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Preface

The study of optoelectronics examines matter, light and their interactions. The solid state
and quantum theory provide fundamental descriptions of matter. The solid state shows
the effect of crystal structure and departure from crystal structure on electronic trans-
port. Classical and quantum electrodynamics describe the foundations of light and
the interaction with matter.
The text introduces laser engineering physics in sufficient depth to make accessible

recent publications in theory, experiment and construction. A number of well-known
texts review present trends in optoelectronics while many others develop the theory.
The Physics of Optoelectronics progresses from introductory material to that found in more
advanced texts. Such a broad palette, however, requires the support of many sources as
suggested by the reference sections after every chapter. The journal literature itself is
dauntingly vast and best left to the individual texts for summary in any particular topical
area. For this reason, the present text often overlaps many excellent references as a service
to the reader to provide a self-contained account of the subject.
The Physics of Optoelectronics addresses the needs of students and professionals

with a ‘‘standard’’ undergraduate background in engineering and physics. First- and
second-year graduate students in science and engineering will most benefit, especially
those planning further research and development. The textbook includes sufficient
material for introducing undergraduates to semiconductor emitters and has been used
for courses taught at Rutgers and Syracuse Universities over a period of six years. The
students come from a variety of departments, but primarily from electrical and computer
engineering. A subsequent course in optical systems and optoelectronic devices would be
the most natural follow-up to the material presented herein.
The Physics of Optoelectronics focuses on the properties of optical fields and their

interaction with matter. The laser, light emitting diode (LED) and photodetector perhaps
represent the best examples of the interaction. For this reason, the book begins with an
introduction to lasers and LEDs, and progresses to the rate equations as the fundamen-
tal description of the emission and detection processes. The rate equations exhibit the
matter–light interaction through the gain terms. The remainder of the text develops the
quantum mechanical expressions for gain and the optical fields. The text includes many
of the derivation steps, and supplies figures to illustrate concepts in order to provide the
reader with sufficient material for self-study.
The text summarizes and reviews the mathematical foundations of the quantum theory

embodied in the Hilbert space. The mathematical foundations focus on the abstract form
of the linear algebra for vectors and operators. These foundations supply the ‘‘pictures’’
often lacking in elementary studies of the quantum theory, that would otherwise make
the subject more intuitive. A figure does not always accurately represent the mathematics
but does help convey the meaning or ‘‘way of thinking’’ about a concept.
The quantum theory of particles and fields can be linked to the Lagrangian and

Hamiltonian formulations of classical mechanics. A derivation of the field–matter
interaction from first principles requires the electromagnetic field Lagrangian and
Hamiltonian. A chapter on dynamics includes a brief summary and review of the
formalism for discrete sets of particles and continuous media. The remainder of the
discourse on dynamics covers topical areas in the quantum theory necessary for the study
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of optical fields, transitions and semiconductor gain. The chapter includes the density
operator, time-dependent perturbation theory, and the harmonic oscillator from the
operator point-of-view.
The description of lasers and LEDS would not be complete without a discussion of

the fundamental nature of the light that these devices produce. In the best of circum-
stances, the emission approximates the classical view of a coherent state with well-
defined phase and amplitude. However, this often-found description of the optical
fields originating in Maxwell’s equations does not provide sufficient detail to describe
the quantum light field, nor to understand recent progress in the areas of quantum optics
and low-noise communications. The text develops the ‘‘quantized’’ electromagnetic fields
and discusses the inherent quantum.
The later portions of the book develop the matter–light interaction, beginning with the

time-dependent perturbation theory and Fermi’s golden rule. After reviewing density-
of-states and Bloch wave functions from the solid state, the text derives the gain from
Fermi’s golden rule. The gain describes the matter–light interaction in optical sources
and detectors. However, Fermi’s golden rule does not fully account for the effects of
the environment. The theory typically implements the density operator and develops
the Liouville equation (master equation) to describe collision broadening and saturation
effects. The book briefly examines the origin of the fluctuation–dissipation theorem
and applies it to the master equation. The book naturally leads to further study areas,
including quantum optics, nanoscale emitters and detectors, nonlinear optics, and
standard studies of q-switched and mode-locked lasers, parametric amplifiers, gas
and solid state lasers.
The typical first-year graduate course (28 classes with approximately 1.5 hours each)

covers the introduction (1.1–1.7), laser rate equations (2.1–2.5), the wave equations and
transfer matrices (3.1–3.2, 3.5–3.7), a brief summary of waveguiding (3.8–3.9), linear
algebra (4.1–4.6, 4.8–4.10), basic quantum theory (5.6–5.8), especially time dependent
perturbation theory and density operators (5.10–5.11), quantum dipole and Fermi’s
golden rule (7.1–7.3), the Liouville equation and gain (7.9–7.13), and Fermi’s golden rule

Liouville equation and the Fermi’s golden rule approach for a one-semester course.

sentations (5.9) and suggested material on noise from the beginning chapters (1.8, 2.6).
Online lectures (with slides and audio) for a one-semester course are available free at

of the other topics.
The author acknowledges the Rutgers, Cornell and Syracuse University programs in

engineering and physics. The faculty, administration and staff at Rutgers have provided
significant support for teaching and laboratory facilities. A number of individuals from
the author’s past have contributed to the author’s view on semiconductor sources
and detectors, especially C. L. Tang, P. D. Swanson, R. Liboff, E. A Schiff, P. Kornreich,
R. J. Michalak, S. Thai, K. Kasunic, and J. S. Kimmet. The author thanks his wife Carol,
for her assistance and her patience during the weekends and evenings over the past
several years while the author prepared the courses, compiled the material, and wrote
the textbooks. Thanks also go to the staffs at Marcel Dekker, CRC Press, and Taylor &
Francis for their advice and efforts to bring the text to publication. Most of all, the author
thanks his students for attending the courses and for their challenging questions and
suggestions.
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1
Introduction to Semiconductor Lasers

Semiconductor lasers have important applications in communications, signal processing
and medicine, including optical interconnects, RF links, CD ROM, gyroscopes, surgery,
printers, and photocopying (to name only a few). Compared with other optical sources,
lasers have higher bandwidth and higher spectral purity; they function as bright coherent
sources. These properties allow laser emission to be tightly focused, with minimum
divergence.

The study of lasers encompasses perhaps the broadest array of subfields, including
quantum theory, electromagnetics and optics, solid state engineering and physics,
chemistry, and mathematics, as should be evident from the acronym laser, meaning ‘‘light
amplification by stimulated emission of radiation.’’ Quantum theory describes the ‘‘light
amplification’’ process, whereby an optical field (with proper frequency) interacts with an
ensemble of light emitters (i.e., atoms, molecules, etc.). The amplification occurs through
the matter–field interaction when the incident field ‘‘stimulates’’ the
ensemble to emit more light with the same characteristics as the incident light, including
the same frequency, direction of propagation, and phase (the emitted light is coherent).

Semiconductor lasers emit light when electrons and holes recombine. The microwave
counterpart (maser) operates similarly. Traditionally, optics (including quantum optics)
describes light and its properties using electromagnetic (EM) theory; this includes the
manipulation of light by lenses and prisms, as well as dispersion and waveguiding. Solid
state physics, engineering, and chemistry describe the composition of matter and its
properties (including electrical properties). Mathematics comprises the most natural
language for any field in science or engineering.

Semiconductor laser provides a natural laboratory for the study of matter, fields, and
their interactions. This book is primarily concerned with the construction of laser and the
characteristics of emitted optical energy. The first volume of the series, Fundamentals of the
Quantum Theory and the Solid State (forthcoming), develops the prerequisite material on
quantum theory and its natural language of linear algebra. That volume discusses the
solid state, especially crystalline structure and implications for phonons, the origin bands,
Bloch wavefunctions, and density of states.

The present volume extends the discussion to include applied electromagnetic fields
perturbing the energy states of excited atoms in a gain medium to induce an electronic
transition, so that the atom emits light. It also deals with Fermi’s golden rule and the
application of density operator theory. The chapter on light develops the quantum theory
of the electromagnetic wave. It discusses the limits to measuring the fields, inherent
noise, and the relation to the Poisson statistics. The last few chapters put it all together,

FIGURE 1.0.1

Pictorial representation of the stimulated emission process.
An incident wave (left) induces the electron to make a
transition to a lower energy level thereby producing a second
wave (right).
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and develop the quantum theory of gain, the rate equations, and apply the results to
semiconductor lasers made from quantum wells and quantum dot.

This first chapter discusses the basic components for constructing and operating a laser.
Feedback is a key ingredient for laser oscillation (lasing), which refers to sustained light
emission from the ensemble of light-emitters without an external optical field for the
induced emission process. This chapter introduces the concepts of semiconductors and
band diagrams, which are necessary to understand the electrical and light-emission
properties of the laser. It is good to have a strong grasp of the physical nature of the laser
before proceeding to the abstract topics. In fact, you will notice that the text in this book
progresses from physical to abstract and back to physical at the very end.

The main purpose of this book is to develop equations to predict the characteristics of
the output signal in terms of the construction of the laser, the type of gain medium and
the characteristics of the pump source. The rate equations are the most fundamental set
of equations; they can be obtained phenomenologically or through detailed quantum
mechanical considerations. These rate equations require the gain to be written in terms of
basic material properties. It is the primary purpose of this book to develop the general
theory and concepts, rather than list all the different types of lasers. GaAs serves as our
prototype material system.

1.1 Basic Components and the Role of Feedback

First consider the basic components of the laser as depicted in Figure 1.1.1. There are four
basic components necessary to obtain laser oscillation—a gain medium for amplification,
a pump to add energy to the medium, positive feedback for oscillation, and a coupling
mechanism to extract a signal. The gain medium contains active centers that emit light (or
microwaves for masers). Light within the resonator (cavity), defined by a waveguide
and two mirrors, interacts with these centers to produce additional light. An optical
or electrical source (a pumping mechanism) supplies energy to the emission centers. As
with any oscillator, the device must include a mechanism for returning the signal to the
gain section (feedback). For the laser, mirrors provide the feedback that increases the
interaction between the ensemble of gain centers and the signal. The output coupler
consists of a partially reflective mirror (for a maser, the coupler might be a loop of wire
or a small hole in a waveguide). Some of the light in the cavity escapes through the
mirror. Lasers made of semiconductor material generally have two partially reflective
mirrors, unless special reflective or antireflective coatings are used.

Lasers (and masers) produce coherent electromagnetic waves. The output wave
can be pictured (to a good order of approximation) as a single sinusoidal wave, with a
well-defined phase and amplitude traveling in a single direction. This is a consequence of

FIGURE 1.1.1

The gain medium, pump, feedback mechanism, and output
coupler comprise the four basic components of a laser (or
maser).
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the ensemble of emission centers producing coherent stimulated emission. Classically, the
same group of atoms can spontaneously emit without an impressed electromagnetic field.
The spontaneous emission tends to propagate in all directions with random phases.
We will later discuss how spontaneous emission can actually be attributed to random
fluctuations of the electromagnetic field in the vacuum. We will also discuss how the
output wave is never totally known, since a small uncertainty always exists in the phase
and amplitude of the wave (refer to the chapter on quantum optics).

Now, we will discuss the importance of feedback by comparing a ‘‘ring’’ laser to a
conventional op-amp electronic circuit having similar topology to the laser. All oscillators
need to have a signal fed back into the input to regenerate the signal, and thereby
compensate for power loss in the circuit. Figure 1.1.2 shows a triangular shaped cavity
that closes on itself. Two of the mirrors are total internal reflection (TIR) mirrors that
reflect 100% of any incident light on the inside of the waveguide. The output beam is
labelled Po (for power). A bias current ‘‘I’’ electrically pumps the gain section, while the
rest of the waveguide remains unpumped. The quantity Pi represents an external input
signal to be amplified. For the oscillator, the internal noise starts the oscillation (so that
Pi¼ 0), but sometimes the noise can be represented by Pi if desired (spontaneous emission
for lasers). We assume an asymmetry in the cavity so that the optical wave in the cavity
propagates in a clockwise direction.

The electrical circuit equivalent to the ring laser has an amplifier with gain ‘‘g’’ in place
of the gain section for the laser. The block 1/� can represent ‘‘loss element’’ such as a
resistor or another gain element. For the electrical circuit, we can write a set of equations
that can be solved to determine a condition on the gain to achieve oscillation.

Po ¼ gPs

Ps ¼ Pin þ Pf

Pf ¼
1

�
Po

8>><
>>:

9>>=
>>;

! Po ¼
gPin

1 � ðg=�Þ
ð1:1:1Þ

For a laser operating below the lasing threshold (the output light mostly consists of
spontaneous emission rather than stimulated emission), increasing the pump power to
the gain section causes the gain ‘‘g’’ to increase. The denominator of Po becomes smaller

FIGURE 1.1.2

A ring laser (top) can be modeled as an amplifier with feedback. The feedback divides the signal by �.
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as ‘‘g’’ increases. When g¼ � (gain equals loss), the loop gain becomes infinite and a
sustained output (oscillation) is achieved, even though the input Pi is essentially zero.
For a laser, � describes the optical energy lost from the cavity through mirrors, or
scattering from imperfections in the waveguide or free carrier absorption.

Generally, for both the electrical circuit and the ring laser (as well as other oscil-
lators), the gain depends on the angular frequency ! of the signal g¼ g(!) as shown
in Figure 1.1.3. For example, an electronic amplifier circuit might have some RC or RLC
filters that provide a narrow resonance. For now, we assume � is independent
of frequency. An oscillator normally operates at the peak of the gain curve !¼!osc

since that is where the condition ‘‘gain equals loss’’ g¼ �0 occurs.
In practice, the gain can be slightly smaller than the loss g/�< 1. This occurs because

the difference 1�( g/�) is made up of a noise signal. The oscillator (and especially the
laser) requires a certain amount of noise to start the oscillation; this noise must have a
frequency component at the oscillation frequency. For a laser, the required noise consists
of spontaneous emission from the emission centers in the gain medium. Without the
coherent radiation produced by the laser, the atoms can only spontaneously emit (i.e., on
their own—fluorescence), which is symbolized by Pi at one of the facets, even though the
signal originates in the gain section. This spontaneously emitted light can be amplified
just like the stimulated emission. As a result, the spontaneous emission reflects from
the mirrors and induces transitions in the excited atoms comprising the gain medium
(the light stimulates emission). Now both the spontaneous and stimulated emission
can further induce transitions to produce the steady-state laser signal. The amount
of spontaneous emission to initiate lasing sets the minimum required current (threshold
current) and also sets the minimum achievable optical linewidth in the output
spectrum. As a note, the optical signal from an LED (light emitting diode) consists
entirely of spontaneous emission. In this case, spontaneous emission is not noise—it is
the signal.

1.2 Basic Properties of Lasers

Lasers have many properties, which make them unique and highly applicable. The
physical construction and material properties determine the operating wavelength and
achievable output power. The ‘‘brightness,’’ defined as the amount of output power per
unit frequency, determines the spectral purity of the source.

FIGURE 1.1.3

The oscillator operates at the frequency with highest net gain g/�.
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1.2.1 Wavelength and Energy

Semiconductor lasers can be designed and fabricated with optical emission ranging
from ultraviolet (UV) to infrared (IR). The UV lasers are particularly important for higher
resolution work, since the smaller wavelengths can ‘‘see’’ smaller objects. Blue lasers can
store roughly four times the amount of information on a standard size CD as red lasers.
The IR lasers producing light with wavelengths of 1.3 and 1.5 microns (mm) have
applications in fiber-based communication systems, since fibers have minimum dis-
persion and loss at these wavelengths. Low dispersion is important for maintaining
pulse shape over large distances. Figure 1.2.1 shows how the emission wavelength varies
with semiconductor composition. For example, pure GaAs emits nearly 0.85 mm while
AlAs emits nearly 0.6 mm. The figure shows that the emission wavelength for a com-
position AlxGa1�xAs varies approximately linearly with ‘‘x’’ between the two extremes.
For IR emission, a laser composed of a combination of InP and InAs should operate at
either the minimum loss or dispersion wavelengths.

The emission wavelengths of some common laser systems can be found in
Figure 1.2.2. The semiconductor lasers are labeled by ‘‘diode’’; the double-headed
arrow shows the possible emission range. Masers emit in the far infrared, with
wavelengths larger than 30 mm.

FIGURE 1.2.1

Relation between emission wavelength, semiconductor bandgap and the lattice spacing constant.

FIGURE 1.2.2

Common lasers and the emission wavelengths.
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Some typical relations are

E ¼ �hh! ¼ h� l ¼ 2�=k c ¼ �l ¼ !=k

where the variables are defined in the order that they appear as photon energy E, h= 2�ð Þ,
and ‘‘h’’ is Planck’s constant, the angular frequency ! ¼ 2�� and frequency � in Hertz
(Hz), wavelength l, wave vector k, and speed of light c. These equations can be combined
to provide an easy-to-remember relationship between the wavelength in nanometers
(nm) and the energy in electron volts (eV) E ¼ 1240=l. For example, if an AlGaAs diode
laser has a bandgap of approximately 1.45 eV, then the emission wavelength is nearly
850 nm.

1.2.2 Directionality

Laser beams can be highly directional. The longitudinal axis (along the length of
the resonator) and the mirrors define a preferred direction for emission. Stimulated
emission from atoms duplicates the characteristics of the light, causing the atom to
emit. That is, the emitted light has the same wavelength and propagation direction
as the perturbing (incident) light. Spontaneous emission does not behave in this way.
However, diffraction effects are especially severe for semiconductor lasers. Waveguiding
in in-plane lasers can confine the beam to within a few hundred nanometers. The
light through the front facet can diverge at angles of 45 degrees or more. Vertical cavity
lasers, on the other hand, have aperture sizes on the order of 10 mm and a laser beam has
convergence angles smaller than 15 degrees.

1.2.3 Monochromaticity and Brightness

The spectra for semiconductor lasers consists of stimulated and spontaneous emission
components. Spontaneously emitted light has a range of wavelengths covering many
nanometers. Stimulated emission, on the other hand, has a typical width less than one
angstrom. Figure 1.2.3 compares the two types. The wavelength spectral width can be
related to the frequency spectral width by taking the differential of � ¼ c=l to get
��j j ¼ �lj j c=l2 .

One of the most important properties of the laser is that it can pack a lot of energy in
a very narrow bandwidth (�� or �l). We can define the brightness6 as the power per
unit bandwidth that flows from a surface of area A at the source into a cone of steradian
��. Obviously, the more monochromatic the beam, the greater the brightness. Many
lasers systems have frequency bandwidths smaller than 1 MHz. LEDs can have a spectral

FIGURE 1.2.3

Comparison of spectrum for typical spontaneous and stimulated emission.

6 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



width as wide as 100 nm. However, the incandescent lamp (tungsten filament, for
example) can span on the order of 1000 nm. For human vision requiring blue, green,
and red spectral components, the LED (and especially the laser) can provide highly
efficient sources.

1.2.4 Coherence Time and Coherence Length

The coherence time of the laser beam describes the length of time for two frequency
components �1, �2 to become out of phase by a full cycle

�� ¼
1

��

For lasers, the spectral width �� can be related to the FWHM (full-width half-max)
points of the spectrum. Later chapters relate the coherence time to the dipole dephasing
time. The random phase model for the laser, as will be discussed in connection with
the density operator for optical states, views the laser beam as monochromatic waves
with the phase jumping randomly every so often.

Example 1.2.1

As an example, a laser with the bandwidth of 1 MHz produces a coherence time of 1 ms.
Sunlight has a coherence time of approximately 2 fs. Spontaneous emission for the GaAs
laser with the bandwidth of 4 nm produces a coherence time of 0.2 ps. This number
is close to the dipole dephasing time, which is attributed to an average time between
collisions within the laser gain medium.

1.3 Introduction to Emitter Construction

There are many types of light emitters. The gain medium can be a semiconductor such as
GaAs or InP, a gas like HeNe, argon, CO2, or a solid state material such as ruby or doped
glass. The emitter can be made from a range of materials including optical fiber,
semiconductor wafers, or bulk optical components. Generally, semiconductor devices
have micron sizes and require a clean room and precision techniques
(References 3 and 4). The basic emitter can be augmented with a number of optical
components for special purpose applications.

1.3.1 In-Plane and Edge-Emitting Lasers

For semiconductor lasers, the cavity can be parallel to the semiconductor wafer (i.e.,
in the plane of the wafer) or perpendicular to the plane of the wafer as shown

the parallel type, while ‘‘vertical cavity surface emitting laser’’ (VCSEL) refers to the
perpendicular type. Hybrids can have the cavity within the plane while using mirrors
to emit perpendicular to the plane.

The simplest IPL consists of a ridge with a metal electrode on the top along

The ridge also forms part of an optical waveguide to confine the light wave as it moves
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its length (see Figure 1.3.1). A second electrode runs across the bottom of the wafer.

fabrication



between the mirrors. The lower portion of the top surface extends into the mode
in the waveguide cladding region. The air–material interface produces an effective
refractive index smaller in magnitude than that of the active region, in order to provide
lateral waveguiding. For the IPLs shown, the mirrors on the left-hand and right-hand
sides consist of nothing more than the air–semiconductor interfaces. The reflection
coefficient for GaAs is approximately 34%. Such mirrors can be either cleaved similar to
cutting glass, or etched by a chemical process (usually a gas etch).

1.3.2 VCSEL

Vertical Cavity Surface Emitting Lasers (VCSELs) were developed in the late 1980s
as a result of advances in material growth and processing techniques. The VCSEL uses
a series of layers of dissimilar refractive indices to produce a distributed Bragg reflector
(DBR), which is also known as a mirror stack. Each layer in the DBR is a half-wavelength
thick. The VCSEL wafers including the DBR mirrors and the active region with
the quantum wells can be grown by Molecular Beam Epitaxy (MBE). There is a mirror
stack above and below the active region, so as to define a vertical cavity. The simplest
VCSELs have ring electrodes surrounding a window on the top side, where the laser
beam emerges. Electrical current passing through the conducting mirrors pumps the
gain medium (often called the active region).

FIGURE 1.3.2

A vertical cavity laser. The top side often consist of p-type material. The bottom side (wafer side) is n-type. An
electrode runs across the bottom side of the wafer.

FIGURE 1.3.1

Representation of two ridge-guided lasers. The front one has cleaved mirrors while the rear one has mirrors
made from a chemical etching process.
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1.3.3 Buried Waveguide Laser

Rather than making ridge waveguides as shown in Figure 1.3.3, the buried wave-
guide laser surrounds the higher index active region with lower index material. In this
way, index differences provide waveguiding in the lateral and transverse directions
(the two directions perpendicular to the length of the laser).

1.3.4 Lateral Injection Laser

perpendicular to the plane of the wafer. The lateral injection laser in Figure 1.3.3 injects
current parallel to the internal layers of the heterostructure. This configuration helps
provide a planar surface for fabrication.

1.3.5 The Light Emitting Diode

The LED consists of a ‘‘pn’’ or ‘‘pin’’ junction of light emitting material typically
surrounded by a plastic lens, as shown in Figure 1.3.4. The lens helps to shape the output
beam. Unlike the laser, the LED requires neither mirrors nor feedback to operate.
Spontaneous recombination of electrons and holes produces spontaneous emission
(fluorescence) for the output beam. The vacuum fields sufficiently perturb the energy
levels to initiate the spontaneous emission.

1.3.6 Semiconductor Laser Amplifier

Semiconductor laser amplifiers resemble inplane lasers, except they do not have mirrors
at the ends. In fact, manufacturers add antireflection coatings to prevent even the smallest
amount of feedback. The electron and hole population provides the gain.

1.3.7 Gas Laser

apply very high voltage to the gas in a manner similar to the ‘‘neon signs’’ used for
outdoor advertising. The light oscillation builds up between a 100% reflective mirror
and a partially reflective mirror. The partially reflective mirror provides feedback and
an output beam. The Brewster windows allow only one polarization mode of light to

FIGURE 1.3.3

Electrodes allow current flow parallel to the internal
layers for the lateral injection laser.

FIGURE 1.3.4

The light emitting diode.
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The lasers in Figure 1.3.1 inject current through the top and bottom contacts in a direction

The gas laser contains the gas in a gas tube, as shown in Figure 1.3.5. Two electrodes



pass through without any attenuation (100% transmittance), the other polarization
mode reflects at an oblique angle and does not contribute to the laser output.

1.3.8 The Solid State Laser

An example of solid state laser is shown in Figure 1.3.6. The solid ruby rod provides
the gain medium. A high intensity flash lamp pumps the ruby. Mirrors at either end
provide the feedback. Unlike the continuously emitting gas laser, the ruby rod laser
provides pulsed light.

1.4 Introduction to Matter and Bonds

Semiconductor light emitters require matter in one form or another for the physical
form of the device and for producing light. The device construction depends on the type
of matter used. Gas lasers look different from semiconductor lasers. The matter produces
light using the matter–light interaction. The exact details depend on the type of matter.

The study of matter comprises the subject of solid state physics and chemistry (often
termed condensed matter). The invention and engineering of new devices requires a
thorough understanding of the solid state.

The present section reviews broad classifications of matter. Later chapters and sections
use these concepts to develop the mathematical descriptions.

1.4.1 Classification of Matter

Gases, liquids, and solids represent three basic types of matter. Modern technology finds
its grounding in solids in the form of crystals, polycrystals, and amorphous materials.
The next section discusses the relation between the atomic configuration and the band
diagrams.

FIGURE 1.3.6

The ruby solid state laser.

FIGURE 1.3.5

Block diagram of the gas laser.
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Gases

Gases have atoms or molecules that do not bond to one another in a range of pressure,
temperature, and volume (Figure 1.4.1). Argon consists of single atoms whereas
hydrogen usually appears as H2. These molecules haven’t any particular order and
move freely within a container.

Liquids and Liquid Crystals

Similar to gases, liquids haven’t any atomic/molecular order and they assume the shape
of the containers. Applying low levels of thermal energy can easily break the existing
weak bonds.

Liquid crystals have mobile molecules, but a type of long range order can exist.
Figure 1.4.2 shows molecules having a permanent dipole. Applying an electric field
rotates the dipole and establishes order within the collection of molecules.

Solids

Solids consist of atoms or molecules executing thermal motion about an equilibrium
position fixed at a point in space. Solids can take the form of crystalline, polycrystalline,
or amorphous materials. Solids (at a given temperature, pressure, and volume) have
stronger bonds between molecules and atoms than liquids. Solids require more energy
to break the bonds.

has an identical cluster of atoms (atomic basis). Later chapters show how this order
affects conduction and other properties. Silicon provides an example of a crystal with a
two-atom basis set on a face centered cubic crystal.

Polycrystalline materials consist of domains. The molecular/atomic order can vary
from one domain to the next. Polycrystalline silicon can be made from plasma enhanced
chemical vapor deposition under the proper conditions; it has great technological uses in
the area of MEMs. The material has medium range order that can extend over several

material between the two domains has very little order. Many of the bonds remain
unsatisfied, and hence there can be large voids. The growth process for polycrystalline
materials can be imagined as follows. Consider a blank substrate placed inside a growth
chamber. Crystals begin to grow at random locations with random orientation.
Eventually, the clusters meet somewhere on the substrate. Because the clusters have
different crystal orientations, the region where they meet cannot completely bond
together. This results in the interstitial region.

FIGURE 1.4.2

An electric field can rotate molecules with a perma-
nent dipole to create order.

FIGURE 1.4.1

Gas molecules do not bind to one another and haven’t
any order.
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Crystals have a long-range order as shown in Figure 1.4.3. Each lattice point in space

microns. Figure 1.4.4 shows two domains with different atomic order. The interstitial



Amorphous materials do not have any long-range order, but they have varying degrees
of short-range order. Examples of amorphous materials include amorphous silicon,
glasses, and plastics. Amorphous silicon provides the prototypical amorphous material
for semiconductors. It has wide ranging and unique properties for use in solar cells and
thin film transistors. The material can be grown by a number of methods including
sputtering and plasma enhanced chemical vapor deposition (PECVD). The order of the
atoms determines the quality of the material for conduction, and the order depends on
the growth conditions.

In the amorphous state, the long-range order does not exist. The bonds for amorphous
silicon all have essentially the same length and angle, but the dihedral angle can differ
(a change in the dihedral angle occurs when two bonded atoms rotate with respect
to each other about the bond axis, as shown in Figure 1.4.5. In some sense, a cluster
of fully coordinated silicon atoms produces local order, but the distribution of dihedral
angles yields variation in the spatial orientation of the clusters. Furthermore, some of
the atoms have less than four-fold coordination and therefore have unsatisfied bonds.
Under the proper preparation conditions, these dangling bonds terminate in hydrogen
atoms to produce hydrogenated amorphous silicon (a-Si:H).

1.4.2 Bonding and the Periodic Table

Semiconductor materials generally fall in columns III through VI in the periodic table.

levels. The first two columns of the periodic table correspond to the S orbital, which

FIGURE 1.4.3

Crystals have identical clusters of atoms attached to
lattice points in space.

FIGURE 1.4.4

A polycrystalline material showing two separate
crystal phases separated by interstitial material.

FIGURE 1.4.5

A rotation about the dihedral angle produces dangling bonds.
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requires two electrons to be stable. For example, hydrogen has only one valence
electron that occupies the spherically symmetric S orbital. Helium has two valence
electrons in the S orbital. As an exception, helium appears in the last column of the
periodic table to designate it as a stable noble gas. Columns III-A through VI-A (labeled
at the top of the column) plus column O represent the P orbitals, which require six
electrons for stability.

Example 1.4.1

Hydrogen needs a second electron for the S orbital to be filled. We therefore expect to
see hydrogen molecules as H2.

Example 1.4.2

Silicon in column 4 requires four extra electrons to fill the P level. However, silicon
already has four electrons. We therefore expect one silicon atom to covalently bond to four
other silicon atoms. Covalent bonds share valence electrons rather than completely
transfering the electrons to neighboring atoms (as for ionic bonding).

Silicon represents a prototypical material for electronic devices. Similarly, amorphous
silicon represents a prototypical material for amorphous semiconductors. Gallium
arsenide (GaAs) represents a prototypical direct bandgap material for optoelectronic
components. Aluminum and gallium occur in the same column of the table. We therefore
expect to find compounds in which an atom of aluminum can replace an atom of
gallium. Such compounds can be designated by AlxGa1�xAs.

The most stable atomic bonds release the greatest amount of energy during the bonding

distance between them. The separation distance labeled as ao yields a minimum in
the energy. Moving the atoms closer than this distance increases the energy, as does
moving them further apart. The binding energy E b represents the minimum energy
required to separate the two atoms, once bonding occurs.

Adding impurity atoms can affect the electronic and optical properties of a material.
For example, doping can be used to control the conductivity of a host crystal. n-type
dopants have one extra valence electron than the material itself. For example, we might
expect phosphorus to be an n-type dopant for silicon (see Not all
phosphorous valence electrons participate in bonding, and they can freely move about

FIGURE 1.4.6

The Periodic Table.
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Figure 1.4.8).



the crystal. p-type dopants have one less electron in the valence shell than atoms in the
host material. For example, boron is a p-type dopant for silicon.

The effects of doping on conduction can be easily seen for the n-type dopant in silicon.
The ‘‘extra’’ fifth electron orbits the phosphorus nucleus similar to a hydrogen atom.
However, the radius of the orbit must be much larger than the radius of a similar
hydrogen orbit. Unlike the orbit shown in the figure, the electron orbit actually encloses
many silicon atoms. The silicon atoms within the orbit can become polarized and screen
the electrostatic force between the orbiting electron and the phosphorus ion. As a result,
the electrons remain only weakly bonded to the phosphorus nucleus at low tempera-
tures. These electrons break their bonds at room temperature and freely move about
the crystal, thereby increasing the conductivity of the crystal. For GaAs, zinc and
silicon provide a p-type and n-type dopant, respectively.

1.5 Introduction to Bands and Transitions

Semiconductor devices most often use the crystalline form of matter. The conduction
and optical characteristics for emitters and detectors primarily depend on the band
structure. This section introduces the bands and possible transitions between the bands.
The matter–light interaction produces these transitions for lasers, light emitting diodes,
and detectors.

1.5.1 Intuitive Origin of Bands

As previously discussed, a silicon atom has four valence electrons so that it can covalently

FIGURE 1.4.8

An n-type dopant atom embedded in a silicon host crystal. The electron is loosely bound to the dopant atom and
free to roam about the crystal at room temperature.

FIGURE 1.4.7

Total energy of two atoms as a function of their separation distance.
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of the crystal and indicates adjacent atoms sharing two electrons. Adding energy to
the crystal (Figure 1.5.2) frees the electrons from the bonds so that they can roam
around the crystal lattice. This means that free electrons have larger energy than those
electrons in the bonds. The band gap energy is the minimum energy required to liberate
an electron. An electron that absorbs this minimum amount of energy must have a
potential energy equal to the gap energy. If the electron absorbs more than the minimum,
then it has not only the potential energy but also kinetic energy. The conduction band
(CB) represents the energy of the free electrons (also known as conduction electrons). The
vacancies left behind are ‘‘holes’’ in the bonding. The holes appear to move when
electrons in neighboring bonds transfer to fill the vacancy. The transferred electron leaves
behind another hole. The hole therefore appears to move from one location to the next.

The total energy of a conduction electron can be written as

E ¼ PE þ KE ¼ Eg þ
1
2mev

2 ð1:5:1Þ

where the potential energy equals the gap energy. Eg using the momentum p¼mev we
can rewrite the relation as

E ¼ Eg þ
p2

2me
ð1:5:2Þ

where me denotes an effective mass for the electron. Therefore, as shown in Figure 1.5.3,
the plot of the energy E vs momentum p must have a parabolic shape. If the electron
receives just enough energy to surmount the band gap, then it does not have enough
energy to be moving and the momentum must be p¼ 0. We will refer to these energy
diagrams as band diagrams or dispersion curves.

FIGURE 1.5.2

Cartoon representation of transition from VB to CB.

FIGURE 1.5.1

Cartoon representation of silicon crystal at 0 K.

FIGURE 1.5.3

Band diagram showing a direct band gap for materials such as GaAs.
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The promoted electron (conduction electron in the CB) leaves behind a hole at the Si–Si
bond. Neighboring bonded electrons can tunnel into the empty state. The holes therefore
move from one site to the next. This means that the holes can have kinetic energy. A plot
of the kinetic energy vs momentum p or wave vector k also has a parabolic shape for
the holes

E ¼
p2

2mh
ð1:5:3Þ

where mh denotes the effective mass of the hole. The free holes live in the valence band
(VB) and can participate in electrical conduction. The valence band has a parabolic shape
similar to the conduction band.

Some of the features of the bands require a quantum mechanical analysis. Let’s
comment on the reason for referring to bands as dispersion curves. When atoms come
close together to form a crystal, the energy levels for bonding split into many different
energy levels. All of these split-levels from all of the atoms in the crystal produce
the bands. ‘‘Bands’’ actually refer to a collection of closely spaced energy levels (see the
circles in Figure 1.5.4). For example, the CB energies are very closely spaced to form
the parabola. Sometimes people refer to these closely spaced states as ‘‘extended states’’
because the wave vector k indicates that electrons in these states are described by
traveling plane waves.

The conduction and valence bands comprise the E vs k dispersion curve, where k
denotes the electron (or hole) wave vector. We imagine that the electrons (and holes)
behave as waves with wavelength l¼ 2�/k. Using p ¼ �hhk, the band diagrams can be
relabeled as in Figure 1.5.4. The band diagram gives the energy of the electrons (and
holes) as a function of the wave vector (or momentum). The stationary particles have
k¼ 0 and those moving have nonzero wave vector. The E vs k diagrams are similar to
the frequency ! vs k diagrams used for optics (where ! is the angular frequency related
to the frequency � by !¼ 2��).

For recombination, the electrons must give up excess energy. Electrons and holes
recombine when they collide with each other and shed extra energy. They can emit
photons and phonons. Regardless of the process, the total energy given up must equal or
exceed the bandgap energy. The recombination of electrons and holes in direct bandgap
materials produces photons (i.e., the electron loses energy and drops to the valence band,
vb) in a direct bandgap material. These electron–hole pairs (sometime called excitons) are
‘‘emission centers’’ that can form the gain medium for a laser.

FIGURE 1.5.4

An elementary band diagram for gallium arsenide.
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1.5.2 Indirect Bands, Light and Heavy Hole Bands

a direct bandgap when the cb minimum lines up with the vb maximum (GaAs is an
example). A material having an indirect bandgap occurs (Figure 1.5.5) when the
minimum and maximum do not have the same value of the wave-vector k (silicon is an
example). For both direct and indirect bandgaps, the difference in energy between the
minimum of the cb and the maximum of the vb gives the bandgap energy.

GaAs has light-hole and heavy-hole valence bands (see Figure 1.5.6). The effective mass
of an electron or hole in one of the bands is proportional to the reciprocal of the band
curvature according to

1

meff
¼

1

�hh2

@2E

@k2
ð1:5:4Þ

The heavy-hole band HH has holes with larger mass than the light-hole band LH. The
light holes are a couple of orders of smaller magnitude than the free mass of an electron
for GaAs. The effective mass me of a particle gives rise to the momentum according
to p ¼ �hhk ¼ mev. Both valence bands can contribute to the absorption and emission of
light. For GaAs, the maximum of the two vb’s have approximately the same energy.

Adding indium to the GaAs causes strain in the lattice of gallium and arsenic
atoms which forces them away from their normal equilibrium position in the lattice.
Strain eliminates the degeneracy between the two valence bands at k¼ 0 (separates
them in energy). Strain also tends to increase the curvature of the HH band, reduces
the mass of the holes in that band and therefore increases the speed of GaAs devices.
It increases the gain for lasers. It also changes the bandgap slightly and therefore also
the emission wavelength of the laser.

1.5.3 Introduction to Transitions

Consider two methods of adding energy to move electrons from the valence band to
the conduction band. First, valence band electrons can absorb phonons. The phonon is the
quantum of vibration of a collection of atoms about their equilibrium position. Second,
the electron in the valence band can absorb a photon of light.

Figure 1.5.5 shows a full valence band at a temperature of T¼ 0 K. If the semiconductor
absorbs light or the temperature increases, some electrons receive sufficient energy

FIGURE 1.5.5

A semiconductor at zero degrees Kelvin with an
indirect bandgap.

FIGURE 1.5.6

GaAs has a light LH and heavy HH hole valence
band.
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The material represented by Figure 1.5.4 has a direct band gap. A semiconductor has



to make a transition from the valence to the conduction band. Those electrons in the
conduction band cb and holes in the valence band vb become free to move and can
participate in electrical conduction. Each value of ‘‘ k ,’’ labels an available electron state
in either the conduction or valence band. Notice that for nonzero temperatures, the
electrons reside near the bottom of the conduction band and the holes occupy the top
of the valence band. Carriers tend to occupy the lowest energy states because if they
had higher energy, they would lose it through collisions.

Optical transitions between the valence and conduction bands require photons with
energy larger than the bandgap energy. A photon has energy E� ¼ �hh!� and momentum
p� ¼ �hhk� , where the wavelength is l�¼ 2�/k� and the speed of the photon is v¼!�/k�. We
expect momentum and energy to be conserved when a semiconductor absorbs (or emits)
a photon. The change in the electron energy and momentum must be �E ¼ �hh!�

and �p ¼ �hhk� respectively. However, the momentum of the photon p� ¼ �hhk� is small
(but not the energy) and so �p ffi 0. This means that 0 ¼ �p ¼ �hh�k and, as a result �k¼ 0,
and so the transitions occur ‘‘vertically’’ in the band diagram.

Figure 1.5.7 shows an atom absorbing energy by promoting an electron to the cb. The
absorbed photon has energy larger than the bandgap and the electron has nonzero
wavevector k. Initially, the electron in the valence band had nonzero wavevector k
(it was moving to the right). Now, the electron in the conduction band has nonzero
wavevector (it also moves to the right with the same momentum it had in the valence
band). However, now the electron has more energy than the minimum of the conduction
band. The electron collides with the lattice (etc.) to produce phonons and drops to the
minimum of the conduction band. The produced particles must be phonons because
the settling process (a.k.a., thermalization) requires a large change in wavevector and
therefore a large change in momentum. Phonons have small energy but large momentum
whereas photons have large energy but small momentum. Any process that involves the
phonon leads to a change in the electron wave vector; this explains why phonons
are involved in transitions across the bandgap of indirect bandgap materials. As a side
issue, notice the satellite valley on the conduction band in Figure 1.5.7 (i.e., the small
dip on the right-hand side). Fast moving electrons (large k) can scatter into these valleys
(inter-valley scattering) and constitutes an undesirable process in most cases.

1.5.4 Introduction to Band Edge Diagrams

We often describe the working of devices using band-edge diagrams. These diagrams
plot energy vs position for the carriers inside a semiconductor. The next section uses
this concept to explain the working of the pervasive pn junction.

FIGURE 1.5.7

Optical transitions are ‘‘vertical’’ in the band diagram because the photon momentum is small. The electron can
lose energy by phonon emission.
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The band-edge diagrams (spatial diagrams) can be found from the normal E–k
band diagrams (dispersion curves). Recall that a dispersion curve has axes of E vs k and
doesn’t give any indication or information on how the energy depends on the position
variable x. In fact, there must exist one dispersion curve for each value of ‘‘x’’ (we assume
just one spatial dimension) in the material. We group the states near the bottom of the E–k
conduction band together to form the conduction band ‘‘c’’ for the band-edge diagram (see
Figure 1.5.8). Similarly, we group the topmost hole states in the E–k valence band to
provide the valence band for the band-edge diagram. The width of the levels c and v are
approximately 25 meV which is much smaller than the band gap. This is why the thin lines
labeled ‘‘c’’ and ‘‘v’’ can represent the conduction and valence states in Figure 1.5.8.

Now consider the band bending effect. Imagine a semiconductor material embedded
between two electrodes attached to a battery as shown in Figure 1.5.9. The electric
field points from right to left inside the material. An electron placed inside the material
would move towards the right under the action of the electric field. We must add
energy to move an electron closer to the left-hand electrode (since it is negatively charged
and naturally repels electrons). This means that all electrons have higher energy near
the left-hand electrode and lower energy near the right-hand electrode.

For the situation depicted in Figure 1.5.9, all electrons have higher energy near the left
hand electrode. The term ‘‘all electrons’’ refers to conduction and valence band electrons.
This means that near the left electrode, the E–P diagrams must be shifted upwards to
the higher energy levels. Once again grouping the states at the bottom of the conduction
bands across the regions, we find a band-edge. Similarly, we group the tops of the

FIGURE 1.5.9

Bands bending between parallel plates connected to a battery.

FIGURE 1.5.8

The states within an energy kT of the bottom of the conduction band or the top of the valence band form the
levels in the band-edge diagram.
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valence bands. When we say that the conduction band cb (for example) bends, we are
actually saying that the dispersion curves are displaced in energy for each adjacent point
in x. Now we see that the electric field between the plates causes the electron energy to
be larger on the left and smaller on the right. An electron placed in the crystal moves
to the right to achieve the lowest possible energy. Stated equivalently, the electron
moves opposite of the electric field towards the right-hand plate.

Band-edge diagrams can be used to understand a large number of opto-electronic
components such as PIN photodetectors and semiconductor lasers. In fact, Figure 1.5.10
shows an example of a GaAs quantum well laser or LED having a PIN heterostructure.
Actually the doping does not extend up to the well, but remains at least 500 nm away.
The bands appear approximately flat under forward bias of approximately 1.7 V. The
bandgap in AlxGa1-xAs is slightly larger than that for GaAs as can be seen from the
approximate relation Eg ¼ 1:424 þ 1:247x (eV) for x< 0.5. The semiconductor AlxGa1-xAs
has a direct bandgap for x< 0.5 and becomes indirect for x> 0.5. Usually the clad layers
(the layers right next to the well) with x¼ 0.6 are used which gives an approximate
bandgap of 1.9 eV compared with 1.4 for GaAs. Applying a bias voltage to the structure
causes carriers to be injected into the undoped GaAs region (well region) from the ‘‘p’’
and ‘‘n’’ regions. Electrons drop into the conduction band cb well, and holes drop into the
valence band vb well. Sufficiently thin well regions form quantum wells that confine
the carriers (holes and electrons) and enhance the radiative recombination process,
producing photons �.

1.5.5 Bandgap States and Defects

For perfect crystals, electrons can in the valence and conduction
bands (a similar statement holds for holes). The situation changes for doping and defects.

Consider the case for doping first. For simplicity, we specialize to n-type dopants such

The electrons in Si–Si bonds require on the order of 1.1 eV of energy to break them free
and promote them to the conduction band. Therefore, we know that the bonding electrons
live in a band diagram with a band gap on the order of 1.1 eV (see the band-edge diagram

but only needs 4 of them for bonding in the silicon crystal. The 5th electron remains
only weakly bonded to the phosphorus nucleus at low temperatures. Small amounts of
energy can ionize the dopant and promote the electron to the conduction band. Therefore,
the dopant states must be very close to the conduction band as shown in the figure.
At very low temperatures (below 70 K), we might expect all of the Si–Si bonding
electrons to be in the valence band and most of the dopant electrons to be in the shallow
dopant states. As the temperature increases, more of the dopant states empty their

FIGURE 1.5.10

Band-edge diagram for heterostructure with a single quantum well.
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as phosphorus in silicon (refer to the previous section in connection with Figure 1.4.8).

in Figure 1.5.11). However, recall that a phosphorus dopant atom has 5 valence electrons

only occupy states



electrons into the conduction band and the electrical conductivity must increase. By
the way, the dopant states are localized states because electrons in the dopant states
cannot freely move about the crystal—they orbit a nucleus in a fixed region of space.

The amorphous materials provide good examples for bandgap states arising from
defects. Amorphous materials do not have perfect crystal structure. The material has many
dangling bonds with 0, 1, or 2 electrons. The dangling bonds with 1 or 2 electrons require
different amounts of energy to liberate an electron. For simplicity, consider dangling
bonds with a single electron. These dangling bonds exist in a variety of conditions so that
these electrons require a range of energy to be promoted to the conduction band (actually,
for amorphous materials, the conduction band-edge becomes the ‘‘mobility edge’’). The
dangling bonds have very high density (i.e., the number of bonds per unit volume) and
occupy a wide range of energy as shown in the band-edge diagram (Figure 1.5.12).

Electrical conduction can proceed by two mechanisms in the amorphous materials.
Hopping conduction can take place between spatially and energetically close bandgap
states. The electron quantum mechanically tunnels from one state to the next to produce
current. Multiple trapping conduction takes place when conduction electrons repeatedly
become trapped in the bandgap localized states and repeatedly absorb enough energy
to become free again. Those electrons trapped closest to the center of the band gap
require the greatest amount of energy to be freed. At room temperature, most phonons
have an energy of approximately 25 meV. Fewer phonons have larger energy. Therefore,
those electrons in the deeper traps must wait a longer amount of time to be released to the
conduction band (i.e., above the mobility edge). We therefore see that the traps decrease
the average mobility of the carriers by ‘‘freezing’’ them out for a period of time. With a
little thought, you can see that the electrons tend to accumulate in the lower states. Also,
these lower states near midgap tend to act as recombination centers. The electrons stay in
the traps so long, that nearby holes almost certainly collide with them and recombine.

We therefore see another facet of the bandgap states. Some act purely as temporary
traps and others as recombination centers. The function of the gap states, depends on
the depth in the gap.

1.5.6 Recombination Mechanisms

The monomolecular, bimolecular, and Auger recombination mechanisms are especially
important for light emitters. The bimolecular recombination produces spontaneous
emission (radiative recombination) while the monomolecular and Auger recombi-
nation primarily involves phonons (nonradiative recombination). The recombination
rates R (number of particles recombining per second per unit volume) can depend on
the density of electrons n and holes p (number per volume), and on the density of
bandgap defects.

FIGURE 1.5.11

The n-type dopant states are very close to the
conduction band.

FIGURE 1.5.12

Amorphous materials have many bandgap states
spread across a wide range of energy. Electrical
conduction can occur by hopping (Hop) and multiple
trapping (MT).
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Monomolecular recombination involves a single type of carrier (at least initially).
Monomolecular recombination occurs, for example, when electrons enter recombination
states within the band gap (see Figure 1.5.13). They remain trapped (for the most
part) until holes come along to recombine with the electrons. Even if the recombination is
radiative, the emission would be at the wrong wavelength to contribute to the laser mode.
The gap states remain relatively unoccupied. The carriers therefore become trapped in
the gap states at a fairly constant rate. The lifetime �n describes the length of time that
carriers (in the conduction band or valence band) can live before trapping-out in the gap
states (in the absence of other processes).

The rate of decrease of carriers due to monomolecular recombination, given by n/�n,
produces simple exponentials for the carrier distributions. For example, if we start
at time t¼ 0 with a density of n0 electrons in the conduction band without any pumping
and any other form of decay, we could write

dn

dt
¼ �

n

�n
to find that nðtÞ ¼ no exp �t=�nð Þ ð1:5:5Þ

where the monomolecular recombination rate is Rmon ¼ �dn=dt. So �n represents a
time constant that describes the length of time required for the carrier density n to drop
to 1/e of the original population. The rate equations for the matter–light interaction
incorporate this differential equation.

Bimolecular recombination involves both types of carriers and the rate depends on
the number of each type. Figure 1.5.14 shows collisions between electrons and holes,
which results in recombination. For radiative recombination, every recombination event
produces a photon. The number of ‘‘collisions’’ must be proportional to the number of
holes. The greater the number of holes and electrons in a finite volume, the greater
the chance a hole and electron will collide. So we expect the number of recombination
events to be proportional to the product ‘‘np.’’ For intrinsic material as found in the active
region of some light emitters, we assume equal numbers of holes and electrons (n¼ p)
so that the recombination rate is proportional to n2. We take B as the constant of
proportionality. The radiative recombination rate becomes

Rspont ¼ Bn2 ð1:5:6Þ

Auger recombination is another nonradiative recombination mechanism and is
important for lasers with emission wavelengths larger than 1 mm (small bandgap). For
comparison, GaAs lasers generally emit between 800 to 860 nm. Semiconductor lasers
made from InGaAsP can exhibit Auger recombination at relatively high power levels.
There are several types of Auger recombination but they are all basically the same. Auger
recombination involves collision between the same type of carrier (hole ‘‘collides’’ with a
hole or an electron collides with an electron). This recombination channel requires

FIGURE 1.5.13

Recombination centers in the band gap.

FIGURE 1.5.14

Bimolecular recombination.
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phonons. Figure 1.5.15 shows an example where electron 1 collides and transfers its



energy to electron 2. Electron 1 recombines to lose its energy. Electron 2, having received
the extra energy, moves higher up in the conduction band cb. Electron 2 cascades
downward by transferring its energy to phonons, which heats up the crystal lattice. This
is a nonradiative process that removes carriers that would otherwise contribute to the
laser gain. It is therefore an unwanted process. Auger recombination usually occurs
at larger optical power or at higher temperatures. The Auger recombination rate is
proportional to n3 because (in our example) the process involves two electrons and one
hole (and n¼ p). The Auger recombination rate is

Raug ¼ Cn3 ð1:5:7Þ

Nonradiative recombination occurs primarily through phonon processes. Materials with
indirect bandgaps rely on the phonon process for carrier recombination. For direct
bandgaps as in GaAs, the phonon processes are much less important since radiative
recombination dominates the recombination channels. For nonradiative recombination,
an energetic electron produces a number of phonons (rather than photons) and then
recombines with a hole. The phonon processes reduce the efficiency of the laser because a
portion of the pump must be diverted to feed these alternate (nonradiative) recombina-
tion channels. However, all lasers produce some phonons as the semiconductor heats up.

Combining all of the different types of recombination we can write the total rate of
recombination RT as

RT ¼ Rradiative þ Rnonradiative ¼ Rmon þ Rspont þ Raug ¼ Anþ Bn2 þ Cn3 ð1:5:8Þ

where A¼ 1/�n. The rates R have units of ‘‘number of recombination events per unit
volume per second.’’ The effective carrier lifetime �e, which depends on the carrier
density ‘‘n,’’ can be defined as

1

�e
¼ Aþ Bnþ Cn2 ð1:5:9Þ

Therefore, the total recombination rate must be

RT ¼
n

�e
ð1:5:10Þ

As we will see later, this turns out to be a nice way of writing the recombination rate
since the carrier density will be approximately constant when the laser operates above
threshold. For lasers made with ‘‘good’’ material, the term B dominates the recombina-
tion process. That means radiative recombination dominates the other recombination

FIGURE 1.5.15

Example of Auger recombination.
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processes. If we restrict our attention to GaAs then C can be neglected. We will usually
write

Rr ¼ Bn2 ð1:5:11Þ

1.6 Introduction to the pn Junction for the Laser Diode

The semiconductor laser, light emitting diode (LED), and detector have electronic
structures very similar to a semiconductor diode. The emitter and detector use adjacent
layers of p and n type material or p, n and i (instrinsic or undoped) material. For the case
of emitters, applying a forward bias voltage, controls the high concentration of holes and
electrons near the junction and produces efficient carrier recombination for photon
production. For the case of detectors, reverse bias voltages increase the electric field at
the junction, which efficiently sweeps out (removes) any hole–electron pairs created
by absorbing incident photons. The emitting and detecting devices operate only by virtue
of the matter properties and the imposed electronic junction structure.

1.6.1 Junction Technology

The semiconductor pn junction (diode) has a special place in technology since it forms
an integral part of most devices. The diode has ‘‘p’’ and ‘‘n’’ type regions as shown in
Figure 1.6.1. Gallium arsenide (GaAs) serves as a prototypical material for light emitting
devices. The p-type GaAs can be made using beryllium (Be) and zinc (Zn) as dopants

whereas the n-type GaAs uses silicon
(Si). The diode structure allows current
to flow in only one direction and it
exhibits a ‘‘turn-on’’ voltage. Some
typical turn-on voltages are 1.5 for
GaAs, 0.7 for Si, 0.5 for Ge. Typically,
the light emitters have the p-type mate-
rials on the topside of the wafer where
all of the fabrication takes place.

Forward or reverse bias voltages
can be applied to the diode structure.
The forward bias applies a field paral-
lel to the direction of the triangle
(Figure 1.6.1). In the case of GaAs,
electrons and holes move into the active
region where they recombine and emit
light. Reverse bias voltages can be
applied to the semiconductor diode,
laser, and LED to use them as photo-
detectors. In reverse bias, photocurrent
dominates the small amount of leakage
current. Not all semiconductor junctions
produce light under forward bias. Only
the direct bandgap materials such as
GaAs or InP efficiently emit light (a

FIGURE 1.6.1

Forward biasing a GaAs laser diode (top). The I–V
characteristics (bottom) show the photocurrent when
the diode is reversed biased.
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photon dominated process). The indirect bandgap materials like silicon support carrier
recombination through processes involving phonons (lattice vibrations). Although indirect
bandgap materials can emit some photons, the number of photons will be of orders of
smaller magnitude than for the direct bandgap materials.

Semiconductor devices can be classified as homojunction or heterojunction depending
on whether the laser diode consists of a single material or two (or more) distinct
materials. For the emitter, the heterojunction provides better carrier and optical con-
finement at the active region of the device than the homojunction. Better confinement
implies higher net gain and greater efficiency. The next topic discusses the formation
and operation of the pn homojunction. Equilibrium statistics describe the carrier dis-
tributions in a diode without an applied voltage whereas nonequilibrium statistics
describe the carrier distributions for forward bias.

1.6.2 Band-Edge Diagrams and the pn Junction

The doping and statistical characteristics of the material determine the properties of the
pn junction. The pn diode consists of n and p type semiconductor layers. For the n-type
material, the dopant atoms must have a weakly bound electron and the material must not
have electrically active defects. Similar comments apply to the p-type material. Naturally
the doped crystalline materials most easily satisfy these requirements. However, it is
possible to form pn junctions in amorphous materials under appropriate conditions.
The doping process ‘‘grows’’ mobile holes and electrons into the material. Applying an
electric field causes the electrons in the cb to move from negative to positve (opposite
to the direction of the applied field); holes move parallel to the applied field.

A cartoon representation of the conduction and valence bands vs distance into a material
appears in Figure 1.6.2. The position of the Fermi level in the bandgap indicates the
predominant type of carrier. For p-type, the Fermi level EF has a position closer to the
valence band and the material has a larger number of free holes than free electrons.
Similarly, a Fermi level EF closer to the conduction band implies a larger number of
conduction electrons. When the n-type and p-type materials are isolated from each other,

FIGURE 1.6.2

Combining two initially isolated doped semiconductors produces a PN junction with a built-in voltage (top).
The built-in voltage is associated with a space charge region produced by drift and diffusion currents.
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‘‘excess’’ electrons in the n-type and holes in the p-type cannot come into equilibrium

necessarily line up with each other.
an configuration for spatially separated and electrically

isolated p-type and the n-type materials. Bringing the ‘‘p’’ and ‘‘n’’ type materials into

bend the band, energy must be added or subtracted in regions of space. We know from
electrostatics that electric fields can change the energy.

What causes the electric field? When the two chunks of material are combined, the
electrons can easily diffuse from the n-type material to the p-type material; similarly, holes
diffuse from ‘‘p’’ to ‘‘n.’’ This flow of charge maximizes the entropy and establishes
equilibrium for the combined system. For example, the diffusion process might be
pictured similar to the process occurring when a single blue drop and a single red drop of
dye are spatially separated in a glass of water; each drop spreads out and eventually
intermixes by diffusion. Unlike the dye drops, the holes and electrons carry charge and
set up an electric field at the junction as they move across the interface. The diffusing
electrons attach themselves to the on the p-side but they leave behind
positively charged cores. The separated charge forms a dipole layer. The direction of the
built-in electric field prevents the diffusion process from indefinitely continuing.
We define the diffusion current Jd to be the flow of positive charge due to diffusion
alone (the figure shows positive charge diffuses to the right across the junction). We
define the conduction current Jc to be the flow of charge in response to an electric field

the action of the built-in field. Equilibrium occurs when Jc¼ Jd. The particles stop
diffusing because of the established built-in field; an electrostatic barrier forms at the
junction. Electrons on the n-side of the junction would be required to surmount the
barrier to reach the p-side by diffusion; for this to occur, energy would need to be added
to the electron. Diffusion causes the two Fermi levels to line-up and become flat. The
Fermi energy EF is really related to the probability that an electron will occupy a given
energy level.

1.6.3 Nonequilibrium Statistics

The previous topic discussed how n and p type semiconductors when brought
into contact establish a junction at statistical equilibrium. Applying forward bias to the
diode produces a current and interrupts the equilibrium carrier population. Basically,
any time the carrier population departs from that predicted by the Fermi-Dirac
distribution, the device must be described by nonequilibrium statistics.

How should nonequilibrium situations be described? To induce current flow, we
need to appl y an electric field to reduce the electrostatic barrier at the junction so that

bi (for the
equilibrium case) points from ‘‘n’’ to ‘‘p’’ and so we must apply an electric field Eappl that
points from ‘‘p’’ to ‘‘n’’ to reduce the barrier. This requires us to connect the p-side of the
diode to the positive terminal of a battery and the n-side to the negative terminal.
Figure 1.6.3 shows that the applied voltage V reduces the built-in barrier and allows
diffusion current to surmount the barrier. Notice also that the Fermi level is no longer
flat in the junction region. The applied field is proportional to the gradient of the Fermi
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region. The final band diagram requires the conduction and valence bands to ‘‘bend’’ in

contact forms a diode junction and forces the two Fermi energy levels to line up while

initial

with each other and hence the Fermi levels (that represent statistical equilibrium) do not

p-dopants

Figure

the region of the junction. The ‘‘band’’ represents the energy of electrons or holes. So, to

approximately maintaining their position relative to each band except in the junction

1.6.2 shows

alone. Figure 1.6.2 shows that positive charge would flow from left to right under

diffusion can again occur as shown in Figure 1.6.3. The built-in electric field E



energy EF. The hole and electron density in the ‘‘n’’ and ‘‘p’’ regions are described by
the quasi-Fermi energy levels Fv and Fc respectively. The quasi-Fermi levels describe
nonequilibrium situations. We will see the importance of quasi-Fermi levels for obtaining
a population inversion in a semiconductor to produce lasing. The separation between
the two quasi-Fermi levels can be related to the applied voltage.

The absorption of light by a semiconductor (without any bias voltage) shows the
reason for using quasi-Fermi levels. Consider Figure 1.6.4. The semiconductor absorbs
photons with energy larger than the bandgap Eg¼Ec�Ev by promoting an electron from
the valence band to the conduction band. Therefore, shining light on the material
produces more electrons in the conduction band and more holes in the valence band.
For the intrinsic semiconductor, the number of holes and electrons remain equal.
However, if we insist on describing the situation with a single Fermi level F, then moving
it closer to one of the bands increases the number of carriers in that band but reduces
the number in the other. Therefore the single Fermi level must split into two in order to
increase the number of carriers in both bands. The energy difference between the electron
quasi-Fermi energy levels and the conduction band provides the density of electrons
in the conduction band (a similar statement holds for holes and the valence band).

FIGURE 1.6.3

Band-edge diagrams for a PN diode in thermal equilibrium (no bias voltage) and one not in equilibrium (switch
closed). The Fermi-level is flat for the case of equilibrium. However for the nonequilibrium case, the single Fermi
level splits into two quasi-Fermi levels. The dotted line on the right-hand side shows the position dependent
Fermi level.

FIGURE 1.6.4

Light shining on a semiconductor (even without bias voltage) produces two quasi-Fermi levels. The quasi- Fermi
levels show that we expect more electrons in the conduction band and more holes in the valence band than
predicted by thermal equilibrium statistics (i.e., the Fermi-Dirac distribution).
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1.7 Introduction to Light and Optics

Semiconductor emitters produce light, and detectors absorb it. In order to describe
these processes, it is first necessary to discuss the nature of light and to develop a
mathematical framework. Light has both particle and wave properties. The quantum
theory describes the particle nature of light. Maxwell’s field equations describe the
wave nature of light, the classical interaction of matter and light, and unifies all of
electromagnetic (EM) phenomena (RF and optical). The classical matter–light interaction
explains the refractive index, absorption/gain and nonlinear EM phenomena. These
define the study of optics. In this book, we group the traditional study of optics with
the study of light (including the quantum theory of light) and reserve the study of the
‘‘matter light interaction’’ for the quantum description of transitions.

1.7.1 Particle–Wave Nature of Light

Light and matter have both particle and wave properties. The early Greeks first proposed
an ‘‘atomic’’ model of matter. An ‘‘atomic’’ model for light does not depart much from
this earlier notion. In the 1600s, Newton favored the particle nature of light described by
a corpuscular theory. At the same time, Huygens explained a number of light phenomena
with the wave theory. In the early 1800s, Young demonstrated the interference of
light beams and laid to rest the corpuscular theory. Maxwell collected all electromagnetic
phenomena into the field equations, which unified the optical and RF phenomena
and predicted the speed of light in vacuum. In the early 1900s, Planck proposed a new
particle theory for energy transfer in order to explain the ultraviolet catastrophe of
light. The quantum of energy for a wave having wavelength l must be E ¼ �hh! ¼ hc=l,
where h ¼ 2��hh is Planck’s constant, ! ¼ 2�f is the angular frequency corresponding to
the frequency f (Hz), f ¼ c=l, and c is the speed of light in vacuum. Afterwards,
Einstein explained the photoelectric effect with the new particle theory and later received
the Nobel prize. Also about this time, Einstein developed the special theory of relativity
making use of the constant speed of light in vacuum and thereby uniting space–time
(and momentum–energy). Since that time, the wave–particle duality for both light and
matter has become an everyday fact.

With such a long history, how do we picture light as both a particle and a wave?
Most of the time, people say the act of observation (i.e., certain experiments) forces light
to behave as either a particle or as a wave. Sometimes people say the particle aspect refers
to quantities, such as energy and momentum, usually reserved to describe physical
(nonlight) particles having mass. Today, since the advent of quantum electrodynamics
(QCD—‘‘the best theory we have’’), the particle and wave properties appear in a single
equation. For example, the equation for an EM plane wave E �

~̂
bb̂bb eikz�i!t has both the

wave aspect due to the classical plane wave eikz�i!t (spatial-temporal mode) and the
particle aspect because of the amplitude operator b̂b. A similar plane wave can be used to
represent matter such as electrons (second quantization). This shows that the particle
and wave aspects actually refer to separate aspects of the light; the wave aspect comes
from the spatial-temporal mode (classical sinusoidal wave) and the particle aspect
must be related to the amplitude. Although some aspect of light appears as a wave, only
whole multiples of the quantum E ¼ �hh! can be transferred.

Initially in the early 1900s, the quantum of light referred to the notion of particles of
energy (E�E). The theory later evolved to mean the quantum theory of electromagnetic
fields E. Therefore, we might surmise the quantum of energy should be recovered from the
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quantity E�E � b̂bþb̂b where ‘‘þ’’ represents the complex conjugate for operators. In fact, we
will see that the quantity b̂bþb̂b represents the number operator that gives the number of
photons in an EM mode.

We represent the amplitude of the light by an operator, which must operate on
‘‘something’’ to provide a value. This something is a vector space (i.e., a function space).
The vectors in the space determine the exact nature of the plane wave. We consider Fock,
coherent, and squeezed type vectors. A laser operated at sufficiently high power produces
a sinusoidal wave most closely related to the coherent state. Low noise lasers and
parametric amplifiers can produce the squeezed states. It turns out that repeated
simultaneous measurements of the magnitude and phase of the amplitude do not yield
a single number for the amplitude and a single number for the phase; the measurements
interfere with each other. As a result, the light has an intrinsic statistical distribution for the
photon number and the phase. In the coherent state, repeated measurement of the photon
number produces a range of values. The photon number has a Poisson distribution.

1.7.2 Classical Method of Controlling Light

Maxwell’s equations unify the electromagnetic phenomena using the framework of
waves. It describes both the free fields and those interacting with matter. In the theory,
matter can produce or absorb light using dipoles (in addition to other mechanisms).
Electrical dipoles consist of a bound pair of charges of opposite sign as shown in
Figure 1.7.1. As will be discussed in more detail later, the dipole is represented by

~pp ¼ q~rr ð1:7:1Þ

where q is the magnitude of one of the charges and ~rr is the separation between them.
Usually, we are most interested in the induced dipoles which means they are formed
by applying an electric field ~EE. Although bound, the charges in the induced dipole
can move (for example, imagine the two charges connect by a linear spring). The figure
shows two charges capable of changing positions. The polarization ~PP describes the
number of dipoles per unit volume. The induced polarization must be related to the
field according to

~PP ¼ �~EE ð1:7:2Þ

FIGURE 1.7.1

The oscillating charge produce an electric field that moves into space at speed c.
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where � represents the susceptibility and describes how easily the electric field can
induce dipoles.

The dipoles produce light (i.e., produce gain), absorb light and provide an index
of refraction. Actually, the gain and absorption can be related to the complex parts of
a refractive index and a wave vector. First, let’s see how the dipoles produce an EM
wave. Suppose an induced dipole moment oscillates at frequency ! as shown in

charges. After a period of time, as shown in the bottom portion of the figure, the two
charges have changed position and the electric field points in the opposite direction.
As the field changes, the lines of force radiate into space with the speed of light.
The moving charge produces current at the position of the dipole and therefore produces
a magnetic field that also moves into space.

What happens if the radiated field from an oscillating dipole travels through a
dielectric (i.e., a material capable of being polarized)? The EM wave can excite (induce)
the oscillation of a collection of dipoles (the incident electric field forces the charges to
separate). If the electric field interacts with a dielectric then its speed becomes c/n (where
n is the refractive index). Basically, dipoles absorb the EM field and then re-radiate
the field. The absorption-radiation sequence takes some time and slows down the
progression of the EM wave. The colors (frequencies) that most closely match the
resonant frequency of the dipoles therefore interact the strongest and should therefore
propagate the slowest. The index of refraction must therefore be linked with the
frequency response of the dipoles (i.e., the frequency response of the susceptibility).
If the oscillators are damped (friction), then the absorbed light can be converted into
heat and not re-radiated.

Elementary courses on optics show how the refractive index can be used to manipulate
and control light. The refractive index of glass makes it possible to focus light
using lenses. The dipole absorption can be used for color filters. The dipole emission
properties produce gain in semiconductor lasers and optical amplifiers. As indicated
in the next topic, the index makes it possible to control the position of the wave as it
propagates through a semiconductor wafer (waveguiding). The laser would not be of
much use without the waveguide.

Nonlinear optics uses the departure of dipoles from the simple linear relation
~PP ¼ �~EE with � a constant over the field range of interest. In some cases, larger electric
fields stretch the ‘‘dipole spring’’ to where it no longer behaves linearly with field.
In this case, the susceptibility � changes with the field. We can now imagine applying a
‘‘steady-state’’ field to stretch the dipoles to set the value of �. Then a small incident
EM wave will experience a refractive index set by the polarization through �. This
nonlinear behavior can be used to make electrically controlled lenses and waveguide
switches.

FIGURE 1.7.2

Band-edge diagram for an AlGaAs-GaAs heterostructure.
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Figure 1.7.1. The top portion of the figure shows the electric field due to the two point



1.7.3 The Ridge Waveguide

The heterojunction GaAs laser has a PIN structure consisting of an undoped (i.e.,

The bands appear approximately flat under forward bias of approximately 1.7 V.
The bandgap of AlxGa1� xAs is slightly larger than that for GaAs according to the
approximate relation Eg ¼ 1:42 þ 0:78 x in electron volts for x< 0.5 (see
The semiconductor AlxGa1� xAs has a direct bandgap for x< 0.5 and becomes indirect
for x> 0.5. Usually the heterostructure uses x¼ 0 (pure GaAs) and x¼ 0.5 (50%
aluminum) which gives bandgaps of 1.5 and 1.8 eV, respectively. Besides controlling
the bandgap, the aluminum concentration also determines the refractive index of
the material. A form of the Sellmeier equation gives the refractive index of undoped
AlxGa1� xAs to within a few percent

n ¼ Aþ
B

l2
� C

�Dl2

� �1=2

ð1:7:3Þ

where A¼ 13.5� 15.4xþ 11.0x2, B¼ 0.690þ 3.60x� 4.24x2, C¼ 0.154� 0.476xþ 0.469x2,
D¼ 1.84� 8.18xþ 7.00x2, and the vacuum wavelength l has the range of 0.564 to
1.033 mm. Corrections to the index of refraction due to dielectric absorption and the
conductivity of doped material are neglected. Equation (1.7.3) shows that increasing
aluminum concentrations produce decreasing refractive indices.

The heterostructure plays two very important roles for the laser. First it provides an
optical waveguide and second it can be used to make quantum wells. The optical wave-
guide confines the light to regions of high gain. shows a ridge guided
laser (also see using two different waveguiding mechanisms for the
transverse and longitudinal directions. Consider the transverse direction. The waveguide
has a core region with a refractive index larger than that for the surrounding cladding.
Equation (1.7.3) shows that the larger bandgap material has the smaller refractive index.
The lower refractive index of the cladding (Al0:5Ga0:5As) confines the transverse optical
mode to a width about 300 nm. Often the composition of the PIN structure is graded
rather than the flat structure shown in the figure.

The efficiency of the semiconductor laser can be improved by keeping the optical mode
away from the doping. The evanescent tail of the optical mode can extend as far as
500 nm or more depending on the difference between the refractive indices of the active
and surrounding regions. Free carriers in the doped regions tend to absorb the fields
and reduce the efficiency of the laser. The core resides between the cladding layers
(transverse direction along x) which have smaller refractive indices.

The ridge waveguide provides an example of a waveguiding mechanism that
confines the optical mode along the lateral direction. The ridge along the length of the
laser (longitudinal direction) defines a waveguide with a length on the order of 100
to 1000 mm. The ridge and therefore the output beam are typically 5 mm wide. The ridge
provides lateral confinement so long as the surface ‘‘s’’ next to the ridge is within
approximately 150 nm of the active region (see Figure 1.7.4). The evanescent tail of the
optical mode must press against the air—Al0:5Ga0:5As interface. The effective index of the
Al0:5Ga0:5As decreases because the lower index of the air must be made part of
the average. The lateral confinement (especially for gain or ridge guided lasers) can be
quite weak and the evanescent tail can extend up to a micron along the lateral direction.
Better lateral confinement can be obtained by using a buried heterojunction which places
the optical mode in the ‘‘center’’ of the wafer with low index materials on all four
sides along the length.
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intrinsic) layer sandwiched between the ‘‘p’’ and ‘‘n’’ layers as shown in Figure 1.7.2.

1.2.1).Figure

Figure 1.7.3
1.7.4)Figure



The heterostructure can be used to form electron and hole quantum wells in the
active region of the laser. The wells appear similar to those in Figure 1.7.3 but with
a width on the order of 50 to 200 angstroms (Å). The quantum wells spatially confine
the electrons and holes and thereby increase the recombination efficiency. In addition,
the clad layers improve the overlap between the mode and the well region to further
improve the efficiency.

FIGURE 1.7.3

Construction of the laser heterostructure and the resulting mode profile.

FIGURE 1.7.4

Edge view of the mode.
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1.7.4 The Confinement Factor

The confinement factor represents the fraction of power (or fraction of photons) confined
to a volume; it often determines the performance of a device. Let P ~rr

� �
� ~EE�E represent

the optical power density at point ~rr. The fraction of the total power contained within a
volume V can be written as

� ¼
Power in V

Total Power
¼

R
V P ~rr

� �
dVR

All Space P ~rr
� �

dV
ð1:7:4Þ

Two types of confinement factor are often encountered in optoelectronics. The first
measures the percentage of optical power confined to the core of a waveguide (volume
Vc). The second measures the percentage confined to an ‘‘active’’ region (volume Va) such
as the quantum wells in semiconductor laser.

The active region (volume V) contains the holes and electrons that recombine. For a
laser, this region must interact with the optical mode to produce more light. The active
region consists of intrinsic material for a number of semiconductor lasers. Electrical
pumping (as indicated by the bias current I in Figure 1.7.5) or optical pumping can be
used to initiate and maintain an electron and hole population. In the active region (the
I region for the example in Figure 1.7.5), the holes and electrons recombine to produce
light. Spontaneous emission initiates laser oscillation for sufficiently large pump levels.
Once lasing begins, the laser light propagates back and forth between the two partially
reflective mirrors. The escaping light provides the output laser signal. During laser
operation, the active region continues to produce a small amount of spontaneous
emission, which escapes through the mirrors and the sides of the laser.

The index differences between the core and adjacent cladding regions determine the
confinement of the optical mode to the active region. The optical mode extends into
the cladding so that the modal volume V� is larger than volume V of the active region
as shown in Figure 1.7.5. The simplest model assumes that the optical power density P
is uniformly distributed in the volume V� and zero outside the volume. The optical
confinement factor � in Equation (1.7.4) gives the fraction of the optical mode that
overlaps the gain region � ¼ V=V� . In reality, the optical energy is not uniformly
distributed along ‘‘x’’ (the transverse direction in this case). For example, the mode
intensity drops off exponentially (this is the evanescent tail) in the cladding region.
Therefore, the actual confinement factor can best be found by integrating the optical
power density along the x-direction.

FIGURE 1.7.5

Structure of the semiconductor laser.
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1.8 Introduction to Noise in Optoelectronic Components

Many types of noise can be found in optoelectronic devices and systems. There are many
different contexts for the term noise. In one context, it might refer to random fluctuations
in a signal and in another, it might refer to unwanted steady-state levels. Discussions
of noise in optoelectronic systems often focus on shot, Johnson, low frequency, and
spontaneous emission noise. The relative intensity noise (RIN) describes the fluctuations
in the power emitted from a device. Other sources of noise exist such as the production
of harmonic components by nonlinear devices or mode hopping for lasers.

Shot noise can be generally viewed as due to the fluctuating arrival times of randomly
generated particles. Shot noise in optoelectronic components refers to the fluctuations
in photocurrent due to the random generation of carriers or to fluctuations in optical
power due to the random arrival of photons. This type of noise is often viewed as a
basic limitation and the devices are termed shot noise limited. The random arrival of
photons can best be understood in terms of the photon statistics of an electromagnetic

be designed that use squeezed states of light.
Relative intensity noise (RIN) refers to a ratio of the noise (as measured by a standard

deviation) to the signal power. If a variance characterizes the noise then the power
squared characterizes the signal. The definition is quite general and describes a variety
of noise sources including thermal, quantum mechanical, and spontaneous emission.
Sometimes people apply the term RIN solely to spontaneous emission (since it domi-
nates the others under many circumstances). For a laser, the coherent output beam
comprises the signal and spontaneous emission comprises the noise. However, we should
not consider spontaneous emission to be noise for all systems and devices. Light
emitting diodes produce spontaneous emission as the signal and not as noise.

Thermal background noise occurs in semiconductors when phonons interact with the
charges to produce thermal equilibrium. The Boltzmann distribution (a limiting case
for the Fermi-Dirac statistics) gives the probable number of electrons in the conduction
band (for thermal equilibrium). Electrons in the conduction band can also absorb thermal
energy, which increases the kinetic energy of those electrons until other processes dissi-
pate the energy. The noise appears in conduction processes. Background thermal noise
can be controlled to some extent by using wide-bandgap materials and thermal coolers.

The mechanisms and analysis of noise, aside from being very interesting in their own
right, often lead to new or improved devices and systems. The classical studies of noise
lead to the study of noise in the quantum theory. The present section introduces noise
in optoelectronic components including Johnson, low frequency, shot, and spontaneous
emission noise.

1.8.1 Brief Essay on Noise for Systems

Communication systems normally require large signal-to-noise ratios (SNR) for clear and
accurate transfer of information. Sometimes people define the SNR as the reciprocal of
the RIN. At other times, it can be defined as the ratio of the average signal level to the
standard deviation of the noise signal SNR ¼ P=�. The SNR can be improved by either
increasing the signal level or decreasing the noise. Increasing the signal level generally
requires larger power and physically larger devices. However, larger power and larger-
sized devices run contrary to the requirements and trends in modern VLSI design and
space applications. Therefore reducing the noise level constitutes a desirable alternative
approach.
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Communication systems and links typically require large dynamic range. The dynamic
range refers to the range of values that an output parameter can assume. Large signals
sometimes induce nonlinear behavior in components and subsystems. Many systems
limit the useful signal range to exclude this adverse behavior. For example, the signal
range for an analog transistor amplifier should be limited to prevent the onset of
saturation as the voltage swings near the supply rails. However, the swing from rail-to-
rail can be desirable for digital systems. The ‘‘noise floor’’ represents the background
noise always present in a given system. Obviously, the noise floor limits the dynamic
range. By lowering the noise-floor, the dynamic range can be increased.

Noise can potentially be more detrimental to analog signals than to digital ones.
An analog signal usually carries information on a continuously varying parameter (such
as temperature or amplitude) and therefore, the noise determines the ultimate preci-
sion of the measurement or the quality of the impressed information. Noise as small as
0.1% can be significant for audio applications (for example). For a digital system, the
impact of noise manifests itself somewhat differently. The digital system is designed
with hysteresis and a threshold to provide a clear distinction between a logic ‘‘0’’ and ‘‘1.’’
The effects of noise can be characterized by the ‘‘bit error rate.’’ Of course, anyone who
compares music from a vinyl record with that from a compact disk clearly understands
the distinction between the digital and analog noise.

Photonic and RF systems use signals in the form of the electromagnetic field, which
carries shot noise. Although present at all power levels, these nonclassical effects become
most evident for small numbers of photons. The shot noise can be related to variations
in the number of photons in a light beam. The power level for which the granularity
of the field becomes significant depends on the frequency. High-frequency sources
(GHz and larger), such as the laser or maser, require relatively few photons to give
a specific power level as compared with low frequency sources, such as AM radio.
Generally, low power levels translate directly to small photon numbers.

Communications and data transfer systems would most benefit from low power, small
sized devices with high S/N ratios. Space platforms especially must have light launch-
pad weight. The space platforms have limited power resources and power dissipation
capabilities. The small devices have small numbers of atoms that can only produce small
numbers of photons. Small systems tend to be more noise-prone (even for EM noise) than
larger ones and therefore, the S/N ratios must generally be smaller. For small systems,
noise must be a problem because small (and low power) components do not deal with
many particles (electrons, holes, and photons) at one time. For low particle numbers, the
uncertainty (or standard deviation) in the signal is roughly the same size as the magnitude
of the quantity itself. Equivalently stated, the standard deviation of the number of
particles (that represent the signal) is relatively large compared with the average number.

1.8.2 Johnson Noise

Johnson noise refers to random variations in voltage across a resistor even when left
unbiased. The literature often terms this type of noise as resistor or Nyquist noise. The
random fluctuations in the motion of charge carriers within the resistor produces random
fluctuations in voltage or current. The noise originates in collisions between carriers and
scattering centers (the mechanisms producing resistance). A thermal distribution sets
the mean velocity. This type of noise occurs even when the number of electrons or holes
remains constant.

The power of the noise can be calculated by several methods. We follow a method first
developed by Nyquist. Consider two resistors in thermal equilibrium with each other

Introduction to Semiconductor Lasers 35

© 2005 by Taylor & Francis Group, LLC



and interconnected by a transmission line as shown
in Figure 1.8.1. The two resistors produce identical
amounts of noise power when they have the same
temperature. We find the noise power from the left-
hand resistor. For simplicity, assume the power from
the left-hand resistor flows in a clockwise direction
(and the power from the right-hand flows in the
counter-clockwise direction). Therefore, the waves
in the upper part of the loop have the form eikz�i!t.
None of the power incident on the right-hand
resistor will be reflected so long as the value of R
matches the characteristic impedance of the trans-

mission line. We could allow the power to flow toward the right-hand resistor along both
the top and bottom branches so long as we realize that only half the power flows along
each branch and, later, double the number of available modes.

Assume the closed loop supports propagation modes with wavelengths having
sub-multiples of the length L. That is, assume

l ¼
L

m
! k ¼

2�

l
¼

2m�

L
where m ¼ 1, 2, 3, ::: ð1:8:1Þ

Each k-value gives an allowed mode of the system (traveling wave). Similar to
the procedure for density of states found in the solid state, the spacing between adjacent
k-values must be �k ¼ 2�=L. The number of modes per unit k-length must be

gk ¼
1

�k
¼

L

2�
ð1:8:2Þ

The number of modes in the interval (0, k) must be

NðkÞ ¼ gkk ¼
Lk

2�
ð1:8:3Þ

This must be the same number of modes in the frequency interval 0, �ð � where
� ¼ c=l ¼ ck=ð2�Þ in Hz, and c represents the speed of the wave on the transmission line
(smaller than the speed of light in vacuum). The number of modes in this frequency
interval can be written as

Nð�Þ ¼
Lk

2�
¼

L�

c

The density of frequency states can be written

g� ¼
d

d�
Nð�Þ ¼

2L

c
ð1:8:4Þ

Notice the same result for the density of frequency states can most easily be found by
the usual formula g� d� ¼ gk dk.

The power flow for energy in the modes in the frequency interval �, �þ��ð Þ can
be written as

dP ¼
Energy

Length

Length

Second
¼

1

Length

Energy

Mode

Modes

Hertz

Length

Second
d� ¼

1

L

�hh!

e�hh!=kT � 1

L

c
c d� ð1:8:5Þ

FIGURE 1.8.1

Two resistors in thermal equilibrium
transfer noise power between each other.
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where T denotes the equilibrium temperature in degrees Kelvin, �hh! ¼ h�. The
Nyquist paper clearly indicates the factor 1/L appears since energy transferred to the
right-hand resistor only needs to move through the distance L. The exponential term can
be approximated by

�hh! e�hh!=kT � 1
� ��1

� kT when
�hh!

kT
� 1

We therefore find the power flowing to the right-hand resistor must be

dP ¼ kT d� ð1:8:6Þ

Often times, the quantity kT d� is termed the ‘‘available noise power.’’ The same results
can be derived by assuming a thermal distribution and calculating

Now suppose the right-hand resistor is ideal in the sense that it does not generate
Johnson noise. For example, the right-hand resistor might be held at or near 0 K.
Figure 1.8.2 shows a model for the left-hand resistor as a voltage source in series with
an ideal resistor. The model defines an RMS noise voltage Vn. The RMS noise voltage
across the right-hand resistor due to power flow from the left-hand side has the
form Vn2 ¼ Vn=2. The RMS current through the right-hand resistor can be defined as
In2 ¼ Vn2=R ¼ Vn=2R. Therefore, the current through the ideal right-hand resistor must be

Vn2In2 ¼ dP ¼ kT d� ! V2
n2 ¼ kTR d� ð1:8:7Þ

Substituting the relation between Vn2 and Vn provides an expression for the RMS
source Vn

V2
n ¼ 4kTR d� ! Vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTR d�

p
ð1:8:8Þ

The voltage per root Hertz is
ffiffiffiffiffiffiffiffiffiffiffi
4kTR

p
. It might seem strange that the voltage increases

with bandwidth d�. The bandwidth in the formula comes directly from the constant
density of states.

We might intuitively understand the formulas in Equations (1.8.6) and (1.8.7) as
follows. The resistance appears because it directly depends on the number of collisions
that produce sudden changes of velocity and hence random changes in current. The rate
of collision must depend on temperature since the thermal distribution determines the
speed of the electron between collisions (also the density of phonons increases with
temperature).

EXAMPLE 1.8.1

Find the RMS voltage at 300 K across a 1 k� resistor in a bandwidth of 1Hz.
Solution: Use 4 kT¼ 1.67� 10�20 to find Vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTR d�

p
¼ 4:1 nV Volts

ffiffiffiffiffiffiffi
Hz

p

FIGURE 1.8.2

The left-hand resistor represented by a noise source and an ideal resistor R.
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EXAMPLE 1.8.2

Find the noise power in dBm for the previous example.
Solution: The definition of noise power in dBm is

dBm ¼ 10 log10

P

Po

� 	
ð1:8:9Þ

where Po ¼ 1 mW. This gives dBm¼�168.

1.8.3 Low Frequency Noise

Low frequency noise (or excess noise) has a 1/f (where f denotes the frequency) power
spectrum. This type of noise occurs only when current flows through a device in
contradistinction to Johnson noise that does not require an applied voltage. In the case of
1/f noise, the charged particles move under the applied field and randomly encounter
a scattering center or trap. The change in motion of the particle results in noise. The
low frequency noise has a number of alternative names including excess noise, current
noise, pink noise and semiconductor noise. This noise is in addition to the Johnson
noise already present.

Composition carbon resistors exhibit significant amounts of excess noise compared
with the metal film resistors. The carbon composition resistors consist of granules of
carbon pressed together. Moving charges experience a nonuniform medium that results
in random variations of the current flow. Some books [Reference 5] report excess resistor
noise as high as 3 mV/decade.

The noise power has the form (power spectrum) Pðf Þ ¼ C =f where C is a constant
measured in watts. The total power has the form

P1=f ¼

Z fH

fL

df
C

f
¼ C Ln

fH
fL

ð1:8:10Þ

Therefore, each decade of frequency has the same power. As much noise power exist in
the range 0.1 to 1 Hz as in 100 to 1000 Hz.

1.8.4 The Origin of Shot Noise

Shot noise originates in the random generation or arrival times of particles. A Poisson
probability distribution describes the number of particles produced or detected in each
interval of time. Examples abound for optical, electronic, and mechanical systems.
For example, thermal generation of carriers within the depletion region of the pn or PIN
junction and their subsequent sweep-out produces shot noise. The carriers suddenly
appear according to a Poisson distribution; this random variation of charge density
produces random changes in the current through the device.

For electronic components, Johnson noise differs from shot noise since Johnson
noise does not require the number of carriers to change nor does it require any current.
Although 1/f noise requires current, it does not require the generation of particles
at random times. Therefore, the noise through an electronic component might simul-

quantum theory of electromagnetic fields will show that coherent states also exhibit
Poisson statistics.

We first demonstrate the Poisson distribution characteristic of shot noise. For
illustration, consider the random generation of electrons at the left-hand plate of
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a capacitor and their subsequent arrival at the right-hand side as shown in Figure 1.8.4.
Similar arrangements apply to pn junctions and vacuum tubes. Assume tj denotes
the random electron-generation time and the xj represents the position for the jth electron
at time t. We assume a uniform distribution of generation times. We want to know the
probability of finding the number n of electrons arriving at the right-hand electrode
during a time interval t.

The calculation proceeds by using recursion relations. We first require a few prelimi-
nary relations that require the probability P n,�tð Þ of finding n electrons emitted in the
small time interval �t � 0. The probability of finding n¼ 0 electrons in the interval must
be P 0, 0ð Þ ¼ Lim�t!0 P 0,�tð Þ ¼ 1. The probability of finding a single electron in the
interval �t must be proportional to the rate of generation (or arrival) r and the size of the
time interval �t according to

P 1,�tð Þ � r�t ð1:8:11Þ

FIGURE 1.8.3

Electrons randomly generated move in the applied field.

FIGURE 1.8.4

Example plots of the Poisson distribution.
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We will later substantiate the claim of r being a rate (number of particles emitted per
second). The probability of at least 1 electron arriving in �t must be

P 0,�tð Þ þ P 1,�tð Þ þ P 2,�tð Þ þ 	 	 	 ¼ 1

We assume a small enough time interval �t that P n,�tð Þ remains negligible for n 
 2.
Therefore, we find

P 0,�tð Þ þ P 1,�tð Þ ¼ 1 ð1:8:12Þ

Now we find the functional form for the probability P n, tð Þ of finding n electrons during
the interval of time t. Consider the interval 0, tþ�tð Þ. For sufficiently small times �t,
either 0 or 1 electrons might be emitted. This means the probability of finding n electrons
in the time interval 0, tþ�tð Þ must be given by

P n, tþ�tð Þ ¼ P n, t; 0,�tð Þ þ P n� 1, t; 0,�tð Þ ¼ P n, tð ÞP 0,�tð Þ þ P n� 1, tð ÞP 1,�tð Þ ð1:8:13Þ

where the symbol Pðn, tþ�tÞ is the conditional probability of finding n electrons by
time t given that 0 electrons are found during the time interval �t. This last
equation holds because the number of electrons m� arriving in interval �t must be
independent of the number m arriving in the interval t so that P m, t;m�,�tð Þ ¼

P m, tð ÞP m�,�tð Þ.
Use Equation (1.8.12) to eliminate P 0,�tð Þ and use Equation (1.8.11) in place of P 1,�tð Þ

to find

P n, tþ�tð Þ � P n, tð Þ

�t
þ r P n, tð Þ ¼ r P n� 1, tð Þ ð1:8:14aÞ

which becomes a differential equation in the limit �t ! 0

dP n, tð Þ

dt
þ r P n, tð Þ ¼ r P n� 1, tð Þ ð1:8:14bÞ

This formula can be rewritten using an integrating factor as described in Appendix 1.
We find the recursion relation with P n, 0ð Þ ¼ 0 to be

P n, tð Þ ¼ P n, 0ð Þ þ re�rt

Z t

0

d� er�P n� 1, �ð Þ ¼ r e�rt

Z t

0

d� er�P n� 1, �ð Þ ð1:8:14cÞ

We now use the recursion relation to find P n, tð Þ. We need a starting function P 0, tð Þ.
This can be found from Equation (1.8.14b) since P n� 1, tð Þ would not be present in this
case. We find

dP 0, tð Þ

dt
¼ �r P 0, tð Þ

The solution can be found using the starting condition P 0, 0ð Þ ¼ 1

P 0, tð Þ ¼ e�rt ð1:8:15aÞ
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Other cases can be found. The n¼ 1 case comes from Equations (1.8.14c) and (1.8.15a)

P 1, tð Þ ¼ r e�rt

Z t

0

d� er�P 0, �ð Þ ¼ r e�rt

Z t

0

d� 1 ¼ rt e�rt ð1:8:15bÞ

Similarly the recursion relation provides the desired results (proof by induction)

P n, tð Þ ¼
rtð Þ

n e�rt

n!
ð1:8:16Þ

The last equation represents the Poisson distribution. The key assumptions
include the independent nature of the emission events (or emission times or arrival
times).

Some of the important parameters can be evaluated. The expected number of electrons
emitted in the time t can be evaluated as follows (Problem 1.10)

nh i � �nn ¼
X1
n¼0

nP n, tð Þ ¼ e�rt
X1
n¼0

n
rtð Þ

n

n!
¼ rt ð1:8:17Þ

This shows that r can be interpreted as the average rate of emission. The Poisson
distribution can now be written as

P n, tð Þ ¼
�nnn e� �nn

n!
ð1:8:18Þ

The value �nn represents the average number of particles generated during the time t. In
the case of emission, we therefore expect the number of particles per unit length to be

�L ¼
number

length
¼

number

second

second

length
¼ r=v:

The standard deviation can be found using Equation (1.8.18)

�2 ¼ n2 � �nn2

 �

¼
X1
n¼0

n2 � �nn2
� �

P n, tð Þ ¼ �nn ! � ¼
ffiffiffi
�nn

p
ð1:8:19Þ

where �2 and � represent the variance and the standard deviation, respectively (see
Problem 1.11). Therefore, the average and standard deviation are not independent
parameters for the Poisson distribution.

1.8.5 The Magnitude of the Shot Noise

band structure for a PIN structure near thermal equilibrium. Two sources of current
can be identified. Diffusion causes electrons to randomly surmount the barrier into the
P region. Generation randomly produces electron–hole pairs that surmount the bandgap,
enter the bands, and separate under the action of the fields.
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For a diode (or LED), two sources of shot noise exist. Figure 1.8.5 shows an example



Correlation studies show the shot noise current due to DC current I must be

Ishot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qI�f

p
ð1:8:20Þ

For a reverse biased junction such as for a photodetector, thermally generated carriers
and the resulting reverse saturation current Is make up the predominate current. Under
forward bias, the conduction current dominates

I ¼ Is eqV=kT � 1
� �

ð1:8:21Þ

An unbiased diode balances Is and I so that the mean-square value of shot noise
becomes

Ishot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qIs �f

p
ð1:8:22Þ

1.8.6 Introduction to Noise in Optics

Later chapters write the electric field in terms of quadratures. The single mode field has
the form

~EE ~rr, t
� �

� Q̂Q sin ~kk 	 ~rr� !t
� 

þ P̂P cos ~kk 	 ~rr� !t
� 

where the quadrature amplitude operators do not commute Q,P½ � ¼ i. This naturally
requires a Heisenberg uncertainty relation and we cannot simultaneously and precisely
know the components of the field. The commutation relations lead to quantum noise. The
quadrature amplitudes must operate on a vector space. The particular vectors determine
the specifics of an optical beam. Coherent states produce shot noise that follow a Poisson
distribution for the photon number. Squeezed states produce sub-shot noise.

Other mechanisms produce noise. For example, partially reflective surfaces introduce
noise as illustrated in Figure 1.8.6. A piece of glass, for example, reflects a portion of the
incident photons. For every reflected photon, the output stream must be missing one
(indicated by the open circle). The input stream has a standard deviation of zero. The
reflected and transmitted beams have nonzero standard deviation. This example shows
the noise added by the reflecting surface—partition noise. Interfaces not perfectly
reflecting or transmitting add partition noise. Absorbers and multiple modes in a laser
beam introduce similar sources of noise.

FIGURE 1.8.5

A PIN junction with diffusion and thermally gener-
ated current.

FIGURE 1.8.6

Imperfect reflecting surfaces induce partition noise.

42 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



1.9 Review Exercises

1.1 Consider semiconductor lasers operating at 0:8 mm and 1:55 mm.

1. Find the bandgaps required for the lasers to operate at these wavelengths. Assume
the electrons and holes occupy minimum energy states.

2. Use the graphs in the chapter to find the possible materials that will provide
these wavelengths.

1.2 Explain how optical confinement and electron/hole confinement improve the
efficiency of the laser.

1.3 Consider a PN junction. Sketch an approximate plot of the optical power emitted
from the junction as a function of voltage. Explain any assumptions.

1.4 Suppose a homojunction LED is made from semiconductor with a bandgap of
Eg ¼ 1:5 eV. Assume the LED produces approximately 2 mW of optical power at a
bias current of 20 mA.

1. Explain why the bias voltage across the LED must be approximately 1.5 V to
produce significant emission. Hint: Use a band-edge diagram for flat bands.

2. Draw a circuit diagram using a 10 V battery, a resistor and the LED that will make
the LED glow. What value of bias resistor should be used to achieve
approximately 2 mW of optical power?

1.5 Applying reverse bias to an LED allows it to operate as a photodetector.

1. What composition of AlxGa1�xAs will allow a homojunction device to absorb
near 800 nm?

2. Show the circuit diagram for connecting a 10 V battery, resistor, and LED to make
a detector circuit. Assume the output signal is taken across R.

3. If the LED in reverse bias has a response of 0.2 mA/mW, determine R to produce
a signal gain of 200 V/W.

1.6 You have a parts box with a yellow-emitting LED, a red-emitting LED, a silicon
NPN transistor with a current gain of 	 � 200, a resistor, and a 10 V battery.

1. Draw a circuit for a wavelength converter using the common emitter configu-
ration. Use the yellow LED as a detector and the red LED as an emitter.

2. If the yellow LED produces 0.1 mA/mW as a detector and the red LED produces
0.2 mW/mA, then find the overall gain of the circuit from input to output as
the ratio of output power to input power.

1.7 A student wants to build a semiconductor laser transmitter. She plans to connect
the output of a radio (100 mVrms output signal) to the transmitter. Design a
transistor laser driver and receiver using any assortment of other parts including
resistors, capacitors, and LM-741 Op Amps. Assume the laser has a turn-on
voltage of 1.5 V and a threshold current of 25 mA. Assume the laser power output
is linear in the bias current and the transfer function has the magnitude of
0.2 mW/mA.
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1.8 A student wants to observe the thermal noise from a resistor. He buys a low
noise amplifier with a voltage gain up to 10,000. Assume the noise level for the
amplifier is 1 nV=

ffiffiffiffiffiffiffi
Hz

p
referred to the input (i.e., the noise level must be multiplied by

the gain to find the output noise). Assume the resistor connected to the input of the
amplifier is held at 300 K. For a bandwidth of 100 kHz, what value of resistance R
must be used so that the output noise of the resistor matches the output noise of the
amplifier? Discuss any assumptions.

1.9 Consider a pn diode with Is ¼ 10�12 at room temperature of 300 K.

1. Find the shot noise due to Is.

2. Assume the junction has a bias voltage of 0.6 V. Assume q/kT= 1/0.025. Find the
shot noise (in A=

ffiffiffiffiffiffiffi
Hz

p
) due to the corresponding current.

1.10 Show nh i ¼
P1

n¼0 nP n, tð Þ ¼ e�rt
P1

n¼0 nð rtð Þ
n=n!Þ ¼ rt referred to in Equation (1.8.17).

Hint: redefine dummy indices in the summation and recall the Taylor expansion
of ert.

1.11 In a manner similar to the previous problem, demonstrate the relation for the
variance of the Poisson distribution referred to in Equation (1.8.19)

�2 ¼ n2 � �nn2

 �

¼
X1
n¼0

n2 � �nn2
� �

P n, tð Þ ¼ �nn

1.12 Consider a long narrow glass tube with a source of high-speed particles as shown
in Figure P1.12. Assume the number of particles in time �t obey a Poisson
distribution with an average of r particles emitted per second.

1. Explain why the Poisson distribution can be written as

P n,�xð Þ ¼
1

n!

r

v
�x

� n
e�x r=v

which gives the probability of n particles in the length �x.

2. Assume r¼ 1000, �¼ 100, and �x¼ 1. Using the figures in the chapter, what is
the probability of finding 5 particles per unit length.

1.13 Read the ‘‘Amateur Scientist’’ column in the following editions of the Scientific
American popular magazine (available in the archives of most libraries). Check the
following editions: September 1964, December 1965, Febuary 1969, September 1971.
List the lasers and basic components for construction including power supplies, any
flash lamps and gases, and special optics.

1.14 The popular magazine Nuts & Volts starting in June 2003 shows how to construct
a ruby rod laser. Draw several diagrams to show the circuits, construction, and

FIGURE P1.12

Particles produced randomly at the left side move to the right with speed �.
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optical train. Detail required voltages and currents. Discuss the expected optical
power and whether the output is pulsed or steady state. Check the archives in your
local library.

1.15 The popular magazine Poptronics from April 2002 has an article on laser pointers
and driver circuits starting on page 46. Draw the circuit and explain how it works.
Most libraries have the magazine in their archives.

1.16 Read and briefly summarize the following journal publication on high-power laser
diode arrays. A university library has the journals and either a citation index or
computer system for searches.
M. Sakamoto et al., ‘‘Ultrahigh power 38 W continuous-wave monolithic laser diode
arrays,’’ Appl. Phys. Lett. 52, 2220 (1988).

1.17 Summarize the operating mechanisms for PIN and avalanche photodiodes. For the
avalanche photodiodes, refer to the following publication.
Spinelli, et al., ‘‘Physics and numerical simulation of single photon avalanche
diodes,’’ IEEE Transactions on Electron Devices 44, 1931 (1997).

1.10 Further Reading

The following list has references to interesting and informative reading material. The
‘‘easy reading’’ section has construction plans for various lasers and optical systems.

Easy Reading

1. Moore J.H., Davis C.C., Coplan M.A., Building Scientific Apparatus, A Practical Guide to Design
and Construction, Addison-Wesley Publishing, London, 1983.

2. McComb G., Lasers, Ray Guns, & Light Cannons, Projects from the Wizard’s Workbench,
McGraw-Hill, New York, 1997.

Fabrication

3. Ralph Williams, Modern GaAs Processing Methods, Artech House, Boston, 1990.
4. Nishi Y. and Doering R., Handbook of Semiconductor Manufacturing Technology, Marcel Dekker,

Inc., New York, 2000.

Noise

5. Motchenbacher C.D., Connelly J.A., Low-Noise Electronic System Design, John Wiley & Sons,
New York, 1993.

6. Davenport W.B., Root W.L., An Introduction to the Theory of Random Signals and Noise,
McGraw-Hill, New York, 1958.

Optoelectronics: Circuits

7. Marston R.M., Optoelectronics Circuits Manual, 2nd ed., Newnes, 1999.
8. Petruzzellis T., Optoelectronics, Fiber Optics and Laser Cookbook, More than 150 Projects and

Experiments, McGraw-Hill, New York, 1997.

Principles and Systems

9. Kasap S.O., Optoelectronics and Photonics, Principles and Practices, Prentice Hall, Saddle River,
2001.
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10. Kuhn K.J., Laser Engineering, Prentice Hall, Saddle River, 1998.
11. Jenkins, F.A., Fundamentals of Optics, 4th ed., H. E. White, McGraw-Hill, New York, 1976.

Reference Books

12. Miller J.L. and Friedman E., Photonics Rules of Thumb: Optics, Electro-Optics, Fiber Optics and
Lasers, McGraw-Hill Professional, 1996.

13. Wang C.T., Introduction to Semiconductor Technology, GaAs and Related Compounds, Ed., John Wiley
& Sons, New York, 1990.

Semiconductors

14. Streetman B.G., Banerjee S., Solid State Electronic Devices, 5th ed., Prentice Hall, Saddle River,
1999.

15. Kittel C., Introduction to Solid State Physics, 5th ed., John Wiley & Sons, New York, 1976.
16. Pankove J.I., Optical Processes in Semiconductors, Dover Publications, New York, 1971.
17. Sze S.M., Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons, New York, 1981.
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2
Introduction to Laser Dynamics

The construction of an emitter or detector ensures the interaction betweenmatter and light.
Maxwell’s equations and the quantum theory furnish the details of the interactions,
while the so-called rate equations provide the best summary. These equations represent
a key result for optoelectronic devices by describing relatively complicated physical
phenomena (covered in detail in the last part of this book). We primarily focus on the laser
but show how the equations apply to the light emitting diode (LED) and the laser amplifier,
both of which come from the laser geometry but with the appropriate output facets.
The rate equations describe how the gain, pump, feedback, and output coupler

mechanisms affect the carrier and photon concentration in a device. The rate equations
manifest the matter–light interaction through the gain term. The gain represents the
mechanisms for stimulated emission and stimulated absorption which both require an
incident photon field to operate. Later chapters will develop the quantum mechanics of
this type of emission and absorption. The photon rate equation describes the effects of the
output coupler and feedback mechanism through a relaxation term incorporating the
cavity lifetime.
The rate equations provide a wealth of information and have great predictive power.

These equations can determine the bandwidth, the threshold current, the emitted optical
power versus bias current, and the noise content of the beam. This chapter introduces the
simplest rate equations and relates its parameters to the physical construction. A great
amount of engineering physics must be included from later chapters to make accurate
models of the construction.

2.1 Introduction to the Rate Equations

Matter and light interact to produce a number of phenomena including optical emission
and absorption. The interaction appears as a gain term embedded in rate equations that
provide the most fundamental description of the laser. We can use some elementary
reasoning to deduce phenomenological rate equations that track the number of electron–
hole pairs and the number of photons, and relate these numbers to the pump rate and
the parameters associated with the laser construction and the material properties. They
express energy conservation in terms of the number of excited atoms or the number
of carriers in an energy level. The equations describe the magnitude (and phase) of the
optical signal. Although elementary reasoning and physical experience lead to these phe-
nomenological equations, they can be (and will be) derived based on more fundamental
physical principles.
We can state at least three ‘‘different’’ sets of rate equations with three corresponding

sets of variables. The first set of equations uses the variables describing the density
of photons � (the number of photons per cm3), the density of electrons n (#/cm3) and the
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pump-current number density J (#carriers/s/cm3). A second set of equations uses
variables describing the optical power P (W) and current I (A). The first set using � andJ
must be equivalent to the second set with P and I since the number of photons � must be
equivalent to the optical power P. The phase does not enter into these equations since the
optical power does not depend on phase (P � ~EE� ~EE). The third set involves the electric
field ~EE (amplitude and phase �), and carrier density n. Notice how this set has additional
information on the phase of the electric field. This last description applies, for example, to
mode locking and injection locking.
Light emission and absorption has similar descriptions for a variety of gain media.

However, the microscopic details vary. For example, an emitter using a gas plasma
uses a collection of gas molecules with the constituent electrons making transitions
between atomic levels. A semiconductor emitter uses closely arrayed atoms with
electrons making transitions between bands. Often times the systems are treated as ‘‘two
level atoms.’’ For the generic system, saying the ‘‘electron makes a transition from
one atomic level to another’’ or ‘‘it makes a transition from one band to another’’ conveys
identical meaning. For semiconductors, the matter–light interaction often involves
electrons and holes and we therefore refer to electron–hole pairs. Only later will we focus
on the exact physical mechanism involved.
As just mentioned, the rate equations provide a primary description of light emission

and absorption from a collection of atoms. We use them to describe the output optical
power vs. input current (resulting in P–I curves), the modulation response to a sinusoidal
bias current, and the operating characteristics for laser amplifiers.

2.1.1 The Simplest Rate Equations

Let us consider the rate of change of a number of carrier pairs in the active region of a
semiconductor-based device. We assume an intrinsic semiconductor so that the number
of electrons per unit volume matches the number of holes per unit volume (n¼ p). We
assume the semiconductor can be viewed as two levels, one level for the conduction band
and one for the valence band. We want to know what physical phenomena can change
the number of electrons in the conduction and valence bands. These changes must be
related to the number of photons produced (for a direct bandgap semiconductor).
The rate of change of the total number of electrons (or holes) N ¼ nV comes from

electron–hole generation and recombination. We assume that the electrons and holes
remained confined to the active region having volume V. The rate equation has the basic
form

dN

dt
¼ Generation--Recombination ð2:1:1aÞ

Generation processes such as pumping and absorption increase the total number of
electron–hole pairs (i.e., increases the number of electrons in the conduction band).
Recombination processes such as stimulated and spontaneous emission reduces the total
number of electrons in the conduction band. These facts can be incorporated into the
basic rate equation to write

dN

dt
¼�

Stimulated
Emission

� �
þ

Stimulated
Absorption

� �
þPump�

Non-Radiative
Recombination

� �
�

Spontaneous
Recombination

� �
ð2:1:1bÞ

This last equation calculates the change in the number of carriers ‘‘nV’’ in the active
region. Absorption and pumping increase the number while emission and recombination
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decrease it. We will carefully examine each term as the section proceeds. The pump
consists of either bias current or optical flux. The pump term describes the number of
electron–hole pairs produced in the active volume V in each second. We therefore use
the form

Pump ¼ JV ð2:1:1cÞ

where the pump-current density J has units of # carriers/vol/sec.
Many of the processes that decrease the total number of carriers N must also increase the

total number of photons � ¼ gVg in the modal volume Vg. We can therefore write a
photon rate equation as

d�

dt
¼ þ

Stimulated

Emission

 !
�

Stimulated

Absorption

 !
�

Optical

Loss

 !
þ

Fraction of

Spont: Emiss:

 !
ð2:1:1dÞ

The ‘‘optical loss’’ term accounts for the optical energy lost from the cavity (see
Figure 2.1.1). Some of the light scatters out of the cavity sidewalls and some passes
through the mirrors. The light passing through the mirrors, although considered to be an
‘‘optical loss,’’ comprises a useful signal. Notice that the pump-current number density
J does not appear in the photon equation since it does not directly change the cavity
photon number.
The rate equations provide relations between the photon density, carrier density

and the pump current density. For now, we characterize the semiconductor material
comprising the laser as having two energy levels. These two levels correspond to the
conduction and valence band edges obtained from the effective density of states
approximation.
The remainder of this section examines the pump, recombination, and optical loss

terms in the basic rate equations. The next section continues with the gain and its relation
to stimulated emission and absorption. The end of the next section will combine all of
the terms into the rate equations.

2.1.2 Optical Confinement Factor

A block diagram of the physical construction of the typical laser diode appears
in Semiconductor–air interfaces form two mirrors on the left-hand and
right-hand side of the laser diode. The active region (i.e., gain region) has volume
V, which is smaller than the modal volume V� containing the optical energy (refer to

in V� and is zero outside the volume. The optical confinement factor � specifies the
fraction of the optical mode that overlaps the gain region �¼V/V� . In other words,
the confinement factor gives the percentage of the total optical energy found in the active
region V.

FIGURE 2.1.1

Two mechanisms included in the ‘‘optical loss’’ term.
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Figure 2.1.2.

Section 1.7). The simplest model assumes that the optical power is uniformly distributed



2.1.3 Total Carrier and Photon Rate

The simplest rate equations (2.1.1) describe the number of electron–hole pairs (i.e., carrier
pairs) and the number of photons in the cavity. If we refer to intrinsic materials or if we
confine our attention to the carriers created by optical absorption or electrical pumping,
then the number of pairs must be identical to the number of electrons. Therefore, for
the simplest model, we discuss only the number of electrons. If the holes and electrons
do not distribute themselves evenly throughout the active region, it becomes necessary to
describe each type of carrier by its own equation. Quantum well lasers for example do
not generally have identical electron distributions in each well. For now, we assume
charge neutrality (n¼ p) in all portions of the active region. Let’s denote the electron
density (number per volume) by ‘‘n’’ so that nV represents the total number of electrons in
the active region. Similarly, let � be the photon density (number of photons per volume).
The total number of photons in the modal volume must be �V� and the total number
of photons in the active region must be �V.

2.1.4 The Pump Term and the Internal Quantum Efficiency

The number of electron–hole pairs that contribute to the photon emission process in
each unit of volume (cm3) of the active region in each second can be related to the bias
current I by

J ¼
�iI

qV
ð2:1:2Þ

where J represent the ‘‘pump-current number density,’’ �i is the internal quantum effi-
ciency, the elementary charge ‘‘q’’ changes the units from Coulombs to the ‘‘number of

shows the pump increases the number of electrons and holes in the conduction band (cb)
and valence band (vb), respectively.
The internal quantum efficiency �i represents the fraction of terminal current I that

generates carriers in the active region. Therefore, the quantity �iI provides the actual
current absorbed in the active region. Well-designed lasers have internal quantum effi-
ciency close to one. The internal efficiency can be smaller than one if some of the current
I shunts around the junction as it travels between the ‘‘p’’ to the ‘‘n’’ materials. For
example, current might flow along a surface exterior to the junction as shown in the
upper-right diagram in Figure 2.1.3. The current might also flow through the active

FIGURE 2.1.2

Structure of the semicondunctor laser.
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electrons,’’ and V represents the active volume. The upper-middle diagram in Figure 2.1.3



region without producing photons (phonon process perhaps). Pumping (whether optical
or electrical) initiates laser action when the carrier population reaches the ‘‘threshold’’
density (to be discussed later). Without carrier recombination, the pump would conti-
nuously increase the carrier population according to dn=dt ¼ J (recall n¼ p).

2.1.5 Recombination Terms

The radiative and nonradiative processes comprise two broad categories of recombina-
tion mechanisms. The radiative process produces photons usually as spontaneous
emission (a.k.a, fluorescence) from a semiconductor laser or LED. The stimulated
emission process also involves carrier recombination; however, because it requires an
incident photon field, it is usually studied as part of the laser gain.
Spontaneous recombination refers to the recombination of holes and electrons with-

out an applied optical field (i.e., no incident photons—see lower-middle diagram in
Figure 2.1.3). Spontaneous recombination produces photons by reducing the number
of electrons in the conduction band and holes in the valence band. This spontaneous
emission initiates laser action but decreases the efficiency of the laser. The three processes
of stimulated recombination, spontaneous recombination, and nonradiative recombina-
tion all reduce the number of electrons in the conduction band and holes in the valence
band. Absorption and pumping increases the number of electrons.
From the classical point of view, spontaneous emission occurs ‘‘on its own’’ without

an applied optical field. Classically speaking, cause and effect do not appear to hold.
Quantum theory shows that ‘‘vacuum fields’’ actually initiate the spontaneous emission.
The actual magnitude of the emission can be calculated from knowledge of the quantum-
mechanical vacuum fields and the self-reaction of the oscillating dipoles in the material.
The vacuum fields can be pictured as electromagnetic waves that exist in all space; they
represent a type of zero-point motion of the electric field. The reader might imagine a
Universe without any light sources and without any photons. This very strange Universe
still has sporadic electromagnetic fields in the available optical modes. These fields are
the ‘‘vacuum fields.’’ The ‘‘modes’’ refer to a type of physical ‘‘storage’’ mechanisms
for photons (if the Universe has photons). For analogy, the modes for a string on a violin

FIGURE 2.1.3

A number of mechanisms for changing the number of carriers and the number of photons.
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store phonons when someone plucks the string. The vacuum fields initiate spontaneous
emission by perturbing the energy levels of the electrons and holes thereby causing
recombination. It turns out that the spontaneous emission from a laser can be reduced by
removing some of the possible modes or by ‘‘squeezing’’ the vacuum fields. Loosely
speaking, these zero point fields ‘‘stimulate’’ the spontaneous recombination in a manner
similar to the stimulated emission for laser action.
Nonradiative recombination occurs primarily through phonon processes. Materials

with indirect bandgaps rely on the phonon process for carrier recombination. For direct
bandgaps as in GaAs, the phonon processes are much less important since radiative
recombination dominates the recombination channels. For nonradiative recombination,
an energetic electron produces a number of phonons (rather than photons) and then

nonradiative recombination whereby an electron moves along an outside surface of a
laser, and interacts with phonons until it recombines with a hole. The phonon processes
reduce the efficiency of the laser because a portion of the pump must be diverted to
feed these alternate (nonradiative) recombination channels. However, all lasers produce
some phonons as the semiconductor heats up.
Monomolecular (nonradiative), bimolecular (radiative) and Auger recombination

(nonradiative) comprise three important recombination mechanisms for laser opera-

occurs when carriers ‘‘trap out’’ in midgap states and recombine. The rate of change
of electron density (or holes since n¼ p) due to monomolecular recombination can
be written as

dn

dt
¼ �

n

�n
¼ �An ð2:1:3aÞ

where �n ¼ 1=A represents a lifetime. The total number of monomolecular recombination
events in the active volume V can be written as

RmonoV ¼ AnV ð2:1:3bÞ

Rmono has units of ‘‘number of recombination events per volume per second.’’ Mono-
molecular recombination reduces the efficiency of the laser by recombining holes and
electrons without emitting photons into the lasing mode.
Bimolecular recombination produces spontaneous emission. Electrons and holes

recombine without the need for bandgap states so that the spontaneous recombination
rate Rsp is proportional to np. The total number of spontaneous emission recombination
events in active volume V must be

RspV ¼ Bn2V ð2:1:4Þ

Bimolecular recombination events can inject photons into the lasing mode to initiate laser
oscillation but most of the energy escapes through the sides of the laser and reduces
the laser efficiency and increases the threshold current (see the lower middle diagram
in Figure 2.1.3).
The nonradiative Auger recombination occurs when carriers transfer their energy

to other carriers, which interact with phonons to return to an equilibrium condition.
Auger recombination is important for lasers (such as InGaAsP) with emission wave-
lengths larger than 1 mm (small bandgap). For comparison, GaAs lasers generally emit
between 800 to 860 nm. As discussed in Section 1.5.6, Auger recombination involves three
charged particles and an energy transfer mechanism. The charged particles might be two
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recombines with a hole. The right-hand portion of Figure 2.1.3 shows an example of

tion (refer to Section 1.5.6). Recall that the nonradiative monomolecular recombination



electrons and a hole. The rate of Auger recombination in the active volume V can be
written as

RaugV ¼ Cn3V ð2:1:5Þ

where the power of 3 serves as a reminder of the three particles. This form of recombi-
nation reduces the efficiency of the laser since it recombines the carriers without
producing photons for the laser mode.
Combining all the different types of recombination we can write the total rate of

recombination Rr as

Rr ¼ Rradiative þ Rnonradiative ¼ Anþ Bn2 þ Cn3 ð2:1:6Þ

where A¼ 1/�n. The rates R have units of ‘‘number of recombination events per unit
volume per second.’’ Some people define an effective carrier lifetime �e which depends on
the carrier density ‘‘n’’ as

1

�e
¼ Aþ Bnþ Cn2 ð2:1:7Þ

so that the total recombination rate can be written as Rr ¼ n=�e. As we will see later,
this turns out to be a nice way of writing the recombination rate since the carrier
density will be approximately constant when the laser operates above threshold. For
lasers made with ‘‘good’’ material, the B term (radiative recombination) dominates the
recombination process. If we restrict our attention to GaAs then C can be neglected.
We will usually write

Rr ¼ Bn2 ð2:1:8Þ

2.1.6 Spontaneous Emission Term

The spectrum of the laser beam consists of nearly a single wavelength. Lasers can achieve
linewidths (i.e., the width of the spectral line) on the order of 1 kHz. As discussed in

that frequency. We expect the same to be true for a semiconductor laser (the mirrors
provide the feedback path). It turns out that ‘‘homogenously broadened’’ lasers have
one lasing frequency but ‘‘nonhomogeneously broadened’’ ones can lase at multiple
frequencies (i.e., multiple modes within the cavity can be excited).
The number of photons in the lasing mode increases not only from stimulated emission

but also from the spontaneous emission. Let’s see how this happens. Excited atoms in the
gain medium spontaneously emit photons in all directions. The wavelength range of

compares the typical spectra for spontaneous and stimulated emssion (for GaAs). Some
of the spontaneously emitted photons propagate in exactly the correct direction to enter
the waveguide of the laser cavity. Of those photons that enter the waveguide, a fraction of
them have exactly the right frequency to match that of the lasing mode. This small
fraction of spontaneously emitted photons adds to the photon density � of the cavity.
The rate of spontaneous emission into the cavity mode can be written as

VgRsp ¼ Vg�Bn
2 ð2:1:9Þ
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Chapter 1, an oscillator operates at a single frequency because the gain equals the loss at

spontaneously emitted photons cannot be confined to a narrow spectrum. Figure 2.1.4



where B and Bn2 are the same terms as previously found for the spontaneous recom-
bination rate. The geometry factor � gives the fraction of the total spontaneously emitted
photons that actually couple into the laser mode. The value of � typically ranges from
10�2 to 10�5. Rsp has units of number per volume per second.
The small fraction of spontaneous photons coupling into the cavity with the right

frequency start the lasing process. Above threshold, it wastes a significant fraction of the
pump energy—raises the laser threshold current. The threshold current is the minimum
pump current (into the semiconductor laser) required to initiate lasing. Similarly,
optically pumped lasers have a threshold optical power.

2.1.7 The Optical Loss Term

The optical loss term describes changes in the photon density that can be linked with
the optical components of the laser cavity. The reader can picture the cavity as the space
bounded by two mirrors and the sidewalls as shown in Figure 2.1.5. The cavity retains the
optical characteristics of the material such as a waveguide without a gain medium. As the
photons bounce back and forth between the mirrors, some are lost through the mirrors
and some are lost through the sides. Other loss mechanisms also influence the photon
density. For example, free carriers can absorb light when the light waves drive the motion
of the electrons and the surrounding medium damps this motion by converting the
kinetic energy into heat. All of the optical losses contribute to an overall relaxation time ��
(called the cavity lifetime). The total number of photons in the modal volume Vg g decreases
because of these optical losses. Greater numbers of photons must be lost from the
cavity for greater numbers of photons inside the cavity. Therefore, a simple differential
equation expresses the dynamics in the absence of other sources or losses of photons

Vg
dg
dt
¼ �

Vgg
�g

ð2:1:10aÞ

FIGURE 2.1.4

Comparing spectra for spontaneous and stimulated emission.

FIGURE 2.1.5

The Fabry-Perot cavity.
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This last simple equation can be solved to give

gðtÞ ¼ go exp �
t

�g

� �
ð2:1:10bÞ

which shows that the initial photon density decays exponentially as the carriers are lost.
If the cavities include a gain medium then two things can happen. An absorptive medium
(g5 0) causes the photon density to relax faster than ��. On the other hand, a medium
with positive material gain (g4 0) causes the photon density to grow rather than decay.
The physical ideas accompanying the solution of the simple differential equation
above must be included in the full set of laser rate equations since they describe the
basic optical properties of the cavity.
Let’s examine the loss � in a little more detail. Light can be lost from a cavity due

to either distributed or point-loss mechanisms. Distributed loss refers to energy loss along
the length of a device. For example, distributed loss includes optical energy lost through
the sidewalls and free carrier absorption. Sometimes this loss mechanism is also termed
‘‘internal loss,’’ denoted by �int, because it refers to light leaving the body of the laser in a
manner other than through the end mirrors. The laser mirrors represent the second type
of loss—the point loss. The light escapes the cavity at specific points. The loss is not
distributed along the length of the laser. However, we still find it convenient to describe
the mirror loss as if it were a ‘‘distributed loss’’ and give it the symbol �m.
The cavity lifetime in Equations (2.1.10) describes a lumped device. In order to include

a spatial dimension, we define an optical loss per unit length. As will be explained in the
next section for the gain, we will find it useful to define the ‘‘optical loss’’ � with units
of cm�1 as

� ¼ ��1g =vg or
1

�g
¼ �vg ð2:1:11Þ

where vg represents the group velocity of the wave.

The optical loss (per unit length) � gives the number of photons lost in each unit length
of cavity. As such, it is useful for describing physically extended systems (those having
non-zero sizes). We picture the optical loss � as taking place along the length of the laser

both spatial and temporal variations in the photon number.
How should we picture the mirror loss �m as distributed along the length of the

cavity? To really answer this question, a partial differential equation with boundary
conditions at the mirrors must be solved. However, for the purpose of the lumped
model (rate equations depending only on time), the amount of energy lost at both mirrors
will be averaged over the length of the cavity (as will be demonstrated later). The
result will be

1

�m
¼ vg�m ¼

vg
L
Lnð1=RÞ ð2:1:12aÞ

which assumes that both mirrors have the same power reflectivity R (0.34 for GaAs). The
loss per mirror must be �m/2. The reciprocal of the cavity lifetime becomes

1

�g
¼

1

�int
þ

1

�m
¼ vg� ¼ vg �int þ �mð Þ ð2:1:12bÞ

The internal loss and single mirror loss are typically on the order of 30=cm.
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body. Appendix 2 discusses the use of an optical equation of continuity that accounts for



2.2 Stimulated Emission—Absorption and Gain

The matter–light interaction produces the optical emission and absorption in a material.
The rate equations include this interaction in the gain that appears in the stimu-
lated emission and absorption terms in Equations (2.1.1). However, the rate equations
handle spontaneous emission (a.k.a., fluorescence) separately from the gain even though
quantum mechanics shows it also originates in matter–light interaction. We proceed
to define several types of gain and show how all the pieces fit together to make realistic
rate equations.

2.2.1 Temporal Gain

Consider an ensemble of two level atoms or bands in a semiconductor material.
Stimulated emission and absorption affect the number of electrons in the two energy
levels. These processes help to determine the rate of change of the number of carriers in
the active region and the number of photons in the modal volume. The process of

section. A photon perturbs the energy levels of atoms (i.e., electron–hole pairs or
‘‘excitons’’ for the semiconductor) and induces radiative recombination. In the case of
Figure 2.1.3, the number of photons increases by one while the number of conduction
electrons decrease by the same number. The CB electrons and VB holes produce ‘‘gain’’ in
the sense that incident photons with the proper wavelength can stimulate carrier
recombination and thereby produce more photons with the same characteristics as the
incident ones. The figure indicates a gain of two by defining a generic form of gain as the
ratio of the ‘‘output number of photons’’ to the ‘‘input number of photons.’’
The same ensemble of atoms can also absorb photons from the beam (as shown in the

lower-left portion of Figure 2.1.3) by promoting a valence electron to the conduction
band. The stimulated emission increases the number of photons in the laser while the
stimulated absorption decreases the number. Therefore, the gain really should describe
the difference between the emission and absorption rates. The stimulated emission
and absorption terms in Equations (2.1.1) can be grouped together into a single term
incorporating the gain.
The word ‘‘stimulated’’ means that a photon must be incident on the material before

either stimulated emission or absorption can proceed. Therefore, the change in the total
number of photons gVg in the modal volume Vg must be proportional to the number
of photons present

RstimVg ¼ Vg
dg
dt

����
stim

� g

where Rstim represents the net number of photons produced (Rstim40) or absorbed
(Rstim50) in each unit volume in each second. However, only those photons in the active
region (volume V) can stimulate additional photons since the electron–hole pairs are
confined to that region. Therefore

RstimVg ¼ Vg
dg
dt

����
stim

� Vg
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stimulated emission appears in the upper-left portion of Figure 2.1.3 in the previous



Define the ‘‘temporal gain’’ gt to be the constant of proportionality so that

RstimVg ¼ Vg
dg
dt

����
stim

¼ Vgtg ð2:2:1aÞ

or equivalently

Rstim ¼
dg
dt

����
stim

¼
V

Vg
gtg ¼ �gtg ð2:2:1bÞ

where � ¼ V=Vg is the confinement factor defined in Section 2.1.2. The temporal gain
gt must have units of ‘‘per second’’ since RstimVg has units of #events per second.
As previously discussed, electron–hole pairs produce stimulated emission and therefore
the temporal gain gt must depend on the number of excited carriers n (in a semi-
conductor) or the number of excited atoms (in a gas) so that gt ¼ gtðnÞ. The temporal gain
describes the stimulated emission and absorption terms in Equations (2.1.1) from the
previous section.

2.2.2 Single Pass Gain

The rate of stimulated emission in Equations (2.2.1) does not depend on the spatial
coordinates. Therefore, these rate equations treat physical devices as lumped elements
as if they have the size of a single point rather than occupying a finite volume of
space. However, we would like to apply the rate equations to the case of optical energy
propagating in an extended gain medium such as the laser amplifier shown in
Figure 2.2.1. As a first step, consider the ‘‘single pass gain’’ produced by the collection
of ‘‘two-level’’ atoms depicted in Figure 2.2.2. These atoms have only two possible energy
levels for the electrons. The figure shows three photons incident on the left side of the
gain medium. These photons enter the material and interact with the atoms. Five of
the atoms emit photons (stimulated emission) while two of them absorb photons
(absorption or sometimes called stimulated absorption) and two do nothing. The number
of output photons is six which gives a single pass gain of G¼ 6/3¼ 2. The gain describes
only the stimulated emission and absorption processes and does not include photon
losses through the side of the laser or through the mirrors. The single pass gain is defined
as the ratio between the numbers of output and input photons. In the case of the laser
amplifier shown in Figure 2.2.1, the ‘‘input’’ represents the number of the photons in the
cavity at point z1 (time t1) and the ‘‘output’’ represents the number of photons at point z2

FIGURE 2.2.1

Block diagram of the laser amplifier. The number of
photons increases as they travel along the gain
medium. The gain can depend on position.

FIGURE 2.2.2

An example where two levels produce more photons
than they absorb.
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2

a length z2 � z1 ¼ L of the material.

2.2.3 Material Gain

We want a gain that can represent the ability of a material to produce photons in each
unit volume along the length of a device. The single pass gain represents the whole
piece of material. For example, increasing the length L of the material must also increase
the single pass gain. Therefore, we would like to eliminate the length dependence
from the definition of gain. We define the material gain ‘‘g’’ in terms of the number
of photons produced in the medium in each unit of length for each photon entering that
unit length.
We can find the material gain from the temporal gain by changing the units of gt from

‘‘per second’’ to those of the material gain g, namely ‘‘per unit length.’’ The two gains
‘‘g and gt’’ can be seen to be equivalent on an intuitive level. Consider the ‘‘extended’’
laser amplifier described by g as shown in Figure 2.2.1. Photons travel from one end to the
other and spend a time t¼ L/vg in the amplifier. The quantity vg ¼ dz=dt is the group
velocity of the wave and, for a single frequency laser, it is given by c/n where n is

is increased by the gain g. Now consider the case of the point-sized lumped device.
The signal enters the lumped device and remains for a period of time t. The temporal
gain gt amplifies the number of photons during that time. The amplified signal then
leaves the lumped device. For both the extended and lumped devices, the signals remain
in contact with the gain medium for the same length of time t. We expect the output
signal size to be the same and we find a relation of the form

g �
1

Length
�

1

Sec

Sec

Length
� gt

t

L
�

gt
vg

Converting between length and time also converts between the two gains.
The typical demonstration of the equivalence between the two gains ‘‘g and gt’’ starts

with Equations (2.2.1).

dg
dt
¼ �gtg ð2:2:2aÞ

The chain rule for differentiation gives

dg
dt
¼

dg
dz

dz

dt
¼ vg

dg
dz

ð2:2:2bÞ

Combining Equations (2.2.2a) and (2.2.2b) produces

dg
dz
¼ �g g ð2:2:2cÞ

where g¼ g(n)¼ gt/vg depends on the number of carriers n (per unit volume).
Essentially we are changing variables from ‘‘t’’ to ‘‘z’’ in the photon density g. In the

case of ‘‘t,’’ we imagine that photons enter a ‘‘node’’ (i.e., a small box without spatial
extent) and after a time t emerge from the node but with more of them (i.e., g increases).
In the case of ‘‘z,’’ we imagine a steady state process where photons enter a spatially
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(time t ). The laser amplifier shown in Figure 2.2.1 produces a single pass gain of four in

the refractive index of the medium (see Appendix 3). The output from the laser amplifier



extended device (laser amplifier) and each subsequent unit length of material produces
more photons than each previous unit length. It is possible of course, to imagine a
situation where g can depend on both z and t as in g ¼ gðz, tÞ. For example, the bias
current to the laser amplifier might be modulated.
We can lastly demonstrate the single pass gain. The stimulated emission from the

emission given by Equation (2.2.2c) (assuming g¼ constant) as

dg
dz
¼ �g g ! gðzÞ ¼ gð0Þ e�gz ð2:2:3Þ

The material gain appears in the argument of the exponential. The single pass gain G can
be written as

G ¼ e�gz ð2:2:4Þ

Since the material gain g in Equation (2.2.3) depends on the number of excited carriers n
or the number of excited atoms in a gas, so g can produce either gain or absorption.
The material gain g(n) can increase (or decrease) the number of photons in each unit
of length. Without any exited carriers n¼ 0, we expect incident photons to be absorbed
which means G5 1 and therefore g5 0. For sufficiently large n, the material gain g
becomes positive and produces stimulated emission. By the way, the assumption that
g¼ constant is equivalent to assuming that ‘‘n’’ is independent of length, which in turn is
equivalent to assuming that the laser amplifier is far from ‘‘saturation.’’ Near saturation,
the carrier density decreases from its quiescent value in regions where the optical power
density is large.
The gain often appears as a logarithm of the form shown in Figure 2.2.3

gðnÞ ¼ go Ln
n� n1
no � n1

� �
ð2:2:5Þ

The n1 is negative and never attainable. The parameter no represents the transparency
density.

Example 2.2.1

Suppose all of the atoms shown in Figure 2.2.2 are in the ground state (electrons in
the lowest level). The three incident photons in the figure would most likely be absorbed
and the single pass gain G would be 0. However, the equation G ¼ exp gL

� �
indicates

FIGURE 2.2.3

The material gain as a function of the number n of excited atoms.
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laser amplifier in Figures 2.2.1 and 2.2.2 can be found from the net rate of stimulated



that the material gain ‘‘g’’ must be negative. In fact, to produce G¼ 0, we must have
g � �1 and similarly gt

Example 2.2.2

for every photon that we put into the material, we might expect to get exactly one in the
output. In such a case, the single pass gain is G¼ 1 but the material gain is g¼ 0; this
condition is termed ‘‘material transparency.’’

2.2.4 Material Transparency

The semiconductor material becomes ‘‘transparent’’ (‘‘material transparency’’) when
the rate of absorption just equals the rate of stimulated emission. One incident photon
produces exactly one photon in the output. This means that the single pass gain must be
unity, i.e., G¼ 1. The material gain in this case is g¼ 0 as can be seen by setting the single
pass gain equal to one in Equation (2.2.4). The transparency density no (number per
unit volume) represents the number of excited atoms (or electrons per volume) required
to achieve transparency.
The gain curves can be approximated by a straight line at no (refer to Figure 2.2.3)

by making a Taylor expansion about the transparency density no to find g ¼ gðnÞ ffi
go n� noð Þ. The symbol go ¼ dg=dn is typically called the differential gain. It plays a
predominant role in designing high efficiency and large bandwidth laser heterostructure.
The material gain required to achieve lasing will be much larger than zero since

the gain must offset other losses besides stimulated absorption (typically g¼ 150 cm�1).
The number of carriers required to achieve lasing will be larger than the transparency
density (sometimes approximately double). We will spend considerable time learning
about gain especially for the quantum mechanical treatment.

2.2.5 Introduction to the Energy Dependence of Gain

We now provide a simple argument as to why the gain depends on frequency ! (i.e.,
energy E ¼ �hh!) somewhat similar to the op-amp circuit discussed in the first chapter.
We will also see how the pump level affects the peak gain and the bandwidth of the gain
curve. Strictly speaking, the remainder of the book will examine this development in
greater detail.
Suppose we connect a pn GaAs homojunction to a battery so that the forward bias

places a nonequilibrium number of electrons in the conduction band cb and holes in the

c and
Fv mark the approximate top of filled cb states and the bottom of empty vb states,
respectively.
Assume a photon enters the semiconductor with energy E. We want to know the

effect it will have on the population distribution. In particular, we want to know if
it will induce a transition and if so, what type. The energy E ¼ E1 is smaller than the
bandgap energy Eg and cannot connect a state in the vb with one in the cb. Furthermore,
no states exist within the bandgap. Therefore the photon does not induce emission or
absorption. The lower portion shows the gain must be zero at energy E1. Stimulated
photons can only be produced when the energy of the incoming photon matches the
energy difference between filled cb states and the corresponding empty vb states.
Therefore, we expect incident photons with energy Eg � E � E2 to produce stimulated
emission and hence, positive gain. The energy E2 ¼ Fc � Fv corresponds to the difference
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� �1. This situation is shown in Figure 2.2.3.

If hal f of the atoms in Figure 2.2.2 are excited and half are still in the ground state, then

valence band vb as shown in the top portion of Figure 2.2.4. The quasi-Fermi levels F



in quasi-Fermi levels which was essentially set by the bias voltage. When the incident
photon has energy E4Fc � Fv such as for E3, then the photon connects a filled valence
state with an empty conduction state. In such a case, the photon can only be absorbed and
hence the gain must be negative.
As a result, the figure shows that the bias voltage sets the width of positive gain

in addition to determining the peak value at Ep. Notice that the gain reaches a peak at
an energy other than the bandgap energy Eg. This means that the average photon energy
will be slightly larger than the gap energy. The phenomena of shifting the photon to
larger energy (i.e., shorter wavelength) occurs because of the band filling effect through
the quasi-Fermi levels. For the region of positive gain, the semiconductor emits photons
and can be used as a laser or led. For the region of negative gain, the semiconductor
absorbs the photon. For the bias levels determining the gain curve in Figure 2.2.4, the
semiconductor can absorb short wavelength light to optically pump the semiconductor
and then emit the absorbed energy at a longer wavelength.
If we reverse bias the pn junction, then the gain curve remains negative for all

energy. In such a case, the semiconductor only absorbs light and can be used as a
photodetector.

2.2.6 The Phenomenological Rate Equations

Now we combine all of the individual terms into the laser rate equations. The equation
for the number of excited atoms (number of electrons in the conduction band)

V
dn

dt
¼ �

Stimulated
Emission

� �
þ

Stimulated
Absorption

� �
þ JV�

Non-Radiative
Recombination

� �
�

Spontaneous
Recombination

� �

becomes

V
dn

dt
¼ �V vgg gþ JV �

n

�e
V ð2:2:6aÞ

FIGURE 2.2.4

Top portion shows filled conduction and empty valence states. Bottom portion shows gain as a function of
energy.
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Referring to earlier equations we have

1

�e
¼ Aþ Bnþ Cn2 and A ¼ 1=�n ð2:2:6bÞ

For good material, A¼C¼ 0 and the recombination term equals the spontaneous recom-
bination rate

dn

dt
¼ � vgg gþ J � Bn2 ð2:2:7Þ

Next consider the photon rate equation given by

Vg
dg
dt
¼ þ

Stimulated
Emission

� �
�

Stimulated
Absorptions

� �
�

Optical
Loss

� �
þ

Fraction of
Spont: Emiss:

� �

We can now rewrite the photon rate equation as

Vg
dg
dt
¼ þV vg gðnÞ g� Vg

g
�g
þ �Bn2Vg ð2:2:8Þ

or, using the optical confinement factor of �¼V/V� , we have the second rate equation

dg
dt
¼ þ� vg gðnÞ g�

g
�g
þ �Bn2 ð2:2:9Þ

For convenience, let’s write the rate equations together

dn

dt
¼ �vg g nð Þ gþ J � Bn2 ð2:2:10aÞ

dg
dt
¼ þ�vg g nð Þ g�

g
�g
þ �Bn2 ð2:2:10bÞ

These equations describe the laser system (except for the phase of the EM wave).
The rate equations describe all that a person wants to know about a number of opto-
electronic devices. The rate equations mainly exist to find the output power (also cavity
power) as a function of the bias current. We can also use them for a small signal analysis
of time response of the beam to small changes in the bias current. The reader
should realize that the laser rate equations are quite nonlinear especially since g depends
on ‘‘n.’’ Also keep in mind that the rate equations should really be generalized to a partial

EXAMPLE 2.2.3

Find the number of electron–hole pairs when only the pump operates. Do not include the stimulated
emission and recombination terms.
Solution: The n rate equation reduces to

dn

dt
¼ J
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differential equation that includes a spatial coordinate (refer to Appendix 2).



The number of electron–hole pairs must be

n ¼ Jt

Figure 2.2.5 shows how the pump increases the number.

EXAMPLE 2.2.4

Find the number of electrons in the conduction band when only monomolecular recombination and
the pump operate.
Solution: Figure 2.2.6 shows how the pump increases the number of electron–hole pairs

while the gap states trap out the electrons. Eventually, but with a different time constant,
the holes will be reduced as they recombine with the electrons in the traps. Let n refer
solely to the electrons in the conduction band. The rate equation provides

dn

dt
¼ J�

n

�e
ð2:2:11Þ

transforms.
Let ~nnðsÞ be the Laplace transform of nðtÞ. The Laplace transform of Equation (2.2.11)

produces

s ~nnþ
~nn

�e
¼

J

s
þ no or ~nn ¼

J þ sno
s sþ 1=�eð Þ

where no represents the initial number of electrons.
Using partial fractions and basic results for Laplace transforms, we find

nðtÞ ¼ J�e 1� e�t=�e
� �

þ no e
�t=�e

The second term shows that the initial number of electrons decays as they trap out.
The first term shows the pump increases the number of cb electrons while the trapping
tends to decrease the number. As a result, the number approaches an asymptote J�e set
by the interplay between the pump and the recombination term.

FIGURE 2.2.5

The pump continuously increases the number of
electron–hole pairs.

FIGURE 2.2.6

A semiconductor with pump and monomolecular
recombination.
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The equation can be easily solved using an integrating factor (Appendix 1) or by Laplace



2.3 The Power–Current Curves

The relation between optical output power and the pump strength provides the most
fundamental information on the operation of light-emitting devices. The rate equations
provide power versus current curves for semiconductor lasers and light emitting diodes.
The power–current curves are alternately termed P–I or L–I curves. A computer provides
the most accurate solutions to these highly nonlinear equations. However, the most
important results can be found using some very insightful and highly accurate approxi-
mations. Separate approximations must be applied to the lasing and nonlasing regimes
of operation.

2.3.1 Photon Density versus Pump-Current Number Density

We solve the rate equations for the steady-state photon density � inside the laser cavity
as a function of the steady state pump-current number density J. The rate equations are

dn

dt
¼ �vg gðnÞ gþJ� Bn2 ð2:3:1Þ

dg
dt
¼ þ�vg gðnÞ g�

g
�g
þ �Bn2 ð2:3:2Þ

A system attains steady state when all of the time derivatives become zero.We assume that
the laser has been operating for a long time compared with the time constants �� and �e.
We define the effective carrier lifetime �e by �e ¼ 1= Bnð Þ as discussed in Section 2.1.5.
For these sufficiently long times, the rate equations become the steady-state equations

0 ¼ �vggðnÞgþJ� Bn2 ð2:3:3Þ

0 ¼ þ�vggðnÞg�
g
�g
þ �Bn2 ð2:3:4Þ

The steady-state condition imposed on Equations (2.3.1) and (2.3.2) in order to arrive at
Equations (2.3.3) and (2.3.4) has nothing to do with the time-dependent sinusoidal
variation of the electromagnetic waves inside the cavity. The above equations describe the
photon density, which refers to the optical power density. Equation (2.3.4) requires the
amplitude of the EM waves to be independent of time. The power contained in the EM
waves neither grows nor decays with time.

Case 1 Below Lasing Threshold

The phrase ‘‘below lasing threshold’’ implies that the laser has insufficient gain to
support oscillation. Small value of current density J implies small values for the carrier
density ‘‘n’’ and the photon density �. As discussed in Case 2 below there exists a
‘‘threshold’’ pump-current number density Jthr for which J4Jthr produces lasing
and J5Jthr produces only spontaneous emission. For case 1 considered here, we
assume that J5Jthr. For this case, the photon density � in the cavity remains relatively
small compared with that achieved for lasing. Therefore, we drop the stimulated
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emission/absorption terms vgg nð Þg in Equations (2.3.3) and (2.3.4). The second steady-
state equation (2.3.4) provides

g ¼ ��gBn
2 ð2:3:5aÞ

for the photon density for spontaneous emission. The first steady-state equation (2.3.3)
provides the expression

Bn2 ¼ J ð2:3:5bÞ

Equations (2.3.5) can be combined to yield the g�J relation

g ¼ ��gJ ð2:3:6Þ

This is the photon density in the cavity (i.e., between the two mirrors) due to sponta-
neous emission. Notice that the photon density is linear in the pump-current number
density J. The factor � accounts for the geometry factors describing the coupling of
spontaneous emission to the cavity mode.
Some books include a coupling coefficient �ex and show the linear relation between

the photon density (proportional to the optical power) and the pump current (see

the wave vectors point along the longitudinal axis (i.e., the long axis). These ‘‘sponta-
neous’’ photons can be emitted through the mirrors. We will find an expression for the
emitted optical power later.

Case 2 Above Lasing Threshold

The phrase ‘‘above lasing threshold’’ refers to the situation of sufficiently large pump
current (or pump power) to produce stimulated emission in steady state (J4 Jthr). We
assume that stimulated emission provides the primary source of cavity photons whereas
the number of spontaneously emitted photons remains relatively small. The ratio of
spontaneous to stimulated photons in the lasing mode is further reduced by the coup-
ling coefficient �. We therefore neglect the term �Bn2 in Equation (2.3.4); this can later be
justified by a self-consistency argument. The steady-state laser equations become

0 ¼ �vggðnÞgþJ� Rrec ð2:3:7Þ

0 ¼ þ�vg gðnÞ g�
g
�g

ð2:3:8Þ

where the spontaneous recombination term has the form

Rrec ¼
n

�e
¼

n

�n
þ Bn2 þ Cn3 ffi Bn2

Equation (2.3.8) can be solved for vg gðnÞ to obtain a most remarkable equation!

vg gðnÞ ¼
1

��g
ð2:3:9Þ

The left-hand side depends on the carrier density ‘‘n’’ (or number of excited atoms) but
the right-hand side is independent of ‘‘n’’! This requires ‘‘n’’ to be a constant. The ‘‘threshold
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Coldren’s book). Our Equation (2.3.6) above describes the photon density inside the laser;



carrier density’’ nthr represent the approximate value of the carrier density n to produce laser
oscillation nffi nthr. According to this very good approximation, the carrier density
remains fixed regardless of the magnitude of the current above lasing threshold. In fact,
since the term �Bn2 in Equation (2.3.4) must always be positive, the carrier density n must
be slightly smaller than the threshold density. Below lasing threshold, the approximation
nffi nthr does not hold since Case 1 shows that the device produces mostly sponta-
neous emission; consequently, the spontaneous emission term in the photon rate
equation cannot be ignored. The value of the gain at lasing threshold can obviously be
written as gthr¼ g(nthr). If we write the cavity lifetime in terms of the loss coefficients from
Equation (2.1.11)

1

�g
¼ vg � ð2:3:10Þ

then Equation (2.3.9) becomes

�gthr ¼ � ð2:3:11Þ

gain equals the loss when the laser oscillates (i.e., lases). Keep in mind that the material
gain, just like the carrier density, remains approximately fixed for currents larger than the
threshold current!
We can substitute Equation (2.3.9) into Equation (2.3.7) to obtain the equation for the

g�J curve

g ¼ ��g J� Rrecð Þ ffi ��g J� Bn2thr
� �

¼ m J�Jthr

� �
ð2:3:12aÞ

where

Jthr ¼ Anthr þ Bn2thr þ Cn3thr ffi Bn2thr ð2:3:12bÞ

Notice that the carrier density ‘‘n’’ has been replaced with its threshold value nthr.
Equation (2.3.12a) describes a straight line that passes through the threshold density
Jthr and has slope m ¼ ��g as shown in Figure 2.3.1. Actually, the threshold current
density is defined to be the point where an extrapolated straight line with slope

m ¼ ��g ¼
�

vg �m þ �intð Þ
ð2:3:13Þ

FIGURE 2.3.1

Example of g�J characteristics for a laser operating below threshold J5Jthr and above threshold J4Jthr.
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Similar to the op-amp oscillator in Chapter 1, this last equation clearly shows that the



intersects the J-axis (a similar definition holds for the bias current I). As shown by
Equation (2.3.12b), the threshold pump current number density Jthr ¼ Bn2thr becomes
larger for materials (and laser designs) with greater tendency to spontaneously emit
(since B is larger). So even though spontaneous emission initiates laser oscillation, it also
shifts the threshold currents to larger values. Larger rates of spontaneous emission
therefore generally waste power and increase heating.

2.3.2 Comment on the Threshold Density

The previous topic mentioned the most remarkable phenomenon whereby the number
of electrons remains independent of the pump current above lasing threshold. This
means that we can increase the pump current and hence the optical output as much
as we like without altering the gain! How can we understand this? It turns out that
the stimulated emission and feedback mechanisms conspire to produce this result.
Consider a simple analogy that helps illustrate the relation. Suppose we represent

the electrons in the conduction band by molecules in a water bucket as shown in
Figure 2.3.2. The first bucket corresponds to the laser below threshold. The pumped
water flows through the small leaks; this corresponds to spontaneous emission. As
the water level rises as for the right-hand bucket, the water eventually flows out of
the large slot. Increasing the pump only slightly increases the water level since the
slightly higher pressure ensures more water flow through the large slot. Therefore
the output water flow increases, as the pump strength increases without raising the
water level in the bucket. The slot provides an additional channel for water to
escape the bucket, but it only becomes active once the level reaches the height of the
slot.
Now consider the case of the laser. As the pump strength increases, the number

of electron–hole pairs increases in the active region and produce spontaneous emission.
At some point, the laser oscillates and the number of electron–hole pairs reaches the
threshold value. Increasing the pump further slightly increases the number of pairs
but greatly increases the number of photons. The feedback mechanism causes these
photons to produce even more through stimulated emission, which therefore increases
the pair recombination rate. This negative feedback lowers the number of pairs in
opposition to the effect of the pump, which very accurately mains the total number of
pairs. The stimulated emission represents an alternate channel for photon production,

FIGURE 2.3.2

The pump increases the water level until the water line encounters the large slot in the bucket.
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but it can only become active once the number of electron–hole pairs reaches a certain
level similar to the water-bucket analogy.

2.3.3 Power versus Current

It’s nice to use photon and current number densities when deriving the basic relations
but they are not very useful in the laboratory. We need quantities like Watts and Amps.
Simple scaling factors can be applied to the g�J equations in Section 2.3.2 to provide
convenient units for power and current. We first write down an expression for power in
terms of the photon density. Consider the dimensional analysis argument for the power
passing through both laser mirrors (with equal reflectivity)

Power out
two mirrors

¼ Po ¼
Energy

Sec
¼

Energy

Photon
�

Photons

Volume
� Mode volume

� �
�

1

�m
ð2:3:14Þ

The energy of each photon is hc/lo where lo is the wavelength in vacuum. The photons
in the laser mode propagate in two directions, so the number of photons striking a
single mirror must be proportional to �/2 and for both mirrors must be proportional to
g. The modal volume is V� and the mirror time constant is 1/�m¼ vg�m. Equation (2.3.14)
treats the laser cavity as a reservoir of photons that can ‘‘leak’’ out with a time constant
�m. As a comment, Equation (2.3.14) uses a constant photon density g but the density is
not necessarily uniform along the cavity. We should use an average since the photon
density near the mirrors might differ from that near the interior. Substituting all of the
expressions, the power from both mirrors of the laser must be

Po ¼ g
hc

lo
Vgvg�m ð2:3:15Þ

Actually, the optical power through a mirror can take on a number of different forms.
We next consider two separate cases for currents above and below threshold.

Case 1 P–I Below Threshold

Now we can find the output power from both mirrors as a function of the bias current
I for a laser operating below threshold I5Ithr (LED regime). The P–I curves can be
found from the number density relation (Equation (2.3.6)) below threshold

g ¼ ��gJ

by substituting into Equation (2.3.15), which is

Po ¼ g
hc

lo
Vgvg�m

to obtain

Po ¼ ��gJ
� � hc

lo
Vgvg�m ð2:3:16Þ

Next, writing the cavity lifetime �� in terms of the losses �m and �int

1

�g
¼

1

�m
þ

1

�int
¼ vgð�m þ �intÞ
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and writing the pump-current number density J in terms of I, we obtain

Po ¼ ��g
�iI

qV

hc

lo
Vgvg�m ¼ �

�i
q�

hc

lo

�m

�m þ �int
I ð2:3:17Þ

The output power below threshold is linear in the bias current I. The modal coupling
coefficient � causes the output power to be of smaller magnitude than the power for the
same laser above threshold.

Case 2 P–I Above Threshold

Now we find the output power from both mirrors as a function of the bias current I for a
laser operating above threshold I4Ithr. Substitute Equation (2.3.15), and the expression
for the pump-current number density (2.3.2), namely J¼ �iI/(qV), into Equation (2.3.12a),
namely g ¼ ��g J�Jthr

� �
to get

Po

ðhc=loÞgVgvg�m
¼ ��g

�iI

qV
�
�iIthr
qV

� �
ð2:3:18Þ

Using the relation for the optical confinement factor �¼V/V� and the relation for the
cavity lifetime

1

�g
¼

1

�m
þ

1

�int
¼ vgð�m þ �intÞ

we obtain the P–I curve (for currents larger than the threshold current Ithr and for light
emitted from both mirrors)

Po ¼ �i
hc

qlo

�m

�int þ �m
I � Ithrð Þ ð2:3:19Þ

The equation for the P–I relation above threshold represents a straight line with an
intercept of Ithr
slope of the line. Smaller mirror reflectivity gives larger loss �m and also, therefore, larger
output power. With some effort the threshold current Ithr ¼ ðqV=�iÞJthr can be obtained
by using Jthr¼Bn2thr.

2.3.4 Power versus Voltage

The power output versus bias current is linear for this simple model. The semiconductor
laser has the basic form of a PIN diode. The current–voltage relation for the diode has
a form similar to

I ¼ Io eqV=kT � 1
� �

� Io e
qV=kT ð2:3:20Þ

Therefore, the plot of power versus bias voltage does not follow a simple linear relation.
For best linearity, the laser should be driven with a current source.
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as shown in Figure 2.3.3. The mirror loss and internal loss determine the



2.3.5 Some Comments on Gain

The results of this section allow us to show the most important points for the laser gain
curve. Figure 2.3.4 shows the transparency density no must be smaller than the threshold
density nthr. Above threshold, the gain doesn’t vary much from gthr ¼ g nthrð Þ. One step to
linearize the rate equations consists of Taylor expanding the gain g around nthr. The
differential gain is the slope of the gain g(n)

goðnÞ ¼
dgðnÞ

dn

where for lasing, the differential gain is evaluated at the threshold density nthr. The lowest
order Taylor series approximation centered on the transparency density no is gðnÞ ¼
goðn� noÞ. The differential gain is go. The gain at threshold must be gthr ¼ gðnthrÞ ¼
goðnthr � noÞ.

2.4 Relations for Cavity Lifetime, Reflectances and Internal Loss

In order to apply the rate equations to ‘‘real world’’ situations, we need to relate the
parameters appearing in the rate equation to the physical construction of the device.
We can most easily find a relation between the mirror loss and the mirror reflectance. The
free carrier absorption and optical scattering for the internal (distributed) losses require
the wave equation developed in the next chapter. Here we demonstrate the relation
for the reflection of optical power without interference effects. We then state the output
power for mirrors with significantly unequal reflectance.

2.4.1 Internal Relations

We need to relate the cavity lifetime �g to the reflectance of the two mirrors R1 and
R2 on the ends of the laser, and to the internal losses such as sidewall scattering and
free carrier absorption. The term ‘‘reflectance’’ refers to the amount of optical power

FIGURE 2.3.3

Output power versus bias current.

FIGURE 2.3.4

Example of the gain vs. the number of excited atoms.
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reflected from a mirror whereas reflectivity usually refers to the electric field (power
is essentially the square of the field). The method presented in this topic uses a laser
operating at steady state above threshold and requires the power in the beam to have the
same magnitude after a round trip as it did at the start. The procedure again shows
that the gain must equal the optical losses above threshold. We should also require the
phase of the waves to agree after the round trip, but we will include this effect after
discussing the optical scattering and transfer matrices.
Let us demonstrate the following basic relation for the cavity lifetime

1

�g
¼ vg�int þ vg�m ¼ vg�int þ

vg
2L

Ln
1

R1R2

� �
ð2:4:1Þ

where R1 and R2 denote the reflectivity of the two mirrors and L represents the length
of the cavity. Equation (2.4.1) describes the case of the cavity without the gain or
absorption normally encountered for semiconductor materials. The equation relates the
time required for optical energy to escape from the cavity to the time constants for the
internal and mirror loss. The internal loss includes the scattering and free carrier
absorption. If the cavity has semiconductor material, we can define an effective cavity
lifetime �eff that can be much larger than the cavity lifetime �g since the material can have
gain that produces photons thereby compensating for those photons lost. The second
term on the right-hand side of Equation (2.4.1) describes the mirror loss. The factor 1/L
provides an average loss over the length L of the laser. The logarithm term describes the
‘‘fractional loss’’ at the mirrors. The time required for light to travel from one mirror to
the other L=vg must be the same as the time interval during which the light attempts to
escape from one mirror. The factor of 1/2 occurs because the light makes a round trip.
The relation (2.4.1) can be derived by requiring the optical power within the cavity to

maintain steady state. This means that a beam starting at z¼ 0 (with power Po), reflecting
from the mirror at z¼ L, and finally reflecting from the mirror at z¼ 0, must have the
same power with which it started. The number of photons starting at z¼ 0 must be
the same as the number returning to z¼ 0 after a round trip.
We must calculate the increase and decrease of the optical energy as it propagates from

z¼ 0 to z¼ L and back to z¼ 0. We first consider the exponential growth of the wave as
it propagates across the gain medium. Consider photons starting at the left mirror and
traveling to the right mirror across the length L of the gain medium. These photons
encounter distributed internal loss �int and gain, but not mirror loss. The photon rate
equation (2.3.2) without spontaneous recombination can be written as

dg
dt
¼ þ�vggðnÞg�

g
�g

ð2:4:2Þ

where the distributive losses produce the cavity lifetime of

1

�g
¼

1

�int
¼ vg�int ð2:4:3Þ

The mirror-loss term does not appear in Equation (2.4.3) because we first consider an
EM wave that only propagates between mirrors. Setting the confinement factor equal
to one � ¼ 1 for convenience, and changing variables from time ‘‘t’’ to distance ‘‘z,’’
Equations (2.4.2) and (2.4.3) provide

dg
dt
¼ vg

dg
dz
¼ vggg� gvg�int or

dg
dz
¼ gg� g�int ¼ gnetg ð2:4:4Þ
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where the net gain

gnet ¼ g� �int ð2:4:5Þ

accounts for the material gain and distributed losses. The photon density is propor-
tional to the power P(z) traveling through the medium so that Equation (2.4.4) can also be
written as

dP

dz
¼ gnetP ð2:4:6Þ

Assuming the carrier density is constant along z, the solution to this simple differential
equation is

PðzÞ ¼ Po exp gnz
� �

ð2:4:7Þ

So the power grows exponentially as it propagates from z¼ 0 to z¼ L. Just before the
right-hand mirror in Figure 2.4.1, the power must be

PðLÞ ¼ Po exp gnL
� �

ð2:4:8Þ

Now calculate the power after a round trip by repeatedly using Equation (2.4.8). The
power at z¼ L for a beam starting at z¼ 0 is Po exp gnL

� �
.

The reflectance R of mirror R2 decreases the power to

R2Po exp gnL
� �

Reflectance refers to the ratio of the reflected to incident power; it is the square of the
reflectivity R¼ r2 (reflectivity refers to the fields). The power in the beam increases
exponentially as it travels from z¼ L back to z¼ 0

R2Po exp 2gnL
� �

Finally, mirror R1 reduces the beam power to produce the power

R1R2Po exp 2gnL
� �

FIGURE 2.4.1

The effect of the gain medium on the optical power of a beam making a round-trip in the laser Fabry-Perot
cavity.
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just to the right of the mirror at z¼ 0. At this time, the beam has made a complete round
trip. For steady state, the initial power Po must be the same as the final power

Po ¼ R1R2Po exp 2gnL
� �

which yields the relation

gnet ¼
1

2L
Ln

1

R1R2

� �
ð2:4:9aÞ

where

gnet ¼ g� �int ð2:4:9bÞ

The material gain g in Equation (2.4.9b) can be rewritten by appealing to Equation (2.3.11)
which says that the gain must equal the loss at steady state �g ¼ � or, for unity
confinement � ¼ 1, we have g ¼ �. We can also appeal to the equivalent form in terms of
the cavity lifetime and the temporal gain gt

vgg ¼ gt ¼
1

�g
ð2:4:9cÞ

Combining Equations (2.4.9) provides the cavity lifetime (without the gain or absorption
due to semiconductor material)

1

�g
¼ vg�int þ

vg
2L

Ln
1

R1R2

� �
ð2:4:10Þ

This last equation provides the lifetime for the case when energy escapes from the
cavity through ‘‘internal loss’’ and through both mirrors. If the two mirrors have the same
reflectivity (as is typical for a semiconductor laser with cleaved or etched facets),
then R¼R1¼R2 and

1

�g
¼ vg�int þ

vg
L
Ln

1

R

� �
ð2:4:11Þ

The power reflectivity for facets cleaved in GaAs is nearly 0.34. Typically �m� 100 cm�1

and �int� 50 cm�1.

2.4.2 External Relations

In this topic, we illustrate the output power from mirrors with reflectance R1 and R2.
Often times one mirror receives a high reflectance coating to increase the power out of
the other one. The photon density (intracavity power) varies significantly from a constant
value near the mirrors. A higher reflectance mirror produces a higher photon density
just inside that cavity than does a lower reflectance one. By calculating the average
photon density in the laser body (Reference 5, the Agrawal and Dutta book) and applying
the appropriate boundary conditions, we find the power P1 and P2 through the
mirrors with reflectance R1 and R2, respectively

P1 ¼
1� R1ð Þ

ffiffiffiffiffiffi
R2

pffiffiffiffiffiffi
R1

p
þ

ffiffiffiffiffiffi
R2

p� �
1�

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p� �Po ð2:4:12aÞ

Introduction to Laser Dynamics 73

© 2005 by Taylor & Francis Group, LLC



P2 ¼
1� R2ð Þ

ffiffiffiffiffiffi
R1

pffiffiffiffiffiffi
R1

p
þ

ffiffiffiffiffiffi
R2

p� �
1�

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p� �Po ð2:4:12bÞ

where Po gives the total power through both mirrors given in Equation (2.3.19). The
relation between the reflectance and the loss coefficients is given by Equation (2.4.11).
We can easily show that P1 þ P2 ¼ Po, which indicates the output power divides itself
between the two facets. If the facets are identical, i.e., R1 ¼ R2 ¼ R, then each facet
handles half the total since P1 ¼ P2 ¼ Po=2.

2.5 Modulation Bandwidth

The first part of this chapter discusses the laser rate equations that provide a wealth of
information on the semiconductor laser. For example, the previous sections demonstrate
the all-important P–I curves. The P–I curves represent the laser system at steady state.
However, the rate equations can also provide information on the transient and small
signal behaviors of the laser. The present section discusses the modulation bandwidth.
We start by asking a question. What is the optical response of a laser to small sinusoi-

dal changes of bias current? That is, what is the transfer function? This question has very
important implications for modern communications and data transfer systems. Fiber
communications systems couple the semiconductor laser to one end of the fiber and posi-
tion the receiver many kilometers away. The laser must have large bandwidth in order
to transmit the greatest amount of information. Most laser systems modulate the output
laser beam by modulating the bias current to the laser. We must have some knowledge
of its frequency response to successfully implement the semiconductor laser in the
communication system. We would like to have the changes in amplitude of the output
beam due to changes in the bias current to be independent of frequency. However,
as with any real device, the response function usually depends on frequency. For
example, electronic circuits have parasitic capacitance that cause the frequency to
roll-off at high frequencies. We will see that the output response is relatively flat up to
a resonant frequency that is determined by the rate equations.

2.5.1 Introduction to the Response Function and Bandwidth

Figure 2.5.1 shows a conceptual experiment to determine the bandwidth. The laser
is biased with the battery, which provides a steady-state current �II to the laser. The signal
generator applies a small sinusoidal bias current I¼ I(t) (where I55 �II). The left-hand coils

FIGURE 2.5.1

A semiconductor laser with DC bias and AC modulation.
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and capacitor prevent the small AC signal from shunting through the battery; however,
they allow the DC current to flow from the battery to the laser. The right-hand capacitor
prevents the DC current from conducting through the signal source but allows the AC
signal to reach the laser. The input current I0 to the laser consists of the sum of a large DC
bias and a small AC signal with angular frequency !

I0 ¼ �II þ IðtÞ ð2:5:1Þ

The small signal current is given in phasor notation as IðtÞ ¼ I ei!t where I¼ I(!) repre-
sents the amplitude. Notice that we have temporarily changed notation from that in the
earlier sections. The ‘‘primes’’ indicate totals as required by Equations (2.2.10). The ‘‘bars’’
indicate the steady-state quantities given in Equations (2.3). The output signal consists of
the optical beams emitted through both mirrors. The total output power Po must be the
sum of the steady state power �PP and the small sinusoidal signal P(t). Equation (2.5.1) has
a prime to indicate the total current (it does not mean derivative). Figure 2.5.2
shows how the steady-state �PP��II transfer function changes the small sinusoidally
varying bias current into a small sinusoidally varying output power P. For larger
modulation frequency !, we expect the small changes in output power P to decrease in
amplitude.
We will perform a small signal analysis of the g0�J 0 rate equations. This means that

we will find two sets of equations. The first set describes the steady-state photon density �gg
in response to the steady-state current-number pump density �JJ. The second set
determines the small sinusoidal changes in the photon density g as a function of the small
changes in the bias current J. In terms of photons, we can imagine the average optical
power to be represented by an average number of photons �gg and the modulation to be

the photon density corresponds to the amplitude of the carrier. The carrier is the electric
field of the light wave from the laser. The carrier has a very high frequency on the order
of 1015 Hz. The power is essentially the square of the electric field.

(output divided by input) versus the modulation frequency !. The modulation signal
decreases rapidly at high modulation frequencies. The response curve develops a peak
which we label as the resonant frequency !res. We take the resonant frequency as a
measure of the bandwidth. We will see that the bandwidth depends on the construction

FIGURE 2.5.2

Output power vs bias current.
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represented by small changes in this number as indicated in Figure 2.5.3. Notice how

The results of the small signal analysis appear in Figure 2.5.4 as a plot of the response



of the laser through the loss terms (i.e., 1/��) the differential gain go, and the pump level
(through the average photon density �gg within the cavity) according to

!res ¼

ffiffiffiffiffiffiffiffiffiffiffi
vggo �gg
�g

s
ð2:5:2Þ

where vg is the speed of the wave in the gain medium. Recall that go comes from the
lowest order Taylor approximation g(n)� go(n� no), and go represents the slope of the
gain curve near n¼ nthr.

2.5.2 Small Signal Analysis

To demonstrate the equation for resonance, we must perform a small signal analysis of
the laser rate equations. A small signal analysis requires us to consider both steady state
quantities, which will be denoted by a ‘‘bar’’ over the quantity (for example, �gg should
remind the reader of an ‘‘average’’), and the sinusoidal varying terms. Let the quantities
in the rate equation be denoted by primes (the prime indicates the total of the DC and AC
quantities). For simplicity, we linearize the gain by making an approximation for the
carrier density n near the transparency density no of g

0 ¼ gðn0Þ ffi go n0 � noð Þ . The recombi-
nation term is linearized by using n0=�n (with �n a constant). Keep in mind that the
variables in the rate equation denoted by primes represent the total of the DC and
AC quantities

dn0

dt
¼ �vggoðn

0 � noÞg0 þ J0 �
n0

�n
ð2:5:3aÞ

FIGURE 2.5.4

Resonant frequency of the response curve is roughly equal to the bandwidth.

FIGURE 2.5.3

Cartoon comparison of photon density with carrier modulation.
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dg0

dt
¼ þ�vggoðn

0 � noÞ g0 �
g0

�g
ð2:5:3bÞ

that is, the primed quantities are defined by

n0 ¼ �nnþ n ei!t g0 ¼ �ggþ g ei!t J0 ¼ �JJþ J ei!t ð2:5:4Þ

The quantities n, � and J are the small signal quantities (i.e., the small Fourier
amplitudes).
The steady-state quantities �nn, �gg, �JJ

� �
satisfy the steady-state equations obtained from

Equations (2.5.3) by setting the derivatives to 0

0 ¼ �vggoð �nn� noÞ�ggþ �JJ �
�nn

�n
ð2:5:5aÞ

0 ¼ þ�vg goð �nn� noÞ �gg�
�gg
�g

ð2:5:5bÞ

The actual derivation of the resonant frequency requires a great deal of algebra.
We outline the procedure as follows. Defining �gg ¼ go �nn� noð Þ and substituting the primed
quantities from Equation (2.5.4) into the rate equations (2.5.3) provides

i!n ei!t ¼ �vg �ggþ gon e
i!t

� �
�ggþ g ei!t
� �

þ �JJ �
�nn

�n
þ J ei!t �

n

�n
ei!t

i!g ei!t ¼ �vg �ggþ gon e
i!t

� �
�ggþ g ei!t
� �

�
g ei!t

�g
�

�gg
�g

ð2:5:6Þ

Use the steady-state equations (2.5.5) to cancel some of the terms with the steady-state
quantities �nn, �gg, �JJ

� �
to get

i!n ei!t ¼ �vg gon e
i!t �ggþ �ggg ei!t þ gogn ei!t

	 

þ J ei!t �

n

�n
ei!t

i!g ei!t ¼ �vg �gggon ei!t þ �ggg ei!t þ gong e2i!t
	 


�
g ei!t

�g

ð2:5:7Þ

Drop the second-order nonlinear terms such as gn, n2; this procedure also removes terms
such as e2i!t. Then cancel the exponentials ei!t from both sides

i!n ¼ �vggon�gg� vg �gggþ J �
n

�n

i!g ¼ �vggon�ggþ �vg �ggg�
g
�g

ð2:5:8Þ

Rewrite Equations (2.5.8) to obtain

vg �ggg ¼ J � vggo �ggþ
1

�n
þ i!

