 
with the former parameters. An explanation can be given by considering that the columns 

TABLE 9.4

Percent Estimation Errors Obtained with the RLS

us (V) Err. % Tr Err. % Rs Err. % Ls Err. % σ

30 4.42 −2.33 3.13 −6.11
60 0.87 −0.67 −0.66 −4.08
90 3.70 0.18 2.85 −4.83

120 6.14 0.73 4.85 −6.86
150 7.56 1.18 6.20 −8.18
180 6.27 1.61 4.94 −7.28
210 5.26 2.03 4.09 −6.45
240 6.32 2.53 5.32 −7.02
270 4.28 2.85 4.20 −4.89
300 2.00 3.10 3.33 −2.54

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Electron., 52(5), 1391, 
October 2005.

TABLE 9.5

Percent Estimation Errors Obtained with the Constrained 
Minimization

us (V) Err. % Tr Err. % Rs Err. % Ls Err. % σ

30 −7.66 −2.82 −7.82 5.81
60 −0.801 −0.78 −2.14 −2.27
90 2.94 0.21 2.06 −4.11

120 3.47 0.39 2.50 −4.33
150 3.52 0.45 2.79 −4.36
180 2.84 0.52 2.63 −4.00
210 2.33 0.63 2.04 −3.58
240 2.80 0.8 2.99 −3.76
270 1.62 1.00 2.55 −2.52
300 0.05 1.30 2.50 −0.84

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Electron., 52(5), 1391, October 
2005.
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of the data matrix corresponding to K1 and K4 have a magnitude which is much higher 
than those corresponding to K31 and K5. Moreover, the errors in K5 are higher than those 
in K31 as the corresponding column of the data matrix of this last parameter is dependent 
on the load: the higher the load, the higher the stator current, and the higher the value of 
the corresponding column in the data matrix, the lower the error of the K31 parameter with 
respect to the error on the K5 parameter.

9.6.1.2.1.2  Experimental Results  The presented methodology has been verified experi-
mentally on the test setup described in Section 9.5.6. Table 4.1 shows the nameplate 
data and the electrical parameters of the employed IM, obtained with the no-load and 
locked-rotor tests. In particular, as explained in Section 9.5.2, a set of start-up tests has 
been done under different voltage levels at the frequency of 50 Hz with no load, to make 
the machine work under different steady-state magnetization excitation, that is, with 
different values of |imr| and |ψr|. Figures 9.39 and 9.40 show the rotor speed and the 
stator isD current waveforms, during four start-up tests, respectively, under a 55, 105, 
155, and 220 V and 50 Hz supply. Figures 9.41 through 9.44 show the corresponding 
curves of the estimated electrical parameters in comparison with those measured with 
the usual no-load and locked-rotor tests. It should be noted that, in dependence on the 
steady-state magnetization level of the machine, the estimated electrical parameters, 
after convergence, can be either closer or not to the values of the parameters measured 
with the no-load and locked-rotor tests. For example, the steady-state estimation of 
Ls obtained under 220 V, 50 Hz supply is closer to the Ls measured with the no-load 
test than the estimation of σ at the same supply conditions to the σ measured with 
the locked-rotor test. This is easily explained by the fact that in computing σ with the 
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locked-rotor test, the supply voltage is reduced to ensure rated current, with result-
ing unsaturated working conditions, while for the estimation of Ls, the no-load test is 
employed, which is carried out under a condition similar to this experiment, which 
is also at no load. Several more tests have been made under different voltage levels at 
the frequency of 50 Hz by employing Equations 4.90 through 4.92 so that the curves in 
Figures 9.45 through 9.48 have been obtained, which represent, respectively, the varia-
tion of Ls, Lm, σ, σr, σs, Tr, and |ψr| as a function of |imr|. Each set of experimental data 
of each electrical parameter has been then interpolated with a polynomial curve. In 
particular, the Ls, Lm, Tr, and the magnetization curves have been interpolated with a 
third-order polynomial, while the σ, σr, and σs curves have been interpolated with a 
fifth-order polynomial, as shown in the figures.

It can be concluded that the employment of the constrained minimization algorithm 
permits a better overall estimation of the K-parameters in comparison with that obtain-
able with an unconstrained classical LS method, as shown also theoretically. The proposed 
methodology in general offers the following advantages:

•	 The possibility to work with the motor supplied either by the sinusoidal voltage 
waveform from the electric grid or the more general voltage waveform generated 
by a converter

•	 No need of an a priori knowledge of the electrical parameters or all the nameplate 
data of the machine (except for the rated voltage and frequency)

•	 The simultaneous estimation of the four electrical parameters
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The next paragraph deals with use of the TLS (TLS function) to increase the robustness of 
the estimated parameters in respect to unavoidable errors present both in the observation 
vector and in the data matrix.

9.7 � Parameter Estimation of an IM with the Total Least Squares Method

The purpose of this paragraph is to show theoretically and experimentally that the OLS 
method mentioned earlier for retrieving the parameters of an IM can be inadequate if 
signals are affected by noise. For example, fast commutations of power devices produce 
a huge rate of change of the current with consequent radiated fields. Moreover, the para-
sitic capacitance between the motor and the ground cause common-mode high-frequency 
currents conducted disturbances. These interferences can couple easily with the signal 
line, and thus measurement errors are always present; therefore, the corresponding uncer-
tainty of the elements of the data matrix used in LS methods is to be taken into consider-
ation. From this standpoint, the TLS presented in Chapter 8 should be used, since it also 
considers errors in the data matrix. In literature, only Ref. [88] uses the TLS for parameter 
estimation of AC machines, but without proper constraints. This results in an involved 
algorithm, too high an order of the differential equations, and also a cumbersome signal 
processing system, unsuitable for real-world applications. Also in Refs [106–108], the TLS 
method, together with maximum likelihood methods, has been proposed for a similar 
problem (parameter estimation of the transformer and the synchronous machine), but in 
the frequency domain, it is not applied to the on-line identification for AC drives. In this 
paragraph, it is shown, both in simulation and experimentally, that the presence of pro-
gressively increasing noise both in the data matrix and in the observation vector dete-
riorates the accuracy of the results of the OLS method [99]. It is also proved that the TLS 
method is more robust. In particular, the TLS EXIN neuron will be used to compute the 
value of the parameters, as it is the only neuron that can work on-line for this purpose. 
Moreover, its theoretical behavior is completely known, particularly its convergence and 
tracking ability [97]. To refine the obtained accuracy of the results, an optimization tech-
nique explicitly taking into account the constraint is also presented.

In solving Equation 9.35, TLS EXIN neuron is used, that is, the following error function 
(see (8.10)),
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and the corresponding TLS EXIN neuron learning law (see (8.18) and (8.19))
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This unconstrained minimization using the simple gradient descent algorithm, as 
recalled earlier, fails in computing K2, because the particular structure of matrix A 
implies a very low value of the second column of the matrix R = ATA making this prob-
lem ill-conditioned (K2 problem): geometrically, this results in a flat error surface along 
the K2 direction, and numerical scaling does not help in solving this problem. Figure 9.49 
shows the OLS error function versus K1, K2 (all the other K-parameters are assumed equal 
to the correct ones), and the corresponding estimated K trajectory (black). The flatness 
of the OLS error surface in the K2 direction is easily observable. Moreover, it can further 
be observed that the estimated K trajectory remains trapped in the direction of K2, which 
makes the estimation of this parameter very difficult. Correspondingly, Figure 9.50 shows 
the TLS error function versus K1, K2 (all the other K-parameters are assumed equal to the 
correct ones). The more complex shape of the TLS error surface with respect to the OLS 
one can easily be noticed.

A constrained minimization could then be devised also in this case to approach the true 
solution. Of course, also in this case, in transient conditions, all four electrical parameters 
can be retrieved since the data matrix is full rank, but in sinusoidal steady-state, only two 
K-parameters can be computed since the data matrix has rank 2. Consequently, only one 
electrical parameter can be obtained.

In any case, if no constraints are taken into account, the TLS solution becomes close-
to-nongeneric and less accurate (above all for K2) when the noise is present in the data. 
In this case (strong noise in the data matrix and the observation vector), the Equation 
9.35 becomes such that the assumption of linearity is no longer valid. Thus a nonlinear 
minimization method which explicitly takes into account the constraint in Equation 9.35 
should be used to refine the TLS estimation, in the same fashion as the algorithms pre-
sented in Section 9.6.1.

Now consider Equations 9.36 and 9.37 and let PT = (p1 p2 p3 p4 p5) and k̃ = (k1 k3 k4 k5) be the 
reduced k vector, where the k2 component has been omitted. Similarly, let all vectors with 
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(See color insert.) OLS error function versus K1, K2, and estimated K trajectory (black).
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the tilde ∼ be the reduced vectors where the second component has been omitted. Thus, 
the following formula can be written:

	
P k P kT T= +� � p

k k
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The kTRk quadratic form can be reformulated by using the reduced vectors. At first, the 
reduced matrix R̃ can be defined as the submatrix obtained from R by removing the sec-
ond row and the second column. Then, by letting rT
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umn of R and �r T

2 12 32 42 52= ( )r r r r  be the corresponding reduced vector, and remembering 
that RT = R, the quadratic form can be rewritten as follows:
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In the end, the error function to be minimized is as follows:
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which depends solely on k1, k3, k4, and k5.
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The nonlinear part of Equation 9.69 can be neglected compared to the linear one because 
it depends on the size of the second column of the data matrix, which is the smallest study-
ing this particular case. Hence, the asymptotic properties of E depend on R̃.

The data autocorrelation matrix R is positive definite or semidefinite if A is full rank or 
not, respectively. In this case, all possible principal submatrices of R (e.g., R̃) have this prop-
erty [108] as well. As a consequence, the error E given by Equation 9.69 is always convex, 
and therefore only one critical point exists. This guarantees the convergence of the minimi-
zation method for any choice of the initial conditions. In the case of R̃, for the theorem of 
Eckart–Young–Mirsky [108], the smallest eigenvalue is greater, or in the worst case equal to 
that of R, thus implying a better conditioning of the problem than the unconstrained one. 
Hence, in the constrained algorithm, not only the convergence is guaranteed but also the 
estimate is more accurate. Figure 9.51 shows the error function of the constrained minimi-
zation algorithm (see Equation 9.69) versus K1, K4 (all the other K-parameters are assumed 
equal to the correct ones), and the corresponding estimated K trajectory (black). It can be 
noticed that, after eliminating the parameter K2 from the error function, its shape is almost 
a parable, as expected. As a result, the error trajectory easily converges to its minimum.

9.7.1  Simulation and Experimental Results

The LS method has been verified numerically in simulation and applied experimentally 
[100] on the test setup described in Section 9.5.6. Simulations have been performed in 
MATLAB and Simulink. The parameters of the IM used in the simulation are listed in 
Table 4.1. In the experiments, the motor has been supplied by an asynchronous SV-PWM 
driven VSI using a voltage/frequency open-loop control. The pulsewidth modulation as 
well as the open-loop scalar control algorithm has been implemented in software on the 
DSP of the dSPACE 1103 board employing the MATLAB–Simulink–Real Time Workshop®-
Real Time Interface® software. Virtual instruments have been used for controlling the 
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drive and for monitoring on-line all the electrical and mechanical signals of the motor, 
for example, the rotor speed, the DC link voltage, and the stator voltages/currents. The 
LS algorithm has been implemented in software on the DSP board. In all shown tests, the 
motor, both in simulation and experimental, has been supplied by the VSI with sinusoidal 
reference voltage of 220 V at 50 Hz. Figure 9.52 shows, both in simulation and experimen-
tally, the rotor speed, the isA stator current of the phase A, and the stator current locus 
isD − isQ during one of these tests with no load.

The implementation of this method during these tests both in simulation and on the test 
setup under usual operating conditions, that is, without noisy perturbations, has given the 
results shown in Table 9.6. The OLS and the TLS methods have been implemented on the 
DSP. The initial values of the K-parameters have always been set to 0, to ensure convergence 
as explained in Theorem 8.2. From these tables, it is apparent that the TLS solution is from a 
vector point of view closer to the true value than OLS: K2 is computed with good accuracy, 
while the other parameters are practically the same, even if there is a slight deterioration 
in the experimental test in the computation of K31. With this regard it should be remarked 
that, in the experimental tests, the true values of the parameters are those measured with 
the usual no-load and locked-rotor tests, which are retrieved under operating conditions 
that differ from those of the test: therefore the machine parameters computed by the LS 
method can be slightly different from those obtained with the traditional methods.

A deeper insight into these results is given in the following with the off-line analysis of 
the data.

In the first place, the error surfaces, obtained with the simulation data, by employing the 
OLS, the TLS, and also the constrained OLS are summarized in Figure 9.53. For obvious 
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TABLE 9.6

Estimated K-Parameters (Simulation and Experimental Results, 
Unconstrained OLS and TLS)

OLS × 103 TLS × 103 OLS Err. % TLS Err. %

Simulation results
K1 [s−1] 0.1886 0.1888 0.21 0.11
K2 [s−2] 1.267 0.9364 33.8 1.05
K31 [s−1] 0.1271 0.1280 0.37 0.34
K4 [H−1] 0.0328 0.0329 0.15 0.09
K5 [s−1 H−1] 0.2432 0.2413 0.29 1.06

Experimental results
K1 [s−1] 0.1887 0.1794 0.14 5.09
K2 [s−2] 1.373 0.9480 45.11 0.16
K31 [s−1] 0.1229 0.1172 3.60 8.09
K4 [H−1] 0.0328 0.0324 0.16 1.53
K5 [s−1 H−1] 0.2580 0.2470 5.78 1.17

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Appl., 39(5), 1247, 
September/ October 2003.
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visualization reasons, the three dimension (3-D) plots are drawn by varying just two 
K-parameters and letting the remaining ones be at the values given by Table 4.1. From 
these 3-D plots, the K2 problem is apparent in the first of these graphs, as the error surface 
is flat along the K2 direction see also Figure 9.49; the same is also true from the second 
graph, where the more complex TLS surface is shown. In the third graph, the constrained 
OLS surface is drawn, in which the K2 variable is eliminated by using the constraint; thus 
the solution of the problem does not present any flatness.

The flatness in the OLS error cost along the K2 direction is due to the very small size 
of the singular value of A corresponding to K2, which implies high two-norm condi-
tion numbers [108]: the relative condition number, relating the perturbation in A to the 
perturbation in the solution, is given by 6578 for the simulation data and by 8820 for 
the experimental data; the relative condition number, relating the perturbation in b to the 
perturbation in the solution, is given by 98.4 for the simulation data and by 116 for 
the experimental data. The computation of the other singular values shows that they are 
grouped together and this confirms that only K2 is difficult to be estimated. Furthermore, 
also scaling A does not change the condition numbers, which also shows that the solution 
is more influenced by perturbations in A than in b. Thus these considerations justify the 
use of TLS techniques which, unlike OLS, take into account the noise in A. The presence 
of the flatness along the K2 direction in the TLS error function, however, suggests a “non-
genericity” in the TLS problem, which is confirmed by the analysis of the eigenvalues 
of the data autocorrelation matrix R. For both simulation and experimental examples, 
the eigenvector corresponding to K2 (the MC vector of A) tends (partially) to be paral-
lel to the TLS hyperplane in the direction of the true value of K2. Hence, the problem is 
close-to-nongeneric because of K2. The application of the TLS EXIN neuron automatically 
implements the approximate (because the problem is not exactly nongeneric) constraint 
that the weights have to remain orthogonal to the K2 solution [109]. For the case of the 
experimental data, Figure 9.54 shows the contour plots for the TLS error in the plane 
K1 − K2 for values ranging from the lowest saddle point (s #1) to the minimum point (TLS 
min); these two critical points, together with the solution and the temporal evolution of 
the weights of the TLS EXIN neuron, are also shown. It can be seen that neither the TLS 
minimum (generic TLS solution) nor the TLS lowest saddle #1 (nongeneric TLS solution) 
corresponds to the true solution, which is somehow in-between (close-to-nongeneric 
TLS solution). Note the particular shape of the contours that confirms the nongenericity 
around the K2 direction.

Also by using off-line OLS direct methods [108], that is, the Cholesky decomposi-
tion of the normal equations, the Householder factorization, and the SVD technique, no 
improvement has been achieved in the OLS solution. On the contrary, TLS EXIN (for null 
initial conditions) has always given a better estimation of K2, because it automatically 
solves the close-to-nongeneric TLS problem. The constraint (9.37) is well satisfied by the 
K-parameters estimated by TLS. This suggests a possible correspondence between the TLS 
nongeneric constraint and this constraint. Indeed, constraint (9.37) depends on the choice 
of the K-parameters. This choice also influences the Equation 9.36, which in turn implies 
the nongeneric constraint.

Afterward, to check the robustness of TLS against noise, a uniformly distributed 
noise between −5% and +5% of the rated voltage and current has been given to each 
acquired signal so as to have noisy elements both in the data matrix and in the obser-
vation vector. The electrical drive has been submitted to the same tests as described 
earlier but, to take into account the statistical effect of the random noise, each test has 
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been repeated 50 times: in this way, the statistical average of all the estimation has 
been computed. To speed convergence, a BFGS method, which requires blocks of data, 
has been implemented on the DSP. The size of these blocks has been kept low not to 
overload the DSP.

Figures 9.55 and 9.56 show the true parameters of the machine and the waveforms of the 
average parameter estimation, computed by the OLS and TLS, respectively, in simulation 
and in the experimentation, when the signals are corrupted by the noise. The shift in time 
between the OLS and TLS curves is due to the different length of the block for each of 
them. The electrical parameters are updated every 0.3 s.

Table 9.7 shows the percentage error of the K-parameters at the end of the estimating pro-
cess both with OLS and TLS as well as their global errors; this global error is computed as 
the two-norm, divided by the two-norm of the true K-parameters vector, of the difference 
between the solution vector obtained with each method and the true K-parameters vector. 
These results show on the one hand that the OLS solution deteriorates in comparison with 
the TLS one in the presence of the noise and on the other hand that the TLS solution goes 
away from the solution, especially in the estimation of K2, in comparison with the no-noise 
case shown on Table 9.6. This result is then refined by the use of the constrained algorithm 
which further approaches the true values as shown in Table 9.7 with substantial lower 
errors than those obtained with TLS and OLS. It should be remarked that the constrained 
algorithm is to be used in real-time applications after the TLS algorithm converged when 
the signals are very noisy. The use of the OLS constrained algorithm gives good results 
only after the convergence has been reached, that is, when the initial conditions are in 
the neighborhood of the solution. Tests made in the same noisy environment with initial 
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FIGURE 9.54
(See color insert.) Contours and critical points of the TLS error in the plane K1, K2; the TLS EXIN weight trajec-
tory is also shown. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 39(5), 1247, September/October 2003.)
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conditions far from the solution have led to worse results than those obtained with the 
unconstrained TLS.

It should be emphasized that the problem of the estimation of the parameters of the IM 
is to be placed in the context of a close-to-nongeneric problem and that the TLS EXIN neu-
ron learning law accurately estimates all parameters by implicitly satisfying the nonlinear 
constraint. Moreover, the TLS EXIN is a robust technique as to noise, unlike OLS. On the 
other hand, for progressively increasing noise, obviously also the TLS solution can deterio-
rate, and in this case, a nonlinear constrained minimization algorithm for the refinement 
of the solution should be used as well.

9.8 � Application of the RLS-Based Parameter Estimation 
to Flux Model Adaptation in FOC and DTC IM Drives

This section shows the application of the LS-based on-line parameter estimation algo-
rithm to the flux model adaptation in high-performance FOC and DTC IM drives 
[111–113]. In this case, for simplicity of implementation, the RLS algorithm has been used 
(see Section 9.5.4). The adopted FOC scheme is based on voltage control with rotor flux 
orientation (Figure 5.16), while the adopted DTC scheme is the classic switching-table-
based DTC (Figure 5.37). The parameters of the IM under test are shown in Table 4.1. 
In particular, some simulation results are shown highlighting how the LS technique, 
integrated with the selection algorithm in Figure 9.20, is able to make the control system 
adaptive versus machine parameters variations. In both control schemes, the control 
strategy is made adaptive by computing in real-time values of some electrical param-
eters of the machine, thus allowing the flux models in each scheme to be correctly tuned 
at each instant. In particular, in both control schemes, all the electrical parameter (Tr, Ls, 
Rs, and σ) are computed during each speed transient, while in speed steady-state, only 
the parameter that is the most critical from the control point of view is chosen for estima-
tion, as the others are assumed constant, equal to the values estimated during the last 
speed transient.