� �
n

�vggo �ggn ¼
1

�g
� �vg �ggþ i!

� �
g

ð2:5:9Þ
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Solve the second of Equations (2.5.9) for n and substitute into the first of Equations (2.5.9).
Multiply out the terms to find

g ¼
�vggo �gg J

�v2ggo �gg�ggþ vggo �ggþ
1

�n
þ i!

� �
1

�g
� �vg �ggþ i!

� � ð2:5:10Þ

Multiply out the denominator and define the following terms

1

�
¼

1

�g
� �vg �ggþ vggo �ggþ

1

�n

� �
ð2:5:11Þ

!2
o ¼ �v2ggo �gg�ggþ vggo �ggþ

1

�n

� �
1

�g
� �vg �gg

� �
ð2:5:12Þ

to obtain the transfer function

g
J
¼

�vggo �gg

!2
o � !2

� �
þ ði!=�Þ

ð2:5:13Þ

Defined the response function

RJ ¼
g
J

����
����2 ð2:5:14Þ

to show that

RJ ¼
�vggo �gg
� �2

!2
o � !2

� �2
þ ð!2=�2Þ

ð2:5:15Þ

We find the peak of the response function by setting its derivative with respect to the
angular frequency equal to 0

dRJ

d!
¼ 0 ð2:5:16Þ

This gives a condition on the resonant frequency

!2
r ¼ !2

o �
1

2�2
ð2:5:17Þ

If 1=�2 is very small, then !r ffi !o. Earlier portions of this chapter show that, above
threshold, the gain essentially locks to the loss

1

�g
¼ �vg �gg ! �vg �gg�gg ¼

�gg
�g

ð2:5:18Þ

Combining Equations (2.5.17) and (2.5.18) with Equation (2.5.12) provides the desired
results

!r ¼

ffiffiffiffiffiffiffiffiffiffiffi
vggo �gg
�g

s
ð2:5:19Þ
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We can also write the resonant frequency in terms of the mirror and internal
loss. The cavity lifetime in Equation (2.5.19) can be replaced by the internal loss and the
mirror loss

1

�g
¼ vg �int þ �mð Þ

to obtain

!res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gov2g �gg �int þ

1

L
Ln

1

R

� �� �s
ð2:4:20Þ

Only a single reflectance R appears in the equation since we assume the optical power
emits through two identical mirrors. As the length of the cavity L or the mirror reflectivity
R increases, the resonant frequency decreases. Bandwidth essentially describes how fast
the laser can respond to changes in current. A large cavity lifetime means it will take a
long time for the light in the cavity to leak out and thereby change the optical energy in
the cavity. A large mirror reflectance increases the cavity lifetime and therefore decreases
the resonant frequency. On the other hand, the length of the cavity determines the
amount of time that it takes for the light to travel between the two mirrors. If there were
not any internal loss, only the mirror loss term would be present. In such a case, the
cavity loses light only when the light strikes the mirrors. The amount of time required to
travel across the cavity is t¼ vg/L, where L is the length of the cavity. This means that the
laser can respond no faster than the time t. Also notice that the resonant frequency
depends on the number of photons in the cavity. As bias current to the laser increases, the
number of photons in the laser cavity also increases and hence the resonant frequency of
a laser must also increase. Therefore higher powers also provide larger bandwidths. By
using the results of Equation (2.5.15) and using the expression (2.5.20) for the resonant
frequency in place of !, we can calculate the peak of a resonant curve. As mentioned,
longer lasers have lower bandwidth and also lasers with higher reflectance mirrors also
have lower bandwidth. AVCSEL might have a cavity length of approximately 5 mm and
the mirror reflectivity might be as high as 95%.

2.6 Introduction to RIN and the Weiner–Khintchine Theorem

The study of noise in optoelectronic systems has an increasingly important position
with the advent of small sized devices and small signals. The present section discusses
the relative intensity noise (RIN) for the photon density and optical power. The RIN
measures the expected fluctuation of the signal. The laser rate equations, when supple-
mented with Langevin noise terms, provide the main equations to predict the noise
from the semiconductor laser. The Langevin noise terms represent the external influence
of the environment on the lasing process such as for the pump and mirrors. The
RIN can most generally be stated as an autocorrelation which requires the calculation
of the correlation between Langevin sources. The section discusses the Kronecker
and impulse correlation for discrete and continuous processes, respectively. The
Weiner–Khintchine formula relates the correlation function to the spectral density.
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The subsequent section shows how the response to the noise sources can be deduced

probability theory and statistics.

2.6.1 Basic Definition of Relative Noise Intensity

Relative Intensity Noise (RIN) measures the amount of noise relative to the size of
the signal. Consider a beam characterized by either the power P or the photon density �.
At first thought, we might define the RIN as the ratio of the deviation � of the signal
to the average signal �PP. However, for convenience, people define RIN as the ratio of
the noise variance �2 to the average power squared �PP2. Figure 2.6.1 shows an optical
signal (with average power �PP) with superimposed noise. The figure assumes that the
noise, represented by the excursions of the signal from the average, obeys a Gaussian
distribution. Let the symbol � denote the standard deviation for the distribution. The
RIN for a DC signal can be equally well expressed in terms of either power or photon
density

RIN ¼
�2
P

�PP2
RIN ¼

�2
g

�gg2
ð2:6:1Þ

where Appendix 4 shows the average and variance in Equation (2.6.1) of the form

zh i ¼

Z
dz z fðzÞ �2 ¼ z� �zzð Þ

� z� �zzð Þ
 �

¼
Real

z� �zzð Þ
2

 �
ð2:6:2Þ

The second version in Equation (2.6.1) most conveniently uses the photon density found
in the laser rate equations. In either case, one must be careful to distinguish between the
photon density inside or outside of the cavity since partition noise (due to the mirrors
for example) modifies the RIN.

2.6.2 Basic Assumptions

Equation (2.6.1) and Figure 2.6.1 make use of some implicit assumptions (Reference 6,

FIGURE 2.6.1

A signal as a function of time. A large amount of noise is superimposed on the average signal.
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Mandel and Wolf, Chapter 2). First, we assume that measuring the random variable P(t)

from the laser rate equations. Appendix 4 discusses many of the preliminary concepts in



produces discrete points on the graph. We think of the time t as an index. Each sequence

random process. Sometimes we refer to the collection of points P(t) as a random process.
Let t1 be a specific time. The random variable P(t1) representing the power at time t1 can
take on any number of values. For example, we might find Pðt1Þ ¼ 2:1 or Pðt1Þ ¼ 1:8
or Pðt1Þ ¼ 2:4. Therefore at time t1, the random variable P(t1) takes on a range of values
and has an average and standard deviation. For every time t1, t2, . . ., there exists a
random variable P1¼P(t1), P2¼P(t2), . . .. The collection of all random variables form

f(P1, t1; P2, t2) represents the probability per unit time (squared) that P¼P1 at time t¼ t1
and P¼P2 at time t¼ t2; this probability density is also called the ‘‘two time probability.’’
Notice that the two-time probability refers to two-separate times for the same process.
The multi-time probabilities contain information on correlation.
As a second assumption, we require the noise process to be ‘‘stationary’’ in the sense

that its characteristics do not change with time. For example, the standard deviation (for
the noise) cannot depend on time. We usually characterize the stationary process by the
time-dependence of the probability distribution. The probability distribution for a single
random variable such as the power P(t) at a fixed time t cannot depend on time for a
stationary process. However, a joint probability distribution f(P1, t1; P2, t2; P3, t3 . . .)
describing a number of random variables Pi (which denotes the power in the beam at
time ‘‘ti’’), depends only on a difference in time

f P1, t1;P2, t2;P3, t3 . . .ð Þ ¼ f P1, 0;P2, t2 � t1;P3, t3 � t1 . . .ð Þ

If the joint distribution could not be written in this form, the results of our measure-
ments would depend on when we start the clock. In this case, the fundamental nature
of the system must be changing.
Our third assumption concerns the ‘‘ergodic’’ property of the distribution. For some

processes, an average �PP ¼ PðtÞ
 �

can be found by using either an ensemble average or by
a time average. An ergodic process assumes that the average of a function f(t) can be
computed by either a time or ensemble average

yðtÞ
 �

¼ Lim
�!0

1

�

Z �

0

dt yðtÞ or y
 �
¼

Z
dy y fðyÞ ð2:6:3Þ

where f(y) denotes the probability density. For the average over time, the interval �
should be long compared with any correlation time, but short compared with the time
scale of interest. Strictly speaking, a process is ergodic if every realization contains exactly
the same statistical information as the ensemble. In this case, the realizations don’t
all need to start at the same time.

Example 2.6.1

A small pressure sensor is glued to the bottom of a tin can filled with water. Suppose
the sensor produces noise in proportion to the pressure; i.e., the noise is a fixed percen-
tage of the total signal (say 1%). The pressure at the bottom of the can must be
proportional to the amount of water in the can. Suppose we place a hole at the bottom of
the tin can and the water slowly drains away. The pressure changes with time. Therefore,
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of points P(t) (i.e., each possible graph like Figure 2.6.1) represents a ‘‘realization’’ of a

the random process P(t). As discussed in Appendix 4, the joint probability distribution



the noise content depends on when the first measurement occurs. The distribution ‘‘f ’’
cannot be written as in the previous equation

f P1, t1;P2, t2ð Þ 6¼ f P1, 0;P2, t2 � t1ð Þ

2.6.3 The Fluctuation-Dissipation Theorem

We should introduce concepts leading up to the discussion of the Langevin noise
sources before continuing with the RIN for a semiconductor laser. There are three main
questions to be answered. (1) How are random noise sources included in the rate
equations? (2) How should we think of the noise sources? (3) What physical mechanism
leads to the noise sources?
First, let’s write the final set of rate equations (neglecting the phase). Let �n and �g

be the differential response of the carrier and photon number density to the Langevin
noise sources Fn(t) and Fp(t), respectively. The symbols �n and �g refer to the small
differences between the quantity and its average �n ¼ nðtÞ � �nn and �g ¼ g� �gg similar to
Section 2.5 where the ‘‘bar’’ indicates the average quantity. The next section shows
that the rate equations with noise terms have the form

d

dt
�n ¼ �vg �ggn �gg �n� vg �gg �g� �RRn �nþ FnðtÞ ð2:6:4Þ

d

dt
�g ¼ �vg �ggn �gg �nþ �vg �gg �g�

�g
�g
� � �RRn�n þ FgðtÞ ð2:6:5Þ

The subscripts ‘‘n’’ indicate a derivative with respect to ‘‘n.’’ Classically, the noise sources
are a phenomenological addition to the equations. These noise sources are intimately
related to the damping terms in Equations 2.6.4 and 2.6.5 (for example, g=�g) through the
so-called ‘‘fluctuation-dissipation’’ theorem. Figure 2.6.2 shows how the functions might
be pictured. Adjacent points have absolutely no relation between them (delta function
correlated).
The Langevin noise sources arise from the interaction of the laser with so-called

reservoirs. The pumping mechanisms can be considered to be reservoirs and they can
supply an infinite number of charges (i.e., current * time). The phonons in the crystal are
part of another reservoir—a thermal reservoir—since their distribution in energy
corresponds to a Boltzmann distribution with a specific (controlled) temperature.
The mirrors provide ‘‘windows’’ into a third type of reservoir—a ‘‘light’’ reservoir.
Every external influence on the laser system can be related to a reservoir. Subsequent
sections show that a reservoir induces rapid fluctuations (Langevin noise) as well as

FIGURE 2.6.2

An example of the Langevin function Fn(t) or F�(t). The functions have random values and cannot be specified
by a formula.
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damping. This section introduces the notion of
a reservoir and discusses the associated fluc-
tuation-dissipation theorem.
To see how fluctuations arise in a number

density, we discuss the thermal reservoir. The
laser and its environment (i.e., the external
influences) are divided into a small system
under study and a collection of reservoirs. The
reservoirs are large systems that provide
equilibrium for the smaller system. A reservoir
is a system with an extremely large number of
degrees of freedom. For example, a reservoir of
two-level atoms or harmonic oscillators neces-
sarily contains a large number of atoms or
oscillators. A reservoir of light consists of a set
of modes where the number of such modes is
extremely large. Typically, we assume a specific
energy distribution exists in the reservoir. For
example, if the reservoir consists of point

particles (such as gas molecules) then one might assume a Boltzmann distribution for
the energy.
Let’s bring the reservoir into contact with the small system so that energy can flow

between the system and the reservoir as indicated in Figure 2.6.3. The reservoir has such
a large number of degrees-of-freedom that any energy transferred to/from the small
system has negligible affect on the energy distribution in the reservoir.
For a concrete example, suppose the small system consists of a single gas molecule

and the reservoir has a large number of molecules all at thermal equilibrium (i.e.,
a Boltzmann energy distribution). The temperature of the small system will eventually
match the temperature of the larger system. However, temperature measures the average
kinetic energy. Therefore, to say that the reservoir and system have equal temperatures
means that the average kinetic energy of the single molecule matches the average kinetic
energy of all the molecules in the reservoir.
Suppose the molecule in the small system has a much larger than average kinetic

energy (maybe a factor of 10). The extra energy eventually transfers to the reservoir.
This extra energy distributes to all of the molecules in the reservoir, which makes
negligible changes in the total reservoir distribution. Essentially the small system loses
the initial packet of energy to the large system; the initial packet distributes over many
degrees of freedom. In effect, the reservoir has ‘‘absorbed’’ the ‘‘extra’’ system energy
and the motion of the single molecule ‘‘damps.’’
The reservoir energy distribution defines average quantities for the reservoir. The

contact between the two systems brings the small system into equilibrium with the
reservoir, which therefore defines the average quantities for the small system. Suppose
the single atom in the small system is initially in equilibrium with the reservoir.
Occasionally, a large chunk of energy will be transferred from the reservoir to the small
system—a thermal fluctuation. As a result, the single atom will have more energy than its
equilibrium value. Eventually, the energy of the atoms damps when the energy transfers
back to the reservoir. We assume any correlation between fluctuations occurring on short
times scales to be negligible. The process of transferring energy between the small system
and the reservoir provides an example of the fluctuation-dissipation theorem. The
theorem basically states that a reservoir both damps the small system and induces
fluctuations in the small system. The two processes go together and cannot be separated. Often,

FIGURE 2.6.3

The reservoir can exchange energy with the
system under study.
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on a phenomenological level, the fluctuations are included in rate equations through the
Langevin functions.

2.6.4 Definition of Relative Intensity Noise as a Correlation

The relative intensity noise (RIN) can be measured in terms of either the power P or
the photon density g. The RIN can be defined through an autocorrelation function �

RIN �
�g t, tþ �ð Þ

�gg2
�

�g� tð Þ �g tþ �ð Þ
 �

�gg2
or RIN ¼

�P t, tþ �ð Þ

�PP2
¼

�P� tð Þ �P tþ �ð Þ
 �

�PP2
ð2:6:6Þ

where the RIN appears to depend on ðt, tþ �Þ and the ‘‘variance’’ is replaced by an
autocorrelation function � (not to be confused with the confinement factor). We will see
later that RIN depends only on the time difference � for a stationary probability
distribution. The definition explicitly shows the complex conjugate in spite of the fact
that the photon density and power are real. The quantity �g specifies the difference
between the photon density �(t) at time t and the average photon density �gg. The RIN in
Equation (2.6.6) and RIN in Equation (2.6.1) must be the same for � ¼ 0. The RIN in
Equation (2.6.6) contains additional information on the correlation of the fluctuations and
on the bandwidth of the fluctuation spectrum.
To understand the relation between the correlation and the standard deviation,

consider the simplest case of the discrete process xi with zero average. The discrete

i

Consider two sub-sequences of N numbers from the same sequence xi (assume large
N and zero average). We might take a sequence starting at number ‘‘i,’’ specifically
xi, xiþ1, . . . , xiþN and another sequence displaced by n terms, specifically xiþn, xiþnþ1, . . . ,
xiþnþN . We assume that xi corresponds to the noise and has an expectation value equal
to zero xih i ¼ 0 (where we either average over ‘‘i’’ or use the ensemble average). The
correlation between the two sub-sequences must be given by

� i, nð Þ ¼ xixiþn
 �

¼
1

N

XN
i¼1

xixiþn ð2:6:7Þ

If the adjacent (and succeeding) values of ‘‘x’’ are truly random so that xi does not
have any relation what-so-ever to xiþ1, then we expect the quantity xixiþn

 �
to be zero,

specifically xixiþn
 �

¼ 0 for any n4 0. On the other hand, for n¼ 0, we see that the
right-hand side of Equation (2.6.7) reduces to the variance of ‘‘x’’ which does not
necessarily produce zero xixih i ¼ �2

x 6¼ 0. Therefore, it is possible to have Kronecker-delta
correlated discrete sequences

� nð Þ � � i, iþ nð Þ ¼ �2
x �n, 0

This depends on the fact that adjacent values of ‘‘x’’ are not related. Notice the correlation
� depends on ‘‘n’’ and not i. That is, � depends only on the difference iþ nð Þ � i ¼ n,
which has the mark of a stationary process.
Continuous processes x(t), such as for the Langevin noise terms, can be Dirac-delta

function correlated (assume x has zero average). For two times t, t0 (possibly arbitrarily
close), we consider quantities such as xðtÞ xðt0Þ

 �
¼ xðtÞ xðtþ �Þ
 �

where � represents a
displacement that takes the place of ‘‘n’’ above. We assume that the two values x(t) and
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sequence of numbers x can be Kronecker-delta function correlated (refer to Appendix 4).



x(tþ�) do not have any relation to each other regardless of the size of � (except for �¼ 0).
This says that arbitrarily large values of the frequency ! must be contained in the
Fourier transform of a realization x(t), since ‘‘x’’ at t and t0 can make wild swings
regardless of the proximity of t and t0. On the other hand for �¼ 0, xðtÞ and xðt0Þ must
be the same sequence and xðtÞ xðt0Þ

 �
¼ xðtÞ xðtþ �Þ
 �

¼ xðtÞ xðtÞ
 �

must be related to the
standard deviation. The Langevin noise terms must be Dirac delta function correlated

xðtÞ xðtþ �Þ
 �

¼ Sx � ðtþ �Þ � t½ � ¼ Sx � � � 0ð Þ ð2:6:8Þ

where Sx represents the correlation strength.
In analogy with the discrete case, a continuous process can be delta-function correlated

according to Equation (2.6.8). For the Ergodic process, Equation (2.6.8) can be written as

Sx � �ð Þ ¼ xðtÞ xðtþ �Þ
 �

¼ Lim
T!1

1

T

Z T

0

dt xðtÞ xðtþ �Þ ffi Lim
N!1

1

N

X
i

xðtiÞ xðti þ �Þ ð2:6:9Þ

where the time interval T is divided into the number N of small intervals �t. We
can define the time � also in terms of a discrete index. In the continuous case, we can write
� ¼ ��t where � represents the continuous counterpart of the discrete index n.
The right-hand side of Equation (2.6.9) becomes LimN!1 ð1=NÞ

P
i xi xiþn. However, the

left side has the Dirac delta function that can be rewritten as �ð�Þ ¼ �ð��tÞ ¼ �t �ð�Þ. The
Dirac delta can be expressed as Kronecker-delta function by �ð�� 0Þ ffi �n, 0=�t where � is
approximately the integer n and �t is the cell width. Equation (2.6.9) then becomes

Sx �n, 0 ¼ Lim
N!1

1

N

X
i

xi xiþn ð2:6:10Þ

One problem arises with regard to taking the Fourier transform of a stationary process
z(t) as normally done to find the spectral density Szð!Þ. The function zðtÞ must be square
integrable

Z 1
�1

dt zðtÞ
�� ��251 ð2:6:11Þ

so that the function z has finite ‘‘length.’’ However, a stationary process z does not
have finite length since the fluctuations away from the average (zero in this case) do not
change in magnitude with time since the standard deviation does not depend on time.
The expected value of zðtÞ

�� ��2 must be nonzero for any time and therefore the summa-
tion over all times must become infinite. The Weiner–Khintchine formula in the next
topic circumvents the issue of whether or not the Fourier integrals exist. The derivation
uses the correlation in time, which easily shows any impulse-function character of the
transform for z2 (i.e., g2 or �P2 for the RIN).
The next topic discusses the correlation in more detail. In preparation, we make a brief

note on the noise for a Fourier transform. Suppose P(t) represents the optical power in
a light beam. Assume the signal consists of a steady state part and superimposed noise.
The Fourier integral representation of P(t) becomes

PðtÞ ¼

Z 1
�1

d! ~PP !ð Þ
ei!tffiffiffiffiffiffi
2	
p
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Any noise in P(t) must appear in the Fourier transform ~PPð!Þ. The noise cannot be in
ei!t since it is a formula and ! is not a random variable. The RF spectrum analyzer
provides a measurement of the noise by displaying S�Pð!Þ and not ~PPð!Þ. One must
remember that the RF spectrum analyzer is not an oscilloscope and any small variation
in the plot does not indicate the noise in the signal (optical power in this case). The
displacement of the trace above the bottom of the plot indicates the noise.

2.6.5 The Weiner–Khintchine Theorem

The Weiner–Khintchine theorem states that a stationary process z(t) has a power
spectrum Sð!Þ ¼

ffiffiffiffiffiffi
2	
p

�ð!Þ that is essentially the Fourier transform �ð!Þ

� !ð Þ ¼

Z 1
�1

d� �ð�Þ
e�i!�ffiffiffiffiffiffi
2	
p ð2:6:12Þ

of the correlation function �ð�Þ ¼ zðtÞ� zðtþ �Þ
 �

. In addition

z� !0ð Þ z !ð Þ
 �

¼ S !ð Þ� !� !0ð Þ or S !ð Þ ¼

Z 1
�1

d!0 z� !0ð Þ z !ð Þ
 �

ð2:6:13Þ

We can demonstrate the Weiner–Khintchine Theorem by first noting that the stationary
processes produce autocorrelation functions that only depend on the difference in time

� t1, t2ð Þ ¼ z�ðt1Þ zðt2Þ
 �

¼

ZZ
dz1dz2 z

�
1z2 f z1, t1; z2; t2ð Þ ð2:6:14Þ

where ‘‘f ’’ represents the joint probability density. Recall the definition of a stationary
process as one for which the density function is independent of the origin of time. Let’s
shift the origin of time by t1 to obtain

f z1, t1; z2, t2ð Þ ¼ f z1, t1 � t1; z2, t2 � t1ð Þ ¼ f z1, 0; z2, �ð Þ ð2:6:15Þ

where � ¼ t2 � t1. Therefore, the average in Equation (2.6.14) depends only on the
difference � ¼ t2 � t1

� t1, t2ð Þ ¼

ZZ
dz1dz2 z

�
1z2 f z1, 0; z2; t2 � t1ð Þ ¼ z�ð0Þ zðt2 � t1Þ

 �
� � t2 � t1ð Þ ¼ �ð�Þ

The same reasoning shows �ð�Þ ¼ �ðt1, t2Þ ¼ �ð��Þ.
The expectation value z� !1ð Þ z !2ð Þ

 �
can be written in terms of the Fourier transform

zðtÞ ¼

Z 1
�1

d! ~zz !ð Þ
ei!tffiffiffiffiffiffi
2	
p or ~zzð!Þ ¼

Z 1
�1

dt z tð Þ
e�i!tffiffiffiffiffiffi
2	
p ð2:6:16Þ

as

z� !1ð Þ z !2ð Þ
 �

¼

Z 1
�1

dt1

Z 1
�1

dt2 z�ðt1Þ zðt2Þ
 � eþi!1t1ffiffiffiffiffiffi

2	
p

e�i!2t2ffiffiffiffiffiffi
2	
p ð2:6:17Þ
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Substitute the correlation coefficient, set t ¼ t2 � t1, and separate the integrals to find

z� !1ð Þ z !2ð Þ
 �

¼

Z 1
�1

dt1

Z 1
�1

dt2 � t2 � t1ð Þ
eþi!1t1ffiffiffiffiffiffi

2	
p

e�i!2t2ffiffiffiffiffiffi
2	
p ¼

Z 1
�1

dt� tð Þ e�i!2t

Z 1
�1

dt1
eþi !1�!2ð Þt1

2	

Substitute the Dirac delta function to find

z� !1ð Þ z !2ð Þ
 �

¼

Z 1
�1

dt� tð Þ e�i!2t � !1 � !2ð Þ ¼
ffiffiffiffiffiffi
2	
p

� !2ð Þ � !1 � !2ð Þ ð2:6:18Þ

where � !ð Þ is the Fourier transform of the autocorrelation function � �ð Þ. This last
relation shows the delta function correlation in frequency. Solving this last equation
for � !2ð Þ provides

�ð!Þ ¼

Z 1
�1

dt�ðtÞ
e�i!tffiffiffiffiffiffi
2	
p ð2:6:19Þ

Now, defining the power spectral density as Sð!Þ ¼
ffiffiffiffiffiffi
2	
p

�ð!Þ, we find the second result
from Equation (2.6.18)

z� !1ð Þ z !2ð Þ
 �

¼ S !2ð Þ � !1 � !2ð Þ ð2:6:20Þ

2.6.6 Alternate Derivations of the Weiner–Khintchine Formula

The development of the Weiner–Khintchine formula in the previous topic circumvents
the issue of whether or not the Fourier integrals exist. The derivation does not expli-
citly require the convergence properties. However, to demonstrate the physical inter-
pretation of the correlation function, we need to use an alternative approach that
explicitly makes use of the convergence properties of the integrals. In particular, the
function zðtÞ must be square integrable

Z 1
�1

dt zðtÞ
�� ��251 ð2:6:21Þ

so that the function z has finite ‘‘length.’’ However, a stationary process z does
not have finite length since the fluctuations away from the average (zero in this case)
do not change in magnitude (the standard deviation does not depend on time). This
means that the expected excursion of z at t¼ 0 must be the same as for any other time.
The expected value of zðtÞ

�� ��2 must be nonzero for any time and therefore the summation
over all times must become infinite. The correlation function in the previous topic
circumvents this issue by considering nonzero time delays �.
In order to bring out the physical nature of the correlation function (especially for a

delay of � ¼ 0), we consider a sample of zTðtÞ over a finite interval �T=2,T=2ð Þ and define
zT tð Þ ¼ 0 for tj j4T=2. At the end of the discussion, we will be interested in letting T
grow without bound. The Fourier transform of the process zTðtÞ becomes

zTð!Þ ¼

Z T=2

�T=2
dt zðtÞ

e�i!tffiffiffiffiffiffi
2	
p ð2:6:22Þ
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For now, it should be emphasized that the finite interval where zðtÞ 6¼ 0 produces the
finite limits on the integral so as to circumvent issues of convergence. The procedure
is equivalent to using a convergence factor e� �j jt, which would produce an integrand of
the form e� �j jt�i!t. At the end of the procedure, we would take �! 0 to produce the result
for the Fourier transform. The inverse transform becomes

zðtÞ ¼ Lim
T!1

Z T=2

�T=2
d! zT !ð Þ

ei!tffiffiffiffiffiffi
2	
p ð2:6:23Þ

We now reproduce the Weiner–Khintchine theorem. Consider the correlation function
for a stationary process defined as

� �ð Þ ¼ z�ðtÞ zðtþ �Þ
 �

¼ Lim
T!1

1

T

Z T=2

�T=2
dt z�ðtÞ zðtþ �Þ ð2:6:24Þ

We assume that � remains small compared with T so that the region where z¼ 0 does
not significantly affect the value of the integral. Substituting Equation (2.6.23) into
Equation (2.6.24) produces

� �ð Þ ¼ z�ðtÞ zðtþ �Þ
 �

¼ Lim
T!1

1

T

Z T=2

�T=2
dt

Z 1
�1

Z 1
�1

d!0 d! z�T !ð Þ zT !0ð Þ
e�i!tffiffiffiffiffiffi
2	
p

ei!
0 tþ�ð Þffiffiffiffiffiffi
2	
p ð2:6:25aÞ

Interchanging integrals and separating the exponentials provides

� �ð Þ ¼ z�ðtÞ zðtþ �Þ
 �

¼ Lim
T!1

1

T

Z 1
�1

Z 1
�1

d!0 d! z�T !ð Þ zT !0ð Þ ei!
0�

Z T=2

�T=2
dt

ei !
0�!ð Þt

2	
ð2:6:25bÞ

Use the Dirac delta function

Lim
T!1

Z T=2

�T=2
dt

ei !
0�!ð Þt

2	
¼ � !0 � !ð Þ

to find the correlation function

� �ð Þ ¼ z�ðtÞ zðtþ �Þ
 �

¼ Lim
T!1

1

T

Z 1
�1

d! zT !ð Þ
�� ��2ei!� ð2:6:26aÞ

Therefore the correlation function and the power spectrum is

� �ð Þ ¼ z�ðtÞ zðtþ �Þ
 �

 !
Fourier

Transform

Sð!Þ ¼ Lim
T!1

ffiffiffiffiffiffi
2	
p

T
zT !ð Þ
�� ��2 ð2:6:26bÞ

As an important note, other references use different expressions for the power spectrum.
A common one is

Sð!Þ ¼ Lim
T!1

4	

T
zT !ð Þ
�� ��2
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2.6.7 Langevin Noise Terms

The Langevin noise terms for the rate equations can be pictured as impulse correlated
(delta function correlated). The noise source function F(t) can be pictured as a sequence

The
correlation is imagined to be extremely short (the Markovian approximation)—shorter
than any time scale of interest. The two values F(t1) and F(t2) do not have any relation
to each other regardless of the proximity of t2 to t1. Alternatively, the amplitude at
frequency !1 does not have any relation to the amplitude at frequency !2 regardless of
the proximity of !1 and !2. We can show

F t1ð Þ F
� t2ð Þ

 �
¼ SF � t2 � t1ð Þ ~FF !1ð Þ ~FF

� !2ð Þ

D E
¼ ~SSF � !1 � !2ð Þ ð2:6:27aÞ

Often different noise sources i and j are correlated according to

Fi t1ð Þ F
�
j t2ð Þ

D E
¼ Sij � t2 � t1ð Þ ~FFi !1ð Þ ~FF

�
j !2ð Þ

D E
¼ ~SSij � !1 � !2ð Þ ð2:6:27bÞ

The Weiner–Khintchine theorem shows that a stationary process has impulse correlated
frequency components F� !1ð Þ F !2ð Þ

 �
¼

ffiffiffiffiffiffi
2	
p

� !2ð Þ � !1 � !2ð Þ. Using this frequency corre-
lation and the Fourier transform provides Equation (2.6.27a)

F� t1ð Þ F t2ð Þ
 �

¼

Z 1
�1

d!1

Z 1
�1

d!2

ffiffiffiffiffiffi
2	
p

� !2ð Þ � !1 � !2ð Þ

h i e�i!1t1ffiffiffiffiffiffi
2	
p

eþi!2t2ffiffiffiffiffiffi
2	
p

Eliminating the Dirac delta function produces

F� t1ð Þ F t2ð Þ
 �

¼

Z 1
�1

d!1

ffiffiffiffiffiffi
2	
p

� !1ð Þ
ei!1 t2�t1ð Þ

2	

Assume that � !1ð Þ is fairly independent of !1, we find the desired results

F� t1ð Þ F t2ð Þ
 �

¼
ffiffiffiffiffiffi
2	
p

� !ð Þ � t2 � t1ð Þ

2.6.8 Alternate Definitions for RIN

The following list shows a variety of definitions for RIN.

1: RINð�Þ ¼
�P�ðtÞ �Pðtþ �Þ
 �

�PP2
2: RINð!Þ ¼

S�pð!Þ
�PP2

3: RINð!Þ ¼
�P !ð Þ�P� !ð Þ
 �

�PP2
4:

RIN

�f
¼

2S�pð!Þ
�PP2

The first two definitions are interrelated by the Weiner–Khintchine formula where S is the
Fourier transform of the autocorrelation function �ð�Þ ¼ �P�ðtÞ �Pðtþ �Þ

 �
.

The third relation as a shorthand notation can be related to the first and second ones
as follows. Start with

RINð�Þ �
�P t, tþ �ð Þ

�PP2
�

�P� tð Þ �P tþ �ð Þ
 �

�PP2
ð2:6:28Þ
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Substituting the indicated Fourier transforms provides

RINð�Þ ¼
1
�PP2

Z 1
�1

Z 1
�1

d! d!0 � ~PP� !ð Þ � ~PP !0ð Þ
D E e�i!tffiffiffiffiffiffi

2	
p

ei!
0 tþ�ð Þffiffiffiffiffiffi
2	
p

The Weiner–Khintchine theorem shows the term
D
� ~PP� !ð Þ � ~PP !0ð Þ

E
has imbedded Dirac delta

functions � !� !0ð Þ, which can be used to eliminate one integral, and requires ! ¼ !0.
The last equation becomes

RINð�Þ ¼
1
�PP2

Z 1
�1

d!
1ffiffiffiffiffiffi
2	
p � ~PP� !ð Þ � ~PP !ð Þ

D E ei!�ffiffiffiffiffiffi
2	
p ð2:6:29Þ

where now the symbol h� ~PP� !ð Þ � ~PP !ð Þi does not include the Dirac delta function.
Substituting RIN(!) into Equation (2.6.29)

RIN �ð Þ ¼
1
�PP2

Z 1
�1

d!
1ffiffiffiffiffiffi
2	
p RIN !ð Þ

ei!�ffiffiffiffiffiffi
2	
p or RIN !ð Þ ¼

S�P !ð Þ
�PP2

ð2:6:30Þ

Often to indicate the change of notation (missing delta function) the density is stated as

S�P !ð Þ ¼

Z 1
�1

d!0 �P� !0ð Þ �P !ð Þ
 �

Case 3 reduces to case 2.
The fourth case accommodates RF spectrum analyzers. Assume the filter in the RF

spectrum analyzer has the band pass transfer function F ¼ 1 over the frequency range �f
centered at !o. The analyzer then measures

RIN ¼
�2

�PP2
¼

1
�PP2

�P� tð Þ �P tð Þ
 �

¼
1
�PP2

Z 1
�1

Z 1
�1

d!1d!2 �P
� !1ð Þ �P !2ð Þ

 � ei !2�!1ð Þt

2	
F�ð!1Þ Fð!2Þ

Use the relation from the Weiner–Khintchine theorem

�P� !1ð Þ �P !2ð Þ
 �

¼ S�P !1ð Þ� !1 � !2ð Þ

to find

1
�PP2

�P� tð Þ �P tð Þ
 �

¼
1
�PP2

Z 1
�1

d! S�P !ð Þ
Fj j2

2	
¼

S�P !ð Þ
�PP2

2�f

where the factor of 2 accounts for both positive and negative frequency accepted by the
filter. The spectral density S�Pð!Þ replaces the variance.

2.7 Relative Intensity Noise for the Semiconductor Laser

This section determines the relative intensity noise (RIN) for the semiconductor laser
by using rate equations that include the Langevin noise sources. The noise terms
model the noise effects induced by the pump and optical reservoirs. Fluctuations
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induced by the quantum mechanical vacuum produce RIN usually identified with
spontaneous emission. Small fluctuations associated with the pump produce small
fluctuations in the carrier density that lead to very large effects in the photon density.
Both types of noise produce noise in the emitted beam. The fluctuations in the carrier
density produce a greater amount of noise in the output beam. Not surprisingly then,
the noise in the output beam becomes maximum near the laser resonance frequency
discussed in Section 2.4. The reason is that the response curve near resonance relates
small changes in the carrier population to the power in the output beam.

2.7.1 Rate Equations with Langevin Noise Sources and the Spectral Density

We are interested in finding the response of the laser (or LED) to noise. In particular, we
define the relative intensity noise RIN in Equation (2.6.12) as

RIN

�f
¼

2S�Pð!Þ
�PP2

ð2:7:1aÞ

where the correlation strength has the form

S�P !ð Þ ¼

Z 1
�1

d!0 �P� !0ð Þ �P !ð Þ
 �

ð2:7:1bÞ

The laser rate equations can predict the response provided they incorporate the Langevin
noise sources. These sources model the effect of random external influences on the
lasing process. We include one Langevin noise source in the electron–hole rate equation;
it has an effect similar to a randomly time-varying pump current. We place another
Langevin noise source in the photon rate equation; it provides a randomly varying
photon generation rate. Figure 2.7.1 shows a conceptual view of the response of the
output power to Langevin noise sources. The noise sources provide sudden spikes
that randomly change the photon and carrier density. The spectral densities of the
sources contain components at all frequencies. We expect the noise in the output power
to be enhanced near the resonant frequency of the laser as predicted by the laser rate
equations.
We consider small changes in both n and g as �n ¼ nðtÞ � �nn and �g ¼ gðtÞ � �gg. We insert

these into the laser rate equations given by Equations (2.1.19) and (2.1.20)

dn

dt
¼ �vgggþ J � Rsp

dg
dt
¼ �vgg g�

g
�g
þ �Rsp ð2:7:2Þ

FIGURE 2.7.1

Representation of the noise in the optical power from a light emitter.
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where n, g represent the electron and photon density, respectively, �, � denote the optical
confinement and coupling factors, and g¼ g(n), J, R represent the material gain, the
pump-number current density, and the spontaneous recombination. Assume that g
denotes the unsaturated gain (does not depend on the photon density). The variation
in the carrier number and photon number can be found by performing variations
similar to �nf n, gð Þ ¼ ð@f=@nÞ

��
�nn, �gg�n �

�ffn �n. The procedure duplicates that for finding the
bandwidth

d

dt
�nðtÞ ¼ �vg �ggn �gg �n� vg �gg �g� �RRn�nþ FnðtÞ

d

dt
�gðtÞ ¼ �vg �ggn �gg �nþ �vg �gg �g �

�g
�g
þ � �RRn�nþ FgðtÞ

ð2:7:3Þ

The subscript ‘‘n’’ indicates a derivative with respect to ‘‘n’’ except on the Langevin terms
Fn and Fg. The term �RRn indicates the derivative of the nonradiative recombination with
respect to ‘‘n’’ and evaluated at the steady-state value of �nn (i.e., the threshold value). The
‘‘bars’’ on top indicate a steady-state (i.e., average) value.
Since we are most interested in the RIN power spectrum in Equation (2.7.1), we

substitute the Fourier transforms ~nnð!Þ ¼ �nð!Þ and ~ggð!Þ ¼ �gð!Þ into both sides of
Equations (2.7.3) to produce

i! ~nn ¼ �vg �ggn �gg ~nn� vg �gg ~gg� �RRn ~nnþ ~FFn

i!~gg ¼ �vg �ggn �gg ~nnþ �vg �gg ~gg �
~gg
�g
þ � �RRn ~nnþ ~FFg

ð2:7:4Þ

where we assume the pump-current number densityJ doesn’t vary in time. We can alter-
natively write go ¼ �ggn, �

�1
n ¼

�RRn.
Collecting terms in Equation (2.7.4) produces the matrix equation

i! þ vg �ggn �ggþ �RRn vg �gg

��vg �ggn �gg� � �RRn i!� �vg �ggþ ð1=�gÞ

" #
~nn

~gg

" #
¼

~FFn

~FFg

" #
ð2:7:5Þ

Denoting the determinant by �M ¼ DetM where M represents the 2	 2 matrix in the
last equation, the solution to Equation (2.7.5) is

~nn
~gg

� �
¼

1

DetM

i!� �vg �ggþ
1
�g

�vg �gg

�vg �ggn �ggþ � �RRn i! þ vg �ggn �ggþ �RRn

" #
~FFn
~FFg

� �
ð2:7:6Þ

The zeros (or approximate zeros) of the determinant give the resonances. The deter-
minant is

DetM ¼ i! þ vg �ggn �ggþ �RRn

� �
i!� �vg �ggþ

1

�g

� �
þ vg �gg �vg �ggn �ggþ � �RRn

� �
ð2:7:7Þ

Similar to Equations (2.5.11) and (2.5.12), define two terms

1

�
¼

1

�g
� �vg �ggþ vg �ggn �ggþ �RRn ð2:7:8Þ
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!2
o ¼ vg �gg �vg �ggn �ggþ � �RRn

� �
þ vg �ggn �ggþ �RRn

� � 1

�g
� �vg �gg

� �
ð2:7:9Þ

so that the determinant becomes

� ¼ DetM ¼ !2
o � !2

� �
þ
i!

�
ð2:7:10Þ

where !2
r ¼ !2

o � ð1=2�
2Þ � !2

o gives the resonant frequency and !=� represents a damping
term. Recall the resonant frequency has the form !r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vggo �gg=�g

p
. The solution for

the photon density ~gg (inside the cavity) comes from Equation (2.7.6)

~gg !ð Þ ¼
�vg �ggn �ggþ � �RRn

� �
~FFn !ð Þ þ i!þ vg �ggn �ggþ �RRn

� �
~FFg !ð Þ

!2
o � !2

� �
þ i!=�

¼
Cgn

~FFn !ð Þ þ Cgg
~FFg !ð Þ

�
ð2:7:11aÞ

where Cgn is real and !2
o � !2

r and

Cgn ¼ �vg �ggn �ggþ � �RRn Cgg ¼ i! þ vg �ggn �ggþ �RRn � ¼ !2
o � !2

� �
þ i!=� ð2:7:11bÞ

As discussed in the previous section, we can calculate spectral density S�Pð!Þ in Equation
(2.7.1b) to find the RIN. We start by calculating the frequency correlation

~gg !ð Þ ~gg� !0ð Þ
 �

¼
Cgn
�� ��2
�j j2

~FFn !ð Þ ~FF�n !0ð Þ
D E

þ
CgnC�gg

�j j2
~FFn !ð Þ ~FF�g !0ð Þ
D E

þ
CggC

�
gn

�j j2
~FFg !ð Þ ~FF

�
n !0ð Þ

D E
þ

Cgg
�� ��2
�j j2

~FFg !ð Þ ~FF
�
g !0ð Þ

D E

and then form the spectral density

Sgð!Þ ¼

Z 1
�1

d!0 ~gg !ð Þ ~gg� !0ð Þ
 �

¼
Cgn
�� ��2
�j j2

~FFn ~FFn
D E

þ
2Re CgnC�gg

n o
�j j2

~FFn ~FFg
D E

þ
Cgg
�� ��2
�j j2

~FFg ~FFg
D E

ð2:7:12Þ

where we define symbols of the form ~FFi ~FFj
D E

to mean

~FFi ~FFj
D E

¼

Z 1
�1

d!0 ~FFið!Þ ~FF
�
j ð!
0Þ

D E
ð2:7:13Þ

and so on. The cross correlation terms were combined since we will find h ~FFn ~FFg is real and
that h ~FFn ~FFgi ¼ h ~FFg ~FFni. We can substitute for Cgn and Cgg in order to write RefCgnC�ggg ¼
�vg �ggn �ggþ � �RRn

� �
vg �ggn �ggþ �RRn

� �
.

To find the RIN, we need to find the correlation strengths h ~FFn ~FFni, h ~FFn ~FFgi, and h ~FFg ~FFgi.
Also, we have primary interest in the output power Po and therefore want to know the
noise in the output power. As discussed in Section 1.8, the output facets induce partition

A piece of glass, for example, reflects a portion of the incident photons. For every
reflected photon, the output stream must be missing one (indicated by the open circle). In
this example, the input stream has a standard deviation of zero. The reflected and
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transmitted beams have nonzero standard deviation. Interfaces not perfectly reflecting or
transmitting add partition noise.

2.7.2 Langevin–Noise Correlation

This topic presents a simple method for calculating the correlation strength between
Langevin noise terms. The discussion follows Coldren’s book and his references to
Lax and McCumber. The method replaces the quantum treatment of noise and assumes
the noise originates in the shot noise associated with the transport of particles into and out
of particle reservoirs.
For shot noise, the correlation strengths have the form

FiFih i ¼
X

Rþi þ
X

R�i FiFj
 �

¼ �
X

Rij �
X

Rji ð2:7:14Þ

The symbols Rþi , R
�
i represent the rate of particle flow (# particles/time) into and out of

a particle reservoir, respectively. The symbol Rij refers to the particle flow between
reservoirs i and j. In order to find the correct results, the noise functions must
be converted to numbers per unit time. For example, we must convert Fn in Equations
(2.7.3) from units of ‘‘number per volume per second’’ to ‘‘number per second.’’ Examples
for the method appear in the ensuing calculations.
We can apply Equations (2.7.14) to the sources in the laser rate equations (2.7.1)

dn

dt
¼ � RStim

Emiss
� RStim

Abs

� �
þJ� Rsp

dg
dt
¼ � RStim

Emiss
� RStim

Abs

� �
�

g
�g
þ �Rsp ð2:7:15Þ

where � represents the optical confinement factor Va=Vg. Let the symbols RSE and RSA

represent the stimulated emission and absorption rates.
Sometimes the rate of spontaneous emission in the photon equation is redefined as

�Rsp ¼ �R0sp

The noise sources Fn and Fg have units of ‘‘number per volume per time’’ in keeping
with the units in Equations (2.7.1). The rate equations show how the recombination
mechanisms affect the reservoir populations. We need units of ‘‘number per unit time.’’
Multiply Equation (2.7.15) by the volume of the active region Va and the second of the

FIGURE 2.7.2

Imperfect reflecting surfaces induce partition noise.
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equations by the modal volume Vg to obtain

d Vanð Þ

dt
¼ � RSE � RSAð ÞVa þJVa � VaRsp

d Vgg
� �
dt
¼ þ RSE � RSAð ÞVa �

Vgg
�g
þ VaR

0
sp

ð2:7:16Þ

One more point, the stimulated term must be divided into stimulated emission and
stimulated absorption terms since they affect the population of the photon and carrier
reservoirs as suggested by Figure 2.7.3. We redefine the noise sources to be

F0n ¼ VaFn F0g ¼ VgFg ð2:7:17Þ

First, consider the electron noise source. We think of Van as the number of pairs in
the carrier reservoir. We identify the following rates assuming steady state except for the
noise X

Rþi þ
X

R�i ¼
�RRSAVa þ J Va

	 

þ �RRSEVa þ �RRspVa

	 

The electron correlation strength becomes

F0nF
0
n

 �
¼ V2

a FnFnh i ¼
X

Rþi þ
X

R�i ¼
�RRSAVa þ J Va

	 

þ �RRSEVa þ �RRspVa

	 

Therefore

FnFnh i ¼
�JJ

Va
þ

�RRSA

Va
þ

�RRSE

Va
þ

�RRsp

Va
ð2:7:18aÞ

Next, consider the photon noise source. Thinking of Vgg as the number of particles in a
reservoir, we find

F0gF
0
g

D E
¼ V2

g FgFg
 �

¼
X

Rþi þ
X

R�i ¼
�RRSEVa þ �RR0spVa

h i
þ �RRSAVa þ

Vg �gg
�g

� �

FIGURE 2.7.3

The photon and carrier reservoirs.
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Therefore the photon correlation strength must be

FgFg
 �

¼
Va

V2
g

�RRSE þ �RRSA þ �RR0sp

h i
þ

�gg
Vg�g

ð2:7:18bÞ

F0n F
0
g

D E
¼ VaVg Fn Fg

 �
¼ �

X
Rij �

X
Rji ¼ �

�RRSA þ �RRSE þ �RR0sp

h i
Va

This last equation provides

Fn Fg
 �

¼ �

�RRSA þ �RRSE þ �RR0sp
Vg

ð2:7:18cÞ

Notice how the stimulated terms ‘‘SE’’ and ‘‘SA’’ both have ‘‘plus’’ signs which pre-
vents us from substituting the usual expression vg �gg�gg ¼ �RRSE � �RRSA. Instead, we use this
relation for �RRSA to write �RRSA ¼ �RRSE � vg �gg�gg. As we will see in a subsequent chapter, the
term �RRSE can be related to the spontaneous emission through �RRSE ¼ �RR0sp �ggVg. The results

alternate expressions that include nonradiative recombination)

FnFnh i ¼
2 �RR0spg

�
�
vg �gg�gg
Va
þ

�JJþ �RRsp

Va
¼

2 �RR0sp �gg

�
1þ

1

2�ggVg

� �
�
vg �gg�gg
Va
þ

�JJþ �JJ0thr
Va

ð2:7:19aÞ

FgFg
 �

¼ 2� �RR0sp �gg 1þ
1

�ggVg

� �
ð2:7:19bÞ

FgFn
 �

¼ �2 �RR0sp �gg 1þ
1

2�ggVg

� �
þ
vg �gg�gg
Vg

ð2:7:19cÞ

where �JJ0thr ¼
�RRsp � �RR0sp ffi

�RRsp and 1=�ggVg 
 1 above threshold.
As mentioned in the previous topic, the mirrors introduce noise into the beams

transmitted through the mirror and reflected from it. However, the term �gg=�g already
accounts for the reflected term. We need to find the noise added to the output signal
described by the output power Po. Starting with the relation between the photon density
and the output power similar to Equation (2.3.19)

Po ¼ g
hc

lo
Vgvg�m ¼

hc

lo
Vg

g
�m

ð2:7:20aÞ

where vg�m ¼ 1=�m refers to the mirror loss. Using the cavity lifetime instead of the
mirror loss would include the combined optical loss through mirrors, sidewalls, and free
carrier absorption. The relative size of these losses depends on the reflectance of the
mirrors. Including the Langevin noise term in Equation (2.7.20a) and focusing on
the deviation from the average produces

�Po ¼
hcVg

lo�m
�gþ FoðtÞ ð2:7:20bÞ
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Consider the cross correlation strength between the electrons and photons

for the correlation strengths in Equations (2.7.18) become (refer to Coldren’s book for



Converting to number per unit time

hc

lo

� ��1
�Po ¼

Vg

�m
� gþ

hc

lo

� ��1
Fo

Setting

F0o ¼
hc

lo

� ��1
Fo

The correlation strength for the new function then must be related to the number of
photons per second Vgg=�m leaving the photon reservoir through the mirror

~FF0o
~FF0o

D E
¼

hc

lo

� ��2
~FFo ~FFo
D E

¼
Vgg
�m

! ~FFo ~FFo
D E

¼
hc

lo

� �2Vgg
�m
¼

hc

lo
Po ð2:7:21Þ

The cross correlation h ~FFo ~FFni can be taken as zero by assuming that fluctuations in the
output light does not have anything to do with fluctuations in the carrier density

~FFo ~FFn
D E

ð2:7:22Þ

The cross correlation term h ~FFo ~FFgi can be related to the particle flow from the internal
to the external reservoir as required by Equation (2.7.14). Equation (2.7.20a) shows that
Fo has units of Watts, while Equation (2.7.3) indicates that Fg has units of ‘‘number per
volume per second.’’ Define the new sources as

F0o ¼
hc

lo

� ��1
Fo and F0g ¼ VgFg

The rate of flow from the internal to external reservoir must be gVg=�m

F0oF
0
g

D E
¼

hc

lo

� ��1
Vg FoFg
 �

¼ �
Vgg
�m

! FoFg
 �

¼ �
hc

lo

g
�m
¼ �Po=Vg ð2:7:23Þ

2.7.3 The Relative Intensity Noise

We want to know the correlation strength defining the relative noise intensity (RIN)
defined in Equation (2.7.1)

RIN

�f
¼

2S�Pð!Þ
�PP2

S�P !ð Þ ¼

Z 1
�1

d!0 � ~PP� !0ð Þ � ~PP !ð Þ
D E

� �P �Ph i ð2:7:24Þ

where �PP is the average output power PoðtÞ, noise causes the time dependence in PoðtÞ,
and the difference �P ¼ Po � �PP can be attributed to the noise. This last equation needs
the Fourier transform of Equation (2.7.20b)

�Po !ð Þ ¼
hcVg

lo�m
� g !ð Þ þ Foð!Þ ð2:7:25Þ

Introduction to Laser Dynamics 97

© 2005 by Taylor & Francis Group, LLC



Substituting into Equations (2.7.24) provides

�PP2RIN=�f ¼ � ~PP � ~PP
D E

¼
hcVg

lo�m

� �2

� ~gg � ~gg
 �

þ
hcVg

lo�m
~FFo � ~gg� þ ~FF�o � ~gg
D E

þ ~FFo ~FFo
D E

¼
hcVg

lo�m

� �2

� ~gg � ~gg
 �

þ
2hcVg

lo�m
Re ~FFo � ~gg
D E

þ ~FFo ~FFo
D E ð2:7:26Þ

The complex conjugate appears in the middle term in the top line in order to show
the term is real contrary to the standard compact notation setup in Equation (2.7.13). Now
we substitute the correlation relations found in the first topic.
Equation (2.7.26) requires a number of correlation strengths. The embedded correla-

tions in the first term � ~gg � ~gg
 �

can be found in Equations (2.7.19). The third term h ~FFo ~FFoi
appears in Equation (2.7.21).
The second term h ~FF�o � ~ggi uses Equations (2.7.11)

~FF�o � ~gg
D E

¼ ~FF�o
Cgn ~FFn !ð Þ þ Cgg ~FFg !ð Þ

�

* +
¼

Cgn

�
~FF�o

~FFn
D E

þ
Cgg

�
~FF�o

~FFg
D E

ð2:7:27Þ

where the second term abuses the compact notation defined in Equation (2.7.13) in order
to show the subdivision of the integral into the two last terms. The complex conjugate
should be removed to correspond to the notation in Equation (2.7.13). The correlation
in Equation (2.7.27) appear in Equations (2.7.22) and (2.7.23).
We can now write the RIN as

P2
oRIN

�f
¼

hcVg

lo�m

� �2

� ~gg � ~gg
 �

þ
2hcVg

lo�m
Re

Cgg

�
~FFo ~FFg
D E

þ ~FFo ~FFo
D E

ð2:7:28Þ

Substitute Equations (2.7.12) for the term � ~gg � ~gg�
 �

and Equations (2.7.19), (2.7.21), and
(2.7.23) for the resultant correlation strengths to find

RIN

�f
¼

Eg

�PP
1þ

a1 þ a2!2

�j j2

� �

a1 ¼
8	 �
ð Þ �PP

Eg�2�n

1þ
1

�ggVg

� �
þ !4

R

�i I þ Ithrð Þ

Ist
� 1

� �
� 2!2

� !2
R þ

1

��n�g

" #

a2 ¼
8	 �
ð Þ �PP

Eg�2�n

1þ
1

�ggVg

� �
�
8	 �
ð Þ

�g

where we assume negligible change in the gain with photon density and the symbols
Eg, �
ð Þ, Ist, !2

R, !
2
�, ��n mean as

Eg ¼ hc=lo �
ð Þ ¼ � �RR0sp= 4	�ggð Þ � �RR0sp ¼ � �RRsp 1=��n ¼ �RRn

Ist ¼ q �PP=Eg !2
R ¼ vg �ggn �gg=�g !2

� ¼ gNPgPN þ gNNgPP � !2
R
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gNN ¼ vg �ggn �ggþ �RRn gNP ¼ vg �gg ¼
1

��g
�
� �RRsp

��gg

gPN ¼ �vg �ggn �ggþ � �RRn gPP ¼
1

�g
� �vg �gg

2.8 Review Exercises

2.1 A semiconductor has recombination centers in the middle of the bandgap as shown
in Figure P2.1. The symbols n, p, Nr, nr, pr represent the density of electrons in the
conduction band, the density of holes in the valence band, the density of recombi-
nation centers, density of electrons trapped in the recombination centers, and the
density of recombination centers without an electron, respectively. The cross-section
refers to the area of a disk; a carrier falling within the area is most likely captured by
the trap. Larger cross-sections mean that the traps more easily capture the carrier. We
have Nr ¼ nr þ pr. The electron and hole lifetimes can be written as

�n ¼
1

snvpr
and �p ¼

1

spvnr

where v, sn, sp represent the thermal velocity, trap capture cross-section for electrons,
and cross-section for holes, respectively. Neglect spontaneous and stimulated
recombination. Consider a pump current and only recombination represented by
the two lifetimes.

1. Explain why the lifetimes depend on pr, nr.

2. Explain why the following rate equations hold

dn

dt
¼ J�

n

�n

dp

dt
¼ J�

p

�p

dnr
dt
¼

n

�n
�

p

�p

3. Assume n, nr 
 Nr. Find the electron density n at steady state in terms ofJ andNr.

2.2 Reconsider Problem 2.1 for the case of high injection levels defined by n, p� Nr.

1. Explain why n ffi p

2. Use the steady state solutions to show

nr
pr
¼

sn
sp

FIGURE P2.1

Semiconductor with recombination centers.
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3. Using the total density of recombination centers Nr, show

nr ¼ Nr
sn

sn þ sp

4. Finally show and explain the meaning of the results

�n ¼ �p ¼

1

Nrvsn
sn 
 sp

1

Nrvsp
sp 
 sn

8>><
>>:

2.3 A laser researcher measures the power versus current curve from an inplane
semiconductor laser shown in Figure P2.3. Assume the following constants.

L ¼ 200 mm, R ¼ 0:34, c ¼ 3	 1010cm=s

l ¼ 850 nm, q ¼ 1:6	 10�19 Coul

h ¼ 6:64	 10�34 J s, �i ¼ 1

hc

l
¼ 2:35	 10�19 J

Assume area of the top of the semiconductor is 200 mm	 5 mm. Consider the curve
above threshold.

1. Using R1 ¼ R2 ¼ 0:34 ¼ R, calculate the mirror loss �m in units of cm�1.

2. Find the internal optical loss �i in units of cm�1. Hint: Use a ruler to find the slope.

3. Find the cavity lifetime �g. Assume n ¼ 3:5 in vg ¼ c=n.

4. Calculate the photon density in the cavity when the total output power is P¼ 4mW.
Assume that the mode occupies the volume V� ¼ 200 mm	 5 mm	 0.4 mm.

5. Calculate the optical confinement factor � if the thickness of the active region
is 0.1 mm.

6. If the differential gain is go ¼ 5:1	 10�15 cm2, calculate the resonant frequency !r

and fr ¼ !r=2	.

7. Using Figure P2.3, calculate the geometry factor � for spontaneous emission.
Hint: Measure the slope in Figure P2.3 and use the results from Section 2.3.

FIGURE P2.3

Power from both mirrors vs. bias current.
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2.4 Suppose a system has two energy levels E2 and E1 (Figure P2.4) with N electrons
distributed between the two levels. At any given time, level 1 has n1 electrons
and level 2 has n2 electrons. Consider the following definitions.
J¼pump current number density,
number of electrons per volume per second
removed from level 1 and placed in level 2.
ni¼density of electrons in level Ei

Rsp¼ spontaneous recombination rate
Rnr¼nonradiative recombination rate
g0n2g¼ rate of stimulated recombination E2! E1

g0n1g¼ rate of stimulated absorption E1! E2

g0 ¼ constant

1. Explain why the electron rate equations have the form

dn2
dt
¼ �g0n2gþ g0n1gþ J � Rsp � Rnr

dn1
dt
¼ g0n2g� g0n1g� J þ Rsp þ Rnr

2. Note N ¼ n1 þ n2 must be constant and define N� ¼ n2 � n1. Use the two
equations in ‘‘part 1’’ to show

dN�

dt
¼ �2g0N�gþ 2J � 2Rsp � 2Rnr

3. Write N� in terms of n2 and N, and show

dn2
dt
¼ �2g0 n2 �

N

2

� �
gþ J � Rsp � Rnr

4. Explain why dg=dt ¼ g0n2g� g0n1g� g=�g þ �Rsp

5. Show dg=dt ¼ 2g0ðn2 �N=2Þg� g=�g þ �Rsp

6. How do the results of parts 3 and 5 compare with the rate equations discussed

o o

2.5 A laser amplifier can be made from an inplane laser by evaporating anti-reflective
coatings on the two mirrors. These coatings prevent positive feedback. The rate
equations become

ð1Þ
dn

dt
¼ �vgggþ J �

n

�n

FIGURE P2.4

Pump removes electrons from level 1 and places them in level 2.
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ð2Þ
dg
dt
¼ �vggg�

g
�int

Assume that the power in the amplifier can be written as

ð3Þ P ¼
hc

lo
gApvg

where Vp¼ApL and Ap denotes the cross-sectional area. Assume �i ¼ 1,

�int ¼ vg�int

� ��1
and lo denotes the vacuum wavelength.

1. Show that the two rate equations can be written as

dn

dt
¼ �vgg

0Pþ
I

qVa
�

n

�n

dP

dt
¼ �vggP� vg�intP

where g0 ¼ ðlo=hcÞðg=ApvgÞ, Va denotes the volume of the active region, and
� denotes the optical confinement factor.

2. Find the output power Po at Z¼ L using the second equation in Part 1 and the
constants � ¼ 0:3, g ¼ 400 cm�1, �int ¼ 50 cm�1, L¼ 1 mm, Pi¼ 1mW.

3. For steady-state dn=dt ¼ 0, use Equation (1) to show that

g ¼ go �nJ � noð Þ 1þ
g
gs

� �
¼ go

�nI

qVa
� no

� �
1þ

P

Ps

� ���

where gs ¼ vggo�n
� ��1

and Ps ¼ ð1=go�nÞðhc=loÞAp. Hint: Solve Equation (1) for ‘‘n’’
and substitute into g ffi go n� noð Þ.

4. Part 3 shows that the gain actually decreases with increasing optical power in
the waveguide. Calculate the gain g at P¼ 1mW and at 100mW.
Assume vg ¼ c=ng, c ¼ 3	 1010 cm=s, ng ¼ 3:5, q ¼ 1:6	 10�19, go ¼ 5	 10�16 cm2,
�n ¼ 10�9 s, hc=lo ¼ 2:35	 10�19 J, L¼ 1mm, Ap ¼ 0:3	 5 mm2, Va ¼ 0:1	 5	
1000 mm3, no ¼ 1018 cm�3 and J ¼ 1:8	 1027=cm3 s.

2.6 Fill in the missing steps in the derivation of bandwidth in Section 2.5.
2.7 A beam of photons travels in air along the þz axis toward the flat surface of a large

semiconductor material. It meets the surface at a 90� angle. Some of the photons
reflect and some enter the material. The material has refractive index n and the
surface has reflectance R for the photon number. The vacuum wavelength is lo.

1. Assume go photons per volume strike the surface. How many photons per
unit area per second strike the surface? Call this number the photon current
density J g (similar to a current density).

2. What photon current reflects from the surface and what photon current density
passes into the material?

FIGURE P2.5

The laser amplifier.
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3. Develop a formula for the incident power in terms of the photon current. Assume
the photons are all confined to the cross-sectional area A.

4. What is the power inside the semiconductor in terms of the power Po incident
on the surface?

5. Using the previous results, show the photon density inside the semiconductor
must be

ginside ¼ nð1� RÞgoutside

Explain why this formula makes sense.
2.8 Reconsider the previous problem. Assume the material is large so that the photons

never encounter the sides and we can neglect any optical losses and we can set
the confinement factor to one. Assume negligible spontaneous and nonradiative
recombination. Omit any pump. Find the absorbed power as a function of distance
into the material when the incident power is Po. Use the following procedure.

1. Using the g�J rate equations, find the photon density inside the material as
a function of distance. Use go, in as the photon density just inside the surface (see
Figure P2.8). Assume the gain g is independent of position.

2. Explain why the gain g must be negative.

3. Combine the results from this problem and the last problem to show

P zð Þ ¼ Poutside 1� Rð Þ e��absz

where �abs ¼ � g
�� ��.

2.9 Determine the photon density inside the cavity of a 850 nm laser with 34% mirror
reflectance for both mirrors and emitting 1mWof power through one of the mirrors.

2.10 Determine the photon density inside the cavity of a 1300 nm semiconductor laser
with one mirror having 1% reflectance and the other having 99% reflectance.
Assume the power from the low reflectivity mirror is 1mW.

2.11 Repeat Example 2.2.4 and show the math.
2.12 Suppose a GaAs–AlGaAs heterostructure with five quantum wells absorbs low

intensity light within a distance of 100 mm, which corresponds to e�1. Find the value
of the material gain assuming it’s constant in distance. Neglect scattering loss, mirror
loss, and spontaneous emission.

2.13 Show the following relation holds for the correlation function �ð�Þ of a real process
y (i.e., y is real)

�ð�Þ ¼ �ðt1, t2Þ ¼ �ð��Þ

FIGURE P2.8 (See Problem 2.8, Part 1)

Photons reflecting from the surface.

Introduction to Laser Dynamics 103

© 2005 by Taylor & Francis Group, LLC



2.14 Explain why the correlation function satisfies �ð0Þ  0.
2.15 Show that the correlation function for a real process y (i.e., y is real) satisfies

�ð0Þ  �ð�Þ
�� ��. Hint: Use yðtþ �Þ � yðtÞ

	 
2D E
 0 and for a stationary process

y2ðtþ �Þ
 �

¼ y2ðtÞ
 �

¼ �ð0Þ and yðtÞyðtþ �Þ
 �

¼ �ð�Þ

2.16 Show correlation functions for complex stationary processes satisfy ��ð��Þ ¼ �ð�Þ.
2.17 Let �ðtÞ be a correlation function for a stationary complex process Z and

let �ð!Þ be its Fourier transform. Show ð1=
ffiffiffiffiffiffi
2	
p
Þ
R1
�1

d! Sz !ð Þ ¼ �z t ¼ 0ð Þ where Sz
denotes the spectral density for z.

2.18 Show the equations found in Section 2.7

d

dt
�nðtÞ ¼ �vg �ggn �gg �n� vg �gg �g� �RRn�nþ FnðtÞ

d

dt
�gðtÞ ¼ �vg �ggn �gg �nþ �vg �gg �g �

�g
�g
þ � �RRn�nþ FgðtÞ

Use the procedure found in Section 2.5.
2.19 Repeat the derivation of the bandwidth using the matrix methodology in Section 2.7.
2.20 Show ~FFn �!ð Þ ¼ ~FFn !ð Þ requires ~FFn !ð Þ to be real when Fn tð Þ is real.
2.21 Suppose DC current I leaves a region of space (such as a capacitor plate). Show

that the shot noise must be given by �i2
 �
¼ 2qI�f, where IðtÞ ¼ I þ FðtÞ and F

represents a Langevin noise source and iðtÞ ¼ IðtÞ � I.
2.22 Suppose a steady state beam of light with g photons per volume leaves a region of

space. Imagine that the photons are uniformly spaced across the cross-sectional area
A and that they travel at speed c. Starting with the equation with the Langevin noise
term PðtÞ ¼ Pþ F, show that the shot noise must be given by �P2

 �
¼ ðhc=loÞP 2�f,

where P represents the steady state power in the beam.
2.23 The transient response (i.e., large signal response) of lasers and diodes can be more

important than the small signal response. Read the following journal papers and
summarize your findings. Check for more recent publications on the same topic but
any author by using the citation indices or computer resources at the local university
library.
D. Marcuse et al., IEEE J. Quant. Electr. QE-19, 1397 (1983).

2.24 Semiconductor lasers with two gain regions can exhibit pulsations in an otherwise
steady-state output beam. Read the following journal papers and summarize your
findings. Check for more recent publications on the same topic of any author by
using the citation indices or computer resources at the local university library.
M. Ueno, R. Lang, ‘‘Conditions for self-sustained pulsation and bistability in
semiconductor lasers,’’ J. Appl. Phys. 58, 1689 (1985).
R. W. Dixon, W. B. Joyce, ‘‘A possible model for sustained oscillations (pulsations)
in (Al,Ga)As Double-Heterostructure Lasers,’’ IEEE J. Quant. Electr. QE-15, 470
(1979).
C. Harder et al., ‘‘Bistability and pulsations in semiconductor lasers
with inhomogeneous current injection,’’ IEEE J. Quant. Electr. QE-18, 1351 (1982).

2.25 Similar to the situation described in Problem 2.24, aging lasers also exhibit self-
pulsation. Read the following journal papers and summarize your findings. Check
for more recent publications on the same topic of any author by using the citation
indices or computer resources at the local university library.
R.L. Hartman et al., ‘‘Pulsations and absorbing defects in (Al,Ga)As injection lasers,’’

104 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



J. Appl. Phys. 50, 4616 (1979).
C.H. Henry, ‘‘Theory of defect-induced pulsations in semiconductor injection
lasers,’’ J. Appl. Phys. 51, 3051 (1980).

2.26 Some solutions have been investigated to the aging problems described in previous
problem. Read the following articles and summarize them. Check for more recent
publications on the same topic.
F.U. Herrmann et al., ‘‘Reduction of mirror temperature in GaAs/AlGaAs quantum
well laser diodes with segmented contacts,’’ Appl. Phys. Lett. 58, 1007 (1991).
W.C. Tang, ‘‘Comparison of the facet heating behavior between AlGaAs single
quantum-well lasers and double heterostructure lasers,’’ Appl. Phys. Lett. 60, 1043
(1992).

2.27 Read how to measure the transparency current density in the following paper and
summarize your findings.
T. R. Chen et al., ‘‘Experimental determination of transparency current density and
estimation of the threshold current of semiconductor quantum well lasers,’’ Appl.
Phys. Lett. 56, 1002 (1990).

2.28 A variety of methods have been proposed to make mirrors ranging from coatings,
gratings to total internal reflection. Read the following papers and summarize your
findings. Find some others using the citation indices or computer system at the
university library.
M. Hagberg et al., ‘‘Single-ended output GaAs/AlGaAs single quantum well laser
with a dry-etched corner reflector,’’ Appl. Phys. Lett. 56, 1934 (1990).
F. Shimokawa et al., ‘‘Continuous-wave operation and mirror loss of a U-shaped
GaAs/AlGaAs lasser diode with two totally reflecting mirrors,’’ Appl. Phys. Lett. 56,
1617 (1990).
T. Takamori et al., ‘‘Lasing characteristics of a continuous-wave operated folded-
cavity surface emitting laser,’’ Appl. Phys. Lett. 56, 2267 (1990).
S. Ou et al., ‘‘High-power cw operation of InGaAs/GaAs surface-emitting lasers
with 45 degree intracavity micro-mirrors,’’ Appl. Phys. Lett. 59, 2085 (1991).

2.29 Read how to measure the mirror reflectance for semiconductor lasers. Read the
following journal papers and summarize your findings. What differences do
you see?
J. Johnson et al., ‘‘Precise determination of turning mirror loss using GaAs/AlGaAs
lasers with up to ten 90o intracavity turning mirrors,’’ IEEE Phot. Tech. Lett. 4, 24
(1992).
H. Appelman et al., ‘‘Self-aligned chemically assisted ion-beam-etched GaAs/
(Al,Ga). As turning mirrors for photonic applications,’’ J. Lightwave Techn. 8, 39
(1990).

2.30 Avariety of methods exist for modulating semiconductor lasers for optical links and
interconnects. Read the following paper that compares and constrast several
methods and report on your findings.
* Cox et al., ‘‘Techniques and performance of intensity-modulation, direct-detection
analog optical links’’, IEEE Trans. Microwave Thy. and Techniq. 45, 1375 (1997).
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2.9 Further Reading

The following list contains references pertinent to the material discussed in the
chapter.

Introduction

1. Kuhn K.J., Laser Engineering, Prentice Hall, Saddle River, 1998.

General References

2. Coldren L.A., Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York, 1995.
3. Davis C.C., Lasers and Electro-Optics, Fundamentals and Engineering, Cambridge University Press,

Cambridge, 1996.
4. Verdeyen J.T., Laser Electronics, 2nd ed., Prentice Hall, Englewood Cliffs, 1989.
5. Agrawal G.P., Dutta N.K., Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, New York,

1993.

Stochastic Processes and Statistical Theory

6. Mandel L., Wolf E., Optical Coherence and Quantum Optics, Cambridge University Press,
Cambridge, 1995.

7. Mood A.M., Graybill F.A., Boes D.C., Introduction to the Theory of Statistics, 3rd ed., McGraw-Hill,
New York, 1963.
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3
Classical Electromagnetics and Lasers

The first two chapters illustrate the basic construction of semiconductor lasers. The
construction incorporates the four fundamental components of the gain, pump, output
coupler and feedback mechanisms. The phenomenological rate equations describe the
operation of the laser in terms of fundamental mathematical quantities that represent
the basic components (for example, the mirror loss �m or bimolecular recombination
coefficient B).

The present chapter delves deeper into the construction of the laser by discussing
the dynamics of optical waveguiding and the flow of optical power though complicated
optical systems. Maxwell’s equations play a central role for those topics and for a classical
description of the material gain. Not too surprising, the material gain can be described
in terms of the polarization and susceptibility. Later chapters use the quantum theory to
describe the material gain. The polarization and susceptibility provide the link between
the classical and quantum mechanical treatments of lasers.

The first section in the present chapter reviews basic electromagnetic theory for
Maxwell’s equations. It then develops the wave equation and applies it to a classical gain
medium in order to develop classical expressions for the gain, absorption, and index
in terms of the susceptibility. The chapter shows how the internal energy of matter
changes when it absorbs energy from electromagnetic waves. The absorbed energy can
be (1) dissipated as heat, (2) stored as internal electric and magnetic fields, (3) stored
in polarized atoms and molecules, and (4) stored in the magnetization of the material
(however, we assume negligible magnetization). The chapter next discusses the boundary
conditions necessary to solve the wave equation and applies the results to reflecting
surfaces. The chapter continues the review of electromagnetic theory by discussing
the Poynting vector in some detail and then applies it to the flow of optical power
through complicated optical systems using the scattering and transfer matrices. The
transfer matrices lead to the laser gain conditions, longitudinal modes, and threshold
conditions. The chapter finishes with the electromagnetic theory of waveguiding in
rectangularly shaped waveguides. The transverse modes are discussed.

The following two chapters include the groundwork for advanced studies of the
electromagnetic field and for the matter–light interaction. The next chapter reviews
4-vector notation in Minkowski space and the psuedo inner product developed to
describe the ‘‘warping of space–time’’ encountered in the special theory of relativity. The
subsequent chapter develops the connection between Maxwell’s equation and the vector
potential. It also develops the Lagrangian and Hamiltonian for the electromagnetic field,
shows how they reproduce Maxwell’s equations, and how they yield the total energy of
a system including the free field energy, particle energy and the matter–field interaction
energy.
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3.1 A Brief Review of Maxwell’s Equations and the

Constituent Relations

The present section reviews relevant concepts in electromagnetic theory. First we
discuss Maxwell’s equations and the constituent relations. The electric dipole receives
special attention because of its importance for polarization and hence, optical gain.
The section discusses boundary conditions especially suited for applications of Maxwell’s
equations. We use Maxwell’s equations in subsequent sections to (1) find a complex
wave vector kn to describe gain/absorption and refractive index, (2) find the Poynting
vector for electromagnetic power flow, (3) develop scattering and linear systems theory
for optical devices, and (4) develop the theory of optical waveguides.

3.1.1 Discussion of Maxwell’s Equations and Related Quantities

Maxwell’s equations in differential form can be written as

r � ~EE ¼ �
@ ~BB

@t
r � ~DD ¼ �free

r � ~HH ¼ ~JJþ
@ ~DD

@t
r � ~BB ¼ 0

ð3:1:1Þ

In addition to Maxwell’s equations, there are three constitutive relations among (1) the
displacement field ~DD and the electric field ~EE, (2) the magnetic field ~HH and the magnetic
induction ~BB, and (3) the current density ~JJ and the electric field ~EE. We must discuss two
types of charge density. The free charge can move around in the material. The bound
charge does not appear in Maxwell’s equations but instead, appears in the displacement
field ~DD in terms of the polarization. The current density has the usual units of amps per
unit cross-sectional area. As a note, the symbols in Maxwell’s equations written
in ‘‘script’’ signify that they are functions of both position and time. ‘‘Block style’’
characters will be used to represent the amplitude of the quantities that can be functions
of position but not functions of time such as Eð~rr, tÞ ¼ Eð~rrÞei!t where the position vector
has the form ~rr ¼ x~xxþ y~yyþ z~zz. The quantities of the form ~xx (etc.) denote unit vectors;
the ‘‘twiddle’’ distinguishes the quantity from the quantum mechanical operators such as
the x-position operator x̂x.

For a review, first consider the relationship between the electric field and the
displacement field

~DD ¼ "o
~EEþ ~PP ð3:1:2Þ

where ~PP represents the polarization of the medium. The displacement field is important
because some of the optical energy can be stored in the polarization of the material rather

The capacitor has a dielectric between the two plates. The external field induces the
formation of electric dipoles (the figure shows three dipoles) and thereby polarizes the
dielectric. The dipoles consist of two oppositely charged particles separated by a distance

or atoms to form the dipoles. Separating the two charges in space requires energy; in this
case, the work done on the dipole appears as potential energy (because of the electrostatic
attraction between the opposite charges). The greater the number of dipoles per unit

108 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC

than in the fields. For example consider the capacitor and battery shown in Figure 3.1.1.

d (see Figure 3.1.2). We sometimes imagine that the applied field stretches the molecules



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-003.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:26am Page: 109/196

volume, the greater the stored energy per unit volume. The dipole moment ~pp ¼ q~dd points
from the negative charge to the positive charge where ~dd extends from the negative to the
positive charge and its magnitude gives the distance between the two charges. As a note,
we discuss two types of electric dipoles in studies of emitters and detectors. Permanent
dipoles consist of two opposite charges permanently separated by a distance d. The
induced dipoles consist of two overlapping charge distributions (d¼ 0) that separate
under the action of an applied electric field. The induced type of dipole leads to gain and
absorption.

Now consider the relation between the applied fields, the dipoles and the stored
energy. Consider again the capacitor example as depicted by Figure 3.1.3. The battery
places charge on the top and bottom capacitor plates and induces dipoles within the
bulk of the dielectric. The figure divides the dielectric into three regions denoted by A, B,
C. Region A appears closest to positively charged top plate. The figure shows that
the two negative charges in region A effectively cancel two of the positive charges on
the top plate; the same considerations hold for region C near the bottom capacitor
plate. For region B in the interior of the dielectric, the positive and negative tails of the
dipole effectively cancel and do not affect the electric field. Therefore, only the regions
near the top and bottom plates alter the interior electric field. The total energy stored
within the capacitor now has two sources (1) the actual electric field (only four of
the six charges on the plate in the figure contribute to the field) and (2) the electric
dipoles (the figure shows four dipoles).

The polarization ~PPð~rr, tÞ denotes the total dipole moment per unit volume at the posi-
tion ~rr at time t. The polarization and the dipole moment are related by

~PP ¼
# dipoles

vol
~pp ð3:1:3Þ

if an electromagnetic wave travels through free space and encounters a chunk of polar-
izable material, then inside the material, the electric field decreases and the material

FIGURE 3.1.1

The electric field between the capacitor plates induces
dipoles.

FIGURE 3.1.2

The electric dipole.

FIGURE 3.1.3

Dipoles store energy and lowers the electric field between the capacitor plates.
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becomes polarized. The polarized atoms or molecules gain the energy lost by the
electric field.

We can relate the induced polarization to the electric field at the location of the
dipole, which is not necessarily the same as the applied field. The most general relation
requires tensors but we assume the medium to be isotopic. We further assume a linear
relation between the induced polarization and the electric field. The constitutive relation
between the polarization and the electric field can be written as

~PP ¼ "o�ð!Þ~EE ð3:1:4Þ

where �ð!Þ denotes the (complex) susceptibility and the constant "o represents the
permittivity of free space. In principle, the susceptibility can also depend on electric field
so that the material has a nonlinear response to an applied electric field. Basically we can
think of the susceptibility as the polarization—the susceptibility measures the
polarization per unit electric field and describes the ease with which a material can be
polarized.

A free charge density �free can produce both an electric field and polarization according
to Gauss’ law

r � ~DD ¼ �free ! "or � ~EEþr �P ¼ �free

the ‘‘þ’’ indicates that energy stored as polarization decreases the energy stored in
the field within a dielectric (since the sum of the two terms equals the constant free
charge). The constitutive relation between the magnetic induction ~BB and the magnetic
field ~HH can be written as

~BB ¼ �o
~HHþ �o

~MM ð3:1:5Þ

where �o represents the permeability of free space.
We neglect any material magnetization ~MM in the typical semiconductor used for

semiconductor emitters and detectors; we assume the material cannot be magnetized.
The magnetization measures the number of magnetic dipoles per volume; these magnetic
dipoles can be pictured as microscopic bar magnets. The magnetic induction and the
magnetic field differ for reasons very similar to the reasons that the electric and
displacement fields differ. The magnetic material can form magnetic dipoles that super-
impose their magnetic fields with ~HH. That is, the magnetic induction ~BB includes both
~HH and ~MM. To discuss this in more detail, consider steady state conditions for a magnetic

material. One of Maxwell’s equations provides

r � ~HH ¼ ~JJþ
@ ~DD

@t
! r� ~HH ¼ ~JJ! r� ~BB� �or � ~MM ¼ �o

~JJ

The last equation basically says that as the current increases, both the magnetization
and the magnetic induction also increase. This shows that the number of magnetic
field lines ~BB consist of the field lines ~HH, due solely to ~JJ, and to the field lines due to
the magnetization ~MM. The magnetization ~MM originates in the magnetic dipoles lining
up due to the field ~HH already present. We can then say that the current ~JJ produces a field
~HH which in turn lines up the magnetic dipoles to produce the magnetization ~MM. The

magnetization produces additional field lines. The magnetic induction ~BB describes
the total field consisting of ~HH along with those due to ~MM. Basically, Maxwell’s equation
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r � ~HH ¼ ~JJ says the current ~JJ produces only magnetic field ~HH. The field ~BB measures
the field lines due to ~HH and ~MM. Inside a magnetic material, we therefore have ~BB ¼
�o
~HHþ �o

~MM. Outside the magnetic material, we must have ~BB ¼ �o
~HH.

As a final relation, we can relate the current density ~JJ to the electric field ~EE by

~JJ ¼ � ~EE ð3:1:6Þ

where � denotes the conductivity of the material. The reader will recognize this last
relation as Ohm’s law.

3.1.2 Relation between Electric and Magnetic Fields in Vacuum

As every reader knows, the electromagnetic wave consists of an electric and magnetic
field. The vector ~EE� ~HH points in the same direction as the wave vector ~kk, which in
turn points in the propagation direction of the wave. Figure 3.1.4 shows the energy
propagating towards the right. Subsequent sections relate the magnitude and direction of
energy flow to the Poynting vector.

We can find the relation between the plane-wave electric and magnetic fields ~EE, ~HH
in vacuum by using the plane wave versions

~EE z, tð Þ ¼ Eo eikoz�i!t ~xx ð3:1:7Þ

~HH z, tð Þ ¼ Ho eikoz�i!t ~yy ð3:1:8Þ

The fact that H has only the y-component will be verified below. We want the
relation between Eo and Ho for a wave in free space. We need one of Maxwell’s equations,
namely

r � ~HH ¼ ~JJþ
@ ~DD

@t
ð3:1:9Þ

where the current density ~JJ has units of amperes per area, and in free space ~JJ ¼ 0. We
also need the constituent relation for the displacement field ~DD in terms of the electric
field ~EE and the polarization ~PP

~DD ¼ "o
~EEþ ~PP

However, the polarization must be zero for free space ~PP ¼ 0. Maxwell’s equation (3.1.9)
reduces to

r � ~HH ¼ "o
@~EE

@t
ð3:1:10Þ

FIGURE 3.1.4

The electromagnetic wave.
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Now calculate the various terms in Equation (3.1.10). The cross product can be
written as

r � ~HH ¼

~xx ~yy ~zz

@

@x

@

@y

@

@z

Hx Hy Hz

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

¼ ~xx
@Hz

@y
�
@Hy

@z

� �

� ~yy
@Hz

@x
�
@Hx

@z

� �

þ ~zz
@Hy

@x
�
@Hx

@y

� �

Therefore, since the magnetic field only has the y-component, the cross product
reduces to

r � ~HH ¼ �~xx
@Hy

@z
¼ �i~xxkoHoeþikoz�i!t

where the direction of the wave vector (which has magnitude ko) parallels the z-axis
ẑz. The time derivative in Equation 3.1.10 provides

@

@t
"o
~EE z, tð Þ ¼ �i!"o ~xxEo eikoz�i!t

Substituting these last two results back into Maxwell’s equation (3.1.10) yields

koHo ¼ !"oEo ! Ho ¼
!"o

ko
Eo ð3:1:11Þ

in vacuum. The definition for magnetic induction gives Bo ¼ �oHo where �o symbolizes
the permeability of free space. Next, recall the relation among the speed of light c
in vacuum, the permitivity, and the permeability, namely c2 ¼ "o�oð Þ

�1. Equation (3.1.11)
becomes

Bo ¼
Eo

c
ð3:1:12Þ

3.1.3 Relation between Electric and Magnetic Fields in Dielectrics

The relation between the electric and magnetic fields changes in a polarizable medium.
Let’s ignore any absorption (so that k must be real) and define the following electric
and magnetic fields inside the material

~EE ¼ E1 eikz�i!t ~xx ~HH ¼ H1 eikz�i!t ~yy

The magnitude of the wave vector k depends on the real index of refraction ‘‘n’’
according to

k ¼
2�

�n
¼

2�

�o=n
¼ kon ð3:1:13Þ

where �n, �o represent the wavelengths in the medium and in vacuum, respectively.
Assuming there aren’t any free charges and free currents, Maxwell’s equation can now be
written as

r � ~HH ¼
@

@t
~DD ¼

@

@t
"o
~EEþ ~PP

� �

¼
@

@t
"o
~EEþ "o�~EE

� �

ð3:1:14Þ
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The last term can be simplified by defining the permittivity " of the material in terms
of the free space permittivity "o and the susceptibility � of the medium (note that �¼ 0
for the vacuum)

" ¼ "o 1þ �ð Þ ð3:1:15Þ

Maxwell’s Equation (3.1.14) for an electromagnetic wave in the medium becomes

r � ~HH ¼
@

@t
"~EE
� �

ð3:1:16Þ

The cross product and derivative can be performed in the same manner as above to
obtain

�i~xxkH1 eikz�i!t ¼ �i~xx!"E1 eikz�i!t

which provides

H1 ¼
"!

kon
E1 ð3:1:17Þ

where k ¼ kon. A complex index shifts phase but does not affect the phase velocity. Again
using B ¼ �oH, which neglects the magnetization (i.e., M ¼ 0), we obtain

B1 ¼
!�o"

kon
E1 ð3:1:18Þ

This last expression can be rewritten using the speed of light in the medium

v ¼
1
ffiffiffiffiffiffiffiffi
�o"
p ¼

c

n
! �o" ¼

n2

c2

and using the expression for the speed of light in terms of the angular frequency and
the wave vector

c ¼
!

ko

to provide the new expression

B1 ¼
c�o"

n
E1 ¼

c n=cð Þ
2

n
E1 ¼

n

c
E1 ¼

E1

v
ð3:1:19Þ

where v ¼ c=n gives the speed of light in the dielectric material. Equation (3.1.19) relates
the magnetic and electric fields inside the dielectric.

3.1.4 General Form of the Complex Traveling Wave

The transverse traveling wave can depend on position according to

~EE ¼ ~zz u x, y
� �

eiknz�i!t

A slowly varying amplitude in time can be written as u(x, y, t).
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3.2 The Wave Equation

The gain term appears in the rate equations as one of the primary quantities of interest
for light emitters and detectors. The gain most fundamentally represents the quantum
mechanical, matter–light interaction. However, the classical theory links the gain to
the familiar (and easy to picture) polarization and susceptibility. Both the classical and
quantum approaches rely on results obtained from Maxwell’s wave equation. Therefore,
we derive the wave equation for an electromagnetic (EM) wave traveling through
a conductor or dielectric material. The results show how the gain and absorption come
from the motion of the electric dipole moments, which gives rise to the complex
permittivity, refractive index, and wave vector. The analysis includes conductive media
in order to show the origin of free-carrier absorption. Subsequent sections discuss how the
boundary conditions arise from the Maxwell differential equations to produce reflection
and Snell’s law.

3.2.1 Derivation of the Wave Equation

Maxwell’s equations for the electric and magnetic field

r � ~EE ¼ �
@ ~BB

@t
ð3:2:1Þ

r � ~HH ¼ ~JJþ
@ ~DD

@t
ð3:2:2Þ

can be combined. Taking the curl r� of the top equation (3.2.1), we obtain

r � r � ~EE ¼ �
@

@t
r � ~BB ¼ �

@

@t
r � ð�o

~HHÞ

Substituting Equation (3.2.2) and using ~JJ ¼ � ~EE, we obtain

r � r � ~EE ¼ ��o
@

@t
~JJþ

@ ~DD

@t

 !

¼ ��o
@ ~JJ

@t
� �o

@2 ~DD

@t2
¼ ��o�

@~EE

@t
� �o

@2

@t2
"o
~EEþ "o�~EE

� �

Using the relation between the susceptibility and the permittivity " ¼ "o 1þ �ð Þ, we
find

r � r � ~EE ¼ ��o�
@~EE

@t
� �o

@2

@t2
"~EE
� �

For now, we ignore any spatial dependence of the permittivity and also ignore any
possibility of modulating it with externally applied voltages. We can use the ‘‘bac-cab’’
rule

~AA� ~BB� ~CC ¼ ~BBð~AA � ~CCÞ � ~CCð ~AA � ~BBÞ
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in the form appropriate for a differential operator

r � r � ~EE ¼ rðr � E
*

Þ � r2E
*

Requiring the divergence of the electric field to be zero r � ~EE ¼ 0 equivalently says that
the net ‘‘free charge’’ must be negligible r � ~DD ¼ �free ¼ 0. Now the wave equation takes
on the form

r2 ~EE ¼ �o�
@~EE

@t
þ �o"o 1þ �ð Þ

@2 ~EE

@t2
ð3:2:3Þ

For a wave equation, the coefficient of the second derivative (with respect to time) can
be related to the speed of the wave in the medium. Therefore, examining Equation (3.2.3)
shows the susceptibility must be related to the index of refraction. The first derivative
of the electric field can be related to damping. In mechanics, this term would be
related to frictional forces.

3.2.2 The Complex Wave Vector

The present topic shows how the complex wave vector produces the absorption/gain
and real refractive index. We start by substituting a plane wave into the wave equation.
This procedure yields an expression for the complex wave vector in terms of suscep-
tibility and conductivity. Any electromagnetic wave can be written as a sum of plane
waves using the Fourier transform. Let’s assume that the electric field consists of a single
traveling plane wave

~EE ¼ ~eeEo exp iknz� i!tð Þ ð3:2:4Þ

where kn¼2�/�n¼2�n/�o denotes a complex wave vector, �o denotes the wavelength in
free space, n represents the complex refractive index and ~ee symbolizes a unit vector along
the direction of polarization. We discover the meaning of the complex wave vector
kc ¼ kr þ i ki ¼ Re kcð Þ þ i Im kcð Þ and find speed of the wave by substituting the plane wave
into the wave equation for the electric field. The substitution provides

�k2
c þ i�o�!þ �o"o!

2 1þ �ð Þ ¼ 0 ð3:2:5Þ

To continue, we need to combine this last expression with two different expressions of the
speed of light in vacuum

c ¼
1
ffiffiffiffiffiffiffiffiffi
"o�o
p c ¼

!

ko
! ko ¼

!

c

where "o, �o, !, ko represent the permittivity, permeability, angular frequency, and the
magnitude of the wave vector in free space, respectively. Substituting these terms into
Equation (3.2.5) provides another expression for the wavevector

k2
c ¼

!2

c2
ð1þ �Þ þ i�o�! ¼ k2

oð1þ �Þ þ i�o�!
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Rearranging terms

k2
c ¼ k2

o 1þ �ð Þ þ i
k2

o

k2
o

�o�! ¼ k2
o 1þ �ð Þ þ ik2

o

�o�!

!=cð Þ
2
¼ k2

o 1þ �ð Þ þ ik2
o

�

"o!

and, by factoring out the common term of ko, we find an expression for the complex
wave vector

k2
c ¼ k2

o 1þ �þ i
�

"o!

	 


ð3:2:6Þ

where i ¼
ffiffiffiffiffiffiffi

�1
p

and � can be complex. We see that the wave vector kc consists of the sum
of real and imaginary parts. For emphasis, the real and imaginary parts can be explicitly
written

kc ¼ ko 1þ Reð�Þ þ i Imð�Þ þ
�

"o!

� �	 
1=2

ð3:2:7Þ

We explicitly find the square root on the right-hand side by writing the argument
under the square root in phasor form r ei� and then setting the square root to

ffiffi
r
p

ei�=2.
The results show the complex wave vector has both real and imaginary components.
We will return to this equation after a few definitions and a discussion of the meaning
of the complex wave vector.

3.2.3 Definitions for Complex Index, Permittivity and Wave Vector

Before continuing with the complex wave vector kc, we make some definitions for
the complex refractive index and the complex permittivity. Define the complex refrac-
tive index as

nc ¼ nr þ i ni ð3:2:8aÞ

which can be related to the complex wave vector

kc ¼ konc ð3:2:8bÞ

Comparing Equation (3.2.8b) with Equation (3.2.7) shows the complex index has the form

n2
c ¼ 1þ Reð�Þ þ i Imð�Þ þ

�

"o!

� �

ð3:2:9Þ

The meaning will become clear shortly. We also define a complex permittivity as

"c ¼ "r þ i "i ð3:2:10Þ

By convention, we often write the real part of the wave vector, index, and permittivity
without subscripts as k ¼ kr, n ¼ nr, and " ¼ "r. The reader should recall that the real
permittivity produces the real refractive index (as usually stated in optics) according to

n2 ¼ "="o or n ¼
ffiffiffiffiffiffiffiffiffi

"="o

p

ð3:2:11Þ
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This last relation makes it clear that the index of refraction must be related to the
dynamics of the dipoles because the permittivity " can be related to the polarization.
We assume that Equation (3.2.11) also holds for the complex index of refraction and the
complex permittivity

nc ¼

ffiffiffiffi
"c

"o

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"r

"o
þ i

"i

"o

r

ð3:2:12Þ

Comparing Equation 3.2.12 with Equation 3.2.9 gives a relation for the complex
permittivity as

"r

"o
þ i

"i

"o
¼ 1þ Reð�Þ þ i Imð�Þ þ

�

"o!

� �

ð3:2:13aÞ

This last equation provides the relations for the permittivity

"r

"o
¼ 1þ Reð�Þ

"i

"o
¼ Imð�Þ þ

�

"o!
ð3:2:13bÞ

So we see that the real permittivity and (hence) the real part of the refractive index
are related to the real part of the susceptibility. Likewise the imaginary part of the
permittivity is related to both the imaginary part of the susceptibility and the conduc-
tivity. The conduction mechanism (expressed through the conductivity) absorbs part
of the electromagnetic wave. Finally, as another definition (to be explained later), the
complex wave vector can be written in the following way

kc ¼ konc ¼ konþ i
�

2
¼ kon� i

gn

2
ð3:2:14Þ

where � and gn represent the absorption and the gain, respectively. Notice that the
gain and absorption terms differ by a minus sign. The absorption coefficient and gain gn

carrier loss term (through the conductivity).

3.2.4 The Meaning of kn

The complex wave vector plays a central role in determining the gain or absorption of
a material. We devote this topic to exploring the immediate consequences of Equations
(3.2.7) and (3.2.14).

Assume that an electromagnetic wave strikes a chunk of material as shown in
vector Re(kc) must be larger inside than the

wave vector ko on the outside due to the real part of the index of refraction,

Re kcð Þ ¼ konr4ko ! �medium5 �vacuum

Therefore the wavelength inside of the material must be smaller than outside nr ¼ ReðncÞ.
The real part of the wave vector provides information on the wavelength.

Now we will see how the imaginary part of the wave vector leads to an exponential
increase or decrease of the electric field (or power) depending on whether the material
exhibits gain or absorption, respectively. Assuming an unpumped material, the electric
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do not agree with the material gain discussed in Chapter 2 because it includes the free

Figure 3.2.1. We can see that the wave
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field inside the material exponentially decays due to absorption. Substituting Equation
(3.2.14) into the equation for the plane wave (3.2.4) shows this behavior

E ¼ Eo exp ikczð Þ ¼ Eo exp i konþ i�=2Þzð Þ½ � ¼ Eo expð�z�=2Þ exp ikonz½ � ð3:2:15Þ

where the time dependence has been omitted. This last equation makes it clear that
the absorption � causes an exponential decrease of the electric field. We now see
the reason for the factor of 2 in the definition of the complex wave vector in Equation
(3.2.14). The power has the form of P�E*E� exp(��z)¼ exp(þgz) and the factor of 2

coefficient for the field is �/2 (or g/2) while that for the power is � (or g).
The imaginary part of the complex wave vector in Equation (3.2.7) has the term

i�="oc2 which represents the free carrier absorption. The mobile carriers in a metal
oscillate in response to the incident wave and absorb some of the energy. The oscillating
charges transfer the energy to the metal as heat. As a result, the free charge attenuates
the electromagnetic wave. The same thing happens for a doped semiconductor. The
doping increases the number of mobile electrons or mobile holes. These carriers can
then absorb any electromagnetic field that happens to be incident on the doped material.
The free carrier absorption is part of the internal optical loss �int for a laser.

3.2.5 Approximate Expression for the Wave Vector

Now to find approximate expressions for the complex wave vector we return to Equation
3.2.7, namely

kc ¼ konc ¼ ko 1þ Reð�Þ þ i Imð�Þ þ
�

"o!

� �	 
1=2

ð3:2:16aÞ

As discussed in the previous topic, the imaginary part of the wave vector gives the
exponential decay or growth (absorption or gain, respectively) of the traveling wave.
For simplicity, substitute the real index n2

r ¼ 1þ Reð�Þ into Equation (3.2.16a) and factor
it from the square root to get

kc ¼ konc ¼ konr 1þ
i

n2
r

Imð�Þ þ
�

"o!

� �	 
1=2

ð3:2:16bÞ

We assume the imaginary term remains small. We apply a Taylor series expansion of
the form

ffiffiffiffiffiffiffiffiffiffiffi

1þ y
p

� 1�
y

2

FIGURE 3.2.1

An incident electric field decays as it travels through an absorptive medium.
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does not appear (refer to Section 3.5 on the Poynting vector). The absorption (or gain)
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to find

kc ¼ konc ¼ konr þ i
ko

2nr
Im �ð Þ þ

�

"o!

� �

ð3:2:16cÞ

Now we can find a very important result for the gain/absorption by comparing
Equation 3.2.15, namely kc ¼ konþ i�=2 with Equation (3.2.16c). The absorption � of the
material can be written as

� ¼
ko

nr
Im �ð Þ þ

�

"o!

� �

¼ �gn ð3:2:17Þ

where n¼ nr and

� ¼ �gn

This shows that the imaginary part of the susceptibility can produce loss or gain. As
we will see, the strength of the pump determines the value of the susceptibility. For
the quantum wall laser, the susceptibility increases when the number of excitons
(electron-hole pairs increases). The reason is simple—more excitons mean more dipoles.
Let’s next examine the form of Equation (3.2.17).

The absorption term in Equation (3.2.17) consists of two parts. The term �stim ¼

ko Im �ð Þ=n represents stimulated absorption. If Im�50 then the term provides the

fc ¼ ko�= nr"o!ð Þ represents free-carrier

form of � ¼ �stim þ �fc. If we set � ¼ �gn and �stim ¼ �g then the absorption equation
takes the form of gn ¼ g� �fc so that gn represents the net gain. Notice the net gain does
not agree with the net gain found for a laser since the wave equation does not include
scattering losses and mirror losses.

3.2.6 Approximate Expressions for the Refractive Index and Permittivity

Now we state relations for the refractive index and the permittivity. The refractive index
involves a square root as shown in Equation (3.2.12)

nc ¼

ffiffiffiffi
"c

"o

r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"r

"o
þ i

"i

"o

r

We can find a simple approximate expression for the complex refractive index by using
the binomial expansion on this last equation

~nn ¼

ffiffiffiffi
"r

"o

r

1þ i
"i="o

"r="o

	 
1=2

ffi nr 1þ i
"i="o

2"r="o

	 


¼ nr 1þ i
"i="o

2n2
r

	 


¼ nr þ i
"i="o

2nr
ð3:2:18Þ

where we assume the imaginary part of " is small. The complex index ~nn ¼ nr þ i ni

has real and imaginary parts given by

nr ¼

ffiffiffiffi
"r

"o

r

ni ¼
"i="o

2nr
ð3:2:19Þ
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material gain g from Chapter 2. The second term �
absorption (see Review Exercise 3.1). Therefore the full absorption coefficient has the
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Equation (3.2.19) in conjunction with Equation (3.2.16c) provides the complex index as

nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Reð�Þ
p

ni ¼
1

2nr
Imð�Þ þ

�

"o!

� �

ð3:2:20Þ

and therefore

"i ¼ "o Imð�Þ þ
�

!
ð3:2:21Þ

3.2.7 The Susceptibility and the Pump

The polarization induced by an electromagnetic field traveling through a medium
has real and imaginary parts just like the susceptibility since ~PP ¼ "o�~EE. The oscillating
electric field forces the dipoles to also oscillate which, according to classical electro-
magnetic theory, produces more electromagnetic waves (the dipole oscillation consists
of the periodic exchange of the positive and negative charges). The real part of the
susceptibility leads to the index of refraction while the imaginary part leads to absorption
or gain as can be seen from the main two results

n ¼ nr ¼ 1þ Re �ð Þ½ �
1=2

ð3:2:22Þ

� ¼
ko

nr
Im �ð Þ þ

�

"o!

� �

¼ �gn ð3:2:23Þ

The portion of the polarization corresponding to the real part of the susceptibility
will be in-phase with the driving electric field. Similarly, the portion of the polarization
corresponding to the imaginary part of the susceptibility will be out of phase with the
driving field. More on this topic appears in subsequent sections and chapters.

Question: The pump mechanism adds energy to the laser. Which quantities depend
on the pumping? That is, which quantities depend on the extra number of carriers
added to the semiconductor due to the pumping? It is the susceptibility that changes with
pumping. We should think of susceptibility as being very similar to polarization since
the susceptibility is essentially the polarization per unit electric field (P ¼ "o�E). Adding
carriers through the pump mechanism increases the number of possible dipoles.
Some books divide the susceptibility into a background term and a pump term as
� ¼ �b þ �p. The background term describes the number of possible dipoles already
present in the material. The pump adds carriers to the semiconductor gain medium
(which contributes to �p). Figure 3.2.2 shows a cartoon representation of how electrons
and holes in an electric field give rise to dipoles. Both the background and the pump
susceptibility respond to an incident electromagnetic field.

FIGURE 3.2.2

Adding atoms or molecules (left) to a material increases the
number of dipoles. Increasing the number of electrons–holes to a
quantum well (right) increases the number of dipoles.
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To show the effect of the pump on the absorption and index of refraction, we substitute
the background and pump susceptibility into their respective equations

� ¼
ko

nr
Im �bð Þ þ Im �p

� �

þ
�

"o!

� �

¼
ko

nr

�

"o!
þ

ko

nr
Im �b þ �p

� �

¼ �0int � g

where �0int is related to the term containing the conductivity � and ‘‘g’’ is related to the
term containing the susceptibility (Figure 3.2.3). We have seen similar equations to this
before. When the material gain g, which includes stimulated emission and stimulated
absorption, is larger than the free carrier absorption term �0int , the net absorption �
will be negative and the material will therefore exhibit gain. The reader should realize
that the loss � as defined in the previous equation does not include other optical losses
such as that through the mirrors and sidewalls of the laser. Next, consider the (real)
refractive index

n ¼ nr ¼ 1þ Re �bð Þ þ Re �p

� �� �1=2

Define the background refractive index as nb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Reð�bÞ
p

. Use a Taylor expansion to
rewrite the (real) refractive index as

n ¼ nb 1þ
Reð�pÞ

n2
b

	 
1=2

ffi nb 1þ
Reð�pÞ

2n2
b

	 


¼ nb þ
Reð�pÞ

2nb

We see that the refractive index is smaller than the background refractive index when
the real part of the pump susceptibility is negative. The pump susceptibility changes the
index of refraction.

Example 3.2.1 Laser Frequency and Refractive Index

Changes in the refractive index can lead to changes in the operating wavelength of
the laser. Consider the Fabry-Perot cavity shown in Figure 3.2.4 with the half-integral
number of wavelengths. Recall that the wavelength of light in a material with refractive
index n is given by �n¼ �/n. Let m be the number of half wavelengths that exactly fits in
the cavity L¼m(�n/2). The wavelength in air must be �o ¼

nL
m .

FIGURE 3.2.3

Oscillating dipole produces an EM field.

FIGURE 3.2.4

A half-integral number of wavelengths fit into the laser cavity.
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In order to keep �o constant, any changes in n must be accompanied by an equal
change in m. However for fixed �o, m can only change by an integer. Therefore, some
changes in n must cause the operating wavelength to change.

3.3 Boundary Conditions for the Electric and Magnetic Fields

Boundary conditions play a key role for solving partial differential equations. They
determine the form of the basis set used in the expansion of the general solution. The sets
of eigenvalues and basis functions can be either continuous or discrete (or a combination)
depending on the nature of the boundary conditions. We will need boundary conditions
when we solve Maxwell’s equations for waveguides, reflection coefficients and Snell’s
law. The boundary conditions considered in the present section consist of those that
describe how the electric and magnetic fields behave as they move across interfaces
between different materials.

3.3.1 Electric Field Perpendicular to an Interface

Two cases apply to finding the electric field perpendicular to an interface. In the first case,
we assume that an interface between materials doesn’t have any free charge. The second
case includes the free charge. As a point worth remembering, the index of refraction of a
material (used to find the speed of light v¼ c/n) can be written in terms of the permittivity
of the material as n ¼

ffiffiffiffiffiffiffiffiffi
"="o
p

where "o denotes the permittivity in free space. Therefore,
either the refractive index n or the permittivity characterizes the different materials.

Case 1 No Free Surface Charge
Suppose an interface separates two materials with dissimilar refractive indices n1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
"1="o
p

and n2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
"2="o
p

as shown in Figure 3.3.1. We assume the interface doesn’t have
any free charge. How do we relate the two displacement fields ~DD 1 and ~DD2?

Without free charges, Maxwell’s equation for the displacement field can be written as

r � ~DD ¼ 0 ð3:3:1Þ

FIGURE 3.3.1

Interface separates two media with different refractive indices.
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Z

V
r � ~DD dV ¼ 0 !

Z

AT

~DD � d~aa ¼ 0 ð3:3:2Þ

from the divergence theorem. The symbol AT represents the total surface area of the
entire box. For Case 1, assume the displacement fields to be perpendicular to the interface,
which means they must be perpendicular to the top and bottom of the box and parallel
to the vertical sides. The dot product therefore produces two nonzero integrals, one over
the top and another over the bottom of the box

0 ¼

Z

AT

~DD � d~aa ¼

Z

A
top

D2 da�

Z

A
bottom

D1 da ð3:3:3Þ

where the minus sign occurs because the displacement field points opposite the
area vector on the bottom side (see the bottom portion of Figure 3.3.1). For small enough
boxes, the displacement fields must be approximately constant over the top and
bottom surfaces and can be removed from the integrals. As a result, we find

~DD 2 ¼ ~DD 1 ð3:3:4Þ

Substituting the definition of the displacement field in terms of the permittivity and
electric field

~DD ¼ "~EE

for each displacement field provides

E2 ¼
"1

"2
E1 ¼

n1

n2

� �2

E1 ð3:3:5Þ

Equation (3.3.4) indicates that the displacement fields must be continuous across the
dielectric interface whereas Equation (3.3.5) shows that the electric fields cannot be
continuous. Let’s examine the reason as to why the electric fields have this discontinuity.
Assume that the electric field due to a traveling wave points upward similar to Ewave

in Figure 3.3.2. The fields from electric dipoles inside the medium tend to cancel (refer to

dipoles near the surface tend not to cancel. For example, the figure shows two negative
charges compared with four positive charges at the interface; the interface must have a
net charge of þ2. The resulting sheet charge at the interface (i.e., say the þq part
of the dipole charges) tends to produce fields that point upward and downward.

FIGURE 3.3.2

Dipole fields produce a discontinuity in
the electric fields on either side of the
interface.

Classical Electromagnetics and Lasers 123

© 2005 by Taylor & Francis Group, LLC

Integrating over the volume of a small box (Figure 3.3.1) we find the integral

the discussion in connection with the capacitor in Figure 3.1.3). The fields due to induced
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The total electric field must be the sum of the traveling wave field and that due to the
dipoles

Ewave þ Edipole

� �

bottom
¼ E1 and Ewave þ Edipole

� �

top
¼ E2

In the region where the dipole field points downward, the electric field decreases and
where the dipole field points upward, the electric field increases. Therefore across
the interface, there must be a discontinuity in the electric field.

Case 2 With Free Surface Charges
For this case, assume the interface supports a surface charge �free (charge per unit area).
The volume integral of Gauss’s law now provides (replacing Equation (3.3.2))

r � ~DD ¼ � ¼ �free	 zð Þ !

Z

V
r � ~DD dV ¼

Z

AT

�free da !

Z

AT

~DD � d~aa ¼

Z

AT

�free da

where 	 zð Þ represents the Dirac delta function and z¼ 0 gives the position of the surface

Following the remainder of the development in case 1, we find the result

~DD 2 ¼ ~DD 1 þ �free ! "2
~EE 2 ¼ "1

~EE 1 þ �free

3.3.2 Electric Fields Parallel to the Surface

This topic asks whether or not electric fields parallel to a dielectric interface (without

case, we use another of Maxwell’s equations

r � ~EE ¼ �
@ ~BB

@t
ð3:3:6Þ

We assume there aren’t any free currents or changing magnetization so that we can
rewrite the Maxwell equation as

r � ~EE ¼ 0 ð3:3:7Þ

Integrating over the area of the loop and then converting the integral to a path
integral produces

Z

A
r � ~EE � d~aa ¼ 0 !

I

~EE � d~ss ¼ 0

where we have used the curl theorem (Stokes theorem). Note that the dot product must
be zero for the left and right sides of the loop because the path makes a 90� angle with
respect to the fields. The fields are parallel and antiparallel to the path directions on the
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charge (the z-axis is perpendicular to the surface in Figure 3.3.1).

free charge or free currents) must be continuous or discontinuous (Figure 3.3.3). For this
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top and bottom respectively. Assume the upper and lower paths have length L. The path
integral can be expanded to write

0 ¼

I

~EE � d~ss ¼ E2L
|{z}

Top

þ�E1L
|fflffl{zfflffl}

Bottom

! E2 ¼ E1 ð3:3:8Þ

Therefore we see that electric fields parallel to the interface must be continuous across
the interface. If the EM wave propagates perpendicular to the interface (i.e., the wave
vector ~kk perpendicular to the interface with the electric fields tangent to the interface),
the condition E2 ¼ E1 must refer to not only the incident and transmitted fields but also to
the reflected fields. That is, one of the fields must contain the incident and reflected fields
(for example, ~EE1 ¼ ~EEinc þ ~EErefl) while the other contains the transmitted field (for
example, ~EE2 ¼ ~EEtrans). We will use these equations to find the reflection coefficients
between media.

Another point, in Section 3.5.3 we discuss the flow of power across a boundary. We
find that the tangential electric field increases when it exits the dielectric. This seems
to contradict the results in Equations (3.3.8). There are some points worth considering.
(1) For Section 3.5.3, energy must be conserved so that the fields must grow when the
wave exits. The dipoles in the dielectric store some of the energy while only the
EM field stores the energy in the vacuum. (2) Any calculation of power must include
both reflected and incident power except in the case of an antireflective (AR) coating.
(3) The calculation for Equation (3.3.8) neglects changing magnetic fields. This is a good
approximation because we would calculate the magnetic field through the total area
bounded by the loop to be BA. We can make the short sides of the loop (those that pass
through the interface) infinitesimally small so that the area is A�0.

3.3.3 The Boundary Conditions for the General Electric Field

For an electric field neither parallel nor perpendicular to a boundary, the field decom-
poses into the tangential and perpendicular pieces. The perpendicular piece can be
discontinuous at the interface while the tangential piece must be continuous across the
interface. In the final topic for the present section, we will write the general condition
in a condensed form.

3.3.4 The Tangential Magnetic Field

Some authors state boundary conditions for waveguides using the magnetic fields
instead of electric fields. Therefore for completeness, we will show how to find the
boundary conditions for the magnetic field ~HH.

We wish to find a relation between the magnetic field ~HH1 just below the interface
and the magnetic field ~HH2 just above the interface. Let’s assume interfacial current

~JJ will produce a curling magnetic field. We therefore expect the fields ~HH1 and ~HH2

below and above the interface, respectively, to differ. To see this, start with Maxwell’s
equation

r � ~HH ¼ ~JJþ
@ ~DD

@t
ð3:3:9Þ
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flows along the interface through the loop as shown in Figure 3.3.4. Notice the current
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Consider a small loop of area A as shown in Figure 3.3.4. When we integrate Equation
(3.3.9) over the area enclosed by the loop, we will have a term of the form DA. We can
make the small sides of the loop (those passing through the interface) infinitesimally
small so that A¼ 0 and the displacement field doesn’t make any contribution to the
magnetic field. Notice that we also have a term JA. We cannot neglect this term because
we assume the current runs along the interface (without any depth into the material)
and through the small loop of area A. Regardless of how small we make the small sides,
we still enclose the current. We only need to consider Equation (3.3.9) in the form

r � ~HH ¼ ~JJ ð3:3:10Þ

Integrating the last equation over the area bounded by the loop and then passing to the
line integral, we find

Z

A
r � ~HH � d~aa ¼

Z

A

~JJ � d~aa ¼

Z L

0

K ds !

I

~HH � d~ss ¼

Z L

0

K ds ð3:3:11Þ

where we made a new definition for the surface current K¼ amps/length. The magnetic
field is perpendicular to the loop along the short sides and therefore the integrals over
these sides don’t make any contribution. The path integral becomes

I

~HH � d~ss ¼

Z L

0

K ds ! H2 L
|fflffl{zfflffl}

top

�H1 L
|fflffl{zfflffl}

bottom

¼ KL ! H2 ¼H1 þ K ð3:3:12Þ

The minus sign occurs for the bottom path because of the opposite direction of the
magnetic field and the path.

Equation (3.3.12) shows that the tangential magnetic fields can be discontinuous
provided there exists a surface current K. In the absence of a surface current, we see that
the tangential fields must be continuous across the boundary.

3.3.5 Magnetic Field Perpendicular to the Interface (Without Magnetization)

The final boundary condition deals with a magnetic field perpendicular to a boundary.
We assume for simplicity that the material is purely a dielectric so that the magnetization

FIGURE 3.3.4

Geometry for the tangential magnetic fields.

FIGURE 3.3.3

The geometry for fields parallel to the interface.
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does not affect the fields

r � ~BB ¼ 0 ! r � ~HH ¼ 0

where we have assumed that the magnetic induction is linear in the magnetic field.
We can construct a Gaussian volume as we did in Section 3.3.1 to see that the magnetic
field perpendicular to the boundary must be continuous.

3.3.6 Arbitrary Magnetic Field

With surface current present, the tangential component of the magnetic field will be
discontinuous while the perpendicular part will be continuous. Without surface currents,
both fields will be continuous.

3.3.7 General Relations and Summary

We can summarize and generalize the expressions for the boundary conditions. The
notation takes care of both the TE and TM cases. Maxwell’s equations in integral form
can be written as

Z

~DD� ~nn da ¼

Z

�free dV ¼

Z

�free dA
Z

~BB � ~nn da ¼ 0

I

C

~HH � d~ss ¼

Z

~JJ � ~nn daþ

Z
@ ~DD

@t
� ~nn da

I

C

~EE � d~ss ¼ �
@

@t

Z

~BB � ~nn da

ð3:3:13Þ

where �free is the free surface charge (not related to the conductivity).
Figure 3.3.5 shows arbitrarily oriented surfaces, Gaussian boxes, and loops.
The first integral can be evaluated over the small Gaussian box to give

~DD 2 � ~nn2 þ ~DD 1 � ~nn1 ¼ �f

where the subscript ‘‘2’’ indicates the top of the box and ‘‘1’’ indicates the bottom.

FIGURE 3.3.5

The small Gaussian box and loop necessary
to evaluate volume and surface integrals.
Side 1¼Bottom, Side 2¼Top.
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Taking n̂n ¼ n̂n2 ¼ �n̂n1 we find

~DD 2 � ~DD 1

� �

� ~nn ¼ �f ! "2
~EE 2 � "1

~EE 1

� �

� ~nn ¼ �f ð3:3:14Þ

The electric field perpendicular to a dielectric interface is discontinuous (even when
there isn’t any free surface charge).

The area integral over the magnetic field can be made arbitrarily small just by shrink-
ing the vertical sides of the loop (i.e., the sides that penetrate into the surface). We are
left with

I

~EE � d~ss ¼ 0

Evaluating the integral along the top and bottom of the loop provides

~EE 2 � ~EE 1

� �

� ~ss ¼ 0 ð3:3:15aÞ

for all directions ~ss along the surface. This equation can alternatively be written as

~EE 2 � ~EE 1

� �

� ~tt ¼ 0 ð3:3:15bÞ

where ~tt stands for a unit vector tangent to the surface.
Equations 3.3.15 say that the tangential component of the electric field must always

be continuous across an interface. We have finished with the electric field. Let’s move
on to the magnetic field.

The second integral in Equations (3.3.13) can be evaluated over the small Gaussian
box to give

Z

~BB � d~aa ¼ 0 ! ~BB 2 � ~nn� ~BB 1 � ~nn ¼ 0 ! ~BB 2 � ~BB 1

� �

� ~nn ¼ 0

For nonmagnetic material, this last result can be written as

~HH 2 � ~HH 1

� �

� ~nn ¼ 0 ð3:3:16Þ

This result says that the normal component of the magnetic field is continuous across
an interface (for nonmagnetic materials). Finally, the third of the integral relations in
Equations (3.3.13)

I

C

~HH � d~ss ¼

Z

~JJ � ~nn daþ

Z
@ ~DD

@t
� ~nn da

can be evaluated using a loop such as that in Figure 3.3.5. First note that we should
consider surface currents rather than volume currents J. The reason is that we can
shrink the vertical size of the loop and eliminate all current except that moving along the
interface. Therefore, the integral can be written as

I

C

~HH � d~ss ¼

Z

~KK � ~tt dsþ

Z
@ ~DD

@t
� ~nn da
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Consider the fourth integral in Equations (3.3.13). Look at the loop in Figure 3.3.5.
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where ds is just the length of one of the long sides of the loop. The area integral over
the displacement field can be taken as zero because we can shrink the vertical sides of
the loop and make the area approach zero. Making the top and bottom sides small,
we find

~HH 2 � ~HH 1

� �

� ~ss ¼ ~KK � ~tt

If there isn’t any surface currents K¼ 0 we find for all directions ŝs

~HH 2 � ~HH 1

� �

� ~ss ¼ 0 ð3:3:17aÞ

Given the lack of surface currents, we can also write this as

~HH 2 � ~HH 1

� �

� ~tt ¼ 0 ð3:3:17bÞ

The tangential component of the magnetic field must be continuous across an interface
without surface currents.

The following list summarizes the general boundary conditions without free surface
charge or surface currents in the absence of magnetic media

"2
~EE 2 � "1

~EE 1

� �

� ~nn ¼ 0

~EE 2 � ~EE 1

� �

� ~tt ¼ 0

~HH 2 � ~HH 1

� �

� ~nn ¼ 0

~HH 2 � ~HH 1

� �

� ~tt ¼ 0

3.4 Law of Reflection, Snell’s Law and the Reflectivity

The present section uses the boundary conditions for Maxwell’s equations to derive
the law of reflection (�i ¼ �r), Snell’s law (n1 sin �1 ¼ n2 sin �2), and expressions for the
Fresnel reflection and transmission coefficients.

3.4.1 The Boundary Conditions

The previous section shows that the boundary conditions for Maxwell’s equation can be
written as

"2
~EE 2 � "1

~EE 1

� �

� ~nn ¼ 0 ð3:4:1aÞ

~EE 2 � ~EE 1

� �

� ~tt ¼ 0 ð3:4:1bÞ
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~HH 2 � ~HH 1

� �

� ~nn ¼ 0 ð3:4:1cÞ

~HH 2 � ~HH 1

� �

� ~tt ¼ 0 ð3:4:1dÞ

where ~nn and ~tt are unit vectors perpendicular and parallel to the interface, respectively.
We must keep in mind that the fields in these equations represent the total field on
either side of the boundary. Assume region 2 refers to the topside of the interface
while region 1 refers to the bottom side. Figure 3.4.1 shows an example of transverse
electric fields. Notice, right next to the interface on the bottom side, there exists two
electric fields. We make the following definitions

~EE 1 ¼ ~EE i þ ~EE r
~EE 2 ¼ ~EE t

~HH 1 ¼ ~HH i þ ~HH r
~HH 2 ¼ ~HH r

The subscripts i, r, and t refer to incident, reflected, and transmitted, respectively. The
figure shows the electric fields parallel to the interface and pointing into the plane
of the page.

With the definitions for the electric and magnetic fields, we can now rewrite the
first two boundary conditions in a form suitable for optical activity at an interface.

"2
~EE t � "1

~EE i þ ~EE r

� �h i

� ~nn ¼ 0 ð3:4:2aÞ

~EE t � ~EE i þ ~EE r

� �h i

� ~nn ¼ 0 ð3:4:2bÞ

~ ~

noting ‘‘�~tt ’’ gives the component parallel to the interface as does ‘‘� ~nn’’ because ~nn is
perpendicular to the interface (use the right-hand rule).

We would like to restate the last two boundary conditions in Equations (3.4) in terms
of the electric field for convenience. We will need the relation between the magnitude
of the magnetic and electric fields in a dielectric

H ¼
E

�ovg

FIGURE 3.4.1

Transverse electric fields point into the page. i¼ incident, r¼ reflected, and t¼ transmitted.
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Notice that we converted the ‘‘�tt’’ into ‘‘�nn’’ (refer to Figure 3.3.5 in Section 3.3), and
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We only need to include the direction of the fields. The cross-product vector ~EE� ~HH
points in the same direction as the wave vector ~kk as will be further discussed in
connection with the Poynting vector in Section 3.5. Therefore we can write

~HH ¼ ~kk�
~EE

�ovg
¼
~kkn

kn
�

~EE

�ovg
¼
~kkn

kon
�

~EE

�ovg
¼
~kkn � ~EE

ko�oc

where kn is the wave vector in a dielectric with refractive index n, ko is the wave
vector in vacuum, vg is the speed of light in the dielectric, and c is the speed of light in
vacuum.

Let’s, drop the subscript ‘‘n’’ for simplicity.

~HH ¼
~kk� ~EE

ko�oc

This last relation can be used to rewrite the remaining two boundary conditions in
Equations (3.4.1). We find

~kkt � ~EE t �
~kki � ~EE i �

~kkr � ~EE r

� �

� ~nn ¼ 0 ð3:4:2cÞ

~kkt � ~EE t �
~kki � ~EE i �

~kkr � ~EE r

� �

� ~nn ¼ 0 ð3:4:2dÞ

Let’s group the boundary conditions together to write

"2
~EE t � "1

~EE i þ ~EE r

� �h i

� ~nn ¼ 0 ð3:4:2aÞ

~EE t � ~EE i þ ~EE r

� �h i

� ~nn ¼ 0 ð3:4:2bÞ

~kkt � ~EE t �
~kki � ~EE i �

~kkr � ~EE r

� �

� ~nn ¼ 0 ð3:4:2cÞ

~kkt � ~EE t �
~kki � ~EE i �

~kkr � ~EE r

� �

� ~nn ¼ 0 ð3:4:2dÞ

3.4.2 The Law of Reflection

Now we show that the angle of incidence equals the angle of reflection. Using the plane
wave form of the electric field

~EE ¼ ~EEo ei~kk�~rr�i!t ð3:4:3Þ

the boundary conditions give equations of the form (use Equation (3.4.2a) for example)

"2
~EEot � ~nn ei~kkt�~rr�i!t ¼ "1

~EEoi � ~nn ei~kki�~rr�i!t þ "1
~EEor � ~nn ei~kkr�~rr�i!t ð3:4:4aÞ
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The driving frequency is the same on both sides of the interface.

"2
~EEot � ~nn ei~kkt�~rr ¼ "1

~EEoi � ~nn ei~kki�~rr þ "1
~EEor � ~nn ei~kkr�~rr ð3:4:4bÞ

We assume that the interface is at z¼ 0. As ~rr varies along the interface, only the
exponentials change. Therefore to keep the equality in this last equation, we must require

ei~kkt�~rr ¼ ei~kki�~rr ¼ ei~kkr�~rr ð3:4:5Þ

in Volume 1); consequently Equation (3.4.4b) must have the same basis vector in each
term or else the coefficient of each term would need to be zero. This last equation can
only hold so long as

i~kkt � ~rr ¼ i~kki � ~rr ¼ i~kkr � ~rr for z¼ 0 ði:e:, ~rr is confined to x�y planeÞ ð3:4:6Þ

~

the sine of the indicated angles to ~kk onto the x–y plane.

~kkt � ~rr ¼ ~kki � ~rr ¼ ~kkr � ~rr ! ktr sin 
 ¼ kir sin �i ¼ krr sin �r

! kt sin
 ¼ ki sin �i ¼ kr sin �r:

The term

ki sin �i ¼ kr sin �r

can be rewritten by noting that ki ¼ kon1 ¼ kr so that we must have

�i ¼ �r ðLaw of ReflectionÞ

The term

kt sin
 ¼ ki sin �i

can be rewritten by noting that ki ¼ kon1 and that kt ¼ kon2 to get

n2 sin
 ¼ n1 sin �i ðSnell0s lawÞ

3.4.3 Fresnel Reflectivity and Transmissivity for TE Fields

Now we derive the Fresnel reflectivity and transmissivity from the boundary condi-
tions. The Fresnel reflectivity and transmissivity apply to electric fields rather than
power. We want to write the reflected field in terms of the incident field and then the
transmitted field in terms of the incident field. We have three variables but only need
to solve for two in terms of the third (the incident field). We therefore require two
equations in the three variables.

As shown in Figure 3.4.1, the electric field points into the page in a direction perpen-
dicular to the unit vector ~nn. Therefore, the first two boundary conditions in Equations
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The dot product gives the projection of kk onto the x–y plane. Figure 3.4.1 tells us to use

We can also see this by recognizing the exponentials form a basis set (refer to Chapter 2
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(3.4.2a) and (3.4.2c) don’t provide any useful information. However Equations (3.4.2b)
and (3.4.2d) provide the reflectivity and transmissivity.

~EE t � ~EE i þ ~EE r

� �h i

� ~nn ¼ 0 ð3:4:2bÞ

~kkt � ~EE t �
~kki � ~EE i �

~kkr � ~EE r

� �

� ~nn ¼ 0 ð3:4:2dÞ

For Equation (3.4.2b), notice that the fields are all perpendicular to the unit vector so
that we must require

E t � E i þ E rð Þ ¼ 0 ð3:4:7Þ

For Equation (3.4.2d), we must manipulate the terms a little bit. Look at the first term
and use the BAC–CAB rule to evaluate the triple cross product.

~kkt � ~EE t � ~nn ¼ ~EE t
~kkt � ~nn
� �

� ~nn ~kkt � ~EE t

� �

¼ ~EE t
~kkt � ~nn
� �

ð3:4:8aÞ

The electric field is everywhere perpendicular to the wave vector so the second term
gives zero.

~kkt � ~EE t � ~nn ¼ ~EE t
~kkt � ~nn
� �

ð3:4:8bÞ

Projecting the wave vector onto the unit vector requires the cosine. We find

~kkt � ~EE t � ~nn ¼ ~EE t
~kkt � ~nn
� �

¼ ~EE tkt cos 
 ¼ ~EE tkon2 cos 


The other two terms in Equation (3.4.2d) work the same way. Equation (3.4.2d) can
now be written as

E tkon2 cos 
� E ikon1 cos � þ E rkon1 cos � ¼ 0 ð3:4:9Þ

where we have taken the magnitude of the fields. Notice the sign of the last term has
been changed because the reflected k-vector makes an angle of �� � with respect to
the vertically pointing unit vector.

We now have two equations to solve,

E t � E i þ E rð Þ ¼ 0 ð3:4:10aÞ

E tn2 cos 
� E i � E rð Þn1 cos � ¼ 0 ð3:4:10bÞ

Solving the first equation for the transmitted field and substituting into the second one
provides

rTE ¼
E r

E i
¼

n1 cos � � n2 cos


n1 cos � þ n2 cos

ð3:4:11aÞ
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The 
 angles can be eliminated by using Snell’s law. Solving the second equation for
the reflected field and substituting gives

tTE ¼
E t

E i
¼

2n1 cos �

n1 cos � þ n2 cos

ð3:4:11bÞ

3.4.4 The TM Fields

We can perform the same analysis using the TM fields depicted in Figure 3.4.2. This
time we will need Equations (3.4.2a,c). You can show

rTM ¼
Er

Ei
¼

n1 cos 
� n2 cos �

n2 cos � þ n1 cos 

ð3:4:12aÞ

tTM ¼
Et

Ei
¼

n1

n2
1þ rTMð Þ ð3:4:12bÞ

3.4.5 Graph of the Reflectivity Versus Angle

The relations in Equations (3.4.11a) and (3.4.12a) appear in Figure 3.4.3 for glass with
refractive index of 1.5. Notice how the TM reflectivity becomes zero near 60� (the
Brewster angle).

FIGURE 3.4.3

The reflectivity and transmissivity versus the angle of incidence for n1¼1 and n2¼ 1.5.

FIGURE 3.4.2

Definitions for the TM fields.
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3.5 The Poynting Vector

As systems, light emitters, and detectors produce and receive electromagnetic power.
The present section provides a basic understanding of electromagnetic power flow and
the mechanisms for storing electromagnetic energy in a material. The Poynting vector
describes the energy flow from the material. The relation between power flow and
the change in stored energy can be described by an equation of continuity. We first
discuss the calculation of energy flow for real electromagnetic fields and then indicate
how the mathematical description changes for complex notation. Two examples
show how power flows across an interface with an antireflective coating.

3.5.1 Introduction to Power Transport for Real Fields

The Poynting vector ~SS ¼ ~EE� ~HH describes the power (per unit surface area) carried
by an electromagnetic wave. The energy flow includes the fields and polarization.
Figure 3.5.1 shows the cross-sectional area of a waveguide. The magnitude of the
Poynting vector gives the power (as a function of time) flowing through each unit area.
In general, the Poynting vector has two sources of time dependence: one at the optical
frequency and another due to an impressed modulation. For a steady-state source,
we only need to consider the optical carrier varying at the optical frequency. The next
example shows that the Poynting vector has this sinusoidal time dependence.

We can easily calculate the Poynting vector for a plane wave. The magnitude provides
units of Watts/area and its direction parallels the propagation vector. Suppose the
fields are given by

~EE z, tð Þ ¼ Eo sin koz� !tð Þ~xx ~HH z, tð Þ ¼ Ho sin koz� !tð Þ~yy ð3:5:1Þ

Then the Poynting vector must be

~SS ¼ ~EE� ~HH ¼ ~zz EoHo sin2 koz� !tð Þ ð3:5:2Þ

where S is a script S.
Notice that the Poynting vector ~SS points in the ~zz-direction.
The result of the basic calculation for the Poynting vector in Equation (3.5.2) shows

that the power fluctuates with angular frequency ! on the order of 1016

shows the rapid fluctuation versus time for a specific point z. Equation (3.5.2) is a

FIGURE 3.5.1

The Poynting vector gives the instantaneous power flowing through a surface.
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perfectly fine expression and represents the power versus time. Often people take an
average over an optical cycle: measurement equipment does not detect such fast
variations (neglecting interference effects between fields). Any modulation sometimes
included in the coefficient EoHo (such as modulating a laser for optical communica-
tions) is orders of magnitude slower than the optical variation. As a result, averaging
over a single cycle does not affect most calculations. If time coherence affects are impor-
tant, the fields must be first added and then the power calculated from the Poynting
vector. And then a single cycle average can be made. We will see that the complex
version of the Poynting vector automatically includes the averaging procedure.

The averaging procedure can be most easily seen using Equation (3.5.2) and

o and that the wave has uniform
magnitude across the surface of area A (i.e., a plane wave). The instantaneous power
P(z, t) (Watts through the surface) depends on both the position z and time t

P z, tð Þ ¼ ~SS � ~AA ¼ ~SS � A~zz

where ~AA ¼ A~zz represents a vector that points out of the volume having the side with
area j ~AAj ¼ A. For us the area vector ~AA ¼ A~zz points out of the volume toward the right.
Substituting the fields provides the power

P zo, tð Þ ¼ ~SS � A~zz ¼ AEoHo Sin2 kozo � !tð Þ

The average power (averaged over a cycle) becomes

~PP z, tð Þ
D E

t
¼

1

T

Z T

0

dt ~PP z, tð Þ

where T represents the period of the wave given by T ¼ 2�=!.
The average produces the results

P z, tð Þ
� �

t
¼ 1

2 AEoHo

This last calculation gives the average power transmitted through a surface by a plane
wave. The Poynting vector can still depend on time, the amplitudes Eo and Ho depend on
time with frequency less than 100 GHz.

We formally calculate the optical power that flows into a volume. Let Pin and Pout be
the power flowing ‘‘into’’ and ‘‘out of’’ the volume with Pin ¼ �Pout.
The power flowing into the volume must be related to the power leaving the volume

FIGURE 3.5.2

The Poynting vector vs. time and the average over a half cycle.
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Figure 3.5.1. Assume that the surface is located at z ¼ z

3.5.3)(Figure
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across a patch of differential area d~aa in accordance with Pin ¼ �Pout. The total power
leaving the surface must be the sum of the power through each patch

P ¼
X

surface

~SS ~rr, t
� �

� d~aa~rr ¼

Z

surface

~SS ~rr, t
� �

� d~aa ð3:5:3Þ

Example 3.5.1

If the average Poynting vector is ~SS ¼ ~rr=r2, what is the average power flowing through
a sphere of radius Ro centered at z¼ 0? Refer to Figure 3.5.4.

Solution: For a sphere, the patch of area is d~aa ¼ r̂r da, where the magnitude da can be
written as

da ¼ r2 sin � d� d’

The power must be given by

P ¼

Z

~SS � d~aa ¼

Z Z
~rr

R2
o

� ~rr R2
o sin � d� d’ ¼

Z 2�

’¼0

Z �

�¼0

sin � d� d’ ¼ 4�

3.5.2 Power Transport and Energy Storage Mechanisms

Now we calculate how the power leaving a volume affects the amount of energy stored
within the volume. Electromagnetic energy can be stored by a number of mechanisms.

FIGURE 3.5.4

Spherical coordinates.

FIGURE 3.5.3

Power flows through a patch of area da.
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First the electric and magnetic fields store energy. Second, electric and magnetic dipoles
store energy as previously discussed in the first section of this chapter. Third, the
interaction between currents and fields can generate energy. Often we associate this
third type as Joule heating but it can also be related to the production of electro-
magnetic energy. We want to relate the power leaving the volume to the change in energy
stored by these various mechanisms. Therefore we will need to calculate the Poynting
vector by using Maxwell’s equations and the constituent relations.

The power leaving a volume as described by Equation (3.5.3) can be written using
the divergence theorem (Figure 3.5.5)

Z

volume

r � ~SS dV ¼

Z

surface

~SS � d~aa ¼ Pout ð3:5:4Þ

As previously mentioned, the energy within the volume must be stored as a combi-
nation of electromagnetic fields, currents ~JJ (current density), polarization ~PP, and
magnetization ~MM. In order to calculate the power flowing out through the surface in
Equation (3.5.4), we first calculate the divergence using a vector identity

r � ~SS ¼ r � ~EE� ~HH
� �

¼ ~HH � r � ~EE� ~EE � r � ~HH ð3:5:5Þ

We can substitute for the two curls appearing in Equation (3.5.5) by using Maxwell’s
equations

r � ~HH ¼ ~JJþ @
~DD
@t

r � ~EE ¼ � @
~BB
@t

8

><

>:

9

>=

>;

with
~DD ¼ "o

~EEþ ~PP

~BB ¼ �o
~HHþ �o

~MM

( )

ð3:5:6Þ

The fields ~EE and ~HH exist inside the medium. Substituting Equations (3.5.6) into
Equations (3.5.5) provides

r � ~SS ¼ ~HH � r � ~EE
� �

� ~EE � r � ~HH ¼ ~HH � �
@ ~BB

@t

 !

� ~EE � ~JJ þ
@ ~DD

@t

 !

ð3:5:7Þ

Using the constituent relations in Equation 3.5.6, we find

r � ~SS ¼ � ~HH �
@

@t
�o
~HHþ �o

~MM
� �

� ~EE � ~JJ� ~EE �
@

@t
"o
~EEþ ~PP

� �

ð3:5:8Þ

FIGURE 3.5.5

Energy diverges away from the volume.
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Multiply by –1 and observe that rewriting the derivative as

~HH �
@ ~HH

@t
¼
@

@t

~HH � ~HH

2
and ~EE �

@~EE

@t
¼
@

@t

~EE � ~EE

2

changes Equation (3.5.8) into

�r � ~SS ¼
@

@t

�o

2
H2 þ

"o

2
E2

� �

þ ~EE � ~JJþ �o
~HH �

@ ~MM

@t
þ ~EE �

@~PP

@t
ð3:5:9Þ

From Equation (3.5.4), the power leaving the volume must be

Pout ¼

Z

r � ~SS dV

and therefore the power flowing into the volume must be

Pin ¼ �

Z

r � ~SS dV ð3:5:10Þ

Substituting for the divergence of the Poynting vector gives

Pin ¼

Z

~EE � ~JJ dV
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

damping

þ
@

@t

Z

dV
�o

2
H2 þ

"o

2
E2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

field energy

þ

Z

dV ~EE �
@ ~PP

@t
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

polarization energy

þ

Z

dV�o
~HH �

@ ~MM

@t
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnetization energy

ð3:5:11Þ

Now examine the four individual terms. The damping term describes how a
conductive material absorbs the electromagnetic field to produce currents. Recall
Ohm’s law ~JJ ¼ � ~EE. Alternatively, the first term in Equation (3.5.11) can be viewed as
describing the electromagnetic power produced by the currents. The ‘‘field term’’
describes how the energy can be stored as electromagnetic fields inside the volume. For
power flowing into the volume, the electromagnetic energy density

�em ¼
�o

2
H2 þ

"o

2
E2 ð3:5:12Þ

must increase. The polarization power shows that energy flowing into the volume can
appear as an increase in the polarization of the medium; i.e., the number or strength of
the dipoles can increase. Similarly power flowing into the volume can increase the
strength or number of the magnetic dipoles. Notice that Equation (3.5.11) does not
include B because the equation identifies each individual influence on the power flow
whereas B includes the fields due to J and due to M. Using both B and M would
double count the energy stored as magnetization M.

As a note, Equation 3.5.11 can be used to show the equation of continuity for the
electromagnetic field namely @t�em þ r � ~SS ¼ � ~JJ � ~EE. Reconsider Equation 3.5.11 without
the integrals in order to work with energy density (energy per volume). We want all of
the terms to have the form @�em=@t. Only two terms need to be changed. We assume
a linear, homogeneous, isotropic medium. First consider the polarization term

~EE �
@ ~PP

@t
¼ ~EE �

@

@t
"o�~EE
� �

¼
"o�

2

@

@t
E2
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Similarly, the magnetization term becomes

�o
~HH �

@ ~MM

@t
¼ �o� ~HH �

@ ~HH

@t
¼
�o�

2

@H2

@t

We therefore see that the density �em has the form

�em ¼
�o

2
H2 þ

"o

2
E2

� �

þ
"o�

2
E2

� �

þ
�o�

2
H2

� �

as required.

3.5.3 Poynting Vector for Complex Fields

The Poynting vector for complex fields can be defined as

~SS ¼ 1
2
~EE� ~HH	 ð3:5:13Þ

which already has the average over time (for the optical frequencies). Notice the complex
conjugate on one of the fields ( ~HH in this case) and the 1

2 out front. The Poynting
vector ~SS refers to the real quantity ‘‘power.’’ How did we arrive at Equation (3.5.13)? To
make the Poynting vector ~SS real, we need a quantity such as EE	 ¼ Ej j2. For the
plane wave E � eikz�i!t we see that the time dependence of EE	 ¼ Ej j2 disappears.
The most reasonable thing is to multiply by the factor of 1

2 and realize that the Poynting
vector for complex fields gives the average power flow. The amplitudes might still
depend on time by impressing a slower modulation.

Example 3.5.2

For the plane waves given in Section 3.5.1, specifically

~EE z, tð Þ ¼ Eo sin koz� !tð Þ~xx ~HH z, tð Þ ¼ Ho sin koz� !tð Þ~yy

calculate ~SS using complex fields.
Solution: The fields can be written in complex notation as

~EE ¼ Eoeikz�i!tei’ ~xx and ~HH ¼ Hoeikz�i!tei’ ~yy

Notice the ease of including an extra phase factor ei’. Therefore the Poynting vector can
be written

~SS ¼ 1
2
~EE� ~HH	 ¼ 1

2
~zz Eo eikz�i!t ei’H	o e�ikzþi!t e�i’ ¼ ~zz 1

2 EoH	o

This last expression identically agrees with the average Poynting vector for real fields as
can be seen as follows.

~SS
D E

¼
1

T

Z T

0

dt ~EE� ~HH ¼
1

T

Z T

0

dt ~zz Eo sin kz� !tð ÞHo sin kz� !tð Þ ¼ 1
2

~zz EoHo
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3.5.4 Power Flow Across a Boundary

The present topic clearly demonstrates the role of polarization for storing energy.
We consider two examples of an electromagnetic wave initially traveling in a dielectric
and passing through a surface into vacuum. The previous section demonstrates that
reflections occur at an interface separating two dissimilar optical materials. Consider
Figure 3.5.6. The total field ~EE1 inside the dielectric consists of an incident field Ei

moving toward the right and a reflected field Er moving toward the left so that
~EE1 ¼ ~EEi þ ~EEr. The field E2 consists of a transmitted field Eo moving toward the right. The
examples considered in the present section neglect the reflected field. The situation
corresponds to an interface with an antireflection coating as would be appropriate for
laser amplifiers or for good waveguide–air coupling.

As a first example, we wish to find the electric field inside and outside a dielectric
(neglecting reflections) by using the Poynting vectors. Subscript the fields inside the dielec-
tric with a ‘‘i’’ while those outside of the dielectric subscript with ‘‘o.’’ See Figure 3.5.6.

The Poynting vectors give the power flowing inside and outside the dielectric

~SSi ¼
1
2
~EE i � ~HH	

i and ~SSo ¼
1
2
~EE o � ~HH	

o ð3:5:14Þ

as given by Equation (3.5.13). We assume steady-state conditions so that the energy lost
from within the dielectric must appear on the outside, that is ~SSi ¼ ~SSo (neglecting
any variation with area). Next using B ¼ �oH (no magnetization) and Equation (3.1.19),
namely B ¼ E=vg where vg represents the speed of light in the material, we find that
Equation (3.5.14) becomes (for ~SSi ¼ ~SSo)

~EE i � ~HH	
i ¼

~EEo � ~HH	
o ! E i

E	i
�ovg

� �

¼ Eo
E	o
�ovg

� �

! Eoj j
2¼

c

vg
E ij j

2

Using the definition of the real index of refraction n, namely vg ¼ c=n, and taking the
square root we find

Eoj j ¼
ffiffiffi

n
p

E ij j

This last expression says that the electric field grows as it leaves the dielectric.
Although the expression correctly states the relations between the fields, if we assume the
power to be proportional to the square of the field, then we find that the power stored
in the electromagnetic fields grows according to Po ¼ nPi. Apparently energy has been
created! This cannot be. The power must include the energy stored in the polarization of
the medium. The electric field increases once it leaves the dielectric since all of the energy
must be stored in the fields in vacuum whereas only a fraction of the energy is stored
in the fields in the dielectric.

The second example calculates an identical result explicitly using the energy conser-

FIGURE 3.5.6

Electromagnetic wave travels to the right. Field outside dielectric is larger than inside.

Classical Electromagnetics and Lasers 141

© 2005 by Taylor & Francis Group, LLC

vation equations considered at the beginning of this section. Figure 3.5.7 shows optical



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-003.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:27am Page: 142/196

energy in a volume V¼AL with length L and cross-sectional area A. The volume travels
from a dielectric into vacuum. These plane waves have penetrated a distance �0 past
the interface while moving a distance � within the dielectric. The two distances �, �0 differ
because the speed of light in the two media differs. Equation (3.5.11) gives the rate of
energy leaving a volume (for negligible magnetization and currents)

P ¼
@

@t

Z

dV
�o

2
H2 þ

"o

2
E2

� �

þ

Z

dV ~EE �
@ ~PP

@t
ð3:5:15Þ

Let ‘‘i’’ refer to quantities inside the dielectric and ‘‘o’’ refer to quantities in vacuum.
First calculate the terms in Equation (3.5.15) for the optical wave in the dielectric

medium. Using B ¼ �oH (no magnetization) and Equation (3.1.19), namely B ¼ E=vg

where vg is the speed of light in the material, we can write

Hi ¼
E i

�ovg
¼

n

�oc
E i ð3:5:16Þ

Assuming a linear medium, the polarization in Equation (3.5.15) can be written in
terms of the electric field as ~PP ¼ "o�~EE. Therefore the integrand of the second integral in
Equation 3.5.15 can be rewritten as

~EE i �
@

@t
~PPi ¼ "o�~EE i �

@~EE i

@t
¼ 1

2 "o�
@E 2

i

@t ð3:5:17Þ

Combining Equations (3.5.15), (3.5.16), and (3.5.17) provides

P ¼
@

@t

Z

dV
�o

2

n

�oc

� �2

E2
i þ

"o

2
E2

i

" #

þ

Z

dV 1
2 "o�

@E2
i

@t ¼
@
@t

R

dV n2

2�oc2 E
2
i þ

"o

2 E
2
i þ

1
2 "o�E

2
i

h i

Next using the fact that the permittivity in the dielectric can be written as " ¼ "o 1þ �ð Þ

and that

�o

2

n

�oc

� �2

¼
"

2

since c�2 ¼ "o�o, the power becomes

Pi ¼
@

@t

Z

dV "E2
i ð3:5:18Þ

FIGURE 3.5.7

Optical energy travels to the right across a dielectric–vacuum interface.
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Second, the power flowing outside the dielectric (i.e., in vacuum) is simply found by
substituting " ¼ "o into Equation (3.5.18) to get

Po ¼
@

@t

Z

dV "oE
2
o ð3:5:19Þ

To evaluate the integrals in Equations (3.5.18) and (3.5.19), consider the following
generic procedure. Assume the fields have the form E ¼ E sin kz� !tð Þ. Elementary
integral calculus provides a definition for the average "oE

2
� �

¼ 1
V0

R

V0 dV "oE
2. However,

we know the average must be "oE
2

� �

¼ "oE2=2. Therefore, the integral over the volume
R

V0 dV "oE
2 can be evaluated in terms of the average

R

V0 dV "oE
2 ¼V0 "oE2=2.

We now evaluate the integrals in Equations (3.5.18) and (3.5.19) by using these last
results for the average. We assume the electric fields have constant amplitudes over the
regions occupied by the beam. The two integrals become

Pi ¼
@

@t

Z

Vi

dV "E2
i ¼

@

@t
Vi
"E2

i

2
Po ¼

@

@t

Z

Vo

dV "oE
2
o ¼

@

@t
Vo

"E2
o

2
ð3:5:20Þ

The volumes depend on time although the amplitudes do not.

Pi ¼
"E2

i

2

@Vi

@t
and Po ¼

"oE
2
o

2

@Vo

@t
ð3:5:21Þ

dVi

dt
¼ A

d

dt
L� �ð Þ ¼ �A

d�

dt
and

dVo

dt
¼ A

d�0

dt

Note that the derivatives in the last set of equations are related to the speed of the
beam in the medium. They can be rewritten as

dVi

dt
¼ �Avg and

dVo

dt
¼ þAc ð3:5:22Þ

Equations (3.5.21) interpret Pi and Po as the rate of change of energy in the media. The
negative sign indicates a decrease of energy. The plus sign indicates an increase of
vacuum energy at the expense of the dielectric energy. Therefore, we have

�Pi ¼ Po ð3:5:23Þ

Substituting Equations (3.5.23) and (3.5.22) into Equations (3.5.21), we find

E2
o ¼ nE2

i

as found in the first example for this topic.
Given the results of these two examples, the Poynting vector accounts for not only the

energy stored in the fields but also the energy stored in the polarization.

Classical Electromagnetics and Lasers 143

© 2005 by Taylor & Francis Group, LLC

Figure 3.5.7 provides



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-003.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:27am Page: 144/196

3.6 Electromagnetic Scattering and Transfer Matrix Theory

Many emitters and detectors use multiple optical elements as part of the device structure.
For example, the vertical cavity lasers (VCSELs) use multiple layers of dissimilar optical
materials to form a ‘‘tuned’’ mirror (a distributed Bragg reflector). Simple in-plane lasers
(IPL) have two parallel mirrors. The behavior of the light wave within the laser can be
easily modeled by representing each interface and layer by a transfer matrix. Multiple
layers can then be represented as a product of the corresponding matrices.

In this section, we examine linear systems theory for optical elements. We primarily
focus on the theory of reflection and transmission through multiple optical elements.
The reflected and transmitted optical power and phase can be easily calculated using the
scattering and transfer matrices. The theory has equal applications to RF and quantum
mechanical devices.

We first discuss the scattering theory in general terms and then derive the power-
amplitudes from the Poynting vector. These amplitudes serve as the input and output
for the optical system. The matrices transform the amplitudes in a manner that mimics
the transformation of the optical beams. We then discuss the reflection and transmission
coefficients using scattering matrices. Although the scattering matrix equation relates
the amplitude of an output beam to the amplitude of an input beam, it does not provide
the most convenient representation of a system with multiple optical elements. Each
optical element can be represented by a transfer matrix obtained from the corresponding
scattering matrix. The product of transfer matrices has the same order as the sequence
of optical elements. Subsequent sections will apply the basic theory to the Fabry-Perot
laser.

3.6.1 Introduction to Scattering Theory

For lasers, we have great interest in finding the reflected and transmitted waves from
various optical elements. These elements provide optical feedback and introduce

but with multiple reflected and transmitted plane waves. The amplitude and phase of
the input beam along with the index and thickness of the optical element determines the
amplitude and phase relations for the reflected and transmitted light. The figure shows
a quarter-wave plate with thickness ln=4 where ln represents the wavelength in the glass
(with refractive index ng). For dielectrics, the wavelength in the material can be related
to the vacuum wavelength lo by ln ¼ lo=ng. The incident beam strikes the plate at point
‘‘a.’’ Because the index of air is less than that of the glass (na5ng), there must be a 180�

phase shift for the reflected light in beam 2. The portion of light entering the glass
propagates to point ‘‘b’’ where it partially reflects and partially transmits through the
right-hand interface. However at point ‘‘b,’’ the reflected signal does not undergo a phase
shift since ng4na. The signal reflected from point ‘‘b’’ travels to point ‘‘c’’ where another
reflection occurs. The quarter wave thickness of the plate (as measured in the glass)
ensures the light phase shifts by 180� for the total trip from point ‘‘a’’ to point ‘‘b’’ to point
‘‘c.’’ In passing from the glass to air, the beam does not have a phase shift. As a result,
beams 2 and 4 emerge in-phase and they constructively add together to produce a
wave with larger amplitude. In this case, the quarter-wave plate functions as a fairly
good mirror. As a result, we see the vital importance of both the phase and amplitude
of the incident, reflected and transmitted electric fields for the function of the optical
system.
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The multiple reflected and transmitted beams in Figure 3.6.1 can be schematically
represented as in Figure 3.6.2. The bottom portion of the figure shows a block diagram
where a1 represents the complex amplitude of the input beam (i.e., the magnitude
and phase of the electric field). The top portion of the figure shows that the total reflected
complex amplitude b1 and transmitted complex amplitude b2, respectively, must consist
of the summation of the individual complex amplitudes �i of the reflected beams and
the complex amplitudes �i of the transmitted beams.

b1 ¼
X

i

�i b2 ¼
X

i

�i

In addition to magnitude and phase, the amplitudes must also contain information on
the polarization of the field. We assume a single polarization. The next topic carefully
defines the complex amplitudes using the Poynting vector. The phase can be affected
by the thickness of the plate, the type of material, and the reflection and transmission
coefficients at an interface.

It should be clear that we can linearly relate the two output amplitudes b1, b2 to the
input amplitude a1 for a linear optical system. We can write

b1 ¼ S11a1

b2 ¼ S21a1

where Sij symbolizes the scattering matrix and NOT the Poynting vector. The scattering
matrix describes the particular optical element. Most importantly, the output is linearly
related to the input.

FIGURE 3.6.1

Wave picture of reflected and transmitted beams.

FIGURE 3.6.2

The reflect �i and transmitted �i amplitudes add
together to produce b1 and b2, respectively.
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Obviously, the situation can be generalized by including two input beams as illustrated
in Figure 3.6.3. Once again the two outputs must be linearly related to the two inputs
according to

b1 ¼ S11a1 þ S12a2

b2 ¼ S21a1 þ S22a2

or, in matrix notation

b1

b2

 !

¼ S
a1

a2

 !

Having developed the general notion of the scattering matrix, we now discuss how
the Poynting vector leads to the power amplitudes. These amplitudes allow one to retain
the phase information necessary for intereference effects while describing the magni-
tude in terms of power. We do not need to convert from fields to power at the end of the
calculation.

3.6.2 The Power-Amplitudes

The general complex electromagnetic fields can be written as

~EE ¼ ~xx Eo uðx, yÞ exp iknz� i!tð Þ

~HH ¼ ~yy Ho uðx, yÞ exp iknz� i!tð Þ

ð3:6:1Þ

where the symbol kn denotes the wave vector (that points in the z-direction) in a medium
with refractive index ‘‘n.’’

The function u(x, y) can be normalized such that

Z

dx dy uðx, yÞ
�
�

�
�
2
¼ 1 ð3:6:2Þ

The constant amplitude Eo adjusts the overall magnitude of the wave amplitude.
The function u(x, y) allows the magnitude of the electric field to depend on position
(such as a plane wave with greatest intensity near the center of the beam). We will soon
see the reason for requiring u(x, y) to have ‘‘unit magnitude.’’ Often we simply take
‘‘u¼ constant’’ for convenience. The phasor representations for the electric and magnetic
fields become

EðzÞ ¼ Eo u exp iknzð Þ

HðzÞ ¼ Ho u exp iknzð Þ
ð3:6:3Þ

FIGURE 3.6.3

A beam strikes the glass plate from either side. The figure can be
further generalized by having any number of beams from left or right.
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The argument knz provides the z-dependent phase.
We would like to define ‘‘power amplitudes’’ a(z) such that the total power in the

beam can be written as

P ¼ aa	 ð3:6:4Þ

(without additional constants). We can easily calculate the power in the beam (the usual
quantity of interest) once we have calculated these generalized complex amplitudes.
The power amplitudes in Equation (3.6.4) differ from the electric field by some constants.
We need to retain the phase information exp(iknz) in the amplitudes so that the
equations properly take into account the optical thickness of the optical elements and
summations of phasors properly account for coherency between the waves. Absorption
and gain change the constant amplitude Eo.

To find the amplitude ‘‘a,’’ we need the Poynting vector for complex fields

~SS ¼ 1
2
~EE� ~HH	
� �

ð3:6:5Þ

where, for a polarizable medium, we recall from Section 3.1 that the magnitude of
the magnetic field can be written as

H ¼
E

�ov
and v ¼ c=n

from Section 3.1. Using our definitions for the electric and magnetic field, the Poynting
vector for complex fields becomes

~SS ¼ 1
2

~zz EH	 uj j2¼ 1
2

~zz E
E	

�ov
uj j2¼

Ej j2 uj j2

2�ov
~zz ¼

"v

2
Ej j2 uj j2 ~zz

where "¼ n2"o provides the permittivity of the medium.
We want the total power through a surface in the x–y plane to be given by

P ¼ aðzÞa	ðzÞ ¼

Z

dxdy ~zz � ~SS ¼
"v

2
Ej j2
Z

dx dy uj j2 ¼
"v

2
Ej j2

Using a relation for the speed of light

vg ¼ c
1

n
¼

1
ffiffiffiffiffiffiffiffiffi
"o�o
p

ffiffiffiffi

"o

"

r

¼
1
ffiffiffiffiffiffiffiffi
"�o
p

we find that the total power depends on the index according to

P ¼ aðzÞa	ðzÞ ¼
"v

2
Ej j2¼

ffiffiffi
"
p

2
ffiffiffiffiffi
�o
p Ej j2¼ 1

2

ffiffiffiffiffi
"o

�o

r ffiffiffiffi
"

"o

r

Ej j2¼
"oc

2
nEðzÞE	ðzÞ

Therefore, the power amplitude can be taken as

aðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi

"oc

2
n

r

Eoeiknz ð3:6:6Þ
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The complex amplitude in Equation (3.6.6) includes eiknz to account for changes in
the phase of the wave due to propagation. Notice that eiknz does not contribute to the
power when calculating P¼ aa*. The reader will recognize that these power ampli-
tudes are the same as those used in the introduction (denoted by ai and bi).

The next two topics develop the scattering and transfer matrix theory. Scattering
matrices facilitate the identification of the reflectance and transmittance of simple
optical elements. The transfer matrices are especially suited for stacked optical elements.
They can be easily found from the scattering matrices.

3.6.3 Reflection and Transmission Coefficients

We first provide a brief summary for the reflectivity at a dielectric interface. Section 3.4
provides more detail and shows how their values can be found from boundary
conditions. Alternatively, Grant Fowles’ book titled Introduction to Modern Optics,
published by Dover Books, contains a review of the reflection and transmission
coefficients. The reader will also find alternate formulations for the scattering and
transfer matrix theory. The reflectivity and transmissivity can be complex quantities for
metal films, but remain real for interfaces between dielectrics. For our discussion,
we assume real reflection and transmission coefficients.

Right from the start we need to be careful when handling the power amplitudes
used for the scattering and transfer matrices. The Fresnel reflectivity and transmissivity
refer to electric fields and not the power amplitudes. The refractive index makes the
most important difference between the power amplitudes and the fields

aðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi

"oc

2
n

r

Eoeiknz

because the interface separates materials of differing index.
The Fresnel reflectivity (for electric fields) depends on the direction of the electric field

transverse magnetic (TM) wave has the magnetic field parallel to the interface (transverse
to the plane of incidence) while a transverse electric (TE) wave has the electric field
parallel to the interface (transverse to the plane of incidence). The reflection coefficients
can be written as follows

r ¼
n1 cos � � n2 cos 


n1 cos � þ n2 cos 

TE

r ¼
�n2 cos � þ n1 cos 


n2 cos � þ n1 cos 

TM

ð3:6:7Þ

where � represents the angle of incidence and 
 represents the angle of refraction.
Sometimes the TE and TM modes are called ‘‘s’’ and ‘‘p’’ respectively. For normally

incident beams (i.e., �¼ 0 and 
¼ 0), the two reflection coefficients are equal and given by

r ¼
n1 � n2

n1 þ n2
ð3:6:8Þ

Notice that Equation (3.6.8) gives the correct sign for n15 n2. Snell’s law relates the
angles of incidence and refraction by n1 sin � ¼ n2 sin
 so that Equation (3.6.7) can
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with respect to the plane of the boundary between the two media (Figures 3.6.4). A
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be written in terms of �, n1 and n2 if desired. Equation (3.6.7) can also be written in terms
of the angles alone (using Snell’s law to the equations of the index of refraction).

The transmissivity for the TE and TM modes can also be found in Section 3.4.

t ¼
2 cos � sin 


sin � þ 
ð Þ
TE

t ¼
2 cos � sin 


sin � þ 
ð Þ cos � � 
ð Þ
TM

For normal incidence (� ¼ 0 ¼ 
), both expressions for the transmissivity must agree.
Working with the TE version, setting

sin � þ 
ð Þ ¼ sin � cos
� sin
 cos �

Setting � ¼ 0 and then substituting Snell’s law n1 sin � ¼ n2 sin 
 provides

t1!2 ¼
2n1

n1 þ n2
ðNormal IncidenceÞ

Notice we have added the 1! 2 to indicate that the wave propagates from n1 to n2.
Question: How do the Fresnel coefficients relate to the power reflection and trans-

mission coefficients? These can be found from the previous relations for the electric field.
Consider first the power-amplitude reflectivity rpa using Figure 3.6.5 and Equation (3.6.6)

rpa ¼
b1

a1
¼

ffiffiffiffiffi
n1
p

Eb1e�iknz

ffiffiffiffiffi
n1
p

Ea1eiknz

�
�
�
�
z¼0

¼
Eb1

Ea1
¼ r ð3:6:9aÞ

where constants have cancelled and the minus sign appears in the exponential since
the reflected wave travels along the minus z direction. We assume the interface occurs
at z¼ 0 for simplicity. Notice that the reflectivity for the power amplitudes has the same
value as for the fields. We drop the ‘‘pa’’ subscript from now on. The two reflectivity
agree since the incident and reflected waves travel in the same refractive media and the
refractive indices therefore cancel.

FIGURE 3.6.4

Definitions for Transverse Magnetic and
Electric waves.

FIGURE 3.6.5

Amplitudes for input and output beams from an interface.
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We can likewise find the transmissivity for the power-amplitudes. The transmissivity
for the power-amplitudes for a wave traveling from media 1 into media 2, denoted by
1!2

1!2 ¼
b2

a1
¼

ffiffiffiffiffi
n2
p

Eb2eikn2z

ffiffiffiffiffi
n1
p

Ea1eikn1z

�
�
�
�
z¼0

¼

ffiffiffiffiffi
n2

n1

r
Eb2

Ea1
¼

ffiffiffiffiffi
n2

n1

r

t1!2 ð3:6:9bÞ

This time the power-amplitude and Fresnel transmissivity do not agree simply
because the incident and transmitted waves travel in different media. The power-
amplitude transmissivity can be written in terms of the refractive indices by substituting
for t1!2. We think of the power-amplitude as the electric field amplitude except it
includes all necessary constants to find the power.

So far we have discussed the field and power amplitudes. Question: What should we
use to find reflected and transmitted power? The reflectance R and transmittance T refer
to the power reflection and transmission coefficients. First, let’s find the reflectance R

R ¼
Prefl

Pinc
¼

b1b	1
a1a	1
¼

b1

a1

� �
b1

a1

� �	

¼ rr	 ¼ rj j2 ð3:6:10aÞ

where we have used Equation (3.6.9a). Second, we can find the transmittance T in a
similar manner

T ¼
Ptrans

Pinc
¼

b2b	2
a1a	1
¼

b2

a1

� �
b2

a1

� �	

¼ 1!2
	
1!2 ¼ 1!2j j2 ð3:6:10bÞ

Finally, we can write energy conservation using the reflectance R and transmittance T

Pinc ¼ Prefl þ Ptrans

substituting the definitions for the reflected and transmitted power

Pinc ¼ RPinc þ TPinc

and therefore

Rþ T ¼ 1 ð3:6:10cÞ

In summary, the following relations can be shown.

R ¼ rj j2 T ¼
n2

n1
t1!2j j2 ¼ tj j2 ð3:6:11aÞ

where t2 ¼ t1!2t2!1.
For normal incidence, the TE and TM power-amplitude reflectivity and transmis-

sivity are

r ¼ �
n2 � n1

n2 þ n1
1!2 ¼

ffiffiffiffiffi
n2

n1

r

t1!2 ¼
2
ffiffiffiffiffiffiffiffiffiffi
n1n2
p

n1 þ n2
ð3:6:11bÞ

So that

1 ¼ Rþ T ¼ rj j2þ j j2
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can be written as (see Figure 3.6.5)
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where j j2¼ 1!2
	
1!2 and also for real index

2 ¼ t1!2t2!1 ð3:6:11cÞ

3.6.4 Scattering Matrices

As mentioned in the introductory discussion in Section 3.6.1, the scattering matrix
relates the output amplitudes bi to the input amplitudes ai. Here the ai represent the
beams actually incident on the optical element (see Figure 3.6.6). The bi represent
the beams (after superposition of reflected and transmitted components) actually
leaving the element. The scattering matrix represents the effect of the optical element
upon the incident beams. We term the amplitudes ai and bi the ‘‘physical’’ input
and output for the optical element because they represent the actual beams that travel
‘‘into’’ and ‘‘out of’’ this element. These physical inputs and outputs are not the most
convenient quantities when working with stacks of multiple optical elements. Later
topics in this section show how the transfer matrix uses the most convenient
input quantities—mathematical inputs and outputs.

To begin, consider a general optical element as a black box (Figure 3.6.6) with
multiple input beams denoted by ‘‘aj’’ and multiple output beams denoted by ‘‘bj.’’ These
symbols represent the power amplitudes of the input and output beams, respectively.
The introduction to scattering theory (Section 3.6.1) shows how output beams can be
the result of many signal transformations (such as reflections) within the optical element.
The optical element can be a waveguide, a lens, or an interface between two media.
In a sense, the optical element ‘‘operates’’ on the input to produce the output.

‘‘Operators’’ represent the operations that the optical element performs on optical
beams. For linear systems, matrices provide these operators.

b1

b2

� �

¼ S
a1

a2

� �

¼
S11 S12

S21 S22

� �
a1

a2

� �

¼
S11a1 þ S12a2

S21a1 þ S22a2

� �

ð3:6:12aÞ

b1

b2

 !

¼
S11a1 þ S12a2

S21a1 þ S22a2

 !

ð3:6:12bÞ

The matrix S symbolizes the scattering matrix and should not be confused with the
Poynting vector. The word ‘‘linear’’ in ‘‘linear systems’’ means that the output must
be linearly related to the input (doubling the input, doubles the output). However, the
reader should realize that the matrices can depend on other parameters (such as
frequency) and these matrices may be nonlinear in these other parameters. Also notice
how the physical input appears on the right hand-side of Equation (3.6.11a) while

FIGURE 3.6.6

Representing an optical element as a black box.
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the physical output appears on the left-hand side. This separation of input and output
essentially defines the scattering matrix.

Let us consider the simplest optical element consisting of the boundary between
two media with refractive indices n1 and n2 (with n15n2) as shown in Figure 3.6.7.
As a simple example, let us assume only one incident beam from the left and none from
the right. The scattering matrix equation becomes

b1

b2

� �

¼ S
a1

0

� �

¼
S11a1

S21a1

� �

Apparently, the matrix element S11 ¼ b1=a1 must represent the Fresnel reflectivity for
the front surface by definition of the reflectivity (see the comment on the minus sign
below)

S11 ¼ �r 0 
 rj j 
 1

Similarly, the matrix element S21 ¼ b2=a1 must represent the Fresnel transmissivity

S21 ¼ 1!2

We should make a few comments on the reflectivity r and the transmissivity 
important for the scattering matrix S. The reflectivity and transmissivity are the power-
amplitude reflectivity and transmissivity directly related to the field reflectivity ‘‘r’’
and transmissivity ‘‘t’’ as given by Equations (3.6.11). The reflectance R and transmittance
T describe the reflected and transmitted optical power. We know the relations R ¼ rj j2

and T ¼ j j2 since the power is proportional to the square of the electric field. The power-
amplitude reflectivity has the same value as the electric field reflectivity. For example, the
Fresnel reflectivity for a GaAs-air interface is 0.58 while the reflectance is 0.34.

We finally comment on the negative sign for the reflectivity ‘‘r’’ in S11. For example,
if n24n1 then the reflectivity S11 ¼ b1=a1 must be negative while the reflectivity
S22 ¼ b2=a2 must be positive as found from the relations in the previous topics. We
set S11 ¼ b1=a1 ¼ �r to explicitly account for the phase change of approximately 180� for
a wave reflecting from a medium with larger refractive index. We don’t really need to
include this ‘‘minus’’ sign since the formulas for reflectivity and transmissivity in

for the electromagnetic wave incident on the n1 side of the boundary must be the negative
of the reflectivity for the wave traveling in the n2 material and incident on the boundary.
For example, suppose a1¼ 0 but that a2 6¼ 0. The scattering matrix becomes

b1

b2

� �

¼
S12a2

S22a2

� �

with S21¼  and S22¼þr.

FIGURE 3.6.7

The simplest optical element is the interface.
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previous topics take care of this for us. As shown in Figure 3.6.9, the Fresnel reflectivity
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To illustrate the principal of superposition, consider waves incident on the interface
from the right and from the left as shown in Figure 3.6.8. The scattering matrix equation
becomes

b1

b2

� �

¼ S
a1

a2

� �

¼
S11 S12

S21 S22

� �
a1

a2

� �

¼
�r 2!1

1!2 r

� �
a1

a2

� �

ð3:6:13Þ

Note the convention of ‘‘–r’’ and ‘‘þr’’ in the figure makes r40 for n15n2. If in reality
n14n2, then the sign of ‘‘r’’ will be reversed; either way, the equations work out ok.

An optical element of finite thickness with two interfaces provides a slightly more
complicated example. Assume that an object imbedded in air has refractive index n
as indicated by the block diagram in Figure 3.6.10. We should consider three different
scattering matrices—one for each boundary and one for the material between the
boundaries. The matrices for the two interfaces involve the Fresnel reflection and
transmission coefficients. However, viewing the object as a black box, we can define
effective reflection and transmission coefficients. For example, the effective reflectivity
would be –reff¼ b1/a1. The effective reflectivity and transmissivity account for multiple
reflections within the object (i.e., multiple reflected beams contribute to the two output beams).
The scattering matrix equation can be written as

b1

b2

� �

¼ S
a1

a2

� �

¼
S11 S12

S21 S22

� �
a1

a2

� �

¼
�reff teff

teff �reff

� �
a1

a2

� �

FIGURE 3.6.8

Beam enters on the right-hand side.

FIGURE 3.6.9

Beams propagating right and left are incident on an interface.

FIGURE 3.6.10

Input and output beams.
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The reader will recognize this as an application of the principle of superposition.
We have not really solved the problem but instead we have hidden the problem in the
effective reflectivity and transmissivity. The effective reflectivity and transmissivity
can be complex numbers because they contain information on the relative phases.
We will see that transfer matrices are better suited for complicated problems such as this
one. In fact, we can actually calculate the effective reflectivity and transmissivity.

3.6.5 The Transfer Matrix

The scattering matrix describes the reflected and transmitted amplitudes at an interface.
However, the scattering matrix equation

b01

b02

� �

¼
r 2!1

1!2 �r

� �
a01

a02

� �

or b ¼ S a

puts both physical inputs (a1, a2) on the right-hand side and both physical outputs (b1, b2)
on the left-hand side. The scattering matrix does not provide a convenient formulation
for solving more complicated problems. For example, consider Figure 3.6.11, which
shows an optical device consisting of multiple optical elements and interfaces. We could
find the output amplitudes b if we knew the input amplitudes a. However, we must
know the effect of the right-most and left-most elements before we can find the a
amplitudes. We can write a matrix equation to include the two outer optical elements, but
there’s a simpler method. It would be nice to look at a figure such as Figure 3.6.11 and just
write a matrix for each optical element in the order that it occurs. That is, we would really
like to just look at a figure with a series of optical elements and write one matrix for each
optical element; these matrices would be written in the same order as each optical
element appears in the figure. This is where the transfer matrix comes into play.

of the figure shows three optical elements. The middle portion of the figure separates
the elements and labels the amplitudes of the input and output beams. The bottom
portion shows how the transfer-matrix equation corresponds to each element. We want
to use beams A2 and B2 as the input to optical element No. 1. We want to interpret the amplitudes
A1 and B1 as the output from the optical element. In this way, the amplitudes A2 and B2 can
be interpreted as the input to the first optical element and as the output from the second
optical element. We picture the inputs to an optical element as residing on the right-hand
side while the outputs from an element are on the left-hand side.

In matrix notation, the first two elements of the optical train produce an equation of
the form

A1

B1

� �

¼ T1
A2

B2

� �

¼ T1T2
A3

B3

� �

ð3:6:14Þ

FIGURE 3.6.11

A multi-element electronic device.
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Figure 3.6.12 shows an expanded view of the stacked optical elements. The top portion
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Clearly, an optical train such as in the figure can easily be represented by a series
of multiplied transfer matrices. As with the scattering matrix S, the transfer matrix
T represents the effects of the optical element.

The right-hand side of a transfer-matrix equation (such as Equation (3.6.14)) has
the ‘‘input’’ column vectors while the left-hand side has the ‘‘output’’ column vectors.
Here lies the important distinction between the scattering and transfer matrices. Consider
the first optical element. Physically speaking, the A1 amplitude represents an incident
beam (i.e., an input beam) but it appears on the output side of the matrix equation.
A similar comment applies to the output amplitude A2 appearing on the input side of the
matrix equation. We see that the mathematical inputs to the transfer matrix equation
are different than the physical inputs to the scattering matrix equation. For the transfer
matrix, amplitudes referring to a single side of an optical element appear in the
same column vector (regardless of whether they represent physical inputs or not).

For the transfer-matrix equation, how can ‘‘output’’ variables be used on the ‘‘input’’
side of the equation? The answer comes from the fact that we are using linear systems.
The variables in the scattering matrix equation (Eq. 3.6.13 for example) can be rearranged
to give the variables for the transfer matrix equation. Consider the first optical element in
Figure 3.6.12. For the scattering matrix, we denote the ‘‘input’’ amplitudes by ai and the
‘‘output’’ amplitudes by bi. Figure 3.6.13 shows that the scattering and transfer variables
must be related by A1¼ a1, A2¼ b2, B1¼ b1, and B2¼ a2. A relation can be found between
the scattering and transfer matrices. Start with the scattering matrix equation

b1 ¼ S11a1 þ S12a2

b2 ¼ S21a1 þ S22a2

ð3:6:15Þ

FIGURE 3.6.12

Stacked optical element. The transfer matrix equation is shown for the first element.

FIGURE 3.6.13

Relation between the scattering and transfer variables.
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Next eliminate the scattering variables in favor of the transfer variables.

B1 ¼ S11A1 þ S12B2

A2 ¼ S21A1 þ S22B2

ð3:6:16Þ

Equation 3.6.16 must be compared with the defining relation for the transfer-matrix
equation (3.6.14). Equation 3.6.16 needs to be rearranged. We move A2 and B2 to the
right-hand side and A1 and B1 to the left-hand side. The coefficients of A2 and B2 will
be the elements of the transfer matrix. We find

A1 ¼
1

S21
A2 �

S22

S21
B2

B1 ¼ S11A1 þ S12B2 ¼
S11

S21
A2 �

S11S22 � S12S21

S21
B2

The right-hand side of the previous two lines provides the elements of the transfer
matrix

T ¼
1

S21

1 �S22

S11 �DetðSÞ

� �

ð3:6:17Þ

where Det stands for the determinant. We could just as easily demonstrate the scatter-
ing matrix in terms of the transfer matrix

S ¼
1

T11

T21 Det T
1 �T12

� �

ð3:6:18Þ

3.6.6 Examples Using Scattering and Transfer Matrices

Perhaps the best way to understand the scattering and transfer matrices is to consider
several examples. The last example introduces the Fabry-Perot cavity. The next section
uses the results to discuss the longitudinal modes present in a laser cavity.

Example 3.6.1 The Simple Interface

Reconsider an interface at z¼ 0 separating two media with refractive indices n1 and n2.
The plane waves ‘‘A’’ travel toward the right (þz direction) and have the form

Ai zð Þ ¼ Aoi eikiz

while the ‘‘B’’ waves travel toward the left and have the form

Bi zð Þ ¼ Boi e�ikiz

The wave vectors carry a subscript to indicate the index of refraction of the material
ki ¼ koni(ni is real) through which the wave travels. The scattering matrix is

S ¼
�r 2!1

1!2 r

� �
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Therefore the transfer matrix in

A1 zð Þ

B1 zð Þ

 !

z¼0

¼ T
A2 zð Þ

B2 zð Þ

 !

z¼0

!
A01

B01

 !

¼ T
A02

B02

 !

must be given by

T ¼
1

1!2

1 �r

�r rrþ 2

� �

ð3:6:19Þ

by Equation 3.6.17 where 2 ¼ 1!22!1. Energy conservation gives �Det Sð Þ ¼ r2 þ 2 ¼ 1
(refer to the previous topics). Two important notes: (1) if we exchange –‘‘r’’ and ‘‘r’’ in the
figure, then they must also be exchanged in the scattering and transfer matrices; (2) if we
leave the minus signs as shown in Figure 3.6.14 but consider the right-hand side to be the
output (and the left-hand side to be the input) for the transfer matrix, then r and �r must
be interchanged in the transfer matrix.

A single interface is not very interesting. Real optical devices have at least two
interfaces and an interior. The simplest example consists of a beam of light propagating

ikz.

Example 3.6.2 The Simple Waveguide

Suppose a wave travels toward the right and another travels toward the left inside
a dielectric. We want to know how the amplitudes change when the one wave moves
from a point zo to a point zoþ L or the other wave moves in the opposite direction.
These interfaces at zo and zoþ L are not real and do not produce reflections; they
both exist inside the semiconductor and do not indicate discontinuity in the refractive
index. We can make a real waveguide by including actual interfaces at zo and zoþ L;
for this real waveguide, we must use three transfer matrices. For now, we focus on the
simplest case of a wave propagating from one point to another.

Assume the two waves represented by power amplitudes a1 and a2 pass through
the left-hand and right-hand interfaces inside the material with refractive index ‘‘n’’ as

Assume that the beams propagate straight through the material. The forward propagat-
ing wave (from left to right) has the form a1 � Eo expðiknzÞ while the backward propagat-
ing wave has the form a2 � Eo expð�iknzÞ. The amplitude b2 at zoþ L must be related to
the amplitude a1 at zo by a phase factor

b2 ¼ Eo exp ikn zo þ Lð Þ½ � ¼ a1 exp iknLð Þ

FIGURE 3.6.14

The simple interface.
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indicated by Figure 3.6.15. The waves do not reflect from these imaginary interfaces.

from one interface to the other. We take into account only the phase factor e
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The backward propagating wave with amplitude b1 at zo must be related to the wave
with amplitude a2 at zoþL

a2 ¼ Eo exp �ikn zo þ Lð Þ½ � ¼ b1 exp �iknLð Þ

or, in other words,

b1 ¼ a2 exp iknLð Þ

We can write the scattering matrix as

b1

b2

� �

¼
S11 S12

S21 S22

� �
a1

a2

� �

¼
0 expðiknLÞ

expðiknLÞ 0

� �
a1

a2

� �

Therefore, the transfer matrix in

A1

B1

� �

¼ T
A2

B2

� �

must be given by Equation (3.6.17)

T ¼
1

S21

1 �S22

S11 �DetðSÞ

 !

¼
1

expðiknLÞ

1 0

0 expð2iknLÞ

 !

¼
expð�iknLÞ 0

0 expðiknLÞ

 !

ð3:6:20Þ

Now we can discuss a Fabry-Perot cavity. We must include two physical interfaces and
the interior between them.

Example 3.6.3 The Fabry-Perot Cavity

section corresponds to the region with index n2. To model the laser, consider a slab of
material with refractive index ‘‘n2’’ embedded within another material of refractive index
‘‘n1.’’ The region corresponding to n1 usually consists of air for a cleaved-facet (in-plane)
semiconductor laser. Assume that reflections occur at each of the two parallel bound-
aries. We assume the only input beam comes from the left and so B1¼ 0. Notice the
reflectivity is assumed positive for waves reflecting off the inner surfaces. Examples 3.6.1

FIGURE 3.6.15

Block diagram for the simple waveguide.
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The semiconductor laser has a Fabry-Perot cavity as depicted in Figure 3.6.16. The gain
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and 3.6.2 provide the transfer matrices. Starting with the right-hand interface we find,

A2

B2

 !

¼
1

21

1 r

r 1

 !

A1

0

 !

We gave the reflectivity a ‘‘positive’’ sign in the transfer matrix contrary to that in
Example 3.6.1. We did this since the output side (left side) of the z¼ L boundary has þr
reflectivity rather than –r reflectivity in Example 3.6.1. The subscript ‘‘21’’ on 21 indi-
cates the right-hand interface with a wave moving from medum ‘‘2’’ to ‘‘1.’’ These
subscripts provide a bookkeeping tool. In principle, there may be three separate refractive
indices but not in this case. The waveguide (excluding the interfaces) has a transfer
matrix given by Example 3.6.2

A3

B3

� �

¼
e�i
 0

0 ei


 !

A2

B2

� �

where 
 ¼ knL. The transfer matrix for the left-hand side is similar to that for Example
3.6.1 and is given by

A4

B4

� �

¼
1

12

1 �r

�r 1

� �
A3

B3

� �

Multiplying the three individual matrices provides the total transfer matrix

A4

B4

 !

¼
1

12

1 �r

�r 1

 !

e�i
 0

0 eþi


 !

1

21

1 r

r 1

 !

A1

0

 !

:

Calculating the product, we find the total transfer matrix to be

A4

B4

 !

¼
1

2

e�i
 � r2eþi
 re�i
 � reþi


�re�i
 þ reþi
 �r2e�i
 þ eþi


 !

A1

B1 ¼ 0

 !

ð3:6:21Þ

The phase 
 ¼ knL can incorporate the complex wave vector. Recall that the complex
part of kn describes absorption and gain. The laser uses a basic Fabry-Perot reso-
nator filled with semiconductor to produce gain when pumped. We won’t need to worry

FIGURE 3.6.16

The Fabry-Perot cavity.
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about the complex portion of the refractive index for the expression of the power
amplitudes.

aðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi

"oc

2
n

r

Eo eiknz

Retracing the relation between E and H in Section 3.1 indicates the real part of the index
determines the phase speed while the imaginary part affects the amplitude. The refractive
index occurs in the coefficient of the power amplitude to provide the phase velocity in
the medium. The next section discusses how the presence of gain (or loss) affects the
transfer matrix and the resulting characteristics of the Fabry-Perot cavity.

3.7 The Fabry-Perot Laser

The in-plane laser has two parallel mirrors forming a Fabry-Perot resonator (i.e.,
Fabry-Perot etalon). The results for the transfer matrix describing the simple waveguide
with two interfaces demonstrate (1) the gain condition (i.e., the gain must equal the
loss for a laser operating above threshold), (2) the existence of longitudinal modes,
(3) the approximate line shape of the emitted laser light, and (4) line narrowing. The
‘‘line-shape’’ function describes the shape of the curve representing the output power
as a function of wavelength. The power spectrum attains a peak value and decreases
on either side of the peak. The quality (finesse) of the cavity and the spontaneous
emission rate determine the width of the power spectrum—often described by the ‘‘line
width.’’ For a semiconductor laser, the gain compensates for the optical loss of the
cavity and thereby effectively increases the finesse of the resonator and decreases
the line width. Indeed, increasing the gain from below-threshold to above-threshold
levels decreases the line width as the spectrum transitions from spontaneous to
stimulated emission. The decrease in line width along with a sudden jump in output
power and the appearance of ‘‘speckle pattern’’ signifies the onset of lasing. Ultimately,
spontaneous emission limits the linewidth for a laser.

3.7.1 Implications of the Transfer Matrix for the Fabry-Perot Laser

We now calculate the optical power leaving the Fabry-Perot resonator as a function of
the incident optical power. The magnitude of the output power depends on the pumping
level to the gain medium. When the gain compensates the losses, the resonator begins
to lase and produces an output beam independent of the input beam similar to the ring
laser discussed in Section 1.1. The interior of the Fabry-Perot etalon normally contains
material with a refractive index n2 larger than the refractive index n1 (n24n1) of the
surrounding medium. For simplicity, we assume the surrounding medium consist of air
with n1 ¼ 1 and, for convenience, set n ¼ n2. Also assume ‘‘normal incidence’’ for all the
beams (i.e., the beams propagate perpendicular to the interfaces); therefore, the
reflectivity for TE and TM waves must be the same and denoted by r.

The previous section demonstrates the transfer matrix for a Fabry-Perot resonator with
a single input beam incident on the left-hand side (Example 3.6.3). Equation (3.6.20)
provides

A4

B4

 !

¼
1

2

e�i
 � r2ei
 re�i
 � rei


�re�i
 þ rei
 �r2e�i
 þ ei


 !

A1

B1 ¼ 0

 !
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with the transfer matrix given by

T ¼
T11 T12

T21 T22

 !

¼
1

2

e�i
 � r2 ei
 r e�i
 � r ei


�r e�i
 þ r ei
 �r2 e�i
 þ ei


 !

ð3:7:1Þ

where the phase 
 ¼ knL uses the complex wavevector. Although the transfer matrix
is a very useful mathematical abstraction, we eventually require the output amplitudes
for physical lasers. We can better use the scattering matrix for this purpose. Recall
the basic definition of the scattering matrix

A4

B4

Þ

 !

¼
1

2

e�i
 � r2 ei
 r e�i
 � r ei


�r e�i
 þ r ei
 �r2 e�i
 þ ei


 !

A1

B1 ¼ 0

 !

The various amplitudes for the scattering and transfer matrices appear in Figure 3.7.1.
Equation (3.6.17) in the previous section gave the relation between the two types of
matrices.

S ¼
1

T11

T21 Det T
1 �T12

� �

¼
2

e�i
 � r2 ei


T21 Det T
1 �T12

� �

ð3:7:2Þ

For the laser oscillator, we are interested in the output signal as a function of the input
signal. We can use either b1 or b2 as the output signal. Consider b1 and write

b1 ¼ S11a1 ð3:7:3Þ

Equation (3.7.1) and (3.7.2) provide the relevant transfer function

output

input
¼

b1

a1
¼ S11 ¼

�r e�i
 þ r ei


e�i
 � r2 ei

¼ �r

1� e2i


1� r2 e2i

ð3:7:4Þ

We assume both mirrors (i.e., the interfaces between the two media) have the same
reflectivity. Equations (3.7.3) and (3.7.4) can be compared with the op-amp circuit

power Po and input power Pin has the form

Po ¼
gPin

1� g=�
ð3:7:5Þ

FIGURE 3.7.1

The amplitudes for the scattering matrix (lower case letters) and for the transfer matrix (upper case letters).
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The parameters g and � replace the material gain and loss. Compare the op-amp
equation (3.7.5) with Equation (3.7.4). Both denominators might become zero. The op-
amp circuit begins to oscillate for small values of the denominator. Similarly, we expect
Equation (3.7.4) to produce denominators close to zero when the Fabry-Perot laser begins
to lase.

The power flowing into and out of the Fabry-Perot cavity must be proportional to
the square of the power amplitudes. Equation (3.7.3) provides the relation between the
reflected power Pref and the incident power Pin

Pref ¼ S11j j
2Pin ð3:7:6Þ

The ‘‘reflected’’ power actually originates from two sources. The first source consists
of light produced within the resonator (such as from pumping) and passing from the
interior to the exterior across the left-hand interface. The second source consists of a
fraction of incident power Pin reflecting from the left-hand interface. The word
‘‘reflected’’ appears in quotes because the beam b1 actually consists of the superposition
of many beams from within the etalon. Calculating the square of the complex transfer
function S11 we find

S11j j
2
¼ S11S	11 ¼ r2 1� e2i


� �

1� e2i

� �	

1� r2 e2i
ð Þ 1� r2 e2i
ð Þ
	 ð3:7:7Þ

Sometimes people call the matrix element S11 (or any of the Sij) a transfer function
because it relates an output variable to an input variable. The term ‘‘transfer function’’
is a standard term in engineering.

We need a few definitions at this point. The complex phase factor 
¼ knL contains the
complex wave vector

kn ¼ kon� i
gnet

2

so that the real and imaginary parts of the phase factor can be written


 ¼ 
r þ i
i ¼ knL ¼ konL� i
gnet

2
L

The gain gnet describes the material gain ‘‘g’’ and the distributed internal loss �int

as represented by the familiar relation

gnet ¼ �g� �int

The power reflectivity R is related to the Fresnel reflectivity r (assumed real) by

R ¼ r2

We define an effective reflectivity R by

R ¼ Rexpð�2
iÞ ð3:7:8Þ
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Also, the complex nature of ei
 must be properly handled during complex conjugation
since imaginary parts occur in two places ei


� �	
¼ e�i
	 .

Returning to the power transfer function, we find

S11j j
2
¼ R

1þ exp �4
ið Þ � 2 exp �2
ið Þ cos 2
rð Þ

1þ R2 exp �4
ið Þ � 2R exp �2
ið Þ cos 2
rð Þ
¼ R1þ

R2

R2 � 2R
R cos 2
rð Þ

1þR2 � 2R cos 2
rð Þ

Using the cosine expansion, cos 2
rð Þ ¼ cos2 
rð Þ � sin2 
rð Þ ¼ 1� 2 sin2 
rð Þ, we find

S11j j
2
¼ R

1� R
R

� �2
þ 4 R

R sin2 
r

1�R½ �
2
þ 4R sin2 
r

ð3:7:9Þ

Using Equation (3.7.6) and (3.7.9), the relation between the ‘‘reflected’’ power and the
input power must be given by

Pref ¼ S11j j
2Pin ¼ R

1� R
R

� �2
þ4 R

R sin2 
r

1� R½ �
2
þ4R sin2 
r

Pin ð3:7:10Þ

Example 3.7.1 A Fabry-Perot Etalon Without Material Gain or Internal Loss

For a Fabry-Perot etalon, let’s plot the reflected and transmitted power as a function
of the optical frequency !¼ 2�� of the electromagnetic wave. Assume that an
electromagnetic wave enters the etalon from the left, bounces around a bit, and emerges
from (1) the left-hand facet as a ‘‘reflected’’ beam and from (2) the right-hand facet as
a ‘‘transmitted’’ beam. For the present example, assume that the material comprising
the Fabry-Perot etalon hasn’t any material gain/absorption nor any internal distributed
losses (such as free carrier absorption or optical scattering through the side walls).
The phase factor and the complex wave vector must be real


 ¼ 
r þ i
i ¼ knL ¼ konL� i
gnet

2
L ¼ konL

The ‘‘reflected’’ power Pref given by Equation (3.7.10) becomes (with R¼R for real 
;
i.e., 
i¼ 0)

Pref ¼ S11j j
2Pin ¼ R

4 sin2 konLð Þ

1� R½ �
2
þ4R sin2 konLð Þ

Pin

where ko¼ 2�/�o and �o¼ c/�¼ 2�c/! is the wavelength of the electromagnetic wave
in air and � is the frequency in Hz. Although not written out here, a similar relation can
be found for the power transmitted through the etalon to the other side. However,

Ptrans ¼ S21j j
2Pin ¼ 1� S11j j

2
� �

Pin

We can now plot the transfer functions for the reflected and transmitted powers.

ref=Pin for three different values of the power reflectivity all
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power conservation requires that the transfer function be

3.7.2 shows P
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plotted against the phase angle konL. The value of R¼ 0.34 corresponds to cleaved facets
for GaAs lasers. Notice that larger facet reflectance R gives larger finesse (narrower line
widths). This means greater optical loss must lower the finesse of the cavity. Different
reflected powers can be obtained by changing the index n, the wavelength or the physical
thickness of the etalon. The finesse can be exceedingly large (narrow line widths). The
output power from the etalon depends on the wavelength through konL ¼ 2�nL=lo.
Figure 3.7.3 shows the transmitted power. Only a very narrow band of wavelengths
can propagate through the etalon thereby producing a very narrow bandpass filter.

3.7.2 Longitudinal Modes and the Threshold Condition

The previous topic shows the amount of power leaving a Fabry-Perot resonator as
a function of the power in an incident beam. Pumping the resonator can initiate lasing.
Above threshold, the laser produces considerably more power than it receives from
the input beam. In this case, the effective transmittance and reflectance must become
infinite as discussed in Section 1.1 concerning the ring laser and op-amp oscillator.
These terms become infinite when the denominators of S11 or S11j j

2 (etc) equals to zero.
Although it might be more appropriate to work with ‘‘transmitted’’ power for a laser,
either the ‘‘reflected’’ or ‘‘transmitted’’ power can be used since they have the same

FIGURE 3.7.3

The transmitted power.

FIGURE 3.7.2

The ‘‘reflected’’ power through the Fabry-Perot resonator.
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denominator. The results identify the longitudinal modes for the cavity and demonstrate
the threshold condition for the gain (i.e., gain equals loss).

Although Equation (3.7.10) can be used, we return to the simpler forms given in
Equations (3.7.3) and (3.7.4)

b1 ¼ S11a1 ! Pref ¼ S11j j
2Pin ð3:7:3Þ

S11 ¼
�r e�i
 þ r ei


e�i
 � r2 ei

¼ �r

1� e2i


1� R e2i

ð3:7:4Þ

where R¼ r2. As typical for linear systems, the pole of the transfer function deter-
mines the characteristics of the oscillation. For a laser, we do not usually inject
optical power through the mirrors (Pin¼ 0) except for special cases of injection locking
or optical pumping. Spontaneous emission within the laser gain medium, sometimes
associated with Pin, initiates the laser oscillation. In what follows, let D represent
the denominator of the transfer function S11 for the ‘‘reflected’’ power

D ¼ 1� R ei2

ð3:7:11Þ

where we can now write the denominator as

D ¼ 1� R exp gnetL
� �

exp i2konLð Þ ¼ 1� R exp gnetL
� �

cosð2konLÞ þ i sinð2konLÞ½ � ð3:7:12Þ

For the denominator to be zero, we require both the real and imaginary parts to be
simultaneously zero.

As an important note, the index of refraction of the cavity material can change due to
pumping. For this reason, the index of refraction ‘‘n’’ that appears in the formulas must
include both the so-called background refractive index nb and the pumping refractive
index np.

Case 1 Imaginary Part Produces the Wavelength of the Longitudinal Modes
Setting the imaginary part of the denominator (given in Equation (3.7.12)) equal to zero
provides

0 ¼ sinð2konLÞ ¼ 2 sinðkonLÞ cosðkonLÞ

We might try to make either the sine or the cosine term equal to zero. However,
if we choose the cosine term to be zero, we would not necessarily find the real part of
the denominator to be zero. Setting the sine term equal to zero gives a condition on
the wave vector and the wavelength

konL ¼ m� ðm ¼ 1, 2, 3, . . .Þ

or equivalently,

lo ¼
2nL

m
or ln ¼

2L

m

The corresponding optical frequencies must be

�m ¼
mc

2nL
ðm ¼ 1, 2, . . .Þ
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These expressions provide the allowed wavelengths and frequencies of the electro-
magnetic wave within the Fabry-Perot cavity. A sinusoidal wave with exactly one of these
wavelengths constitutes a so-called longitudinal mode. Figure 3.7.4 shows an m¼ 3
longitudinal mode. These modes derive their name ‘‘longitudinal’’ from the fact that
multiple waves fit along the length of the resononator (longitudinal direction). We will
investigate the transverse modes in connection with the slab waveguide later in this
chapter.

We can find the spacing between adjacent frequencies of the longitudinal modes using
�n ¼ mc=ð2LÞ. Let �m¼ 1 and calculate

� �nð Þ ¼
�mc

2L

n��þ ��n ¼
c

2L
! �� nþ �

�n

��

	 


¼
c

2L

Define the group index ng ¼ nþ �
@n

@�
and substitute to find

�� ¼
c

2Lng
ffi

c

2Lng

The last expression gives the frequency difference between adjacent longitudinal
modes. For relatively frequency-independent refractive index, the group index reduces to
the ordinary refractive index (ng¼ n). The difference in wavelength between adjacent
lines can also be found by using ��o¼ c so that

lo��þ ��lo ¼ 0 or �loj j ¼
loc

2Ln

Before continuing with the second case that demonstrates the gain relation, we should
make some comments on the physical significance of the longitudinal modes. These
modes are actually standing waves. If all of the EM energy in a resonator occupies
a longitudinal mode then none of the energy would escape through the mirrors to
form a useful signal. We must surmise the EM energy can occupy two types of
modes. One type constitutes traveling plane waves that can pass through the mirrors. The
other type makes up the longitudinal modes. Photons in the standing waves occupy
the longitudinal modes. These two types of modes produce two types of effects. The
longitudinal modes produces narrow line widths and well-defined laser frequencies.
The traveling wave produces a useful signal and broadens the laser line.

First consider the longitudinal modes. We will find in the following chapters that
the gain depends on the optical frequency (i.e., the wavelength) somewhat similar

Fabry-Perot cavity. Obviously, those modes under the center portion of the gain curve
will be the most highly excited and have the largest amplitudes. Those longitudinal
modes near the edges of the gain curve will not experience any amplification at all
and will not be present in the output spectra. The actual line shape pattern appears

FIGURE 3.7.4

The m¼ 3 longitudinal mode.
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to that shown in Figure 3.7.5. The figure also shows the allowed frequencies for the
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in Figure 3.7.6. The gain essentially consists of the semiconductor gain multiplied by
the resonator transfer function. For homogeneously broadened lasers, the gain equals
the loss for only one longitudinal mode as shown. This one longitudinal mode will
provide the output beam. The wavelength of the output light will be equal to the
wavelength of this one particular longitudinal mode. Inhomogenously broadened
lasers can simultaneously amplify all of the longitudinal modes and multiple wave-
lengths appear on the output beam.

Next consider the traveling modes. Previous discussion shows larger mirror reflectivity
leads to smaller output power and narrower lines that span smaller ranges of
wavelengths. Therefore, mirrors with large reflectivity produce very little traveling
wave through the mirror and increase the proportion of the electromagnetic waves in the
longitudinal modes. Ignoring material gain and distributed internal loss, a cavity with
perfectly reflecting mirrors would have a power spectrum (a plot of power vs.
wavelength) consisting of delta functions (i.e., functions with zero width as shown in
Figure 3.7.5). The optical loss of the resonator widens the lines because the lower Q (lower
finesse, wider lines) of the resonator allows frequencies adjacent to the peak to be
amplified. This is just a restatement of the fact that not all of the electromagnetic wave in
the cavity occupies one of the longitudinal modes. In effect, because the resonator is a lossy
system, the longitudinal modes are not the exact eigenmodes for the total system (the total
system, in this case, includes both the laser and the external environment). We will see
shortly that the gain of the medium helps to offset the loss and tends to narrow linewidths.

An extremely important point concerns the role of homogeneously vs. inhomogen-
eously broadened lasers. A homogeneous broadened laser will have at most one lasing
longitudinal mode. For an inhomogeneously broadened laser, any number of long-
itudinal modes can lase. The reason for these different behaviors has to do with the way
the resonator produces the gain. An ensemble of identical atoms produces the so-called

FIGURE 3.7.5

Delta-like functions mark the resonant frequencies (i.e., the frequencies of the longitudinal modes). A typical
laser gain curve is shown.

FIGURE 3.7.6

Homogeneously broadened lasers operate in the mode for which gain¼ loss.
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homogeneously broadened line shapes. Atoms that are affected differently from one
another by their environment produce the inhomogeneously broadened line shapes.
For example one or two atoms might experience a different strain than another. The
Doppler effect can also produce inhomogeneous broadening. For Doppler broadening,
each atom radiates at a frequency slightly different from an average frequency because
of its random motion. We will see later in the book that saturation effects can cause
multiple longitudinal modes to lase (even for homogeneous broadening).

Case 2 The Real Part Produces the Threshold Condition
We return to the expression for the denominator (Equation (3.7.12)) and consider the real
part

ReðDÞ ¼ 1� R expð gnetLÞ cosð2konLÞ ð3:7:13Þ

We have already chosen values for the argument of the cosine term namely

konL ¼ m� ðm ¼ 1, 2, 3 . . .Þ ð3:7:14Þ

so that

cosð2konLÞ ¼ 1

In order for the real part of the denominator to be zero, we must require

0 ¼ 1� R expðgnetLÞ ð3:7:15Þ

The gain gnet contains the material gain ‘‘g’’ and the distributed internal losses �int as
represented by the familiar relation

gnet ¼ �g� �int ð3:7:16Þ

We insert the net gain into the analysis because the transfer matrix equations for
Fabry-Perot cavity do not directly incorporate the laser rate equations (which require
the net gain). We can solve for the net gain in Equation (3.7.15) to find

gnet ¼
1

L
Ln

1

R

� �

or �g ¼ �int þ
1

L
Ln

1

R

� �

ð3:7:17Þ

as found previously for a laser operating above threshold. We know that the laser must
be operating above threshold because we explicitly require the denominator to be zero.
Below threshold this denominator would not be small.

3.7.3 Line Narrowing

Consider a Fabry-Perot laser. For low levels of pumping, the ‘‘lines’’ in the power spectra

‘‘lines’’ become narrower. The present topic shows how the material gain compensates for
the losses of the mirrors and the various distributed losses. When the gain equals the loss,
it’s almost as if the cavity has perfect mirrors and as if the medium hasn’t any absorption.

Some books define the finesse F in order to discuss the quality of the Fabry-Perot
resonator. For convenience, we define an effective reflectivity R o as

R o ¼ R expð gnetLÞ ð3:7:18Þ
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have large linewidth as indicated in Figure 3.7.7. As the level of pumping increases, these
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Grant Fowle’s book shows that the finesse can be written as

F ¼
4R2

o

1�Roð Þ
2

ð3:7:19Þ

We can think of the finesse as the reciprocal of the linewidth. The ‘‘finesse’’ essentially
measures the quality of the Fabry-Perot cavity as the number of round trips that a
light pulse can make from one mirror to the other and back again before it dissipates
away. Therefore large gain should produce large finesse and small line widths.
The following discussion shows how this happens.

The spectrum of emitted power versus wavelength can be found by plotting the
power transfer function vs. wavelength (ko in the transfer function depends on
wavelength). Recall that the denominator for the transfer function (Equation (3.7.12))
appears as

D ¼ 1� R exp gnetL
� �

exp i2konLð Þ ¼ 1� R exp gnetL
� �

� cosð2konLÞ þ i sinð2konLÞ½ � ð3:7:20Þ

Near resonance, we have ln � 2L=m and so 2konL ¼ 2knL ¼ 4�L=ln � 2�m. Therefore
the sine term approximates 0 and the cosine term approximates 1 according to

sin 2konLð Þ � sin 2�mð Þ ¼ 0 and cos 2konLð Þ � cos 2�mð Þ ¼ 1

where m and ln represent the mode number and the wavelength in the medium,
respectively. Substituting these into Equation (3.7.20) shows the relevant form of the
denominator near resonance.

D ffi 1� R exp gnetL
� �

ð3:7:21Þ

Recall the effective reflectivity R o ¼ R expðgnetLÞ in Equation (3.7.18) to see the
denominator in Equation (3.7.21) appears in the denominator of the finesse
F ¼ 4R2

o= 1�R oð Þ
2 in Equation (3.7.19).

Now we show the finesse becomes large and the linewidth decreases as the pumping
level increases. To show the denominator term becomes small, we need an accurate
expression for the gain—more than just saying gain equals loss. We need to show that
as the photon density in the cavity becomes large (due to lasing) then the gain approaches
the loss. To this end, we use the steady-state photon laser rate equation

0 ¼
d�

dt
¼ vg�g� � �vg �int þ �mð Þ þ �Rsp

FIGURE 3.7.7

Compare line shapes above and below lasing threshold.
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Solving for the net gain (excluding the mirror term since its included in R),

gnet ¼ �g� �int ¼ �m þ
�vgRsp

�

As the photon density � increases, the term containing the spontaneous emission
decreases. Substituting gnet into the denominator term (1�Ro) yields

1�R o ¼ 1� R expðgnetLÞ ¼ 1� R exp �mLð Þ exp
�vgRsp

�

� �

Fortunately, we already know that the mirror loss term is given by

�m ¼
1

L
Ln

1

R

� �

which can be rearranged to show that

R expð�mLÞ ¼ 1

As a result

1�R o ¼ 1� R expð gnetLÞ ¼ 1� exp
�vgRsp

�

� �

Therefore, for photon densities above threshold, the exponential approaches 1 and
the denominators approach zero. The width of each line therefore approaches zero.
Just for completeness, the finesse can be written as

F ¼
4R2

1�Rð Þ
2
ffi

4

1� exp
�vgRsp

�

� �h i2
!1 as gain! loss

However, as a very important note, the gain is always infinitesimally smaller than
the loss due to the presence of spontaneous emission. It should be clear at this point
that spontaneous emission prevents the linewidth from actually becoming zero.

3.8 Introduction to Waveguides

Many devices incorporate optical waveguides as a means of transporting an optical
signal from one point to another. Waveguides can be monolithically integrated on
semiconductor wafers to channel light from one optically active component to another.
Electrically active waveguides make possible Mach Zender interferometers, optical
switches and lasers. Semiconductor lasers use waveguides to confine optical energy
as it travels back and forth between end mirrors. The communications industries
make extensive use of the waveguide in the form of an optical fiber.
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Waveguides consist of a core material with refractive index n2 embedded within
a cladding material having smaller index n1. The difference in refractive index controls
the amount of light confined to the core. The majority of the optical electromagnetic
(EM) wave flows within the higher index core material. A portion of the wave extends
beyond the core into the cladding as the evanescent tail. Decreasing the difference in
index n2 � n1 increases the evanescent tail.

We explore two complimentary approaches to waveguiding. The geometric optics
approach uses rays to represent the waves and provides the most convenient visual
picture. The law of reflection and Snell’s law play dominant roles. The physical optics
approach in the following section solves Maxwell’s equations and provides the most
detailed description of waveguiding. Many excellent books can be found covering the
waveguides. The following books treat waveguiding in a manner similar to the present
book: (1) the 5th ed. of Yariv’s book on Quantum Electronics published by John Wiley and
Sons and (2) the third edition of R. G. Hunsperger’s book Integrated Optics: Theory and
Technology which is published by Springer-Verlag with the copyright date of 1991.

3.8.1 Basic Construction

The present section explores elementary optical waveguiding appropriate for semi-
conductor lasers that require optical confinement along both the transverse and lateral
directions (see Figure 3.8.1). These structures most often achieve transverse confinement
using index guiding. The higher index core material contains the active region while
the lower index material forms the cladding. The lateral waveguiding can be achieved by
three methods. First, the necessary change in refractive index can be achieved by etching
away some of the material to form a ridge waveguide so that an air–semiconductor
interface slightly lowers the effective index. A second method, gain guiding, uses the
injected current to change the carrier density, which very slightly changes the refractive
index. The third method uses regrowth to place lower index material next to the active
region. Regardless of the exact mechanism, all waveguiding requires a difference
in refractive index. The real challenge consists of finding materials that can be compatibly
combined, at a low cost, and that do not decrease the performance of the device.

3.8.2 Introduction to EM Waves for Waveguiding

Consider a symmetric slab waveguide composed of three transverse layers as shown at

and upper ones (n24 n1). A symmetric waveguide has two outside clad layers with the
same refractive index. The middle portion of the figure shows an enlarged view with

FIGURE 3.8.1

Directions relative to the waveguide and substrate.
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the top of Figure 3.8.2. The middle layer has larger refractive index than both the lower
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waves propagating along the z-direction (longitudinal direction) and showing ‘‘standing
waves’’ along the x-direction (transverse). As the wave propagates along the longitudinal
direction, some of the optical energy penetrates into the low index regions. The curves
labeled as m¼ 0 and m¼ 1 represent the amplitude of the electric field at a point (x, y) in
the x–y plane; the exponential factor ei�z�i!t multiplies this amplitude. At the far right of
the figure, the two arrows pointing toward the right represent the (effective) wave vector
~�� (which is related to the complex wave vector that we discussed previously). Notice that,
for the m¼ 0 mode, the amplitude of the wave is largest near the center and smallest
near the tails. The tails of both the m¼ 0 and m¼ 1 curves represent the evanescent
fields that propagate to the right but decay exponentially with the distance into the n1

material. Sines or cosines describe the center portion of the curves. The bottom portion of
Figure 3.8.2 shows the power distribution versus position on the output facet (i.e., we are
looking at the right-hand side of the middle portion of the figure). The lobes represent the
‘‘brightest’’ portion of the beam. The size of the small vertical widths of the lobes roughly
correspond to the distance tg between the two interfaces. The horizontal width of the lobe
corresponds to the horizontal size of the two slabs. The fact that the beams have finite
width along y indicates that there must be a mechanism to confine the beam in that
direction even though we have not shown it in the figure. The m¼ 0 transverse mode has
a single maximum of the power distribution within the lobe. The m¼ 1 transverse mode
has two peaks in the optical power distribution. The peaks correspond to bright spots
when viewing the laser output on a screen. Notice that the number of bright spots must
equal the number of maxima for the electric field amplitude; this occurs because the
power in the beam is proportional to the square of the electric field.

The following topics introduce waveguiding through the geometric optics approach.

3.8.3 The Triangle Relation

Consider a plane wave traveling the length of a symmetric waveguide as shown

2

the wave bounces between the interfaces as it travels down the waveguide so long as the
angle of incidence at each interface exceeds the critical angle (total internal reflections).

FIGURE 3.8.2

The m¼ 0 and m¼ 1 transverse modes.
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in Figure 3.8.3. Assume real refractive index ‘‘n ’’ for convenience. In terms of ray optics,
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The magnitude of the actual wave vector must be kon2. The wave has net motion
toward the right that can be represented by an effective wave vector ~��. The magnitude
of effective propagation constant � differs from the propagation constant kon2 previously
used. We can define an effective index neff so that the effective propagation constant
becomes � ¼ koneff and the average speed of the wave must be c/neff. The waveguiding
structure produces a speed along the length of the waveguide (i.e., the z direction)
between that for the cladding and the core. This result appears counter intuitive since
�
 kon2 from the triangle relation.

Now we discuss a triangle relation for the actual and effective wave vectors. Figure 3.8.3
shows that the wave vector kon2 is not parallel to the effective wave vector �. The
figure indicates the effective wave vector must be smaller than the actual wave vector
�
 kon2. The triangle relation appears in Figure 3.8.4. As shown, the vector � represents
propagation along the length of the waveguide while the vector ‘‘h’’ represents pro-
pagation perpendicular to the length of the waveguide. The quantity ‘‘h’’ must also be
a wave vector. The triangle diagram provides the relation

�2 þ h2 ¼ ðkon2Þ
2

ð3:8:1Þ

The ‘‘h’’ represents the magnitude of a wave vector ~hh for waves propagating perpendi-
cular to the interface. In the physical optics approach, we will see that the perpendicu-
lar motion sets up standing waves as shown in Figure 3.8.5. The wave vector ‘‘h’’

Only certain values of ‘‘h’’ produce standing waves. That is, there are certain allowed
wavelengths for the transverse modes approximately given by ltrans ¼ 2�=h ¼ 2tg=
ðmþ 1Þ. The fact that ‘‘h’’ takes on discrete values means that only certain values of

2 are allowed and therefore only certain values of �.

3.8.4 The Cut-off Condition from Geometric Optics

A waveguide can only propagate electromagnetic waves with certain values for the
effective wave vector. The previous topic indicates that the angle the wave vector makes

FIGURE 3.8.3

Net motion of the wave in the waveguide is to the
right.

FIGURE 3.8.4

The triangle relation for the wave vectors.

FIGURE 3.8.5

The wavelength is approximately equal to 2tg and to tg for m¼ 0, 1 respectively.
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in Equation (3.8.1) represents the ‘‘m’’ waves for the transverse direction in Figure 4.1.2.
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Only a narrow range of angles produces a wave confined to the waveguide. The triangle
relation requires � 
 kon2. This topic shows how Snell’s law and the existence of a critical
angle for total internal reflection (TIR) leads to a minimum value for the propagation
constant kon1

Consider depicting a symmetric slab waveguide. Suppose a wave
(with wave vector kon2) travels in a direction making the angle 
2 with respect to the
normal. Small angle 
2 produces a substrate mode whereby the wave propagates across
the interface into the interior of material n1. The substrate mode is not a guided mode
and not very desirable in most circumstances.

Next consider the condition for waveguiding. As the angle 
2 increases, the angle

1 increases past 90 degrees and the wave undergoes total internal reflection. The
wave bounces back and forth between the interfaces as it travels along the length of

2 sin 
2¼ n1 sin 
1) provides a relationship between the
various refractive indices and wave vectors. Setting 
1¼ 90�, we require sin
2 � n1=n2 for
total internal reflection. However, the triangle relation in shows that
sin
2 � �=kon2 and as a result, for waveguiding we must have

o 1 ð3:8:2Þ

This last relation gives the cutoff condition for the waveguide. Effective wave vectors
smaller than kon1 will not propagate along the length of the guide. Some waveguides have
cladding layers with differing refractive indices on either side of the core. In such a case,
the situation becomes more complicated; very interesting switching mechanisms can be
realized. However, this more complicated situation will not be covered here.

Combining the cutoff condition and the triangle relation, we find that the effective
wave vector must have a magnitude within the range given by

�min ¼ kon1 
 � 
 kon2 ¼ �max ð3:8:3Þ

o 2 since

the smallest h � �=tg produces the largest � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kon2ð Þ
2
�h2

q

ffi kon2. Higher-order modes
correspond to larger ‘‘m’’ which means smaller wavelength along the direction perpen-
dicular to the interfaces which, in turn, means larger wave vectors h � 2�=lperp. Higher-
order modes therefore have smaller effective wave vectors �. The waveguide allows
only certain values of � since the transverse direction (perpendicular to the layers in
Figure 3.8.7) accommodates only certain wavelengths lperp. If the wave must be guided
then only those effective wave vectors in the range

kon1 
 � � ��2 
 �1 
 �0 
 kon2 ð3:8:4Þ

FIGURE 3.8.6

A slab waveguide with a beam undergoing total internal reflection.
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with respect to the normal (see Figure 3.8.2) determines the effective wave vector �.

Figure

the waveguide. Snell’s law (n

3.8.6

Figure


 �. The smallest value of � is the cutoff value.

3.8.4

� � k n

The m¼ 0 transverse (Figure 3.8.7) mode corresponds to the condition �ffi k n
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kon1
 . . .�2
�1
�0
 kon2 will work. Figure 3.8.7 shows the transverse modes for the
various regions of the effective wave vector.

3.8.5 The Waveguide Refractive Index

We see that the confinement by the waveguide requires us to characterize the wave
motion by an effective propagation constant � rather than the wave vector kn ¼ kon2.
We might expect the speed of the wave along the length of the guide to be smaller than
usual since the ray does not travel straight down the waveguide. However, the structure
of the waveguide forces the wave to ‘‘sample’’ two different materials with index n1 and
n2 so that the effective average must be between the two n1 
 neff 
 n2.

A plane wave traveling along a path making an angle 
2

the form

E ¼ Eo ei~kkn�~rr�i!t ð3:8:5Þ

as represented schematically Along the lines representing the wave-
fronts, the field has constant phase 
 ¼ ~kk � ~rr. Consider the effective propagation vector
� and the velocity of the wave vz along the length of the waveguide. We define an
effective (guide) index neff by the relation vz¼ c/neff and

� ¼ koneff ð3:8:6Þ

where ~�� ¼ ~kkn sin 
2.
The index neff must be smaller than the usual propagation index n2 since the triangle

relation gives

� 
 kon2 ! neff 
 n2 ð3:8:7aÞ

This last expression therefore indicates the speed of the wave along the length of the
waveguide (z direction) must be larger than a wave propagating in the medium n2

without the wave guide structure.

vz ¼ c=neff � c=n2 ð3:8:7bÞ

FIGURE 3.8.7

The characteristics of the various possible regions of �.
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as shown in Figure 3.8.4 has

in Figure 3.8.5.
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The effective index neff includes both the effects of n2 and the zig-zag motion along the
guide. It must be smaller than n2 since the wave penetrates into the cladding region with
the smaller refractive index n1. The cutoff condition gives

kon1 
 � ! vz ¼
c

neff



c

n1
ð3:8:7cÞ

The value of neff depends on the size of the wave vector h. Large ‘‘h’’ and therefore
small � correspond to a wave propagating nearly perpendicular to the length of the
waveguide.

Similar to phase velocity, we can define a group velocity for a wave propagating
along the longitudinal z direction as

vgw ¼
d!

d�
ð3:8:8Þ

The guided group velocity vgw is

vgw ¼
d!

d�
¼

d!

dkn

dkn

d�
¼ vg

dkn

d�
ð3:8:9Þ

where the subscripts ‘‘g, w’’ refer to ‘‘group’’ and the ‘‘waveguiding’’ case, vg is the group
velocity without waveguiding, and kn (assumed real) appears in Equation (3.8.1). Using

n sin 
2 and so

vgw ¼ vg
dkn

d�
¼

vg

sin 
2
� vg

3.9 Physical Optics Approach to Waveguiding

Although the geometric optical approach to waveguiding provides some insight into
the nature of waveguiding, the physical optics approach forms a more predictive system
covering a greater diversity of cases. The physical optics approach uses Maxwell’s

priate boundary conditions produces the transverse modes, evanescent fields and the
allowed propagation constants. In a waveguide with mirrors at either end, the waveguide
supports both longitudinal and transverse modes. The transverse mode produce regions
of higher and lower intensity in the beam. The section first introduces the waves,
next finds the solutions to Maxwell’s equations, and then discusses some applications.

3.9.1 The Wave Equations

The basic symmetric slab waveguide appears in The wave propagates
toward the right. The thickness of the core (n2) is tg (the subscript ‘‘g’’ make sense
if you think of the core as made of glass). The figure shows an m¼ 0 transverse mode.
The wave penetrates approximately a distance ‘‘1/p’’ into the cladding with refractive
indices n1 (where n15n2); this penetrating wave defines the evanescent field.
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the triangle in Figure 3.8.4, we have � ¼ k

Figure

equations to model the waveguide structure. Combining these equations with the appro-

3.9.1.
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A number of devices rely on evanescent fields for proper operation. For example,
consider two closely spaced waveguides. Evanescent coupling occurs when the cores of
the two waveguides come within the approximate distance 1/p. The wave propagating in
one guide can ‘‘leak’’ into the other one since the evanescent fields couple the energy
between them. Electrically controlled optical switches make use of such arrangements.
Applying a voltage to material separating the two waveguides can alter the refractive
index and thereby switch ‘‘on’’ or ‘‘off’’ the cross coupling. As another example, consider
the evanescent fields in a semiconductor laser. The doping should be as close as possible
to the active region (i.e., core region with thickness tg) in order to reduce the electrical
resistance as much as possible. However, the optical mode extends a distance of
approximately ‘‘1/p’’ from the core; in many cases, this distance is p�1 � 200 nm. Free
carriers within this distance ‘‘1/p’’ can ‘‘absorb’’ the light (i.e., free carrier absorption).
Therefore it is best to keep the doping more than distance p away from the core.

Let us continue with the slab waveguide in Figure 3.9.1. We divide the waveguide
into three sections with differing indices of refraction. The z-direction is along the length
of the waveguide, the x-direction is perpendicular to the layers (transverse direction),
and the y-direction points upward out of the page (lateral direction). The upper interface
for the n2 material defines x¼ 0 while the lower interface defines x ¼ �tg.

Sections 3.1 and 3.2 show how Maxwell’s equations lead to the EM wave equation and
the meaning of the complex wave vector. In the present section, we assume real indices
of refraction and we assume non-conductive media (negligible free carrier absorption
� ¼ 0). Each of the three regions has an associated wave equation with very similar form;
the only difference concerns the various possible values of the index of refraction nj.

r2 ~EE�
n2

j

c2

@2 ~EE

@t2
¼ 0 ð3:9:1Þ

We assume real refractive indices nj (j¼ 1, 2, 3) and real corresponding wave vectors.
The phase velocity of the light in any of the materials must be vj¼ c/nj, and the refractive
indices do not include waveguiding effects. Each region produces a wave equation
as in Equation (3.9.1). Regions 1 and 3 have the same refractive index and therefore have
the same wave equation. We should consider both transverse electric TE and trans-
verse magnetic TM polarization for the electromagnetic wave. The TE case places the
electric field parallel to the interface while the TM case places the magnetic field parallel

y direction (the lateral direction). Often lasing starts in the TE mode for semicon-
ductor lasers since the TM mode often require slightly higher threshold current.

FIGURE 3.9.1

A slab waveguide with the penetration depth 1/p.
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to the interface. Figure 3.9.2 considers the TE case with the electric field parallel to the
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3.9.2 The General Solutions

We already know that the solutions to the wave equation for the three regions have
the form

~EE ¼ ~yyEyðxÞ exp i�z� i!tð Þ ð3:9:2Þ

where we consider � to be known. Each of the three regions produce a solution similar
to Equation (3.9.2). Notice that we allow the amplitude to vary only along the x-direction
(perpendicular to the layers) as described by EyðxÞ; the electric field points in the
y-direction as shown by the unit vector ~yy and the subscript y on Ey. Substituting into
the wave equation we find

@2Ey

@x2
þ ðk2

on2
i � �

2ÞEy ¼ 0

where

konj ¼
nj!

c
ð3:9:3Þ

We can solve the second-order differential equation (with constant coefficients) in
Equation (3.9.2) for Ey. The solutions have the form

EyðxÞ � exp �i x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

j � �
2

q� �

The solutions are easily seen to be sinusoidal or exponential according to

Sinusoidal k2
on2

j 4�2

Exponential k2
on2

j 5�2

By using the triangle relation (�5kon2) and the relation for cut-off (�4 kon1), we
see that Region 1 has exponential solutions while Region 2 has sinusoidal solutions.

FIGURE 3.9.2

The TE mode shown in relation to the layers and the x, y, z directions.
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We assume specific boundary conditions, but in particular for x!�1, we require the
solutions to remain finite. The solutions for the three regions then have the general form

Region 1 Ey ¼ A exp �px
� �

Region 2 Ey ¼ B cosðhxÞ þ C sinðhxÞ

Region 3 Ey ¼ D exp pðxþ tgÞ
� �

where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � k2
on2

1

p

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q

ð3:9:4Þ

In order to determine the allowed � and the unspecified constants A, B, and C, we
need to match the solution in Region 1 with the solution in Region 2 and so on. Therefore
boundary conditions must be specified at the two interfaces. We expect at least one
arbitrary constant in the final solution since the overall field strength (i.e., the beam
power) has not been specified.

3.9.3 Review of the Boundary Conditions

The boundary conditions for electromagnetics can be found in Section 3.3. First con-
sider the boundary condition on magnetic fields tangent to a boundary as shown
in Figure 3.9.3. Physical currents can change tangential magnetic fields H but do not
affect magnetic fields perpendicular to the interface. Therefore, magnetic fields perpendi-
cular to an interface must be continuous across the interface. The electric field must
also satisfy boundary conditions. The polarization or free charge at a surface causes
a discontinuity in the value of an electric field polarized perpendicular to the interface
(refer to Figure 3.9.4). A transverse electric field must be continuous across the inter-
face. We assume that the partial derivatives of the transverse electric field are also
continuous.

3.9.4 The Solutions

Let’s repeat the general solutions for convenience

Region 1 Ey ¼ A exp �px
� �

Region 2 Ey ¼ B cosðhxÞ þ C sinðhxÞ

Region 3 Ey ¼ D exp pðxþ tgÞ
� �

ð3:9:5aÞ

FIGURE 3.9.3

Tangential magnetic fields are discontinuous across
sheets of current.

FIGURE 3.9.4

The electric field perpendicular to a charge sheet is
discontinuous.
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where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � k2
on2

1

p

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q

ð3:9:5bÞ

The following table lists the boundary conditions and the results of applying those
boundary conditions to the solutions for the three regions given above.

Condition Result

1. Ey continuous at x¼ 0 A¼B

2.
@Ey

@x
continuous at x¼ 0 C ¼ �

P

h
A

3. Ey continuous at x¼�tg D ¼ A cosðh tgÞ þ
pA

h
sinðhtgÞ

4.
@Ey

@x
continuous at x¼�tg tanðhtgÞ ¼

2ph

h2 � p2

The first three results can be used to write the electric field as a function of posi-
tion within the waveguide. Substituting into the coefficients from the table into Equations
3.9.5a for the electric fields produces the results

Region 1: ~EE ¼ ~yyEyðxÞ e
i�z�i!t ¼ A ~yy e�pxei�z�i!t

Region 2: ~EE ¼ ~yyEyðxÞ e
i�z�i!t ¼ A ~yy cosðhxÞ �

p

h
sinðhtgÞ sinðhxÞ

h i

ei�z�i!t

Region 3: ~EE ¼ ~yyEyðxÞ e
i�z�i!t ¼ A ~yy exp pðxþ tgÞ

� �

cosðhtgÞ þ
p

h
sinðhtgÞ

h i

ei�z�i!t

where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � k2
on2

1

p

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q

Notice that the allowed parameters �, p, and h, have not yet been determined; we
will address this issue shortly.

As an essential fact concerning the solutions in regions 1 and 3, the waves propa-
gate along the z-direction because of the factor exp(i�z�i!t) even though they decay
along the x-direction (transverse direction). Therefore, lasers should have good mirrors
not only for the core region (i.e., the n2 region with thickness tg), but also extending into
the cladding for the distance ‘‘1/p.’’ The value of ‘‘1/p’’ is typically 0.2 mn for GaAs lasers.

How do we find this penetration depth ‘‘1/p’’ for the evanescent field? And what are
the values for � and h? These all follow from the relation (given in the table)

tanðhtgÞ ¼
2ph

h2 � p2
ð3:9:6Þ

by writing ‘‘h’’ and ‘‘p’’ in terms of � using

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � k2
on2

1

p

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q

ð3:9:7Þ

and then solving for the effective propagation constant �. One generally obtains a large
number of allowed values for �. An easy way to find the allowed values of the effec-
tive propagation constant consists of simultaneously plotting the left and right sides of
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Equation (3.9.6)

tan tgh
� �

¼ tan tg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q	 


and F ¼ 2ph= h2 � p2
� �

versus � on the same set of axes. The intersection points of the two sets of curves
provide the allowed values of the effective propagation constant � (see Figure 3.9.5).
However, not all intersection points provide allowed values for � since the triangle
relation and propagation cut-off place limits on the allowed range according to

�cut-off ¼ kon1 
 � 
 kon2 ¼ �max

Once having found the values of �, the values of ‘‘p’’ and ‘‘h’’ can also be found.
The ‘‘p’’ parameter gives the penetration depth (1/p) of the evanescent field into the
cladding surrounding the core of the waveguide.

The ‘‘h’’ parameter occurs in the solution for region 2 given by the following equation.

Region 2 : ~EE ¼ ~yyEyðxÞ e
i�z�i!t ¼ A ~yy cosðhxÞ �

p

h
sinðhtgÞ sinðhxÞ

h i

ei�z�i!t

It is easy to see that ‘‘h’’ controls the period of the transverse sine or cosine wave within
the core of the waveguide; it controls the mode structure (i.e., m¼ 0, m¼ 1 etc).
We therefore see that the acceptable values of ‘‘h’’ must approximate the number of
half-integral wavelengths that fit within the distance tg. In other words to lowest
order approximation, if l0n ¼ tg=m represents the wavelength within a dielectric, then
h ffi 2�=l0n ¼ 2�m=tg. However, this is only approximate because the wave actually
extends part way into the cladding. Furthermore, we cannot allow all integer values of
‘‘m’’ because of the cut-off condition.

Example 3.9.1 Find the propagation constant and penetration depth for a GaAs-
Al0.6Ga0.4As slab waveguide with tg¼ 200 nm, n2 ¼ 3:63, n1 ¼ 3:25 using lo ¼ 850 nm.

Solution: Figure 3.9.5 shows a plot near the intersection point � ¼ 25:5. Other books
show an easier graphical method to find the intersection points by plotting
R2 ¼ ptg

� �2
þ htg

� �2
and tan tgh

� �

on the same set of axis. Equation (3.9.7) gives the
penetration depth of approximately 116 nm.

FIGURE 3.9.5

Intersection points give allowed values of the effective wave vector.
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3.9.5 An Expression for Cut-off

In this topic, we find a relationship between (i) the wavelengths of light capable of
propagating through a waveguide with core thickness tg, (ii) the difference in indices
�n ¼ n2 � n1, and (iii) the sum of indices n2þ n1 which can often be approximated
by either 2n2 or 2n1 for semiconductor-type waveguides. At cut-off, Equation (3.9.5)
provides �� kon1 so that the equations

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � k2
on2

1

p

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
on2

2 � �
2

q

become

p ¼ 0 h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
o ðn

2
2 � n2

1Þ

q

From p¼ 0, we see that the penetration depth¼ 1/p extends a long way into the clad-
ding region. Although it might seem paradoxical at first, an electromagnetic wave
propagating along the waveguide experiences greater optical scattering (and hence
greater distributed loss) when ‘‘p’’ becomes smaller.

Let’s continue with the calculation. The tangent function becomes

tanðhtgÞ ¼
2ph

h2 � p2
¼ 0 ) h tg ¼ m�

where m¼ 1, 2, 3 . . . denotes the same mode index as used previously. The solutions for
the three regions become

Region 1: ~EE ¼ ~yyEyðxÞe
i�z�i!t ¼ A ~yy ei�z�i!t

Region 2: ~EE ¼ ~yyEyðxÞe
i�z�i!t ¼ A ~yy cosðhxÞ ei�z�i!t ¼ A ~yy cos

m�x

tg

� �

Ð ei�z�i!t

Region 3: ~EE ¼ ~yyEyðxÞe
i�z�i!t ¼ A ~yy cosðhtgÞe

i�z�i!t ¼ A ~yy ð�1Þmei�z�i!t

FIGURE 3.9.6

Example plot for 850 nm and tg¼ 200 nm.

FIGURE 3.9.5

Approximate transverse modes in a slab waveguide.
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Notice that the wave has the same size in both regions 1 and 3.
The triangle relation provides

h2 ¼ k2
on2

2 � �
2 
 k2

o n2
2 � n2

1

� �

where the cut-off condition �� �cut-off¼ �min¼ kon1 was used. The ‘‘less than or equal
sign’’ occurs because we require � � �cut-off ¼ kon1. Substituting the relation htg¼m�,
ko¼ 2�/�o, and �n¼ n2�n1 we find

ðm�Þ2

t2
g



2�

lo

� �2

�n n2 þ n1ð Þ

So that only modes with

l2
o 
 �nðn2 þ n1Þ

4t2
g

m2

will propagate. Notice that the lowest order mode m¼ 0 will always propagate in a
symmetric waveguide. An asymmetric waveguide has three different refractive indices
for the three regions. Even though electromagnetic waves with arbitrary wavelength
will propagate, the confinement will be poor.

3.10 Dispersion in Waveguides

The rate at which light propagates along a waveguide depends on the frequency of the
wave and upon the construction of the waveguide. We discuss intermodal and
intramodal dispersion and how they limit the bandwidth of communication systems.
The term ‘‘mode’’ appears in a number of contexts. The waveguide mode refers to the
particular zig-zag path along which the beam can propagate. This is equivalent to
specifying the transverse wave pattern embodied by the ‘‘h’’ wave vectors in previous
sections. Alternately, the mode can be specified by the pattern of bright spots observed
on an output screen.

‘‘Dispersion in waveguides’’ refers to the spreading of a pulse of light as it travels
the length of the waveguide. We will use rectangular optical fiber as our prototype
waveguide. We consider two basic mechanisms responsible for the spreading. The first
concerns the construction of the waveguide. Light can follow a zig-zag path with
some paths longer than others. Also, some light penetrates into the material with lower
index and therefore travels faster than the light not penetrating as far. The second
mechanism concerns the index of refraction. Material dispersion refers to the fact that
light with different frequencies (i.e., different colors) travel at differing speeds. Although
not considered here, we might expect the speed of light to depend on polarization as well.

We can distinguish between intermodal and intramodal dispersion. Intermodal disper-
sion refers to light, once injected into the fiber, traveling in multiple waveguide modes
at the same time. As mentioned above, the different modes have different path lengths
and lead to varying penetration into the low index cladding. Therefore, various parts of
the wave travel at various speeds and the pulse must broaden. Intramodal dispersion
refers to light that travels in exactly one waveguide mode (such as for a single mode
fiber). In this case, we eliminate any delays due to light propagating in multiple modes
(different path lengths for example). However, the waveguide group velocity can still
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depend on construction. For example, consider light made of multiple frequencies
propagating in a single mode. In this case, light with longer wavelength penetrates
further into the lower-index cladding and therefore travels faster. Also, the refractive
index depends on frequency.

3.10.1 The Dispersion Diagram

In general, the dispersion diagram displays ! vs k or E vs k, where E ¼ �hh! represents
energy. The slope of the curves in the dispersion diagram gives the group velocity of EM
waves. This topic applies the same ideas for a wave propagating along the length of the
waveguide.

The dispersion diagram for a waveguide shows the relation between the angular fre-
quency ! and the effective propagation constant �. The slope provides the group velo-
city of the wave along the length of the waveguide. Figure 3.10.1 shows an example
(Reference 10, Kasap’s book). Some points should be noted. First, the diagram shows that
for a given !, only certain values of � are allowed (as found in previous sections);
these values are found by drawing a horizontal line through the chosen value of !.
Second, if ! (the color) varies continuously so does � for values past cut-off. Third, the
two dotted lines give the maximum and minimum waveguide group velocities. Previous
sections demonstrate the minimum and maximum values of � according to

�min ¼ kon1 
 � 
 kon2 ¼ �max

where

ko ¼
2�

lo
¼
!

c

and ko is the wave vector in vacuum. Therefore, we can find the minimum and maximum
waveguide group velocity according to (ignoring any dependence of n on !)

v minð Þ
wg ¼

@!

@�max
¼ @�max=@!ð Þ

�1
¼ @kon2=@!ð Þ

�1
¼

@

@!

!n2

c

� ��1

¼
c

n2

and similarly for the maximum

v maxð Þ
wg ¼

c

n1

FIGURE 3.10.1

Dispersion curves for fiber in TE modes (after Kasap).
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The maximum and minimum phase velocity serve as fiduciaries. Fourth, the different
modes have different cutoff frequencies. The m¼ 0 mode propagates for all frequencies.
Near cutoff, each of the modes has very large group velocity indicating that the clad-
ding layer carries the greater portion of the mode. We therefore expect large penetration
into the cladding layer. The smallest frequency and largest wavelength occur at cutoff.
For large frequencies, the group velocity asymptotically approaches the lower limit of
c/n2. Apparently away from cutoff, the core of the waveguide carries the majority of
the mode where the wave travels slowest. Also for fixed !, the group velocity at the
allowed � tends to be larger for higher mode numbers m because of greater penetration
into the cladding.

3.10.2 A Formula for Dispersion

Dispersion causes waves with different frequencies or composed of different waveguide
modes to travel at different speeds. This causes the waves to broaden as they travel
the length of the waveguide. Figure 3.10.2 shows a pulse that starts fairly narrow but
broadens as it travels along. We would find a range of wavelengths in the Fourier
decomposition of the pulses. The dispersion measures the amount of ‘‘spreading’’ per
unit length of waveguide (or material). The ‘‘spread’’ can either be measured as distance
or as a time. For the distance measure, we can write

�final � �initial ¼ v �

where v represents average wave speed, and � denotes the time required to spread
from an initial width �initial to the final width �final. Equivalently, we can say � measures
the spreading of the pulse in time. The time method is preferable because it does not
require an average velocity.

We can write the dispersion as a formula (dispersions add to first-order perturba-
tion theory).

Spread

length
¼

�

length
¼ Dm þDwð Þ�l

where

Dm ¼ �
l
c

d2n

dl2

� �

Dw ¼
1:984Ng1

�tg

� �2
2cn2

1

FIGURE 3.10.2

Pulse spreads as it moves.
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and where the symbols m and w stand for material and waveguide dispersion, respec-
tively, and Ng1 represents the group index for material n1. The group index can be found
as follows (the first equality defines Ng).

c

Ng
¼ vg ¼

@kn

@!

� ��1

¼
@

@!

!n

c

� ��1

¼
n

c
þ
!

c

@n

@!

� ��1

¼
c

nþ ! @n
@!

so that

Ng ¼ nþ !
@n

@!
¼ n� l

@n

@l

3.10.3 Bandwidth Limitations

Communications systems have transmitters that modulate a laser and inject the signal
into an optical fiber. At the other end of the fiber, a detector circuit receives the signal.
Digital transmitters send pulses of light, which represent 0, 1. Suppose that R is the
repitition rate for the pulses. R has units of #pulses/sec so that the time between a point
on one pulse to the identical point on an adjacent one must be �t ¼ 1=R. Assume
for simplicity that the pulses are very narrow.

The pulse spreads as it moves as shown in Figure 3.10.3. At some point along the
fiber, the pulses will start to overlap. We can estimate the maximum possible bit
rate B¼R by insisting that the pulses remain separated by about 2 �1=2. Therefore
we can write

B ¼
1

�t
¼

0:5

�1=2

3.11 The Displacement Current and Photoconduction

and therefore the resistance of a material. These models visualize current as electrons
moving past a fixed point in the material or wire. However, the motion of charge not
confined to a wire as part of a circuit, such as between the plates of a capacitor, also
produces current in the circuit. The motion of this charge produces a changing electric
field at the position of the plates, which produces conduction current in the circuit. This
displacement current does not require a conductive medium nor does it require Ohmic
contacts. shows an example whereby light absorbed at the surface of
a semiconductor produces a layer of photocarriers that move under the action of an
applied field. The current returns to zero once the charge reaches the lower electrode

FIGURE 3.10.3

Spreading pulses limit the bandwidth.
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at the ‘‘transit time’’ TT. The displacement current finds common applications in AC
conduction through capacitors, PIN photodetectors, electron time-of-flight experiments,
and noise measurements.

3.11.1 Displacement Current

The displacement and physical currents comprise the current density between the elec-
trodes shown in Figure 3.11.2. For simplicity, the figure shows a sheet of negative charge
density � (where Q ¼ �A CV) moving with speed v under the action of the applied
field E. The calculation provides the same results when using a point charge rather

FIGURE 3.11.1

The motion of charge between the plates produces current in the external circuit.

FIGURE 3.11.2

A sheet of electrons moves from left to right under the influence of an applied field.
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than the sheet charge. Current flows through the battery due to the moving sheet even
before it reaches the right-hand electrode because of the displacement current. The
current density can be written as the sum of the displacement Jd ¼ @E x, tð Þ=@t and physical
currents Jpc ¼ v� 	 x� vtð Þ

JBetween ¼ Jd þ Jpc ¼ "
@E x, tð Þ

@t
þ v� 	 x� vtð Þ ð3:11:1Þ

where � and " denote the conductivity and the permittivity of the medium, respectively,
and 	 x� vtð Þ represents the charge density at the position of the sheet. Regions outside
of the sheet have only the displacement current such as for the right-hand plate, for
example, before the carriers arrive.

We can show the conventional current flow in the right-hand plate Jc equals the
displacement current Jd by elementary electrodynamics. Let J be the current due to
flowing charge in one of Maxwell’s equation

r � ~HH ¼ ~JJ þ
@ ~DD

@t
ð3:11:2Þ

where the displacement field ~DD and the electric field ~EE can be related through the
permittivity by ~DD ¼ "~EE. Using the relation r � r � ~HH ¼ 0, the last equation becomes

r � ~JJ ¼ �"
@~EE

@t
ð3:11:3Þ

For a Gaussian box with one side at dþ (just inside the right-hand plate) and another
to the left of the plate surface by a distance �x, Equation (3.11.3) can be approximated by

J dþ, tð Þ � J d��x, tð Þ

�x
¼ �"

@

@t

E dþ, tð Þ � E d��x, tð Þ

�x

Using J d��x, tð Þ ¼ 0, J dþ, tð Þ ¼ Jc, and E dþ, tð Þ ¼ 0, we find the result Jd ¼ �Jc.
The current produced in the circuit (i.e., through the battery) due to moving charge

between the plates can be calculated by either of two methods. The first method has
the advantage of clearly illustrating how the motion produces the current. The results
provide a clear indication of the origin of noise as discussed in the next section.

R ¼ Q=A, �L, separated by
distance d with voltage difference V given by

ER d� xsð Þ þ E Lxs ¼ V ð3:11:4aÞ

The integral form of Gauss’ law applied to the left plate, the right plate and the sheet
charge provides

E L ¼ �L=" ER ¼ ��R=" ER � E L ¼ ��=" ð3:11:4bÞ

Solving for EL and ER using Equation (3.11.4a) and the last of Equations (3.11.4b) yields

EL ¼
V

d
þ
�

"
1�

xs

d

� �

and ER ¼
V

d
�
�xs

"d
ð3:11:5Þ

Then using Jd ¼ "@E x, tð Þ=@t we find the current in the circuit must be

Jc ¼ �Jd ¼ �
@ER x, tð Þ

@t
¼
�v

"d
ð3:11:6aÞ
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where the exact functional dependence on time depends on the speed of the sheet as
it moves from one electrode to the next according to v ¼ dxs=dt. For a single electron
q ¼ �A ¼ �e, we have the current I ¼ JcA

I ¼ �
ev

"d
ð3:11:6bÞ

The last relation produces two interesting effects. First, any variation in the speed of
the electron in moving from one electrode to the other will induce a time dependence
in the current I. Collisions between the electron and phonons in particular will induce
noise in the current I. Second, calculating the photocurrent in a photodetector requires
one to add up all of the charge moving entirely across the capacitor from one electrode
to another. The case of moving holes and electrons does not multiply the result for
electrons by two as can be seen as follows. A hole and electron must be produced
together at the same point between the electrodes and if the electrons move a distance
x, then the holes moves a distance d�x. The motion is equivalent to a single charge
moving through the distance d.

3.11.2 The Power Relation

As a second method, the photocurrent induced in a circuit due to the motion of injected

expended by the battery in moving the carrier sheet is

PBatt ¼ V IðtÞ ð3:11:7aÞ

As discussed in Section 3.5, the power absorbed per unit length (for this one-dimensional
problem) by the medium is

d PMedium

dx
¼ J � E ¼ e nðx, tÞ vE ð3:11:7bÞ

where n has units of # per unit length. Therefore, energy conservation requires

PBatt ¼ PMedium ! IðtÞ ¼
1

V

Z d

0

e nðx, tÞ vE ð3:11:8Þ

only a single charge carrier moves, such as electrons, the velocity must be related to the
drift mobility �e according to v ¼ �eE. Further assuming a constant field, we can write
V ¼ E d. Equation (3.11.8) can be written as

IðtÞ ¼
e�eE

d

Z d

0

nðx, tÞ dx ð3:11:9Þ

3.11.3 Voltage Induced by Moving Charge

Once again assume a sheet of charge moves between two capacitor plates so that the
position of the sheet depends on time xs ¼ xsðtÞ. This time, the capacitor plates remain
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where d symbolizes the separation of the electrodes as in Figure 3.11.2. In cases where
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unconnected to any circuit and we calculate the voltage difference between the plates as a
function of time. Starting with Equation (3.11.4a)

V ¼ ER d� xsð Þ þ ELxs ð3:11:10Þ

The last of Equations (3.11.4b) for positive sheet charge

ER � E L ¼ �=" ð3:11:11Þ

allows us to rewrite Equation (3.11.10) as

V ¼ �
�

"
xs þ

�d

2"
ð3:11:12Þ

A point charge instead of the sheet charge requires us to use an image charge to
calculate the fields and hence the voltage. Equation (3.11.12) shows the position of the
sheet charge determines the voltage between two points in space. In particular, if the
position of the sheet is random, say due to thermal fluctuations, then the voltage at
the location of the electrodes will be random.

3.12 Review Exercises

3.1 Consider the wave equation r2f ¼
1

c2

@2f

@t2

1. Show that any function fðz� ctÞ satisfies the wave equation the 1-D equation so
long as f can be differentiated.

2. Show the spherical traveling wave eiðkr�!tÞ=r satisfies the 3-D wave equation where
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

. Use spherical coordinates.

3.2 Find the group velocity when the refractive index has the form n ¼ Aþ B=l2 where
l denotes the wavelength in vacuum and A and B are constants. If A ¼ 1:5 and
B ¼ 4� 104 nm2 then find the group velocity at 850 nm.

3.3 A converging lens appears in Figure P3.3 with three primary rays. There are two focal
points, one on either side of the lens.

* A ray traveling parallel to the optic axis deflects through the focal point.

* A ray initially traveling through the focal point deflects parallel to the optical axis.

* A ray passing through the center of the lens is not deflected.

FIGURE P3.3

Three primary light rays for the converging lens.
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A real image forms where the three rays intersect. O, I represent the object and image
height. The focal length is positive for the converging lens.

1. Prove the lens formula
1

f
¼

1

i
þ

1

o
2. If the magnification is given by M ¼

I

O
, then prove M ¼

f

o� f

3. Show how to place two converging lenses (with focal lengths f1 and f2) to make
a Galilean telescope. A beam of light (with diameter D1) enters one lens and
emerges from the second as a beam (with diameter D2). The input and output
beam both have parallel sides. Show the ratio of diameters must be given by
d1=d2 ¼ f1=f2. Hint: overlap two of the focal points.

3.4 Based on the previous problem, explain the following.

1. A point emitter placed at the focal point will produce uniform illumination on the
other side of the converging lens.

2. A flat 2-D circular emitter placed a distance f from the lens will produce uniform
illumination over some circular area on the other side of the lens.

3.5 Figure P3.5 shows a diverging lens with three primary rays.

* A ray traveling parallel to the optic axis deflects such that it appears to come from
the focus.

* A ray traveling toward a focus deflects parallel to the optic axis.

* A ray traveling through the center of the lens passes through without deflection.

Show how to place a converging and diverging lens (with focal lengths f1 and f2)
to make a Galilean telescope. A beam of light (with diameter D1) enters one lens
and emerges from the second as a beam (with diameter D2). The input and output
beam both have parallel sides. Show the ratio of diameters must be given
by d1=d2 ¼ f1=f2. Hint: overlap two of the focal points.

3.6 Using Snell’s law, n1 sin �1¼n2 sin �2, find the critical angle for n1¼ 3.5 and n2¼ 1
when the incident beam initially travels in medium #1.

3.7 An engineering student wants to find the real and imaginary part of the susceptibility
� of a material for infrared light with vacuum wavelength of 850 nm. Assume the
material is a dielectric with negligible conductivity �¼ 0. The student performs two
experiments. First, she allows the light to propagate in the material (surrounded by
vacuum) and finds that the power drops to approximately 1/3 the original amount
PðzÞ=Pð0Þ ¼ e�1 in a distance of 100 mm. Next, she varies the incident angle of the light

FIGURE P3.5

Three primary rays for the diverging lens.
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and watches it leave the material from one of the facets. She finds a critical angle of
17�. Find the real and imaginary parts of �.

3.8 Find the penetration depth 1/� of an electromagnetic wave with wavelength � in
a material having Imð�Þ ¼ 0 and index n¼ 4. Use the following data. A resistor made
from the material has the shape of a cube with 1 cm sides and has a resistance of 1 �.

3.9 Consider a cylinder of height L and radius Ro enclosed in free space except for a very
thin layer generating plane waves given by

~EE ¼ E eþikz�i!t ~xx z40

~EE ¼ E e�ikz�i!t ~xx z50

1. Calculate the time averaged total power leaving the generator in both directions
using SA where S is the Poynting vector and A is the area of the generator.

2. Recalculate the time-averaged power leaving the generator by calculating the
total power passing through the cylinder surface.

3.10 Consider an interface separating a dielectric with refractive index n from the
vacuum with refractive index 1 as shown in Figure P3.10. An electromagnetic
wave with field Ei strikes the interface. Some of the wave transmits across the
interface with field Et and some reflects back into the dielectric with field Er.
Show Si ¼ Sr þ St where S is the magnitude of the Poynting vector and i, r, t refer to
the incident, reflected, and transmitted waves respectively. Use the complex version
of the Poynting vector and use the reflectivity r and the transmissivity t given in
Section 3.6.3.

3.11 Repeat Problem 3.10 using the boundary conditions given in Section 3.3 for E
and H.

3.12 An engineering student plans to make a laser amplifier and needs to place
antireflective (AR) coatings on the end facets. In fact to eliminate all reflections

FIGURE P3.9

Thin EM wave generator in a hollow cylinder.

FIGURE P3.10

Wave in a dielectric strikes the interface.
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in the optical system, he plans to place AR coatings on all of the lenses. As
shown in Figure P3.12, the middle layer with refractive index n serves as the AR
coating. Assume the following order for the refractive indices nL4n4nS. Assume
the wavelength of interest is l in vacuum.

1. What should be the smallest thickness of the coating so that the wave reflected
from interface 1 will be 180� phase shifted from the wave reflected from interface
2 and passing through interface 1? Write your answer in terms of ln ¼ l=n.

2. Show to lowest-order approximation that n¼
ffiffiffiffiffiffiffiffiffi
nLns
p

as follows. Calculate the
reflectivity r1 for interface 1 and r2 for interface 2. Require r1¼ r2.

3.13 Repeat Problem 3.12 using the scattering—transfer matrix formalism. Use the
following notation. The symbols r1 and r2 refer to the reflectivity of interface 1 and 2
respectively. The phase 
 ¼ konL for the AR coating is real.

1. What should be the smallest thickness of the coating?

2. Show n ¼
ffiffiffiffiffiffiffiffiffi
nLns
p

3.14 An optoelectronics student wants to make an antireflective coating similar to
that discussed in Problems 3.8 and 3.9. However, he does not have a material
giving the correct value of n. While working problems for a certain laser course, he
suddenly thinks about adding some atoms to the AR coating that can provide
gain or absorption. He then thinks that maybe the gain or absorption would change
the value of n required to make the AR coating. For simplicity, assume the complex
part of n2 in r1 and r2 remains small. Use the complex expression for 
 ¼ 
r þ i
i ¼

knL ¼ konL� ignetL=2.
Using the notation in Problems 3.12 and 3.13, find a relation for n2 in terms of n1 and
n3. Note and hint: unlike the chapter where we set sin
 ¼ 0, you will need to set
cos 
 ¼ 0; use the lowest value of m.

3.15 In Topic 3.6.3, show the formula t1!2 ¼
2n1

n1 þ n2
and in Equation (3.6.10c), show the

relation 2 ¼ t1!2t2!1

t1!2 ¼
2n1

n1 þ n2

2 ¼ t1!2t2!1

3.16 Starting with Equation (3.7.7), derive Equation (3.7.9).
3.17 Explain how the mirrors on the VCSEL work.
3.18 A student places a layer of glass (refractive index n2¼ 1.5) on a very thick piece

of undoped AlGaAs (refractive index n¼ 3.5). A gas etchant (index n1¼1) removes

FIGURE P3.12

Layer with refractive index n functions as an AR coating.
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the glass layer at a steady rate. As the layer etches, a laser beam strikes the wafer at
normal incidence (perpendicular to the surface). Assume the laser has a wave-
length of 700 nm, and the starting thickness of the glass layer is 4mn. Determine the
ratio B4=A4 as a function of time (see Figure P3.18) using transfer matrices.

3.19 Show r � r � ~GG ¼ 0 for ~GG differentiable. Show
R

r � ~FF � d~aa ¼ 0 using ~GG ¼ r � ~FF.
3.20 Find the magnetic induction field ~BB due to current I in a thin wire embedded in a

magnetic material. Start with the appropriate Maxwell equation in differential form.
Assume ~MM ¼ � ~HH and ~DD ¼ 0.

3.21 Find the electric field and polarization at a distance R from a point charge þQ. Start
with Maxwell’s equations in differential form. Write the final answer in terms of the
susceptibility, distance R and charge Q.

3.22 An optical beam enters a fiber as shown in Figure P3.22. The beam waveguides so
long as � remains larger than the critical angle �c. For n1 ¼ 1:6 and n2 ¼ 1:7, find the
maximum acceptance angle �max so that the beam will be waveguided. Assume the
surrounding medium consists of air with refractive index n0 ¼ 1.

3.23 If �max ¼ 20 in the previous problem, then what focal length lens gives �max at the
fiber (Figure P3.23)? Assume the input beam has parallel sides and a diameter of
2 mm.

FIGURE P3.18

A glass layer.

FIGURE P3.22

Beam enters a waveguide.

FIGURE P3.23

A lens focuses light into a fiber.
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3.24 In Section 3.9.4, show that the boundary conditions and the general solutions
for the three regions lead to the results for the constants A, B, C, D shown in
Table 3.9.1.

3.25 Consider a laser made from GaAs and AlGaAs that emits light with a wavelength of
850 nm. Find the allowed values of the effective propagation constant. Assume the
core has a thickness of t ¼ 0:5 mm and a refractive index of n2 ¼ 3:6. The cladding
has a refractive index of n1 ¼ 3:4.

1. Find the range of allowed � using the triangle relation.

2. Use a computer or graphical method to find some of the allowed values of �.

3. For the fundamental mode, find the penetration depth 1/p.

4. Discuss the similarity and differences between the wavelength, the propagation
constant kn and the effective propagation constant �.

3.26 Write the transmissivity in Section 3.6.3 in terms of the two refractive indices n1 and n2.
3.27 Find the waveguide solutions for the TM polarization. Note that you will need the

boundary conditions appropriate for the TM polarization.
3.28 Consider a GaAs-Al0.6Ga0.4As slab waveguide with tg¼ 200 nm, n2 ¼ 3:63, n1 ¼ 3:25

using lo ¼ 850 nm. Using the results of Example 3.9.1, find the angle � for the
triangle relation.

3.29 Consider a GaAs-Al0.6Ga0.4As slab waveguide with tg¼ 200 nm, n2 ¼ 3:63, n1 ¼ 3:25
using lo ¼ 850 nm.

1. Find the allowed modes (i.e., propagation constants �).

2. Find the penetration depths of the evenescent fields for each mode.

3. Find the transverse wave vector h for each mode.

4. Find the angle � for the triangle relation for each mode.

5. Find the waveguide phase velocity for each mode.

3.30 Starting with Ng ¼ nþ !
@n

@!
, show Ng ¼ n� l

@n

@l
.

3.31 Show the photocurrent in the electrodes attached to the photoconductor in
Figure P3.31

IðtÞ ¼
e�E

d

Z d

0

nðx, tÞ dx

must reduce to the photocurrent due to a moving point charge

I ¼
ev

"d

FIGURE P3.31

Photoconductor absorbs power through area A.
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3.32
area A with negligible dark current. Find the photocurrent produced as a function
of wavelength.

3.33 A beam of photons, with density �, strikes a reverse biased photodiode which absorbs
all of the photons. Find the photocurrent as a function of the incident optical power.

3.34 A beam of photons, with density �, strikes a photocell consisting of an undoped
semiconductor. Assume the photocell absorbs all of the light. Find the photocurrent
as a function of the optical power and the bias voltage. Assume the carriers have a
lifetime  that is small compared with the transit time.

3.13 Further Reading

The following list contains references relevant to the chapter material.

Electromagnetics (easiest to more difficult)

1. Hayt W.H., Buck J.A., Engineering Electromagnetics, 6th ed., McGraw-Hill Higher Education,
New York, 2001.

2. Percell E.M., Electricity and Magnetism, Berkeley Physics Course Volume 2, McGraw-Hill,
New York, 1965.

3. Reitz J.R., Milford F.J., Foundations of Electromagnetic Theory, 2nd ed., Addison-Wesley
Publishing, Reading, MA, 1967.

4. Jackson J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York, 1975.

General

5. Agrawal G.P., Dutta N.K., Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, New York,
1993.

6. Coldren, L.A., Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York, 1995.

Optics

7. Hecht E., Zajac A., Optics, 4th ed., Addison-Wesley Publishing, Reading, MA, 1987.
8. Fowles G.R., Introduction to Modern Optics, Dover Publications, Mineola, NY, 1989.
9. Saleh B.E.A., Teich M.C., Fundamentals of Photonics, Wiley Interscience, New York, 1991.

Optical Fiber

10. Kasap S.O., Optoelectronics and Photonics, Principles and Practices, Prentice Hall, Saddle River,
2001.

11. Keiser G., Optical Fiber Communications, 3rd ed., McGraw-Hill Higher Education, 2000.

Waveguides and Optical Filters

12. Hunsperger R.G., Integrated Optics: Theory and Technology, 3rd ed., Springer-Verlag, New York,
1991.

13. Chuang S.H., Physics of Optoelectronic Devices, John Wiley & Sons, New York, 1995.
14. Yariv A., Quantum Electronics, 3rd ed., John Wiley & Sons, New York, 1989.
15. Yariv A., Optical Electronics in Modern Communications, 5th ed., Oxford University Press,

New York, 1997.
16. Madsen C.K., Zhao J.H., Optical Filter Design and Analysis: A Signal Processing Approach, John

Wiley & Sons, New York, 1999.
17. Pollock C.R., Fundamentals of Optoelectronics, Irwin, Chicago, 1995.
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4
Mathematical Foundations

Linear algebra is the natural mathematical language of quantum mechanics. For this
reason, the present chapter starts with a review of Hilbert spaces for vectors and
operators. We introduce vector and Hilbert spaces along with inner products and metrics.
The Dirac notation is developed for the Euclidean vector spaces as a starting point for the
concepts of complete orthonormal sets of vectors, closure, dual vector spaces, and adjoint
operators. The Dirac delta function in various forms and the principal part is introduced

function spaces; the concepts of norm, inner product, and closure are discussed. Fourier,
Cosine, and Sine series are discussed as examples of expansions in complete orthonormal
sets of functions.
Although Hilbert spaces are interesting mathematical objects with important physical

applications, the study of linear algebra remains incomplete without a study of linear
operators (i.e., linear transformations). In fact, the set of linear transformations itself
forms a vector space and therefore has a basis set. The basis set for the operator is linked
with the basis sets for the spaces that it operates between. The linear operator can
be discussed as an abstract operator or through an isomorphism as a matrix or as a
generalized expansion in operator space.
A Hermitian (a.k.a., self-adjoint) operator produces a basis set within a Hilbert space.

The basis set comes from the eigenvector equation for the particular operator. The fact
that a Hermitian operator produces a complete set (of orthornomal vectors) has special
importance for quantum mechanics. Observables such as energy or momentum
correspond to Hermitian operators. Complete sets make it possible to represent every
possible result of a measurement of the observable by an object (vector) in the theory. The
Hermitian operators have real eigenvalues which represent the results of the
measurement.

4.1 Vector and Hilbert Spaces

Linear algebra starts with the definition of the vector space. An inner product space
consists of a vector space with an inner product defined on it. The Hilbert space often
refers to an inner product space of functions. However, this section uses the term Hilbert
and inner product spaces interchangeably.
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4.1.1 Definition of Vector Space

A vector space consists of a set F with a defined binary operation ‘‘þ’’ and a scalar
multiplication (SM) over the field of numbers N such that (assuming f, f1, f2 are in F
and �, � are in N) the following relations hold.

If ‘‘F’’ is a set of functions then ‘‘F’’ is sometimes called a function space. For complex
functions F, the number field N must be the set of complex numbers C while, for
real functions F, the number field N consists of the real numbers R. For example, if
F represents the set of real functions but the number field consists of complex numbers,
then objects such as c1f(x) (where c1 is complex) cannot be in the original vector
space because the function g(x)¼ c1f(x) has complex values. Therefore, for this example,
closure cannot be satisfied contrary to the requirements of the definition for the vector
space.

4.1.2 Inner Product, Norm, and Metric

An inner product h�j�i in a (real or complex) vector space F is a scalar valued function that
maps F� F ! C (where C is the set of complex numbers) with the properties

1. h f j gi ¼ hg j fi� with f, g elements in F and where ‘‘*’’ denotes complex conjugate.

2. h�f þ �g j hi ¼ ��h f j hi þ ��hg j hi and hh j �f þ �gi ¼ �hh j fi þ �hh j gi where f, g, h
are elements of F and �, � are elements in the complex number field C.

3. h f j fi � 0 for all vectors f. The inner product can be zero h f j fi ¼ 0 if and only
if f¼ 0 (except at possibly a few points for functions).

The norm or ‘‘length’’ of a vector f is defined to be kfk ¼ h f j fi1=2.
A metric d( f, g) is a relation between two elements f and g of a set F such that

1. d( f, g)� 0 and d¼ 0 only when f¼ g (except at possibly a few points for piecewise
continuous functions Cp[a,b]). Recall that two functions are equal only when
f(x)¼ g(x) for all ‘‘x’’ in the domain of definition.

2. d( f, g)¼ d(g, f ).

3. d( f, g)� d(f, h)þ d(h, g) where h is any third element of F.

The metric measures the distance between two elements of the space. The properties
of the inner product are very similar to those of the metric. In fact, if d(f, g) is a metric then
it can be written as

dð f , gÞ ¼ f � g
�� f � g

� �1=2

Closure: f1þ f2 is in F and �f is in F
Associative: (f1þ f2)þ f3¼ f1þ (f2þ f3)
Commutative: f1þ f2¼ f2þ f1
Zero: There exists a zero vector O such that Oþ f¼ f
Negatives: For every f in F, there exists (�f ) in F such that fþ (�f )¼O

SM Associative: (��)f¼�(�f )
SM Distributive: �(f1þ f2)¼ �f1þ �f2
SM Distributive: (�þ�)f¼�fþ�f
SM Unit: 1f¼ f
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Consider R2 which is the set of Euclidean vectors in the x� y plane. Assume ~rr1 and ~rr2
are two vectors in R2 with ~rr1 ¼ x1 ~xxþ y1 ~yy and ~rr2 ¼ x2 ~xxþ y2 ~yy. Simple vector analysis
provides the following relations.

The inner product can be defined for functions as follows.

Example 4.1.1

Find the length of f(x)¼ x for x 2 ½�1, 1�

f
�� �� ¼ f

�� f� �1=2
¼

Z 1

�1

dx x�x

� �1=2
¼

Z 1

�1

dx x � x

� �1=2
¼

Z 1

�1

dx x2
� �1=2

¼

ffiffiffi
2

3

r

where we use the fact that f(x)¼ x is real. If we were to divide the function by the norm
and write gðxÞ ¼ fðxÞ=kfk then the length of g(x) would be unity. In general, we normalize
a function f(x) to one by dividing the norm of f(x).

4.1.3 Hilbert Space

We define a Hilbert space H to be a vector space with an inner product defined on
the space. Some books reserve the term ‘‘Hilbert space’’ for vector spaces of functions with
an inner product; they sometimes denote the inner product by (f1, f2). For function
spaces, the functions must be square integrable in the sense that the following integral
must exist for f 2 H

Z b

a
dx fðxÞ
�� ��2

Sometimes the term ‘‘inner product space’’ refers to a vector space (regardless of
whether it is a Euclidean or function space) having a defined inner product. This book
doesn’t make any distinction between the function or Euclidean vector spaces and
assumes all of the inner products exist (such as the previous integral).

4.2 Dirac Notation and Euclidean Vector Spaces

The present section introduces a notation created by P. A. M. Dirac during the early
20th century. Professor Dirac, a mathematician and physicist, was intimately familiar

Inner product h~rr1 j: ~rr2i ¼ ~rr1 � ~rr2 ¼ x1x2 þ y1y2

Norm ~rr1
�� �� ¼ ~rr1

�� ~rr1� �1=2
¼ ðx21 þ y21Þ

1=2

Metric dð~rr1, ~rr2Þ ¼ ~rr1 � ~rr2
�� �� ¼ ð~rr1 � ~rr2Þ � ð~rr1 � ~rr2Þ

� 	1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2
þ ð y1 � y2Þ

2
q

Inner product
Norm kfðxÞk ¼ hf j fi1=2 ¼

R b
a dx fðxÞ�fðxÞ

h i1=2
¼

R b
a dx jfðxÞj2

h i1=2
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with linear algebra and quantum theory. For our purposes, the Dirac notation
helps to unify Euclidean and function spaces and those with discrete and continuous
sets of basis functions. The notation appears for the vector space spanned by the
basis set of unit vectors f~xx, ~yy, ~zzg. We then discuss the concepts of closure and
completeness.

4.2.1 Kets, Bras, and Brackets for Euclidean Space

The basis vectors for 3D Euclidean space f~xx, ~yy, ~zzg can also be written in ‘‘ket’’ j i notation.
The vector ~vv can be written as jvi and the basis vectors as

~xx $ 1j i ~yy $ 2j i ~zz $ 3j i

A general basis vector appears as ~een $ jni. For example, the vector ~vv ¼ 3~xx� 4~yyþ 10~zz can
be written as jvi ¼ 3j1i � 4j2i þ 10j3i. Sometimes the vector sum and scalar product are
written as jv1i þ jv2i 	 jv1 þ v2i. and j�vi ¼ �jvi, respectively.
We define a ‘‘bra’’ h j to be a projection operator. The bras h1j, h2j, h3j represent

operators that project a vector ~vv onto the unit vectors ~xx, ~yy, ~zz, respectively. For example, if
jvi ¼ 3j1i � 4j2i þ 10j3i then the projection operators provide the components h1j~vv ¼ 3,
h2j~vv ¼ �4, and h3j~vv ¼ 10. Here the bra h1j, for example in Figure 4.2.1, operates on ~vv
to give the component of ~vv along the ~xx axis. We would do better to write the combination
of projection operators and vectors as h1j~vv ¼ h1jvi. This combination of the ‘‘bra’’ þ ‘‘ket’’
gives the ‘‘braket’’ (or bracket).
In general, hwj represents the operator that projects an arbitrary vector onto the

vector ~ww. The linear operator hwj corresponds to ‘‘ ~ww�’’ where the dot refers to the usual dot
product hwjvi ¼ ð ~ww�Þ~vv ¼ ~ww � ~vv. We see that the bracket must be an inner product (the same
inner product defined earlier). If ‘‘n’’ represents an integer corresponding to one of the
basis vectors then hnjvi represents a component of the vector. The bras are linear
operators and can be distributed across a sum.

wh j v1j i þ v2j i½ � ¼ w j v1h i þ w j v2h i

As a note, some books call the bras ‘‘projectors’’ and they call objects like j�ih�j

projection operators. We consider objects like j�ih�j to be more complicated compound
objects.

FIGURE 4.2.1

Projection of ~vv ¼ 3~xxþ 5~yy onto j1i, j2i.
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4.2.2 Basis, Completeness, and Closure for Euclidean Space

A basis set must be orthonormal and complete. Two vectors jmi, jni are orthonormal
when

mjnh i ¼ �m, n ¼
1 m ¼ n

0 m 6¼ n

(
ð4:2:1Þ

The Kronecker delta function �m,n expresses orthonormality for countable (or discrete)
basis set (i.e., the elements of the basis set are in one-to-one correspondence with a subset
of integers—could be an infinite subset). A set of vectors B ¼ f j1i, j2i, . . . , jNi g is
orthonormal if for any two vectors jmi, jni in B, the inner product between them satisfies
hmjni ¼ �m, n. For cases where a set of basis functions has a one-to-one relation with a
continuous subset of the real numbers, the Dirac Delta Function (i.e., the impulse
function) �(x� x0) replaces the Kronecker delta function �m,n. If a vector space has the
basis set B ¼ fj1i, j2i, . . . , jNig then the notation it spans is V.
A linear combination of ‘‘N’’ orthonormal vectors B ¼ fj1i, j2i, . . . , jNig has the form

vj i ¼
XN
i¼1

Ci ij i ð4:2:2Þ

where fCig can be complex numbers. The collection of all such vectors V ¼ f jvi g forms
a vector space and the set B must be a basis set. The set B spans the vector space
V ¼ Sp ðBÞ, which has dimension Dim(V)¼N. Since every vector in V can be found by
a suitable choice of the Ci, the set B is said to be complete. On the other hand, given a
vector space V then a set of orthonormal vectors is complete in V if every vector in
the space V can be written as a linear combination of the form (4.2.2). Such a set of vectors
forms a basis set.
Next we demonstrate the closure (i.e., completeness) relation. The components of the

vector, namely Ci in Equation (4.2.1), can be written in terms of ‘‘brackets’’ by projecting
the vector jvi onto each basis vector jmi.

m j vh i ¼ mh j
Xn
i¼1

Ci ij i ¼
Xn
i¼1

Ci m j ih i ¼
Xn
i¼1

Ci�i,m ¼ Cm ð4:2:3Þ

The results from Equation (4.2.3), written as Ci ¼ hi j vi, can be substituted into
Equation (4.2.2) to obtain jvi ¼

Pn
i¼1 Cijii ¼

Pn
i¼1 ½hi j vi�jii. Then

vj i ¼
Xn
i¼1

ij i i j vh i or vj i ¼
Xn
i¼1

ij i ih j

 !
vj i ð4:2:4Þ

Consider the quantity in parenthesis to be an operator and realize that the equation
must hold for all vectors jvi in the vector space V. Consequently, Equation (4.2.4) becomes

Xn
i¼1

ij i ih j ¼ 1 ð4:2:5Þ

for the vector space V spanned by the basis B ¼ fj1i, j2i, . . . , jnig. The ‘‘1’’ that appears in
Equation (4.2.5) actually represents an operator and not the number ‘‘1.’’ Although not
demonstrated here, it is possible to show that the closure relation is equivalent to the
completeness of a basis set.
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Example 4.2.1

The completeness relation for R3 using hwj ¼ ~ww� is

1 ¼ j1ih1j þ j2ih2j þ j3ih3j so 1 ¼ ~xx ~xx � þ~yy ~yy � þ~zz ~zz�

Note that the unit vectors are written next to each other without an operator between
them.

4.2.3 The Euclidean Dual Vector Space

The previous topic shows that a bra hwj projects an arbitrary vector onto the vector ~ww. The
linear operator hwj maps a vector space V into the complex numbers C (i.e., hwj: V ! C).
These projection operators form a vector space—a vector space of linear operators. For
Euclidean vector ~vv ¼ jvi, the corresponding bra is the operator jviþ ¼ hvj ¼ ~vv�.
The set Vþ consisting of all bra operators hwj defines the ‘‘dual’’ of the vector space V.

For each ket jwi, there exists a bra hwj and vice versa so that the original vector space
V must be in 1-1 correspondence with the ‘‘dual vector space Vþ.’’ Mathematically, the
two vector spaces V ¼ f jvi g and Vþ ¼ f hwj g are related by an antilinear 1-1 (isomorphic)
map denoted by the dagger superscript. The isomorphic map þ : V $ Vþ is called the
Hermitian conjugate (or adjoint operator).

�h j $
þ

�j i or as wj iþ¼ wh j

If �,� 2 C (the complex numbers) then the antilinearity property can be written as

� vj i þ � wj i½ �
þ
¼ � vj i½ �

þ
þ � wj i½ �

þ
¼ �� vh j þ �� wh j

where ‘‘*’’ indicates complex conjugate. Part of the reason for taking the complex
conjugate of the coefficients has to do with finding the magnitude of a ‘‘complex’’ vector.
The adjoint operator maps a basis set for V into a corresponding basis set for Vþ.

If fjii: i ¼ 1, . . . , ng comprises a basis set for V then f hij : i ¼ 1, . . . , ng must be a basis set
for Vþ. Therefore the dual basis set consists of operators that project an arbitrary vector
onto the set of basis vectors of the vector space V. The dual basis allows us to write an
arbitrary bra as hvj ¼

P
n Anhnj.

Example 4.2.2

Find the vector dual to j2i ¼ ŷy.
The dual vector is h2j ¼ ŷy� which is an operator that projects an arbitrary vector ~vv onto ŷy.
We can explicitly represent the result of the projection as the y-component of ~vv:

2 j vh i ¼ ŷy � ~vv ¼ vy

Example 4.2.3

Some relations can be demonstrated for ~vv ¼ jvi ¼ aj1i þ bj2i where f j1i, j2i g spans R2.

1: vh j ¼ vj iþ¼ a 1j i þ b 2j i½ �
þ
¼ 1j iþaþ þ 2j iþbþ
� 	

¼ a� 1h j þ b� 2h j

2: v j 1h i ¼ a� 1h j þ b� 2h j½ � 1j i ¼ a� and 1 j vh i ¼ 1h j a 1j i þ b 2j i½ � ¼ a

3: 1 j vh i ¼ a ¼ ða�Þ� ¼ v j 1h i� Note that v j 1h iþ¼ 1 j vh i ¼ v j 1h i�:
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The adjoint reverses the order of operators. Suppose the linear operators L̂L, L̂L1, L̂L2 act on
the vector space V which has basis vectors fj1i, j2i, . . . , jnig. For example, consider
L̂L ¼ L̂L1, L̂L2 and hwjL̂Ljvi where jvi, jwi 2 V and hwj 2 Vþ. The adjoint operator reverses
the direction of all the objects and adds the ‘‘þ’’ to each operator.

vh jL1L2 wj iþ¼ wh jLþ2 L
þ
1 vj i:

4.2.4 Inner Product and Norm

Assume fjii : i ¼ 1, 2, 3g is a basis set for a 3D vector space. The norm (or length) of a
vector is found by taking the square root of the inner product.

~vv
�� ��2¼ v j vh i ¼

X3
i¼1

vi ij i

 !þ X3
j¼1

vj j
�� �

0
@

1
A ¼

X3
i¼1

ih jv�i
X3
j¼1

vj j
�� � ¼ X3

i, j¼1

ih jv�i vj j
�� � ¼ X3

i, j¼1

v�i vj i
�� j� �

The last step follows since v�i vj is just a number and so it can be moved outside the
brackets. Now use the orthonormality property for unit vectors to write

vk k2¼
X3
i, j¼1

v�i vj�i, j ¼
X3
i¼1

v�i vi ¼
X3
i¼1

vij j2

where jvij is the magnitude of the complex number. Notice how this is equivalent to the
usual method of taking inner products hvjvi ¼ ½hvj�jvi ¼ ½~vv��~vv ¼ ~vv � ~vv which has the usual
dot product.

4.3 Hilbert Space

A Hilbert space consists of a vector space of functions with a defined inner product.

section. The vector space of functions can have either a countable and uncountable
number of vectors in the basis set. A function f(x) in the space can be represented
as an abstract vector jfi with components formed by projecting them onto basis func-
tions h�njfi or onto Dirac delta functions (refer to The Dirac delta
functions produce the coordinate representation h�ðx� x0Þ j fi ¼ hx0 j fi ¼ fðx0Þ.
The first topic develops the notation for those Hilbert spaces (of functions) that have

a discrete basis set. The results quite straightforwardly generalize the notation and
concepts for the Euclidean vectors. In fact, if readers were not warned ahead of time, they
might think they were reading about Euclidean vectors all over again. Next we begin
the study of function spaces with an uncountably infinite number of basis vectors that
produces the coordinate representation. The study completes the interpretation for
the Hilbert space with the discrete (but perhaps infinite) basis set and introduces the
Hilbert space with an uncountably infinite basis set (i.e., the ‘‘continuous’’ basis set).

4.3.1 Hilbert Space of Functions with Discrete Basis Vectors

Functions in a set F ¼ f�0,�1,�2, . . . ,�ng are linearly independent if for complex
constants ciði ¼ 0, . . . , ng, the sum

Xn
i¼0

ci�iðxÞ ¼ 0
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We define the Hilbert space to include the Euclidean space defined in the previous

5).



can only be true when all of the complex constants are zero ci¼ 0. Functions in the
set F ¼ f�0,�1,�2, . . . ,�ng are orthonormal if h�i j�ji ¼ �ij for every integer i, j in the set
{0, 1, 2, . . .,n}. An orthonormal set of functions must be linearly independent. A linearly
independent set of functions F ¼ f�0,�1,�2, . . . ,�ng is complete if every function f(x) in
the space can be written as

fðxÞ ¼
Xn
i¼0

ci�iðxÞ or f
�� � ¼Xn

i¼0

ci �ij i ð4:3:1Þ

(except at possibly a few points) for some choice of complex numbers ci
the set {�i} is ‘‘complete and orthonormal’’ then the functions �i can be chosen as basis
functions (or basis vectors) to span the function space. A complete orthonormal set of
functions F ¼ f�0,�1,�2, . . . ,�ng forms a basis for a Hilbert space H. The basis functions
can be written using Dirac notation as fj�0i, j�1i, . . .g or, more conveniently as
fj0i, j1i, . . .g. In some cases, there might be a countably infinite number of basis vectors
in which case the infinite series

f
�� � ¼X1

i¼0

ci ij i ð4:3:2Þ

must properly converge. Assume that the series has the appropriate convergence
properties so that it can be integrated or differentiated as necessary. Notice the similarity
between these formulas and those for the Euclidean space.
The components of the vector jfi (i.e., the expansion coefficients ci) can be found from

Equation (4.3.2) by operating with the bra h jj as follows

j
�� f� �

¼ �j
�� f� �

¼ j
� ��X1

i¼0

ci ij i ¼
X1
i¼0

ci j
�� i� �

¼
X1
i¼0

ci�ij ¼ cj ð4:3:3Þ

so, just like Euclidean vectors, the vector components must be cj ¼ hj j fi. The projection
of the function on the ith axis produces the inner product between the two complex
functions ‘‘�i’’ and ‘‘f ’’ over the range ða, bÞ

�i
�� f� �

¼

Z b

a
dx ��i xð Þf xð Þ ð4:3:4Þ

The components ci ¼ h�i j fi ¼ hi j fi can be used to demonstrate the closure relation by
substituting into Equation (4.3.2).

f
�� � ¼X1

i¼0

ci ij i ¼
X1
i¼0

i
�� f� �

ij i ¼
X1
i¼0

ij i i
�� f� �

¼
X1
i¼0

ij i ih j

 !
f
�� � ð4:3:5Þ

The vector jfi is an arbitrary member of the Hilbert space. Recall that two operators
ÂA, B̂B are equal if and only if ÂAjvi ¼ B̂Bjvi for all vectors jvi in the Hilbert space. Therefore,
by definition of equality between operators, Equation (4.3.5) yields

X1
i¼0

ij i ih j ¼ 1 ð4:3:6Þ

The closure relation ensures completeness of the basis set and vice versa.
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(Figure 4.3.1). If



The bra for functions can be written in terms of an operator as

f
� �� ¼ Z

dx f�ðxÞ


where the circle serves as a reminder to insert a function in place of the circle.

4.3.2 The Continuous Basis Set of Functions

Now we discuss the continuous basis set of functions. Let B ¼ f�kg be a set of basis
vectors with one such vector for each real number ‘‘k’’ in some interval [a, b], which
could also be infinite. The orthonormality relation has the form

�K j �kh i ¼ �ðk� KÞ ð4:3:7Þ

where the inner product between two general functions has the form

f
�� g� �

¼

Z
dx f�ðxÞgðxÞ ð4:3:8Þ

A general vector jfi has an integral expansion since there are more basis vectors than a
conventional summation can handle.

f
�� � ¼ Z b

a
dk ck �kj i ð4:3:9Þ

The subscript on the coefficient c resembles the index used in the summation over
discrete sets. The expansion coefficients ck can be written as a function ck¼ c(k) and can
be viewed as the components of the vector or as the transform of the function f with
respect to the particular continuous basis (such as the Fourier transform). Figure 4.3.2
shows the function jfi projected onto two of the many basis vectors. If desired the
coordinate projection operator hxj can be applied to both sides to obtain

f xð Þ ¼

Z b

a
dk ck �k xð Þ ð4:3:10Þ

FIGURE 4.3.1

The function f projected onto the basis set of functions.

FIGURE 4.3.2

A function projected onto two of the many basis
vectors.
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The integral appearing in Equations (4.3.9) and (4.3.10) replaces the summation used
for the discrete basis vectors. The quantities ck and uk can also be written in functional
form as ck¼ c(k) and �kðxÞ ¼ �ðx, kÞ.
Continuing to work with Equation (4.3.9), the component ck can be found by operating

on the left with h�Kj and using the orthonormality relation (note the index of capital K)
to get

�K
�� f� �

¼

Z b

a
dk ck �K j �kh i ¼

Z b

a
dk ck�ðk� KÞ ¼ cK ð4:3:11Þ

which assumes that K 2 ða, bÞ. Note that when computing inner products such as
h�Kk�ki, the integral is over a spatial coordinate ‘‘x’’ and has the form

�K j �kh i ¼

Z
dx ��K xð Þ �k xð Þ ¼ �ðk� KÞ

The closure relation can be found by using ck ¼ h�kjfi as follows

f
�� � ¼ Z

dk ck �kj i ¼

Z
dk �k

�� f� �
�kj i ¼

Z
dk �kj i �k

�� f� �

This last relation holds for arbitrary functions jfi in the Hilbert space so that

Z
dk �kj i �kh j ¼ 1 ð4:3:12Þ

by definition of operator equality. Equation 4.3.12 provides the closure relation for a
continuous set of basis vectors.

4.3.3 Projecting Functions into Coordinate Space

Recall that Euclidean vector ~vv in a Hilbert space has components vi. The components are
really functions of the index ‘‘i’’ as in vðiÞ ¼ vi ¼ hijvi. This is equivalent to projecting the
vector ~vv on to the ith coordinate. The index ‘‘i’’ is thought of similar to the x-axis, for
example, except that ‘‘i’’ refers to the integer subset of the reals.
As shown in the previous topics, the symbol jfi denotes the function ‘‘f ’’ in a vector

space. We regard the function ‘‘f ’’ (i.e., jfi) as the most fundamental object and not
the component f(x). The reason is that the function ‘‘f ’’ can equally well be represen-
ted, for example, as f(x), or as the Fourier transform f(k) or as a series expansion.
We shall see how projecting the function ‘‘f ’’ onto the xth coordinate produces the
component f(x). However, projecting ‘‘f ’’ into k-space produces the Fourier transform
hkjfi ¼ fðkÞ. The same ‘‘f ’’ appears in f(k) and f(x) with the understanding that the explicit
form of the two functions cannot be the same (i.e., f(k) cannot be found by replacing
‘‘x’’ with ‘‘k’’).
Functions such as f(x) can be thought of as vectors jfi projected onto the x-axis. To set

the stage, recall how functions can be described as a collection of ordered pairs (x, f ). We
can consider ‘‘x’’ to be an index and write f(x)¼ fx where ‘‘x’’ takes on values in the
domain. The only real difference between f(x) and v(i) is that v(i) has a domain with a
countable number of ‘‘x components’’ symbolized by i.
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The function f(x) can be pictured as a vector in coordinate space defined by fjxig. Imagine
projecting a function ‘‘f ’’ onto the coordinate ‘‘x’’ as hxjfi ¼ fðxÞ. Each real x is considered
to be a basis vector. There can be an uncountably infinite number of ‘‘vectors’’ jxi.
Figure 4.3.3 shows a conceptual view of an example function f with values fð3=2Þ ¼ 0:5,
fð

ffiffiffiffiffi
10

p
Þ ¼ 0:75, fð�5Þ ¼ 0:25. The components of the vector f must be h3=2jfi ¼ 0:5,

h
ffiffiffiffiffi
10

p
jfi ¼ 0:75, h�5jfi ¼ 0:25. The figure shows three axes but there must be as many axes

as coordinates x. Quantities of the form hfjxi can now be defined using the adjoint
operator as

f
�� x� �

¼ x
�� f� �þ

¼ x
�� f� ��

¼ fðxÞ
� 	�

¼ f�ðxÞ ð4:3:13Þ

What does it mathematically mean to project a function ‘‘f ’’ into coordinate space to
find an inner product hxjfi? We already know that functions like f�j f i can be projected
into function space (i.e., Hilbert space) to form inner products between functions such as
hfjgi. The coordinate basis fjx0ig really consists of a set of Dirac delta functions

x0j i 	 �ðx� x0Þ
�� �

� �ðx� x0Þ

 �

as suggested by Figure 4.3.4. The bra hx0j 	 h�ðx� x0Þj is a projection operator that
projects jfi onto the Dirac delta function �ðx� x0Þ. The projection of f(x) onto the
coordinate x0 becomes

x0jf
� �

¼ �ðx� x0jfðxÞ
� �

¼

Z 1

�1

dx �ðx� x
0
ÞfðxÞ ¼ fðx

0
Þ ð4:3:14Þ

FIGURE 4.3.4

The coordinate space basis vectors are actually the Dirac delta functions.

FIGURE 4.3.3

The function f projected onto several coordinates.
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We can demonstrate the orthonormality relation for the coordinate space. Let j�j and j�i
be two of the uncountably many coordinate kets. Using Equation (4.3.8) for the inner
product, we can write

� j �h i ¼ �ðx� �Þ
�� �ðx� �Þ� �

¼

Z 1

�1

dx �ðx� �Þ �ðx� �Þ ¼ �ð� � �Þ ð4:3:15Þ

Therefore rather than have an orthonormality relation involving the Kronecker delta
function as for Euclidean vectors, we see that the coordinate space uses the Dirac delta
function.
Basis sets need to be complete in the sense that any function can be expanded in the

set similar to Equation (4.3.9). Let f(x) be an arbitrary element in the function space.
Consider the expansion

g
�� � ¼ Z

dx0 x0
�� �

fðx0Þ

If this is a legitimate expansion of f(x) we should be able to show that g(x) equals f(x). To
this end, operate on this last equation with hxj to find

gðxÞ ¼ x
�� g� �

¼

Z
dx0 x

�� x0� �
fðx0Þ ¼

Z
dx0 � x0 � xð Þ fðx0Þ ¼ fðxÞ

So now we can think of the decomposition of a vector ~ff ¼ jfi in function or
‘‘coordinate’’ basis sets (actually the same though).
Next, let’s examine the closure relation for coordinate space. The table below shows

how to replace the indices for the Euclidean vector and the summation by the coordinate
x and integral, respectively.

Pn
i¼1

ij i ih j ¼ 1 !
R

xj idx xh j ¼ 1

m j nh i ¼ �mn ! x0 j xh i ¼ �ðx� x0Þ
m, n 2 integers x, x0 2 R

Note that the Dirac delta function replaces the Kronecker delta function for the
continous basis set fjxig. Also notice that an integral replaces the discrete summation for
the continuous basis.
Let’s demonstrate the closure relation for the coordinate basis set. First consider

the inner product between any two elements jfi and jgi of the Hilbert space. Using
the fact that hxjgi is a complex number so that g�ðxÞ ¼ hxjgi� ¼ hxjgiþ and also
hxjgiþ ¼ hgjxi, we have

g
�� f� �

¼

Z
dx g� xð Þ fðxÞ ¼

Z
dx x

�� g� �þ
x
�� f� �

¼

Z
dx g

�� x� �
x
�� f� �

¼ g
� �� Z xj i dx xh j

� 
f
�� �

ð4:3:16Þ

However, the unit operator 1̂1 does not change the vector jfi, that is 1̂1 jfi ¼ jfi, so that the
inner product can be generally written as hgjfi ¼ hgj1̂1jfi. Comparing this last expression
with Equation (4.3.16) shows

g
� ��1̂1 f

�� � ¼ g
� �� Z xj i dx xh j

� �
f
�� �
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This last relation must hold for all vectors jfi and jgi and therefore the operators
on either side must be the same Z

xj i dx xh j ¼ 1̂1 ð4:3:17Þ

Working Equation (4.3.16) in reverse, we can now see the reason for the definition of the
inner product between two arbitrary functions jfi and jgi in the Hilbert space.

g
�� f� �

¼ g
� ��1 f

�� � ¼ g
� �� Z xj idx xh j f

�� � ¼ Z
g
�� x� �

dx x
�� f� �

Again using g�ðxÞ ¼ hgjxi, we find

g
�� f� �

¼

Z
dx g�ðxÞ fðxÞ

as expected for the basic definition of inner product.
Further, we can see the connection between the inner product for the discrete basis sets

and those for coordinate space. Recall for Euclidean vectors that

g
�� h� �

¼
X
i

g
�� i� �

i j hh i ¼
X
i

g�i hi

where hgjii ¼ hijgiþ ¼ g�i since the inner product hijgi is a complex number. Now suppose
that g and f are functions so that the index ‘‘i’’ is replaced by the index ‘‘x.’’ The inner
product might then be written as

g
�� f� �

�
X
x

g
�� x� �

x
�� f� �

�
X
x

g�ðxÞ f xð Þ �
X
x

g�xfx �

Z
dx g�x fx �

Z
dx g�ðxÞ fðxÞ

Therefore, for functions, the inner product

g
�� f� �

¼

Z
dx g�ðxÞ fðxÞ ð4:3:18Þ

is viewed as a sum over components similar to the case for Euclidean vectors.
A later section shows that different sets of basis vectors F leads to different represen-

tations of the Dirac delta function. We can see this by considering any basis set f�iðxÞg
for an arbitrary function space so that

�ðx� x0Þ ¼ x
�� x0� �

¼ xh j1 x0
�� �

¼ xh j
X1
i¼0

�ij i �ih j

" #
x0
�� �

¼
X1
i¼0

x j �ih i �i
�� x0� �

¼
X1
i¼0

��i ðxÞ�iðx
0Þ

ð4:3:19Þ

Continuous basis sets can be similarly handled. If fj�kig has uncountably many basis
vectors indexed by the continuous parameter k, then operating on the closure relation

1̂1 ¼

Z
dk �kj i �kh j
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produces

�ðx� x0Þ ¼ x
�� x0� �

¼ xh j1̂1 x0
�� �

¼

�
x

����
Z

dk �kj i �kh j

� �����x0
�
¼

Z
dk ��k ðx

0Þ �kðxÞ ð4:3:20Þ

Equations (4.3.19) and (4.3.20) show that any complete orthonormal set of functions
gives a representation of the Dirac delta function.

Example 4.3.1

Is the set f1, xg orthonormal on the interval [�1, 1]?
Note that the ‘‘1’’ and ‘‘x’’ represent functions and not coordinates. Therefore, define

functions f¼ 1 and g¼ x. These functions are orthogonal on the interval as can be seen

f
�� g� �

¼

Z 1

�1

dx f�g ¼

Z 1

�1

dx 1 � x ¼ 0

Neither function is normalized (unit length) since

f
�� ��2¼ f

�� f� �
¼

Z 1

�1

1 dx ¼ 2 and g
�� ��2¼ g

�� g� �
¼

Z 1

�1

dx x2 ¼
2

3

In general, any function h(x) can be normalized by redefining it as h ! h=khk. An
orthonormal set can be formed by dividing each function by its length. The orthonormal
set is

1ffiffiffi
2

p ,

ffiffiffi
3

2

r
x

( )

4.3.4 The Sine Basis Set

The sine functions provide another basis set for functions defined on the interval x 2 ð0, LÞ

Bs ¼

ffiffiffi
2

L

r
sin

n�x

L

� �
n ¼ 1, 2, 3 . . .

( )
¼  nðxÞ : n ¼ 1, 2, 3 . . .

 �

ð4:3:21Þ

The Hilbert space can be expanded to include functions that repeat every 2L along
the x-axis. The normalization of

ffiffiffiffiffiffiffiffi
2=L

p
depends on the width of the interval L and on the

fact that the sine function has ‘‘n�x=L‘‘ in the argument (where ‘‘n’’ is an integer).
A function in the vector space spanned by Bs can be written as a summation over

the basis vectors

f
�� � ¼X1

m¼1

cm  m

�� �
or fðxÞ ¼

X1
n¼1

cn

ffiffiffi
2

L

r
sin

n�x

L

� �
ð4:3:22Þ

The expansion coefficients are found by projecting the function onto the basis vectors

 n

�� f� �
¼  n

� �� X
m

cm  m

�� �( )
¼
X
m

cm  n

��  m

� �
¼ cn
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These components can be evaluated

cn ¼  n

�� f� �
¼

ffiffiffi
2

L

r
sin

n�x

L

� � ����� fðxÞ
* +

¼

ffiffiffi
2

L

r Z L

0

dx fðxÞ sin
n�x

L

� �
ð4:3:23Þ

4.3.5 The Cosine Basis Set

The set of functions

Bc ¼
1ffiffiffi
L

p ,

ffiffiffi
2

L

r
cos

n�x

L

� �
, . . . for n ¼ 1, 2, 3 . . .

( )
¼ �0,�1, . . .f g ð4:3:24Þ

is orthonormal on the interval x 2 ð0, LÞ. The functions in Bc form a basis set for
piecewise continuous functions on (0, L). The function space can be enlarged to include
functions that repeat every L along the entire x-axis. An arbitrary function f 2 SpðBcÞ

can be written as a summation

f
�� � ¼X1

n¼0

cn �nj i ð4:3:25aÞ

Operating on both sides with hxj provides

f xð Þ ¼
c0ffiffiffi
L

p þ
X

cn

ffiffiffi
2

L

r
cos

n�x

L

� �
ð4:3:25bÞ

The normalization
ffiffiffiffiffiffiffiffi
2=L

p
depends on the interval endpoint L in (0, L) and also upon the

fact that the ‘‘n�x=L’’ occurs as the argument of the cosine function with ‘‘n’’ being an
integer.
The expansion coefficients c0, c1, . . . (i.e., the components of the vector) in Equations

(4.3.25) can be found from the inner product of ‘‘f ’’ with each of the basis vectors cos(nx)

c0 ¼ �0
�� f� �

¼
1ffiffiffi
L

p

���� fðxÞ
� �

¼
1ffiffiffi
L

p

Z L

0

dx fðxÞ ð4:3:26Þ

and

cn ¼ �n
�� f� �

¼

ffiffiffi
2

L

r
cos

n�x

L

� � ����� fðxÞ
* +

¼

ffiffiffi
2

L

r Z L

0

dx fðxÞ cos
n�x

L

� �
ð4:3:27Þ

where this expression for cn holds for n4 0.

4.3.6 The Fourier Series Basis Set

For the Hilbert space of periodic, piecewise continuous functions on the interval (�L, L),
there exists a very important set of basis functions.

B ¼
1ffiffiffiffiffiffi
2L

p exp i
n�x

L

� �
n ¼ 0, � 1, � 2 . . .

� �
ð4:3:28Þ
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The orthonormality relation and the orthonormal expansion become

1ffiffiffiffiffiffi
2L

p exp i
n�x

L

� � ���� 1ffiffiffiffiffiffi
2L

p exp i
m�x

L

� �� �
¼ �nm

and

fðxÞ ¼
X1

n¼�1

Dnffiffiffiffiffiffi
2L

p exp i
n�x

L

� �
ð4:3:29Þ

Notice how this expansion in the complex exponential begins to look like a Fourier
transform. The coefficients Dn can be complex. These equations can be reduced to the
typical Fourier series.
For periodic boundary conditions encountered for traveling waves, the basis set is often

restated in terms of the repetition length L. The wave is required to repeat itself every
length L instead of 2L given above. In this case the basis becomes

B ¼
1ffiffiffi
L

p exp i
2n�x

L

� 
n ¼ 0, � 1, � 2 . . .

� �
ð4:3:30Þ

For three dimensions, the periodic boundary conditions provide

B ¼
1ffiffiffiffi
V

p exp i~kk � ~rr
� �� �

ð4:3:31Þ

where V ¼ LxLyLz and kx ¼ ð2�m=LxÞ, ky ¼ ð2�n=LyÞ, kz ¼ ð2�p=LzÞ with m, n, p ¼ 0,
�1, � 2, . . .
The 3-D case has the Kronecker delta function orthonormality.

4.3.7 The Fourier Transform

The complete orthonormal basis set for a Hilbert space of bounded functions defined
over the real x-axis is

eikxffiffiffiffiffiffi
2�

p

� �
ð4:3:32Þ

For this section, the generalized expansion is defined as the integral over k.

fðxÞ ¼

Z 1

�1

dk � kð Þ
eikxffiffiffiffiffiffi
2�

p ð4:3:33Þ

Define kj if g to be the basis set

kj i ¼ �kj i ¼
1ffiffiffiffiffiffi
2�

p eik0
����

�
! �kðxÞ ¼ x j kh i ¼

1ffiffiffiffiffiffi
2�

p exp ikxð Þ

� �
ð4:3:34Þ
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where k is real and ‘‘0’’ provides a place for the variable x when the function is projected
into coordinate space. We can demonstrate orthonormality for the basis set by
substituting any two of the functions into the definition of the inner product.

K j kh i ¼

Z 1

�1

dx
e�iKxffiffiffiffiffiffi
2�

p
eikxffiffiffiffiffiffi
2�

p ¼

Z 1

�1

dx
ei k�Kð Þx

2�
¼ � k� Kð Þ ð4:3:35Þ

This expression agrees with the derivation for the Dirac delta function found in an
appendix.
The closure relation

1̂1 ¼

Z 1

�1

kj idk kh j ð4:3:36Þ

comes from the definition of completeness of the continuous basis set fjki ¼ j�kig. The
projection of the closure relation into coordinate space and its dual produces a Dirac delta
function. Operate on Equation (4.3.36) with hx0j and jxi where x and x0 represent spatial
coordinates

x0
�� x� �

¼ x0
� �� Z dk kj i kh j

� �
xj i ¼

Z 1

�1

x0
���� 1ffiffiffiffiffiffi

2�
p eiko

� �
1ffiffiffiffiffiffi
2�

p eiko
���� x

� �
dk

which can also be written as

� x� x0ð Þ ¼

Z 1

�1

dk
eþikx0ffiffiffiffiffiffi
2�

p
e�ikxffiffiffiffiffiffi
2�

p ¼

Z 1

�1

dk
e�ik x�x0ð Þ

2�

Projecting jfi into coordinate space produces hxjfi ¼ fðxÞ. Projecting jfi into k-space
produces the Fourier transform hkjfi ¼ fðkÞ.

TABLE 4.3.1

Summary of Results

Euclidean
Vectors

Functions-Discrete
Basis

Functions-Continuous
Basis

Basis nj i : n ¼ 1, 2, 3 . . .f g � ~xx, ~yy, ~zz . . .

 �

n ¼ Integer
nj i ¼ unj i ~uunðxÞ


 �
n ¼ Integer

kj i ¼ �kj i ~��kðxÞ

 �
k ¼ Real

Projector wh j ¼ ~ww� f
� �� ¼ R

dx f�ðxÞ o f
� �� ¼ R

dx f�ðxÞ o

Orthonormality m j nh i ¼ �m, n um j unh i ¼ �mn �K j �kh i ¼ � k� Kð Þ

Complete vj i ¼
P
n
cn nj i f

�� � ¼P
n
cn unj i f

�� � ¼ R
dk ck �kj i

fðxÞ ¼
P
n
cnunðxÞ fðxÞ ¼

R
dx ck �kðxÞ

Components cn ¼ n j vh i cn ¼ un
�� f� �

ck ¼ �k
�� f� �

Inner Product v j wh i ¼
P
n
v�nwn f

�� g� �
¼
R
dx f�ðxÞ gðxÞ f

�� g� �
¼
R
dx f�ðxÞ gðxÞ

Closure
P
n

nj i nh j ¼ 1̂1 �n unj i unh j ¼ 1̂1
R
dk �kj i �kh j ¼ 1̂1

�ðx� x0Þ ¼
P
n
u�nðx

0Þ unðxÞ �ðx� x0Þ ¼
R
dk ��k ðx

0Þ �kðxÞ
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4.4 The Grahm–Schmidt Orthonormalization Procedure

The Grahm–Schmidt orthonormalization procedure transforms two or more independent
functions (or vectors) into two or more orthogonal functions (or vectors). The Grahm–
Schmidt procedure starts with a vector space and then develops a basis set.
Let two functions be represented as vectors jfi and jgi in a Hilbert space. Assume

the function jgi is normalized to unity hgjgi ¼ 1 and choose jgi as one of the basis vectors
as shown in Figure 4.4.1. We look for a function h(x) in order to form a basis set fjgi, jhig
for the space so that

f
�� � ¼ c1 hj i þ c2 g

�� � ð4:4:1Þ

Operating with hgj on both sides of the equation for ‘‘f,’’ we find an expression for the
component c2

g
��f� �

¼ c1 g
��h� �

þ c2 g
��g� �

¼ c2

where we have used the orthogonality of ‘‘g’’ and ‘‘h,’’ namely hgjhi ¼ 0, and the fact that
‘‘g’’ is normalized to 1. Now Equation (4.4.1) for ‘‘f ’’ can be rewritten as

hj i ¼ f
�� �� c2 g

�� � ¼ f
�� �� g

�� � g �� f� �
ð4:4:2Þ

where we have set c1¼1 but we will need to normalize jhi to 1.
The functional form h(x) can be recovered by operating on Equation 4.4.2 with hxj to

find hðxÞ ¼ fðxÞ � gðxÞhgjfi or hðxÞ ¼ fðxÞ � gðxÞ
R b
a dx g

�ðxÞfðxÞ. We can easily prove that ‘‘h’’
and ‘‘g’’ are orthogonal by using Equation (4.4.2) and operating with hgj as follows

g
��h� �

¼ g
� �� f

�� �� g
�� � g��f� �
 �

¼ g
��f� �

� g
��g� �

g
��f� �

¼ 0

as required. In order for the set fjhi, jgig to be orthonormal, we need to normalize the
function jhi. Therefore define a normalized function h0 ¼ hðxÞ=khðxÞk. The basis set
becomes fg, h0g.
We can easily include three or more independent vectors in the initial set. Assume that

the Grahm–Schmidt procedure has been used to make two of the vectors �1,�2 ortho-
normal. Assume f to be independent of �1,�2. There must be a third basis function h(x) for
the set f�1,�2, fg to be independent. Therefore, set jfi ¼ jhi þ c1j�1i þ c2j�2i. The constants
c1 and c2 are found similar to above. We can write jfi ¼ jhiþ j�1ih�1jfiþ j�2ih�2jfi.
Therefore the function h(x) can be found by projecting jhi ¼ jfi� j�1ih�1jfi� j�2ih�2jfi
onto coordinate space. It also needs to be normalized to serve as a basis function.

FIGURE 4.4.1

The relation between jfi, jgi, jhi.
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4.5 Linear Operators and Matrix Representations

Linear operators have a central role in many areas of mathematics, science, and engi-
neering. This section discusses the linear operator and shows its relation to the matrix.
Every linear operator T̂T can be represented as a matrix T. However, linear operators
map vectors into other vectors whereas matrices map the set of components of the one
vector into a set of components of the other vector.

4.5.1 Definition of a Linear Operator and Matrices

A linear operator T̂T maps one Hilbert space V into another Hilbert space W according to
T̂T : V ! W . For complex numbers c1 and c2 and vectors jv1i, jv2i 2 V, the linear operator
has the defining property of T̂Tfc1jv1i þ c2jv2ig ¼ c1T̂Tjv1i þ c2T̂Tjv2i. As will become evident
from the matrices, if we know how a linear transformation T̂T maps the basis vectors j�ii
then we know how it maps all vectors in the space.
We now define the matrix of a linear transformation T̂T : V ! W that maps one Hilbert

space V ¼ Spfj�ji : j ¼ 1, 2, . . . ,Mg into another W ¼ Spfj ii : i ¼ 1, 2, . . . ,Ng as shown
in Figure 4.5.1. The two spaces do not necessarily have the same dimension. The matrix
for T̂T with respect to the basis sets is

T ¼ T ij ¼

T11 T12 � � � T1M

T21 T22 � � � T2M

..

. ..
.

TN1 TN2 � � � TNM

2
666664

3
777775

where the matrix elements are defined to be the coefficients in

T̂T �j
�� �

¼
XN
i¼1

Tij  i

�� �
ð4:5:1Þ

for j ¼ 1, . . . ,M: Figure 4.5.1 shows that the operator maps the basis vector j�1i into a
vector jwi. This image vector must be a linear combination of the basis vectors for W.
Equation (4.5.1) shows the transformation T̂T can also be defined by how it affects each of
the basis vectors in V.
Recall that each Hilbert space has a dual space. The basis set for Wþ ¼ DualðWÞ

consists of projection operators fh ajg. Now because T̂Tj�ii must be a vector in W, we can

FIGURE 4.5.1

The linear operator T maps between vector spaces. The figure shows that the operator maps the basis vector �1
into the vector jwi which must be a linear combination of basis vectors in W.
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operate on Equation (4.5.1) with say h aj to find

 a

� ��T̂T �j�� �
¼  a

� ��X
t

Tij  i

�� �
¼
X
t

Tij  a

��  i

� �
¼
X
t

Tib�ai ¼ Taj

The Dirac notation provides a compact expression for the matrix of an operator

Tab ¼  a

� ��T̂T �bj i ð4:5:2Þ

This last expression makes it clear that matrix elements come from the inner products
of operators between basis vectors. The values of the matrix elements depend on the basis
vectors.
Dirac notation treats Euclidean and function spaces the same. As seen previously, there

exists some slight distinction between discrete and continuous basis sets. Discrete basis
sets require summations for generalized expansions and Kronecker delta functions for
the orthonormality relation. Continuous basis sets require integrals for the generalized
summations and Dirac delta functions for the orthonormality relations. It should be kept
in mind that functions can have either discrete or continuous basis sets regardless of
whether the function itself is continuous or not.

Example 4.5.1

Let T̂T : V ! V and suppose that T̂T is the unit operator; that is, T̂T ¼ 1. The elements of the
matrix with respect to the basis Bv ¼ fj�ji ¼ jji : j ¼ 1, 2, . . . ,Ng must be

Tab ¼ ah jT̂T bj i ¼ ah j 1̂1 bj i
n o

¼ a jbhh i ¼ �ab

The diagonal elements are 1 and all the others are zero.

4.5.2 A Matrix Equation

This topic shows how to write the matrix equation from the operator equation

wj i ¼ T̂T vj i ð4:5:3Þ

where T̂T : V ! W and W ¼ Spfj jig and V ¼ Spfj�iig. Assume

wj i ¼
X
m

ym  m

�� �
and vj i ¼

X
n

xn �nj i ð4:5:4Þ

Start by inserting a unit operator between T̂T and jvi, and then replace it by the closure
relation for the vector space V

wj i ¼ T̂T 1 vj i ¼ T̂T
X
b

�bj i �bh j

" #
vj i ¼

X
b

T̂T �bj i �b j vh i:

Operating on the last equation with h aj produces

 a

�� w� �
¼
X
b

 a

� ��T̂T �bj i �b j vh i ¼
X
b

Tab �b j vh i
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However, Equations 4.5.4 provide h ajwi ¼ ya and h�bjvi ¼ xb so that

ya ¼
X
b

Tabxb or T x ¼ y

which can be written in the usual form of

T11 T12 � � �

T21 � � �

..

.

2
664

3
775

x1

x2

..

.

2
664

3
775 ¼

y1

y2

..

.

2
664

3
775 ð4:5:5Þ

The expansion coefficients of the vectors appear in the column matrices.

4.5.3 Composition of Operators

Suppose ŜS : U ! V and T̂T : V ! W are two linear operators and U, V, and W are three
distinct vector spaces (Figure 4.5.2) with the following basis sets

Bu ¼ �ij if g Bv ¼ �j
�� �
 �

Bw ¼  k

�� �
 �
The composition (i.e., product) R̂R ¼ T̂TŜS first maps the space U to the space V and then
maps V to W. The matrix of R̂R ¼ T̂TŜS must involve the basis vectors Bu and Bw. The
operator R̂R ¼ T̂TŜS corresponds to the product of matrices.

Rab ¼  a

� ��R̂R �bj i ¼  a

� ��T̂TŜS �bj i

Inserting between T̂T and ŜS the closure relation for the space V gives

Rab ¼ �ah jT̂T 1̂1 ŜS �bj i ¼ �ah jT̂T
X
c

�cj i �ch j

 !
ŜS �bj i ¼

X
c

�ah jT̂T �cj i �ch jŜS �bj i ¼
X
c

TacScb

Notice that the closure relation corresponds to the range of ŜS and the domain of T̂T. This
last equation shows that the composition of operators corresponds to the multiplication
of matrices R ¼ TS.

4.5.4 Introduction to the Inverse of an Operator

If T : V ! W operates between spaces or even within one space, the function T must be
‘‘1-1’’ and ‘‘onto’’ to have an inverse. The property ‘‘1-1’’ requires every vector in V to
have a unique image in W. The property ‘‘onto’’ requires every vector jwi 2 W to have a
preimage jvi 2 V such that T̂Tjvi ¼ jwi.
The null space (also known as the kernel) provides a means for determining if a linear

operator T̂T : V ! W can be inverted. We define the null space to be the set of vectors

FIGURE 4.5.2

Three vector spaces for the composition of functions.
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N ¼ fjvig such that T̂Tjvi ¼ 0. Obviously, if the null space contains more than a single
element (i.e., an element other than zero), the operator hasn’t any inverse since an
element of the range has multiple preimages. Furthermore, the chapter review exercises
demonstrate the relation

DimðVÞ ¼ DimðWÞ þDimðNÞ

for T̂T : V ! W where W ¼ RangeðT̂TÞ. In this case, if the Dim(N)4 0 then the operator
T̂T hasn’t any inverse since (1) the operator T̂T : V ! W ¼ RangeðT̂TÞ is already ‘‘onto,’’ (2)
the condition Dim(N)¼ 0 ensures the 1-1 property of the operator. Alternatively, we can
require the determinant to be nonzero detðT̂TÞ 6¼ 0 for the operator to be invertible.

4.5.5 Determinant

The determinant of an operator is defined to be the determinant of the corresponding matrix

detðT̂TÞ ¼ detðTÞ

Generally, we assume for simplicity that the operator T̂T operates within a single vector
space. The determinant can be written in terms of the "ijk::: as

det Tð Þ ¼
X
i, j, k...

"ijk...T1iT2jT3k � � � where "ijk... ¼

þ1 Even permutations of 1, 2, 3, . . .

�1 Odd permutation of 1, 2, 3, . . .

0 if any of i ¼ j ¼ k holds

8><
>:

ð4:5:6Þ

For example "132 ¼ �1, "312 ¼ þ1, and "133 ¼ 0.

handled using the unitary change-of-basis operator.

1. Det(ABC)¼Det(A) Det(B) Det(C)

2. Det(cA)¼ cN Det(A) where A : V ! V, N¼Dim(V) and c is a complex number

3. DetðATÞ ¼ DetðAÞ where T signifies transpose

4. The det(T) is independent of the particular basis chosen for the vector space

4.5.6 Trace

The trace of an operator T̂T : V ! V is the trace of the corresponding matrix (which
is assumed square). The trace of a matrix is found by summing the diagonal elements
of the matrix. If the basis for V is Bv ¼ fjnig, then the trace of an operator can also be
written as

Tr T̂T
� �

	
X
n

nh jT̂T nj i ¼
X
n

Tnn ð4:5:7Þ

The trace of an operator T̂T is the sum of the diagonal elements of the matrix T.
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The trace can also be defined for coordinate space. Starting with the definition of
trace, inserting a unit operator in two places, and then the closure relation in coordinate
space gives

TrÂA ¼
X
n

nh jÂA nj i ¼
X
n

nh j1ÂA 1 nj i ¼

ZZ
dxdx0

X
n

n j xh i xh jÂA x0
�� �

x0
�� n� �

The matrix elements are numbers that can be rearranged to give

TrÂA ¼

ZZ
dxdx0

X
n

hxjÂA jx0ihx0jnihnjxi ¼

ZZ
dxdx0hxjÂAjx0ihx0jxi ¼

ZZ
dxdx0hxjÂAjx0i�ðx� x0Þ

where the closure relation is used for jni and the Dirac delta function is substituted.
Performing the final integration gives

TrÂA ¼

Z
dx xh jÂA x0

�� �
ð4:5:8Þ

the operators ÂA, B̂B, ĈC have a domain and range within a single vector space V with basis
vectors Bv ¼ fjaig

1. TrðÂA B̂BÞ ¼ TrðB̂BÂAÞ

2. TrðÂA B̂B ĈCÞ ¼ TrðB̂B ĈCÂAÞ ¼ TrðĈCÂA B̂BÞ

3. The trace of the operator T̂T is independent of the chosen basis set.

4.5.7 The Transpose and Hermitian Conjugate of a Matrix

The transpose operation means to interchange elements across the diagonal. For
example

1 2 3
4 5 6
7 8 9

2
4

3
5T

¼

1 4 7
2 5 8
3 6 9

2
4

3
5

This is sometimes written as

RT
� �

ab
¼ Rba

Note the interchange of the indices ‘‘a’’ and ‘‘b.’’ Sometimes this is also written as

RT
ab ¼ Rba

The Hermitian conjugate (i.e., the adjoint) of the matrix requires the complex conjugate so
that Rþ

ab ¼ R�
ab ¼ R�

ba.

4.5.8 Basis Vector Expansion of a Linear Operator

The set of linear operators forms a vector space, which has a basis set. We will see the
basis vectors have the form jaihbj. We begin by demonstrating how linear operators can be
represented by sums over the basis vectors for the direct and dual spaces.
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Consider an operator T̂T : V ! W acting between two spaces V ¼ Spfj�iig and
W ¼ Spfj jig. Starting with the definition of matrix elements

T̂T �bj i ¼
X
a

Tab  a

�� �

multiplying by h�bj from the right, and summing over the index ‘‘b’’ provides

T̂T
X
b

�bj i �bh j ¼
X
a, b

Tab  a

�� �
�bh j

Substituting the closure relation provides the desired results.

T̂T ¼
X
a, b

Tab  a

�� �
�bh j ð4:5:9aÞ

An operator T̂T : V ! V produces the basis vector expansion

T̂T ¼
X
a, b

Tab �aj i �bh j ð4:5:9bÞ

These basis vector representations of an operator T̂T : V ! V have a form very reminiscent
of the closure relation. In fact, we can recover the closure relation if the operator T̂T is taken
as the unit operator T̂T ¼ 1 so that the matrix elements are Tab¼ �ab.

Example 4.5.2

For the linear operator T̂T : V ! V find an operator that maps the basis vectors as follows

1j i ! 2j i and 2j i ! � 1j i ð4:5:10Þ

The solution can be found by noting that j2ih1j can operate on the unit vector j1i and
it gives j2ih1j1i ¼ j2i. Similarly notice that ð�j1ih2jÞj2i ¼ �j1ih2j2i ¼ �1. The reader
should show the desired operator is T̂T ¼ j2ih1j � j1ih2j by showing it reproduces the
relations in Equation (4.5.10). The transformation T describes a rotation by 90
.

4.5.9 The Hilbert Space of Linear Operators

The set of linear operators in the set L ¼ fT̂T : V ! Wg forms a vector space with
basis BL ¼ fZab ¼ j aih�bj ¼ jaihbjg where for convenience, assume V ¼ Spfj�aig and
W ¼ Spfj aig have the same size a¼ 1,2, . . .N¼Dim(V). The vector space

L ¼ T̂T : V ! V
n o

¼ Sp BLð Þ ¼ Sp Zab ¼  a

�� �
�bh j


 �
ð4:5:11Þ

can be made a Hilbert space by defining the inner product

ŜS
��� T̂TD E

¼ Trace ŜSþT̂T
� �

ð4:5:12Þ
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where ŜS, T̂T are any two elements of L. A similar definition can be made for the set of linear
operators L ¼ fT̂T : V ! Vg.

ÂA, B̂B, ĈC 2 L have basis expansions

ÂA ¼
X
aa0

Aaa0  a

�� �
�a0h j B̂B ¼

X
bb0

Bbb0  b

�� �
�b0h j

We prove the first required property of hÂAjB̂Bi ¼ hB̂BjÂAi�. For simplicity, set indices a, b to
refer to space W and indices a0, b0 to refer to space V.

ÂA
��� B̂BD E�

¼ Tr
X
aa0

Aaa0 aj i a
0

� ��" #þ X
bb0

Bbb0 bj i b
0

� ��" #( )�

¼ Tr
X
aa0
bb0

A�
aa0Bbb0 a

0
�� � a j bh i b0

� ��
8><
>:

9>=
>;

�

¼
X
aa0
bb0

A�
aa0Bbb0 a j bh i b0

�� a0� �2
64

3
75

�

¼
X
aa0
bb0

Aaa0B
�
bb0 a j bh i

� b0
�� a0� ��

¼
X
aa0
bb0

B�
bb0Aaa0 b j ah i a0

�� b0� �

¼ Tr
X
aa0
bb0

B�
bb0 b

0
�� � bh jAaa0 aj i a

0
� �� ¼ Tr

X
bb0

Bbb0 bj i b
0

� ��" #þ X
aa0

Aaa0 aj i a
0

� ��" #
¼ B̂B

��� ÂAD E

Notice that the adjoint operator switches jaiha0j ! ja0ihaj and places the complex
conjugate on Aaa0 for the last term in the first line. The third result on the second line uses
the fact that hajbi� ¼ hbjai since hajbi is an inner product.
The second property requires hÂAj�B̂Bþ �ĈCi ¼ �hÂAjB̂Bi þ �hÂAjĈCi for the complex number

field. This can easily be proved because the trace of the sum equals the sum of the traces.
The third property of hfjfi � 08 f and hfjfi ¼ 0 if f¼ 0 follows using the following. Again

set indices a, b to refer to space W and indices a0, b0 to refer to space V.

ÂA
��� ÂAD E

¼ Tr
X
aa0

A�
aa0 a

0
�� � ah j

X
bb0

Abb0 bj i b
0

� ��( )
¼
X
aa0
bb0

A�
aa0Abb0�ab�a0b0 ¼

X
ab

Aabj j2 � 0

Now we can show the basis set BL must be orthonormal. Let Zab and Zcd be two basis
vectors in Equation (4.5.11). Then Equation (4.5.12) provides

Zab j Zcdh i ¼ Tr  a

�� �
�bh j

� �þ
 c

�� �
�dh j

� �n o
¼ Tr �bj i �dh jf g�ac ¼

X
n

�d j �bh i�ac ¼ �ac�bd

4.5.10 A Note on Matrices

As a note, writing T̂T as a sum over basis vectors is essentially the same as writing a matrix
as a sum of ‘‘unit’’ matrices. For example, a 4� 4 matrix can be written as

a b

c d

" #
¼ a

1 0

0 0

" #
þ b

0 1

0 0

" #
þ c

0 0

1 0

" #
þ d

0 0

0 1

" #
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We can prove the properties (see Section 2.1.2) required of an inner product. Assume



So for real matrices

T ¼
a b
c d

� �

the ‘‘basis set’’ consists of

1 0

0 0

� �
,

0 1

0 0

� �
,

0 0

1 0

� �
,

0 0

0 1

� �� �

4.6 An Algebra of Operators and Commutators

The set of linear operators forms a vector space. The vector space properties do not
include operator multiplication (i.e., composition). Operator multiplication satisfies the
properties for an algebra, which does not include a property for the commutation of

operators. This topic explores the effects of the noncommutivity of the operators. The

linear isomorphism M : T̂T ! T (i.e., it is ‘‘1-1’’ and ‘‘onto’’) between operators and

matrices ensures identical properties for both the operators and the matrices.
Linear operators form an algebra which satisfy the properties

1. There exists a zero operator ‘‘0’’ such that ÂA0 ¼ 0ÂA ¼ 0

2. There exists a ‘‘unit’’ operator ‘‘I’’ such that ÂAI ¼ IÂA ¼ ÂA

3. The distributive law holds ÂAðB̂Bþ ĈCÞ ¼ ÂAB̂Bþ ÂA ĈC

4. The associative law holds ÂAðB̂B ĈCÞ ¼ ð ÂAB̂BÞ ĈC

5. Scalar multiplication is defined aÂA ¼ ÂAa where ‘‘a’’ is a complex number.

Properties 1–5 use the definition that two operators ÂA and B̂B are equal ÂA ¼ B̂B if
ÂAjvi ¼ B̂Bjvi for every vector jvi in the vector space V.
The algebraic properties for the multiplication of operators do not require them to

commute. Two operators ÂA and B̂B commute when ÂA B̂B ¼ B̂BÂA or equivalently ÂA B̂B� B̂BÂA ¼ 0.
We represent the quantity ÂA B̂B� B̂BÂA by the commutator ½ÂA, B̂B� ¼ ÂA B̂B� B̂BÂA. Therefore
two operators ÂA and B̂B commute when ½ÂA, B̂B� ¼ 0. Our world vitally depends on the
commutivity and noncommutivity of operators. It underlies all of quantum mechanics.
It explains the differences between the classical and quantum views of the world.

Example 4.6.1

Show ½x, d=dx� 6¼ 0. The commutator must be treated as an operator since it contains
operators. Therefore, when calculating the commutator, it must operate on a function f(x)!

x,
d

dx

� �
f ¼ x

d

dx
�

d

dx
x

� 
fðxÞ ¼ x

df

dx
�

d

dx
xf
� �

¼ x
df

dx
�
dx

dx
f � x

df

dx
¼ �f 6¼ 0

Notice that the derivative with respect to ‘‘x’’ operates on everything to the right.
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The commutators satisfy the following properties where ÂA, B̂B, ĈC represent operators and
c denotes a complex number.

Properties 1 through 7 can be easily proven by expanding the brackets and using the
definition of the commutator. For example, Property 5 is proved as follows

ÂA, B̂B
h i

ĈCþ B̂B ÂA, ĈC
h i

¼ ÂA B̂B� B̂BÂA
� �

ĈCþ B̂B ÂA ĈC� ĈCÂA
� �

¼ ÂA B̂BĈC� B̂B ĈCÂA ¼ ÂA, B̂B ĈC
h i

Functions of operators are defined through the Taylor expansion. Propertiy 8 can be
proved by Taylor expansion of the function. The Taylor expansion of a function of an
operator has the form

f ÂA
� �

¼
X
n

cnÂA
n so that f ÂA

� �
, ÂA

h i
¼

X
n

cnÂA
n, ÂA

" #
¼
X
n

cn ÂAn, ÂA
h i

¼ 0

where cn can be a complex number and ‘‘n’’ is a nonnegative integer.
The following list of theorems can be proved by appealing to the properties of

commutators, derivatives and functions of operators.

THEOREM 4.6.1. Operator Expansion Theorem

ÔO ¼ exÂAB̂Be�xÂA ¼ B̂Bþ x ÂA, B̂B
h i

þ
x2

2!
ÂA, ÂA, B̂B
h ih i

þ � � �

THEOREM 4.6.2 eAB̂Be�ÂA ¼ B̂Bþ ½ÂA, B̂B� þ 1
2! ½ÂA, ½ÂA, B̂B�� þ . . .

THEOREM 4.6.3 If ½ ÂA, B̂B� ¼ c for exÂAB̂Be�xÂA ¼ B̂Bþ cx where ‘‘c’’ is a complex number.

THEOREM 4.6.4 Product of Exponentials: Campbell–Baker–Hausdorff Theorem

ex ÂAþB̂Bð Þ ¼ exÂAexB̂Be�x2 ÂA, B̂B
h i

2 when ÂA, ÂA, B̂B
h ih i

¼ 0 ¼ B̂B, ÂA, B̂B
h ih i.

If the operators commute, then the ordinary law of multiplication of exponentials holds.

THEOREM 4.6.5: ½exÂAB̂Be
�xÂA

�
n
¼ exÂA B̂B

n
e�xÂA

Theorem 4.6.1 can be proven by writing a Taylor expansion of ÔOðxÞ as

ÔOðxÞ ¼ÔOð0Þ þ
@ÔO

@x

�����
x¼0

xþ
1

2!

@2ÔO

@x2

�����
x¼0

x2 þ . . .

0. ½ÂA, B̂B� ¼ ÂAB̂B� B̂BÂA 1. ½ÂA, ÂA� ¼ 0 2. ½c, ÂA� ¼ 0

3. ½ÂA, B̂B� ¼ �½B̂B, ÂA� 4. ½ÂA, B̂Bþ ĈC� ¼ ½ÂA, B̂B� þ ½ÂA, ĈC� 5. ½ÂAþ B̂B, ĈC� ¼ ½ÂA, ĈC� þ ½B̂B, ĈC�

6. ½ÂA, B̂BĈC� ¼ ½ÂA, B̂B�ĈCþ B̂B½ÂA, ĈC� 7. ½ÂAB̂B, ĈC� ¼ ½ÂA, ĈC�B̂Bþ ÂA½B̂B, ĈC� 8. f ¼ fðÂAÞ ! ½fðÂAÞ, ÂA� ¼ 0
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where the two first terms have the form

ÔOð0Þ ¼ exÂAB̂Be�xÂA
���
x¼0

¼ B̂B

Higher-order derivatives can be similarly calculated

@ÔO

@x
jx¼0 ¼

@

@x
ðexÂAB̂Be�xÂAÞx¼0 ¼ ÂAexÂAB̂Be�xÂA � exÂAB̂Be�xÂA:ÂA�x¼0 ¼ ½ÂA, B̂B�

.
Theorem 4.6.2 follows from the first by setting x¼ 1.

Theorem 4.6.5 uses the fact that exÂAe�xÂA ¼ exÂA�xÂA ¼ 1 where the exponents can be combined
because they commute. Then

exÂAB̂Be�xÂA
h in

¼ exÂAB̂Be�xÂA
� �

exÂAB̂Be�xÂA
� �

exÂAB̂Be�xÂA
� �

. . . ¼ exÂAB̂Bne�xÂA

4.7 Operators and Matrices in Tensor Product Space

The tensor product space combines two or more vector spaces into one space. Avariety of
tensor product spaces can be formed. In this section, we simply place basis vectors next to
each other and then build the algebra. This construction has applications to the quantum
theory of multiple particles and spins as well as to group theory.

4.7.1 Tensor Product Spaces

Vector spaces V and W can be combined into a tensor product space (i.e., direct
product space) with vectors jv,wi 	 jvijwi 2 V W . The vectors in the corresponding
dual space have the form jv,wiþ ¼ hv,wj 	 hvjhwj 2 ½V W �

�
¼ V� W�. Suppose the

vector spaces V and W have the the basis set Bv ¼ fj�iig and Bw ¼ fj jig, respectively.
Then the product space and its dual have the basis sets

V W ¼ �ij i  j

�� �
¼ �i, j

�� �
 �
and V� W� ¼ �i, j

� �� ¼ �ih j  j

� ��
 �
and both have the dimension of DimðVÞ DimðWÞ.
Next, consider inner products on the product space. Inner products can only be formed

between V* and V, and also between W* and W. So if jv1i, jv2i 2 V and jw1i, jw2i 2 W
then the inner product can be written as

v1w1 j v2w2h i ¼ v1 j v2h i w1 j w2h i ð4:7:1Þ

Now we can specify the standard properties for the Hilbert space. The basis vectors
must satisfy an orthonormality relation of the form

�a b

�� �c d

� �
¼ �a j �ch i  b

��  d

� �
¼ �ac�bd ð4:7:2Þ
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Every vector in the space V W has a basis vector expansion with components

�j i ¼
X
ab

�ab �a b

�� �
�ab ¼ �a b

�� �� �
ð4:7:3Þ

The closure relation has the formX
ab

�a b

�� �
�a b

� �� ¼ 1̂1 ð4:7:4Þ

Notice that the general vector in the tensor product space cannot generally be
decomposed into the product of two vectors

�j i ¼
X
ab

�ab �a b

�� �
¼�
X
ab

�a �aj i�b  b

�� �
¼ �j i �j i

since the components �ab cannot be uniquely factored.

4.7.2 Operators

Operators ÔO operate either between direct product spaces such as ÔO : V W ! X  Y or
within a given direct product space such as ÔO : V W ! V W . For simplicity, we
consider the second case in this section.
One type of direct product operator consists of the direct product of two operators

ÔOðVÞ : V ! V and ÔOðWÞ : W ! W , denoted by ÔO ¼ ÔOðVÞ
ÔOðWÞ. To find the image of the

ÔOjvijwi, we just need to remember that ÔOðVÞ operates only on vectors in V and ÔOðWÞ

operates only on vectors in W. Therefore, we have

ÔOjvi wj i ¼ÔO Vð ÞÔO Wð Þ vj i wj i ¼ÔO Vð Þ vj iÔO Wð Þ wj i ¼ xj i y
�� �

where jxijyi 2 V W . The inner product behaves in a similar manner

q
� �� rh jÔO vj i wj i ¼ q

� �� rh jÔO Vð ÞÔO Wð Þ vj i wj i ¼ q
� ��ÔO Vð Þ vj i rh jÔO Wð Þ wj i

where jvi 2 V, jwi 2 W , and hqjhrj is a projector in the dual space V� W�. Not all
operators can be subdivided in such a way that one part operates solely on V while
another operates solely on W.
Another notation is quite common in the literature. It helps to distinguish between

ordinary multiplication and the direct product type; this distinction becomes especially
important for writing the matrix of a vector in the direct product space. If we have
an operator ÔOðVÞ : V ! V then we can use the unit operator on W to write ÔOðVÞ

 1̂1 :
V W ! V W then fÔOðVÞ

 1̂1gfjvi  jwig ¼ fÔOðVÞ
jvig  f1̂1jwig. More generally, we can

write

ÔO Vð Þ
ÔO Wð Þ

n o
vj i  wj if g ¼ ÔO Vð Þ vj i

n o
 ÔO Wð Þ wj i

n o
What about the addition of two operators?

ÔO Vð Þ
þÔO Wð Þ

n o
vj i  wj if g 	 ÔO Vð Þ

 1̂1þ 1̂1ÔO Wð Þ
n o

vj i  wj if g

Distributing terms gives

ÔO Vð Þ
þÔO Wð Þ

n o
vj i  wj if g ¼ ÔO Vð Þ

 1̂1
n o

vj i  wj if g þ 1̂1ÔO Wð Þ
n o

vj i  wj if g
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Simplifying gives

ÔO Vð Þ
þÔO Wð Þ

n o
vj i  wj if g ¼ ÔO Vð Þ vj i

n o
 wj i þ vj i  ÔO Wð Þ wj i

n o

as expected. The notation helps signify that the addition between vectors must be on the
direct product space.

4.7.3 Matrices of Direct Product Operators

The operators ÔO acting on the direct product space V W map one basis vector into
another. Assume the basis vectors for the spaces can be written as

Bv ¼ �1j i, �2j if g Bw ¼  1

�� �
,  2

�� �
 �
BVW ¼ �aj i  b

�� �
 �
The matrix of ÔO can be defined by the Oab, cd in ÔOj�c di�¼

P
a, b Oa, b;c, dj�a bi, which

produces the basis vector expansion of ÔO as

ÔO�¼
X
abcd

Oab;cd �a, b

�� �
�c, d

� �� ¼X
abcd

Oab, cd �aj i  b

�� �
�ch j  d

� �� ð4:7:5Þ

While this definition works, another grouping of the indices makes the direct product
matrix easier to calculate when taking the direct product of two other matrices. To this
end, rearrange the basis vectors and dummy indices in Equation 4.7.4 and write

ÔO ¼
X
abcd

Oac, bd �aj i �bh j½ �½j cih dj� ð4:7:6Þ

When necessary, we make the index convention that, for each ‘‘a’’ and ‘‘b,’’ the
summation is performed first over ‘‘d’’ and then over ‘‘c.’’ The object Oab, cd is a single
number (an element of a matrix). The collection of Oac, bd of complex numbers forms a
matrix that cannot, most of the time, be divided into the product of two matrices.

Case 1: ÔO ¼ÔOðVÞ ÔOðWÞ ¼ÔOðVÞÔOðWÞ

This case supposes that the operator ÔO operating on the direct product space V W
comes from two operators ÔO ¼ÔOðVÞÔOðWÞ where ÔOðVÞ : V ! V and ÔOðWÞ : W ! W . For
simplicity, assume Dim(V )¼Dim(W)¼ 2. The individual operators can be written as
basis vector expansions

ÔOðVÞ
¼
X
ab

OðVÞ

ab j�aih�bj and ÔOðWÞ
¼
X
cd

OðWÞ

cd j cih dj

The operator ÔO ¼ÔOðVÞÔOðWÞ can now be written as

ÔO ¼ÔOðVÞÔOðWÞ
¼
X
ab

OðVÞ
ab �aj ih�bj

X
cd

OðWÞ

cd j cih dj

¼
X
abcd

OðVÞ

ab OðWÞ

cd ½j�aih�bj�½j cih dj�
ð4:7:7Þ
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For each a, b, there exists a set of matrix elements Ocd. A comparison of Equations 4.7.7
and 4.7.6 shows the matrix elements of ÔO ¼ÔOðVÞÔOðWÞ must be related to those for ÔOðVÞ and
for ÔOðWÞ by Oac, bd ¼ OðVÞ

ab OðWÞ

cd . In matrix notation, this becomes

O ¼ O Vð Þ
O Wð Þ

¼
OðvÞ

11 OðvÞ
12

OðvÞ
21 OðvÞ

22

" #


OðwÞ
11 OðwÞ

12

OðwÞ
21 OðwÞ

22

" #

This is not the usual matrix multiplication! The matrix on the right-hand side is
multiplied into each element of the matrix on the left-hand side.

O ¼ O Vð Þ
O Wð Þ

¼
OðvÞ

11O
Wð Þ OðvÞ

12O
Wð Þ

OðvÞ
21O

Wð Þ OðvÞ
22O

Wð Þ

" #
¼

O Vð Þ

11 O
Wð Þ

11 O Vð Þ

11 O
Wð Þ

12 O Vð Þ

12 O
Wð Þ

11 O Vð Þ

12 O
Wð Þ

12

O Vð Þ

11 O
Wð Þ

21 O Vð Þ

11 O
Wð Þ

22 O Vð Þ

12 O
Wð Þ

21 O Vð Þ

12 O
Wð Þ

22

O Vð Þ

21 O
Wð Þ

11 O Vð Þ

21 O
Wð Þ

12 O Vð Þ

22 O
Wð Þ

11 O Vð Þ

22 O
Wð Þ

12

O Vð Þ

21 O
Wð Þ

21 O Vð Þ

21 O
Wð Þ

22 O Vð Þ

22 O
Wð Þ

21 O Vð Þ

22 O
Wð Þ

22

2
666664

3
777775

Of course each entry OðVÞ
ab OðWÞ

cd is just a single number found by ordinary multiplication
between numbers. The above matrix illustrates the convention for the indices of O.

Case 2: The operator ÔO cannot be divided

The last matrix given in case 1 provides a clue as to how O should be written for the
general case, namely

O ¼

O11, 11 O11, 12 O12, 11 O12, 12

O11, 21 O11, 22 O12, 21 O12, 22

O21, 11 O21, 12 O22, 11 O22, 12

O21, 21 O21, 22 O22, 21 O22, 22

2
66664

3
77775

With the index convention, matrices in direct product space can be multiplied together
as usual.

4.7.4 The Matrix Representation of Basis Vectors for Direct Product Space

Now let’s show how the matrices multiply and define the unit vectors in the cross
product space. Again for simplicity consider two 2-D Hilbert spaces V and W and use
the product of two operators ÔO ¼ ÂAvB̂Bw where the v and w indices refer to the original
Hilbert space in V W . Let’s convert the operator equation

ÂAvB̂Bw v
�� �

¼ v0
�� �

where the subscript  indicates the vector comes from V W . Operating with havjhbwj
and inserting the closure relation

P
c, d jcvdwihcvdwj ¼ 1̂1 produces

X
c, d

avh j bwh jÂAvB̂Bw cvdwj i cvdw
�� v� �

¼ avbw
�� v0� �
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We can write this in matrix notation asX
c, d

Aav cv|{z}
2

Bbw dw|{z}
2

Vcvdw ¼ V0
avbw

The numbers 1 and 2 under c, d indicate that we first sum over d and then over c. Writing
this in matrix notation gives us

A Vð Þ

11 B
Wð Þ

11 A Vð Þ

11 B
Wð Þ

12 A Vð Þ

12 B
Wð Þ

11 A Vð Þ

12 B
Wð Þ

12

A Vð Þ

11 B
Wð Þ

21 A Vð Þ

11 B
Wð Þ

22 A Vð Þ

12 B
Wð Þ

21 A Vð Þ

12 B
Wð Þ

22

A Vð Þ

21 B
Wð Þ

11 A Vð Þ

21 B
Wð Þ

12 A Vð Þ

22 B
Wð Þ

11 A Vð Þ

22 B
Wð Þ

12

A Vð Þ

21 B
Wð Þ

21 A Vð Þ

21 B
Wð Þ

22 A Vð Þ

22 B
Wð Þ

21 A Vð Þ

22 B
Wð Þ

22

2
666664

3
777775

v11

v12

v21

v22

2
66664

3
77775 ¼

v011

v012

v021

v022

2
66664

3
77775 ð4:7:8Þ

Notice the order of the factors and the order of the indices in Equation (4.7.8). The column
vectors must come from the direct product of two individual matrices. If jvi ¼ jrvijswi
then we see

v11

v12

v21

v22

2
66664

3
77775 ¼

r1s1

r1s2

r2s1

r2s2

2
66664

3
77775 ¼

r1
s1

s2

 !

r2
s1

s2

 !
2
666664

3
777775 ¼

r1

r2

 !


s1

s2

 !
ð4:7:9Þ

We therefore realize that the basis vectors can be represented by

1j i ¼ 1j iv 1j iw	
1

0

 !


1

0

 !
¼

1
1

0

 !

0
1

0

 !
0
BBBBB@

1
CCCCCA ¼

1

0

0

0

0
BBBB@

1
CCCCA

2j i ¼ 1j iv 2j iw	
1

0

 !


0

1

 !
¼

1
0

1

 !

0
0

1

 !
0
BBBBB@

1
CCCCCA ¼

0

1

0

0

0
BBBB@

1
CCCCA

3j i ¼ 2j iv 1j iw	
0

1

 !


1

0

 !
¼

0
1

0

 !

1
1

0

 !
0
BBBBB@

1
CCCCCA ¼

0

0

1

0

0
BBBB@

1
CCCCA

4j i ¼ 2j iv 2j iw	
0

1

 !


0

1

 !
¼

0
0

1

 !

1
0

1

 !
0
BBBBB@

1
CCCCCA ¼

0

0

0

1

0
BBBB@

1
CCCCA
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4.8 Unitary Operators and Similarity Transformations

Unitary and orthogonal operators map one basis set into another. These operators do not
change the length of a vector nor do they change the angle between vectors. Unitary
operators act on abstract Hilbert spaces. Orthogonal operators, a subset of unitary ope-
rators, act on Euclidean vectors. This section also discusses the rotation of functions.

4.8.1 Orthogonal Rotation Matrices

Orthogonal operators rotate real Euclidean vectors. The word ‘‘orthogonal’’ implies that
the length of a vector remains unaffected under rotations. The orthogonal operator can be
most conveniently defined through its matrix.