TABLE 9.7

Estimation Relative Errors on K-Parameters

Simulation Results Experimental Results

TLS OLS Const. TLS OLS Const.

e K1% 0.53 49.20 0 17.46 14.3 12.2
e K2% 8.14 69.23 5.40 241.9 1394 0.32
e K31% 0 62.99 0.80 24.41 27.6 17.32
e K4% 0 43.75 0 34.38 3.10 28.12
e K5% 1.65 8.60 6.20 8.23 37.0 7.41
E. TLS 0.07 2.28
E. OLS 0.66 13.13
E. const. 0.05 0.04

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Appl., 39(5), 1247, 
September/ October 2003.
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The flux model adopted in the FOC scheme is the current model based on the rotor 
equations in the rotor flux reference frame (Figure 5.11b), and, therefore, the estimation of 
the rotor flux requires the knowledge of the Tr, to the variation of which the flux model is 
sensible as shown in Section 9.2.1. The value of Tr needed by the flux model is usually set 
to that corresponding to the rated temperature and the rated magnetization level of the 
machine. The parameter Tr, however, changes slowly with the temperature of the rotor 
and more quickly with the state of magnetization of the machine (field-weakening). Thus 
a variation of the temperature and the magnetic saturation of the machine causes errors 
in the flux model (detuning) and can be critical from the point of view of both the stability 
and the performance of the control scheme. For this reason, the most critical parameter 
in the FOC scheme is Tr and then it is chosen as the unique parameter to be estimated in 
speed steady-state.

The flux model adopted in the DTC scheme is the voltage model, which is based on the 
stator equations in the stationary reference frame, requiring the knowledge of the stator 
resistance Rs. The value of Rs needed by the flux model is usually set to that correspond-
ing to the rated temperature of the machine while the stator resistance of the machine 
changes with the temperature of the stator winding. Thus a variation of the temperature 
of the machine causes even in a DTC drive a detuning of the flux model, which reduces 
the performance of the drive and can be critical from the point of view of the stability. 
For this reason, the most critical parameter in the DTC scheme is Rs and then it is chosen 
as the unique parameter to be estimated in speed steady-state. Simulations have been 
performed making use of the MATLAB–Simulink software of the Mathworks®. Some 
tests have been made to check the parameter estimation algorithm both in a very fast 
speed transient and in speed steady-state. The same kind of tests have been carried out 
in both drives.

In the first test, a speed reference step of 100 rad/s and a rotor flux reference step of 
0.8 Wb have been given to the drive. Under these conditions, the rate of change of the speed 
is high, and the assumption of slow transient does not exactly hold. Figure 9.57a and b shows 
the waveforms of the rotor speed, the stator voltage of phase sA, and the stator current of 
phase sA, respectively, for the FOC and DTC drives. Figure 9.58a and b shows the esti-
mated electrical parameters during the speed transient and the real ones in both control 
techniques. It can be noticed that the RLS algorithm is able to correctly estimate all the 
four electrical parameters of the machine at the end of the speed transient, despite of the 
different stator voltage and current waveforms.

In the second test, the capability of the algorithm to track on-line the variation of the 
most critical electrical parameter in speed steady-state has been tested. In particular, at the 
constant speed of 100 rad/s and constant load torque of 10 N m, a step variation of the most 
critical parameter, respectively, an increase as much as twice of the Tr of the motor in the 
FOC drive and of the Rs of the motor in the DTC drive, has been imposed. Figure 9.59a and 
b shows respectively the imposed variation of the true Tr compared with the estimated one 
in the FOC drive and the imposed variation of the true Rs compared with the estimated 
one in the DTC drive. It can be seen that the algorithm is able to track the variation of the 
parameter, even if the rotor speed is constant. Figure 9.60a and b shows, respectively, the 
true rotor flux compared with the estimated one in the FOC drive and the true stator flux 
compared with the estimated one in the DTC drive. It can be noticed that, thanks to the 
adaptation algorithm, the real magnetic flux is different from the estimated one until the 
estimated parameter becomes close to the real one in both schemes.
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(a) Rotor speed, stator voltage, stator current (FOC). (b) Rotor speed, stator voltage, stator current (DTC). (From 
Cirrincione, M. and Pucci, M., A direct-torque-control of an AC drive based on a recursive-least-squares (RLS) 
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(a) Estimated and real parameters in a speed transient (FOC). (b) Estimated and real parameters in a speed tran-
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9.9  Estimation of the IM Parameters at Standstill

Off-line parameter estimation techniques for IMs [4,5,10,13,19,68,113] are essential for the 
self-commissioning of the corresponding drives, consisting in the proper tuning of the 
controllers, of the decoupling circuits, if present, and of the flux models. Traditionally the 
no-load and locked-rotor tests are used, but the accuracy they provide is often insufficient 
for the previous applications; moreover, these tests are sometimes hard to perform both 
because the motor is usually coupled to the mechanical load, and then it is not always 
possible to lock the rotor, and because they are difficult to automate [4]. Identification 
methods of the IM in standstill have been therefore developed, so machine does not pro-
duce any torque, and the locking of the rotor is undesirable. These techniques have been 
proposed both for the frequency domain and the time domain. The frequency domain 
requires a sinusoidal supply with variable frequency in order to obtain a frequency char-
acteristic from which the electrical parameters of the motor can be inferred. In the time 
domain, several techniques can be used, like the MRAS, EKF, LS, the two-frequency 
method, etc.

A possible approach for the time domain identification of IMs at standstill is using LS 
techniques [114]. Starting from Equation 9.25, under the hypothesis of working at stand-

still, that is, ωr = 0 and 
d
dt

rw = 0, the equation simplifies as follows:
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(a) Tracking of the Tr in speed steady-state (FOC). (b) Tracking of the Rs in speed steady-state (DTC). (From 
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The following remarks are to be made on the aforementioned equations:

•	 No modeling error exists differently from the on-line counterpart as explained in 
Ref. [114], and, therefore, the equation is almost exactly linear (the error is only due 
to the measurement errors and the filtering).

•	 K31 is not present any longer.
•	 No constraint exists.

To solve this equation, an LS method can be used that determines the electrical parameters 
of the motor on the basis of the stator voltage and current signals and their derivatives. 
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Moreover, because of the absence of any modeling error, a more accurate result can be 
achieved than that of the on-line counterpart. In Ref. [114], a classic OLS algorithm has 
been used to solve this problem. From the K-parameters, as it is known, the four electrical 
parameters must be retrieved in this way:
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All four parameters are therefore computed in an unconstrained way. By the inspection of 
Equation 9.70, a supply waveform with at least two different harmonics would be enough 
for retrieving all the four K-parameters. A special care has to be taken in the selection of 
the suitable voltage waveform for supplying the motor, which could be easily synthesized 
by the VSI. This waveform has been selected following the criteria that no electromagnetic 
torque should be produced at standstill and consequently any mechanical stress on the 
rotor. For obtaining this, a zero voltage reference has been given to phase sB of the motor 
whilst two transient voltage waveforms varying from zero to a constant value have been 
given to phases sA and sC as represented in Figure 9.61 [114].

In particular, no step voltage input can be given as its derivatives are not functions, 
nor an input signal whose first derivative is a threshold function can be given as the data 
matrix is not full rank. Thus only an input signal whose first derivative has an interval in 
which it is linear can be given for retrieving all parameters.

sA

sB

sC

VSI IM

FIGURE 9.61
Schematics of the supply. (From Cirrincione, M. et al., A least-squares based methodology for estimating the 
electrical parameters of induction machine at standstill, Proceedings of the IEEE International Symposium on 
Industrial Electronics (ISIE’02), L’Aquila, Italy, 2002.)
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In particular, these three voltage references have been given to the three phases of the 
motor:
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where α = 3 and λ is selected by means of an automatized procedure so to supply the motor 
with a stator current of amplitude close to the magnetizing current of the motor in normal 
operating conditions. A drawback is that, with this kind of supply waveform, the electrical 
parameters of the motor are estimated generating a magnetization of the machine, which 
is somewhat different from that in normal operating condition. In particular, with the 
previously described supply, a magnetomotive force (mmf) that is fixed in space and with 
amplitude variable in time is generated, while, in normal operating conditions, an mmf 
that is rotating in space and with constant amplitude is generated. The parameters of the 
machine under test are shown in Table 4.1.

Figure 9.62 shows the stator usD, usQ voltage signals, filtered both analogically by means 
of the low-pass Bessel filter card and digitally by software in the dSPACE card, obtained on 
the basis of the three voltage references of Equation 9.72. Figure 9.63 shows the correspond-
ing stator isD, isQ current signals. Figure 9.64 shows the electrical parameters estimated by 
the OLS algorithm and the real ones, which have been obtained with the usual no-load 
and locked-rotor tests. It shows that the estimation process of all the electrical parameters 
of the machine requires less than 1 s.
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Tables 9.8 and 9.9 show the true and estimated values of the electrical parameters and 
of the K-parameters of the IM under test as well as the estimation errors. It should be 
remarked that, due to the previously explained reasons, the off-line estimation by means 
of the LS methodology is more accurate than its on-line counterpart.

List of Symbols

usA, usB, usC	 stator phase voltages
isA, isB, isC	 stator phase currents
us = usD + jusQ	 space-vector of the stator voltages in the stator reference frame
us

g = +u jusx
g

sy
g 	 space-vector of the stator voltages in a generic rotating reference frame

is = isD + jisQ	 space-vector of the stator currents in the stator reference frame
is

g = +i jisx
g

sy
g 	 space-vector of the stator currents in a generic rotating reference frame

ʹ = +ir i jird rq 	 space-vector of the rotor currents in the stator reference frame
ir

g = +i jirx
g

ry
g 	 space-vector of the rotor currents in a generic rotating reference frame

y r rd rqjʹ = +y y 	 space-vector of the rotor flux linkages in the stator reference frame
ψs = ψsD + jψsQ	 space-vector of the stator flux linkages in the stator reference frame
imr = imrD + jimrQ	� space-vector of the rotor magnetizing current in the stator reference 

frame

TABLE 9.9

Estimated and True K-Parameters

OLS True Err. %

K1 189.2196 189.0088 0.1115
K2 950.7603 946.4266 0.4579
K4 32.8681 32.8711 −0.0090
K5 245.0417 243.9244 0.4581

Source:	 Cirrincione, M. et al., A least-squares based meth-
odology for estimating the electrical parameters of 
induction machine at standstill, Proceedings of the 
IEEE International Symposium on Industrial 
Electronics (ISIE’02), L’Aquila, Italy, 2002.

TABLE 9.8

Estimated and True Electrical Parameters

OLS True Err. %

Tr (s) 0.1341 0.1348 −0.4649
Rs (Ω) 3.88 3.88 −1.6699 10−4

Ls (H) 0.2518 0.2520 −0.0957
σ 0.1208 0.1207 0.1048

Source:	 Cirrincione, M. et al., A least-squares based meth-
odology for estimating the electrical parameters 
of induction machine at standstill, Proceedings of 
the IEEE International Symposium on Industrial 
Electronics (ISIE’02), L’Aquila, Italy, 2002.
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ims = imsD + jimsQ	� space-vector of the stator magnetizing current in the stator reference 
frame

imm = immD + jimmQ	 space-vector of the magnetizing current in the stator reference frame
ρr	� phase angle of the rotor flux-linkage space-vector with respect to the 

sD axis
ρs	� phase angle of the stator flux-linkage space-vector with respect to the 

sD axis
ρm	� phase angle of the magnetizing flux-linkage space-vector with respect 

to the sD axis
ϑr	 angular position of the rotor with respect to the sD axis
Ls	 stator inductance
Ls�	 stator transient inductance
Lr	 rotor inductance
Lm	 total static magnetizing inductance
Lsσ	 stator leakage inductance
Lrσ	 rotor leakage inductance
Rs	 resistance of a stator phase winding
Rr	 resistance of a rotor phase winding
Ts	 stator time constant
Tr	 rotor time constant
β0 = Rr/Lr	 inverse of the rotor time constant Tr

Ts�	 stator transient time constant
Tr�	 rotor transient time constant
Trσ	 rotor leakage time constant
σ = −1 L / L Lm

2
s r( )	 total leakage factor

σr	 rotor leakage factor
σs	 stator leakage factor
p	 number of pole pairs
ωmr	 angular speed of the rotor flux space-vector
ωms	 angular speed of the stator flux space-vector
ωmm	 angular speed of the magnetizing flux space-vector
ωsl	 angular slip speed
ωr	 angular rotor speed (in electrical angles per second)
te	 electromagnetic torque
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10
Neural-Enhanced Single-Phase DG Systems 
with APF Capability

This chapter deals with the use of neural network (NN) to improve the performance of a 
distributed generation (DG) system with active power filtering (APF) capability. These two 
areas of power electronics have developed with recent advances in control system technol-
ogy. As shown in Chapters 2 and 3, the same power circuit topology can be utilized for 
power control and active filtering as well. These functions can be performed by the same 
circuit with suitable NN control.

In particular, the inverter function is performed by a DG unit that, connected in parallel 
with the power grid, injects into the grid a current with phase and frequency equal to the 
corresponding ones of the grid voltage and with amplitude depending on the power avail-
able from the renewable sources; on the other hand, the APF unit injects system harmonic 
currents equal in amplitude to those of the loads but with opposite phase, thus keeping 
the line current almost sinusoidal. The role of NN consists in these applications in both 
the detection of the grid voltage fundamental and the computation of the load harmonic 
compensation current.

Two sections are present in this chapter. The former deals with a single-phase unit and 
the latter with a three-phase one.

10.1  Introduction

This chapter presents and discusses the results obtained experimentally on a 130 V RMS, 
50 Hz single-phase power distribution network, which in itself contains the distorted cur-
rents arising from both the utility and a nonlinear load. Several concepts explained in 
the previous part of this book are utilized, such as the use of the current control inverter 
(Chapter 2), the shunt active power filter (Chapter 3), and the neural adaptive filter 
(Chapter 8). These concepts are exploited to set up an experimental test rig to verify the 
proposed methodology. Moreover, some issues such as the global stability analysis of the 
proposed control approach are discussed and shown in the discrete domain.

The literature proposes some examples of converters for DG also from renewable 
sources [1–4] and APFs [5–10]; the integration of both functions is presented in Refs [11–13] 
in which, starting from a DG unit connected to the grid, the additional operation of an 
active filter is implemented.

The correct DG connection to the grid depends strongly on the correct detection of the 
fundamental harmonic frequency and phase of the voltage at the coupling point. In prin-
ciple, grid voltage should be sinusoidal, but, as explained in Section 3.1, difficulties due 
to the grid impedance and nonlinear loads arise. Moreover, the presence of the DG itself 
worsens the situation, increasing the coupling point voltage distortion.
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As for the grid fundamental voltage extraction, two main strategies exist: the phase-
locked loop (PLL) [14,15] and the zero crossing detection (ZCD) [13–15].

In Section 3.4.3.3, the control of APF based on instantaneous active-reactive (p-q) power 
theory has been explained; in literature, some solutions based on NN are proposed. Some 
of these are back propagation network (BPN) multilayer perceptrons like in Refs [16,17] that 
are trained off-line to learn main harmonic characteristics, then they are utilized on-line 
to obtain the switching pattern of the inverter. In general, for all BPN-based techniques, 
several well-known problems have to be accounted for, such as the choice of the number 
of neurons, the selection of the learning parameters, a meaningful training set and test 
set, the convergence time if it converges, the computational time, and so on. An alternative 
way to estimate the active component of the fundamental load current, obtained on-line 
by subtracting the compensating current component from the total current is proposed 
in Ref. [18], where a linear NN (ADALINE), trained by a least squares algorithm, is used.

This last approach is similar to the one used in this chapter, however, as shown in 
Section 7.6 of this book, the NN used for the system described in this chapter is less com-
plex and less computationally demanding, since it is equivalent simply to a second-order 
digital filter.

The system described in this chapter utilizes twice the same neural adaptive filter based 
on linear neurons (ADALINEs); it is employed to compute the fundamental component of 
the grid voltage waveform for the grid connection and the overall harmonic component of 
the load current for the current harmonic compensation respectively. In the first configu-
ration, the network allows the fundamental grid frequency voltage to be detected, sup-
pressing other components, and is called “band” configuration. In the second, all current 
harmonic components are detected, and the fundamental is eliminated; it is called “notch” 
configuration. It should be noted that this approach does not need any a priori training of 
the NN, which adapts itself on-line [19–21].

Other interesting issues, discussed in the following, are the design criteria of the NN for 
the particular application, the control of the DG unit to deliver the available power from 
renewable sources, and the use of a parallel active filter (PAF) by multiresonant current 
control with resonant frequencies at the grid fundamental and its third, fifth, and seventh 
harmonics. Such a controller permits controlling in a decoupled way and with zero steady-
state error the grid fundamental component of the inverter current, responsible for the 
power transfer to the grid, and its harmonics, responsible for the APF capability.

10.2  General Operating Principle

Figure 10.1 shows a block diagram of the neural-enhanced single-phase DG systems 
with APF capability; four main blocks are recognizable: the grid with its point of com-
mon coupling (PCC), the power unit that contains the inverter, the measurement units 
with all parameters to be acquired, and finally the microprocessor units that include the 
NN-based filters.

The grid is modeled by a sinusoidal generator with a series impedance. Various loads 
that could be both linear and nonlinear are connected. The PCC contains the inverter 
terminals connected to the power line and the current and voltage transducers. In par-
ticular, the grid current ig, the inverter current i, the load current iL, and the voltage vcp 
are measured at the PCC.
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The power unit contains the single-phase H-bridge inverter with its interconnecting 
inductance. The measurement unit contains all transducers to allow the main parameters 
to be converted for a suitable scaled voltage to acquire. Finally, the microprocessor unit 
receives information by transducers; it calculates both the active current to be injected and 
the harmonic current to be compensated on the basis of the NN-based filter performance 
and outputs the signal to drive the inverter power devices.

10.3  ADALINE Design Criteria

The representation of the NN is sketched in Figure 10.2.
As described in Section 7.6, the network presents two inputs and two outputs. The first 

input is the signal to be processed; the second is a sinusoidal sequence with reference pul-
sation ω0. The two outputs give the notch and the band behavior.
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Single phase inverter
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grid Vcp

i

iLig

++

FIGURE 10.1
(See color insert.) Block diagram of the neural-enhanced single-phase DG systems with APF capability.
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It should be noted that the neuron weights are adapted by a least mean squares (LMS) 
on-line training algorithm because of its low complexity, low computational demand, and 
high-speed convergence.

Moreover, this does not cause a significant increase of the computational demand and 
complexity of the filters, complying with the target of this work to develop a simple DG 
control system.

The reference input is delayed by π/2 to build the second sinusoidal reference, and the 
frequency of this reference input corresponds to the frequency of the primary input 
signal dk that should be canceled or let pass where k is the current sampled time instant.

Update of the weights, using the LMS, is given by
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where
wi(k) is the weight of the ith neuron at the kth time sample
μ is the learning rate
ɛi(k) is the difference between the primary input signal d(k) and the band filter output 

y(k); ɛ(k) is also the notch filter output

The sampled reference inputs are given by
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where C is the amplitude of the sinusoidal sequence with reference frequency ω0.
The network transfer function in z-domain has the following form:
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FIGURE 10.2
Schematic representation of the NN.
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The internal parameter μ has to be set to obtain a good trade-off between the bandwidth 
and the convergence speed; this is crucial for the network performance as a filter and for 
the overall stability of the system. As a matter of fact, a slow convergence, corresponding 
to a lower value of μ and a narrower band, introduces a delay that, in a feedback action, 
could be unacceptable.

In particular, the constraints for the harmonic voltage fundamental frequency extraction 
are as follows: the reference sequence pulsation has to be fixed to the nominal value of the 
grid pulsation and the bandwidth has to contain the slight variation permitted by stan-
dard to maintain that the filter looked even in the presence of grid frequency variation. On 
the other hand, the second harmonic and interharmonics are suppressed being out of the 
bandwidth of the filter.

In addition, filter stability considerations impose the upper limit of μ on the basis of the 
maximum eigenvalue of the autocorrelation matrix λmax then: 1 0l mmax > > .

The optimal choice of μ is different for notch and band operations, and is discussed in 
the following subsections.

10.3.1  Notch Operation

In this configuration, the NN filter is able to suppress a single frequency (or a very narrow 
band frequency) of the input signal. The frequency outside the band of the filter remains 
unchanged both in amplitude and phase. This function is used to eliminate the fundamen-
tal load current component and, consequently, to detect all current harmonic components.

If the stability of the filter is ensured, the following considerations for choosing the val-
ues of the parameter μ hold:

	 1.	A narrow notch permits the compensation even of the low frequency load current 
harmonics; on the other hand, even if the grid frequency presents a slight shift 
with respect to the nominal value, in the range allowed by standards, it has to be 
eliminated as well.

	 2.	A narrow notch permits the filter to have better phase characteristics around the 
notch frequency, with phase characteristics equal to 0 (zero delay time of the 
filter at all harmonics) and at frequencies very close to the notch one. In this way, 
there is no phase distortion of the load harmonic compensation current even at 
low frequency harmonics.

Figure 10.3 shows the Bode diagram of the notch filter for different values of the parameter μ. 
It should be noted that constraints are satisfied for μ = 8 × 10−4 providing a bandwidth equal 
to 2 Hz (see Figure 10.3a) and exhibits a linear phase in the region where there are harmonics to 
be compensated (see Figure 10.3b). Two wrong choices are also plotted. It should be noted 
that for μ = 1 × 10−4, the bandwidth is too narrow, and, for μ = 20 × 10−4, the phase is different 
from zero in the range of current harmonics.

10.3.2  Band Operation

The band operation function is used to detect the fundamental grid frequency voltage by 
suppressing other harmonics and interharmonics coming from the grid.

Taking into consideration, as an example, the standard IEC 61727 [22], the frequency 
range for normal grid operation is 50 ± 1 Hz. As a consequence, the fundamental frequency 
is expected in the range from 49 to 51 Hz.
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(a) Frequency response of the neural adaptive filter in notch configuration for different values of μ (zoom). 
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With regard to the band neural filter, μ can be chosen for a slightly wider band compared 
to the allowed grid fundamental frequencies for two reasons:

	 1.	A slightly wider band of the filter permits it to converge quickly, which is very 
important for a fast connection of the DG to the grid.

	 2.	A slightly wider band of the filter permits the DG to be connected properly to the 
grid even in the presence of small variations of the grid frequency. With this regard, 
choosing a wider band permits the filter to have better phase characteristics around 
the band frequency (close to 0), which is particularly important when the grid con-
nection is to be made in the presence of a modified grid frequency. In this way, a 
grid frequency tracking system is not strictly needed (see the PLL in Ref. [15]).

The plot of the Bode diagram of the NN filter in band configuration is shown in Figure 10.4a 
and 10.4b. It should be noted that by adopting μ = 20 × 10−4, a bandwidth from about 
43–57 Hz is obtained. Moreover, the Bode diagram strongly decreases outside the filter 
bandwidth so as to suppress other harmonics. As example, it can be observed that the 
third harmonic has an attenuation greater than 20 dB.

10.3.3  MATLAB®–Simulink® Implementation

In Figure 10.5, the Simulink® implementation of the NN-based filter is shown. The on-line 
adaptation of two weights is implemented on the basis of (10.1). Firstly, the input sequence 
x(k) is multiplied by the error ɛ(k), and a gain equal to 2μ allows the term (2μ ɛkxk) to be 
generated. This term is summed, inside the dotted square, to the last sampled weight 
(obtained by a unitary delay), and the new weight is obtained.

The sum of the weights is the band signal, and by subtracting it from the original signal, 
the notch signal is obtained.

10.3.4  Comparison with Traditional Digital Filters

The performance of the NN notch adaptive filter in the z-domain, described by Equation 
10.3, is compared in this section with traditional digital notch filters of the same order, typ-
ically Butterworth and Chebyshev ones. For a sampling frequency of 15 kHz and μ = 2 × 10−4, 
the NN gives a 6 Hz band centered on the notch at 50 Hz; the corresponding Chebyshev 
and Butterworth filters of the first order (with two poles and zeros like the NN filter in 
the z-domain) have been designed. With regard to the Chebyshev filter, the peak-to-peak 
ripple in the passband has been set to 0.5 dB, but it can be seen that its variation does 
not affect in a significant way the final transfer function. The resulting Butterworth filter 
Bode diagram practically matches the NN adaptive filter, while the Chebyshev one is quite 
different. Figure 10.6 shows the Bode diagrams for the three filters in a frequency range 
around the notch. The Chebyshev filter presents the worst ratio between filter attenuation 
at the notch and amplitude of the frequency band. The diagrams of the NN and the classical 
Butterworth filters are superimposed, as expected.

It could be claimed that the NN adaptive filter implements a Butterworth filter. 
However, the NN filter is clearly dependant on the notch frequency; this permits the 
filter coefficients to be varied in accordance with a variation of the notch frequency. 
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More precisely, it can be said that NN behaves as an adaptive Butterworth filter. In the 
considered application, this kind of adaptation makes the NN filter robust to any pos-
sible shift of the grid frequency.

10.3.5  NN Band Filter versus PLL: Theoretical Comparison

A PLL solution has been implemented and compared with the proposed NN band filter 
to lock the grid fundamental frequency since PLL is the most classic solution adopted for 
grid connection of DGs. Figure 10.7 shows the block diagram of the PLL system in the 
continuous Laplace domain.
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FIGURE 10.5
Block diagram of the NN-based filter Simulink® implementation.
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The corresponding transfer function is
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where
Vcpfilt(s) and Vcp(s) are the PLL output voltage and the voltage on PCC in the Laplace domain
ω0 represents the resonance (band) frequency
k is a parameter that influences the width of the band and, consequently, the speed 

convergence of the PLL: a lower k corresponds to a narrower width of the band and to 
a slower convergence speed

In this case, k has been set to 0.1 on the basis of a trade-off between these aspects.
In Figure 10.8, the frequency response of the PLL for different values of k is plotted.
For digital implementation of the PLL, a second-order integrator discretization [15] has 

been chosen, which is a modified Euler integrator obtained by approximating the integra-
tor 1/s in the continuous domain with the discrete filter in the discrete z-domain, with Tsp 
the sampling time of the control system:
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This choice permits a higher discrete integration accuracy with respect to the classic forward 
Euler integrator. The transfer function of the PLL in the discrete domain z becomes
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The PLL is thus a fourth-order digital band filter. Comparing Equation 10.6 with Equation 
10.3, it could be noted that the neural adaptive band filter is a second-order filter, while the 
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FIGURE 10.7
Block diagram of the PLL system in the continuous domain. (From Cirrincione, M. et al., IEEE Trans. Ind. 
Electron., 55(5), 2093, May 2008.)
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PLL is a fourth-order one. This implies a lower complexity and computational demand 
for the NN filter. Moreover, the neural adaptive band filter has a faster convergence and a 
better connection capability than the PLL, when the grid frequency slightly changes with 
respect to the rated one.

10.4  Building the Current Reference

The desired current to be supplied by the grid is sinusoidal; as a consequence, all har-
monic components different from fundamental ones have to be suppressed, and the refer-
ence icomp*  will contain these terms with opposite phase. This function is performed by a 
notch neural filter (see Figure 10.1) that eliminates from the load current the fundamental 
current component.

On the basis of the power given by the renewable source, Pref, the active current reference 
is calculated, and is added to the reference to supply active power to the grid. This refer-
ence component iact*  is obtained as

	
i

P
v v
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where vcpfilt is the output of the neural band adaptive filter; it contains only the grid volt-
age fundamental component. A fictitious voltage, �vcpfilt, which is in quadrature with vcpfilt, 
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is obtained by shifting this last signal in time by a discrete time delay z−75 (75 samples at 
15 kHz sampling frequency of the control system correspond to 5 ms, which is a quarter of 
period at 50 Hz). The denominator of Equation 10.7 is the square of the amplitude of the cou-
pling point voltage. With such a scheme, the reference active current is generated to produce 
an amount of power equal to Pref, and is a sinusoid in steady-state, exactly in phase with the 
fundamental of the coupling point voltage vcp: the DG therefore generates only active power 
with no reactive power exchanged with the grid. The availability of the grid harmonic voltage 
is crucial when a DG unit is connected close to a nonlinear current load. As a matter of fact, 
the coupling point voltage vcp can be influenced by the voltage drop on the grid impedance 
of the load current iL becoming distorted too; moreover, the DG can inject current harmon-
ics into the same grid impedance, worsening the shape of the grid voltage.

10.5  Multiresonant Current Controller

The classical PI compensator expressed in s-domain as

	
H s K

K
s

P
I( ) = + 	 (10.8)

when used in an AC system, as in the case of the presented application, introduces a steady-
state error both in amplitude and phase. To avoid this, a synchronous frame regulator that 
acts on a DC signal is necessary (see VOC in Chapter 2). As shown in Refs [19,23], a control 
network with the same DC control response of (10.8) but centered around the AC control 
frequency ω0 has the form
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Equation 10.9 expresses a proportional gain summed to a resonant transfer function having 
a resonant frequency equal to ω0 and an ideally infinite gain at the same frequency.

In the proposed system, different sinusoidal components of a variable frequency have to 
be controlled in a decoupled way. The first of is tuned at the grid frequency, and the others, 
at its third, fifth, and seventh harmonics. The controller tuned at the fundamental is used 
for the active power generation toward the grid, while the three harmonic controllers are 
used either for the load current harmonic compensation (APF capability set on) or to actively 
control to zero the first three odd harmonics of the injected current (APF capability set off).

For what was explained earlier, the resulting controller is a multiresonant controller 
composed of four resonant controllers; its transfer function controller in the continuous 
Laplace domain s is as follows:
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where
ω0 is the resonant pulsation of the controller at the fundamental, tuned at the grid 

frequency
K1n and K2n are the gain terms for the different harmonics of order n
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These terms can be calculated on the basis of the closed-loop transfer function of the 
current control loop. As a matter of fact, the current control loop can be schematically 
drawn as shown in Figure 10.9:

where
KC is the pulsewidth modulated (PWM) inverter assuming its delay as negligible
L is the interconnecting grid inductance with its parasitic resistance R

The current open-loop transfer function is

	

G s K K
sK

s n R sL
O C n

n

n

( )
( )

, , ,

= +
+

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ +
⎛
⎝⎜

⎞

=
∑ 1

2
2

0
2

1 3 5 7

1
w ⎠⎠⎟

	 (10.11)

which can be expressed as
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Finally, the characteristic polynomial of the closed-loop transfer function has the form
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It corresponds to a ninth-order s polynomial whose coefficients can be calculated by equating 
G0(s) with a Naslin polynomial of the same order [1]:
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The equivalent multiresonant controller expressed in the discrete domain z is
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where Tsp is the sampling time of the control system.
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FIGURE 10.9
Block diagram of current control loop.
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Figure 10.10 shows the frequency response of the designed multiresonant controller.
The output of the current controller is the voltage reference of the inverter, which is fed to 

the PWM block. In this case, a bipolar control of the voltage source inverter (VSI) is performed, 
and, therefore, the duty cycle d of a leg can be computed on the basis of the DC link voltage ud 
and the reference voltage vref as

	
d

v
u
ref

d
= +

2
1
2

	 (10.16)

10.6  Stability Issues

The stability analysis focusses on the pole position of the transfer function of the system, 
that is, the inverter/load current ratio. In particular, these poles could be subjected to vari-
ations due to the main system parameters. Among these, particular care has to be taken 
for the learning factor μ of the notch filter H(z); the filtering inductance L and the grid 
inductance Lg. This last has been considered because it cannot be chosen by the designer.

If all the inductances of the system are considered constant, which is a reasonable 
hypothesis, the system is linear. The voltage equations of the system in the Laplace domain 
are the following:

	
I s

R sL
V s V sinv cp( ) ( ( ) ( ))=

+
−

1
	 (10.17)
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Frequency response of the designed multiresonant controller. (From Cirrincione, M. et al., IEEE Trans. Ind. 
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I s

R sL
V s V sg

g g
g cp( ) ( ( ) ( ))=

+
−

1
	 (10.18)

	 V s R I s I s I scp L g L( ) ( ( ) ( ) ( ))= + − 	 (10.19)

In the discrete domain z, the reference current can be written as

	 I z H z I z K z V zL cp
*( ) ( ) ( ) ( ) ( )= +

and the reference voltage vref provided to the PWM is

	 v z G z I z I zref R( ) ( )[ *( ) ( )]= −

where GR(z) is defined by Equation 10.15. Finally, the inverter voltage vinv(z) is supposed to 
be equal to the reference vref(z) provided to the PWM, delayed of one sampling time of the 
control system.

Figure 10.11 shows the block diagram of the entire system in the hybrid continuous/
discrete domain. Actually the grid, the interconnecting inductance, and the load imped-
ances are considered in the s-domain. The load current, the inverter current, and the volt-
age in the PCC are sampled and then they are processed in the z-domain. After processing, 
the inverter voltage returns in the s-domain by means of the zero-holder (ZOH) block.
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FIGURE 10.11
Block diagram of the entire system in the mixed continuous/discrete domain.
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If Equations 10.17 through 10.19 are converted into the z-domain, the input-output trans-
fer function w z I z I zL( ) ( ) ( )=  can be deduced. w(z) presents 15 poles and 14 zeros, as shown 
in Table 10.1.

All the poles of w(z), obtained with the rated parameters of the system given in Table 10.2, 
are inside the unit circle in the z-domain, and, therefore, the system is stable. Figure 10.12 
shows the pole-zero map of w(z).

Figure 10.13 shows the pole position for a given variation of μ. It can be observed that, for 
decreasing values of μ, the poles approach the unitary circle, getting closer to the position 
of the zeros, which lie exactly on the unit circle. This is reasonable since, for decreasing 
values of μ, the filter becomes closer to the ideal one. For increasing values of μ, the poles 
move far away from the unit circle. However, there is a upper limit for the values that can be 
given to μ as described in Section 10.3.1.

Figure 10.14 shows how the position of the poles varies for different values of Lg. It can 
be observed that for increasing values of Lg, the poles approach the unit circle and go 
outside of it for a value of Lg that is about as much as 10 times the rated value 1. This is an 
interesting result since, because of the grid protections operation in faulty conditions, the 
equivalent grid inductance can increase with potential instability of the DG-APF system.

Finally, Figure 10.15 shows the position of the poles for different values of L. It can be 
observed that for increasing values of L of the poles, the damping factor of the system 
reduces. On the contrary, a strong reduction of L leads the poles close to the unit circle and, 

TABLE 10.2

Parameters of the 
Electrical Grid

Lg [mH] 20
Rg [Ω] 1
L [mH] 4
R [Ω] 0.2
Vg rms [V] 130
Ud [V] 250

Source:	 Cirrincione, M. et al., 
IEEE Trans. Ind. 
Electron., 55(5), 2093, 
May 2008.

TABLE 10.1

Poles and Zeros of w(z)

Zeros Poles

z1 −0.8366 p1,2 0.1838 ± 0.7558i
z2,3 0.9234 ± 0.2151i p3,4 0.9179 ± 0.2279i
z4,5 0.9741 ± 0.1684i p5,6 0.9757 ± 0.1689i
z6 0.8642 p7 0.8667
z7,8 0.9897 ± 0.0979i p8,9 0.9900 ± 0.0982i
z9,10 0.9949 ± 0.0323i p10,11 0.9949 ± 0.0320i
z11,12 0.9995 ± 0.0315i p12,13 0.9986 ± 0.0316i
z13,14 0.9986 ± 0.0316i p14,15 0.9993 ± 0.0314i

Source:	 Cirrincione, M. et al., IEEE Trans. Ind. Electron., 55(5), 
2093, May 2008.
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for very low values of L, can lead them outside the circle with consequent instability of the 
system. It should be recalled that each position of the poles has been computed here by 
considering a correct tuning of the multiresonant current controller for the corresponding 
value of L. Usually, once the L value is fixed by the designer, the permitted variation is due 
to aging and fabrication tolerance. Obviously, a completely different pole-zero pattern is to 
be expected if the controller is assumed to be tuned once for a precise value of L and then 
a variation of L is imposed to the system.

10.7  Test Rig

The proposed DG unit with APF capability has been tested on a single-phase power grid. 
The grid is represented by a sinusoidal voltage generator vg while the grid inductance and 
resistance are respectively Lg and Rg; it supplies a linear resistive load with resistance equal 
to 50 Ω and a nonlinear current load, obtained with a diode bridge supplying a highly 
inductive load.

A renewable source (photovoltaic [PV], eolic, fuel cells, etc.) supplies with a DC voltage 
of Ud = 250 V a single-phase inverter. It is connected to the grid by a filtering inductance L 
(with parasitic resistance R).

The DG-APF needs, to properly work, the acquisition of the inverter current i, the load 
current iL, and the voltage of the coupling point vcp. These signals are acquired by a program-
mable hardware, a digital signal processing (DSP) in the case under study, which implements 
both the load current harmonic compensation and the grid connection features.

Figure 10.16 shows the electric scheme of the DG unit with APF capability, as imple-
mented for the experimental verification of the proposed neural control scheme.

10.8  Experimental Results

10.8.1  APF Insertion

The single-phase sinusoidal electrical grid at 130 V rms, 50 Hz, sketched in Figure 10.16 
with parameters of Table 10.2, has been considered for the experimental assessment of the 
methodology.

The nonlinear load current is obtained with a diode bridge supplying a highly inductive 
load, so the required current is almost a square wave. In addition, an auxiliary nonlinear 
load can be connected as an alternative to the previous one. This auxiliary load is obtained 
with a saturable transformer supplying a diode plus a resistance load. The current wave-
form required by it is a complex waveform with both odd and even harmonics.

The single-phase inverter is connected to the grid by a filtering inductance, which 
smoothes the inverter current waveform. The inverter employs four IGBT modules type 
Semikron SMK 50 GB 123 in an H-bridge connection with their proper drivers. Three cur-
rent sensors type LEM LA 55-P are used to measure respectively the grid, the inverter, 
and the load current. A voltage sensor type LEM CV3-1000 has been used to measure the 
coupling point voltage. A sampling frequency of 15 kHz has been adopted both for the 
simulation and the experimental tests.
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Figure 10.17 shows on the left the steady-state time waveform of the current required by 
the nonlinear current load and its harmonic content obtained with the FFT (fast Fourier 
transform). It is a quasi-square waveform, presenting only odd harmonics with amplitude 
decreasing with inverse proportionality with the frequency, whose %THD (total harmonic 
distortion) computed up to the 20th harmonics is 25.2%. On the right side of Figure 10.17, 
there is the steady-state time waveform of the current required by the auxiliary nonlinear 
current load and its harmonic content. It can be noted that also even harmonics are present, 
and the corresponding %THD is equal to 43%.

Two kinds of transients have been studied in the proposed system. The first consists in the 
sudden insertion of the active filtering capability (APF), maintaining an active power refer-
ence equal to 0. It corresponds to the operation of a pure shunt power APF.

The second transient occurs when the APF is working and additional power is available 
from the renewable source. In this case, the generation of active power to supply the grid 
is required in addition to APF performance.
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FIGURE 10.16
Electrical scheme of the DG unit with active filtering capability. (From Cirrincione, M. et al., IEEE Trans. Ind. 
Electron., 55(5), 2093, May 2008.)
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Both of these transient conditions have been reproduced, in particular in the second, 
a step reference of active power of 600 W when the DG was already working in active fil-
tering mode.

The test conditions are particularly challenging for the nonlinear load and for step varia-
tion of reference signal corresponding to the sudden start of the APF and to the sudden 
power availability from renewable sources.

Figure 10.18 shows the effects of the sudden insertion of the APF on the grid, with null 
active power reference, obtained experimentally with the DG-APF based on neural adap-
tive filtering. The APF is operated at t = 0; before this time, the grid current is equal to 
that required by the nonlinear load. In particular, Figure 10.18 shows the inverter current 
waveforms (reference and measured), the load and grid current and finally the coupling 
point voltage (measured and filtered by the NN band filter) and its fictitious quadrature 
component, and the reference voltage provided to the PWM. It can be observed that, after 
the APF insertion, the inverter current rapidly reaches the reference (in few cycles of the 
fundamental), while the load grid current, initially equal to the load one, becomes close to 
a sinusoid. At the same time, the coupling point voltage becomes slightly more noisy after 
the APF insertion, as expected, due to the current injected by the inverter, and the NN fil-
ter correctly extracts its fundamental. Figure 10.19 shows the steady-state waveform of the 
inverter current and its spectrum, obtained with the FFT, at the end of the transient shown 
in Figure 10.18. In APF mode, the inverter generates a current with a harmonic content 
that presents a high third harmonic of the grid fundamental (see Figure 10.19) controlled 
by the corresponding resonant controller plus some undesired multiples of it. Figure 10.20 
shows the steady-state grid current and its spectrum, obtained with the FFT, at the end of 
the transient in Figure 10.18. It shows that the grid current, after the insertion of the APF, 
is basically a sinusoid: the third, fifth, and seventh harmonics are correctly eliminated by 
the multiresonant controller driven by the neural notch filter, and the first meaningful 
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harmonic is the ninth, which, even if not controlled, has an amplitude that is less than 4% 
of the fundamental. Furthermore, the %THD of the grid current is 4.51%.

10.8.2  Power Reference Insertion

In this test, during the APF operation, a step power reference is given, as it happens when 
energy is suddenly available from a renewable source. A step of 600 W has been chosen. 
Both linear (RL) and nonlinear loads are connected to the power grid.

The effects of this step power reference, given at t = 0, are shown in Figure 10.21. In par-
ticular, the following parameters are included: the inverter current waveforms (reference 
and measured), the load and grid current and finally the coupling point voltage (measured 
and filtered by the NN band filter) and its fictitious quadrature component, and finally the 
reference voltage provided to the PWM. The top diagram contains the measured current (i), 
the reference active current due to power step (iact* ), the reference current due to the APF 
operation (icomp* ), and the sum of the last two terms (i* = iact*  + icomp* ). After the power step, the 
active current reference component rises; it is in phase with the filtered coupling point volt-
age because of the action of the NN-based filter. The inverter current rapidly converges to 
the reference one in about three cycles of the grid fundamental and without any overshoot.
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The middle diagram contains the grid current (ig), the load current (iL), and again the 
inverter current (i). After the power step, the grid current changes its sign because the 
amount of power generated by the DG is higher than the sum of that required both by 
the linear and nonlinear loads. The inverter and grid currents present correspondingly in 
steady-state opposite signs.