R�1 ¼ RT ð4:8:1Þ

This relation is independent of the basis set chosen for the vector space as it should be
since the effect of the operator does not depend on the chosen basis set. Recall the
definition of the transpose

RT
� �

ab
¼ Rba or RT

ab ¼ Rba ð4:8:2Þ

The defining relation in Equation (4.8.1) can be used to show Det ðR̂RÞ ¼ 1

1 ¼ Det 1ð Þ ¼ Det R̂RR̂RT
� �

¼ Det R̂RDet R̂RT ¼ Det R̂RDet R̂R ¼ Det R̂R
� �2

and therefore Det R̂R ¼ 1 by taking the positive root. The above string of equalities uses the
unit operator (unit matrix) defined by 1 ¼ ½�ab�. The discussion shows later that the
orthogonal matrix leaves angles and lengths invariant.
Recall that rotations can be viewed as either rotating vectors or the coordinate system. We

take the point of view that operators rotate the vectors as suggested by Figure 4.8.1.
Consider rotating all two-dimensional vectors by 	 (positive when counter clockwise). We
find the operator and then the matrix. The rotation operator provides R̂Rj1i ¼ j10i and
R̂Rj2i ¼ j20i. Reexpressing j10i and j20i in terms of the original basis vectors j1i and j2i
then provides the matrix elements according to R̂Rj1i ¼ R11j1i þ R21j2i and R̂Rj2i ¼ R21j1iþ
R22j2i. Figure 4.8.1 provides

10j i ¼ R̂R 1j i ¼ cos 	 1j i þ sin 	 2j i ¼ R11 1j i þ R21 2j i

20j i ¼ R̂R 2j i ¼ � sin 	 1j i þ cos 	 2j i ¼ R12 1j i þ R22 2j i
ð4:8:3Þ

FIGURE 4.8.1

Rotating the basis vectors and re-expressing them in the original basis set.
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where the coefficients are obtained from Figure 2. The results can be written as

R̂R ¼ R11 1j i 1h j þ R12 1j i 2h j þ R21 2j i 1h j þ R22 2j i 2h j

¼ cos 	 1j i 1h j � sin 	 1j i 2h j þ sin 	 2j i 1h j þ cos 	 2j i 2h j
ð4:8:4Þ

The operator R̂R is most correctly interpreted as associating a new vector ~vv0 (in the
Hilbert space) with the original vector ~vv. A rotation implies an element of time . . . time is
not involved with these particular operators. The matrix R changes the components of
a vector jvi ¼ xj1i þ yj2i into jv0i ¼ x0j1i þ y0j2i according to

x0

y0

" #
¼

cos 	 � sin 	

sin 	 cos 	

" #
x

y

" #
¼

x cos 	 � y sin 	

x sin 	 þ y cos 	

" #
where R ¼

cos 	 � sin 	

sin 	 cos 	

" #

ð4:8:5Þ

This last relation easily shows RTR¼ 1 so that R�1 ¼ RT as required for an orthogonal
operator R̂R and matrix R.
We can now see that the example rotation matrix transforms one basis into another.

Equation (4.8.5) shows that the length of a vector does not change under a rotation by
calculating the length

~vv0
�� ��2¼ x0ð Þ

2
þ y0
� �2

¼ x cos 	 � y sin 	
� �2

þ x sin 	 þ y cos 	
� �2

¼ x2 þ y2 ¼ ~vv
�� ��2

Therefore orthogonal matrices do not shrink or expand vectors. The same conclusion
can be verified by using Dirac notation

v0
�� ��2¼ v0

�� v0� �
¼ vh jR̂RþR̂R vj i ¼ vh jR̂RTR̂R vj i ¼ vh j1 vj i ¼ v j vh i ¼ vk k2

where the fourth term uses the fact that R̂R is real. The ‘‘rotation’’ operator R̂R does not
change the angle between two vectors jv0i ¼ R̂Rjvi and jw0i ¼ R̂Rjwi. The angle can be
defined through the dot product relation hv0jw0i ¼ ~vv0 � ~ww0 ¼ v0 w0 cos 	0.

cos 	0 ¼
1

v0w0
v0
�� w0

� �
¼

1

vw
vh jRTR wj i ¼

1

vw
v j wh i ¼ cos 	

The ‘‘rotation’’ operator R̂R is called orthogonal because it does not affect the ortho-
normality of basis vectors fj1i, j2i, . . .g in a real vector space. The set fR̂Rj1i, R̂Rj2i, . . .g must
also be a basis set.

4.8.2 Unitary Transformations

A unitary transformation is a ‘‘rotation’’ in the generalized Hilbert space. The set of
orthogonal operators forms a subset of the unitary operators. A unitary operator ‘‘ûu‘‘ is
defined to have the property that

ûuþ ¼ ûu�1 or ûuûuþ ¼ 1 ¼ ûuþûu ð4:8:6Þ

The unitary operator therefore satisfies jDetðuÞj2 ¼ 1 since

1 ¼ Detð1̂1Þ ¼ DetðûuûuþÞ ¼ DetðûuÞDetðûuþÞ ¼ DetðûuÞDet�ðûuÞ ¼ jDetðûuÞj2
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which used the property of determinants DetðuTÞ ¼ DetðuÞ. We can write DetðûuÞ ¼ ei�.
The relation ûuþ ¼ ûu�1 therefore provides the determinant to within a phase factor. We
customarily choose the phase to be zero (�¼ 0). Therefore, as an alternate definition of a
unitary operator, require DetðûuÞ ¼ 1:
The unitary transformations can be thought of as ‘‘change of basis operators’’ similar to

the rotation operator R̂R in the previous topic. That is, if Bv ¼ fjaig forms a basis set then so
does B0

v ¼ fûujai ¼ ja0ig. The operator ûu maps the vector space V into itself ûu : V ! V.
Unitary operators preserve the orthonormality relations of the basis set.

a0 jb0
� �

¼ ûu aj i
� �þ

ûu bj i
� �

¼ ah jûuþûu bj i ¼ ah j1 bj i ¼ a jbh i ¼ �ab

As a result, B0
v and Bv are equally good basis sets for the Hilbert space V.

The inverse of the unitary operator ûu, ûu�1 ¼ ûuþ can be written in matrix notation as

uþ ¼ uT� or uþ
� �

ab
¼ u�ba or sometimes uþab ¼ u�ba

Example 4.8.1

If ûu ¼
P

ab uabjaihbj then ûuþ can be calculated as

ûuþ ¼
X
ab

ðuabjai bh jÞ
þ
¼
X
ab

uabð Þ
þ bj i ah j ¼

X
ab

u�ab bj i ah j

Now notice that uab represents a single complex number and not the entire matrix so that
the dagger can be replaced by the complex conjugate without interchanging the indices.

Example 4.8.2

Show for the previous example that uþu¼ 1

ûuþûu ¼
X
��

u��� �
�� � �h j

 ! X
ab

uab aj i bh j

 !
¼
X
ab
��

u���uab �
�� � bh j �a� ¼

X
ab
�

u�a�uab �
�� � bh j

We need to work with the product of the unitary matrices.

X
a

u�a�uab ¼
X
a

uþ
� �

�a
uab ¼ uþu

� �
�b
¼ ��b

Notice that we switched the indices when we calculated Hermitian adjoint of the matrix
since we are referring to the entire matrix. Substituting this result for the unitary matrices
gives us

ûuþûu ¼
X
�b

��b �
�� � bh j ¼

X
b

bj i bh j ¼ 1

4.8.3 Visualizing Unitary Transformations

Unitary transformations change one basis set into another basis set.

Bv ¼ aj if g ! B0
v ¼ ûu aj i ¼ a0

�� �
 �
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Figure 4.8.2 shows the effect of the unitary transformation

ûu 1j i ¼ 10
�� �

ûu 2j i ¼ 20
�� �

The operator is defined by its affect on the basis vectors. The two objects j10ih1j and
j20ih2j, which are ‘‘basis vectors’’ for the vector space of operators fûug, perform the
following mappings

10
�� �

1h j maps 1j i ! 10
�� �

since 10
�� �

1h j
� 	

1j i ¼ 10
�� �

1 j 1h i ¼ 10
�� �

20
�� �

2h j maps 2j i ! 20
�� �

20
�� �

2h j
� 	

2j i ¼ 20
�� �

2 j 2h i ¼ 20
�� �

Putting both pieces together gives us a very convenient form for the operator

ûu ¼ 10
�� �

1h j þ 20
�� �

2h j

The operator can be written just by placing vectors next to each other. The operator ûu
can be left in the form

ûu ¼
X
a

a0
�� � ah j

to handle ‘‘rotations’’ in all directions. Of course, to use ûu for actual calculations, either ja0i
must be expressed as a sum over jai or vice versa.

4.8.4 Similarity Transformations

Assume there exists a linear operator ÔO that maps the vector space into itself ÔO : V ! V.
Assume the vectors jvi and jwi (not necessarily basis vectors) satisfy an equation of the
form ÔOjvi ¼ jwi. Now suppose that we transform both sides by the unitary transforma-
tion ûu and then use the definition of unitary ûuþûu ¼ 1 to find

ûuÔO vj i ¼ ûu wj i ! ûuÔOûuþûu vj i ¼ ûu wj i

Defining ÔO 0 ¼ ûuÔOûuþ and jv0i ¼ ûujvi and jw0i ¼ ûujwi provides

ÔO 0 v0
�� �

¼ w0
�� �

which has the same form as the original equation. The difference is that the operator ÔO is
now expressed in the ‘‘rotated basis set’’ as

ÔO 0 ¼ ûuÔOûuþ ð4:8:7Þ

FIGURE 4.8.2

The unitary operator is determined by the mapping of the basis vectors.
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Changing basis vectors also changes the representation of the operator ÔO.
Transformations as those found in Equation (4.8.7) are ‘‘similarity’’ transformations.

More generally, we write the similarity transformation as

ÔO 0 ¼ ŜSÔOŜS�1 ð4:8:8Þ

for a the general linear transformation ŜS. Equation 4.8.8 is equivalent to Equation (4.8.7)
because ûu is unitary ûu�1 ¼ ûuþ.
The similarity transformation can also be seen to have the formÔO 0 ¼ ûuÔOûuþ by using the

transformation ûu directly on the vectors in the basis vector expansion. For convenience,
assume ÔO : V ! V with V ¼ Spfjaig. Replacing jai with ûujai and jbi with ûujbi produces

ÔO ¼
X
ab

Oab aj i bh j ! ÔO0
¼
X
ab

Oab ûu aj i
� �

ûu bj i
� �þ

¼
X
ab

Oabûu aj i bh jûuþ ¼ ûuOûuþ

which is the same result as before.
A string of operators can be rewritten using unitary transformation ûu

ÔO1ÔO2 þ 5ÔO3ÔO
3
4

� �
vj i ¼ wj i ! ÔO 0

1ÔO
0
2 þ 5ÔO 0

3ÔO
0
43

� �
v0
�� �

¼ w0
�� �

For example,ÔO3
4 can be transformed by repeatedly inserting a ‘‘1’’ and applying 1 ¼ ûuþûu

as follows

ûu ÔO3
4

� �
ûuþ ¼ ûu ÔO4ÔO4ÔO4

� �
ûuþ ¼ ûu ÔO41ÔO41ÔO4

� �
ûuþ ¼ ûuÔO4ûu

þûuÔO4ûu
þûuÔO4ûu

þ ¼ÔO 0
4ÔO

0
4ÔO

0
4 ¼ ÔO 0

4

� �3

Example 4.8.3

Write hv0jT̂T0jw0i in terms of the objects jvi, T̂T, jwi where jv0i ¼ ûujvi and T̂T0 ¼ ûuT̂Tûuþ and
jw0i ¼ ûujwi. This is done as follows

v0
� ��T̂T0 w0

�� �
¼ vh jûuþ ûuT̂Tûuþ

� �
ûu wj i ¼ vh jT̂T wj i

again ÔO0
¼ ûu ÔOûuþ is the representation of the operator ÔO using the new basis set

B0
v ¼ fûujaig.

4.8.5 Trace and Determinant

The trace is important for calculating averages. Similarity transformations leave the trace
and determinant unchanged. That is, trace and determinant operations are invariant with
respect to similarity transformations. Consider

ÂA0
¼ ûuÂAûuþ and ûu : V ! V

The cyclic property of the trace and the fact that ûu is a unitary operator provides

TrðÂA0
Þ ¼ TrðûuÂAûuþÞ ¼ TrðÂAûuþûuÞ ¼ TrðÂAÞ
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The same calculation can be performed for the determinant

DetðÂA0
Þ ¼ DetðûuÂAûuþÞ ¼ DetðûuÞDetð ÂAÞDetðûuþÞ ¼ DetðÂAÞDetðûuûuþÞ ¼ DetðÂAÞ

4.9 Hermitian Operators and the Eigenvector Equation

The adjoint, self-adjoint and Hermitian operators play a central role in the study of
quantum mechanics and the Sturm–Liouville problem for solving partial differential
equations (refer to books on Boundary Value Problems).
In quantum mechanics, Hermitian operators represent physically observable quantities

such as energy ĤH, momentum p̂p, and electric field. The ‘‘observable’’ refers to a quality of
a particle that can be observed in the laboratory. In order to translate the physical world
into mathematics, we represent the observables with Hermitian operators. Hermitian
operators have eigenvectors that form a basis set fjnig for the vector space. Physical
systems require the completeness of the basis set in order to accommodate every possible
physical situation. The ‘‘completeness’’ of a basis set is related to a ‘‘completeness’’ in
nature. The eigenvalues are real. Physical systems need the real eigenvalues so that the
results of measurement will yield real results.

4.9.1 Adjoint, Self-Adjoint and Hermitian Operators

^

Spfjni : n ¼ 1, 2, . . .g. Let jfi, jgi be two elements in the Hilbert space. We define the
adjoint operator T̂Tþ to be the operator that satisfies

g
��� T̂TfD E

¼ T̂Tþg
��� fD E

ð4:9:1Þ

An operator T̂T is self-adjoint or Hermitian if T̂Tþ ¼ T̂T.
Previous sections define the adjoint T̂Tþ as connected with the dual vectors space. We

can demonstrate Equation 4.9.1 using the previous definition of the adjoint. Using the
notation T̂Tjfi ¼ jT̂Tfi, we find

g
��� T̂TfD E

¼ g
� ��T̂T f

�� � ¼ T̂Tþ g
�� �h iþ

f
�� � ¼ T̂Tþg

��� Eh iþ
f
�� � ¼ T̂Tþg

��� fD E

Example 4.9.1

If T̂T ¼ @=@x then find T̂Tþ for the following Hilbert space

HS ¼ f :
@f xð Þ

@x
exists and f ! 0 as x ! �1

� �

Solution

We want T̂Tþ such that hfjT̂Tgi ¼ hT̂Tþfjgi. Start with the quantity on the left

f
��� T̂TgD E

¼

Z 1

�1

dx f� xð ÞT̂Tg xð Þ ¼

Z 1

�1

dx f� xð Þ
@

@x
g xð Þ
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Let TT : V ! V be a linear transformation (Figure 4.9.1) defined on a Hilbert space V ¼



The procedure usually starts with integration by parts:

f
��� T̂TgD E

¼ f� xð Þg xð Þ
	1
�1

�

Z 1

�1

dx
@f� xð Þ

@x
g xð Þ

In most cases, the surface term produces zero. Notice the Hermitian property of the
operators depends on the properties of the Hilbert space. In the present case, the Hilbert
space is defined such that f�ð1Þgð1Þ � f�ð�1Þgð�1Þ ¼ 0; most physically sensible func-
tions drop to zero for very large distances. Next move the minus sign and partial
derivative under the complex conjugate to find

f
��� T̂TgD E

¼

Z 1

�1

dx �
@f xð Þ

@x

� ��
g xð Þ ¼ T̂Tþf

���gD E

Note everything inside the bra h j must be placed under the complex conjugate ð Þ
� in the

integral. The operator T̂Tþ must therefore be T̂Tþ ¼ �@=@x or equivalently

Example 4.9.2

Find the adjoint operator p̂pþ ¼ ðð�hh=iÞð@=@xÞÞ
þ for the same set of functions as for Example

4.9.1 where i ¼
ffiffiffiffiffiffiffi
�1

p
and �hh represents a constant.

Solution

p̂pþ ¼
�hh

i

@

@x

� þ

¼
�hh

i

� �þ @

@x

� þ

¼ �
�hh

i

� �
�
@

@x

� 
¼

�hh

i

@

@x
¼ p̂p

where the third term comes from Example 4.9.1. The operator p̂p must be Hermitian and
therefore corresponds to a physical observable.
As an important note, the boundary term f�ðxÞ gðxÞjba (from the partial integration in

the inner product) is always arranged to be zero. This depends on the definition of the
Hilbert space. A number of different Hilbert spaces can produce a zero surface term.
For example, if the function space is defined for x 2 ½a, b �, then the following conditions
will work

1. fðaÞ ¼ fðbÞ ¼ 0 8f 2 V

2. fðaÞ ¼ fðbÞ (without being equal to zero) 8f 2 V

Notice the property of an operator being Hermitian cannot be entirely separated from the
properties of the Hilbert space since the surface terms must be zero.

FIGURE 4.9.1

The vector and dual space.
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4.9.2 Adjoint and Self-Adjoint Matrices

First, we derive the form of the adjoint matrix using the basis expansion of an operator.
In the following, let jmi and jni be basis vectors. Take the adjoint of the basis expansion

T̂T ¼
X
mn

Tmn mj i nh j to get T̂Tþ ¼
X
mn

T�
mn nj i mh j

so now

ih jT̂Tþ j
�� � ¼X

mn

T�
mn i jnh i m j j

� �
¼
X
mn

T�
mn�in�mj ¼T�

ji

The adjoint matrix requires a complex conjugate and has the indices reversed.

Tþ
� �

ij
¼ T�

ji ð4:9:2Þ

Now we show how the adjoint comes from the basic definition of the adjoint ope-
rator in Equation (4.9.1), specifically hwjT̂Tvi ¼ hT̂Tþwjvi. To work with hwjT̂Tvi, we need to
use matrix notation for the inner product between two vectors jwi and jyi

w
��y� �

¼
X
a

w�
aya ¼ w�ð Þ

Ty ¼ wþy ð4:9:3Þ

The term hwjT̂Tvi can be transformed into hT̂Tþwjvi.

w
��� T̂TvD E

¼
X
ab

w�
aTabvb ¼

X
ab

TT
� �

ba
w�

avb ¼
X
ab

T�T
� �

ba
wa

� 	�
vb ¼ T�Tw

� 	þ
v ¼ T̂Tþw

���vD E

where the ‘‘þ’’ in the last step comes from requiring that the column vector y� ¼ ðT�TwÞ�

become a row vector to multiply into the column vector v. The adjoint must therefore be
Tþ

¼T*T.
Finally, a specific form for a Hermitian matrix can be determined. A matrix is

Hermitian provided T¼Tþ. For example, a 2� 2 matrix is Hermitian if

T ¼ Tþ so that T ¼
a b
c d

� �
¼

a� c�

b� d�

� �
¼ Tþ

For T to be Hermitian, require a¼ a*, d¼ d*, so that ‘‘a, b’’ are both real and b¼ c*.
The self-adjoint form of the matrix T is then

T ¼
a b
b� d

� �

where both ‘‘a, d’’ are real.

4.9.3 Eigenvectors and Eigenvalues for Hermitian Operators

We now show some important theorems. The first theorem shows that Hermitian
operators produce real eigenvalues. The importance of this theorem issues from
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representing all physically observable quantities by Hermitian operators. The result of
making a measurement of the observable must produce a real number. For example, for
a particle in an eigenstate jni of the Hermitian energy operator ĤH (i.e., the Hamiltonian),
the result for measuring the energy ĤHjni ¼ Enjni produces the real energy En. The
particle has energy En when it occupies state jni. Energy can never be complex (except
possibly for some mathematical constructs).
The second theorem shows that the eigenvectors of a Hermitian operator form a

basis (we do not prove completeness). This basically says that for every observable
in nature, there must always be a Hilbert space large enough to describe all possible
results of measuring that observable. The state of the particle or system can be Fourier
decomposed into the basis vectors.
Before discussing theorems, a few words should be said about notation conven-

tions and about degenerate eigenvalues. We will assume that for each eigenvalue En

there exists a single corresponding eigenfunction j�ni. We customarily label the eigen-
function by either the eigenvalue or by the eigenvalue number as

�nj i ¼ Enj i ¼ nj i

Usually, the eigenvalues are listed in order of increasing value

E15E25 . . .

The condition of nondegenerate eigenvalues means that for a given eigenvalue, there
exists only one eigenvector. The eigenvalues are ‘‘degenerate’’ if for a given eigenvalue,
there are multiple eigenvectors.

non-degenerate degenerate
E1 $ E1j i E1 $ E1j i

..

.
E2 $ E21j i, E22j i

En $ Enj i E3 $ E3j i

The degenerate eigenvectors (which means both states have the same ‘‘energy’’ En)
actually span a subspace of the full vector space. For example in the above table, the
vectors jE21i, jE22i corresponding to the eigenvalue E2 form a two-dimensional subspace.
Mathematically we can associate E2 with any vector in the subspace spanned by
fjE2, 1i, jE2, 2ig; however, it’s best to choose one vector in the subspace such that it is
orthogonal to the others in the set fjE1i, jE3i . . .g. The Graham–Schmidt orthonormaliza-
tion procedure helps here. After making the choice, we end up with a nondegenerate
case: jE1i, jE2i, jE3i, . . . :

THEOREM 4.9.1 Self-Adjoint Operators ĤH have real eigenvalues

Proof: Assume the set fjnig contains the eigenvectors corresponding to the eigenvalues fEng so
that the eigenvector equation can be written as ĤHjni ¼ Enjni. Consider

nh jĤH nj i ¼ nh jEn nj i ¼ En n j nh i ¼ En ð4:9:4Þ

This last equation provides the following string of equalities

E�
n ¼ nh jĤH nj i�¼ nh jĤH nj iþ¼ nh jĤHþ nj i ¼ nh jĤH nj i ¼ En
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where the third term uses the fact that � ! þ for the complex number hnjĤHjni, the fourth term
reverse all factors and the fifth term uses the ĤHþ ¼ ĤH. Therefore we find En ¼ E�

n, which means
that En must be real.

THEOREM 4.9.2 Orthogonal Eigenvectors

If ĤH is Hermitian then the eigenvectors corresponding to different eigenvalues are orthogonal.

Proof: Assume Em 6¼ En and start with two separate eigenvalue equations

ĤH Emj i ¼ Em Emj i ĤH Enj i ¼ En Enj i

operate with Enh j operate with Emh j

Enh jĤH Emj i ¼ Em En j Emh i Emh jĤH Enj i ¼ En Em j Enh i

Take adjoint of both sides

Enh jĤH Emj i ¼ En En j Emh i

where the right hand column made use of the Hermiticity of the operator ĤH and the reality of the
eigenvalues En. Now subtract the results of the two columns to find

0 ¼ Em � Enð Þ En j Emh i

We assumed that Em � En 6¼ 0 and therefore hEnjEmi ¼ 0 as required to prove the theorem.

As a result of the last two theorems, the eigenvectors form a complete orthonormal set

B ¼ Enj i ¼ nj if g ð4:9:5Þ

Next, examine what happens when two Hermitian operators ÂA, B̂B commute. Each
individual Hermitian operator must have a complete set of eigenvectors which means
that each Hermitian operator generates a basis set for the vector space. The commutator
½ÂA, B̂B� ¼ ÂA B̂B� B̂BÂA indicates whether or not the operators commute. The next theorem
shows that if the operators commute ½ÂA, B̂B� ¼ 0 then the operators ÂA and B̂B produce the
same basis set for the vector space. The vectors space can be either a single space V or a
direct product space V�W.

THEOREM 4.9.3 A Single Basis Set for Commuting Hermitian Operators

Let ÂA, B̂B be Hermitian operators that commute ½ÂA, B̂B� ¼ 0 then there exist eigenvectors j�i such
that ÂAj�i ¼ a�j�i and B̂Bj�i ¼ b�j�i

Proof: Assume that A has a complete set of eigenvectors. Let j�i be the eigenvectors of ÂA such that

ÂA �j i ¼ a� �j i ð4:9:6Þ

Further assume that for each a� there exists only one eigenvector j�i. Consider

B̂BÂA �j i ¼ B̂Ba� �j i ð4:9:7Þ

But ÂA B̂B ¼ B̂BÂA since ½ÂA, B̂B� ¼ 0 and so the left-hand side of this last equation becomes

ÂA B̂B �j i
� �

¼ ÂA B̂B �j i ¼ B̂BÂA �j i ¼ B̂Ba� �j i ¼ a� B̂B �j i
� �

ð4:9:8Þ

238 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



which requires B̂Bj�i to be an eigenvector of the operator ÂA corresponding to the eigenvalue a�.
But there can only be one eigenvector for each eigenvalue so j�i � B̂Bj�i. Rearranging this
expression and inserting a constant of proportionality b� we find B̂Bj�i ¼ b�j�i. This is an
eigenvector equation for the operator B; the eigenvalue is b�.

THEOREM 4.9.4 Common Eigenvectors and Commuting Operators

As an inverse to Theorem 4.9.3, if the operators ÂA, B̂B have a complete set of eigenvectors in
common then [A,B]¼ 0.

Proof: First, for convenience, let’s represent the common basis set by j�i ¼ ja, bi so that

ÂA a, bj i ¼ a a, bj i and B̂B a, bj i ¼ b a, bj i

Let jvi be an element of the direct product space of the eigenvectors for the operators ÂA, B̂B so
that it can be expanded as

vj i ¼
X
ab

�ab a bj i

then

ÂA B̂B vj i ¼
X
ab

�abÂA B̂B abj i ¼
X
ab

�abÂAb abj i
X
ab

�abba abj i

¼
X
ab

�abaB̂B abj i ¼
X
ab

�abB̂Ba abj i
X
ab

�abB̂BÂA abj i

¼ B̂BÂA vj i

This is true for all vectors in the vector space and so ÂA B̂B ¼ B̂BÂA.

4.9.4 The Heisenberg Uncertainty Relation

If two operators ÂA, B̂B commute then there exists a simultaneous set of basis functions
ja, bi ¼ jaijbi such that

ÂA a, bj i ¼ a a, bj i and B̂B a, bj i ¼ b a, bj i

and vice versa. We can show that if two operators do not commute then there exists
a Heisenberg uncertainty relation between them. The Heisenberg uncertainty relation
shows the standard deviation for measurements of ÂA and B̂B can never be simultaneously
zero (refer to the section on the relation between quantum theory and linear algebra
for more detail). The standard deviation 
A of an Hermitian operator ÂA for the vector
j i (not necessarily a basis vector) is defined to be


2A ¼ ÂA� ÂA
D E� �2� �

¼ ÂA2
D E

� ÂA
D E2

¼  
� ��ÂA2  

�� ��  
� ��ÂA  

�� �2
where h jÂAj i represents the average of the operator. A non-Hermitian operator would
require an adjoint operator.
We now show that two noncommuting Hermitian operators must always produce an

uncertainty relation.
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THEOREM 4.9.5 If two operators ÂA, B̂B are Hermitian and satisfy the commutation relation
½ÂA, B̂B� ¼ i ĈC then the observed values ‘‘a, b’’ of the operators must satisfy a Heisenberg uncertainty
relation of the form 
a
b � 1=2 j hĈCi j.

Proof: Consider the real, positive number defined by

� ¼ ÂAþ i�B̂B
� �

 
��� ÂAþ i�B̂B
� �

 
D E

which we know to be a real and positive since the inner product provides the length of the vector.
The vector, in this case, is defined by

ÂAþ i�B̂B
� �

 
��� E

¼ ÂAþ i�B̂B
� �

 
�� �

We assume that � is a real parameter. Now working with the number � and using the definition of
adjoint, namely

ÔOf
���gD E

¼ f
���ÔOþg

D E
,

we find

� ¼  

���� ÂAþ i�B̂B
� �þ

ÂAþ i�B̂B
� �

 

� �
¼  
� �� ÂAþ i�B̂B
� �þ

ÂAþ i�B̂B
� �

 
�� �

¼  
� �� ÂAþ

� i�B̂Bþ
� �

ÂAþ i�B̂B
� �

 
�� � ¼  

� �� ÂA� i�B̂B
� �

ÂAþ i�B̂B
� �

 
�� �

where the last step uses the Hermiticity of the operators ÂA, B̂B. Multiply the operator terms
in the bracket expression and suppress the reference to the wave function (for convenience) to
obtain

� ¼ ÂA2
D E

� � ĈC
D E

þ �2 B̂B2
D E

� 0

which must hold for all values of the parameter �. The minimum value of the positive real number
� is found by differentiating with respect to the parameter �.

@�

@�
¼ 0 ! � ¼

hĈCi

2hB̂B2i

The minimum value of the positive real number � must be

�min ¼ hÂA2
i �

1

4

hĈCi2

hB̂B2i
� 0

Multiplying through by hB̂B2i to get

ÂA2
D E

B̂B2
D E

�
1

4
ĈC
D E2

ð4:9:9Þ
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We could have assumed the quantities hÂAi ¼ hB̂Bi ¼ 0 and we would have been finished
at this point. However, the commutator ½ÂA, B̂B� ¼ iĈC holds for the two Hermitian operators
defined by

ÂA ! ÂA� ÂA
D E

B̂B ! B̂B� B̂B
D E

As a result, Equation (4.9.9) becomes

ÂA� ÂA
D E� �2� �

B̂B� B̂B
D E� �2� �

�
1

4
ĈC
D E2

However, the terms in the angular brackets are related to the standard deviations 
a,
b
respectively. We obtained the proof to the theorem by taking the square root of the previous
expression


a
b �
1

2
ĈC
D E��� ��� ð4:9:10Þ

Notice that this Heisenberg uncertainty relation involves the absolute value of the expectation
value of the operator C. By its definition, the operator C must be Hermitian and its expectation
value must be real.

Example 4.9.3

Find the 
x,
p for operators satisfying ½x̂x, p̂p� ¼ i�hh where i ¼
ffiffiffiffiffiffiffi
�1

p
and �hh represents a

constant.

Solution

The operator ĈC ¼ �hh and so the results of Theorem (4.9.5) provides


x
p �
1

2
ĈC
D E��� ��� ¼ �hh

2

4.10 A Relation Between Unitary and Hermitian Operators

As previously discussed, a Hermitian operator ĤH : V ! V has the property that
ĤH ¼ ĤHþ. This section shows how unitary operators can be expressed in the form
ûu ¼ eiĤH where ĤH is a Hermitian operator.
We can show that the operator ûu ¼ eiĤH is unitary by showing ûuþûu ¼ 1

ûuþûu ¼ eiĤH
� �þ

eiĤH
� �

¼ e�iĤHþ

eiĤH ¼ e�iĤHeiĤH ¼ e0 ¼ 1

This is a one line proof, but a few steps need to be explained as follows:

1. A function of an operator fðÂAÞ must be interpreted as a Taylor expansion.
Therefore, we define the exponential of an operator to be shorthand notation for a
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Taylor series expansion in that operator. Recall that the Taylor series expansion of
an exponential has the form

eax ¼
X1
n¼0

1

n!

@neax

@xn

����
x¼0

xn ¼ 1þ
@

@x
eaxð Þx¼0 xþ � � � ¼ 1þ axþ

a2

2
x2 þ � � �

In analogy, the exponential of an operator ĤH (or equivalently of a matrix H)
can be written as

eiHt ¼ 1þ iHð Þtþ
iHð Þ

2

2
t2 þ . . .

2. We wrote e�iĤHeiĤH ¼ ei ðĤH�ĤHÞ ¼ e0 ¼ 1. As shown in Section 4.6, e ÂAe B̂B ¼ e ÂAþB̂B when
½ÂA, B̂B� ¼ 0. This condition is satisfied because ½ĤH, ĤH� ¼ ĤHĤH � ĤHĤH ¼ 0.

Example 4.10.1

Find the unitary matrix corresponding to eiH where

H ¼
0:1 0
0 0:2

� �

Solution

First note that the matrix H is Hermitian H ¼ Hþ

u ¼ eiH ¼ exp i
0:1 0

0 0:2

 !( )
¼

1 0

0 1

" #

þ i
0:1 0

0 0:2

" #
þ

i2

2!

0:1 0

0 0:2

" #2

þ . . . ¼
ei0:1 0

0 ei0:2

" #

4.11 Translation Operators

Common mathematical operations such as rotating or translating coordinates are
handled by operators in the quantum theory. Previous sections in this chapter show that
states transform by the application of a single unitary operator whereas ‘‘operators’’
transform through a similarity transformation. The translation through the spatial
coordinate x provides a standard example. Every operation in physical space has a
corresponding operation in the Hilbert space.

4.11.1 The Exponential Form of the Translation Operator

Let x̂x and p̂p be the position operator and an operator defined in terms of a derivative

p̂p ¼
1

i

@

@x
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which is the ‘‘position’’ representation of p̂p and i ¼
ffiffiffiffiffiffiffi
�1

p
. The position representation of x̂x

is x. The operator p̂p is Hermitian (note that p̂p is the momentum operator from quantum
theory except the �hh has been left out of the definition given above). The coordinate kets
satisfy x̂xjxi ¼ xjxi and the operators satisfy ½x̂x, p̂p� ¼ ½x̂xp̂p� p̂px̂x� ¼ i as can be easily verified

x̂x, p̂p
� 	

fðxÞ ¼ x̂xp̂p� p̂px̂x
� 	

fðxÞ ¼ x
1

i

@

@x
f �

1

i

@

@x
xf
� �

¼ x
1

i

@

@x
f �

x

i

@f

@x
�
1

i
f ¼ if

comparing both sides, we see that the operator equation ½x̂x, p̂p� ¼ i holds. The commutator
being nonzero defines the so-called conjugate variables. The translation operator uses
products of the conjugate variables. The operator p̂p is sometimes called the generator of
translations. The Hamiltonian is the generator of translations in time.
This topic shows that the exponential T̂Tð�Þ ¼ e�i�p̂p translates the coordinate system

according to

T̂T �ð ÞfðxÞ ¼ e�i�p̂pfðxÞ ¼ fðx� �Þ

where p̂p ¼ ð1=iÞ ð@=@xÞ. The proof starts (Figure 4.11.1) by working with a small
displacement �k and calculating the Taylor expansion about the point ‘‘x’’

fðx� �kÞ ffi fðxÞ �
@fðxÞ

@x
�k þ . . . ¼ 1� �k

@

@x
þ . . .

� 
fðxÞ

Substituting the operator for the derivative

p̂p ¼
1

i

@

@x

gives

fðx� �kÞ ¼ 1� �k
@

@x
þ . . .

� 
fðxÞ ¼ 1� i�kp̂pþ . . .

� �
fðxÞ ¼ exp �i�kp̂p

� �
fðxÞ

Now, by repeated application of the infinitesimal translation operator, we can build up
the entire length �

fðxþ �Þ ¼
Y
k

exp �i�kp̂p
� �

fðxÞ ¼ exp �
X
k

i�kp̂p

 !
fðxÞ ¼ exp �i�p̂p

� �
fðxÞ

So the exponential with the operator p̂p provides a translation according to

T̂T �ð ÞfðxÞ ¼ e�i�p̂pfðxÞ ¼ fðx� �Þ

Note that the translation operator is unitary T̂Tþ ¼ T̂T�1 for � real since p̂p is Hermitian.
It is easy to show T̂Tþð��Þ ¼ T̂Tð�Þ. The operator p̂p is the generator of translations.

FIGURE 4.11.1

The total translation is divided into smaller translations.
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In the quantum theory, the momentum conjugate to the displacement direction generates
the translation according to

T̂T �ð ÞfðxÞ ¼ e�i�p̂p=�hhfðxÞ ¼ fðx� �Þ where p̂p ¼
�hh

i

@

@x

Notice the extra fractor of �hh.

4.11.2 Translation of the Position Operator

This topic show that

T̂Tþ �ð Þ x̂x T̂T �ð Þ ¼ x̂x� �

where T̂Tð�Þ ¼ e�i�p̂p. This is easy to show using the operator expansion theorem in
Section 4.6

e�ÂAB̂Be��ÂA ¼ B̂Bþ
�

1!
ÂA, B̂B
h i

þ
�2

2!
ÂA, ÂA, B̂B
h ih i

þ � � �

Using ÂA ¼ ip̂p and the commutation relations ½x̂x, p̂p� ¼ i, we find

ei�p̂px̂xe�i�p̂p ¼ x̂xþ
�

1!
ip̂p, x̂x
� 	

þ
�2

2!
ip̂p, ip̂p, x̂x
� 	� 	

þ � � � ¼ x̂x� �

4.11.3 Translation of the Position-Coordinate Ket

The position-coordinate ket jxi is an eigenvector of the position operator x̂x

x̂x xj i ¼ x xj i

What position-coordinate ket j�i is an eigenvector of the translated operator

T̂Tþ �ð Þ x̂x T̂T �ð Þ ¼ x̂x� �

that is, what is the state j�i ¼ T̂Tþð�Þ jxi ? The eigenvector equation for the translated
operator x̂xT ¼ T̂Tþx̂x T̂T is

x̂xTj�
�
¼ T̂Tþ �ð Þx̂xT̂T �ð Þj�i ¼ T̂Tþ �ð Þx̂xT̂T �ð Þ

h i
T̂Tþ �ð Þjx

E
¼ T̂Tþ �ð Þx̂xjx

E
¼ xT̂Tþ �ð Þjx

E
¼ xj�i

However, we know the translated operator is x̂xT ¼ x̂x� � and therefore the previous
equation provides

x �j i ¼ x̂xT �j i ¼ x̂x� �
� �

�j i ¼ �� �ð Þ �j i

Comparing both sides, we see � ¼ xþ � which therefore shows that the translated
position vector is

�j i ¼ T̂Tþ �ð Þ xj i ¼ xþ �j i
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4.11.4 Example Using the Dirac Delta Function

Show that

�j i ¼ T̂Tþ �ð Þ x0
�� �

¼ x0 þ �
�� �

using the fact that the position-ket represents the Dirac delta function in Hilbert space

x0
�� �

	 � � � x0ð Þ
�� �

where ‘‘�’’ represents the missing variable. If ‘‘x’’ is a coordinate on the x-axis then

x
�� x0� �

	

Z 1

�1

d& �ð& � xÞ �ð& � x0Þ ¼ �ðx� x0Þ

Applying the translation operator in the x-representation

xh jT̂T �ð Þ x0
�� �

¼ e�i�p̂px x
�� x0� �

¼ e�i�p̂px� x� x0ð Þ ¼ � x� �� x0ð Þ ¼ x
�� x0 þ �� �

Evidently

T̂T �ð Þ x0
�� �

¼ x0 þ �
�� �

4.12 Functions in Rotated Coordinates

This section shows how the form of a function changes under rotations. It then
demonstrates a rotation operator.

4.12.1 Rotating Functions

If we know a function f (x,y) in one set of coordinates (x,y) then what is the function
f 0ðx0, y0Þ for coordinates ðx0, y0Þ that are rotated through an angle 	 with respect to the first
set (x,y).
Consider a point in space � as indicated in the picture. The single point can be described

by the primed or unprimed coordinate system. The key fact is that the equations linking
the two coordinate systems describe the single point �. The equations for coordinate
rotations are

r0 ¼ R r ð4:12:1Þ

where

r0 ¼
x0

y0

 !
R ¼

cos 	 sin 	

� sin 	 cos 	

 !
r ¼

x

y

 !
ð4:12:2Þ

r0 and r represent the single point �. Notice the matrix differs by a minus sign from that

whereas Equation (4.12.1) rotates vectors.
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A value ‘‘z’’ associated with the point � is the same value regardless of the reference
frame. Therefore, we require

z ¼ f 0 x0, y0
� �

¼ f x, y
� �

ð4:12:3Þ

since ðx0, y0Þ and (x,y) specify the same point �. We can write the last equation using
Equation 4.12.1 as

f 0ðx0, y0Þ ¼ fðx, yÞ ¼ fðR�1r0Þ ð4:12:4Þ

where for the depicted 2-D rotation

R�1 ¼
cos 	 � sin 	

sin 	 cos 	

 !

Example 4.12.1

Suppose the value associated with the point r ¼
�
1
3

�
is 10, that is f(1,3)¼ 10 what is

f 0ðx0 ¼ 3, y0 ¼ �1Þ for 	 ¼ �=2?

Solution

Using Equation (4.12.4), we find

f 0 3, � 1ð Þ ¼ f R�1r0
� 	

¼ f
cos 	 � sin 	

sin 	 cos 	

 !
3

�1

 !" #
¼ f

0 �1

1 0

 !
3

�1

 !" #
¼ fð1, 3Þ ¼ 10

4.12.2 The Rotation Operator

The unitary operator

R̂R ¼ ei~���
~LL=�hh ð4:12:5Þ

maps a function into another that corresponds to rotated position coordinates. Here,
L̂L ¼ Lx ~xxþ Ly ~yyþ Lz ~zz is the generator of rotations (later called the angular momentum
operator) and ~�� ¼ �x ~xxþ �y ~yyþ �z ~zz gives a rotation angle. For example, �z is the rotation
angle around the ~zz axis. In the 3-D case, j~��j is the rotation angle about the unit axis ~��=j~��j.

FIGURE 4.12.1

Rotated coordinates.
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Consider the simple case of a rotation about the ~zz axis.

R̂R ¼ ei	oL̂Lz=�hh

where the operator Lz has the form Lz ¼ i�hh @=@	. The nonzero commutator ½	, L̂Lz� ¼ �hh=i
indicates the rotation operator uses products of conjugate variables similar to the
translation operator. The operator L̂Lz is sometimes termed the generator of rotations.
Consider a function  ðr, 	Þ 	  ð	Þ and calculate a new function corresponding to the old
one evaluated at 	! 	 þ ". The Taylor expansion gives

 0 	ð Þ ¼  	 þ "ð Þ ¼  	ð Þ þ
"

1!

@

@	
 	ð Þ

þ
"2

2!

@2

@	2
 	ð Þ þ . . . ¼ 1̂1þ

"

1!

@

@	
þ
"2

2!

@2

@	2
þ . . .

� �
 	ð Þ ¼ e"@	 	ð Þ

where @	 ¼ @=@	. We can rearrange the exponential in terms of the z-component of the
angular momentum Lz ¼ �hh

i
@
@	 to find R̂Rð"Þ ¼ e"@	 ¼ ei"Lz=�hh. Repeatedly applying the operator

produces the rotation

R̂R 	0ð Þ ¼ ei	0Lz=�hh and  0 	ð Þ ¼  	 þ 	0ð Þ ¼ R̂R 	0ð Þ 	ð Þ ð4:12:6Þ

Figure 4.12.2 shows that the rotation moves the function in the direction of a negative
angle or rotates the coordinates in the positive direction. If we replace 	0 ! �	0 then the
rotation would be in the opposite sense.
We can easily show the generator of rotation Lz ¼ ð�hh=iÞ@	 can be replaced by

Lz ¼ xpy � ypx ¼ ðx@y � y@xÞ�hh=i. The two sets of coordinates are related by

x ¼ r cos 	 and y ¼ r sin 	

Therefore

@

@	
 x, y
� �

¼
@ 

@x

@x

@	
þ
@ 

@y

@y

@	
¼ �r sin 	

@ 

@x
þ r cos 	

@ 

@y
¼ x

@

@y
� y

@

@x

� 
 ¼

i

�hh
Lz 

as required.
The position operator can be written in rotated form. Denote the position operator by

r̂r ¼ x̂x~xxþ x̂x~yyþ ẑz~zz where ~xx, ~yy, ~zz represent the usual Euclidean unit vectors. The position
operator provides the relation r̂rj~rroi ¼ ~rroj~rroi. Now consider a rotation of a function. The
relation between the new and old functions gives h~rrj 0i ¼ h~rrjR̂Rj i 	 h~rr0j i. We therefore

FIGURE 4.12.2

Rotating the function through an angle.
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conclude that j~rr0i ¼ R̂Rþj~rri. For example, the coordinate ket might represent the wave
function for a particle localized at the particular point ~rr. We see that the operator rotates
the location in the positive angle direction. We can also see that the position operator
must satisfy the relation

r̂r ~rr0
�� � ¼ ~rr0 ~rr0

�� � ! r̂r R̂Rþ ~rr
�� � ¼ ~rr0R̂Rþ ~rr

�� � ! R̂R r̂r R̂Rþ ~rr
�� � ¼ ~rr0 ~rr

�� � ! r̂r0 ¼ R̂R r̂r R̂Rþ

which gives the rotated form of the position operator. We can also show

~rr
��  0

� �
¼ ~rr0

��  � �
!  0 ~rr

� �
¼  ~rr0

� �
! R̂R ~rr

� �
¼  ~rr0 ¼ R�1~rr

� �
where R̂R is the corresponding operator for Euclidean vectors. This shows that for every
operation in coordinate space, there must correspond an operation in Hilbert space. The
angle represents the coordinate space while the angular momentum represents the
Hilbert space operation.

4.13 Dyadic Notation

This section develops the dyadic notation for the second rank tensor. We will see that it is
equivalent to writing a 2-D matrix. Studies in solid state often use dyadic quantities to
describe the effective mass of an electron or hole. For example, formulas relating the
acceleration of a particle ~aa to the applied force ~FF have the form

~FF ¼ m
$

� ~aa ð4:13:1Þ

where the dyadic quantity m
$

represents the effective mass. This equation says that an
applied force can produce an acceleration in a direction other than parallel to the force.
A dyad can be written in terms of components for example

A
$

¼
X
ij

Aijêeiêej ð4:13:2Þ

where the unit vector êei can be one of the basis vectors fx̂x, ŷy, ẑzg for a 3-D space, and the êeiêej
symbol places the unit vectors next to each other without an operator separating them.

Example 4.13.1

Find A � ~vv for A
$

¼ 1êe1êe1 þ 2êe3êe2 þ 3êe2êe3 and ~vv ¼ 4êe1 þ 5êe2 þ 6êe3

Solution

A
$

� ~vv ¼ 1êe1êe1 þ 2êe3êe2 þ 3êe2êe3ð Þ � 4êe1 þ 5êe2 þ 6êe3ð Þ ¼ 4êe1 þ 10êe3 þ 18êe2 ¼ 4x̂xþ 18ŷyþ 10ẑz

The coefficients in Equation (4.13.2) can be arranged in a matrix. This means that a 3� 3
matrix provides an alternate representation of the second rank tensor and the dyad. The
matrix elements can easily be seen to be

êea � A
$

� êeb ¼
X
ij

Aij êea � êeiêej � êeb ¼
X
ij

Aij �ai�jb ¼ Aab ð4:13:3Þ
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The procedure should remind you of Dirac notation for the matrix discussed in

The unit dyad can be written as

1
$

¼
X
i

êeiêei ð4:13:4Þ

Applying the definition of the matrix elements in Equation 4.13.3 shows the unit dyad
produces the unit matrix.

Example 4.13.2

Show that if I
$

¼ A
$

then Aab ¼ �ab

Solution

Operate with êea on the left and êeb on the right to find

êea � 1
$

� êeb ¼ êea � A
$

� êeb ¼ êea �
X
ij

Aijêeiêej

0
@

1
A � êeb ¼

X
ij

Aij�ai�jb ¼ Aab

Now let’s discuss the inverse of a dyad. Suppose

1
$

¼ A
$

� B
$

ð4:13:5Þ

then we can show that B
$

¼ A
$�1

where A
$

¼
P

ii0 Aii0 êeiêei0 and B
$

¼
P

jj0 Bjj0 êejêej0 . Operating
on the left of Equation (4.13.5) with êea and on the right by êeb produces

�ab ¼ êea �
X
ii0

Aii0 êeiêei0 �
X
jj0

Bjj0 êejêej0

0
@

1
A � êeb ¼

X
ii0jj0

Aii0Bjj0 êea � êeiêei0 � êejêej0 � êeb

The dot products may produce Kronecker delta functions

�ab ¼
X
ii0jj0

Aii0Bjj0�ai�i0j�j0b ¼
X
j

AajBjb

which shows the matrices A and B must be inverses.

4.14 Minkowski Space

The study of the matter–light interaction often starts with the Lagrangian or Hamiltonian
formulation. The tensor notation commonly found with studies of special relativity
provides a compact, simplifying notation in many cases of interest. However, to be
useful for special relativity, the notation must also accurately account for the pseudo
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inner product for Minkowski space necessary to make the speed of light independent
of the observer. Refer to the companion volume for an introduction to the special
relativity.
Minkowski space has four dimensions with coordinates ðx0, x1, x2, x3Þ where for special

relativity, the first coordinate is related to the time t. Rather than defining the inner
product as hvjwi ¼

P
n vnwn, the inner product has the form

v j wh i ¼ v0w0 � v1w1 þ v2w2 þ v3w3ð Þ ð4:14:1Þ

Based on this definition, the inner product for Minkowski space does not satisfy all the
properties of the inner product. In particular, the pseudo inner product in Equation 4.14.1
does not require the vectors v and w to be zero when the inner product has the value of
zero. The theory of relativity uses two types of notation. In the first, Minkowski 4-vectors
use an imaginary number ‘‘i’’ to make the ‘‘inner product’’ appear similar to Euclidean
inner products. In the second, a ‘‘metric’’ matrix is defined along with specialized
notation. Additionally, a constant multiplies the time coordinate t in order to give it the
same units as the spatial coordinates.
One variant of the 4-vector notation uses an imaginary ‘‘i’’ with the time coordinate

x� ¼ ðict, x, y, zÞ ¼ ðict, ~rrÞ. The constant c, the speed of light, converts the time t into a
distance. The pseudo inner product of the vector with itself then has the form

x�x� 	
X4
�¼1

x�x� ¼ ict, ~rr
� �

� ict,~rr
� �

¼ �c2t2 þ x2 þ y2 þ z2 ð4:14:2Þ

The imaginary number i ¼
ffiffiffiffiffiffiffi
�1

p
makes the calculation of length look like Pythagoras’s

theorem but produces the same result as for the pseudo inner product in Equation
(4.14.1). Notice the ‘‘Einstein repeated summation convention’’ where repeated indices
indicate a summation. The indices appear as subscripts. Notice this pseudo inner product
does not require x� to be zero when x�x� ¼ 0.
As an alternate notation, the imaginary number can be removed by using a ‘‘metric’’

matrix. As is conventional, we use natural units with the speed of light c¼ 1 and �hh¼ 1 for
convenience. The various constants can be reinserted if desired.
We represent the basic 4-vector with the index in the upper position. For example, we

can represent the space–time 4-vector in component form as

x� ¼ t, x, y, z
� �

¼ t,~rr
� �

ð4:14:3Þ

where time t comprises the �¼ 0 component. Notice the conventional order of the
components. The position of the index is significant. To take a pseudo inner product, we
could try writing x�x� ¼ t2 þ x2 þ . . . where we have used a repeated index convention.
However, the result needs an extra minus sign. Instead, if we write

x� ¼ t, � ~rr
� �

ð4:14:4Þ

then the summation becomes x�x� ¼ ðt, � ~rrÞ � ðt, ~rrÞ ¼ t2 � r2 where the ‘‘extra’’ minus sign
appears. Again the position of the index is important. Apparently, lowering an index
places a minus sign on the spatial part of the 4-vector.
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A metric (matrix) provides a better method of tracking the minus signs. Consider the
following metric

g� ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BBB@

1
CCCA ¼ g� ð4:14:5Þ

Ordinary matrix multiplication then produces

x� ¼ g�x
 ð4:14:6aÞ

Notice the form of this result and the fact that we sum over the  index by the
summation convention. We can also write

x� ¼ g�x ð4:14:6bÞ

Therefore to take a pseudo inner product, we write

x�x
� ¼ g�x


� �

x� ¼ t, � ~rr
� �

� t, ~rr
� �

¼ t2 � r2 ð4:14:7Þ

The metric given here is the ‘‘West Coast’’ metric since it became most common on
the west coast of the U.S. The east coast metric contains a minus sign on the time
component and the rest have a ‘‘þ’’ sign.
Derivatives naturally have lower indices.

@� ¼ @0, @1, @2, @3ð Þ ¼
@

@x0
,
@

@x1
,
@

@x2
,
@

@x3

� 
¼

@

@t
,
@

@x
,
@

@y
,
@

@z

� 
¼

@

@t
,r

� 
¼ X ð4:14:8Þ

Notice the location of the indices. The upper-index case gives

@� ¼ g�@ ¼ @0,�@1,�@2,�@3ð Þ ¼
@

@t
, � r

� 
ð4:14:9Þ

Let’s consider a few examples. The complex plane wave has the form

ei
~kk�~rr�!t
� �

¼ e�i !t�~kk�~rr
� �

¼ e�ik�x�

where k� ¼ ð!, ~kkÞ. Also notice that the wave equation

r2 �
@2

@t2

� 
 ¼ 0

can be written as

@�@
� ¼ 0

just keep in mind the repeated index convention.
As a note, any valid theory must transform correctly. The inner product is

relativistically correct since it is invariant with respect to Lorentz transformations.
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4.15 Review Exercises

4.1 If ~WW ¼ ð3þ jÞx̂xþ ð�1� jÞŷy with j ¼
ffiffiffiffiffiffiffi
�1

p
write hWj in terms of h1j, h2j.

4.2 For the basis set fein�x=L=
ffiffiffiffiffiffi
2L

p
: n ¼ 0, � 1, . . .g write out the closure relation in terms

of the Dirac delta function.
4.3 Use change of variables to find

R 1
�1 fðxÞ �ðaxÞ dx where a4 0.

4.4 Use integration by parts to find
R 1
�1 dx fðxÞ �

0ðxÞ where �0ðxÞ ¼ d=dx�ðxÞ.
4.5 Show that the set of Euclidean vectors f~vv ¼ a~xxþ b~yy : a, b 2 Cg forms a vector space

when the binary operation is ordinary vector addition. C denotes complex numbers
and ~xx, ~yy represent basis vectors.

4.6 Explain why the dot product satisfies the properties of the inner product.
4.7 Show that the set of 2-D Euclidean vectors terminating on the unit circle f~vv : j~vvj ¼ 1g

do not form a vector space.
4.8 Find the sine series of cos(x) on the interval (0, �).
4.9 Change the set of functions f1, x, x2g into a basis set on the interval (�1, 1).

4.10 Starting with the vector space V, show that the dual space V* must also be a vector
space. That is, show that the vectors in V* satisfy the properties required of a vector
space.

4.11 Show that the adjoint operator induces an inner product on the dual space V*. That
is, show that we can define an inner product on V*.

4.12 Find k~vvk2 when jvi ¼ 2jj1i þ 3j2i where j ¼
ffiffiffiffiffiffiffi
�1

p
.

4.13 Find the Fourier transform of �ðx� 1Þ and of 1
2 �ðx� 1Þ þ 1

2 �ðxþ 1Þ.
4.14 Show that the Fourier series in terms of complex exponentials

fðxÞ ¼
X1

n¼�1

Dn
1ffiffiffiffiffiffi
2L

p exp i
n�x

L

� �

must be equivalent to the Fourier series with the basis set

1ffiffiffiffiffiffi
2L

p ,
1ffiffiffi
L

p cos
n�x

L

� �
,

1ffiffiffi
L

p sin
n�x

L

� �
: n ¼ 1, 2, . . .

� �

Hint: Start with

fðxÞ ¼
�offiffiffiffiffiffi
2L

p þ
X1
n¼1

�n
1ffiffiffi
L

p cos
n�x

L

� �
þ
X1
n¼1

�n
1ffiffiffi
L

p sin
n�x

L

� �

and rewrite the sine and cosine terms as complex exponentials. In the sum-
mation

P1

n¼1
1ffiffi
L

p ð
�nþi�n

2 Þ expð�i n�xL Þ replace ‘‘n’’ with ‘‘–n.’’ Combine all terms under
the summation and define new constants Dn. Relate these new coefficients to the
old ones.

4.15 Show that Bs ¼ f nðxÞ : n ¼ 1, 2, 3 . . .g ¼ f

ffiffi
2
L

q
sin ðn�xL Þ n ¼ 1, 2, 3 . . .g is orthonormal

on 05x5L.
4.16 Write the closure relation in the form of a Dirac delta function for the sine basis and

the two forms of the Fourier series basis (Problem 4.14). Be sure to state the domain
of integration correctly.

4.17 Show that the null space of a linear operator T̂T defined by N ¼ fjvi : T̂Tjvi ¼ 0g forms
a vector space.

4.18 Show that the inverse of a linear operator T̂T does not exist when the null space
N ¼ fjvi : T̂Tjvi ¼ 0g has more than one element.
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4.19 Let T̂T : V ! W be an ‘‘onto’’ linear operator. Let V ¼ Spfj�ii : i ¼ 1, . . . , nvg and
W ¼ Spfj ii : i ¼ 1, . . . , nwg. Show that

DimðVÞ ¼ DimðWÞ þDimðNÞ

where N ¼ null space N ¼ fjvi : T̂Tjvi ¼ 0g. Hint: Let j1i, . . . , jni be the basis for N. Let
j1i, . . . , jni, jnþ 1i, . . . , jpi be the basis for V. Use the definition of linearly
independent. Note that 0 ¼ T̂T

Pp
i¼nþ1 cijii requires

Pp
i¼nþ1 cijii be in the null space.

The null space has only ~00 in common with Spfjnþ 1i, . . . , jpig.
4.20 For vector spaces V and W and linear operator T̂T : V ! W ¼ RangeðT̂TÞ, show that

every vector jwi must have multiple preimages in V when the Null space
N ¼ fjvi : T̂Tjvi ¼ 0g has multiple elements. Conclude the inverse of T̂T does not exist.
Hint: Suppose jwi 2 W , jwi 6¼ ~00 and T̂Tjvi ¼ jwi. Examine N þ fjvig where N
represents the null space.

4.21 Let fj�1i, j�2ig be a basis set. Write the following operator in matrix notation

L̂L ¼ �1j i �1h j þ 2 �1j i �2h j þ 3 �2j i �2h j

4.22 AHilbert space V has basis fj�1i, j�2ig. Assume the linear operator L̂L : V ! V has the

matrix L ¼ 0 1
2 3

� 	
. Write the operator in the form L̂L ¼

P
ij Lijj�iih�jj.

4.23 Write an operator L̂L : V ! V in the form L̂L ¼
P

Labj�aih�bj when L̂L maps the basis
set fj�1i, j�2ig into the basis set fj 1i, j 2ig according to the rule L̂Lj�1i ¼ j 1i and
L̂Lj�2i ¼ j 2i. Assume the two sets of basis vectors are related as follows

 1

�� �
¼

1ffiffiffi
3

p �1j i þ

ffiffiffi
2

3

r
�2j i and  2

�� �
¼ �

ffiffiffi
2

3

r
�1j i þ

1ffiffiffi
3

p �2j i

4.24 Suppose ĤH ¼
P

n Enjnihnjwhere En 6¼ 0 for all n. What value of cn inÔO ¼
P

n Cnjnihnj
makes ÔO the inverse of ĤH so that ĤHÔO ¼ 1 ¼ ÔOĤH.

4.25 If ĤH ¼ 1 j�1ih�1j þ 2 j�2ih�2j and j ð0Þi ¼ 0:86j�1i þ 0:51j�2i is the wavefunction for
an electron at t¼ 0. Find the average energy h ð0ÞjĤHj ð0Þi.

4.26 Find the inverse of the following matrix using row operations

M ¼

1 1 0

0 1 2

0 0 1

2
64

3
75

4.27 Show the following relations

DetðÂA B̂BÞ ¼ DetðÂAÞ DetðB̂BÞ and DetðÂA B̂B ĈCÞ ¼ DetðÂAÞ DetðB̂BÞDetðĈCÞ

You can use the first relation to prove the second one.
4.28 Show DetðcÂAÞ ¼ cNDetðÂAÞ using the completely antisymmetric tensor where

ÂA : V ! V, N¼Dim(V ) and c is a complex number.
4.29 Show the det(T ) is independent of the particular basis chosen for the vector space.

Hint: Use the unitary operator and a similarity transformation to change T, then use
the results of previous problems.

4.30 Assume ÂA, B̂B operate on a single vector space V ¼ Spfj1i, j2i, . . .g. Show
TrðÂA B̂BÞ ¼ TrðB̂BÂAÞ by inserting the closure relation.
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4.31 Show the relation TrðÂA B̂B ĈCÞ ¼ TrðB̂B ĈCÂAÞ ¼ Trð ĈCÂA B̂BÞ assuming ÂA, B̂B, ĈC all operate on
V ¼ Spfj1i, j2i, . . .g for simplicity.

4.32 Show the trace of the operator T̂T is independent of the chosen basis set.
Hint: Use a unitary operator to change basis and also use the closure relation.

4.33 Show that the set of linear operators fT̂T : V ! Wg mapping the vector space V into
the vector space W forms a vector space.

4.34 Prove the required property hÂA j�B̂Bþ � ĈCi ¼ �hÂA j B̂Bi þ �hÂA j ĈCi for hÂA j B̂Bi ¼ TrÂAþB̂B to

be an inner product. Use L ¼ fT̂T : V ! Vg.
4.35 Prove hÂA j ÂAi ¼ 0 if and only if ÂA ¼ 0 for ÂA 2 L ¼ fT̂T : V ! Vg, the set of linear

operators. Hint: Consider the expansion of an operator in a basis set.
4.36 (A) Find the ‘‘length’’ of a unitary operator ûu : V ! V where Dim(V)¼N. That is,

calculate kûuk2 ¼ hûujûui ¼ TrðûuþûuÞ. It’s probably easiest to use matrices after taking the
trace. (B) Find the length of an operator that doubles the length of every vector in an
N¼ 2 vector space. (C) Find the length of the operator defined by ÔOjvi ¼ cjvi.

4.37 Determine if the quantity hL̂L1 j L̂L2i ¼ TrfL̂Lþ1 L̂L2g=DimðVÞ satisfies the requirements for
an inner product where L1,L2 : V ! V.

4.38 Suppose V ¼ Spfj1i, j2i, . . . , jnig and L̂L : V ! V according to

L̂L 1j i ¼ �1j i and L̂L 2j i ¼ �2j i

where j�1i, j�2i are not necessarily orthogonal. Use the inner product hL̂L1 j L̂L2i ¼
TrfL̂Lþ1 L̂L2g=DimðVÞ to show L̂L has unit length so long as j�1i, j�2i have unit length.
Hint: First write L̂L ¼ j�̂�1ih1j þ . . ., then calculate L̂LþL̂L having terms such as
j1ih1jh�1j�1i þ . . ., and then calculate the trace.

4.39 Prove properties 1–7 for the commutator given in Section 4.6.
4.40 If ÂA2

¼ ÂA and ½ÂA, B̂B� ¼ 1 then show ½eiÂAx, B̂B� ¼ eix � 1
4.41 Find sin A where A ¼ 1 0

0 2

� �
. Hint: Use a Taylor expansion.

4.42 Find sin A where A ¼ 1 1
1 2

� �
. Hint: Find a matrix u such that uAuþ ¼

�1 0
0 �2

�
¼ AD

�
where �i represents the eigenvalues. Taylor expands sin A. Calculate ûu½sin A�ûuþ.

4.43 Consider a 3-D coordinate system. Write the matrix that rotates 45
 about the x-axis.
4.44 Suppose an operator rotates vectors by 	¼ 30
. Write the operator in the formP

a, b cabjaihbj and write the matrix.
4.45 Consider a rotated basis set jn0i ¼ ûujni. Show that the closure relation in the primed

system leads to the closure relation in the unprimed system.

1 ¼
X

n0
�� �

n0
� �� ! 1 ¼

X
nj i nh j

4.46 Find a condition on ‘‘c’’ that makes the following matrix Hermitian

1 c
c �1

� �

4.47 Find a condition on ‘‘a’’ that makes the following operator Hermitian

L̂L ¼ 1j i 1h j þ aj 1j i 2h j þ aj 2j i 1h j þ 2j i 2h j where j ¼
ffiffiffiffiffiffiffi
�1

p

4.48 Show that the trace of a Hermitian operator ĤH must be the sum of the Eigenvalues �i
given by Trace ĤH ¼

P
�i.
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Hint: Let fjnig be the basis for the space V where ĤH : V ! V. Let ûu be the unitary
operator that diagonalizes the operator.

Tr ĤH ¼
X
n

h’njĤHj’ni ¼
X
n

h’njûu
þûuĤHûuþûuj’ni ¼

X
n

h�njĤHDj�ni ¼ Tr ĤHD

The eigenvalues must be on the diagonal of ĤHD

ĤHD �nj i ¼ �n �nj i ! HD

� �
ab
¼ �ah jĤHD �bj i ¼ �b�ab

4.49 Show the determinant of the operator in the previous problem must be the product
of eigenvalues.

4.50 Use the definition of adjoint hf j L̂Lgi ¼ hL̂Lþf j gi for L̂L ¼ a d
dx to show that L̂Lþ ¼ �L̂L

requires ‘‘a’’ to be purely real. Assume that the Hilbert space consists of functions
f(x) such that fð�1Þ ¼ 0.

4.51 Use the definition of adjoint hf j L̂Lgi ¼ hL̂Lþf j gi for L̂L ¼ a d
dx to show that L̂Lþ ¼ L̂L

requires ‘‘a’’ to be purely imaginary. Assume that the Hilbert space consists of
functions f(x) such that fð�1Þ ¼ 0.

4.52 If L̂L ¼ @2=@x2 then find L̂Lþ by partial integration. Assume a Hilbert space of
differentiable functions f ðxÞg such that  ðx ! �1Þ ¼ 0.

4.53 Show ðÂA B̂BÞþ ¼ B̂BþÂAþ using hfjT̂Tgi ¼ hT̂Tþfjgi.
4.54 Without multiplying the matrices, find the adjoint of the following matrix equation

a b
c d

� �
e
f

� �
¼

g
h

� �

4.55 Suppose ÔO ¼ÔO ðVÞÔO ðWÞ where V ¼ Spfj�aig and W ¼ Spfj aig. Show

Oab, cd ¼ �ah jÔO Vð Þ
j�ci  b

�
jÔO Wð Þ

j d

�

4.56 For the basis vector expansion of j�i ¼
P

ab �abj�a bi in the tensor product space
V W with V ¼ Spf j�ii g and W ¼ Spf j ji g, show the expansion coefficients must
be �ab ¼ h�a bj�i and the closure relation has the form

P
ab j�a bih�a bj ¼ 1̂1.

4.57 For a vector space V spanned by f j1i, j2i g with ûu an orthogonal rotation by 45
 and
T̂T ¼ j1ih1j þ 2j2ih2j , find T̂T in the new basis set. Hint: Find ûu by visual inspection and
write in terms of the original basis.

4.58 Show ½	, L̂Lz� ¼ �hh=i.
4.59 Prove the operator expansion theorem

ÔO ¼ exÂA B̂B e�xÂA ¼ B̂Bþ x½ÂA, B̂B� þ
x2

2!
ÂA, ÂA, B̂B
h ih i

þ . . .

by expanding the exponentials and collecting terms.
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4.16 Further Reading

The following list contains references for background material.

Classics

1. Dirac P.A.M., The Principles of Quantum Mechanics, 4th ed., Oxford University Press, Oxford, 1978.
2. Von Neumann J., Mathematical Foundations of Quantum Mechanics, Princeton University Press,

Princeton, 1996.

Introductory

3. Krause E.F., Introduction to Linear Algebra, Holt, Rinehart and Winston, New York, 1970.
4. Bronson R., Matrix Methods—An Introduction, Academic Press, New York, 1970.

Standard

5. Byron F.W., Fuller R.W., Mathematics of Classical and Quantum Physics, Dover Publications,
New York, 1970.

6. von Neuman J., Mathematical Foundations of Quantum Mechanics, Princeton University Press,
Princeton, 1996.

7. Schwinger J., Quantum Kinematics and Dynamics, W. A. Benjamin Inc., New York, 1970.

Involved

8. Loomis L.H., Sternberg S., Advanced Calculus, Addison-Wesley Publishing, Reading, MA, 1968.
9. Green’s Functions and Boundary Value Problems, 2nd ed., I. Stakgold, John Wiley & Sons,

New York, 1998.
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5
Fundamentals of Dynamics

Quantum theory has formed a cornerstone for modern physics, engineering, and
chemistry since the 1920s. It has found significant modern applications in engineering
since the development of the semiconductor diode, transistor, and especially the laser in
the 1960s. Not until the 1980s did the fabrication and materials growth technology
become sufficiently developed to provide the ability to (1) produce quantum well devices
(such as quantum well lasers) and (2) engineer the optical and electrical properties
of materials (band-gap engineering). One purpose of this chapter is to summarize a small
portion of modern quantum theory.
The first few sections of this chapter summarize Lagrange and Hamilton’s approach

to classical mechanics. These alternate formulations to Newton’s formulation of classical
mechanics allow us to use scalar quantities such as kinetic or potential energy to find the
equations of motion. These alternate formulations are so powerful that they can be used
to deduce Maxwell’s and other continuous field equations. In fact, the quantum
mechanical Hamiltonian comes from the classical one by substituting operators for the
classical dynamical variables.
The chapter discusses the connection between linear algebra and quantum mechanics

and reviews the basic theory. The discussion of the harmonic oscillator introduces the
ladder operators and vacuum state, and prepares the way for the harmonic oscillator
theory of the electromagnetic field encounter in quantum optics. The chapter includes
quantum mechanical representation theory along with the time dependent perturbation
theory. The density operator plays a central role in emission and absorption theory.

5.1 Introduction to Generalized Coordinates

The Lagrangian and Hamiltonian formulation of classical mechanics provide simple
techniques for deriving equations of motion using energy relations. Rather than concern-
ing ourselves with complicated vector relations in rectangular coordinates, these alter-
nate formulations allow us to use the scalar quantities such as kinetic T and potential
energy V in classical mechanics. The Hamiltonian generally represents the total energy
of the system. It comes from the Lagrangian that satisfies a least action principle. The
two functionals are related to each other by a Legandre transformation. They provide
the gateway to quantizing systems of particles and fields (such as electromagnetic fields).
The Lagrangian L and Hamiltonian H are functionals of generalized coordinates.

Generalized coordinates comprise any set of independent variables that describe the
object (or objects) under scrutiny.
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5.1.1 Constraints

Constraints represent a priori knowledge of a
physical system. They reduce the total number of
degrees of freedom available to the system. For
example, Figure 5.1.1 shows a collection of masses
interconnected by rigid (massless) rods. These rods
constrain the distance between the masses and
therefore reduce the number of degrees of free-
dom; however the whole system (of three masses)

can translate or rotate. As another example, the walls of a container also impose
constraints on a system. In this case, the constraints are important only when the
molecules in the container make contact with the walls. For quantum theory, constraints
are quite nonphysical since, in actuality, small particles experience forces and not
constraints. For example, electrostatic forces (and not rigid rods) hold atoms in a lattice.
Sometimes constraints appear in the quantum description to simplify problems.
Evidently, constraints are mostly important for macroscopic classical systems.

5.1.2 Generalized Coordinates

Suppose a generalized set of coordinates Bq¼ q1, q2, . . . , qk
� �

describes the position of N
point particles. A single point particle has exactly three degrees of freedom correspond-
ing to the three translational directions. Without constraints, N particles have k¼ 3N
degrees of freedom. Position vectors normally describe the location of the N particles

~rr1 ¼ ~rr1ðq1, . . . , qk, tÞ

..

.

~rrN ¼ ~rrNðq1, . . . , qk, tÞ

ð5:1:1Þ

For example, the qi
� �

might be spherical coordinates. The qi are independent of each other
in this case. Constraints reduce the degrees of freedom so that k5 3N; that is, the
constraints eliminate 3N� k degrees of freedom. As a note, we make use of the
generalized coordinates especially for fields but not the constraints.

Example 5.1.1

A pulley system connecting two point particles

have 6 degrees of freedom. Confining the masses to a 2-D plane reduces the degrees of
freedom to 4. Allowing only vertical motion for the two masses reduces the degrees
of freedom to 2. The string requires the masses to move together and reduces the number
of degrees of freedom to 1. The motion of both masses can be described by the
generalized coordinate q1¼ q. This single generalized coordinate describes the position
vectors ~rr1, ~rr2 for the masses.

Configuration space consists of the collection of the ‘‘k ’’ generalized coordinates
q1, q2, . . . , qk
� �

where each coordinate can take on a range of values. These generalized
coordinates have special significance for the Lagrange formulation of dynamics.
We can define generalized velocities by

_qq1, _qq2, . . . , _qqk
� �

ð5:1:2Þ

FIGURE 5.1.1

Three masses connected by rigid rods.
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However, they are not independent of the generalized coordinates for the Lagrange
formulation. That is, the variations �q, �_qq are not independent.
The generalized coordinates discussed so far constitute a discrete set whereby the

coordinates are in one-to-one correspondence with a finite subset of the integers. The
set can be infinite. A continuous set of coordinates would have elements in 1–1 corre-
spondence with a dense subset of the real numbers. The distinction is important for
a number of topics especially field theory.
Let’s discuss a picture for the generalized coordinates and velocities especially

important for field theories. We already know how to picture the position of particles
in space for the case of x, y, z coordinates. So instead, let’s take an example that
illustrates the distinction between indices and generalized coordinates. Let’s start with a
collection of atoms arranged along a one-dimensional line oriented along the x-direction.
Assume the number of atoms is k. As illustrated in the top portion of Figure 5.1.3,
the atoms have equilibrium positions represented by the coordinates xi. Given one atom
for each equilibrium position xi, the atoms can be labeled by either the respective
equilibrium position xi or by the number ‘‘i’’. The bottom portion of the figure shows
the situation for the atoms displaced along the vertical direction. In this case, the
generalized coordinates label the displacement from equilibrium. For the 1-D case
shown, the generalized coordinates can be written equally well as either qi or qðxiÞ
so that qi ¼ qðxiÞ ¼ qxi . In this case, we think of xi or i as indices to label a particular point
in space or to label an atom. More generally for 3-D motion, each atom would have
three generalized coordinates and three generalized velocities.

FIGURE 5.1.2

Two masses connected by a string passing over a pulley.

FIGURE 5.1.3

Example of generalized coordinates for atoms in a lattice.
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Mathematically, these displacements qi can be randomly assigned. It’s only after apply-
ing the dynamics (Newton’s laws, etc.) to the problem that the displacements become
correlated. Mathematically, without dynamics (i.e., Newton’s laws), atom #1 can bemoved
to position q1 and atom #2 to position q2 without there being any reason for choosing

notion of independent translations leads to the alternate formulation of Newton’s laws.
Let’s briefly return to and discuss its importance to field theories.

Let’s focus on electromagnetics. When we write the electric field for example as ~EE x, tð Þ,
we think of x as an index labeling a particular point along a line in space. We think
of ~EE as a displacement at point x. The displacement can vary with time. There must
be three generalized coordinates at the point x. The three generalized coordinates are
the three vector components of ~EE. So ~EE really represents three displacements at the point
x and not just one. In addition, we notice that the indices x form a continuum rather
than the discrete set indicated in Figure 5.1.3.

5.1.3 Phase Space Coordinates

A system, which can consist of a single or multiple particles, evolves in time when
it follows a curve in phase space as a function of time. Phase space consists of the
generalized coordinates and conjugate momentum

q1, q2, . . . , qk, p1, p2, . . . , pk
� �

ð5:1:3Þ

all of which are assumed to be independent of one another. The momentum pi is
conjugate to the coordinate qi because it describes the momentum of the particle corre-
sponding to the direction qi. Assigning particular values to the 2k coordinates in phase
space specifies the ‘‘state of the system.’’ The phase space coordinates are used primarily
with the Hamiltonian of the system.

Example 5.1.3

The momentum Px describes the momentum of a particle along the x direction.

generalized coordinate q¼ � is the total angular momentum along the axis of the
pulley.

The Hamilton formulation of dynamics uses phase-space coordinates.

q1, q2, . . . , qk, p1, p2, . . . , pk
� �

ð5:1:4Þ

Each member of the set of the phase-space coordinates in Equation (5.1.4) has the same
level of importance as any other member so that one cannot be more fundamental than
another. For example, a point particle can be independently given position coordinates x,
y, z and momentum coordinates px, py, pz

� �
. This means that the particle can be assigned a

random position and a random velocity. Given that the phase space coordinates are all
independent, we can also vary the coordinates in an independent manner; that is, the
variations �q, �pmust be independent of one another. The term configuration space applies
to the coordinates q1, q2, . . . , qk

� �
and the term ‘‘phase space’’ applies to the full set of

coordinates q1, q2, . . . , qk, p1, p2, . . . , pk
� �

. Essentially, in the absence of dynamics, position
and momentum can be arbitrarily assigned to each particle.
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those two positions. The position of either atom can be independently assigned. This

5.1.3

Consider the pulley system shown in Figure 5.1.4. The momentum conjugate to the



5.2 Introduction to the Lagrangian and the Hamiltonian

The notion that nature follows a ‘‘law of least action’’ has a long history starting
around 200 BC. The optical laws of reflection and refraction can be derived from
the principle that light follows a path that minimizes the transit time. In the 1700s, the
law was reformulated to require the dynamics of mechanical systems to minimize the
action defined as Energy�Time. In the 1800s, Hamilton stated the most general form.
A dynamical system will follow a path that minimizes the action defined as the time
integral of the Lagrangian. A Legendre transformation of the Lagrangian then produces
the total energy of the system in the form of the Hamiltonian. Today, the Lagrangian
and Hamilton play central roles in quantum theory. The Schrodinger equation can be
found from the classical Hamiltonian by replacing the classical dynamical variables with
operators. The Feynman path integral provides a beautiful formulation of the quantum
principle by incorporating the integral over all possible paths of the action. The form
of the Lagrangian can be found from a variational method. This section derives the
differential equation, Lagrange’s equation, that provides the equations of motion for
the generalized coordinates.

5.2.1 Lagrange’s Equation from a Variational Principle

Hamilton’s principle produces Lagrange’s Equation for conservative systems. The
method is particularly easy to generalize for systems consisting of continuous sets of
coordinates (i.e., field theory). Of all the possible paths in configuration space that
a system could follow between two fixed points 1 ¼ ðqð1Þ1 , qð1Þ2 , . . . , qð1Þk Þ and
2 ¼ ðqð2Þ1 , qð2Þ2 , . . . , qð2Þk Þ, the path that it actually follows makes the following action integral

I ¼

Z 2

1

dt Lðq1, q2, . . . , qk, _qq1, _qq2, . . . , _qqk, tÞ ð5:2:5Þ

The Lagrangian ‘‘L’’ is a functional of the kinetic energy ‘‘T ’’ and potential energy ‘‘V’’
according to L ¼ T � V for particles. The procedure assumes fixed endpoints but this
can be generalized for variable endpoints. To minimize the notation, let qi, _qqi represent
the entire collection of points in q1, q2, . . . , qk, _qq1, _qq2, . . . , _qqk

� �
.

To find the extremum of the action integral

I ¼

Z 2

1

dt Lðqi, _qqi, tÞ

define a new path in configuration space for each generalized coordinate qi by

q0iðtÞ ¼ qiðtÞ þ �qi

where the time ‘‘t ’’ parameterizes the curve in configuration space. Assume qi extre-
mizes the integral I. We can find the functional form of each qi(t) by requiring the
variation of the integral around qi to vanish as follows.

0 ¼ �I ¼

Z 2

1

dt
X
i

@Lðqi, _qqi, tÞ

@ qi
�qi þ

@Lðqi, _qqi, tÞ

@ _qqi
�_qqi

� �
ð5:2:6Þ
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an extremum (either minimum or maximum) as shown in Figure 5.2.1.



Partially integrate the second term using the fact that �qi t1ð Þ ¼ 0 ¼ �qi t2ð Þ to find

0 ¼ �I ¼

Z 2

1

dt
X
i

@Lðqi, _qqi, tÞ

@qi
�

d

dt

@Lðqi, _qqi, tÞ

@_qqi

� �
�qi

The small variations �qi are assumed to be independent so that

@L

@qi
�

d

dt

@L

@_qqi
¼ 0 for i ¼ 1, 2, . . . ð5:2:7Þ

where L ¼ T � V.
The canonical momentum can be defined as

pi ¼
@L

@_qqi
ð5:2:8Þ

pi denotes the momentum conjugate to the coordinate qi. The canonical momentum
does not always agree with the typical momentum ‘‘mv’’ for a particle. The canonical
momentum for an EM field interacting with a particle consists of the particle and field
momentum.

Example 5.2.1

Consider a single particle of mass ‘‘m’’ constrained to move vertically along the ‘‘y’’
direction and acted upon by the gravitational force F ¼ �mg

T ¼
1

2
m _yy
� �2

V ¼ mgy L ¼ T � V ¼
1

2
m _yy
� �2

�mgy

Lagrange’s equation

@L

@y
�

d

dt

@L

@_yy
¼ 0

gives Newton’s second law for a gravitational force �mg�m€yy ¼ 0 where the derivatives

@_yy

@y
¼ 0 ¼

@y

@_yy

since ‘‘y’’ and ‘‘_yy’’ are taken to be independent. As a result, the equation of motion for
the particle becomes €yy ¼ �g which gives the usual functional form of the height as
y ¼ �

g
2 t

2 þ votþ yo.
How can y, _yy be independent when they appear to be connected by _yy ¼ dy=dt? This

relation assumes that the function y is already defined. Let’s start with the step of
defining the function y. At any value t, we can arbitrarily assign a value y and a value _yy.
The only requirement is that the function y must have fixed endpoints y1 and y2.
These boundary conditions restrict only two points out of an uncountable infinite

number of values of y and _yy without affecting the endpoints. Therefore, there can be
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number. Figure 5.2.2 illustrates the concept. Notice that the value t can be assigned a large



many curves connecting points A ¼ t1, y1
� �

and B ¼ t2, y2
� �

. The equations _yy ¼ dy=dt give
a procedure for calculating the slope _yy only after we know the function y in some interval.
For example, suppose we discuss the motion of a line of atoms so that the independent
variables are {y, _yy} where _yy is the velocity. We can arbitrarily assign a displacement and
a speed at each point x. Only after solving Newton’s equations do we come to know how
the speed and position at those points are inter-related.

Example 5.2.2

Find the equations of motion for the pulley system shown in Figure 5.2.3. Assume the
pulley is massless, m24m1 and that y1ðtÞ ¼ 0, y2ðtÞ ¼ h. The kinetic energy is
T ¼ 1

2m1 _yy21 þ
1
2m2 _yy22 and V ¼ m1gy1 þm2gy2. The remaining 2 degrees of freedom y1, y2

can be reduced to one since y2 ¼ h� y1.
We therefore have

T ¼
1

2
m1 þm2ð Þ_yy21 V ¼ m1gy1 þm2g h� y1

� �
Lagrange’s equation

@L

@y1
�

d

dt

@L

@_yy1
¼ 0 produces €yy1 ¼

m1 �m2ð Þg

m1 þm2ð Þ

FIGURE 5.2.2

The function is determined by its value and slope at
each point.

FIGURE 5.2.1

Three paths connecting fixed end points.

FIGURE 5.2.3

Pulley system.
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5.2.2 The Hamiltonian

The Hamiltonian represents the total energy of a system. The quantum theory derives
its operator Hamiltonian from the classical one by substituting operators for the classical
dynamical variables.
Consider a closed, conservative system so that the Lagrangian L does not explicitly

depend on time. The total energy and the total number of particles remain constant
(in time) for a closed system. We define a conservative system to be one for which all
of the forces can be derived from a potential. We do not consider any equations
of constraint for quantum mechanics and field theory. Differentiating the Lagrangian
provides

dL

dt
¼
X
i

@L

@qi

dqi
dt

þ
@L

@_qqi

d_qqi
dt

� �
þ
@L

@t
ð5:2:9Þ

The last term is zero by assumption @L=@t ¼ 0. Substitute Lagrange’s equation

@L

@qi
¼

d

dt

@L

@_qqi

to find

dL

dt
¼
X
i

d

dt

@L

@_qqi

� �
_qqi þ

@L

@_qqi

d_qqi
dt

� �
¼
X
i

d

dt

@L

@_qqi
_qqi

� �
ð5:2:10Þ

Recall the definition for the conjugate momentum

pi ¼
@L

@_qqi
ð5:2:11Þ

Equation (5.2.10) becomes

d

dt

X
i

_qqipi � L

" #
¼ 0

The Hamiltonian ‘‘H’’ is defined to be

H ¼
X
i

_qqipi � L ð5:2:12Þ

which is the total energy of the system in this case. More thorough treatments
show the Hamiltonian has the form H ¼ T þ V for mechanical systems. Important
point: We consider H to be a function of qi, pi whereas we consider L to be a function
of qi, _qqi.

5.2.3 Hamilton’s Canonical Equations

The Hamiltonian leads to Hamilton’s canonical equations

_qqj ¼
@H

@pj
_ppj ¼ �

@H

@qj
ð5:2:13Þ
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These equations allow us to find equations of motion from the Hamiltonian. Subsequent
sections show that the quantum theory requires qj and pj to be operators satisfying
commutation relations. The classical equivalent of the commutation relations appears
in the next section on the Poisson brackets.
Hamilton’s canonical equations (5.2.13) can now be demonstrated. Starting with

Equation (5.2.12) we can write

@H

@pj
¼

@

@pj

X
i

_qqipi � L

" #
¼ _qqj �

@L

@pj
ð5:2:14Þ

Next noting that L depends on qi, _qqi and not pi, we find

@H

@pj
¼ _qqj ð5:2:15Þ

which proves the first of Hamilton’s equations. We can demonstrate the second of
Hamilton’s equations by using Lagrange’s equation and the canonical momentum

@L

@qj
¼

d

dt

@L

@_qqj
pj ¼

@L

@_qqj
ð5:2:16Þ

We find

@H

@qj
¼

@

@qj

X
i

_qqipi � L

" #
¼ 0�

@L

@qj
¼ �

d

dt

@L

@_qqj
¼ �

d

dt
pj ¼ �_ppj

Example 5.2.3

Find H and _qqi, _ppi for a particle of mass m at a height y in a gravitational field.

Solution: The Lagrangian has the form

L ¼ T � V ¼
1

2
m _yy
� �2

�mgy

The Hamiltonian H can be written as a function of the coordinate and its conjugate
momentum. The relation for the canonical momentum for the Lagrangian

p ¼
@L

@_yy
¼ m_yy

allows ‘‘H’’ to be written as

H ¼ _yyp� L ¼
p

m
p�

1

2
m

p

m

	 
2
�mgy

� �
¼

p2

2m
þmgy

and then

_yy ¼
@H

@p
¼

p

m
_pp ¼ �

@H

@y
¼ mg
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Example 5.2.4

For the pulley system in Example 5.2.2, find the Hamiltonian and Newton’s equations of
motion. Assume the pulley is massless.

Solution: The kinetic and potential energy can be written as

T ¼
1

2
m1 þm2ð Þ_yy21 V ¼ m1gy1 þm2g h� y1

� �

The Hamiltonian must be a function of momentum and not velocity. The Lagrangian
gives the canonical momentum

p1 ¼
@L

@_yy1
¼

@

@_yy1

1

2
m1 þm2ð Þ_yy21 ¼ M _yy1

where M ¼ m1 þm2. Notice that p1 is not the usual vector sum of the individual
momenta. The kinetic energy can be rewritten as

T ¼
1

2
m1 þm2ð Þ_yy21 ¼

p21
2M

The Hamiltonian can be written as

H ¼ _qq1p1 � L ¼
p1
M

p1 � T � Vð Þ ¼
p21
M

�
p21
2M

þm1gy1 þm2g h� y1
� �

¼
p21
2M

þ gy1 m1 �m2ð Þ þm2gh

The Hamiltonian gives the time rate of change of momentum as

_pp1 ¼ �
@H

@q1
¼ �g m1 �m2ð Þ

This last equation can be recognized as Newton’s second law, which can be rewritten as a
second-order differential equation if desired.

5.3 Classical Commutation Relations

The Hamiltonian is the primary quantity of interest for quantum theory. The specification
of a quantum mechanical Hamiltonian follows several steps:

1. Determine the classical Hamiltonian.

2. Substitute operators for the classical dynamical variables (e.g., p’s and q’s).

3. Specify the commutation relations between those operators.

The commutation relations in quantum mechanics somewhat resemble the Poisson
brackets in classical mechanics. The commutation relations and Poisson brackets
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determine the evolution of the dynamical variables. In the quantum theory, operators
replace the classical dynamical variables. In fact, the Heisenberg quantum picture has the
greatest resemblance to classical mechanics because the operators carry the system
dynamics. In quantum theory, the commutation relations give time derivatives of
operators. A commutator is defined by ÂA, B̂B

h i
¼ ÂAB̂B� B̂BÂA where ÂA, B̂B are operators. The

Poisson bracket as the classical version of the commutator uses partial derivatives
whereas the quantum mechanical commutator does not.
Definition: Let A ¼ Aðqi, piÞ, B ¼ Bðqi, piÞ be two differentiable functions of the general-

ized coordinates and momentum. We define the Poisson brackets by

A,B½ � ¼
X
i

@A

@qi

@B

@pi
�
@B

@qi

@A

@pi

� �

Sometimes we subscript the brackets with p, q

A,B½ � ¼ A,B½ �q, p

to indicate Poisson brackets. Using the definition of Poisson brackets, some basic proper-
ties can be proved.

1. Let A, B be functions of the phase space coordinates q, p and let c be a number;
then

A,A½ � ¼ 0 A,B½ � ¼ � B,A½ � A, c½ � ¼ 0

2. Let A, B, C be differentiable functions of the phase space coordinates q, p; then

Aþ B,C½ � ¼ A,C½ � þ B,C½ � AB,C½ � ¼ A B,C½ � þ A,C½ �B

3. The time evolution of the dynamical variable A (for example) can be calculated by

dA

dt
¼ A,H½ � þ

@A

@t

Proof:

dA

dt
¼
X
i

@A

@qi

dqi
dt

þ
@A

@pi

dpi
dt

� �
þ
@A

@t

We include the partial with respect to time in case the function A explicitly
depends on time.
Substituting the two relations for the rate of change of position and momentum

dqi
dt

¼
@H

@pi

dpi
dt

¼ �
@H

@qi
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the Poisson brackets become

dA

dt
¼
X
i

@A

@qi

@H

@pi
�
@A

@pi

@H

@qi

� �
þ
@A

@t
¼ A,H½ � þ

@A

@t

Although the order of multiplication AH¼HA does not matter in classical theory,
the order must be maintained in quantum theory. In quantum theory, the order of
two operators can only be switched by using the commutation relations.

4: _qqm ¼ qm,H
� �

_ppm ¼ pm,H
� �

Proof: Consider the first one for example

qm,H
� �

¼
X
i

@qm
@qi

@H

@pi
�
@qm
@pi

@H

@qi

� �
¼
X
i

�im
@H

@pi
� 0

@H

@qi

� �
¼
@H

@pm
¼ _qqm

5: qi, qj
� �

¼ 0 pi, pj
� �

¼ 0 qi, pj
� �

¼ �ij

5.4 Classical Field Theory

So far we have discussed the classical Lagrangian and Hamiltonian for discrete sets of
generalized coordinates and their conjugate momentum. Now we turn our attention to
systems with an uncountably infinite number of coordinates. The section first discus-
ses the relation between discrete and continuous system, and then shows how the
Lagrangian for sets of discrete coordinates leads to the Lagrangian for the continuous
set of coordinates. This latter Lagrangian begins the study of classical field theories since
it can produce the Maxwell’s equations, the Schrodinger equation, and it begins the
quantum field theory for particles and the quantum electrodynamics. The present section
demonstrates the Lagrangian for the wave motion in a continuous media that has
applications to phonon fields and provides an example for the later field theory of
electromagnetic fields.

5.4.1 Concepts for the Lagrangian and Hamiltonian Density

For systems with a continuous set of generalized coordinates, Lagrange and
Hamilton’s formulation of dynamics must be generalized. First, we discuss the
generalized coordinates and velocities. Second, we show how a continuous system can
be viewed as a discrete one with a countable number of generalized coordinates.
Third, we derive the generalized momentum for the Hamiltonian density. We end with
a summary. The following topics apply the procedure to wave motion in a continuous
medium.
For the continuous coordinate case, we posit the following imagery. Suppose the

indices x, y, z in ~rr ¼ x~xxþ y~yyþ z~zz label points in space. The value of a function
� ~rr, t
� �

~

shows some of the generalized coordinates along the z-direction. The lower left side
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¼ �ðx, y, z, tÞ serves as a generalized coordinate indexed by the point rr. Figure 5.4.1



shows a small volume of space with a field (EM in origin). The field has a different
value for each point. The lower right side shows another example for the generalized
coordinates. Here � represents the displacement of small masses. The generalized
velocities are given by _��.
Now let’s discuss how the continuous coordinates � ~rr, t

� �
compare with the discrete

ones qi. The top portion of Figure 5.4.1 shows all of space divided into many cells of
volume �Vi. In each cell, the field � z, tð Þ takes on many similar values. We can define
the discrete generalized coordinates by the average

qiðtÞ ¼
1

�Vi

Z
�Vi

dV � ~rr, t
� �

ð5:4:1Þ

The qi represent the average value of the continuous coordinate in the given cell.
Making �Vi small enough means that the � under the integral is approximately constant
so that

qiðtÞ ¼
1

�Vi

Z
�Vi

dV � ~rr, t
� �

! � ~rr, t
� �

ð5:4:2Þ

Notice that the small volume �Vi must be associated with the points x, y, z in space and
not with the ‘‘tops’’ of � ~rr, t

� �
. In the next topic, we will show displaced small boxes but

these will be different boxes. These boxes will refer to actual chunks of mass dis-
placed from equilibrium. The procedure given in the present topic uses the small cells
in Figure 5.4.1 to show how the continuous and discrete Lagrangians can be interrelated.
Next we compare the Lagrangians for the two systems. For continuous sets of coordi-

nates, people usually work with the Lagrange density L defined through

L ¼

Z
V
dV L ð5:4:3Þ

where the Lagrange density has units of ‘‘energy per volume.’’ The Lagrange density has
the form

L ¼ L �, _��, @i�ð Þ ð5:4:4Þ

where i¼ 1, 2, 3 refers to derivatives with respect to x, y, z, respectively. The Lagrange
density refers to a single point in space (or possibly two arbitrarily close points due to
the derivatives).
On the other hand, suppose we divide all space into cells of volume �Vi with qi, _qqi

being the generalized coordinate and velocity in cell #i, respectively. The full Lagrangian
must have the form

L ¼ L qi, _qqi, qi�1

� �
ð5:4:5Þ

FIGURE 5.4.1

Top portion shows space divided into cells. Bottom portion shows two
types of continuous coordinates. Left side shows a field and the right
sides shows displacement of small masses.
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where the qi�1 allows for derivatives. Especially note that all coordinates, including time,
i¼ 1, 2, 3, 4, appear in the full Lagrangian. Now to make the connection with the
Lagrange density, apply the cellular space to the full Lagrangian in Equation (5.4.5).
Dividing up the volume V into cells so that V ¼

P
i

�Vi we can write

L qi, _qqi, qi�1

� �
¼

Z
V
dV L qi, _qqi, qi�1

� �
¼
X
i

Z
�Vi

dV L qi, _qqi, qi�1

� �
ð5:4:6Þ

The definition of an average from calculus provides

�LLi ¼
1

�Vi

Z
�Vi

dV L so that L ¼
X
i

Z
�Vi

dV L ¼
X
i

�Vi
�LLi qi, _qqi, qi�1

� �
ð5:4:7Þ

where now each �Vi has one qi and one _qqi associated with it on account of Equation
(5.4.1). We can see that the two forms (Equations (5.4.7) and (5.4.4)) of the Lagrangian
agree by using Equation (5.4.2) when we take the limit �Vi ! 0

L ¼
X
i

�Vi
�LLi qi, _qqi, qi�1

� �
!

Z
dV L �, _��, @i�ð Þ ð5:4:8Þ

where the average on the Lagrangian density has been removed because the cell volume
shrinks to a single point. This last equation shows how discrete coordinates and the
corresponding Lagrangian produce the continuous coordinates and the Lagrangian
density.
Finally, we compare the full Hamiltonian with the Hamiltonian density. The full

Hamiltonian can be written as

H ¼ H qi, pi
� �

¼
X
i

pi _qqi � L ¼
X
i

pi _qqi �
X
i

�Vi
�LLi ð5:4:9Þ

We can calculate pj by the usual method

pj ¼
@L

@_qqj
¼

@

@_qqj

X
i

�Vi
�LLi ¼

X
i

�Vi
@ �LLi

@_qqj
¼ �Vj

@ �LLj

@_qqj
ð5:4:10Þ

where the summation in the last term disappears because we assume �LLi depends only on
_qqj (along with qj) and the relation d_qqi=d_qqj ¼ �ij holds. Notice how the momentum depends
on the volume of the small box whereas the relation qj ! � does not. We write the
momentum relation for a small mass whereby the momentum must be proportional to
the mass and hence the volume pj � �mð Þ_qqj � �Vð Þ�_qqj � �Vð Þ�j where � represents the
mass density. Therefore, the momentum density can be defined as

�Vj�j ¼ pj ¼
@L

@_qqj
¼ �Vj !

@ �LLj

@_qqj
�j ¼

@ �LLj

@_qqj
!

�Vi!0
�ð~rr, tÞ ¼

@Lð�, . . .Þ

@ _��
ð5:4:11Þ

The full Hamiltonian can be written as a Hamiltonian density

H ¼

Z
dV H ð5:4:12Þ
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We can writeZ
d3x H ¼ H ¼

X
i

pi _qqi � L ¼
X
i

�Vi �i _qqi �
X
i

�Vi
�LLi !

Z
d3x �ð~rr, tÞ _��ð~rr, tÞ �L

� �

and identify the Hamiltonian density as

H¼�ð~rr, tÞ _��ð~rr, tÞ �L ð5:4:13Þ

Summary of results

Lagrange density: L ¼ L �, _��, @i�ð Þ

Lagrangian: L ¼
R
V dV L

Hamiltonian density: H ¼ �ð~rr, tÞ _��ð~rr, tÞ �L

Hamiltonian: H ¼
R
dV H

Momentum density: �ð~rr, tÞ ¼ @Lð�, ...Þ
@ _��

Hamilton’s Canonical Equations:

_�� ¼
@H

@�
_�� ¼ �

@H

@�

5.4.2 The Lagrange Density for 1-D Wave Motion

Now we develop the Lagrangian for 1-D wave motion in a continuous medium. As
discussed in the previous topic, we imagine each point in space to be labeled by indices x,
y, z according to ~rr ¼ x~xxþ y~yyþ z~zz. The value of a function � ~rr, t

� �
¼ �ðx, y, z, tÞ serves as a

generalized coordinate indexed by the point ~rr. Figure 5.4.2 shows transverse wave motion
along the z-axis with � giving the displacement. The generalized velocity at the point x, y, z
can be written as _��. Two important notes are in order. First, note that x, y, z do not depend
on time since they are treated as indices. Second, the small boxes appearing in Figure 5.4.2
represent small chunks of matter that the wave displaces from equilibrium. The coordinate
qi denotes the average displacement of the scalar field h for the small chunk.
The description of wave motion requires a partial differential equation involving

partial derivatives. We require the partial derivatives to appear in the argument of the
Lagrangian. These spatial derivatives take the form @i� where i refers to one of the indices
x, y, z. For example, i¼ 3 gives @3� ¼ @�=@z. For the purpose of the Lagrangian, the spatial
derivatives must be independent of each other and of the coordinates.

@ @i�ð Þ

@ @j�
� � ¼ �ij

@ @i�ð Þ

@�
¼ 0

@�

@ @i�ð Þ
¼ 0

FIGURE 5.4.2

Displacement of masses at various points along the z-axis.
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The Lagrangian can be written as

L ¼ L �, _��, @i�ð Þ ¼ L �, _��, @1�, @2�, @3�ð Þ ð5:4:14Þ

For the transverse wave motion, the partial derivatives actually enter the Lagrangian as
a result of the generalized forces acting on each element of volume.
We need to minimize the action

I ¼

Z t2

t1

dt L ð5:4:15Þ

However, for continuous systems (i.e., systems with continuous sets of generalized
coordinates), it is customary to work with the Lagrange density defined by

I ¼

Z t2

t1

dt L ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x L �, _��, @i�ð Þ ð5:4:16Þ

The Lagrange density L has units of energy per volume. To find the minimum action,
we must vary the integral I so that �I¼ 0. In the process, a partial integration produces
a ‘‘surface term.’’ We must assume two boundary conditions: one for the time integral
and one for the spatial integral. For the time integral, the set of displacements � must
be fixed at times t1, t2 so that �� t1ð Þ ¼ 0 ¼ �� t2ð Þ. For the spatial integrals, we assume
either periodic boundary conditions or fixed-endpoint conditions so that the surface term
vanishes.
Now let’s find the extremum of the action in Equation (5.4.16)

0 ¼ �I ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x �L �, _��, @i�ð Þ ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
��þ

@L

@ _��
� _��þ

@L

@ @i�ð Þ
� @i�ð Þ

� �

where we use the Einstein convention for repeated indices in a product, namely AiBi ¼P
i

AiBi. Interchanging the differentiation with the variation produces

0 ¼ �I ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
��þ

@L

@ _��

@

@t
��þ

@L

@ @i�ð Þ
@i��

� �

Integrating by parts and using the fact that both the temporal and spatial surface terms
do not contribute, we find

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
�
@

@t

@L

@ _��
� @i

@L

@ @i�ð Þ

� �
�� ¼ 0

Given that the variation at each point is independent of every other, we find Lagrange’s
equations for the continuous media

@L

@�
�
@

@t

@L

@ _��
� @i

@L

@ @i�ð Þ
¼ 0 ð5:4:17Þ
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where the repeated index convention must be enforced on the last term. Notice
that the first two terms look very similar to the usual Lagrange equation for the
discrete set of generalized coordinates. If desired, we can also include generalized
forces in the formalism so that the motion of the waves can be ‘‘driven’’ by an outside
force.

Example 5.4.1

Suppose the Lagrange density has the form L ¼
�
2 _��

2 þ
�
2 @z�ð Þ

2 for 1-D motion progating
along the z-direction, where �,� resemble the mass density and spring constant (Young’s
modulus) for the material, and � ¼ �ðz, tÞ.

Solution: Lagrange’s equation has the following terms

@L

@�
¼ 0

@

@t

@L

@ _��
¼ � €��

@

@z

@L

@ @z�ð Þ
¼ �

@2�

@z2

Equation (5.4.17) then gives

@2�

@z2
þ
�

�
€�� ¼ 0 with speed v ¼

ffiffiffiffiffiffiffiffi
�=�

p

5.5 Schrodinger Equation from a Lagrangian

The quantum theory relies primarily on the Schrodinger wave equation to describe
the dynamics of quantum particles. The present section shows one method by which the
Lagrangian formulation leads to the Schrodinger wave equation. The companion
volume on quantum and solid state shows the beautiful connection with the Feynman
path integral. Subsequent sections in the present volume explore the meaning of the
Hamiltonian and the Schrodinger wave equation in more detail.
As a mathematical exercise, we start with the Lagrange density

L ¼ i�hh � _  �
�hh2

2m
r � � r � V rð Þ  � ð5:5:1aÞ

or equivalently

L ¼ i�hh � _  �
�hh2

2m

X
j

@j 
�@j � V rð Þ  � ð5:5:1bÞ

where j ¼ x, y, z the Lagrangian is

L ¼

Z
d3x L ð5:5:1cÞ

The Lagrange density is a functional of the independent coordinates  , � and their
derivatives @j , @j 

� where j ¼ x, y, z.
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The variation of L leads to the Euler–Lagrange equations of the form

@L

@�
�
X
a

@a
@L

@ @a�ð Þ
¼ 0 ð5:5:2aÞ

where a ¼ x, y, z, t and � ¼  or  �. Setting � ¼  � provides

@L

@ �
�
X
a

@a
@L

@ @a �ð Þ
¼ 0 ð5:5:2bÞ

Evaluating the first term produces

@L

@ �
¼

@

@ �
i�hh � _  �

�hh2

2m

X
j

@j 
�@j � V rð Þ  � 

2
4

3
5 ¼ i�hh _  � V rð Þ  

The argument of the second term in Equation (5.5.2b) produces

@L

@ @a �ð Þ
¼

@

@ @a �ð Þ
i�hh �@t �

�hh2

2m

X
j

@j 
�@j � V rð Þ  � 

8<
:

9=
; ¼

0 a ¼ t
� �hh2

2m @j a ¼ j

�

Equation (5.5.2b) becomes

i�hh _  � V rð Þ  þ
�hh2

2m

X
j

@j@j ¼ 0

Therefore, we find the Schrodinger wave equation

�
�hh2

2m
r2 þ V rð Þ  ¼ i�hh _  ð5:5:3Þ

We can find the classical Hamiltonian density (energy per unit volume)

H ¼ � _  �L ð5:5:4aÞ

where p is the momentum conjugate to  and the total energy is

H ¼

Z
d3x H ð5:5:4bÞ

The conjugate momentum is defined by

� ¼
@L

@ _  
ð5:5:5Þ

For the Lagrange density in Equation (5.5.1), we find

� ¼
@L

@ _  
¼

@

@ _  
i�hh � _  �

�hh2

2m

X
j

@j 
�@j � V rð Þ  � 

8<
:

9=
; ¼ i�hh �
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The classical Hamiltonian density becomes

H ¼ � _  �L ¼ i�hh � _  � i�hh � _  �
�hh2

2m
r � � r � V rð Þ  � 

� �

¼
�hh2

2m
r � � r þ V rð Þ  � 

Often times the Lagrange density is stated as

L ¼ i�hh � _  þ
�hh2

2m
 �r2 � V rð Þ  � ¼  � i�hh@t þ

�hh2

2m
r2 � V

� �
 ð5:5:6Þ

This last equation comes from Equations (5.5.1) by partially integrating and assuming
the surface terms are zero. The Hamiltonian density then has the form

H ¼ � _  �L ¼  � �
�hh2

2m
r2 þ V

� �
 ð5:5:7Þ

In terms of the quantum theory, the classical Hamiltonian is most related to the average
energy

H ¼

Z
d3x  � �

�hh2

2m
r2 þ V

� �
 ¼  

� ��Hsch  
�� � ð5:5:8aÞ

where

Hsch ¼ �
�hh2

2m
r2 þ V ð5:5:8bÞ

5.6 Linear Algebra and the Quantum Theory

The mathematical objects in the quantum theory must accurately model the physical
world—linear algebra is a natural language. The theory must represent properties of
particles and systems, predict the evolution of the system, and provide the ability to
make and interpret observations. Quantum theory began in an effort to describe micro-
scopic (atomic) systems when classical theory gave erred predictions. However, classi-
cal and quantum mechanical descriptions must agree for macroscopic systems—the
correspondence principle.
Vectors in a Hilbert space represent specific properties of a particle or system. Every

physically possible state of the system must be represented by one of the vectors. A single
particle must correspond to a single vector (possibly time dependent). Hermitian opera-
tors represent physically observable quantities such as energy, momentum, and electric
field. These operators provide values for the quantities when they act upon a vector in
a Hilbert space. The discussion will show how the theory distinguishes measurement
operators from Hermitian operators.
The Feynman path integral and principle of least action (through the Lagrangian)

lead to the Schrodinger equation, which describes the system dynamics. The method
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essentially reduces to using a classical Hamiltonian and replacing the dynamical
variables with operators. The operators must satisfy commutation relations somewhat
similar to the Poisson brackets for classical mechanics.
We need to address the issue of how the particle dynamics (equations of motion)

arise. In the classical sciences and engineering, dynamical variables such as position
and momentum can depend on time. The Heisenberg representation in quantum
theory gives the time dependence to the Hermitian operator version of the dynamical
variables. In this description, the operators carry the dynamics of the system while
the wave functions remain independent of time. The vectors/wave functions in Hilbert
space appears as a type of ‘‘lattice’’ (or stage) for observation. The result of an obser-
vation depends on the time of making the observation through the operators. The
Schrodinger representation of the quantum theory provides an interpretation most
closely related to classical optics and electromagnetic theory. The wave functions depend
on time but the operators do not. This is very similar to saying that the electric field
(as the wave function) depends on time because the traveling wave, for example, has
the form eikx�i!t. We will encounter an intermediate case, the interaction represen-
tation, where the operators carry trivial time dependence and the wave functions retain
the time response to a ‘‘forcing function.’’ All three representations contain identical
information.
In this section, we address the following questions:

1. How do basis vectors differ from other vectors?

2. What physical meaning should be ascribed to the superposition of wave
functions?

3. How should we interpret the expansion coefficients of a general vector in a Hilbert
space?

4. How can we picture a time dependent wave function?

5. What does the collapse of the wave function mean and how does it relate to
reality?

6. What does it mean to say ‘‘observables’’ cannot be ‘‘simultaneously and precisely’’

5.6.1 Observables and Hermitian Operators

Every system must be capable of interacting with the physical world. In the laboratory,

senses or the equipment in the laboratory. An observable, such as energy or momentum,
is a quantity that can be observed or measured in the laboratory and can take on only real
values. These values can be either discrete or continuous. For example, confined electrons
have discrete energy values whereas the position of an electron can have a continuous
range.
Suppose measurements of a particular property such as energy H of a system always

produces the set of real values E1,E2, . . .f g and the particle is always found in one of the
corresponding states E1j i, E2j i, . . .f g. Based on these values and vectors, we define an
energy operator (Hamiltonian ĤH)

ĤH ¼
X
n

En Enj i Enh j ð5:6:1Þ
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the systems come under scrutiny of other probing systems such as our own physical

known? The results are summarized in Table 5.6.1.



Applying the Hamiltonian to one of the states produces

ĤH Enj i ¼ En Enj i ð5:6:2Þ

We naturally interpret the operation as measuring the value of ĤH for a system in the
state Enj i. Notice that the operator in Equation (5.6.1) must be Hermitian since ĤHþ ¼ ĤH.
By assumption, the eigenvalues are real. The number of eigenvectors equals the number
of possible states for the system and forms a complete set. For these reasons, quantum
theory represents observables by Hermitian operators.
The process of ‘‘making a measurement’’ cannot be fully modeled by the eigenvalue

equation (5.6.2). The operators in the theory operate on vectors in a Hilbert space.
A general vector can be written as a superposition of the eigenvectors of ĤH and therefore
do not have just a single value for the measurement of ĤH. A physical measure-
ment of ĤH causes the wave function to collapse to a random basis vector, which
does not follow from the dynamics and does not appear in the effect of the Hermitian
operator.

5.6.2 The Eigenstates

The eigenvectors of a Hermitian operator, which correspond to an observable, repre-
sent the most fundamental states for the particle or system. Every possible funda-
mental motion of a particle must be observable (i.e., measurable). For example,
the various orbitals in an atom correspond to the eigenvectors. This requires each
fundamental physical state of a system or particle to be represented as a basis vector.
The basis set must be complete so that all fundamental motions can be detected

TABLE 5.6.1

Physical World, Linear Algebra and Quantum Theory

Physical World Mathematics

Observables: Properties that can be measured in
a laboratory

Hermitian operators ĤH

Specific particle/system properties Wave functions  
�� �

Fundamental motions/states of existence Basis/eigenvectors hj i of ĤH
Value of observable in fundamental motion ĤH hj i ¼ h hj i

Laboratory measured values, states Sets hf g and hj if g

Particle/system has characteristics of all fundamental
motions

Superposed wave function j i ¼
P

h �hjhi

Average behavior of a particle  
� ��ĤH  

�� �
Probability of finding value or fundamental motion Probability amplitude of finding ‘‘h’’ or hj i is

hh j_ i ¼ �h. Probabiltiy¼ j�hj
2

Dynamics of system Time dependence of operators or vectors—
Schrodinger’s equation

Measure state of particle/system Collapse of  
�� � to basis vector hj i. Random collapse

does not have an equation of motion
Simultaneous measurements of two or more
observables

Commuting operators: repeated measurements
produce identical values

Noncommuting operators: repeated measurements
produce a range of values

Complete description of a particle/system Largest possible set of commuting Hermitian
operators
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and represented in the theory. As mentioned in the previous topic, if measurements
of particle energy ĤH produce the values E1,E2, . . . ,En, . . .f g then we can represent
the resulting states by the eigenvectors E1j i, E2j i, . . . , Enj i, . . .f g where ĤH Enj i ¼ En Enj i.
These states must be the most basic states; they form the basis states. Any other state
of the system must be a linear combination of these basis states having the form
 
�� � ¼P

�n Enj i.
The idea of ‘‘state’’ occurs in many branches of science and engineering. A particle

or system can usually be described by a collection of parameters. We define a state of the
particle or system to be a specific set of values for the parameters.
For classical mechanics, the position and momentum describe the motion of a point

particle. Therefore the three position and three momentum components completely spe-
cify the state of motion for a single point particle. There are three degrees of freedom as
discussed in previous sections. For optics, the polarization, wavelength, and the propa-
gation vector specify the basic states (i.e., modes). Notice that we do not include the
amplitude in the list because we can add any number of photons to the mode (i.e.,
produce any amplitude we choose) without changing the basic shape. The optical modes
are eigenvectors of the time-independent Maxwell wave equation. We know these basic
modes will be essentially sinusoidal functions for a Fabry-Perot cavity. They produce
traveling plane waves for free space.

Example 5.6.1

Polarization in Optics

A single photon travels along the z-axis as shown in Figure 5.6.1. The photon
has components of polarization along the x-axis and along the y-axis, for example,
according to

~ss ¼
1ffiffiffi
2

p ~xxþ
1ffiffiffi
2

p ~yy

The electric field is parallel to the polarization ~ss. We view the single photon as simul-
taneously polarized along ~xx and along ~yy. Suppose we place a polarizer in the path of
the photon with its axis along the x-axis. There exists a 50% chance that the photon
will be found polarized along the x-axis. The polarization state of the incident photon
must be the superposition of two basis states ~xx, ~yy. We view the single incident photon as
being simultaneously in both polarization states. The act of observing the photon causes the
wave function to collapse to either the ~xx state or to the ~yy state. The polarizer absorbs the
photon if the photon wave function collapses to the ~yy-polarization. The polarizer
allows the photon to pass if the photon wave function collapses to the ~xx-polarization. For a
single photon, the photon will be either transmitted or it will not; there can be
no intermediate case.

FIGURE 5.6.1

Polarization.
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5.6.3 The Meaning of Superposition of Basis States and the Probability
Interpretation

A quantum particle can ‘‘occupy’’ a state

vj i ¼
X
n

�nðtÞ �nj i ð5:6:3Þ

where basis set �nj if g represents the collection of fundamental physical states. The most
convenient basis set consists of the eigenvectors of an operator of special interest to us,
such as for example, the energy of the particle (i.e., the Hamiltonian ĤH). We therefore
choose the basis set to be the eigenvectors of the energy operator.

ĤH �nj i ¼ En �nj i

The superposed wave function vj i refers to a particle (or system) having attributes
from all of the states in the superposition. The particle simultaneously exists in all of
the basic states making up the superposition. In Figure 5.6.2 for example, an observation
of the energy of the particle in the state vj i with the energy basis set will find it with
energy E1 or E2 or E3. Before the measurement, we view the particle as having
some mixture of all three energies in a type of average. The measurement forces the
electron to decide on the actual energy.
Not just any superposition wave function can be used for the quantum theory. All

quantum mechanical wave functions must be normalized to have unit length v j vh i ¼ 1
including the basis functions satisfying �m j �nh i ¼ �mn. All of the vectors are normal-
ized to one in order to interpret the components as a probability (next topic).
Therefore, the functions appropriate for the quantum theory define a surface for which

all of its points are exactly 1 unit away from the origin. For the 3-D case, the surface
makes a unit sphere. The set of wave functions does not form a vector space since the
zero vectors cannot be in the set.

5.6.4 Probability Interpretation

Perhaps most important, the quantum theory interprets the expansion coefficients �n
in the superposition vj i ¼

P
n �n nj i ¼

P
n nj i n j vh i as a probability amplitude.

Probability amplitude ¼ �n ¼ n j vh i ð5:6:4Þ

To be more specific, assume we make a measurement of the energy of the particle.
The quantized system allows the particle to occupy a discrete number of fundamental

FIGURE 5.6.2

The vector is a linear combination of basis vectors.
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states �1j i, �2j i, �3j i; . . . with respective energies E1, E2, . . .. A measurement of the energy
can only yield one of the numbers En and the particle must be found in one of the
fundamental states �nj i. The probability that the particle is found in state nj i ¼ �nj i is
given by

PðnÞ ¼ �n
�� ��2¼ n jvh ij j2 ð5:6:5Þ

Keep in mind that a probability function must satisfy certain conditions including

PðnÞ � 0 and
X
n

PðnÞ ¼ 1 ð5:6:6Þ

Let’s check that Equation (5.6.5) satisfies these last two properties. It satisfies the first
property PðnÞ � 0 since the length of a vector must always be greater than or equal to
zero. Let’s check the second property. Consider

1 ¼ v j vh i ¼
X
m

X
n

��m�n �m j �nh i ¼
X
n

�n
�� ��2 ¼X

n

PðnÞ ð5:6:7Þ

So the normalization condition for the wave function requires the summation of all
probabilities to equal unity even though each individual �n might change with time.
We can handle continuous coordinates in a similar fashion except use integrals

and Dirac delta functions rather than the discrete summations and Kronecker delta
functions. Projecting the wave function  

�� � onto the spatial-coordinate basis set xj if g

provides a probability amplitude as the component  ðxÞ ¼ x
�� � �

.

 
�� � ¼ Z

dx xj i x
�� � �

¼

Z
dx xj i  ðxÞ

These wave functions  ðxÞ usually come from the Schrodinger equation. The square of the
probability amplitude hx j  i ¼  ðxÞ provides the probability density �ðxÞ ¼  �ðxÞ ðxÞ
(probability per unit length); it describes the probability of finding the particle at ‘‘point
x0

mechanically acceptable wave functions have unit length so that

1 ¼  
�� � �

¼  
� ��1̂1  �� � ¼ Z

all x
dx  

��x� �
x
�� � �

¼

Z
all x

dx  �ðxÞ ðxÞ

For three spatial dimensions, � ~rr
� �

dV ¼  � ~rr
� �

 ~rr
� �

dV represents the probability of
finding a particle in the infinitesimal volume dV centered at the position ~rr

PROBða 	 x 	 b, c 	 y 	 d, e 	 z 	 fÞ ¼

Z b

a

Z d

c

Z f

e
dV �ðx, y, zÞ

Several types of reasoning on probability are quite common for the quantum theory.
Unlike classical probability theory, we cannot simply add and multiply probabilities.
In quantum theory, the probability amplitudes ‘‘add’’ and ‘‘multiply.’’ Consider a succes-
sion of events occurring at the space-time points ðx0, t0Þ, ðx1, t1Þ, ðx2, t2Þ; . . .

� �
on the

history path in The probability amplitude  x, tð Þ of the succession of
events all on the same history path consists of the product  x, tð Þ ¼

Q
i  i xi, tið Þ. Without
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Figure 5.6.3.

(refer to Appendix 4 for a review of probability theory). We require that all quantum



superposition, the probability for successive events (the square of the amplitude) reduces
to the product of the probabilities as found in classical probability theory. Superposition
requires the phase of the amplitude to be taken into account similar to that of the
electromagnetic field before calculating the total power.
For the case of two independent events such as two occurring at the same time, the

probability amplitudes add (Figure 5.6.4)  ðx, tÞ ¼  1 x01, t1
� �

þ  2 x002, t1
� �

where all wave
functions depend on (x, t) at the destination point (really need a propagator).
A measurement of an observable ÂA destroys the phase relation between the compo-

nents of the wave function  
�� � ¼P

n �n anj i, forces the system to collapse to one of
the eigenstates a1j i, a2j i, . . .f g, and produces exactly one of the eigenvalues a1, a2, . . .f g

for the results. The classical probability of finding the particle in state ai or aj can be
written as

Pðai or ajÞ ¼ PðaiÞ þ PðajÞ � P ai and aj
� �

:

Since the wave function collapses to either ai or aj but not both, the two events (i.e.,
the result of the measurement) must be mutually exclusive in this case so that
P ai and aj
� �

¼ 0 and

P ai or aj
� �

¼ �i
�� ��2þ �j

�� ��2:
When people look for the results of measurements on a quantum system, even though
there exists an infinite number of wave functions  

�� �, they consider only the basis states
and eigenvalues.

5.6.5 The Average and Variance

We use the quantum mechanical probability density in a slightly different manner than
the classical ones. Consider a particle (or system) in state

 
�� � ¼X

n

�n anj i ð5:6:8Þ

where a1, a2, . . .f g and a1j i, a2j i, . . .f g are the eigenvalues and eigenvectors for the
observable Â. The quantum mechanical average value of Â can be written as h jÂA  i

�� .
We can project the wave function onto either the eigenvector basis set or the coordinate

basis set. Consider the eigenvectors first. Using the expansion 5.6.8 we find

 
� ��ÂA  

�� � ¼X
n

anj�nj
2 ð5:6:9Þ

FIGURE 5.6.3

A succession of events on a single history path.

FIGURE 5.6.4

Parallel history paths.

Fundamentals of Dynamics 281

© 2005 by Taylor & Francis Group, LLC



This expression agrees with the classical probability expression for averages E Að Þ ¼P
n anPn where E(A) represents the expectation value and where Â takes the form of a

random variable. In fact, the range of Â can be viewed as the outcome space a1, a2, . . .f g.
Projecting into coordinate space, the average can be written as

 
� ��ÂA  

�� � ¼  
� �� Z dx xj i xh j

� �
ÂA  
�� � ¼ Z

dx  �ðxÞ ÂA ðxÞ ð5:6:10aÞ

Notice that we must maintain the order of operators and vectors.
We define the variance of a Hermitian operator by

�2
ÔO
¼ E ÔO� ÔO

D E	 
2
¼ E ÔO2 � 2ÔO ÔO

D E
þ ÔO
D E2� �

¼ E ÔO2
	 


� ÔO
D E2

¼ ÔO2
D E

� ÔO
D E2

ð5:6:10bÞ

The standard deviation becomes

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÔO2
D E

� ÔO
D E2r

ð5:6:10cÞ

A ‘‘Sharp value’’ refers to the case �̂�2
ÔO
¼ 0 such as for eigenstates of Ô.

Three comments need to be made. First, to compute the expectation value or the vari-
ance, the wave function must be known. The components of the wave function give the
probability amplitude. This is equivalent to knowing the probability function in classical
probability theory. Second, from an ensemble point of view, the expectation of an opera-
tor really provides the average of an observable when making multiple observations
on the same state. The quantity hÔOi 
 h jÔOj i provides the average of the observable ÔO
in the single state  

�� �.
As a third comment, non-Hermitian operators do not necessarily have a unique

definition for the variance. Consider a variance defined similar to a classical variance
Var Oð Þ ¼ hðO� �OOÞ

�
ðO� �OOÞi. For simplicity, set �OO ¼ 0 so that Var Oð Þ ¼ O�Oh i. Replacing

O with ÔO and O� with ÔOþ produces the three possibilities of hÔOþÔOi, hÔO ÔOþi and
h12 ÔO

þÔOþ 1
2 ÔO ÔOþi out of an infinite number. The adjoint can be dropped for Hermitian

operators and all possibilities reduce to the one listed in Equation (5.6.10c).

Example 5.6.2

The Infinitely Deep Square Well
Find the expectation value of the position ‘‘x’’ for an electron in state ‘‘n’’ where the

basis functions are

�ðxÞ ¼

ffiffiffi
2

L

r
Sin

n�x

L

	 
( )

Solution

xh i ¼ nh jx nj i ¼

Z L

0

dx u�n x un ¼
2

L

Z L

0

dx x sin2 n�x

L

	 

¼

L

2
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5.6.6 Motion of the Wave Function

As discussed in the next section, the Schrodinger wave equation provides the dynamics
of particle through the wave function �j i.

ĤH �j i ¼ i�hh
@

@t
�j i ð5:6:11Þ

Solving the Schrodinger equation by the method of orthonormal expansions provides
the energy basis functions 1j i ¼ �1j i, 2j i ¼ �2j i, . . .f g. It also gives the time dependence
of �j i which appears in the coefficients � in the basis vector expansion

� tð Þ
�� �

¼
X
n

�nðtÞ nj i

The wave function �j i moves in Hilbert space since the coefficients �n depend on time.
Notice that the wave function stays within the given Hilbert space and never moves
out of it! This is a result of the fact that the eigenvectors form a complete set.
A formal solution to Equation (5.6.11) can be found when the Hamiltonian does not

depend on time

� tð Þ
�� �

¼ e
ĤH t�toð Þ

i�hh � toð Þ
�� �

ð5:6:12Þ

where j� toð Þi is the initial wave function. The operator

ûu t, toð Þ ¼ e
ĤH t�toð Þ

i�hh ð5:6:13Þ

moves the wave function j i ¼ j ðtÞi in time as shown in Figure 5.6.5. Also, because
all quantum mechanical wave functions have unit length and never anything else, the
operator ‘‘û’’ must be unitary!
In general, operators that move the wave function in Hilbert space make the coeffi-

cients depend on time and therefore also the probabilities PðnÞ ¼ jhn
��vðtÞij2 ¼ j�nðtÞj

2.
If the total Hamiltonian does not depend on time and therefore, �’s depend on time
only through a trivial phase factor of the form ei!t, then the probabilities PðnÞ ¼ �n

�� ��2 do
not depend on time.

FIGURE 5.6.5

The evolution operator causes the wave function to move in
Hilbert space. The unitary operator depends on the Hamiltonian.
Therefore it is really the Hamiltonian that cause the wave function
to move.
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5.6.7 Collapse of the Wave Function

The collapse of the wave function is one of the most exciting aspects of quantum theory
(certainly one of the most imaginative). The collapse deals with how a superposed wave
function behaves while making a measurement of an observable. The collapse is random
and outside the normal evolution of the wave function; a dynamical equation does
not govern the collapse.
First we introduce the collapse of the wave function. Suppose we are most interested

in the energy of the system (although any Hermitian operator will work) and that the
energy has quantized values E1,E2, . . .f g where ĤH �nj i ¼ En �nj i. Further assume that an
electron resides in a superposed state

 
�� � ¼X

n

�n �nj i ð5:6:14Þ

Making a measurement of the energy produces a single energy value En (for example).
To obtain the single value En, the particle must be in the single state �nj i. We therefore
realize that making a measurement of the energy somehow changes the wave function
from  

�� � to �nj i. The probability of the wave function  
�� � collapsing to the basis vectors

�nj i must be P nð Þ ¼ �n
�� ��2.

Let us discuss how we mathematically represent the process of measuring an obser-
vable. So far, we claim to model the measurement process by applying a Hermitian
operator to a state. However, we’ve shown the process only for eigenstates

ĤH �nj i ¼ En �nj i ð5:6:15Þ

In fact, the interpretation of Equation (5.6.15) does not match the processes of ‘‘measur-
ing an observable’’ since we expect the results to be a number such as En and not the
vector En �nj i.
How should we interpret the case when measuring an observable for a superposed

wave function such as in Equation (5.6.14)? If we apply ĤH to the vector  
�� � we find

ĤH  
�� � ¼X

n

�nðtÞĤH �nj i ¼
X
n

�nðtÞEn �nj i ð5:6:16Þ

This last equation attempts to measure the energy of a particle in state  
�� � at time t.

While mathematically correct, this last equation does not accurately model the ‘‘act of
observing!’’ Observing the superposition wave function must disturb it and cause it to
collapse to one of the eigenstates! The process of observing a particle must therefore
involve a projection operator! The collapse must introduce a time dependence beyond
that in the coefficient �nðtÞ. The interaction between the external measurement agent and
the system introduces uncontrollable changes of the wave function in time. Once the
wave function collapses to one of the basis states, a randomizing process must be applied
to the system for the wave function to move away from that basis state.
Let us show how the ‘‘observation act’’ might be modeled. Suppose that the

observation causes the wave function to collapse to state nj i. The mathematical model
for the ‘‘act of observing’’ the energy state should include a projection operator
P̂Pn ¼ 1

�n
�nh j where P̂Pn includes a normalization constant of 1=�n for convenience (the

symbol ‘‘P’’ should not be confused with the momentum operator and probability). The
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operator corresponding to the ‘‘act of observing’’ should be written as P̂PnĤH. The results of
the observation becomes

P̂PnĤH  
�� � ¼X

m

�mðtÞ
1

�n
�nh jĤH �mj i ¼ En

However, we don’t know a priori into which state the wave function will collapse.
We can only give the probability of it collapsing into a particular state. The probability
of it collapsing into state nj i must be j�nj

2 ¼ ��n�n ¼ jh�n
�� ij2. Quantities such as h jĤH  

�� �
give a single quantity E that represents an average over the potential collapse into any
of the eigenstates. This means E ¼ Ave Enð Þ ¼ Ave P̂PnĤH  

�� �.
So far in the discussion, we make a distinction between an undisturbed and a disturbed

wave function. For the undisturbed wave function, the components in a generalized
summation

 
�� � ¼X

n

�nðtÞ �nj i ð5:6:17Þ

maintain their phase relation as the system evolves in time. In this case, the components
�nðtÞ satisfy a differential equation (which implies the components must be continuous).
The undisturbed wave function follows the dynamics embedded in Schrodinger’s

equation. The general wave function satisfies

ĤH  
�� � ¼X

n

�nðtÞĤH �nj i ¼
X
n

�nðtÞEn �nj i ð5:6:18Þ

The collection of eigenvalues En make up the spectrum of the operator ĤH. The coefficient
�n is the probability amplitude for the particle to be found in state �n with energy En.
The collapse of the wave function has several possible interpretations. For the first

interpretation, people sometimes view the wave function as a mathematical construct
describing the probability amplitude. They assume that the particle occupies a particular
state although they don’t know which one. They make a measurement to determine the
state the particle (or system) actually occupies. Before a measurement, they have limited
information of the system. They know the probability

PðnÞ ¼ �n
�� ��2

that the particle occupies a given fundamental state (basis vector). Therefore, they know
a wave function by the superposition of �n �nj i. Making a measurement naturally changes
the wave function because they then have more information on the actual state of the
particle. After the measurement, they know for certain that the electron must be in state
‘‘i’’ for example. Therefore, they know �i¼ 1 while all the other � must be zero. In effect,
the wave function collapses from  to �i. With this first view, they ascribe any wave
motion of the electron to the probability amplitude while implicitly assuming that the
electron occupies a single state and behaves as a point particle. Making a measure-
ment removes their uncertainty. In this view, the collapse refers to probability and
nothing more. However, apparently nature does not operate this way as seen from
Bell’s theorem.
As a second interpretation and probably the most profound, the collapse of the

wave function can be viewed as more related to physical phenomena. The Copenhagen
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interpretation (refer to Max Jammer’s book) of a quantum particle in a superposed state

 
�� � ¼X

n

�nðtÞ �nj i ð5:6:19Þ

describes the particle as simultaneously existing in all of the fundamental states �nj i.
Somehow the particle simultaneously has all of the attributes of all of the fundamental
states. A measurement of the particle forces it to ‘‘decide’’ on one particular state. This
second point of view produces one of the most profound theorems of modern times—
Bell’s theorem. Let’s take an example connected with the EPR paradox (the Einstein–
Podolski–Rosen paradox).
Suppose a system of atoms can emit two correlated photons (entangled) in oppo-

site directions. We require the polarization of one to be tied with the polarization of
the other. For example, suppose every time that we measure the polarization of photon A,
we find photon B to have the same polarization. However, let’s assume that each photon
can be transversely polarized to the direction of motion according to

 a
�� �

¼ � a
1 1j i þ � a

2 2j i ð5:6:20Þ

where 1j i, 2j i represent the x and y directions, and ‘‘a’’ represents particle A or B. This
last equation represents a wave moving along the z-direction but polarized partly along
the x-direction and partly along the y-direction. We regard each photon as simulta-
neously existing in both polarized states 1j i, 2j i. If a measurement is made on photon A,
and its wave function collapses to state 1j i, then the wave function for photon B
simultaneously collapses to state 1j i. The collapse occurs even though the photons
might be separate by several light years! Apparently the collapse of one can influence
the other at speeds faster than light! Most commercial bookstores carry a number of ‘‘easy
to read’’ books on endeavors to make communicators using the effect.

5.6.8 Noncommuting Operators and the Heisenberg Uncertainty Relation

This topic provides an intuitive view of how the Heisenberg uncertainty relation arises
from two non-commuting Hermitian operators ÂA, B̂B corresponding to two observables.
Figure 5.6.6 indicates that measuring Â collapses the wavefunction  

�� � into one of
many fundamental states. Suppose the wave function collapses to the state aj i. Repeated
measurements of observable A produces the sequence a, a, a and so on. The dispersion
(standard deviation) for the sequence must be zero. We see that once the wave function
collapses, the operator Â cannot change the state since it produces the same state ÂA aj i ¼
a aj i. Similar comments apply to B̂B. Now we can see what happens when two operators
do not influence each others eigenstates.

Let’s suppose the two observables ÂA, B̂B can be
measured at the same time without dispersion; this
means we can repeatedly measure ÂA, B̂B and find the
same result each time. We will use the shortcut phrase
of ‘‘simultaneous observables.’’ Let’s assume that
�j i characterizes the state of a particle such that
B̂B �j i ¼ b �j i and ÂA �j i ¼ a �j i. We can first apply Â
without affecting the results for B̂B. Applying Â gives
ÂA �j i ¼ a �j i and then applying B̂B gives B̂BfÂA �j ig ¼

B̂Bfa �j ig ¼ bfa �j ig ¼ bfÂA �j ig. The result of observing B̂B

FIGURE 5.6.6

Repeatedly applying an operator to a
state gives the same number.
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must still be ‘‘b.’’ Therefore ÂA does not affect the state of the particle and therefore does
not disturb a measurement of B̂B. As a matter of generalizing the discussion, consider the
following string of equalities.

ÂAB̂B �j i ¼ bÂA �j i ¼ ab �j i ¼ aB̂B �j i ¼ B̂Ba �j i ¼ B̂BÂA �j i ð5:6:21Þ

This relation must hold for every vector in the space since it holds for each basis vector.
We can conclude

ÂAB̂B ¼ B̂BÂA ! 0 ¼ ÂAB̂B� B̂BÂA 
 ÂA, B̂B
h i

ð5:6:22Þ

Therefore simultaneous observables must correspond to operators that commute (refer

In this discussion, we say that we first apply B̂B and then apply ÂA according to their
order in the product ÂAB̂B or we might imagine using a time index. For example

ÂA t2ð ÞB̂B t1ð Þ  
�� � t24t1

In our case, the Â, B̂B do not depend on time so that t2! t1. We might think of the order
ÂAB̂B  
�� � as a remnant of mathematical notation (involving t). Physically it doesn’t matter

if we write ÂB̂B or B̂BÂ because we require them to be measured at the same time. We expect
to find the same answer if the operators correspond to simultaneous observables.
Therefore we expect ÂAB̂B ¼ B̂BÂA for simultaneous observables.
Now let’s consider the situation where two operators ÂA, B̂B interfere with the measure-

ment of each other. Suppose B̂B disturbs the eigenvector of Â where the eigenvectors of
Â satisfy

ÂA �1j i ¼ a1 �1j i ÂA �2j i ¼ a2 �2j i ð5:6:23Þ

Suppose that B̂B disturbs the eigenstates of ÂA according to

B̂B �1j i ¼ vj i ð5:6:24Þ

which appears in Figure 5.6.7. Assume vj i has the expansion

vj i ¼ �1 �1j i þ �2 �2j i ð5:6:25Þ

Now we can see that the order of applying the operators makes a difference. If we apply
first ÂA then B̂B, we find

B̂BÂA �1j i ¼ B̂Ba1 �1j i ¼ a1 vj i ð5:6:26Þ

FIGURE 5.6.7

The vector collapses to either of two eigenvectors of A.
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The reverse order ÂAB̂B produces different behavior.

ÂAB̂B �1j i ¼ ÂA vj i ¼ ÂA �1 �1j i þ �2 �2j i
� �

¼ �1a1 �1j i þ �2a2 �2j i ð5:6:27Þ

The results of the two orderings do not agree. We therefore surmise

ÂAB̂B 6¼ B̂BÂA

Therefore, operators that interfere with each other do not commute. Further, the collapse
of the wave function vj i under the action of ÂA can produce either �1j i or �2j i so that the
standard deviation for the measurements of ÂA can no longer be zero.
We now provide a ‘‘cartoon’’ view of how the non-commutivity of two observables

gives rise to the Heisenberg uncertainty relation. Assume a 2-D Hilbert space with two
different basis sets �1j i, �2j if g and f  1i, j 2ig

�� where ÂA �nj i ¼ an �nj i and B̂Bj ni ¼ bnj ni.
The relation between the basis vectors appears in Figure 5.6.8. We make repeated meas-
urements of B̂BÂA. Suppose we start with the wave function �1j i and measure ÂA; we find
the result a1. Next, let’s measure B̂B. There’s a 50% chance that �1j iwill collapse to j 1i and
a 50% chance it will collapse to j 2i. Let’s assume it collapses to  1

�� �
and we find the value

b1. Next we measure ÂA and find that j 1i collapses to �2j i and we observe value a2 and
so on. Suppose we find the following results for the measurements.

a1 b1 a2 b1 a2 b2 a1 b1 a1 b2

Next let’s sort this into two sets for the two operators

A ! a1 a2 a2 a1 a1

B ! b1 b1 b2 b1 b2

We therefore see that both A and B must have a nonzero standard deviation. Section 4.9
shows how the observables must satisfy a relation of the form �A�B � constant 6¼ 0. We
find a nonzero standard deviation when we measure two noncommuting observables and
the wave function collapses to different basis vectors. Had we repeatedly measured A,
we would have found a1 a1 a1 a1 which has zero standard deviation.

5.6.9 Complete Sets of Observables

As previously discussed, we define the state of a particle or a system by specifying the
values for a set of observables

ÔO1, ÔO2, . . .
n o

FIGURE 5.6.8

The two basis sets.
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such as ÔO1 ¼ energy, ÔO2 ¼ angular momentum, and so on. We know that each
Hermitian operator induces a basis set. The direct product space has a basis set of
the form o1, o2, . . .j i ¼ o1j i o2j i . . . where the eigenvalue ‘‘on’’ occurs in the eigenvalue
relation ÔOn o1 . . . on . . .j i ¼ on o1 . . . on . . .j i. These operators all share a common basis set.
Knowing the particle occupies the state o1, o2, . . .j i means that we exactly know the
outcome of measuring the observables fÔO1, ÔO2, . . .g. How do we know which observables
to include in the set? Naturally we include observables of interest to us. We make the set
as large as possible without including Hermitian operators that don’t commute.
In quantum theory, we specify the basic states (i.e., basis states) of a particle or system

by listing the observable properties. The particle might have a certain energy, momen-
tum, angular momentum, polarization, etc. Knowing the value of all observable proper-
ties is equivalent to knowing the basis states of the particle or system. Each physical
‘‘observable’’ corresponds to a Hermitian operator ÔOi which induces a preferred basis set
for the respective Hilbert space Vi (i.e., the eigenvectors of the operator comprises the
‘‘preferred’’ basis set). The multiplicity of possible observables means that a single
particle can ‘‘reside’’ in many Hilbert spaces at the same time since there can be a Hilbert
space Vi for each operator ÔOi. The particle can therefore reside in the direct product space

V ¼ V1 � V2 � � � �

where V1 might describe the energy, V2 might describe the momentum and so on. The
basis set for the direct product space consists of the combination of the basis vectors for
the individual spaces such as

�j i ¼ �, �, . . .j i ¼ �j i �j i . . .

where we assume, for example, that the space spanned by �j if g refers to the energy
content and �j if g refers to momentum, etc.
The basis states can be most conveniently labeled by the eigenvalues of the commuting

Hermitian operators. For example, Ei, pj
�� �

represents the state of the particle with energy
Ei and momentum pj assuming of course that the Hamiltonian and momentum commute.
These two operators might represent all we care to know about the system.

5.7 Basic Operators of Quantum Mechanics

This section reviews the basic quantities in the quantum theory and useable forms of
some observables such as energy and momentum. We develop the Schrodinger wave
equation.

5.7.1 Summary of Elementary Facts

Electrons, holes, photons, and phonons can be pictured as particles or waves. Momentum
and energy usually apply to particles while wavelength and frequency apply to waves.
The momentum and energy relations provide a bridge between the two pictures

p ¼ �hhk E ¼ �hh! ð5:7:1aÞ
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(see Chapters 2 and 3) given by



where �hh ¼ h=2� and ‘‘h’’ is Planck’s constant. For both massive and massless particles, the
wave vector and angular frequency can be written as

k ¼
2�

l
! ¼ 2�	 ð5:7:1bÞ

where l and 	 represent the wavelength and frequency (Hz). For massive particles, the
momentum p¼mv can be related to the wavelength by

l ¼
h

mv

for mass m and velocity v.

5.7.2 Operators, Eigenvectors and Eigenvalues

‘‘Hermitian operators’’ ÔO represent observables, which are physically measurable quanti-
ties such as the momentum of a particle, electric field, and position. If ‘‘�’’ is an
eigenvector (basis vector), then the eigenvector equation ÔO� ¼ o� provides the result of
the observation where ‘‘o,’’ a real constant, represents the results of a measurement. If for
example, ‘‘ÔO’’ represents the momentum operator, then ‘‘o’’ must be the momentum of
the particle when the particle occupies state ‘‘�.’’ We can write an eigenfunction equation
for every observable. The result of every physical observation must always be an
eigenvalue. Quantum mechanics does not allow us to simultaneously and precisely know
the values of all observables.

5.7.3 The Momentum Operator

The mathematical theory of quantum mechanics admits many different forms for the
operators. The ‘‘spatial-coordinate representation’’ relates the momentum to the spatial
gradient. To find an operator representing the momentum, consider the plane wave
� ¼ Aei

~kk�~rr�i!t. The gradient gives

r� ¼ i~kk� ¼ i
~PP

�hh
�

where ~PP ¼ �hh~kk is the momentum defined at the beginning of this section. We assume
this form holds for all eigenvectors of the momentum operator. Therefore, comparing
both sides of the last equation, it seems reasonable to identify the momentum operator
with the spatial derivative

P̂P ¼
�hh

i
r ¼

�hh

i
x̂x
@

@x
þ ŷy

@

@y
þ ẑz

@

@z

� �
ð5:7:2Þ

The momentum operator has both a vector and operator character. The operator charac-
ter comes from the derivatives in the gradient and the vector character comes from the
unit vectors appearing in the gradient. We identify the individual components of the
momentum as

P̂Px ¼
�hh

i

@

@x
P̂Py ¼

�hh

i

@

@y
P̂Pz ¼

�hh

i

@

@z
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Sometimes it’s more convenient to work with alternate notation

xm ¼

x m ¼ 1

y m ¼ 2

z m ¼ 3

8><
>: P̂Pm ¼

P̂Px m ¼ 1

P̂Py m ¼ 2

P̂Pz m ¼ 3

8><
>:

The position and momentum do not commute.

xm, P̂Pn

h i
¼ i�hh�mn

In general, conjugate variables (i.e., m¼ n) refer to the same degree of freedom and do not
commute.

5.7.4 Developing the Hamiltonian Operator and the Schrodinger Wave Equation

We can observe the total energy of a particle or a system (the word system usually
denotes a collection of particles—not necessarily all of the same type). We know that there
exists a Hermitian operator ĤH representing the total energy. Earlier sections in this
book on classical mechanics develop the special mathematical properties of the classical
Hamiltonian and associated Lagrangian. Quantum theory models the act of observing
the energy of a particle by an eigenvalue equation

ĤH �j i ¼ E �j i or ĤH� ¼ E� ð5:7:3Þ

where �j i is the wave function (more accurately, a basis function) for the particle. The
eigenvector equation cannot easily be solved without more details on the form of
the operator. In general, we need a wave equation in order to find the wave motion
associated with the probability of the quantum particles.
We now determine another form for the energy operator using a plane wave represen-

tation for the wave function of a particle. Even though we use a specific wave function,
we require the partial differential equation to hold in general, even for arbitrary wave
functions. A plane wave traveling along the þz direction with phase velocity v¼!/k has
the form � ¼ Aeikz�i!t. Differentiating with respect to time and using E ¼ �hh! gives us

@�

@t
¼ �i!� ¼ �i

E

�hh
� ! i�hh

@�

@t
¼ E� ð5:7:4Þ

We assume Equation (5.7.4) holds for all vectors � in the Hilbert space. Comparing
Equations (5.7.4) and (5.7.3), we are encouraged to write

ĤH� ¼ i�hh
@�

@t
ð5:7:5Þ

The Schrodinger wave equation (SWE) in Equation (5.7.5) provides the dynamics for
the motion of the quantum particles. The motion in the SWE can refer to a variety of
motions including the motion of a particle through space or the evolution of the spin
of a particle. Any wave function solving Equation (5.7.5) can be Fourier expanded in a
basis set of plane waves. Equation (5.7.5) has only a first derivative in time contrary to the
usual form of a classical wave equation (the wave equation for electromagnetics for
example). The reason is that, for the probability interpretation of the wave function to

Fundamentals of Dynamics 291

© 2005 by Taylor & Francis Group, LLC



hold, and for conservation of particle number (i.e., an equation of continuity for
probability), the second derivative in time must be replaced by a first derivative and
complex numbers must be introduced.
We must specify the exact form of the energy operator in terms of other quantities

related to the energy of the system. For a single particle, we know that the total energy
can be related to the kinetic and potential energy. We must keep in mind throughout
this procedure that ĤH is an operator; any expression for ĤH must therefore contain
operators.
The usual procedure for finding the quantum mechanical Hamiltonian starts by writing

the classical Hamiltonian (i.e., energy) and then substituting operators for the dynamical
variables (i.e., observables). The operators are then required to satisfy commutation
relations which accounts for the fact that the corresponding observables might or
might not be simultaneously observable (i.e., the Heisenberg uncertainty relations must
be satisfied).
The classical Hamiltonian for a particle with potential energy V ~rr

� �
can be written as

H ¼ keþ pe ¼
p2

2m
þ V ~rr

� �
The quantum mechanical Hamiltonian can be found by replacing all dynamical vari-
ables, which consist of ~rr and ~pp in this case, with the equivalent operator. We will work
in the spatial-coordinate representation so that we denote the position vector by ~rr and
we use Equation (5.7.2) for the momentum. The quantum mechanical Hamiltonian can
be written as

ĤH ¼
P̂P2

2m
þ Vð~rrÞ ¼

1

2m

�hh

i
r

	 

�

�hh

i
r

	 

þ Vð~rrÞ ¼ �

�hh2

2m
r2 þ Vð~rrÞ

If we cannot simultaneously and precisely measure both momentum and position in
the Hamiltonian, how can the energy ever have an exact value? We resolve this apparent
contradiction by noting that the Hamiltonian is well defined for an energy eigenfunction
basis set even though momentum and position cannot be simultaneously exactly known.
As a note, the basis vectors by themselves do not solve the Schrodinger equa-

tion. Instead, the functions of the form eEt=i�hh Ej i and their superposition do solve the
Schrodinger equation.

5.7.5 Infinitely Deep Quantum Well

We solve Schrodinger’s equation for an electron confined to an infinitely deep well of
width L in free space. The particle requires an infinitely large amount of energy to escape
from the well.

VðxÞ ¼
0 x 2 0, Lð Þ

1 elsewhere

�

The boundary value problem consists of a partial differential equation and boundary
conditions

�
�hh2

2m

@2

@x2
� ¼ i�hh

@�

@t
�ð0, tÞ ¼ �ðL, tÞ ¼ 0 ð5:7:6Þ
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where ‘‘m’’ is the mass of an electron. There should also be an initial condition (IC) for the
time derivative; it should have the form � x, 0ð Þ ¼ fðxÞ. The initial condition specifies
the initial probability for each of the basis states. We are most interested in the basis states
for now.
We use the technique for the separation of variables. Set �(x,t)¼X(x)T(t), substitute

into the partial differential equation, then divide both sides by �, and finally use E as the
separation constant to obtain

1

u
�

�hh2

2m

@2

@x2
X

� �
¼ E ¼ i�hh

1

T

@T

@t
ð5:7:7Þ

We now have two equations

�
�hh2

2m

@2X

@x2
¼ EX i�hh

@T

@t
¼ ET ð5:7:8Þ

The last equation provides

TðtÞ ¼ exp
E

i�hh
t

� �
¼ exp �i!tð Þ ð5:7:9Þ

where E ¼ �hh!. Separation of variables also provides boundary conditions for X(x).
We find

�ð0, tÞ ¼ 0 ¼ �ðL, tÞ ! Xð0ÞTðtÞ ¼ 0 ¼ XðLÞTðtÞ ! Xð0Þ ¼ 0 ¼ XðLÞ ð5:7:10Þ

The first of Equations (5.7.8) along with boundary conditions from Equations (5.7.10)
constitute the Sturm–Liouville problem that produces the basis set XnðxÞ

� �
. We must

solve an eigenvalue equation ĤH XðxÞ ¼ EXðxÞ

�
�hh2

2m

@2X

@x2
¼ EX Xð0Þ ¼ 0 ¼ XðLÞ ð5:7:11Þ

Three ranges for the separation constant E50, E ¼ 0, E4 0 must be considered because
the sign of E determines the character of the solution. All cases must be considered
because the solution wave function becomes a summation over all eigenfunctions with
the eigenvalues as the index. The E50, E ¼ 0 cases lead to trivial solutions and not
eigenfunctions.
The case of E4 0 produces the only eigenfunctions X(x) having the form

XðxÞ ¼ A0e�ikx þ B0eikx ¼ A cosðkxÞ þ B sinðkxÞ with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=�hh2

p
ð5:7:12Þ

The equation for k comes from substituting X into Equation (5.7.11). We have 3 unknowns
A, B, k and only two boundary conditions in Equations (5.7.6). Clearly, we will not find
values for all three parameters. The boundary conditions lead to multiple discrete values
for k and hence for the energy E.
Let us determine the parameters A, B, k as much as possible. The boundary conditions

X(0)¼ 0 and X(L)¼ requires XðxÞ ¼ B sinðkxÞ and sinðkLÞ ¼ 0, respectively. The last one
can only happen when k¼ n�/L for n¼ 1, 2, 3, . . . and therefore the wavelength must
be given by l¼ 2�/k¼ 2L/n, which requires multiples of half wavelengths to fit in the
width of the well. The functions XnðxÞ ¼ B sin n�x=Lð Þ are the eigenfunctions. The basis set
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comes from normalizing the eigenfunctions. We require Xn j Xnh i ¼ 1 so that B ¼
ffiffiffiffiffiffiffiffi
2=L

p

and the basis set must be

XnðxÞ ¼

ffiffiffi
2

L

r
sin

n�

L
x

	 
( )
ð5:7:13Þ

These are also called stationary solutions because they do not depend on time. Stationary
solutions satisfy the time-independent Schrodinger wave equation ĤHXnðxÞ ¼ EnXnðxÞ.
A solution of the partial differential equation corresponding to an allowed energy

En must be

�n ¼ XnTn ¼ B sin
n�

L
x

	 

e�itEn=�hh ð5:7:14Þ

The allowed energies En can be found by combining k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=�hh2

p
and k¼ n�/L

En ¼
�hh2k2n
2m

¼
�hh2�2

2mL2
n2 ð5:7:15Þ

The full wave function must be a linear combination of these fundamental solutions

�ðx, tÞ ¼
X
E

�E�E ¼
X
n

�nðtÞ XnðtÞ ð5:7:16Þ

which has the form of the summation over basis vectors with time dependent com-
ponents. The components of the vector must be �nðtÞ ¼ �nð0Þ e

�itEn=�hh where �n(0) are
constants.

Example 5.7.1

Suppose a student places an electron in the infinitely deep well at t¼ 0 according to the
prescription

�ðx, 0Þ ¼
1ffiffiffi
2

p X1 þ
1ffiffiffi
2

p X2 or � 0ð Þ
�� �

¼
1ffiffiffi
2

p 1j i þ
1ffiffiffi
2

p 2j i ð5:7:17Þ

The function �ðx, 0Þ provides the initial condition. Find the full wave function.

Solution: The full wave function appears in Equation (5.7.16)

�ðtÞ
�� �

¼
X
n

�ne
�itEn=�hh nj i ð5:7:18Þ

We need the coefficients �n which come from the wave function evaluated at some fixed
time such as t¼ 0. The expansion coefficients must have the form

�n ¼ n
�� �ð0Þ

� �
¼ nh j

1ffiffiffi
2

p 1j i þ
1ffiffiffi
2

p 2j i

� �
¼

1ffiffiffi
2

p �1n þ
1ffiffiffi
2

p �2n
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and the full wave function becomes

�ðx, tÞ ¼
X
n

�n

ffiffiffi
2

L

r
sin

n�

L
x

	 

e�itEn=�hh ¼

X
n

1ffiffiffi
2

p �1n þ
1ffiffiffi
2

p �2n

� � ffiffiffi
2

L

r
sin

n�

L
x

	 

e�itEn=�hh

which reduces to

�ðx, tÞ ¼
1ffiffiffi
L

p sin
�

L
x

	 

e�itE1=�hh þ

1ffiffiffi
L

p sin
2�

L
x

� �
e�itE2=�hh ¼

1ffiffiffi
2

p X1e
�itE1=�hh þ

1ffiffiffi
2

p X2e
�itE2=�hh

where Equation 5.7.15 gives

En ¼
�hh2k2n
2m

¼
�hh2�2

2mL2
n2

5.8 The Harmonic Oscillator

The Schrodinger wave equation (SWE) describes the time evolution of the wave function.
The Hamiltonian for the harmonic oscillator describes a particle of mass m in a quadratic
potential. Displacing the mass from equilibrium produces a linear restoring
force. We focus on the 1-D oscillator since a 3-D oscillator can be decomposed into
three 1-D oscillators. Any coupling between the three 1-D oscillators can be included in
the Hamiltonian later if desired.
The harmonic oscillator has important applications. Many systems have nonlinear

potential functions. Expanding these nonlinear potentials in a Taylor series often pro-
duces a quadratic term as the lowest order approximation. As an example, the periodic
motion of atoms about their equilibrium position can be modeled with the quadratic
potential. We know this motion must be related to phonons moving through the material.
We will see that the zero point motion of the atom can be described by the quantum
mechanical vacuum state.
Quantum optics provides a somewhat surprising application for the quadratic poten-

tial. The electromagnetic fields can be modeled by quadratic kinetic and potential terms.
Of course, these do not refer to an electron in an electrostatic potential. Nor do they refer
to the position or momemtum of photons. Instead, they refer to the form assumed by
the fields in the Hamiltonian. The quantized form of the electromagnetic fields can be
immediately written by comparison with the wave functions for the electron in the
quadratic potential.

5.8.1 Introduction to the Classical and Quantum Harmonic Oscillators

force

V ¼

1

2
kx2 1-D

1

2
kr2 3-D

8>><
>>:
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For a harmonic oscillator, the quadratic potential (Figure 5.8.1) produces a linear restoring



where r2 ¼ x2 þ y2 þ z2, and the equilibrium position occurs at the origin x¼ 0, the
‘‘spring constant’’ must be positive k4 0 and it describes the curvature of the potential
(i.e., magnitude of the force).
The classical Hamiltonian has the form

Hc ¼
p2

2m
þ
1

2
kx2 ð5:8:1Þ

where we consider the dynamic variables x, p to be independent of one another.
Newton’s second law can be demonstrated using Hamilton’s canonical equation (refer to

_pp ¼ �
@Hc

@x
¼ �kx ¼ F

The Lagrangian shows that the momentum p must be related to the velocity by
p ¼ mv ¼ m_xx.
We want to compare and contrast solutions x(t) to the classical and quantum harmonic

oscillators. The classical Hamiltonian (the total energy) can be rewritten using Equation
(5.8.1) and p ¼ m_xx

m

2

d xðtÞ

dt

� �2

þ
1

2
k xðtÞð Þ

2
¼ E ð5:8:2Þ

where E represents the total energy of the oscillator and x(t) represents the position of
the electron parameterized by the time t. The solution has the form

xðtÞ ¼ A sinð!otÞ ð5:8:3aÞ

The formula !2
o ¼ k=m relates the angular frequency of oscillation !o to the ‘‘spring

A ¼

ffiffiffiffiffiffi
2E

k

r
¼

ffiffiffiffiffiffiffiffiffi
2E

m!2
o

s
ð5:8:3bÞ

The amplitude A represents the points on the potential plot V(x) where the kinetic energy

E ¼
1

2
kx2
����
x¼A

! A ¼

ffiffiffiffiffiffi
2E

k

r

FIGURE 5.8.1

The quadratic potential.
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constant’’ k. Substituting Equation (5.8.3a) into Equation (5.8.2) provides

becomes zero (see Figure 5.8.2)

Section 5.2).



Classically, the particle can only be found in the region x 2 ½�A,A� and never outside
that region. The probability density � for finding the particle at a point x appears similar
to a delta function near the endpoints of the motion; this behavior occurs because the
particle slows down near those points and spends more time there.
Several differences exist between the classical and quantum mechanical harmonic

oscillators. Figure 5.8.3 shows the quantum mechanical solution to Schrodinger’s equa-
tion with the quadratic potential. Unlike the classical particle, the quantum particle can
be found in the classically forbidden region. The figure shows how the wave function
exponentially decays in these classically forbidden regions. Classically, the particle
doesn’t have enough energy to enter the forbidden region. The basis functions have
the form

�n xð Þ ¼



�1=2n! 2n

	 
1
2

Hn 
xð Þ exp �

2x2

2

� �
ð5:8:4Þ

where 
4 ¼ m!o=�hhð Þ
2. The exponential part of the solution ensures the wave function

decreases in the classically forbidden region. The Hermite polynomials Hn primarily
control the behavior in the classically allowed region near the center. They can be
conveniently generated by differentiating an exponential according to

Hn �ð Þ ¼ �1ð Þ
nexp �2

� � dn
d�n

exp ��2
� �

ð5:8:5aÞ

where �¼ 
x. The first three Hermite polynomials are

Ho �ð Þ ¼ 1, H1 �ð Þ ¼ 2�, H2 �ð Þ ¼ 4�2 � 2 ð5:8:5bÞ

FIGURE 5.8.3

The first two quantum mechanical solutions to the
harmonic oscillator. The probability density for find-
ing the particle at point x does not resemble the
classical one.

FIGURE 5.8.2

Motion of a harmonic oscillator. The probability
density shows the most likely position of finding the
mass m is at the turning points where the oscillator
momentumarily comes to rest.
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tion for the quantum particle decays to zero near the endpoints of motion and reaches
its peak value (or values) near the center of the classical region [�A, A]. However, the
classical probability of finding the classical particle assumes its minimum value near
the origin.
Here’s another difference between the classical and harmonic oscillator solutions. The

classical oscillator energy can be increased by applying a driving force and increasing
the oscillation amplitude E ¼ A2m!2

o=2. The angular oscillation frequency !o ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
remains constant for a fixed spring constant k. The energy of the quantum oscillator
increases by also absorbing energy

En ¼ �hh!n ¼ �hh!o nþ
1

2

� �
n ¼ 0, 1, 2, . . . ð5:8:6Þ

The integer ‘‘n’’ can be interpreted as either the ‘‘basis function number’’ or as the
number of quanta stored in the motion. Contrary to the classical case, the angular
frequency !n ¼ woðnþ 1

2Þ of the quantum oscillator changes even though the value !o

remains fixed. The angular frequency does not refer to the rate at which the quantum
particle bounces from side to side. We view the quantum particle as a stationary wave
function. Larger numbers of quanta ‘‘n’’ result in larger ‘‘displacements’’ from
equilibrium meaning the probability density has more peaks that move closer to the
classically forbidden region.
We find similar plots for quantized EM waves. The energy of an EM oscillator

(the EM waves) can be changed by changing the angular frequency (or wavelength)
or by changing the amplitude (i.e., the number of quanta in the mode). We will see
that the ‘‘position x’’ and ‘‘momentum p’’ become the ‘‘in-phase’’ and ‘‘out-of-phase’’
electric fields. Therefore, the wave functions in the EM case describe the probability of
finding a particular value of the electric field.

5.8.2 The Hamiltonian for the Quantum Harmonic Oscillator

The quantum mechanical Hamiltonians come from the classical ones by replacing
the dynamical variables x, p with the corresponding operators x̂x, p̂p in Hc ¼ p2=2mþ kx2=2
to find

ĤH �ðtÞ
�� �

¼ i�hh
@

@t
�ðtÞ
�� � p̂p2

2m
þ
1

2
kx̂x2

� �
�ðtÞ
�� �

¼ i�hh
@

@t
�ðtÞ
�� �

ð5:8:7Þ

Operating with the ‘‘coordinate’’ projection operator hxj produces x̂x ! x and p̂p !

ĤH�ðx, tÞ ¼ i�hh
@�ðx, tÞ

@t
or

��hh2

2m

@2

@x2
þ
1

2
kx2

� �
�ðx, tÞ ¼ i�hh

@

@t
�ðx, tÞ ð5:8:8Þ

The boundary conditions for the Schrodinger wave equation for the harmonic oscillator
require the wave function to approach zero as ‘‘x’’ goes to infinity

� x ! �1, tð Þ ! 0 ð5:8:9Þ

There are two methods for solving the Schrodinger equation for the harmonic oscil-
lator. The first method uses a power series solution, which becomes very algebraically
involved. The solution starts by separating variables in Equation (5.8.8) and using a
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Continuing with Figure 5.8.3, perhaps most striking of all, the probability density func-

ð�hh=iÞð@=@xÞ (refer to Appendix 6) to obtain the Schrodinger equation



power series to find the solutions to the Sturm–Liouville problem (the eigenvector
problem). The second method uses the linear algebra of raising and lowering operators.
We present the method of raising and lowering operators (commonly referred to as the
algebraic approach). We will find the stationary solutions given in Equation (5.8.4) and
the energy eigenvalues in Equation (5.8.6).

5.8.3 Introduction to the Operator Solution of the Harmonic Oscillator

The operator approach (i.e., algebraic approach) to solving Schrodinger’s equation for
the harmonic oscillator is simpler than the power series approach. In addition, it pro-
vides a great deal of insight into the mathematical structure of the quantum theory. The
algebraic approach uses ‘‘raising âaþ and lowering âa operators’’ (i.e., ladder operators, or
sometimes called promotion and demotion operators). Later chapters demonstrate the
similarity between the ladder operators and the ‘‘creation/annihilation’’ operators most
commonly found in advanced studies of quantum theory.
We will rewrite the Hamiltonian in terms of the raising and lowering operators in the

form of the number operator N̂N ¼ âaþâa. The raising and lowering operators map one basis
vector into another one according to

âaþ nj i ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1j i âa nj i ¼

ffiffiffi
n

p
n� 1j i ð5:8:10Þ

as suggested by Figure 5.8.4. The lowering operator produces zero when operating
on the vacuum state âa 0j i ¼ 0. The number operator has two interpretations for the
harmonic oscillator. First we will show the energy eigenvectors are also eigenvectors
for the number operator according to N̂N nj i ¼ n nj i. The number operator therefore tells
us the number of the eigenstate occupied by a particle.
The number operator also tells us the number of energy quanta in the system as

its second interpretation. We can say that a particle occupying one of the energy basis
states nj i 2 BV ¼ 0j i ¼ E0j i, 1j i ¼ E1j i, . . .f g has n quanta of energy according to En ¼ �hh!o

nþ 1=2ð Þ. Therefore the vacuum state 0j i corresponds to a particle state without any
quanta of energy n¼ 0. Interestingly, there exists energy in the vacuum state E0 ¼ �hh!o=2.
Atoms executing zero-point motion (i.e., T¼ 0 K) in a solid, for example, are exhibiting
vacuum energy. The atoms continue to move even though all of the extractable energy
has been removed (i.e., n¼ 0). Absolute zero can never be achieved since it is a classical
concept corresponding to stationary atoms. Studies in quantum optics indicate that the
electric field also experiences vacuum fluctuations; these fluctuations produce sponta-
neous emission from an ensemble of excited atoms.

FIGURE 5.8.4

Raising and lowering operators move the harmonic oscillator from one state to another.
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In the next few topics, we wish to find the energy eigenvectors BV ¼ 0j i ¼ E0j i, 1j i ¼f

E1j i, . . .g and eigenvalues for the harmonic oscillator. We assume non-degenerate eigen-
values En, which means that for each energy En, there corresponds exactly one eigenstate
�n satisfying ĤH �nj i ¼ En �nj i. We further assume an order for the energy levels E05E15
E25 � � � : The operator approach must reproduce the results found with the power series
approach.
We first show how the Hamiltonian incorporates the raising–lowering operators (see,

for example, Figure 5.8.5). We briefly discuss the mathematical description of the ladder
operators and demonstrate the origin of their normalization constant. We then easily
solve for the energy eigenvalues and eigenvectors.

5.8.4 Ladder Operators in the Hamiltonian

The Hamiltonian for the harmonic oscillator is

ĤH ¼
p̂p2

2m
þ
m!ox̂x2

2
ð5:8:11Þ

We define the lowering âa and the raising âaþ operators in terms of the position x̂x and
momentum operators p̂p.

âa ¼
m!offiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hh!o

p x̂xþ
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�hh!o

p ð5:8:12aÞ

âaþ ¼
m!offiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hh!o

p x̂x�
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�hh!o

p ð5:8:12bÞ

The raising operator in Equation (5.8.12b) comes from taking the adjoint of the lowering
operator in Equation (5.8.12a) and using the fact that both x̂x, p̂p must be Hermitian since
they correspond to observables. Notice that the raising and lowering operators are not
Hermitian âa 6¼ âaþ. These two equations for the lowering and raising operators can
be solved for the position and momentum operators to find

x̂x ¼

ffiffiffiffiffiffiffiffiffiffiffi
�hh

2m!o

r
âaþ âaþ
� �

p̂p ¼ �i

ffiffiffiffiffiffiffiffiffiffiffi
m!o�hh

2

r
âa� âaþ
� �

ð5:8:13Þ

FIGURE 5.8.5

Physical examples showing the effect of a raising operators defined for an atom (top) and square well (bottom)
rather than for the harmonic oscillator.
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We need the Hamiltonian written in terms of the ladder operators. We must first deter-
mine the commutation relations. We can demonstrate that the raising operator commutes
with itself as does the lowering operator while the raising operator does not commute
with the lowering operator

âa, âa
� �

¼ 0 ¼ âaþ, âaþ
� �

âa, âaþ
� �

¼ 1 ð5:8:14Þ

These last two relations can be proven using the commutation relations between the
position and momentum operators

x̂x, x̂x
� �

¼ 0 ¼ p̂p, p̂p
� �

x̂x, p̂p
� �

¼ i�hh ð5:8:15Þ

We prove âa, âaþ
� �

¼ 1 by first substituting Equations (5.8.12).

âa, âaþ
� �

¼
m!offiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hh!o

p x̂xþ
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�hh!o

p ,
m!offiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hh!o

p x̂x�
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m�hh!o

p

� �

Distributing the terms provides

âa, âaþ
� �

¼
m!offiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�hh!o

p

� �2

x̂x, x̂x
� �

þ
p̂p, p̂p
� �
2m�hh!o

þ
i

2�hh
p̂p, x̂x
� �

�
i

2�hh
x̂x, p̂p
� �

Substituting the commutation relations from Equation (5.8.15), we find the desired results

âa, âaþ
� �

¼ 0þ 0þ
i

2�hh
�i�hhð Þ �

i

2�hh
i�hhð Þ ¼ 1

In the case of an ensemble of independent harmonic oscillators, each one has its own
degrees of freedom x̂xi, p̂pi that obey their own commutation relations.

x̂xi, x̂xj
� �

¼ 0 ¼ p̂pi, p̂pj
� �

x̂xi, p̂pj
� �

¼ i�hh�ij

As a result, there will be raising and lowering operators for each oscillator

âai, âaj
� �

¼ 0 ¼ âaþi , âa
þ
j

h i
âai, âa

þ
j

h i
¼ �ij

Using the definitions of the position and momentum operators, the Hamiltonian for the
single harmonic oscillator can be rewritten by substituting relations (5.8.27).