Finally, the bottom diagram shows the voltage and, in particular, voltage in the PCC 
(Vcp), the corresponding filtered one (Vcpfilt) and delayed of π/4 ( �Vcpfilt), and the reference 
voltage (Vref). The reference voltage provided to the PWM is lower than the coupling point 
voltage before the power step and then, when it operates as DG, it becomes higher.

Figure 10.22 shows the steady-state time waveform of the inverter current and its spec-
trum obtained with the FFT at the end of the transient in Figure 10.21. The aim of this 
picture is to show that the inverter current is basically a sinusoid at 50 Hz, apart from 
the third, fifth, and seventh harmonics that are exactly equal to the corresponding har-
monic components of the load current (before AFP operation the current was that shown 
in Figure 10.17), but now they are generated by the inverter, because the APF capability is 
activated. If the APF capability were set off, the multiresonant controller would have zero 
references for these harmonics, which would therefore be actively controlled to zero. The 
resulting %THD is equal to 4.74%.

10.8.3  Load Variation

The aim of this section is to verify the proposed system behavior under sudden variations 
of the nonlinear load, in order to test the behavior of the neural adaptive filter. Two tests 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

0.5

0

–0.5

–1

0.25

0.2

0.15

0.1

0.05

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 0.01

Experimental—NN steady-state APF ON

Time (s)

Frequency (Hz)

A
m

pl
itu

de
 (A

)
i (

A
)

FIGURE 10.19
Measured steady-state inverter current with APF on with the DG-APF based on neural adaptive filtering. (From 
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have been done in numerical simulation. The first is a step variation of the load from 100% 
to 200% (where 100% corresponds to the load in Figure 10.16), the second is a step variation 
of the load from 0% to 100%. Figure 10.23 shows on the left the effects of 100%–200% transi-
tion of load and on the right the effects of 0%–100% transition of load. In the top diagrams, 
the reference and measured inverter current are shown; in the middle, the grid current; 
and in the bottom, the load current.

It can be observed that, for the 100%–200% load transition, the load system rapidly con-
verges to the new system configuration in almost one period of the grid frequency. For the 
0%–100% load transition, the transient is longer (about six periods of the grid frequency). 
This is caused by the convergence of both the multiresonant controller and the notch adap-
tive filter. It should be noted that this last test is done in more difficult working conditions, 
since initially the inverter is connected to the grid without exchanging any power or com-
pensating any load harmonic currents.

10.8.4  NN Filter versus PLL

Finally, in order to compare correctly the grid connection capability of the NN band adap-
tive filter with that of the PLL, some additional tests in particularly challenging condi-
tions have been performed. The numerical tests have been done in three different working 
conditions.

The first test has the aim to compare the tracking speed of the grid voltage (transient 
response), and results are shown in Figure 10.24 upper plot that contains the coupling 
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point sinusoidal voltage and its tracking by the output of both the NN band filter and the 
PLL. It shows that the NN band filter exhibits a faster convergence toward the grid voltage 
than the PLL.

The second test shows the behavior of NN filter and PLL when the voltage is distorted 
(33% of the third harmonic is present) at rated frequency of 50 Hz. The corresponding 
results are in the middle diagram of Figure 10.24. It shows that both the NN filter and 
the PLL work properly, extracting correctly (in magnitude and in phase) the fundamental 
component of vcp.

In the third test, the grid voltage vcp is distorted (33% of the third harmonic is present), 
but, in addition, frequency variation (45 Hz) occurs with the NN filter and the PLL tuned 
at the grid rated frequency (50 Hz); it represents a very challenging situation, and is shown 
in the bottom plot of Figure 10.24. The results show that, in presence of a grid frequency 
shift from the fundamental, the NN band filter has a better behavior of the estimated 
fundamental grid voltage than the PLL. The PLL presents a higher phase shift and ampli-
tude error than the NN filter. Neither the NN filter nor the PLL have a frequency tracking 
method which would further increase the complexity and computational demand.
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10.8.5  NN Filter versus p-q Theory

In this case, an auxiliary nonlinear load is used as an alternative to the previously described 
one. This auxiliary load is obtained with a saturable transformer supplying a diode plus 
a resistance load. The current waveform required by it is a complex waveform with both 
odd and even harmonics. The p-q theory–based algorithm has been implemented experi-
mentally on the dSPACE DS1103 board which also hosts the NN adaptive filter–based 
control. A sampling frequency of 15 kHz has been adopted for the entire control system 
in both cases.

The performed tests consist in the insertion test of APF with the nonlinear load and with 
the auxiliary nonlinear load using firstly the p-q theory–based algorithm and secondly the 
NN adaptive filter–based control.

Figure 10.25 shows the reference current (icomp* ), the measured inverter current (i), the 
load current (iL), and the grid current (ig) during the APF insertion, obtained with the NN 
APF control under nonlinear load. As it can be seen, when at the beginning the APF is in 
parallel with the grid but no current harmonic compensation occurs, the corresponding 
inverter current is controlled to zero and the grid current coincides with the load one. 
After about 40 ms, the APF is operated and begins to correctly compensate load current 
harmonics, maintaining the grid current almost sinusoidal, as expected.

In Figure 10.26, the same test is performed by connecting the auxiliary nonlinear load 
instead of the nonlinear load used in the previous test. Also in this case, the APF works 
correctly, compensating properly the grid harmonic currents. The NN adaptive filter very 
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Steady-state inverter current with Pref = 600 W with APF on with the DG-APF based on neural adaptive filtering 
(experiment). (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 55(5), 2093, May 2008.)
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quickly adapts itself, giving the correct load harmonics estimation. Correspondingly, the 
multiresonant controller quickly controls the inverter reference current to its reference.

Figures 10.27 and 10.28 show the same tests performed under the same nonlinear loads 
but obtained with the classic p-q theory control. The comparison shows no appreciable 
difference in the performance in the time domain analysis; it means that both the NN 
adaptive filter–based control and the p-q theory–based control correctly work, permitting 
a full compensation of the grid current harmonics.

10.8.6  Compliance with International Standards

The results obtained with the NN-based DG-APF have been compared to the prescribed 
limits of the American and European International Standards. In particular, the IEEE 
standard 1547-2003 “IEEE Standard for interconnecting distributed resources with electric 
power systems” [24], the European standard CEI/EN61727 “Characteristics of the utility 
interface” [22], and the CEI/EN61000-3-2 “Limits for harmonic current emissions (equip-
ment input current ≤ 16 A per phase)” [25] have been taken into account.

The IEEE standard 1547-2003 “IEEE Standard for interconnecting distributed resources 
with electric power systems” claims that the output of any renewable source–based system 
at the PCC should comply with clause 10 of IEEE standard 519-1992 in which the total har-
monic current distortion (TDD: total demand distortion, harmonic current distortion in % of 
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maximum demand load current [15 or 30 min demand]) shall be less than 5% of the funda-
mental frequency current at full system output. The limits are specified as a percentage of 
the fundamental frequency current at full system output. It permits considering the whole 
effect of the DG and the nonlinear load (EPS, electrical power system), as seen from the PCC 
(red dotted line in Figure 10.29). Under this hypothesis, the harmonic content of ig is to be 
analyzed.

The European standard CEI/EN61727 “Characteristics of the utility interface” addresses 
the interface requirements between PV systems and the utility, and provides technical 
recommendations. It has been written for PV systems, but its philosophy can be extended 
to any renewable source–based DG. About power quality and in particular harmonics, the 
standard claims that low levels of current and voltage harmonics are desirable. Suggested 
design targets harmonic limits are only in terms of current THD (limit 5%), while no limit 

1

3

2
ig (5A/div.)

iL (5A/div.)

i*comp (2A/div.)

i (2A/div.) 20 ms/div. @ 25 kS/s

4

FIGURE 10.26

icomp* , i, iL, and ig during APF insertion with NN control under auxiliary nonlinear load (experiment). (From 
Cirrincione, M. et al., IEEE Trans. Ind. Electron., 56(8), 3128, August 2009.)
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on each single harmonic is provided. Referring to this standard, the only DG-APF has to 
be considered (blue dotted line in Figure 10.29).

Finally, the also the standard CEI/EN61000-3-2 “Limits for harmonic current emissions 
(equipment input current ≤ 16 A per phase)” [25] has been considered. Even if the standard 
has been devised for loads, in the case under study, the DG-APF plus the nonlinear load 
have considered an EPS seen from the PCC. As a matter of fact, the nonlinear load under 
study, considered alone, would be highly beyond the limits. Absolute values of amplitude 
for each harmonic up to 40th are specified. Since this standard refers to the maximum cur-
rent of 16 A, the same value has been adopted as reference value also in the IEEE standard 
to define the customer’s average maximum demand load current.

With regard to the %THD limits, [24] and [25] impose a limit of 5% on the grid current 
ig, while [30] imposes a limit of 5% on inverter current i. Figures 10.20 and 10.22 show that 
in both cases, the THD limits are respected. It should be borne in mind, however, that the 
injected current i in Figure 10.22 includes also the third, fifth, and seventh harmonics that 

FIGURE 10.29
Schematics of the DG-APF with reference to interna-
tional standard compliance. (From Cirrincione, M. 
et al., IEEE Trans. Ind. Electron., 55(5), 2093, May 2008.)
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are generated for load current harmonic compensation. If no load harmonic compensation 
were performed, the %THD would be even lower.

With regard to the harmonic-by-harmonic analysis, Figure 10.30 shows the limits prescribed 
by the standards [29,31] as well as the harmonic content of the current ig. It can be observed 
that the proposed system complies with both the American and European standards.

10.9  APF Connection Procedure

The connection of the APF to the power grid is a critical issue. To deal with this procedure, 
the experimental rig described in Section 10.7 is equipped with one hardware (a switch) 
and two software commands (selected by the user on the virtual instrument on the PC). 
For the sake of simplicity, these commands are not illustrated in Figure 10.16. The hard-
ware command acts directly on the IGBT driver signals and has the task to enable/disable 
the devices driving. It is necessary, since the inverter is driven with a bipolar modulation, 
to avoid that, in absence of modulation, two devices are always actively commanded in on 
state. The first software command corresponds to the standby/run selection (output of the 
modulator respectively 0 or 1). The second corresponds to the enabling/disabling of the 
APF feature. The parallel connection of the APF is therefore performed with these steps:

	 1.	Connection of the nonlinear load to the power grid
	 2.	DC link voltage increase to the rated value
	 3.	Commutation of the hardware command from disable to enable mode (physical 

connection of the inverter with the grid without any control)
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Harmonic content of grid current and limits prescribed by the international standards. (From Cirrincione, M. 
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	 4.	Commutation of the software command 1 from standby to run (APF in parallel 
with the grid but current compensation not still enabled)

	 5.	Commutation of the software command 2 from disable to enable (APF current 
compensation working)
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11
Neural Sensorless Control of AC Drives

11.1  NN-Based Sensorless Control

Sensorless control of AC motor drives is a huge topic, which has been faced up to by plenty 
of researchers [1–6]. Among the various techniques proposed by literature, many of which 
have been described in Chapter 6, a possible approach is the adoption of artificial intelligence 
(AI)–based techniques. As a result, an electrical drive can assume an intelligent behavior, 
meaning that it can embed some features of “learning,” “self-organizing,” or “self-adapting” 
[7–12]. Besides other advantages, the integration of AI in electrical adjustable speed drives 
can frequently lead to a reduction of the development times and can avoid mathemati-
cal difficulties in system development, since AI techniques in general do not require the 
mathematical model of system. With specific regard to automatic control aspects, generally 
speaking, the correct knowledge of the system (plant) model to be controlled is usually 
needed, typically expressed in terms of algebraic or differential equations, providing the 
system input–output relationship. These models can frequently be complex, rely on unre-
alistic assumptions and contain parameters that are measurable with difficulty, or can vary 
during the operation of the system. There are cases in which the mathematical model of 
the system is not determinable at all. These problems could be overcome by adopting intel-
ligent control techniques that can be implemented even in the absence of the plant math-
ematical model and can be significantly less sensitive versus parameter variations. All the 
earlier considerations make AI an interesting tool for improving drive control.

Currently, only two large manufactures, Hitachi and Yaskawa, have incorporated AI 
features in control of their industrial drives [7]. In particular, Hitachi drive model J300 is 
a sensorless vector-controlled induction machine (IM) drive, adopting fuzzy logic con-
trol for the calculation of the optimal acceleration and deceleration times as well as for 
the control of the stator currents. Yaskawa drive model VS-616G5, called “true flux vector 
inverter,” adopts a neural-based control. In particular, it contains a “flux observer with 
intelligent neurocontrol” and permits the drive to work in simple scalar (V/f) mode, vector 
control with speed feedback, and sensorless vector control.

AI techniques have been divided mainly into two categories: hard computing and 
soft computing. To the first category belong the so-called expert systems (ES), which are 
based on the principles of certainty, rigour, and rigidity, being strictly linked to the rigidity 
of the Boolean logic. To the second category belong the so-called fuzzy logic systems (FLS) 
[13–18], the artificial neural networks (ANN) [19–29], the genetic algorithms (GA) [30], and the 
hybrid systems [7], in particular the neurofuzzy (fuzzy-neural) and the genetic-assisted 
neural and fuzzy systems. All soft-computing techniques have been conceived for suit-
ably dealing with uncertainty of knowledge and data, typical of real-world applications. 
While both ES and FLSs are rule-based techniques, aiming to reproduce the behavior of 
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the human brain, ANNs tend to reproduce a biological architecture. A different approach 
is that of GAs, also known as evolutionary computation, which are based on the principles 
of genetics (Darwin’s theory or fittest theory of the evolution). GAs solve a problem of 
optimization on the basis of an evolutionary process providing the best (fittest) solution 
(survivor). Among the different AI techniques, ANNs seem to have maximum impact on 
power electronics and electrical drives [11,12,31,32,33].

With specific regard to sensorless techniques for IM drives, literature reports several 
approaches. Reference [34] proposes a simple open-loop speed estimator, based on Equation 
6.20, where the speed estimator is integrated with a model reference adaptive system (MRAS) 
technique estimating on-line the stator resistance of the machine. In particular, the adaptive 
model of the MRAS is a multilayer perceptron (MLP) trained on-line by a back propagation net-
work (BPN) algorithm. Reference [35] describes a neural-based MRAS observer. This MRAS 
scheme adopts an NN rotor flux observer to entirely replace the conventional voltage model 
and not the current model as in other NN sensorless schemes to improve the drive perfor-
mance at low and zero speeds. An MLP estimates the rotor flux from present and past samples 
of the terminal voltages and currents, without any open-loop integration and with less sen-
sitivity versus motor parameter variations. As claimed by the authors, the training data for 
the NN are obtained from experimental measurements, giving a more accurate model that 
includes all drive nonlinearities. In Ref. [36], the ANNs are used to correct the estimated rotor 
speed provided by a speed observer. The internal signals of the speed observer system are 
thus used to correct the observer’s errors at steady states and during transients. Even in this 
case, an MLP trained on-line by a BPN algorithm has been adopted. It has been sufficient to 
use a double-layer ANN with fewer neurons in the hidden layer and one in the output layer. 
For the determination of the neuron number in the hidden layer of the feed-forward network, 
an evolutionary programming method has been used. The developed system, based on the 
speed observer, is stable and robust as claimed by the authors. In Ref. [37], an MRAS observer 
is proposed, where the reference and adaptive models are the conventional voltage and cur-
rent models of the IM. An NN having in input the rotor fluxes, estimated, respectively, with 
the reference and adaptive models and the delayed estimated speed, is used to estimate the 
current value of the speed. The NN has therefore partially a recurrent structure of Jordan’s 
sequential network and can be trained by conventional BPN algorithms. In this case, the NN is 
trained on-line and does not need any a priori training. Orlowska-Kowalska et al. [38] explore 
the goodness of an adaptive sliding-mode neurofuzzy speed controller (ASNFC) devised for 
a two-mass sensorless vector-controlled IM drive. The ANN weights of this controller are 
trained on-line by a modified gradient descent algorithm, according to the error between the 
estimated speed of the IM and the reference model output. Moreover, a priori off-line learn-
ing of neurofuzzy speed controller (NFC) is not needed. The speed has been estimated by 
an adaptive observer. A more classic neural approach has been followed by Heredia et al., 
[39], which proposes the adoption of a neural network (NN) to estimate the speed. The idea 
consists in an association of some inputs (stator currents, voltage, and frequency) with some 
outputs (speed and torque). In this case, for each set of inputs, there is a set of outputs. To 
accomplish this operation, the ANN must be trained initially. It is not necessary to carry out 
this phase on-line and to give the net all the possible input–output combinations since it has 
the capacity to generalize results starting from a limited set of inputs–outputs. Once the phase 
of training has been accomplished, the net should be able to estimate the speed for any set 
of inputs. The final structure of the adopted ANN is a feed-forward MLP with three layers: 
the first composed of 2 neurons, the second by 10 neurons to reach the objective of the stipu-
lated error, and the third by 2 neurons to give the estimated speed and torque outputs. An 
approach similar to that proposed by Karanayil et al., [34] has been followed by Campbell and 
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Summer [40], which proposes a classic MRAS observer based on the flux error minimization, 
integrated with a neural estimator of the stator resistance. The estimation of the stator resis-
tance is used on-line to adapt the reference model. A very interesting neural-based sensorless 
MRAS observer has been proposed by Ben-Brahim and Kurosawa [41], Elloumi et al., [42], Ben-
Brahim [43], and Ben-Brahim et al., [44]. Since they have directly inspired the LS-based MRAS 
observers described in the following, it will be treated separately in more detail.

11.2  BPN-Based MRAS Speed Observer

One of the most interesting approaches to neural-based sensorless control of high-
performance IM drives has been proposed in Refs [41–44]. This set of articles present 
a neural-based MRAS speed observer. Among the various MRAS solutions discussed 
in Section 6.4.6, this observer is in the framework of MRASs based on rotor flux error 
minimization [45]. Like in Ref. [45], the MRAS is composed of a reference and an adap-
tive model, both used for simultaneously estimating the rotor flux-linkage space-vector 
amplitude and phase. In this case, however, a two-layered “real-time” NN has been 
adopted as the adaptive model. This network is able to learn on-line during drive opera-
tion and, therefore, does not require any off-line training phase, different from tradi-
tional supervised ANNs. The on-line learning of the ANN is governed by the reference 
model, which the ANN tries to track with its on-line training. As a result of the training 
process, the rotational speed of the drive is estimated.

As far as the reference model is concerned, it is described by the stator voltage equations in 
stator reference frame, as in Ref. [45], rewritten here for the sake of simplicity:
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For the symbols, see the list at the end of the chapter. The block diagram of such a voltage 
model is sketched in Figure 6.23.

As far as the adaptive model is concerned, a neural model of the system has been suitably 
created, starting from the current model of the IM, rewritten here for the sake of simplicity:
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To be rearranged as an ANN, the current model in Equation 11.2 should be firstly con-
verted from the continuous to the discrete domain. If the simple forward Euler method is 
adopted, the following finite difference equations are obtained:
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where
∧ marks the variables estimated with the adaptive model
k is the current time sample

A linear NN can reproduce these equations, where w1, w2, and w3 are the weights of the 
NNs defined as w1 = 1 − Tsp/Tr, w2 = ωrTsp, and w3 = TspLm/Tr, Tsp is the sampling time of 
the control system, Lm is the three-phase magnetizing inductance of the motor, Tr is rotor 
time constant, and ωr is the rotor speed in electrical angles. Equation 11.3 describes a four 
inputs–two outputs linear ANN, whose inputs are isD(k − 1), isQ(k − 1), ψ̂rd(k − 1), ψ̂rq(k − 1), 
whose outputs are ψ̂rd(k), ψ̂rq(k), and whose weights are w1, w2, and w3 [41–44]. As a mat-
ter of fact, this linear ANN is not a feed-forward network but a recurrent one, that is the 
delayed outputs are fed back to the input. In this case, the adaptive model is said to be used 
as a “simulator” [46].

In theory, all the three weights w1, w2, and w3 could be trained on-line; practically, how-
ever, the weights w1 and w3 depend only on known machine parameters and can be there-
fore kept constant. In this way, only w2 is trained on-line, since it contains the information 
about the rotor speed. Figure 11.1 shows the block diagram of the BPN MRAS observer.

11.2.1  On-Line Training of the BPN MRAS Observer

As recalled earlier, the linear NN constituting the adaptive model is trained on-line, i.e., it 
does not need any off-line training given on the basis of previously acquired data. This is a 
key issue for the good behavior of the observer. To perform the on-line training, the ANN 
outputs ψ̂rd(k), ψ̂rq(k) are compared with their target values ψrd(k), ψrq(k), provided simultane-
ously by the reference model. Figure 11.2 shows the block diagram of the training process.

FIGURE 11.1
Block diagram of the BPN MRAS observer.
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The error between the estimated fluxes, provided, respectively, from the reference and 
adaptive models, is back propagated to adjust the neural weights (in particular w2, depend-
ing on the rotor speed) to minimize the error itself. In practice, any mismatch between the 
speed estimated by the neural model and the real motor speed generates an error between 
the two estimated fluxes. This error between ψ̂rd(k), ψ̂rq(k) and ψrd(k), ψrq(k) is used to adjust 
w2, according to a BPN learning law. Passing from the complex notation to the vectorial 
one, if e y y( ) ( ) ( )k k kr r= −ʹ ʹˆ  (the space-vector error), w2 is adjusted to minimize to squared-
error energy function E k= 1 2 2e ( ), as follows:

	
Δw k

dE
dw

dE
d k

d k
dw

k k
r

r
r2

2 2
1( )

( )
( )

( ) ( )∝ − = − = − −
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y d yˆ
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where d
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y y( )
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The weight variation Δw2(k) is therefore given from a gradient descent error minimization:

	
Δw k k kr r

T
r2 1= −( ) −y y yʹ ʹ ʹ( ) ( ) ( )ˆ ˆJ

	
(11.5)

with J =
−⎡

⎣
⎢

⎤

⎦
⎥

0 1
1 0 .

Finally, the adaptation law of w2 is

	
w k w k w k2 2 21( ) ( ) ( )= − +hΔ

	 (11.6)

The estimated speed can be computed therefore as

	 w w h aˆ ˆr rk k w k w k( ) ( ) ( ) ( )= − + + −1 12 2Δ Δ 	 (11.7)

where
η is the learning rate
α (called momentum) takes into consideration the effects of the past weight changes on 

the current one

The dynamics of the convergence of the BPN-trained ANN depend on the parameters η and α.

11.2.2  Implementation Issues of the BPN MRAS Observer

To increase the performance of the BPN MRAS observer, in Refs [41–44], some further 
issues have been accounted for. In particular, as far as the adaptive model is concerned, 
the simplified model in Equation 11.3 has been used only for the derivation of the BPN 
algorithm. To ensure a more accurate estimation of the rotor flux, a better discrete adaptive 
model has been used, as in the following.

If the adaptive model in the continuous domain is written in the form

	

d
dt

Br
r s

ˆ
ˆy
y

ʹ
ʹ= +A i

	
(11.8)
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the corresponding accurate discrete model can be written as

	
ˆ ( ) ˆ ( ) ( )y yr
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T

sk e k
e

B ksp
sp
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−

1 A
A I

A
i

	
(11.9)

Writing ϑr = ωrTsp and approximating e TT
sp

spA I A≅ + , it can be written as

	
ˆ ( ) (cos( ) sin( ) ) ˆ ( ) ( )y yr

T T
r r r sp sk e k BT ksp rʹ ʹ+ = + +−1 J JI J i

	
(11.10)

The experimental implementation of Equation 11.10 can be particularly demanding from 
the computational point of view, which is a drawback of this approach. For this reason, 
look-up tables can be used for their implementation. This drawback can be overcome by 
adopting another kind of discretization method, the so-called modified Euler, as shown 
in the following.

Finally, in Refs [41–44], the problem of the open-loop integration of the flux in the refer-
ence model has been solved adopting a simple first-order low-pass filter (LPF) with low 
cutoff frequency. This is the simplest solution but also worse as far as the low-speed behav-
ior of the drive is concerned (see Chapter 6).

11.2.3  Experimental Results with the BPN MRAS Observer

The BPN MRAS observer in Refs [41–44] has been tested experimentally on a 2.2 kW FOC 
IM drive. In particular, Appendices 11.A and 11.B describe, respectively, the adopted con-
trol scheme and the test setup on which all tests have been performed. Figure 11.3 shows 
the reference, the measured, and the estimated speeds as well as the speed estimation 
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Reference, measured, and estimated speeds during a speed reversal 100→−100 rad/s with the BPN MRAS 
observer.



537Neural Sensorless Control of AC Drives

error during a speed reversal from 100 to −100 rad/s at no load. It shows that the esti-
mated speed properly tracks both the measured one and its reference, with an instan-
taneous speed estimation error, which is slightly lower than 30 rad/s. This peak value 
of the estimation error, which is not very low, is mainly due to fact that the estimated 
speed must be low-pass filtered before being fed back to the speed controller. Reducing 
the value of the learning rate η below a certain value can solve this problem but at the 
expense of a reduction of the convergence time of the algorithm. A trade-off between 
these two requirements must be found for the selection of the learning rate η. The need 
of low-pass filtering the ANN estimation is due to the noisy nature of the estimation 
itself, whose main reason is the fact that the ANN is used in “simulation” mode or, alter-
natively, that the ANN is of recurrent type. The BPN MRAS observer has been tested 
also in the low-speed region. Figure 11.4 shows the reference, the measured, and the 
estimated speeds as well as the speed estimation error during a speed reversal from 10 
to −10 rad/s at no load. It shows that the estimated speed properly tracks both the mea-
sured one and its reference at steady-state, with an instantaneous speed estimation error 
around 10 rad/s. Moreover, in transient, during the zero crossing of the speed, there is a 
time interval (about 0.15 s) in which the measured speed remains equal to 0 before start-
ing the convergence to the reference. As expected, this causes a significant reduction of 
the bandwidth of the speed control loop. This behavior at low speed is mainly due to 
the mismatch between the observer and the machine parameters and to the adoption of 
an LPF as an integrator in the reference model. This last issue causes also a lack of field 
orientation, with resulting reduction of the drive dynamic performance. The BPN MRAS 
observer has been finally tested at zero-speed operation at no load. This is a particularly 
challenging working condition because the machine speed is not observable. Figure 11.5 
shows the reference, the measured, and the estimated speeds during this test in a time 
interval of 60 s. It can be observed that, in average, both the estimated and measured 
speeds are controlled to 0. There are, however, time intervals in which both the esti-
mated and measured speeds are quite different from 0, getting values near to 25 rad/s 
in transient.
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Reference, measured, and estimated speeds during a speed reversal 10→−10 rad/s with the BPN MRAS observer.
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11.3  LS-Based MRAS Speed Observer

The NNs equations (11.3) represent a linear relationship between the inputs and outputs 
of the system, describing a classic linear NN, well known as ADALINE (ADAptive LINEar 
Neural Network). Because of the linear nature of the NN, the BPN algorithm adopted in 
Refs [41–44] for its on-line training does not result the best solution, since it requires a heu-
ristic choice of the learning rate and the momentum. It is in fact questionable to use a non-
linear method like the BPN algorithm which could cause local minima, paralysis of the 
NN, need of two heuristically chosen parameters, initialization problems, and convergence 
problems. In Ref. [44], this linearity problem has been recognized, but the minimization 
has been performed with a gradient descent algorithm, dependent also on the momentum, 
which is not strictly necessary. Because of the linearity of the network, it is therefore prefer-
able to utilize on-line training algorithms more suitable for linear networks.

Equation 11.3 can be written in the following matrix form, considering the fact that the 
ANN can be used as a predictor and not as a simulator:

	

y

y

y y

y
rq

rd

rd rd sD

r

k

k
w

k w k w i k( )
( )

( ) ( ) ( )−

− −

⎡

⎣
⎢

⎤

⎦
⎥ =

− − − −1
1

1 1
2

1 3ˆ
ˆ qq rq sQk w k w i k( ) ( ) ( )− − − −

⎡

⎣
⎢

⎤

⎦
⎥

1 31 1y
	

(11.11)

which is a classic matrix equation of the type Ax ≈ b, where A is called “data matrix,” b is 
called “observation vector,” and x is the vector consisting only of the unknown scalar w2.

Least squares (LS) techniques reveal in this case, the best solution to be adopted for 
on-line training of the ADALINE and thus to solve in recursive form Equation 11.11. 
Furthermore, the corpus of theory developed in this framework permits to theoretically 
justify the choice of any network parameter, with the guarantee of the stability of the 
convergence (see Chapter 8 for details). It is not the case of the BPN algorithm. A first 
attempt to improve the BPN MRAS observer [41–44] has been therefore to substitute 
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the BPN training algorithm with a more suitable ordinary least squares (OLS) one [47]. 
At the same time, after observing that the adaptive model in [41–44] had been used in 
“simulation mode,” which means that its outputs are fed back recursively, the modi-
fied adaptive model has been used in “prediction mode,” with resulting no feedbacks, 
no need of filtering the estimated signal, and higher accuracy both in transient and 
steady-state operation. Figure 11.6 shows the block diagram of the adopted OLS MRAS 
observer [47].

11.3.1  Experimental Results with the OLS MRAS Observer

The OLS MRAS observer [47] has been experimentally tested on both a field-oriented con-
trol (FOC) and a direct torque control (DTC) IM drive. Appendices 11.A and 11.B describe, 
respectively, the adopted control scheme and the test setup on which all the tests have 
been performed. Figures 11.7 and 11.8 show the reference, estimated, and measured speeds 
as well as the speed estimation error, obtained, respectively, with the FOC and the ST-DTC 
sensorless drives, with a series of speed step references of the type 130→100→70→30 rad/s. 
It can be observed that, with both control schemes, the estimated speed tracks properly 
its reference and the measured one. The steady-state accuracy of the estimation is good, 
with almost null average estimation error down to 30 rad/s. Even the transient accuracy 
is quite good, with peak estimation errors rarely exceeding 10 rad/s. It should be noticed 
that the estimated speed waveform obtained in DTC drive is slightly more noisy than that 
obtained with FOC, which is an expectable result due to the inherent bang-bang nature of 
DTC control. Figures 11.9 and 11.11 show the reference, estimated, and measured speeds 
as well as the speed estimation error, obtained, respectively, with the FOC and the ST-DTC 
sensorless drives, with a series of speed step references, including a speed reversal in field-
weakening region of the type 0 → 200 → −200 → 0 rad/s. It could be noted that the OLS 
MRAS observer works properly with both control techniques in field-weakening region. 
Even during the speed reversal, the peak estimation error does not exceed 20 rad/s. Figures 
11.10 and 11.12 show the corresponding waveforms of rotor flux amplitude and isy current 
component, as far as FOC drive is concerned, and stator flux amplitude and electromag-
netic torque, as far as DTC drive is concerned. The DTC sensorless drive exhibits a higher 
torque ripple with respect to the FOC drive, as expected.

Figures 11.13 and 11.14 show the steady-state mean speed estimation errors and standard 
deviations, obtained, respectively, with the FOC and the DTC OLS with MRAS sensorless 
drives, for different values of reference speeds at no load and at rated load. They show 
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that the OLS MRAS observer integrated in both control techniques guarantees a very low 
speed estimation error down to 20 rad/s. Below this speed, in both cases, the speed estima-
tion error rapidly increases up to 80% at 10 rad/s. As expected, in loaded conditions, the 
speed estimation error is higher especially at low speed. For the earlier-cited reasons, the 
standard deviation with DTC is always higher than that with FOC.
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FIGURE 11.7
Reference, measured, and estimated speeds with OLS MRAS observer in FOC drive. (From Cirrincione, M. 
and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance induction 
motor drives and its experimentation, IEEE International Electric Machines and Drives Conference (IEMDC’2003), 
Madison, WI, 2003.)
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Reference, measured, and estimated speeds with OLS MRAS observer in DTC drive. (From Cirrincione, M. 
and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance induction 
motor drives and its experimentation, IEEE International Electric Machines and Drives Conference (IEMDC’2003), 
Madison, WI, 2003.)



541Neural Sensorless Control of AC Drives

11.3.2  TLS EXIN MRAS Observer

The matrix Equation 11.11 can be solved with any LS technique, either with OLS if the 
errors are present only in the observation vector or with data ordinary least squares (DLS) 
if the errors are present only in the data matrix or with total least squares (TLS) if the 
errors are present both in the data matrix and in the observation vector. In this respect, 
Equation 11.11 shows that the matrix A is composed of the d-q-axis components of the 
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Rotor flux linkage and isy current component with OLS MRAS observer in FOC drive. (From Cirrincione, M. 
and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance induction 
motor drives and its experimentation, IEEE International Electric Machines and Drives Conference (IEMDC’2003), 
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Reference, measured, and estimated speeds with OLS MRAS observer in FOC drive. (From Cirrincione, M. 
and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance induction 
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rotor flux linkage which can be affected by errors and noise resulting from open-loop 
integration of the model reference or measurements, and the same can be said for the 
observation vector b which is also composed of the d-q-axis components of the rotor flux 
linkage and the d-q-axis components of the stator current space-vector; this can be there-
fore described as a TLS problem, rather than an OLS problem. Any LS technique different 
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FIGURE 11.12
Stator flux linkage and electromagnetic torque with OLS MRAS observer in DTC drive. (From Cirrincione, M. 
and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance induction 
motor drives and its experimentation, IEEE International Electric Machines and Drives Conference (IEMDC’2003), 
Madison, WI, 2003.)
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and Pucci, M., An MRAS based speed estimation method with a linear neuron for high performance inductio 
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from TLS would be therefore inadequate [48,49]. The TLS EXIN neuron has been then 
applied to Equation 11.11 for the speed estimation [50] since it is the best algorithm for 
solving the TLS problem in a recursive way. The block diagram of the TLS EXIN MRAS 
observer, as proposed in Ref. [50], is the same as the one sketched in Figure 11.6, being the 
difference only in the ADALINE training algorithm (TLS instead of OLS).
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Steady-state mean estimation error and standard deviation with OLS MRAS observer in FOC drive. (From 
Cirrincione, M. and Pucci, M., An MRAS based speed estimation method with a linear neuron for high perfor-
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Cirrincione, M. and Pucci, M., An MRAS based speed estimation method with a linear neuron for high perfor-
mance induction motor drives and its experimentation, IEEE International Electric Machines and Drives Conference 
(IEMDC’2003), Madison, WI, 2003.)



544 Power Converters and AC Electrical Drives with Linear Neural Networks

11.3.2.1  Neural Adaptive Integrator

To solve the problem of open-loop flux integration in the reference model, present also in the 
MRAS systems mentioned earlier, the so-called neural adaptive integrator has been devel-
oped [51]. In particular, a linear NN, an ADALINE, has been used for the integration of a 
signal to eliminate the DC component, which results in having a pure integrator unaffected 
by the DC drift and the initial conditions. This integrator uses two neural adaptive filters [52], 
each of which operates with two basic processes forming a feedback loop: an adaptive process 
to adjust only one parameter and a filtering process where an error signal is computed and 
then fed back to actuate the adaptive process, and therefore, eliminating the DC component.

The simplicity of this linear neuron (just one weight is adapted) accounts for the use 
of this kind of NNs in this application, whereas traditional fixed notch filters would be 
unfeasible because of their complexity and computational burden.

Figure 11.15 shows the block diagram of a neural filter or adaptive noise canceler, as 
called in Ref. [52]. The input signal is the signal affected from noise, and it can been con-
sidered as s + n0 where s is the signal and n0 is the noise, uncorrelated with the signal. This 
input signal s + n0 is the so-called “primary input” to the neural filter. Let a second noise 
n1 be received by the neural filter and let this noise be also uncorrelated with s but in a way 
correlated with n0. This second noise is the so-called “reference input” to the neuron. The 
noise n1 is given as input to the neuron, and the output y is then subtracted to the primary 
input so as to obtain the system output z = s + n0 − y, which is also the error ɛ between the 
primary input and y. The reference input is processed by the linear neuron by an LS algo-
rithm in order to minimize the total power output E[ɛ2] where E[.] is the expectation func-
tion. This goal is reached by feeding back the output signal z to the linear neuron. If this 
minimization is reached, then also E[(n0 − y)2] is minimized as the signal power E[s2] is not 
affected. This is the same as approximating s with ɛ in an LS sense. As a consequence, the 
minimization of the total power output implies the maximization of the output signal-to-
noise ratio. It must be emphasized that only an approximate correlation between the noises 
n1 and n0 is necessary and nothing more.

In case of the problem at hand, the noise n0 is the DC component. Thus a notch filter with 
a notch at zero frequency can be achieved if a neuron with only one bias weight is used, 
that is a neuron whose input is a constant, for example −1.
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FIGURE 11.15
Block diagram of the neural adaptive filter. (From Cirrincione, M. et al., IEEE Trans. Power Electron., 19(1), 25, 
January 2004.)
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The learning law of the neural adaptive filter is then the following:

	 y k y k d k y k( ) ( ) ( ( ) ( ))+ = + −1 2t 	
(11.12)

where
k is the actual time instant, d(k) is either e (in the first notch filter) or the output of the 

integrator (in the second notch filter)
τ is the learning rate

This single weight neuron is able to remove not only a constant bias, but also a slowly 
varying drift in the primary input [52]. Figure 11.16 shows the adaptive integrator with two 
identical neural notch filters before and after the pure integrator. It should be remarked 
that two neural filters must be used in the neural-based integrator: the neural filter 1 elimi-
nates the DC component of the signal to be processed and the neural filter 2 eliminates the 
DC drift appearing at the output of the integrator because of the initial conditions and of 
the filtering error of the neural filter 1 during its adaptation.

By converting the equation of the neural adaptive filter from the discrete domain into 
the continuous one, the global transfer function of the neural adaptive filter is given by

	
G s

s
s T

filt
sp

( ) =
+ 2t 	

(11.13)

where s is the Laplace variable. Figure 11.17, which shows the frequency response of the adap-
tive notch filter with two different values of the learning factor τ (respectively, 2 × 10−4 and 
1 × 10−5), highlights that the lower the value of τ, the smaller the frequency amplitude of the 
notch. By converting the equation of the whole neural integrator from the discrete domain 
into the continuous one, the global transfer function of the neural adaptive integrator is given by

	
G s

s

s T s Tsp sp
int( ) =

+ +2 24 4 2t t 	
(11.14)

Figure 11.18 shows the frequency response of an ideal integrator, an LPF-based integrator 
(cutoff frequency = 15 rad/s), and the neural adaptive integrator with two different values 
of τ, respectively, 2 × 10−4 and 1 × 10−5. This figure shows that the adaptive neural integrator 
with τ = 2 × 10−4 outperforms the LPF, both in its magnitude and phase characteristics, in 
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FIGURE 11.16
(See color insert.) Block diagram of the neural adaptive integrator. (From Cirrincione, M. et al., IEEE Trans. 
Power Electron., 19(1), 25, January 2004.)
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the neighborhood of a reference speed of about 10 rad/s in electrical angles (corresponding 
to 5 rad/s in mechanical ones).

11.3.2.1.1  Experimental Results with the Neural Adaptive Integrator  In Ref. [51], the neural 
adaptive integrator sketched in Figure 11.16 has been proposed and implemented 
experimentally on a rotor flux–oriented IM drive. Firstly, some simulation tests have been 
done in MATLAB®–Simulink® environment.

Figure 11.19a and b shows the transient time waveforms of the ψrd component, as obtained 
with the neural integrator, the LPF, and algorithms 1 and 2 (see Section 6.4.1), with a step 
2% DC signal superimposed to the voltage signal on phase sA. The integration methods 
have all been tested in open-loop flux integration, meaning that the flux feedback control 
has not been activated. They clearly show that the neural adaptive filter exhibits the best 
behavior as far as DC drift canceling is concerned. As a matter of fact, the neural filter per-
mits the DC bias to be completely canceled; this is the case neither with the LPF, presenting 
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(See color insert.) (a) Transient time waveform of ψrd component obtained with the neural filter and LPF. 
(b) Transient time waveform of ψrd component obtained with the neural filter, LPF, and algorithms 1 and 2.
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a huge error in flux estimation (both in magnitude and phase), nor with algorithms 1 and 2, 
presenting a large DC bias on the estimated flux (being algorithm 2 better than algorithm 1).

Figure 11.20 shows the experimental steady-state locus of the rotor flux-linkage space-
vector obtained with the neural adaptive integrator. Experimental results obtained with 
the neural adaptive integrator have been further compared experimentally with the LPF 
and the algorithms 1, 2, and 3 described in Section 6.4.1. All the integration methods have 
been tested experimentally on the FOC IM drive described in Appendices 11.A and 11.B. 
They have all been tested in open-loop flux integration, meaning that the flux feedback 
control has not been activated.

Figure 11.21 shows the steady-state D, Q rotor flux components versus time, and the rotor 
flux loci, obtained at the pulsation of 60 rad/s. In the loci diagrams, the shift of the center of 

FIGURE 11.20
Steady-state locus of the rotor flux linkage with the 
neural adaptive integrator. 270
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D, Q rotor flux components versus time and rotor flux locus estimated with the five integrators in open-loop 
estimation. (From Cirrincione, M. et al., IEEE Trans. Power Electron., 19(1), 25, January 2004.)
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the locus from the origin is shown in bold line to prove how the bias affects the flux estima-
tion. With this last regard, the neural integrator is far better than all the others, as it presents 
a very low bias, then there are in order the LPF, the algorithms 2 and 1, and the algorithm 3. 
At this frequency, the LPF still works correctly as its cutoff frequency (15 rad/s) is well apart 
from the operating conditions. However, it does not outperform the neural integrator.