ĤH ¼
p̂p2

2m
þ
1

2
m!2

o x̂x
2 ¼

1

2m
�i

ffiffiffiffiffiffiffiffiffiffiffi
m!o�hh

2

r
âa� âaþ
� �" #2

þ
1

2
m!2

o

ffiffiffiffiffiffiffiffiffiffiffi
�hh

2m!o

r
âaþ âaþ
� �� �2

ð5:8:16aÞ

Squaring the constants provides

ĤH ¼ �
�hh!o

4
âa� âaþ
� �2

þ
�hh!o

4
âaþ âaþ
� �2
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Squaring the operators and taking care not to commute them gives us

ĤH ¼
�hh!o

4
�âa2 þ âaâaþ þ âaþâa� âaþ2 þ âa2 þ âaâaþ þ âaþâaþ âaþ2
� �

Combining the squared terms

ĤH ¼
�hh!o

2
âaâaþ þ âaþâa
� �

ð5:8:16bÞ

We must always use commutation relation to change the order of operators. Finally,
by using the commutation relation âa, âaþ

� �
¼ 1 ! âaâaþ ¼ 1þ âaþâa, the Hamiltonian becomes

ĤH ¼
�hh!o

2
âaâaþ þ âaþâa
� �

¼
�hh!o

2
2âaþâaþ 1
� �

As a result, the Hamiltonian for the single harmonic oscillator can be written as

ĤH ¼ �hh!o âaþâaþ
1

2

� �
ð5:8:17aÞ

We can define the number operator N̂N ¼ âaþâa and rewrite Equation (5.8.17a) as

ĤH ¼ �hh!o N̂N þ
1

2

� �
ð5:8:17bÞ

5.8.5 Properties of the Raising and Lowering Operators

Next, we demonstrate the relations

âaþ nj i ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1j i âa nj i ¼

ffiffiffi
n

p
n� 1j i

by first showing jn� 1i � âa nj i and jnþ 1i � âaþ nj i are eigenvectors of the number
operator N̂N corresponding to the eigenvalues n� 1 and nþ 1, respectively. We next find
the constants of proportionality. We will need two commutation relations. Using
½ÂAB̂B, ĈC� ¼ ÂA½B̂B, ĈC� þ ½ÂA, ĈC�B̂B and ½ÂA, B̂B� ¼ �½B̂B, ÂA� and Equation (5.8.14), we find

N̂N, âa
h i

¼ âaþâa, âa
� �

¼ âaþ, âa
� �

âa ¼ �âa N̂N, âaþ
h i

¼ âaþâa, âaþ
� �

¼ âaþ âa, âaþ
� �

¼ âaþ ð5:8:18Þ

We now show N̂N ¼ âaþâa and ĤH ¼ �hh!oðN̂N þ 1=2Þ have eigenvectors n� 1j i � âa nj i and
nþ 1j i � âaþ nj i. Suppose nj i represents one eigenvector then

N̂N âa nj i
� �

¼ N̂Nâa nj i ¼ N, âa
� �

þ âaN̂N
n o

nj i ¼ �âaþ âaN̂N
n o

nj i ¼ �âaþ âa n
� �

nj i ¼ ðn� 1Þ âa nj i
� �

Therefore âa nj i must be an eigenvector of N̂N with eigenvalue (n� 1). We can similarly
show that N̂N½âaþjni� ¼ nþ 1ð Þ½âaþ nij � (see the chapter Therefore,
we conclude âaþjni ¼ Cnjnþ 1i and âa jni ¼ Dnjn� 1i since the eigenvalues are not
degenerate where Cn and Dn denote constants of proportionality.
The eigenvalues of N̂N ¼ âaþâa and ĤH ¼ �hh!oðN̂N þ 1

2Þ must be real because N̂N ¼ âaþâa is
Hermitian according to N̂Nþ ¼ âaþâað Þ

þ
¼ âaþâa ¼ N̂N. Further the eigenvalues nmust be greater
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than or equal to zero since the length of a vector must always be positive n ¼ nh jN̂N nj i ¼

nh jâaþâa nj i ¼ kâa nj ik2 � 0. We can also show that only integers represent the eigenvalues n.
Next, we find the normalization constants Cn and Dn occurring in the relations.

âaþ nj i ¼ Cn nþ 1j i âa nj i ¼ Dn n� 1j i

Let’s work with the lowering operator. To find Dn, consider the string of equalities

D�
nDn n� 1 j n� 1h i ¼ Dn n� 1j i½ �

þ Dn n� 1j i½ � ¼ âa nj i
� �þ

âa nj i
� �

¼ nh jaþa nj i ¼ nh jN̂N nj i ¼ nh jn nj i ¼ n n j nh i

Now use the fact that all eigenvectors are normalized to one so that

n� 1 j n� 1h i ¼ 1 ¼ n j nh i

Therefore, the coefficient Dn must be

Dnj j2¼ n ! Dn ¼
ffiffiffi
n

p

where a phase factor has been ignored. Similarly, an expression for Cn can be developed

C�
nCn nþ 1 j nþ 1h i ¼ Cn nþ 1j i½ �

þ Cn nþ 1j i½ � ¼ âaþ nj i
� �þ

âaþ nj i
� �

¼ nh ja aþ nj i ¼ nh j aþaþ 1 nj i ¼ nh jN̂N þ 1 nj i ¼ nh jnþ 1 nj i ¼ nþ 1ð Þ n j nh i

where a commutator has been used in the fifth term. Once again using the eigenvector
normalization conditions and comparing both sides of the last equation

Cnj j2¼ nþ 1 ! Cn ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

as expected. We therefore have the required relations.

âaþ nj i ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1j i âa nj i ¼

ffiffiffi
n

p
n� 1j i ð5:8:19Þ

The set of eigenvectors 0j i, 1j i, . . . can be obtained by repeatedly using the relation
âaþ nj i ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
nþ 1j i as

1j i ¼
âaþffiffiffi
1

p 0j i, 2j i ¼
âaþffiffiffi
2

p 1j i ¼
âaþð Þ

2ffiffiffi
2

p ffiffiffi
1

p 0j i , . . . ; nj i ¼
âaþð Þ

nffiffiffiffi
n!

p 0j i, . . . ð5:8:20Þ

Some Commutation Relations

1. ½ĤH, a� ¼ �hh!o½âa
þâa, âa� ¼ �hh!oâa

þ½âa, âa� þ �hh!o½âa
þ, âa�âa ¼ ��hh!oâa

2. ½ĤH, âaþ� ¼ �hh!oâaþ½âa, âaþ� ¼ �hh!oâaþ

3. ½N̂N, âa� ¼ �âa½N̂N, âaþ� ¼ âaþ
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5.8.6 The Energy Eigenvalues

The Hamiltonian for the harmonic oscillator can be written in terms of the ladder
operators as given in Section 5.8.4, Equation (5.8.17b).

ĤH ¼ �hh!o N̂N þ
1

2

� �
ð5:8:21Þ

We already know the eigenvalues of the number operator to be N̂N nj i ¼ n nj i. The allowed
energy values can be found as follows

ĤH nj i ¼ �hh!o N̂N þ
1

2

� �
nj i ¼ �hh!o nþ

1

2

� �
nj i

Therefore the energy values must be

En ¼ �hh!o nþ
1

2

� �
ð5:8:22Þ

5.8.7 The Energy Eigenfunctions

We know the energy eigenvectors can be listed in the sequence

1j i ¼
âaþffiffiffi
1

p 0j i, 2j i ¼
âaþffiffiffi
2

p 1j i ¼
âaþð Þ

2ffiffiffi
2

p ffiffiffi
1

p 0j i, . . . ; nj i ¼
âaþð Þ

nffiffiffiffi
n!

p 0j i, . . . ð5:8:23Þ

from Equation (5.8.20). However, we would like to know the functional form of these
functions. There exists a simple method for finding the energy eigenfunctions for the
harmonic oscillator using the ladder operators. Starting with

0 ¼ âa 0j i

operate on both sides using the bra operator xh j and insert the definition for the lowering
operator

0 ¼ xh jâa 0j i ¼ xh j
m!ox̂xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p þ
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p 0j i ¼ xh j
m!ox̂xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p 0j i þ xh j
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p 0j i ð5:8:24Þ

Factor out the constants from the brackets and use the relations

xh jx̂x 0j i ¼ x x j0h i ¼ x�0 xð Þ xh jp̂p 0j i ¼
�hh

i

@

@x
x j0h i ¼

�hh

i

@

@x
�0 xð Þ

where x j 0h i ¼ �0 xð Þ is the first energy eigenfunction in the set of eigenfunctions given by

�0 xð Þ,�1 xð Þ, . . .
� �

Equation (5.8.24) now provides

0 ¼ xh ja 0j i ¼
m!oxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p �o xð Þ þ
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p
@

@x
�o xð Þ
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which is a simple first-order differential equation

d�0
dx

þ
m!o

�hh
x�o ¼ 0

We can easily find the solution

�0 xð Þ ¼ �0 0ð Þ exp �
m!o

2�hh
x2

	 


which represents the first energy eigenfunction. The normalization constant �0 0ð Þ is found
by requiring the wave function to have unit length 1 ¼ h�0ðxÞ j: �0ðxÞi which gives

�0 xð Þ ¼
m!o

��hh

	 
1=4
exp �

m!o

2�hh
x2

	 


Now the other eigenfunctions can be found from �1 xð Þ using the raising operator

�1 xð Þ ¼ x j 1h i ¼ xh j
aþffiffiffi
1

p 0j i ¼ xh j
m!ox̂xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p �
ip̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p 0j i

where the constants can be factored out and the coordinate representation can be
substituted for the operators to get

�1 xð Þ ¼
m!oxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p x j0h i �
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p
@

@x
x j0h i ¼

m!oxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p �0 xð Þ �
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p
@

@x
�0 xð Þ

Notice that we do not need to solve a differential equation to find the eigenfunctions
�1,�2, . . . in the basis set. Differentiating �0 xð Þ provides

@�o
@x

¼
@

@x

m!o

��hh

	 
1=4
exp �

m!o

2�hh
x2

	 

¼ �

m!ox

�hh
�oðxÞ

Consequently the n¼ 1 energy eigenfunction becomes

�1 xð Þ ¼
m!oxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hhm!o

p �0 xð Þ þ
�hhffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hhm!o

p
m!ox

�hh
�0 xð Þ ¼

2
ffiffiffiffiffiffiffiffiffi
m!o

p ffiffiffiffiffi
2�hh

p x�0 xð Þ

¼
2
ffiffiffiffiffiffiffiffiffi
m!o

p ffiffiffiffiffi
2�hh

p
m!o

��hh

	 
1=4
x exp �

m!ox2

2�hh

� �

The n¼ 2 energy eigenfunctions can be found repeating the procedure using

�2ðxÞ ¼
âaþffiffiffi
2

p �1ðxÞ

Notice that the above procedure only requires the relation between the ladder operators
and the momentum/position operators. At this point, the energy eigenvalues can be
found using the time independent Schrodinger equation.
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Special Integrals

The raising and lowering operators can be used to show the following integrals.

1.
R1
�1

dx�n xð Þ d
dx�mðxÞ ¼ 
½�m, nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1=2Þ

p
� �m, n�1

ffiffiffiffiffiffiffiffi
n=2

p
� since ðd=dxÞ ¼ ði=�hhÞp̂p

2.
R1
�1

dx�nðxÞ x�m xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hh=2m!oÞ

p
�m, nþ1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
þ �m,n�1

ffiffiffi
n

p� �
where Problem 5.24

was combined with integral (1) above and with Enþ1 � En ¼ �hh!o

3.
R1
�1

dx�n xð Þ x2 �m xð Þ ¼ �m, nðnþ 1=2
2Þ þ �m,n�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð nþ 1ð Þ nþ 2ð Þ=2
2Þ

p
. The closure

relation can be used to prove this last one.

5.9 Quantum Mechanical Representations

A representation (or picture) in quantum theory refers to the manner in which the theory
models the time evolution of fundamental dynamical quantities. For example, we might
be interested in the time-dependence of energy, momentum, position, or angular
momentum. In classical mechanics, these dynamical variables evolve in time according to
an equation of motion such as Newton’s equation. The values of the dynamical variables
describe the state of the classical system. Usually the word ‘‘dynamics’’ refers to the
motion of an object. In quantum theory, the dynamical variables correspond to Hermitian
operators. However the quantum theory handles the time dependence in at least three
ways. The Heisenberg picture assigns the time dependence to the Hermitian operators;
this representation most closely mimics the classical approach. The Schrodinger picture
assigns the time dependence to the wave functions; this representation most resem-
bles that for classical wave motion. The interaction picture combines the best of both
representations; the wave functions move in Hilbert space only due to driving forces
not included in the Hamiltonian.
This section discusses three representations used in quantum theory in the first

topic. The remainder of the section explores the mathematical descriptions of the
particle as a result of using a particular representation.

5.9.1 Discussion of the Schrodinger, Heisenberg and Interaction Representations

Quantum theory generally employs the Schrodinger, Heisenberg, and interaction repre-
sentations. For the Schrodinger representation, the wave functions (i.e., vectors in Hilbert
space) carry the dynamics of the particle or system (not the basis states though). The
states depend on time according to

�ðtÞ
�� �

¼
X
E

�EðtÞ �Ej i ¼
X
E

�EðtÞ Ej i

The wave function resides in a Hilbert space defined by the basis vectors. This wave
function moves in the space and its components therefore change with time. The wave
functions in optics (i.e., the electric field) most closely resemble those for the quantum
mechanical Schrodinger representation. In optics we know the energy density and
power flow (etc.) once we know the motion of the electric field. As part of the definition
of the Schrodinger picture, we require the operators (especially those corresponding to
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observables) to be explicitly independent of time. For example, in the coordinate-
representation of the Schrodinger picture, we know the momentum to be given by

P̂P ¼
�hh

i
r

It does not depend on time. In fact, we surmised this form of the momentum by working
with the time dependent wave function eikx�i!t (a wave function in the Schrodinger
picture). The top portion of Figure 5.9.1 attempts to describe the situation. We model the
motion (i.e., dynamics) of a physical system (denoted ‘‘universe’’) by the motion of the
wave function in Hilbert space. The figure shows that the detection equipment—eyes in
this case—does not change with time so that the manner of making an observation does
not depend on time. The ‘‘act of observing’’ a particular quantity does not depend on
when we make the observation. This point of view seems very natural since we assume
that any change in a physical quantity must be due to changes in the physical systems
and not our detection apparatus (eyes).
The Heisenberg representation assigns all of the time dependence to the operators

and none to the wave functions. This representation resembles classical mechanics where
the dynamical variables, such as momentum, depend on time. The wave functions in
this representation do not depend on time. The wave functions in the Heisenberg
representation consist of the superposition of the basis vectors of the form

�j i ¼
X
E

�E �Ej i ¼
X
E

�E Ej i

where �E does not depend on time. In some sense, the wave functions (i.e., basis) form
the lattice-work of a stage that defines the specific system that can be observed.
The operators contain all the dynamics but they need to have the wave functions to give
information on the specific system. The bottom portion of Figure 5.9.1 attempts to
illustrate this paradigm by having the observers move rather than the system. Observa-
tions made in the two portions of the figure must agree.

FIGURE 5.9.1

Cartoon representation of the Schrodinger and Heisenberg pictures.
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This brings out another point for comparing and contrasting operators and vectors
in the quantum theory. Regardless of the representation, an operator must contain all
possible outcomes to an observation or operation. We can understand this point of view

the energy basis set, the Hamiltonian

ĤH ¼
X
allE

E �Ej i �Eh j ¼
X
allE

E Ej i Eh j

consists of all possible results of the observation because of the sum over all the energy
eigenvalues E. However, the wave functions are written as a specific sum over the basis
set; only a certain combination of basis vectors appears in the sum. For example, the
wave function

�j i ¼
X

someE

�E �Ej i ¼
X

someE

�E Ej i

contains information on only specific eigenvalues E. Even if it contains all eigen-
values, the sum refers to only one certain mixture (i.e., one vector in the Hilbert space)
because of the specific values of � chosen. In summary, operators contain all possible
results of a measurement while vectors represent specific instances of the system in
question.
The interaction representation assigns some time dependence to the operators and some

to the wave functions. We will find this representation especially suited for an ‘‘open’’
system. First, consider a ‘‘closed system’’ for which the number of particles and the
total energy contained within the system remains constant. Basically we assume that we
have solved Schrodinger’s equation for this simple closed system. The time evolution
of the system trivially involves only factors of the form e�iEt=�hh. We assign this trivial time
dependence to the operators. With only the simple closed system present, the wave
functions remain stationary in the vector space as defined by the time independent basis
set. Essentially this much corresponds to the Heisenberg representation. Now, if we
include extra forces (above and beyond those included for the trivial solution) then any
additional motion induced in the system appears in the wave function. For example, we
might have a chunk of semiconductor material for which we can find the solution
to Schrodinger’s equation for the holes and electrons. For the Heisenberg represen-
tation, we remove the time dependence from the wave function and assign it to the
operators. The system consists of the chunk of material. Now second, consider the open
system consisting of the semiconductor absorbing light. The original Hamiltonian
for the closed system does not include this matter–light interaction so that the absorbed
light will cause effects not taken into account by the original Hamiltonian. We assign
this additional time dependence to the wave function. Of course we also work with the
new Hamiltonian but it and all other operators are assigned the trivial time dependence.
In this way, the wave functions move in Hilbert space only due to the additional forces
not accounted for by the original closed system.

5.9.2 The Schrodinger Representation

We have previously shown how the time dependent wave function satisfies
Schrodinger’s equation.

ĤH  tð Þ
�� �

¼ i�hh
@

@t
 tð Þ
�� �

ð5:9:1Þ
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using the basis vector expansion of an operator found in Chapter 4. For example using



The wave function moves in Hilbert space as shown in Figure 5.9.2. The components
� depend on time but not the basis vectors. The unitary evolution operator moves
the initial wave function forward in time according to

ûu t, toð Þ  toð Þ
�� �

¼  tð Þ
�� �

ð5:9:2Þ

without changing the normalization of the function. The evolution operator actually
depends on the difference in time and can be written as ûu t, toð Þ ¼ ûu t� toð Þ.
For either open or closed systems, we define the evolution operator

ĤH ûu t, toð Þ  toð Þ
�� �

¼ i�hh
@

@t
ûu t, toð Þ  toð Þ

�� �
or ĤH ûu t, toð Þ ¼ i�hh

@

@t
ûu t, toð Þ ð5:9:3Þ

by substituting Equation (5.9.2) into Equation (5.9.1). Equation (5.9.2) gives the initial
condition of ûu to, toð Þ ¼ 1.
Consider a closed system. For simplicity, set the initial time to zero to ¼ 0. Schrodinger’s

equation can be formally integrated when the Hamiltonian does not depend on time (i.e.,
a close system). Rearranging Equation (5.9.1) provides

@

@t
 tð Þ
�� �

¼
ĤH

i�hh
 tð Þ
�� �

Consider the Hamiltonian operator to be similar to a constant and solve the simple
differential equation to obtain

 tð Þ
�� �

¼ exp
ĤH t

i�hh

 !
 0ð Þ
�� �

¼ ûu tð Þ  0ð Þ
�� �

ð5:9:4Þ

As discussed in the operator ûu tð Þ is unitary (i.e., ûu�1 ¼ ûuþ) since the
^ �n xð Þ

� �
, the time dependence of the

wave function must be

� x, tð Þ ¼
X
n

�n tð Þ�n xð Þ ¼
X
n

�n 0ð Þ exp
ĤH t

i�hh

 !
�n xð Þ ¼

X
n

�n 0ð Þ exp
Ent

i�hh

� �
�n xð Þ

The evolution operator will play a pivotal role for the Heisenberg representation.

FIGURE 5.9.2

The wave function moves through Hilbert space in the Schrodinger picture.
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Hamiltonian HH is Hermitian. For the energy basis set
Chapter 4,



5.9.3 Rate of Change of the Average of an Operator in the Schrodinger Picture

In this topic, we discuss how an observed value (not the operator!) evolves in time for
the Schrodinger representation. The next topic on Ehrenfest’s theorem then shows how
Schrodinger’s quantum mechanics reproduces results for classical mechanics. We expect
the classical analog of a quantum mechanical system to involve an average over the
quantum mechanical microscopic quantities. We expect to recover Newton’s second law
by calculating the rate of change of the expectation value of the quantum mechanical
momentum operator. We therefore start the discussion by considering the rate of
change of the expectation value of an operator using the Schrodinger picture.
Let ÂA ¼ ÂA ~rr, t

� �
be an operator in the Schrodinger picture where usually the operator

does not explicitly depend on time. Suppose further that the wave vector  tð Þ
�� �

is a
solution to Schrodinger’s equation. The time rate of change of the expectation value of
the operator can be calculated

d

dt
ÂA
D E

¼
d

dt
 
� ��ÂA  

�� � ¼ @ 

@t

� ����ÂA  
�� �þ  

� �� @ÂA
@t

 
�� �þ  

� ��ÂA @ 

@t

����
�

The derivatives moves into the bra since it symbolizes an integral with respect to spatial
coordinates. Now use Schrodinger’s equation for the time derivatives of the wave func-
tions to obtain

d

dt
ÂA
D E

¼
ĤH

i�hh
 

* �����ÂA  
�� �þ  

� �� @ÂA
@t

 
�� �þ  

� ��ÂA ĤH

i�hh
 

�����
+

Evaluating the left-most inner product by using the definition of the adjoint

ĤH

i�hh
 

* ����� ¼ ĤH

i�hh
 

�����
+" #þ

¼
ĤH

i�hh
 
�� �" #þ

¼  
� �� ĤHþ

�ið Þ�hh
¼  
� �� ĤH

�ið Þ�hh

The rate of change of the expectation value of the operator can now be rewritten as

d

dt
ÂA
D E

¼  
� �� ĤH

�ið Þ�hh
ÂA  
�� �þ  

� �� @ÂA
@t

 
�� �þ  

� ��ÂA ĤH

i�hh
 
�� �

Collecting terms provides

d

dt
ÂA
D E

¼
i

�hh
ĤH, ÂA
h iD E

þ
@ÂA

@t

* +
ð5:9:5Þ

Usually the expectation value of the time derivatives of the operator (last term) is zero
for the Schrodinger picture.

Example 5.9.1

For the infinitely deep potential well, calculate the rate of change of the momentum for
electron.

Solution: The operator in Equation (5.9.5) becomes ÂA ¼ p̂p. The Hamiltonian is given by
ĤH ¼ p̂p2=2m. It is easy to calculate that ½ĤH, p̂p� ¼ 0. We assume @p̂p=@t ¼ 0 as usual for the
Schrodinger representation. Therefore, the rate of change of the expected value of
momentum must be dhp̂pi=dt ¼ 0.
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5.9.4 Ehrenfest’s Theorem for the Schrodinger Representation

Now we discuss Ehrenfest’s theorem showing that Schrodinger’s quantum mechanics
leads to Newton’s second law. We first show that because a quantum particle can be
considered as smeared-out over a volume of space (at least in the sense of statistics),
the classical dynamical variable corresponds to the quantum mechanical average of the
operator.
Consider an example for the force exerted on a body to see why quantum mechanics

averages operators in the Schrodinger representation. Figure 5.9.3 shows the probability
density for the location of a quantum mechanical particle. We might imagine the particle
of mass m as ‘‘smeared-out’’ over the region. Suppose ~FF represents the force per unit
mass. The total classical force must be ~FF ¼

P
i
~FFi �mi where the mass m ¼

P
i �mi might

not be uniformly distributed across the region of space. The figure shows more mass near
the center and less at the ‘‘boundaries.’’ The amount of mass in a given region must
be proportional to the probability density pr of finding the electron in a small region �x.
For the one-dimensional case, we write �mi � pr dx �  � �x. We can therefore write
the total force as

~FF ¼
X
i

~FFi �mi �
X
i

 � xið Þ ~FFi xið Þ xið Þ�x !

Z
 � xð Þ ~FF xð Þ xð Þ dx ¼ Fh i

Therefore, because the quantum mechanical particle effectively occupies a large volume
of space, classical quantities like force and interaction energy do not occur at one specific
point; instead they occur over the region of space. We expect the quantum mecha-
nical operator to be averaged over a region of space to produce the corresponding
classical quantity. Furthermore, this shows that the time-dependence of the wave func-
tion translates to a time dependence of the classical quantity through the averaging
procedure.
We now show Ehrenfest’s theorem, which relates the classical force to the rate of change

of the expected value of momentum for a single particle

~FFclass ¼
d p̂p
� �
dt

with
@p̂p

@t
¼ 0

for the Schrodinger picture. The time rate of change of the expected value of an operator
is obtained from Equation (5.9.5).

d p̂p
� �
dt

¼
i

�hh
ĤH, p̂p
h iD E

¼
i

�hh

p̂p2

2m
þ V ~rr

� �
, p̂p

� �� �
¼

i

�hh

p̂p2

2m
, p̂p

� �� �
þ

i

�hh
V ~rr
� �

, p̂p
� �� �

FIGURE 5.9.3

A quantum mechanical object described by a wave function.
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where we have used the commutator identity ½ÂAþ B̂B, ĈC� ¼ ½ÂA, ĈC� þ ½B̂B, ĈC�. Then since
½p̂p2=2m, p̂p� ¼ 0 we must have h½p̂p2=2m, p̂p�i ¼ 0. Finally, we need to evaluate the commutator
between the potential energy and the momentum

V ~rr
� �

, p̂p
� �

f ¼ V ~rr
� �

,
�hh

i
r

h i
f ¼ V

�hh

i
rf �

�hh

i
r Vf
� �

¼ V
�hh

i
rf �

�hh

i
Vrf �

�hh

i
rV

	 

f ¼ i�hh rVð Þf

where we use an arbitrary function ‘‘f ’’ because the commutator is an operator. As a
result, we can conclude the operator relation ½V ~rr

� �
, p̂p� ¼ i�hhrV. Putting all the steps

together we arrive at Ehrenfest’s theorem:

d p̂p
� �
dt

¼
i

�hh
ĤH, p̂p
h iD E

¼
i

�hh
i�hhrVh i ¼ �rVh i ¼ Fh i

Figure 5.9.4 shows a wave packet traveling to the right with speed ‘‘v.’’ The wave function
clearly depends on time because it moves. The expectation value of the position operator
x̂x gives the position of the center of the wave packet. Now because the wave packet
moves, the expectation value of the position operator must depend on time hx̂xi ¼ �xx tð Þ.
We therefore find the average of an operator depends on time (through the average) even
though the operator itself remains independent of time.

5.9.5 The Heisenberg RepreSentation

The Heisenberg representation assigns the dynamics to the operators. None of the
wave functions depend on time so that none of the dynamics appears in the wave
functions. We can find the time dependent operators from those in the Schrodinger
picture. The simplest procedure requires all expectation values to be invariant with
respect to the particular picture. Suppose we represent the state of the system by the
ket j s tð Þi in the Schrodinger picture (where ‘‘s’’ denotes Schrodinger). The expectation
value of an operator ÔOs can be written as

 s tð Þ
� ��ÔOs  s tð Þ

�� �
¼  h

� ��ûuþÔOsûu  h

�� �
ð5:9:6Þ

where ûu represents a unitary operator. For convenience, we set the origin of time to t¼ 0
rather than an arbitrary time to. That is, we define the Heisenberg wave function to be
 h

�� �
¼  s 0ð Þ
�� �

. Therefore, in order for the expectation value to be independent of picture,
we define the time dependent Heisenberg operator to be

ÔOh tð Þ ¼ ûuþÔOsûu ð5:9:7Þ

We found the unitary evolution operator ûu for closed systems in the Schrodinger picture;
a perturbation approach can be used for open systems. Recall the evolution operator
has the form

ûu tð Þ ¼ exp
ĤH st

i�hh

 !
ð5:9:8Þ

FIGURE 5.9.4

If a wave function depends on time then averages using that wave function must
also depend on time.
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where ĤHs denotes the Schrodinger Hamiltonian. We do not need to subscript the
Hamiltonian with an ‘‘s’’ in this case because, as will be seen in the second example
below, it has the same form in either the Schrodinger or Heisenberg representation. We
can show that commutator expressions in the Schrodinger picture produce similar results

Example 5.9.2

Find the Heisenberg representation of the momentum operator p̂p for the infinitely deep
square well without an external interaction.

Solution: The Heisenberg momentum operator must be given by

p̂ph ¼ ûuþp̂pûu ¼ exp �
ĤH

i�hh
t

 !
p̂p exp

ĤH

i�hh
t

 !

Inside the well, the Schrodinger Hamiltonian has the form ĤH ¼ p̂p2=2m. Now, since the
momentum operator commutes with the Hamiltonian ½p̂p, ĤH� ¼ ½p̂p, p̂p2=2m� ¼ 0 then any
function of the Hamiltonian must also commute with momentum

p̂p, exp
ĤH t

i�hh

 !" #
¼ 0

as can be easily verified by Taylor expanding the exponential. Therefore, the Heisenberg
representation of the momentum operator can be written as

p̂ph ¼ ûuþp̂pûu ¼ exp �
ĤH

i�hh
t

 !
exp

ĤH

i�hh
t

 !
p̂p ¼ p̂p

In the simple case of an infinitely deep well, we see that the Heisenberg and Schrodinger
representations are the same for the momentum operator. Especially notice that the
unitary operator ûu is written in terms of Schrodinger quantities.

Example 5.9.3

What is the Heisenberg representation of the Schrodinger Hamiltonian without an
external interaction?

Solution: The Schrodinger and Heisenberg representations have identical Hamiltonians
since ½ûu, ĤH s� ¼ 0

ĤHh ¼ ûuþĤHsûu ¼ exp �
ĤHs

i�hh
t

 !
ĤHs exp

ĤHs

i�hh
t

 !
¼ ĤHs

5.9.6 The Heisenberg Equation

Next, we show the principal method of calculating the time evolution of the Heisenberg
operators. As demonstrated in the present topic, the dynamics of the Heisenberg
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in the Heisenberg picture (refer to the chapter exercises).



operators can be found using the Heisenberg equation given by

dÔOh

dt
¼

i

�hh
ĤH h, ÔOh

h i
þ

@

@t
ÔOs

� �
h

ð5:9:9Þ

Often the last term is defined as ð@ÔOs=@tÞh 
 @ÔOh=@t. The Hamiltonian generates displace-
ments in time. The commutator for the operators takes the place of the Schrodinger
equation for the wave functions. This last equation has a form somewhat similar to
that for the Schrodinger picture in Equation (5.9.5). For the Heisenberg representation,
we do not need to calculate an expectation value. We will see how the operators in the
Heisenberg representation obey equations of motion very similar to the dynamical
variables in classical mechanics.
Equation (5.9.9) holds for either an open or closed system as we now show. Starting

with Equation (5.9.7), ÔOh tð Þ ¼ ûuþÔOsûu, we find

dÔOh

dt
¼

d

dt
ûuþÔOsûu ¼

d

dt
ûuþ

� �
ÔOsûuþ ûuþ

dÔOs

dt

 !
ûuþ ûuþÔOs

d

dt
ûu

� �
ð5:9:10Þ

Equation (5.9.3), ĤHsûu tð Þ ¼ i�hh@tûu tð Þ for to ¼ 0, provides @tûuþ ¼ iûuþĤH s=�hh by taking the
adjoint of both sides. Therefore, Equation (5.9.10) becomes

dÔOh

dt
¼

i

�hh
ûuþĤHs

� �
ÔOsûuþ ûuþ

dÔOs

dt

 !
ûuþ ûuþÔOs �

i

�hh
ĤHs ûu

� �

Finally, substituting ûu ûuþ ¼ 1 between the Hamiltonian and the operator ÔO provides

dÔOh

dt
¼

i

�hh
ûuþĤHsûu

� �
ûuþÔOsûu
	 


þ ûuþ
dÔOs

dt

 !
ûuþ ûuþÔOsûu �

i

�hh
ûuþĤHs ûu

� �
¼

i

�hh
ĤH h, ÔOh

h i
þ

dÔOs

dt

 !
h

as required.

Example 5.9.4

Show Equation (5.9.9) for the closed system using Equation (5.9.8) where ĤHs ¼ ĤH ¼ ĤHh.

Solution

dÔOh

dt
¼

d

dt
ûuþÔOsûu
	 


¼
d

dt
exp �

ĤH

i�hh
t

 !
ÔOs exp þ

ĤH

i�hh
t

 !( )

¼ �
ĤH

i�hh
exp �

ĤH

i�hh
t

 !( )
ÔOs exp þ

ĤH

i�hh
t

 !
þ exp �

ĤH

i�hh
t

 !
@

@t
ÔOs

� �
exp þ

ĤH

i�hh
t

 !

þ exp �
ĤH

i�hh
t

 !
ÔOs

ĤH

i�hh
exp þ

ĤH

i�hh
t

 !( )
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Using the definition of a Heisenberg operator (5.9.10) and combining terms produces

dÔOh

dt
¼ �

ĤH

i�hh
ÔOh þ ÔOh

ĤH

i�hh
þ

@

@t
ÔOs

� �
h

where the time derivative of the Schrodinger operator is usually 0. Forming the commu-
tator provides the required results in Equation (5.9.9).

5.9.7 Newton’s Second Law from the Heisenberg Representation

We can easily recover Newton’s second law of motion from the Heisenberg represen-
tation starting with the one-dimensional Schrodinger Hamiltonian, for example.

ĤHs ¼
p̂p2

2m
þ V xð Þ

This Hamiltonian represents a closed system so the demonstration can follow either of
two routes. We use the general definition of the evolution operator in Equations (5.9.2)
and (5.9.3), and leave the corresponding demonstration for the closed evolution operator
to the chapter exercises. Let p̂ph ¼ p̂phðtÞ be the Heisenberg momentum operator. We wish to
calculate its rate of change using Equation (5.9.9).

dp̂ph
dt

¼
i

�hh
ĤHh, p̂ph
h i

¼
i

�hh
ûuþĤHsûu, ûu

þp̂pûu
h i

¼
i

�hh
ûuþ ĤHs, p̂p
h i

ûu ð5:9:11Þ

since ûuþûu ¼ 1 ¼ ûu ûuþ. Substituting for the Hamiltonian we find

dp̂ph
dt

¼
i

�hh
ûuþ

p̂p2

2m
þ V xð Þ, p̂p

� �
ûu ¼

i

�hh
ûuþ V xð Þ, p̂p
� �

ûu ¼
i

�hh
ûuþ V xð Þ,

�hh

i

@

@x

� �
ûu

¼ ûuþ �
@V

@x

� �
ûu ¼ ûuþFûu ¼ Fh

This last result is Newton’s second law! We see that the Heisenberg operators most
naturally take the place of the classical dynamical variables.

5.9.8 The Interaction Representation

As previously mentioned, the interaction representation combines portions of the
Schrodinger and Heisenberg representations. Both the operators and wave functions
depend on time. We identify the dynamics embedded in the wave function as due to
the interaction between the system and an external agent. Therefore, the wave functions
move in Hilbert space in response to the ‘‘extra’’ potentials imposed on the system. The
operators carry the dynamics of the closed system.
Suppose the Hamiltonian for the system has the form

ĤH ¼ ĤHo þ V̂V ð5:9:12Þ
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where the closed-system Hamiltonian ĤHo must be independent of time. Consider
Schrodinger’s equation in operator form

ĤH �s tð Þ
�� �

¼ i�hh
@

@t
�s tð Þ
�� �

or ĤHo þ V̂V
	 


�s tð Þ
�� �

¼ i�hh
@

@t
�s tð Þ
�� �

ð5:9:13Þ

Define the interaction wave function through the relation

�s tð Þ
�� �

¼ ûu �I tð Þ
�� �

ð5:9:14Þ

using the unitary evolution operator previously defined for the closed system

ûu tð Þ ¼ exp
ĤHo

i�hh
t

 !
ð5:9:15Þ

The subscripts ‘‘s’’ and ‘‘I’’ stand for Schrodinger and Interaction, respectively. The
inverse unitary operator ûuþ essentially removes the time dependence from the wave
function �s tð Þ

�� �
attributable to the Hamiltonian ĤHo. However, the wave function retains

some time dependence due to the added potential V̂V occurring in the full Hamiltonian ĤH.
We can write the Schrodinger equation using the interaction representation. Substitut-

ing Equation (5.9.14) into Equation (5.9.13) produces

ĤHo þ V̂V
	 


ûu tð Þ �I tð Þ
�� �

¼ i�hh
@

@t
ûu tð Þ �I tð Þ

�� �
ð5:9:16Þ

Now, differentiate both terms on the right-hand side of Equation (5.9.16)

ĤHo þ V̂V
	 


ûu tð Þ �I tð Þ
�� �

¼ i�hh
@

@t
Exp

ĤHo

i�hh
t

 !
�I tð Þ
�� �

¼ i�hh
ĤHo

i�hh
exp

ĤHo

i�hh
t

 !
�I tð Þ
�� �

þ exp
ĤHo

i�hh
t

 !
@

@t
�I tð Þ
�� �( )

¼ ĤHo ûu �I tð Þ
�� �

þ ûu
@

@t
�I tð Þ
�� �

Canceling the terms involving ĤHo from both sides produces

V̂Vûu tð Þ �I tð Þ
�� �

¼ i�hhûu
@

@t
�I tð Þ
�� �

Operating on both sides with the adjoint of the evolution operator and defining the
interaction potential as V̂VI ¼ ûuþV̂Vûu yields

ûuþV̂Vûu �I tð Þ
�� �

¼ i�hh
@

@t
�I tð Þ
�� �

or V̂VI �I tð Þ
�� �

¼ i�hh
@

@t
�I tð Þ
�� �

ð5:9:17Þ

As a result, the wave function satisfies a Schrodinger-like equation with the interaction
potential V̂VI in the interaction representation taking the place of the Hamiltonian.
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The next section on time dependent perturbation theory will demonstrate a unitary
evolution operator ÛUðtÞ that moves the interaction wave function through Hilbert space
according to j�IðtÞi ¼ ÛUj�Ið0Þi. The operator ÛUðtÞ should not be confused with the
operator ûu that changes the Schrodinger wave function into the interaction one,

j si ¼ ûuj hi. The operator ÛUðtÞ has the form ÛU ¼ T̂Te
ð1=i�hhÞ

R t

to
dt1V̂VI ðt1Þ for an interaction that

starts at to. The operator T̂T denotes the time ordered product.

5.10 Time Dependent Perturbation Theory

Electromagnetic energy interacting with an atomic system can produce transitions
between the energy levels. A Hamiltonian ĤHo describes the atomic system and provides
the energy basis states and the energy levels. The interaction potential V̂V tð Þ (i.e., the per-
turbation) depends on time. The theory assumes the perturbation does not change the
basis states or the energy levels, but rather induces transitions between these fixed levels.
The perturbation rotates the particle (electron or hole) wave function through Hilbert
space so that the probability of the particle occupying one energy level or another
changes with time. Therefore, the goal of the time-dependent perturbation theory consists
of finding the time dependence of the wave function components.
Subsequent sections apply the time dependent perturbation theory to an electro-

magnetic wave interacting with an atom or an ensemble of atoms. Fermi’s golden
rule describes the matter–light interaction in this semiclassical approach, which uses the
non-operator form of the EM field. The quantized version will be given in a later chapter.

5.10.1 Physical Concept

The Hamiltonian

ĤH ¼ ĤHo þ V̂V tð Þ ð5:10:1Þ

describes an atomic system subjected to a perturbation. The Hamiltonian ĤHo refers to
the atom and determines the energy basis states nj i ¼ Enj if g so that ĤHo nj i ¼ En nj i. The
interaction potential V̂V tð Þ describes the interaction of an external agent with the atomic
system.
Consider an electromagnetic field incident on the atomic system as indicated in

Figure 5.10.1 for the initial time t¼ 0. Assume the atomic system consists of a quantum
well with an electron in the first level as indicated by the dot in the figure. The atomic
system can absorb a photon from the field and promote the electron from the first to the
second level. The right-hand portion of Figure 5.10.1 shows the same information as

FIGURE 5.10.1

An electron absorbes a photon and makes a
transition from the lowest level to next highest one.
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the electron transitions from energy basis vector E1j i to the basis vector E2j i when the
atom absorbs a quantum of energy. This transition of the electron from one basis vector
to another should remind the reader of the effect of the ladder operators.
The transition of the electron from one state to another requires the electron occupa-

tion probability to change with time. Suppose the wave function for the electron has
the form

 ðtÞ
�� �

¼
X
n

�nðtÞ nj i ð5:10:2Þ

In the case without any perturbation, the wave function evolves according to

 ðtÞ
�� �

¼ eĤHot=ði�hhÞ
X
n

�nð0Þ nj i ¼
X
n

�nð0Þ e
Ent=ði�hhÞ nj i ðno pertÞ ð5:10:3Þ

where �nðtÞ ¼ �nð0Þ e
Ent=ði�hhÞ. In this ‘‘no perturbation’’ case, the probability of finding the

electron in a particular state n at time t, denoted by P(n, t), does not change from its
initial value at t¼ 0, denoted by P(n, t¼ 0), since

Pðn, tÞ ¼ �nðtÞ
�� ��2¼ �nð0Þ e

Ent=ði�hhÞ
�� ��2¼ �nð0Þ

�� ��2¼ Pðn, t ¼ 0Þ ðno pertÞ ð5:10:4Þ

This behavior occurs because the Hamiltonian describes a ‘‘closed system’’ that does
not interact with external agents. The eigenvectors are exact solutions to full Hamiltonian
ĤHo in this case. The exact Hamiltonian introduces only the trivial factor eEnt=ði�hhÞ into the
motion of the wave function through Hilbert space.
What about the case of an atomic system interacting with the external agent? Now

we see that Equation (5.10.3) cannot accurately describe the situation because of Equation
(5.10.4). The perturbation V̂VðtÞ must produce an expansion coefficient with more than
just the trivial factor. We will see below that the wave function must have the form

 ðtÞ
�� �

¼
X
n

anðtÞ e
Ent=ði�hhÞ nj i ð5:10:5Þ

in the Schrodinger picture where the trivial factor eEnt=ði�hhÞ comes from ĤHo and the time
dependent term anðtÞ comes from the perturbation V̂VðtÞ. Essentially working in the
Schrodinger picture produces the trivial factor eEnt=ði�hhÞ in the wave function. Using
the interaction representation produces only the nontrivial time dependence in the wave
function. If the electron starts in state ij i at time t¼ 0 then the probability of finding it in
state n after a time t must be

Pðn, tÞ ¼ anðtÞ e
Ent=ði�hhÞ

�� ��2¼ anðtÞ
�� ��2 ð5:10:6Þ

At time t¼ 0, all of the a’s must be zero except ai because the electron starts in the
initial state i. Also, aið0Þ ¼ 1 because the probabilities sum to one. For later times t, any
increase in an for n 6¼ i must be attributed to increasing probability of finding the particle
in state n. So, if the particle starts in state ij i then anðtÞ gives the probability amplitude
of a transition from state ij i to state nj i after a time t.
An example helps illustrate how motion of the wave function in Hilbert space corre-

At time t¼ 0, the wave function  ðtÞ
�� �

coincides with the 1j i axis. The probability
amplitude at t¼ 0 must be �nð0Þ ¼ anð0Þ ¼ �ni and therefore the probability values must
be Prob n ¼ 1, t ¼ 0ð Þ ¼ 1 and Prob n 6¼ 1, t ¼ 0ð Þ ¼ 0. Therefore the particle definitely
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lates with the transition probability. Consider the three vector diagrams in Figure 5.10.2.



occupies the first energy eigenstate at t¼ 0. The second plot in Figure 5.10.2 at t¼ 2,
shows the electron partly occupies both the first and second eigenstates. There exists a
nonzero probability of finding it in either basis state. According to the figure,

Probðn ¼ 1; t ¼ 2Þ ¼ Probðn ¼ 2; t ¼ 2Þ ¼ 0:5

The third plot in Figure 5.10.2 at time t¼ 3 shows the electron must be in state 2j i alone
since the wavefunction  ð3Þ

�� �
coincides with basis vector 2j i. At t¼ 3, the probability of

finding the electron in state 2j i must be

Probðn ¼ 2, t ¼ 3Þ ¼ �2
�� ��2¼ 1

Notice how the probability of finding the particle in state 1j i decreases with time,
while the probability of finding the particle in state 2j i increases.
Unlike the unperturbed system, multiple measurements of the energy of the electron

does not always return the same value. The reason concerns the fact that the eigen-
states of ĤHo do not describe the full system. In particular, it does not describe the
external agent (light field) nor the interaction between the light field and the atomic
system. The external agent, the electromagnetic field, disturbs the state of the particle
between successive measurements. The basis function for the atomic system alone does
not include one for the optical field. However, given the basis set for the full Hamiltonian
ĤH ¼ ĤHo þ V̂Vþ ĤHem þ � � � then a measurement of ĤHmust cause the full wave function to
collapse to one of the full basis vectors from which it does not move.
Several points should be kept in mind while reading through the next topic. First,

the procedure uses the Schrodinger representation but does not replace �n with aneEnt=ði�hhÞ.
Instead, the procedure directly finds �n, which then turns out to have the form aneEnt=ði�hhÞ.
Second, these components �n have exact expressions until we make an approximation of
the form �ðtÞ ¼ � 0ð ÞðtÞ þ � 1ð ÞðtÞ þ � � � (similar to the Taylor expansion). Third, assume the
particle starts in state ij i so that �nð0Þ ¼ �ð0Þn ð0Þ ¼ �ni and �

ðjÞ
n ð0Þ ¼ 0j � 1. Fourth, the tran-

sition matrix elements Vfi ¼ h fjVjii determine the final states f that can be reached from
the initial states i. Stated equivalently, these selection rules determine the allowed
transitions.

5.10.2 Time Dependent Perturbation Theory Formalism in the
Schrodinger Picture

The perturbed Hamiltonian ĤH ¼ ĤHo þ V̂V x, tð Þ consists of the closed Hamiltonian ĤH o for
the system and the perturbation V̂V tð Þ. Schrodinger’s equation becomes

ĤH � tð Þ
�� �

¼ i�hh
@

@t
� tð Þ
�� �

! ĤHo þ V̂V
	 


� tð Þ
�� �

¼ i�hh
@

@t
� tð Þ
�� �

ð5:10:7Þ

FIGURE 5.10.2

The probability of the electron occupying the second state increases with time.
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The unperturbed Hamiltonian ĤHo produces the energy basis set un ¼ nj if g so that

ĤHo nj i ¼ En nj i:

We assume that the Hamiltonian ĤH has the same basis set un ¼ nj if g as ĤHo. The bound-
ary conditions on the system determine the basis set and the eigenvalues. This step
relegates the perturbation to causing transitions between the basis vectors.
As usual, we write the solution to the Schrodinger wave equation

ĤH � tð Þ
�� �

¼ i�hh
@

@t
� tð Þ
�� �

ð5:10:8Þ

as

� tð Þ
�� �

¼
X
n

�n tð Þ nj i ð5:10:9Þ

Recall that the wave vector � tð Þ
�� �

moves in Hilbert space in response to the Hamiltonian
ĤH as indicated in Figure 5.10.3. The components �n tð Þ must be related to the probability
of finding the electron in the state nj i. As an important point, we assume that the
particle starts in state ij i at time t¼ 0 (where i¼ 1, 2, . . . and should not be confused
with the complex number i ¼

ffiffiffiffiffiffiffi
�1

p
). To find the components �n tð Þ, start by substituting

� tð Þ
�� �

(Equation (5.10.9)) into Schrodinger’s equation (5.10.8).

ĤHo þ V̂V
	 


� tð Þ
�� �

¼ i�hh
@

@t
� tð Þ
�� �

! ĤHo þ V̂V
	 
 X

n

�n tð Þ nj i ¼ i�hh
@

@t

X
n

�n tð Þ nj i�

Move the unperturbed Hamiltonian and the potential inside the summation to find

X
n

�n tð Þ En þ V̂V
	 


nj i ¼ i�hh
X
n

_��n tð Þ nj i

where the dot over the symbol � indicates the time derivative. Operate on both sides
of the equation with hmj to find

X
n

�n tð Þ En m j nh i þ mh jV̂V nj i

	 

¼ i�hh

X
n

_��n tð Þ m j nh i

FIGURE 5.10.3

The Hamiltonian causes the wave functions to move in Hilbert space.
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The orthonormality of the basis vectors hm j ni ¼ �mn transforms the previous equation to

Em�m tð Þ þ
X
n

�n tð Þ mh jV̂V x, tð Þ nj i ¼ i�hh _��m tð Þ

which can be rewritten as

_��m tð Þ �
Em

i�hh
�m tð Þ ¼

1

i�hh

X
n

�n tð ÞVmn tð Þ ð5:10:10Þ

where the matrix elements can be written as

Vmn tð Þ ¼ mh jV̂V x, tð Þ nj i ¼

Z
dx u�mV̂V x, tð Þ un

for the basis set consisting of functions of ‘‘x.’’
We must solve Equation 5.10.10 for the components �n tð Þ; this can most easily be

handled by using an integrating factor �m(t). Rather than actually solve for the integrat-

�m tð Þ ¼ exp �
Em

i�hh
t

� �
ð5:10:11Þ

Multiplying the integrating factor on both sides of Equation (5.10.10), we can write

�m
_��m �

Em

i�hh
�m�m ¼

1

i�hh

X
n

�m�n tð ÞVmn ð5:10:12Þ

Noting that

d

dt
�m�mð Þ ¼ _��m�m þ �m

_��m and _��m ¼ �
Em

i�hh
exp �

Emt

i�hh

� �
¼ �

Em

i�hh
�m

Equation 5.10.12 becomes

d

dt
�m tð Þ�m tð Þ½ � ¼

1

i�hh
�m tð Þ

X
n

�n tð Þ Vmn tð Þ ð5:10:13Þ

We need to solve this last equation for the components �n tð Þ in the first and last terms.
Assume that the perturbation starts at t¼ 0 and integrate both sides with respect to time.

�m tð Þ�m tð Þ ¼ �m 0ð Þ�m 0ð Þ þ
1

i�hh

Z t

0

d �m ð Þ
X
n

�n ð ÞVmn ð Þ ð5:10:14Þ

Substituting for �m tð Þ, noting from Equation (5.10.11) that �m 0ð Þ ¼ 1, and using the fact
that the particle starts in state ij i so that

�n 0ð Þ ¼ �ni ð5:10:15Þ

we find

�m tð Þ ¼ ��1
m tð Þ�mi þ

��1
m tð Þ

i�hh

X
n

Z t

0

d�m ð Þ�n ð ÞVmn ð Þ ð5:10:16Þ
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To this point, the solution is exact.
Now we make the approximation by writing the components �n tð Þ as a summation

�n tð Þ ¼ � 0ð Þ
n tð Þ þ � 1ð Þ

n tð Þ þ � � �

where the superscripts provide the order of the approximation. Substituting the approx-
imation for the components �n tð Þ into Equation (5.10.10) provides

� 0ð Þ
m tð Þ þ � 1ð Þ

m tð Þ þ � � � ¼ ��1
m tð Þ�mi þ

��1
m tð Þ

i�hh

X
n

Z t

0

d�m ð Þ � 0ð Þ
n ð Þ þ � 1ð Þ

n ð Þ þ � � �
� �

Vmn ð Þ

Note that the approximation term � 0ð Þ
n Vmn has order ‘‘(1)’’ even though � 0ð Þ

n has order ‘‘(0)’’
since we consider the interaction potential Vmn to be small (i.e., it has order ‘‘(1)’’).
Equating corresponding orders of approximation in the previous equation provides

� 0ð Þ
m tð Þ ¼ ��1

m tð Þ�mi ð5:10:17Þ

� 1ð Þ
m tð Þ ¼

��1
m tð Þ

i�hh

X
n

Z t

0

d �m ð Þ� 0ð Þ
n ð ÞVmn ð Þ ð5:10:18Þ

and so on. Notice how Equation (5.10.18) invokes itself in Equation (5.10.17) in the
integral. So once we solve for the zeroth-order approximation for the component, we can
immediately find the first-order approximation. Higher-order terms work the same way.
This last equation gives the lowest-order correction to the probability amplitude.
The Kronecker delta function in Equation (5.10.17) suggests considering two separate

cases when finding the probability amplitude correction � 1ð Þ
m tð Þ. The first case for m ¼ i

corresponds to finding the probability amplitude for the particle remaining in the initial
state. The second case m 6¼ i produces the probability amplitude for the particle making
a transition to state m.

Case m¼ i
We calculate the probability amplitude �iðtÞ for the particle to remain in the initial state.
The lowest-order approximation gives (using Equations (5.10.17) and (5.10.11))

� 0ð Þ
n tð Þ ¼ �ni�

�1
n tð Þ ¼ �ni exp

En

i�hh
t

� �
ð5:10:19Þ

Substituting Equation (5.10.19) into Equation (5.10.18) with m¼ i, we find

� 1ð Þ

i tð Þ ¼
��1
i tð Þ

i�hh

X
n

Z t

0

d �i ð Þ� 0ð Þ
n ð ÞVin ð Þ ¼

��1
i tð Þ

i�hh

Z t

0

d �i ð Þ exp
Ei

i�hh


� �
Vii ð Þ

Substituting Equation (5.10.11) for the remaining integrating factors in the previous
equation we find

� 1ð Þ

i tð Þ ¼
1

i�hh
exp

Ei

i�hh
t

� �Z t

0

d Vii ð Þ

322 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



So therefore the approximate value for �i tð Þ must be

�i tð Þ ¼ � 0ð Þ

i tð Þ þ � 1ð Þ

i tð Þ þ � � � ¼ exp
Ei

i�hh
t

� �
þ

1

i�hh
exp

Ei

i�hh
t

� � Z t

0

d Vii ð Þ þ � � � ð5:1:20Þ

Case m 6¼ i

We find the component �m tð Þ corresponding to a final state mj i different from the initial
state ij i. The lowest-order approximation � 0ð Þ

m for m 6¼ i must be

� 0ð Þ
m tð Þ ¼ 0

The procedure finds the probability amplitude for a particle to make a transition from the
initial state ij i to a different final state mj i.
We start with Equation (5.10.18).

� 1ð Þ
m tð Þ ¼

��1
m tð Þ

i�hh

X
n

Z t

0

d �m ð Þ� 0ð Þ
n ð ÞVmn ð Þ ¼

��1
m tð Þ

i�hh

X
n

Z t

0

d �m ð Þ �ni�
�1
i ð ÞVmn ð Þ

Substitute Equation (5.10.11) for the integrating factors to find

� 1ð Þ
m tð Þ ¼

1

i�hh
exp

Em

i�hh
t

� �Z t

0

d exp �
Em � Ei

i�hh


� �
Vmi ð Þ

We often write the difference in energy as Em � Ei ¼ Emi and also

!mi ¼ !m � !i ¼
Em � Ei

�hh
¼

Emi

�hh
ð5:10:21Þ

The reader must keep track of the distinction between matrix elements and this new
notation for differences between quantities . . .matrix elements refer to operators. Using
this notation

� 1ð Þ
m tð Þ ¼

1

i�hh
exp

Em

i�hh
t

� � Z t

0

d exp �
Emi

i�hh


� �
Vmi ð Þ ð5:10:22Þ

Therefore, the components �m tð Þ for m 6¼ i are approximately given by

�m tð Þ ¼ � 0ð Þ
m tð Þ þ � 1ð Þ

m tð Þ þ � � � ¼ 0þ
1

i�hh
exp

Em

i�hh
t

� � Z t

0

d exp �
Emi

i�hh


� �
Vmi ð Þ þ � � �

ð5:10:23Þ

In summary, the expansion coefficients in

� tð Þ
�� �

¼
X
n

�n tð Þ nj i ð5:10:24aÞ

are given by Equations (5.10.23) and (5.10.21)

�m tð Þ ¼ �mi exp
Ei

i�hh
t

� �
þ

1

i�hh
exp

Em

i�hh
t

� � Z t

0

d exp �
Emi

i�hh


� �
Vmi ð Þ þ � � � ð5:10:24bÞ
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5.10.3 Time Dependent Perturbation Theory in the
Interaction Representation

The interaction representation for quantum mechanics is especially suited for time dep-
endent perturbation theory. Once again, the Hamiltonian ĤH ¼ ĤHo þ V̂Vðx, tÞ consists of
the atomic Hamiltonian ĤHo and the interaction potential V̂VðtÞ due to an external agent.
The atomic Hamiltonian has the basis set fjnig satisfying ĤHojni ¼ Enjni. Both the
operators and the wave functions depend on time in the interaction representation. The
wave functions move through Hilbert space only in response to the interaction potential
V̂VðtÞ. A unitary operator ûu ¼ exp½ĤHot=ði�hhÞ� removes the trivial motion from the wave
function and places it in the operators; consequently, the operators depend on time.
Without any potential V̂VðtÞ, the wave functions remain stationary and the operators
remain trivially time dependent; that is, the interaction picture reduces to the Heisenberg
picture. The motion of the wave function in Hilbert space reflects the dynamics
embedded in the interaction potential.
The evolution operator removes the trivial time dependence from the wave function

ûu tð Þ ¼ exp
ĤHo

i�hh
t

 !
with ĤH ¼ ĤHo þ V̂V tð Þ ð5:10:25Þ

The interaction potential in the interaction picture has the form V̂VI ¼ ûuþV̂V ûu and
produces the interaction wave function �Ij i given by

�sj i ¼ ûu �Ij i ð5:10:26Þ

The wave function �sj i is the usual Schrodinger wave function embodying the dynamics
of the full Hamiltonian ĤH. The equation of motion for the interaction wave function can
be written as (Section 5.9)

V̂VI �I tð Þ
�� �

¼ i�hh
@

@t
�I tð Þ
�� �

or
@

@t
�I tð Þ
�� �

¼
1

i�hh
V̂VI �I tð Þ

�� �
ð5:10:27Þ

We wish to find an expression for the wave function in the interaction representation.
First, formally integrate Equation (5.10.27)

�I tð Þ
�� �

¼ �I 0ð Þ
�� �

þ
1

i�hh

Z t

0

d V̂VI ð Þ �I ð Þ
�� �

ð5:10:28Þ

where we have assumed that the interaction starts at t¼ 0. We can write another equation
(see below) by substituting Equation (5.10.28) into itself, which assumes that the
interaction wave functions only slightly move in Hilbert space for small interaction
potentials.

0th Order Approximation

The lowest-order approximation can be found by noting small interaction potentials
V̂V x, tð Þ which lead to small changes in the wave function with time. Neglecting the small
integral term in Equation (5.10.4) produces the lowest-order approximation

�I tð Þ
�� �

ffi �I 0ð Þ
�� �

¼ �s 0ð Þ
�� �

ð5:10:29Þ
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where the second equality comes from the fact that ûu 0ð Þ ¼ 1̂1 in Equation (5.10.1). This last
equation says that to lowest order, the interaction-picture wave function remains
stationary in Hilbert space. Therefore to lowest order, the probabilities calculated by
projecting the wave function �I tð Þ

�� �
onto the basis vectors remain independent of time.

The trivial terms e�iEt=�hh that occur in changing back from the interaction to Schrodinger
picture do not have any effect on the probability of finding a particle in a given basis
state.

Higher Order Approximation

We obtain subsequent approximations by substituting the wave functions into the inte-
gral. The total first-order approximation can be found by substituting Equation (5.10.29)
into Equation (5.10.28).

�I tð Þ
�� �

¼ �I 0ð Þ
�� �

þ
1

i�hh

Z t

0

dt1 V̂VI t1ð Þ �I 0ð Þ
�� �

ð5:10:30Þ

The total second-order approximation can be found by substituting Equation (5.10.30)
into Equation (5.10.28) to obtain

�I tð Þ
�� �

¼ 1þ
1

i�hh

Z t

0

dt1 V̂VI t1ð Þ þ
1

i�hh

� �2Z t

0

dt1

Z t1

0

dt2 V̂VI t1ð ÞV̂VI t2ð Þ

( )
�I 0ð Þ
�� �

ð5:10:31Þ

We can continue this process to find any order of approximation.

5.10.4 An Evolution Operator in the Interaction Representation

We can find an unitary operator that moves the interaction wave function forward in
time. Equation (5.10.31) essentially gives the evolution operator ÛU defined by

 IðtÞ
�� �

¼ ÛUðtÞ  Ið0Þ
�� �

ð5:10:32Þ

not to be confused with the operator ûu that maps between the Schrodinger and interaction
pictures. Equation (5.10.31) approximates ÛU by

ÛU ¼ 1þ
1

i�hh

Z t

0

dt1 V̂VI t1ð Þ þ
1

i�hh

� �2Z t

0

dt1

Z t1

0

dt2 V̂VI t1ð ÞV̂VI t2ð Þ

( )
ð5:10:33Þ

which is somewhat reminiscent of writing the operator as an exponential. For example,
if the interaction potential were independent of time (but it is not) then the operator
would reduce to

ÛUþ�¼ 1þ
V̂VI t

i�hh
þ

V̂VI t

i�hh

 !2

þ � � � ¼ exp
V̂VI t

i�hh

 !

In order to see how this operator can be related to an exponential, we must digress
and discuss the time ordered product.
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We define the time ordered product T̂T as follows:

T̂T V̂V t1ð Þ V̂V t2ð Þ V̂V t3ð Þ

n o
¼ V̂V t1ð Þ V̂V t3ð Þ V̂V t2ð Þ when t14t34t2 ð5:10:34Þ

The time ordered product can also be defined in terms of a step function.

� tð Þ ¼

1 t40

1=2 t ¼ 0

0 t50

8><
>: ð5:10:35Þ

Note the 1/2 for t¼ 0. The third term in Equation (5.10.33) has two operators and notice
that the integration limits require t14 t2. We will want to change the limits on both
integrals to cover the interval (0, t). Therefore we must keep track of the time ordering.
The time ordered product of two operators can be written in terms of the step function as

T̂TV̂V t1ð Þ V̂V t2ð Þ ¼ � t1 � t2ð ÞV̂V t1ð Þ V̂V t2ð Þ þ� t2 � t1ð ÞV̂V t2ð Þ V̂V t1ð Þ ð5:10:36Þ

1

2!

Z t

0

dt1

Z t

0

dt2 T̂TV̂VI t1ð ÞV̂VI t2ð Þ Ð ¼
1

2

Z t

0

dt1

Z t

0

dt2 � t1 � t2ð ÞV̂VI t1ð ÞV̂VI t2ð Þ

þ
1

2

Z t

0

dt1

Z t

0

dt2 � t2 � t1ð ÞV̂VI t2ð ÞV̂VI t1ð Þ

Interchanging the dummy variables t1, t2 in the last integral shows that it’s the same as
the middle integral. Therefore, by the properties of the step function we find

1

2!

Z t

0

dt1

Z t

0

dt2 T̂T V̂VI t1ð ÞV̂VI t2ð Þ Ð¼

Z t

0

dt1

Z t1

0

dt2 V̂VI t1ð ÞV̂VI t2ð Þ ð5:10:37Þ

which agrees with the second integral in Equation (5.10.33).
We are now in a position to write an operator that evolves the wave function in time for

the interaction representation. Substituting Equation (5.10.33) into Equation (5.10.32)
yields

�I tð Þ
�� �

¼ T̂T 1̂1þ
1

i�hh

Z t

0

dt1V̂VI t1ð Þ þ
1

i�hh

� �2 1

2!

Z t

0

dt1

Z t

0

dt2 V̂VI t1ð ÞV̂VI t2ð Þ þ � � �

( )
�I 0ð Þ
�� �

ð5:10:38Þ

The term in brackets can be written as an exponential

T̂T 1̂1þ
1

i�hh

Z t

0

dt1V̂VI t1ð Þ þ
1

i�hh

� �2 1

2!

Z t

0

dt1

Z t

0

dt2 V̂VI t1ð ÞV̂VI t2ð Þ þ � � �

( )
¼ T̂Te

1
i�hh

R t

0
dt1V̂VI t1ð Þ

5.11 Density Operator

The density operator and its associated equation of motion provide an alternate formu-
lation for a quantum mechanical system. The density operator combines the probability
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functions of quantum and statistical mechanics into one mathematical object. The quan-
tum mechanical part of the density operator uses the usual quantum mechanical wave
function to account for the inherent particle probabilities. The statistical mechanics
portion accounts for possible multiple wave functions attributable to random external
influences. Typically, statistical mechanics deals with ensembles of many particles and
only describes the dynamics of the system through statements of probability.

5.11.1 Introduction to the Density Operator

We usually assume we know the initial wave function of a particle or system. Consider
the example wave function depicted in Figure 5.11.1 where the initial wave function
consists of two exactly specified basis functions with two exactly specified components. Suppose
the initial wave function can be written

 0ð Þ
�� �

¼ 0:9 u1j i þ 0:43 u2j i

As shown in Figure 5.11.2, the quantum mechanical probability of finding the electron
in the first eigenstate must be

u1
��  0ð Þ

� ��� ��2¼ 0:9ð Þ
2
¼ 81%

Similarly, the quantum mechanical probability that the electron occupies the second
eigenstate must be

u2
��  0ð Þ

� ��� ��2¼ 0:43ð Þ
2
¼ 19%

We know the values of these probabilities with certainty since we know the decom-
position of the initial wave function  0ð Þ

�� �
and the coefficients (0.9 and 0.43) with 100%

certainty. We assume that the wave function  
�� � satisfies the time dependent Schrodinger

wave equation while the basis states satisfy the time-independent Schrodinger wave
equation

ĤH  
�� � ¼ i�hh@t  

�� � ĤH unj i ¼ En unj i

What if we don’t exactly know the initial preparation of the system? For example, we
might be working with an infinitely deep well. Suppose we try to prepare a number
of identical systems. Suppose we make four such systems with parameters as close as

width L. Unlike the present case with only four systems, we usually (conceptually) make

FIGURE 5.11.2

The components of the wave function.

FIGURE 5.11.1

The initial wave function consists of exactly two basis
functions.
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possible to each other. Figure 5.11.3 shows the ensemble of systems all having the same



an infinite number of systems to form an ensemble. Figure 5.11.3 shows that we were
not able to prepare identical wave functions  

�� �. Denote the wave function for system
S by  s

�� �
. Then the wave function  s

�� �
for each system must have different coefficients,

as for example,

 1

�� �
¼ 0:98 u1j i þ 0:19 u2j i

 2

�� �
¼ 0:90 u1j i þ 0:43 u2j i

 3

�� �
¼ 0:95 u1j i þ 0:31 u2j i

 4

�� �
¼ 0:90 u1j i þ 0:43 u1j i

ð5:11:1Þ

The four wave functions appear in Figure 5.11.4. Notice how system S¼ 2 and system
S¼ 4 both have the same wave function.
What actual wave function  

�� � describes the system? Answer: An actual  
�� � does not

exist; we can only talk about an average wave function. In fact, if we had prepared many
such systems, we would only be able to specify the probability that the system has a
certain wave function. For example, for the four systems described above, the probability
of each type of wave function must be given by

P S ¼ 2ð Þ ¼
1

2
P S ¼ 1ð Þ ¼

1

4
P S ¼ 3ð Þ ¼

1

4

For convenience, systems S¼ 2 and S¼ 4 have both been symbolized by S¼ 2 since
they have identical wave functions. Perhaps this would be clearer by writing

P 0:90 u1j i þ 0:43 u2j if g ¼
1

2
, P 0:98 u1j i þ 0:19 u2j if g ¼

1

4
, P 0:95 u1j i þ 0:31 u2j if g ¼

1

4

We can now represent the four systems by three vectors in our Hilbert space rather than
four so long as we also account for the probability.

FIGURE 5.11.3

An ensemble of four systems.

FIGURE 5.11.4

The different initial wave functions for the infinitely deep well.
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Now let’s do something a little unusual. Suppose we try to define an average wave
function to represent a typical system (think of the example with the four infinitely deep
wells)

Ave  
�� �� �

¼
X
s

PS  S

�� �

Recall, the classical average of a quantity ‘‘xi’’ or ‘‘x’’ can be written as xih i ¼
P

i xiPi and
xh i ¼

R
dx x P xð Þ

average wave function would represent an average system in the ensemble. We look
at the entire ensemble of systems (there might be an infinite number of copies) and say
that the wave function Ave fj ig behaves like the average for all those systems. The
wave function Avej i would represent the quantum mechanical stochastic processes
while the probabilities PS represent the macroscopic probabilities. No one actually
uses this average wave function. The sum of the squares of the components of Ave f j i g
do not necessarily add to one since the probabilities Pi are squared (see the chapter

Now here comes the really unusual part where we define an average probability.
If we exactly know the wave function, then we can exactly calculate probabilities using
the quantum mechanical probability density  � xð Þ xð Þ (it’s a little odd to be combining
the words ‘‘exact’’ and ‘‘probability’’). Now let’s extend this idea of probability using our
ensemble of systems. We change notation and let P be the probability of finding one of
the systems to have a wave function of j i. We define an average probability density
function according to

average ð � Þ ¼
X
 

P 
�
 � xð Þ  xð Þ

�
ð5:11:2Þ

This formula contains both the quantum mechanical probability density  � and the
macroscopic probability P . We could use the ‘‘s’’ subscripts on Ps so long as we include
only one type of wave function for each s. Equation (5.11.2) assumes a discrete number
of possible wave functions  S

�� �
. However, the situation might arise with so many

wave functions that they essentially form a continuum in Hilbert space (i.e., ‘‘s’’ must be a
continuously varying parameter). In such a case, we talk about the classical probability
density �S which gives the probability per unit interval s of finding a particular wave
function.

average ð � Þ ¼

Z
dS �S  �

S xð Þ  S xð Þ
� �

The probability �S is very similar to the density of states seen in later chapters; rather than
a subscript of ‘‘S,’’ we would have a subscript of energy and units of ‘‘number of states
per unit energy per unit volume.’’ We continue with Equation (5.11.2) since it contains all
the essential ingredients.
Rearranging Equation (5.11.2), we obtain a ‘‘way to think of the average.’’ First switch

the order of the wave function and its conjugate.

average ð � Þ ¼
X
 

P  
� xð Þ xð Þ ¼

X
 

P  xð Þ � xð Þ
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for the discrete and continuous cases respectively (see Appendix 4). The

review exercises).



Next write the wave functions in Dirac notation and factor out the basis kets xj i

average ð � Þ ¼
X
 

P x
��  � �

 
�� x� �

¼ xh j
X
 

P  
�� �  � ��

( )
xj i

We define the density operator to be

�̂� ¼
X
 

P  
�� �  � �� ð5:11:3Þ

Example 5.11.1

Find the initial density operator �̂�ð0Þ for the wave functions given in the table. We assume
four two-level atoms.

Initial Wave Function wSð0Þ
�� �

Probability Ps

 1

�� �
¼ 0:98 u1j i þ 0:19 u2j i 1/4

 2

�� �
¼ 0:90 u1j i þ 0:43 u2j i 1/2

 3

�� �
¼ 0:95 u1j i þ 0:31 u2j i 1/4

The initial density operator must be given by �̂�ð0Þ ¼
P3

S¼1 PS  Sð0Þ
�� �

 Sð0Þ
� ��. Substituting

the probabilities and initial wave functions, we find

�̂�Sð0Þ ¼ P1  1ð0Þ
�� �

 1ð0Þ
� ��þ P2  2ð0Þ

�� �
 2ð0Þ
� ��þ P3  3ð0Þ

�� �
 3ð0Þ
� ��

¼
1

4
0:98 u1j i þ 0:19 u2j i½ � 0:98 u1h j þ 0:19 u2h j½ �

þ
1

2
0:90 u1j i þ 0:43 u2j i½ � 0:90 u1h j þ 0:43 u2h j½ �

þ
1

4
0:95 u1j i þ 0:31 u2j i½ � 0:95 u1h j þ 0:31 u2h j½ �

Collecting terms

�̂�ð0Þ ¼ 0:86 u1j i u1h j þ 0:307 u1j i u2h j þ 0:307 u2j i u1h j þ 0:14 u2j i u2h j

Example 5.11.2

Assume that the probability of any wave function is zero except for the particular wave
function j oi. Find the density operator in both the discrete and continuous cases.

Solution: For the discrete case, the probability can be written as P ¼ � , o and the
density operator becomes

�̂� ¼
X
 

P  
�� �  � �� ¼X

 

� , o  
�� �  � �� ¼  o

�� �
 o

� ��
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For the continuous case, the probability density can be written as � ¼ �  �  oð Þ and
the density operator becomes

�̂� ¼

Z
d �  

�� �  � �� ¼ Z
d �  �  oð Þ  

�� �  � �� ¼  o

�� �
 o

� ��

5.11.2 The Density Operator and the Basis Expansion

The density operator can be written in a basis vector expansion. The density operator �̂�
has a range and domain within a single vector space. Suppose the set of basis vectors
mj i ¼ umf g spans the vector space of interest. People most commonly use the energy

eigenfunctions as the basis set. Using the basis function expansion of an operator as

�̂� ¼
X
mn

�mn mj i nh j ð5:11:4Þ

where nh j ¼ nj iþ. Recall that �mn must be the matrix elements of the operator �̂�. We term
the collection of coefficients [�mn] the ‘‘density matrix.’’ Recall from Chapter 3

ah j�̂� bj i ¼
X
mn

�mn a j mh i n j bh i ¼
X
mn

�mn�am�bn ¼ �ab

where aj i, bj i are basis vectors. This topic shows how the density operator can be
expanded in a basis and provides an interpretation of the matrix elements.
The density operator provides two types of average. The first type consists of the

quantum mechanical average and the second consists of the ensemble average. For
the ensemble average, we imagine a large number of systems prepared as nearly
the same as possible. We imagine a collection of wave functions  SðtÞ

�� �� �
with one for

each different system S. Again, we imagine that Ps denotes the probability of finding a
particular wave function  SðtÞ

�� �
. Assume that all of the wave functions of the systems

can be described by vector spaces spanned by the set mj i ¼ umf g as shown in Figure 5.11.5.
Assume the same basis functions for each system. Each wave function  SðtÞ

�� �
can be

expanded in the complete orthonormal basis set for each system.

 SðtÞ
�� �

¼
X
m

�ðSÞm tð Þ mj i ð5:11:5Þ

FIGURE 5.11.5

Four systems with the same basis functions.
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described in Chapter 3, the density operator can be written as



The superscript (S) on each expansion coefficient refers to a different system. However,
a single set of basis vectors applies to all of the systems S in the ensemble of systems.
Therefore, if two systems (a) and (b) have different wave functions, then the coeffi-
cients must be different �ðaÞm 6¼ �ðbÞm (see Figure 5.11.6).
Using the definition of the density operator, we can write

�̂�ðtÞ ¼
X
S

PS  SðtÞ
�� �

 SðtÞ
� �� ð5:11:6Þ

Notice that the density operator in the Schrodinger picture can depend on time since the
wave functions depend on time. Using the definition of adjoint

 SðtÞ
� �� ¼  SðtÞ

�� �þ
¼

X
n

�ðSÞn nj i

" #þ

¼
X
n

�ðSÞ
�

n nh j ð5:11:7Þ

Substituting Equation (5.11.5) and (5.11.7) into Equation (5.11.6), we obtain

�̂�ðtÞ ¼
X
mn

X
S

PS �
ðSÞ
m �

ðSÞ�

n mj i nh j

Now, compare this last expression with Equation (5.11.4) to see that the matrix of the
density operator (i.e., the density matrix) must be

�mn ¼ mh j�̂� nj i ¼
X
S

PS�
ðSÞ
m �

ðSÞ�

n ¼ �ðSÞm �
ðSÞ�

n

D E
e
¼ �ðSÞm �

ðSÞ�

n ð5:11:8Þ

where the ‘‘e’’ subscript indicates the ensemble average.
Whereas the density operator �̂� gives the ensemble average of the wavefuntion projec-

tion operator j ih j ¼ hj ih jie the density matrix element �mn provides the ensemble

average of the wave function coefficients �mn ¼ �ðSÞm �
ðSÞ�

n ¼ h�ðSÞm �
ðSÞ�

n ie. The averages must
be taken over all of the systems S in the ensemble.
The whole point of the density operator is to simultaneously provide two averages.

We use the quantum mechanical average to find quantities such as average position,
momentum, energy, or electric field using only the quantum mechanical state of a given
system. The ensemble average takes into account non-quantum mechanical influences
such as variation in container size or slight differences in environment that can be
represented by a probability Ps. Notice in the definition of density operator

�̂�ðtÞ ¼
X
S

PS  SðtÞ
�� �

 SðtÞ
� �� ð5:11:9Þ

FIGURE 5.11.6

Two realizations of a system have different wave functions and therefore different components.
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that if one of the systems occurs at the exclusion of all others (say S¼ 1) so that

�̂�ðtÞ ¼  1ðtÞ
�� �

 1ðtÞ
� �� ¼  ðtÞ

�� �
 ðtÞ
� �� ð5:11:10Þ

then the density operator only provides quantum mechanical averages. In such a case,
the wave functions for all the systems in the ensemble have the same form since
macroscopic conditions do not differently affect any of the systems. Density operators as
in Equation (5.11.10) without a statistical mixture will be called ‘‘pure’’ states. Sometimes
people refer to a density operator of the form j ðtÞih ðtÞj as a ‘‘state’’ or a ‘‘wave function’’
because it consists solely of the wave function j tð Þi. We will see later that in the case
of Equation (5.11.10), the density operator and the wave function provide equivalent
descriptions of the single quantum mechanical system and both obey a Schrodinger
equation.
Now let’s examine the conceptual meaning of the matrix elements �mn ¼ �ðSÞm �

ðSÞ�

n in

Equation (5.11.8). The diagonal matrix elements �nn ¼ �ðSÞn �
ðSÞ�

n ¼ P nð Þ provide the average
probability of finding the system in eigenstate n. In other words, even though the diago-
nal elements have the ensemble average, we still ‘‘think’’ of them as �nn � j�nj

2 � PðnÞ
where P(n) represents the usual quantum mechanical probability. For an ensemble of
systems with different wave functions j ðsÞi, we must average the quantum probability
over the various systems.
The off-diagonal elements of the density operator appear to be similar to the probabil-

ity amplitude that a particle simultaneously exists in two states. For simplicity, assume the
ensemble has only one type of wave function given by the superposition j i ¼

P
n �njuni

so that hum j  i ¼
P

n �nhum j uni ¼ �m. The off-diagonal elements have the form

�ab ¼ uah j�̂� ubj i ¼ ua
��  � �

 
�� ub� �

¼ ua
��  � �

ub
��  � �þ

¼ �a�
�
b

Recall that the classical probability of finding a particle in both states can be written as

Pða and bÞ ¼ PðaÞPðbÞ

for independent events. But PðaÞ ¼ j�aj
2 and PðbÞ ¼ j�bj

2 so, combining the last several
expressions provides

�ab ¼ uah j�̂� ubj i ¼ �a�
�
b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pða and bÞ

p
Apparently, the off-diagonal elements of the density operator must be related to the
probability of simultaneously finding the particle in both states ‘‘a’’ and ‘‘b.’’ This should
remind the reader of a transition from one state to another. In fact, we will see that the
off-diagonal elements can be related to the susceptibility, which is related to the dipole
moment and the gain or loss.

Example 5.11.3

For Example 5.11.1, find the density matrix.

Solution: The density matrix can be written as

� ¼
0:86 0:307

0:307 0:14

" #
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for the basis set u1j i, u2j if g. Notice how the coefficients of the first and last term add to
one . . . this is not an accident. The diagonal elements of the density matrix correspond
to the probability that a particle will be found in the level u1j i, u2j i .

Example 5.11.4

Find the coordinate and energy basis set representation for the density operator under the
following conditions. Assume the density operator can be written as �̂� ¼ j ih j. Assume
the energy basis set can be written as fjuaig so that j i ¼

P
n �njuni. What is the

probability of finding the particle in state aj i ¼ uaj i?

Solution: First, the expectation of the density operator in the coordinate representation.

hxj�̂� xj i ¼ x
�� � �

 
��x� �

¼  � xð Þ xð Þ

Second, the expectation of the density operator using a vector basis (Figure 5.11.7)
produces the probability of finding the particle in the corresponding state (i.e., diagonal
matrix elements give the probability of occupying a state).

uah j�̂� uaj i ¼ ua
�� � �

 
��ua� �

¼ ua
�� � �

ua
�� � �þ

¼ �a
�� ��2

Third, the probability of finding the particle in state aj i is

PðaÞ ¼ �a
�� ��2¼ uah j�̂� uaj i ¼ �aa

as seen in the last equation. Therefore, the diagonal elements provide the probability of
finding the electron in the corresponding state.

Example 5.11.5

Show the diagonal terms of the denisity matrix add to 1. Assume the wave func-
tion j ðsÞi ¼

P
n �

ðsÞ
n jni describes system ‘‘s’’ and the density operator has the form

�̂� ¼
P

s Psj 
ðsÞih ðsÞj.

Solution: The matrix element of the density operator can be written as

�aa ¼ ah j�̂� aj i ¼ ah j
X
s

Ps  
ðsÞ

�� �
 ðsÞ
� ��( )

aj i ¼
X
s

Ps a
��  ðsÞ

� �
 ðsÞ

�� a� �
¼
X
s

Ps �
ðsÞ
a

�� ��2
Now summing over the diagonal elements (i.e., equivalent to taking the trace)

Tr �̂�ð Þ ¼
X
a

�aa ¼
X
a

X
s

Ps �
ðsÞ
a

�� ��2 ¼X
s

Ps

X
a

�ðsÞa
�� ��2 ¼X

s

Ps 1 ¼
X
s

Ps

FIGURE 5.11.7

Wave function and components.
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where the second to last result follows since the components for each individual
wavefunction ‘‘s’’ must add to one. Finally, the sum of the probabilities Ps must add to
one to get

Tr �̂�ð Þ ¼
X
s

Ps ¼ 1

This shows that the probability of finding the particle in any of the states must sum
to one.

5.11.3 Ensemble and Quantum Mechanical Averages

For semiconductor lasers, the density operator most importantly provides averages
of operators. We know averages of operators correspond to classically observed
quantities. We will find the average of an operator has the form

ÔO
D ED E

¼ Tr �̂�ÔO
	 


ð5:11:11Þ

where for now the double brackets reminds us that the density operator involves
two probabilities and therefore two types of average. This equation contains both the
quantum mechanical and ensemble average. ‘‘Tr’’ means to take the trace. We will see
that the average of the dipole moment leads to the polarization and susceptibility, which
leads to the complex wave vector kn, which then leads to the gain.
We define the quantum mechanical ‘‘q’’ and ensemble ‘‘e’’ averages for an operator ÔO as

follows:

Quantum Mechanical Ensemble

hÔOiq ¼ h jÔOj i hÔOie ¼
P

S PS ÔOS

where  
�� � denotes a typical quantum mechanical wave function. In what follows, we

take the operator in the ensemble average to be just a number that depends on the
particular system S (for example, it might be the system temperature that varies from
one system to the next).
Now we will show that the ensemble and quantum mechanical average of an operator

ÔO can be calculated using hhÔOii ¼ Tr ð�̂�ÔOÞ. Recall the definition of trace,

Tr ð�̂�ÔOÞ ¼
X
n

nh j �̂�ÔO nj i ð5:11:12Þ

Although the trace does not depend on the particular basis set, equations of motion
use the energy basis nj i ¼ unj if g where ĤH nj i ¼ En nj i.
First let’s find the quantum mechanical average of an operator for the specific system

S starting with

ÔO
D E Sð Þ

q
¼  S

� ��ÔO  S

�� �
with  S tð Þ

�� �
¼
X
n

� Sð Þ
n tð Þ unj i ð5:11:13Þ

provides the wave function for the system S. Substituting the wave function (5.11.12)
into the operator expression (5.11.11) provides

ÔO
D E Sð Þ

q
¼
X
n

�� Sð Þ
n

�
un
��ÔO X

m

� Sð Þ
m tð Þ

��um� ¼X
nm

�� Sð Þ
n � Sð Þ

m

�
un
�� ÔO��um� ¼X

mn

� Sð Þ
m �

� Sð Þ
n Onm ð5:11:14Þ
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There is one such average for each different system S since there is a different wave
function for each different system. For a given system S, this last expression gives the
quantum mechanical average of the operator for that one system.
As a last step, take the ensemble average of Equation (5.11.14) using Ps as the

probability.

ÔO
D ED E

¼ ÔO
D E Sð Þ

q

� �
e

¼
X
S

PS ÔO
D E Sð Þ

q
¼
X
S

PS

X
mn

� Sð Þ
m �

� Sð Þ
n Onm

Rearranging the summation and noting Tr �O
	 


¼
P

mn �mnOnm provides the desired
results.

ÔO
D ED E

¼
X
mn

X
S

PS�
Sð Þ
m �

� Sð Þ
n

 !
Onm ¼

X
mn

� Sð Þ
m �

� Sð Þ
n Onm ¼

X
mn

�mnOnm ¼ Tr �̂�ÔO
	 


Example 5.11.6

Find the average of an operator for a pure state with �̂� ¼ j ðtÞi h ðtÞj

Solution: Equation (5.11.12) provides

ÔO
D E

¼ Tr �̂�ÔO
	 


¼
X
n

un
��  tð Þ

� �
 tð Þ
� ��ÔO unj i ¼

X
n

 tð Þ
� ��ÔO unj i un

��  tð Þ
� �

¼  tð Þ
� ��ÔO  tð Þ

�� �
where the first summation uses the definition of trace and the last step used the closure
relation for the states unj i. For the pure state, we see that the trace formula reduces to
the ordinary quantum mechanical average of hÔOi ¼ h ðtÞjÔO j tð Þi.

Example 5.11.7 The Two Averages

The electron gun in a television picture tube has a filament to produce electrons and a
high voltage electrode to accelerate them toward the phosphorus screen (see top portion
of Figure 5.11.8). Suppose the high voltage section is slightly defective and produces
small random voltage fluctuations. We therefore expect the momentum p ¼ �hhk of the
electrons to slightly vary similar to the bottom portion of Figure 5.11.8. Assume each
individual electron is in a plane wave state  ðkÞðx, tÞ ¼ 1ffiffiffi

V
p eikx�i!t where the superscript

‘‘(k)’’ indicates the various systems rather than ‘‘(s).’’ Find the average momentum.

FIGURE 5.11.8

The electron gun (top) produces a slight variation in wave vector k (bottom).
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Solution: The quantum mechanical average can be found

 ðkÞ
� ��p̂p  ðkÞ

�� �
q
¼  ðkÞ
� �� �hh

i

@

@x
 ðkÞ
�� �

q

Substituting for the wave function, we find

 ðkÞ
� ��p̂p  ðkÞ

�� �
q
¼

1

V

Z
V
dV e�ikxþi!t �hh

i

@

@x
eikx�i!t ¼ �hhk

where we assume that the wave function is normalized to the volume V. We still need to
average over the various electrons (i.e., the systems or k values) leaving the electron gun.

Therefore, the average momentum must be hhp̂piqie ¼ �hhko.

Example 5.11.8

Let ĤH be the Hamiltonian for a two-level system with energy eigenvectors fju1i, u2j i g so
that ĤHju1i ¼ E1ju1i and ĤHju2i ¼ E2ju2i. What is the matrix of ĤH with respect to the basis
vectors f ju1i, ju2i g ?

Solution: The matrix elements of ĤH can be written as Hab ¼ huajĤHjubi ¼ Eb�ab which can
be written as

H ¼
E1 0
0 E2

� �

Example 5.11.9

What is the ensemble-averaged energy hĤHi 
 hhĤHii? Assume all of the information
remains the same as for Examples 5.11.8, 5.11.1, and 5.11.3.

Solution: We want to evaluate the average given by

ĤH
D E

¼ Tr �̂�ĤH
	 


We can insert basis vectors as required by the trace and then insert the closure relation
between the two operators. We would then end up with the formula identical to taking
the trace of the product of two matrices.

Tr �̂�ĤH
	 


¼ Tr �H
	 


¼ Tr
0:86 0:307

0:307 0:14

" #
E1 0

0 E2

" #
¼ Tr

0:86E1 0:307E2

0:307E1 0:14E2

" #

Of course, in switching from operators to matrices, we have used the isomorphism
between operators and matrices. Operations using the operators must be equivalent to
operations using the corresponding matrices. Summing the diagonal elements provides
the trace of a matrix and we find

ĤH
D E

¼ Tr �̂�ĤH
	 


¼ 0:86E1 þ 0:14E2

So the average is no longer equal to the eigenvalue E1 or E2! The average energy
represents a combination of the energies dictated by both the quantum mechanical and
ensemble probabilities.
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Example 5.11.10

What is the probability that an electron will be found in the state u1j i? Assume all of the
information remains the same as for Examples 5.11.9, 5.11.8, 5.11.3, and 5.11.1

Solution: We assume the density matrix

� ¼
0:86 0:307

0:307 0:14

" #

The answer is Probability of state #1 ¼ u1h j�̂� u1j i ¼ �11 ¼ 0:86. In fact, we can find the
probability of the first state being occupied directly from the definition of the density
operator

1h j�̂� 1j i ¼ 1h j
X
S

PS  S

�� �
 S

� ��" #
1j i ¼

X
S

PS 1
��  S

� �
 S

�� 1� �
¼
X
S

PS �
ðSÞ
1 �

ðSÞ�
1 ¼ �1�

�
1

5.11.4 Loss of Coherence

In some cases, the physical system introduces uncontrollable phase shifts in the various
components of the wave functions. Suppose the wave functions have the form

 �1,�2, ...ð Þ
�� �

¼
X

n
� �nð Þ
n nj i ð5:11:15aÞ

where the phases �1,�2, . . .ð Þ label the wave function and assume a continuous range
of values. The components have the form

� �nð Þ
n ¼ �n

�� ��ei�n ð5:11:15bÞ

Let P� �1,�2, . . .ð Þ ¼ P �1ð ÞP �2ð Þ . . . be the probability for j ð�1,�2, ...Þi. The density operator
assumes the form

�̂� ¼

Z
d�1d�2 . . . P �1,�2, . . .ð Þ  �1,�2, ...ð Þ

�� �
 �1,�2, ...ð Þ
� �� ð5:11:16Þ

Now we can demonstrate the loss of coherence. Expanding the terms in Equation
(5.11.16) using Equations (5.11.15) produces

�̂� ¼

Z
d�1d�2 . . . P �1ð ÞP �2ð Þ . . .

X
m, n

�m
�� �� �n�� ��ei �m��nð Þ mj i nh j ð5:11:17Þ

The exponential terms drop out for m¼ n. The integral over the probability density can
be reduced using the property

R
d�aPð�aÞ ¼ 1.

�̂� ¼
X
m

�m
�� ��2 mj i mh j þ

X
m6¼n

�m
�� �� �n�� �� mj i nh j

Z
d�m P �mð Þ ei�m

Z
d�nP �nð Þ e�i�n ð5:11:18Þ

Assume a uniform distribution P �ð Þ ¼ 1=2� on 0, 2�ð Þ. The integrals produce

Z 2�

0

d�m P �mð Þ ei�m ¼ 0
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and the density operator in Equation (5.11.18) becomes diagonal

�̂� ¼
X
m

�m
�� ��2 mj i mh j ð5:11:19Þ

Some mechanisms produce a loss of coherence. For example, making a measurement
causes the wave functions to collapse to a single state. The wave functions become mj i

with quantum mechanical probability j�mj
2 so that the density operator appears as in

Equation (5.11.19). Often the macroscopic and quantum probabilities are combined into
a single number pm and the density operator becomes

�̂� ¼
X
m

pm mj i mh j ð5:11:20Þ

Notice that the density matrix �̂� ¼ j ih j for a pure state can always be reduced to a
single entry by choosing a basis with j i as one of the basis vectors. The mixed state
in Equation (5.11.9) cannot be reduced from its diagonal form.

Example 5.11.11

Suppose a system contains N independent two-level atoms (per unit volume). Each atom
corresponds to one of the systems that make up the ensemble. Given the density matrix
�mn, find the number of two-level atoms in level #1 and level #2.

Solution: The number of atoms in state aj i must be given by

Na ¼ ðtotal numberÞ Prob of state að Þ ¼ N�aa ð5:11:21Þ

Example 5.11.12

Suppose there are N¼ 5 atoms as shown in Figure 5.11.9. Let the energy basis set be
fj1i ¼ ju1i, j2i ¼ ju2ig. Assume a measurement determines the number of atoms in each
level. Find the density matrix based on the figure.

Solution: Notice that the diagonal density-matrix elements can be calculated if we
assume that the wave functions j Si can only be either ju1i or ju2i. The density operator
has the form

�̂� ¼
X2
S¼1

PS  S

�� �
 S

� �� ¼ P1 u1j i u1h j þ P2 u2j i u2h j

or, equivalently, the matrix must be

�aa ¼ uah j�̂� uaj i ! � ¼
P1 0
0 P2

� �

Figure 5.11.9 clearly shows that Probð1Þ ¼ P1 ¼ 3=5 and Probð2Þ ¼ P2 ¼ 2=5. Therefore,
the probability of an electron occupying level #1 must be �11 ¼ 2=5 and the probability
of an electron occupying level #2 must be �22 ¼ 3=5.

FIGURE 5.11.9

Ensemble of atoms in various states.
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Example 5.11.13

What if we had defined the occupation number operator n̂n to be

n̂n 1j i ¼ 1 1j i n̂n 2j i ¼ 2 2j i

Calculate the expectation value of n̂n using the trace formula for the density operator.

Solution

n̂n
� �

¼ Tr �̂�n̂n
� �

¼ Tr
2=5 0

0 3=5

� �
1 0

0 2

� �
¼

8

5

This just says that the average state is somewhere between ‘‘1’’ and ‘‘2.’’ We can check
this result by looking at the figure. The average state should be

1 � Probð1Þ þ 2 � Probð2Þ ¼ 1
2

5
þ 2

3

5
¼

8

5

as found with the density matrix.

5.11.5 Some Properties

1. If P ¼ 1 so that �̂� ¼ j ih j represents a pure state, then �̂��̂� ¼ j i h j i h j ¼
j ih j ¼ �̂�.
In this case, the operator �̂� satisfies the property required for idempotent opera-
tors. The only possible eigenvalues for this particular density operator are 0 and 1.

�̂� vj i ¼ v vj i ! �̂��̂� vj i ¼ v vj i ! v2 vj i ¼ v vj i ! v2 ¼ v ! v ¼ 0, 1

2. All density operators are Hermitian

�̂�þ ¼
X
 

P  
�� �  � ��

( )þ

¼
X
 

P  
�� �  � ��� �þ

¼
X
 

P  
�� �  � �� ¼ �̂�

since the probability must be a real number.

3. Diagonal elements of the density matrix give the probability that a system will
be found in a specific eigenstate. The diagonal elements take into account both
ensemble and quantum mechanical probabilities. Let aj if g be a complete set of
states (basis states) and let the wave function for each system have the form

 ðtÞ
�� �

¼
X
a

�  ð Þ
a ðtÞ aj i

The diagonal elements of the density matrix must be

�aa ¼ ah j�̂� aj i ¼ ah j
X
 

P  
�� �  � ��

( )
aj i ¼

X
 

P a
��  � �

 
�� a� �

¼
X
 

P �
�  ð Þ
a �  ð Þ

a ¼ �a
�� ��2 ¼ probðaÞ
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4. The sum of the diagonal elements must be unity

Tr �̂�ð Þ ¼
X
n

�nn ¼ 1

since the matrix diagonal contains all of the system probabilities.

5.12 Review Exercises

5.1 Using the Poisson Brackets, show

A,A½ � ¼ 0 A,B½ � ¼ � B,A½ � A, c½ � ¼ 0

for A, B a function of phase space coordinates q, p and ‘‘c’’ a number.
5.2 Using the Poisson Brackets, show

Aþ B,C½ � ¼ A,C½ � þ B,C½ � AB,C½ � ¼ A B,C½ � þ A,C½ �B

where A, B, C denote differentiable functions of the phase space coordinates q, p.
5.3 Using the Poisson Brackets, show

qi, qj
� �

¼ 0 pi, pj
� �

¼ 0 qi, pj
� �

¼ �ij

5.4 Explain why the following relation must hold for �xi independent of each other.

XN
i¼1

fðxiÞ�xi ¼ 0 ! fðxiÞ ¼ 0

This is similar to a step in the procedure to derive Lagrange’s equation. Hint:
Consider a matrix solution. Keep in mind that �x1, for example, can have any number
of values such as 0.1, 0.001, etc.

5.5 Assume periodic boundary conditions. Show how

0 ¼ �I ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
��þ

@L

@ _��

@

@t
��þ

@L

@ @i�ð Þ
@i��

� �

leads to

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
�
@

@t

@L

@ _��
� @i

@L

@ @i�ð Þ

� �
�� ¼ 0

Explain and show any necessary conditions of the limits of the spatial integral.
5.6 Suppose the Lagrange density has the form L ¼

�
2 _��

2 þ
�
2 ½ @x�ð Þ

2
þ @y�
� �2

� for 1-D
motion, where �,� resemble the mass density and spring constant (Young’s modulus)
for the material, and � ¼ �ðx, y, tÞ. Find the equation of motion for �.

5.7 If L ¼
�
2 _��

2 þ
�
2 r�ð Þ

2 where r�ð Þ
2
¼ r� � r� and � ¼ �ðx, y, zÞ then find the equation of

motion for �.
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5.8 Starting with L ¼ i�hh � _  � ð�hh2=2mÞr � � r � V rð Þ  � , show the alternate form of
the Lagrange density by partial integration.

L ¼ i�hh � _  þ
�hh2

2m
 � r2 � V rð Þ �  ¼  � i�hh@t þ

�hh2

2m
r2 � V

� �
 

5.9 Show Hamiltonian

H ¼ � _  �L ¼  � �
�hh2

2m
r2 þ V

� �
 

based on the Lagrange density

L ¼  � i�hh@t þ
�hh2

2m
r2 � V

� �
 

5.10 For Hermitian operators, show that the following definitions of variance all reduce
to the same thing.

ÔO� �OO
	 
þ

ÔO� �OO
	 
� �

ÔO� �OO
	 


ÔO� �OO
	 
þ� �

1

2
ÔO� �OO
	 
þ

ÔO� �OO
	 


þ
1

2
ÔO� �OO
	 


ÔO� �OO
	 
þ� �

5.11 Find the standard deviation for an operator ÔO in one of its eigenstates nj i.
5.12 Show a particle does not move from an energy eigenstate once its wavefunction

collapses to the eigenstate. Hint: consider the evolution operator.
5.13 Find the classical Hamiltonian for the harmonic oscillator starting with the classical

Lagrangian L ¼ T � V, finding momentum from L and then applying the Legendre
transformation.

5.14 Show that momentum must be conserved if the Lagrangian does not depend on
position. Repeat the demonstration using the Hamiltonian.

5.15 Assume the pulley has mass M and radius R and that it supports two masses as in

p ¼
1
2 I

_��2 where I is the
moment of inertial given by I ¼

R
dm R2:

1. Find I.

2. Write the total kinetic and potential energy in terms of � and _��.

3. Use the Lagrangian to find the equation of motion and solve it.

5.16

1. Write the Hamiltonian in terms of the angle.

2. Find the equations of motion.
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Figure P4.1. The kinetic energy of the pulley is given by T

Using Figure P5.15 and the results of Problem 5.15



5.17 Normalize the following functions (i.e., find A) to make them a probability density:

1. y ¼ A eax for a50, x 2 0,1ð Þ

2. y ¼ A�ðx� 1Þ þ ð1� AÞ�ðx� 2Þ x 2 ð0, 3Þ

3. Repeat part b for x 2 ð0, 2Þ

4. y ¼ A sinð�xÞ x 2 0, 1ð Þ

5.18 For each of the density functions in Problem 5.17, find �xx.
5.19 Fill in all the missing steps in Section 5.8.5. That is, solve the Schrodinger equation

for the infinitely deep 1-D quantum well

VðxÞ ¼
0 x 2 0, Lð Þ

1 elsewhere

�

to show the energy eigenfunctions and eigenvalues have the form

�ðxÞ ¼

ffiffiffi
2

L

r
Sin

n�x

L

	 
( )
E ¼

n2�2�hh2k2

2mL2

Hint: Separate variables in the Schrodinger equation, find the spatial functions and
normalize.

5.20 Find the average momentum for the nth eigenstate for the infinitely deep quantum
well given in Problem 5.19.

5.21 Suppose an engineer has a mechanism to place an electron in an initial state
defined by

� x, 0ð Þ ¼
x x 2 0, 1ð Þ

2� x x 2 1, 2ð Þ

�

FIGURE P5.15

Pulley system.
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for an infinitely deep quantum well with width L¼ 2. The bottom of the well has
potential V¼ 0.

1. At t¼ 0, what is the probability that the electron will be found in the n¼ 2 state?

2. What is the probability of finding n¼ 2 at time t?

5.22 An electron moves along a path located at a height y¼ 0 as shown in Figure P5.22.
The path is along the x-direction as shown in the top figure. Near x¼ 0 the electron
wave divides among three separate paths at heights y¼ 1, y¼ 2, y¼ 3. Suppose each
path represents a possible state for the electron. Denote the states by 0j i, 1j i, 2j i, 3j i so
that the position operator ŷy has the eigenvalue equations ŷy nj i ¼ n nj i:
The set of nj i forms a discrete basis. Assume the full Hamiltonian has the form

ĤH ¼
p̂p2x
2m

þ V̂V where V̂V ¼ mgŷy

Further assume p̂px nj i ¼ pn nj i for x  0 or x � 0.

1. Use the following probabilities (at time t¼ 0) for finding the particles on the
paths x  0

P1 ¼
1

4
P2 ¼

1

2
P3 ¼

1

4

to find suitable choices for the �n in

j ð0Þi ¼
X3

n¼1
�njni

for the three paths x  0. Neglect any phase factors.

2. Find the average hV̂Vi ¼ h ð0ÞjV̂Vj ð0Þi for x  0.

3. For x � 0, find hĤHi.

4. For x  0, find hĤHi in terms of n and pn for n¼ 1, 2, 3.

5. Using the evolution operator ûuðtÞ ¼ exp ĤHt=ði�hhÞ, find  ðtÞ
�� �

for x� 0. Write the
final answer in terms of n and pn for n¼ 1, 2, 3.

5.23 Show N̂N½âaþjni� ¼ nþ 1ð Þ½âaþjni� where âaþ represents the harmonic oscillator raising
operator and N̂N ¼ âaþâa.

5.24 Prove the classic integral relation

�hh2

m

Z 1

�1

dx u�b
@ua
@x

¼ Ea � Ebð Þ

Z 1

�1

dx u�bx ua

FIGURE P5.22

Electron wave divides among three paths on the right-hand side.
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where ĤH ua ¼ Eaua, ĤH ub ¼ Ebub and ĤH ¼
p̂p2

2m þ VðxÞ. Use the following steps.

1. Show ½ĤH, x̂x� ¼ �
i�hh

m
p̂p

2. Use the results of Part a to show

i�hh

m
ubh jp̂p uaj i ¼ � Eb � Eað Þ ubh jx̂x uaj i

Show why hubjĤH ¼ ubh jEb.

3. Use the results of Part b to finally prove the relation stated at the start of this
exercise.

5.25 Prove the special integrals at the end of Section 5.9 using ladder operators.
5.26 For the harmonic oscillator, calculate the second eigenfunction u2ðxÞ using âaþ and

u1ðxÞ ¼



2
ffiffiffi
�

p

� �1
2

2
xe�

2x2

2 where 
2 ¼
m!o

�hh

5.27 Calculate h p̂p2=2mi for a harmonic oscillator in the eigenstate unj i.
Hint: Write the momentum operator in terms of the raising and lowering
operators.

5.28 Find the Heisenberg representation of the momentum operator p̂p for the infinitely
deep square well when the bottom of the well has a constant potential of V¼ c.

5.29 Show ½x̂xh, p̂ph� ¼ i�hh for the Heisenberg representation using only the Schrodinger
commutator ½x̂xs, p̂ps� ¼ i�hh and the fact that ûu is unitary.

5.30 Show

V xð Þ,
�hh

i

@

@x

� �
¼
@V

@x

5.31 Obtain Newton’s second law F̂Fh ¼ dp̂ph=dt using the evolution operator for a closed
system and the rate of change of an operator in the Heisenberg representation.

5.32 Show _̂pp̂pph ¼ �kx̂xh using the harmonic oscillator Hamiltonian ĤH ¼ ðp̂p2=2mÞ þ ðk=2Þx̂x2

and the expression for the rate of change of Heisenberg operators.
5.33 Starting with the Heisenberg equation of motion ðdÂAh=dtÞ ¼ ði=�hhÞ½ĤHh,ÂAh�þ ðð@=@tÞÂAsÞh

show the time average found for the Schrodinger representation.

d

dt
ÂA
D E

¼
i

�hh
ĤH, ÂA
h iD E

þ
@ÂA

@t

* +

Hint: Consider  toð Þ
� ��ðdÂAh=dtÞ  toð Þ

�� �
.

5.34 Explain why the Heisenberg and Interaction representation become identical for
closed systems.

5.35 Starting with _��m tð Þ � ðEm=i�hhÞ�m tð Þ ¼ ð1=i�hhÞ
P

n �n tð ÞVmn tð Þ from Section 5.11, show
the integrating factor must be �m tð Þ ¼ exp �ðEm=i�hhÞtð Þ and then show
Ð ðd=dtÞ �m tð Þ�m tð Þ½ � ¼ ð1=i�hhÞ�m tð Þ

P
n �n tð ÞVmn tð Þ.

5.36 Show the first- and second-order terms in the interaction-representation perturba-
tion theory

�I tð Þ
�� �

¼ 1þ
1

i�hh

Z t

0

dt1V̂VI t1ð Þ

� �
�I 0ð Þ
�� �
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reduces to the second order term for the Schrodinger representation

�m tð Þ ¼ �mi exp
Ei

i�hh
t

� �
þ

1

i�hh
exp

Em

i�hh
t

� �Z t

0

d exp �
Emi

i�hh


� �
Vmi ð Þ

Hint: Expand �Ij i in basis nj i, use the evolution operator, and project with mh j.
5.37 The chapter discusses time-dependent perturbation theory. Using the Schrodinger

representation, derive the first-order correction to � using the coefficients an in

 
�� � ¼X

n
anðtÞ e

Ent
i�hh nj i

where ĤH  
�� � ¼ i�hh@t  

�� � and ĤHo nj i ¼ En nj i and ĤH ¼ ĤHo þ V̂VðtÞ.
5.38 An engineering student prepares a two-level atomic system. The student doesn’t

know the exact wave function j i. After many attempts the student finds the
following probability table.

 
�� � at t¼ 0 P where

0:98 u1j i þ 0:19 u2j i 2/3 ĤH u1j i ¼ E1 u1j i

ĤH u2j i ¼ E2 u2j i

0:90 u1j i þ 0:43 u2j i 1/3

1. Write the density operator �̂�ðt ¼ 0Þ in a basis vector expansion.

2. What is the matrix of �̂�ð0Þ?

3. What is the average energy hhĤHii ¼ hĤHi?

5.39 Show the components of the average wave function Avefj ig ¼
P
s
Psj 

ðsÞi do not
necessarily sum to one. Consider the simplest case: Assume that each wave function
lives in a 2-D Hilbert space j ðsÞi ¼ �ðsÞ1 j1i þ �ðsÞ2 j2i. Consider only two wave func-
tions for s¼ 1, 2. Assume all coefficients �ðsÞn are real. To make the problem simpler,
consider the case of �ð2Þ1 ¼ ð1þ "1Þ�

ð1Þ
1 and �ð2Þ2 ¼ 1þ "2ð Þ�ð1Þ2 .

1. Show that the sum of the square of the components equals 1 if and only if "1 ¼ 0 ¼ "2.
Hint: Sum the squares of the coefficients of Avefj ig in the usual application of
Pythagorean’s theorem, collect the squared terms of P2

1 and P2
2, and add terms to 1

where appropriate. You should find a result similar to 1þ 2P1P2f�
ð1Þ2
1 "1 þ �

ð1Þ2
2 "2,

with "1 and "2 � 0g:

2. Explain why the diagonal components of the density operator add to 1 but the
sum of the square of the components of the average wave function do not.

5.40 For the wave function j ð�Þi ¼ �1j1i þ �2ei�j2i with the probability density Pð�Þ ¼
1=2� for � 2 0, 2�ð Þ, find the basis vector expansion of the density operator. Assume
�n are complex numbers.

5.41 Repeat Problem 5.40 for the case of P �ð Þ ¼ � �� 0ð Þ.
5.42 The electron gun in a television picture tube has high voltage to accelerate

electrons toward the phosphorus on the screen. Suppose the high-voltage section
is slightly defective and produces small random voltage fluctuations. Suppose
the wave vectors k are approximately uniformly and continuously distributed
between k1 and k2. Assume each individual electron is in a plane wave state
 ðkÞðx, tÞ ¼ ð1=

ffiffiffiffi
V

p
Þ eikx�i!t.
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1. Find the probability density PðkÞ for the wave vector. Make sure it is correctly
normalized so that its integral over k equals one.

2. Find the average �kk.

3. Find hhp̂pii.

XN
i¼1

f xið Þ �xi ¼ 0 ! f xið Þ ¼ 0

0 ¼ �I ¼

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
��þ

@L

@ _��

@

@t
��þ

@L

@ @i�ð Þ
@i��

� �

Z t2

t1

Z ~rr2

~rr1

dt d3x
@L

@�
�
@

@t

@L

@ _��
� @i

@L

@ @i�ð Þ

� �
�� ¼ 0

L ¼
�

2
_��2 þ

�

2
@x�ð Þ

2
þ @y�
� �2h i

�,�

� ¼ �ðx, y, tÞ

L ¼
�

2
_��2 þ

�

2
r�ð Þ

2
r�ð Þ

2
¼ r� � r� � ¼ �ðx, y, zÞ�

L ¼ i�hh � _  �
�hh2

2m
r � � r � V rð Þ  � 

L ¼ i�hh � _  þ
�hh2

2m
 � r2 � V rð Þ  �  ¼  � i�hh@t þ

�hh2

2m
r2 � V

� �
 

H ¼ � _  � L ¼  � �
�hh2

2m
r2 þ V

� �
 

L ¼  � i�hh@t þ
�hh2

2m
r2 � V

� �
 

O� �OO
� �þ

ÔO� �OO
	 
D E

ÔO� �OO
	 


ÔO� �OO
	 
þ� �

1

2
ÔO� �OO
	 
þ

ÔO� �OO
	 


þ
1

2
ÔO� �OO
	 


ÔO� �OO
	 
þ� �

ÔO nj i

L ¼ T � V

Tp ¼
1

2
I _��2
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I ¼

Z
dm R2

� _�� y ¼ Aeax a50, x 2 0,1ð Þ

y ¼ A�ðx� 1Þ þ ð1� AÞ�ðx� 2Þ

x 2 ð0, 3Þ

x 2 ð1, 2Þ

y ¼ A sinð�xÞ x 2 0, 1ð Þ

�VVðxÞ ¼
0 x 2 0, Lð Þ

1 elsewhere

(

�ðxÞ ¼

ffiffiffi
2

L

r
sin

n�x

L

	 
( )
E ¼

n2�2�hh2k2

2mL2

� x, 0ð Þ ¼
x x 2 0, 1ð Þ

2� x x 2 1, 2ð Þ

(

0j i, 1j i, 2j i, 3j i

ŷy ŷy nj i ¼ n nj i nj i

ĤH ¼
p̂p2x
2m

þ V̂V V̂V ¼ mgŷy

p̂px nj i ¼ pn nj i

P1 ¼
1

4

P1 ¼
1

4
P2 ¼

1

2
P1 ¼

1

4

�n  ð0Þ
�� �

¼
X3
n¼1

�n nj i

V̂V
D E

¼  ð0Þ
� ��V̂V  ð0Þ

�� �
ĤH
D E
ĤH
D E

ûuðtÞ ¼ exp ĤHt= i�hhð Þ  ðtÞ
�� �

N̂N âaþ nj i
� �

¼ nþ 1ð Þ âaþ nj i
� �

âaþ

N̂N ¼ âaþâa
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�hh2

m

Z 1

�1

dx u�b
@ua
@x

¼ Ea � Ebð Þ

Z 1

�1

dx u�bx ua ĤH ua ¼ Eaua ĤH ub ¼ Ebub ĤH ¼
p̂p2

2m
þ VðxÞ

ĤH, x̂x
h i

¼ �
i�hh

m
p̂p

i�hh

m
ubh jp̂p uaj i ¼ � Eb � Eað Þ ubh jx̂x uaj i

ubh jĤH ¼ ubh jEb

u2ðxÞ âaþ

u1ðxÞ ¼



2
ffiffiffi
�

p

� �1
2

2
xe�

2x2

2 
2 ¼
m!o

�hh

p̂p2

2m

� �
unj i

p̂p x̂xh, p̂ph
� �

¼ i�hh x̂xs, p̂ps
� �

¼ i�hh ûu

V xð Þ,
�hh

i

@

@x

� �
¼ �

@V

@x

F̂Fh ¼ dp̂ph=dt

_̂pp̂pph ¼ �kx̂xh ĤH ¼
p̂p2

2m
þ

k

2
x̂x2

dÂAh

dt
¼

i

�hh
ĤHh, ÂAh

h i
þ

@

@t
ÂAs

� �
h

d

dt
ÂA
D E

Ð¼
i

�hh
ĤH, ÂA
h iD E

þ
@ÂA

@t

* +

 toð Þ
� �� dÂAh

dt
 toð Þ
�� �

_��m tð Þ �
Em

i�hh
�m tð Þ ¼

1

i�hh

X
n

�n tð ÞVmn tð Þ

�m tð Þ ¼ exp �
Em

i�hh
t

� �
d

dt
�m tð Þ�m tð Þ½ � ¼

1

i�hh
�m tð Þ

X
n

�n tð ÞVmn tð Þ

�I tð Þ
�� �

¼ 1þ
1

i�hh

Z t

0

dt1V̂VI t1ð Þ

� �
�I 0ð Þ
�� �
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�m tð Þ ¼ �mi exp
Ei

i�hh
t

� �
þ

1

i�hh
exp

Em

i�hh
t

� �Z t

0

d exp �
Emi

i�hh


� �
Vmi ð Þ

�Ij i nj i mh j

�

 
�� � ¼X

n
anðtÞ e

Ent
i�hh nj iĤH  

�� � ¼ i�hh@t  
�� � ĤHo nj i ¼ En nj iĤH ¼ ĤHo þ V̂VðtÞ  

�� �

�̂�ðt ¼ 0Þ

�̂�ð0Þ

ĤH
D ED E

¼ ĤH
D E

Ave  
�� �� �

¼
X
s

Ps  
ðsÞ

�� �
:

 ðsÞ
�� �

¼ �ðsÞ1 1j i þ �ðsÞ2 2j i

�ðsÞn

�ð2Þ1 ¼ 1þ "1ð Þ�ð1Þ1

�ð2Þ2 ¼ 1þ "2ð Þ�ð1Þ2

"1 ¼ 0 ¼ "2

Ave  
�� �� �

P2
1 P2

2

1þ 2P1P2 �
ð1Þ
1 2"1 þ �

ð1Þ
2 2"2

n o
 �ð Þ
�� �

¼ �1 1j i þ �2e
i� 2j i P �ð Þ ¼ 1=2�

� 2 0, 2�ð Þ �n

P �ð Þ ¼ � �� 0ð Þ

 ðkÞðx, tÞ ¼
1ffiffiffiffi
V

p eikx�i!t

PðkÞ

�kk

p̂p
� �� �

350 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



5.13 Further Reading

The following lists some well known references for the summary material in this chapter.

Mechanics

1. Marion J.B., Classical Dynamics, Academic Press, New York (1970).
2. Goldstein R., Classical Mechanics, Addison-Wesley Publishing, Reading, MA (1950).

Quantum Theory

3. Elbaz E., Quantum, The Quantum Theory of Particles, Fields, and Cosmology, Springer-Verlag, Berlin
(1998).

4. Baym G., Lectures on Quantum Mechanics, Addison-Wesley Publishing, Reading, MA (1990).
5. Messiah A., Quantum Mechanics, Dover Publications, Mineola, NY (1999).

Density Operator

6. Blum K., Density Matrix Theory and Applications, 2nd ed., Plenum Press, New York (1996).
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6
Light

The study of light through the centuries has produced a number of theories and
experiments. Newton advanced the corpuscular theory, building on the early Greek view
of matter composed of atoms. Then Young essentially proved the wave nature of light
through the interference experiments. Maxwell provided the firm theoretical basis for
the wave nature. During the late 1800s and early 1900s, further experiments showed
predictions based on a continuous wave led to the well-known ultraviolet catastrophe.
Plank and Einstein originated and developed the notion of the photon as an elementary
quantum of propagating electromagnetic (EM) energy. The first half of the 20th century
saw the development of the field quantization and the quantum electrodynamics (QED).
Feynmann labeled QED as ‘‘the best theory we have’’ to describe the matter–light
interaction. The second half of the 20th century witnessed the development of the
coherent and squeezed optical states attributable to Glauber and Yuen. The study of light
and electromagnetic fields has a long history. This chapter explores the nature of light
in terms of quantum optics.

The properties of matter depend on the quantum mechanical state occupied by the
constituent particles. Likewise, properties of light depend on the states for the photons.
The present chapter begins with a discussion of the Classical Vector Potential and Gauge
transformations. We discuss the solutions to the optical Schrodinger equation with special
emphasis on the Fock, coherent, and squeezed states. The chapter introduces the Wigner
function.

The material in the present chapter covers the ‘‘free field’’ case for light that applies to
situations where the light does not interact with matter (except possibly for reflections).
The Hamiltonian for the complete system consisting of both matter and light does not
contain any interaction terms. The next chapter discusses the ‘‘matter–light interaction’’
case. The matter–light interaction gives rise to light emission and detection. The
interaction of matter with the vacuum field produces the spontaneous emission necessary
for both light emitting diodes and lasers.

6.1 A Brief Overview of the Quantum Theory of Electromagnetic

Fields

As well known, atoms can emit light waves that are coherent with a driving optical field
(stimulated emission) and they can also emit light on their own without a driving field
(spontaneous emission). The spontaneous emission arises as a result of quantum vacuum
fluctuations. We need to introduce quantum electrodynamics in order to discuss vacuum
fluctuations.
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Maxwell’s electromagnetic (EM) equations can be solved to define a set of allowed EM
modes. Sine and cosine functions represent the allowed modes for a cubic volume; for
example, imagine sinusoidal standing waves in a Fabry–Perot cavity. The allowed
wavelengths and polarization of light characterize these modes. The fields additionally
have amplitude and phase; these attributes characterize only the field and not the mode.
In QED, the electric field becomes an operator having the form

ÊE � q̂q sin kz� !tð Þ þ p̂p cos kz� !tð Þ

for a single mode. This can be recognized as an alternative to writing the field in terms of
the amplitude and phase. The quadrature operators q̂q, p̂p refer to amplitude and not to
position and momentum. The operators do not commute and must operate on vectors in
a Hilbert space that describe the amplitude and phase of the field. The various vectors in
the amplitude space lead to the various EM fields with distinct properties. The states of
light refer to the basis states of the amplitude space or to various combinations of the
basis states. The Fock, coherent, and squeezed states represent three types of amplitude
states.

The QED Fock state represents one of the most fundamental notions of Quantum
ElectroDynamics (QED). A Fock state has a definite number of photons in the mode (this
means that each mode has a definite average power) but completely random phase. The
photons occupy the modes, which function as a type of framework or stage. In classical
electrodynamics, a state without any photons corresponds to a mode without any
amplitude. In QED, a state without any photons (the vacuum state) has an average electric
field of zero, but nonzero variance (which is proportional to the square of the field). This
means that the value of the electric field can fluctuate away from the average of zero. The
nonzero variance refers to quantum fluctuations or noise; the vacuum state has the
minimum quantum noise often termed vacuum fluctuations. Fock states make it easy to
count photons but there exists a slight complication for engineering purposes! It turns out
that all Fock states have zero average electric field because of the random phase. In
addition, the noise associated with the Fock state must be larger than the minimum value
set by the vacuum.

A coherent state has nonzero average electric field and fairly well-defined phase. The
electric fields for these states can be pictured as sine and cosine waves; these states best
describe laser emission. The coherent state actually consists of a linear combination of all
Fock states. Coherent and Fock states can be seen to be quite different. One of the most
important distinctions is that, for a coherent state with given amplitude, a Poisson
probability distribution describes the number of photons n in the mode. A Fock state has
an exact number of photons. The Poisson probability distribution links the standard
deviation of photon number �¼

p
hni with the average number of photons hni. For

example, a beam with an average of hni ¼ 100 photons has a standard deviation of
p
hni ¼ 10 photons. One might reasonably expect the measured number of photons to

range from 80 to 120 (almost 50% variation). The variation represents the shot noise. Now
returning to the amplitude and phase, it just so happens that any coherent state has the
same noise content as the vacuum state (regardless of the amplitude of the coherent
state).

A squeezed vacuum state can be produced from the quantum vacuum state by reducing
the noise (i.e., reducing the variance) in one set of parameters while adding it to another
(i.e., ‘‘squeezing the noise out’’). Squeezing the vacuum state is equivalent to squeezing
the coherent state since the vacuum and coherent states have the same type and amount
of noise. For example, noise can be removed from one quadrature term of the electric field
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for ‘‘quadrature squeezing’’ but that removed noise reappears in the other quadrature
term. Similarly, a ‘‘quiet’’ photon stream (i.e. a number squeezed state) obtains by
removing noise from the photon-number but it reappears in the phase. ‘‘Sub-Poisson’’
statistics describe the quiet photon stream. Phase-squeezed states have less phase
noise but more amplitude noise. Squeezed coherent states can be produced, detected, and
used for low noise applications. Figure 6.1.1 shows examples of laser light moving
past an observer. The top portion shows ‘‘coherent light’’ (i.e., light in a coherent state)
where the number of photons in equal beam-lengths can vary from one length-interval
to the next. The number of photons follows the Poisson probability distribution. The
bottom portion of the figure shows a ‘‘number squeezed state’’ where the equal
lengths have equal numbers of photons. Apparently, a number-squeezed state is related
to a Fock state.

Spontaneous emission comprises another form of noise in the laser although we certainly
should not term it as ‘‘noise’’ for a Light Emitting Diode (LED). We require spontaneous
emission in a laser to start the laser oscillation but, in addition to producing larger than
necessary threshold current, it also wastes energy. Interestingly, spontaneous emission is
not solely a property of a collection of atoms, but arises from quantum vacuum
fluctuations. The fluctuating electric field of the vacuum state initiates the spontaneous
emission. Changing the number of vacuum modes coupled to the atomic ensemble can
modify the rate of spontaneous emission—there exists one vacuum mode for each
wavelength and polarization allowed by the boundary conditions on the enclosed
volume. The field of cavity QED describes the theory and measurement of both
spontaneous and stimulated emission for which these interesting cavity effects become
important. These vacuum effects are essential for emitters (LEDs or lasers) that have
physical sizes comparable to the wavelength of the emitted light (nanophotonics).
Further, to characterize the effect of spontaneous emission on another laser or device, it is
necessary to understand the effects of vacuum entropy.

Noise can be a problem because small (and low power) components do not deal
with many particles (electrons, holes, and photons) at one time. For low particle
numbers, as might be typical for small or low power components, the uncertainty (or
standard deviation) in the signal can be roughly the same size as the magnitude of
the quantity itself. Equivalently stated, small systems and signals have relatively large
deviation of the number of particles carrying the signal compared with the aver-
age number. Ultimately, nanometer-scale devices (and for low power systems) have
different types of noise with the quantum noise representing the commonly accepted
lowest noise floor.

Noise can be more detrimental to an analog signal than a digital one. An analog signal
usually caries information of a continuously varying parameter (such as distance, length,
temperature, or music) and therefore, the noise determines the ultimate precision of
the measurement or the quality of the impressed information. Noise as small as 0.1% can
be significant for audio applications (for example). A digital system, however, must be
capable of distinguishing between a logic ‘‘0’’ and ‘‘1.’’ The signal strength must exceed a

FIGURE 6.1.1

Artist view of the coherent and the number-
squeezed states.
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threshold value before the circuit recognizes the logic level. Many circuits and devices
include a hysteresis effect to reduce the effect of noise. The ‘‘bit error rate’’ determines the
accuracy of the digital system.

Noise problems can also appear in low power, high frequency RF or RADAR
transmitters. These transmitters must operate at higher powers in order to keep the
signal-to-noise ratios (S/N) as large as possible. For conventional electronic equipment
(not just optical equipment) operating at modest powers of 10 W and 30 GHz, the
quantum noise becomes a significant factor over a distance of 5 miles.

The theory of quantized fields mathematically unifies the pictures of light as particles
and as waves. We know the photon as the basic quantum of light. The EM fields and
the EM Hamiltonian are quantized similar to the electronic harmonic oscillator.
The quantized electric field will be seen to consist of a wave portion (described by the
complex traveling wave) and a particle portion consisting of creation and annihilation
operators. Quantum field theory mathematically unifies the wave and particle pictures
for all matter not just photons or electrons.

The previous few paragraphs point out the importance of quantum optics and some
very interesting sources of noise in electromagnetic systems. Although quantum noise is
interesting and important, other forms of noise such as RIN and thermal noise must
be addressed.

6.2 The Classical Vector Potential and Gauges

In classical electrodynamics, we treat the magnetic and electric fields as physical
quantities. A classical Hamiltonian (i.e., electromagnetic energy stored in free space) can
be written in terms of these fields. However, the electric and magnetic fields can be
derived from vector and scalar potential functions. The vector potential propagates as a
wave and can be Fourier decomposed into plane waves. Replacing the Fourier
amplitudes with operators quantizes the vector potential. Therefore the electromagnetic
fields and Hamiltonian can also be quantized.

The procedure to find and quantize the vector potential uses the Coulomb gauge.
Gauge transformations refer to certain changes that can be made to the vector and scalar
potentials without affecting the mathematical expressions for the electric and magnetic
fields. Consequently, both the fields and Maxwell’s equations must be invariant with
respect to gauge transformation.

There exists a number of different Gauge transformations with the Coulomb and
Lorentz gauges being the most common. We use the Coulomb gauge to quantize the
electromagnetic fields as a result of the fields having independent generalized
coordinates. This gauge makes the vector potential a transverse field (the field is
perpendicular to the direction of propagation). It also provides Poisson’s equation for
voltage; that is, the scalar potential provides the instantaneous voltage between any two
spatially separated points. We do not use the Lorentz gauge that manifests the Lorentz
invariance since it makes the fields more difficult to quantize.

Sometimes we consider the EM fields to be the ‘‘physical’’ objects and the vector
potentials to be just mathematical constructions. However, the potentials produce real
effects for device engineering. The Aharanov–Bohm devices provide an example where
the vector potential (and not the fields) can be used for modulating currents.

The topics in this section (1) discuss the relation between the EM fields and the
potential functions, (2) show that the resulting electric and magnetic fields satisfy
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Maxwell’s equations, (3) discuss the gauge transformation, and then (4) demonstrate the
plane wave expansion of the vector potential.

6.2.1 Relation between the Electromagnetic Fields and the Potential Functions

This topic introduces the relations between the electromagnetic fields and the potentials.
It shows that derived EM fields satisfy Maxwell’s equations. The next topic specializes to
a source-free region of space and then Section 6.2.3 introduces the gauge transformation
and the importance of the Coulomb gauge.

The following two equations always relate the vector potential ~AA ~rr, t
� �

and a scalar
potential ‘‘�’’ to the magnetic and electric fields regardless of the gauge.

~BB ¼ r � ~AAð~rr, tÞ and ~EE ¼ �
@ ~AAð~rr, tÞ

@t
� r� ð6:2:1Þ

In this topic, we will make frequent use of the Coulomb gauge, which requires the

vector potentials ~AAð~rr, tÞ to satisfy the Coulomb condition r � ~AA ¼ 0: Section 6.2.3 discusses
the origin and meaning of the Coulomb gauge. The present topic shows that the scalar
potential � is the ‘‘electrostatic voltage due to charges’’ and that the vector potential (in
the Coulomb gauge) can be pictured as a transverse traveling wave when the electric and
magnetic fields are traveling waves.

First we show that the magnetic and electric fields derived from the potentials in the
Coulomb gauge satisfy Maxwell’s equations

r � ~BB ¼ 0 r � ~EE ¼ �
@ ~BB

@t

r � ~DD ¼ � r � ~HH ¼ ~JJþ
@ ~DD

@t

ð6:2:2Þ

where ~DD ¼ " ~EE ¼ "0
~EEþ ~PP ¼ "0

~EEþ "0� ~EE ¼ "0 1þ �ð Þ ~EE, ~BB ¼ � ~HH ¼ �0
~HH and where "0, P,

�, �0 denote the permittivity of free-space, polarization, susceptibility, and permeability
of free-space. We assume an isotropic, homogeneous, nonmagnetic medium.

1. First we show that the magnetic field derived from the vector potential satisfies
r � ~BB ¼ 0: The curl of the vector potential can be found using a determinant

~BB ¼ r � ~AA ¼

~xx ~yy ~zz
@x @y @z

Ax Ay Az

������

������

and the divergence of the magnetic field gives the triple product

r � ~BB ¼ r � r � ~AA ¼

@x @y @z

@x @y @z

Ax Ay Az

���������

���������

¼ @x @yAz � @zAy

� �
� @y @xAz � @zAxð Þ þ @z @xAy � @yAx

� �
¼ 0
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This last result obviously holds since the curl of a vector field measures the
amount of ‘‘rotation’’ of that vector field around a point (see the arrows in
Figure 6.2.1); the direction of the curl vector points perpendicular to the plane
of rotation. However, we might imagine that the divergence of a vector field
measures the amount of the field that ‘‘diverges’’ away from a point (i.e., the
change of the vector field along the dotted lines in the figure). Therefore, we
expect the divergence of the curl to be zero.
Notice that we did not need the Coulomb condition for this result.

2. Next we demonstrate that the electric field and the magnetic induction E, B
derived from the vector potential satisfy

r � ~EE ¼ �
@ ~BB

@t

Starting with r � ~EE and substituting for the electric field using
~EE ¼ �@ ~AAð~rr, tÞ=@t� r� gives

r � ~EE ¼ r � �
@ ~AA

@t
� r�

 !

¼ �
@

@t
r � ~AA� r � r� ¼ �

@

@t
~BB

which demonstrates the desired Maxwell equation. To arrive at the result,
we have used ~BB ¼ r � ~AAð~rr, tÞ and the fact that r � r�, the curl of the gradient,
must be zero since

r � r� ¼

~xx ~yy ~zz

@x @y @z

@x� @y� @z�

��������

��������
¼ 0

FIGURE 6.2.1

Divergence (along dotted line) of the curl must be zero.

FIGURE 6.2.2

Vector potential propagates along the same direction as the EM wave.
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The result can also be obtained by picturing the gradient as an outwardly pointing
vector whereas the curl measures the amount of rotation. Again notice that we
did not need the Coulomb condition and so this result holds for any vector and
scalar potential.

3. Now we show that the electric field derived from the potentials satisfies the third
of Maxwell’s equations, namely

r � ~DD ¼ �

In this case, we need the Coulomb gauge r � ~AA ¼ 0 condition in order to show
that the scalar potential � satisfies Poisson’s equation. Substituting for the electric
field we find

�

"o
¼ r � ~EE ¼ r � �

@ ~AA

@t
� r�

 !

¼ �
@

@t
r � ~AA� r2� ¼ �r2�

We recognize this as Poisson’s equation for the electrostatic potential �

r2� ¼ �
�

"o

The solution to Poisson’s equation (neglecting a constant potential term)

�ð~xx, tÞ ¼
1

4�"0

Z
�ð~rr 0, tÞ

~rr� ~rr 0
�� ��d

3r 0

gives the voltage at position ~rr due to charge density �ð~rr 0, tÞ located at position ~rr 0:
The integral in �ð~xx, tÞ has the effect of adding together the potential due to a point
charge located at each point ~rr 0—the integral represents the convolution. The
function G ~rr� ~rr 0

� �
¼ ð�1Þ=ð4�"o ~rr� ~rr 0

�� ��Þ is the Green function for Poisson’s
equation. It satisfies Poisson’s equation for a unit point charge located at ~rr 0

according to r2� ¼ �� ~rr� ~rr 0
� �

="o: We can easily show the Green function has the
correct form by calculating the field, due to a positive point charge located at the
origin ~rr 0

The formula for �ð~xx, tÞ is identical to the one normally obtained for the
electrostatic case. Interestingly, the instant the charge density appears at point ~rr 0, it
establishes a voltage at point ~rr: The solution would appear to violate a relativity
principle prohibiting signals from propagating faster than the speed of light in
vacuum c. The resolution to the apparent paradox resides with the fact that we are
interested in the fields (rather than the potentials), integrals over 3-D space, and
retarded and advanced Green functions—refer to O. L. Brill and B. Goodman, Am.
J. Phys. 35, 832 (1967).

4. The final Maxwell equation provides a wave equation for the vector potential.
Again we need the Coulomb gauge condition r � ~AA ¼ 0: Starting with

r � ~BB ¼ "�
@ ~EE

@t
þ �~JJ
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and using relations between fields and potentials

~BB ¼ r � ~AAð~rr, tÞ and ~EE ¼ �
@ ~AA

@t
� r�

provides

r � r � ~AA ¼ "�
@

@t
�
@ ~AA

@t
� r�

 !

þ �~JJ ¼ �"�
@2 ~AA

@t2
� "�

@

@t
r�þ �~JJ ð6:2:3Þ

The double cross product can be evaluated using the differential form of the
‘‘BAC–CAB’’ rule

~AA� ~BB� ~CC ¼ ~BB ~AA � ~CC
� �

� ~CC ~AA � ~BB
� �

so r � r � ~AA ¼ r r � ~AA
� �

� r2 ~AA

The first term on the right-hand side yields zero because of the Coulomb gauge
condition r � ~AA ¼ 0: Therefore, Equation (6.2.3) becomes a wave equation

r2 ~AA� "�
@2 ~AA

@t2
¼ þ"�

@

@t
r�� �~JJ ð6:2:4Þ

with the speed of light in the medium v ¼ 1=
ffiffiffiffiffiffi
�"
p

:

6.2.2 The Fields in a Source-Free Region of Space

In a source-free region of space, the charge and current density must be zero

� ¼ 0 ~JJ ¼ 0

The magnetic and electric fields become

~BB ¼ r � ~AAð~rr, tÞ and ~EE ¼ �
@ ~AAð~rr, tÞ

@t

assuming that the source-free voltage is zero (i.e., at least it should be independent
of position) so that r� ¼ 0: Step 3 in the previous topic shows that r� ¼ 0 when �¼ 0
only for the Coulomb gauge. The wave equation for the vector potential given by
Equation (6.2.4), with the source term

"�
@

@t
r�� �~JJ ¼ 0

becomes

r2 ~AA� "�
@2 ~AA

@t2
¼ 0 ð6:2:5Þ

where, again, the speed of light in the medium is v ¼ 1=
ffiffiffiffiffiffi
�"
p

:

360 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:20am Page: 361/478

Example 6.2.1

Find ~EE, ~BB, and an alternate expression for r � ~AA ¼ 0 using the vector potential given by

~AA ¼
~AA0

!
ei ~kk�~rr�!t
� �

where ~kk ¼ k~zz:

~EE ¼ �
@ ~AA

@t
¼ i ~AA0ei kz�!tð Þ ð6:2:6Þ

The magnetic field can be written as

~BB ¼ r � ~AA ¼
i~kk� ~AA0

!
ei ~kk�~rr�!t
� �

¼ i
k

!
~zz� ~AA0ei ~kk�~rr�!t

� �
¼ i

~zz� ~AA0

c
ei ~kk�~rr�!t
� �

Finally, an alternate form for the gauge condition follows by substituting the vector
potential into r � ~AA ¼ 0

0 ¼ r � ~AA ¼
~AA0

!
r � ei ~kk�~rr�!t

� �
¼

i~kk � ~AA

!

to give

~kk � ~AA ¼ 0 ð6:2:7Þ

This last equation shows why people sometimes interchangeably use the terms

‘‘Coulomb gauge’’ and ‘‘transverse gauge.’’ The direction of the vector ~AA must be
perpendicular to the propagation direction of the wave according to Equation (6.2.7). The

direction of the vector ~AA must be parallel to the electric field according to Equation (6.2.6).

6.2.3 Gauge Transformations

A gauge transformation changes the mathematical form of the vector and scalar potential
but leaves the form of the electric and magnetic fields unaltered. Maxwell’s equation
must therefore be invariant with respect to gauge transformations. We can proceed using
two methods. The first method uses 4-vector notation usually found with discussions of
special relativity. The method simultaneously treats all components of the 4-vector
potential. In the present topic, we discuss a classical second method that separates the
components of the 4-vector potential into an ordinary 3-vector and a fourth potential
term.

The vector potential can be written as

A� ¼ A0, ~AA
� �

¼ �, ~AA
� �

where � is the electrostatic potential. The gauge transformation simultaneously changes
all four terms. We can change the 4-vector potential by a 4-vector gradient of a scalar
function without affecting the fields

A�
new ¼ A�

old þ @
�� ¼ �old, ~AAold

� �
þ

@

@t
�, � r�

� �
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where @� ¼ ð@=@tÞ,rð Þ and @� ¼ ð@=@tÞ, � rð Þ: This equation can be written in the usual
notation as

�new ¼ �old þ
@

@t
� ~AAnew ¼ ~AAold � r� ð6:2:8Þ

where the function � ¼ � ~rr, t
� �

is arbitrary.
We can see that the particular choice of gauge does not affect the expressions for the

magnetic and electric fields. Calculating ‘‘new’’ fields from ‘‘new’’ potentials and then
substituting the gauge transformation provides

~EEnew ¼ �
@

@t
~AAnew
� r�new ¼ �

@

@t
~AAold
� r�

� �
� r �old þ

@�

@t

� �
¼ �

@ ~AAold

@t
� r�old ¼ ~EEold

~BBnew ¼ r � ~AAnew
¼ r � ~AAold

� r�
� �

¼ r � ~AAold
¼ ~BBold

We have used the fact that derivatives can be interchanged and that the curl of a gradient
produces zero. These last two equations make it unnecessary to show that the fields
derived from Equations (6.2.8) satisfy Maxwell’s equations as we did in Section 6.2.1. We
can equally well show the same results using the 4-vector notation. The field tensor
F�� ¼ @�A� � @�A� provides the electric and magnetic fields. Substituting the gauge
transformation A�

new ¼ A�
old þ @

�� produces

F��new ¼ @
�A�

new � @
�A�

new ¼ @
� A�

old þ @
��

� �
� @� A�

old þ @
��

� �

¼ F��old þ @
�@��� @�@�� ¼ F��old

6.2.4 Coulomb Gauge

We start by showing the origin and significance of the Coulomb gauge. Recall that the
vector potential must satisfy the Coulomb condition r � ~AA ¼ 0 if we wish to operate in
the Coulomb gauge. This means, starting with potentials ð�, ~AAÞ, we must be able to find a
scalar gauge function � to make the Coulomb condition true for the gauge-transformed
vector potential r � ~AAnew ¼ 0 even though it might not be true for the original vector
potential. Taking the divergence of the second of Equations (6.2.8), we find

0 ¼ r � ~AAnew ¼ r � ~AAold � r
2�

Therefore, the Coulomb condition holds by suitable choice of the gauge function �:
We see that gauge transformations exist because of the arbitrariness in the definition of

the potentials. For example, everyone is familiar with the fact that the zero of the electric
potential V can be shifted without affecting the fields or the operation of electrical
devices. We now start with ~AAold and demonstrate a scalar gauge function � that makes
the Coulomb condition true for the gauge-transformed vector potential r � ~AAnew ¼ 0:
The new and old potentials must be related by Equations (6.2.8)

�new ¼ �old þ
@

@t
� ~AAnew ¼ ~AAold � r� ð6:2:9Þ

362 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:20am Page: 363/478

Starting with Gauss’ law r � ~EE ¼ �="0 and substituting ~EE ¼ �@t
~AAoldð~rr, tÞ � r�old from

Equation (6.2.1) we find

r � �
@ ~AAoldð~rr, tÞ

@t
� r�old

" #

¼
�

"0
ð6:2:10Þ

Substitute the new vector potential to find

r � �
@

@t
~AAnew þ r�

� �
� r�old

	 

¼
�

"0
ð6:2:11aÞ

From which we find

@

@t
r � ~AAnew þ r � r�
� �

þ r � r�old ¼ �
�

"0
ð6:2:11bÞ

We require the first term to be zero r � ~AAnew ¼ 0 and find

r2 �old þ _��
� �

¼ �
�

"0
ð6:2:12Þ

Therefore, the Coulomb condition r � ~AAnew ¼ 0 requires

�old þ _�� ¼ �ð~xx, tÞ ¼
1

4�"0

Z
�ð~xx0, tÞ

~xx� ~xx0
�� ��d

3x0 ð6:2:13Þ

as given in (3) of Section 6.2.1. This last equation tells us to choose a scalar function �
that makes up for the difference _�� ¼ �ð~xx, tÞ ��old: In other words, the Coulomb condi-
tion r � ~AAnew ¼ 0 holds for the new vector potential ~AAnew so long as we change the old
scalar potential into the solution to Poisson’s equation �"0r

2� ¼ � from Gauss’ law
"0r � ~EE ¼ �: We make �new the electrostatic potential (voltage). Equations (6.2.13) and
(6.2.9) verify this.

�new ¼ �old þ
@

@t
� ¼ �ð~xx, tÞ ¼

1

4�"0

Z
�ð~xx0, tÞ

~xx� ~xx0
�� �� d3x0 ð6:2:14Þ

As a second result for the Coulomb potential, previous topics in this section show that the
direction of the vector potential must be perpendicular to the wave vector ~kk for plane
waves.

r � ~AA ¼ 0 ! ~kk � ~AA ¼ 0 ð6:2:15Þ

We use the Coulomb gauge for quantizing the electromagnetic field. We can rotate the
3-D coordinate system so that the z-axis is along the k-vector direction. The 4-vector
potential can now be written as

�, ~AA
� �

¼ �,Ax,Ay, 0
� �

ð6:2:16Þ

where Az¼ 0 in view of condition (6.2.15). Two directions perpendicular to the wave
vector provide two polarization modes. The two components of the vector potential Ax,
Ay are independent dynamical variables for the traveling wave and they can be
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quantized. As mentioned previously, the scalar potential is the instantaneous Coulomb
potential. Therefore, the 0th component of the 4-vector potential corresponds to the
‘‘instantaneously’’ propagating longitudinal component of the vector potential.

6.2.5 Lorentz Gauge

The Lorentz gauge uses potentials that satisfy the Lorentz condition

0 ¼ @�A� ¼
@A0

@t
þ r � ~AA ¼

@�

@t
þ r � ~AA ð6:2:17Þ

where we use the ‘‘repeated index’’ convention which means to sum over indices that
occur twice in a product. Specifically, the Lorentz condition is

@�

@t
þ r � ~AA ¼ 0

We can find potentials

�new ¼ �old þ
@

@t
� ~AAnew ¼ ~AAold � r�

to satisfy the Lorentz condition

@�new

@t
þ r � ~AAnew ¼ 0

substituting to find

r2�old �
@2�old

@t2
¼ r � ~AAold þ

@�old

@t

In particular, the Lorentz condition is

r2�old �
@2�old

@t2
¼ 0

This can be seen to hold for � ¼ ei~kk�~rr�i!t: Therefore potentials satisfying the Lorentz gauge
conditions exist. We do not use the Lorentz gauge for quantizing the EM field since
not all components of A� are independent according to Equation (6.2.17).

6.3 The Plane Wave Expansion of the Vector Potential and the

Fields

The quantum theory of the electromagnetic field starts by Fourier expanding the vector
potential and then substituting operators for the amplitude terms. The quantum
theory version of the vector potential (i.e., quantized vector potential) leads to that for
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the electric and magnetic fields since they can be derived from a vector potential
according to

~EE ¼ �
@ ~AAð~rr, tÞ

@t
and ~BB ¼ r � ~AAð~rr, tÞ ð6:3:1Þ

in a source-free region of space with a zero scalar potential. We only need to discuss one
vector field, namely ~AA, propagating through space as opposed to both ~EE and ~BB: The
direction of the vector potential ~AA parallels the direction of the electric field ~EE: Therefore
we only need to solve the wave equation (Equation (6.2.4)) in the Coulomb gauge

r2 ~AA�
1

c2

@2 ~AA

@t2
¼ 0 ð6:3:2Þ

to find the propagating electric and magnetic fields in a source-free region of space.
For traveling waves, periodic boundary conditions are most convenient. The boundary
value problem (wave equation and boundary conditions) produces a basis set of the
form B ¼ x j nh i ¼ eiknx=

ffiffiffi
L
p

n ¼ 0, � 1, � 2 . . .
� �

: The general solution must be a
(time-dependent) sum over the basis set according to

Aj i ¼
X

n

anðtÞ nj i ð6:3:3Þ

A moments thought shows that the sum in Equation (6.3.3) must be the Fourier series
when using the basis set B. Unlike the quantum theory with the single particle
wavefunctions, the vector potential Aj i does not need to be normalized to one. We will
see the vector potential and EM fields involve two Hilbert spaces; one for the wave
solution of the wave equation and another for the amplitude Hilbert space once operators
replace the classical amplitudes.

Once having determined the solution in Equation (6.3.3), substituting operators for the
Fourier coefficients ‘‘a’’ quantizes the vector potential. The quantization procedure uses
the Coulomb gauge where the vector potential must satisfy r � ~AA ¼ 0 so that the vector
potential ~AA for a traveling wave must be perpendicular to the wave-vector ~kk: Given the
relation between the fields and the vector potential, we can also find the expression for

electromagnetic energy stored in free space in terms of the electric and magnetic fields.
Consequently, we can then write the quantum mechanical Hamiltonian for the
electromagnetic field.

6.3.1 Boundary Conditions

We first review periodic boundary conditions and then the fixed end-point boundary
conditions. Periodic boundary conditions require the wave to repeat itself over a distance

specific magnitude or phase at any particular point. This type of boundary condition
most appropriately applies to traveling waves. The periodic boundary conditions require
the Fourier expansion to be composed of periodic waves having wavelengths related to L
by l ¼ L=n where n represents an integer.

The Fourier series expansion of a function consists of the sum over sines and cosines.
These functions must repeat themselves over some length scale L. The linear algebra
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the quantized electric and magnetic fields. Chapter 3 provides an expression for the

L (for a 1-D propagating wave—see Figure 6.3.1). It does not require the wave to have a
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shows that the basis functions for a 1-D system have the form of eikx=
ffiffiffi
L
p

: The length ‘‘L’’
represents the longest allowed wavelength and it’s also the length of the interval of x-
values x 2 x0 �

L
2 , x0 þ

L
2

� �
: If we allow ‘‘L’’ to approach infinity, the 1-D basis set becomes

uncountably infinite and the basis functions have the form of eikx=
ffiffiffiffiffiffi
2�
p

; the Fourier series
becomes the Fourier transform. Periodic boundary conditions produce periodic basis
functions that span a Hilbert space of periodic wave functions  ðxþ LÞ ¼  ðxÞ as shown
in Figure 6.3.1. Notice that the wavefunctions do not need to be zero at the boundaries.

For the basis set eiknx=
ffiffiffi
L
p� �

, the periodic boundary condition requires the wave
vectors ~k to take on specific values. For the one-dimensional case, the allowed wave-
lengths must be

ln ¼
L

n
n ¼ 1, 2, 3 . . .

and therefore the allowed wave vectors must be

kn ¼
2�

ln
¼

2�n

L
n ¼ �1, � 2, � 3 . . . ð6:3:4Þ

For the 3-D case, a function of three variables ~rr ¼ x~xxþ y~yyþ z~zz or (x,y,z) can be Fourier
expanded using the complex exponential functions (assumed to be periodic with a unit
cell of volume V)

�~kkð~rrÞ ¼
ei~kk�~rr

ffiffiffiffi
V
p

( )

ð6:3:5Þ

as a basis set where the volume V can be related to L by V¼ L3. Each component of the
wave vector ~kk must satisfy an equation similar to Equations (6.3.4).

~kk ¼ ~xx
2�m

L

� �
þ ~yy

2�n

L

� �
þ ~zz

2�p

L

� �
m, n, p ¼ �1, � 2, � 3 . . . ð6:3:6Þ

Notice that we allow negative wave vectors (for waves propagating along negative
directions). For light, the basic modes (i.e., the vectors in the basis set) are described by
the allowed wavelengths (i.e., the allowed wave vectors or frequencies) and the polariza-
tion. For the most part, we ignore the polarization except possibly in final formulas.

Now consider the fixed-endpoint boundary conditions. This type of boundary condi-
tion requires the magnitude of the wave to have a specific magnitude at two separated

typical fixed-endpoint type of boundary conditions; the function must be zero at the
endpoints. This boundary condition determines the amplitude at two fixed points as well

FIGURE 6.3.1

Periodic boundary conditions.
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points—for a 1-D problem, think of a string tied down at the ends. Figure 6.3.2 shows the
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as the allowed wavelengths l ¼ 2L=n appearing in the Fourier expansion. The wave
vectors obtained from the fixed-endpoint boundary conditions

kn ¼ n�=L n ¼ 1, 2, 3 . . .

differ by a factor of two from those allowed by the periodic boundary conditions.

6.3.2 The Plane Wave Expansion

The basis set for periodic boundary conditions (6.3.5) and the solution to the vector-
potential wave equation (6.3.3) can be combined into the solution

~AA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AAk tð Þ

ei~kk�~rr

ffiffiffiffi
V
p ð6:3:7Þ

for free space (we replace the free space permittivity "0 with " for dielectric medium). The
additional parameters

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh= 2"0!kð Þ

p
provide the MKS units. Assume that the angular

frequency of the electromagnetic wave must always be positive !k ¼ !�k > 0:
We require real fields so that their quantum counterparts will be Hermitian and there-

fore observable. Using Equation (6.3.7) and the condition for real fields ~AA� ¼ ~AA, we obtain

X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AA�k tð Þ

e�i~kk�~rr

ffiffiffiffi
V
p ¼

X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AAk tð Þ

ei~kk�~rr

ffiffiffiffi
V
p

FIGURE 6.3.2

Fixed-endpoint boundary conditions.

FIGURE 6.3.3

The vector potential is polarized in the x direction.
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Replacing ~kk!�~kk on the left-hand side and using !k ¼ !�k produces

X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AA��k tð Þ

eþi~kk�~rr

ffiffiffiffi
V
p ¼

X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AAk tð Þ

ei~kk�~rr

ffiffiffiffi
V
p

Comparing both sides (i.e., using the orthonormality of the basis functions), we find that

~AA�k tð Þ ¼ ~AA�k tð Þ ð6:3:8Þ

We next find a differential equation for the amplitudes ~AAkðtÞ: The previous section shows
that in the Coulomb gauge, the vector potential must satisfy the wave equation

r2 ~AA�
1

c2

@2 ~AA

@t2
¼ 0 ð6:3:9Þ

Substituting Equations (6.3.7) into Equation (6.3.9) requires us to substitute the results

r2 ~AA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~AAk tð Þ �k2

� � ei~kk�~rr

ffiffiffiffi
V
p

and

@2

@t2
~AA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
@2 ~AAk tð Þ

@t2

ei~kk�~rr

ffiffiffiffi
V
p

So therefore, Equation (6.3.9) becomes

�k2 ~AA~kk
�

1

c2

@2 ~AA~kk

@t2
¼ 0 or

@2 ~AA~kk
tð Þ

@t2
þ !2

	
~AA~kk

tð Þ ¼ 0 ð6:3:10Þ

which uses the relation c2 ¼ !2=k2:
The amplitudes can now be determined. For simplicity, let’s first treat the vector

potential as a scalar function. The Fourier transformed wave equation (Equation (6.3.10))
has two solutions e�i!kt and eþi!kt: The general solution must be

Ak ¼ bke�i!kt þ akeþi!kt !k > 0

Using the ‘‘reality’’ of the vector potential, or equivalently A�k tð Þ ¼ A�k tð Þ, we find

b�keþi!kt þ a�ke�i!kt ¼ b�ke�i!kt þ a�keþi!kt so that b�k ¼ a�k ! ak ¼ b��k

Therefore, the general solution to Equation (6.3.10) must be

Ak ¼ bke�i!kt þ b��keþi!kt !k > 0 ð6:3:11Þ
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electric and magnetic fields, which have polarization vectors to describe their ‘‘direction,’’
the vector potential also has a polarization. Section 6.2 shows that the polarization of the
electric field is parallel to the polarization of the vector potential (i.e. ~AA � ~EE). The
Coulomb gauge supports two independent polarization modes for each wave vector ~kk;
the polarization vectors must be transverse to the direction of motion (i.e., more
specifically, perpendicular to the wave vector). We denote these as ~eeks where s¼ 1,2
represents the ~xx and ~yy directions for a wave propagating along the ~zz direction. Now we
can summarize by stating the total number of EM modes. Each different ~kk specifies a
mode by virtue of its direction and magnitude (wavelength). The unit vectors ~eeks describe
two modes. For now, we combine the k, s subscripts into the k subscript for simplicity.
Writing Equation (6.3.11) in vector notation

~AAk ¼
~bbke�i!kt þ ~bb��keþi!kt !k > 0

or, setting ~bbk ¼ ~eekbk we obtain the solution of Equation (6.3.6).

~AAk ¼ ~eekbke�i!kt þ ~ee��kb��keþi!kt !k > 0

The vector potential can be written as

~AA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
~eekbke�i!kt þ ~ee��kb��keþi!kt
� � ei~kk�~rr

ffiffiffiffi
V
p

This last equation can be rewritten by using the following observations:

1. The second summation is over all allowed wave vectors (i.e., all positive and

negative components) so that, for the second term, we can make the replace-

ments �~kk! ~kk and
P
�~kk
!
P

~kk
.

2. For this chapter, we assume a real polarization vector ~ee�k ¼ ~eek.

3. The angular frequency must be positive !
�~kk
¼ !~kk.

The vector potential becomes

~AA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!kV

r
~eek bke�i!kt
� �

ei~kk�~rr þ b�keþi!kt
� �

e�i~kk�~rr
h i

ð6:3:12aÞ

or, including the summation over the polarization,

~AA ~rr, t
� �

¼
X

~kk, s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!kV

r
~eeks bkse

�i!kt
� �

ei~kk�~rr þ b�kse
þi!kt

� �
e�i~kk�~rr

h i
ð6:3:12bÞ

We can simplify the equations by defining the functions

bksðtÞ ¼ bkse
�i!kt and b�ksðtÞ ¼ b�kse

þi!kt
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The vector nature of the vector potential cannot be ignored (Figure 6.3.3). Similar to
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where

bks ¼ bksð0Þ and b�ks ¼ b�ksð0Þ

Section 6.4 shows that the coefficients bks and b�ks become the annihilation and creation
operators in the quantum theory of EM fields. The annihilation operator removes a
photon from a mode characterized by the wave vector ~kk and the polarization ~eeks:

6.3.3 The Fields

The electric and magnetic fields obtain from the relations between the fields and the
potentials in a source-free region

~EE ¼ �
@ ~AAð~rr, tÞ

@t
and ~BB ¼ r � ~AAð~rr, tÞ

We find

~EE ¼ �
@

@t
~AA ~rr, t
� �

¼
þi
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh!k

2

r

bk ei~kk�~rr�i!kt � b�k e�i~kk�~rrþi!kt
h i

~eek ð6:3:13aÞ

Similarly, we can calculate the magnetic field (see the chapter review exercises)

~BB ¼ r � ~AA ~rr, t
� �

¼
þi
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh

2!k

r
~kk� ~eek

� �
bk ei~kk�~rr�i!kt � b�k e�i~kk�~rrþi!kt
h i

ð6:3:13bÞ

6.3.4 Spatial-Temporal Modes

The previous topic develops (Equations (6.3.13)) the vector potential solution to the wave
equation

r2 ~AA~kk
�

1

c2

@2 ~AA~kk

@t2
¼ 0

using spatial-temporal modes consisting of traveling plane waves

Uðx, tÞ ¼ ei~kk�~rr�i!kt

The wave equation can have other solutions besides traveling waves; the type of
solution depends on the boundary conditions. For example, a perfect no-loss Fabry–Perot
cavity has standing sine wave solutions; the boundary conditions, in this case, require the
fields to be zero at the boundaries. It is important to be able to identify creation and
annihilation operators and quantize arbitrary EM fields. This topic shows how to write
the vector potential in terms of other spatial-temporal modes U(x, t). We will find the
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following forms for the vector potential

A x, tð Þ ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bk Ukðx, tÞ þ b�k U�k ðx, tÞ
 �

A x, tð Þ ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bk e�i!kt þ b�k eþi!kt
 �

�kðxÞ

where �k(x) denotes a basis function and

bks ¼ bksð0Þ and b�ks ¼ b�ksð0Þ

The next section shows that the vector potential is quantized by substituting creation b̂bþ

and annihilation b̂b operators for the amplitudes b� and b, respectively. The creation
operator b̂bþ creates a photon in the mode Uk while the annihilation operator removes
a photon from the mode Uk.

The general solution to the wave equation can be found by separating variables and
applying boundary conditions. To solve the wave equation

@2A x, tð Þ

@x2
�

1

c2

@2A x, tð Þ

@t2
¼ 0 ð6:3:14Þ

(where we ignore the vector nature of ~AA for simplicity), we separate variables according to

Ak x, tð Þ ¼ �kðxÞTkðtÞ ð6:3:15Þ

Separating variables for three dimensions is similar. Substituting Equation (6.3.15) into
the wave equation (6.3.14), separating variables, and taking �lk as the separation
constant (where lk > 0), we find

1

�2
k

@2�kðxÞ

@x2
¼ �lk ¼

1

c2

1

T2
k

@2TkðtÞ

@t2

The Sturm–Liouville problem for �k includes specific boundary conditions and provides
the set of basis functions �k xð Þ

� �
: The solution of the Sturm–Liouville problem includes

the eigenvalues lk ¼ k2: The solution of the separated time equation

@2TkðtÞ

@t2
¼ �lkc2T2

k

is therefore found to be

Tk tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bke�i!kt þ b�keþi!kt
 �

where !k ¼ ck, bks ¼ bksð0Þ and b�ks ¼ b�ksð0Þ: This last equation includes the normalization
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh=2"0!k

p
: Therefore the general solution of the wave equation must be

A x, tð Þ ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bke�i!kt þ b�k eþi!kt
 �

�k xð Þ
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where c ¼ !k=k: For the vector potential to be real (A¼A*), the eigenvectors �k must be
real. Therefore, the general spatial-temporal mode is

Ukðx, tÞ ¼ �k xð Þe�i!kt

so that

A x, tð Þ ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bkUkðx, tÞ þ b�kU�k ðx, tÞ
 �

It is perhaps more convenient to write this as

A x, tð Þ ¼
X

k

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bkð0Þ e

�i!kt þ b�k ð0Þ e
þi!kt

 �
�kðxÞ

We will see in the next topic that bk and b�k become the annihilation b̂bk and the creation b̂bþk
operators, respectively, in the quantum theory of EM fields. The annihilation operator
removes one photon from the mode �k while the creation operator adds one photon.
Because photons are bosons, any number of them can occupy a single state; electrons
and holes are Fermions and only one can occupy a given state at a given time.

Including the polarization vector with the basis set, the vector potential

~AA x, tð Þ ¼
X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bksð0Þ e

�i!kt þ b�ksð0Þ e
þi!kt

 �
~��ksðxÞ

provides the free-space electric and magnetic fields

~EEðx, tÞ ¼ �
@

@t
~AA x, tð Þ ¼ i

X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
!k bksð0Þ e

�i!kt � b�ksð0Þ e
þi!kt

 �
~��ksðxÞ

~BBðx, tÞ ¼ r � ~AA x, tð Þ ¼
X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
bksð0Þ e

�i!kt þ b�ksð0Þ e
þi!kt

 �
r � ~��ksðxÞ

6.4 The Quantum Fields

We want a full quantum theory for the electromagnetic (EM) fields. The theory must
incorporate both the particle and wave nature. Both of these can be included by
quantizing the EM vector potential. The traveling wave part of the Fourier-expanded
vector potential describes the wave properties of light. By converting the Fourier
amplitudes (which have magnitude and phase) into operators, the particle aspects of light
can be recovered. The operator form of the electric and magnetic fields can be substituted
into the classical EM Hamiltonian to find the quantum one. The Hamiltonian for light will
be similar to that for the electron harmonic oscillator. In fact, the EM quantum
Hamiltonian has wavefunction solutions that describe the probability of finding an EM
wave with a particular classical amplitude.
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We should compare and contrast the classical and quantum pictures of the vector
potential. The two pictures yield similar results for large numbers of photons but not for
small numbers. The amplitudes in the classical vector potential represent numbers
that can be exactly known. We might need measuring equipment to determine
these amplitudes in the laboratory and we might need to do some statistical analysis
to come close to the true or actual amplitude, but we don’t need any additional
mathematical construction to actually define the meaning of the amplitudes. A series of
measurements of the amplitudes might lead to some variation in the observed values and
so we must take averages over the series. This variation can be described by a probability
distribution and leads to the notion of the ensemble and the probability P used in
the density operator. In the classical theory, the parameters describing the electro-
magnetic field can be exactly known except possibly for experimental error in the
measurements. The actual expression for the electric field depends on the results of
the measurements.

For the quantum picture, the amplitudes must be changed into operators (with both
magnitude and phase). The vector potential (and hence the electric and magnetic fields)
also become operators. The creation and annihilation operators for a mode of the electric
or magnetic field do not commute. Therefore, regardless of the experimental accuracy, the
electric and magnetic field can never achieve a ‘‘true value.’’ Every measurement of the
field necessarily produces different results. To find average values of the fields, they must
operate on a Hilbert space, which has vectors describing the possible states of the
amplitude. We can call this the ‘‘amplitude Hilbert space.’’ Now however, two types of
probability enter into specifying the ‘‘classical amplitudes.’’ First, because the amplitude
operators do not all commute, there will be an uncertainty in measuring the fields.
Second, the measurement apparatus can also introduce error into the specification of the
fields. Therefore, we must describe the amplitude states representing the system by both
classical and quantum probability distributions such as appear in the density operator.
Finally, unlike the classical expression for the field, the operator form of the field does not
depend on the results of any measurements. The state vectors in the Hilbert space reflect
any physical attribute of the field.

The quantum theory of EM fields does not circumvent classical electromagnetics, but
rather augments it. The quantum theory must still deal with modes and the
corresponding electromagnetic wave functions typically found in the classical theory.
However, the simple classical amplitudes become operators with commutation rules.
These amplitude operators become more classical-like once they operate on a Hilbert
space. In particular, the ‘‘classical value’’ can be obtained by finding the expectation
value of the amplitude operator for a given state in Hilbert space. The particular state
in Hilbert space defines the particular light beam of interest by defining the properties of
the amplitude.

This section shows how the vector potential can be converted into an operator. The
quantized fields operate on a vector in Hilbert space (usually a Fock state or a sum of
Fock states). Once we know the quantized vector potential, we can find the quantized
electric and magnetic fields using the relations from Section 6.2, namely ~EE ¼ �@ ~AA=@t and
~BB ¼ r � ~AA: The quantum Hamiltonian can be obtained by replacing the classical electric

and magnetic fields with their operator counterparts. The electric and magnetic fields can
be written in terms of either creation–annihilation or quadrature operators. We will see
special uses for each type. The quadrature operators bring the quantum picture of the
electric field the closest to the usual classical picture of the field as a sinusoidal wave.
We will see that we cannot simultaneously and precisely know the amplitude and the
phase of the field.
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6.4.1 The Quantized Vector Potential

We start with the classical form of the vector potential

~AA ~rr, t
� �

¼
1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh

2!k

r
~eek bke�i!kt
� �

ei~kk�~rr þ b�keþi!kt
� �

e�i~kk�~rr
h i

ð6:4:1Þ

with the classical Fourier components (from Section 6.3.2)

bk tð Þ ¼ bke�i!kt ¼ bk 0ð Þ e�i!kt b�k tð Þ ¼ b�keþi!kt ¼ b�k 0ð Þ eþi!kt ð6:4:2Þ

The coefficient ‘‘b’’ provides the amplitude of a given optical mode ‘‘k.’’ The derivation
assumes a source-free region of space (i.e., no interaction potential).

Replacing the amplitudes with operators according to the prescription

bk ! b̂bk and b�k ! b̂bþk

produces the quantum version of the vector potential. We must later specify the Hilbert
space from which the operators can assume a value. We can write the equations of motion
for the operators using Equations (6.4.2).

b̂bk tð Þ ¼ b̂bk e�i!kt ¼ b̂bk 0ð Þe�i!kt b̂bþk tð Þ ¼ b̂bþk eþi!kt ¼ b̂bþk 0ð Þ eþi!kt ð6:4:3Þ

In the quantum theory, these equations hold in the interaction representation (for any
situation) or in the Heisenberg representation for a situation without sources. Example
6.5.1 develops the equations of motion in the Heisenberg representation for the case
of free-fields (without matter to produce gain or absorption). These will have the same
form as the equations of motion deduced using an interaction picture regardless of
whether or not the wave interacts with matter. We can replace the classical amplitudes
with creation and annihilation operators to produce the quantum version of the vector
potential.

ÂA ~rr, t
� �

¼
1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh

2!k

r
~eek b̂b~kk tð Þei~kk�~rr þ b̂bþ

~kk
tð Þe�i~kk�~rr

h i
ð6:4:4Þ

The operator version of the vector potential contains all the possible creation and
annihilation operators for the various modes. In a sense, the quantum EM field (and as
we shall see later, the Hamiltonian) must contain all of the possibilities that can physically
occur. The amplitude states in the amplitude Hilbert space contain the specific
information on the system.

The creation and annihilation operators (the same ones as will be given in Section 6.5.4)
must satisfy the equal-time commutation relations

b̂b
 tð Þ, b� tð Þ
h i

¼ 0 ¼ b̂bþ
 tð Þ, b̂bþ� tð Þ
h i

for all 
, � b̂b
 tð Þ, b̂bþ� tð Þ
h i

¼ �
� ð6:4:5Þ
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We therefore can also write the commutation relation at the specific time t¼ 0 as

b̂b
, b�
h i

¼ 0 ¼ b̂bþ
 , b̂b
þ
�

h i
for all 
, � b̂b
, b̂bþ�

h i
¼ �
� ð6:4:6Þ

Some comments should be made regarding the commutation relations in Equations
(6.4.5). First, both operators b̂b
 tð Þ, b̂bþ� tð Þ must be evaluated at the same time t (i.e., equal
times) thereby suggesting the name ‘‘equal-time commutator.’’ We consider the modes

 6¼� to be independent; we can create a photon in state 
 independently of annihilating
one in the state �. However for the mode 
¼ �, we should anticipate a type of Heisenberg
uncertainty relation since the corresponding operators do not commute as shown in the
last commutation relation. However, the uncertainty relation requires Hermitian
operators and not the nonHermitian creation–annihilation operators; we will later use
the quadrature operators for this purpose. Second, we assume either periodic or fixed-
endpoint boundary conditions, which lead to both the discrete values for the wave vector
~kk and to the Kronecker delta function for the orthonormality relation.

In the Heisenberg representation, the time dependence of the creation and annihilation
operators depends on the Hamiltonian. Example 6.5.1 in the next section produces the
same results as given by Equations (6.4.3). The creation and annihilation operators will
have a different time-dependence if we include the interaction between the fields and
the matter. This occurs since matter can produce or absorb electromagnetic fields,
which must necessarily change the operators describing the EM field. The Heisenberg
representation makes the amplitudes depend on time in a manner very reminiscent of
classical EM theory. For example, the amplitude of a wave decreases as it travels through
an absorber. The states (yet to be discussed) in this case must be independent of time.

In contrast, the interaction representation always assigns the trivial time dependence to
the operators; however, the states move due to the interaction potentials. The creation and
annihilation operators always have the trivial time dependence given by Equations (6.4.6)
regardless of whether or not the Hamiltonian has an interaction term. The interaction
representation of the fields must always be the same as that in Heisenberg representation
when an interaction potential does not appear. Therefore, when somebody writes
Equation (6.4.1) without specifying the representation, it can be taken as in either (i) the
interaction representation or (ii) the Heisenberg representation for the free-field case (no
interaction term in the Hamiltonian).

The Schrodinger representation of the creation and annihilation operators must be
independent of time. Setting t¼ 0 in Equations (6.4.3) provides the Schrodinger
representation of the creation and annihilation operators. Equations (6.4.6) then give
the commutation relations for these operators. All of the time dependence must reside in
the Hilbert space vectors.

6.4.2 Quantizing the Electric and Magnetic Fields

Changing the Fourier amplitudes into operators quantizes the electromagnetic fields. As
discussed in later sections, we can only specify values for the amplitudes (i.e., the fields)
by providing a Hilbert space upon which the operators can act. The previous topic shows
the quantum version of the vector potential for an electromagnetic wave. The quantized
electric field operator (in the Coulomb gauge) is then found by differentiating the vector
potential with respect to time.