11.3.2.2  Experimental Results with the TLS EXIN MRAS Observer

The TLS EXIN MRAS observer has been tested experimentally on both FOC and DTC IM 
drives. The adopted FOC [50] and DTC [53] schemes are fully described in Appendix 11.A, 
while the corresponding test setup has been described in Appendix 11.B. In Ref. [50], the 
reference model of the MRAS has been integrated with the algorithm 2 for the on-line stator 
resistance estimation algorithm, as described in Section 6.4.3.

11.3.2.2.1  TLS EXIN MRAS Observer with FOC Drive  The TLS EXIN MRAS observer 
with the neural integrator and with the Rs estimation algorithm has been tested in some 
challenging working conditions. Firstly, a speed reversal −10 → 10 rad/s at no load has been 
given to verify the dynamic performance of the drive at low speed. Figure 11.22 shows the 
waveforms of the estimated, measured, and reference speeds: it is apparent that the speed 
response is very quick and that after few oscillations it converges to the reference value.

Secondly, the load torque rejection capability has been verified both at medium and 
low speeds. Figures 11.23 and 11.24 show the reference, the estimated, and the measured 
speeds when a sudden load torque insertion and uninsertion of 11 N m is applied at the 
working speeds, respectively, at 70 and 10 rad/s. It could be noted that, at medium speeds, 
the drive response occurs immediately when the torque steps are given, no matter what 
their directions are. Moreover, even during the speed transient caused by the torque, the 
estimated speed follows the real one very well. As far as the low-speed test is concerned, 
it can be observed that the drive speed response follows the reference speed in spite of the 
torque perturbation even at this very critical speed: there is only a small transient during 
which the estimated speed slightly differs from the real one. This time interval, in which 
the measured speed is different from the estimated one and is also negative for some 
instants, is due to a nonperfect tuning of the speed observer at this speed.
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Speed reversal from −10 to 10 rad/s at no load with the TLS MRAS observer. (From Cirrincione, M. et al., IEEE 
Trans. Ind. Appl., 1, 140, June/July 2004.)
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Thirdly, the accuracy of the speed estimation at low speed has been verified. Figure 11.25 
shows the reference, the estimated, and the measured speeds as well as the speed estima-
tion error and the estimated stator resistance when the machine is running at steady-state 
at the speed of 6 rad/s, respectively, at no load and with load. It could be observed that the 
TLS MRAS observer with the neural integrator and with Rs estimation permits the drive to 
work at 6 rad/s with a mean estimation error of 0.83% at no load and 23.59% at rated load. 
Table 11.1 summarizes the results obtained with the TLS MRAS observer and compares 
them with those obtained with the classic MRAS observer [45] and with the OLS MRAS 
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Speed response of the drive to a sudden torque insertion at 70 rad/s with the TLS MRAS observer. (From 
Cirrincione, M. et al., IEEE Trans. Ind. Appl., 1, 140, June/July 2004.)
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observer [47]. It could be noted that the TLS MRAS observer offers the best behavior, fol-
lowed by the OLS MRAS observer, and finally by the classic MRAS observer.

Fourthly, the drive has been operated at the rated rotor flux linkage at zero speed. The test 
has been performed at no load and at the load of 3.5 N m (about 30% of the rated load). Figure 
11.26 shows the waveforms of the reference, measured, and estimated speeds for a time inter-
val of about 60 s. It shows that, after the magnetization of the machine, the drive can work 
properly at zero speed and at no load, even without any signal injection: this is mainly due to 
the fact that the adaptive model is used as a predictor and is therefore more stable than when 
used as a simulator, that is, with feedback loops of the estimated rotor flux linkage. In particu-
lar, the estimated speed has slight oscillations around 0 rad/s while the measured speed is 
always 0. Figure 11.27 shows the waveforms of the reference, measured, and estimated speeds 
at the load torque of 3.5 N m for a time interval of about 60 s. It shows that in average the 
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FIGURE 11.25
Estimated speed, measured speed, speed error, and estimated Rs at the reference speeds of 6 rad/s at no load and 
at load with the TLS MRAS observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 1, 140, June/July 2004.)

TABLE 11.1

Comparison of Accuracy in Speed Estimation

TLS and Neural Integrator OLS and LPF Classic MRAS Observer

Rated Load No Load Rated Load No Load Rated Load No Load

Reference 
Speed 
(rad/s)

Mean 
Estimation 
Error (%)

Mean 
Estimation 
Error (%)

Mean 
Estimation 
Error (%)

Mean 
Estimation 
Error (%)

Mean 
Estimation 
Error (%)

Mean 
Estimation 
Error (%)

10 0.72 7 90.25 5.49 12.26 21.89
9 6.21 4.19 99.28 12.40 17.29 23.44
8 19.55 1.03 100.25 99.09 27 24.31
7 53.55 32.7 / / / /
6 48.6 38.71 / / / /

Source:	 From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 1, 140, June/July 2004.
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machine is able to stay at zero speed with a medium/small load, even if there are very short 
time intervals in which the machine moves, but without ever exceeding the speed of 10 rad/s 
during transients. Above a 3.5 N m load torque, the drive exhibits an unstable behavior.

11.3.2.2.2  TLS EXIN MRAS Observer with DTC Drive  The TLS-based MRAS speed 
observer with the neural integrator has been tested on both the classic ST-DTC and the DTC-
SVM (Space-Vector Modulation). Firstly, the four-quadrant capability of the sensorless drive 
has been verified by giving as input commands speed steps with a speed reversal from 100 
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to −100 rad/s (from 954.9 to −954.9 rpm) at no load. Figure 11.28a and b shows the estimated 
and measured speed and the speed error, while Figure 11.29a and b shows the stator flux-
linkage amplitude and the electromagnetic torque during this test. They show that the speed 
reversal is accomplished in less than 1 s, respectively, in 0.39 s with the classic DTC and 0.3 s 
with the DTC-SVM, and the corresponding achieved 3 dB bandwidth of the speed loops at 
the reference speed of 100 rad/s is, respectively, 14.6 and 16.9 rad/s.
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Secondly, to verify the dynamic performance of the drive at low speed, a set of speed 
step references of low value have been given the drive starting from zero speed and with 
the machine already magnetized. Figure 11.30 shows the reference, measured, and esti-
mated speeds obtained during four tests with the speed step references of values 5, 10, 
15, and 20 rad/s (47.7, 95.5, 143.2, and 191 rpm). It shows a very good behavior of the drive, 
in terms of both transient and steady-state accuracy even at the lowest speed of 5 rad/s.

Thirdly, the drive has been operated at the rated stator flux linkage at zero speed. The 
test has been performed only at no load, since zero-speed operation with load does not 
work, leading the drive into instability. Figure 11.31a and b shows the waveforms of the 
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reference, measured, and estimated speeds, as obtained, respectively, with the ST-DTC 
and the DTC-SVM. These figures show that, after the magnetization of the machine, the 
drive can work properly at zero speed and at no load. In particular, the estimated speed 
has slight oscillations around 0 rad/s (lower with the classic DTC than with DTC-SVM) 
and the measured speed is always 0.

11.3.3  Modified Euler Neural Adaptive Model

Equation 11.2 can be written in the following manner too:
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Its corresponding discrete model is therefore given by
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e x spTA  is generally computed by truncating its power series expansion, that is,
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If n = 1, the simple forward Euler method is obtained, which gives the finite difference 
equations in Equation 11.13.

An integration method more efficient than that used in Equation 11.3 is the so-called 
modified Euler integration, which also takes into consideration the values of the variables 
in two previous time steps [54–57]. From (11.16), the following discrete time equations can 
be obtained:
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(11.18)

Also in this case, an NN can reproduce these equations, where w1n, w2n, w3n, w4n, w5n, and 
w6n are the weights of the NNs defined as w1n = 1−3Tsp/(2Tr), w2n = 3ωrTsp/2, w3n = 3TspLm/(2Tr), 
w4n = Tsp/(2Tr), w5n = ωrTsp/2, and w6n = TspLm/(2Tr). Equation 11.18 describes an eight inputs–
two outputs linear ANN, whose inputs are isD(k − 1), isQ(k − 1), isD(k − 2), isQ(k − 2), ψ̂rd(k − 1), 
ψ̂rq(k − 1), ψ̂rd(k − 2), ψ̂rq(k − 2), whose outputs are ψ̂rd(k), ψ̂rq(k), and whose weights are six: w1n, 
w2n, w3n, w4n, w5n, and w6n.

Rearranging Equation 11.18, the following matrix equation is obtained in prediction mode:
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(11.19)

This matrix equation can be solved by any LS technique. Even in this case, since the two 
matrices are affected by errors especially in the estimation of the rotor flux, a TLS technique 
should be used instead of OLS. The TLS EXIN neuron, or its improvement called minor com-
ponent analysis (MCA) EXIN + neuron, should then been employed for on-line applications.

Figure 11.32 shows the block diagram of the corresponding MRAS speed observer.

11.3.3.1  �Simulation Mode and Prediction Mode in MRAS 
Observers: Modified Euler against Simple Euler

Some considerations fully justify the use of the adaptive model in prediction mode with 
the modified Euler integration. It can be shown that, even in simulation mode, the modi-
fied Euler integration trained by the TLS method gives better performances in comparison 



558 Power Converters and AC Electrical Drives with Linear Neural Networks

with the results obtainable by using the simple Euler integration method, trained either 
by the TLS or by the BPN. It can be further shown that, as far as stability is concerned, the 
use of the simple Euler method in prediction mode gives better results than those obtained 
with the same Euler integration trained by a BPN in simulation mode.

When used in simulation mode, the process output, that is, the rotor flux linkage, is 
delayed and then used as an input. In case the simple Euler integration method were used, 
then the transfer function X(z) of the flux model in the z-domain is
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which has one pole z1 = w1 + jw2 and one zero at the origin of the z-domain. For stability 
reasons, the poles of the transfer function must lie within the unit circle in the z-domain. 
There is therefore a critical value of the rotor speed that causes instability of the system. 
More precisely, the following relationships must be satisfied:
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Relationship (11.21) shows that the drive goes into instability for increasing values of the 
rotor speed, while relationship (11.22) shows that there is an upper limit of stability of sam-
pling time Tsp if the motor runs at a defined angular speed.

For instance, for the motor at hand whose rated speed is 314 electrical rad/s and Tr = 0.134 s, 
this upper limit for the sampling time is of 0.15 ms. Conversely, if a sampling time of 0.1 ms 
is employed, which is the case under study, the highest limit of the speed is of 385 electri-
cal rad/s (Figure 11.33, upper graph), which implies that the speed can be increased to as 
much as 18% of the rated speed and not over this limit, with resulting difficulties in using 
the drive in the field-weakening region.

To overcome this difficulty, the adaptive model should be used in prediction mode, that 
is, the delayed outputs of the reference model are used as inputs to the adaptive model. In 
this case, no feedback exists and no stability problems occur.

FIGURE 11.32
(See color insert.) The block diagram of the MCA 
EXIN + MRAS speed observer.
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The simple Euler method was obtained by using n = 1 in (11.17). Better stability results can 
be obtained if n = 2 is chosen in (11.17). Then the speed stability limit increases as shown 
in Figure 11.33, bottom graph. This approximation has been at least used in Refs [41–44] 
to avoid the stability problems in simulation mode. It should be emphasized that this last 
method implies at least the on-line computation of the square of the AxTsp matrix, which 
makes this method too cumbersome for on-line applications.

Better results, at the expense of a slight increase of computation in comparison with the 
simple Euler method, can be obtained with the modified Euler method [57].

As for the integration of the equations (11.2) in the discrete domain, the pure integrator 
1/s in the continuous domain s has been replaced by the following discrete filter in the 
z-domain T z

z z
sp 3 2 1 2

1
−( )
−( )

. This is obtained by the Z transform of the following discrete 

equation y k y k T x k T xsp

simple Euler

sp( ) ( ) ( ) (= − + − +1 1 2� ��������� ��������� (( ) ( ))k x k
additional term

− − −1 2� ����������� ����������� , where x(k) is the integrator 

input at the current time sample k and y(k) is the corresponding integrator output. This 
formula is the sum of simple Euler integrator and an additional term taking into consider-
ation the values of the integrand variables in two previous time steps; it ensures a correct 
integration of the state equations and, thus, a correct flux estimation with the adopted 
value of Tsp different from the simple forward Euler integrator Tsp/z − 1.

In this case, a similar analysis of stability shows that two poles of the transfer function 
vary with speed, but the resulting speed stability limit is much higher than that obtained 
with the simple Euler method, thus allowing the exploitation of the field-weakening region 
(Figure 11.34).

Figure 11.35 shows the reference, the real, and the estimated speeds, obtained in numer-
ical simulation, with the MRAS BPN observer where the adaptive model is the current 
mode discretized with the simple forward Euler method and used in simulation mode, 
during two speed step references, respectively, at 100 and 200 rad/s. It clearly shows that, 
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when the speed reaches about 200 rad/s, the drive becomes unstable, as expected. The 
same test has also been done, in numerical simulation by employing the MRAS BPN 
observer, with the approximated adaptive model of Ben-Brahim et al., [44] in simulation 
mode. Figure 11.36 shows the reference, the real, and the estimated speeds during two 
speed step references, respectively, at 100 and 200 rad/s, obtained with a specific value of 
the learning rate η = 0.003 of the BPN NN. This graph clearly shows that with this value of 
η, the drive at 200 rad/s tends to approach to instability with a large estimation error and 
with enormous oscillations of the estimated speed.
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FIGURE 11.34
Amplitude of the poles with the modified Euler integration. (From Cirrincione, M. and Pucci, M., IEEE Trans. 
Ind. Electron., 52(2), 532, April 2005.)
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11.3.4  MCA EXIN + MRAS Observer

The so-called MCA EXIN + MRAS observer is the latest upgrade of the series of LS-based 
MRAS observers [55,56]. In this observer, the modified Euler neural adaptive model of 
Section 11.3.3 has been adopted. As far as the ADALINE training algorithm is concerned, 
the MCA EXIN + has been adopted, which is a further improvement of the TLS EXIN (see 
Chapter 8). A further improvement has been added, which permits the lowest working 
speed to be reduced. The neural adaptive integrator used in the reference model has been 
improved in its low-frequency behavior by adopting a learning factor varying according 
to the reference speed of the drive.

Looking at Figure 11.18, it can be observed that, if a speed below 5 rad/s is required, 
a neural integrator with τ = 1 × 10−5 offers a better behavior, since it approximates the 
ideal integrator well at much lower frequencies. Nevertheless, a neural integrator with 
τ = 1 × 10−5 cannot be suitably employed in the whole speed range of the drive, since the 
adaptation time of the filter increases when the value of τ decreases, as clearly shown in 
Figure  11.37, which shows the difference between the adaptation times obtained with 
the two values of τ at the operating speed of 2 rad/s, when a 2% (of the rated voltage) DC 
signal is superimposed to the voltage signal on phase sA. This figure clearly shows that 
a lower value of τ permits a better flux estimation, but at the expense of a high filtering 
adaptation time. For this reason, the use of low values of τ can bring about stability prob-
lems in the flux control loop, especially when a speed transient is required. In this regard, 
the problem has been solved as follows: at reference speeds above 10 rad/s (in electrical 
angles) and during each speed transient, the value of τ has been set to 2 × 10−4, while in 
speed steady-state at references from 10 down to 4 rad/s, the value of τ has been varied 
linearly from 2 × 10−4 to 1 × 10−5 and then kept to this last value for lower reference speeds, 
as shown in Figure 11.38.

It should be remarked that reducing the value of τ corresponds to moving the poles 
of the neural filter toward the origin, which however does not affect the accuracy of 
the integrator. This is not the case for the LPF integrator, where the amplitude of the 
pole cannot be reduced too much, since the lower the amplitude of the pole, the higher 
the drift at the LPF output caused by a DC drift at its input. Actually, if the final value 
theorem is applied to both filters assuming a DC drift of amplitude Edr at the input, the 
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output is a constant for the LPF and zero for the neural integrator, thanks to the pres-
ence of a zero in the origin:

LP filter: 
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where αp is the pole of the LPF.
The MCA EXIN + MRAS observer has been tested experimentally on an FOC IM drive 

(see Appendices 11.A and 11.B). Figure 11.39 shows the reference, measured, and estimated 
speeds obtained, giving the TLS MRAS observer a square-waveform reference of ampli-
tude 7 rad/s and pulsation 0.2 rad/s. These last figures show the capability of the observer 
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FIGURE 11.38
Variation of the learning factor according to the reference speed of the machine. (From Cirrincione, M. et al., 
IEEE Trans. Ind. Electron., 54(1), 127, February 2007.)
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to follow a square-waveform reference of very low amplitude and high frequency that is a 
very challenging working condition.

11.4  TLS EXIN Full-Order Luenberger Adaptive Observer

Starting from the structure of the full-order Luenberger adaptive observer described in 
Section 6.4.7, a neural-based version of it has been developed in Refs [55] and [58]. The state 
equations of the IM have been discretized and rearranged so as to be represented by a 
linear NN (ADALINE). Even in this case, the TLS EXIN neuron has been adopted to train 
on-line the ADALINE in order to properly estimate the rotor speed. The NN observer has 
been further integrated with the on-line stator resistance estimation algorithm (algorithm 3) 
[59] described in Section 6.4.3.

11.4.1  State-Space Model of the IM

If the stator current and the rotor flux-linkage space-vectors are chosen as state variables, 
the state equations of the IM in the stationary reference frame can be written as [59]
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where
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In the earlier state representation, x is= ⎡⎣ ⎤⎦, y ŕ  is the state vector, composed of the stator 
current and rotor flux-linkage direct and quadrature components in the stationary refer-
ence frame, us is the input vector composed of the stator voltage direct and quadrature 
components in the stationary reference frame, A is the state matrix (4 × 4 matrix) depend-
ing on the rotor speed ωr, B is the input matrix, and finally C is the output matrix.

11.4.2  Adaptive Speed Observer

The full-order Luenberger state observer can be obtained from Equations 11.24 if a correc-
tion term is added containing the difference between the actual and estimated states. In 
particular, since the only measurable state variables are the stator currents, the correction 
term involves only the error vector on the stator current err = (is − îs), as in the following:
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(11.26)

where ∧ means the estimated values and G is the observer gain matrix which is designed 
so that the observer mentioned earlier is stable. For the proper choice of the observer gain 
matrix, see Section 6.4.7.

11.4.3  TLS-Based Speed Estimation

The TLS-based speed observer derives from a modification of Equation 11.24, in the sense 
that it exploits the first two scalar equations to estimate the rotor speed, as shown in the 
following in discrete form for digital implementation [58].
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The first two scalar equations of the matrix equation (11.24) can be written as
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where the current components are measured variables and the rotor flux and speed are 
estimated ones. Moving from the continuous domain to the discrete one, and approximat-
ing the continuous derivative with the discrete filter (1 − z−1)/Tsp z−1, where Tsp is the sam-
pling time of the control systems, the following equations can be deduced:
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where k is the current time sample. From (11.28), the following matrix equation can be eas-
ily written:
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where pr = 1/Tr.
A further improvement has been made in Ref. [55], where all the four scalar equations 

in Equation 8.7 have been exploited in order to retrieve the speed estimation, as shown in 
the following:
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Both Equations 11.29 and 11.30 are classical matrix equations of the type Ax ≈ b, where A is 
called “data matrix,” b is called “observation vector,” and x is the unknown vector, equal to 
ω̂r. LS techniques reveal, even in this case, the best solution to be adopted for on-line train-
ing of the ADALINE and, therefore, to solve in recursive form equations (11.29) and (11.30). 
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The matrix A is composed of the d-q-axis components of the rotor flux linkage which can 
be affected by errors and noise measurements, and the same can be said for the observa-
tion vector b which is also composed of the d-q-axis components of the rotor flux linkage 
and the d-q-axis components of the stator current space-vector; the problem under hand is 
therefore a TLS problem rather than an LS problem. Any LS technique different from TLS 
reveals inadequate [48,49].

Figure 11.40 shows the block diagram of the TLS EXIN full-order adaptive observer. It 
should be remarked that the computation of the rotor speed by means of the TLS estima-
tor is performed through the minimization of the residual of the matrix equation (11.29) 
or (11.30). The residual is strongly dependent on the rotor flux estimation error, while all 
its other terms are dependent on the measured values of the electrical variables (is and us), 
and are also affected by measurement errors. The TLS inherently gives the best solution 
for the rotor speed in spite of these uncertainties.