Recall that the vector potential can be written as a Fourier Expansion

ÂA ~rr, t
� �

¼
X

~kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!kV

r
b̂b~kk 0ð Þ ei~kk�~rr�i!kt þ b̂bþ

~kk
0ð Þ e�i~kk�~rrþi!kt

h i
~eek
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Differentiating this vector potential with respect to time yields

ÊE ¼ �
@

@t
ÂA ~rr, t
� �

¼
X

~kk

i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂bk 0ð Þ ei~kk�~rr�i!kt � b̂bþk 0ð Þ e�i~kk�~rrþi!kt
h i

~eek ð6:4:7Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

: Similar to Equation (4.2.13), we can calculate the quantized magnetic field
operator

B̂B ¼ r � ÂA ~rr, t
� �

¼
X

~kk

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2!k"0V

r
~kk� ~eek

� �
b̂bk 0ð Þ ei~kk�~rr�i!kt � b̂bþk 0ð Þ e�i~kk�~rrþi!kt
h i

ð6:4:8Þ

The polarization vectors ~eek, s give the electromagnetic field operators their vector
character. Keep in mind that Equations (6.4.7) and (6.4.8) represent the quantized fields
in free-space. To account for an increase in the electromagnetic wave as might occur when
atoms produce stimulated emission, either the amplitude Hilbert space must contain
time dependent vectors (Schrodinger Picture) or the creation–annihilation operators in
the fields must be time dependent above and beyond the simple exponential time
dependence already present. As written, Equations (6.4.7) and (6.4.8) do not contain a
factor that can account for this increase. In this text, the time independent creation and
annihilation operators will be denoted by ‘‘b̂bþ’’ and ‘‘b̂b’’ respectively. For Equations (6.4.7)
and (6.4.8), b̂bþ ¼ b̂bþð0Þ and b̂b ¼ b̂bð0Þ:

As mentioned in the introductory material, we know that electromagnetic energy
consists of fundamental quanta—photons. This necessarily requires the EM Hamiltonian
to be quantized. However, because we imagine the EM fields carry the energy across
space, the existence of photons also requires the EM fields to be quantized. As another
point, the reader certainly must be aware of the typical conceptual problems
with picturing light as both particle and wave. The EM quantization procedure combines
both pictures into one mathematical expression as in Equation (6.4.7). The traveling wave
portion eikx�i!t represents the wave nature of light whereas the creation and annihilation
operators represent the particle nature of light. A thorough treatment of field
quantization shows that all particles (not just photons) can be characterized by similar
equations with both the wave and particle quantities (refer to the companion volume on
second quantization for example). By the way, similar to Equations (6.4.7) and (6.4.8), the
traveling wave portion can be replaced by other wave functions such as the sine and
cosine for the Fabry–Perot cavity. Once again, we would see that the electric field
operators contain the annihilation and creation operators for all of the possible modes of
the system. The Hilbert space vectors (i.e., Fock states) describe the actual physical
system (i.e., how many photons and what modes they occupy).

6.4.3 Other Basis Sets

Section 6.3 shows that the vector potential can be written in other basis sets besides the
traveling waves. If the set �nðxÞ

� �
forms a basis set that satisfies the boundary conditions

then the vector potential that satisfies the wave equation can be written as

ÂA x, tð Þ ¼
X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
b̂bksð0Þe

�i!kt þ b̂bþksð0Þe
þi!kt

h i
~��ksðxÞ
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where the polarization vector has been grouped with the basis functions and the creation
and annihilation operators replace the expansion coefficients. As a result, the free-space
electric and magnetic fields can be written as

ÊEðx, tÞ ¼ �
@

@t
ÂA x, tð Þ ¼ i

X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
!k b̂bksð0Þe

�i!kt � b̂bþksð0Þe
þi!kt

h i
~��ksðxÞ

B̂Bðx, tÞ ¼ r � ÂA x, tð Þ ¼
X

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!k

r
b̂bksð0Þe

�i!kt þ b̂bþksð0Þe
þi!kt

h i
r � ~��ksðxÞ

Example 6.4.1

Find the quantized electric field for the perfect Fabry–Perot cavity with the left mirror at
z¼ 0 and the right mirror at z¼ L.

Solution: The standing wave modes are

~��nðzÞ ¼ ~xx

ffiffiffi
2

L

r

sinðknzÞ where kn ¼
�n

L
n ¼ 1, 2, 3 . . .

The electric field is therefore given by ÊE ¼ �@tÂA

ÊE ¼ i
X

k

ffiffiffiffiffiffiffiffi
�hh!k

2"0

r
b̂bkð0Þ e

�i!kt � b̂bþk ð0Þ e
þi!kt

h i
~��kðzÞ ¼ i ~xx

X

k

ffiffiffiffiffiffiffiffi
�hh!k

"0L

r
b̂bk e�i!kt � b̂bþk eþi!kt
h i

sinðkzÞ

where the sum is over the allowed values of ‘‘k.’’

6.4.4 EM Fields with Quadrature Operators

Similar to the electron harmonic oscillator, the creation and annihilation operators can
be related to quadrature operators q̂qk and p̂pk according to

b̂bk ¼
!k q̂qkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p þ
i p̂pkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p b̂bþk ¼
!k q̂qkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p �
i p̂pkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p ð6:4:9Þ

q̂qk ¼

ffiffiffiffiffiffiffiffi
�hh

2!k

r
b̂bk þ b̂bþk

� �
p̂pk ¼ �i

ffiffiffiffiffiffiffiffi
�hh!k

2

r

b̂bk � b̂bþk

� �
ð6:4:10Þ

where q̂qk and p̂pk must be Hermitian operators. The subscripts ‘‘k’’ label the modes. We
define the creation–annihilation operators in terms of these quadrature operators q̂qk and
p̂pk similar to the ladder operators for the electron harmonic oscillator. Often the
quadrature operators q̂qk and p̂pk are termed position and momentum operators because of
their similarity to those used in the electron harmonic oscillator. However, these position
and momentum quadrature operators describe neither the spatial position ~rr nor the photon
momentum �hh~kk: Knowing the commutator between the creation and annihilation
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operators b̂bþk , b̂bk allows us to deduce the commutation relations between the quadrature
operators

q̂qk, q̂qK

 �
¼ 0 ¼ p̂pk, p̂pK

 �
and q̂qk, p̂pK

 �
¼ i�hh�k,K ð6:4:11Þ

The fields can be written in terms of the position and momentum quadrature operators
by substituting Equations (6.4.9) and (6.4.10) into Equations (6.4.6) through (6.4.8).

~AA ~rr, t
� �

¼
1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eek q̂qk cos ~kk � ~rr� !kt
� �

�
p̂pk

!k
sin ~kk � ~rr� !kt
� �	 


ð6:4:12aÞ

~EE ~rr, t
� �

¼
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eek !k q̂qk sin ~kk � ~rr� !kt
� �

þ
p̂pk

!k
cos ~kk � ~rr� !kt

� �	 

ð6:4:12bÞ

~BB ~rr, t
� �

¼
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~kk� ~eek q̂qk sin ~kk � ~rr� !kt
� �

þ
p̂pk

!k
cos ~kk � ~rr� !kt

� �	 

ð6:4:12cÞ

Equations (6.4.12) give the meaning to the name quadrature operators since the q and p
multiply sines and cosines, respectively. The reader should also recognize that these
quadrature operators do not describe the polarization of the electromagnetic wave;
however, different polarizations can correspond to different quadrature operators
through the indices on the operators. Similarly, neither operator can be identified
solely with just one of the fields (E or B). At ~rr ¼ 0, notice that at t¼ 0 the electric field is
directly proportional to the momentum operator p̂p

~EE 0, 0ð Þ ¼
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eekp̂pk ð6:4:13aÞ

while at a later time the electric field is directly proportional to the position operator q̂q:

~EE ~rr0, t0
� �

¼
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eek!kq̂qk ð6:4:13bÞ

Similarly, changing the point of observation ~rr also changes the relation between the
electric field and the operators. The magnitude of the field must be related to the sum of
the square of the p’s and q’s.

6.4.5 An Alternate Set of Quadrature Operators

Quantum optics often defines an alternate set of quadrature operators Q̂Q, P̂P in order to
make the electric field in Equation 6.4.12 appear more symmetrical and to provide a
multiplying constant that has units of square root of energy. The normalized quadrature
operators are defined by

Q̂Q~kk
¼ q̂q~kk

ffiffiffiffiffi
!~kk
�hh

r

¼
b̂b~kk þ b̂bþ

~kkffiffiffi
2
p P̂P~kk ¼ p̂p~kk

1
ffiffiffiffiffiffiffiffi
�hh!~kk

p ¼ �i
b̂b~kk � b̂bþ

~kkffiffiffi
2
p ð6:4:14aÞ
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These normalized quadrature operators can easily be shown to obey the following
commutation relations.

Q̂Q
~kk
, Q̂Q

~KK

h i
¼ 0 ¼ P̂P

~kk
, P̂P

~KK

h i
Q̂Q

~kk
, P̂P

~KK

h i
¼ i�~kk ~KK ð6:4:14bÞ

As a result the electric field becomes

~EE ~rr, t
� �

¼ �
X

~kk

~eek

ffiffiffiffiffiffiffiffi
�hh!k

"0V

r
Q̂Q~kk

sin ~kk � ~rr� !kt
� �

þ P̂P~kk cos ~kk � ~rr� !kt
� �

These alternate quadrature components simplify the plots of the Wigner distribution.

6.4.6 Phase Rotation Operator for the Quantized Electric Field

Electric fields have an arbitrary origin of time, which is equivalent to setting the initial
phase � to an arbitrary value. Occasions arise when we would like an operator that
‘‘rotates’’ the electric field operator to an arbitrary phase � such as occurs in

ÊE ¼ i
X

k

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂bkei~kk�~rr�i!kt�i�k � b̂bþk e�i~kk�~rrþi!ktþi�k

h i
~eek

The subscript k on �k indicates that each mode can be independently rotated. Besides
being interesting and important in its own right, the single-mode rotation operator

R̂Rkð�Þ ¼ e�i�k N̂Nk ¼ e�i�k b̂bþ
k

b̂bk

allows us to interchange quadrature components in order to facilitate the discussion
of the Wigner probability function. We can simultaneously rotate all of the modes by
applying the rotation operator

R ¼
Y

k

Rk

For now, we concentrate on rotating a single mode

ÊE ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂b ei~kk�~rr�i! t � b̂bþe�i~kk�~rrþi! t
h i

Here the word ‘‘rotate’’ does not refer to the polarization, instead it describes the
phase delay. As discussed later, the values of the electric field can be plotted on a 2-D
phase–space graph with axes corresponding to the quadrature values p and q. The electric
field rotates in this phase–space plot.

We will now show that

R̂Rð�Þ ¼ e�i� N̂N ¼ e�i� b̂bþb̂b ð6:4:15Þ
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defines a rotation operator. The operator R̂R is obviously unitary with R̂Rþð�Þ ¼ R̂R�1ð�Þ ¼
R̂Rð��Þ for the real phase parameter �. The number operator N̂N ¼ b̂bþb̂b being conjugate to the
phase operator appears in the argument of the exponential. The number operator is
the generator of phase rotations. We will find the rotated field by applying a similarity
transformation

ÊER ¼ R̂RþÊE R̂R

We can either rotate the state with something like R̂Rþj i or rotate the operator using the
similarity transformation but we should not do both! To apply the similarity
transformation, we must know how the rotation affects the creation and annihilation
operators.

First we will show two relations for the rotated annihilation and creation operators.

R̂Rþb̂b R̂R ¼ ei� b̂bþ b̂bb̂b e�i� b̂bþ b̂b ¼ b̂b e�i � and R̂Rþb̂bþ R̂R ¼ b̂bþ ei � ð6:4:16Þ

exÂAB̂Be�xÂA ¼ B̂Bþ
x

1!
½ÂA, B̂B� þ

x2

2!
ÂA, ÂA, B̂B
h ih i

þ � � �

with x ¼ i�, ÂA ¼ b̂bþb̂b and B̂B ¼ b̂b we find

ei�b̂bþb̂bb̂be�i�b̂bþ b̂b ¼ b̂bþ
i�

1!
½b̂bþb̂b, b̂b� þ

i�ð Þ2

2!
b̂bþb̂b, b̂bþb̂b, b̂b

h ih i
þ � � � ¼ b̂b� i � b̂bþ � � � ¼ b̂b e�i�

where we used ½b̂b, b̂bþ� ¼ 1 and ½ÂAB̂B, ĈC� ¼ ÂA½B̂B, ĈC� þ ½ÂA, ĈC�B̂B: The second relation can be
found by taking the adjoint of the first one.

Now we can show that the single-mode rotation operator rotates the phase of the
electric field

ÊER ¼ R̂RþÊER̂R ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
R̂Rþb̂bR̂R
� �

ei~kk�~rr�i!t � R̂Rþb̂bþR̂R
� �

e�i~kk�~rrþi!t
h i

¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂be�i�
� �

ei~kk�~rr�i!t � b̂bþei�
� �

e�i~kk�~rrþi!t
h i

ð6:4:17Þ

¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂bei~kk�~rr�i!t�i� � b̂bþe�i~kk�~rrþi!tþi�
h i

as required. We will see that this rotation makes most sense for coherent states.
Next, we show that the rotation operator can be used to interchange the quadrature

terms in Equation (6.4.12b), which we repeat in single mode form (for simplicity),

ÊE ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p q̂q sin ~kk � r� !t

� �
þ

p̂p

!
cos ~kk � r� !t

� �	 


We need to know how the rotation operator affects the quadrature operators. Equation
(6.4.17) shows that we only need to make the replacement ~kk � ~rr� !t! ~kk � ~rr� !t� �:
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Now if we set � ¼ ð�=2Þ and use the relations cos �� �=2ð Þ ¼ sin �ð Þ and
sin �� �=2ð Þ ¼ cos �ð Þ, we obtain the rotated field

ÊE ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p q̂q cos ~kk � r� !t

� �
þ

p̂p

!
sin ~kk � r� !t
� �	 


Now the q and p operators correspond to the ‘‘x’’ and ‘‘y’’ axis respectively.
Figure 6.4.1 shows the general idea. A measurement of the electric field produces

values for the quadrature operators q̂q, p̂p although subsequent measurements produce
different values since the operators don’t commute. Suppose q and p represent the
possible results of the measurements. Then the electric field might have the particular
value shown in the figure. The phase rotation operator essentially changes the angle that
the field makes with respect to the p axis.

6.4.7 Trouble with Amplitude and Phase Operators

Once given the amplitude space, we want to know the operators that give the amplitude
and phase of the field. This has been an area of research and problems since the start
of quantum electrodynamics. To see the simplest of problems, consider the electric field

ÊE z, tð Þ ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p q̂q sin kz� !tð Þ þ

p̂p

!
cos kz� !tð Þ

	 

ð6:4:18Þ

where

q̂qk ¼

ffiffiffiffiffiffiffiffi
�hh

2!k

r
b̂bk þ b̂bþk

� �
p̂pk ¼ �i

ffiffiffiffiffiffiffiffi
�hh!k

2

r

b̂bk � b̂bþk

� �
ð6:4:19Þ

We might think to define a classical amplitude (for a single mode) by the sum of the
squares of the coefficients of the sine and cosine terms similar to the classical case

dAmplAmpl
2
¼ ÊE
���
���
2
�¼

!2

"0V
q̂q2 þ

p̂p

!

� �2
" #

¼
2�hh2!2

"0V
N̂N þ

1

2

� �
ð6:4:20aÞ

FIGURE 6.4.1

Phase angle.
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where Equations (6.4.19) have been used. However, the 1
2 should not be in the formula

for a classical amplitude. If the readers carry through the calculation leading to the last
term in Equation (6.4.20a), they will realize that the term arises due to the nonzero
commutation relations. We could try using the normal-ordering symbol.

dAmplAmpl2
¼ ÊE
���
���
2
¼
!2

"0V
: q̂q2 þ

p̂p

!

� �2
" #

: ¼
2�hh!

"0V
N̂N ð6:4:20bÞ

The symbol :f: refers to the ‘‘normal’’ order, which here means to interchange the boson
creation and annihilation operators without using the commutation relations (Fermion

creation–annihilation operators must include an extra minus sign for each interchange).

The normal order symbol has the following effect : b̂bb̂bþ : ¼ b̂bþb̂b: If we agree to take
expectation values of Equation (6.4.20b) and only afterwards take the square root, similar
to the procedure for variance and standard deviation, then the equation provides
reasonable results for the Fock and coherent states. However, if we first define
dAmplAmpl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂N2�hh!="0V

q
then the term

ffiffiffiffi
N̂N

p
leads to problems for the coherent states since

it produces
ffiffiffi
n
p� �

rather than
ffiffiffi
�nn
p

:
We might try to write the amplitudes b̂b, b̂bþ as a magnitude and phase. For example,

it would be tempting to write b̂bb̂b 0�¼ ei�̂� and assume the magnitude b̂b 0 and phase �̂� to be
Hermitian operators. However, it can be shown that ei�̂� is not unitary and therefore �̂�
cannot be Hermitian. In order to discuss the phase, people often define the following

dCos �Cos � ¼
1

2
ei�̂� þ e i�̂�ð Þ

þh i
dSin �Sin � ¼

1

2i
ei�̂� � e i�̂�ð Þ

þh i
ð6:4:21Þ

We also want to write a Heisenberg uncertainty relation of the form.

�N�� � 1=2 ð6:4:22Þ

Comparing the evolution operator ûu ¼ eĤHt=i�hh with the rotation operator R̂Rþð�Þ ¼ eiN̂N�

which rotates a state through an angle �, we might expect to transform the energy
uncertainty relation �E�t � �hh=2 into one for angle. Using the fact that E ¼ �hh! nþ 1=2ð Þ

and defining the phase angle in terms of the angular frequency as �¼!t, we find

�E�t � �hh=2 ! �hh! �nð Þ ��=!ð Þ � �hh=2 ! �n �� � 1=2

In this case, the phase angle is just another definition for the time. The uncertainty
relation tells us that we cannot simultaneously know the number of photons n and the
phase of the wave. This is equivalent to the commutation relations for the quadrature
operators.

6.4.8 The Operator for the Poynting Vector

vector for real fields can be written as

~SS ¼ E�Hh ione
cycle
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The optical power flow is an important concept. Chapter 3 indicates that the Poynting

Hermitian operators (refer to the Leonhardt book).
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Now, substituting the quantum mechanical operators into

ŜS ¼ ÊE� ĤH
D E

one
cycle

ð6:4:23Þ

produces

ŜS ¼
X

~kk

�hh!kc

V
N̂Nk þ

1

2

� �
ð6:4:24Þ

where ŜS has the units of power flow per unit area (see the chapter review exercises).
The number operator N̂Nk ¼ b̂bþk b̂bk, and the number of photons in the mode k, shows that
the photons carry the energy where each photon has the energy �hh!k: The 1

2 refers to
the vacuum. The last equation has the units of energy density multiplied by velocity or
Watts per area.

6.5 The Quantum Free-Field Hamilton and EM Fields

We have the necessary apparatus to quantize the free-field electromagnetic (EM)
Hamiltonian. The typical method for transforming the classical Hamiltonian into the
corresponding quantum mechanical one consists of replacing the classical dynamical
variables with operators and requiring them to satisfy commutation rules. The
development can proceed in two ways. The first method consists of substituting the
classical vector potential into the Hamiltonian and changing the Fourier amplitudes into
operators. This procedure does not complicate the derivation with the operator notation
and issues of commutivity until the very end. It also conforms to the procedure outlined
in the companion volume for quantizing a classical Hamiltonian. With the second
method, the vector potential can be quantized and then substituted into the classical
Hamiltonian. This method has the advantage of being conceptually simple and the
most straightforward. We use the first method in this section.

Once having quantized the free-field Hamiltonian, we can find the equations of motion
for the Fourier amplitudes and write Schrodinger’s equation for the EM field. The wave
functions have generalized coordinates as arguments. In this case, the wave function
is the probability amplitude for finding a field to have specific amplitude. Actually,
this development provides information on only one quadrature component. A full
classical-like picture (amplitude and phase) must wait for the section on the Wigner
distribution towards the end of the chapter.

6.5.1 The Classical Free-Field Hamiltonian

Section 3.5 shows that the divergence of the Poynting vector leads to an expression for

Lagrangian and Hamiltonian for the electromagnetic fields). We identify the classical
energy density in free space and the energy in a volume V as

Hc ¼
"0

2
~EE � ~EEþ

1

2�0

~BB � ~BB Hc ¼

Z

V
dV

"0

2
~EE � ~EEþ

1

2�0

~BB � ~BB

� �
ð6:5:1Þ
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the electromagnetic power flowing into/out of a volume (see also Chapter 7 on the
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where the subscript ‘‘c’’ refers to the classical case. Section 6.3 shows that the vector
potential

~AA ~rr, t
� �

¼
X

~kks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!kV

r
~eeks bksðtÞ ei~kk�~rr þ b�ksðtÞ e

�i~kk�~rr
h i

for a free-space traveling wave leads to the classical electric field

~EE ¼ �
@

@t
~AA ~rr, t
� �

¼
X

~kks

i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
bksðtÞ e

i~kk�~rr � b�ksðtÞ e
�i~kk�~rr

h i
~eeks ð6:5:2Þ

and to the classical magnetic field

~BB ¼ r � ~AA ~rr, t
� �

¼
X

~kks

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hh

2"0!kV

r
~kk� ~eeks

� �
bksðtÞ e

i~kk�~rr � b�ksðtÞ e
�i~kk�~rr

h i
ð6:5:3Þ

where the index ‘‘s’’ refers to the polarization of the mode and

bksðtÞ ¼ bks 0ð Þe�i!kt ¼ bkse
�i!kt b�ksðtÞ ¼ b�ks 0ð Þei!kt ¼ b�kse

i!kt

Keep in mind that the set

u~kk ~rr
� �
¼

ei~kk�~rr

ffiffiffiffi
V
p

( )

consists of discrete basis vectors with the orthonormality relation of

�~kk ~KK ¼ u~kk ~rr
� � ��� u ~KK

~rr
� �D E
¼

Z

V
dV u�~kk

~rr
� �

u ~KK
~rr
� �
¼

Z

V
dV

ei ~KK�~kk
� �

�~rr

V
ð6:5:4Þ

The classical Hamiltonian can be written in terms of the Fourier amplitudes by
substituting for the electric and magnetic fields in Equation (6.5.1). Here we rewrite the
integral of the magnetic field since the procedure is slightly more complicated than
the corresponding one for the electric field (see the chapter review exercises). For a while,
we suppress the functional notation for the Fourier coefficients b and b* to make the
notation more compact.

Z

V
dV

1

2�0

~BB � ~BB

¼
��hh

4�0"0V

Z

V
dV

X

~KKS

X

~kks

1
ffiffiffiffiffiffiffiffiffiffiffi
!k!K
p ~kk� ~eeks

� �
~KK � ~eeKS

� �
bkse

i~kk�~rr � b�kse
�i~kk�~rr

h i
bKSei ~KK�~rr � b�KSe�i ~KK�~rr
h i

¼
��hh

4�0"0V

Z

V
dV

X

~KKS

X

~kks

1
ffiffiffiffiffiffiffiffiffiffiffi
!k!K
p ~kk� ~eeks

� �
~KK � ~eeKS

� �
bksbKSei ~kkþ ~KK

� �
�~rr
þ b�ksb

�
KSe�i ~kkþ ~KK

� �
�~rr

	

� bksb
�
KSei ~kk� ~KK

� �
�~rr
� b�ksbKSe�i ~kk� ~KK

� �
�~rr
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Using the orthonormality relation in Equation (6.5.4), this equation simplifies to

Z

V
dV

1

2�0

~BB � ~BB ¼
��hh

4�0"0

X

~kksS

1

!k

h
: ~kk� ~eeks

� �
�~kk� ~ee�kS

� �
bksb�~kkS

þ ~kk� ~eeks

� �
�~kk� ~ee�kS

� �
b�ksb

�
�kSþ

� ~kk� ~eeks

� �
~kk� ~eekS

� �
bksb

�
kS �

~kk� ~eeks

� �
~kk� ~eekS

� �
b�ksbkS

i

where we have used the fact that !k ¼ !�k: Next using the general vector relation

~AA� ~BB
� �

� ~CC� ~DD
� �

¼ ~AA � ~CC
� �

~BB � ~DD
� �

� ~AA � ~DD
� �

~BB � ~CC
� �

ð6:5:5Þ

and the fact that the polarization vectors satisfy an orthonormality relation

~eeks � ~eekS ¼ �sS ð6:5:6Þ

since different polarizations are orthogonal. We find

~kk� ~eeks

� �
~kk� ~eekS

� �
¼ k2�sS and ~kk� ~eeks

� �
�~kk� ~ee�kS

� �
¼ �k2�sS

The integral over the magnetic field becomes

Z

V
dV

1

2�0

~BB � ~BB ¼
��hh

4�0"0

X

~kks

1

!k
�k2bksb�~kks

� k2b�ksb
�
�ks � k2bksb

�
ks � k2b�ksbks

h i

Making the substitution �0"0ð Þ
�1
¼ c2 ¼ !k=kð Þ

2, we find the result for the energy residing
in the magnetic field

Z

V
dV

1

2�0

~BB � ~BB ¼
��hh

4

X

~kks

!k �bksb�~kks
� b�ksb

�
�ks � bksb

�
ks � b�ksbks

h i

In a similar manner, but with a lot less trouble, we find the expression for the integral
over the electric field to be

Z

V
dV

"0

2
~EE � ~EE ¼

��hh

4

X

~kks

!k þbksb�~kks
þ b�ksb

�
�ks � bksb

�
ks � b�ksbks

h i

Therefore, the classical Hamiltonian in Equation (6.5.1) becomes

Hc ¼

Z

V
dV

"0

2
~EE � ~EEþ

1

2�0

~BB � ~BB

� �
¼

1

2

X

~kks

�hh!k b�~kks
ðtÞb~kks
ðtÞ þ b~kks

ðtÞb�~kks
ðtÞ

h i
ð6:5:7Þ

where we have been careful not to commute the conjugate variables (i.e., b, b�) since we
know they will become creation and annihilation operators which do not commute.
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6.5.2 The Quantum Mechanical Free-Field Hamiltonian

The classical Hamiltonian (total energy in volume V) in Equation (6.5.7) can be quantized
by replacing the classical fields with operators

ĤH ¼

Z

V
dV

"0

2
ÊE2 þ

1

2�0
B̂B2

� �

This represents the total energy in a volume V. Rather than substituting the operators
first as in this last equation, we have written a classical Hamiltonian in terms of the
classical Fourier coefficients as in Equation (6.5.7). These classical Fourier amplitudes
can be replaced with the corresponding creation and annihilation operators to quantize
the Hamiltonian

ĤH ¼
1

2

X

~kks

�hh!k b̂bþ~kks
ðtÞ b̂b~kks

ðtÞ þ b̂b~kks
ðtÞ b̂bþ~kks

ðtÞ
h i

¼
1

2

X

~kks

�hh!k b̂bþ~kks
b̂b~kks
þ b̂b~kks

b̂bþ~kks

h i
ð6:5:8Þ

where the creation and annihilation operators depend on time according to

b̂bks tð Þ ¼ b̂bks 0ð Þ e�i!kt ¼ b̂bks e�i!kt and b̂bþks tð Þ ¼ b̂bþks 0ð Þ eþi!kt ¼ b̂bþks eþi!kt

Notice that the time-dependence in the free-field Hamiltonian cancels out. The time-
dependent annihilation and creation operators are operators in the interaction picture
(refer to the next example) or equivalently, Heisenberg operators for a closed system. The
required equal-time commutation relations

b̂b~kks
ðtÞ, b̂bþ

~KKS
ðtÞ

h i
¼ �~kk ~KK�sS b̂b~kks

ðtÞ, b̂b ~KKS
ðtÞ

h i
¼ 0 ¼ b̂bþ

~kks
ðtÞ, b̂bþ

~KKS
ðtÞ

h i

hold for all times including t¼ 0. Normal order for the creation and annihilation
operators requires that the creation operators be positioned to the left of the annihilation
operators. We therefore use the first commutation relation b̂b~kks

b̂bþ
~kks
¼ b̂bþ

~kks
b̂b~kks
þ 1 to change

the second term in Hamiltonian (6.5.8) so that

ĤH ¼
X

~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
¼
X

~kks

�hh!k N̂N~kks
þ

1

2

� �
ð6:5:9Þ

To obtain the Hamiltonian in Equation (6.5.9), we converted the electromagnetic fields
into operators by substituting the creation–annihilation b̂bþ

~kks
, b̂b~kks

operators for the
amplitudes. Essentially the amplitude of a wave now must be specified by a Hilbert
space of vectors. Different linear combinations in this amplitude space produce different
amplitudes with different properties. To specify the total energy in the volume V, we
must feed the Hamiltonian ĤH a vector from the amplitude space. Normally, the number
operator N̂N~kks

¼ b̂bþ
~kks

b̂b~kks
is interpreted as providing the total number of photons in the mode

~kk, s: Using the integral over the volume V as in Equation (6.5.7) suggests an interpretation
as either (i) the number of photons in mode ~kk, s for fixed endpoint boundary conditions or
as (ii) the number of photons in volume V and mode ~kk, s for periodic boundary
conditions. The two interpretations become equivalent if V!1: Interpretation (ii)
would provide the number of photons per unit volume in mode ~kk, s: Recent work
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localized to a finite region of space.
The Hamiltonian for light is similar to the Hamiltonian for the electron harmonic

oscillator. The summation occurs in Equation (6.5.9) because there exists infinitely many
light modes (i.e., wavelengths). We can add photons to any of these modes. There can be
any number of photons in a mode. The harmonic oscillator Hamiltonian for the electron
does not have the summation. The modes (basis set) accept only a single electron.
In addition we use ladder operators to promote or demote electrons from one state
to another. These ladder operators do not create free photons. Instead they add or
subtract a quantum of energy to promote or demote the electron, respectively. The
electromagnetic field appears as an ensemble of independent harmonic oscillators. The
oscillators are called ‘‘independent’’ because Equation (6.5.9) doesn’t have any cross-
terms between modes. The number operator N̂N~kks

provides the number of photons in a
particular mode specified by the wave vector ~kk and polarization ‘‘s.’’

Equation (6.5.9) for ĤH ¼
P

~kks
�hh!k

�
N̂N~kks
þ 1=2

�
contains a summation over the frequency

for all of the possible modes, namely,

1

2

X

~kks

�hh!k ð6:5:10Þ

The allowed frequencies can be infinitely large. Without photons nk¼ 0, the energy
represented by Equation (6.5.10) must be stored as a fluctuating electric field in the
vacuum state. The summation in Equation (6.5.10) becomes infinite even for a finite
volume V of integration initially used to calculate the energy! Physically, this implies a
very large energy stored in the vacuum! In some cases, we can ignore the divergent term.
For example, to calculate the rate of change of an operator ÂA (Heisenberg picture for a
closed system), we commute the operator with the Hamiltonian. If the operator involves a
term like Equation (6.5.10) which is just a number (albeit an infinite one), then we see that
the infinite term drops out.

ĤH, ÂA
h i

¼
X

~kks

�hh!kN̂N~kks
, ÂA

2

4

3

5þ
X

~kks

�hh!k

2
, ÂA

2

4

3

5 ¼
X

~kks

�hh!kN̂N~kks
, ÂA

2

4

3

5

Example 6.5.1

Calculate the time-dependence of the creation operator bþK tð Þ in the Heisenberg picture for
the free-fields.

Solution: Calculate the commutator of the creation operator with the Hamiltonian.

db̂bþK ðtÞ

dt
¼

i

�hh
ĤH, b̂bþK ðtÞ
h i

Substituting the Hamiltonian

ĤH ¼
X

~kk

�hh!k b̂bþ
~kk
ðtÞb̂b~kkðtÞ þ

1

2

� �
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Chapter 4 shows that the rate of change of the Heisenberg operator can be written as

(refer to the book by Mandel and Wolf, Section 12.11) shows that photons cannot be
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we find

db̂bþ
~KK
ðtÞ

dt
¼

i

�hh

hX
~kk
�hh!k

�
b̂bþ
~kk
ðtÞb̂b~kkðtÞ þ

1

2

�
, b̂bþ

~KK
ðtÞ
i
¼

i

�hh

X
~kk
�hh!k

n
b̂bþ
~kk
ðtÞb̂b~kkðtÞ, b̂bþ

~KK
ðtÞ

h i
þ

h1
2
, b̂bþ

~KK
ðtÞ
io

The infinite vacuum sum produces the commutator at the end of this last equation. The
commutator of a c-number with an operator produces a result of zero; consequently, the
infinite divergence does not affect the calculated value. Using commutation rules, we can
evaluate

b̂bþ
~kk

b̂b~kk, b̂bþ
~KK

h i
¼ b̂bþ

~kk
, b̂bþ

~KK

h i
b̂b~kk þ b̂bþ

~kk
b̂b~kk, b̂bþ

~KK

h i
¼ 0þ b̂bþ

~kk
�~kk ~KK

so that

db̂bþ
~KK
ðtÞ

dt
¼

i

�hh

X

~kk

�hh!k b̂bþ
~kk
ðtÞb̂b~kkðtÞ, b̂bþ

~KK
ðtÞ

h i
¼ i!Kb̂bþ

~KK
ðtÞ

This is a simple differential equation with a solution that agrees with our previous results

b̂bþ
~KK

tð Þ ¼ b̂bþ
~KK

0ð Þei!Kt ð6:5:11aÞ

The complex conjugate provides the time dependence of the annihilation operator

b̂b ~KK tð Þ ¼ b̂b ~KK 0ð Þe�i!Kt ð6:5:11bÞ

6.5.3 The EM Hamiltonian in Terms of the Quadrature Operators

Before specifying the Hilbert space, we consider an alternate form for the Hamiltonian
that again shows its similarity to the Hamiltonian for a collection of independent
harmonic oscillators. Later in this chapter, we will see that the quadrature-form of the
EM Hamiltonian allows us to calculate the probability of finding a particular amplitude
or phase for the EM field.

As previously mentioned, Equation (6.5.9)

ĤH ¼
X

~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
¼
X

~kks

�hh!k N̂N~kks
þ

1

2

� �

has the same form as that for a collection of independent harmonic oscillators. Similar
to the harmonic oscillator, the creation and annihilation operators can be related to
position-like q̂qk and momentum-like p̂pk quadrature operators according to

b̂bksðtÞ ¼
!kq̂qksðtÞffiffiffiffiffiffiffiffiffiffi

2�hh!k

p þ
i p̂pksðtÞffiffiffiffiffiffiffiffiffiffi

2�hh!k

p b̂bþksðtÞ ¼
!k q̂qksðtÞffiffiffiffiffiffiffiffiffiffi

2�hh!k

p �
i p̂pksðtÞffiffiffiffiffiffiffiffiffiffi

2�hh!k

p ð6:5:12Þ

where q̂qksðtÞ and p̂pksðtÞ are taken to be Hermitian operators. Equations (6.5.12) hold for
t¼ 0 with the definitions qks ¼ qksð0Þ and pks ¼ pksð0Þ: The subscripts ‘‘k’’ and ‘‘s’’ label the
wavelength and polarization modes, respectively. We usually suppress the subscript ‘‘s.’’
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The position q̂qk and momentum p̂pk quadrature operators are not related to the spatial position ~rr nor
to the photon momentum �hh~kk: The quadrature operators are related to the amplitude of the
electric and magnetic fields. Solving Equations (6.5.12) for the position q̂qk and momentum
p̂pk provides relations similar to those for the harmonic oscillator

q̂qkðtÞ ¼

ffiffiffiffiffiffiffiffi
�hh

2!k

r
b̂bkðtÞ þ b̂bþk ðtÞ
h i

p̂pkðtÞ ¼ �i

ffiffiffiffiffiffiffiffi
�hh!k

2

r

b̂bkðtÞ � b̂bþk ðtÞ
h i

ð6:5:13Þ

Unlike that for the electron harmonic oscillator, the mass does not appear in these
quadrature operators. The commutation relations for the creation and annihilation
operators provide the commutation relations between the position and momentum
quadrature operators as follows

q̂qiðtÞ, q̂qjðtÞ
 �

¼ 0 ¼ p̂piðtÞ, p̂pjðtÞ
 �

q̂qiðtÞ, p̂pjðtÞ
 �

¼ i�hh�ij ð6:5:14Þ

which hold for all times t including t¼ 0.
The Hamiltonian and the fields can be written in terms of these position and

momentum quadrature operators. Starting with the Hamiltonian

ĤH ¼
X

~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
¼
X

~kks

�hh!k N̂N~kks
þ

1

2

� �

Neglecting the polarization index and substituting Equations (6.5.12) for the creation and
annihilation operators in the Hamiltonian provides

ĤH ¼
X

~kk

�hh!k
!k q̂qkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p þ
i p̂pkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p

� �
!k q̂qkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p �
i p̂pkffiffiffiffiffiffiffiffiffiffi
2�hh!k

p

� �
þ

1

2

	 


Multiplying out the terms and taking care with noncommuting operators

ĤH ¼
X

~kk

�hh!k
!2

k q̂q2
k

2�hh!k
þ

p̂p2
k

2�hh!k
� i

!k

2�hh!k
q̂qkp̂pk � p̂pkq̂qk

� �
þ

1

2

	 


Using the commutation relation q̂qa, p̂pb

 �
¼ i�hh�ab and then simplifying gives

ĤH ¼
X

~kk

p̂p2
~kk

2
þ
!2

k

2
q2

k
*

 !

ð6:5:15Þ

The Hamiltonian consists of a sum of Hamiltonians for a collection of independent
harmonic oscillators.

6.5.4 The Schrodinger Equation for the EM Field

We can find a Schrodinger wave equation for the wave function � q1, q2, q3, . . . , qN, t
� �

: The
wave function gives the probability amplitude of finding mode #1,#2, . . ., #N to have
quadrature amplitude q1, q2, . . . , qN: For a single mode, the probability amplitude of
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finding the mode to have quadrature amplitude q is � q, t
� �

which can also be written in
Dirac notation as � q, t

� �
¼ q

�� � tð Þ
� �

: Similarly, by working with Fourier transforms, we
can also find a wave function � p1, p2, p3, . . . , pN, t

� �
that gives the probability amplitude of

finding modes #1;#2;. . .;#N to have quadrature momentum p1, p2, . . . , pN: Again, for
a single mode, we would find � p, t

� �
: These wave functions must be the coordinate

representations of vectors in the amplitude Hilbert space. We will discuss the amplitude
Hilbert space starting in the next section concerning Fock states. For now, we realize that
the operators can act on the wave functions �:

Using the coordinate representation of the position and momentum quadrature
operators, namely

q̂qk ! qk p̂pk !
�hh

i

@

@qk
ð6:5:16Þ

we can substitute them into the Hamiltonian (Equation (6.5.15))

ĤH ¼
X

~kk

p̂p2
~kk

2
þ
!2

k

2
q2

k
*

 !

ð6:5:17Þ

to obtain the coordinate representation of the Schrodinger equation

X

~kk

�
�hh2

2

@2

@q2
~kk

þ
!2

k

2
q2

k
*

 !

� q1, q2 . . . , t
� �

¼ i�hh
@

@t
� q1, q2 . . . , t
� �

ð6:5:18Þ

We expect the solutions of this wave equation to be similar to that for the harmonic
oscillator. We expect decaying exponentials multiplied by Hermite polynomials.
For more information on solving the Schrodinger equation for the field amplitudes

Let’s continue the discussion on the meaning of the wavefunctions. Consider a single
mode for simplicity. We can solve Schrodinger’s equation twice to find the most
probable values for q and p. Then we can find the most probable value for the electric
field given by Equation (6.4.12b)

ÊE z, tð Þ ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p q̂q sin kz� !tð Þ þ

p̂p

!
cos kz� !tð Þ

	 

ð6:5:19Þ

In fact, if we can find � q, t
� �

then we can find the average electric field by substituting
the coordinate representation of the quadrature operators in Equation (6.5.19) and
calculating

�h jÊE �j i ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p �h jq̂q �j i sin kz� !tð Þ þ

D
�
���

p̂p

!

����
E

cos kz� !tð Þ

	 


¼
�!
ffiffiffiffiffiffiffiffi
"0V
p sin kz� !tð Þ

Z 1

�1

dq �þ q, t
� �

q � q, t
� �	

þ cos kz� !tð Þ

Z 1

�1

dq �þ q, t
� � 1

!

�hh

i

@

@q

� �
� q, t
� �

#
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Notice that the average occurs only over
the amplitude operators.

A question naturally arises as to why
the wave function � does not have argu-
ments including both q and p. The answer
is that, because of the commutation rela-
tions in Equations (6.5.15), we cannot
assign precise values to p and q at the
same time at least in the quantum mechan-
ical sense. Apparently, phase space consist-
ing of all possible values of fq, pg can only
be defined by dividing the space into small

squares of size �q�p � �hh=2 as shown in Figure 6.5.1. The set of possible values fq, pg then
must label the individual rectangles.

It turns out that it is possible to define a joint probability distribution function for fq, pg
without reference to the subdivision rectangles. This so-called Wigner distribution brings
the quantum picture of EM fields as close as possible to the classical picture. From the
Wigner point of view, we can make a measurement of the field, but we must assign a
probability to each value fq, pg or equivalently, to each amplitude and phase. For example,
coherent states have a Gaussian distribution for the quadrature amplitudes—the most
likely set of quadrature amplitudes occurs at the center of the Gaussian distribution. This
also sets the most likely amplitude and phase for the wave since the amplitude must
be related to the sum of the squares of the quadratures (amplitude is similar to the
hypotenuse of a triangle that has p and q as legs). There will be statistical variation
between measurements. We will see later that the Wigner distribution combines the
probabilities j� q

� �
j2 and j� p

� �
j2:

The difficulties come from the fact that the quadrature operators do not commute. We
cannot find vectors that are simultaneously eigenvectors of both quadrature operators
(the same is true for the creation and annihilation operators). This means we cannot find
eigenvectors of the field. We cannot simultaneously and definitely know the two
quadratures nor the magnitude and phase of the field. Other sections in this chapter
discuss this more fully.

6.6 Introduction to Fock States

Previous sections have quantized the electromagnetic (EM) fields and the EM
Hamiltonian by replacing classical dynamical variables with operators. In particular,
the Fourier amplitudes become operators. The various vectors in the ‘‘amplitude’’ Hilbert
space provide the various possible amplitudes and expectation values for the field
operators. The operator expressions for the fields apply to a wide range of systems
whereas the states in the amplitude Hilbert space provide the specifics of a particular
system. We can represent a traveling light beam by a state in the amplitude space as a
way of stating the power in the beam and other characteristics. In the Schrodinger and
interaction representations, the state can evolve in time when material absorbs or
produces light.

The present section begins the discussion of the Fock state as one type of amplitude
state among other types including the coherent and squeezed states. We will see that
Fock states specify the exact number of photons in the EM modes of a system; as a

FIGURE 6.5.1

Dividing phase space into small areas �q�p � �hh=2
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result of the Heisenberg uncertainty relation however, the the phases of those states must
be completely unknown. They are the eigenstates of the EM Hamiltonian giving rise to
the notion of the photon as an indivisible quantum of energy. This section shows Fock
states have zero average electric field. Later sections in this chapter show that coherent
states have classically sensible amplitudes and phases, and best describe the laser light.
The coherent state describes the total amplitude and phase of the electric field.

6.6.1 Introduction to Fock States

The quantum fields and the Hamiltonian can be expressed by a traveling wave Fourier
expansion with creation ‘‘b̂bþ’’ and annihilation ‘‘ b̂b ’’ operators for the Fourier amplitudes
that satisfy commutation relations. These operators act on ‘‘amplitude space.’’ The ‘‘Fock
states’’ provide the first example of a basis set for this Hilbert space. The Fock states
specify the exact number of photons (particles) in a given basic state of the system; the
standard deviation of the number must be zero. The ket representing the Fock state
consists of ‘‘place holders’’ for the number of photons in a given mode (basic state)
n1, n2, . . .j i: Figure 6.6.1 shows buckets that can hold photons where the mode numbers

label the buckets. For example, m¼ 1 might correspond to the longest wavelength mode
in a Fabry–Perot resonator. The figure shows the system has two photons (for example) in
the m¼ 1 mode, none in the m¼ 2 mode, and so on. In proper notation, the state would be
represented by the ket 2, 0, 1, . . .j i: The vacuum state, denoted by 0, 0, 0, . . .j i ¼ 0j i
represents a system without any photons in any of the modes. The Fock state lives in a
direct product space so that it can be written as n1, n2, . . .j i ¼ n1j i n2j i � � � with each ket
representing a single mode. The Fock vectors for a system with only one mode
characterized by the wavelength l1 have only one position. For example, n1j i represents
n1 particles in the mode l1 and 0j i represents the single mode vacuum state. The most
important point of the Fock state is that it is an eigenstate of the number operator as we
will see.

We should include the polarization in the description of the Fock state. The vector

potential satisfies the Coulomb gauge condition r � ~AA ¼ 0 and therefore, the polarization
vector must be perpendicular to the direction of propagation. Using the relations for the

fields ~EE ¼ �
_~AA~AA and ~BB ¼ r � ~AA, we see that these fields must also be perpendicular to

the direction of propagation. Given that polarization refers to the direction of the electric
field, we see that, as a transverse field, it can have two independent directions of
polarization. These directions constitute the polarization modes. In general, we use two
basic polarization directions ~eeks (s¼ 1,2) for each wave vector ~kk: If the wave propagates
along the z-direction, then one polarization mode is along ~xx, the s¼ 1 mode, and the other
is along ~yy, the s¼ 2 mode. Each index ~kk value must be augmented with the polarization
directions as indicated in Figure 6.6.2. Circular polarization unit vectors can also be used

FIGURE 6.6.1

The Fock state describes the number of particles in the
modes or states of the system. The diagram represents
the ket 201. . .j i.

FIGURE 6.6.2

The modes must include polarization.
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rather than the plane-wave polarization vectors used here.
As bosons characterized by integer spin (0, 1, 2, . . .), any number of photons (spin 1)

can occupy a mode. For a given set of modes, each Fock state is a basis vector for
the amplitude space. The set

n1, n2, n3, . . .j if g

represents the complete set of basis vectors where each ni can range up to an infinite
number of particles in the system. The orthonormality relation can be written as

n1, n2, . . . j m1,m2, . . .h i ¼ �n1m1�n2m2 . . . ð6:6:1Þ

and the closure relation as

X1

n1, n2...¼0

n1, n2 . . .j i n1, n2 . . .h j ¼ 1̂1 ð6:6:2Þ

A general vector in the Hilbert space must have the form

 
�� � ¼

X1

n1, n2...¼0

n1, n2... n1, n2 . . .j i ð6:6:3Þ

where quantum mechanical wave functions must be normalized to unity as usual. The
component n1, n2... ¼ n1,n2, . . .

��  
� �

represents the probability amplitude of finding n1

photons in mode 1, n2 photons in mode 2 (etc.) when the system has wave function  
�� �:

A Fock state gives the exact number of photons in a mode but there isn’t any
information on the phase of the wave. The phase of the wave for the Fabry–Perot cavity
does not refer to whether the wave looks like a sine or cosine. Rather the phase refers to
the � in sinðkxÞ ei!tþ� (or equivalently, the origin of time). The fact that the Fock
state provides exact information on the photon number but none on the phase can be
explained by a Heisenberg uncertainty relation between the particle number ‘‘n’’ and the
phase ‘‘�.’’ The ‘‘n–�’’ uncertainty relation has the form

�n �� �
1

2

where, we know that � represents the standard deviation. Knowing the exact number
of photons �n¼ 0 then requires the phase to be completely random �� � 1:

exists an electric field! The motion of the vacuum field is equivalent to the zero point
motion of a molecule near absolute zero. For the optical case, although there isn’t any
available energy, there still exists a fluctuating electric field. If the vacuum field
encounters excited atoms, it can produce spontaneous emission. The vacuum fields have
a number of real-world effects. For example, vacuum fields can be shown to move two
metal plates toward each other (the Casimir effect).

Fock states can also be constructed for fermions with half-integral spin, such as
electrons with spin 1

2; however, the Pauli exclusion principle limits the number per
mode to at most 1. These properties originate in the commutation relations for the
creation and annihilation operators.
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6.6.2 The Fabry–Perot Resonator as an Example

We consider a Fabry–Perot cavity as an example to introduce the Fock state and show
its relation to the stored energy. The calculations for energy do not include the vacuum
energy.

The Fabry–Perot cavity appears in Figure 6.6.4 with the m¼ 1 and m¼ 2 optical modes
(the sine waves represent the electric field). There exist more than two optical modes
but we have not drawn them. Notice how the mirrors (drawn as black boxes) provide
‘‘boundary conditions’’ and give rise to a discrete spectrum for the wavelength lm, which
characterize the allowed modes (eigenfunctions).

lm ¼ 2L, L,
2L

3
� � �

2L

m
m ¼ 1, 2, 3 . . .

The mode number ‘‘m’’ must be nonzero for this example. The energy of a single photon
can be written as

Em ¼
hc

lm
¼

hc

2L

� �
m

where Planck’s constant is h ¼ 6:63 � 10�34 and the speed of light in vacuum is c ¼ 3 � 108

in MKS units. The eigenfunctions

�m xð Þ ¼

ffiffiffi
2

L

r

sin
m�

L
x

� �

FIGURE 6.6.3

A single mode with either 0,1, or 2 photons.

FIGURE 6.6.4

Both diagrams show the first two modes in a
Fabry–Perot resonator. The left side shows an
artist’s view of the mode without any photons.
The right side shows one photon in each mode.
Adding a photon to a mode must increase the
amplitude.
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represent the modes of the Fabry–Perot cavity and correspond to the energy Em.
The Fock state, denoted by n1, n2, n3 . . .j i, lives in a direct product space and represents

photons in the Fabry–Perot cavity. The first position in the ket j i stands for a mode with
wave vector ~kk1 (i.e., wavelength l ¼ l1 for 1-D). The symbol n1 gives the number of
photons in mode number 1. Similarly, n2 represents the number of photons in the mode
with wave vector ~kk2 and wavelength l2 ¼ ð2L=nÞ ¼ L: Consider the case of two excited

photon each so that n1¼ n2¼ 1. The state vector must be 1, 1, 000 . . .j i: We can easily find
the total energy stored in the cavity using the energy stored in mode #m for each photon
in the mode.

Em ¼
hc

lm
¼

hc

2L

� �
m

If mode #m has ‘‘nm’’ photons, then the energy stored in mode #m must be

Em, tot ¼ nm
hc

lm
¼ nm

hcm

2L

� �

The total energy stored in all of the modes, for the example in Figure 6.6.4, must be

Etot ¼ E1, tot þ E2, tot ¼ 1
hc

2L

� �
þ 1

hc2

2L

� �
¼

3

2

hc

L

Unfortunately, this formulation does not include a 1
2 accounting for energy stored in

vacuum fields. Fock states n1, n2, . . .j i explicitly track of the number of particles in a
mode. The position in the Fock vector corresponds to a given mode, which can include
polarization and wavelength for photons.

6.6.3 Creation and Annihilation Operators

The creation and annihilation operators create and remove photons from a mode
characterized by a given wave vector and given polarization. ‘‘Adding a photon’’ to a
mode means ‘‘adding energy.’’ However, the amplitude of the electric field is directly
related to the energy in an electromagnetic wave. Therefore adding a photon must

The creation and annihilation operators have both ~kk and s subscripts (keep in mind
that ~kk represents three indices i ¼ kx, ky, kz). We define creation operators b̂bþis ¼ b̂bþis ð0Þ and
annihilation operators b̂bis ¼ b̂bisð0Þ as

b̂bþis n1s, n2s, . . . , nis, . . .j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nis þ 1

p
n1s, n2s, . . . , nis þ 1, . . .j i ð6:6:4aÞ

b̂bis n1s, n2s, . . . , nis, . . .j i ¼
ffiffiffiffiffiffi
nis
p

n1s, n2s, . . . , nis � 1, . . .j i ð6:6:4bÞ

Usually, we will suppress the polarization index (sometimes called the spin index) and
just keep track of the mode by the wave vector index. So that

b̂bþi n1, n2, . . . , ni, . . .j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
n1, n2, . . . , ni þ 1, . . .j i ð6:6:4cÞ

b̂bi n1, n2, . . . , ni, . . .j i ¼
ffiffiffiffi
ni
p

n1, n2, . . . , ni � 1, . . .j i ð6:6:4dÞ
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increase the amplitude similar to that shown in Figure 6.6.3.
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where b̂bþi creates a particle in mode ‘‘i’’ and b̂bi removes a particle. If the initial state is the
quantum mechanical vacuum then b̂bi

��0, 0, . . . , 0#i , . . .i ¼ 0: The creation–annihilation
operators satisfy commutation relations

b̂b~kks
, b̂b ~KKS

h i
¼ 0 ¼ b̂bþ

~kks
, b̂bþ

~KKS

h i
and b̂b~kks

, b̂bþ
~KKS

h i
¼ �~kk ~KK�sS ð6:6:5Þ

We usually suppress the ‘‘s’’ index.
The mode-number operator

N̂Nk ¼ b̂bþk b̂bk ð6:6:6Þ

provides the number of photons in the state ‘‘k.’’ The Fock states are eigenstates of the
number operator

N̂Nk n1, . . . , nk, . . .j i ¼ nk n1, . . . , nk, . . .j i ð6:6:7Þ

The total number of particles in a Fock state can be found by using the total-number
operator

N̂N ¼
X

i

N̂Ni ð6:6:8Þ

so that

N̂N n1, . . . , nk, . . .j i ¼
X

i

N̂Ni

 !

n1, . . . , nk, . . .j i ¼
X

i

ni

 !

n1, . . . , nk, . . .j i

The number operators have a ‘‘sharp’’ value for the Fock states which means their
standard deviation must be zero. The standard deviation is zero for any operator ÔO
evaluated in its eigenstate �j i (i.e., ÔO �j i ¼ � �j i) as can be seen by calculating

�2
ÔO
¼ �h j ÔO� �OO

� �2
�j i ¼ �h j ÔO2 �j i � �OO2 ¼ �2 � j �h i � �2 ¼ 0

Physically ‘‘sharp values’’ means that repeated measurements produce only one value
(i.e., the measurement does not interfere with the system).

6.6.4 Comparison between Creation–Annihilation and Ladder Operators

The raising âaþ and lowering âa operators (i.e., ladder operators such as for the electron
hormonic oscillator) map between basis vectors nj i ¼ �nf g according to

âaþ nj i ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nþ 1j i âa nj i ¼
ffiffiffi
n
p

n� 1j i

or equivalently

âaþ ¼
X1

n¼0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nþ 1j i nh j âa ¼
X1

j¼1

ffiffiffi
n
p

n� 1j i nh j
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We imagine that the raising operator removes an electron from energy eigenstate nj i
and places it in state nþ 1j i: We can re-interpret the ket nj i as representing the number
of available quanta in the oscillator; i.e., there exists a 1–1 correspondence between the
energy eigenstate occupied by a particle and the number of available quanta in that
state. The ladder operators map an energy eigenstate into another one in sequence,
which must be equivalent to adding or subtracting a quantum of energy.

The same operation of moving a particle from one Fock state to another requires
two operations. For example, to move a photon from state n to state nþ 1

b̂bþnþ1b̂bn

���0, . . . , 1|{z}
n

, 0|{z}
nþ1

, . . .
E
¼

���0, . . . , 0|{z}
n

, 1|{z}
nþ1

, . . .
E

Therefore the raising operator must be somewhat equivalent to the product of the
creation and annihilation operator as âaþ � b̂bþnþ1b̂bn: We should expect something like this
since âaþ ¼

P ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nþ 1j i nh j and the bra nh j acts like the annihilation operator b̂bn

while nþ 1j i is somewhat equivalent to the creation operator b̂bþnþ1:

Example 6.6.1

Show the average electric field must be zero for a single mode Fock state

Solution: The average electric field can be found by using its definition in terms of
the creation and annihilation operators found in the previous section and using
Equation (6.6.4)

nh jÊE nj i ¼ nh j i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂b eikz�i!t � b̂bþe�ikzþi!t
� �� �

nj i

¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
nh jb̂b nj i eikz�i!t � nh jb̂bþ nj ie�ikzþi!t

� �

¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
ffiffiffi
n
p

n j n� 1h i eikz�i!t �
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

n j nþ 1h ie�ikzþi!t
� �

¼ 0

6.6.5 Introduction to the Fermion Fock States

Fermion creation and annihilation operators can also represent the half-integral spin
particles known as Fermions. Only a single Fermion can occupy a single state at any
given time.

Fermions are particles, such as electrons and holes, that have half-integral spin 1/2,
3/2, and so on. The commutation relations for Fermions demonstrate the Pauli exclusion
principle which mandates that only a single Fermion can occupy a single state at
one time. The Fermion creation f̂fþk and annihilation f̂fk operators obey anticommutation
relations given by

f̂fk, f̂fK
h i

þ
¼ 0 ¼ f̂fþk , f̂fþK

h i

þ
and f̂fk, f̂fþK

h i

þ
¼ �kK
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where the relation

ÂA, B̂B
h i

þ
¼ ÂAB̂Bþ B̂BÂA

defines the anticommutator. Notice the anticommutator uses a ‘‘þ’’ sign which makes all
the difference for the particle statistics.

Let’s try to create two Fermions in a single state (neglecting all but one mode). b̂bþb̂bþ 0j i:
The anticommutation relation for the creation operator provides

0 ¼ b̂bþ, b̂bþ
h i

þ
¼ b̂bþb̂bþ þ b̂bþb̂bþ ¼ 2b̂bþb̂bþ

so that the two particle Fermion ket becomes

b̂bþb̂bþ 0j i ¼
1

2
b̂bþ, b̂bþ
h i

þ
0j i ¼ 0

The anticommutation relations for Fermions therefore lead to the Pauli Exclusion
Principle.

6.7 Fock States as Eigenstates of the EM Hamiltonian

Having quantized the electromagnetic (EM) Hamiltonian by replacing the Fourier
expansion coefficients with operators obeying commutation relations, we now proceed to
examine the ‘‘amplitude Hilbert space.’’ The quantum fields operate on the amplitude
Hilbert space to provide amplitudes for the EM waves along with information on the
statistics for the photon number, quadratures, and phase. Because the operators defining
the quantum fields do not commute, we cannot repeatedly measure the electric field (for
example) and expect to find the same value each time. However, we can find the
quantum expectation values by forming matrix elements of the fields using the basis
vectors in the amplitude space. These expectation values provide the classically
expected values for the fields. The later portions of this chapter additionally explore
the density operator expressions of the fields that give both the quantum and ensemble
averages.

This section shows that the Fock states are eigenvectors of the energy operator but not
of the fields (recall that the amplitude operators do not commute); repeated
measurements of the energy produce identical results. First we start the section by
finding the wave functions defining the Fock states; these wave functions come from
projecting the Fock vector into coordinate space. In this case for EM waves, the coordinate
space consists of the quadrature components ‘‘q.’’ Although the purpose of q resembles
that of x for the electron harmonic oscillator, the q quadrature describes the amplitude
generalize coordinate and not the position or momentum of the photon. We will set
up Schrodinger’s equation for the EM field and solve for the EM wave functions.
The last portion of the section returns to the familiar use of the Fock states as energy
eigenfunctions.

The subsequent section discusses the meaning of the wave function and its pro-
bability interpretation. There we show the Heisenberg uncertainty relation for the
quadrature operators, number-phase operators using both the number and coordinate
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representations of the Fock states. As a note, the problems with the electric field, namely
that the field cannot be repeatedly measured without finding a range of values, should
not be too surprising. The Hamiltonian is really the most basic quantity of interest for
many systems. Classical physics and engineering defines the electric field as a force
per charge or as related to potential energy through the voltage. The electric field
must interact with charge to produce energy. The interaction energy provides a more
fundamental quantity.

6.7.1 Coordinate Representation of Boson Wavefunctions

In this topic, we first develop the solution to the EM Schrodinger equation obtained
by separating variables. Starting with the coordinate representation of the vacuum state,
we use the creation and annihilation operators to find the eigenfunctions corresponding
to an arbitrary number of photons.

Section 6.5 shows that the quantized Hamiltonian for light can be cast into two equally
valid but interrelated forms

ĤH ¼
X

k

p2
k

2
þ
!2q2

k

2

	 

ĤH ¼

X

k

�hh!k N̂Nk þ
1

2

� �
ð6:7:1Þ

We first examine the coordinate representation of the Hamiltonian because we can then
find the coordinate representation of the Fock vectors.

In the coordinate representation, the Hamiltonian has the form

ĤH ¼
X

k

�hh2

2

@2

@q2
k

þ
!2q2

k

2

" #

ð6:7:2Þ

where we identify the coordinate representation of the momentum operator in Equation
(6.7.1) as

p̂pk ¼
�hh

i

@

@qk
ð6:7:3Þ

The wavefunction must depend on the independent coordinates qk so that Schrodinger’s
equation for light can be written as

XN

k¼1

�hh2

2

@2

@q2
k

þ
!2q2

k

2

" #

� q1, q2, . . . , qN, t
� �

¼ i�hh
@

@t
� q1, q2, . . . , qN, t
� �

ð6:7:4Þ

where N represents the number of modes (we are ignoring polarization and wave vector
direction). We can separate variables by letting

 q1, q2, . . . , qN, t
� �

¼ uE1
ðq1Þ uE2

ðq2Þ . . . uEN ðqNÞ TðtÞ ð6:7:5Þ

and each basis function uEk
ðqkÞ satisfies a time-independent Schrodinger’s equation with

a form similar to the harmonic oscillator

�hh2

2

@2

@q2
k

þ
!2q2

k

2

 !

uEk
ðqkÞ ¼ Ek uEk

ðqkÞ ð6:7:6Þ
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Equation (6.7.5) has the product of basis functions for a direct product space.
Before proceeding with the solution, we should develop an intuitive understanding of

a wavefunction such as uEk
ðqkÞ: Equation (6.7.6) does not reference the spatial position

of the photon; it suggests that we focus on the amplitude of the oscillations of the
electromagnetic field (similar comments apply to phonons and other quantized fields).
The wave function  q

� �
is not the probability amplitude of finding a particle at the spatial

position ‘‘q.’’ Figure 6.7.1 shows that the harmonic motion of the wave must be more
related to the oscillation of the field about its ‘‘equilibrium.’’ The coordinate qk represents
an electric field amplitude for the kth mode. For example, Equation (6.4.12b) shows this
by considering a point in time and space such that ‘‘kz�!t¼�/2’’

~EE ~rr, t
� �

¼
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eek !k q̂qk sin ~kk � ~rr� !kt
� �

þ
p̂pk

!k
cos ~kk � ~rr� !kt

� �	 


which gives

~EE �
�1
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

~eek !kq̂qk

Therefore, the wave function uEk
ðqkÞ represents the probability amplitude for finding

a particular electric field amplitude as represented by ‘‘qk.’’
Returning to Equation (6.7.6), the Hamiltonian has a form similar to that for the

electronic harmonic oscillator. The eigenvalues must be

Ek ¼ �hh!k nk þ
1

2

� �
ð6:7:7aÞ

Therefore, the total energy for N modes must be given by

E ¼
XN

k¼1

�hh!k nk þ
1

2

� �
ð6:7:7bÞ

The eigenvectors consist of exponentials and Hermite polynomials. The eigenfunctions
with the time-dependent phase factor can be written as

 q1, q2, . . . , qN, t
� �

¼ uE1 ðq1Þ uE2 ðq2Þ . . . uEN ðqNÞ TðtÞ ¼ uE1ðq1Þ uE2ðq2Þ . . . uEN ðqNÞ eitE=�hh

A general wavefunction in the multidimensional Hilbert space can be written as

 q1, q2, . . . , qN, t
� �

¼
X

E1,E2...EN

 E1,E2, . . . ,EN, tð Þ uE1 ðq1Þ uE2ðq2Þ . . . uEN ðqNÞ

FIGURE 6.7.1

Harmonic motion of a wave.

400 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:20am Page: 401/478

where  includes the phase factor. The value of Ei must be related to the number of
photons in mode #i because of Equation 6.7.7a. This equation can be rearranged to derive
the usual representation of the Fock states given in the previous section. We pursue a
solution only in the simple case of a single mode by using creation and annihilation
operators.

We want to find the single mode wave function  nðqÞ where ‘‘n’’ stands for the number
of photons in the mode and the wavefunction satisfies Schrodinger’s equation for light;
that is

q
��n

� �
¼ un q

� �
ð6:7:8Þ

and

ĤH unðqÞ ¼ EnunðqÞ ð6:7:9Þ

The number of photons must set the particular energy eigenvalue according to Equation
(6.7.7a). This makes sense since the energy can be found by essentially counting the
number of photons. The wave functions unðqÞ can be found by applying the annihilation
and creation operators similar to the procedure used for the harmonic oscillator with the
ladder operators. First apply the destruction operator to the vacuum state

b̂b 0j i ¼ 0 ð6:7:10Þ

Use the position and momentum representation given in Equations (6.4.10)

! q̂q
ffiffiffiffiffiffiffiffi
2�hh!
p þ

i p̂p
ffiffiffiffiffiffiffiffi
2�hh!
p

� �
0j i ¼ 0

where ! is the angular frequency for light in the mode. Operating with the coordinate
space operator q

� �� (i.e., projecting into coordinate space) provides

q
� �� ! q̂q

ffiffiffiffiffiffiffiffi
2�hh!
p þ

i p̂p
ffiffiffiffiffiffiffiffi
2�hh!
p

� �
0j i ¼ 0

or, inserting the coordinate representation of the operators, we find

! q
ffiffiffiffiffiffiffiffi
2�hh!
p þ

�hh
ffiffiffiffiffiffiffiffi
2�hh!
p

@

@q

� �
q
�� 0

� �
¼ 0

This simple first-order differential equation can be solved for q
��0

� �
¼ u0ðqÞ to find

u0ðqÞ ¼
!

��hh

� �1=4
exp �

!q2

2�hh

	 

ð6:7:11Þ

where the constant comes from the normalization condition. Equation (6.7.11) gives the
probability amplitude of finding the electric field amplitude to have value ‘‘q’’ when the
system occupies the vacuum state (i.e., a system without any photons).
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Just like the electron harmonic oscillator, we can find all of the ensuing wavefunctions
by applying the creation operator. For the first excitation of the mode (i.e., n¼ 1
corresponding to a single photon)

1j i ¼ b̂bþ 0j i

Operating with the coordinate space projector and substituting the coordinate
representation of the creation operator provides

u1ðqÞ ¼
! q
ffiffiffiffiffiffiffiffi
2�hh!
p �

�hh
ffiffiffiffiffiffiffiffi
2�hh!
p

@

@q

� �
u0ðqÞ

since q
�� 1

� �
	 q

�� u1

� �
¼ u1 q

� �
: We find a result similar to the harmonic oscillator

u1ðqÞ ¼

ffiffiffiffiffiffi
2!

�hh

r
!

��hh

� �1=4
q exp �

!q2

2�hh

� �
ð6:7:12Þ

6.7.2 Fock States as Energy Eigenstates

We have seen some of the differences between the particle and wave pictures in the
previous topic. Specifying the number of particles is not equivalent to specifying the
amplitude (including phase). The previous topic shows the functional representation of
the Fock states that provide an amplitude interpretation for a wave. Now we discuss the
particle nature of light, which refers to the photon as an elementary unit of energy
(at a given frequency). For this, we need to show that Fock states must be eigenstates of
the Hamiltonian.

The Hamiltonian for a system of free-space photons can be written as

ĤH ¼
X

~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
¼
X

~kks

�hh!k N̂N~kks
þ

1

2

� �
ð6:7:13Þ

where the creation and annihilation operators depend on time according to

b̂bks ¼ b̂bks tð Þ ¼ b̂bks 0ð Þ e�i!kt and b̂bþks ¼ b̂bþks tð Þ ¼ b̂bþks 0ð Þ eþi!kt ð6:7:14Þ

which satisfy the commutation relations

b̂b~kks
, b̂bþ~KKS

h i
¼ �~kk ~KK�sS and b̂b~kks

, b̂b ~KKS

h i
¼ 0 ¼ b̂bþ~kks

, b̂bþ~KKS

h i
ð6:7:15Þ

In the following, we suppress the polarization index. The number operator

N̂N~kk
¼ b̂bþ

~kk
b̂b~kk
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gives the number of photons with a particular wave vector ~kk and polarization ~ee~kk:
Fock states are eigenvectors of the number operator according to

N̂N~kk
n1, . . . , n~kk, . . .
���

E
¼ b̂bþ

~kk
b̂b~kk n1, . . . , n~kk, . . .
���

E
¼ b̂bþ

~kk

ffiffiffiffiffi
n~kk

p
n1, . . . , n~kk � 1, . . .
���

E
¼ n~kk n1, . . . , n~kk, . . .

���
E

Therefore, the Fock states must be eigenvectors of the quantum electromagnetic
Hamiltonian

ĤH jn1, . . . , n~kk, . . .i ¼
X

~KK

�hh!K N̂N ~KK
þ

1

2

� �
jn1, . . . , n~kk, . . .i ¼

X

~KK

�hh!K n ~KK
þ

1

2

� �
jn1, . . . , n~kk, . . .i

For each basis state jn1, . . . , n~kk, . . .i, the energy eigenvalue must be

X

~kk

�hh!k n~kk þ
1

2

� �

There exists a different eigenvalue for each set of occupation numbers n1, n2. . ..
The energy stored in the Fock state jn1, . . . , n~kk, . . .i must be given by

E ¼
X

~kk

�hh!k n~kk þ
1

2

� �

For the vacuum state 0j i ¼ 0, 0, 0, . . .j i, the stored energy must be

E ¼
X

~kk

1

2
�hh!k

The energy stored in the vacuum is infinite but we don’t have access to it since there
are no available quanta of energy. This energy corresponds to randomly oscillating
electromagnetic fields that permeate all space (the vacuum fields). These fields are
responsible for initiating spontaneous emission from an ensemble of excited atoms.

Example 6.7.1

What is the energy eigenvalue corresponding to a single photon in the first mode of a
Fabry–Perot cavity? Assume the distance L between the mirrors.

Solution: The applicable Fock state is 1, 0, 0 . . .j i and so we find

ĤH 1, 0, 0 . . .j i ¼
X

~KK

�hh!K N̂N ~KK
þ

1

2

� �
1, 0, 0 . . .j i ¼ �hh!1 n1 þ

1

2

� �
1, 0, 0 . . .j i ¼

3

2
�hh!1 1, 0, 0 . . .j i

We can substitute for the angular frequency by writing !¼ ck where

k ¼
2�

l
¼

2�

2L
¼
�

L

for the first mode.
So the total energy in the first mode is E ¼ 3

2 �hh!1 ¼
3
2 �hhc �L
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6.7.3 Schrodinger and Interaction Representation

Consider a multi-mode wave function �ðtÞ
�� �

expanded in the Fock basis set

�ðtÞ
�� �

¼
X

n1, :::

n1, :::ðtÞ n1, . . .j i ð6:7:16Þ

that satisfies the Schrodinger wave equation

ĤH �ðtÞ
�� �

¼ i�hh@t �ðtÞ
�� �

or �ðtÞ
�� �

¼ exp ĤHt=i�hh
h i

�ð0Þ
�� �

¼ ûu tð Þ �ð0Þ
�� �

ð6:7:17Þ

where ûu represent the evolution operator and the Hamiltonian has the form

ĤH ¼
X

k

�hh!k N̂Nk þ 1=2
� �

ð6:7:18Þ

Therefore

n1,...ðtÞ ¼ n1,...ð0Þ exp
t

i�hh

X

k

�hh!k nk þ 1=2ð Þ

" #

ð6:7:19Þ

In the Schrodinger representation, the creation and annihilation operators must be
independent of time according to

b̂bk ¼ b̂bkð0Þ and b̂bþk ¼ b̂bþk ð0Þ ð6:7:20Þ

The interaction representation removes the trivial time dependence induced by ûu from
the wave function

�sðtÞ
�� �

¼ ûu tð Þ �Ij i ð6:7:21Þ

where s and I represent the Schrodinger and interaction representations, respectively.
Therefore, Equation (6.7.16) provides the interaction representation by making the
replacement n1,...ðtÞ ! n1,...ð0Þ: Working with a single mode k, the interaction represen-
tation produces time-dependent creation and annihilation operators according to

b̂bkðtÞ ¼ ûuþb̂bkûu ¼ e�ĤHt=i�hhb̂bkeĤHt=i�hh ¼ b̂bke�i!kt ð6:7:22Þ

where the operator expansion theorem from Section 4.6 was used. The form of Equation
(6.7.22) agrees with that found in Section 6.3.

6.8 Interpretation of Fock States

The Fock states are eigenstates of the number operator and the EM free-field
Hamiltonian. The electric field averages to zero whereas its variance remains nonzero
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for every Fock state. The electric field can be expressed in terms of the noncommuting
quadrature operators. These quadratures satisfy a Heisenberg uncertainty relation that
limits our ability to determine the electric field from a classical point of view.

6.8.1 The Electric Field for the Fock State

The Fock state is not an eigenstate of the electric field as can easily be seen by calculating
ÊE nj i: Using the creation–annihilation form of the electric field from Section 6.4 for a single
mode, we find

ÊE nj i ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂beikz�i!t � b̂bþe�ikzþi!t
h i

nj i ð6:8:1aÞ

The annihilation and creation operators operating on the Fock state produce

ÊE nj i ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
n n� 1j ieikz�i!t � ðnþ 1Þ nþ 1j ie�ikzþi!t
 �

ð6:8:1bÞ

The ket nj i cannot be factored from the expression to produce an eigenvector equation.
We must expect such a result because the operators b̂b, b̂bþ don’t commute. Using
an operator analog of the classical expression for the magnitude of the electric field

produces nh j dAmplAmpl nj i ¼ nh j
ffiffiffiffiffiffiffiffiffiffiffi
2�hh!
"0V N̂N

q
nj i ¼

ffiffiffiffiffiffiffiffi
n2�hh!
"0V

q
:However the phase cannot be a priori known.

The expected results from a series of measurements of the electric field produces an
average of zero for the Fock state nj i: Equation (6.8.1a) gives us

�EE ¼ nh jÊE nj i ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
n n j n� 1h ieikz�i!t � ðnþ 1Þ n j nþ 1h ie�ikzþi!t
 �

¼ 0 ð6:8:2Þ

which makes use of the orthonormality of the Fock states n j mh i ¼ �nm: The average
electric field in the Fock state must be 0 because, even though it has a definite number of
photons, it has a completely unspecified phase according to �N�� � 1=2: The idea is
somewhat equivalent to integrating over the entire cycle of the sine wave. Only here,
we don’t know if the wave should be pictured as in Figure 6.8.1 or with the peaks and
valleys reversed (180
 phase shift). That is, we cannot specify the phase � in ei!tþ�:

6.8.2 Interpretation of the Coordinate Representation of Fock States

Recall from the previous section that the Fock states must be eigenstates of the number
operator and hence the Hamiltonian. Using the quadrature operator form of the
Hamiltonian and the number representation of the Fock state, the eigenvector equation
can be written

ĤH q̂q, p̂p
� �

nj i ¼ En nj i ð6:8:3Þ

FIGURE 6.8.1

Representation of the average field.
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This time-independent Schrodinger equation can be written in the coordinate form

�
�hh2

2

d2

dq2
þ
!2q2

2

� �
unðqÞ ¼ EnunðqÞ En ¼ �hh! nþ

1

2

� �
ð6:8:4Þ

where ! is the frequency of the mode and where unðqÞ ¼ q
�� n

� �
is the coordinate

representation for the Fock state with exactly n photons in the mode. As discussed in
the previous section, we can either solve this second-order equation or use the
creation–annihilation operators to find the solutions. The first two appear below.

u0ðqÞ ¼
!

��hh

� �1=4
exp �

!q2

2�hh

	 

u1ðqÞ ¼

ffiffiffiffiffiffi
2!

�hh

r
!

��hh

� �1=4
q exp �

!q2

2�hh

� �
ð6:8:5Þ

The first of Equations (6.8.5) provides the coordinate representation of the vacuum state
(no photons). The eigenfunctions unðqÞ represent the probability amplitude that a mode
containing n photons will have the particular value of ‘‘q’’ for the quadrature amplitude.
Repeated measurements of the field amplitude produce various values.

Figure 6.8.2 shows example measurements of the ‘‘electric field amplitude’’ q for the
vacuum state 0j i: The probability density is plotted (sideways) next to the measured
signal. Recall that the probability density is the modulus squared of the probability
amplitude. The figure shows the greatest excursions in q from the average occur only
a few times; the probability has the smallest value for these values of q. For a fixed
number of photons (such as n¼ 0) the electric field can be observed with a variety of
q amplitudes (similar comments apply to the ‘‘p-quadratures’’). Clearly, the ‘‘electric field
amplitude q’’ must vary although the number of photons remains fixed from one
measurement to the next.

6.8.3 Comparison between the Electron and EM Harmonic Oscillator

comes from the electronic harmonic oscillator with 10 quanta of energy, which means
the electron occupies eigenstate u10ðxÞ: In this case, ju10ðxÞj

2 represents the probability
density of finding the electron at location x. The classical curve in the figure shows
the classical probability density of finding the particle at the same location. In the limit
of large numbers of quanta, the two curves more closely agree.

The EM quantum mechanical probability in Figure 6.8.3 shows that the quantum theory
predicts the quadrature amplitude q can assume a range of possible values. Therefore,
even though the system has a fixed total energy (fixed number of photons and fixed
frequency), there must be a nonzero probability of finding the amplitude with any
number of possible values. For the n¼ 0 case (no photons), Equation (6.8.5) indicates

FIGURE 6.8.2

Comaparing the coordinate ‘‘q’’ with the mea-
sured noise in the electric field for the vacuum.

406 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC

We can compare the results from the electron and EM harmonic oscillator. Figure 6.8.3



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:20am Page: 407/478

a nonzero probability of finding the wave with nonzero amplitude! For very large
numbers of photons, the quantum and classical theories become identical as though we
can neglect the commutation relations. Keep in mind that there exists two quadrature

become clear when we discuss the Wigner distribution.

6.8.4 An Uncertainty Relation between the Quadratures

Because the Hermitian quadrature operators q̂q, p̂p appearing in the single-mode expression

ÊE z, tð Þ ¼
�!
ffiffiffiffiffiffiffiffi
"0V
p q̂q sin kz� !tð Þ þ

p̂p

!
cos kz� !tð Þ

	 

ð6:8:6Þ

do not commute q̂q, p̂p
 �

¼ i�hh, they produce a Heisenberg uncertainty relation of the form

�q �p �
�hh

2
ð6:8:7Þ

where �q represents the standard deviation and therefore �q
� �2

represents the variance.

�q
� �2

¼ �q

� �2
¼ q̂q� �qq

� �2
D E

ð6:8:8Þ

The symbol �qq refers to the expected value q̂q
� �
: The fact that the quadrature operators do

not commute therefore indicates that multiple measurements of the same field will not
produce the same identical results each time.

First, we indicate the calculation leading to Equation (6.8.7) for single mode Fock states
nj i: We need to calculate expressions of the form nh jfðq̂q, p̂pÞ nj i: The chapter review exercises

ask for the same calculation but using the coordinate representation where

nh jfðq̂q, p̂pÞ nj i ¼

Z
dq u�nðqÞ f q,

�hh

i

@

@q

� �
unðqÞ

The wave functions can be found using an equation similar to Equation (5.9.5).
In order to find the Heisenberg uncertain relation, we must calculate

�2
q ¼ nh jq̂q2 nj i � nh jq̂q nj i2 �2

p ¼ nh jp̂p2 nj i � nh jp̂p nj i2 ð6:8:9Þ

FIGURE 6.8.3

Comparing the quantum mechanical probability
for a particular field amplitude (10 photons in the
mode) with the classical counterpart.
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where the quadrature operators can be found from Equations 6.4.5

q̂q ¼

ffiffiffiffiffiffi
�hh

2!

r

b̂bþ b̂bþ
� �

p̂p ¼ �i

ffiffiffiffiffiffi
�hh!

2

r

b̂b� b̂bþ
� �

ð6:8:10Þ

Simple calculations using the creation–annihilation operator properties and commutators
provide

nh jq̂q nj i ¼

ffiffiffiffiffiffi
�hh

2!

r

nh j b̂bþ b̂bþ
� �

nj i ¼

ffiffiffiffiffiffi
�hh

2!

r
ffiffiffi
n
p

n j n� 1h i þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

n j nþ 1h i
� �

¼ 0 ð6:8:11aÞ

Next find the average of the square

�
n
��q̂q2
��n
�
¼

�hh

2!

�
n
���b̂bþ b̂bþ

�2��n
�
¼

�hh

2!

�
n
��b̂b2 þ b̂bþ2þ b̂bb̂bþ þ b̂bþb̂b

��n
�
¼

�hh

2!

�
n
��b̂b2 þ b̂bþ2 þ 2N̂N þ 1

��n
�

where N̂N ¼ b̂bþb̂b: Square terms such as
�
n
��b̂b2
��n
�
¼

ffiffiffi
n
p �

n
��b̂b
��n� 1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p �
n n� 2

�
¼ 0

��
produce zero. This last expression therefore becomes

nh jq̂q2 nj i ¼
�hh

!
nþ 1=2ð Þ ð6:8:11bÞ

Combining Equations (6.8.11) produces the standard deviation of

�2
q ¼ nh jq̂q2 nj i � nh jq̂q nj i2¼ �hh=!ð Þ nþ 1=2ð Þ ð6:8:12aÞ

A similar procedure for �p produces the result (see the chapter review exercises)

�2
p ¼ nh jp̂p2 nj i � nh jp̂p nj i2¼ �hh! nþ 1=2ð Þ ð6:8:12bÞ

Now we can demonstrate the Heisenberg uncertainty relation. Combining Equations
(6.8.12) provides the relation.

�q�p ¼ �q�p ¼ �hh nþ 1=2ð Þ ð6:8:13Þ

This last equation attains a minimum value for n¼ 0. Therefore we find the Heisenberg
uncertainty relation

�q�p ¼ �q�p � �hh=2 ð6:8:14Þ

The equality holds for the vacuum state since n¼ 0. The vacuum state is a Gaussian and
exhibits the minimum spread.

compares the vacuum state with the n¼ 1 Fock state which has one photon. Each wave
function gives an average of zero for the corresponding electric field. However, multiple
measurements of the amplitude q can produce a range of values and not just zero.
Therefore, the standard deviation cannot be zero for either case. Figure 6.8.4 shows the
n¼ 1 state has most of its values away from q¼ 0 while the n¼ 0 state has most values
near q¼ 0. The standard deviation must be larger for the n¼ 1 state. In fact, the standard
deviation increases with n. Therefore, the value of �q�p ¼ �q�p must increase with n
and the equality cannot hold. This uncertainty relation occurs because the quadrature
operators do not commute ½q̂qk, p̂pk� ¼ i�hh:
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Next, we indicate why the inequality holds for Equation (6.8.13) when n > 0. Figure 6.8.4
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6.8.5 Fluctuations of the Electric and Magnetic Fields in Fock States

The previous topics have shown that the expected value of the electric field is zero for
all Fock states. We have also seen that the quadratures can assume a range of values.
Now we examine how this affects the fluctuations of the electric field. In other words,
the electric field in the Fock state has an average of zero but that does not require every
individual measurement to produce zero. In this topic, we calculate the standard
deviation of the electric field for a Fock state. We expect multiple measurements of
the electric field to give a range of values. For simplicity, let’s consider a single
mode traveling along the z-direction with frequency !. The Fock state becomes

nj i 	 n, 0, 0 . . .j i

which describes the specifics of the system. The electric field operator is given by

ÊE ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂beikz�i!t � b̂bþe�ikzþi!t
h i

ð6:8:15Þ

The standard deviation must be the square root of the variance

�2
E ¼ nh j ÊE2 � �EE2

� �
nj i ð6:8:16Þ

The expectation value of the electric field �EE is given by Equation (6.8.6) as �EE ¼ nh jÊE nj i ¼ 0:
The definition of the standard deviation gives us

�2
E ¼ nh j ÊE2 � �EE2

� �
nj i ¼ nh jÊE2 nj i ð6:8:17Þ

Using Equation (6.8.18), the square of the electric field operator becomes

ÊE2 ¼ �
�hh!

2"0V
b̂b2e2ikz�2i!t þ b̂bþ

� �2
e�2ikzþ2i!t � b̂bb̂bþ � b̂bþb̂b

	 


Using the fact that nh jb̂b2 nj i ¼ 0 and nh jb̂bþ2 nj i ¼ 0, we can write

�2
E ¼ nh jÊE2 nj i ¼ �

�hh!

2"0V
nh j �b̂bb̂bþ � b̂bþb̂b
� �

nj i

FIGURE 6.8.4

Comparing the photon wave function for a single mode with either 0 or 1 photon.
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Now use the commutation relation ½b̂b, b̂bþ� ¼ 1 to substitute b̂bb̂bþ ¼ 1þ b̂bþb̂b

�2
E ¼ nh jÊE2 nj i ¼ �

�hh!

2"0V
nh j �1� 2b̂bþb̂b
� �

nj i ¼
�hh!

"0V
nþ

1

2

� �
ð6:8:18Þ

The last equation shows that even though the average electric field must be zero for Fock

the standard deviation must be

�2
E ¼ n ¼ 0h jÊE2 n ¼ 0j i ¼

�hh!

2"0V
ð6:8:19Þ

Equation (6.8.19) shows that the electric field fluctuates away from the average value of
zero for the vacuum state. The possibility of measuring nonzero values can also be seen in

These vacuum field fluctuations initiate spontaneous emission from an
ensemble of excited atoms. The fluctuations are equivalent to the zero point motion for

6.9 Introduction to EM Coherent States

This section discusses coherent states of the electromagnetic (EM) field and contrasts them
with Fock states. The formalism can be applied to optical and RF electromagnetic energy,
phonons, and any other system that can be represented by a sum of ‘‘harmonic
oscillators.’’ As shown in previous sections, the quantized EM wave can be found by
replacing classical c-number amplitudes with operators that must act on an ‘‘amplitude
Hilbert space.’’ These operators do not commute and they cannot be repeatedly and
simultaneously measured without finding multiple values; this leads to a nonzero
variance for the field. In the limit of large numbers of quanta, the noncommutivity of the
operators has negligible affect and the quantum field becomes very similar to the
classical one.

The manifestations of the quantum nature of EM waves depend greatly on the basis set
employed for the amplitude space. The amplitude Hilbert space can have a number of
different basis sets. The set of Fock vectors provides an example of the most fundamental
basis set having definite numbers of photons but indefinite phase. The set of coherent
states provides another example—the set actually has too many vectors to be a basis set
(it’s ‘‘over complete’’). The coherent states appear as linear combinations of the Fock
states. Strange, but true, the coherent states give finite uncertainty for the phase while
increasing the uncertainty in the number of photons in the system (as a result of the
summation over photon number n in the Fock states). Glauber and Yuen are the main
early contributors to the study of coherent states although the work extends back to the
time of Schrodinger.

This section introduces the coherent state and shows how translating the vacuum
state can produce it. A subsequent section discusses the mathematical foundation of
coherent states and the stochastic models.

6.9.1 The Electric Field in the Coherent State

The quantum picture of light described by a coherent state comes as close as nature
allows to the classical picture of light as a sinusoidal wave with definite amplitude

410 Physics of Optoelectronics
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states, the variance can never be zero. Especially note that for the vacuum state with n¼ 0,

the electron harmonic oscillator as discussed in Chapter 5.

6.8.4.Figure
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(magnitude and phase). For the coherent state, the average amplitude of the electric (or
magnetic) field must be nonzero for the nonvacuum states unlike the zero averages found
for Fock states. In addition, the coherent state has nonzero, finite variance for the
amplitude and phase contrary to the infinite phase variance found for Fock states.
However, the number of photons in a coherent beam cannot be fixed, but instead follows
a Poisson distribution (Figure 6.9.1). The larger the number of photons, the more nearly
the coherent state behaves similar to a classical state of light. One major distinction
between the classical and coherent descriptions is that the coherent state requires
uncertainty in the amplitude and phase of wave (i.e., noise).

We denote the coherent state for a single optical mode by �j i where � is a complex
number written as

� ¼ �j jei� ð6:9:1Þ

The complex number � represents the average magnitude and phase of the electric
field. Most importantly, we require the ket �j i to be an eigenvector of the annihilation
operator

b̂b �j i ¼ � �j i ð6:9:2aÞ

However, because the boson creation and annihilation operators do not commute,
the coherent state cannot be an eigenstate of the creation operator. We can use the
adjoint operator on Equation (6.9.2a) to write

b̂b �j i ¼ � �j i
h iþ

! �h jb̂bþ ¼ �h j�� ð6:9:2bÞ

The expressions for the EM fields contain the noncommuting creation–annihilation
operators so that the coherent states cannot be eigenstates of those fields. Multiple
measurements of the same field necessarily produce multiple complex amplitudes.
The probability distribution associated with the coherent state describes the possible
ranges of these values. The magnitude and phase of the classical wave must therefore be
treated as random variables. The average of the magnitude and phase random variables
produces the classical sinusoidal waves associated with EM phenomena. A single
measurement of the complex amplitude for the EM coherent state can produce a result
that differs from the average. These individual measurements produce waves with
different magnitudes and phases. shows how the parameter � must be
related to the average amplitude of the EM wave.

For a system such as a Fabry–Perot cavity or for a traveling wave with multiple modes,
the coherent state can be written as

�1,�2, . . .j i ¼ �1j i �2j i � � �

Essentially this direct product state provides the complex amplitudes (magnitudes and
phases) of the waves for each of the basic modes of the system. Each individual mode
evolves independently of another unless there exists an explicit interaction between the

FIGURE 6.9.1

The number of photons in the coherent state
follows a Poisson distribution.

Light 411

© 2005 by Taylor & Francis Group, LLC

Figure 6.9.2
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modes (mitigated by an interaction Hamiltonian). The multimode coherent state must
be an eigenstate of an annihilation operator according to

b̂bk �1,�2, . . . ,�k, . . .j i ¼ �k �1,�2, . . . ,�k, . . .j i

The complex �k represents the average wave amplitude and phase of mode #k.
The coherent state �j i as a vector in the amplitude space must be composed of the Fock

vectors nj i as shown in Figure 6.9.3 for a single mode. We will find the unitary
displacement operator in the next section that maps the vacuum state into the coherent
state according to �j i ¼ D̂D �ð Þ 0j i: However, we will also discover that two coherent states
cannot be orthogonal even though we can normalize them to 1.

�
��

� �
6¼ 0 �j�h i ¼ 1

The states are approximately orthogonal so long as � and  are sufficiently different.
The displacement of the vacuum state by displacement operator can be illustrated

using the more physical quadrature representation. The coherent states can be obtained
by moving (translating) the vacuum state 0j i by the ‘‘distance’’ � in a Q-P plot (phase
space) to find 0þ �j i ¼ �j i as we will soon see. Apparently, we consider � to be the

FIGURE 6.9.2

j�j describes the amplitude of the field.

FIGURE 6.9.3

The displacement operator maps the vacuum state into the coherent state.
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‘‘distance’’ or ‘‘vector displacement’’ from an origin denoted by ‘‘0’’ in phase space. The
coherent vacuum state is identical to the Fock vacuum state.

6.9.2 Average Electric Field in the Coherent State

To understand the relation between the EM field amplitude and the coherent state,
consider the expression for the single mode quantized electric field found in Section 6.4
for traveling waves

ÊEk ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂bkei~kk�~rr�i!kt � b̂bþk e�i~kk�~rrþi!kt
h i

~eek ð6:9:3Þ

Now suppose we calculate the average electric field in the state �kj i: Using relations
(6.9.2), specifically b̂bk �kj i ¼ �k �kj i and �kh jb̂b

þ
k ¼ �kh j�

�
k , the average becomes

ÊEk

D E
¼ �kh jÊEk �kj i ¼ þi~eek

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
�kh jb̂bk �kj ie

i~kk�~rr�i!kt � �kh jb̂b
þ
k �kj ie

�i~kk�~rrþi!kt
n o

¼ þi~eek

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
�k ei~kk�~rr�i!kt � ��k e�i~kk�~rrþi!kt

n o

Using the expression found in Equation (6.9.1), specifically �k ¼ �kj j e
i�k, the average field

can be rewritten as

ÊEk

D E
¼ �kh jÊEk �kj i ¼ þi~eek

ffiffiffiffiffiffiffiffiffiffi
2�hh!k

"0V

s

�kj je
i~kk�~rr�i!ktþi�k � �kj je

�i~kk�~rrþi!kt�i�k

n o

Factor out the modulus and include the imaginary ‘‘i’’ with the exponentials to find

ÊEk

D E
¼ �kh jÊEk �kj i ¼ ~eek

ffiffiffiffiffiffiffiffiffiffi
2�hh!k

"0V

s

�kj j sin ~kk � ~rr� !ktþ �k � �
� �

ð6:9:4Þ

The � that appears in the ket for the coherent state �j i is the phasor (average) amplitude
of the electric field (to within the normalization constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hh!k="0V
p

) as indicated

�k, which is equivalent to rotating the ket �j i: However, the expectation value of the
field (i.e., the classical field) has the same value whether we rotate the coherent-state
ket or the electric field operator using the unitary rotation operator first introduced
in Section 6.4.6.

6.9.3 Normalized Quadrature Operators and the Wigner Plot

The single-mode electric field operator ÊEk incorporates the quadrature operators

ÊEk ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂bkei~kk�~rr�i!kt � b̂bþk e�i~kk�~rrþi!kt
h i

~eek ð6:9:5Þ
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in Figure 6.9.2. We can choose any desired phase for the average field just by adjusting
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Often for simplicity, new quadrature operators Q̂Qk and P̂Pk are defined in terms of the
orginal ones q̂qk and p̂pk according to

Q̂Q~kk
¼ q̂q~kk

ffiffiffiffiffi
!~kk
�hh

r

¼
b̂b~kk þ b̂bþ

~kkffiffiffi
2
p P̂Pk ¼ p̂pk

1
ffiffiffiffiffiffiffiffi
�hh!k
p ¼ �i

b̂b~kk � b̂bþ
~kkffiffiffi

2
p ð6:9:6Þ

where, as discussed in Section 6.4, the original quadrature operators satisfy commutation
relations of the form q̂qK, p̂pk

 �
¼ i�hh�k,K: Substituting the new quadrature operators into

Equation 6.9.5 produces

~EEk ~rr, t
� �

¼ �~eek

ffiffiffiffiffiffiffiffi
�hh!k

"0V

r
Q̂Qk sin ~kk � ~rr� !kt

� �
þ P̂Pk cos ~kk � ~rr� !kt

� �h i
ð6:9:7Þ

so that Q̂Qk and P̂Pk appear as amplitudes without additional constants for P̂Pk unlike the q̂qk

and p̂pk in Equation 6.4.12. The new quadrature operators satisfy new commutation
relations that can be obtained from the original ones

Q̂Qk, P̂PK

h i
¼
!k

�hh!k
q̂qk, p̂pK

 �
¼ i�kK Q̂Qk, Q̂QK

h i
¼ 0 ¼ P̂Pk, P̂PK

h i
ð6:9:8Þ

Clearly, the two Hermitian quadrature operators for the same mode do not commute
Q̂Qk, P̂Pk

�

repeated measurements of the quadrature amplitudes Q̂Qk and P̂Pk yield a range of
measured values fQkg and Pkf g, respectively. These ranges of values can be described
by a quasi-classical probability density (refer to the Wigner function).

6.9.4 Introduction to the Coherent State as a Displaced Vacuum in Phase Space

As we know from previous sections, the quantum electric field has operators in place of c-
number Fourier amplitudes. Making measurements of the field necessarily means that all
quadrature components must be measured. Because the operators do not commute, the
result of a measurement can be positioned within a range of values for the quadratures.
Let’s consider a single mode k. We make measurements on the same field to find the
range of possible values for the numbers Qk,Pk: We want a pictorial representation of the
range of possible values. The values can mostly be found inside a small circle enclosing a
region of the Q–P plane. The displacement of this circle from the origin (the vacuum

�j jei’ for �j i in
‘‘amplitude space.’’ This vector has both a length �j j (as measured from the origin—

operator D(�) moves the circle from the origin through a distance
ffiffiffi
2
p

� and produces the
result of �j i ¼ D̂Dð�Þ 0j i:

We can show that the statistical properties of the coherent state �j i must be the same as
that for the vacuum state 0j i (except for the average value �j j). The displacement operator
moves the vacuum state away from the origin in phase space to produce the new state �j i
without changing the probability distribution (except for the mean value �) and therefore
without changing the size of the small circle.
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¼ i which yields an uncertainty relation as discussed in Chapter 4. Therefore,

state—Figure 6.9.4) represents the complex amplitude of the field given by

Figure 6.9.5) and an angle ’ (as measured with respect to an axis). The displacement
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In this topic, we first show the expected range of Q–P values in terms of a small area
�Qk�Pk: Using the results for the Fock vacuum (which is the same as the coherent state
vacuum), we show that this small area must be a circle. Then we show how the position
of the circle center must be related to the field amplitude � ¼ �j jei’: Finally, we
discuss how measurements of the field produce results mostly found within the circle
periphery.

We can see that the amplitude for the vacuum electric field must have an average
value of zero, which means that any probability distribution representing the field
must be centered about the origin (see Figure 6.9.4). The vacuum state (i.e., zero
photon state) corresponds to a coherent state with zero average amplitude for the
electric (and magnetic) field hÊEki ¼ 0kh j ÊEk 0kj i ¼ 0 as is easy to verify by setting �¼ 0 in
Equation (6.9.4). The variance of the measured field must be nonzero because the
quadrature operators Q̂Qk and P̂Pk (or, equivalently, the creation b̂bþk and annihilation b̂bk

operators) appearing in the field operator ÊEk do not commute. Equation (6.8.19) with
n¼ 0 in the previous section shows that the electric field (in the vacuum state) has a
variance of

�2
E ¼ 0h jÊEk 0j i ¼

�hh!k

2"0V

This nonzero variance indicates that the quadratures also have nonzero variance.
Section 6.7 solves Schrodinger’s equation for the coordinate representation of the
Fock state wavefunctions. The Q and P-space coordinate representation of the n¼ 0
Fock state u0 Qkð Þ and u0 Pkð Þ respectively, as indicated in Equation (6.7.11), have Gaussian
distributions (see the chapter review exercises). Therefore, the distribution of Q–P values
must appear as a Gaussian along either the Q or the P axis. We therefore surmise
the joint distribution for both Q and P must have a Gaussian shape f(P, Q) as indicated in
Figure 6.9.4. Given that most (but not all) of the area under a Gaussian f(P) distribution

FIGURE 6.9.5

The coherent state is a displace vacuum.

FIGURE 6.9.4

Quasi-classical probability distribution for the electric
field in the vacuum state.
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an area for which the Gaussian distribution f(P, Q) has most (but not all) of its volume.
Previous sections show that the vacuum state produces the minimum uncertainty
Heisenberg relation

�Qk �Pk ¼
!kffiffiffiffiffiffiffiffi
�hh!k
p �qk

� �
�pkffiffiffiffiffiffiffiffi
�hh!k
p

� �
¼
!k

�hh!k
�qk�pk ¼

1

2

Therefore, for the Gaussian shown in the vacuum state
distribution of the quadratures, the small circle with area approximately given by
�qk�pk ¼ �hh=2 can be used to represent the most likely values of the quadratures.
Repeated measurements of the quadratures produce a range of measured values Qk

and Pk (note the absence of the caret above the symbol) that, on average, must be
located within the interior of the circle. For the vacuum state, these values have an average
of zero. Individual measurements of the field amplitude do not necessarily produce
zero. These occasionally measured nonzero values represent the vacuum fluctuations of
the field.

parameter � in the coherent state �j i is a complex number that gives the center of the
distribution according to

�k ¼ �kj je
i� ¼ Reð�kÞ þ i Imð�kÞ ¼

1
ffiffiffi
2
p Q0 þ iP0ð Þ ð6:9:9Þ

which is easy to verify by using Equation (6.9.6) with the definitions

�h jQ̂Q �j i ¼ Q0 �h jP̂P �j i ¼ P0

Therefore, the average electric field must be proportional to the hypotenuse from the
origin to the point P0,Q0ð Þ as can be seen from Equation (6.9.4)

Ej j ¼

ffiffiffiffiffiffiffiffi
�hh!

"0V

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ P2
0

q
¼

ffiffiffiffiffiffiffiffi
2�hh!

"0V

s

�j j

The parameter � represents the average amplitude.

can only be approximately orthogonal. The argument of the coherent-state ket (for
example, � in �j i ) represents the average amplitude. There can be significant overlap of
the distributions for two neighboring states such as �j i and 

�� �: The integral over Q–P
phase space for the inner product �

�� 
� �

must be nonzero. However, two states �
�� � and �j i

widely separated in phase space essentially have zero overlap and the inner product must
be approximately zero �

�� �
� �

ffi 0: Apparently, as long as the two circles do not touch, the
two corresponding coherent states will be approximately orthogonal. This is easy to see
since the distribution for � is zero where as the distribution for � is nonzero and vice versa
so that the integral (for the inner product) is always zero.

416 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC

Figure representing

must be contained within a length of twice the standard deviation, we can likewise define

6.9.4

Displacing the vacuum produces a coherent state as suggested by Figure 6.9.5. The

The ‘‘phase–space’’ plots (i.e., P–Q plots) in Figure 6.9.7 show why two coherent states
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6.9.5 Introduction to the Nature of Quantum Noise in the Coherent State

The term ‘‘noise’’ refers to the dispersion (i.e., standard deviation) in the electric field and
quadrature terms. For the phase space plots, the area of the circle represents the noise.
The amount of noise in the coherent state is exactly the same as the amount of noise in the
vacuum because the distribution has been translated without a change of shape. Each
time we make a measurement of the electric field in the coherent state �j i, we expect to
find a different value of amplitude and phase, denoted by the phasor �0. Although the
results of the measurements will be known, we cannot accurately predict those results
before hand. Sometimes in classical EM theory we imagine there must exist an actual EM
wave but the measurements only provide a range for the amplitude simply because of
measurement error. With quantum fields, only the average field can be known. This is
different from the classical case where we assume multiple measurements provide an
average closer to the true value. In quantum theory, there does not exist the ‘‘true value.’’
The value we will find upon measurement can only be known through a probability
distribution—the Wigner distribution.

In quantum theory, the amplitude and phase of each measured �0 can be found from the
measured values Q and P similar to Equation (6.9.9)

�0k ¼ �0k
�� ��ei�0 ¼ Reð�0kÞ þ i Imð�0kÞ ¼

1
ffiffiffi
2
p Q0 þ iP0ð Þ ð6:9:10Þ

This can be alternately expressed by saying the distance
ffiffiffi
2
p

�0k
�� �� (which defines the

amplitude of the detected or measured wave) and the phase �0 must be positioned within

interior of the circle gives the collection of vectors �0 ¼ �0j jei�0 or quadrature values Q0,P0

most likely to be found from any given measurement.
The Schrodinger representation of the coherent state �j i has the form

�j is¼ e�i!t=2 �ðtÞ
�� �

where �ðtÞ ¼ �e�i!t �hh!t=2i�hh is an unimportant phase factor.
The magnitude �j j does not change with time but the phasor rotates at a rate !.

FIGURE 6.9.7

The overlap of coherent states control the inner
product.

FIGURE 6.9.6

The amplitude and phase of the Wigner distribution.
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(refer to Section 6.10). The term e

the circle representing the possible range of values (see Figure 6.9.6). Therefore, the
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Figure 6.9.8 shows a small ‘‘uncertainty’’ circle in the QP plane. Every phasor termi-
nating in the circle, which represents a possible outcome of a measurement, provides a
different value for the magnitude and phase of a sine wave. The right portion of the
figure shows the three possible results of a measurement. Each sine wave has a slightly
different phase and amplitude but identical frequency !. The measured electric field has
the form

~EE0 ~rr, t
� �

¼ �~eek

ffiffiffiffiffiffiffiffi
�hh!k

"0V

r
Q0 sin ~kk � ~rr� !kt

� �
þ P0 cos ~kk � ~rr� !kt

� �h i

where Q0,P0 represent the measured quadrature amplitudes. The measured values of the
quadratures must depend on time because the average values of the quadratures depend
on time. Figure 6.9.8 illustrates how the Gaussian distribution must rotate in a circle
about the �¼ 0 origin. The position of a point in the uncertainty circle corresponds to the
particular amplitude and phase of the sinusoidal wave. The motion of the circle gives
the sinusoidal shape to the wave. The area of the circle gives the range of possible values
for the amplitude and phase.

6.9.6 Comments on the Theory

The structure of quantum theory regarding the relation between the operator and the
state should be more evident now. The operators such as the Hamiltonian for the free
field

ĤH ¼
X

k

�hh!k b̂bþk b̂bk þ
1

2

� �

always appear the same (no real need to find a new formula) and contain all the possible
outcomes in the summation. However, the states describe the specifics of the system. The
operator such as ĤH can be used with either Fock states or coherent states. The expectation
value of ĤH in the Fock state n1, 0, . . .j i, for example, is

n1, 0, . . .h jĤH n1, 0, . . .j i ¼ �hh!1 n1 þ
1

2

� �

FIGURE 6.9.8

The moving Wigner plot provides a range of sine waves.
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whereas for the coherent state, using the same Hamiltonian, the expectation value is

�1, 0, . . .h jĤH �1, 0, . . .j i ¼ �hh!1 �j j2þ
1

2

� �

Either way, it’s the same formula for the operator.

6.10 Definition and Statistics of Coherent States

By definition, the number and annihilation operators have the Fock and coherent states,
respectively, as eigenstates. The Fock states have a definite number of photons in each
mode, but for the coherent states, the number of photons follows a Poisson distribution
with nonzero variance. Because Fock states provide a basis set for amplitude space, the
coherent states can be expressed as a sum over the Fock states. The average and standard
deviation (and higher moments) characterize the probability distribution for the photon
number in the coherent states.

In this section, we find the orthonormal expansion of the coherent states in terms of
the Fock basis states. We next demonstrate the probability of finding a number of photons
in a coherent state using the expansion coefficients.

6.10.1 The Coherent State in the Fock Basis Set

By definition, the annihilation operator has the coherent state as an eigenstate.

b̂bk �1, . . . ,�k, . . .j i ¼ �k �1, . . . ,�k, . . .j i ð6:10:1Þ

To within a normalization constant, the average electric field amplitude for mode ‘‘k’’ can
be represented by the complex parameter �k ¼ �kj je

i�k : Obviously, the coherent state
vector �1, . . . ,�k, . . .j i ¼ �1j i �2j i . . . lives in a direct product space. In what follows, for
simplicity, we focus on a single mode �kj i and drop the subscript ‘‘k.’’ The basic definition
of the coherent state becomes

b̂b �j i ¼ � �j i ð6:10:2Þ

By applying the adjoint operator to both sides of Equation (6.10.2), the basic definition
can be equivalently stated as

�h jb̂bþ ¼ �h j��

The following discussion demonstrates the expansion of the coherent state in the Fock
basis set

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ð6:10:3Þ
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Recall that nkj if g spans a single-mode space; however, it can be part of a multimode
(i.e., direct product) space so that n1, . . . , nk, . . .j i ¼ n1j i n2j i . . . nkj i . . . : Although the
expansion appears to be complicated, the Fock states make it quite easy to use.

Interestingly, the expansion in Equation (6.10.3) and the resulting Poisson probability
distribution only require the eigenvalue equation (6.10.2) and the normalization
requirement � j �h i ¼ 1: We start with a linear combination of Fock states of the form

�j i ¼
X1

n¼0

Cn nj i ð6:10:4Þ

Apply the annihilation operator to Equation (6.10.4) and require Equation (6.10.2) to hold

� �j i ¼ b̂b �j i ¼
X1

n¼0

Cnb̂b nj i ¼
X1

n¼0

Cn

ffiffiffi
n
p

n� 1j i

Substitute Equation (6.10.4) for the left-most term to obtain

X1

n¼0

�Cn nj i ¼
X1

n¼1

Cn

ffiffiffi
n
p

n� 1j i

where the second sum starts at n¼ 1 since
ffiffiffi
0
p
¼ 0: A recursion relation can be found

for the expansion coefficients Cn. In the second summation, let n� 1 ! n to find

X1

n¼0

�Cn nj i ¼
X1

n¼0

Cnþ1

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nj i

Comparing sides (or equivalently, operating with mh j on both sides) provides
Cnþ1 ¼ Cn�=

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

: Assume C0 is known. We find the following sequence

C0 C1 ¼ C0
�
ffiffiffi
1
p C2 ¼ C1

�
ffiffiffi
2
p ¼ C0

�2

ffiffiffiffiffiffiffiffiffi
1 � 2
p . . . Cn ¼ C0

�n

ffiffiffiffi
n!
p

Now Equation (6.10.4) can be rewritten as

�j i ¼
X1

n¼0

C0
�n

ffiffiffiffi
n!
p nj i ð6:10:5Þ

FIGURE 6.10.1

The coherent state as an element of Fock space by virtue of Eq. 6.10.10. The
solid circles indicate the number of photons residing in the corresponding
Fock state.

420 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:20am Page: 421/478

Normalizing the coherent state vector to 1 yields the constant C0

1 ¼ � j �h i ¼
X1

m¼0

C0
�m

ffiffiffiffiffiffi
m!
p mj i

 !þX1

n¼0

C0
�n

ffiffiffiffi
n!
p nj i ¼

X

mn

C�0C0
�mð Þ
�

ffiffiffiffiffiffi
m!
p

�n

ffiffiffiffi
n!
p m j nh i

Using the orthonormality relation for Fock states m j nh i ¼ �mn provides

1 ¼ � j �h i ¼ C0j j
2
X

n

�j j2n

n!
ð6:10:6Þ

Comparing this last expression with the Taylor series expansion of ex ¼
P

n xn=n! gives

X

n

�j j2n

n!
¼ exp �j j2 ð6:10:7Þ

Substituting Equation (6.10.7) into (6.10.6) provides the constant C0

1 ¼ C0j j
2exp �j j2 ! C0 ¼ e� �j j

2=2 ð6:10:8Þ

where the phase is set equal to unity. Finally, Equations (6.10.4) and (6.10.5) can be written
as

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ð6:10:9Þ

6.10.2 The Poisson Distribution

This topic derives the Poisson probability distribution that characterizes the photon
number in a coherent state. The coherent state exhibits shot noise.

What is the probability that a measurement of the number of photons for the coherent
state �j i will find ‘‘m’’ photons in the mode (of volume V)? The question can be answered
by using the Fock basis nj if g

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ð6:10:10Þ

The probability amplitude for the coherent state having ‘‘m’’ photons can be found by
projecting the coherent state �j i onto the basis state mj i (which is the Fock state with the
number of photons ‘‘m’’). Therefore, the probability of finding m-photons in coherent state
�j i must be

P�ðmÞ ¼ m j �h ij j2 ð6:10:11Þ

Recall that the quantity m j �h i is an expansion coefficient similar to those discussed in
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expansion (Figure 6.10.1) in Equation (6.10.9)
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The probability P�(m) can be found as follows. First operate on Equation 6.10.10 with
mh j to get

m j �h i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p m j nh i ¼ e� �j j

2=2 �m

ffiffiffiffiffiffi
m!
p

since m j nh i ¼ �mn: Substituting into Equation (6.10.11) provides

P�ðmÞ ¼ m j �h ij j2¼ e� �j j
2 �j j2m

m!
ð6:10:12Þ

This expression can be compared with the Poisson probability distribution usually
written as

PðmÞ ¼

me�


m!
ð6:10:13Þ

where 
 ¼ �j j2 is the average number of photons in the coherent state �j i: There exists a
possibility of having extremely large numbers of photons in the beam even for small field
amplitudes �. As a note, Equations (6.10.12) and (6.10.13) represent probabilities and
must sum to unity according to

X

m

P�ðmÞ ¼
X

m

m j �h ij j2 ¼
X

m

e� �j j
2 �j j2m

m!
¼ 1 ð6:10:14Þ

6.10.3

What is the average number of photons mh i in a field characterized by the coherent state
�j i ? The following discussion shows that the average number must be

�nn ¼ 
 ¼ �j j2 ð6:10:15Þ

for the � ¼ 0j i state has only one point for the coherent state since the state is also the Fock
vacuum state 0j i. Notice the standard deviation (i.e., spread of the distribution) increases
with the average number of photons in the mode. We can calculate the average
occupation number by two methods. We next deal with the operator method and leave
the series solution to the chapter review exercises.

Let N̂N ¼ b̂bþb̂b be the number operator. The expected number of photons is then

�nn 	 N̂N
D E
¼ �h jb̂bþb̂b �j i ¼ b̂b �j i

h iþ
b̂b �j i ¼ � �j i½ �

þ� �j i ¼ �j j2 � j �h i ¼ �j j2 ð6:10:16Þ

since �j i is an eigenstate of the annihilation operator.
What is the standard deviation �N for the number of photons in an electromagnetic

mode characterized by the coherent state �j i? Recall that the standard deviation �N can be
found from the variance according to

�2
N ¼ N̂N2

D E
� N̂N
D E2
¼ �h jN̂N2 �j i � �h jN̂N �j i2 ð6:10:17Þ
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The Average and Variance of the Photon Number

Figure 6.10.2 shows the discrete Poisson distribution for three coherent states. The curve
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Equation 6.10.16 provides the last term in Equation 6.10.17. Now calculate the first term.

�h jN̂N2 �j i ¼ �h jb̂bþb̂bb̂bþb̂b �j i

The middle two operators need to be commuted using the commutation relations ½b̂b, b̂bþ� ¼
1! b̂bb̂bþ ¼ b̂bþb̂bþ 1 to get

�h jN̂N2 �j i ¼ �h jb̂bþ b̂bþb̂bþ 1
� �

b̂b �j i ¼ �h jb̂bþb̂bþb̂bb̂b �j i þ �h jb̂bþb̂b �j i

Using relations of the form b̂b �j i ¼ � �j i and b̂bb̂b �j i ¼ �2 �j i (and so on), we find

�h jN̂N2 �j i ¼ �h jb̂bþb̂bþb̂bb̂b �j i þ �h jb̂bþb̂b �j i ¼ ��ð Þ2�2 � j �h i þ ��� � j �h i

The coherent states are normalized to one, so that

�h jN̂N2 �j i ¼ �j j4þ �j j2

Equation 6.10.17 provides the variance as

�2
N ¼ N̂N2

D E
� N̂N
D E2
¼ �h jN̂N2 �j i � �h jN̂N �j i2¼ �j j4þ �j j2� �j j4¼ �j j2¼ �nn

so the standard deviation must be

�N ¼
ffiffiffi
�nn
p

ð6:10:18Þ

6.10.4 Signal-to-Noise Ratio

Fiber communication systems require semiconductor lasers with low signal-to-noise
ratios (SNRs). At sufficiently high power, the lasers operate in a state that closely approx-
imates the coherent state. The average number of photons in the beam represents the
signal strength (see Equation 6.10.15) and the standard deviation provides a measure of
the noise. The signal-to-noise ratio can be defined as (from Equations 6.10.15 and 6.10.18)

SNR ¼
�nn
ffiffiffi
�nn
p ¼

ffiffiffi
�nn
p

ð6:10:19Þ

FIGURE 6.10.2

The Poisson distribution for averages of 0, 2, 4 photons in a mode.
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Equation (6.10.19) shows that smaller numbers of photons produce smaller SNRs. This
occurs because the unavoidable quantum noise inherent to the coherent state depends on
the square root of the number of photons in the beam. For example, an optical beam with
100 photons has a standard deviation of 10 and a signal-to-noise ratio of 10. We can
also see that a blue beam of light with intensity I will have a lower SNR than a red beam
with the same power. This occurs because each photon in the blue beam has larger energy
than each red photon, and therefore there must be fewer photons in the blue beam
to make up the intensity I.

For systems composed of a small number of atoms, such as nanometer scale devices,
low SNR can be a problem. For example, a device with dimensions smaller than
100� 100� 100 angstrom might consist of 30� 30� 30 atoms (using about 3 angstrom per
atom). The total number of atoms is less than 27,000. Now if the collection is electrically
pumped so that 10% are emitting light at any particular time then there are at most 2700
photons. The standard deviation in this case is about 50. The expected total variation of
the signal is roughly twice the standard deviation or about 100. Therefore, the signal can
be expected to vary by at least 4% due to inherent quantum noise. The percentage can be
higher for systems with fewer atoms. For many analog applications, this is an
unacceptably high noise level. Subsequent sections show that it might be possible to
reduce the detected noise by working with ‘‘squeezed states.’’

6.10.5 Poisson Distribution from a Binomial Distribution

On many occasions, experiments make use of devices or processes that exhibit the
binomial distribution in order to approximate a Poisson distribution. This often occurs for

binomial distribution describes the probability that exactly m out of n objects will
be found when the probability of a single event (1 out of 1) has the probability p. The
probability of the event not occurring must be q¼ 1� p. The p and q are standard symbols
and should not be confused with the quadratures. For example, consider Figure 6.10.3
where the reflectivity controls the probability p that a photon will pass through
the partially reflective plate and q¼ 1� p that it will not pass through. The binomial
probability has the form

Pðm; nÞ ¼
n
m

� �
pmð1� pÞn�m

ð6:10:20aÞ

The figure shows how the partially reflective plate introduces ‘‘partition’’ noise into
the transmitted and reflected beams. The incident beam has perfectly arranged photons
(conceptually at least) and the plate produces beams with some photons missing. This
necessarily increases the variance.

FIGURE 6.10.3

A partially reflective plate divides a stream of photons into two streams.
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the testing of number squeezed light and for the discussion of noise (see Chapter 1). The
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In the limit of large R, the transmitted beam follows a Poisson distribution. Let
n become large and p become small such that the average number np ¼ 
 remains

constant. Equation (6.10.20) can be rewritten as Pðm; nÞ ¼ n!
n�mð Þ!m!



n

� �m
1� 


n

� �n
1� 


n

� ��m
:

Regrouping terms produces

Pðm; nÞ ¼
n!

nm n�mð Þ!
1�




n

� ��m
m

m!
1�




n

� �n

ð6:10:20bÞ

In the limit n!1, the second term approaches 1 as 1� 
=nð Þ
�m
! 1 and the last two

terms become 
m=m!ð Þ 1� 
=nð Þ
n
! e�

m=m! as required for the Poisson distribution. The

first term approaches 1 as can be seen using a form of the Sterling approximation
n! ffi

ffiffiffiffiffiffi
2�
p

e�nnnþ1=2: For n� m we have

n!

nm n�mð Þ!
�

e�nnnþ1=2

nme�nþmnn�mþ1=2
�

e�nnnþ1=2

e�nnnþ1=2
ffi 1

Therefore in the large n and small p limit, the binomial distribution produces the Poisson
distribution described by

PðmÞ ¼ e�

m=m! ð6:10:20cÞ

6.10.6 The Schrodinger Representation of the Coherent State

The unitary operator ûu ¼ exp ĤHt=i�hh relates the interaction wave function to the
Schrodinger wave function according to �sj i ¼ ûu �Ij i: The coherent state �j i without
time dependence must be in the interaction picture. Therefore the Schrodinger
representation of the single-mode coherent state must be

�sj i ¼ eĤHt=i�hh �j i ¼ eĤHt=i�hhe� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ¼ e� �j j

2=2
X1

n¼0

�n

ffiffiffiffi
n!
p eĤHt=i�hh nj i

where the single-mode Hamiltonian has the form ĤH ¼ �hh! N̂N þ 1=2
� �

: The Schrodinger
wave function becomes

�j is¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p e�hh! nþ1=2ð Þt=i�hh nj i ¼ e�hh!t=2i�hhe� �j j

2=2
X1

n¼0

�e�hh!t=i�hh
� �n

ffiffiffiffi
n!
p nj i ¼ e�hh!t=2i�hh �ðtÞ

�� �

where �ðtÞ ¼ �e�hh!t=i�hh and e�hh!t=2i�hh is an unimportant phase factor.

6.11 Coherent States as Displaced Vacuum States

Previous sections discuss the coherent state as an eigenvector of the annihilation operator
and show how it produces classical-style fields and the Poisson distribution. Now we
turn our attention to the displacement operator and show how any coherent state can
be obtained by displacing the vacuum state. The displacement can be made in either the
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amplitude Hilbert space or in the physically intuitive (P, Q) phase space. For simplicity,
we restrict the discussion to a single optical mode.

We can use the coordinate representation of the annihilation operator to find the
coordinate representation of the coherent state. This coherent-state coordinate represen-
tation produces a minimum uncertainty Gaussian distribution identical to that for the
vacuum state. Recall that there exist many types of probability in quantum theory.
Whenever we project a ket onto a basis vector, the resulting inner product gives the
probability amplitude of finding the system in the corresponding state. For example,
projecting the coherent state onto a Fock state, which is an eigenstate of the number
operator, provides the probability amplitude of finding the EM system with a given
number of photons. As another example, projecting the coherent state into coordinate
space (Q-space for example) gives the probability amplitude of finding the EM system
with a given quadrature amplitude.

The Gaussian distribution for the coherent-state coordinate representation furnishes the
probability of finding the EM wave with given quadrature amplitudes. Because the
vacuum state can be translated in phase space to produce the coherent state, the Gaussian
distribution for the vacuum state must be identical to the Gaussian distribution for the
coherent state. The coordinate representation in either Q or P must have a Gaussian
profile. This provides our first introduction to the idea of the Wigner distribution which is
a function of both Q and P.

6.11.1 The Displacement Operator

We can find an expression for the displacement operator by starting with the definition of
the coherent state as a sum over Fock basis states nj i ¼ nkj if g from Section 6.10

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ð6:11:1Þ

where ‘‘n’’ denotes the photon occupation number. We need to write the Fock state nj i in
terms of the vacuum state 0j i: The resulting relation between 0j i and the coherent state �j i
must be the displacement operator. Start with the boson creation operator to relate the
Fock state nj i to the vacuum 0j i

1j i ¼
b̂bþ
ffiffiffi
1
p 0j i 2j i ¼

b̂bþ
ffiffiffi
2
p 1j i ¼

b̂bþ
� �2

ffiffiffiffiffiffiffiffiffi
2 � 1
p 0j i � � � nj i ¼

b̂bþ
� �n

ffiffiffiffi
n!
p 0j i ð6:11:2Þ

Consequently, the coherent state in Equation (6.11.1) becomes

�j i ¼ e� �j j
2=2
X1

n¼0

�n b̂bþ
� �n

n!
0j i

However, the summation can be rewritten as an exponential

�j i ¼ e� �j j
2=2e�b̂bþ 0j i ð6:11:3Þ
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Equation (6.11.3) shows explicitly that the coherent state �j i is a displaced vacuum state.
The ‘‘displacement operator’’ must be

D̂D �ð Þ ¼ e� �j j
2=2e�b̂bþ ð6:11:4aÞ

which is unitary (as shown later). It is customary to make the displacement operator
appear more symmetric in the argument of the second exponential. Notice that any
exponential of the destruction operator maps the vacuum state into itself as can be seen
by making a Taylor expansion

e��
� b̂b 0j i ¼ 1� ��b̂bþ

��b̂b
� �2

2!
þ � � �

2

64

3

75 0j i ¼ 0j i

where b̂bn 0j i ¼ 0: Inserting this last expression between the exponential and the vacuum
state in Equation (6.11.3) provides

�j i ¼ e� �j j
2=2e�b̂bþe��

� b̂b 0j i ð6:11:4bÞ

We have chosen a specific exponential function of the annihilation operators for later
convenience. The displacement operator must be

D �ð Þ ¼ e� �j j
2=2e�b̂bþe��

�b̂b ð6:11:4cÞ

We still aren’t finished with the form of the displacement operator. In some cases,
we might want to combine the three exponentials in Equation (6.11.4c). Using the
Campbell–Baker–Hausdorff equation

exp ÂAþ B̂B
� �

¼ exp ÂA exp B̂B exp �
½ÂA, B̂B�

2

" #

with ÂA, ÂA, B̂B
h ih i

¼ 0 ¼ B̂B, ÂA, B̂B
h ih i

Setting ÂA ¼ �b̂bþ and B̂B ¼ ���b̂b, provides

Dð�Þ ¼ e�b̂bþ��� b̂b �j i ¼ e�b̂bþ��� b̂b 0j i ð6:11:5Þ

6.11.2 Properties of the Displacement Operator

1. The displacement operator is unitary with D̂Dþð�Þ ¼ D̂D�1ð�Þ ¼ D̂Dð��Þ
^ iÔO

must be unitary since

ûuûuþ ¼ eiÔO eiÔO
� �þ

¼ eiÔOe�iÔOþ ¼ eiÔOe�iÔO ¼ 1

For the displacement operator Dð�Þ ¼ e�b̂bþ���b̂b, we can define iÔO ¼ �b̂bþ � ��b̂b
so that ÔO ¼ �i ð�b̂bþ � ��b̂bÞ must be Hermitian.
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The inverse of D must be

Dð��Þ ¼ e� �b̂bþ��� b̂b
� �

since then Dð�ÞDð��Þ ¼ e�b̂bþ��� b̂be� �b̂bþ��� b̂b
� �

¼ e�b̂bþ��� b̂b� �b̂bþ��� b̂b
� �

¼ 1 where the
exponentials were combined because the arguments iÔO ¼ �b̂bþ � ��b̂b and �iÔO
commute ½iÔO, � iÔO� ¼ 0:

2. The displaced creation and annihilation operators can be found by a similarity
transformation

Dþð�Þ b̂b Dð�Þ ¼ b̂bþ � Dþð�Þ b̂bþDð�Þ ¼ b̂bþ þ ��

For example, consider the first relation. The operator expansion theorem from

e�ÂAB̂BeÂA ¼ B̂B� ½ÂA, B̂B� þ
1

2!
ÂA, ½ÂA, B̂B�
h i

þ . . .

with ÂA ¼ �b̂bþ � ��b̂b and B̂B ¼ b̂b provides

e� �b̂bþ���b̂b
� �

b̂b e�b̂bþ��� b̂b ¼ b̂b� �b̂bþ � ��b̂b, b̂b
h i

þ 0þ . . . ¼ b̂bþ �

3. The displacement operator acting on a nonzero coherent state produces another
coherent state with the sum of two amplitudes and a complex phase factor.

4. The ‘‘phase space’’ representation of the displacement operator.
The ‘‘phase space’’ operators Q̂Q, P̂P are defined through

b̂b ¼
! q̂q
ffiffiffiffiffiffiffiffi
2�hh!
p þ

ip̂p
ffiffiffiffiffiffiffiffi
2�hh!
p ¼

Q̂Q
ffiffiffi
2
p þ

iP̂P
ffiffiffi
2
p and b̂bþ ¼

! q̂q
ffiffiffiffiffiffiffiffi
2�hh!
p �

ip̂p
ffiffiffiffiffiffiffiffi
2�hh!
p ¼

Q̂Q
ffiffiffi
2
p �

iP̂P
ffiffiffi
2
p

where

Q̂Q, P̂P
h i

¼
! q̂q
ffiffiffiffiffiffi
�hh!
p ,

p̂p
ffiffiffiffiffiffi
�hh!
p

	 

¼
!

�hh!
q̂q, p̂p
 �

¼ i

The values Q0,P0 define the center of the Wigner distribution

� ¼
1
ffiffiffi
2
p P0 þ iQ0½ �

for the coherent state �j i: Therefore, the displacement operator can be written as

Dð�Þ ¼ exp �b̂bþ � ��b̂b
� �

¼ exp
�
ffiffiffi
2
p Q̂Q� iP̂P

� �
�
��
ffiffiffi
2
p Q̂Qþ iP̂P

� �	 

¼ exp iP0Q̂Q� iQ0P̂P

h i

ð6:11:6Þ
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The derivation of the Wigner function makes use of Equation 6.11.6. An alternate
form of this equation is useful for finding the coordinate representation of the
coherent state (similar to  (q) for Fock space). The Campbell–Baker–Hausdorff
equation

exp ÂAþ B̂B
� �

¼ exp ÂA exp B̂B exp �
½ÂA, B̂B�

2

" #

and ÂA, ÂA, B̂B
h ih i

¼ 0 ¼ B̂B, ÂA, B̂B
h ih i

with ÂA ¼ iP0Q̂Q and B̂B ¼ �iQ0P̂P yields ½ÂA, B̂B� ¼ ½iP0Q̂Q, � iQ0P̂P� ¼ ðiÞð�iÞP0Q0½Q̂Q, P̂P� ¼
iP0Q0 and

Dð�Þ ¼ exp iP0Q̂Q� iQ0P̂P
h i

¼ exp iP0Q̂Q
� �

exp �iQ0P̂P
� �

exp �
i

2
P0Q0

� �
ð6:11:7Þ

6.11.3 The Coordinate Representation of a Coherent State

Let �j i be a single-mode coherent-state vector in an abstract Hilbert space. Rather than
represent the coherent state as an abstract vector, we want to represent it as a function of
the ‘‘position’’ coordinate, denoted by U� Qð Þ ¼ hQ j �i: This is similar to the coordinate
wave functions found for the Fock states in Section 6.7.1. Although the vector notation �j i
helps to show the vacuum displacement, it does not explicitly show the range of electric
field amplitudes Q to be expected. The coordinate representation U� Qð Þ helps to
demonstrate that the ‘‘electric field amplitudes’’ Q must be normally distributed. In
addition, the functions U� Qð Þ pave the path for the Wigner distribution (refer to
Figure 6.11.1 below). This section shows that the coherent fields must be normally
distributed using two methods. The first method uses the basic definition of the coherent
state as an eigenstate of the annihilation operator. The second method requires the
displacement operator. Both use the coordinate representation.

Method 1 Coordinate Representation of the Coherent State Using the
Annihilation Operator

We need to find hQ j�i ¼ U� Qð Þ, the probability amplitude leading to the Gaussian
distribution. To do this, we treat the coherent state �j i as an eigenvector of the
annihilation operator b̂b so that b̂b �j i ¼ � �j i: Next, we write b̂b in terms of the quadrature
operators using their coordinate representation. The eigenvector equation becomes a first
order differential equation for U� Qð Þ which can easily be solved.

FIGURE 6.11.1

The Wigner distribution of the coherent state �j i is shown as the 3-D
relief plot. The coordinate representation U� Qð Þ is the projection
onto the plane containing the Q-axis.
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By definition, the arbitrary coherent state �j i with the complex amplitude � ¼ �j j ei�

must be an eigenstate of the annihilation operator

b̂b �j i ¼ � �j i ð6:11:8Þ

The annihilation operator can be written in terms of the quadrature operators

b̂b ¼
!q̂q
ffiffiffiffiffiffiffiffi
2�hh!
p þ

i p̂p
ffiffiffiffiffiffiffiffi
2�hh!
p ¼

Q̂Q
ffiffiffi
2
p þ

i P̂P
ffiffiffi
2
p ð6:11:9Þ

where

Q̂Q ¼
!q̂q
ffiffiffiffiffiffi
�hh!
p P̂P ¼

p̂p
ffiffiffiffiffiffi
�hh!
p ð6:11:10Þ

As a first comment, we can work with either the original quadrature operators q̂q–p̂p or
the new ones Q̂Q–P̂P used for our ‘‘phase–space’’ representations in the previous section.
The new momentum-like operator has the ‘‘coordinate’’ representation

P̂P ¼
p̂p
ffiffiffiffiffiffi
�hh!
p ¼

1
ffiffiffiffiffiffi
�hh!
p

�hh

i

@

@q
¼

1
ffiffiffiffiffiffi
�hh!
p

�hh

i

@Q

@q

@

@Q
¼

1

i

@

@Q
ð6:11:11Þ

where we used the relation (6.11.11) in the form Q ¼ !q=
ffiffiffiffiffiffi
�hh!
p

.
As a second comment, there exists a second method for demonstrating the

coordinate representation of the new momentum-like operator P̂P as given in Equation
(6.11.11). Consider

P̂P ¼ c
@

@Q

where we wish to determine the constant ‘‘c.’’ We require these new quadrature operators
to satisfy familiar commutation relations.

Q̂Q, P̂P
h i

¼ i ! Q, c
@

@Q

	 

¼ i

Letting the second commutator operate on an arbitrary function f(Q) shows that the
only choice for ‘‘c’’ is c¼1/i which agrees with the results for Equation (6.11.12) which is

P̂P ¼
1

i

@

@Q

FIGURE 6.11.2

The displacement Qo consists of smaller displacements �i:
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Returning to the main discussion, we next rewrite the eigenvector equation (6.11.8) in
the Q-coordinate representation because the P-quadrature involves a derivative which
will produce a first order differential equation. Projecting both sides of Equation 6.11.8
onto the coordinate Q yields

Q
� �� b̂b Q̂Q, P̂P

� �
�j i ¼ � Q

�� �
� �

ð6:11:12aÞ

where the notation b̂bðQ̂Q, P̂PÞ serves as a reminder that the annihilation operator depends on
the position and momentum operators. The coordinate representation U� Qð Þ ¼ hQ

�� �i of
the coherent state �j i provides the probability density jU� Qð Þj2 ¼ jhQ

�� �ij2 of finding the
wave to have quadrature amplitude Q. Equation (6.11.12a) becomes

b̂bðQÞ U�ðQÞ ¼ � U�ðQÞ ð6:11:12bÞ

where now the annihilation operator depends on Q and the derivative with respect to Q

b̂bðQ̂Q, P̂PÞ ¼
Q̂Q
ffiffiffi
2
p þ

i P̂P
ffiffiffi
2
p ! b̂b Qð Þ ¼

1
ffiffiffi
2
p Qþ

@

@Q

� �

Equation (6.11.12b) can be written as

1
ffiffiffi
2
p Qþ

@

@Q

� �
U�ðQÞ ¼ �U�ðQÞ

This is a first-order, ordinary differential equation with the solution

U�ðQÞ ¼ C� exp �
Q� �

ffiffiffi
2
p� �2

2

" #

ð6:11:3Þ

Normalizing the function U provides the constant C� (by setting
R1
�1

dQ U�U ¼ 1).

C� ¼
1

�1=4
exp Im �ð Þ

2
ð6:11:14Þ

normally distributed and centered at �
ffiffiffi
2
p

; that is, a Gaussian distribution can represent
�

� is the projection of the
Wigner distribution onto the plane containing the Q-axis. A momentum wave function
U� Pð Þ would provide a similar distribution for the plane containing the P-axis. Therefore
U� Qð Þ and U� Pð Þ are the ‘‘shadows’’ from which to deduce the Wigner distribution.

Method 2 Coordinate Representation of the Coherent State Using the
Displacement Operator

This demonstrates the coherent-state Gaussian distribution for the quadrature ampli-
tudes by using the displacement operator to transform the vacuum state, which has a
Gaussian distribution, into the nonvacuum coherent state. We first explicitly demonstrate
how the displacement operator must produce a translation of the distribution in phase
space (Q–P space). Then we show that it translates the vacuum-state probability
distribution to the nonzero coherent-state distribution. This method emphasizes the

Light 431

© 2005 by Taylor & Francis Group, LLC

the probability density U U: Figure 6.11.1 shows that U ð ÞQ

Equation (6.11.13) shows that the electric field amplitude (represented by Q) must be
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notion of the displacement operator as a generator of translations in the abstract Hilbert
space. The procedure is somewhat more complicated than the first one although it does
not require the solution of a differential equation.

The displacement operator translates the vacuum state 0j i to the coherent state j�i
according to

�j i ¼ Dð�, Q̂Q, P̂PÞ 0j i ð6:11:15Þ

where operators explicitly appear in the argument of D. Equation (6.11.7) provides the
appropriate form for the displacement operator

Dð�, Q̂Q, P̂PÞ ¼ exp iP0Q̂Q� iQ0P̂P
h i

¼ exp iP0Q̂Q
� �

exp �iQ0P̂P
� �

exp �
i

2
P0Q0

� �
ð6:11:16Þ

where � ¼ Q0 þ iP0ð Þ=
ffiffiffi
2
p
: Projecting the Equations (6.11.15) and (6.11.16) onto the Q

coordinates provides

U�ðQÞ ¼ Dð�,QÞU0ðQÞ ð6:11:17Þ

In Equation (6.11.17), U�ðQÞ is the Q-coordinate representation of the coherent state �, that
is Q

�� �
� �

¼ U�ðQÞ: The operator Dð�,QÞ comes from Equation (6.11.11) using

Q̂Q! Q and P̂P!
1

i

@

@Q

since the procedure is to be carried out in the Q-coordinate representation. The last term
in Equation (6.11.16) is a complex constant. The middle term requires some discussion.

When Equation (6.11.16) is combined with Equation (6.11.17), one of the factors has the
form

factor ¼ exp �iQ0P̂P
� �

U0ðQÞ ð6:11:18Þ

make a Taylor series expansion of the function U0ðQþ 
kÞ about the point Q (where 
k is a
small addition to Q). The expansion provides

U0ðQþ 
kÞ ffi U0ðQÞ þ
@U0ðQÞ

@Q

k þ � � � ¼ 1þ 
k

@

@Q
þ . . .

� �
U0ðQÞ

Replacing the derivative with

P̂P$
1

i

@

@Q

gives

U0ðQþ 
kÞ ¼ 1þ 
k
@

@Q
þ � � �

� �
U0ðQÞ ¼ 1þ i
kP̂Pþ � � �

� �
U0ðQÞ ¼ exp þi
kP̂P

� �
U0ðQÞ
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To realize that the exponential represents a translation operator in Q-space (Figure 6.11.2),
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Now, by repeatedly applying the infinitesimal translation operator, we can build up the
entire length Q0

U0ðQþQ0Þ ¼
Y

k

exp i
kP̂P
� �

U0ðQÞ ¼ exp
X

k

i
kP̂P

 !

U0ðQÞ ¼ exp iQ0P̂P
� �

U0ðQÞ ð6:11:19Þ

where the exponentials can be combined because the arguments commute. Equation
6.11.18 shows that expðiQ0P̂PÞ represents a translation operator. Replacing Q0 with �Q0

shows how the ‘‘factor’’ in Equation (6.11.17) behaves

factor ¼ exp �iQ0P̂P
� �

U0ðQÞ ¼ U0ðQ�Q0Þ

Continuing to work with the combination of Equations (6.11.16) and (6.11.17) provides

U�ðQÞ ¼ Dð�,QÞU0ðQÞ ¼ exp iP0Qð Þ exp �iQ0P̂P
� �

exp �
i

2
P0Q0

� �
U0ðQÞ

¼ exp iP0Qð Þ exp �iQ0P̂P
� �

U0ðQÞ
n o

exp �
i

2
P0Q0

� �

¼ exp iP0Qð Þ U0ðQ�Q0Þ exp �
i

2
P0Q0

� �

Substituting the expression for U0

U0ðQÞ ¼
1

�1=4
exp �

Q2

2

	 


into the last equation provides

U�ðQÞ ¼
1

�1=4
exp �

Q�Q0ð Þ
2

2
þ iP0Q�

iP0Q0

2

	 

ð6:11:20Þ

where the exponentials have been combined because the arguments commute. This last
equation agrees with the combination of Equations (6.11.13) and (6.11.14) given by the first
method.

As an important note, the coordinate space wavefunctions can never be specified as
U(P, Q) since the phase space operators P̂P, Q̂Q do not commute and cannot be consistently
specified together. However, the Wigner function provides a semiclassical probability
distribution for which it is possible to speak of the c-numbers P, Q together.

6.12 Quasi-Orthonormality, Closure and Trace for Coherent States

The annihilation operator has the coherent-state vector as an eigenvector. The average of
the electric field operator for this state comes as close as possible to the classical paradigm
of the field. The coherent state of light produces minimum uncertainty in amplitude and
phase for the EM wave. The number of photons in the beam conforms to a Poisson
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probability distribution with nonzero variance since the state consists of a summation of
Fock basis states each representing different numbers of photons.

The coherent state also represents a phase–space translated vacuum state. Both the
coherent and vacuum states have coordinate representations, which provides the
probability amplitude for the quadratures. Unlike the photon number with a Poisson
probability distribution, the Q-quadrature amplitude follows a Gaussian distribution. In
fact, the probability of finding the EM wave with quadrature amplitude P must likewise
have a Gaussian distribution. These results for the two quadrature components fore-
shadow the description of EM states (not just coherent ones) by the Wigner distribution.

In the present section, we investigate the vector properties of the coherent-state vectors.
In particular, we examine completeness, normalization, and orthogonality and closure.

6.12.1 The Set of Coherent-State Vectors

Each coherent state resides in an abstract Hilbert space since it must be a summation over
the Fock basis set. However, neither the collection of Fock states nor coherent states form
a vector space! As sets, they do not contain all of the vectors in the Hilbert space. For
coherent states, the summation over Fock states produces the Gaussian-shaped coordi-
nate representation. The sum of two coherent states g1 and g2 does not necessarily produce
a third state ‘‘f’’ with a Gaussian distribution. In addition, the sum of two coherent states
does not have unit length. Therefore the set of coherent states must violate the closure
property for the definition of vector space as shown in Figure 6.12.1.

As we will see, the collection of coherent states can be treated similarly to basis vectors
in that they span the Hilbert space. However, the set must be overly complete and the
vectors cannot be independent. Naturally, the lack of independence precludes the vectors
from being orthogonal.

6.12.2 Normalization

We wish to examine the orthonormality properties of the coherent states. First, consider
normalization of the coherent state. Restricting the length to 1 allows for the probability
amplitude interpretation for inner products.

Recall that the single mode coherent states can be defined as a summation of the Fock
basis states according to

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i or equivalently �h j ¼ e� �j j

2=2
X1

n¼0

��ð Þn
ffiffiffiffi
n!
p nh j ð6:12:1Þ

FIGURE 6.12.1

The function ‘‘f ’’ is the sum of two different Gaussians g1 and g2.
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Evidently, these states must have unit length according to

� j �h i ¼ e� �j j
2
X1

mn¼0

��ð Þm �ð Þn
ffiffiffiffiffiffi
m!
p ffiffiffiffi

n!
p m j nh i ¼ e� �j j

2
X1

mn¼0

��ð Þm �ð Þn
ffiffiffiffiffiffi
m!
p ffiffiffiffi

n!
p �mn ¼ e� �j j

2
X1

n¼0

�j j2n

n!
¼1

since

X1

n¼0

�j j2n

n!
¼ e �j j2

6.12.3 Quasi-Orthogonality

Next examine the orthogonality of two coherent states. Two nonzero vectors jfi, jgi must
be orthogonal when their inner product produces zero such

f
�� g

� �
¼

Z
dx f�ðxÞ gðxÞ ¼ 0

The integral can be zero under two conditions. First the ‘‘shape’’ of the functions f and g
might be such that the product fg is positive as much as it is negative over the range
of interest. For example, f and g might be a sine and a cosine. Second, fg itself might
be zero over the entire range of integration even though f and g are not zero everywhere.
For example, this condition can be satisfied if f¼ 0 for x < x0 and g¼ 0 for x > x0.

We can intuitively see that the coherent states cannot ever be exactly orthogonal.
Figure 6.12.2 shows a two-dimensional representation of a Wigner plot for four coherent
states. The states �j i and ji can be represented as two overlapping Gaussians in the
coordinate representation. We can write (recall the definition of closure for coordinate

�j
� �

¼ �h j1 
�� � ¼ �h j

Z
dQ Q

�� �
Q
� ��

� �

�� � ¼

Z
dQ �

�� Q
� �

Q
�� 

� �
¼

Z
dQ �� Qð Þ Qð Þ

where previous sections define �ðQÞ ¼ U�ðQÞ and ðQÞ ¼ UðQÞ, which must be
Gaussians (since they come from translated vacuum states). Here the notation �(Q)
refers to a function centered a distance �

ffiffiffi
2
p

from the origin. We see that the ‘‘shapes’’ of
the functions �(Q) and (Q) do not produce a product function �� that has as many
positive values as negative. As a matter of fact, the functions �(Q) and (Q) are never
exactly zero over any finite region—they exponentially approach zero. Therefore, we

FIGURE 6.12.2

The overlap of coherent states controls the inner product.
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expect the inner product between two coherent states to only approximate zero when
the states have sufficient distance between them.

We can easily see two coherent states �j i and 
�� � can only be approximately orthogonal.

Writing the inner product of the two states using the expansions in the Fock basis sets
provides

�j
� �

¼ exp �
�j j2þ 

�� ��2

2

" #
X1

n,m¼0

��ð Þm
ffiffiffiffiffiffi
m!
p

n

ffiffiffiffi
n!
p mjnh i ¼ exp �

�j j2þ 
�� ��2

2

" #
X1

n,m¼0

��ð Þ
n

n!

where we used the orthonormality of the single-mode Fock states m j nh i ¼ �mn: The
summation gives an exponential.

�j
� �

¼ exp �
�j j2þ 

�� ��2

2

" #

exp ��ð Þ ¼ exp � �� 
�� ��2

h i
ð6:12:2Þ

The overlap between the two states exponentially decreases as the separation between
coherent states increases. This behavior is consistent with the fact that the Wigner
probability distributions have Gaussian profiles. Equation 6.12.2 the inner product must
be unity when �¼ .

Example 6.12.1

What is the inner product between the coherent state �j i with an average of �nn� ¼ 25
photons and 

�� � having �nn ¼ 16: Assume that �, are real.

Solution: Sections 6.10.2 and 6.10.3 show that �j j2¼ �nn: Ignoring the phase, the amplitudes
can be written as � ¼

ffiffiffiffiffi
�nn�
p
¼ 5 and ¼ 4. By ignoring the phase, we assume that the

states both must be positioned on the right-hand side of the orgin; this represents
the closest possible separation. Therefore �

�� 
� �

 exp � 5� 4ð Þ
2

 �
¼ e�1 ¼ 0:37: If one of

the states has nonzero phase, then the states must be further separated and the overlap
becomes negligible.

6.12.4 Closure

The set of single-mode coherent states �j if g satisfy a closure relation of the form

1

�

Z

�-
plane

d2� �j i �h j ¼ 1 ð6:12:3Þ

where � is a complex number � ¼ rei� ¼ �x þ i�y and the integral is over the entire
�-plane with d2� ¼ d�x d�y: The set of coherent states form an overcomplete quasi-basis
set; we do not need all of the vectors in the set in order to span the vector space.

We start the proof of Equation (6.12.3) by substituting the Fock expansion for the
coherent state

�j i ¼ e� �j j
2=2
X1

n¼0

�n

ffiffiffiffi
n!
p nj i ¼ e�r2=2

X1

n¼0

�n

ffiffiffiffi
n!
p nj i
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into the left-hand side of Equation (6.12.3) to get

1

�

Z

�-
plane

d2� �j i �h j ¼
1

�

X

n,m

nj i mh j
ffiffiffiffiffiffiffiffiffiffi
n!m!
p

Z
d2� e�r2=2 ��ð Þne�r2=2�m ¼

1

�

X

n,m

nj i mh j
ffiffiffiffiffiffiffiffiffiffi
n!m!
p

Z
d2� e�r2

��n�m

Substituting the polar-coordinate element of area d2� and writing � in polar form
provides

1

�

Z

�-
plane

d2� �j i �h j ¼
1

�

X

n,m

nj i mh j
ffiffiffiffiffiffiffiffiffiffi
n!m!
p

Z
r dr d� e�r2

rmþneiðm�nÞ�

¼
1

�

X

n,m

nj i mh j
ffiffiffiffiffiffiffiffiffiffi
n!m!
p

Z
dr d� e�r2

rmþnþ1eiðm�nÞ�

The integral over the angle provides
Z 2�

0

d� eiðm�nÞ� ¼ 2��mn

since for m 6¼ n the range of integration includes multiple numbers of complete cycles.
The closure integral becomes

1

�

Z

�-
plane

d2� �j i �h j ¼2
X

n,m

nj i mh j
ffiffiffiffiffiffiffiffiffiffi
n!m!
p �mn

Z
dr e�r2

rmþnþ1 ¼ 2
X

n

nj i nh j

n!

Z 1

0

dr e�r2

r2nþ1

Integral tables provide the last integral

Z 1

0

dr e�r2

r2nþ1 ¼
n!

2

Therefore, as required, the closure integral becomes

1

�

Z

�-
plane

d2� �j i �h j ¼2
X

n

nj i nh j

n!

n!

2
¼
X

n

nj i nh j ¼ 1

6.12.5 Coherent State Expansion of a Fock State

If coherent states form a quasi-basis set, then it must be possible to express other basis
sets in terms of the coherent states. That is, we can express the single mode Fock
states nj if g as an expansion of coherent states �j if g: This is accomplished by using the
coherent-state closure relation

nj i ¼ 1 nj i ¼
1

�

Z
d2� �j i �h j

� �
nj i ¼

1

�

Z
d2� �j i � j nh i

Recall that the probability amplitude � j nh i must be related to the Poisson probability
distribution. Evaluating the inner product using the definition of coherent state gives

� j nh i ¼ e� �j j
2=2
X1

m¼0

��ð Þm
ffiffiffiffiffiffi
m!
p m j nh i ¼ e� �j j

2=2
X1

m¼0

��ð Þm
ffiffiffiffiffiffi
m!
p �mn ¼ e� �j j

2=2 �
�ð Þ

n

ffiffiffiffi
n!
p
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so the Fock state nj i becomes

nj i ¼ 1 nj i ¼
1

�

Z
d2� �j i � j nh i ¼

Z
d2� �j i e� �j j

2=2 ��ð Þn

�
ffiffiffiffi
n!
p ð6:12:4Þ

Notice that every Fock basis vector can be written as a linear combination of the coherent
states. Therefore coherent states span the same amplitude space as do the Fock vectors.

We can identify the matrix elements of the transformation in Equation (6.12.4). First,
notice that the equation has an integral rather than a summation, which occurs because
the parameters � are continuous. The transformation matrix elements must be

Tn� ¼ e� �j j
2=2 ��ð Þn=�

ffiffiffiffi
n!
p

6.12.6 Over-Completeness of Coherent States

The set of vectors �j if g is over-complete in the sense that each one can be expressed as a
sum over the others. The situation can be compared with having three vectors span a 2-D
vector space; obviously, we don’t need one of them.

The fact that one coherent-state vector can be expressed as a sum of the others can
be seen as follows:

�j i ¼ 1 �j i ¼
1

�

Z
d2 

�� � 
�� �

� �

Using the inner product between two coherent states given in Equation 6.12.2


�� �

� �
¼ exp � � �

�� ��2
h i

provides

�j i ¼
1

�

Z
d2 

�� � exp � � �
�� ��2

h i

The more separated are the parameters � and , the less the state 
�� � contributes to the

state �j i: The integral is similar to a summation.

6.12.7 Trace of an Operator Using Coherent States

The trace formula involves the factor of ‘‘1/� ’’ similar to the closure relation. Starting
with the definition of trace using single mode Fock states, then inserting the coherent-
state closure relation, and then removing the Fock states using the Fock state closure
relation produces the following formula.

TrÔO¼
X

n

nh jÔO nj i ¼
X

n

nh j1ÔO nj i ¼
X

n

nh j
1

�

Z
d2� �j i �h j

� �
ÔO nj i ¼

1

�

Z
d2�

X

n

n j �h i �h jÔO nj i

Interchanging the order of the matrix elements in the last term gives

Tr ÔO ¼
1

�

Z
d2�

X

n

�h jÔO nj i n j �h i ¼
1

�

Z
d2� �h jÔO

X

n

nj i nh j

( )

�j i ¼
1

�

Z
d2� �h j ÔO �j i
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Therefore, the formula is similar to the Fock state trace formula except that an integral
appears along with the factor of 1/�.

Tr ÔO ¼
1

�

Z
d2� �h j ÔO �j i

6.13 Field Fluctuations in the Coherent State

This section shows that electromagnetic fields exhibit minimum uncertainty for the
coherent states. The variance of the electromagnetic field (at any point in space-time)
measures the uncertainty. As will be seen, the electric field has smaller variance for
coherent states than for Fock states. However, the Hamiltonian has smaller variance for
the Fock states. The difference between the two cases has to do with the fact that
the coherent states must be eigenstates of the annihilation operator (which appears in the
field expression) whereas the Fock states must be eigenstates of the Hamiltonian (since
the Hamiltonian depends on the number operator).

For this section, recall that the (single mode) electric field can be written in either of the
two equivalent forms as

ÊEk ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂b ei~kk�~rr�i!t � b̂bþ e�i~kk�~rrþi!t
h i

ð6:13:1aÞ

or

~EEk ~rr, t
� �

¼ �

ffiffiffiffiffiffiffiffi
�hh!

"0V

r
Q̂Q sin ~kk � ~rr� !t

� �
þ P̂P cos ~kk � ~rr� !t

� �h i
ð6:13:1bÞ

where the mode subscripts and polarization vector are suppressed, and !, ~kk represent
the angular frequency and wave vector of the traveling waves. The creation b̂bþ

and annihilation b̂b operators can be related to the ‘‘position’’ Q̂Q and ‘‘momentum’’ P̂P
operators according to Q̂Q ¼ ½b̂bþ b̂bþ�=

ffiffiffi
2
p

and P̂P ¼ �i½b̂b� b̂bþ�=
ffiffiffi
2
p
: The operators satisfy

the following commutation relations:

b̂b, b̂bþ
h i

¼ 1 b̂b, b̂b
h i

¼ 0 ¼ b̂b, b̂bþ
h i

Q̂Q, P̂P
h i

¼ i Q̂Q, Q̂Q
h i

¼ 0 ¼ P̂P, P̂P
h i

As discussed in the Section 6.11, the coherent states have Gaussian probability
distribution functions for the quadratures.

The quadrature operators for the electric field satisfy commutation relations. Section 4.9
provides the relation �a�b �

1
2 jhĈCij when ÂA, B̂B satisfy ½ÂA, B̂B� ¼ iĈC: In this case for Equation

(6.13.1b), the commutator provides ½Q̂Q, P̂P� ¼ i so that ĈC ¼ 1 and therefore �Q �P � 1=2:
The form of the electric field operator ÊE requires this uncertainty relation without regard
for the amplitude states. However, the specific form of the amplitude state determines
whether the uncertainty is equal to or larger than 1

2 and whether the Q or P quadrature
produces the smallest dispersion. The production of the EM wave by matter determines
the amplitude state of the wave. Although the field operator requires the uncertainty
relation, the production of the wave by matter ultimately determines the specific nature
of the wave. We will see how matter can produce coherent and squeezed states of light.
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Coherent states with Gaussian wave functions produce the ‘‘minimum-area’’ uncertainty
relation.

�Q �P ¼
1

2
ð6:13:2Þ

The term ‘‘area’’ is used because �Q �P is an area in phase space. The term ‘‘minimum’’
indicates the use of the ‘‘¼’’ sign. For any other wave function, the area must be larger
than 1

2.
In the ensuing topics, we determine the uncertainty relations for the quadrature

components in the Fock and coherent states. As will be shown, coherent states produce
minimum-area uncertainty relations and minimum variance electromagnetic fields.

6.13.1 The Quadrature Uncertainty Relation for Coherent States

We now demonstrate the minimum-area uncertainty relation for coherent states. We
must evaluate the standard deviation for the quadrature operators Q̂Q and P̂P: The variance
of Q̂Q can be found as follows:

�2
Q ¼ �h jQ̂Q2 �j i � �h jQ̂Q �j i2

First calculate the average �h j Q̂Q �j i by using the creation–annihilation operators for

the ‘‘position’’ operator Q̂Q and also the definition of the coherent state b̂b �j i ¼ � �j i or

equivalently �h jb̂bþ ¼ �h j��: The expectation value produces

�h jQ̂Q �j i2¼
1

2
�h j b̂bþ b̂bþ
h i

�j i2¼
1

2
�þ ��ð Þ

2
¼
�2 þ ��2

2
þ �j j2

Next calculate �h j Q̂Q2 �j i using the commutation relation b̂b, b̂bþ
h i

¼ 1

�h jQ̂Q2 �j i ¼
1

2
�h j b̂bþ b̂bþ
h i2

�j i ¼
1

2
�h j b̂b2 þ b̂bþ

� �2
þb̂bb̂bþ þ b̂bþb̂b

	 

�j i

¼
1

2
�2 þ ��2
� �

þ
1

2
�h j b̂bb̂bþ þ b̂bþb̂b
� �

�j i ¼
1

2
�2 þ ��2
� �

þ
1

2
�h j 2b̂bþb̂bþ 1
� �

�j i

¼
�2 þ ��2

2
þ �j j2þ

1

2

Therefore, the variance of Q̂Q becomes

�Qð Þ
2
¼ �2

Q ¼ �h jQ̂Q2 �j i � �h jQ̂Q �j i2¼
1

2

Similarly, we can show that the variance of the ‘‘momentum’’ operator in the coherent
state must be

�Pð Þ
2
¼ �2

P ¼
1

2

Regardless of the value of �, the uncertainty relation for the coherent state must be

�Q �P ¼
1

2
ð6:13:3Þ
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Alternatively, the uncertainty relation for coherent states (6.13.3) could be calculated
using vacuum expectation values. The reason, as previously pointed out, is that
displacing the vacuum state produces the coherent state; the noise remains unaffected by
the displacement operation. This statement becomes obvious by setting �¼ 0 in the
derivation of Equation (6.13.3), which is independent of �.

6.13.2 Comparison of Variance for Coherent and Fock States

First we compare the �P�Q uncertainty relation for the coherent and Fock states. The
variance in P for the Fock states can be calculated as

�2
P ¼ hnjP̂P

2
��ni�

�
njP̂P

��ni2¼
�
njP̂P2

��ni ¼
�
nj �iffiffi

2
p

b̂b� b̂bþ�2

��ni¼� 1
2

�
nj
�
b̂b2 þ b̂bþ2� b̂bþb̂b� b̂bb̂bþÞ

��ni
Noting

�
nj b̂b2 nj i � n j nþ 2h i ¼ 0 with similar results for the creation operator and using

the commutation relations provides �2
P ¼ hnjðb̂b

þb̂bþ 1=2Þ nj i ¼ nþ 1=2 where we have used
the number operator N̂N ¼ b̂bþb̂b: A similar result holds for the ‘‘position’’ operator �2

Q ¼

nþ 1=2: Therefore, the Q–P uncertainty relation for a nonvacuum Fock state nj i becomes

�Q �P ¼ �Q�P ¼ nþ
1

2
�

1

2

Using Equation (6.13.3), we find the uncertainty in the field for the Fock state must
always be larger than (except n¼ 0) than that for the coherent state.

�Q �Pð ÞFock> �Q �Pð Þcoherent n > 0 ðnonvacuumÞ

�Q �Pð ÞFock¼ �Q �Pð Þcoherent¼
1

2
n ¼ 0 ðvacuumÞ

In fact, the difference between the two types of states increases with n. The coherent states
represent the minimum uncertainty states. The noise for the electric field in a coherent
state is sometimes called the ‘‘standard quantum limit’’ (SQL). Essentially it is the lowest
possible noise level. Squeezing techniques can reduce the noise in one quadrature;
however, the noise in the other increases (similarly for ‘‘number’’ and ‘‘phase’’). This
behavior occurs because the uncertainty relation �Q �P � 1=2 must still hold.

Next we compare the variance in the electric field for the Fock and coherent states. The
variance of the electric field can be evaluated for a Fock state nj i

�2
E ¼

�hh!

"0V
nþ

1

2

� �
Fock ð6:13:4aÞ

The variance for the electric field in the coherent state can be written as

�2
E ¼ �h jÊE2 �j i � �h jÊE �j i2

¼ �
�hh!

2"0V
�h j b̂b ei~kk�~rr�i!t � b̂bþ e�i~kk�~rrþi!t
h i2

�j i � �h j b̂b ei~kk�~rr�i!t � b̂bþ e�i~kk�~rrþi!t
h i

�j i2
� �

Being careful to use the commutation relations, the variance for the electric field
evaluated in a coherent state becomes

�2
E ¼

�hh!

2"0V
ð6:13:4bÞ

Notice that the value � does not appear in the variance. Equations (6.13.4) show the
coherent state provides the minimum achievable dispersion for the electric field.
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Therefore, the uncertainty in the electric field must always be larger for the Fock state
than for the coherent state (except for the vacuum state).

Finally, we compare the variance of the energy as described by the Hamiltonian

ĤH ¼ �hh!ðb̂bþb̂bþ 1=2Þ ¼ �hh!ðN̂N þ 1=2Þ: Given that Fock states must be eigenstates of the
Hamiltonian, the variance of the energy must be zero

�H ¼ 0 Fock ð6:13:5Þ

The variance of the energy in the coherent state can be calculated as

�2
H ¼ �h jĤH2 �j i � �h jĤH �j i2¼ �hh!ð Þ2 �h j b̂bþb̂b b̂bþb̂bþ b̂bþb̂bþ

1

4

� �
�j i � �hh!ð Þ2 �h j b̂bþb̂bþ

1

2

� �
�j i2

Using the commutator b̂b, b̂bþ
h i

¼ 1 to reverse the order of b̂bb̂bþ and noting b̂b �j i ¼ � �j i and
�h jb̂b� ¼ �h j�� provides

�2
H ¼ �hh!ð Þ2 �j j4þ2 �j j2þ

1

4

� �
� �hh!ð Þ2 �j j4þ �j j2þ

1

4

� �
¼ �hh!ð Þ2 �j j2

Recall from Equation (6.10.15) that the average number of photons in the coherent state
�j i is given by �nn� ¼ �j j2: Therefore, the energy in the coherent state is not definite since

repeated measurements of the energy on the same coherent state produces a range of
values characterized by the standard deviation

�H ¼ �hh!
ffiffiffi
�nn
p

Coherent ð6:13:6Þ

The uncertainty in the energy must be due to the fluctuations in the electric field. The
power in the electromagnetic beam must fluctuate. In the vacuum state �¼ 0, there isn’t
any uncertainty in the energy since the vacuum is also a Fock state.

The uncertainty in energy and power is always larger for the coherent states. The
number-squeezed state is the closest relative to the Fock state. All of the number-noise
(i.e., amplitude noise) would need to be squeezed out of the coherent state to transform
it into a Fock state. This shows the reason for the number-phase uncertainty relation.
Removing noise (i.e., reducing the standard deviation) from the amplitude necessarily
requires the uncertainty in the phase to increase in order to maintain the Q–P uncer-
tainty relations. Removing all of the number-noise causes the phase to be completely
unspecified.

6.14 Introduction to Squeezed States

Previous sections define the Fock states nj i as eigenstates of the number operator

(and Hamiltonian) N̂N nj i ¼ n nj i where N̂N ¼ b̂bþb̂b: They represent EM waves with definite
number of photons but indefinite phase—the photon-number probability density must be
a Dirac delta function. A product of Hermite polynomials and decaying exponential
functions describe the Fock states in the Q-quadrature representation. The pure Fock
states have not been produced experimentally in the laboratory.

The coherent states �j i are defined as eigenvectors of the annihilation operator
b̂b �j i ¼ � �j i: These states can be written as summations of the Fock basis sets or as the
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displacement of the vacuum state. The outcome of a measurement for the amplitude and
phase (or equivalently, the quadratures) can assume a value in a range of values. The
amplitude of the EM wave does not have an a priori well-defined value. The photon
number must follow a Poisson distribution. The coherent states provide the most well
defined magnitude and phase. They come closest to the classical notion of a wave. For
coherent states �j i, the classical amplitude (within a multiplicative constant) can be
defined by the complex parameter � ¼ �j jei�: The electric field can be written in terms of
quadratures

ÊE ~rr, t
� �

¼ �

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
Q̂Q sin ~kk � ~rr� !t

� �
þ P̂P cos ~kk � ~rr� !t

� �h i

so that the classical values of the quadrature (i.e., averages) indicate the center of the
Wigner probability plot and can be related to the parameter � by

� ¼
1
ffiffiffi
2
p �QQþ i �PP

� �
ð6:14:1Þ

where �QQ ¼ �h jQ̂Q �j i ¼
ffiffiffi
2
p

Reð�Þ and �PP ¼ �h jP̂P �j i ¼
ffiffiffi
2
p

Imð�Þ: In the coordinate representa-
tion, the range of quadrature values must be guided by a normal distribution. We will see
in subsequent sections that the normal distributions for the Q and P quadratures can be
combined into a quasi-classical probability distribution—the Wigner distribution.

We can define the ‘‘squeezed EM states’’ in terms of ‘‘squeezed’’ annihilation operators.
We will find that squeezed states can be characterized by reduced noise (i.e., standard
deviation) in one parameter but with added noise in the conjugate parameter.

distribution plot. The amplitude-squeezed light, for example, has decreased magnitude

range of ‘‘Q,’’ denoted by �Q, increases; however, the product �Q �P ¼ 1=2 remains
unaltered. A measurement of the electric field for squeezed light can assume a magnitude
and phase out of the range of values characterized by the ovals in the figure.

The squeezed states must be part of the amplitude Hilbert space.
illustrates a quick method for relating the ‘‘oval shapes’’ in phase space to the amplitude
and phase of a sine wave. Rather than associate the time dependence with the quantum
EM field, we can associate it with the squeezed state vector (as we will see later). The state
then rotates about the origin of phase space as shown in Figure 6.14.2. The top portion of
the figure shows phase squeezing. The angle must be confined to a very narrow region at
any time, but not so for the amplitude of the vector from the origin to the center of the
distribution. Notice at t1, how the length of the oval defines a range of values for the
amplitude of the left-hand sine waves. Also notice how the sine waves line up one under
the other. The bottom portion shows amplitude squeezing. The length of the vector from
the phase–space origin must be fairly well defined but not the angle. In this case, at time
t1 (oval at top), the tops of the sine waves approximately coincide with the horizontal line.
However, the tops can be horizontally separated from one another according to the width
of the oval. We will see later that the vacuum state can also be squeezed; the results
appear similar to those in the figure except that the average amplitude must be zero. All
squeezed electromagnetic waves can be related to coherent states and, in particular,
to squeezed vacuum states.

There exists two sets of mathematical operations that produce squeezed states. Let ŜSð�Þ
denote an operator that ‘‘squeezes’’ a coherent state and let D̂D �ð Þ be the displacement
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Figure 6.14.1 shows various types of squeezing as represented by a Wigner probability

Figure

quadrature squeezed light, the possible range of ‘‘P,’’ denoted by �P, decreases while the
variance and increased phase variance; the reverse is true for phase-squeezed light. For P-

6.14.2
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FIGURE 6.14.1

Various types of squeezed states as represented by the corresponding Wigner distribution. The coherent state
has a value for the squeezing parameter of zero.

FIGURE 6.14.2

The top portion represents squeezed phase and the bottom represents squeezed amplitude.
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operator that defines a coherent state �j i ¼ D̂Dð�Þ 0j i from the vacuum. The complex
parameter � ¼ r ei� uses r > 0 to describe the degree of squeezing and the angle � to
describe the angle of the ‘‘long axis’’ of the distribution. The first set of operations consists
of first squeezing the vacuum

ŜS �ð Þ 0j i ¼ 0, �j i ð6:14:2Þ

and then displacing the ‘‘new vacuum’’ through the phase–space distance �

D̂Dð�ÞŜS �ð Þ 0j i ¼ �, �j i ð6:14:3Þ

The word ‘‘new vacuum’’ appears in quotes because it is not actually a physical vacuum;
it is more similar to a multi-photon state. Figure 6.14.3 shows the sequence of operations
required by Equation (6.14.3). The second set of operations consists of first displacing the
vacuum and then squeezing the resulting coherent state (the reverse of Equation (6.14.3)).
We do not consider this second type of squeezed state further because the final result
does not have as simple an interpretation as the first type.

The next sections provide the mathematical detail on squeezed states. The discussion
starts with Q-squeezed vacuums using �¼ 0 in the squeeze parameter � ¼ r ei� so that ‘‘P’’
becomes the ‘‘long’’ axis. The length of the oval along the P-axis must be a factor of er=

ffiffiffi
2
p

longer than the diameter of the circle representing the vacuum state 0j i; the Q-axis must
be ‘‘shorter’’ by the factor e�r=

ffiffiffi
2
p
: The Q-squeezed vacuum can be rotated to any desired

angle. The rotated, squeezed vacuum can be displaced to a new location by using the
displacement operator D(�). The modulus of the parameter � ¼ r e�i� determines the
amount of squeeze and the angle determines the axis of squeezing (i.e., amplitude or
phase squeezed, etc.).

6.15 The Squeezing Operator and Squeezed States

The squeezing operator ŜSð�Þ transforms a coherent state into a squeezed state. The
complex parameter � determines the type of squeezed state. The four common types
include quadrature, amplitude, phase, and number squeezed. Amplitude squeezed
states exhibit reduced number fluctuations only over a limited range of the squeezing
parameter. In the limit of infinite squeezing, the amplitude squeezed state does not
approach a Fock state. The probability distribution of the number-squeezed state (termed
sub-Poisson) can be characterized by a standard deviation smaller than that for the
coherent state. An anti-squeezed number state (phase squeezed) obeys super-Poisson
statistics.

FIGURE 6.14.3

The vacuum is squeezed and then displaced to produce the squeezed coherent state.
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This section explores the squeezing operator ŜSð�Þ along with some of its elementary
properties. As mentioned in the previous section, the squeezed state can be defined to be
the eigenvector of a ‘‘squeezed annihilation operator.’’ However, to define the ‘‘squeezed
annihilation operator,’’ we must first know the squeezing operator ŜSð�Þ: After stating a
definition for the squeezing operator, we then define the squeezed vacuum state and then
the squeezed (nonzero) coherent state. Having expressions for these states can be useful
for picturing them in phase space. However, calculations proceed using operators and
commutators. Therefore, we must show how the squeezing operator affects the three
basic types of operators, explored so far in this chapter, namely creation–annihilation
operators, the quadrature operators and the displacement operators. We can then show
how the complex squeezing parameter � ¼ r ei� orients the ‘‘variance oval’’ (i.e., the
region where the amplitude and phase of the electric field can most likely be found when
measured). Finally, we show the coordinate representation of the squeezed states in phase
space.

6.15.1 Definition of the Squeezing Operator

The squeezing operator is defined by

ŜSð�Þ ¼ exp
��

2
b̂b2 �

�

2
b̂bþ2

� �
ð6:15:1Þ

We define the squeezing parameter � ¼ re�i� with the minus sign. The operator ŜS must
be a unitary operator since ŜSþð�Þ ¼ ŜSð��Þ ¼ ŜS�1ð�Þ: We can still find useful relations
that eventually provide (i) the variance of squeezed operators (such as electric field and
energy), (ii) the coordinate representations of squeezed states, and (iii) the photon
statistics for squeezed states. A subsequent section shows that homodyne sensor systems
can be used to detect and measure the amount of squeezing.