It should be remarked that, to compute the rotor speed, all the four scalar equations of 
Equation 11.30 are not strictly required. There are basically three possibilities:

	 1.	To solve the first two scalar equations of Equation 11.24, which corresponds to the 
discretization of a combination of the stator and rotor equations of the machine

	 2.	To solve the last two equations of Equation 11.24, which corresponds to a discreti-
zation of the rotor equations of the machine

	 3.	To solve simultaneously all of the four scalar equations as in Equation 11.24

The third possibility reveals the best because, even if it is the most cumbersome from 
the computational point of view, it offers the highest robustness to any parameter uncer-
tainty in the data matrix and the observation vector. In real applications such uncertainties 
could be caused, for example, by a nonperfect measurement of the magnetizing induc-
tance. Figure 11.41 shows the real and estimated speeds as well as the real and estimated 
amplitudes of the rotor flux linkage, obtained in numerical simulation, at the reference 
speed of 1 rad/s when the parameter a12 of the observer has been set equal to 1.5 times the 
corresponding one in the machine. The test has been done twice, respectively, adopting 
Equations 11.29 and 11.30. The figure clearly shows that the estimated values of the vari-
ables correctly follow their references, since they are controlled in feedback, while their 
real values are closer to their references when all the four scalar equation are employed 
than when only the first two scalar equations are adopted. Thus, the employment of all 
scalar equations of the observer to compute the rotor speed offers a higher robustness to 
parameter uncertainty of the observer, as expected.

FIGURE 11.40
(See color insert.) Block diagram of the TLS EXIN 
full-order adaptive observer.
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11.4.4  Stability Issues of the TLS EXIN Full-Order Adaptive Observer

In the following, the demonstration of the stability of the TLS EXIN full-order adaptive observer 
is provided. The demonstration refers to the most general case when Equation 11.30 is adopted.

In the TLS adaptive speed observer, three relations are to be considered:

	 1.	The real motor equations, that is, Equation 11.24a, which are rewritten here in a 
slightly different way:
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	 2.	The full-order observer equations, which estimate the stator current and the rotor 
flux (Equation 11.26), are rewritten as follows:
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where ∧ stands for the estimated values. In particular, ω̂r is the speed estimated 
with the TLS speed observer through the equations in the following.

	 3.	The TLS speed observer (Equation 11.30) which is written in continuous form as 
follows:
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where
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By defining e = x − x̂, the following equation can be obtained if (11.32) is subtracted from 
(11.31):

	 �e A GC e Ax= − −( ) Δ ˆ
	 (11.34)
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is defined, then the difference between (11.31) and (11.33) is given by

	
� � �Ce ACe Ax≅ − Δ ˆ 	 (11.35)

Now it is important to remark that relation (11.35) comes directly from the adoption of an 
LS speed observer (11.33) and is therefore peculiar of this method.

If (11.34) and (11.35) are subtracted, then the following relation is given:

	 ( ) ( )I C e A GC AC e4 − ≅ − −� � �
	 (11.36)
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This is the key formula for the stability of the observer.
If the following vector is defined as follows,
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then from (11.36), the following relations hold if, without loss of generality, G = 0:

	 �e I ea a≅ ( )a11 	 (11.38a)

	 �e I eb a≅ ( )a21 	 (11.38b)

From (11.38a), it immediately results that ea → 0, that is, îs → is if t → ∞, since a11 is less than 0. 
From (11.38b), it results that eb → const if t → ∞. In the following, it will be proved by the 
Lyapunov theorem that this constant is 0.

Let the Lyapunov function be

	 v T
r r= + −e e ( )w w mˆ 2/ 	 (11.39)

which is null for e = 0 and ω̂r = ωr, and μ is a positive constant.
Then by differentiation, it results that
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where v~ = eTe. Then by recalling (11.37), the following relation exists:
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that is, by using (11.38) and recalling that (a11I) = A11 and (a21I) = A21, it results that
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(11.41)

This means that, since ea → 0 if t → ∞, then 
dv
dt
�
→ 0 and finally that
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In case an LS method were used for computing the speed, either an OLS or TLS, a qua-
dratic error function is used, which is null if ω̂r = ωr. The minimum value of this error func-
tion can be reached with any gradient method. This is the method used here, and it can 
be approximated asymptotically with the following ordinary differential equation (ODE):

	

d
dt

dE
d

r LS

r

w a
w

ˆ
ˆ= −

	
(11.43)
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where
α is a positive constant
ELS is the error function of the chosen LS method

If the OLS method for the speed estimation is used, then this error function is a parabola 
whose minimum value, which is null in case of data not corrupted by noise, is reached for 
ω̂r = ωr. This means that
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then (11.43) yields
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which means obviously, from (11.42), that for t → ∞,
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which implies the stability of the OLS observer.
In case a TLS error were used, then
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where ω̂r max is the value at which ETLS reaches its unique maximum. Remember in fact that

	
E

E
TLS

OLS

r
=

+1 2ŵ

Thus, whenever the initial estimated speed verifies ω̂r < |ω̂r max|, then a relation similar to 
(11.46) holds, to which the same considerations can be made, and this proves the stability 
of the TLS observer. For further details on the TLS domain of convergence, see Ref. [48].

11.4.5 � Experimental Results with the TLS EXIN Full-Order 
Luenberger Adaptive Observer

The TLS EXIN full-order Luenberger adaptive observer has been tested experimentally 
on an FOC IM drive. The adopted FOC scheme is fully described in Appendix 11.A, while 
the corresponding test setup has been described in Appendix 11.B. The observer has been 
integrated with the algorithm 3 for the on-line stator resistance estimation described in 
Section 6.4.3. It has been tested in several challenging working conditions, as shown in the 
following.
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11.4.5.1  Dynamic Performance

The dynamic performance of the drive has been verified by giving the following set of 
speed step variations 0 → 100 → −100 → 0 rad/s at no load. Figure 11.42 shows the esti-
mated speed, measured speed, and the speed estimation error obtained with the TLS EXIN 
full-order Luenberger adaptive observer. Figure 11.43 shows the corresponding rotor flux-
linkage amplitude and electromagnetic torque. Figure 11.44, which draws a zoom of the 
speed and torque waveforms during the speed reversal obtained with both the NN and 
the classic full-order Luenberger adaptive observer, shows that the speed reversal with 
both the observers is accomplished in 0.29 s, and the torque response is practically instan-
taneous. These figures show also that the TLS observer outperforms the classic one in 
terms of maximum instantaneous speed estimation error in speed reversal. In particular, 
during the zero crossing in the speed reversal, the estimation error with the TLS observer 
is quite less than that obtained with the classic one. On the other hand, the two observers 
are equivalent during the steady-state as expected, since they both work at high speeds. By 
employing the TLS-based observer, the instantaneous speed estimation error is maximum 
during the first speed transient, when the adaptive observer is not yet correctly tuned due 
to the mismatch between the parameters of the observer and the real ones of the machine, 
while afterward it is almost negligible also during the speed reversal. This is not the case 
of the classic adaptive observer, presenting an instantaneous speed estimation error dur-
ing the speed reversal of almost 20 rad/s.

Afterward, the drive has been given a start-up transient with a step speed reference of 
5 rad/s (47.7 rpm) at no load, with the machine previously magnetized. Figure 11.45, which 
plots the estimated, measured, and reference speed waveforms during this test, shows a 
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FIGURE 11.42
Reference, estimated, and measured speeds and speed estimation error during a set of speed steps with a 
reversal from 100 (955 rpm) to −100 rad/s with the TLS EXIN full-order Luenberger adaptive observer. (From 
Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 89, January/February 2006.)
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100 (955 rpm) to −100 rad/s (−955 rpm) with the TLS EXIN full-order Luenberger adaptive observer. (From 
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good match of the estimated speed with the measured one also during the start-up tran-
sient at low speed. Moreover, there is practically no time delay between the speed step 
command and the movement of the rotor.

Finally, the dynamic performance of the proposed observer has been tested by giving it 
a square-wave speed reference with the lowest possible amplitude and the highest possible 
pulsation. Figure 11.46 shows the reference, measured, and estimated speeds obtained, giv-
ing the drive a square-waveform speed reference of amplitude 2 rad/s and pulsation 0.3 rad/s. 
It shows the capability of the observer to follow a square-waveform reference of very low 
amplitude and high frequency. It should be noted that, during the zero crossing of the speed, 
there is a time interval during which the real speed of the machine remains equal to 0.

11.4.5.2  Accuracy in the Low-Speed Ranges

The drive has been given a constant speed reference of 5 rad/s (47.7 rpm), with no load. 
Figure 11.47 shows the reference, the measured, and the estimated speeds and the estimation 
error with the TLS EXIN full-order Luenberger adaptive observer. Figure 11.48 shows the cor-
responding waveforms of the measured and estimated isD as well as the estimated values of 
Rs and Rr. Figure 11.47 clearly shows that the TLS observer has a slight ripple in the estimated 
speed with a relative speed error of 3.4%. Figure 11.48 shows a good agreement between the 
measured and the estimated isD. Even the values of Rs and Rr are properly estimated.

11.4.5.3  Accuracy at Very Low Speed (below 2 rad/s)

The drive has been given a constant speed reference of 0.5 rad/s at no load. Figure 11.49 
shows the reference, the measured, and the estimated speeds and the speed estimation 
during this test. Figure 11.50 shows the corresponding waveforms of the measured and 
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FIGURE 11.45
Reference, estimated, and measured speeds during a speed step reference of 5 rad/s (47.7 rpm) at no load with 
the TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 
89, January/February 2006.)
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Reference, estimated, and measured speeds and speed estimation error during a constant reference of 5 rad/s 
(47.7 rpm) at no load with the TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., 
IEEE Trans. Ind. Appl., 42(1), 89, January/February 2006.)
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Reference, estimated, and measured speeds and speed estimation error during a constant reference of 0.5 rad/s 
(4.77 rpm) with the TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. 
Ind. Appl., 42(1), 89, January/February 2006.)
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with the TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 
42(1), 89, January/February 2006.)
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estimated isD current components and of the estimated Rs and Rr. These figures show that 
the measured speed of the motor follows its reference correctly, even if with some small 
oscillations; at the same time, thanks to the on-line estimation of Rs and Rr, the estimated 
direct component of the stator current fits the measured one well at both reference speeds.

These figures clearly show that the TLS-based observer with the Rs and Rr on-line esti-
mators and with the inverter nonlinearity compensation permits the drive to work in the 
very-low-speed region, with the average estimation error shown in Table 11.2. This perfor-
mance is unattainable by the classic full-order Luenberger adaptive observer.

11.4.5.4  Robustness to Load Perturbations

The robustness of the speed response of the TLS observer to a sudden load torque variation 
has been verified. The drive, operated at the constant speed of 20 rad/s (191 rpm), has been 
given two subsequent load torque steps, in particular 0→11→0 N m. Figure 11.51 shows the 
waveforms of the electromagnetic torque of the drive and the load torque created by the 
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FIGURE 11.50
Measured and estimated isD and estimated Rs and Rr during a constant reference of 0.5 rad/s (4.77 rpm) with the 
TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 89, 
January/February 2006.)

TABLE 11.2

Mean Estimation Error % at the Speeds 
of 1 rad/s (9.55 rpm) and 0.5 rad/s (4.77 rpm) 
at No Load and Rated Load

Speed (rad/s)

Mean Error %

No Load Rated Load

1 8 22.97
0.5 5.73 24.6

Source:	 From Cirrincione, M. et al., IEEE Trans. Ind. 
Appl., 42(1), 89, January/February 2006.
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torque-controlled DC machine. Figure 11.52 shows the corresponding reference, measured, 
and estimated speeds during this test. These figures clearly show that the drive response 
occurs immediately when the torque steps are given. Moreover, even during the speed 
transient caused by the torque step, the estimated speed follows the real one very well.

11.4.5.5  Regenerative Mode at Very Low Speed

The drive has been operated at very low speed with a negative load torque (regenerative 
mode). The classic full-order Luenberger adaptive observer, operated with G = 0, has an 
unstable behavior in these working conditions as clearly shown in Figure 11.53, which 
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FIGURE 11.51
Electromagnetic torque and load torque during a set of load torque steps of 11 N m with the TLS EXIN full-order 
Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 89, January/February 2006.)
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shows the reference, real, and estimated speed waveforms, obtained in numerical simula-
tions, when the drive is given a constant speed reference of 2 rad/s and then a negative 
load torque step of −10 N m.

In contrast to this, the TLS observer has proved to have a stable behavior in such condi-
tions. Figure 11.54 shows the reference, the measured, and the estimated speeds and the 
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Reference, estimated, and real speeds and speed estimation error during a constant speed reference of 2 rad/s 
and a load torque step of −10 N m (regenerative mode) with the full-order Luenberger adaptive observer. 
(From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 89, January/February 2006.)
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speed estimation error obtained in an experimental test with the TLS-based observer, when 
the drive has been given a constant speed reference, respectively, of 3 rad/s (28.64 rpm) and 
a constant negative load torque of −10 N m. This figure clearly shows that the TLS observer 
works properly even at very low speed and with negative torque, whereas the classic adap-
tive observer presents its well-known instability problems [60–63]. However, there exists 
a big average percent speed error (94%) in this speed range. Such bias error is due to the 
detuning of the TLS observer in this test due to parameter mismatch.

11.4.5.6  Field-Weakening Operation

The drive has been operated in the field-weakening zone, above its rated speed of 157 rad/s 
(1500 rpm). To test the speed accuracy both in speed transient and in steady-state, a start-
up with a speed step reference of 200 rad/s (1910 rpm) at no load has been given with the 
machine previously magnetized. Figure 11.55 plots the reference, measured, and the esti-
mated speeds as well as the rotor flux linkage and the isy current component; it shows a 
very good match between the estimated and measured speeds during the whole speed 
transient, both below and above the rated speed when the control system commands the 
rotor flux reduction. Also in steady-state, the accuracy of the speed estimation is very good 
with a negligible percent error.

11.4.5.7  Zero-Speed Operation

The drive has been operated at the rated rotor flux linkage at zero speed. The test has 
been performed at no load and at the load of 5 N m (about 50% of the rated load). Figures 
11.56 and 11.57 show the waveforms of the reference, measured, and estimated speeds 
and speed estimation error for a time interval of 60 s, obtained, respectively, with the 
TLS and the classic full-order observers. They show that with the TLS observer, after 
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the magnetization of the machine, the drive can work properly at zero speed and at no 
load, even without any signal injection.

This is mainly due to the fact that the TLS algorithm estimating the rotor speed uses the 
measured stator current signals and not the estimated ones, as in the classic observer. In 
particular, the estimated speed has slight oscillations around 0 rad/s and the measured 

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)

Sp
ee

d 
er

ro
r (

ra
d/

s)

Reference
Estimated

Reference
Measured

0

5

0

–5

5

0

–5

5

0

–5

Mean error = 0.14 rad/s

Time (s)

Time (s)

Time (s)
10 20 30 40 50 60

10 20 30 40 50 60

10 20 30 40 50 60

FIGURE 11.56
Reference, estimated, and measured speeds and speed estimation error during zero-speed operation at no load 
with the TLS EXIN full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 
42(1), 89, January/February 2006.)

Time (s)

Time (s)

Time (s)

Reference
Estimated

Reference
Measured

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)

Sp
ee

d 
er

ro
r (

ra
d/

s)

Mean error = 13.74

–50

–100

20
0

–20

–40

40

20

0

–20
0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

50

0

FIGURE 11.57
Reference, estimated, and measured speeds and speed estimation error during zero-speed operation at no load 
with the full-order Luenberger adaptive observer. (From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 42(1), 89, 
January/February 2006.)



581Neural Sensorless Control of AC Drives

speed is always 0. In contrast to this, the classic observer at almost 15 s after the magnetiza-
tion of the machine has an unstable behavior with the machine running at 45 rad/s with a 
mean speed estimation error of 13.74 rad/s. The drive has exhibited this kind of unstable 
behavior after repeating such tests more times.

Figure 11.58 shows the waveforms of the reference, measured, and estimated speeds and 
speed estimation error at the load torque of 5 N m for a time interval of 60 s obtained with 
the TLS observer. It shows that, on average, the machine can stay at zero speed even with 
half the rated load. On the contrary, the classic full-order observer was proved to go to 
instability at zero speed even with light load torque.

11.4.6  Experimental Comparative Tests

The behavior of five speed observers has been experimentally compared in two working 
conditions: a speed reversal 100→−100 rad/s and in zero-speed operation at no load. The 
speed observers under test are the following:

	 1.	The TLS EXIN full-order Luenberger adaptive observer
	 2.	The full-order Luenberger adaptive observer
	 3.	The TLS EXIN MRAS observer
	 4.	The BPN MRAS observer
	 5.	The open-loop speed estimator (scheme in Figure 6.18)

Figure 11.59 shows the reference, measured, and estimated speeds and the instantaneous 
speed estimation error during the speed reversal. This figure shows that the speed reversal 
is accomplished with all five observers in less than 0.5 s, with the TLS adaptive observer, 
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the classic adaptive observer, and the TLS MRAS observer overcoming in reversal time the 
BPN MRAS observer and the open-loop estimator. The TLS MRAS observer is slightly bet-
ter than the BPN MRAS in terms of improved speed bandwidth because of the necessary 
digital filtering of the estimated speed, which is not necessary either in the TLS MRAS 
observer, whose adaptive model is employed in prediction mode, or in the TLS adaptive 
observer. In particular, the TLS MRAS observer can exploit a 3 dB bandwidth which is 
almost 16% higher than the one of the BPN MRAS observers.

With reference to the estimation accuracy in speed transient conditions, this figure shows 
that the best results are achieved by the TLS adaptive observer which presents a maximum 
instantaneous estimation error of 7 rad/s, then there is the classic adaptive observer which 
presents a maximum instantaneous estimation error of 21.5 rad/s, then the TLS MRAS 
observer which presents a maximum instantaneous estimation error of 23.5 rad/s, then 
the BPN MRAS observer which presents a maximum instantaneous estimation error of 
27 rad/s, and finally the open-loop estimator which presents a maximum instantaneous 
estimation error of 147 rad/s.

With regard to the open-loop estimator, these very high values of the instantaneous speed 
estimation error are somehow typical of all open-loop speed estimators, but they can be 
certainly explained also by considering that the slip pulsation is computed using the time 
derivative of the quadrature component of stator current in the stator flux–oriented refer-
ence frame (see Equation 6.19), which tends to amplify any high-frequency noise present 
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in measurements. This kind of phenomenon is present in none of the other four speed 
observers, as they are all closed-loop speed observers.

All five observers have been compared during a test at the rated rotor flux linkage at zero 
speed at no load. Figure 11.60 shows the waveforms of the reference, measured, and esti-
mated speeds during the time interval of 60 s, obtained with all five observers. This figure 
shows that the best results are achieved by the TLS adaptive observer and by TLS MRAS 
observer, which can work correctly at zero speed at no load; then there is the BPN MRAS 
observer and the open-loop estimator. The former, because of the employment of the adap-
tive model in simulation mode, has a worse behavior than the TLS MRAS observer. Finally, 
there is the classic adaptive observer which has an unstable behavior with the machine 
running at 45 rad/s after some seconds. The correct behavior of the TLS MRAS observer 
and the TLS adaptive observer at zero speed are caused, first, by the employment of the 
adaptive model in prediction mode, and second, by the fact that the TLS algorithm esti-
mates the rotor speed by using the measured stator current signals and not the estimated 
ones, like in the classic adaptive observer.

Table 11.3 summarizes and compares the results of the five tested speed observers with 
regard to the main issues of sensorless algorithms (score 1 corresponds to the best and 5 
to the worst). It shows that the proposed TLS adaptive observer outperforms all the other 
observers in all the specified issues. The proposed TLS MRAS observer outperforms the 
classic adaptive observer, the BPN MRAS observer, and the open-loop estimator in all 
issues, except for the accuracy in speed transient, where the classic adaptive observer has 
a better behavior.
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11.5  MCA EXIN + Reduced-Order Observer

The reduced-order observer, as described in Section 6.4.9, permits estimating the rotor 
flux-linkage components of the IM, exploiting an observer of reduced dynamic order 
(2 instead of 4). The consequent main advantage is obviously the reduction of the com-
plexity and computational demand required for its implementation. Starting from the 
structure of the reduced-order observer, a neural-based version of it has been developed 
[64]. The state equations of the IM have been discretized and rearranged so as to be rep-
resented by a linear NN (ADALINE). Also in this case, the MCA EXIN + neuron has been 
adopted to train the ADALINE on-line in order to properly estimate the rotor speed.

11.5.1  Reduced-Order Observer Equations

Starting from the space-state representation of the IM model, the matrix equations of 
the reduced-order flux observer, with a voltage error used for corrective feedback, can be 
deduced [64]:

	

d
dt

d
dt

sy ¢ y ¢ y ¢ˆ ˆ ˆr 2 r 21 s s r s

2

A A i G i A A i B u

A

= + + − − −⎛
⎝⎜

⎞
⎠⎟
=

=

2 12 11 1

2 −−( ) + −( ) − +GA A GA i GB u G ir 21 s s12 11 1y ¢ˆ s
d
dt 	

(11.48)

where

	
A I I11 = − ( ) + −( ) ( ){ } =R L T as s rs s s1 11 	

(11.49a)

	
A I J I J12 = ( ) ( ) −{ } = ( ) −{ }L L L T a Tm s r r r r rs w w1 112 	

(11.49b)

	 A I I21 = { } =L T am r 21 	 (11.49c)

	
A I J I J22 = −( ) + = ( ) −{ }1 122T a Tr r r rw w

	
(11.49d)

	 B I I1 = =1 ( )s L bs 	 (11.49e)

TABLE 11.3

Comparative Analysis of the Five Speed Observers

Accuracy 
in Speed 
Transient

Minimum 
Speed

Zero-Speed 
Operation

Field-
Weakening 

Behavior

Regeneration 
Mode at Low 

Speed

TLS MRAS observer 3 2 2 1 1
TLS adaptive observer 1 1 1 1 1
Classic adaptive observer 2 3 5 1 No
BPN MRAS observer 4 5 3 No 1
Open-loop estimator 5 4 4 1 1

Source:	 From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 54(1), 127, February 2007.
Note:	 Score 1 corresponds to the best and 5 to the worst.
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where all space-vectors are in the stator reference frame: is = [isD  isQ]T stator current 

vector, us = [usD  usQ]T stator voltage vector, ŷ r rd rq
T

ʹ = ⎡⎣ ⎤⎦y yˆ ˆ  rotor flux vector, I =
⎡

⎣
⎢

⎤

⎦
⎥

1 0
0 1

, 

J =
−⎡

⎣
⎢

⎤

⎦
⎥

0 1
1 0

, ωr is the rotor speed, and G is the observer gain matrix.

11.5.2  MCA EXIN + Based Speed Estimation

The MCA EXIN + reduced-order observer derives from a modification of Equation 11.24, in 
the sense that it exploits the two first scalar equations to estimate the rotor speed, as shown 
in the following [58].

The first two scalar equations of the matrix equation (11.24) can be written as

	

di
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where the current components are measured variables and the rotor flux and speed are 
estimated ones. By converting from the continuous domain into the discrete one, and 
approximating the continuous derivative with the discrete filter (1 − z−1)/Tsp z−1, where Tsp 
is the sampling time of the control systems, the following equations can be deduced:
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(11.51)

where k is the current time sample. From (11.51), the following matrix equation can be 
easily deduced:
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(11.52)

where pr = 1/Tr.
Equation 11.52 is a classical matrix equation of the type Ax ≈ b as seen in Chapter 8, 

where the A is the “data matrix,” b is the “observation vector,” and x is the unknown vec-
tor, equal to ω̂r, being the unknown scalar. LS techniques reveal, even in this case, the best 
solution to be adopted for on-line training of the ADALINE and, thus, to solve in recursive 
form equation (11.52). The matrix A is composed of the d-q-axis components of the rotor 
flux linkage which can be affected by errors and noise resulting measurements, and the 
same can be said for the observation vector b which is also composed of the d-q-axis 
components of the rotor flux linkage and the d-q-axis components of the stator current 
space-vector. The problem under hand is thus a TLS problem rather than an OLS problem. 
Consequently, any LS technique different from TLS would be inadequate [48,49].

Figure 11.61 shows the block diagram of the MCA EXIN + reduced-order adaptive 
observer. It should be noted that the computation of the rotor speed by means of the 
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MCA EXIN + estimator is performed through the minimization of the residual of the 
matrix equation (11.52). The residual is strongly dependent on the rotor flux estimation 
error, while all its other terms are dependent on the measured values of the electrical 
variables (is and us), and they are also affected by measurement errors. The TLS inherently 
gives the best solution for the rotor speed in spite of these uncertainties.

11.5.3  Proposed Choice of the Observer Gain Matrix

The poles of the reduced-order observer are the couple of eigenvalues α ± jβ of the matrix 
(A22 − GA12), where

	
a
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The choice of the gain matrix G proposed in Ref. [65], called FPP (fixed poles position), 
fixes the poles position, in spite of the rotor speed. The FPP choice reveals the best for sen-
sorless control for the following explained reasons.

The FPP gain matrix choice permits the position of the poles of the observer to be fixed 
on the negative part of the real semiaxis at distance R from the origin, according to the 
variation of the rotor speed, to ensure the stability of the observer itself. The proposed gain 
choice is obtained by imposing α = −R and β = 0 and gives
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FIGURE 11.61
(See color insert.) Block diagram of the 
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where pr = 1/Tr. Correspondingly, the time derivative of the gain matrix to be used in the 
observer scheme is
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(11.54)

Figure 11.62 shows the observer pole locus, the amplitude of poles versus rotor speed, the 
damping factor ζ versus rotor speed, and gain locus (Gim versus Gre) as obtained with the FPP 
gain matrix choice. It shows that this solution permits keeping the dynamic of the flux estima-
tion constant, because the amplitude of the poles is the constant R and the damping factor ζ 
is always equal to 1. This last feature is particularly important for sensorless control in a high 
speed range. Most of the choices of the matrix gain result in low damping factor at high rotor 
speed, which can easily lead up to instability phenomena. Actually, higher values of the damp-
ing factor result in low sensitivity to estimated speed perturbations or parameter variations.

11.5.4  Computational Complexity

From the computational point of view, the MCA EXIN + reduced-order observer has been 
compared here with some NN-based observers, in particular with the TLS EXIN full-order 
observer, with the TLS EXIN MRAS observer with adaptive neural integrator, and with the 
classic full-order observer. This comparison has been made on the basis of the number of 
floating operations (flops) needed by each algorithm for each iteration. The comparison is 
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shown in Table 11.4. If the correction term dG/dt is not adopted in the proposed observer, 
the most demanding observer is the TLS EXIN full-order observer which requires 126 
flops + 3 IF-THEN instructions, and then there is the MCA EXIN + reduced-order speed 
observer with 120 flops + 4 IF-THEN instructions. If the correction term dG/dt is adopted, 
the MCA EXIN + reduced order observer is the most complex, with 147 flops + 4 IF-THEN 
instructions. Then follows TLS EXIN MRAS observer with adaptive neural integra-
tor which requires 87  flops + 3 IF-THEN instructions, and finally the classic full-order 
observer requiring 76 flops.

11.5.5 � Experimental Results with the MCA EXIN + Reduced-Order 
Adaptive Observer

The MCA EXIN + reduced-order adaptive observer has been tested experimentally on an 
FOC IM drive. The adopted FOC scheme is fully described in Appendix 11.A, while the 
corresponding test setup has been described in Appendix 11.B. It has been tested in several 
challenging working conditions, as shown in the following.

11.5.5.1  Dynamic Performance

The dynamic performance of the observer has been tested at very low speeds. The drive 
has been given a set of speed step references at very low speed, ranging from 3 (28.65 rpm) 
to 6 rad/s (57.29 rpm). Figure 11.63 shows the reference, estimated, and measured speeds 
during this test, and Table 11.5 shows the 3 dB bandwidth of the speed loop versus the 
reference speed of the drive. Both Figure 11.63 and Table 11.5 show a good dynamic behav-
ior of the drive with a 3 dB bandwidth decreasing from 69.3 rad/s at 6 rad/s to 12.3 rad/s 
at 3 rad/s. Same conclusions could be deduced by analyzing Figure 11.64 that shows the 
reference, estimated, and measured speeds during a set of speed reversal of the types 
3 → −3 rad/s, 4 → −4 rad/s, 5 → −5 rad/s, and 6 → −6 rad/s. These last figures show that the 
drive is able to perform a speed reversal also at very low speeds. However, it should be 
noted that the lower the speed reference, the higher the time needed for the speed reversal, 
as expected, because of the reduction of the speed bandwidth of the observer at decreasing 
speed references; this phenomenon is typical of all observers.

TABLE 11.4

Complexity of the Proposed Observer Compared with Others in Literature

State 
Equation 

Integration

Inverter 
Nonlinearity 

Compensation
Rs/Rr 

Estimation
Speed 

Estimation
Total 
Flops

MCA EXIN + 
reduced-order 
observer (G ≠ 0)

Without 
dG/dt

50 25 + 3 IF-THEN — 45 + 1 
IF-THEN

120 + 4 
IF-THEN

With dG/dt 77 25 + 3 IF-THEN — 45 + 1 
IF-THEN

147 + 4 
IF-THEN

TLS EXIN full-order 
observer (G = 0)

52 25 + 3 
IF-THEN

9 40 126 + 3 
IF-THEN

Classic full-order 
observer (G = 0)

52 — 9 15 76

TLS EXIN MRAS 
observer with 
neural integrator

42 — 11 + 3 IF-THEN 34 87 + 3 
IF-THEN

Source:	 From Cirrincione, M. et al., IEEE Trans. Ind. Appl., 54(1), 150, February 2007.
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11.5.5.2  Accuracy at Low Speed

The drive has been operated at a constant very low speed (3 rad/s corresponding to 
28.65 rpm), at no load, and at rated load. Figure 11.65 shows the reference, estimated, and 
measured speeds during these tests. It shows that the steady-state speed estimation error 
is very low, equal to 2.45% at no load and to 7.67% with rated load.

11.5.5.3  Zero-Speed Operation

To test the zero-speed operation capability of the observer, the drive has been operated 
for 60 s fully magnetized at zero speed with no load. Figure 11.66, which shows the refer-
ence, estimated, and measured speeds and position during this test shows the zero-speed 
capability of this observer. The same kind of test has been performed at the constant load 
torque of 5 N m. Figure 11.67 shows the reference, estimated, and measured speeds and 
position during this test and highlights that the measured speed is in average close to 0 
and the rotor has an undesired angular movement of 2 rad, achieved in 60 s with a constant 
applied load torque of 5 N m. This is the ultimate working condition at zero speed. Above 
5 N m load torque, the rotor begins to move and instability occurs.

TABLE 11.5

Bandwidth of the Speed Loop versus 
the Reference Speed

Speed (rad/s) 3 4 5 6

3 dB bandwidth 12.3 28.3 80.04 69.38

Source:	 From Cirrincione, M. et al., Automatika, 
46(1–2), 59, 2005.

Time (s) Time (s)

Reference = 6 rad/s

Reference = 5 rad/s

Reference = 3 rad/s

Reference = 4 rad/s

Reference = 6 rad/s

Reference = 5 rad/s

Reference = 3 rad/s

Reference = 4 rad/s

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)

ω m
 (r

ad
/s

)
ω m

 (r
ad

/s
)10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

–0.2 0 0.2 0.4 0.6

–0.2 0 0.2 0.4 0.6

–0.2 0 0.2 0.4 0.6 –0.2 0 0.2 0.4 0.6

–0.2 0 0.2 0.4 0.6

–0.2 0 0.2 0.4 0.6

–0.2 0 0.2 0.40 0.2 0.4 0.6

Estimated
Reference

Measured
Reference

FIGURE 11.63
Reference, estimated, and measured speeds during a set of speed step references with the MCA EXIN + reduced-
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Appendix A: Implemented Control Schemes

The earlier-described NN-based speed observers have been tested on two kinds of control 
schemes, FOC and DTC. All the implemented sensorless techniques have been integrated 
with a suitable methodology for the compensation of the dead times needed to drive the 
VSI power devices as well as with the methodology for the compensation of the nonlinear-
ity of the VSI characteristics described in Section 6.4.2. In the following, the description of 
the main characteristics of the adopted schemes is given.

A.1  Sensorless Field-Oriented-Controlled IM Drive

Figure 11.68 shows the block diagram of the adopted sensorless rotor flux–oriented IM 
drive with impressed voltages. Current control is performed here in the field-oriented ref-
erence frame, and a decoupling circuit is present (see Figure 5.18). A control of both the 
angular speed of the drive ωm and the amplitude of its rotor flux linkage ψr is adopted.

On the direct axis, three controllers are present. The voltage u0, equal to the product 
between the absolute value of the estimated machine speed ωm and the amplitude of the 
rotor flux linkage ψr, is kept constant by an integral (I) controller. The output of this con-
troller is the reference value of the rotor flux-linkage amplitude ψrref. The rotor flux-linkage 
amplitude ψr is closed-loop controlled by a PI controller, whose output is the reference 
value of the direct component of the stator current in the field-oriented reference frame 
isxrefry . The rotor flux amplitude ψr is estimated by the block “NN speed observer,” which 
implements the earlier-described neural-based speed observers. It provides also the angle 
ρr, expressing the angular position of the rotor flux-linkage space-vector, necessary for 
performing the field orientation by the coordinate rotations. The direct component of the 
stator current isxry  is closed-loop controlled by a PI controller, whose output is the reference 
value of the direct component of stator voltage in the field-oriented reference frame.

On the quadrature axis, two controllers are present as well. The estimated motor speed ω̂m 
is closed-loop controlled to its reference ωmref by a PI controller. The output of this controller 
is the reference value of the quadrature component of the stator current in the field-oriented 
reference frame isyrefry . The quadrature component of the stator current isyry  is closed-loop con-
trolled by a PI controller, whose output is the reference value of the quadrature component 
of stator voltage in the field-oriented reference frame. The block e j rr  performs a vector rota-
tion from the field-oriented to the stationary reference frame on the basis of the instanta-
neous knowledge of the rotor flux-linkage angle ρr provided by the flux model.

A.2  Sensorless Direct Torque–Controlled IM Drive

The earlier-described NN-based sensorless techniques have been implemented also on 
DTC schemes. In particular, both the classic switching table–based DTC [66] and the DTC-
SVM [67,68] have been adopted.

Figure 11.69 shows the block diagram of DTC IM drive. In this case, the closed-loop con-
trol of the estimated machine speed ω̂m and the stator flux ψs is performed. The machine-
estimated speed ω̂m is compared with its reference ωmref, and the tracking error is processed 
by a PI controller. The output of the speed controller is the torque reference tref which is 
compared with the estimated torque te, computed by the flux and torque model, being the 
tracking error processed by a hysteresis comparator, whose output is one of the inputs of 
the block “inverter optimal switching table.” The stator flux reference ψsref is compared 
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with the estimated one ψs, estimated even in this case by “NN speed observer,” and the 
tracking error is processed by a hysteresis comparator, whose output is the other input of 
the block “inverter optimal switching table.” The flux and torque model is that represented 
in Figure 5.35. The block “inverter optimal switching table” selects, at each sampling time 
of the control system, the optimal configuration of the inverter on the basis of the angular 
position of the stator flux-linkage space-vector. The algorithm adopted for the quadrant 
identification is that shown in Figure 5.36. The control strategy is usually the D, as defined 
in Table 5.1, since it permits the best dynamic response. Figure 11.70 shows the block dia-
gram of the DTC-SVM IM drive.

In this scheme, a closed-loop control of both the stator flux-linkage amplitude and 
the rotor speed is performed. Speed control is achieved by employing a PI controller for 
processing the speed error resulting from the comparison between the reference and the 
estimated speeds. The output of the speed controller is the reference torque, which is 
compared with the estimated one, being the tracking error processed by a PI controller. 
The output of the torque controller is further added to the decoupling term in Equation 
5.76, giving then the quadrature-axis reference voltage usysy . On the direct axis, the stator 
flux reference is compared with the estimated flux, being the tracking error processed 
by a PI controller. The stator flux amplitude and the electromagnetic torque are esti-
mated by the “NN speed observer.” The output of the flux controller is the direct-axis 
reference voltage usxsy . The reference voltages are then transformed from the stator flux 
linkage to the stationary reference frame by a means of a vector rotation on the basis of 
the knowledge of the stator flux angle ρs. The stator voltages are finally synthesized by 
a PWM VSI.

Appendix B: Description of the Test Setup

The employed test setup consists of [69] the following:

•	 A three-phase IM with parameters shown in Table 11.6
•	 A frequency converter which consists of a three-phase diode rectifier and a 7.5 kVA, 

three-phase VSI
•	 A DC machine for loading the IM with parameters shown in Table 11.7
•	 An electronic AC–DC converter (three-phase diode rectifier and a full-bridge DC–

DC converter) for supplying the DC machine of rated power 4 kVA
•	 A dSPACE card (DS1103) with a PowerPC 604e at 400 MHz and a floating-point 

DSP TMS320F240
•	 One electronic card with three voltage sensors (model LEM LV 25-P) and three 

current sensors (model LEM LA 55-P) for monitoring the instantaneous values of 
the stator phase voltages and currents

•	 One voltage sensor (Model LEM CV3-1000) for monitoring the instantaneous 
value of the DC link voltage

•	 One electronic card with analog fourth-order low-pass Bessel filters and cutoff 
frequency of 800 Hz for filtering the stator voltages

•	 One incremental encoder (model RS 256-499, 2500 pulses per round)



597Neural Sensorless Control of AC Drives

Figure 11.71 shows a photograph of the test setup. Figure 11.72 shows the electric scheme 
of the test setup. The IM is supplied by a three-phase diode rectifier with a cascaded volt-
age source inverter (VSI). For control purposes, the DC link voltage and the three stator 
currents are measured by LEM sensors and acquired by the A/D channels of the dSPACE 
board. The VSI is driven by a space-vector pulsewidth modulation (SV-PWM) technique 
(see Section 2.2.1.4 for details), with switching frequency fPWM = 5 kHz. The instantaneous 
values of the stator phase voltages have been reconstructed from the measurement of the 

FIGURE 11.71
Photograph of the test setup. (From Cirrincione, M. et al., IEEE Trans. Ind. Electron., 54(1), 127, February 2007.)

TABLE 11.6

Parameters of the IM

Rated power Prated [kW] 2.2

Rated voltage Urated [V] 220
Rated frequency frated [Hz] 50
Rated speed [rad/s] 149.75
Pole pairs 2
Stator resistance Rs [Ω] 3.88
Stator inductance Ls [mH] 252
Rotor resistance Rr [Ω] 1.87
Rotor inductance Lr [mH] 252
Three-phase magnetizing inductance Lm [mH] 236
Moment of inertia J [kg · m2] 0.0266

TABLE 11.7

Parameters of the DC Machine

Rated power Prated [kW] 1.5
Rated voltage Urated [V] 300
Rated current Irated [A] 5
Rated speed [rad/s] 150
Rated excitation voltage uexrat [V] 300
Rated excitation current iexrat [A] 0.33
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DC link voltage Ud and from the knowledge of the switching status of the inverter, as 

us d a b cU S aS a S= + +
2
3

2[ ]. The speed measurement from the encoder has been used only 

for comparison reasons with the observer estimations, since only the computed speed has 
been fed back to the speed controller. The IM drive has been loaded by a controlled DC 
drive. The DC machine is supplied by a three-phase rectifier with a DC–DC full-bridge 
converter. A current control is embedded in the DC drive. A torque signal, set by the user, 
is provided from the dSPACE board to the DC–DC drive in order to command the DC 
machine torque.

List of Symbols

usA, usB, usC	 stator phase voltages
isA, isB, isC	 stator phase currents
us = usD + jusQ	 space-vector of the stator voltages in the stator reference frame
us = usx + jusy	 space-vector of the stator voltages in a generic rotating reference frame
ucom	 common-mode voltage
is = isD + jisQ	 space-vector of the stator currents in the stator reference frame
is = isx + jisy	 space-vector of the stator currents in a generic rotating reference frame
iŕ = +i jird rq	 space-vector of the rotor currents in the stator reference frame
ir = irx + jiry	 space-vector of the rotor currents in a generic rotating reference frame
y r rd rqjʹ = y y+ 	 space-vector of the rotor flux linkages in the stator reference frame
ψs = ψsD + jψsQ	 space-vector of the stator flux linkages in the stator reference frame
ψsβA, ψsβB, ψsβC	 stator phase virtual fluxes
imr = imrD + jimrQ	� space-vector of the rotor magnetizing current in the stator reference 

frame
ims = imsD + jimsQ	� space-vector of the stator magnetizing current in the stator reference 

frame
imm = immD + jimmQ	� space-vector of the magnetizing current in the stator reference frame
ρr	� phase angle of the rotor flux-linkage space-vector with respect to the 

sD axis
ρs	� phase angle of the stator flux-linkage space-vector with respect to the 

sD axis
ρm	� phase angle of the magnetizing flux-linkage space-vector with respect 

to the sD axis
ϑr	 angular position of the rotor with respect to the sD axis
Ls	 stator inductance
Ls�	 stator transient inductance
Lr	 rotor inductance
Lm	 total static magnetizing inductance
Lsσ	 stator leakage inductance
Lrσ	 rotor leakage inductance
Rs	 resistance of a stator phase winding
Rr	 resistance of a rotor phase winding
Ts	 stator time constant
Tr	 rotor time constant
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Ts�	 stator transient time constant
Tr�	 rotor transient time constant
Trσ	 rotor leakage time constant
σ = −1 L / L Lm

2
s r( )	 total leakage factor

σr	 rotor leakage factor
σs	 stator leakage factor
p	 number of pole pairs
ωmr	 angular speed of the rotor flux space-vector
ωms	 angular speed of the stator flux space-vector
ωmm	 angular speed of the magnetizing flux space-vector
ωsl	 angular slip speed
ωr	 angular rotor speed (in electrical angles per second)
te	 electromagnetic torque
Tsp	 sampling time of the control system
Ud	 DC link voltage
Sa, Sb, Sc	 command signals of the VSI legs

All quantities with ref in pedex are reference quantities.
The symbols y y yr s m�, ,  in apex mean the reference frame in which the variables are 

expressed.
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