6.15.2 Definition of the Squeezed State

�, �j i ¼ D̂D �ð ÞŜS �ð Þ 0j i ð6:15:2Þ

where recall from Section 6.11, displacing the vacuum state 0j i produces the coherent
state �j i ¼ D̂D �ð Þ 0j i: Note that the order of parameters in �, �j i matches the order of
the operators in Equation (6.15.2). Although not yet mathematically clear, the squeezed

Eventually, one would like to calculate transition rates using squeezed coherent states
as might be important for communication devices.

6.15.3 The Squeezed Creation and Annihilation Operators

Squeezing a state provides convenient pictures while squeezing an operator provides
convenient mathematics. We might want to know the expected result of measurement of
an operator ÔO (such as the electric field) when the system occupies a squeezed state
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state is obtained by first squeezing the vacuum and then displacing the result

state in Equation (6.15.2) can be represented by the sequence shown in Figure 6.15.1.

As mentioned in the previous section, the simplest (but not the only) squeezed coherent
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�, �j i ¼ D̂D �ð ÞŜS �ð Þ 0j i as given by Equation (6.15.2). The expectation value of the operator
ÔO then takes the form

�, �h jÔO �, �j i ¼ 0h jŜSþD̂DþÔOD̂D ŜS 0j i ð6:15:3Þ

We must either know the state �, �j i or the new operator ÔO00 ¼ ŜSþD̂DþÔOD̂D ŜS or we can
calculate a combination

�, �h jÔO �, �j i ¼ 0h j ŜSþD̂DþÔOD̂DŜS
� �

0j i ¼ 0h jŜSþ
� �

D̂DþÔOD̂D ŜS 0j i
� �

If the original operator ÔO can be written as a functional of the creation and annihilation

operators ÔO ¼ ÔOðb̂b, b̂bþÞ, then we can calculate both ÔO0 ¼ D̂DþÔOD̂D and ÔO00 ¼ ŜSþD̂DþÔOD̂D ŜS:
Therefore, the transformation of any operator ÔO under ŜS is known so long as ÔO ¼ ÔOðb̂b, b̂bþÞ

and the transformations of b̂b and b̂bþ under ŜS are known.
First let’s examine the effects of the displacement operator. If the operator ÔO can be

written as a functional of the creation–annihilation operators ÔO ¼ ÔO b̂b, b̂bþ
� �

then the

operator product D̂DþÔO D̂D, in Equation (6.15.3), can be easily calculated since previous

sections show

D̂Dþ �ð Þ b̂b D̂D �ð Þ ¼ b̂bþ � and D̂Dþ �ð Þb̂bþD̂D �ð Þ ¼ b̂bþ þ �� ð6:15:4aÞ

Products of the form b̂bþb̂b become

D̂Dþ b̂bþb̂b
� �

D̂D ¼ D̂Dþ b̂bþD̂D
� �

D̂Dþ b̂b D̂D
� �

¼ b̂bþ þ ��
� �

b̂bþ �
� �

ð6:15:4bÞ

FIGURE 6.15.2

The Q-quadrature is squeezed.

FIGURE 6.15.1

The vacuum is squeezed and then displaced to produce the squeezed coherent state.
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and so on.
We must determine the effect of the squeezing operators on the annihilation–creation

operators. The first order of business consists of showing

ŜSþb̂bŜS ¼ b̂b cosh rð Þ � b̂bþei� sinh rð Þ ŜSþb̂bþŜS ¼ b̂bþcosh rð Þ � b̂b e�i�sinh rð Þ ð6:15:5Þ

where � ¼ r e�i� and b̂b, b̂bþ are the annihilation and creation operators, respectively.
We show the first of Equations (6.15.5) by applying the operator expansion theorem

e�xÂAB̂BexÂA ¼ B̂B�
x

1!
½ÂA, B̂B� þ

x2

2!
ÂA, ÂA, B̂B
h ih i

þ . . . ð6:15:6Þ

For the squeezing operator in Equation (6.15.1), specifically ŜSð�Þ ¼ expð��b̂b2=2� �b̂bþ2=2Þ,

we set ÂA ¼ 1
2 ð�
�b̂b2 � �b̂bþ2Þ and x¼ 1, and substitute into the expansion formula

(Equation 6.15.6)

ŜSþb̂b ŜS ¼ e�
1
2 �� b̂b2��b̂bþ2
� �

b̂be
1
2 ��b̂b2��b̂bþ2
� �

b̂b�
1

2
��b̂b2 � �b̂bþ2
� �

, b̂b

	 

þ

1

2!

1

2
��b̂b2 � �b̂bþ2
� �

,
1

2
��b̂b2 � �b̂bþ2
� �

, b̂b

	 
	 

þ . . .

The commutators in this expression can be evaluated using ½b̂b, b̂bþ� ¼ 1 to produce

ŜSþb̂b ŜS ¼ b̂b� ��b̂bþ þ
1

2!
�j j2b̂b�

1

3!
�j j2��b̂bþ þ . . . ¼ b̂b 1þ

1

2!
r2 þ

1

4!
r4 þ . . .

� �

� b̂bþei� rþ
1

3!
r3 þ . . .

� �

We therefore find

ŜSþb̂b ŜS ¼ b̂b cosh rð Þ � b̂bþei� sinhðrÞ ð6:15:7Þ

which proves the first relation where r ¼ �j j is the modulus of the squeezing parameter
� ¼ r e�i�: Taking the adjoint proves the second relation.

6.15.4 The Squeezed EM Quadrature Operators

The electromagnetic quadrature operators provide a first example for squeezing
functionals of the creation and annihilation operators. The ‘‘position and momentum’’
operators are defined by

Q̂Q ¼
1
ffiffiffi
2
p b̂bþ b̂bþ

� �
P̂P ¼

1

i
ffiffiffi
2
p b̂b� b̂bþ

� �
ð6:15:8Þ

These operators prove to be important for plots of the Wigner probability distribution.

deviation of these operators determines, in an easy way, the direction of squeezing.
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from Chapter 4, namely

Recall from the introduction to squeezed states (e.g., Figure 6.14.3) that the standard
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Using Equation 6.15.5, the squeezed operator Q̂QS ¼ ŜSþQ̂QŜS can be evaluated as

ŜSþQ̂Q ŜS ¼
1
ffiffiffi
2
p ŜSþb̂bŜSþ ŜSþb̂bþŜS

h i
¼

b̂bþ b̂bþ
ffiffiffi
2
p cosh rð Þ �

b̂be�i� þ b̂bþei�

ffiffiffi
2
p sinh rð Þ

This last expression can be simplified to

ŜSþQ̂Q ŜS ¼ Q̂Q cosh rð Þ � Q̂QR sinh rð Þ ð6:15:9aÞ

The ‘‘rotated’’ operator Q̂QR is shorthand notation for Q̂QR ¼ ðb̂b e�i� þ b̂bþei�=
ffiffiffi
2
p
Þ: The rotated

operator can also be written as Q̂QR ¼ R̂RþQ̂Q R̂R where R̂R ¼ e�iN̂N� ¼ e�ib̂bþ b̂b� as discussed in

Section 6.4.6.
Similarly, the squeezed P̂P operator P̂PS ¼ ŜSþP̂PŜS can be evaluated

ŜSþP̂P ŜS ¼
1

i
ffiffiffi
2
p ŜSþ b̂b� b̂bþ

� �
ŜS ¼ P̂P cosh rð Þ � P̂PR sinh rð Þ ð6:15:9bÞ

where P̂PR ¼ ðb̂b e�i� � b̂bþei�Þ=ði
ffiffiffi
2
p
Þ:

6.15.5 Variance of the EM Quadrature

Using the results of the previous topic, we can now demonstrate the origin of the ‘‘ovals’’

the most likely region to find an amplitude vector when making a measurement; the
coordinate-representation wavefunction approaches zero for regions outside the oval.
The ‘‘ideally squeezed coherent states’’ come from first squeezing the vacuum state and
then displacing it. The displacement operator does not change the ‘‘amount of squeezing’’
and therefore does not change the size of the oval. We can calculate the size of the oval by
using the squeezed vacuum rather than the ideally-squeezed coherent state to simplify
the calculation. The length and width of the ovals represent the standard deviation for
two independent variables. We can find these sizes by calculating the standard deviation
of the quadratures Q̂Q and P̂P in the squeezed vacuum. We should realize that even though
we remove the noise (i.e., reduce the standard deviation) from one parameter, it appears
in the other which explains why the region has an oval shape. This says that the
Heisenberg uncertainty relation continues to hold regardless of the value of the squeezing
parameter �. We show these various aspects of the ‘‘ovals’’ in the following discussion.
We limit our attention to the squeezed vacuum (i.e., �¼ 0) because the size of the oval
does not change when we translate the vacuum state.

We will need to calculate the variance of the quadrature operators Q̂Q, P̂P: Recall that
these operators appear in the expression for the single mode electric fields

~EEk ~rr, t
� �

¼ �

ffiffiffiffiffiffiffiffi
�hh!

"0V

r
Q̂Q sin ~kk � ~rr� !t

� �
þ P̂P cos ~kk � ~rr� !t

� �h i
ð6:15:10aÞ

where the mode subscripts and polarization vector are suppressed, and !, ~kk are
the angular frequency and wave vector of the traveling waves. The quadrature operators
Q̂Q and P̂P are defined by

Q̂Q ¼
1
ffiffiffi
2
p b̂bþ b̂bþ

h i
P̂P ¼

1

i
ffiffiffi
2
p b̂b� b̂bþ

h i
ð6:15:10bÞ
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in the phase space plots (cf. Figure 6.15.1). As previously discussed, an ‘‘oval’’ represents
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and these operators satisfy the commutation relations

Q̂Q, P̂P
h i

¼ i Q̂Q, Q̂Q
h i

¼ 0 ¼ P̂P, P̂P
h i

b̂b, b̂bþ
h i

¼ 1 b̂b, b̂b
h i

¼ 0 ¼ b̂b, b̂bþ
h i

ð6:15:10cÞ

The commutation relations imply that the two-quadrature terms in the electric field
cannot be simultaneously and precisely known.

First calculate the variance of Q̂Q for the squeezed vacuum state 0, �j i ¼ ŜS �ð Þ 0j i where
� ¼ re�i�: The variance is

�2
Q ¼ 0, �h jQ̂Q2 0, �j i � 0, �h jQ̂Q 0, �j i2

The average of the ‘‘position’’ operator Q̂Q can be evaluated using Equations 6.15.5

0, �h jQ̂Q 0, �j i ¼ 0h jŜSþQ̂QŜS 0j i ¼ 0h j
b̂bþ b̂bþ

ffiffiffi
2
p cosh rð Þ �

b̂b e�i� þ b̂bþei�

ffiffiffi
2
p sinh rð Þ

( )

0j i ¼ 0

Next, evaluate 0, �h j Q̂Q2 0, �j i using ŜS ŜSþ ¼ 1 ¼ ŜSþŜS

0, �h jQ̂Q2 0, �j i ¼ 0h jŜSþQ̂Q2ŜS 0j i ¼ 0h j ŜSþQ̂QŜS ŜSþQ̂QŜS 0j i

¼ 0h j Q̂Q cosh rð Þ � Q̂QR sinh rð Þ
h i

Q̂Q cosh rð Þ � Q̂QRsinh rð Þ
h i

0j i

¼ 0h jQ̂Q2 0j icosh2 rð Þ þ 0h jQ̂Q2
R 0j isinh2

ðrÞ � 0h j Q̂QQ̂QR þ Q̂QRQ̂Q
� �

0j icosh rð Þsinh rð Þ

ð6:15:11Þ

Next, we must substitute expressions for Q̂Q and Q̂QR and use the commutation relations
for the creation and annihilation operators. Evaluating each of the four terms separately
in the previous equation, we find

0h jQ̂Q2 0j i ¼ 0h j
b̂bþ b̂bþ

ffiffiffi
2
p

 !2

0j i ¼ 0h j
b̂b2 þ b̂bþ2 þ b̂bb̂bþ þ b̂bþb̂b

2
0j i ¼

1

2

0h jQ̂Q2
R 0j i ¼ 0h j

b̂b e�i � þ b̂bþei �

ffiffiffi
2
p

 !2

0j i ¼
1

2

0h jQ̂Q Q̂QR 0j i ¼ 0h j
b̂bþ b̂bþ

ffiffiffi
2
p

 !
b̂b e�i � þ b̂bþei�

ffiffiffi
2
p

 !

0j i ¼
1

2
0h jb̂b b̂bþei� þ b̂bþb̂b e�i� 0j i ¼

ei�

2

0h jQ̂QRQ̂Q 0j i ¼
1

2
0h jb̂bþb̂b ei � þ b̂b b̂bþ e�i� 0j i ¼

e�i�

2

Substituting all of these into the results for Equation (6.15.11) provides

0, �h jQ̂Q2 0, �j i ¼
1

2
cosh2 rð Þ þ sinh2 rð Þ � 2 cos �ð Þsinh rð Þcosh rð Þ
� �
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Therefore the variance of Q̂Q in the state 0, �j i must be

�2
Q ¼ 0, �h jQ̂Q2 0, �j i � 0, �h jQ̂Q 0, �j i2¼

1

2
cosh2 rð Þ þ sinh2 rð Þ � 2 cos �ð Þsinh rð Þcosh rð Þ
� �

ð6:15:12aÞ

where � ¼ re�i�: The variance of the P̂P quadrature operator can be similarly demonstrated

�2
P ¼ 0, �h jP̂P2 0, �j i ¼

1

2
cosh2 rð Þ þ sinh2 rð Þ þ 2 cos �ð Þsinh rð Þcosh rð Þ
� �

ð6:15:12bÞ

operators (see Equation 6.15.11) become

�Q ¼
e�r

ffiffiffi
2
p and �P ¼

er

ffiffiffi
2
p ð6:15:13Þ

Wigner distribution into the 2-D plane). The greatest variance appears along the ‘‘P’’
axis while the least variance appears along the ‘‘Q’’ axis. Notice that the squeeze
parameter ‘‘r’’ must always be positive.

The angle � in the squeezing parameter � ¼ re�i� controls the ‘‘direction’’ of squeezing.

is easy to see from Equations (6.15.12) by letting �¼ 180. We see that cos � changes
sign and rather than subtracting a term for Q, it adds a term to make the variance of
Q larger.

An important point is that the Heisenberg uncertainty relation remains unchanged for
squeezed versus nonsqueezed coherent states. For the squeezed vacuum, the Heisenberg
uncertainty relation for the two quadrature components becomes

�Q�P ¼
e�r

ffiffiffi
2
p

er

ffiffiffi
2
p ¼

1

2
ð6:15:14Þ

Although the noise is squeezed out of one quadrature, it reappears in the other. The
noise in the total electric field and Hamiltonian never decreases. Squeezing the
vacuum always increases the variance of the Hamiltonian and total electric field (both
quadratures).

6.15.6 Coordinate Representation of Squeezed States

The wave function for the squeezed vacuum can be represented in either the Q or P
coordinate representation. Consider the normal distributions for the vacuum and

FIGURE 6.15.3

The angle � in � ¼ re�i� rotates the ‘‘squeezed direction’’ by �/2.
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Now consider the special case of �¼ 0 (Figure 6.15.2). The variance of the EM quadratures

The ovals appear in Figure 6.15.1 (these represent a projection of the squeezed-vacuum

It rotates the ‘‘long’’ axis of squeezing by an angle �/2 as shown in Figure 6.15.3. This
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squeezed vacuum states shown in Figure 6.15.4. The distributions with dotted lines in
the figure represent the coordinate projection of the coherent state. The distributions
with the solid lines represent the projection of the squeezed vacuum onto the coordi-
nates. As an example, consider the P coordinate. Notice that the Gaussian distribution
for squeezed state is wider than that for the coherent-state vacuum. Also notice
that the squeezed vacuum has a Gaussian distribution for either the ‘‘P’’ or the ‘‘Q’’
coordinates.

Leonhardt’s book shows that the coordinate representations of the squeezed vacuum
with the squeezing parameter � ¼ r ei� (with �¼ 0) must be given by

� Qð Þ ¼ er=2U0 erQð Þ and � Pð Þ ¼ e�r=2U0 e�rPð Þ ð6:15:15Þ

where U0 Qð Þ is the coordinate representation of the coherent-state vacuum as given
in Section 6.11.3. The factors e�rcompress or expand the scale of the axis which changes
a circle into the oval. The multiplicative factors e� r=2 normalize the wave functions.
Leonhardt shows that Equations 6.15.15 lead to the correct form of the squeezing operator
by differentiating with respect to ‘‘r’’ to get

@�

@ r
¼

1

2
Q
@

@Q
þ
@

@Q
Q

� �
 ¼

i

2
Q̂QP̂Pþ P̂PQ̂Q
� �

�

This differential equation can be solved by separating variables r,� to find

� Qð Þ ¼ exp
i r

2
Q̂QP̂Pþ P̂PQ̂Q
� �� �

� 0ð Þ

This last result is consistent with Equation (4.15.1) for �¼ 0.

ŜS ¼ exp
i r

2
Q̂QP̂Pþ P̂PQ̂Q
� �� �

¼ exp
r

2
b̂b2 � b̂bþ2
� �n o

FIGURE 6.15.4

Comparison of a squeezed state (oval) and a coherent state (circle).
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6.16 Some Statistics for Squeezed States

The ideally squeezed coherent state �, �j i ¼ D �ð ÞS �ð Þ 0j i comes about by first squeezing
the vacuum and then displacing it by the complex parameter � in amplitude space. Recall
that there exists a number of different types of statistical distributions for quantum
mechanical states; two of the most common include the normal distribution for the
quadratures and another for the photon number. The parameter � characterizes the center
of the quadrature distributions for both squeezed and unsqueezed coherent states.
Translating a squeezed vacuum through the distance � does not affect the noise content of
the state; this means that aside from the average, the other statistics remain unaffected by
translations. Consequently, we should be able to calculate the variance of an operator
in either the squeezed coherent state or the squeezed vacuum state and find the same
result. We provide two examples of using squeezed states by calculating the average
and variance of the electric field and the Hamiltonian. We also discuss the statistical
distribution for the photon number and we’ll see why squeezed states might more
properly be termed ‘‘multi-photon states.’’

6.16.1 The Average Electric Field in a Squeezed Coherent State

The ideal squeezed coherent state is found by first squeezing the vacuum and then

operator remains unaffected by the squeezing (i.e., the average electric field in the ideal
squeezed coherent state is identical to the average electric field in the coherent state).
However, squeezing increases the variance of the total electric field compared with that
for the coherent state alone. As will be seen, the displacement operator does not affect the
amount of noise in the field.

The quantized electric field operator for a single mode can be written as

ÊE ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂beikx�i!t � b̂bþe�ikxþi!t
h i

ð6:16:1Þ

The average electric field in the ideal squeezed coherent state �, �j i ¼ D̂D �ð Þ ŜS �ð Þ 0j i
becomes

�, �h jÊE �, �j i ¼ 0h jŜSþD̂Dþ ÊE D̂D ŜS 0j i

¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
0h jŜSþ D̂Dþb̂b D̂D

� �
ŜS 0j ieikx�i!t � 0h jŜSþ D̂Dþb̂bþ D̂D

� �
ŜS 0j ie�ikxþi!t

n o

The displacement operator transforms the annihilation and creation operators
according to

D̂Dþ �ð Þ b̂b D̂D �ð Þ ¼ b̂bþ � and D̂Dþ �ð Þ b̂bþ D̂D �ð Þ ¼ b̂bþ þ �� ð6:16:2Þ

so that

�, �h jÊE �, �j i ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
0h jŜSþ b̂bþ �

� �
ŜS 0j ieikx�i!t � 0h jŜSþ b̂bþ þ ��

� �
ŜS 0j ie�ikxþi!t

n o

Light 453

© 2005 by Taylor & Francis Group, LLC

displacing the results (Figure 6.16.1). As will be shown, the average of the electric field
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Using the fact that S must be unitary, substituting Equations 9.15.5 from the previous
section, namely ŜSþ b̂b ŜS ¼ b̂b cosh rð Þ � b̂bþei� sinh rð Þ and ŜSþ b̂bþ ŜS ¼ b̂bþ cosh rð Þ � b̂b e�i� sinh rð Þ,
and using 0h j b coshðrÞð Þ 0j i ¼ 0 (etc.), we find

�, �h jÊE �, �j i ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
�eikx�i!t � ��e�ikxþi!t
� �

¼ �h jÊE �j i ð6:16:3Þ

This last equation shows that the average electric field is independent of the squeezing.
Therefore the center of the Wigner distribution does not depend on the squeezing.

6.16.2 The Variance of the Electric Field in a Squeezed Coherent State

This section calculates the variance of the total electric field. Displacing the squeezed
vacuum does not change the noise content. For simplicity, use Equation (6.16.1) with x¼ 0
and t¼ 0 to calculate the variance of the electric field

ÊE ¼ þi

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂b� b̂bþ
h i

The variance is given by

�2
E ¼ �, �h jÊE2 �, �j i � �, �h jÊE �, �j i2

We know the average from Equation (6.16.3). Calculating the term �, �h jÊE2 �, �j i as outlined
in the chapter review exercises provides

�2
E

��
sqz
¼ �, �h jÊE2 �, �j i � �, �h jÊE �, �j i2¼

�hh!

2"0V
2 cos �ð Þ cosh rð Þ sinh rð Þ þ 1
� �

ð6:18:8aÞ

where r > 0 (and so sinh must always be greater than zero). Equation (6.16.4) is
independent of the displacement parameter �, as is necessary for the displacement
operator not to influence the noise content.

The total-field variance in the ideal squeezed coherent state can be seen to be always
larger than the variance of the field in the pure coherent state. The variance of the pure
coherent state can be found by substituting r¼ 0 in Equation (6.16.4)

r ¼ 0! �2
E

��
coherent

¼
�hh!

2"0V

Therefore

�2
E

��
sqz
� �2

E

��
coherent

ð6:16:4bÞ

Systems can be designed to only detect or amplify the ‘‘quiet’’ quadrature component
and ignore the noisy one. Similarly, squeezed number states can be detected by
photodetectors, which ignore the noisy phase.
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6.16.3 The Average of the Hamiltonian in a Squeezed Coherent State

We will see that the average energy (i.e., expectation value of the Hamiltonian) in a
squeezed state must always be larger than the average energy in the corresponding
coherent state. This occurs because the squeezed state carries the energy of the
corresponding coherent state plus the energy required to squeeze the vacuum. In
particular, we surmise that the squeezed vacuum has an average energy larger than
the true vacuum. Squeezed states consist of pairs of photons rather than single ones. The
squeezed-state variance for the Hamiltonian is always larger than the coherent-state
variance.

The single mode electromagnetic Hamiltonian can be written as

ĤH ¼ �hh! b̂bþb̂bþ
1

2

� �
ð6:16:9Þ

where ! is the angular frequency of the mode. The expectation value of the energy in the
ideal squeezed coherent state must be

�, �h jĤH �, �j i ¼ �hh! �, �h j b̂bþb̂bþ
1

2

� �
�, �j i ¼ �hh! �, �h jb̂bþb̂b �, �j i þ

1

2
�hh!

The average number in the first term on the right-hand side can be written as

�, �h jb̂bþb̂b �, �j i ¼ 0h jŜSþD̂Dþb̂bþb̂b D̂D ŜS 0j i ¼ 0h jŜSþ D̂Dþb̂bþD̂D
� �

D̂Dþb̂b D̂D
� �

ŜS 0j i

which uses the unitary nature of the displacement operator ‘‘D.’’ Substituting for the
displaced creation and annihilation operators

D̂Dþ �ð Þ b̂b D̂D �ð Þ ¼ b̂bþ � and D̂Dþ �ð Þ b̂bþD̂D �ð Þ ¼ b̂bþ þ �� ð6:16:6Þ

the last expression becomes

�, �h jb̂bþb̂b �, �j i ¼ 0h jŜSþD̂Dþb̂bþb̂b D̂D ŜS 0j i ¼ 0h jŜSþ b̂bþ þ ��
� �

b̂bþ �
� �

ŜS 0j i

¼ 0h jŜSþ b̂bþb̂bþ �b̂bþ þ ��b̂bþ þ �j j2
� �

ŜS 0j i

¼ 0h jŜSþb̂bþb̂b ŜS 0j i þ � 0h jŜSþb̂bþŜS 0j i þ �� 0h jŜSþb̂b ŜS 0j i þ �j j2

ð6:16:7Þ

Noting that the squeezed creation and annihilation operators consist of linear
combinations of the creation and annihilation operators,

ŜSþb̂b ŜS ¼ b̂b cosh rð Þ � b̂bþei� sinh rð Þ ŜSþb̂bþŜS ¼ b̂bþ cosh rð Þ � b̂be�i� sinh rð Þ ð6:16:8Þ

we realize that the vacuum expectation values of the squeezed operators must be zero.
Therefore

�, �h jb̂bþb̂b �, �j i ¼ 0h jŜSþb̂bþb̂b ŜS 0j i þ �j j2¼ 0h j ŜSþb̂bþŜS
� �

ŜSþb̂bŜS
� �

0j i þ �j j2
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Substituting Equation 6.16.12 into the result of Equation 6.16.11, the average number
becomes

�, �h jb̂bþb̂b �, �j i ¼ 0h j b̂bþ cosh rð Þ � b̂be�i� sinh rð Þ
� �

b̂b cosh rð Þ � b̂bþei� sinh rð Þ
� �

0j i þ �j j2

The terms 0h jb̂b2 0j i, 0h jb̂bþ2 0j i give zero as do the terms 0h jb̂bþb̂b 0j i: We are left with

�, �h jb̂bþb̂b �, �j i ¼ 0h jb̂bb̂bþ 0j i sinh2 rð Þ þ �j j2¼ sinh2 rð Þ þ �j j2

Therefore the expectation value for the Hamiltonian in the ideal squeezed coherent state
must be

�, �h jĤH �, �j i ¼ �hh! �, �h jb̂bþb̂b �, �j i þ
1

2
�hh! ¼ �hh! sinh2 rð Þ þ �j j2þ

1

2

� �
ð6:16:13Þ

Notice that r¼ 0 gives the average energy in the coherent state �j i: Squeezing the coherent
state (i.e., r > 0) causes the average energy to increase. Equation (6.16.9) consists of
three terms. The last term describes the vacuum energy, the middle term gives the energy
stored in the coherent state (similar to the square of the electric field) and the first term
describes the energy due to squeezing.

We can see that the average energy for the squeezed vacuum must be larger than the
energy in the vacuum alone.

0, �h jĤH 0, �j i ¼ �hh! sinh2 rð Þ þ
1

2

� �

Similarly, the average energy in the coherent state �j i can be written as

�h jĤH �j i ¼ �hh! �j j2þ
1

2

� �
ð6:16:10Þ

The average energy in an ideal squeezed coherent state (Equation (6.16.9)) can be written
in terms of the average energy in a coherent state as

�, �h jĤH �, �j i ¼ �h jĤH �j i þ �hh! sinh2 rð Þ

so that

�, �h jĤH �, �j i � �h jĤH �j i ð6:16:11Þ

The energy must be larger for squeezed states because the energy expended to squeeze
the state must be stored with the state. As will be seen in the next topic, the squeezed
vacuum is actually a multi-photon state. In fact, the photons come along in pairs and are
never found with an ‘‘odd’’ number.
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6.16.4 Photon Statistics for the Squeezed State

The squeezed vacuum is a multi-photon state which consists of a linear combination of
Fock states with an even number of photons; that is, the photons occur in pairs. The
probability of finding an odd number of photons is zero. This behavior is a result of
the fact that the creation and annihilation operators are squared in the argument of the
exponential for the squeezing operator

ŜS �ð Þ ¼ exp
��

2
b̂b2 �

�

2
b̂bþ2

	 

ð6:16:16Þ

For example, consider the case of a ‘‘Q-squeezed’’ vacuum (i.e., �¼ 0 in the squeezing
parameter � ¼ r ei�). Expanding the squeezing operator in powers of ‘‘r,’’ provides

0, rj i ¼ ŜSðrÞ 0j i ¼ exp
r

2
b̂b2 � b̂bþ2
� �h i

0j i

ffi 1þ
r

2

� �
b̂b2 � b̂bþ2
� �

þ
1

2!

r

2

� �2

b̂b2 � b̂bþ2
� �2

þ
1

3!

r

2

� �3

b̂b2 � b̂bþ2
� �3

þ � � �

	 

0j i

ð6:16:7Þ

The terms with the creation and annihilation operators can be expanded to provide

0, rj i ¼ 1�
1
ffiffiffi
2
p

r

2

� �2

þ�� �

	 

0j iþ �

ffiffiffi
2
p r

2

� �
þ

r

2

� �3 4þ 4!

6
ffiffiffi
2
p

� �
þ �� �

	 

2j iþ

r

2

� �2
ffiffiffiffi
4!
p

ffiffiffi
2
p þ� � �

	 

4j iþ � � �

ð6:16:18Þ

It is clear that all terms in Equation (6.16.13) (and hence Equation (6.16.14)) involve only
even exponents of creation and annihilation operators. The squeezed vacuum must be a
sum of even Fock states. The probability for finding ‘‘n’’ photons in the squeezed vacuum
during a measurement must be

prob ðnÞ ¼ n j 0, rh ij j2 ð6:16:19Þ

The probability for odd ‘‘n’’ must be zero since only even Fock states appear in
Equation 6.16.18. As a note for r¼ 0 (i.e., no squeezing), the series in Equation (6.16.14)

n photons for a vacuum with squeezing r. For r¼ 0, there would be a 100% probability
of finding n¼ 0 photons for the unsqueezed vacuum.

FIGURE 6.16.1

The vacuum is squeezed and then displaced to produce the squeezed coherent state.
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reduces to the unsqueezed vacuum state. Figure 6.16.2 shows the probability of finding
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Alternatively, Leonhardt calculates the probability by using the coordinate repre-
sentation of the squeezed vacuum. The coordinate wavefunction is given in Section 6.15.6
as Equation (6.15.15)

� Qð Þ ¼ er=2 U0 erQð Þ

where U0 is the unsqueezed vacuum wavefunction (a Gaussian). The probability
amplitude is therefore

nh jŜS rð Þ 0j i ¼

Z 1

�1

dQ nðQÞe
r=2U0 erQð Þ

where  n Qð Þ is the coordinate representation of the Fock wavefunction for a state
consisting of ‘‘n’’ photons. Leonhardt gives the formula

Prob ðnÞ ¼
0 n ¼ 1, 3, 5 . . .

n
n=2

� �
1

cosh rð Þ

tan h rð Þ

2

� �n

n ¼ 0, 2, 4 . . .

8
<

:

where

n
m

� �
¼

n!

m! n�mð Þ!

Figure 6.16.2 shows a plot of the probability of ‘‘n’’ photons for r¼ 0.25 and r¼ 1.

6.17 The Wigner Distribution

Previous sections discuss Fock, coherent, and squeezed states of the electromagnetic field.
We expect to describe number-phase and the quadratures by probability distributions.
Poisson-like distributions describe the photon number while normal distributions
apply to the quadratures. We can define a Wigner distribution that treats the phase
space coordinates (Q and P) as random variables. The Wigner distribution represents
the closest quantum analog to the classical probability distribution. However, the
Wigner distribution can become negative (a nonclassical probability property) for certain

FIGURE 6.16.2

Probability distribution for finding ‘‘n’’ photons in the
squeezed vacuum for two values of the squeezing parameter
‘‘r.’’ A value of r¼ 0.25 produces an almost unsqueezed state.
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types of states (such as Fock states). For coherent and squeezed states, the Wigner
distribution provides a near-classical picture. The so-called ‘‘P’’ and ‘‘Q’’ quasi-
probability distributions can also be defined. The ‘‘P’’ distribution provides a
mathematical object very similar to a density operator.

6.17.1 The Wigner Formula and an Example

The Wigner distribution is defined to be the joint quasi-probability density for the
electromagnetic (EM) field using the Q and P coordinates. This section shows that
the Wigner function can be written as

WðQ,PÞ ¼
1

2�

Z 1

�1

dx exp iPxð Þ Q�
x

2

D ����̂� Qþ
x

2

���
E

ð6:17:1Þ

^

The Wigner function connects the quantum and classical probability theory
through the use of marginal probabilities. For a classical probability density function
W(x,y), the probability of finding (for example) the values of x 2 a, bð Þ and y 2 c, dð Þ

are given by

Prob a < x < b, c < y < d
� �

¼

Z b

a

Z d

c
dx dy Wðx, yÞ

The probability that x 2 a, bð Þ regardless of the value of ‘‘y’’ is

Prob a < x < bð Þ ¼ prob a < x < b, �1 < y <1
� �

¼

Z b

a

Z 1

�1

dx dy Wðx, yÞ

Therefore, the probability density function for ‘‘x’’ can be identified as

WðxÞ 	

Z 1

�1

dy Wðx, yÞ

Wigner defined his formula in such a way that simultaneous measurements of P̂P, Q̂Q
do not need to be considered. The Wigner formulation requires the density functions
for Q and P to be given by

WQðQÞ 	

Z 1

�1

dP WðQ,PÞ ¼ Q
� ���̂� Q

�� �
and WPðPÞ 	

Z 1

�1

dQ WðQ,PÞ ¼ Ph j�̂� Pj i

ð6:17:2Þ

The subscripts P and Q appear in Equation (6.17.2) to remind the reader of the indepen-
dent variable—something not always obvious from the formulas. The 1-D probability
density functions can be related to the density operator by

WQðQÞ ¼ Q
� ���̂� Q

�� �
� Q

��  
� �

 
�� Q

� �
¼  Qð Þ
�� ��2 ð6:17:3Þ

and similarly for the density that depends on the ‘‘P’’ coordinate. This formula is
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where �� represents the density operator (from Chapter 5).

reminiscent of the ‘‘shadow’’ plots such as in Figure 6.15.4.
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What are Q and P? Recall that the single-mode electric field can be written as

~EE ~rr, t
� �

¼ �

ffiffiffiffiffiffiffiffi
�hh!

"0V

r
Q̂Q sin ~kk � ~rr� !t

� �
þ P̂P cos ~kk � ~rr� !t

� �h i
ð6:17:4Þ

This last equation can be in either the interaction representation or the free-field
Heisenberg representation. We know that measuring the field requires us to simultane-
ously find the values Q and P. Although we can make measurements and find specific
values of Q and P, repeated measurements do not produce identical values. We think of Q
and P as coordinates in a phase space plot. Given the results of a particular measurement,
we can define the (normalized) electric field amplitude and the phase as

a ¼
1
ffiffiffi
2
p Qþ iPð Þ tan� ¼ P=Q ð6:17:5Þ

which would be the annihilation operator if Q, P were operators. Notice that for the
coherent state �j i, the value ‘‘a’’ is not necessarily the same as �. The value � represents an

average amplitude according to � ¼ 1ffiffi
2
p �QQþ �PP
� �

where �QQ, �PP represent the average values

of Q̂Q, P̂P in the coherent state whereas we might consider Q, P to be measured values. Each
set of values Q, P leads to a different sine wave since Q, P must be related to an amplitude

Example 6.17.1

Find the Wigner density function for the vacuum state.

Solution: To fix our thoughts, we look for the Wigner function for the coherent state �j i
by setting �̂� ¼ �j i �h j (the Wigner function for nonpure states can also be found). A term
such as Qj�

� �
in

Q
� ���̂� Q

�� �
¼ Q

�� �
� �

�
�� Q

� �
¼ Q

�� �
� ��� ��2 ð6:17:6Þ

is the coordinate representation of the wave function. Recall the coordinate wave function
for the vacuum from Equations (6.11.14) and (6.11.15).

Q
�� � ¼ 0

� �
¼  0 Qð Þ ¼

1

�1=4
e�Q2=2 ð6:17:7Þ

The Wigner function can therefore be written as

WðQ,PÞ ¼
1

2�

Z 1

�1

dx exp iPxð Þ Q�
x

2

D ����̂� Qþ
x

2

���
E

¼
1

2�

Z 1

�1

dx exp iPxð Þ Q�
x

2

��� � ¼ 0
D E

� ¼ 0
��� Qþ

x

2

D E

¼
1

2�

Z 1

�1

dx exp iPxð Þ �0 Qþ
x

2

� �
 0 Q�

x

2

� �

ð6:17:8Þ
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and phase for the EM field (see, for example, Figures 6.14.2 and 6.9.6).
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Notice the arguments Q� x=2 just tells us to shift the distribution to the right or to
the left by an amount of x/2. Substituting for the wavefunctions in Equation 6.17.8
provides

WðQ,PÞ ¼
1

2�

Z 1

�1

dx exp iPxð Þ
1

�1=4
exp �

1

2
Qþ

x

2

� �2
	 


1

�1=4
exp �

1

2
Q�

x

2

� �2
	 


¼
1

�
exp �Q2 � P2

� �
ð6:17:9Þ

The last line follows after some simplifying algebra and integration. Equation 6.17.9
verifies that the Wigner function is a Gaussian distribution centered on the phase–space
origin for the vacuum. The displacement operator translates W to a new center
characterizing �j i without changing its shape. Therefore a Gaussian distribution must
describe all coherent states.

6.17.2 Derivation of the Wigner Formula

The derivation presented here resembles the one in Leonhardt’s book. The argument uses
the notation Q0,P0 for the rotated coordinates which reduce to Q and P for a rotation of 0


(it’s ok to think of Q, P instead). The following list provides the sequence of steps
required for the derivation. The function W 0 is the Wigner function of Q0,P0; it reduces to
W when the coordinates are not rotated.

1. The classical marginal probability distribution is defined as

WQðQ
0Þ 	

Z 1

�1

dP0W 0ðQ0,P0Þ ð6:17:10Þ

which has the form of a ‘‘Radon’’ transformation. The function W 0 Q0,P0ð Þ is the
quantity of interest; i.e., it is the Wigner function. The inverse transformation
of this equation must be developed in order to isolate W 0ðQ0,P0Þ:

2. The ‘‘characteristic function’’ is the Fourier transform of the probability density
W 0ðQ0,P0Þ appearing in the integrand of Equation (6.17.10) in Step 1. The Fourier
transform of the marginal probability will be found to be

~WWQ 
, �ð Þ ¼
ffiffiffiffiffiffi
2�
p

~WW 
 cos �, 
 sin �ð Þ 	
ffiffiffiffiffiffi
2�
p

~WW u, vð Þ ð6:17:11Þ

where ‘‘�’’ denotes Fourier transform, 
 is the Fourier transform variable
conjugate to Q0, � is the rotation angle for the coordinates and u ¼ 
 cos � and
v ¼ 
 sin �: This last equation relates the Fourier transform of the marginal
probability ~WWQ to the Fourier transform of Wigner function ~WW : Essentially, this
step provides the desired inversion for the Radon transfomation—just solve for
~WW u, vð Þ: We’re not quite finished though since we have not yet included the

quantum mechanical probability–Equation (6.17.11) represents the classical
probability. The characteristic function ~WW u, vð Þ must be compared to a
corresponding quantity from quantum theory.
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3. The density operator �̂� defines the quantum probability distribution through

WðQ0Þ ¼ Q0
� ���̂� Q0

�� �
ð6:17:12Þ

and similar to Step 2, the Fourier transform provides marginal probability density

~WWQ 
, �ð Þ ¼
1
ffiffiffiffiffiffi
2�
p Tr �̂� exp �iuQ̂Q� ivP̂P

� �n o
ð6:17:13Þ

where exp ð�iuQ̂Q� ivP̂PÞ is known as the Weyl operator; it is structurally similar
to the displacement operator.

4. Equating the results of Steps 2 and 3 provides an expression for the Fourier
transform of the Wigner distribution

~WW u, vð Þ ¼
1

2�
Tr �̂� exp �iuQ̂Q� ivP̂P

� �n o
ð6:17:14Þ

The Wigner distribution can be found from this last expression by taking an
inverse Fourier transform and using the wavefunction translation properties
inherent to the Weyl operator.

The rest of the discussion executes the program plan in steps 1 through 4 above. First we
discuss the coordinate rotations as step 0.

Step 0 The Rotations
This step defines some rotated quantities that will be required in the remainder of
the section. In particular, we recall how coordinates transform and how functions of these
coordinates transform. These will be used in Step 2 to write the Fourier transform of the
marginal probability density. We examine how operators and eigenstates transform

The coordinates Q0,P0 can be defined by the rotation

Q0

P0

� �
¼

cos � sin �
� sin � cos �

� �
Q
P

� �
ð6:17:15Þ

Recall that the coordinate transformation relates a function of the new coordinates to a

W 0 Q0,P0ð Þ ¼W Q,Pð Þ ð6:17:16Þ

The W and W0 are the Wigner functions in the original and rotated coordinates. The
coordinates Q and P must be the eigenvalues of the operators Q̂Q, P̂P (respectively)
according to

Q̂Q Q
�� �
¼ Q Q

�� �
and P̂P Pj i ¼ P Pj i ð6:17:17Þ
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function of the old coordinates (refer to Section 4.12.1) by

under coordinate rotations (Figure 6.17.1) for finding the quantum probability in Step 3.
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Recall that the rotation operator R̂R, which rotates the quadrature operators Q̂Q, P̂P, can be
written as

R̂R ¼ e�iN̂N� ð6:17:18Þ

where N̂N represents the number operator N̂N ¼ b̂bþb̂b, and b̂bþ, b̂b represent the creation and
annihilation operators respectively. The rotated ‘‘position’’ and ‘‘momentum’’ quadrature
operators can be written as

Q̂Q0 ¼ R̂RþQ̂Q R̂R and P̂P0 ¼ R̂RþP̂P R̂R ð6:17:19Þ

For example, Q̂Q0 is found to be

Q̂Q0 ¼ R̂RþQ̂Q R̂R ¼ eiN̂N� 1
ffiffiffi
2
p b̂bþ b̂bþ

� �
e�iN̂N� ¼

1
ffiffiffi
2
p b̂b e�i� þ b̂bþei�

� �
¼ Q̂Q cos � þ P̂P sin � ð6:17:20Þ

Let the states be defined by

Q, �
�� �

	 Q0
�� �
¼ R̂Rþ Q

�� �
and P, �j i 	 P0

�� �
¼ R̂Rþ Pj i ð6:17:21Þ

(note the ‘‘R̂Rþ’’). The adjoint rotation operator R̂Rþ, which is unitary, has the property that
R̂Rþð�Þ ¼ R̂Rð��Þ: The rotated coordinate kets must be eigenkets of the rotated operator

Q̂Q0 Q0
�� �
¼ R̂RþQ̂Q R̂R
� �

R̂Rþ Q
�� �
¼ R̂RþQ̂Q Q

�� �
¼ R̂RþQ Q

�� �
¼ Q R̂Rþ Q

�� �
¼ Q Q0

�� �
ð6:17:22Þ

Note that Q remains the eigenvalue.

Step 1 The Marginal Probability Distribution
The classical marginal probability distribution is defined as

WQðQ
0Þ 	

Z 1

�1

dP0W 0ðQ0,P0Þ ð6:17:23Þ

To find the ‘‘inverse’’ of the transformation, one needs to work with the Fourier
transformation.

Step 2 The Characteristic Function
The Fourier transform of

WQðQ
0Þ 	

Z 1

�1

dP0W 0ðQ0,P0Þ ð6:17:24Þ

is given by

~WWQ 
, �ð Þ ¼

Z 1

�1

dQ0WQ Q0ð Þ
e�i
Q0

ffiffiffiffiffiffi
2�
p ¼

Z 1

�1

dQ0
e�i
Q0

ffiffiffiffiffiffi
2�
p

Z 1

�1

dP0W 0 Q0,P0ð Þ

¼

ZZ

R2
dQ0 dP0

e�i
Q0

ffiffiffiffiffiffi
2�
p W 0 Q0,P0ð Þ
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The Jacobian of the transformation provides dQ dP ¼ dQ0 dP0, the definition for the
rotation of a function (Section 4.12.1) gives W 0ðQ0,P0Þ ¼WðQ,PÞ and the coordinate
rotation from Equation (6.17.15) yields Q0 ¼ Q cos � þ P sin �: Therefore ~WWQ 
, �ð Þ becomes

~WWQ 
, �ð Þ ¼

ZZ
dQdP

e�i
ðQ cos �þP sin �Þ

ffiffiffiffiffiffi
2�
p W Q,Pð Þ

¼
ffiffiffiffiffiffi
2�
p

ZZ
dQdP W Q,Pð Þ

e�iQ 
 cos �ð Þ�iP 
 sin �ð Þ

2�

ð6:17:25Þ

The characteristic function is the Fourier transform of the probability density

~WW u, vð Þ ¼

ZZ
dQ dP W Q,Pð Þ

e�iQ u�iP v

2�
ð6:17:26Þ

where the transform variables are related to polar coordinates by

u ¼ 
 cos � and v ¼ 
 sin � ð6:17:27Þ

Therefore, Equation (6.17.25) relates the characteristic function (Fourier transform of W )
to the Fourier transform of the marginal probability

~WWQ 
, �ð Þ ¼
ffiffiffiffiffiffi
2�
p

~WW u, vð Þ ¼
ffiffiffiffiffiffi
2�
p

~WW 
 cos �, 
 sin �ð Þ ð6:17:28Þ

Step 3 Fourier Transform of the Quantum Probability Density Function
The quantum probability density (in the Q0 coordinate) is given by

WQðQ
0Þ ¼ Q0

� ���̂� Q0
�� �
¼ Q
� ��R̂R�̂�R̂Rþ Q

�� �
ð6:17:29Þ

The Fourier transform of this function is

~WWQð
, �Þ ¼

Z 1

�1

dQ Q
� ��R̂R�̂�R̂Rþ Q

�� � e�i
Q

ffiffiffiffiffiffi
2�
p ¼

Z 1

�1

dQ Q
� ��R̂R�̂�R̂Rþ

e�i
Q

ffiffiffiffiffiffi
2�
p Q

�� �
ð6:17:30Þ

where the constant exponential term is moved inside the coordinate expectation value.
Using e�i
Q̂Q Q

�� �
¼ e�i
Q Q

�� �
(as can be seen by Taylor expanding e�i
Q̂Q), we obtain

~WWQð
, �Þ ¼

Z 1

�1

dQ Q
� ��R̂R�̂�R̂Rþ

e�i
Q̂Q

ffiffiffiffiffiffi
2�
p Q

�� �
¼ Tr R̂R�̂�R̂Rþ

e�i
Q̂Q

ffiffiffiffiffiffi
2�
p

" #

where the coordinate basis is used for the trace. The order of the operators in the trace can

~WWQð
, �Þ ¼

Z 1

�1

dQ Q
� ��R̂R�̂�R̂Rþ

e�i
Q̂Q

ffiffiffiffiffiffi
2�
p Q

�� �
¼

1
ffiffiffiffiffiffi
2�
p Tr �̂� R̂Rþe�i
Q̂Q R̂R

h i
ð6:17:31Þ
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File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-006.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:21am Page: 465/478

However, Step 0 shows that the rotated quadrature operator can be written as
Q̂Q0 ¼ R̂RþQ̂Q R̂R ¼ Q̂Q cos � þ P̂P sin �: Therefore, expanding the exponential in Equation
(6.17.31), and using the unitary property of R̂R,

R̂Rþe�i
Q̂QR̂R ¼ R̂Rþ
X

n

1

n!
ð�i 
ÞnQ̂Qn

 !

R̂R ¼
X

n

1

n!
ð�i 
Þn R̂RþQ̂Q R̂R

� �n
¼ e�i
 Q̂Q cos �þP̂P sin �ð Þ

Substituting this into Equation (6.17.31) along with

u ¼ 
 cos � and v ¼ 
 sin �

provides

~WWQð
, �Þ ¼
1
ffiffiffiffiffiffi
2�
p Tr �̂� R̂Rþe�i
Q̂Q R̂R

h i
¼

1
ffiffiffiffiffiffi
2�
p Tr �̂� e�iQ̂Qu�iP̂Pv

h i
ð6:17:31Þ

Step 4 Equate the Results of Steps 2 and 3
Equating the results of Steps 2 and 3 provides

~WW u, vð Þ ¼
1

2�
Tr �̂� e�iQ̂Qu�iP̂Pv
h i

ð6:17:33Þ

The Weyl operator can be rewritten using the Baker–Hausdorff formula as

eÂAþB̂B ¼ eÂAeB̂Be� ÂA, B̂B
 �

=2 so long as ÂA, ÂA, B̂B
h ih i

¼ 0 ¼ B̂B, ÂA, B̂B
h ih i

�i Q̂Qu �i ̂PPv ¼ e�i Q̂Que�i ̂PPve�½�i Q̂Qu,�i ̂PPv �=2 ¼

e�iQ̂Que�iP̂Pveþiuv=2 since ½Q̂Q, P̂P� ¼ i: Equation (6.17.33) can be written

~WW u, vð Þ ¼
1

2�
Tr �̂� e�iQ̂Qu�iP̂Pv
h i

¼
1

2�

Z 1

�1

dQ Q
� ���̂� e�iuQ̂Q�ivP̂P Q

�� �

¼
eþiuv=2

2�

Z 1

�1

dQ Q
� ���̂� e�iuQ̂Qe�ivP̂P Q

�� �
ð6:17:34Þ

Using the fact that e�ivP̂P is a translation operator in Q space according to Section 6.11,
provides

e�ivP̂P Q
�� �
¼ Qþ v
�� �

ð6:17:35aÞ

so that

e�iuQ̂Qe�ivP̂P Q
�� �
¼ e�iuQ̂Q Qþ v

�� �
¼ e�iu Qþvð Þ Qþ v

�� �
ð6:17:35bÞ

Equation (6.17.34) becomes

~WW u, vð Þ ¼
eiuv=2

2�

Z 1

�1

dQ Q
� ���̂� e�iu Qþvð Þ Qþ v

�� �
¼

e�iuv=2

2�

Z 1

�1

dQ e�iuQ Q
� ���̂� Qþ v

�� �
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(refer to Chapter 4). The Weyl operator becomes e 
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Making the substitution x ¼ Q�
v

2
yields

~WW u, vð Þ ¼
1

2�

Z 1

�1

dx e�iux x�
v

2

D ����̂� xþ
v

2

���
E

ð6:17:36Þ

Step 5 Inverse Transform
The inverse transform of Equation (6.17.8) is

WðQ,PÞ ¼

ZZ

�1,1ð Þ

du dv ~WW u, vð Þ
eiuQþivP

ffiffiffiffiffiffi
2�
p� �2

¼
1

2�

ZZ
dx dv x�

v

2

D ����̂� xþ
v

2

���
E
eivP

Z 1

�1

du
eiu Q�xð Þ

2�

ð6:17:37Þ

The definition for the Dirac delta function
Z 1

�1

du
eiu Q�xð Þ

2�
¼ � Q� xð Þ ð6:17:38Þ

gives

WðQ,PÞ ¼
1

2�

ZZ
dx dv x�

v

2

D ����̂� xþ
v

2

���
E
eivP � Q� xð Þ

Finally, we obtain Wigner’s formula for a quasi-probability distribution

WðQ,PÞ ¼
1

2�

Z 1

�1

dv exp ivPð Þ Q�
v

2

D ����̂� Qþ
v

2

���
E

ð6:17:39Þ

where Q and P are coordinates instead of operators.

6.17.3 Example of the Wigner Function

Wigner’s formula

WðQ,PÞ ¼
1

2�

Z 1

�1

dx exp ixPð Þ Q�
x

2

D ����̂� Qþ
x

2

���
E

is easy to evaluate so long as the wave function  
�� � in �̂� ¼  

�� �  
� �� is known as a function

of the ‘‘position’’ coordinate Q. The inner product then produces

Q�
x

2

D ����̂� Qþ
x

2

���
E
¼ Q�

x

2

���  
D E

 
��� Qþ

x

2

D E
¼  Q�

x

2

� �
 � Qþ

x

2

� �

Example 6.17.2 Wigner representation of the Fock state 1j i

The coordinate representation of the first Fock state can be written as

Q
�� 1

� �
¼  1 Qð Þ ¼ C1Q exp �

Q2

2

� �
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from Equation (8.7.12). Therefore, set �1 ¼ 1j i 1h j to get

Q�
x

2

D ����̂� Qþ
x

2

���
E
¼ Q�

x

2

��� 1
D E

1
��� Qþ

x

2

D E
¼  1 Q�

x

2

� �
 �1 Qþ

x

2

� �

which gives

Q�
x

2

D ����̂� Qþ
x

2

���
E
¼ C1j j

2 Q�
x

2

� �
exp �

Q� x=2ð Þ
2

2

� �
Qþ

x

2

� �
exp �

Qþ x=2ð Þ
2

2

� �

The Wigner function becomes

WðQ,PÞ ¼
C1j j

2

2�

Z 1

�1

dx exp ixPð Þ Q�
x

2

� �
exp �

Q� x=2ð Þ
2

2

� �
Qþ

x

2

� �
exp �

Qþ x=2ð Þ
2

2

� �

which can be integrated. The function can be evaluated by (1) multiplying terms,
(2) completing the square Exp ixP� x2=4

� �
¼ exp �P2

� �
exp � x� 2iPð Þ

2=4
� �

, (3) using
integrals of the form

R1
�1

dx
ffiffiffiffiffiffi
2�
p

�
 ��1

exp � x� xoð Þ
2=2�2

 �
¼ 1 and

R1
�1

dx x2exp
�y2=2
 �

¼
ffiffiffi
�
p

:

WðP,QÞ ¼

ffiffiffi
2
p

c1j j
2

ffiffiffiffiffiffi
2�
p e� P2þQ2ð Þ P2 þQ2

� �
�

c1j j
2

2
ffiffiffiffiffiffi
2�
p e� P2þQ2ð Þ

Notice the circular symmetry in P, Q. The probability density becomes negative, for
example, near P¼Q¼ 0. A classical probability can never behave this way. This indicates

W= c1j j
2: The higher order Fock states have larger numbers of oscillations along the radial

direction.

6.18 Measuring the Noise in Squeezed States

In general, we want to make use of the low noise light in optical systems such as those for
communications. Previous sections describe several types of squeezed states including
amplitude/phase squeezed and quadrature squeezed. Over a limited range of the
squeezing parameter, the amplitude squeezed state exhibits reduced number fluctua-
tion (number squeezed). The number squeezed state can be readily employed in optical
communications using a simple photodetector since it responds to the number of
photons in the beam. So long as the photodetector has high efficiency, the noise of the
photocurrent will closely match the noise in the number-squeezed light beam. Given
that the quality of an optical link partly depends on the noise content of the light, it seems
reasonable to investigate methods of measuring the noise. Noise in number-squeezed
light can be measured by connecting a high efficiency photodetector to a RF spectrum
analyzer. In general though, homodyne detection represents the most common method
for measuring the electromagnetic noise in a squeezed state. There exists both balanced
and unbalanced detectors; for RF waves, these systems date back to World War II. This
section discusses a simple homodyne detection system.
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that the Fock states cannot be classical states. Figure 6.17.2 shows the Wigner distribution
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shows a block diagram for producing and detecting optical electro-
magnetic waves in the squeezed state. A single photodetector could be used but it would
detect the total light emission rather than the quadrature component. A laser generates a
large amplitude optical signal (which can be represented by a classical wave). A system,
denoted by ‘‘Sqz,’’ converts the laser signal to squeezed light. The squeezed light is used
in any desired manner after it leaves the ‘‘squeezer.’’ For example, we might want to
know how a device (i.e., the device under test (DUT) in the figure) affects the noise in the
optical beam. A beam splitter taps-off a reference signal from the laser beam; we assume
the reference signal can be represented by a classical wave. The reference signal
maintains a fixed phase relation with the squeezed light. The homodyne detection system
consists of perfect 50–50 beam splitter (no surface reflections and no absorption), two
high-efficiency photodetectors and a summer with one input inverted. By adjusting the
phase � of the reference signal, it is possible to measure the quadrature compo-
nent Q̂Q� ¼ R̂RþQ̂Q R̂R where the rotation operator is R̂R �ð Þ ¼ e�iN̂N� and N̂N ¼ b̂bþb̂b: Recall that Q̂Q�

can be either the ‘‘in-phase’’ component P̂P or the ‘‘out-of-phase’’ component Q̂Q of the
electric field. Therefore by varying the phase of the reference signal, properties of
squeezed and anti-squeezed light can be examined.

the reference signal by a classical amplitude �LO (i.e., the mode has a large amplitude).
The symbols âa, âa1, âa2 refer to the operator amplitudes of the light waves. The following
discussion shows that the difference in the number of photons arriving at the two
photodetectors must be given by

n̂n21 ¼
ffiffiffi
2
p

�LOj jQ̂Q� ð6:18:1Þ

An increase of the signal from the local oscillator LO (i.e., the reference) also increases the
size of the detected signal n21; consequently the system provides an amplified version
of the quadrature signal Q�. The detection system responds only to the frequency of
the local oscillator and the desired quadrature component can be selected by using
the appropriate value for �. Besides detecting the quadrature component, the variance
of the photon-number difference provides the variance of the selected quadrature
component, which gives a measure of the amount of noise present.

The detectors respond to the power in each beam, which provides a measure of the
number of photons in each beam. The number of photons in output beam #1 and beam

FIGURE 6.17.2

Wigner Distribution for the n¼ 1 Fock state.

FIGURE 6.17.1

Definition of the rotated coordinates.
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Figure 6.18.1

Next, focus on the homodyne detection system shown in Figure 6.18.2. Let’s represent
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#2, respectively, can be written as

n̂n1 ¼ âaþ1 âa1 n̂n2 ¼ âaþ2 âa2 ð6:18:2aÞ

where we define the amplitudes by

âa1 ¼
1
ffiffiffi
2
p âa� �LOð Þ âa2 ¼

1
ffiffiffi
2
p âaþ �LOð Þ ð6:18:2bÞ

where the amplitude âa1 includes a 180
 phase shift since the classical beam reflects from
the internal interface of the beam splitter. We do not include similar phase shifts for the
quantum amplitude âa since we assume that the states in amplitude space will take care
of any phase shifts. This really means that different portions of the input beam might
be described by different states in amplitude space. The difference in the number of
photons incident on the detectors is

n̂n21 ¼ n̂n2 � n̂n1 ¼ âaþ2 âa2 � âaþ1 âa1

¼
1
ffiffiffi
2
p âaþ þ ��LO

� � 1
ffiffiffi
2
p âaþ �LOð Þ �

1
ffiffiffi
2
p âaþ � ��LO

� � 1
ffiffiffi
2
p âa� �LOð Þ

¼ �LOâaþ þ ��LOâa

ð6:18:3Þ

FIGURE 6.18.1

A system to determine the effect that a device-under-test (DUT) has on the noise in a squeezed beam of
electromagnetic energy. The homodyne detector derives a reference signal from the laser source.

FIGURE 6.18.2

The homodyne detection system combines squeezed light
and the large-amplitude local-oscillator signal at the
beam splitter (mixing).
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Using the definition for the creation and annihilation operators in terms of the ‘‘position
and momentum’’ operators,

âa ¼
1
ffiffiffi
2
p Q̂Qþ iP̂P

� �
âaþ ¼

1
ffiffiffi
2
p Q̂Q� iP̂P

� �
ð6:18:4Þ

the difference in photon number becomes

n̂n21 ¼ �LOâaþ þ ��LOâa ¼
��LO þ �LOffiffiffi

2
p Q̂Qþ i

��LO � �LOffiffiffi
2
p P̂P ¼ Q̂Q

ffiffiffi
2
p

Re �LOð Þ þ P̂P
ffiffiffi
2
p

Im �LOð Þ

¼
ffiffiffi
2
p

�LOj j Q̂Q cos � þ P̂P sin �
� �

¼
ffiffiffi
2
p

�LOj jQ̂Q�

which proves Equation (6.18.1).

6.19 Review Exercises

6.1 Demonstrate the relations

r � ei ~kk�~rr�!t
� �

¼ i ~kke
i ~kk�~rr�!t
� �

and r � ~AA ¼
i~kk� ~AA0

!
ei ~kk�~rr�!t
� �

Assume the spatial variation of ~AA0 is much smaller than for the high frequency
optical term.

6.2 For a point particle at the point ~xx0, find the potential V¼ð1=4�"0Þ
R

d3x0 ð� ~xx0,t
� �

= ~xx�~xx0
�� ��Þ:

6.3 Show G ~rr
� �
¼ ð�1=4�"0j~rrjÞ represents the potential due to a unit point charge at ~rr 0 ¼ 0:

Hint: Start with Maxwell’s equation for the electric field in terms of a delta function
charge density. After integrating, use the integral relation between voltage and field.

6.4 Show the function �kðzÞ ¼ eikz=
ffiffiffi
L
p

satisfying periodic boundary conditions over the
length L has the correct orthonormal relation for a basis set �k j �Kh i ¼ �kK:

6.5 Show Equations (6.3.13)

~EE ¼ �
@

@t
~AA ~rr, t
� �

¼
þi
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh!k

2

r

bk ei~kk�~rr�i!kt � b�k e�i~kk�~rrþi!kt
h i

~eek

~BB ¼ r � ~AA ~rr, t
� �

¼
þi
ffiffiffiffiffiffiffiffi
"0V
p

X

~kk

ffiffiffiffiffiffiffiffi
�hh

2!k

r
~kk� ~eek

� �
bk ei~kk�~rr�i!kt � b�k e�i~kk�~rrþi!kt
h i

For ~BB, consider the formula r � f ~vv ¼ rf
� �
� ~vv for ~vv a constant vector.
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6.6 Derive Equations (6.4.12)

~AA ~rr, t
� �

¼
1
ffiffiffiffiffiffiffiffi
"oV
p

X

~kk

~eek q̂qk cos ~kk � ~rr� !kt
� �

�
p̂pk

!k
sin ~kk � ~rr� !kt
� �	 


~EE ~rr, t
� �

¼
�1
ffiffiffiffiffiffiffiffi
"oV
p

X

~kk

~eek !k q̂qk sin ~kk � ~rr� !kt
� �

þ
p̂pk

!k
cos ~kk � ~rr� !kt

� �	 


~BB ~rr, t
� �

¼
�1
ffiffiffiffiffiffiffiffi
"oV
p

X

~kk

~kk� ~eek q̂qk sin ~kk � ~rr� !kt
� �

þ
p̂pk

!k
cos ~kk � ~rr� !kt

� �	 


starting with Equations (6.4.7) and (6.4.8).

6.7 Show the phase delay (rotation) operator R̂Rð�Þ ¼ e�i� N̂N ¼ e�i� b̂bþ b̂b is unitary.

6.8 Show R̂Rþb̂bþ R̂R ¼ b̂bþ ei � using the operator expansion theorem

exÂAB̂Be�xÂA ¼ B̂Bþ
x

1!
½ÂA, B̂B� þ

x2

2!
ÂA, ÂA, B̂B
h ih i

þ . . .

6.9 Show the phase-rotated field must be

ÊE ¼ i
X

k

ffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"0V

r
b̂bkei~kk�~rr�i!kt�i�k � b̂bþk e�i~kk�~rrþi!ktþi�k

h i
~eek

when the rotation operator is R̂R ¼
Q

k

R̂Rk and R̂Rkð�Þ ¼ e�i�k N̂Nk ¼ e�i�k b̂bþ
k

b̂bk :

6.10 Find q̂qR ¼ R̂Rþq̂q R̂R and p̂pR ¼ R̂Rþp̂p R̂R where R̂Rð�Þ ¼ e�i� N̂N ¼ e�i� b̂bþb̂b and

q̂q ¼

ffiffiffiffiffiffi
�hh

2!

r

b̂bþ b̂bþ
� �

p̂p ¼ �i

ffiffiffiffiffiffi
�hh!

2

r

b̂b� b̂bþ
� �

6.11 Show the quadrature operators satisfy

q̂qk, q̂qK

 �
¼ 0 ¼ p̂pk, p̂pK

 �
and q̂qk, p̂pK

 �
¼ i�hh�k,K

based on the commutation relations for the annihilation and creation operators.

6.12 Work out the right side of the amplitude operator by observing commutation
relations.

dAmplAmpl2
¼ ÊE
���
���
2 !2

"0V
q̂q2 þ

p̂p

!

� �2
" #

¼
2�hh2!2

"0V
N̂N þ

1

2

� �

6.13 Find nh jÊE2 nj i for a single mode Fock State nj i.

6.14 Starting with the expression ŜS ¼ hÊE� ĤHione
cycle

, substitute the quantum fields and
show

ŜS ¼
X

~kk

�hh!kc

V
N̂Nk þ

1

2

� �
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6.15 Find the average and variance of the Poynting vector for the Fock state nj i
and coherent state �j i:

6.16 As in Section 6.5, show the relation

Z

V
dV

"0

2
~EE � ~EE ¼

��hh

4

X

~kks

!k


þ bksb�~kks

þ b�ks b��ks � bksb
�
ks � b�ks bks

�

6.17 Show the number operator N̂N ¼
P

i N̂Ni has a sharp value for Fock states.

6.18 Consider a single mode. Suppose a system has the following wave function
consisting of the sum of two Fock states.

 
�� � ¼

1
ffiffiffi
3
p n ¼ 1j i þ

ffiffiffi
2

3

r

n ¼ 2j i

1. What is the probability of finding two photons?

2. Show the average electric field  
� ��ÊE  

�� � for the single mode in part ‘‘a’’ has
the form

4

3

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
sin kz� !tþ �ð Þ

6.19 Consider a single optical mode. Using the Fock basis set, show that the operator
b̂bþ does not have any right-hand eigenvectors: b̂bþ vj i¼�l vj i:

6.20 Show b̂b
~KK

tð Þ ¼ b̂b
~KK

0ð Þe�i!Kt by calculating ½ĤH, b̂bKðtÞ� in the Heisenberg representation.

6.21 Repeat Problem 6.20 but use the explicit form for the interaction representation
b̂bkðtÞ ¼ ûuþb̂bkûu ¼ e�ĤHt=i�hhb̂bkeĤHt=i�hh and the operator expansion theorem found in
Section 4.6. Explain why the result agrees with that from Problem 6.20 even
though one refers to the Heisenberg representation and the other refers to the
interaction representation.

6.22 Find the coordinate representation for a single Fock mode with n¼ 2 photons using
creation operators.

6.23 What is the approximate probability of finding the amplitude q in the range �q
centered on q¼ 0 for the n¼ 0 and n¼ 1 photon cases for the Fock states.

6.24 Find nh jŜS nj i for a single mode Fock state nj i:

6.25 Show �2
p ¼ nh jp̂p2 nj i � nh jp̂p nj i2¼ �hh! nþ 1=2ð Þ using the number form of the Fock state.

6.26 Show �q �p � �hh
2 for the vacuum state using the coordinate representation of the Fock

states and operators. That is, use expressions of the form

fðqÞ ¼ u0ðqÞ
� ��fðqÞ u0ðqÞ

�� �
¼

Z 1

�1

dqu�0ðqÞ fðqÞ u0ðqÞ

fðp̂pÞ ¼ u0ðqÞ
� ��fðp̂pÞ u0ðqÞ

�� �
¼

Z 1

�1

dqu�0ðqÞ
�hh

i

@

@q
u0ðqÞ

and make direct substitutions for the vacuum wave functions.
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6.27 For an electric field given by A sin kz� !tð Þ þ B cos kz� !tð Þ find the electric field in
the form C sin kz� !tþ �ð Þ: Identify C in terms of A and B and also identify �.
Assume A and B are real numbers.

6.28 Think of an example on how the coherent state �j i can depend on position x
according to �ðxÞ

�� �
:

6.29 Find the complex value of � (magnitude and phase) for the coherent state �j i
assuming the state represents the classical electric field E ¼ � sin kz� !tþ �

2

� �
:

6.30 A mirror deflects a coherent beam at a 90
 angle. Explain why we need two modes
to describe the situation. Hint: remember that k vectors label the modes.

6.31 A student makes a homojunction laser and finds the emitted light can best be
described by a coherent state.
1. If the student repeatedly measures the single-mode electric field

ÊE ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r
b̂b ei~kk�~rr�i!t � b̂bþe�i~kk�~rrþi!t
h i

she finds the average

E ¼

ffiffiffiffiffiffiffiffiffiffiffi
�hh!

2"0V

r ffiffiffi
8
p

sin ~kk � ~rr� !t� �
� �

6.32 What is the value of �?
1. What is the probability of finding 0 photons when a measurement is made?

6.33 Starting with the Hamiltonian for ĤH ¼ ðp̂p2=2Þ þ ð!2=2Þq̂q2, find the probability
amplitude for the momentum p, specifically uoðpÞ: Use the following steps.

1. If q̂q ¼ c @=@p show that c ¼ i�hh using commutation relations.

2. Rewrite the Hamiltonian so that ĤH0 ¼ ĤH=!2 and define 
 ¼ 1=!: Note the roles of
q̂q and p̂p have reversed. What must be the eigenvalues of ĤH0 and therefore ĤH?

3. Starting with the vacuum state u0ðqÞ, write the vacuum state u0ðpÞ:

6.34 Write the single mode Hamiltonian in terms of the normalized quadrature operators
P̂P, Q̂Q:

6.35 Starting with the solution for the vacuum state u0ðqÞ and the normalization integral,
find the correctly normalized wave function u0ðQÞ:

6.36 Find the average number of photons mh i ¼ �j j2 in a coherent state �j i by directly
summing the series mh i ¼

P1
m¼0 m P�ðmÞ where P�ðmÞ represent the Poisson

distribution.

6.37 Find the average of the Poynting vector �h jŜS �j i and the standard deviation �ŜS for the
coherent state �j i: Find the signal-to-noise ratio SNR ¼ hŜSi=�ŜS: Write all answers in
terms of the average number of photons in the mode �nn: Explain any differences
between your results and that found in Problem 2.22.

6.38 Blue and infrared beams of light have wavelengths lB, lR and powers, PB,PR: Using
similar reasoning to Problem 6.37, show the ratio of the noise must be

Noise Blue

Noise Red
¼
�B

�R
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
lR

lB

PB

PR

s
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assuming �nn� 1=2: Provide a physical explanation of why for equal powers, the
blue light has the higher noise content. What difference does the factor of 1

2 make
and what does it mean?

6.39 Show Dþð�Þ b̂bþDð�Þ ¼ b̂bþ þ �� by using the adjoint and also by using the operator
expansion theorem.

6.40 Show that the displacement operator acting on a nonzero coherent state produces
another coherent state with the sum of two amplitudes and a complex phase factor.

D̂D �ð ÞD̂D ð Þ 0j i � �þ 
�� �

Hint: Combine exponentials using the Campbell–Baker–Hausdorff theorem.

6.41 Suppose two coherent states �j i and 
�� � each have an average of 25 photons.

1. If Phaseð�Þ ¼ PhaseðÞ, find the inner product between them.

2. If Phaseð�Þ ¼ PhaseðÞ þ 1808, find the inner product between them.

3. Find a finite nonzero vector orthogonal to the coherent state
�j i ¼ e� �j j

2=2
P1

n¼0 ð�
n=

ffiffiffiffi
n!
p
Þ nj i: Can the vector be normalized and still remain

orthogonal? Explain in detail whether or not the vector is a coherent state.

6.42 Explain why
R

dQ jQihQj ¼ 1 but
R

d� j�ih�j ¼ � even though fjQig and fj�ig have
uncountably infinite numbers.

6.43 Show �Pð Þ
2
¼ �2

P ¼ 1=2 for the coherent state �j i:

6.44 Show the variance of the electric field �2
E ¼

�hh!
2"0V for the coherent state.

6.45 Show ŜSþb̂bþŜS ¼ b̂bþcosh rð Þ � b̂b e�i�sinh rð Þ using the operator expansion theorem.

6.46 Show ŜSþP̂P ŜS ¼ 1
i
ffiffi
2
p ŜSþðb̂b� b̂bþÞŜS ¼ P̂P coshðrÞ � P̂PR sinhðrÞ where P̂PR ¼

b̂b e�i ��b̂bþei �

i
ffiffi
2
p

6.47 Show �2
P ¼ h0, �jP̂P

2j0, �i ¼ 1
2 fcosh2

ðrÞ þ sinh2
ðrÞ þ 2 cos ð�Þ sinhðrÞ coshðrÞg for the

squeezed state j0, �i:

6.48 Starting with �2
E ¼ h�, �jÊE

2j�, �i � h�, �jÊEj�, �i2, show

�2
E

��
sqz
¼ �, �h jÊE2 �, �j i � �, �h jÊE �, �j i2¼

�hh!

2"0V
2 cos �ð Þ cosh rð Þ sinh rð Þ þ 1
� �

You will need to use the unitary properties of D̂D and ŜS for terms such as for
D̂Dþb̂b2D̂D ¼ ðD̂Dþb̂b D̂DÞðD̂Dþb̂b D̂DÞ ¼ ðb̂bþ �Þðb̂bþ �Þ and ŜSþb̂bb̂bþŜS ¼ ŜSþb̂bŜS ŜSþb̂bþŜS ¼ b̂bSb̂bþS . Also
note certain ‘‘squared’’ terms produce zero such as h0jb̂bþb̂bj0i ¼ 0. You will need the
elementary relation cosh2 r� sinh2 r ¼ 1 and the fact that h0j b̂b b̂bþj0i ¼ 1.

6.49 What can you say about the vacuum expectation values of odd powers of the form
bX

s , bX
s bY

s bZ
s and so on, where X, Y, and Z represent ‘‘þ’’ or ‘‘�’’ for creation and

annihilation operators, respectively.

6.50 Find the variance of the number operator for the following state: Q-squeeze the
vacuum and displace it to �QQ on the Q axis.

6.51 For the vacuum Wigner function, show

WðQ,PÞ ¼
1

2�3=2

Z 1

�1

dx exp iPxð Þ exp �
1

2
Qþ

x

2

� �2
	 


exp �
1

2
Q�

x

2

� �2
	 


¼
1

�
exp �Q2 � P2

� �
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6.52 Starting with the definition of trace for a discrete basis TrðÂAÞ ¼
P

n hnjÂAjni, derive
the formula for the coordinate representation TrðÂAÞ ¼

R
dx hxjÂAjxi:

6.53 Derive the Wigner distribution for the n¼ 1 Fock state

WðP,QÞ ¼

ffiffiffi
2
p

c1j j
2

ffiffiffiffiffiffi
2�
p e� P2þQ2ð Þ P2 þQ2

� �
�

c1j j
2

2
ffiffiffiffiffiffi
2�
p e� P2þQ2ð Þ

6.54 Derive the Wigner distribution for the n¼ 2 Fock state.

6.55 Show D̂Dþð�Þ Q̂Q D̂Dð�Þ ¼ Q̂Qþ �QQ and D̂Dþð�Þ P̂P D̂Dð�Þ ¼ P̂Pþ �PP and its significance in terms
of the Wigner plot.

6.56 Read and write a summary of the following publication.

� Johnston, Photon states made easy: a computational approach to quantum
radiation theory, Am. J. Phys. 64, 245 (1996).

6.57 Number squeezed light has been widely reported from lasers and LEDs. Read the
following journal papers and summarize your findings. List experimental
conditions.

� Richardson et al., Squeezed photon-number noise and sub-Poissonian electrical
partition noise in a semiconductor laser, Phys. Rev. Lett., 66, 2867 (1991).

� Richardson et al., Nonclassical light from a semiconductor laser operating at 4 K,
Phys. Rev. Lett. 64, 400 (1990).

� Teich, J. Opt. Soc. Am. B2, 275(85).

� Machida et al., Observation of amplitude squeezing in a constant-current-driven
semiconductor laser, Phys. Rev. Lett. 58, 1000 (1987).

� Kitching and Yariv, Room temperature generation of amplitude squeezed light
from a semiconductor laser with weak optical feedback, Phys. Rev. Lett. 74, 3372
(1995).

� Freeman et al., Wavelength-tunable amplitude-squeezed light from a room
temperature quantum-well laser, Opt. Lett. 18, 2141 (1993).

6.58 Greater number squeezing can be achieved using multiple optical sources. Read the
following publication and summarize your findings.

� Sumitomo et al., Wideband deep penetration of photon-number fluctuations into
the quantum regime in series-coupled light-emitting diodes, Opt. Lett. 24, 40
(1999).

6.59 Number squeezed light can improve communications and the bit error rate. Read
the following publications and summarize your findings.

� Saleh and Teich, Information transmission with photon-number-squeezed light,
Proc. IEEE, 80, No. 3, 451 (1992).

� Mortensen, Amplitude-squeezed light promises quiet devices, Laser Focus World,
November, p. 32 (1997).

6.60 The transverse-junction-stripe laser might be better for producing number squeezed
light. Read the following journal publication and summarize your findings.

� Lathi et al., Transverse-junction-stripe GaAs-AlGaAs lasers for squeezed light
generation,’ J. Quant. Electr. 35, 387 (1997).
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6.61 A number of methods have been used to generate number squeezed light. Read the
following explanations for its production and summarize.

� Abe et al., Observation of the collective Coulomb blockade effect in a
constant-current-driven high-speed light-emitting diode, J. Opt. Soc. Am. B 14,
1295 (1997).

� Kakimoto et al., Laser diodes in photon number squeezed state, J. Quant. Electr.
33, 824 (1997).

� Kim et al., Macroscopic Coulomb-blockade effect in a constant-current-driven
light-emitting diode, Phys. Rev. B 52, 2008 (1995).

� Imamoglu et al., Noise suppression in semiconductor p-i-n junctions: transition
from macroscopic squeezing to mesoscopic Coulomb blockade of electron
emission processes, Phys. Rev. Lett., 70, 3327 (1993).

6.62 Summarize the points made in the following publication.

� Yuen and Chan, Noise in homodyne and heterodyne detection, Opt. Lett. 8, 177
(1983).

6.63 Lasers exhibit spontaneous emission noise. Some methods have been suggested
to reduce the spontaneous emission. Read the following articles and summarize.

� Feld and An, The Single-Atom Laser, Scientific American, July 1998, p. 57.

� Yablonovitch, Inhibited spontaneous emission in solid-state physics and
electronics, Phys. Rev. Lett. 58, 2059 (1987).

� Yablonovitch, Inhibited and enhanced spontaneous emission from optically thin
AlGaAs/GaAs double heterostructures, Phys. Rev. Lett. 61, 2546 (1988).

6.20 Further Reading

Many excellent texts on Quantum Optics and Quantum Electrodynamics (QED) are
available. They contain a wealth of references to journal publications.

Vector Potential and Gauges

1. Sakurai J.J., Advance Quantum Mechanics, Addison-Wesley Publishing, Reading, MA, 1980.
2. Jackson J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York, 1975.
3. Greiner W., Reinhardt J., Field Quantization, Springer, Berlin, 1993.

Quantum Optics

4. Mandel L. and Wolf E., Optical Coherence and Quantum Optics, Cambridge University Press,
Cambridge, 1995.

5. Leonhardt U., Measuring the Quantum State of Light, Cambridge University Press, Cambridge,
1997.

6. Carmichael H.J., Statistical Methods in Quantum Optics 1, Master Equations and Fokker–Planck
Equations, Springer, Berlin, 1999.
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7. Kim J., Somani S., Yamamoto Y., Nonclassical Light from Semiconductor Lasers and LEDs, Springer,
Berlin, 2001.

8. Meystre P., Sargent III M., Elements of Quantum Optics, 3rd ed., Springer, Berlin, 1999.
9. Walls D.F., Milburn G.J., Quantum Optics, Springer, Berlin, 1995.

10. Haus H.A., Electromagnetic Noise and Quantum Optical Measurments, Springer, Berlin, 2000.
11. Bachor H.A., A Guide to Experiments in Quantum Optics, John Wiley & Sons, New York, 1998.
12. Schleich W.P., Quantum Optics in Phase Space, John Wiley & Sons, New York, 2001.
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7
Matter–Light Interaction

Lasers, LEDs and photodetectors all share the same basic physical principles. The rate
equations provide a fundamental description of optical emission and absorption.

as phenomenological terms. Maxwell’s equations and the Poynting vector explain emis-

While quite successful, the description does not account for the quantum nature
of matter and light, and does not explain basic phenomena such as the spontaneous
emission.

We now explore the matter-light interaction culminating in a quantum description
of gain and the rate equations. The study begins with the time-dependent perturbation
theory and the semiclassical approach to Fermi’s golden rule for optical transitions.
Fermi’s golden rule relates the transition rate to the optical power, frequency and dipole
moment. The time-dependent perturbation theory for electromagnetic interactions uses
a Hamiltonian ĤH ¼ ĤHo þ V̂V with ĤHo representing the atomic system such as an atom or
a quantum well for example. The interaction Hamiltonian V̂V describes the effect of the
electromagnetic wave interacting with the atomic system. The theory assumes that V̂V
does not change the energy basis states obtained from ĤHo but rather induces particle
transitions between them. The semiclassical approach does not use the quantized form of
the electromagnetic field and, for this reason, the full Hamiltonian ĤH does not include the
free-field Hamiltonian ĤH em. The semiclassical approach does not account for spectral
broadening and gain saturation due to the interaction of the radiating system with
its environment. Sections 7.4 through 7.6 discuss Hamilton’s and Lagrange’s classical
formulation for the EM interaction and shows how the vector potential modifies
Schrodinger’s equation and produces the dipole moment.

The density operator describes the quantum and classical state of the particle and
field system. This operator lives in the tensor product space consisting of (at minimum)
the product of the spaces for the matter and field. The number of spaces can increase
depending on the number of degrees of freedom. For example, the wave functions and
density operator describing the state of the reservoirs reside in their own Hilbert space.
The combination of the matter, fields and reservoirs constitutes a complete system. The
density operator appears in both the semiclassical and the full quantum theory.

The motion of the density operator in its direct product space describes the system
transitions. An atom, for example, might have an electron in the first excited state but,
through the matter–field interaction, it transitions to the lower state, emits a photon and
excites one of the optical modes. A first order partial differential equation, known as the
Liouville equation or the master equation, describes the system dynamics. Rather than
working with complicated environmental Hamiltonians, the Liouville equation uses
phenomenological terms for the environmental relaxation effects while retaining the
semiclassical theory for the matter–field interaction. The relaxation terms do not maintain
phase coherence in the wavefunction and produce spectral broadening (homogeneous
broadening) and naturally lead to gain saturation.
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The remainder of chapter discusses the Jaynes-Cummings model and begins to explore
the fully quantized model for the electromagnetic interaction. This material treats the
interactions in terms of reservoirs and derives the Liouville equation.

7.1 Introduction to the Quantum Mechanical Dipole Moment

Matter and fields can interact by a variety of mechanisms. Electric dipoles emit
and absorb fields and therefore produce the refractive index, gain and absorption. The
classical and quantum mechanical descriptions of the matter–field interaction therefore,
both incorporate the dipole at a fundamental level. In the classical theory, absorption
occurs when an incident wave induces a dipole moment along the direction of the wave
polarization and then the surrounding medium dissipates the energy. Emission occurs
when an excited dipole synchronously radiates energy with its motion. Maxwell’s wave
equation incorporates the dipoles in terms of the susceptibility. The quantum theory of
the matter–field interaction uses the operator form of the dipole. Subsequent sections
on Fermi’s golden rule and the density matrix formalism use the dipole moment as part
of the interaction Hamiltonian.

The present section compares the classical and quantum descriptions of the electric

of the dipole in the energy basis. Those matrix elements connecting distinct states can

quadratic potential by using the coherent state of the electron.

7.1.1 Comparison of the Classical and Quantum Mechanical Dipole

~

~�� ¼ q~RR ð7:1:1Þ

where q 5 0 for an electron as described in 
Chapter 3 discusses optics in terms of the induced or oscillating electric dipole moment.
A classically static dipole does not move nor does the separation between the charges
change. This type of permanent dipole does not affect the usual optical properties of
a material.

The dipole can also be described in terms of a charge distribution according to

~�� ¼

Z
d3r~rr � ~rr

� �
ð7:1:2Þ

FIGURE 7.1.1

An example of the classical dipole with two point charges.
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Chapter

The classical electric dipole moment �� describes two charges separated by a distance R

dipole. It introduces how the quantum theory describes transitions by matrix elements

produce transitions. Finally, the section provides a picture of an oscillating charge in a

3 and shown in Figure 7.1.1.



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-007.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:18am Page: 481/610

the Dirac delta function for the distribution

� ¼
X

i

qi� ~rr� ~rri

� �
ð7:1:3Þ

and then substituting into Equation 7.1.2

~�� ¼

Z
d3r ~rr � ~rr

� �
¼ q1~rr1 þ q2~rr2 ¼ e ~rr2 � ~rr1

� �
¼ e~RR ð7:1:4Þ

where e4 0 represents the elementary charge. The classical dipole moment can be
related to the quantum mechanical one as follows. Suppose that a massive positive charge
(such as an atomic core) is located at the origin so that ~rr2 ¼ 0. Similar to the procedure
used in Section 5.9, we view the position of the electron as smeared out in a manner
consistent with its wave function (at least in the statistical sense).

� ¼ �e � ð7:1:5Þ

so that the integral in Equation 7.1.3 can be written as

~�� ¼

Z
d3r �ð�e~rrÞ ¼  

� ��q~rr  �� � ð7:1:6Þ

where q ¼ �e for electrons.
In the quantum theory, the dipole ~�� ¼ q~rr becomes the dipole operator in the coordinate

representation. An electron in an energy eigenstate has an average dipole moment of

�nn ¼ nh j� nj i ð7:1:7Þ

Wave functions with definite parity, such as the atomic S or P orbitals, do not have
permanent dipoles. For example, the spherically symmetric electron wave function in
Figure 7.1.2 does not produce a dipole moment. For the 1-D case, we can calculate the
expected dipole moment as

ah j �̂�x aj i ¼ q uah j x uaj i ¼ q

Z 1
�1

dx u�a ðxÞ x uaðxÞ
 odd!

¼ 0

FIGURE 7.1.2

Spherically symmetric wave functions do not have a permanent dipole moment.
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For discrete charges as shown in Figure 7.1.1, we can recover equation 7.1.1 by using
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However, wave functions without symmetry can have a nonzero electric dipole moment.
For example, consider the situation depicted in Figure 7.1.3 where the electron mostly
lives on the right hand side and the probability distribution has the form of a Gaussian

 ¼
1ffiffiffiffiffiffi

2�
p

�

� �1=2

e�
x��xxð Þ2

4�2 !  � ¼
1ffiffiffiffiffiffi

2�
p

�
e�

x��xxð Þ2

2�2 ð7:1:8Þ

where �xx, � represent the center of the distribution and the approximate width (standard
deviation) respectively. The dipole moment becomes h jqxj i ¼ q�xx by definition of the
average position �xx.

The average value of an operator provides the classically expected value. The average
most generally uses the density operator as discussed in Section 5.11.

�̂�h i ¼ Trð�̂��̂�Þ ð7:1:9Þ

For a pure state �̂� ¼ j ih j, Equation 7.1.9 reduces to Equation 7.1.6. The polarization can
be written as

~PP ¼
Total Dipole Moment

Vol
¼ N �̂�h i ¼ N Trð�̂��̂�Þ ð7:1:10Þ

where N represents the number of dipoles per unit volume. Assuming a 2 level atom
and expanding the trace produces

~PP ¼ N Trð�̂��̂�Þ ¼ N �11�11 þ �12�21 þ � � �f g ¼ N �12�21 þ �21�12f g ð7:1:11Þ

where we assume states of definite parity do not have dipole moments �11 ¼ 0 ¼ �22.

7.1.2 The Quantum Mechanical Dipole Moment

A perturbing potential can change or induce a dipole moment. Imagine an atom system
with circular orbits (say levels 1 and 2) for example. We might imagine an electric field
modifying the normally circular orbits into elliptical ones, as shown in Figure 7.1.4. The

FIGURE 7.1.4

Cartoon view of an atomic dipole.

FIGURE 7.1.3

The wave function for an electron localized away from the positive charge at x¼ 0.
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elliptical orbit might be considered some linear combination of the circular ones. The
electron spends as some time in both the 1st and 2nd circular orbit. If the electric field
fluctuates at the optical frequency and if we make a measurement of the electron energy,
then we might find the electron in either the 1st or 2nd circular orbit. If the electron started
in the 1st orbit, then the electron might transition to the second. The quantum theory
accurately models this situation by assuming that the orbitals remain fixed but an EM
field produces an electron wave function with a mixture of the two orbitals. The dipole
moment develops between the two states h2j�̂� 1j i.

Section 7.1.1 shows the expected dipole moment has the form

�̂�h i ¼ Trð�̂��̂�Þ ¼ �12�21 þ �21�12 ð7:1:9Þ

for a 2 level atom where we assume states of definite parity do not have dipole moments
�11 ¼ 0 ¼ �22.

Consider the off-diagonal elements of the dipole matrix element. These induced dipole
moments are given by

ah j �̂� bj i ¼ �ab with a 6¼ b

and are related to the transition selection rules. The off-diagonal elements of the density
matrix might be imagined as the ‘‘probability amplitude of finding a particle in two
states’’ at the same time

�ab ¼ ah j�̂� bj i � a
��  � �

 
�� b

� �
¼ �a�

�
b �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P að Þ P bð Þ

p
ð7:1:10Þ

where P denotes probability and we assume a pure state for simplicity and we
denote the wave function by the usual form j i ¼

P
�njni. The off-diagonal elements

describe the probability of the particle simultaneously existing in two states. Making
a measurement of the energy causes the wave function to collapse to either one of
the states. Therefore, any perturbation producing off-diagonal elements of the density
operator can produce transitions between states. However, we know the induced dipole
gives rise to transitions. Therefore we surmise that the off-diagonal elements of the
density operator must be related to dipole matrix elements.

Let us now investigate the implications of the induced dipole moment for the polar-
ization. As in 7.1.1, the dipole operator can be written as ~�� ¼ q~rr or �̂� ¼ qx̂x for 1-D where
q ¼ �e for an electron and e4 0. As before, the polarization has the form

~PP ¼
Total Dipole Moment

Vol
¼ N �̂�h i ¼ N Trð�̂��̂�Þ

We assume that a perturbing EM field provides an interaction energy V̂V so that

ĤH ¼ ĤHo þ V̂V and ĤH nj i ¼ En nj i ð7:1:11Þ

where we assume a 2 level atom so that n¼ 1,2. We only need the energy eigenstates
of the unperturbed Hamiltonian for this calculation. We use the isomorphism between
operators and matrices.

~PP ¼ N Trð�̂��̂�Þ ¼ N Tr �� ¼ N
X

a

��
	 


aa
¼ N �12�12 þ �21�21f g ð7:1:12Þ
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since we assume the permanent dipole has a value of zero (i.e., �11 ¼ �22 ¼ 0). If we
assume (as is usually the case) that

� ¼ �12 ¼ �21 ¼ real

then the equation for the polarization becomes

P ¼ N �12�12 þ �21�21f g ¼ N� �12 þ �21ð Þ ð7:1:13Þ

So we see that the off-diagonal elements of the density matrix must be related to the
polarization.

We can go a step further by using the fact that the density operator is Hermitian.

�̂� ¼ �̂�þ ! �̂�ð Þ12¼ �̂�þ
� �

12
! �12 ¼ �

�
21

Now the polarization formula becomes

P ¼ N� �12 þ �21ð Þ ¼ N� �12 þ �
�
12

� �
¼ 2N�Re �12ð Þ ð7:1:14Þ

As a result, the off-diagonal elements of the density operator must be related to polar-
ization P and the induced dipole moment. The off-diagonal elements produce gain and
absorption. This is quite different from the classical picture. In the quantum picture, the
states are fixed but the electron wave function becomes a superposition of both which
leads to the nonzero dipole moment. This point of view can be traced back to that for the
time-dependent perturbation theory.

7.1.3 A Comment on Visualizing an Oscillating Electron in a Harmonic Potential

An electron in a coherent state in a quadratic potential can be pictured as a localized particle
executing simple harmonic motion about the symmetry point of the potential. In the case of
an electric dipole, we might imagine the force on the electron as proportional to its
displacement from x¼ 0. The picture is not accurate for the Coulomb potential but would
apply to a point of equilibrium for the electron or a dipole.

Suppose an electron executes simple harmonic motion about an equilibrium point
x¼ 0. The Hamiltonian has the form given in Section 5.8

ĤH ¼
p̂p2

2m
þ

k

2
x̂x2 with ! ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
ð7:1:15Þ

Define the quadrature operators Q̂Q, P̂P as

Q̂Q ¼
âaþ âaþffiffiffi

2
p P̂P ¼ �i

âa� âaþffiffiffi
2
p or x̂x ¼ Q̂Q

ffiffiffiffiffiffiffi
�hh

m!

r
p̂p ¼ P̂P

ffiffiffiffiffiffiffiffiffiffi
m!�hh
p

ð7:1:16Þ

where âa, âaþ represent the ladder operators and ½Q̂Q, P̂P� ¼ i.
The electron coherent state �j i can be defined similar to that for the photon by

requiring âa �j i ¼ � �j i where � ¼ �j jei�. The coherent state must be a linear combination
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of the usual energy basis set so that (at t¼ 0)

�j i ¼ e� �j j
2=2
X

n

�nffiffiffiffi
n!
p nj i ð7:1:17Þ

The evolution operator with En ¼ �hh! nþ 1=2ð Þ produces the time-dependent wave
function as

�ðtÞ
�� �

� eĤHt=i�hh �j i ¼ ei!t=2e� �ðtÞj j
2
=2
X

n

�ðtÞnffiffiffiffi
n!
p nj i ð7:1:18Þ

where �ðtÞ � �e�i!t ¼ �j jei��i!t. The center position of the coherent state must oscillate
according to

�QQðtÞ ¼ �ðtÞ
� ��Q̂Q �ðtÞ

�� �
¼

ffiffiffi
2
p

Re �ðtÞ½ � ¼
ffiffiffi
2
p

�j j cos �� !tð Þ ð7:1:19Þ

This explicitly shows that the electron oscillates back and forth across the region of
space with the quadratic potential. We finally show that the position of the electron
must be normally distributed. So we can consider the electron to be localized similar to
a point particle but with a size on the order of the standard deviation �.

The coherent state can be written as a displacement operator

D̂D �ð Þ ¼ e�âaþ��� âa or �j i ¼ D̂D �ð Þ 0j i ¼ e�âaþ��� âa 0j i ð7:1:20Þ

Converting the displacement operator to the position-momentum representation
D̂D �ð Þ ¼ ei �PPQ̂Q�i �QQP̂P produces the position-dependent wave function

 � Qð Þ ¼ Q
�� �� �
¼ Q
� ��D̂D �ð Þ 0j i ¼ ei �PPQe�i �PP �QQ=2 Q

� ��e�i �QQP̂P 0j i ¼ ei �PPQe�i �PP �QQ=2uo Q� �QQ
� �

ð7:1:21Þ

where uoðQ� �QQÞ represents the vacuum state displaced to the location �QQ ¼ �QQðtÞ and
�PP ¼ h�jP̂P �j i. Section 6.11 then provides

 ¼
1

�1=4
e� Q� �QQð Þ

2
=2  � ¼

1

�1=2
e� Q� �QQð Þ

2

ð7:1:22Þ

which shows the electron position is normally distributed with a mean that oscilla-
tions in time. Comparing this last expression with that in Equation 7.1.8 shows that
�Q ¼ ð1=

ffiffiffi
2
p
Þ. A similar expression can be applied to the P coordinate to provide a

Heisenberg relation �Q�P ¼ 1=2.
The position x oscillates according to

xðtÞ ¼ �ðtÞ
� ��x̂x �ðtÞ�� �

¼

ffiffiffiffiffiffiffiffiffi
2E

m!2

r
cos �� !tð Þ ð7:1:23Þ

where

E ¼ �h jĤH �j i ¼ �h j�hh! âaþâaþ 1=2
� �

�j i ¼ �hh! �j j2þ1=2
� �

� �hh! �j j2 ð7:1:24Þ

for large j�j2. This last result agrees with Equation 5.9.3b.
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7.2 Introduction to Optical Transitions

The time-dependent perturbation theory applied to the interaction of a classical electro-
magnetic (EM) wave with a quantized atomic system comprises the semiclassical
description of the matter-light interaction. A coherent wave interacting with the atomic
system produces absorption and emission. However, the semiclassical model does not
describe the spontaneous emission (fluorescence) since it does not describe the vacuum
fluctuations responsible for this emission. This section finds the probability of a
transition while the next one discusses the rate of transition using Fermi’s golden rule.
The time-dependent perturbation theory and Fermi’s golden rule must be augmented
by the interaction between the environment and the ensemble of atoms in order to
describe the spectral broadening mechanisms. Fermi’s golden rule provides a delta
function shaped spectral line and not the Gaussian or Lorenzian shape expected from
interactions with the reservoirs. Subsequent sections incorporate the broadening
mechanisms into the Liouville equation for the density operator.

7.2.1 The EM Interaction Potential

Suppose an electromagnetic wave washes over an atom with a single electron occupying
an energy eigenstate. What is the probability that the electron will make an upward or a
downward transition to a higher or lower energy level? Interestingly, the frequency of the
electromagnetic wave necessary to induce a transition does not necessarily need to be in
the optical range—it all depends on the type of ‘‘atom.’’ Figure 7.2.1 shows the electro-
magnetic wave and the electron in the second energy level. If the atom (i.e., electron)
absorbs energy from the wave (stimulated absorption) then the electron makes an upward
transition. If the wave induces a downward transition (stimulated emission), then the
atom releases energy to the bathing field. As mentioned previously, ‘‘semiclassical’’ theory
describes the effects of a classical electromagnetic traveling wave. This form of interaction
ignores the particle properties (i.e., discrete energy properties) of the electromagnetic
wave. As discussed in the previous chapter, the coherent optical states most closely
describe classical electromagnetic waves. The present section applies the time-dependent
perturbation theory to the interaction of the classical wave to the atomic system.

Classically a material can produce or absorb light when an electromagnetic field
interacts with dipoles within the material. The classical expression for the dipole inter-
action energy can be written as proportional to ~pp � ~EE where ~pp, ~EE denote the dipole
moment and electric field respectively. Quantum mechanically, we represent the inter-
action energy by operators such as V̂V ¼ �̂�E. The ‘‘dipole moment’’ operator �̂�, which
is Hermitian, describes the strength of the interaction between the oscillating electric field

FIGURE 7.2.1

The EM wave can induce upward and downward transitions.
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and the atom. People often write the interaction energy in the explicitly Hermitian form
V̂V ¼ ð1=2Þ �̂�Eþ �̂�Eð Þ

þ
� �

. With this form, a complex field E ¼ Eoe�i!t does not affect the
Hermiticity of the interaction energy. The two terms provide specific results. The first
term ð�̂�EÞ corresponds to absorption when using the complex field and the second term
�̂�Eð Þ

þ corresponds to emission. Similar to the basis sets or the eigenvector expansion of
a Hermitian operator, the interaction energy must contain all possible outcomes.

Let’s assume that the unperturbed Hamiltonian ĤHo describes an ‘‘atom’’ (located at the
origin of the coordinate system) without any incident EM wave. The Hermitian inter-
action energy can be written as

V̂V x, tð Þ ¼
�̂� xð Þ

Eo

2
e�i!t þ �̂� xð Þ

Eo

2
e�i!t

 �þ
t � 0

0 t50

8<
: ð7:2:1Þ

which provides a small perturbation for the full Hamiltonian ĤH ¼ ĤHo þ V̂V x, tð Þ. Some
books set V̂V ¼ �̂�Eo=2. We assume that the angular frequency of the incident electro-
magnetic field is always positive i.e. !4 0. The matrix elements of the dipole operator
^
amplitude Eo for the oscillating electric field. We see from Equation 7.2.1 that the inter-
action potential must be Hermitian V̂V ¼ V̂Vþ and therefore it must be an observable.
Equation 7.2.1 can be rewritten as

V̂V x, tð Þ ¼ �̂� xð Þ
Eo

2
e�i!t þ eþi!t
� �

¼ �̂� xð ÞEo cos !tð Þ ð7:2:2Þ

We can see that the interaction potential must be Hermitian from this last expression
by noting the dipole moment operator �̂� must be Hermitian. The reader should realize
that a phase factor could be added to the exponential term in the interaction energy to
obtain a sine wave rather than the cosine wave. As it is appropriate for time-dependent
perturbation theory, assume the set unj i ¼ nj if g contains the energy eigenvectors for the
unperturbed Hamiltonian.

7.2.2 The Integral for the Probability Amplitude

In Section 5.10, we show the wave function

� tð Þ
�� �

¼
X

n

�n tð Þ nj i ð7:2:3Þ

approximately satisfies Schrodinger’s equation

ĤH � tð Þ
�� �

¼ i�hh
@

@t
� tð Þ
�� �

ð7:2:4Þ

provided

�n tð Þ ¼

e�i!it þ
1

i�hh
e�i!it

Z t

o
d	Vii 	ð Þ þ � � � n ¼ i

1

i�hh
e�i!nt

Z t

o
d	 ei!ni	Vni 	ð Þ þ � � � n 6¼ i

8>>><
>>>:

ð7:2:5Þ
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�� will be real constants of proportionality (refer to Section 7.1). We also assume a real
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where !ni ¼ ðEn=�hhÞ � ðEi=�hhÞ and the electron is assumed to start in state ij i. For example,

n of the vector essentially describes
the probability of finding the electron in state nj i after a time ‘‘t.’’ Obviously therefore, the
component �n tð Þmust be related to the probability (and the transition rate) of the electron
making a transition from state ij i to state nj i since the electron started in state ij i.

Prob i! nð Þ ¼ �n tð Þ
�� ��2 ð7:2:6Þ

We can take the case of either n¼ i or n 6¼ i. The case of n¼ i provides the probability
that the particle will not make a transition. Although interesting in itself, we have more
interest in the case of n 6¼ i. We can find the rate of transition for the gain by taking the
time derivative of the probability

Ri!n ¼
d

dt
Prob i! nð Þ ð7:2:7Þ

To find the probability and rate of transition (to first-order approximation) for the case
of n 6¼ i, we must calculate the integral in

�n tð Þ ¼
1

i�hh
e�i!nt

Z t

o
d	 ei!ni	 Vni x, 	ð Þ ¼

1

i�hh
e�i!nt

Z t

o
d	 ei!ni	 nh jV̂V x, 	ð Þ ij i ð7:2:8Þ

from Equation 5.1.23. Notice in the matrix element hnjV̂V ij i how the perturbation induces
a transition from right to left. The reader should keep in mind that ! represents the
angular frequency of the electromagnetic wave whereas !ni denotes the angular fre-

that the atom requires light to have angular frequency !ni ¼ ðEn � EiÞ=�hh in order for the
atom to participate in stimulated absorption or emission. However, in this section we
can have ! 6¼!ni. The integral in Equation 7.2.8 can be evaluated by substituting
Equation 7.2.1 to get

�n tð Þ ¼
1

i�hh
e�i!nt

Z t

o
d	ei!ni	 nh jV̂V x, 	ð Þ ij i

¼
1

i�hh
e�i!nt

Z t

o
d	ei!ni	 nh j �̂�

Eo

2
e�i!	 þ �̂�

Eo

2
e�i!	

 �þ� �
ij i

Now calculate the adjoint, distribute the projection operator and the ket through the
braces, and use the definition

nh j�̂� ij i ¼ �ni ð7:2:9Þ

to find

�n tð Þ ¼
1

i�hh
e�i!nt

Z t

o
d	ei!ni	 �ni

Eo

2
e�i!	 þ �ni

Eo

2
eþi!	

� �

Keep in mind that the matrix element �ni is just a constant of proportionality that
describes the strength of the interaction between the impressed electromagnetic field and
the atom. This nontrivial induced-dipole matrix element �ni provides the ‘‘transition
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quency corresponding to the difference in energy. In chapter 1, we would have said

jii ¼ j2i for Figure 7.2.1. Recall that the component � ð Þt
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selection rules’’ and will be explored in more detail later. Factoring out the constant
values from the integral yields

�n tð Þ ¼
1

i�hh
e�i!nt�ni

Eo

2

Z t

o
d	 ei !ni�!ð Þ	 þ ei !niþ!ð Þ	
�

Ð� ð7:2:10Þ

Performing the integration provides

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !ni�!ð Þt � 1

!ni � !
þ

ei !niþ!ð Þ	 � 1

!ni þ !ð Þ

 �
ð7:2:11Þ

Equation 7.2.11 contains terms for both absorption and emission of light. The denomi-
nators show that the first term dominates when ! ffi !ni and the second term dominates
when ! ffi �!ni. Recalling the definition

!ni ¼
En

�hh
�

Ei

�hh
ð7:2:12Þ

and the fact that the angular frequency of the incident light must always be posi-
tive !4 0, we see that the first term in Equation 7.2.11 corresponds to the absorption of
light since

05! ffi !ni ¼
En

�hh
�

Ei

�hh
! En � Ei ð7:2:13Þ

05! ffi �!ni ¼
Ei

�hh
�

En

�hh
! Ei � En ð7:2:14Þ

so that the initial state, in this case, has a larger energy than the final state which can
only happen when the atom emits a photon. The figure should remind the reader of
the two-level atoms discussed in the first 2 chapters. Although we use the denominators
of Equation 7.2.11 to determine which term corresponds to absorption and emission,
another method consists of looking at the arguments of the exponential functions in
Equation 7.2.10. We come back to the problem of calculating the probability of absorption
and emission after a brief interlude for the monumentally important subject of the
rotating wave approximation.

7.2.3 Rotating Wave Approximation

We wish to evaluate integrals such as

�n tð Þ ¼
1

i�hh
e�i!nt�ni

Eo

2

Z t

o
d	 ei !ni�!ð Þ	 þ ei !niþ!ð Þ	
� �

ð7:2:15Þ

The exponentials have arguments that correspond to very high frequencies or very low
frequencies. For example, when ! ffi !ni, we see that the first exponential has approx-
imately constant value while the second one has frequency !þ !ni ffi 2!ni.
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so that the energy of the final must be larger than the energy of the initial state (see Figure
7.2.2). The second term in Equation 7.2.11 corresponds to emission since
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There are two methods to evaluate integrals with ‘‘slow’’ and ‘‘fast’’ functions. 7.2.2
shows one method of evaluating the integral in Equation 7.2.15

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !ni�!ð Þt � 1

!ni � !
þ

ei !niþ!ð Þ	 � 1

!ni þ !ð Þ

 �
ð7:2:16Þ

and neglecting terms based on the size of the denominator. When the angular frequency
of the wave ! approximately matches the atomic resonant frequency ! ffi !ni then the
first term in Equation 7.2.16 dominates the second term. Of course, we could also have
! ffi �!ni, in which case the second term dominates by virtue of the denominator.

ages a sinusioidal wave over many cycles and finds a result of zero. This method applies
to integral of the form

�n tð Þ ¼
1

i�hh
e�i!nt�ni

Eo

2

Z t

o
d	 ei !ni�!ð Þ	 þ ei !niþ!ð Þ	
� �

ð7:2:17Þ

Using, for example, ! ffi !ni requires expfi !ni � !ð Þtg to be approximately constant
while expfi !ni þ !ð Þtg must be a high-frequency sinusoidal wave. The integral looks very
similar to an average from calculus given by

f
� �
¼

1

t

Z t

o
dt0 fðt0Þ ð7:2:18Þ

If over the interval (0, t), the first integrand in Equation 7.2.17 doesn’t change much,
then its integral will be nonzero. On the other hand, the second term runs through many
oscillations (rotating wave) and the average over the interval (Equation 7.2.18) yields
zero.

7.2.4 Absorption

Now return to the calculation for the probability of a transition. We first consider the case
for absorption where ! ffi !ni. We have Equation 7.2.11 as

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !ni�!ð Þt � 1

!ni � !
þ

ei !niþ!ð Þ	 � 1

!ni þ !ð Þ

 �

from Equation 7.2.10

�n tð Þ ¼
1

i�hh
e�i!nt�ni

Eo

2

Z t

o
d	 ei !ni�!ð Þ	 þ ei !niþ!ð Þ	
� �

The rotating wave approximation allows us to drop the second term in Equations 7.2.10
and 7.2.11. Therefore, absorption produces the time-dependent probability amplitude

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !ni�!ð Þt � 1

!ni � !

 �
ð7:2:19Þ
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In the second method (refer to Appendix 7), the rotating wave approximation, aver-
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Recall that �n represents the component of the wave function parallel to the nj i axis.
The component �n depends on time in a nontrivial manner and causes the wave function
to move away from the i th axis and move closer to the nth axis.

We can find the transition probability for absorption

Probði! nÞ ¼ �n

�� ��2¼ �niEo

2�hh

� �2 ei !ni�!ð Þt � 1
� �

ei !ni�!ð Þt � 1
� ��

!ni � !ð Þ
2

¼
�niEo

2�hh

� �22� ei !ni�!ð Þt � e�i !ni�!ð Þt

!ni � !ð Þ
2

ð7:2:20Þ

Using the trigonometric identities,

ei !ni�!ð Þt þ e�i !ni�!ð Þt ¼ 2 cos !ni � !ð Þt½ � and cosð2
Þ ¼ cos2 
ð Þ � sin2 
ð Þ ¼ 1� 2 sin2 
ð Þ

where 
 ¼ !ni � !ð Þt=2 in the last equation provides the probability of an upward
transition

Probabsði! nÞ ¼ �n

�� ��2¼ �niEo

�hh

� �2sin2 1
2 !ni � !ð Þt
� �
!ni � !ð Þ

2
ð7:2:21Þ

Before discussing this last result, we consider the case for stimulated emission.

7.2.5 Emission

The case for emission obtains when ! ffi �!ni40. Equation 7.2.10

�n tð Þ ¼
1

i�hh
e�i!nt�ni

Eo

2

Z t

o
d	 ei !ni�!ð Þ	 þ ei !niþ!ð Þ	
� �

gives Equation 7.2.11

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !ni�!ð Þt � 1

!ni � !
þ

ei !niþ!ð Þ	 � 1

!ni þ !ð Þ

 �

The rotating wave approximation allows us to drop the first term in Equations 7.2.10
and 7.2.11. Therefore, for emission, the component of the wave function parallel to the
nj i axis (the probability amplitude) must be

�n tð Þ ¼
�1

�hh
e�i!nt�ni

Eo

2

ei !niþ!ð Þt � 1

!ni þ !

 �

Following the same procedure as for absorption, we find

Probemisði! nÞ ¼ �n

�� ��2¼ �niEo

�hh

� �2sin2 1
2 !ni þ !ð Þt
� �
!ni þ !ð Þ

2
ð7:2:22Þ
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The reader might be surprised to find the probability for absorption to be numerically
the same as the probability for emission. This is easy to see from the last equation
by setting

!ni ¼
En

�hh
�

Ei

�hh
¼ �

Ei

�hh
�

En

�hh

� �
¼ �!in

to get

Probemisði! nÞ ¼ �n

�� ��2¼ �niEo

�hh

� �2sin2 1
2 �!in þ !ð Þt
� �
�!in þ !ð Þ

2
¼ Probabsði! nÞ ð7:2:23aÞ

from Equation 7.2.21. Because the probabilities are equal, we leave off the subscript for
absorption and emission and write

Probði! nÞ ¼ �n

�� ��2¼ �niEo

�hh

� �2sin2 1
2 !ni � !ð Þt
� �
!ni � !ð Þ

2
ð7:2:23bÞ

Notice however, an atom in its ground state cannot emit a photon and so the probability
of emission must be zero.

We should make a few comments. First Equation 7.2.23a shows absorption and emis-
sion have the same probability

Probemisði! nÞ ¼ Probabsði! nÞ

The transition must occur between the same two states (as shown in Figure 7.2.3). The
dipole matrix element has the same value for either transition i! n or n! i since it
is Hermitian (and assumed real) and therefore �in ¼ �ni. We cannot expect the relation
to hold in the case of three levels for example when 2! 1 and 2! 3. In this case, the
dipole matrix element is not necessarily the same for the two transitions.

As a second comment, the reader should realize that the two-level lasers discussed in

FIGURE 7.2.3

Absorption and emission of a quantum of energy between two states.

FIGURE 7.2.2

The sign of !ni indicates absorption or emission.
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Chapters 1-2 have many atoms. Some of these atoms occupy the ground state and some
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occupy the excited state. The two-level laser has an ensemble of atoms and not just one
atom as discussed above. We will need the ‘‘density operator’’ discussed in Section 5.11.

7.2.6 Discussion of the Results

Figure 7.2.4 shows a plot of the probability as a function of angular frequency for
two different times t1 and t2 (t24t1). Notice that the probability becomes narrower for
larger times.

Let’s discuss the case of stimulated emission with the proviso that the same considera-
tions hold for the case of absorption. The highest probability for emission occurs when
! ¼ !ni as shown in the figure. We can find the peak probability from Equation 7.2.23b
by Taylor expanding the sine term (assuming the argument is small) to get

Peak Prob ¼ �n

�� ��2¼ �niEo

�hh

� �2t2

4
! ¼ !ni ð7:2:24Þ

which occurs when the frequency of the electromagnetic wave ! exactly matches
the natural resonant frequency of the atom !ni. The width of the probability curve can be
estimated by finding the point where it touches the horizontal axis. Setting the sine
term in the Equation 7.2.23b to zero

sin2 1

2
!ni � !ð Þt

 �
¼ 0

which occurs at ð!ni � !Þt ¼ 	�, we find that the width is

W ¼
4�

t

According to Figure 7.2.4, a frequency off-resonance can induce a transition.
Equations 7.2.23 and 7.2.24 show that stronger electric fields increase the rate of transi-

tion. Equation 7.2.23 shows that for small times (as is appropriate for the approximation
of the probability amplitudes �n), that the transition probability increases linearly with
time. This might lead someone to anticipate that the transition requires some average
time. If we know the probability as a function of time P(t) then we can calculate an
average time as

�tt ¼ th i ¼

Z 1
o

t PðtÞ dt

FIGURE 7.2.4

Plot of probability vs. driving frequency and parameterized
by time.
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We can similarly calculate the variance for the time for emission as

�2
t ¼ E t� �tt

� �2
¼ t2
� �
� th i2

We then see that the exact difference in energy E between the initial and final level is
not exactly known by the Heisenberg uncertainty relation

�E�t �
�hh

2

7.3 Fermi’s Golden Rule

Fermi’s golden rule gives the rate of transition from a single state to a set of states,
which can be described by the ‘‘density of state’’ function. The first topic in this section
introduces the intuitive meaning of density of states and subsequent chapters discuss the
extended and localized states for devices ranging from bulk to 1-D.

As shown in Figure 7.3.1, an electron makes a transition from an initial state ij i to one of
the many final states nj i. The probability of transition must be given by

Total Prob ¼
X

n

P i! nð Þ ð7:3:1Þ

For a semiconductor, the final states closely approximate a continuum. In such a case,
the probability Pði! nÞ should be interpreted as the probability of transition per final
state and the summation should be changed to an integral over the final states.

The total probability in Equation 7.3.1 requires a sum over the integer corresponding
to the final states nj i. Apparently, we imagine the electron as lodging itself in one of
the final energy basis states. However, we know that the final wave function might
also be a linear combination of the energy basis states nj i. In such a case, the electron
simultaneously exists in two or more states nj i (consider two for simplicity). According
to classical probability theory, we must subtract this probability from Equation 7.3.1
to find

ProbðA or BÞ ¼ ProbðAÞ þ ProbðBÞ � ProbðA and BÞ

However, we assume that a measurement of the energy of the electron has taken place,
the wavefunction has collapsed, and that the electron resides in one of the energy basis
states. Therefore the Prob(A or B) reduces to the sum of probabilities as in Equation 7.3.1.
Fermi’s golden rule therefore integrates over the range of final states to find the number
of transitions occuring per unit time.

This section also shows how Fermi’s golden rule can be used to demonstrate the semi-
conductor gain. A detailed treatment must wait for discussions on the denisty operator,
the Bloch wave function and the reduced density of states.

FIGURE 7.3.1

Schematic illustration of an electromagnetically induced transition from an
initial state i to one of the final states n.
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7.3.1 Definition of the Density of States

In this topic, we discuss the counting procedure for the energy density of states. The
localized states provide the simplest starting point because we do not need the added
complexity of finding the allowed wave vectors.

The energy density of states (DOS) function measures the number of energy states
in each unit energy interval in each unit volume of the crystal

g Eð Þ ¼
# states

Energy�XalVol
ð7:3:2Þ

We need to explore the reasons for dividing by the energy and the crystal volume.
Let’s first discuss the reason for the ‘‘per unit energy.’’ Suppose we have a system with

the energy levels shown on the left side of Figure 7.3.2. Assume for now that the states
reside in a unit volume of material (say 1 cm3). The figure shows four energy states in the
energy interval between 3 and 4 eV. The density of states at E¼ 3.5 must be

g 3:5ð Þ ¼
# states

Energy
 Vol
¼

4

1 eV
 1 cm3
¼ 4

Similarly, between four and five electron volts, we find two states and the density of states
function has the value g 4:5ð Þ ¼ 2 and so on. Essentially, we just add up the number of states
with a given energy. The graph shows the number of states versus energy; for illustration,
the graph has been flipped over on its side. Generally we use finer energy scales and
the material has larger numbers of states (1017) so that the graph generally appears
much smoother than the one in Figure 7.3.2 since the energy levels essentially form a
continuum. The ‘‘per unit energy’’ characterizes the type of state and the type of material.

The definition of density of states uses ‘‘per unit crystal volume’’ in order to remove
geometrical considerations from the measure of the type of state. Obviously, if each unit
volume has Nv states (electron traps for example) given by

Nv ¼

Z 1
o

dEg Eð Þ ¼

Z
d energy
� � # states

Energy�vol
¼

# states

vol
ð7:3:3Þ

then the volume V must have N ¼ NvV states. Changing the volume changes the total
number. To obtain a measure of the ‘‘type of state,’’ we need to remove the trivial depend-
ence on crystal volume.

FIGURE 7.3.2

The density of states for the discrete levels shown on the left-hand side. The plot assumes the system has unit
volume (1 cm3) and the levels have energy measured in eV.

Matter–Light Interaction 495

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-007.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:18am Page: 496/610

What are the states? The states can be those in an atom. The states can also be traps
that an electron momentarily occupies until being released back into the conduction
band. The states might be recombination centers that electrons enter where they recom-
bine with holes. Traps and recombination centers can be produced by defects in the
crystal. Surface states occur on the surface of semiconductors as an inevitable conse-
quence of the interrupted crystal structure. The density of defects can be low within the
interior of the semiconductor and high near the surface; as a result, the density of states
can depend on position. Later we discuss the extended states in a semiconductor. These
all represent localized states that tend to confine the electron to a given region of space.
Later sections discuss the more important extended states that represent plane waves
(definitely not localized). These states come from periodic boundary conditions on the
electron wave function and the resulting allowed k-values for the electron. These states
correspond to the Bloch wave functions in a crystal. For now, our main interests centers
on a method for picturing the states and the density of states.

Let’s consider several examples for the density of localized states. Suppose a crystal
has two discrete states (i.e. single states) in each unit volume of crystal. Figure 7.3.3
shows the two states on the left side of the graph. The density-of-state function consists
of two Dirac delta functions of the form

g Eð Þ ¼ � E� E1ð Þ þ � E� E2ð Þ

Integrating over energy gives the number of states in each unit volume
Nv ¼

R1
o dEg Eð Þ ¼

R1
o dE � E� E1ð Þ þ � E� E2ð Þ½ � ¼ 2 If the crystal has the size 1
 4 cm3

then the total number of states in the entire crystal must be given by

N ¼

Z 4

o
dV Nv ¼ 8

as illustrated in Figure 7.3.4. Although this example shows a uniform distribution of
states within the volume V, the number of states per unit volume Nv can depend on the
position within the crystal. For example, the growth conditions of the crystal can vary or
perhaps the surface becomes damaged after growth.

As a second example, consider localized states near the conduction band of a semi-

FIGURE 7.3.3

The density of states for two discrete states shown
on the left side.

FIGURE 7.3.4

Each unit volume has two states and the full volume
has 8.
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conductor as might occur for amorphous silicon. Figure 7.3.5 shows a sequence of graphs.
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The first graph shows the distribution of states versus the position ‘‘x’’ within the
semiconductor. Notice that the states come closer together (in energy) near the
conduction band edge. As a note, amorphous materials have mobility edges rather
than band edges. The second graph shows the density of states function versus energy. A
sharp Gaussian spike represents the number of states at each energy. At seven electron
volts, the material has six states (traps) per unit length in the semiconductor as shown in
the first graph. The second graph shows a spike at seven electron volts. Actual
amorphous silicon has very large numbers of traps near the upper mobility edge and they
form a continuum as represented in the third graph. This example shows how the density
of states depends on position and how closely space discrete levels form a continuum.

7.3.2 Equations for Fermi’s Golden Rule

Section 7.2 showed that the probability of a transition from an initial state ij i to a final
state nj i can be written as

Probði! nÞ ¼ �n

�� ��2¼ �niEo

�hh

� �2 sin2 ð1=2Þ !ni � !ð Þt½ �

!ni � !ð Þ
2

ð7:3:4Þ

with an applied electric field of

E x, tð Þ ¼ Eocos !tð Þ ð7:3:5Þ

which leads to the perturbing interaction energy

V̂V x, tð Þ ¼ �̂� xð Þ
Eo

2
e�i!t þ eþi!t
� �

¼ �̂� xð ÞEo cos !tð Þ ð7:3:6Þ

The dipole moment operator �̂� provides the matrix elements �ni that describe
the interaction strength between the field and the atom. The dipole matrix element
�ni can be zero for certain final states nj i and Equation 7.3.4 then shows that the
transition from the initial to the proposed final state cannot occur. As in Section 7.2,
the symbol !ni represents the difference in energy between the final state nj i and initial
state ij i

!ni ¼
En � Ei

�hh

FIGURE 7.3.5

Transition from discrete localized states to the continuum.
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where !ni gives the angular frequency of emitted/absorbed light when the system makes
a transition from state ij i to state nj i. The incident electromagnetic field has angular
frequency !. Equation 7.3.4 gives the probability of transition for each final state nj i and
each initial state ij i. In this topic, we are interested in the density of final states but not
in the density of initial states. We therefore take the units for Equation 7.3.4 as the
probability per final state.

Equation 7.3.1 shows that the total probability of the electron leaving an initial state
‘‘i’’ must be related to the probability that it makes a transition into any number of final
states. How can we change the formula if the final states have the same energy? As an
answer, transition to final states all having the same energy must have equal probability
as can be seen from Equation 7.3.2 (the same !ni). For N final states with the same energy,
we then expect

Total Prob ¼
X

n

P i! nð Þ ¼ N P i! nð Þ

What is the transition probability if some of the final states have energy E1, some have
energy E2 and so on? Let g Enð Þ be the number of states at energy En (i.e., the density of
states). Then we expect

Total Prob ¼
X

n

P i! nð Þ ¼ g E1ð ÞP i! 1ð Þ þ g E2ð ÞP i! 2ð Þ þ � � � ¼
X

n

g Enð ÞP i! nð Þ

Therefore, for a unit volume of crystal, the total probability of transition PV can be
written as

PV ¼
X

E

# states

energy vol

� �
prob

state

� �
�E!

Z
dE g Eð ÞPði! nÞ ð7:3:7Þ

where Pði! nÞ ¼ PðEi ! EnÞ is the probability of transition (per state) and the integral
must be over the energy of the final states. Insert Equation 7.3.4 into Equation 7.3.7 to find

PV ¼

Z
dE g Eð Þ

�niEo

�hh

� �2sin2 1
2 !ni � !ð Þt
� �
!ni � !ð Þ

2

where the transition frequency

!ni ¼ En � Eið Þ=�hh ¼ E� Eið Þ=�hh

includes the energy of final states E. It is more convenient to write the integral in terms
of the transition energy

ET ¼ E� Ei ¼ �hh!ni

T

We find

PV ¼

Z
dET g Ei þ ETð Þ �ni Eoð Þ

2 sin2 1
2�hh ET � �hh!ð Þt
� �
ET � �hh!ð Þ

2
ð7:3:8Þ

The quantity �hh! represents the energy of the electromagnetic wave inducing the
transition. The dipole matrix element �ni depends on the energy of the final state E
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E , which is the energy between the initial state and final states as shown in Figure 7.3.6.
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through the index ‘‘n.’’ Therefore the dipole moment can be written as �ni ¼ � Eð Þ for
fixed initial state i. In this section, we assume the dipole matrix element to be
independent of the energy of the final state. Therefore, we take �ni ¼ � to be a constant
and remove it from the integral in Equation 7.3.8. This assumes that the final states all
have the same transition characteristics; the interaction strength between the electro-
magnetic wave and the system (i.e., atom) remains the same for all possible final states
under consideration.

Next, look at the last term in the integral in Equation 7.3.8

S ¼
sin2 ð 1

2�hhÞ ET � �hh!ð Þt
� �

ET � �hh!ð Þ
2

As discussed in 7.2.6, the function S become sharper as time increases.. For sufficiently
large times t, the function S will become very sharp compared to the density of states � in
Equation 7.3.8 as shown in the Figure 7.3.7. The S function essentially becomes the Dirac
Delta function S¼�ðET � �hh!Þ. The S function allows the density of states �ðEÞ to be removed
from the integral with the substitution of ET ¼ �hh! in �ðEÞ. Equation 7.3.8 becomes

PV ¼ �Eoð Þ
2g E ¼ Ei þ �hh!ð Þ

Z 1
�1

dET
sin2 ð 1

2�hhÞ ET � �hh!ð Þt
� �

ET � �hh!ð Þ
2

Now evaluating the integral using a change of variable and checking the integration
tables for

R1
�1

dx ðsin2xÞ=x2, we find

PV ¼ �Eoð Þ
2g E ¼ Ei þ �hh!ð Þ

�t

2�hh

which can also be written as

PV ¼ �Eoð Þ
2gf Ef ¼ Ei 	 �hh!
� � �t

2�hh
ð7:3:9Þ

FIGURE 7.3.7

The ‘‘S’’ function becomes very narrow for larger times.

FIGURE 7.3.6

An electromagnetic wave induces a transition from state ‘‘i’’ to one of the final states.
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where Ef and Ei are the energy of the final and initial states, respectively. Equation 7.3.9
includes the ‘‘þ’’ for absorption and the ‘‘–’’ for emission. Equation 7.3.7 provides the
probability (per initial state per unit volume) of the system absorbing energy from the
electromagnetic waves and making a transition from Ei to Ef. Notice how the probability
depends on the frequency of the EM wave through the density of states.

Fermi’s Golden Rule gives the rate of stimulated emission and stimulated absorption
from Equation 7.3.7. The rate of transition is found to be

Ri!f ¼
d

dt
PV ¼

�

2�hh
� Eoð Þ

2 gf Ef ¼ Ei 	 �hh!
� �

ð7:3:10Þ

Notice that the transition rate must be proportional to the optical power i.e.,

Optical power / E2
o

Fewer available final states at energy Ef implies a lower transition rate because of the
density of states that appears in Equation 7.3.10. We will find that lowering the number
of final states lowers the rate of spontaneous emission, which can lower the laser threshold
current.

For a single final level, the density of states function must be a Dirac Delta function
centered at the energy Ef

Ri!f ¼
d

dt
PV ¼

�

2�hh
�Eoð Þ

2� Ef ¼ Ei þ �hh!
� �

The Dirac Delta function ensures that transition process conserves energy. We could
integrate this last equation over energy to find a rate of transition.

7.3.3 Introduction to Laser Gain

At this point, we can begin to relate the laser gain to the rate of transition. Suppose a
total of N atoms can occupy either state ij i or the state jfi. We often refer to a collection
of these atoms as an ensemble of two-level atoms. Suppose there are ni atoms with
electrons in state jii and there are nf in state jfi. The total number of atoms can therefore
be written as N¼ niþnf . The net rate of stimulated emission must be

Net Emission Rate ¼ Emission--Absorption ¼ Rf!inf � Ri!f ni ¼ Rf!i nf � ni

� �
ð7:3:11Þ

where the last step follows because the probability of an upward transition must be
the same as the probability of the downward transition as discussed in Section 7.2.
Using Equation 7.3.10, specifically

Ri!f ¼
d

dt
PV ¼

�

2�hh
�Eoð Þ

2gf Ef ¼ Ei þ �hh!
� �

and defining g0 by

g0 ¼
�

2�hh
�2gf

Equation 7.3.11 becomes

NER ¼ Net Emission Rate ¼ g0 � nf � ni

� �
E2

o
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The ‘‘net emission rate’’ has units of photons per second and must be related to d�=dt
2
o is proportional to the optical

power in the laser, which in turn, is related to photon density �. Combining the constants
of proportionality from NER � d�=dt and E2

o � � with the factor g 0 and calling the
product go, we find

d�

dt
¼ go � nf � ni

� �
�

The author fervently hopes that the reader will recognize this formula as part of the
laser rate equations first developed in Chapter 2.

7.4 Introduction to the Electromagnetic Lagrangian and

Field Equations

The Lagrangian and Hamiltonian formulation of mechanics and electrodynamics have
primary roles in both the classical and quantum theory of the matter–field interaction.
Previous chapters show how the Hamiltonian appears in the Schrodinger wave equation
and the quantum theory of fields. The Lagrangian and Hamiltonian formulation provide
a foundation for the quantum mechanical form of the matter–field interaction most
commonly associated with the dipole moment. The present section first introduces the
Lagrangian density for the electromagnetic field, derives the Euler-Lagrange equations
and then shows how Maxwell’s equations can be reproduced from the formalism. The
4-vector notation ensures the expressions remain relativistically invariant. The next
section derives the Hamiltonian for the matter, fields and their interactions based on
the Lagrangian. The subsequent section then shows how the interaction Hamiltonian
provides the dipole-field interaction term. As is common for the field theory, the section
uses the Lorentz-Heaviside units for the electromagnetics and sets the speed of light
in vacuum to c¼1. In the end, the usual MKS units will be inserted.

7.4.1 A Summary of Results and Notation

densities, and equations of motion. The tables below provide a brief summary of some of
the results.

Mechanics

Lagrange Density: L ¼L �, _��, @i�ð Þ

Lagrangian: L ¼
R

V dV L

Hamitonian Density: H ¼ �ð~rr, tÞ _��ð~rr, tÞ �L

Hamiltonian: H ¼
R

dV H

Momentum Density: �ð~rr, tÞ ¼
@Lð�, . . .Þ

@ _��

Hamilton’s Canonical Equations: _�� ¼
@H

@�
_�� ¼ �

@H

@�
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Mathematics

Metric: g� ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

0
BBBB@

1
CCCCA�,  ¼ 0, 1, 2, 3

Vectors : x� ¼ t, ~rr
� �

or x� ¼ g�x ¼ t, � ~rr
� �

i, j ¼ 1, 2, 3

Derivative : @� ¼
@

@x�
¼

@

@t
,r

� �
or @� ¼ g�@ ¼

@

@t
, � r

� �

Electromagnetics

Field Tensor: F� ¼ @�A � @A� with F� ¼ �F�, F�� ¼ 0

4-Vector Potential: A� ¼ �, ~AA
	 


or A� ¼ g�A ¼ �, � ~AA
	 


Current Density: j� ¼ �,~jj
	 


�, ~jj ¼ charge and current density

7.4.2 The EM Lagrangian and Hamiltonian

The generalized coordinates for the electromagnetic field consist of the vector potential
fields A� ¼ ð�, ~AAÞ ¼ ð�,Ax,Ay,AzÞ; there exists 4 functions for each point ~rr in space.
Before assigning the dynamical equations (Maxwell’s or Newton’s or Schrodinger’s
equations etc.), we can independently vary the magnitude of each field at each space time
point ðt, ~rrÞ. The motions of the fields at neighboring points only become correlated after
applying the equations of motion to the system.

We assume that the Lagrangian depends on the fields and the various possible
derivatives.

L ¼ L A�, @A�

� �
ð7:4:1Þ

By comparison, the Lagrangian for the simplest case of a point particle executing 1-D
motion depends on x and _xx. The terms in the set fA�g are independent of one another so
that ð@A�=@AÞ ¼ �� where �� denotes the Kronecker delta function. Similarly, the terms
in f@A�g are independent so that ð@ð@A�Þ=@ð@�A�ÞÞ ¼ �����. Finally, every term in one
set fA�g is independent of every term in the other f@A�g so that partial derivatives
between sets produce results of zero.

The Lagrange density L (units of energy per unit volume) can be defined by

L ¼

Z
d3x L ð7:4:2Þ

and so the action integral

I ¼

Z x�
2

x�
1

dt L A�, @A�

� �
¼

Z x�
2

x�
1

dt d3x L A�, @A�

� �
¼

Z x�
2

x�
1

d4x L A�, @A�

� �
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must be minimized to find the equations of motion – Maxwell’s equations in this case.
The limits on the integral have the form x� ¼ ðt, ~rrÞ. We assume that fields obey either
periodic or fixed-endpoint boundary conditions for the spatial part of the endpoints
and that the fields at the endpoints are fixed in time so that their time-variation at the
endpoints produce zero. The behavior of the integrand at the endpoints is arranged so
as to eliminate surface terms after partial integration.

Varying the action integral produces

0 ¼ �I ¼

Z x�
2

x�
1

d4x �L A�, @A�

� �
¼

Z x�
2

x�
1

d4x
@L

@A�
�A� þ

@L

@@A�
�@A�

 �
ð7:4:3Þ

Interchanging orders in the last term �@A� ¼ @�A� and partially integrating yields

0 ¼
@L

@@A�
�A�

����
x�

2

x�
1

þ

Z x�
2

x�
1

d4x
@L

@A�
� @

@L

@@A�

 �
�A�

where repeated indices in a product of terms must be summed. Assuming the surface
term don’t contribute and that the four variations in the integral represented by �A� are
all arbitrary and independent, we find Lagrange’s (i.e., Euler’s) equations

@L

@A�
� @

@L

@@A�
¼ 0 ð7:4:4Þ

where we must sum over repeated indices.

7.4.3 4-Vector Form of Maxwell’s Equations from the Lagrangian

In this section we show that the Lagrange density

L ¼ �
1

4
F�F

� � j�A� ð7:4:5Þ

leads to Maxwell’s equations. The last term represents the matter-light interaction
term. Keep in mind that repeated indices in a product must be summed as for example,
we should write F�F� �

P3
�, ¼0 F�F�. The antisymmetry property of the field tensor

F� ¼ �F� follows from the basic definition

F� ¼ @�A � @A� ð7:4:6Þ

and provides F�� ¼ 0 with or without a summation on the index. As a final note, it
is customary to use the microscopic form of Maxwell’s equations. This means that we
do not include the susceptibility and permeability for anything but the vacuum. The
polarization must be stated in terms of the its component parts.

Having found Euler-Lagrange equations from the variational principle in 7.4.2

@L

@A�
� @

@L

@@A�
¼ 0 ð7:4:7Þ
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we can now find the equations of motion for the EM field using Equations 7.4.5 and 7.4.7.
First calculate @L=@A�

@L

@A�
¼

@

@A�
�

1

4
F�F

� � j�A�

 �
¼

@

@A�
�

1

4
@�A � @A�

� �
@ �A � @A�ð Þ � j�A�

 �

The first two terms in parenthesis do not contain A� by themselves. Therefore, we find

@L

@A�
¼ �

@

@A�
j�A� ¼ j���� ¼ j� ð7:4:8Þ

where the last result comes from the sum over the index �.
Next calculate @L=@ @�A�

� �

@L

@@�A�
¼ �

1

4

@

@@�A�
@�A � @A�

� �
@ �A � @A�ð Þ �

@

@@�A�
j�A�

¼ �
1

4

@

@@�A�
@�A � @A�

� �
@ �A � @A�ð Þ

Notice that the derivative of j�A� gave nothing because the coordinates must be
independent of the generalized velocities. The last equation can be rewritten using the
metric as

@L

@@�A�
¼ �

1

4

@

@@�A�
@�A � @A�

� �
g��

0

g
0

@�0A0 � @0A�0
� �

The product rule then provides

@L

@@�A�
¼ �

g��
0

g
0

4
����� � �����
� �

@�0A0 � @ 0A�0
� �

þ @�A � @A�

� �
���0��0 � �� 0���0
� �� �

Finally, using the metric and summing over repeated indices yields

@L

@@�A�
¼ �

1

4
g��

0

g�
0

� g��
0

g�
0� �
@�0A 0 � @ 0A�0
� �� �

�
1

4
@�A � @A�

� �
g��g�

0

� g��g�
� �� �

¼ �
1

4
2@ �A� � 2@�A�
� �

�
1

4
2@ �A� � 2@ �A�
� �

¼ @ �A� � @ �A�

Therefore, the last term in 7.4.2 becomes

@�
@L

@@�A�
¼ @� @

�A� � @ �A�
� �

¼ @�F �� ð7:4:9Þ

Combining 7.4.6, 7.4.5 and 7.4.2 provides Maxwell’s equations in the form

@�F �� ¼ j� ð7:4:10Þ

with one equation for each � ¼ 0, . . . , 3.
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7.4.4 3-Vector Form of Maxwell’s Equations

Using the definition of the field tensor, and the relation between the field tensor and
the currents,

F� ¼ @�A � @A� @�F� ¼ j ð7:4:11Þ

we can give an explicit relation for the field tensor (matrix) and derive Maxwell’s
equations.

The Lagrangian density must be related to the energy density; this is especially true for
the Hamiltonian. It is therefore interesting to note that we can start with the field energy
and derive Maxwell’s equations.

Gauss’ Law

We first show how Equation 7.4.10, specifically @�F� ¼ j, leads to Gauss’ law r � ~EE ¼ �
(in Lorentz-Heaviside units). We then use this result to construct the entries of the field
tensor F� for the first column and top row.

To find Gauss’ law, start with  ¼ 0 in Equation 7.4.10 to find

@�F�0 ¼ j0 ! @�@
�A0 � @�@

0A� ¼ j0 ! @�@
��� @�@

0A� ¼ �

Expand the individual terms

@�@
�� ¼

@2�

@t2
� r � r� and @�@

0A� ¼
@

@t

@�

@t
þ r � ~AA

� �

and recombine into @�@
��� @�@

0A� ¼ � to get

@2�

@t2
� r � r�

 �
�

@

@t

@�

@t
þ r � ~AA

� � �
¼ � ! r � �

_~AA~AA� r�

 �
¼ � ! r � ~EE ¼ �

where the last result comes from the definition of the vector potentials found in
Section 6.2.

Gauss’ law determines some of the tensor elements in F. Using  ¼ 0 along with
7.4.8, we find

@�F�0 ¼ j0 ¼ � !
@F 00

@t
þ
@F10

@x
þ
@F20

@y
þ
@F30

@z
¼ �

with F 00 ¼ 0 since F is antisymmetric. We recognize this last equation as Gauss’ law for
the electric field ~EE. Therefore we now know

F� ¼

0 �Ex �Ey �Ez

Ex 0

Ey 0

Ez 0

0
BBB@

1
CCCA

where the top row comes from the antisymmetry property of F. We will determine the
remaining entries in the next subtopic.
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Ampere’s Law

Let’s start with Equation 7.4.10, namely @�F� ¼ j, and focus on  ¼ 2. We find

@F 02

@t
þ
@F12

@x
þ
@F22

@y
þ
@F32

@z
¼ j2 ! �

@Ey

@t
þ
@F12

@x
þ
@F32

@z
¼ jy

where F22 ¼ 0 due to the antisymmetry of F. After some thought, we recognize the
F-terms as part of a cross product. Let’s use the antisymmetry property of F and place
the time derivative on the right hand side to rewrite the last equation as

@F12

@x
�
@F23

@z
¼ jy þ

@Ey

@t

We recognize this as the y-component of the curl of the magnetic field. In particular,
we identify F12 ¼ �Bz and F23 ¼ �B x. Similarly, we can show F13 ¼ þB y. The field
tensor now has the form

F� ¼

0 �Ex �Ey �Ez

Ex 0 �B z B y

Ey B z 0 �B x

Ez �B y B x 0

0
BBBBBB@

1
CCCCCCA

Alternatively, we can also show the y-component of the magnetic field working with the
potentials. Consider F13 ¼ @1A3 � @3A1, and notice that the partials have the index in
the upper position which requires @� ¼ @t, � rð Þ. We therefore have

F13 ¼ @1A3 � @3A1 ¼ �
@Az

@x
þ
@Ax

@z
¼ By

All of the components can be treated similarly.

Magnetic Monopole Relation

The tensor formalism can be used to show that nature does not generally produce
magnetic monopoles as described by the equation r � ~BB ¼ 0. Let i, j, k be restricted to
the integers 1, 2, 3. We can easily see that

@1F23 þ @2F31 þ @3F12 ¼ 0 ð7:4:12Þ

by substituting the potentials into F� ¼ @�A � @A� and then switching the order
of differentiation—keep in mind that F� has derivatives with the upper index, which
requires an ‘‘extra’’ minus sign. By substituting the various terms for F into Equation
7.4.12, we find

@

@x
�B xð Þ þ

@

@y
�B y

� �
þ
@

@z
�B zð Þ ¼ 0 ! r � ~BB ¼ 0

506 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-007.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:18am Page: 507/610

Lenz’s Law

Lenz’s law relates the curl of the electric field to the rate of change of the magnetic field.
We can use the same maneuver as for Equation 7.4.12 to show

@oF12 � @1F20 � @2F 01 ¼ 0 ð7:4:13Þ

To prove this last relation, remember the ‘‘extra’’ minus sign because the derivatives in
F have the upper index. Now we can substitute the fields from the field tensor into
the last equation to find

@oF12 � @1F20 � @2F 01 ¼ 0 !
@

@t
�B zð Þ �

@

@x
þE zð Þ �

@

@y
�E xð Þ ¼ 0

The other components can be similarly demonstrated to find

r 
 ~EE ¼ �
@ ~BB

@t

7.5 The Classical Hamiltonian for Fields, Particles

and Interactions

We now demonstrate the Hamiltonian that includes the free EM fields, the free particles
and the interaction between the fields and the particles. We will see that the Hamiltonian
in natural units c ¼ 1, �hh ¼ 1ð Þ has the form (for a single charge particle)

H ¼
~pp� q~AA
	 
2

2m|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Particle and

Particle-Field

þ Vð~rrÞ|ffl{zffl}
Atomic

þ Hem|{z}
Free
Field

ffi
p2

2m|{z}
Free

Particle

�
q

m
~pp � ~AA|fflfflffl{zfflfflffl}

Matter-Field
Interaction

þ Vð~rrÞ|ffl{zffl}
Atomic

þ
1

2

Z
dV E2 þH2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Free Electromagnetic Fields

ð7:5:1Þ

where q, m, ~AA, ~EE, ~HH denote the charge of the particle (q50 for electrons), mass m
of the particle, the vector potential, and the electric and magnetic fields, respectively.
The symbol ~pp represents the canonical momentum comprised of the particle and field
momenta. For small fields ~AA, the canonical momentum ~pp reduces to the particle momen-
tum m~vv. Note that H represents the total energy of the combined system. In the low
field limit, the same results can be found from Poynting vector calculations. The
next section shows common form of �̂� � ÊE for the matter–field interaction using
Equation 7.5.1 as a starting point. As a matter of notation, we will use H as the
Hamiltonian density and retain ~HH as the magnetic field.

The present section starts with the Lagrange density

L ¼ �
1

4
F�F

� � j�A� ð7:5:2Þ

and derives the Hamiltonian density (energy density) and the Hamiltonian (energy)
for the subsystem consisting of the fields and the interaction. It then uses the results
to demonstrate the Hamiltonian for the combined system given by Equation 7.5.1. A list
of the notational conventions are discussed in 7.4.1.
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7.5.1 The EM Hamiltonian Density

Section 5.4 discusses the classical Lagrangian density and shows how the canonical
momentum density ‘‘� ’’ arises. Basically, the potentials (for the case at hand) comprise
the generalized coordinates. On the other hand, the canonical momentum, obtained
from the Lagrangian density, must have units of ‘‘per unit volume per second.’’ The total
canonical momentum must be the integral over volume of the momentum density.

Recall the definition of the Hamiltonian using the discrete coordinates qx.

H ¼
X

x

px _qqx � L ð7:5:3Þ

where the canonical momentum px corresponds to the generalized coordinate qx and
can be found from the following relation.

px ¼
@L

@_qqx
ð7:5:4Þ

We can rewrite the momentum in terms of the momentum density �x as

px ¼ �x d3x ð7:5:5Þ

where d3x is a small volume element. Also recall the definition of the Lagrange
density L as

L ¼

Z
d3x L ð7:5:6Þ

Combining these last four equations to find

H ¼
X

x

px _qqx � L ¼

Z
d3x � _qq�L

� �
ð7:5:7Þ

where the limit of small ‘‘x’’ produces the integral. The momentum density is given by

� ¼
@L

@_qq
ð7:5:8Þ

and the Hamiltonian density is defined to be

H ¼ � _qq�L ð7:5:9Þ

Keep in mind that there must be a different generalized coordinate and momentum
for each position in space.

For the EM problem, we have four potentials assigned to each point in space. Therefore,
the Hamiltonian density must have the form

H ¼
X
�

�� _qq� �L � �� _AA� �L A�, @A�

� �
ð7:5:10Þ

where we must remember to sum over repeated indices. The momentum density
becomes

�� ¼
@L

@ _AA�

where @ _AA� ¼ @oA� ð7:5:11Þ
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To write the Hamiltonian, we only need to identify the canonical momentum densities
using Equation 7.5.8, substitute into Equation 7.5.9, and make sure that the Hamiltonian
density is written only in terms of the generalized coordinates and momentum (and
not @A�).

7.5.2 The Canonical Field Momentum

The momentum density can be calculated using Equations 7.5.10 and 7.5.2

�� ¼
@L

@ _AA�

¼
@

@ _AA�

�
1

4
F�F

� � j�A�

� �
¼ �

1

4

@

@ _AA�

F�F
�

Using the metric to lower the indices on F� provides

�� ¼ �
g��

0

g
0

4

@

@oA�
@�A � @A�

� �
@�0A 0 � @ 0A�0
� �

¼ �
g��

0

g
0

4
�0��� � �0���
� �

@�0A 0 � @ 0A�0
� �

þ @�A � @A�

� �
�0�0�� 0 � �0 0���0
� �� �

Using the Kronecker delta and eliminating the metrics by raising appropriate indices
provides

�� ¼ �
1

4
g0�0g�

0

� g��
0

g0 0
� �

@� 0A 0 � @ 0A�0
� �

þ @�A � @A�

� �
g�0g� � g��g0
� �� �

¼ �
1

4
@0A� � @�A0
� �

� @�A0 � @0A�
� �

þ @0A� � @�A0
� �

� @�A0 � @0A�
� �� �

Adding the terms in the last expression provides

�� ¼ �@0A� þ @�A0 ð7:5:12Þ

Two cases of Equation 7.5.12 should be considered. First set � ¼ 0 to find

�0 ¼ �@0A0 þ @0A0 ¼ 0 ð7:5:13Þ

Next, set � ¼ i where i¼ 1, 2, 3.

�i ¼ �@0Ai þ @iA0 ¼ � _AAi � @iA
0 ¼ � _AAi � @i� ¼ � _AAi � r�ð Þi ð7:5:14Þ

This last equation gives the i th component of the canonical momentum density. We can
put this all together as follows

�� ¼
0 � ¼ 0

�
_~AA~AA� r� � 6¼ 0

( )
¼

0 � ¼ 0

~EE � 6¼ 0

(
ð7:5:15Þ

where we used the relation between the electric field and the potentials.
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7.5.3 Evaluating the Hamiltonian Density

Now we calculate the Hamiltonian density using Equations 7.5.10 and 7.5.2

H ¼ �� _AA� þ
1

4
F�F

� þ j�A� ð7:5:16Þ

As shown in the previous section, the field tensor F� ¼ @ �A � @A� has the following
form.

F� ¼

0 �Ex �Ey �Ez

Ex 0 �B z B y

Ey B z 0 �B x

Ez �B y B x 0

0
BBB@

1
CCCA F� ¼ g��F��g� ¼

0 Ex Ey Ez

�Ex 0 �B z B y

�Ey B z 0 �B x

�Ez �B y B x 0

0
BBB@

1
CCCA

It’s easy to calculate the first and last terms in Equation 7.5.16. The first term in
Equation 7.5.16 gives

�� _AA� ¼ �
0 _AAo þ �

i _AAi ¼ 0� ~EE �
_~AA~AA ¼ �~EE �

_~AA~AA

Next substitute for the time derivative using ~EE ¼ �
_~AA~AA� r�

�� _AA� ¼ ~EE � ~EEþ r�
	 


¼ E2 þ ~EE � r� ð7:5:17Þ

The last term in Equation 7.5.16 gives

j�A� ¼ ��� ~jj � ~AA ð7:5:18Þ

Next, let’s calculate the middle term in 7.5.15, namely F�F�. We can multiply corres-
ponding entries in F� and F� and then add the results to find

F�F
� ¼ �2 E2 �B2

� �
ð7:5:19Þ

Combining Equations 7.5.19, 7.5.18, 7.5.17 with the Equation 7.5.16 for the Hamiltonian
density H ¼ �� _AA� þ ð1=4ÞF�F� þ j�A� we find

H ¼
1

2
E2 þB2
� �

þ ~EE � r�þ ��� ~jj � ~AA ð7:5:20Þ

for the free fields and matter-light interaction. In the next section we add the terms for
free particles and derive an expression usually used as the starting point for quantum
systems interacting with light.

7.5.4 The Field and Interaction Hamiltonian

We can now write the Hamiltonian

Hem þHint ¼

Z
dV H ¼

Z
dV

1

2
E2 þB2
� �

þ ~EE � r�þ ��� ~jj � ~AA

 �
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We can cancel the middle two terms by partially integrating as follows

Z
dV ~EE � r�þ ��

h i
¼

Z
dV �r � ~EE

	 

�þ ��

h i
¼

Z
dV �� �þ ��½ � ¼ 0

where we have assumed periodic or fixed-endpoint boundary conditions in order
to neglect the surface term resulting from the integration. The EM and interaction
Hamiltonian becomes

Hem þHint ¼

Z
dV

1

2
E2 þB2
� �

� ~jj � ~AA

 �

In MKS units, the Hamiltonian can be written as

Hem þHint ¼

Z
dV

�o

2
~HH2 þ

"o

2
~EE2

h i
þ

Z
dV �~jj � ~AA

	 

ð7:5:21Þ

Recall for free fields ~BB ¼ �o
~HH.

Finally, we can show the last term in Equation 7.5.21 can be reduced for point particles.
The current density is

~jj ¼ q�~vv

where q, �, ~vv are the charge of the particle (q50 for electrons), the charge density and
the velocity of the charge density respectively. For a point particle, we must have

� ¼ � x� xoð Þ

where xo must be the position of the particle at the time of interest. Therefore, the
Hamiltonian in Equation 7.5.21 becomes

Hem þHint ¼

Z
dV

�o

2
~HH2 þ

"o

2
~EE2

h i
� q~vv � ~AA ð7:5:22Þ

The last term becomes the starting point for showing the Hamiltonian for the matter-
light interaction in the form of the dipole moment and also for demonstrating the
conventional form of the Hamiltonian in the next topic. Notice that the last term comes
straight from Equation 7.5.2 without any need for the fancy mathematical manipula-
tions to find the EM Hamiltonian. We could have used the results from Equation 3.5.11
in Section 3.5 with an extra time derivative to convert from power to energy.

Hamiltonians use momentum rather than velocity. We need to convert the last term
in Equation 7.5.22 into one involving momentum. In the low field limit, we make
the identification ~pp ¼ m~vv and find

Hem þHint ¼

Z
dV

�o

2
~HH2 þ

"o

2
~EE2

h i
�

q

m
~pp � ~AA ð7:5:23Þ

For larger fields, the momentum ~pp must include both the particle and field momenta.
This last equation represents the classical Hamiltonian for the fields and the interaction.
It does not include a Hamiltonian for the particle and therefore does not provide any
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particle dynamics. Equation 7.5.23 treats the particle momentum as unchanging and
independent of time. The next topic shows the Hamiltonian that includes the particle
dynamics.

As a comment, if we had used ‘‘proper time’’ for calculating the extremum of the
action, then the Lagrangian L and all of the calculations leading to the Hamiltonian
would have observed the principles of relativity. We didn’t go through any extra work
simply because of the ease with which Maxwell’s equations can be written in covariant
form using the 4-vector notation. In fact, we used it as a compact notation without
emphasizing the importance for special relativity. For simplicity, the next section
abandons the formalism and assumes the charged particles travel much slower than the
speed of light.

7.5.5 The Hamiltonian for Fields, Particles and their Interactions

The typical form of the classical Hamiltonian (energy and not energy density) for the
entire system includes the particle, fields and their interactions according to

H ¼
~pp� q ~AA
	 
2

2m
þ Vð~rrÞ þHem ð7:5:24Þ

where V denotes the usual potential energy associated with the environment of the
electron and Hem represents the Hamiltonian for the free EM fields. Squaring out
the kinetic term provides

H ¼
p2

2m
�

q

2m
~pp � ~AAþ ~AA � ~pp
	 


þ
q2

2m
A2 þ Vð~rrÞ þHem ð7:5:25Þ

The second term can be reduced to agree with Equation 7.5.23

�
q

2m
~pp � ~AAþ ~AA � ~pp
	 


¼ �
q

m
~pp � ~AA ð7:5:26Þ

The matter-light interaction uses the quantum mechanical Hamiltonian for a charged
particle where the dynamical variables become operators that don’t necessarily commute.
In fact, the original form of the second term in Equation 7.5.25 is most appropriate
because, with operators, it can be seen to be Hermitian.

We now derive the most common form of the Hamiltonian given in Equation 7.5.24.
We will need to generalize the Lagrangian density L ¼ �ð1=4ÞF�F� � j �A� in the
previous section to include the particle dynamics. This will also generalize the previous
form of the Hamiltonian Hem þHint ¼

R
dV ½ð�o=2Þ ~HH

2 þ ð"o=2Þ~EE
2� � ðq=mÞ~pp � ~AA.

The total Lagrangian can be written as the summation of the terms for the free particle,
the EM fields and the interaction between them

L ¼ Lfree
particle

þ

Z
dV

X
�

�
1

4
F�F

� � j�A�

� �
ð7:5:27Þ

The kinetic energy for the free particle

L free
particle

¼
X

i

1

2
m _��2

i ð7:5:28Þ
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uses �i to mean the ith position coordinate of the free particle (recall that for the EM
fields, we treat x, y, z as indices). Also recall that the current-field interaction term can
be rewritten as

�

Z
dV j�A� ¼ �

Z
dV ��� ~jj � ~AA

	 

¼ q~vv � ~AA�

Z
dV �� ð7:5:29Þ

where we used the relations � ¼ qn, ~jj ¼ qn~vv, and nðxÞ ¼ �ðx� x0Þ for a single point
particle. Combining Equations 7.5.28 and 7.5.29 into 7.5.27, we find

L ¼
X

i

1

2
m _��2

i þ

Z
dV

X
�

�
1

4
F�F

�

� �
�

Z
dV ��þ q~vv � ~AA ð7:5:30Þ

where ~vv ¼ _��1x̂xþ _��2ŷyþ _��3ẑz.
Looking at Equation 7.5.30, we see that we can divide the total Lagrangian L into two

parts

L1 ¼
X

i

1

2
m _��2

i þ q~vv � ~AA L2 ¼

Z
dV

X
�

�
1

4
F�F

�

� �
�

Z
dV �� ð7:5:31Þ

so that the coordinates for the point particle do not enter into L2. The classical
Hamiltonian can be written as H ¼ H1 þH2 where the previous section shows

H2 ¼

Z
dV

�o

2
~HH2 þ

"o

2
~EE2

h i
ð7:5:32Þ

and where we now define

H1 ¼
X

i

pi _��i � L1

 !
¼
X

i

pi _��i �
X

i

1

2
m _��2

i � q~vv � ~AA ð7:5:33Þ

so that the total Hamiltonian must have the form

H ¼ H1 þH2 ¼
X

i

pi _��i � L1

 !
þH2 ¼

X
i

pi _��i �
X

i

1

2
m _��2

i � q~vv � ~AA

 !
þH2 ð7:5:34Þ

The momentum pi must be conjugate to the coordinate �i. We take the electric field in
this last equation to be the transverse component of the travelling wave. Any electrostatic
potential can be included using the potential V. Equation 7.5.34 has Hamiltonians for the
free particle, particle-field interaction, and the free EM fields.

We want to reduce this last equation to the form H ¼ ð~pp� q ~AAÞ2=2mþ Vð~rrÞ þHem. We
assume the symbol V represents an external potential originating from fields not included
in the kinetic term. Because the coordinates _��i do not appear in H2¼Hem we can work with
Equation 7.5.33 in isolation. We need to find the momentum pi and the rewrite H1 in terms
of �i and pi. In the usual manner, we find

pj ¼
@L1

@ _��j
¼

@

@ _��j

X
i

1

2
m _��2

i þ q~vv � ~AA

 !
¼

@

@ _��j

X
i

1

2
m _��2

i þ q _��i � Ai

� �
¼ m _��j þ qAj ð7:5:35aÞ
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The momentum pj conjugate to the coordinate �j is not equal to mvj as a person might
expect. The total momentum includes both the particle and the field-like momentum.
This observation explains the result expressed by the previous equation.

pj ¼ m _��j þ qAj ð7:5:35bÞ

The Hamiltonian does not explicitly involve the position ~rr and therefore momentum
must be conserved according to Hamilton’s canonical equation

_ppj ¼ �
@H

@xj
¼ 0 ! ~pp ¼ constant

The particle can exchange momentum with the field and vice versa just so long as the
total is conserved.

The Hamiltonian H1 in Equation 7.5.33 can be rewritten

H1 ¼
X

i

pi _��i �
1

2
m _��2

i � q _��iAi

� �

¼
X

i

pi
pi � qAi

m
�

1

2
m

pi � qAi

m

� �2

�q
pi � qAi

m

� �
Ai

" # ð7:5:36aÞ

We can rearrange terms to find

H1 ¼
X

i

pi � qAi

� � pi � qAi

m

� �
�

1

2
m

pi � qAi

m

� �2
" #

¼
X

i

pi � qAi

� �2

2m

We can include the extra potential V ~rr
� �

to find

H1 ¼
X

i

pi � qAi

� �2

2m
þ V ~rr

� �
ð7:5:36bÞ

or in vector notation

H1 ¼

~pp� q~AA
	 
2

2m
þ V ~rr

� �
ð7:5:36cÞ

where as usual, the square means to take the dot product. Finally, including the
electromagnetic Hamiltonian, we find

H ¼
~pp� q~AA
	 
2

2m
þ V ~rr

� �
þ

Z
dV

�o

2
~HH2 þ

"o

2
~EE2

h i
ð7:5:37Þ

7.5.6 Discussion

The Hamiltonian in Equation 7.5.37 describes the free particle, the interaction between
the particle and the propagating fields, the freely propagating fields, and the interaction
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between the particle and an extra external potential V. Usually V describes the
environment of the charge q (for example the potential for a finitely deep well).

The Hamiltonian in Equation 7.5.37 can be quantized. For EM field quantization, we
replace the vector potential with a Fourier summation that has operators for amplitudes.
Of course, this requires the electric and magnetic fields to be similarly expressed.

quantized by making the identification ~pp ¼ ð�hh=iÞr.
The matter-light interaction term in Equation 7.5.37 comes from squaring the

first term

�
q

2m
~pp � ~AAþ ~AA � ~pp
	 


þ
q2

2m
A2 ð7:5:38aÞ

�
q

m
~pp � ~AA ð7:5:38bÞ

The first two terms in Equation 7.5.38a reduce to 7.5.38b when ~pp, ~AA are ordinary
vectors. Also, the result in 7.5.38a has the ‘‘extra’’ A2 term. At first glance, the two
equations appear identical except for this A2 term. However, this isn’t true because
in Equation 7.5.38a, we have ~pp ¼ m~vvþ q ~AA from Equation 7.5.35b, while in Equation
7.5.38b we have ~pp ¼ m~vv. The quantity m~vv refers to the momentum of the particle alone
while ~pp ¼ m~vvþ q ~AA refers to the particle and field momentum. Equation 7.5.36a shows
that the A2 enters from terms of the form

X
i

pi � qAi

� �
Ai ¼ ~pp � ~AA� q~AA � ~AA ¼ ~pp � ~AA� qA2 ð7:5:39Þ

For ‘‘A’’ sufficiently small, we can approximate

~pp ¼ m~vvþ q~AA � m~vv ð7:5:40Þ

In view of Equations 7.5.39 and 7.5.40, we therefore see that for sufficiently small ~AA,
Equation 7.5.38a reduces to 7.5.38b and the definitions of the two momentum become
synonymous.

As a final comment for quantizing the EM field as in Chapter 6, when the vector
potential is quantized in terms of the creation b̂bþ and annihilation b̂b� operators, the A2

produces terms of the form b̂bþb̂bþ, b̂bþb̂b�, b̂b�b̂b�

These represent two photon processes. The first term creates two photons (emission),
the second term destroys one but creates another (absorption and emission), and the
last one removes two photons (absorption). Two photon processes only become
important at large light levels, which occurs for large ‘‘A.’’ That is, we require a large
number of photons for the two-photon processes to become significant. Neglecting
the two photon processes must be somewhat equivalent to the approximation given
in 7.5.43.
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The quantization procedure can be found in Chapter 6. The kinetic energy term can be
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7.6 The Quantum Hamiltonian for the Matter–Light Interaction

The classical Hamiltonian for a particle interacting with a field has the form

H ¼
~pp� q ~AA
	 
2

2m|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Particle and

Particle-Field

þ Vð~rrÞ|ffl{zffl}
Atomic

þ Hem|{z}
Free
Field

ffi H Free
Particle

þHint þ Vð~rrÞ þHem

where q, m, ~AA, ~EE, ~HH denote the charge of the particle (q50 for electrons), mass m of the
particle, the vector potential, and the electric and magnetic fields, respectively. The
symbol ~pp represents the canonical momentum comprised of the particle and field
momenta. For small fields ~AA, the canonical momentum ~pp reduces to the particle
momentum m~vv.

We now discuss the quantum mechanical form of the Hamiltonian. Typically, the
quantum Hamiltonian is found by replacing all of the dynamical variable with operators
in the classical Hamiltonian (with care taken to properly order the operators). Rather than
starting with the Lagrangian as done in the previous sections, we use the results from the

brief summary of the procedure without the ‘‘overhead’’ required by the Lagrangian
approach. We focus on the particle-field interaction term and do not include the free-field
Hamiltonian.

As a final topic, we show the two forms for the interaction Hamiltonian namely �̂� � ÊE
and p̂p � ÂA. The first type �̂� � ÊE with the dipole operator �̂� has already been discussed
in connection with Fermi’s golden rule. We will also need it for the Liouville treatment
of the matter-light interaction. The second form will be used in connection with some of
the material in the next chapter for computing the gain or absorption of semiconductor
devices. Either way, the two expressions for the interaction energy are equivalent to one
another.

7.6.1 Discussion of the Classical Interaction Energy

The classical Hamiltonian in Section 3.5 can be quantized to provide the semiclassical
Hamiltonian and the proper form for the matter-light interaction. This topic shows the
matter-light interaction has the form

HA�L ¼ �
q

2m
~pp � ~AAþ ~AA � ~pp
	 


where ~AA denotes the vector potential and ~pp represents a momentum.

we started with the classical expression for the energy stored in an EM field. We then
quantized it by substituting operators for the Fourier amplitudes, and required the
operators to satisfy commutation relations. The expression for the electromagnetic power
flow (Poynting vector) found in Chapter 3 not only contains reference to the free field
Hamiltonian but also the power due to the interaction between the fields and matter. The
interaction term in Equation 3.5.11 has the form

P ¼

Z
V

dV ~EE � ~jj ð7:6:1Þ
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For the development of the quantum theory of the electromagnetic fields in Chapter 6,
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where ~EE and ~jj represent the electric field and current density (Amps per area). We look

the electric field can be related to the vector potential ~AA by

~EE ¼ �
@~AAð~rr, tÞ

@t

when there isn’t any electrostatic potential. Assuming that the electric field produces only
small fluctuations in the current density, we can write Equation 7.6.1 as

P ¼ �
@

@t

Z
V

dV ~AA � ~jj

and therefore the interaction energy density (energy per volume) must be

HA�L ¼ � ~AA � ~jj

To make sure that the Hamiltonian remains Hermitian once we substitute operators,
let’s write

HA�L ¼ �
1

2
~AA � ~jjþ ~jj � ~AA
h i

ð7:6:2Þ

because in the quantum theory, this interaction Hamiltonian will have the form

HA�L ¼ �
1

2
~AA � ~jjþ ~AA � ~jj

	 
þ �

which must be explicitly Hermitian Hþ
A�L ¼HA�L. We will take care not to arbitra-

rily commute the dynamical variables ~AA and ~jj even though we can do so in the classical
theory. As a note, we will see that, upon integration, Equation 7.6.2 takes the form
~pp � ~AAþ ~AA � ~pp and, using the Coulomb gauge, the expression reduces to ~AA � ~pp. This is
equivalent to retaining only the ~AA � ~jj term in Equation 7.6.2.

The current density can be written as

~jj ¼ qn~vv ð7:6:3Þ

where n denotes the charge density (e.g., number of electrons per volume), ~vv denotes the
average speed of the charge, and q50 for electrons. Assume just one point charge in
the volume. The charge density must be related to a Dirac delta function

n ¼ � ~xx� ~xxo

� �
ð7:6:4Þ

so that when we integrate overall space, we find exactly one electron. Substituting the
current density into the interaction Hamiltonian

HA�L ¼ �

Z
V

dV ~AA � ~jj ð7:6:5Þ
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provides

HA�L ¼ �

Z
V

dV ~AA � ~jj ¼ �

Z
V

dV ~AA � qn~vv ¼ �q~vv � ~AA ð7:6:6Þ

We want to write the interaction Hamiltonian in terms of momentum rather than
velocity (since that’s how the Hamiltonian should be written). Here’s where a discre-
pancy occurs between the classical Hamiltonian field theory (Section 7.5) and using the
Poynting vector approach. Normally, we would say that the appropriate momentum
for Equation 7.6.6 must be ~pp ¼ m~vv so that the interaction Hamiltonian becomes

HA�L ¼ �

Z
V

dV ~AA � ~jj ¼ �
q

m
~pp � ~AA ¼ �

q

2m
~pp � ~AAþ ~AA � ~pp
	 


ð7:6:7Þ

However, the momentum conjugate to the charge position vector, according to the
classical field theory approach in Equation 7.5.35b, must be

~pp ¼ m~vvþ q ~AA ð7:6:8aÞ

The total momentum of the system must be the mechanical momentum of the electron
plus a contibution related to the field. Basically, the Hamiltonian does not explicitly
involve the particle position (lacks potential) and therefore momentum must be
conserved according to Hamilton’s canonical equation

_ppj ¼ �
@H

@xj
¼ 0 ! ~pp ¼ constant

The particle can exchange momentum with the field and vice versa so long as the total
remains constants. Now, if the momentum of the field remains negligibly small, then

~pp ¼ m~vvþ q~AA ffi m~vv ð7:6:8bÞ

and Equation 7.6.6 will be a reasonable approximation. The next topic discusses the
quantum mechanical form of the Hamiltonian that includes the interaction. It turns out,
we never really need to identify the momentum ~pp with the mechanical momentum of the
electron alone (and it’s incorrect to do so).

7.6.2 Schrodinger’s Equation with the Matter–Light Interaction

The previous topic indicates the interaction Hamiltonian has the form

HA�L ¼ �
q

m
~pp � ~AA ¼ �

q

2m
~pp � ~AAþ ~AA � ~pp
	 


ð7:6:9Þ

where q, m, ~pp, ~AA denote the charge (q50 for electrons), mass m, total momentum of
particle and EM field (approximately particle momentum), and vector potential,
respectively. Now if we include the usual Hamiltonian for a particle with kinetic and
potential energy, we can write

H ¼
p2

2m
þ V þHA�L ¼

p2

2m
�

q

2m
~pp � ~AAþ ~AA � ~pp
	 


þ V ð7:6:10Þ
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Equation 7.6.10 can be approximately written as

H ¼
~pp� q~AA
	 
2

2m
þ V ð7:6:11Þ

This last equation has exactly the correct form. Had we followed the classical field theory
approach given in Sections 7.4 and 7.5, we would have found the extra term q2A2=2m
appearing in Equation 7.6.9.10. Apparently, neglecting this extra term must be equivalent
to assuming small field momentum so that ~pp ¼ m~vvþ q~AA ffi m~vv. This ‘‘extra’’ term accounts
for two photon processes.

In quantum theory, we know to replace the dynamical variables in Equation 7.6.10 with
operators and require them to satisfy certain commutation relations. In the semiclassical
approach, we replace the vector ~pp with ð�hh=iÞr but leave the vector potential as a classical
vector. To include the quantum nature of the EM fields, we must also make the vector
potential an operator.

For the semiclassical quantum description of a charged particle interacting with
electromagnetic fields, we can write

ĤH ¼
p̂p� q ~AA
	 
2

2m
þ V̂V ¼

1

2m

�hh

i
r � q~AA

	 
2

þV̂V ð7:6:12Þ

where Schrodinger’s equation has the form

ĤH  
�� � ¼ i�hh

@

@t
 
�� � ð7:6:13Þ

The wave function j i consists only of the electron basis vectors for the semiclassical
approach. Once we quantize the fields however, then the wave function must include
basis vectors of the Hilbert space for the EM wave.

7.6.3 The Origin of the Dipole Operator

Let us now demonstrate how the interaction potential depends on the dipole operator in
ĤHA�L ¼ V̂V ¼ �̂� � ÊE. We first used this expression in Sections 7.1–7.3 without proof. The
interaction potential perturbs the atom and causes the electron to make transitions
between atomic basis states. These transitions occur when the atom absorbs or emits
photons. Having laid all the preliminary groundwork, let’s now follow some of the
development given in Yariv ’s Quantum Electronics and his references.

For quantum particles interacting with EM fields, we can write

ĤH ¼
p̂p� eÂA
	 
2

2m
þ V̂V xð Þ ð7:6:14aÞ

where the free particle Hamiltonian (atomic Hamiltonian) is

ĤHA ¼
p̂p2

2m
þ V̂V xð Þ ð7:6:14bÞ
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and A denotes the vector potential. First, we will show the full Hamiltonian can be
written as

ĤH ¼ ĤHA �
e

m
p̂p � ÂA ð7:6:14cÞ

where the term p̂p � ÂAþ ÂA � p̂p in Equation 7.6.14a must be shown to reduce to p̂p � ÂA in
Equation 7.6.13c.

The Hamiltonian in Equation 7.6.14a can be written as

ĤH ¼
p̂p� eÂA
	 
2

2m
þ V̂V ¼ ĤHA �

e p̂p � ÂAþ e ÂA � p̂p� e2ÂA2

2m
ð7:6:15Þ

where we must be careful not to commute the momentum and vector potential
operators since ½ÂA, p̂p� 6¼ 0. We focus on the term ~pp � ~AA� ~AA � ~pp. It can be cast into an
alternate form by working in the coordinate representation ~pp ¼ ð�hh=iÞr. Keeping in mind
that ~pp � ~AA� ~AA � ~pp must operate on functions  , we calculate ð~pp � ~AA� ~AA � ~ppÞ to find

~pp � ~AA� ~AA � ~pp ¼
�hh

i
r � ~AA

However, working in the Coulomb gauge, we require the Coulomb gauge condition
r � ~AA ¼ 0 to hold. We therefore see that

~pp � ~AA ¼ ~AA � ~pp

in the Coulomb gauge. The Hamiltonian can now be written as

ĤH ¼ ĤHA �
e

m
p̂p � ÂA ð7:6:16Þ

where we neglect the term ÂA2 in Equation 7.6.14b since it refers to two-photon processes.

terms of creation and annihilation operators and considering Fock space matrix elements
such as

nþ 2h jÂA2 nj i � nþ 2h j b̂bþ
	 
2

nj i þ � � �

By the way, the creation operator b̂bþ has the ‘‘b’’ to represent ‘‘boson’’ (the photon is a
boson since it has integer spin). Equation 7.6.15 shows the matter-light interaction
potential must be

ĤH A�L ¼ �
e

m
p̂p � ÂA ð7:6:16Þ

We want to calculate transition matrix elements of the form ðĤH A�LÞfi ¼ huf , �f jĤH A�Ljui, �ii

for the perturbation theory and Fermi’s golden rule. In this last expression, the states
uij i and jufi are eigenstates of the unperturbed Hamiltonian ĤHA, and j�ii and j�f i are the

initial and final basis states of the light-space.
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We want to separate the matix element into the product of two matrix elements
huf j p̂p juii � h�f j ÂA j�ii. We need two pieces of information. First, the dipole approximation
allows us to separate out the matrix element for the vector potential h�f j ÂA j�ii. However, p̂p
still has reference to the vector potential. Second, we make the low field approximation
given in Equation 7.6.8a, specifically p̂p ¼ p̂pe þ q ~AA ffi p̂pe , where p̂pe refers to particle (i.e.,
electron) momentum. This allows us to write huf j p̂p uij i since then p̂p does not contain any
reference to the photon states. This is equivalent to dropping the ÂA2 term. The matrix
element becomes

ĤH A�L

	 

fi
¼ uf , �f

� ��ĤH A�L ui, �i

�� �
¼ �

e

m
uf

� �� p̂p uij i � �f

� �� ÂA �i

�� �
ð7:6:18Þ

As a comment, many times the photon Fock states nj i are used for the states �
�� �

to show that photons can be removed (absorbed) from the field or added (emitted)
into the field. Fock states nj i give the number of photons in the mode so that the
creation and annihilation operators give b̂bþjni ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

nþ 1j i and b̂b� nj i ¼
ffiffiffi
n
p

n� 1j i,
respectively.

We can now finish showing the dipole form of the interaction energy ĤHA�L ¼ �̂� � ÊE. We
start with the relation

~pp ¼
im

�hh
ĤHA, r̂r
h i

ð7:6:19aÞ

becomes

uf

� �� p̂p uij i ¼
im

�hh
uf

� �� ĤHA, r̂r
h i

uij i ð7:6:19bÞ

or, by expanding the commutator, and noting that the kets are eigenstates of the
unperturbed Hamiltonian, we can write

uf

� �� p̂p uij i ¼
im

�hh
Ef � Ei

� �
uf

� �� r̂r uij i ð7:6:20Þ

Equation 7.6.17 becomes

ĤH A�L

	 

fi
¼ uf , �f

� ��ĤH A�L ui, �i

�� �
¼ �

i

�hh
Ef � Ei

� �
uf

� ��er̂r uij i � �f

� ��ÂA �i

�� �
ð7:6:21Þ

If the atom absorbs a photon then the final electron energy must be larger than the
initial energy Ef � Ei40. The reverse must be true for the case of an atom emitting a
photon.

Next we must incorporate the operator form of the vector potential in terms of
creation and annihilation operators. The operator form of the vector potential as shown
in 6.4.4 is

ÂA ~rr, t
� �

¼
1ffiffiffiffiffiffiffiffi
"oV
p

X
~kk

ffiffiffiffiffiffiffiffi
�hh

2!~kk

s
~ee~kk b̂b~kkei~kk�~rr�i!~kkt

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
absorption

þ b̂bþ
~kk

e�i~kk�~rrþi!~kkt

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
emission

2
64

3
75 ð7:6:22Þ
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where ~ee~kk gives the polarization unit vector of the plane wave. In principle, the summation
should run over all indices ‘‘s’’ in ~ee~kk, s

(which can be one of the unit vectors ~xx, ~yy
when the wave travels along the z-direction). However, for linearly polarized light, we
can always reduce the summation to Equation 7.6.22 by defining ~ee~kk to be along the
direction of wave polarization rather than along the unit vectors ~xx, ~yy.

The matrix elements h�f jÂAj�ii provide either emission or absorption as indicated
in Equation 7.6.22. Using energy conservation, we realize that absorption of a photon
requires Ef � Ei ¼ �hh!~kk, whereas emission of a photon requires Ei � Ef ¼ �hh!~kk. Therefore,
the energy terms and matrix element in Equation 7.6.22 can be rewritten as

i
Ef � Ei

�hh
�f

� ��ÂA �i

�� �
¼ �f

� ��� @

@t
ÂA �i

�� �
ð7:6:23Þ

Therefore, Equation 7.6.21 becomes

ĤH A�L

	 

fi
¼ �

i

�hh
Ef � Ei

� �
uf

� ��er̂r uij i � �f

� ��ÂA �i

�� �
¼ uf

� ��� er̂r uij i � �f

� ��� @

@t
ÂA �i

�� �
ð7:6:24Þ

We see that the interaction Hamiltonian can be equivalently written as

ĤH A�L ¼ �̂� � ÊE ð7:6:25Þ

where �̂� ¼ �er̂r.

7.6.4 The Semiclassical Form of the Interaction Hamiltonian

Let us now demonstrate the semiclassical form of the interaction used in connection
with Fermi’s golden rule. Using the coherent state �j i we define the semiclassical
interaction Hamiltonian as

ĤHAL ¼ �h jĤH A�L �j i ¼ �̂� � �h jÊE �j i ¼ �̂� � ~EE ð7:6:26Þ

where the classical electric field can be found in Section 7.2.

7.7 Stimulated and Spontaneous Emission Using Fock States

Fermi’s golden rule predicts the rate of stimulated emission for the semiclassical
system consisting of the quantized atomic system with a classical electromagnetic
wave. However, this semiclassical approach does not predict the rate of spontaneous
emission nor does it include damping effects. This section modifies the Fermi formula to
include the quantum nature of the EM fields (but it still does not include damping
terms). The matrix elements of the interaction Hamiltonian in the Fock basis shows
how the vacuum state and the inherent vacuum fluctuations give rise to spontaneous
emission.
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7.7.1 Restatement of Fermi’s Golden Rule

Fermi’s golden rule can be restated using Fock states and the quantized electromagnetic
fields. Let Ri!f be the emission rate from a single initial state jii to a single final state jfi

Ri!f ¼
2�

�hh
V̂Vfi

���
���2� Ef � Ei

� �
ð7:7:1Þ

where V̂Vfi denotes the matrix element of the interaction potential for the transition.
Things are not as they appear however. The initial and final states must reside in a
direct-product Hilbert space since the full system has an atom and the electromagnetic
field as subsystems. Let’s assume that the atom starts in an excited state j2i, emits
a photon with frequency !k , and ends up in the state 1j i. Initially, the light field consists of
nk photons in the single-mode Fock state jnki (of frequency !k) and then makes
a transition to the state jnk þ 1i when the atom emits the photon. Figure 7.7.1 shows
the situation. The initial and final states can be written as

ij i ¼ 2, nkj i ¼ 2j i nkj i and f
�� � ¼ 1, nk þ 1j i ¼ 1j i nk þ 1j i

Notice how separate and distinct Hilbert spaces represent the atom and photon
field. Without an interaction Hamiltonian to link the two spaces, the atom would
evolve according to its Hamiltonian, while the light evolves according to the free-field
Hamiltonian. Only by including an interaction term V̂V does the evolution of a state
in one space affect the evolution of a state in the other. Also notice that the Dirac
delta function in Equation 7.7.1 must include both the photon and the electron energy.

The matter-light interaction for a single mode ‘‘k ’’ can be written

V̂V ¼ �̂� � ÊEk ð7:7:2Þ

as discussed in the previous section. For traveling waves, the electric field operator has
the form

ÊEk ~rr, t
� �

¼ �i ~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
b̂bksðtÞe

�i~kk�~rr � b̂bþksðtÞe
þi~kk�~rr

h i
ð7:7:3Þ

where s¼ 1,2 gives the state of polarization and where

b̂bks tð Þ ¼ b̂bks eþi!kt and b̂bþks tð Þ ¼ b̂bþks e�i!kt

Recall, Fermi’s golden rule explicitly accounts for the time dependence of the electric
field; we included e	i!t in the expression and then integrated. In order not to include the

FIGURE 7.7.1

Stimulated emission increases the number of photons by one.
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e	i!t a second time for this quantized field, we should set t¼ 0 in Equation 7.7.3 to
eliminate the time parameter. Therefore, the electric field becomes

ÊEk ~rr
� �
¼ �i ~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
b̂bkse

�i~kk�~rr � b̂bþkse
þi~kk�~rr

h i
ð7:7:4Þ

Section 7.3 stated Fermi’s golden rule for either absorption or emission; however, both
can be included by using Equation 7.7.4.

Fermi’s golden rule becomes

Ri!f ¼
2�

�hh
V̂V fi

���
���2� E2 � E1 � �hh!kð Þ

¼
2�

�hh
1, nk þ 1h j �̂� � ÊEkð~rrÞ 2, nkj i

���
���2� E2 � E1 � �hh!kð Þ

ð7:7:5Þ

To continue, we make the ‘‘dipole approximation.’’ The approximation assumes the
wavelength to be significantly larger than the size of the atom. The approximation
remains valid for x-rays with atoms on the order of 10 nm or smaller.

7.7.2 The Dipole Approximation

that the inner product

1, nk þ 1h j �̂� � ÊEkð~rrÞ 2, nkj i

has an integral over the spatial variables due to the atomic states 1j i, 2j iwhere the dipole
moment operator is �̂� ¼ �e~rr. Assume the wavelength of the electric field is much larger
than the size of the dipole defined by the states j1i and 2j i as shown in Figure 7.7.2.
In such a case, the dipole approximation provides

1, nk þ 1h j �̂� � ÊEkð~rrÞ 2, nkj i ¼ nk þ 1h j 1h j�̂� 2j i � ÊEkð~rrÞ nkj i

Now, because the dipole moment doesn’t have any field operators (i.e., creation or
annihilation operators) associated with it, we can move it outside the Fock-space inner
product.

1,nk þ 1h j �̂� � ÊEkð~rrÞ 2, nkj i ¼ 1h j�̂� 2j i � nk þ 1h jÊEkð~rrÞ nkj i

FIGURE 7.7.2

The electron wavefunction is nonzero over a region that is small compared with the wavlength of light.
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Now we can apply the dipole approximation (Appendix 8) to Equation 7.7.5 by noting
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For simplicity, we assume that the atom is located at ~rr ¼ 0.

1, nk þ 1h j �̂� � ÊEkð~rrÞ 2, nkj i ffi 1h j �̂� 2j i � nk þ 1h j ÊEkð0Þ nkj i

Notice the dot product between the two matrix elements since both the dipole moment
operator and the electric field have a direction associated with them. Substituting this last
result into Equation 7.7.5, we can write the rate of transition in the computationally
simpler form

Ri!f ¼
2�

�hh
1h j �̂� 2j i � nk þ 1h j ÊEkð0Þ nkj i

���
���2 � E2 � E1 � �hh!kð Þ ð7:7:6Þ

7.7.3 Calculate Matrix Elements

Let us now continue to evaluate the rate of transition using Equation 7.7.6. Defining the
expectation value of the dipole operator as

~��12 ¼ 1h j �̂� 2j i ¼

Z
dV u�1 ~rr

� �
�̂� ~rr
� �

u2 ~rr
� �

Next we evaluate the expectation value of the electric field operator

nk þ 1h j ÊEkð0Þ nkj i

by substituting the operator form of the single-mode electric field from Equation 7.7.4.

ÊEk ~rr
� �
¼ i ~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
b̂bkse

�i~kk�~rr � b̂bþkse
þi~kk�~rr

h i

The matrix element becomes

nk þ 1h jÊEkð0Þ nkj i ¼ nk þ 1h j i~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
b̂bks � b̂bþks

h i� �
nkj i

Distributing the linear operators to each term provides

nk þ 1h jÊEkð0Þ nkj i ¼ i~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
nk þ 1h jb̂bks nkj i � nk þ 1h jb̂bþks nkj i

n o
ð7:7:7Þ

Using the definition of the annihilation operator and the orthonormality of the Fock
states, the first term becomes

nk þ 1h jb̂bks nkj i ¼
ffiffiffiffiffi
nk
p

nk þ 1 j nk � 1h i ¼ 0

The second term in Equation 7.7.7 is easily identified as the emission term since the
creation operator adds a photon to the field. The emission term provides

nk þ 1h jÊEkð0Þ nkj i ¼ i~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r
nk þ 1h jb̂bþks nkj i

¼ i~eek, s

ffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p ð7:7:8Þ
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Now we can write the rate of transition (i.e., Fermi’s golden rule) as

Ri!f ¼
2�

�hh
~��12 � i ~eek, s

ffiffiffiffiffiffiffiffiffiffiffiffi
�hh!k

2"oV

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk þ 1

p
e�i!kt

����
����
2

� E2 � E1 � �hh!kð Þ

Calculating the modulus provides

Ri!f ¼
2�

�hh
~��12 � ~eek, s

� �2 �hh!k

2"oV
nk þ 1ð Þ � E2 � E1 � �hh!kð Þ ð7:7:9Þ

where we assume that the dipole moment and the polarization unit vector are real.
Notice the dot product between the polarization and the induced dipole moment.
If the dipole moment is perpendicular to the direction of the electric field there won’t
be any transition. This fact turns out to be important for certain quantum well devices.
Equation 7.7.9 does not give the complete story because it does not account for damping
and therefore cannot explain broadening mechanisms; this will be remedied in the
next few sections.

7.7.4 Stimulated and Spontaneous Emission

Previous sections have discussed how the full electrodynamic system consists of several
subsystems including the atom, the light field and the environment. The complete
Hamiltonian must include these systems along with the interactions between them.
We have limited our scope in the present section to the matter-light interaction. Also, we
have not stated the model for the system (the Hamiltonian) in a manner that describes
the possible broadening mechanisms due to the interaction; this will be remedied in the
next few sections. Starting with Fermi’s golden rule, we substitute the interaction
Hamiltonian �̂� � ÊE and find the matrix elements for the direct product space consisting
of the atomic and photonic states. We find that the electron can make an upward or
downward transition by subtracting or adding a quantum of energy to the photon field.
The previous few topics focus on the downward transitions to highlight the stimulated
and spontaneous emission processes.

Equation 7.7.9,

Ri!f ¼
2�

�hh
~��12 � ~eek, s

� �2 �hh!k

2"oV
nk þ 1ð Þ � E2 � E1 � �hh!kð Þ

specifically consists of the sum of two terms. Stimulated emission requires photons to

rates of transition. Therefore we identify stimulated emission with the photon term nk in
Equation 7.7.9. The rate of stimulated emission must be

Rstim
i!f ¼

2�

�hh
~��12 � ~eek, s

� �2 �hh!k

2"oV
nk � E2 � E1 � �hh!kð Þ ð7:7:10Þ

The rate of spontaneous emission must be independent of the number of photons. We
therefore identify the rate of spontaneous emission with

R
spon
i!f ¼

2�

n
~��12 � ~eek, s

� �2 n!k

2"oV
� E2 � E1 � n!kð Þ ð7:7:11Þ
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induce the transition. Chapter 2 shows that larger numbers of photons produce greater
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where

Ri!f ¼ Rstim
i!f þ R

spon
i!f

Equation 7.7.10 relates the rate of stimulated emission directly to the number of
incident photons (per second); the photons induce the transitions within the active region

k

in the laser must be related to rate of stimulated emission and to the optical loss
mechanisms. In addition, we notice that nk represents the number of photons in the mode
characterized by the wave vector ~kk (i.e., the wavelength). Although not evident from
Equation 7.7.10, the gain (vs. wavelength) for a laser or optical amplifier has a finite
spectral width which means that the total rate of stimulated emission can only be found
by summing over the various wave vectors ~kk. We shall see more of this in the next

Equation 7.7.11 shows that the spontaneous emission occurs without any incident
photons. The fluctuations of the electric field in the vacuum state can be written as

�2
E ¼

�hh!

"oV
nþ

1

2

� �����
n¼0

¼
�hh!

2"oV

The rate of spontaneous emission can then be written as

R
spon
i!f ¼

2�

�hh
~��12 � ~eek, s

� �2
�2

E � E2 � E1 � �hh!kð Þ

where the polarization vector ~eek, s represents the polarization vector of the allowed modes
of the system. These modes are always present even when they remain empty of photons.
To find the total rate of spontaneous emission, we need to sum over all of the modes.
Recent studies with lasers indicate that the rate of spontaneous emission can be reduced
by removing available modes into which the atom can spontaneously emit. The boundary
conditions determine the available modes. Photonic crystals provide one mechanism
for reducing the number of optical modes available to the system. Incorporating these
devices, the threshold current of the semiconductor laser can be reduced (recall, most of
the threshold current is due to spontaneous emission). However, the laser still requires
some spontaneous emission to initiate laser action. This spontaneous emission only needs
to have the lasing frequency and a propagation vector parallel to that of the stimulated
emission. This laser-initiating spontaneous emission accounts for less than 1 percent
of the total spontaneous emission. In theory then, we should be able to reduce present
laser threshold currents to the microamp scale.

7.8 Introduction to Matter and Light as Systems

Previous sections and chapters discuss the Hamiltonian for free particles and free
fields. Particles interacting with a potential cannot be considered as ‘‘free.’’ Likewise,
EM fields interacting with matter cannot be considered ‘‘free fields.’’ The interaction links
the fields to the matter. The interaction causes matter to emit or absorb electromagnetic
energy.
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chapter when we discuss the gain for semiconductor lasers.

of the laser. The laser rate equations in Chapter 2 show how the number of photons n
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7.8.1 The Complete System

An atom (or collection of atoms) can interact with a variety of sources. The interaction
between a collection of atoms and electromagnetic wave represents the most impor-
tant interaction for emitters and detectors. But, for example, the atom can also interact
with phonons within a crystal or with electrons. Figure 7.8.1 indicates the interaction with
various sources. Each system shown in the figure has an associated Hamiltonian.
Interactions link the various systems. The total Hamiltonian can therefore be written as

H ¼ Hatom þHLight þHXal þHSource þVA�L þVA�X þVA�S

where A, L, X and S denote the atom, light, crystal and source, respectively. Our discus-
sion of perturbation theory and Fermi’s golden rule to this point omits most of these
terms and focuses on Hatom þVA�L where the interaction potential links matter and
light through the dipole moment and the electric field V̂VA�L ¼ �̂� � ~EE. On the other hand,

now begins to account for all of the systems and their effects upon the radiating atom.
For the moment, let’s focus on the matter and light systems. In this case, the full

Hamiltonian has the form

ĤH ¼ ĤHatom þ V̂VA�L þ ĤHLight

There must exist functions j i such that

ĤH  
�� � ¼ i�hh

@

@t
 
�� �

However, the j imust simultaneously refer to two separate Hilbert Spaces—one for the
atom and another for the light. Without the interaction term, a wavefunction j atomi and a
wavefunction j litei, in separate spaces, would independently evolve. The evolution
would be controlled by their separate respective Hamiltonians ĤHatom and ĤHLight. The
separate spaces can be pictured as somehow adjacent to each other as shown in

atomij litei.
Because the two Hamiltonians (and other related operators) refer to separate spaces, we
can write equations such as

ĤHatom  
�� � ¼ ĤHatom  atom

�� �n o
 lite

�� �
and ĤHLight  

�� � ¼  atom

�� �
ĤHLight  lite

�� �n o

FIGURE 7.8.1

The atom interacts with the crystal environment (phonons), light and other sources such as energy pumps.
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Chapter 6 shows how to write the Hamiltonian for the light system. The present chapter

Figure 7.8.2. The wavefunction j i can be similarly represented by j i ¼ j 
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Notice how the operators only affect the vectors in their corresponding spaces.
You might recall from the study of linear algebra that j i ¼ j atomij litei denotes

a vector in the direct product space. The basis vectors for the direct product space
have the form f juai �i g

�� where f juai g and f j�i g represent the atomic and light basis
vectors, respectively. Also recall that the most general vector in the direct product space
has the form

 
�� � ¼X

a, �

�a, � uaj i �
�� � ¼X

a, �

�a, � ua �
�� �

where �a, � can depend on time. Note in particular, that this most general wave vector
j i cannot be decomposed as a vector in atom-space multiplying a vector in light-space.
The single coefficient �a, � entangles the two spaces (links them). We cannot write
j i
¼

P
a f�a uaj ig

P
� �� �

�� �� �
without assuming that the vector j i starts in a disentangled

state and that the interaction potential must be zero. The �a, � have the same probability
interpretation as for the simpler Hilbert spaces. The probability of finding the system in
atomic state ubj i and light state j� 0i must be

Prob b, � 0ð Þ ¼ �b� 0
�� ��2 where �b� 0 ¼ ub �

0
��  � �

We can see that the motion of the wave functions in the two vector spaces must be
completely independent if we can write �a, � ¼ �a�� . First the wave functions can be
decoupled

X
a�

�a� uaj i|{z}
atom

�
�� �|{z}
light

¼
X
a�

�a�� uaj i �
�� � ¼X

a

�a uaj i
X
�

�� �
�� � ¼  a

�� �
 �
�� �

The Schrodinger equation can be written as

ĤH a þ ĤH �

	 

 a

�� �
 �
�� �
¼ i�hh

@

@t
 a

�� �
 �
�� �

Therefore, Schrodinger’s equation can be divided into two parts

ĤH a  a

�� �
¼ i�hh

@

@t
 a

�� �
ĤH �  �

�� �
¼ i�hh

@

@t
 �
�� �

since the ‘‘a’’ and ‘‘�’’ terms refer to distinct Hilbert spaces. Therefore the motion of the
wave functions through each Hilbert space must be independent of one another.

The interaction Hamiltonians link the various spaces together. The motion of the
vector in one affects the motion of the vector in the other one and vice versa. For example,
suppose an atom starts in state u1j i and light starts in a state with n photons nj i. If the
atom absorbs a photon, then the atom moves to state u2j i and the light moves to state

FIGURE 7.8.2

The atom and light Hilbert Spaces.
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jn� 1i. As a result, the motion of the wave functions in the two spaces must be linked.
The interaction Hamiltonian provides the link. We therefore expect the interaction
Hamiltonian to involve operators for both spaces. For example, one term in the
interaction Hamiltonian might be f̂fþ2 f̂f�1 b̂b�. The photon annihilation operator b̂b� removes a
photon from the Fock state nj i, the electron annihilation operator f̂f�1 removes the electron
from atomic state u1j i while the electron creation operator f̂fþ2 places it in state u2j i. The
operator f̂fþ2 f̂f�1 b̂b� can therefore account for the combined motion ju1i nj i ! u2j i n� 1j i.

7.8.2 Introduction to Homogeneous Broadening

This topic introduces key points for homogeneous broadening and for atomic transitions.
Consider two views.

1. Let’s assume that a system has the total Hamiltonian ĤH ¼ ĤHatom þ V̂VA�L þ ĤHLight.
This equation ignores any sources that originally produce the electromagnetic
field along with any environmental effects experienced by the atom. We look for
solutions to the time-independent Schrodinger wave Equation ĤHj�i ¼ E �j i. The
basis set �j i applies to the direct product space (atomþlight space together). Each
j�i will be some irreducible combination of the basis vectors for each space. Here’s
the point. The basis vectors �j i are exact. If we make a measurement of the total
energy, the system wavefunction j i will collapse to one of the basis vectors �j i.
The system will stay in a state with the same total energy as the state �j i unless an
extra perturbation acts on the system (such as a phonon interaction with the
crystal).

2. The behavior of the combined system is totally different from what we find from
Fermi’s golden rule (or the density matrix equations in this chapter). Fermi’s
golden rule shows that an electron makes a transition from one basis state unj i to
another. When we make a measurement of the energy, the electron wavefunction
will collapse to an atomic basis state unj i but then because of the EM interaction, it
will move away from this state. The difference between the two situations has to
do with the fact that Fermi’s golden rule does not account for the entire system.
It only includes the Hamiltonian for the atom and the interaction and not the
light system.

We can reconcile these two pictures by noting that the total system can only be
described by the total Hamiltonian ĤH ¼ ĤHatom þ V̂VA�L þ ĤHLight which gives the eigen
vectors �j i for both systems (atom þ light) together j�i ¼

P
a, � Ca, � jua �i. If we restrict our

attention to the basis states uaj i, we would find the wavefunction moving from one to the
other. At the same time, the light wavefunction would be continuously moving from one
light basis state to another. The wave functions in the individual Hilbert spaces would be
moving in such a way that the total energy remains constant. We will later see that we can
mathematically reconcile the two pictures when using the density matrix by taking the
trace over the entire set of basis vectors for one space or the other.

Now let’s briefly discuss homogeneous broadening. Normally, we might expect the
optical emission spectrum for a collection of electrons making transitions from atomic
state u2j i to u1j i to be very sharp (a Dirac delta function). A plot of optical power versus
frequency should have a single infinitely narrow line at a frequency !o ¼ ðE2 � E1Þ=�hh. But

reconcile the discrepancy by realizing that the eigenfunctions unj i cannot be the exact
eigenfunctions for the entire system. From the previous discussion, we realize that once
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we actually observe a line somewhat broadened as shown in Figure 7.8.3. Again we can
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the whole system (atom þ light) lodges itself in one of the exact basis states �j i with a
specified total energy E, then the system cannot change energy unless some other energy
perturbs the system. However, the system can still make random transitions between the
various degenerate atomic basis states unj i so long as the total energy of the system
remains fixed.

The transfer of energy to/from a system is responsible for homogeneous broadening.
Given that a probability distribution describes the atomic transition process, the exact
time required for the transition can not be a-priori known. This means that there exists an
uncertainty �t (a standard deviation) associated with the transition time. As a result,
there must be an uncertainty in the transition energy �E because of the Heisenberg
uncertainty relation �E�t � �hh=2. The light spectrum therefore has a width on the order of
�! ¼ �E=�hh. The broadening occurs anytime a system has the capability of making a
transition from one eigenstate to another (with distinct energy). This can only happen
when these eigenstates are not the eigenstates of the entire system. This means there is an
external agent causing a perturbation.

What about spontaneous emission? Do we expect to see a range of frequency for
spontaneously emitted light? Yes. Here the vacuum fluctuations of the electromagnetic
field provide the external agent for the perturbation. We can therefore narrow the line
widths and reduce the spontaneous emission by reducing the number of modes available
to the electromagnetic field. Section 7.7 showed the rate of spontaneous emission and
how it related to the vacuum fields.

7.9 Liouville Equation for the Density Operator

A collection of atoms can interact with other systems such as a light field and the
environment. We imagine the collection of atoms embedded in an environment such as
a crystal lattice (for semiconductor lasers) or a gas mixture (for gas lasers). Many
physical processes influence the behavior of natural or man-made atoms. The complete
Hamiltonian must describe not only the interaction between the collection of atoms and
the electromagnetic field for optical emission and absorption but also the interaction
between the atoms and the environment. These environmental interactions include
collisions between the atoms and phonons (or carriers), the pumping mechanism, and
the spontaneous recombination. Subsequent sections will show how reservoirs can be
used to model the effect of the environment. The interactions between the atomic system
and these other systems lead to atomic transitions and spectral broadening.

The density operator provides the most complete (and perhaps the simplest) method
of describing the interactions between an ensemble of atoms and their environment.

FIGURE 7.8.3

A broadened spectral line.
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The density operator �̂� describes the occupation and transition probability. The diagonal
elements of �̂�, namely �nn, give the probability of finding the system in state ‘‘n.’’ If the
density operator depends on time, then the occupation probability can change with time.
The rate of change of the diagonal terms of the density operator must be related to the
transition rate. Therefore, we need an expression for the time rate of change of the density
operator.

In this section, we use a Hamiltonian that includes all relevant interactions such as the
matter-light interaction, electrical and optical pumping, and collisions. We will develop
the Liouville equation for the density operator that includes phenomenological terms for
the interaction between the atoms and the environment. The phenomenological terms
describe steady-state conditions and give rise to the homogeneous broadening. The next
section develops the steady-state density matrix in terms of the physical time-constants
and pump currents. The subsequent section then demonstrates a solution to the Liouville
equation for the density matrix.

7.9.1 The Liouville Equation Using the Full Hamiltonian

We define the total Hamiltonian as

ĤH ¼ ĤH þ ĤHenv ð7:9:1Þ

where

ĤH ¼ ĤHo þ V̂V ð7:9:2Þ

includes only the stimulated emission and absorption. As for Fermi’s golden rule, the
Hamiltonian ĤHo describes the atom while the interaction energy V̂V describes the
interaction between an applied electromagnetic wave and the atom. We expect laser
gain to be related to ĤH. The environmental term ĤHenv describes the effects of pumping
currents, collisions, spontaneous emission and other terms not described by stimulated
emission and absorption. The Hamiltonian ĤHenv can be divided into separate terms such as

ĤHenv ¼ ĤHpump þ ĤHcoll þ ĤHspont þ � � � ð7:9:3Þ

The next several topics treat the Hamiltonians embedded in Equation 7.9.3 on a
phenomenological basis due to the complexity of the interactions they represent.

We look for a differential equation for the density operator. Part of the differential
equation describes the stimulated emission processes and other terms describe the effect
of the ‘‘environment’’ such as the pump. The density operator (and hence, the number of
excited atoms or carriers) changes with time due to the stimulated processes and the
interaction with the environment. These environmental interactions introduce certain
time constants. For example, electrons can ‘‘relax’’ from the conduction band to the
valence band by interacting with phonons (produced by a heated crystal lattice). The
‘‘relaxation’’ must be characterized by a time constant. The pump term provides another
example. Carriers can be added to the conduction and valence bands at some rate by
external sources. We use a time constant to describe the rate.

We start with the density operator

�̂� tð Þ ¼
X
 

P  tð Þ
�� �

 tð Þ
� �� ð7:9:4Þ
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where the wave function satisfies Schrodingers equation for the complete Hamiltonian
in Equation 7.9.1 according to ĤHj i ¼ i�hh@tj i. We assume the electromagnetic and
environmental interactions produce transitions between the energy basis states of the
atomic Hamiltonian ĤHo. The Liouville equation for the density operator can be found
by differentiating the density operator in Equation 7.9.4 with respect to time

@�̂�

@t
¼
X
 

P 
@  
�� �
@t

 
� ��þX

 

P  
�� � @  

� ��
@t
¼
X
 

P 
@  
�� �
@t

 
� ��þX

 

P  
�� � @

@t
 

� ���� ð7:9:5Þ

We moved the time derivative inside the last term by recalling the definition of the bra
of a function

@

@t
 
� �� ¼ @

@t

Z
dV � ~rr, t

� �
¼

Z
dV

@

@t
 � ~rr, t
� �

¼

Z
dV

@

@t
 

� ��
¼

@ 

@t

� ����

where we treat the integral as an operator. Next, the Schrodinger’s equation produces

ĤH  
�� � ¼ i�hh

@

@t
 
�� � !

@  
�� �
@t
¼

ĤH

i�hh
 
�� �

Using the definition of adjoint and the Hermiticity of the Hamiltonian, we find

@ 

@t

� ���� ¼ ĤH 

i�hh

* ����� ¼
ĤH 

i�hh

�����
+þ
¼

ĤH

i�hh
 
�� �

 !þ
¼  
� �� ĤH

i�hh

 !þ
¼  
� �� ĤH

�i�hh

 !

Inserting these last two results into Equation 7.9.5 provides

@�̂�

@t
¼
X
 

P 
ĤH

i�hh
 
�� �  � ���X

 

P  
�� �  � �� ĤH

i�hh

¼
ĤH

i�hh

X
 

P  
�� �  � ��

( )
�

X
 

P  
�� �  � ��

( )
ĤH

i�hh

Recognizing the density operator as the terms in the braces, we can write this last
expression as a commutator relation

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

Finally, inserting the definition for the Hamiltonian from Equation 7.9.1 produces
Liouville’s equation for the density operator

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

¼
1

i�hh
ĤHþ ĤHenv, �̂�
h i

¼
1

i�hh
ĤH, �̂�
h i

þ
1

i�hh
ĤHenv, �̂�
h i

ð7:9:6Þ
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The final term in this last equation shows how the environment produces a change in
the density operator

@�̂�

@t

� �
env

¼
1

i�hh
ĤHenv, �̂�
h i

Later discussion treats this term phenomenologically because of the complexity of the
interactions between the atoms and the environment. Therefore, an alternate form for
Liouville’s equation for the density operator must be

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

¼
1

i�hh
ĤH þ ĤHenv, �̂�
h i

¼
1

i�hh
ĤH, �̂�
h i

þ
@�̂�

@t

� �
env

ð7:9:7Þ

The reader should think of this equation as saying that the occupation probability
changes (see the @�̂�=@t term) due to the interaction of an electromagnetic field with the
atom (the ð1=i�hhÞ ½ĤH, �̂�� term) and due to other sources such as electrical pump currents
(the ð@�̂�=@tÞenv ¼ ð1=i�hhÞ½ĤHenv, �̂�� term). This last term is the carrier relaxation term that
brings a system back to equilibrium once the electromagnetic perturbation is removed.
Therefore, the last term in Equation 7.9.7 leads to relaxation times 	.

If we use the alternate form for ĤHenv ¼ ĤHpump þ ĤHcoll þ ĤHspont þ � � � in Equation 7.9.6, we

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
1

i�hh
ĤHpump, �̂�
h i

þ
1

i�hh
ĤHcoll, �̂�
h i

þ
1

i�hh
ĤHspont, �̂�
h i

þ � � � ð7:9:8Þ

which can also be written as

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
@�̂�

@t

� �
pump

þ
@�̂�

@t

� �
coll

þ
@�̂�

@t

� �
spont

þ � � � ð7:9:9Þ

Now we see that there can be three or more time-constants associated with the three
(or more) terms labeled as ‘‘pump,’’ ‘‘coll’’ and ‘‘spont’’ in Equations 7.9.8 and 7.9.9.

v

to be the number of atoms per unit volume, then Nv�aa ¼ na gives the number of atoms
with electrons in state ‘‘a.’’ The left side of Equation 7.9.9 has terms of the form dna=dt.
The commutator on the right hand side contains the matter-light interaction and therefore
represents the gain term in the rate equations. The pump term resembles the current-
number density term J. The last terms start to resemble carrier recombination terms;
however, the collision term requires further discussion.

Example 7.9.1

either eigenstate u1j i or u2j i. Suppose we allow only these two possible wavefunctions to
appear in the density operator

�̂�ðtÞ ¼
X2

S¼1

PS uSj i uSh j ð7:9:10Þ
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find that the Liouville Equation has the form

Equation 7.9.9 begins to resemble the rate equation discussed in Chapter 2. Letting N

Consider a collection of 5 atoms as shown in Figure 7.9.1. Assume the electrons occupy
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where the index ‘‘S’’ takes on values of S¼ 1,2. For this example, we are not allowing the
wavefunctions in the density operator to be coherent sums over the basis vectors.
Equation 7.9.10 represents a statistical mixture. We see from the figure that the probability
of wavefunction #2 is P2 ¼ 3=5 and the probability of wavefunction #1 is P1 ¼ 2=5.

Example 7.9.2

Suppose both the environmental and matter–field interactions are disabled. Assume the
two-level atom has atomic energy eigenstates satisfying ĤHo uaj i ¼ Ea uaj i, where ĤHo

represents the atomic Hamiltonian. Find the probability of particle occupying eigenstate
uaj i of a two level atom.

We recall that u2h j �̂� u2j i gives the probability of an electron occupying the second
energy. So we just need to find the density operator as a function of time. Without the
environmental terms, the Liouville equation becomes

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
@�̂�

@t

� �
env

!
@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

Without an applied EM field, the Hamiltonian reduces to the atomic Hamiltonian
ĤH ¼ ĤHo þ V̂V ¼ ĤHo and we can write the Liouville Equation as

@�̂�

@t
¼

1

i�hh
ĤHo, �̂�
h i

¼
1

i�hh
ĤHo�̂�� �̂� ĤHo

	 


Let’s operate with the projector uah j and the ket uaj i which are always independent
of time.

@

@t
uah j �̂� uaj i ¼

1

i�hh
uah j ĤHo�̂�� �̂�ĤHo

	 

uaj i ¼

1

i�hh
uah j ĤHo�̂� uaj i �

1

i�hh
uah j �̂� ĤHo uaj i

To evaluate this last expression, note that ĤHo unj i ¼ En unj i so that unh jĤHo ¼ unh jEn.

@

@t
uah j �̂� uaj i ¼

1

i�hh
uah jE2 �̂� uaj i �

1

i�hh
uah j �̂� Ea uaj i ¼ 0

Therefore

@

@t
�aa ¼ 0 ! �aa tð Þ ¼ �aa 0ð Þ

We see the rate of change of the probability for an electron occupying the second level
must be constant in time. Without the environmental relaxation term, the number of
carriers in state 2 cannot change. For a semiconductor, we know that electrons in the
conduction band will decay to the valence band by collisions with other electrons or
phonons (for example). This example shows that the necessity of the relaxation term
and that it accounts for those processes not normally in the Hamiltonian describing
stimulated emission.

FIGURE 7.9.1

Collection of 5 atoms in various states.
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7.9.2 The Liouville Equation Using a Phenomenological Relaxation Term

Unfortunately, we don’t often know the Hamiltonians representing the interaction of the
collection of atoms with the environment. We can most conveniently recognize that
the commutators 7.9.8 provide the rate of change of the density operator due to the effect
of the pump, collisions and spontaneous emission as shown in Equation 7.9.9. Each term
must inherently involves a time constant. Without knowing the Hamiltonian, we replace
each term with a phenomenological term. For simplicity, let’s consider the case of a single
environmental term representing the effect of collisions. Equation 7.9.9 becomes

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
@�̂�

@t

� �
env

ð7:9:11Þ

where �̂� denotes the single electron density operator and ĤH ¼ ĤHo þ V̂V represents the
atom and the EM interaction. Obviously, the Hamiltonian ĤH does not include some
physical mechanisms capable of changing the occupation probabilities. The environment
causes the system to relax to some steady state value in the absence of the matter-light
interaction. We will refer to this steady state as the ‘‘no-light steady state.’’

We can reason-out a suitable form for the phenomenological term. Consider a system
with N 2-level atoms. Assume the collisions destroy the phase coherence and therefore,
the density operator does not have any off diagonal terms (see 5.11.4). The next section
will show how the ‘‘loss of coherence’’ can occur over a time period due to relaxation
process. This has important implications for the spectral content of the emission or
absorption.

FIGURE 7.9.3

An ensemble of 2-level atoms where the density operator relaxes to a no-light steady-state value (NLSS).

FIGURE 7.9.2

The density operator in a portion of its Hilbert space.
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with four electrons in state 2j i and one in state 1j i at time t ¼ 0. We can write

�̂� 0ð Þ ¼ 0:2 1j i 1h j þ 0:8 2j i 2h j

Without the EM interaction, the system can relax to a no-light steady-state (NLSS) value
t!1ð Þ given by

��� ¼ 0:8 1j i 1h j þ 0:2 2j i 2h j

The no-light steady-state density operator might be given by the Fermi-Dirac
distribution as appropriate for thermal equilibrium. Without light, we expect �̂�ðtÞ ! ���
as time increases. For very large times, when �̂�ðtÞ ffi ���, the density operator should stop
changing

@�̂�

@t
ffi 0 � �̂�ðtÞ � ���

We can define the constant of proportionality 	 and write

@�̂�

@t
¼ �

�̂�ðtÞ � ���

	
ð7:9:12Þ

The last relation includes a minus sign to indicate that the density operator must
change toward the no-light steady-state value. If only the environment influences the
collection of independent atoms, then we can solve Equation 7.9.12 to find

�̂�ðtÞ ¼ ���þ �̂�ð0Þ � ���½ �e�t=	 ð7:9:13Þ

This shows that the environment causes the system to exponentially decay toward no-
light steady state.

The Liouville Equation must be

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

�
�̂�ðtÞ � ���

	
ð7:9:14Þ

Technically, each matrix element can have a different time constant as we will see
later.

Example 7.9.3

Suppose a beam of light excites a collection of 2-level atoms. Assume a researcher turns-
off the beam at t¼ 0. The carrier population can relax by collisions using the diagonal
version of the NLSS density operator. Assume atomic energy eigenstates uaj if g satisfying
ĤHo uaj i ¼ Ea uaj i for the atomic Hamiltonian. Find the density operator as a function of
time and find the probability as a function of time that the electron occupies the second
energy level.

Solution: We need to find the density operator as a function of time from the Liouville
equation ð@�̂�=@tÞ ¼ ð1=i�hhÞðĤHo�̂�� �̂� ĤHoÞ � ð�̂�� ���Þ=	 where ĤHo represents the atomic
Hamiltonian. Operating with the projector hu2j and the ket ju2i, which are always
independent of time, produces the result

@

@t
u2h j �̂� u2j i ¼

1

i�hh
u2h jHo �̂� u2j i �

1

i�hh
u2h j �̂� ĤHo u2j i �

1

	
�22 � ���22½ �
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We can focus our thoughts using the example in Figure 7.9.2 which shows N¼ 5 atoms
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To evaluate this last expression, note that ĤHo unj i ¼ En unj i so that unh jĤHo ¼ unh jEn. Again
we find

1

i�hh
u2h jE2 �̂� u2j i �

1

i�hh
u2h j �̂� E2 u2j i ¼ 0

Therefore

@

@t
�22 ¼ �

1

	
�22 � ���22½ �

This first order, ordinary differential equation can be solved

�22ðtÞ ¼ ���22 þ �22ð0Þ � ���22½ �e�t=	

Keep in mind that �22 represents the probability of finding a particle in state #2. As time
increases, the probability of finding an electron in the conduction band must change to
the steady state value, which might be given by the Fermi Distribution.

7.10 The Liouville Equation for the Density

Matrix with Relaxation

The Liouville equation describes the interaction of an atom with electromagnetic fields
and the surrounding environment (defined here to be any nonlight object or influence).
The environment can have complicated interactions with the atom but the effects can
easily be represented by relaxation terms in the Liouville equation. Without an applied
electromagnetic (EM) field, an atomic system will relax to steady state or to equilibrium
(termed no-light steady state - NLSS). In this section, we find the phenomenological
terms for the effects of the pump and collisions. The results apply to a collection of
two level atoms but can be generalized to two semiconductor bands or to more levels.

7.10.1 Preliminaries

We look for the matrix elements of the Liouville equation

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
@�̂�

@t

� �
pump

þ
@�̂�

@t

� �
coll

þ
@�̂�

@t

� �
spont

ð7:10:1Þ

where ĤH ¼ ĤHo þ V̂V contains the atomic Hamiltonian and the interaction energy for stimu-
lated emission and absorption. The last three terms in the Hamiltonian ĤH ¼ ĤH þ ĤHpumpþ

ĤHcoll þ ĤHspont produce the last three terms in Equation 7.10.1 as discussed in the previous
section. The density operator

�̂� tð Þ ¼
X

S

PS  S tð Þ
�� �

 S tð Þ
� �� ð7:10:2aÞ
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incorporates wavefunctions satisfying the Schrodinger’s equation

ĤH  SðtÞ
�� �

¼ i�hh
@

@t
 SðtÞ
�� �

ð7:10:2bÞ

where the ‘‘s’’ substript represents each possible different system in the ensemble and Ps

represents the probability of that particular type. We assume the extra ‘‘environmental’’
terms do not change the atomic energy levels but instead, induce transitions between
them. As in the previous section, the set unj i ¼ nj i : n ¼ 1, 2f g consists of the atomic
energy eigenstates with ĤH nj i ¼ En nj i. The commutator in Equation 7.10.1 describes the
laser gain. However, we focus on the ‘‘environmental’’ terms

@�̂�

@t

� �
env

¼
@�̂�

@t

� �
pump

þ
@�̂�

@t

� �
coll

þ
@�̂�

@t

� �
spont

ð7:10:3Þ

that describe the effects of electrical or optical pumping, elastic and inelastic collisions
and spontaneous emissions. This section focuses on developing an expression for the
no-light steady state (NLSS) density operator ���.

We will see the similarity between Equation 7.10.3 and the nonphoton terms for the rate

the rate equations. For example, suppose we wish to find the NLSS value of the number
of electrons n2 in state #2 of a 2-level atom. We assume the EM interaction has been
turned-off. The rate equation has the form

dn2

dt
¼ gainþ J �

n2

	n
� sn2

2 ¼ J �
n2

	n
� sn2

2

where gain term must be zero. For comparison with the results for the density operator,
we set c ¼ 	�1

n and linearize the spontaneous emission term to read sn2
2 ! bn2. The rate

equation becomes

dn2

dt
¼ J � cn2 � bn2

At no-light steady state, we require the derivative to be zero. The no-light steady state
number of electrons in state #2, denoted by �nn2 , then becomes

�nn2 ¼
J

bþ c

At no-light steady state, the pump-number current J increases the number of elec-
trons in the second state while the recombination represented by ‘‘c’’ and ‘‘b’’ tends to
lower it.

7.10.2 Assumptions for the Density Matrix

Let us now discuss the assumptions for the relaxation terms in the Liouville equation.
We will find the quantum mechanical gain (complete with the gain saturation effect)
and the emission/absorption spectrum. The spectrum has nonzero width (i.e., it is not
a delta function of frequency as predicted by simple theories).
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equations discussed Chapter 2. The development is similar to that found in Chapter 2 for
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For the density matrix, we make the following assumptions.

1.
levels. Of the total number of atoms N, N1 atoms have electrons in state 1j i with
energy E1 and N2 have electrons in state 2j i with energy E2. The Pauli exclusion
principle forbids more than one electron from occupying precisely one single
state. However, because we assume the atoms to be independent, many electrons
can have the same energy so long as they remain in separate independent atoms.
The probability of an electron occupying state 1j i is �11 and the probability of
occupying state 2j i is �22.

2. The pumping current J removes electrons from state 1j i and inserts them into
state 2j i
the expense of level one. We use the rates ð _��22Þpump ¼ aJ ¼ �ð _��11Þpump, where ‘‘a’’
provides a constant of proportionality.

3. Spontaneous emission produces a photon and causes electrons to transit from
energy level j2i to level 1j i. We have previously seen greater numbers of electrons
in j2i increase the likelihood of a spontaneous emission event. The number of
electrons in state 2 decreases in proportion to the number of electrons in that level
so that _nn2 ¼ �bn2. For N atoms (i.e., N electrons), we must have

_nn2 ¼ �bn2 ! N _��2 ¼ �bN�2 ! _��2 ¼ �b�2

Therefore, the probability of the electron occupying 2j i decreases in proportion to
the number of electrons in that level (i.e., in proportion to the probability �22 of
occupying level 2). We therefore assume that ð _��22Þspont ¼ �b�22 while the
probability of level one must increase ð _��11Þspont ¼ b�22. We think of the �aa

almost as if it were the number of atoms in state ‘‘a.’’ By the way, there isn’t any
such thing as spontaneous absorption.

4. Collisions between the atoms and other particles (phonons or electrons) that cause
the atoms to change energy levels without radiating light produce changes in
the diagonal elements of the ‘‘collision’’ density matrix. These processes are
sometimes called ‘‘inelastic collisions’’ since the colliding objects carry away some
of the energy and cause the atoms to change energy. Any nonradiative process
decreasing the number of electrons in 2j i must increase the number in 1j i and
therefore ð _��22Þcoll ¼ �c�22 ¼ �ð _��11Þcoll. We assume that c includes the negligible
reverse effect whereby the collision remove electrons from the lower level and
place them in the upper one.

5. Collisions between the atoms and other particles sometimes do not induce
transitions but instead interfere with the stimulated emission and absorption
process. This process actually requires some discussion since it is the cause
of homogeneous broadening and effectively sets the bandwidth for optical
emission and absorption. 7.10.5 is devoted to these so-called ‘‘elastic collisions.’’
For now, we will assume that the elastic collisions affect the off-diagonal elements
of the ‘‘collision’’ density matrix. These types of collisions affect the induced
dipole moment and polarization which in-turn affects the rate of transition.
We assume that

_��12ð Þcoll¼ �
�12

T2
and _��21ð Þcoll¼ �

�21

T2
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as shown in Figure 7.10.1. Therefore, the probability for level 2 increases at

There exists a total of N atoms (per volume) with each one having two energy



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-007.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:18am Page: 541/610

The time constant T2 is called the ‘‘dephasing time’’ and must be related to the
time between collisions. Notice that both off-diagonal collision terms decrease due
to dipole dephasing. High collision rates lead to smaller T2 and therefore larger
changes in the off-diagonal terms of the density matrix.

6. Thermodynamic statistical distributions must regulate the number of electrons in
each given level when both the EM fields and pump are removed. Let fðE,T Þ
represent the probability of an electron occupying energy E for temperature T at
thermal equilibrium. Then in the absence of fields and pump, we must have an
equilibrium density matrix of the form

�
eq
¼

f E1,Tð Þ 0
0 f E2,Tð Þ

 �

The functions must provide the relation f E1,Tð Þ þ f E2,Tð Þ ¼ 1. We assume random
influences make the off-diagonal terms in �

eq
equal to zero (see 5.11.4). Sometimes we

ignore the equilibrium value since the number of carriers due to population inversion
must be much larger than the number at thermal equilibrium.

7.10.3 Liouville’s Equation for the Density Matrix without Thermal Equilibrium

This topic writes the Liouville equation for the density matrix taking into account the
phenomenology of the relaxation terms. The procedure provides the laser rate equations
stated in the language of density matrices. We first ignore the thermal equilibrium
density matrix �eq. The procedure provides the quantum mechanical gain for an ensemble
of independent atoms (refer to the next few sections).

Now combine the results from all of the assumptions in 7.10.2 to find the Liouville
equation for the density matrix. The change in the ‘‘environmental’’ density matrix

@�

@t

� �
env

¼
@�

@t

� �
pump

þ
@�

@t

� �
coll

þ
@�

@t

� �
spont

can now be written as

@�

@t

� �
env

¼
�aJ 0

0 aJ

 �
þ

c�22 �
�12

T2

�
�21

T2
�c�22

2
64

3
75þ b�22 0

0 �b�22

 �

The individual matrices can be combined

@�

@t

� �
env

¼

�aJ þ c�22 þ b �22 �
�12

T2

�
�21

T2
aJ � c�22 � b �22

2
64

3
75 ð7:10:4Þ

We would like to write the Liouville equation for the density matrix in the convenient
form

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab
ð7:10:5Þ
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where, in principle, each of the four relaxation terms can have their own time constant
denoted by 	ab. As in the previous section, the quantity ���ab denotes the ‘‘no-light steady
state—NLSS’’ value obtained when we turn-off stimulated emission and stimulated
absorption. We can find these NLSS values by replacing the commutator in
Equation 7.10.5 with zero and setting the derivative of the density matrix equal to
zero. For the case of Equation 7.10.5, we can write ���ab ¼ �ab 1ð Þ. We find

@�

@t

� �
env

¼ 0 ¼

�aJ þ c ���22 þ b ���22 �
���12

T2

�
���21

T2
aJ � c ���22 � b ���22

2
6664

3
7775 ð7:10:6Þ

where as a reminder, the a, b, c, T2 terms refer to effects of the pump, spontaneous
recombination, inelastic (energy changing) collisions, and elastic collisions, respectively.
Working with the quantity for level two, we obtain

aJ � c ���22 � b ���22 ¼ 0 ! ���22 ¼
a

bþ c
J ð7:10:7Þ

The NLSS probability of an electron occupying the second level is directly proportional
to the pump current. The value of ‘‘a’’ sets the balance between the pump and
recombination processes. Notice that the NLSS value for the off diagonal terms must be
zero. Using the relation that the sum over probabilities must be equal to 1

���11 þ ���22 ¼ 1 ð7:10:8Þ

we find

���11 ¼ 1�
a

bþ c
J ð7:10:9Þ

We only need to make sure that both probabilities always have values within the
range 0, 1½ � . We have ignored the thermal equilibrium probabilities and therefore ���22 ! 0
without the pump J. Furthermore in this case, we can identify ��� as a ‘‘pump’’ because of
the J appearing in Equations 7.10.8 and 7.10.9.

The form of the Liouville equation (7.10.5) requires Equation 7.10.4 to be expressed in
terms of ���22, ���11 and time constants as in

@�

@t

� �
env

¼

�aJ þ c�22 þ b�22 �
�12

T2

�
�21

T2
aJ � c�22 � b�22

2
664

3
775 ¼ � �ab � ���ab

	ab
ð7:10:10Þ

Element (2,2) can be rewritten using Equation 7.10.7, ���22 ¼
a

bþc J ! aJ ¼ ���22 bþ cð Þ and
element (1, 1) can be rewritten using this last result for aJ along with �11 þ �22 ¼ 1 to find

@�

@t

� �
env

¼ �

�11 � ���11

	
�
�12

T2

�
�21

T2

�22 � ���22

	

2
6664

3
7775 ð7:10:11Þ
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where the population relaxation time is 	 ¼ bþ cð Þ
�1. The full Liouville equation for the

density matrix is

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab
ð7:10:12Þ

where

	11 ¼ 	22 ¼ bþ cð Þ
�1 and 	12 ¼ 	21 ¼ T2 ð7:10:13Þ

For gallium arsenide semiconductor lasers, the population relaxation time has a
magnitude on the order of the few nanoseconds and the dephasing time has a magnitude
on the order of a tenth picosecond or less. We already know that the population relaxation
time represents the amount of time required for the electron to make a nonradiative
transition from j2i to level j1i. For semiconductors, it is the average time required for an
electron to recombine with a hole.

The next topic includes the distribution for thermal equilibrium. The final topic
discusses the origin of the dephasing time.

7.10.4 The Liouville Equation for the Density Matrix with Thermal Equilibrium

Now we include the probability distribution for thermal equilibrium in the Liouville
equation. Assumption 6 uses a diagonal form for the density matrix �eq describing
thermal equilibrium. The generalized version of the rate equation (7.10.6) for the
environmental effects must have the for

@�

@t

� �
env

¼

�aJ þ cþ bð Þ �22 � f2
� �

�
�12

T2

�
�21

T2
aJ � cþ bð Þ �22 � f2

� �
2
64

3
75 ð7:10:14Þ

where we use the shortcut notation f1 ¼ fðE1,TÞ and f2 ¼ fðE2,TÞ for the probability of
an electron occupying energy E1 and E2, respectively, for thermal equilibrium at
temperature T.

Now consider steady state described by _��env ¼ 0. The steady state values of the
diagonal terms of the density operator must be

���11 ¼ �11 t ¼ 1ð Þ ¼ �
aJ

bþ c
þ f1 ð7:10:15aÞ

���22 ¼ �22 t ¼ 1ð Þ ¼
aJ

bþ c
þ f2 ð7:10:15bÞ

The Liouville equation then has the form

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab
ð7:10:16Þ

where 	ab has the same definition as in Equation 7.10.13 (see the chapter

in the second. Without any current, the system relaxes to the thermal equilibrium values.

Matter–Light Interaction 543

© 2005 by Taylor & Francis Group, LLC

review
exercises). Notice that J decreases the number of electrons in the first level but increases it
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7.10.5 The Dephasing Time

This topic provides a conceptual picture of how elastic collisions affect the emission from
a collection of atoms through the dephasing time T2.

An incident electromagnetic field induces a dipole moment as indicated in Figure 7.10.2.
Assume the atom emits light only when the oscillating dipole moment maintains
a phase relation with the driving field for a time. Now imagine a time sequence for the
oscillating dipole as shown in Figure 7.10.3. For times t¼ 1 through t¼ 6, the dipole
has a definite phase relation with the driving field. At time t¼ 6, an electron collides with
the oscillating atom and destroys the phase relation with the driving field. The oscillating
dipole loses all memory of its phase relation with the field and its oscillations must
start all over. The average time between collisions is the ‘‘dephasing’’ time T2.

As we shall see, the dephasing time controls the width of the emission and absorption
curve for the ensemble of atoms.

7.10.6 The Carrier Relaxation Time

The carrier relaxation time 	 ¼ 1=ðbþ cÞ gives the average time required for electrons in
the excited state to decay to the ground state through the processes of spontaneous
emission (the ‘‘b’’ term) and nonradiative collisions (the ‘‘c’’ term). The population
decays according to e�t=	 . If a person goes to the store, buys a GaAs LED and connects

limiter like a resistor). Closing the switch causes the LED to emit light. Now suppose the
person suddenly opens the switch. How long does it take for the carriers to recombine?
The question equivalently asks ‘‘How long does it take for the spontaneously emitted
light to stop?’’ Recall that an LED (small ones) only spontaneously emit—there isn’t any

FIGURE 7.10.2

EM wave induces a dipole moment.

FIGURE 7.10.3

Various phases of the dipole. A collision occurs at t¼ 6
produces a random phase change.

FIGURE 7.10.1

Number-current density J increases the number of electrons in state 2. Collisions
decrease the number of electrons in state 2.
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it in the circuit as shown in Figure 7.10.4 (don’t forget to include some type of current
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stimulated emission (or very little). The carrier relaxation time 	 essentially equals the
time required for the GaAs LED to turn-off. For GaAs, the carrier relaxation time has
a magnitude on the order of 	 ¼ 10�9 seconds. This means that the highest possible
modulation rate for an LED (without using heroic efforts) must be on the order of
 ¼ 1=	 ¼ 109 ¼ 1 GHz.

How is it that lasers can be modulated by a factor of 40 faster than the LED? The answer
is that the stimulated emission forces the carriers to recombine in addition to carrier
relaxation. A laser has stimulated emission that effectively increases the rate of
recombination and thereby effectively lowers the carrier lifetime.

7.11 A Solution to the Liouville Equation for the

Density Matrix

The present section shows the solution to the Liouville equation for the density matrix.
The solution in this section applies to a collection of independent atoms as might be
appropriate for gases (i.e., fluorescence or gas lasers); however, it can be generalized for
semiconductors. The section treats the density matrix element as an unknown and finds
an expression for it in terms of the perturbing electric field and the no-light steady-state
(NLSS) values of the density matrix. Recall the NLSS values represent the pumping
(such as bias current), effects of collisions, and thermal equilibrium. We find solutions
for the diagonal elements (occupation probabilities) and off-diagonal elements (related
to transitions). The next section uses the solutions to find the gain produced by the
collection of independent atoms.

7.11.1 Evaluating the Commutator

Section 7.9 showed that the Liouville equation for the density matrix is

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab
ð7:11:1Þ

for a collection of independent two-level atoms. The Liouville equation harbors
the laser rate equations. The relaxation time constant 	12 ¼ 	21 ¼ T2 represents the
dipole dephasing time, and 	11 ¼ 	22 ¼ 	 represents the population relaxation time. The
quantities ���ab denote the no-light steady state (NLSS) values of the density matrix
in the absence of stimulated emission and stimulated absorption (i.e., replace the
commutator with 0). The NLSS values of the off diagonal terms of the density matrix are
zero ���12 ¼ ���21 ¼ 0. The Hamiltonian ĤH consists of the atomic Hamiltonian and the

FIGURE 7.10.4

An LED will be suddenly switched off.
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interaction energy

ĤH ¼ ĤHo þ V̂V ð7:11:2Þ

We assume the atomic energy eigenvectors

nj i ¼ unj if g ð7:11:3Þ

satisfy

ĤHo nj i ¼ En nj i ð7:11:4Þ

We define the interaction potential in a semiclassical picture by

V̂V ¼ ��̂�E tð Þ ð7:11:5Þ

where �̂� and ~EE denote the dipole operator and the applied electric field, respectively.
As with Fermi’s golden rule, we assume that the diagonal terms of the dipole operator
are zero.

First we evaluate the quantum mechanical part consisting of the commutator.

1

i�hh
ĤH, �̂�
h i

ab
¼

1

i�hh
ĤHo þ V̂V, �̂�
h i

ab
¼

1

i�hh
ah j ĤHo þ V̂V, �̂�
h i

bj i

¼
1

i�hh
ah jĤHo�̂�� �̂�ĤHo bj i þ

1

i�hh
ah jV̂V�̂�� �̂�V̂V bj i

ð7:11:6Þ

Next, insert the closure relation 1 ¼
P2

c¼1 cj i ch j between the pairs of operators to find

½ĤH, �̂��ab ¼
X

c

ah jĤHo cj i ch j�̂� bj i � ah j�̂� cj i ch jĤHo bj i þ ah jV̂V cj i ch j�̂� bj i � ah j�̂� cj i ch jV̂V bj i
n o

Using ĤHo cj i ¼ Ec cj i ! ah jĤHo cj i ¼ Ec a j ch i ¼ Ec�ac we find

ĤH, �̂�
h i

ab
¼
X

c

Ec�ac ch j�̂� bj i � ah j�̂� cj iEb�bc þ ah jV̂V cj i ch j�̂� bj i � ah j�̂� cj i ch jV̂V bj i
n o

Next we substitute matrix notation for the inner products and use

ah jV̂V cj i ¼ �E tð Þ ah j�̂� cj i ¼ �E tð Þ�ac

to find

ĤH, �̂�
h i

ab
¼
X

c

Ec�ac ch j�̂� bj i � ah j�̂� cj iEb�bcf g � E
X

c

�ac�cb � �ac�cbf g
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Next, converting to matrix notation and keeping in mind that the dipole matrix has only
off-diagonal elements, we find

ĤH, �̂�
h i

ab
¼

E1 0

0 E2

" #
�11 �12

�21 �22

" #
�

�11 �12

�21 �22

" #
E1 0

0 E2

" #
þ

� E
0 �

� 0

" #
�11 �12

�21 �22

" #
�

�11 �12

�21 �22

" #
0 �

� 0

" #( )

¼
0 E1 � E2ð Þ�12

E2 � E1ð Þ�21 0

" #
� E�

�21 �22

�11 �12

" #
�

�12 �11

�22 �21

" #( )
ð7:11:7Þ

Define the angular frequency corresponding to the difference in energy of the two
atomic levels

E2 � E1 ¼ �hh!o ð7:11:8Þ

so that the last equation can be written as

ĤH, �̂�
h i

ab
¼ �

0 �hh!o�12

��hh!o�21 0

" #
� E�

�21 � �12 �22 � �11

�11 � �22 �12 � �21

" #

Now we substitute into the Liouville equation

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab

and separate out the four equations. The rate equations for the carrier-population
probability can be written as

_��11 ¼
i

�hh
E tð Þ� �21 � �12ð Þ �

�11 � ���11

	

_��22 ¼
i

�hh
E tð Þ� �12 � �21ð Þ �

�22 � ���22

	

ð7:11:9Þ

Notice that the commutator in the Liouville Equation (7.11.1), which describes
stimulated emission and absorption, now involves the off-diagonal terms of the density
matrix. Recall the off-diagonal terms can be related to the induced polarization and the
susceptibility, which in turn relates to the rate of transition between levels (i.e., gain).
Therefore, we shouldn’t be surprised to find that the off-diagonal terms of the density
matrix must be related to the gain of the laser medium. The rate equations for the
off-diagonal elements are

_��12 ¼ i!o�12 þ
i

�hh
E tð Þ� �22 � �11ð Þ �

�12

T2

_��21 ¼ �i!o�21 þ
i

�hh
E tð Þ� �11 � �22ð Þ �

�21

T2

ð7:11:10Þ
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The induced polarization apparently depends on the difference in population because
the diagonal terms of the density matrix occur in these last two equations. This means
that the carrier population must be responsible for the gain.

7.11.2 Two Independent Equations

As we will see in the next section, the difference in the population between the two

and level 2 can be written as

N1 ¼ N �11 N2 ¼ N �22

since the diagonal elements of the density matrix represent the probability of an electron
occupying the corresponding level. We consider the total number of atoms N (per unit
volume) in the ensemble to be constant. Therefore, the population difference responsible
for gain must be

�N ¼ N2 �N1 ¼ N �22 � �11ð Þ ð7:11:11Þ

Figure 7.11.1 shows an example where N1¼ 3 and N2¼ 1 so that N¼ 4 and �N ¼
N2 �N1 ¼ �2. We expect this material to be absorptive since �N50.

The four Liouville equations 7.11.9 and 7.11.10 are not independent. Equations 7.11.9
can be reduced to a single equation by working with the population difference

� _NN

N
¼ _��22 � _��11 ¼

2i

�hh
E tð Þ� �12 � �21ð Þ �

�22 � �11ð Þ � ���22 � ���11ð Þ

	
ð7:11:12Þ

We can add Equations 7.11.9

_��11 þ _��22 ¼
1

N

d

dt
ðN1 þN2Þ ¼ 0

but we already know this result because the probabilities must add to one (i.e., because
the total number of atoms N¼N1þN2 must be constant). A second independent equation
can be found from Equations 7.11.10 since the density matrix must be Hermitian
�21 ¼ �

�
12. We therefore find a single equation related to the induced polarization and gain

_��21 ¼ �i!o�21 þ
�i

�hh
E tð Þ� �22 � �11ð Þ �

�21

T2
ð7:11:13Þ

Later we will substitute the population difference �N (Equation 7.11.11) into the rate
of change of the population difference (Equation 7.11.12) and this last equation (7.11.13)
to find the laser rate equations and gain.

FIGURE 7.11.1

Example of population number.
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energy levels produces the laser gain (also refer to Chapter 2). The populations of level 1
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To solve these differential equations as a function of time, we must substitute for the
electric field. The electromagnetic (EM) field in the previous equation can be written as

E tð Þ ¼ Eo cosð!tÞ ¼
Eo

2
ei!t þ e�i!t
� �

ð7:11:14Þ

Notice this last relation has the angular frequency ! of the applied EM wave, whereas
previous equations contain the angular frequency !o corresponding to the difference
in atomic energies. The plane wave version of the electric field indicates a semiclassical
theory since we are treating the light field as a classical field (we are not quantizing it).

Substituting the electric field into Equations 7.11.12 and 7.11.13 provides

_��22 � _��11 ¼
i Eo�

�hh
ei!t þ e�i!t
� �

�12 � �21ð Þ �
�22 � �11ð Þ � ���22 � ���11ð Þ

	
ð7:11:15Þ

and

_��21 ¼ �i!o�21 �
iEo�

2�hh
ei!t þ e�i!t
� �

�22 � �11ð Þ �
�21

T2
ð7:11:15Þ

These equations are evolving into the laser rate and gain equations.

7.11.3 The Optical Bloch Equations

We now convert the rate equations (7.11.15 and 7.11.16) into the optical Bloch equations.
We develop the optical Bloch equations as an intermediate step to find the solutions to the
rate equations.

The driving field induces an oscillating dipole moment. We assume the dipoles oscillate
at the same frequency as the driving field. We therefore write

�21 ¼ �21e�i!t ð7:11:17Þ

then we expect �21 ¼ �21ðtÞ. In order for the density operator to be Hermitian �21 ¼ �
�
12,

we conclude �12 must have the form �12 ¼ �12ei!t. Furthermore, we conclude the matrix
representing the envelope function in Equation 7.11.17 must be Hermitian because the
density matrix is Hermitian.

�21 ¼ �
�
12 ) �21ðtÞ e

�i!t ¼ �12ðtÞ e
i!t

� ��
) �21ðtÞ e

�i!t

¼ ��12ðtÞ e
�i!t ) �21ðtÞ ¼ �

�
12ðtÞ

The slowly varying amplitude �21 contains any phase difference between the driving
field and �21. As an example, the envelope function might arise from a signal modulat-
ing the laser output such as a voice or TV signal; this laser beam might be injected
into an optical fiber. Once we substitute Equation 7.11.17 into the rate equations for
the density matrix elements (Equations 7.11.15 and 7.11.16), we will find exponentials
of the form e0, e	2i!t, e	!t. When we apply the Rotating Wave Approximation (RWA) to
these terms, only the low frequency ones survive and not those at the optical frequencies.
In this way, the rate equations for the elements of the density matrix reduce to the optical
Bloch equations.
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Substituting Equation 7.11.17 into Equation 7.11.15 and 7.11.16, we find

_��22 � _��11 ¼
i Eo�

�hh
ei!t þ e�i!t
� �

�12ðtÞ e
i!t � �21ðtÞ e

�i!t
� �

�
�22 � �11ð Þ � ���22 � ���11ð Þ

	
ð7:11:18Þ

and

_��21 �
d

dt
�21ðtÞ e

�i!t
� �

¼ �i!o�21e�i!t �
i Eo�

2�hh
ei!t þ e�i!t
� �

�22 � �11ð Þ �
�21e�i!t

T2
ð7:11:19Þ

We first work with Equation 7.11.19 by carrying out the derivative

_��21ðtÞ e
�i!t � i!�21ðtÞ e

�i!t ¼ �i!o�21 e�i!t �
i Eo�

2�hh
ei!t þ e�i!t
� �

�22 � �11ð Þ �
�21e�i!t

T2

Dividing this last equation by e�i!t gives

_��21ðtÞ � i!�21ðtÞ ¼ �i!o�21 �
i Eo�

2�hh
e2i!t þ 1
� �

�22 � �11ð Þ �
�21

T2

where �21 tð Þ changes slowly compared with e	i!t, e	2i!t. The rotating wave

such as e2i!t (actually, this can be dropped because, to find �21, we essentially take an
integral of the equation which is related to an average). Therefore, the equation for
_��21 becomes

_��21ðtÞ ¼ i !� !oð Þ�21 �
i�Eo

2�hh
�22 � �11ð Þ �

�21

T2
ð7:11:20Þ

Next we simplify Equation 7.11.18, which is

_��22 � _��11 ¼
i Eo�

�hh
ei!t þ e�i!t
� �

�12ðtÞ e
i!t � �21ðtÞ e

�i!t
� �

�
�22 � �11ð Þ � ���22 � ���11ð Þ

	
,

by multiplying the exponentials in parenthesis and dropping terms such as e	i2!t to
obtain

_��22 � _��11 ¼
iEo�

�hh
��21 � �21

� �
�
�22 � �11ð Þ � ���22 � ���11ð Þ

	
ð7:11:21Þ

where we used �12 ¼ �
�
21.

In both Equations 7.11.20 and 7.11.21, the terms at optical frequencies drop from the
equations. Any change in the density operator terms �aa, �12ð Þ must be at the slower
modulation frequency. We know from sense that, the
difference in carrier density Nð�22 � �11Þ cannot oscillate at the optical frequency.
Chapter 2 shows that the photon density depends on the lower frequency and those
photon rate equations do not have the faster oscillating electric field. However, the
dipoles related to �12 can oscillate at these frequencies. We can see from Equation 7.11.16,
we make the difference �22 � �11 independent of the optical frequency by requiring the
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approximation discussed in Section 7.7 and Appendix 8 allows us to drop ‘‘fast’’ terms
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off-diagonal terms to oscillate at the optical frequencies. This observation leads to the
condition �21 ¼ �21e�i!t in Equation 7.11.17.

The optical Bloch equations have the form

_��21ðtÞ ¼ i !� !oð Þ�21 �
i�Eo

2�hh

�N

N
�
�21

T2
ð7:11:22aÞ

_��22 � _��11 ¼
iEo�

�hh
��21 � �21

� �
�
�22 � �11ð Þ � ���22 � ���11ð Þ

	
ð7:11:22bÞ

or

d �Nð Þ

dt
¼

iEo�N

�hh
��21 � �21

� �
�

�N �� �NN

	
ð7:11:23Þ

by substituting �N ¼ N �22 � �11ð Þ, where N is the total number of independent 2-level
atoms. To arrive at these equations, we used several assumptions to rewrite Equations
7.11.22 and 7.11.23. First the form of the interaction Hamiltonian required the dipole

approximation (i.e., energy conservation) to eliminate terms of the form e	2i!ot, where !o

denotes the atomic resonant frequency. We also assumed N independent 2-level atoms.
Of course, including additional matrix elements for the density matrix can treat more
than two levels. The N atoms must be independent so that we can write the number of
atoms in level ‘‘a’’ as Na ¼ N�aa.

7.11.4 The Solutions

We want to find a solution to the optical Bloch Equations. We could make a perturba-
tion approximation similar to the one made for time-dependent perturbation theory. We
could also perform a small signal analysis to find the modulation bandwidth for either
amplitude or frequency modulation. However, in the present topic, we look for the steady

21, the dipole modulation,
and �N ¼ Nð�22 � �11Þ, the population difference, can depend on time but any changes
must be much slower than processes represented by the time constants in Equations
7.11.22 and 7.11.23. The end result at steady state will have the form

Re�21 ¼
� �NN

N

T2
2 !� !oð Þ�

1þ !� !oð Þ
2T2

2 þ 4�2	T2

Im�21 ¼ �
� �NN

N

T2�

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:11:24Þ

�N ¼ � �NN
1þ !� !oð Þ

2T2
2

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:11:25Þ

where

� ¼
�Eo

2�hh
ð7:11:26Þ

Matter–Light Interaction 551

© 2005 by Taylor & Francis Group, LLC

state solutions similar to those in Chapter 2. The quantities �

approximation (refer to Section 7.7 and Appendix 8). Second, we used the rotating wave
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and E0 denotes the electric field amplitude. Note the use of the steady state carrier
difference � �NN. Without the stimulated processes, the steady state carrier difference
would be sustained by the pump or the thermal distribution. These last equations for
steady state can be rewritten as

Re �21ð Þ ¼ �
!� !oð ÞT2

2� ���22 � ���11ð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

Im �21ð Þ ¼ �
�T2 ���22 � ���11ð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:11:27Þ

�22 � �11 ¼ ���22 � ���11ð Þ
1þ !� !oð Þ

2T2
2

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:11:28Þ

Before continuing, we need to discuss the difference between ‘‘steady state,’’ denoted by
SS, and ‘‘no-light steady state,’’ denoted by NLSS. Figure 7.11.3 provides an illustration of
the process. The NLSS refers to the distribution of carriers (or state of the atoms) without
an electromagnetic (EM) interaction but with the pump active or with the background

In this case, the EM interaction maintains a carrier distribution different from the NLSS

FIGURE 7.11.3

Density operator first changes to the steady state value because of the matter-light interaction. Without light, the
density operator relaxes to the no-light steady state value (NLSS).

FIGURE 7.11.2

The envelope function.
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thermal distribution. The ‘‘steady state’’ refers to the same steady state as in Chapter 2.
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value. The steady state requires the time derivatives to be zero. If we also turn off the EM
interaction then the ‘‘steady state’’ carrier or atom distribution must relax to the NLSS
distribution.

To start the solution, we work with Equations 7.11.22 and 7.11.23 at steady state
_��21 ¼ 0 ¼ � _NN. Inserting the real and imaginary parts for �21 into Equation 7.11.22 gives

!� !oð Þ �Im �21 þ iRe �21½ � �
i�Eo

2�hh

�N

N
�

1

T2
Re �21 þ iIm �21½ � ¼ 0

Separating the imaginary and real parts provides

!� !oð ÞRe �21 �
�Eo

2�hh

�N

N
¼

Im �21

T2
Imag ð7:11:29Þ

!� !oð ÞIm �21 ¼ �
Re �21

T2
Real ð7:11:30Þ

Substituting Equation 7.11.30 into 7.11.29 for Im �21 provides

!� !oð ÞRe �21 �
�Eo

2�hh

�N

N
¼ �

Re �21

!� !oð ÞT2
2

Next, rearranging a little bit gives

Re�21 ¼
T2

2 !� !oð Þ �N
2�hhN�Eo

1þ !� !oð Þ
2T2

2

ð7:11:31Þ

Now substituting Equation 7.11.31 into 7.11.30 yields

Im�21 ¼
�T2

�N
2�hhN�Eo

1þ !� !oð Þ
2T2

2

ð7:11:32Þ

Both of the last two equations seem to be missing the saturation term in the
denominator involving � � Eo the electric field amplitude. The reason is that these two
equations have the actual (steady state) population difference �N and not the population
difference due to the pump � �NN. We need to demonstrate Equation 7.11.25 before
continuing.

We can demonstrate Equation 7.11.25 as follows. Setting the time derivative to zero in
Equation 7.11.23b provides

�N

N
¼

� �NN

N
þ

iEo�	

�hh
��21 � �21

� �
¼

� �NN

N
þ

2Eo�	

�hh
Im �21ð Þ

Substituting Equations 7.11.32 and 7.11.26 into this last result provides Equation 7.11.25
as required

�N ¼ � �NN
1þ !� !oð Þ

2T2
2

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:11:33Þ
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Finally, we find Equation 7.11.24 by substituting Equation 7.11.33 into Equations 7.11.31
and Equation 7.11.32.

Re�21 ¼
� �NN

N

T2
2 !� !oð Þ�

1þ !� !oð Þ
2T2

2 þ 4�2 	T2

ð7:11:34Þ

Im�21 ¼ �
� �NN

N

T2�

1þ !� !oð Þ
2T2

2 þ 4�2 	T2

ð7:11:35Þ

where � ¼ ð�EoÞ=ð2�hhÞ. The parameters involving N have units of ‘‘per unit volume.’’
Equations 7.11.34 and 7.11.35 describe the real and imaginary parts of the envelope

function and shows that they depend linearly on steady-state values of the population
probabilities ���11, ���22. These envelope functions will be part of the induced polarization.
We think of the envelope function as representing the amplitude of the polarization.
Therefore the real part must be related to the refractive index while the imaginary part
must be related to the gain and absorption of the collection of N gas molecules. We
also see that the induced polarization (though the envelope function) must be related
to the pumping number density J. Similar comments apply to the population difference
Nð�22 � �11Þ. The next section shows the relation between these expressions and the
classical polarization.

The next couple of sections discuss the denominator term and its relation to homoge-
neous broadening. The denominator depends on the optical power (inside the laser
cavity) through

�2 � E2
o � power

As the optical power increases, the population difference and the ‘‘envelope’’ functions
decrease. However, the envelope is related to the induced polarization and, hence, the
material gain. As the optical power in the cavity increases, the material gain tends to
decrease! This should remind the reader of gain saturation in optical amplifiers.

7.12 Gain, Absorption and Index for Independent

Two Level Atoms

The gain, absorption and refractive index represent the primary results from the investi-
gation of the matter–field interaction. We find these quantities by comparing classical and
quantum expressions for polarization. The classical expression for polarization can be
written in terms of susceptibility � ¼ �r þ i�i as

PðtÞ ¼ Re "o�Eð Þ ¼ Re "o �r þ i�ið ÞEo ei!t
� �

ð7:12:1Þ

The polarization, as a collection of dipoles, can absorb or emit an electromagnetic (EM)
field. Therefore, to find the material gain, we must find the susceptibility. However, we
know from previous sections that the quantum mechanical polarization (including the
ensemble average) can be related to the density matrix through

PðtÞ ¼ N �h i ¼ N Tr �̂��̂�ð Þ ¼ N� �12 þ �21ð Þ ð7:12:2Þ
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Comparing these two expressions (7.12.1 and 7.12.2) for the polarization, produces the
susceptibility in terms of the density matrix. We found expressions for the matrix
elements in the previous few sections in terms of the pumping level, field amplitude Eo

and the induced dipole moment �.

7.12.1 The Quantum Polarization and the Polarization Envelope Functions

The polarization P can be related to the number of independent atoms (per volume) N
and the average dipole moment �h i

PðtÞ ¼ N �h i ¼ N Tr �̂��̂�ð Þ

As before, we assume each atom has two levels nj i ¼ unj i : n ¼ 1, 2f gwhere ĤHo nj i ¼ En nj i.
We evaluate the polarization by inserting the closure relation 1 ¼

P
n nj i nh j between the

density and dipole operators.

PðtÞ ¼ N Tr �̂��̂�ð Þ ¼ N
X

n

nh j�̂��̂� nj i ¼ N
X
mn

nh j �̂� mj i mh j �̂� nj i ¼ N �12 þ �21ð Þ� ð7:12:3Þ

where we neglect any permanent dipole so that the dipole matrix has only off-diagonal
elements

� ¼
0 �
� 0

 �

The off-diagonal elements of the density matrix can be related to the ‘‘slowly varying’’
envelope function � by

�21 ¼ �21ðtÞ e
�i!t and �12 ¼ �12ðtÞ e

i!t

where both �̂�, �̂� are Hermitian. Any slow variation of the envelope function �ðtÞ can be
attributed to amplitude modulation on the laser optical signal. However, we assume
steady-state conditions for �21 so that it does not depend on time. The polarization in
Equation 7.12.3 can be written as

PðtÞ ¼ N �12 þ �21ð Þ� ¼ N �12ei!t þ �21e�i!t
� �

�

Using Euler’s theorem for the complex exponentials provides

PðtÞ ¼ N �12ei!t þ �21e�i!t
� �

� ¼ N� �12 þ �21ð Þ cosð!tÞ þ i �12 � �21ð Þ sin !tð Þ½ � ð7:12:4Þ

Now use �12 ¼ �
�
21 to find

�12 þ �21 ¼ �
�
21 þ �21 ¼ 2Re �21ð Þ and �12 � �21 ¼ �

�
21 � �21 ¼ �2 i Im �21ð Þ

Therefore, the relation between the polarization and the density matrix (Eq. 7.12.4)
becomes

PðtÞ ¼ 2N� Re �21ð Þ cosð!tÞ � Im �21ð Þ sin !tð Þ½ � ð7:12:5Þ
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7.12.2 The Quantum Polarization and Macroscopic Quantities

The next step writes the polarization from Equation 7.12.5 in terms of accessible
parameters such as the pump and relaxation times by substituting the relations derived
in the previous section

Re �21ð Þ ¼
!� !oð Þ T2

2 � ���22 � ���11ð Þ

1þ !� !oð Þ
2 T2

2 þ 4�2 	T2

Im �21ð Þ ¼ �
�T2 ���22 � ���11ð Þ

1þ !� !oð Þ
2 T2

2 þ 4�2	T2

�22 � �11 ¼ ���22 � ���11ð Þ
1þ !� !oð Þ

2 T2
2

1þ !� !oð Þ
2 T2

2 þ 4�2 	T2

ð7:12:6Þ

where � ¼ ð�EoÞ=ð2�hhÞ and the electric field is EðtÞ ¼ Eo cos !tð Þ. Therefore, the polarization
in Equation 7.12.5 can be rewritten as

PðtÞ ¼ 2N�
!� !oð ÞT2

2� ���22 � ���11ð Þ cosð!tÞ þ�T2 ���22 � ���11ð Þ sin !tð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:12:7Þ

We define the total number of independent atoms N (per unit volume) in the ensemble
and the number in the first level N1 and the number in the second level N2 (per unit
volume)

N1 ¼ N �11 N2 ¼ N �22 �N ¼ N2 �N1 N1 þN2 ¼ N

along with

�NN1 ¼ N ���11
�NN2 ¼ N ���22 � �NN ¼ �NN2 � �NN1

The value �N denotes the population difference at operating conditions whereas
the NLSS value � �NN describes the population difference in the absence of stimulated
emission and absorption (i.e., it is the pumping level taking into account the relaxation
processes). Equation 7.12.7 can be rewritten in terms of the population difference � �NN
given in Equation 7.11.25 as

�N ¼ � �NN
1þ !� !oð Þ

2 T2
2

1þ !� !oð Þ
2 T2

2 þ 4�2 	T2

PðtÞ ¼ 2� �NN��T2
sin !tð Þ þ T2 !� !oð Þ cosð!tÞ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:12:8Þ

The factor 2� �NN��T2 can be rewritten using the definition of � ¼ �Eo

2�hh

2 � �NN ��T2 ¼
�2

�hh
� �NN EoT2
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The polarization in Equation 7.12.8 written in terms of accessible parameters provides

PðtÞ ¼
�2

�hh
� �NNEoT2

sin !tð Þ þ T2 !� !oð Þ cosð!tÞ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:12:9Þ

As a note, the sine and cosine terms depend on the driving frequency because the off-
diagonal elements of the density matrix have the form �21 ¼ �21e�i!t with �21 independent
of time (because of steady state conditions). The expression for the population difference
can be found from the last of Equation 7.11.25

�N ¼ � �NN
1þ !� !oð Þ

2T2
2

1þ !� !oð Þ
2T2

2 þ 4�2	T2

7.12.3 Comparing the Classical and Quantum Mechanical Polarization

Comparing the expressions for the classical and quantum mechanincal polarization pro-
vides the susceptibility, which can be related to gain. Equation 7.12.1 provides the classical
polarization

PðtÞ ¼ Re "o�Eð Þ ¼ Re "o �r þ i�ið ÞEoei!t
� �

¼ "oEo�r cos !tð Þ � "oEo�i sin !tð Þ

Comparing this last expression with Equation 7.12.9 provides the susceptibility

�r ¼
�2� �NN

"o�hh

T2 !� !oð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

�i ¼ �
�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:12:10Þ

where � ¼ �Eo= 2�hhð Þ. These are the important equations.
As a note for the next topic, it is common to define the ‘‘natural line shape function’’

using a Lorentzian function

Lð!Þ ¼
2T2

1þ 4�2 � oð Þ
2T2

2

¼
2T2

1þ !� !oð Þ
2T2

2

ð7:12:11Þ

The next topic discusses the Lorentzian line shape in more detail. For now, we restate
Equations 7.12.10 in terms of the line shape function.

�r ¼
�2T2 !� !oð Þ

2"o�hh
�N L !ð Þ �i ¼

�2

"o�hh
�N L !ð Þ ð7:12:12Þ

where the actual population difference �N (and not � �NN) appears in the last equations.
However, we must eventually substitute � �NN in place of �N in order to predict the
susceptibility as a function of the pump level. The reader should recall that the real part
of the susceptibility can be related to the refractive index and the imaginary part to the
gain (or absorption).
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7.12.4 The Natural Line Shape Function

Lð!Þ ¼
2T2

1þ !� !oð Þ
2T2

2

ð7:12:13Þ

essentially provides the (normalized) emission spectrum from the ensemble of atoms (at
low light levels � ffi 0); it is also the shape of the absorption spectrum. Such a shape is
characteristic of atoms that return to equilibrium through exponential relaxation process.
The spectrum for a semiconductor appears different because of an integral over energy
(i.e., over !o, the resonant frequency). The dipole dephasing time controls the width
of the line distribution. Equation 7.12.13 has a full-width at half-max (FWHM) of 2/T2.
Recall the dephasing time T2 represents an average time-interval between collisions;
these collisions interfere with the coherence between the oscillating dipole and the
driving field. Apparently, large dephasing times (i.e., very few collisions) produces
very sharp (i.e., narrow) spectral lines. In such a case, the semiconductor emits or absorbs
at nearly a single wavelength. At the other extreme, many dephasing collisions lead
to increased bandwidth (larger widths) and smaller heights. The line shape function gives
the emission and absorption spectra for sufficiently small optical fields that produce
negligible saturation.

The line-shape function is normalized in such a manner that its integral over frequency
 ¼ !=2� (Hertz) equals to one.

Z1

o

dL 2�ð Þ ¼ 1 ð7:12:14Þ

The lower limit can be replaced by �1 to simplify the expression without changing
the value of the integral since the line-shape function remains nonzero only near optical
frequencies. Some books denote the line-shape function by gðÞ ¼L 2�ð Þ. The natural
line-shape function L !ð Þ gives the shape of the absorption/emission curve for a
collection of independent two-level atoms at low light levels.

7.12.5 Quantum Mechanical Gain

Let us recall from the connection between the complex refractive index
and the susceptibility. In this section let’s use ‘‘�’’ to indicate complex quantities. The
complex electric field is

~EE ¼ Eoei~kkz ¼ Eoeiko ~nnz ð7:12:15Þ

where ~kk ¼ ko nr þ inið Þ, where ko ¼ ð2�Þ=ðloÞ and lo is the wavelength in vacuum. Recall
that the complex wave vector can also be written as

~kk ¼ konr þ i
�

2
or as ~kk ¼ konr � i

g

2
ð7:12:16Þ

where ‘‘�’’ and ‘‘g’’ represent the absorption and gain (per unit length) respectively and
g ¼ ��.
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The above quantities are related to each other since ~nn is related to the complex
permittivity ~"" which is related to the complex susceptibiltiy ~��. We know from Maxwell’s
equations the complex permittivity r � ~DD ¼ �free and the Displacement field ~DD is

~DD ¼ ~""~EE ¼ "o
~EEþ ~PP ¼ "o

~EEþ "o ~��~EE

so that the complex permittivty is identified as

~"" ¼ "o 1þ ~��ð Þ

Therefore, the complex index of refraction is

~nn ¼

ffiffiffiffi
~""

"o

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~��

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �r þ i�i

p
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �r

p
1þ

i�i

2 1þ �rð Þ

� �

written

~nn ¼ nr þ ini ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �r

p
þ

i�i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �r
p

Identifying the real index (responsible for optical dispersion) as

nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �r

p
ð7:12:17Þ

and the imaginary index (i.e., absorption or gain) as

ni ffi
�i

2nr
ð7:12:18Þ

Comparing ~kk ¼ ko ~nn ¼ ko nr þ inið Þ with ~kk ¼ konr þ i �2, we see

� ¼ 2koni ¼ 2ko
�i

2nr
¼ ko

�i

nr
and g ¼ �� ¼ �ko

�i

nr
ð7:12:19Þ

Using Equation 7.12.15, we see that an optical signal increases as

Eout

Ein
¼ exp iz~kk

	 

¼ exp izkonrð Þ exp zg=2

� �

so once we know the gain per unit length g, we can calculate the exponential increase in
the electric field. Of course the optical power increases as the magnitude squared of the
electric field and it therefore increases as exp(gz).

Equations 7.12.10 provide the real and imaginary parts of the susceptibility

�r ¼
�2� �NN

"o�hh

T2 !� !oð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

�i ¼ �
�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2 þ 4�2	T2

ð7:12:20Þ
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Equations 7.12.17, 7.12.18, and 7.12.19 provide equations (that have a slight problem)
describing the refractive index and gain

n2
r ¼ 1þ �r ¼ 1þ

�2� �NN

"o�hh

T2 !� !oð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

g ¼ �� ¼
2��i

�onr
¼

2�

�onr

�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2 þ 4�2	T2

 ! ð7:12:21Þ

where � ¼ �Eo= 2�hhð Þ, and parameters involving N have units of ‘‘per unit volume.’’
Although we followed all the correct steps, Equations 7.12.21 do not give correct results

for a collection of N independent 2-level atoms (per unit volume). We forgot something.
We can see the problem by considering the right hand side of the real part of the index.
When more atoms occupy the lower energy level than the upper one (i.e., � �NN50), the
real index must be smaller than the index for vacuum (i.e., nr51). The problem stems
from the fact that the N-atoms must be embedded in a host crystal or part of a gas
mixture. Equations 7.12.21 only accounts for the change in index due to pumping and

that the background matter has very little absorption or gain at the optical frequency
and therefore the second of Equations 7.12.21 remains correct. We can rewrite Equations
7.12.21 to include the background material as

n2
r ¼ 1þ �b þ �r ¼ 1þ �b þ

�2� �NN

"o�hh

T2 !� !oð Þ

1þ !� !oð Þ
2T2

2 þ 4�2	T2

g ¼ �� ¼ �
2��i

�onr
¼ þ

2�

�onr

�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2 þ 4�2	T2

 ! ð7:12:22Þ

where �b, the background susceptibility, must be real and � ¼ �Eo= 2�hhð Þ, and Eo

represents the amplitude of the driving field. The index of the background material
must be given by nb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �b

p
. Also notice that indices of refraction do not add unlike the

susceptibility. The Equations 7.12.22 provide the gain as a function of the population
difference or as a function of the number of excited electrons.

7.12.6 Discussion of Results

The refractive index and gain/absorption can be plotted on the same set of axes as in

peak at the atomic resonant frequency

!o ¼
E2 � E1

�hh

As a note on notation, the subscript ‘‘o’’ on !o refers to the resonant frequency, while on Eo

it refers to the amplitude of the electric field. As previously mentioned, the value 2=T2

represents the width of the gain curve at half the maximum height (for low light levels)
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does not account for the background index (refer to Section 3.2). However, we assume

Figure 7.12.2. For N-independent atoms, the gain curve has the Lorentzian shape with a
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where T2 denotes the dipole dephasing time. Fewer collisions lead to more narrow
emission and absorption spectra. When we include the saturation effect (i.e., include � in
the denominator of Equation 7.12.22), we find the peak gain decreases according to

gpeak Eo � 0ð Þ ¼
gpeak Eo ¼ 0ð Þ

1þ 4�2	T2
�

gpeak Eo ¼ 0ð Þ

4�2	T2
ð7:12:23Þ

The decrease in g is sometimes called gain saturation. We can see the reason for the name
based on the equations for a laser amplifier. The rate equations provide a differential
equation

dP ¼ P gðPÞ dz ð7:12:24Þ

for the power P(z) traveling along the length of the amplifier z. Let Po be the power at
z¼ 0. The gain can be written in the simpler form

g ¼
c1

c2ð!Þ þ P=Ps
ð7:12:25aÞ

where Ps denotes a saturation power (refer to the next topic for alternate definitions). The
constants can be found from Equation 7.12.22 to be

c1ð J Þ ¼
2�

�onr

�2� �NN

"o�hh
c2 !ð Þ ¼ 1þ !� !oð Þ

2T2
2 ð7:12:25bÞ

and power P can be calculated from the Poynting vector.

P ¼ IA ¼
cnr"oE2

o

2
A Ps ¼ IsA ¼

cnr"o�hh
2

2�2	T2
A ð7:12:25cÞ

FIGURE 7.12.1

The Lorentzian line shape is zero for negative
frequencies unlike the Gaussian function.

FIGURE 7.12.2

The refractive index ‘‘n’’ and gain ‘‘g’’ as a function of
the EM frequency.
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area). Integrating Equation 7.12.24 provides

Ln
P

Po
¼

c1

c2
z�

1

c2

P� Po

Ps
ð7:12:26Þ

For large saturation threshold power Ps, Equation 7.12.26 reduces to the usual exponential
form for the power in the amplifier P ¼ Poec1z=c2. However, small saturation power Ps

necessarily reduces the optical power P at z compared with the pure exponential case
without saturation.

The top of Equations 7.12.22 shows that the refractive index depends on (1) the
magnitude of the EM wave through Eo, (2) the frequency because of !� !oð Þ in both
the numerator and denominator, and (3) the population difference through � �NN. In fact,

depending on whether !5!o or !4!o, respectively. Also, notice from Equations 7.12.20,
the index is related to the real part of the susceptibility and the gain/absorption is
related to the imaginary part.

7.12.7 Comments on Saturation Power and Intensity

Often another form of the saturation intensity is used so that the saturated gain has the
form (for a monochromatic beam)

g !ð Þ ¼
gE¼0 ð!Þ

1þ I
Is!ð!Þ

ð7:12:27aÞ

where, I represents the intensity found from the Poynting vector (Watts/area). The
parameters are

gE¼0 ¼
2�

�onr

�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2

ð7:12:27bÞ

I ¼
cnr"oE2

o

2
Is!ð!Þ ¼

cnr"o�hh
2T2

�2	L !ð Þ
ð7:12:27cÞ

where, L !ð Þ appears in Equation 7.12.13. Apparently Is in Equation 7.12.25c agrees with
7.12.27c for ! ¼ 0 so that Is ¼ Is! 0ð Þ.

7.13 Broadening Mechanisms

A very important distinction between lasers concerns the homogeneously and inhomo-
geneously broadened gain media. A homogeneously broadened laser will have atmost
one lasing longitudinal mode. An inhomogeneously broadened laser can have any
number of longitudinal modes. The reason for these different behaviors has to do with
the way the laser produces gain within the laser cavity. Identical atoms in identical
environments produce the homogeneously broadened line shapes. Atoms affected
differently from one another by their environment produce the inhomogeneously
broadened line shapes. For example, one atom might experience a different strain than
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Figure 7.12.2 shows that the pumped atoms can either increase or decrease the index

where A represents the beam cross section area and I represents the intensity (Watts per
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another one. The Doppler effect can also produce inhomogeneous broadening since
each atom, because of its motion, radiates at a frequency slightly different from the
average-value frequency radiated by the entire ensemble.

7.13.1 Homogeneous Broadening

The emission or absorption spectrum from a collection of atoms shows homogeneous
broadening when the environment relaxes for all the atoms in the same way. Each dipole
exponentially relaxes with the relaxation time T2. This type of relaxation produces the
homogeneously broadened spectral line with width �! � 1=T.

The Liouville equation shows the interaction of the dipoles with the environment
producing homogenous broadened spectra. Equation 7.12.22 in the previous section
provides the gain for a collection of two-level atoms

g ¼ �� ¼ þ
2�

�onr

�2� �NN

"o�hh

1

1þ !� !oð Þ
2T2

2 þ 4�2	T2

 !
ð7:13:1Þ

where �,� �NN, �o, nr, "o,!o,T2, 	 represent the dipole moment, the no-light steady state
(NLSS) population difference (i.e., pump number), real refractive index, free-space
permitivity, resonant frequency for the two levels !o ¼ ðE2 � E1Þ=�hh, the dipole dephasing
time, and the population relaxation time, respectively. The �2 ¼ ðð�EoÞ=ð2�hhÞÞ2 has the
amplitude Eo of the driving electric field oscillating at frequency !. The driving field can
be the optical field in the laser cavity or it can be the field amplified by an optical
amplifier. Recall that the intensity is proportional to the square of the field amplitude
I � E2

o . As the intensity increases, the gain decreases because � appears in the deno-
minator (see Figure 7.13.1). The entire gain curve decreases for homogeneous broadening.
Increasing the amplitude of the electromagnetic power also increases the width of the
spectral line. The full-width at half-max (FWHM) refers to the points !o 	 �!=2, where
the gain curve drops to ½ its peak value at the resonant frequency !o.

FWHMð ÞSat¼
2

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2	T2

p
¼ FWHMð Þunsat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2E2

o	T2=�hh2

q
ð7:13:2Þ

where ‘‘sat’’ refers to the nonzero driving-field case and ‘‘unsat’’ refers to the zero
driving-field case. This last equation shows that the width of the spectrum is
�!�¼0 ¼ 2=T2 in the low driving-field limit � � 0. However, larger driving fields
produce a larger line width of ð�!Þ�¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2E2

o	T2=�hh2
p

.

FIGURE 7.13.1

Gain saturation.
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Question: Why does the emitted light have a nonzero width when we assume that the
difference in energy levels E21 ¼ E2 � E1 is exact? The answer comes from the fact that
electrons can spontaneously relax from E2 to E1 which actually causes the broadening.
Heisenberg’s uncertainty relation gives

�E �t � �hh ð7:13:3Þ

For long relaxation time �t � 1, �E can be very small which implies a narrow
emission curve.

It turns out that anytime a system has loss (like spontaneous decay or optical loss
through mirrors) or gain there will always be some nonzero line width. This occurs
because the assumed eigenstates of Ho are not exactly eigenstates for the entire system
ĤH ¼ ĤHo þ V̂Vþ ĤHenv. If we knew the eigenstates of ĤH then these states would not decay.
We now see that spontaneous emission common to all lasers ultimately limits the
minimum width of the spectral line.

7.13.2 Inhomogeneous Broadening

Inhomogeneous broadening refers to the mechanisms responsible for line widths that are
larger than the homogeneously broadened ones. The inhomogeneous broadening occurs
when the environment affects each atom differently from the next. For example, defects
or local stress or strain can influence the resonant frequency of the oscillating dipole. The
doppler effect can also produce slightly different resonant frequency as viewed in
the laboratory frame. The doppler effect arises because the atoms in the gas or solid move
with respect to a stationary observer in the lab which changes the resonant frequency for
that observer. Therefore each atom in random motion will a have slightly different
resonant frequency.

The effect of inhomogeneous broadening appears in Figure 7.13.2. Suppose the
top portion of the figure represents the homogeneously broadened lines of four atoms.
Notice the resonant frequency differs for each atom. Adding these four spectra together
produces the spectrum in the bottom portion of the figure. We can define the inhomo-
geneously broadened spectrum L I !ð Þ by adding together all of the homogeneously

FIGURE 7.13.2

Spectra (top) add to produce the inhomogeneously broadened spectrum (bottom).
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broadened lines L h !,!oð Þ. However, the distribution should have unit magnitude and we
therefore divide by the frequency range for the resonant frequency. Alternatively, this can
be viewed as the average.

L I !ð Þ ¼
1

!2 � !1

Z !2

!1

d!oL h !,!oð Þ ¼

Z !2

!1

d!oL h !,!oð Þ f !oð Þ ð7:13:4Þ

Dividing by the frequency range assumes the resonant frequency of the dipoles is
uniformly distributed. The function f !oð Þ becomes the uniform probability density.

The number of atoms with one resonant frequency does not need to be the same as
the number at another resonant frequency. In fact, the limits on the frequency range do not
need to be fixed at !1 and !2. We therefore take f !oð Þ to be a general probability density
with the probability of finding a dipole with resonant frequency in the range !1,!2ð Þ to
be
R !2

!1
d!ofð!oÞ. The inhomogeneously broadened line has the general definition

L I !ð Þ ¼

Z þ1
�1

d!oL h !,!oð Þ f !oð Þ ð7:13:5Þ

L I is normalized to 1 provided L h is normalized to 1.
The gain for the inhomogeneously broadened atoms can be treated in a similar

fashion to the spectral distribution by starting with Equation 7.13.1 for the homo-
geneous gain

gh !,!oð Þ ¼
gpeakð JÞ

1þ !� !oð Þ
2T2

2 þ
I
Is

ð7:13:6Þ

where the peak unsaturated gain is gpeak Jð Þ ¼ 2�
�onr

�2� �NN
"o�hh , and the saturation intensity

Is(watts/area) is Is ¼
cnr"o�hh2

2�2	T2
. As a reminder, the driving EM field has frequency !.

If f !oð Þ d!o represents the fraction of dipoles with resonant frequency in the range
!o,!o þ d!oð Þ, then the total inhomogeneous gain at the driving frequency ! must be

gI !ð Þ ¼

Z 1
�1

gh !,!oð Þ f !oð Þ d!o ¼

Z 1
�1

gpeakð JÞ f !oð Þ d!o

1þ !� !oð Þ
2T2

2 þ
I
Is

ð7:13:7Þ

In the case where the probability distribution f !oð Þ is very broad compared with the
Lorentzian, the integral can be evaluated to provide

gI !ð Þ ¼ gpeakð JÞ f !ð Þ

Z 1
�1

d!o

1þ !� !oð Þ
2T2

2 þ
I
Is

¼
f !ð Þgpeakð JÞ�=T2ffiffiffiffiffiffiffiffiffiffiffi

1þ I
Is

q ¼
gI,E¼0ffiffiffiffiffiffiffiffiffiffiffi

1þ I
Is

q ð7:13:8Þ

where gI,E¼0 ¼ f !ð Þgpeakð JÞ�=T2. The inhomogeneous gain saturates with intensity I but
not as strongly as the homogeneous gain in 7.13.1.

7.13.3 Hole Burning

‘‘Hole burning’’ refers to either spatial or spectral hole burning. Spatial hole burning
refers to the situation where a spatially extended gain medium has reduced or saturated
gain in one location and not another. For example, a tightly focused beam in one region of
the gain medium will tend to saturate the gain at that location but not in another region
where the beam might have lower intensity. Spatial hole burning occurs for either
homogeneously or inhomogeneously broadened spectra depending on the carrier or

portion of a gain medium while a second weaker beam, the tickler, also passes through
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the material. If the weaker beam passes through the region saturated by the pump then
its gain will not be as large compared to when it passes through a separate unsaturated
region.

Spectral hole burning refers to the reduction in material gain near a specific wavelength
rather than a location in space. Figure 7.13.3 also shows the block diagram for an
experiment to determine these saturation effects. The weak ‘‘tickler’’ beam with optical
frequency !w enters a gain medium and overlaps a strong pump beam with optical
frequency !s. The frequencies need not be the same. For homogeneously broadened
media, the pump beam reduces the gain for all possible tickler-beam frequencies.

Inhomogeneously broadened media produce a tickler-beam gain curves similar to the
one shown in Figure 7.13.4. The homogeneous gain for the dipoles with resonant
frequencies near !s tend to saturate due to the pump beam while the gain for those
with resonant frequency away from !s does not saturate. Therefore, the pump produces
a ‘‘dip’’ near its frequency.

7.14 Introduction to Jaynes-Cummings’ Model

The Jaynes-Cummings’ Model treats the simplest system consisting of a 2-level radiator/
absorber (i.e., atom) interacting with a single-mode electromagnetic (EM) field. This fully
quantized formalism incorporates the quantum theory for the atom and for the EM field
in contrast to the Liouville equation where the EM field and the environmental systems
remain unquantized (Sections 7.9 through 7.11). As discussed in subsequent sections,
we can recover the Liouville equation from the fully quantized theory once we include
the effects of quantum mechanical reservoirs. The reservoir model divides the comp-
lete system (atom plus light plus environment) into a subsystem and a number of
reservoirs. The smaller system responds to the influence of the reservoirs which for
lasers, account for optical loss, pumping, and collisions (etc). The reservoirs give rise to

FIGURE 7.13.4

Spectral hole burning near frequency !S.

FIGURE 7.13.3

Two wavelength system to determine saturation characteristics of a gain medium.
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The whole gain curve shifts downward similar to that shown in Figure 7.13.1.
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the fluctuation and relaxation effects described by the phenomenological term in the
Liouville equation. In this section, we consider the atomic system interacting with a large
number of modes.

The system itself consists of two parts, namely the atom and the field. The Hamiltonian
ĤH includes Hamiltonians for the atom, fields and their interactions

ĤH ¼ ĤH a þ ĤH f þ ĤH a�f

The following topics explore each Hamiltonian. The atomic and EM wave functions live
in separate Hilbert spaces and move independently of one another in the absence of the
matter–field interaction. The motions of the two wave functions become correlated only
when the atom and light interact.

7.14.1 The Pauli Operators

We will work with two level atoms and, in the subsequent topic, state the atomic
Hamiltonian ĤHa in terms of the Pauli operators. The energy basis set must be

nj i ¼ Enj i for n ¼ 1, 2f g. The Pauli operators, so termed because of their similarity with
spin operators, have special symbols

�̂�ij ¼ ij i j
� ��

and

�̂�z ¼ �̂�22 � �̂�11 ¼ 2j i 2h j � 1j i 1h j �̂�y ¼ i �̂�12 � �̂�21ð Þ �̂�x ¼ �̂�12 þ �̂�21 ð7:14:1Þ

The operator �̂�z essentially gives the difference in population (i.e. probability) between
the second and first energy levels for a given electron wave function. The raising and
lowering operators have special significance for the atomic Hamiltonian. The raising and
lowering operators are respectively defined by

�̂�þ ¼ 2j i 1h j �̂�� ¼ 1j i 2h j ð7:14:2Þ

For example, the raising operator promotes an electron from the lower to the higher level

�̂�þ 1j i ¼ 2j i �̂�þ 2j i ¼ 0 ð7:14:3Þ

Example 7.14.1

Suppose

 
�� � ¼ 1ffiffiffi

2
p 1j i þ

1ffiffiffi
2
p 2j i

which says that a given atom is 50% in the first energy level and 50% in the second. The
average difference in population must be

 
� ���̂�z  

�� � ¼ 0
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Sometimes quantum mechanical quantities (such as commutators) can be most simply
computed using the matrix representation of the Pauli operators. The column vectors

1
0

� �
0
1

� �
ð7:14:4aÞ

represent electrons in states 1j i and 2j i, respectively. The matrix representation of the
Pauli operators must be

�z ¼
�1 0
0 1

� �
�y ¼

0 i
�i 0

� �
�x ¼

0 1
1 0

� �
ð7:14:4bÞ

The raising and lowering operators have a matrix representation

�þ ¼
0 0
1 0

� �
�� ¼

0 1
0 0

� �
ð7:14:4cÞ

These operators have the name ‘‘raising and lowering’’ even though they do not
necessarily have any connection with a harmonic oscillator. The commutation relations
can be easily calculated using either the operator or matrix form. For example,

�̂��, �̂�þ
� �

¼ ��̂�z ð7:14:5Þ

7.14.2 The Atomic Hamiltonian

The Hamiltonians for the atom, field and interactions

ĤH ¼ ĤH a þ ĤH f þ ĤH a�f

comprise the entire Hamiltonian ĤH. The energy basis set is nj i ¼ Enj iforn ¼ 1, 2f g.
The atomic Hamiltonian can be written in terms of projection operators after using the
closure relation for the two-dimensional space

P2
n¼1 nj i nh j ¼ 1

ĤH a ¼ ĤH a

X2

n¼1

nj i nh j ¼
X2

n¼1

ĤH a nj i nh j ¼
X2

n¼1

En nj i nh j ¼ E1 1j i 1h j þ E2 2j i 2h j ð7:14:6Þ

We rewrite the atomic Hamiltonian in terms of the Pauli z-spin operator that measures
the difference in population. The Hamiltonian becomes

ĤH a ¼ E1 1j i 1h j þ E2 2j i 2h j ¼
1

2
E2 � E1ð Þ 2j i 2h j � 1j i 1h j½ � þ

1

2
E2 þ E1ð Þ 2j i 2h j þ 1j i 1h j½ �

which simplifies to

ĤH a ¼
E2 � E1

2
�̂�z þ

E2 þ E1

2
1̂1 ð7:14:7Þ

The energy difference between levels is usually defined in terms of an atomic resonance
frequency !o as

�hh!o ¼ E2 � E1 ð7:14:8Þ

568 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



File: {Books}Keyword/4460-Parker/Revises-IV/3d/4460-Parker-007.3d
Creator: iruchan/cipl-un1-3b2-1.unit1.cepha.net Date/Time: 4.4.2005/11:18am Page: 569/610

The atomic Hamiltonian can then be written as

ĤH a ¼
1

2
�hh!o�̂�z þ

E2 þ E1

2
1̂1 ð7:14:9Þ

The energy scale for the atom can be reset so that the zero-energy sits midway between
E2 and E1 as shown in Figure 7.14.1. The last term in ĤHa becomes equal to zero. This last
term (regardless of whether it’s zero or not) hasn’t any effect on the rate of change of
a density operator (for example) since it commutes with all operators (and c-numbers).
For example, the equation of motion for the atomic density operator �̂�a does not depend
on this last term

@�̂�a

@t
¼

1

i�hh
ĤH a, �̂�a

h i
¼

1

i�hh

1

2
�hh!o�̂�z þ

E2 þ E1

2
1̂1 , �̂�a

 �
¼

1

i�hh

1

2
�hh!o�̂�z , �̂�a

 �

Either by resetting the energy scale or for the reason of computing rates of change,
the added c-number constant term can be dropped from the Hamiltonian. The final
version of the atomic Hamiltonian must be

ĤH a ¼
1

2
�hh!o�̂�z ð7:14:10Þ

7.14.3 The Free-Field Hamiltonian

The atoms and electromagnetic EM fields live in a product space. One constituent
product space, spanned by the photon Fock states, describes the amplitude of the EM
field. The quantization of the electromagnetic field requires us to replace the classical
EM Hamiltonian found in Sections 3.5 and 6.5

~HH f ¼

Z
V

dV
"o

2
~EE � ~EEþ

1

2�o

~BB � ~BB

� �

with the quantum mechanical one

ĤH f ¼
X
~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
¼
X
~kks

�hh!k N̂N~kks
þ

1

2

� �
ð7:14:11Þ

The operators b̂bþ
~kk, s

, b̂b~kk, s represent the creation and annihilation operators, respectively.

Equation 7.14.11 can be viewed as the ‘‘free field’’ Hamiltonian in the Heisenberg repre-
sentation when the operators have only the trivial time dependence. The equation
can also be viewed as the total EM Hamiltonian (with or without the matter-light
interaction) for the interaction representation. Recall that the ‘‘creation operator’’ creates
a particle in the electromagnetic mode represented by ~kk with one of two polarizations

FIGURE 7.14.1

Redefining the zero of energy for the atom.
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represented by ‘‘s.’’ The creation and annihilation operators satisfy the equal-time
commutation relations

b̂b~kk, s
, b̂bþ~KK, S

h i
¼ �~kk, ~KK�s, S ð7:14:12Þ

The EM creation and annihilation operators (in either the Schrodinger or the interaction
representation) commute for all times with the atomic raising and lowering opera-
tors (in either the Schrodinger or the interaction representation). As a comment, the
Heisenberg representation places all of the dynamics into the operators. This implies
that the creation and annihilation operators must change in a nontrivial manner when
the EM field interacts with matter. The Heisenberg operators do not necessarily satisfy
the commutation relations in Equation 7.14.12 for the case when the annihilation operator
and creation operator are evaluated at different times.

7.14.4 The Interaction Hamiltonian

The interaction Hamiltonian links the atomic subsystem with the EM subsystem. The
interaction Hamiltonian correlates the motion of the EM wave functions and the atomic
wave functions in their respective Hilbert spaces. The interaction Hamiltonian drives the
motion of the wave functions in the interaction representation.

This topic discusses the fully quantized interaction Hamiltonian. We start by discussing
how energy conservation leads to particular combinations of creation and annihilation
operators. Next, starting from basic formulas, we show the Hamiltonian does in fact
contain the expected terms. Finally, we write the fully quantized interaction Hamiltonian
ĤH af between the atom and fields.

Let us consider as to how the principle of energy conservation leads to specific terms in
the interaction Hamiltonian. The principle requires that any quanta of energy removed
from the field must reappear in the atom and vice versa. Therefore, we expect to find
terms of the form

b̂b�k �̂�
þ and b̂bþk �̂�

� ð7:14:13Þ

Consider b̂bþk �̂�
� as an example. The operator �̂�� removes a quanta of energy from the

two level atom while the operator b̂bþk increases the field quanta by one. Now here’s an
important point. While these two operators keep track of the number of quanta, they do
not quite guarantee conservation of energy because we need to know that mode k has
approximately the same energy as the difference in atomic levels. If it doesn’t then other
factors in the equation must prohibit the atom from radiating. The two terms in Equations
7.14.13 link the atomic and EM Hilbert spaces (i.e., link the two subspaces in the larger
direct product space). For a single optical mode and a two-level atom, the basis vectors in
the direct product space have the form

a, nj i ¼ aj i nj i a ¼ 1, 2 n ¼ 0, 1, 2 . . .f g ð7:14:14Þ

where ‘‘a’’ stands for the atomic state and ‘‘n’’ stands for the number of photons in the
electromagnetic mode (assuming Fock states for the EM basis set). A general wave vector
in the direct product space has the form

 ðtÞ
�� �

¼
X
a, n

�anðtÞ aj i nj i ð7:14:15Þ
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For multiple optical modes, the interaction Hamiltonian ĤH af must contain terms such as

X
~kk, s

�̂��b̂bþ
~kks

and
X
~kk, s

�̂�þb̂b�~kks
ð7:14:16Þ

The basis vectors in the direct product space consist of the direct product of the atomic
basis set with the EM Fock set (for example)

aj i m1,m2 . . .j i ¼ aj i mf gj i a ¼ 1, 2 mi ¼ 0, 1, . . .f g ð7:14:17Þ

where mi is the number of photons in the ith mode.

Example 7.14.2

Calculate the following quantity: b̂b��̂�þ a ¼ 1, n ¼ 5j i

Solution

b̂b��̂�þ a ¼ 1, n ¼ 5j i ¼ �̂�þ a ¼ 1j i b̂b� n ¼ 5j i ¼ a ¼ 2j i
ffiffiffi
5
p

n ¼ 4j i

We can find the fully quantized form of the Hamiltonian by starting with the
interaction Hamiltonian

ĤHaf ¼ �̂� � ÊE ð7:14:18Þ

where, �̂� is the dipole moment operator and ÊE is the electric field operator. Both opera-
tors are also vectors in the physical three-dimensional space (hence the reason for the
dot product). The dipole moment operator can be written as a basis vector expansion

�̂� ¼
X2

i¼1

ij i ih j

 !
�̂�

X2

j¼1

j
�� � j
� ��

0
@

1
A ¼X

ij

~��ij ij i j
� �� ð7:14:19Þ

Typically, we assume that the atom does not have a permanent dipole moment �ii ¼ 0
and that the induced dipole moment has the property that �12 ¼ �21. The dipole operator
reduces to

�̂� ¼ ~��12 1j i 2h j þ 2j i 1h j½ � ¼ �̂�� þ �̂�þ
� �

~��12 ð7:14:20Þ

We usually assume the physical size of the dipole to be small compared with the
electromagnetic wavelength (dipole approximation). The matrix element appearing in
Equations 7.14.19 and 7.14.20 has the form

~��12 ¼

Z
d3~rr u�1 ~rr

� �
�e~rr
� �

u2 ~rr
� �

ð7:14:21Þ

The electric field operator in the interaction Hamiltonian (Equation 7.14.18) can be
written as

ÊE ~rr, t
� �

¼
X
~kks

ffiffiffiffiffiffiffiffi
�hh!k

2"o

r
b̂b~kks

tð Þ f~kkð~rrÞ þ b̂bþ
~kks

tð Þ f�~kk ð
~rrÞ

h i
~ee~kks

ð7:14:22Þ
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where, ~ee~kks
represents a polarization vector. The mode functions f~kk satisfy the classical

Maxwell equations with specified boundary conditions (c.f., see 6.3.4) and can be
normalized according to

Z
V

dV f�~kk ð
~rrÞ f~KKð~rrÞ ¼ �~kk~KK ð7:14:23Þ

For plane waves with periodic boundary conditions, the mode function is

f~kkð~rrÞ ¼
ei~kk�~rrffiffiffiffi

V
p ð7:14:24Þ

Example 7.14.3

Orthonormality of ‘‘f’’ for plane waves. The orthonormality can easily be shown by
considering the integral for the 1-D case

I ¼

Z L

o
dx f�k ðxÞ fKðxÞ ¼

1

L

Z L

o
dx ei k�Kð Þx

where, for periodic boundary conditions, k ¼ 2�n=L. If k¼K then the integral becomes

I ¼
1

L

Z L

o
dx 1 ¼ 1

For k 6¼ K, the integral is

I ¼
1

L

Z L

o
dx exp i

2� n�mð Þ

L
x

� �
¼

e2�iðn�mÞ � 1

2�i n�mð Þ
¼ 0

where the last step follows because (n-m) is an integer. Putting the two results together
gives the orthonormality relation.

The interaction Hamiltonian can be rewritten by combining the operator expressions
for the dipole moment and the electric field.

ĤH af ¼ �̂� � ÊE ~rr, t
� �

¼
X
~kks

ffiffiffiffiffiffiffiffi
�hh!k

2"o

r
�̂�12 � ~ee~kks

	 

�̂�� tð Þ þ �̂�þðtÞ
� �

b̂b~kks
tð Þf~kkð~rrÞ þ b̂bþ

~kks
tð Þf�~kk ð

~rrÞ
h i

ð7:14:25Þ

where the raising, lowering, creation and annihilation operators are all written in the
interaction representation (refer to the following topics). The rotating wave approxima-
tion (RWA) allows us to drop the terms

�̂��b̂b and �̂�þb̂bþ ð7:14:26Þ

The rotating wave approximation is equivalent to dropping terms that do not conserve
energy. For example, �̂��b̂b removes a photon from the EM field and also removes a unit of
energy from the atom without placing the extra energy anywhere. The RWA is usually
associated with an integral over time; this turns out to be the case when we calculate
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the integral of the rate of change of the density operator. The final form of the interaction
Hamiltonian is

ĤHaf ¼ �̂� � ÊE ~rr, t
� �

¼
X
~kks

ffiffiffiffiffiffiffiffi
�hh!k

2"o

r
�̂�12 � ~ee~kks

	 

�̂�þðtÞ b̂b~kks

tð Þ f~kkð~rrÞ þ �̂�
� tð Þ b̂bþ

~kks
tð Þ f�~kk ð

~rrÞ
h i

ð7:14:27Þ

As a note, it is interesting to speculate on whether or not conservation of energy must
only hold in the long-time limit. It might be possible to create a particle from the vacuum
so long as it returns to the vacuum within a very short time period.

7.14.5 Atomic and Interaction Hamiltonians Using Fermion Operators

Some books (e.g., Haken) write the atomic and interaction Hamiltonian in terms
of Fermion creation and annihilation operators. Rather than the two vectors used for the
atomic states, we must now use the following three Fermion Fock states.

0, 0j i is the vacuum state

1, 0j i specifies an electron in the lowest energy level

0, 1j i specifies an electron in the highest energy level

The Fermion creation f̂fþn and annihilation f̂f�n operators add or subtract a particle from
energy level En, respectively. For example, the Fermion creation operator has the
following affect.

f̂fþ1 0, 0j i ¼ 1, 0j i f̂fþ1 1, 0j i ¼ 0

with similar results for f̂fþ2 etc. The Fermion creation and annihilation operators behave
similar to those for the boson creation and annihilation operators (e.g. for EM fields). The
boson operators produce any number of particles in a state with a particular energy.
The Fermion operators produce either 0 or 1.

The Fermion operators satisfy anticommutation relations, which allow only one
electron per state (Pauli exclusion principle).

f̂f�a , f̂fþb

n o
¼ �ab f̂f�a , f̂f�b

n o
¼ 0 f̂fþa , f̂fþb

n o
¼ 0

where the anticommutator is defined by

ÂA, B̂B
n o

¼ ÂAB̂Bþ B̂BÂA

For example, the anticommutation relation

f̂fþa , f̂fþb

n o
¼ 0

yields the Pauli exclusion principle

f̂fþa f̂fþa 0j i ¼
1

2
2f̂fþa f̂fþa 0j i ¼

1

2
f̂fþa , f̂fþa

n o
0j i ¼

1

2
0 0j i ¼ 0
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So it is not possible to create two particles in a single energy state. The atomic raising
and lowering operators must be replaced as follows

�̂�þ ! f̂fþ2 f̂f�1 and �̂�� ! f̂fþ1 f̂f�2

This book uses the raising and lowering operators rather than the creation and
annihilation operators.

7.14.6 The Full Hamiltonian

The full Hamiltonian includes terms for the atom, free fields and the matter–field
interaction.

ĤH ¼ ĤH a þ ĤH f þ ĤH a�f

Combining Equations 7.14.10, 7.14.11 and 7.14.27 produces the full Hamiltonian for the
full system consisting of the atoms and fields.

ĤH ¼
�hh!o

2
�̂�z þ

X
~kks

�hh!k b̂bþ
~kks

b̂b~kks
þ

1

2

� �
þ

þ
X
~kks

ffiffiffiffiffiffiffiffi
�hh!k

2"o

r
�̂�12 � ~ee~kks

	 

�̂�þðtÞb̂b~kks

tð Þf~kkð~rrÞ þ �̂�
� tð Þb̂bþ

~kks
tð Þf�~kk ð

~rrÞ
h i ð7:14:28Þ

7.15 The Interaction Representation for the Jaynes-Cummings’

Model

The Jaynes-Cummings’ model, although fairly simple, provides a great deal of insight
into the matter-light interaction. As with the Liouville equation discussed earlier in
this chapter, we will use the density operator to predict the evolution of an electron
in the two-level atom. However this time, we also want information on the evolution
of the optical field. We therefore need a rate equation (a.k.a., master equation) for the
direct-product density operator for the atom and the light field.

The master equation for the density operator describes the time-development of the
density operator and the evolution of the system. We have already seen one example of
a master equation when we discussed the Liouville equation. A master equation has
the simplest interpretation when written in the interaction representation. The density
operator, being similar to a wavefunction, moves through Hilbert space under the influ-
ence of an interaction. The density operator remains constant without the interaction.
We will see that the ladder, creation and annihilation operators assume the form of
a complex exponential in time. This section discusses the interaction representation for
the wave functions, operators and Hamiltonians.

The next section includes reservoirs in the system. The reservoirs produce damping
effects leading to the ‘‘phenomenological’’ term in the Liouville equation. We will see that
they also produce fluctuations in the system.
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7.15.1 Atomic Creation and Annihilation Operators

We focus on the interaction representation for both the atom and the EM field. Consider
the atom first. shows that the wavefunction j i in the Schrodinger

^

 
�� � ¼ exp

ĤHat

i�hh

( )
 
^
���
E

ð7:15:1Þ

The operator

ûua ¼ exp
ĤHat

i�hh

( )
ð7:15:2Þ

relating the two must be unitary.
The interaction representation of the atomic lowering operator �

^�
can be found

by requiring expectation values for the Schrodinger and Interaction representation to
agree.

 
� �� �̂��  �� � ¼  

^
D ��� ûuþa �̂�

�ûua  
^
���
E
¼  

^
D ��� �^�  ^

���
E

so that

�
^�
¼ ûuþa �̂�

� ûua ð7:15:3Þ

The operator expansion theorem provides the explicit time-dependent form of the
lowering operator in the interaction representation. The operator expansion theorem is

eÂAB̂Be�ÂA ¼ B̂Bþ ÂA, B̂B
h i

þ
1

2!
ÂA, ÂA, B̂B
h ih i

þ � � � ð7:15:4Þ

The interaction representation of the lowering operator is

�
^�
¼ ûuþa �̂�

� ûua ¼ exp �
ĤHat

i�hh

( )
�̂�� exp

ĤHat

i�hh

( )
¼ �̂�� �

ĤHat

i�hh
, �̂��

" #
þ � � � ð7:15:5Þ

Using Equation 7.14.10 from the previous section, ĤHa ¼
1
2 �hh!o�̂�z, the commutator in the

last equation becomes

ĤHa, �̂�
�

h i
¼

�hh!o

2
�̂�z, �̂�

�½ � ¼ �hh!o
0 1
0 0

� �
¼ ��hh!o�̂�

� ð7:15:6Þ

Performing similar computations for the other commutators in Equation 7.15.5 and
adding the results together provides the interaction representation for the lowering
operator

�
^�
ðtÞ ¼ �̂�� e�i!ot ð7:15:7aÞ
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where, �̂�� is the Schrodinger representation for the atomic lowering operator. The adjoint
of Equation 7.15.7a provides

�
^þ
ðtÞ ¼ �̂�þ eþi!ot ð7:15:7bÞ

The atomic Hamiltonian ĤHa has the same form in either the interaction or Schrodinger
representation. Recall that a function of an operator always commutes with that operator
so that we can write

H
^

a ¼ ûuþa ĤHaûua ¼ e�
ĤHat
i�hh ĤHae

ĤHat
i�hh ¼ ĤHae�

ĤHat
i�hh e

ĤHat
i�hh ¼ ĤHa

Technically, to find the interaction representation of the atomic quantities, we should
be using an evolution operator that includes both the atomic and field Hamiltonians.
However, they operate on separate Hilbert space and therefore commute. As a result,
we can find the interaction representations for the atom and light fields separately.

7.15.2 The Boson Creation and Annihilation Operators

We can find the interaction representation variables for the EM operators. The EM-field
evolution operator can be written as

ûuf ¼ exp
ĤHf t

i�hh

( )
ð7:15:8Þ

where the Schrodinger Hamiltonian has the form

ĤHf ¼
X
~kks

�hh!~kk b̂bþ
~kks

b̂b~kks
þ

1

2

� �
ð7:15:9Þ

and where the creation/annihilation operators must be independent of time. The
operator expansion theorem

eÂAB̂Be�ÂA ¼ B̂Bþ ÂA, B̂B
h i

þ
1

2!
ÂA, ÂA, B̂B
h ih i

þ � � �

provides the interaction representation of the EM-field creation and annihilation
operators

b
^

~kks
ðtÞ ¼ ûuþf b̂b~kks

ûuf ¼ b̂b~kks
þ

it

�hh

X
~kk0s0

�hh!~kk0 b̂bþ~kk0s0
b̂b~kk0s0 þ

1

2

� �
, b̂b~kks

2
4

3
5þ � � � ð7:15:10Þ

The first commutator in Equation 7.15.10 reduces to

X
~kk0s0

�hh!~kk0 b̂bþ
~kk0s0

b̂b~kk0s0 þ
1

2

� �
, b̂b~kks

2
4

3
5 ¼X

~kk0s0

�hh!~kk0 b̂bþ
~kk0s0

b̂b~kk0s0 þ
1

2
, b̂b~kks

 �

¼
X
~kk0s0

�hh!~kk0 b̂bþ
~kk0s0

, b̂b~kks

h i
b̂b~kk0s0 ¼ ��hh!~kkb̂b~kks
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Working out all of the commutators in Equation 7.15.10 for b
^

~kks
and collecting terms

provides

b
^

~kks
ðtÞ ¼ b̂b~kks

e�i!kt ð7:15:11aÞ

The adjoint of this expression provides the interaction representation of the boson
creation operator

b
^þ

~kksðtÞ ¼ b̂bþ~kks
e�i!kt ð7:15:11bÞ

where

b̂b~kks
¼ b̂b~kks
ð0Þ and b̂bþ

~kks
¼ b̂bþ

~kks
ð0Þ

The Hamiltonian for the free fields has the same form in either the Schrodinger or
interaction representation

H
^

f ¼
X
~kks

�hh!~kk b̂bþ~kks
ðtÞ b̂b~kks

ðtÞ þ
1

2

� �
¼
X
~kks

�hh!~kk b̂bþ~kks
e�i!kt b̂b~kks

eþi!kt þ
1

2

� �

¼
X
~kks

�hh!~kk b̂bþ~kks
b̂b~kks
þ

1

2

� �
¼ ĤHf

7.15.3 Interaction Representation of the Subsystem Density Operators

We start the discussion of the interaction representation of the density operator with the
atomic density operator. Let j i be a Schrodinger wave function for an isolated atom. Let
j i be the interaction representation of the same wave function. The two wavefunctions
can be related to one another by

 
�� � ¼ exp

ĤHat

i�hh

( )
 
�� � ð7:15:12Þ

with the atomic evolution operator and the atomic Hamiltonian, respectively, given by

ûua ¼ exp
ĤHat

i�hh

( )
and ĤHa ¼

1

2
�hh!o�̂�z

Keep in mind the evolution operator must be unitary with the property that ûu�1
a ¼ ûuþa .

The Schrodinger atomic density operator �̂�a

�̂�a ¼
X
 

 
�� �P  � �� ð7:15:13Þ

obtains from the interaction density operator �
^

a by substituting Equation 7.15.12 into
Equation 7.15.13

�̂�a ¼
X
 

 
�� �P  � �� ¼X

 

exp
ĤHat

i�hh

 !
 
^
���
E( )

P exp
ĤHat

i�hh

 !
 
^
���
E( )þ
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This equation simplifies upon use of the Hermitian property of the atomic Hamiltonian
ĤHa ¼ ĤHþa to find

�̂�a ¼ exp
ĤHat

i�hh

 ! X
 

 
^
���
E

P  
^
D ���

( )
exp �

ĤHat

i�hh

 !
¼ ûua �

^

aûuþa

The final form of the interaction density operator must be

�
^

a ¼ ûuþa �̂�aûua ð7:15:14Þ

The ‘‘free-field’’ density operator can be similarly found

�
^

f ¼ ûuþf �̂�f ûuf ð7:15:15aÞ

with

ûuf ¼ exp
ĤHf t

i�hh

( )
and ĤHf ¼

X
~kks

�hh!~kk b̂bþ
~kks

b̂b~kks
þ

1

2

� �
ð7:15:15bÞ

7.15.4 The Interaction Representation of the Direct-Product Density Operator

The next several sections use the master equation (i.e., the rate equation) for the density
operator in the direct product space. We know that the density operator for the
Jaynes-Cummings’ model consists of two subspaces, one for the atom and another for
the light. Later we will add reservoirs and enlarge the direct product space to include
reservoir terms. These master equations have the simplest interpretation when written
in the interaction representation. For this reason, we now make a few comments on the
interaction representation of the density operator for the direct product space.

The wave functions used in the Jaynes-Cummings’ model reside in a direct product
space denoted by Va  Vf where Va and Vf are the Hilbert spaces for the atom and the
field, respectively. For a single optical mode, the general wave function in the direct
product space has the form

�j i ¼
X
a, n

��
anðtÞ aj i nj i ð7:15:16Þ

where aj i represents the atomic state (a¼ 1, 2) and nj i represents the Fock electromagnetic
state (n¼ 0, 1, . . .). The density operator must be given by

�̂� ¼
X

�

�j iP� �h j ð7:15:17Þ

Only under special circumstances (e.g., without interaction between the atomic and
optical subsystems) can the density operator be written as the direct product �̂� ¼ �̂�a�̂�f .
Usually, we assume that just prior to initiating the matter–field interaction (t¼ 0), that the
density operator can be factored according to

�̂�ð0Þ ¼ �̂�að0Þ �̂�f 0ð Þ ð7:15:18Þ
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However, we can always write the atomic density operator by ‘‘tracing’’ the full density
operator over the degrees of freedom for the field (Fock states in this case).

�̂�a ¼ Trf �̂�ð Þ �
X

n

nh j �̂� nj i ð7:15:19aÞ

We can similarly find the field density operator from the direct product one by tracing
over the atomic degrees of freedom.

�̂�f ¼ Tra �̂�ð Þ �
X

a

ah j �̂� aj i ð7:15:19bÞ

where Trf and Tra signifies the trace over the field modes and the atomic states
respectively. To get a better understanding of how the trace affects the direct-product
density operator, substitute Equation 7.15.17 into Equation 7.15.16 for �̂� to find

�̂� ¼
X

�

�j iP� �h j ¼
X

�

X
a, n

��
anðtÞ aj i nj iP�

X
b,m

���
bmðtÞ bh j mh j

which can be rearranged to get

�̂� ¼
X

�

X
a, n
b,m

P��
�
anðtÞ�

��
bmðtÞ nj i aj i bh j mh j

where, aj i, bj i refer to basis set for the atomic subsystem. Now tracing over the basis set
for the field provides

Trf �̂� ¼
X

n0
n0
� ���̂� n0

�� �
¼
X

n0

X
�

X
a, n
b,m

n0
� �� P��

�
anðtÞ�

��
bmðtÞ nj i aj i bh j mh j

� �
n0
�� �

¼
X

�

X
a, b, n

P��
�
anðtÞ�

��
bn ðtÞ aj i bh j

ð7:15:20Þ

This last result can be written in the form of a density operator for the atomic system
by defining the coefficients

�0ab� ¼
X

n

��
anðtÞ�

��
bn ðtÞ

so that

Trf �̂� ¼
X

�

X
a, b

P��
0
ab�ðtÞ aj i bh j � �̂�a ð7:15:21Þ

This last expression has the form of a density operator for the atomic system as
required for the first of Equations 7.15.19. Taking the trace in this manner should remind
the reader of the probability relation for independent events A, B

X
B

PðA and BÞ ¼
X

B

PðAÞ PðBÞ ¼ PðAÞ
X

B

PðBÞ ¼ PðAÞ
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The trace in Equation 7.15.21 basically removes the field subsystem from consideration
and embeds its effects into a single reduced formula.

The interaction representation of the direct-product density operator can be defined
analogously to that for the atom or EM density operators. The unitary evolution operator
becomes

ûu ¼ exp
ĤHot

i�hh

( )
ð7:15:22Þ

where the Hamiltonian ĤHo does not contain the matter-light interaction Hamiltonian

ĤHo ¼ ĤHa þ ĤHf ð7:15:23Þ

Because ĤHa and ĤHf contain dynamical variables (operators) in distinct/disjoint spaces,
the two Hamiltonians commute. The operator expansion theorem says

eÂAþB̂B ¼ eÂAeB̂Be½ÂA, B̂B�=2

so long as ½ÂA, ½ÂA, B̂B�� ¼ ½B̂B, ½ÂA, B̂B��. Therefore the evolution operator can be written as

ûu ¼ exp
ĤHot

i�hh

( )
¼ exp

ĤHat

i�hh

( )
exp

ĤHf t

i�hh

( )
¼ ûuaûuf ð7:15:24Þ

where ûua operates only in atom-space and ûuf operates only in light-space. As a note,
ûua and ûuf commute and can be arranged as either ûuaûuf or ûuf ûua.

The interaction representation of the full density operator can be written as

�
^
¼ ûuþ�̂� ûu ¼ ûuþa ûuþf �̂� ûuaûuf ð7:15:25Þ

Under special circumstances when �̂� ¼ �̂�a�̂�f , the interaction density operator can then
be written as

�
^
¼ ûuþ�̂� ûu ¼ ûuþa ûuþf �̂�a�̂�f ûuaûuf ¼ �

^

a�
^

f

7.15.5 Rate Equation for the Density Operator in the Interaction Representation

The rate equation for the density operator can be written in the interaction representation.
The density operator (in the interaction representation) moves through its Hilbert space
only when an interaction potential links the light fields and the matter fields. We will
write the master equation without the fluctuation and damping terms characteristic
of an interaction between a system and reservoir. This section demonstrates two
alternative forms for the equation of motion.

In this topic, we start with the Schrodinger representation �̂� �  tð Þ
�� �

 tð Þ
� �� and use the

Schrodinger equation

ĤH  
�� � ¼ i�hh

@

@t
 
�� � with ĤH ¼ ĤHo þ V̂V ð7:15:26Þ
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where V̂V is an interaction potential. Subsequent sections write ĤHo ¼ ĤHs þ ĤHr as the sum
of the system and reservoir Hamiltonians. The interaction potential V̂V is the interac-
tion energy between the system and reservoir. Continuing with Equations 7.15.26 and
taking the derivative of the density operator, we find

_̂��̂�� �
@

@t
 tð Þ
�� �� �

 tð Þ
� ��þ  tð Þ

�� � @

@t
 tð Þ
�� �� �þ

¼
1

i�hh
ĤH, �̂�
h i

ð7:15:27Þ

This is the equation of motion of the density operator in the Schrodinger
Representation.

Next, to find one form of the equation of motion in the interaction representation,
differentiate the interaction representation of the density operator

_
�
^
�
^
¼
@

@t
ûuþ�̂�ûu
� �

with ûu ¼ exp
ĤHot

i�hh

 !
ð7:15:28Þ

to get

_
�
^
�
^
¼ �

ĤHo

i�hh
ûuþ�̂� ûuþ ûuþ

@�̂�

@t
ûuþ ûuþ�̂� ûu

ĤHo

i�hh
ð7:15:29aÞ

which reduces to

_
�
^
�
^
¼ �

1

i�hh
ĤHo, �

^
h i

þ ûuþ
@�̂�

@t
ûu ð7:15:29bÞ

where ½ĤHo, ûu� ¼ 0 was used. Notice that the partial derivative of the density operator
in the last term can be nonzero in the Schrodinger representation.

The second form of the equation comes from Equation 7.15.29a by rearranging terms.
Factoring out the unitary operators provides

_
�
^
�
^
¼ �

ĤHo

i�hh
ûuþ�̂� ûuþ ûuþ

@�̂�

@t
ûuþ ûuþ�̂� ûu

ĤHo

i�hh
¼ ûuþ �

1

i�hh
ĤHo, �̂�
h i

þ _̂��̂��

� �
ûu

Substituting Equation 7.15.27, specifically _̂��̂�� ¼ ½ĤH, �̂��=i�hh ¼ ½ĤHo, �̂��=i�hhþ ½V̂V, �̂��=i�hh, gives the
second form of the equation of motion

_
�
^
�
^
¼

1

i�hh
V
^

, �
^

h i
ð7:15:29cÞ

since ûuþðĤH � ĤHoÞ ûu ¼ ûuþV̂V ûu ¼ V
^

. Equation 7.15.29c clearly demonstrates how the inter-
action Hamiltonian completely controls the motion of the density operator in the
interaction representation.

7.16 The Master Equation

The environment surrounding a system relaxes it to steady state. However, a collection
of reservoirs defines the environment. The present section illustrates how a collection
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of reservoirs defining the environment drives the system toward steady state and
how the quantum models produce the Liouville equation. One often encounters three
approaches, using density operators, Heisenberg dynamical variables, or distribution
functions. The density operators conveniently describe ensembles of atoms or fields.
The Heisenberg approach demonstrates the fluctuation-dissipation theorem as shown
in the next section. This section reproduces the Liouville equation for the density
operator.

7.16.1 The System

The present section focuses on finding the relaxation terms in the Liouville equation
from Section 7.11.

@�̂�

@t
¼

1

i�hh
ĤH, �̂�
h i

þ
1

i�hh
ĤHenv, �̂�
h i @�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab
ð7:16:1Þ

where ĤH ¼ ĤHo þ V̂V represents the atomic and matter-field Hamiltonians. The term envi-
ronmental ‘‘env’’ term really refers to reservoirs that have many degrees of freedom as
discussed in Section 2.6. The reservoirs produce damping and fluctuations, which
average to zero. The damping represented by the last term in Equations 7.16.1 tends to
move the system to steady state (no-light steady-state NLSS) or to equilibrium.

Consider a small system consisting of a two-level atom in order to demonstrate
the relaxation terms in Equations 7.16.1. Denote the small system Hamiltonian by ĤHs.
We ignore the matter-field interaction although it can be included as necessary.
The Hamiltonian ĤH for the complete system consists of the small system Hamiltonian
ĤHs, a summation of Hamiltonians for N multiple reservoirs ĤHr (such as a pump
and thermal reservoir), and a summation of Hamiltonians ĤHsr to describe the interaction
between the small system and the many possible reservoirs.

ĤH ¼ ĤHs þ ĤHsr þ ĤHr ð7:16:2Þ

The density operator exists in a direct product space. Normally, the interaction
between one system (such as a reservoir) and another one (such as the small system)
causes the wavefunctions, and hence the density operators, to become entangled.
The density operator for two systems cannot be factored into separate density opera-
tors for each individual system. However, if we assume the interaction between
the systems starts at to ¼ 0, then up to and including time to ¼ 0 we can separate and
reduce the density operator. For the case of the small system interacting with reservoirs,
we have

�̂�ð0Þ ¼ �̂�ðsÞð0Þ�̂� 1ð Þð0Þ�̂� 2ð Þð0Þ . . . �̂� Nð Þð0Þ ¼ �̂�ðsÞð0Þ 
N

r¼1
�̂�ðrÞð0Þ � �̂�ðsÞð0Þ �̂�ð1...NÞð0Þ ð7:16:3Þ

where the superscript ‘‘s’’ refers to the small system and the other superscripts refer to
the reservoirs. However, we can write the small-system density operator in terms of the
full density operator (not just t¼ 0)

�̂� sð ÞðtÞ ¼ Tr1Tr2 � � �TrN�̂�ðtÞ � Tr1���N�̂�ðtÞ ð7:16:4Þ
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The rate equation for the density operator can be rewritten using the total Hamiltonian
in Equation 7.16.2

_�� ¼
1

i�hh
ĤH, �
h i

¼
1

i�hh
ĤHs, �
h i

þ
1

i�hh
ĤHsr, �
h i

þ
1

i�hh
ĤHr, �
h i

ð7:16:5Þ

where Hs does not involve any of the reservoir operators. Taking the trace of Equation
7.16.5 over the reservoir states then reduces _�� and ½ĤH, �� to terms involving only the system
density operator �s. The last two terms in Equation 7.16.5 provide the ‘‘relaxation’’ effects

_��s ¼
1

i�hh
ĤHs, �s

h i
þ
@�s

@t

����
envir

¼
1

i�hh
ĤHs, �s

h i
þ
X

i

@�s

@t

����reserv
#i

ð7:16:6Þ

Equation 7.16.6 is similar to the Liouville equation discussed in the first two sections
of this chapter.

7.16.2 Multiple Reservoirs

Suppose multiple reservoirs interact with a single small system. Let the operators

R(a)
¼fRðaÞi g refer to the ath reservoir. Each reservoir can be characterized differently from

the other; for example, thermal reservoirs might have different temperatures. Segregate
the operators for the system so that an interaction Hamiltonian links the set S(a)

¼fSðaÞi g

with the ath reservoir; i.e., the degrees of freedom represented by set S(a) interact with
the ath reservoir (see Figure 7.16.1). The sets SðaÞ are not necessarily disjoint. A two level
atom has 2 ladder operators that can be linked to any number of reservoirs. All of the
reservoir operators commute with the system operators for all times in the Schrodinger
and interaction representations

ŜSðaÞi , R̂RðbÞj

h i
¼ 0 ð7:16:7Þ

since S and R refer to separate Hilbert spaces. However, by necessity, each individual
set contains noncommuting operators. For example, there exists indices ‘‘i’’ and ‘‘j’’
such that

ŜSðaÞi , ŜSðaÞj

h i
6¼ 0 ð7:16:8Þ

FIGURE 7.16.1

The operators for the small system link with operators for the reservoirs by the interaction Hamiltonian.
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and similar considerations for the set R. Assume a total of ‘‘N’’ reservoirs and an
interaction Hamiltonian of the form

ĤHsr ¼ V̂V ¼
XN

a¼1

X
i

CiŜS
ðaÞ
i R̂RðaÞi ð7:16:9Þ

Notice that we don’t distinguish between raising and lowering operators in this topic.
The coupling constant Ci describes the strength of the particular term for the interac-
tion. We suppress it for notational convenience.

Example 7.16.1

Suppose the system consists of an atom and an electromagnetic EM field attributed to
spontaneous emission. The field interacts with the vacuum reservoir. The ‘‘free’’ field
Hamiltonian is

ĤH ¼
X

k

�hh!k b̂bþk b̂b�k þ
1

2

� �

There are two operators ŜSð1Þi and ŜSð1Þj in the set ‘‘S’’ such that, for each k,

ŜS 1ð Þ
i ¼ b̂bþk and ŜS 1ð Þ

j ¼ b̂b�k

7.16.3 Dynamics and the Perturbation Expansion

The total density operator �̂� in the Schrodinger representation satisfies

_̂��̂�� ¼
1

i�hh
ĤH, �̂�
h i

ð7:16:10Þ

for the complete Hamiltonian ĤH in Equation 7.16.2. We denote operators in the
Schrodinger representation by the ‘‘caret’’ such as ÔO, and operators in the interaction
representation by O

^

. It would be nice to use a perturbation expansion to find the density
operator in Equation 7.16.10 by treating the right-hand side as small. Working with the
interaction representation allows us to replace the Hamiltonian ĤH with the interaction

potential V¼H
^

sr which can be made as small as necessary. In the interaction repre-
sentation, this interaction Hamiltonian controls the motion of �

^
in Hilbert space (see

_
�
^
�
^
¼

1

i�hh
H
^

sr, �
^

h i
ð7:16:11Þ

The interaction representation writes the density operator and Hamiltonian as

�
^
¼ ûuþ�̂� ûu H

^

sr ¼ ûuþĤHsr ûu

where the explicit form of the unitary operator ûu ¼ expðĤHot=i�hhÞ assumes the reservoir-
system interaction starts at to ¼ 0. The ‘‘free’’ Hamiltonian is ĤHo ¼ ĤHs þ ĤHr, which
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describes the evolution of the system and reservoirs without any interaction between
them. The evolution operator can be written as ûu ¼ ûusûur since the two Hamiltonians
commute ½ĤHs, ĤHr� ¼ 0 and the exponential can therefore be divided into two pieces.
Equation 7.16.11 can be integrated to give

�
^
ðtÞ ¼ �

^
ð0Þ þ

1

i�hh

Z t

o
d	 H

^

srð	Þ , �
^
	ð Þ

h i
ð7:16:12Þ

At this point, two approaches can be taken. The first approach assumes that H
^

sr ¼ V
^

is small. Equation 7.16.12 can be repeatedly substituted into itself to find

�
^
ðtÞ ¼ �

^
ð0Þ þ

1

i�hh

Z t

o
d	1 H

^

srð	1Þ, �
^

0ð Þ
h i

þ
1

i�hhð Þ2

Z t

o
d	1

Z 	1

o
d	2 H

^

srð	1Þ, H
^

srð	2Þ, �
^

0ð Þ
h ih i

þ � � �

ð7:16:13Þ

Rearranging terms and using the course grain derivative (see 7.16.5)

_
�
^
�
^
ðtÞ ¼ Lim

t!0

�
^

tð Þ � �
^

0ð Þ

t

Notice that the derivative would normally be defined as
_
�
^
�
^
ð0Þ rather than

_
�
^
�
^
ðtÞ but we

are taking t as small. The course grained derivative uses a time t longer than the
correlation time of the reservoir. Equation 7.16.14 becomes

_
�
^
�
^
ðtÞ ¼

1

i�hh
H
^

srðtÞ , �
^

0ð Þ
h i

þ
1

i�hhð Þ2

Z t

o
d	 H

^

srðtÞ , H
^

srð	Þ , �
^

0ð Þ
h ih i

þ � � � ð7:16:14Þ

Again, Equation 7.16.14 makes it quite clear that the interaction Hamiltonian alone
causes the density operator to evolve in time. For notational convenience, we use V
rather than Hsr

_
�
^
�
^
ffi

1

i�hh
V
^

, �
^
ð0Þ

h i
þ

1

i�hhð Þ2

Z t

o
dt0 V

^

ðtÞ, V
^

ðt0Þ, �
^
ð0Þ

h ih i
þ � � � ð7:16:15Þ

This first approach clearly shows where Equation 7.16.3 becomes important. However,
later we will want the density operator to depend on time rather than having t¼ 0. Then
we will need to assume the equation holds for times other than t¼ 0.

The second approach does not make an approximation for the density operator.
Instead, Equation 7.16.12 is substituted back into Equation 7.16.11, specifically
_
�
^
�
^
¼ 1

i�hh ½H
^

sr, �
^
� , to find

_
�
^
�
^
¼

1

i�hh
V
^

, �
^
ð0Þ

h i
þ

1

i�hhð Þ2

Z t

o
dt0 V

^

ðtÞ, V
^

ðt0Þ, �
^
ðt0Þ

h ih i
ð7:16:16Þ
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The derivative will again be taken to mean a course derivative. The argument of the
integral has a density operator that depends on time. However in this case, we will need
to assume the density operator can be factored into a form similar to Equation 7.16.3
at the time t. We will follow the first approach.

It is necessary to take the trace of Equation 7.16.16 over the reservoir states to find the
equation of motion for the system density operator. There are two ways to accomplish
the task. First consider that the eigenvector are always independent of time. If nj if g
denotes the set of reservoir eigenstates then

Trr
_
�
^
�
^
	 

¼
X

n

nh j
_
�
^
�
^

nj i ¼
@

@t

X
n

nh j �
^

nj i ¼
@

@t
Trr �

^
¼

_
�
^
�
^ðsÞ

As a second method, the same expression is easily seen to hold by using the definition
of derivative

Trr
_
�
^
�
^
ðtÞ ffi Trr

�
^
ðtþ�tÞ � �

^
ðtÞ

�t
¼

1

�t
Trr �

^
ðtþ�tÞ � Trr �

^
ðtÞ

n o

¼
1

�t
�
^ðsÞ
ðtþ�tÞ � �

^ðsÞ
ðtÞ

n o
ffi

_
�
^
�
^ðsÞ
ðtÞ

Either way, taking the trace over all of the reservoirs provides

_
�
^
�
^ðsÞ
¼

1

i�hh
Tr1���N V

^

, �
^
ð0Þ

h i
þ

1

i�hhð Þ2
Tr1���N

Z t

o
dt0 V

^

ðtÞ, V
^

ðt0Þ, �
^
ð0Þ

h ih i
þ � � � ð7:16:17Þ

Equation 7.16.17 calculates a ‘‘course-grain derivative’’ in that the times involved are
longer than the correlation times of the reservoir.

Finally for this topic, the interaction representation of the density operator at t¼ 0 can
be replaced by the Schrodinger representation since

�
^
ðtÞ ¼ ûuþðtÞ �̂� tð Þ ûu tð Þ with ûu ¼ exp

ĤHot

i�hh

 !
and ĤHo ¼ ĤHs þ ĤHr

Setting t¼ 0 provides

ûuð0Þ ¼ 1 and therefore �
^
ð0Þ ¼ ûuþð0Þ �̂� 0ð Þ ûu 0ð Þ ¼ �̂� 0ð Þ

Equation 7.16.17 has an alternate form

_
�
^
�
^ðsÞ
¼

1

i�hh
Tr1���N V

^

, �̂�ð0Þ
h i

þ
1

i�hhð Þ2
Tr1���N

Z t

o
dt0 V

^

ðtÞ, V
^

ðt0Þ, �̂�ð0Þ
h ih i

þ � � � ð7:16:18Þ
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7.16.4 The Langevin Displacement Term

Now we show the average Tr1���N½V
^

, �
^
ð0Þ� in the first term of Equation 7.16.18 can be

neglected. The first term yields

Tr1���N V
^

, �ð0Þ
h i

¼ Tr1���N

X
ai

S
^ðaÞ

i R
^ ðaÞ

i , � 0ð Þ

 �
¼ Tr1���N

X
ai

S
^ðaÞ

i R
^ ðaÞ

i , �ðsÞ 0ð Þ� 1...Nð Þð0Þ

 �

¼ Tr1���N

X
ai

�ðsÞ 0ð ÞS
^ðaÞ

i R
^ ðaÞ

i , � 1...Nð Þð0Þ

 �
þ S

^ðaÞ

i , �ðsÞ 0ð Þ

 �
R
^ ðaÞ

i �
1...Nð Þð0Þ

� �

The trace refers to the reservoir degrees of freedom. The terms in this last equation are
all similar.

Tr1...NR
^ að Þ

i �
1...Nð Þð0Þ ¼ Tr1�

1ð Þð0Þ . . . Tra�1�
a�1ð Þð0Þ TraR

^ að Þ

i �
að Þð0Þ

� �
Traþ1�

aþ1ð Þð0Þ . . . TrN�
Nð Þð0Þ

ð7:16:19Þ

Factors without the reservoir variable R
^ að Þ

i provide results similar to

Tr1 �
1ð Þð0Þ ¼ 1

by definition of the density operator. The factors with the reservoir variable give

TraR
^ að Þ

i �
að Þð0Þ ¼ Tra �

að Þð0ÞR
^ að Þ

i ¼ R
^ að Þ

i

� �
res
a

ð7:16:20aÞ

This average at most adds a constant to Equation 7.16.18. However, the operetors R̂R
represent either creation or annihilation operators so that the average becomes zero
according to nh jR̂R nj i � n j n	 1h i ¼ 0. Also notice that the cyclic property of the trace
can be used to rearrange the order of ‘‘R’’ and ‘‘�’’ as necessary. Therefore, the Langevin
displacement term becomes

Tr1���N V
^

, �ð0Þ
h i

¼ 0 ð7:16:20bÞ

where the equality follows from the cyclic property of the trace operation.

7.16.5 Reservoir Correlation Time and the Course Grain Derivative

The ensemble average of reservoir operators R̂Rj can be found by calculating the trace

Tr1...NR
^ að Þ

i �
1...Nð Þ as shown in Equation 7.16.20a. The ensemble average must agree with the

time average taken over a sufficiently long time interval (for an ergodic process). This is
where the question of the interval of integration becomes important and why the time
derivative in Equation 7.16.15 is usually called the ‘‘course grain derivative.’’ If the values
of the random variables fluctuate and are correlated over a small time interval, then the
time average of the random variable might depend on the length of the time interval.

shows that the average of some variable R over the time
interval [0, 1] must be nonzero while over [0, 2] it must be zero. Presumably, with long
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enough integration time, the average will be identically zero for all times. This time
average (over sufficiently long times) matches the ensemble average since every dupli-
cate system in the ensemble is in a different possible state.

We show how the use of the course grain derivative implies Equation 7.16.20b.
Consider the reservoirs. A derivative of a reservoir quantity is defined by

dR

dt
¼ Lim

�t!0

R tþ�tð Þ � R tð Þ

�t
ð7:16:21aÞ

For the case of Figure 7.16.2, the derivative is essentially nonzero for all times.
However, if we take an ensemble average of the derivative, which is equivalent to
an average over time ‘‘t’’ on the right hand side of the derivative, we find

Lim
�t!0

R tþ�tð Þ � R tð Þ

�t

� �
� Lim

�t!0

R tþ�tð Þ
� �

� R tð Þ
� �

�t
¼

d

dt
�RR tð Þ ð7:16:21bÞ

Averaging removes any fluctuations and the derivative would produce zero. A system
is not stationary when the random variable changes on average with time �RRðtÞ (see

tion time so that changes in the reservoir parameters remain constant.
Next consider a term such as

_
�
^
�
^ðsÞ
¼ 1

i�hhð Þ2
Tr1���N

R t
o dt0½V

^

ðtÞ, ½V
^

ðt0Þ, �̂�ð0Þ� � in Equation 7.16.18.
We assume large times t compared with the reservoir correlation time but small
compared with any system time constants. The system density operator �

^ðsÞ slowly
evolves in time. In what follows, we will remove terms from the integral that depend
on ‘‘t’’ (but not t0) to find integrals of the form

X
ija

S
^ðaÞ

i tð Þ

Z t

o
dt0 S

^ðaÞ

j t0ð Þ�ðsÞð0Þ R
^ að Þ

i t� t0ð ÞR
^ að Þ

j ð0Þ

� �

Because the reservoir quantities are only correlated on a very small time scale, one that
is ignored by course graining, the time ‘‘t’’ on the integral can be replaced by 1.

Essentially, course graining a quantity means to average out any fast variations
(see also For example, a system quantity S averages over a time �	
long compared with random fluctuations (such as a Langevin source) would have an
average that can still depend on time

�SSðtÞ ¼
1

�	

Z tþ�	

t
Sð	Þ d	 ð7:16:22Þ

FIGURE 7.16.2

The average of R over the interval (0, 2) is zero whereas it is nonzero on (0,1).
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7.16.6 The Relaxation Term

The second term in Equation 7.16.18 gives the relaxation effects

Term 2 ¼ Tr1���N

Z t

o
dt0 V

^

ðtÞ, V
^

ðt0Þ, �
^
ð0Þ

h ih i

Expanding the commutators provide

Term 2 ¼ Tr1���N

Z t

o
dt0 V

^

ðtÞ,V
^

ðt0Þ �
^
ð0Þ � �

^
ð0ÞV

^

ðt0Þ
h i

¼ Tr1���N

Z t

o
dt0 V

^

ðtÞV
^

ðt0Þ�
^
ð0Þ

 Term 2:1!
�V

^

ðtÞ�
^
ð0ÞV

^

ðt0Þ
 Term 2:2!

�V
^

ðt0Þ�
^
ð0ÞV

^

ðtÞ
 Term 2:3!

þ �
^
ð0ÞV

^

ðt0ÞV
^

ðtÞ
 Term 2:4!

 �

ð7:16:23Þ

Examine each sub-term in Equation 7.16.23. Substitute expressions for the interaction
Hamiltonian in each one. For example, Term 2.1 becomes

Term 2:1 ¼ Tr1...N

Z t

o
dt0V

^

ðtÞV
^

ðt0Þ�
^
ð0Þ ¼ Tr1...N

Z t

o
dt0
X
aij

S
^ðaÞ

i tð ÞR
^ að Þ

i tð Þ
X

b

S
^ðbÞ

j t0ð ÞR
^ bð Þ

j t0ð Þ �
^
ð0Þ

¼ Tr1...N

Z t

o
dt0
X
ij, ab

S
^ðaÞ

i tð Þ R
^ að Þ

i tð Þ S
^ðbÞ

j t0ð Þ R
^ bð Þ

j t0ð Þ �
^ðsÞ
ð0Þ �

^ð1...NÞ
ð0Þ

Recall from the discussion at the start of 7.16.2 that, for example, the operator S
^ðaÞ

i is linked
to reservoir ‘‘(a)’’ through the interaction Hamiltonian. This linking cannot affect the
basic commutation relations ½ŜSðaÞi , R̂RðbÞj � ¼ 0 in Equation 7.16.7, since the operators refer

to separate Hilbert spaces. Likewise the position of �
^ðsÞ
ð0Þ with respect to �

^ð1...NÞ
can be

rearranged at will. However, operators ŜSðaÞi do not necessarily commute with other
operators in the set SðaÞ nor with the system density operator �

^ðsÞð0Þ. Similar comments
apply to the reservoir operators. Moving the trace inside the summation and commut-
ing operators as appropriate provides

Term 2:1 ¼

Z t

o
dt0
X
ij, ab

S
^ðaÞ

i tð Þ S
^ðbÞ

j t0ð Þ �
^ðsÞ
ð0ÞTr1...N R

^ að Þ

i tð ÞR
^ bð Þ

j t0ð Þ�
^ð1...NÞ

ð0Þ

 �

Assuming the reservoir variables must be stationary means that trace over the reservoir
does not depend on the origin of time and last integral can be written as

Term 2:1 ¼

Z t

o
dt0
X
ij, ab

S
^ðaÞ

i tð Þ S
^ðbÞ

j t0ð Þ �
^ðsÞ
ð0ÞTr1...N R

^ að Þ

i t� t0ð ÞR
^ bð Þ

j 0ð Þ�
^ð1...NÞ

ð0Þ

 �

Replacing the integration variable with 	 ¼ t� t0 produces

Term 2:1 ¼

Z t

o
d	
X
ij, ab

S
^ðaÞ

i tð Þ S
^ðbÞ

j t� 	ð Þ �
^ðsÞ
ð0ÞTr1...N R

^ að Þ

i 	ð ÞR
^ bð Þ

j 0ð Þ�
^ð1...NÞ

ð0Þ

 �
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Following the procedure outlined in the previous subtopic (see Equation 7.16.19), the
trace factor can be rewritten as

Term2:1 ¼

Z t

o
d	
X
ij, ab

S
^ðaÞ

i tð Þ S
^ðbÞ

j t� 	ð Þ �
^ðsÞ
ð0Þ R

^ að Þ

i 	ð ÞR
^ bð Þ

j 0ð Þ

� �
�ab

¼

Z t

o
d	
X
ij, a

S
^ðaÞ

i tð ÞS
^ðaÞ

j t� 	ð Þ�
^ðsÞ
ð0Þ R

^ að Þ

i 	ð ÞR
^ að Þ

j 0ð Þ

� � ð7:16:24aÞ

since for a 6¼ b the fluctuations average to zero

Tr1...N R
^ að Þ

i 	ð Þ R
^ bð Þ

j 0ð Þ �
^ð1...NÞ

ð0Þ

 �
¼ R

^ að Þ

i 	ð Þ

� �
R
^ bð Þ

j 0ð Þ

� �
¼ 0

Similar reasoning applies to the other parts of ‘‘term 2.’’

Term 2:2 ¼

Z t

o
d	
X
ij, a

S
^ðaÞ

i tð Þ �
^ðsÞ
ð0Þ S

^ðaÞ

j t� 	ð Þ R
^ að Þ

i 0ð ÞR
^ að Þ

j 	ð Þ

� �
ð7:16:24bÞ

Term 2:3 ¼

Z t

o
d	
X
ij, a

S
^ðaÞ

i t� 	ð Þ �ðsÞð0Þ S
^ðaÞ

j tð Þ R
^ að Þ

i 	ð ÞR
^ að Þ

j 0ð Þ

� �
ð7:16:24cÞ

Term 2:4 ¼

Z t

o
d	
X
ij, a

�ðsÞð0Þ S
^ðaÞ

i t� 	ð Þ S
^ðaÞ

j tð Þ R
^ að Þ

i 0ð Þ R
^ að Þ

j 	ð Þ

� �
ð7:16:24dÞ

where the cyclic property of the trace is used to obtain the results for Terms 2.2 and 2.3.
Also, dummy indices i, j and m, n can be interchanged at will.

All of the terms in Equations 7.16.24 can be combined into Equation 7.16.23 to produce
the equation of motion for the density operator. The limit ‘‘t’’ on the integral is replaced
by 1 since the correlation functions are nonzero only for exceedingly small times. We
also assume that the system density operator at small time t can be replaced

�̂� sð Þ 0ð Þ ¼ �
^ sð Þ

0ð Þ ! �
^ sð Þ

tð Þ

Equation 7.16.23 becomes

_
�
^
�
^ sð Þ

tð Þ ¼ �
1

�hh2

X
ija

Z 1
o

d	

(
S
^ að Þ

i ðtÞ, S
^ að Þ

j t� 	ð Þ�
^ sð Þ

tð Þ

 �
R
^ að Þ

i 	ð Þ R
^ að Þ

j 0ð Þ

� �
þ

� S
^ að Þ

i ðtÞ, �
^ sð Þ

tð ÞS
^ að Þ

j t� 	ð Þ

 �
R
^ að Þ

j 0ð Þ R
^ að Þ

i 	ð Þ

� �) ð7:16:25Þ

We can make the replacement R
^ að Þ

j ð0Þ ¼ R̂R að Þ
j ð0Þ if desired.
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7.16.7 The Pauli Master Equation

Now we develop the relaxation terms in the Liouville equation for the density matrix.
We modify the approach found in Weissbluth’s book for a single reservoir by including
multiple reservoirs. Let kj if g be eigenvectors of ĤHs, the system Hamiltonian.

_
�
^
�
^ sð Þ

tð Þ ¼ �
1

�hh2

X
ija

Z 1
o

d	

(
S
^ að Þ

i ðtÞ, S
^ að Þ

j t� 	ð Þ�
^ sð Þ

tð Þ

 �

 Term 3:1!

R
^ að Þ

i 	ð ÞR
^ að Þ

j 0ð Þ

� �
þ

� S
^ að Þ

i ðtÞ, �
^ sð Þ

tð ÞS
^ að Þ

j t� 	ð Þ

 �

 Term 3:2!

R
^ að Þ

j 0ð ÞR
^ að Þ

i 	ð Þ

� �) ð7:16:26Þ

where R
^ að Þ

j 0ð Þ ¼ R̂R að Þ
j . After considerable algebraic manipulation, Term 3.1 in

_
�
^
�
^ sð Þ

tð Þ can be

rewritten using the closure relation for the system eigenstates

kh j S
^ að Þ

i ðtÞ, S
^ að Þ

j t� 	ð Þ�
^ sð Þ

tð Þ

 �
lj i ¼

X
nm

mh j �
^ sð Þ

tð Þ nj i �ln

X
r

kh jS að Þ
i rj i rh jS að Þ

j mj ie�i!rmtþ

(

� �ln

X
r

nh jS að Þ
i lj i kh jS að Þ

j mj ie�i!kmt

)
ei !kmþ!nlð Þt

where the complex exponential functions come from changing the interaction
representation into the Schrodinger representation. Term 3.2 becomes

kh j S
^ að Þ

i ðtÞ, �
^ sð Þ

tð ÞS
^ að Þ

j t� 	ð Þ

 �
lj i ¼

X
nm

mh j�
^ sð Þ

tð Þ nj i
n

nh jŜS að Þ
j lj i kh jŜS að Þ

i mj ie�i!nltþ

� �km

X
r

nh jŜS að Þ
j rj i rh jŜS að Þ

i lj ie�i!nrt
o

ei !kmþ!nlð Þt

ð7:16:27Þ

where ‘‘l’’ is lower case ‘‘L.’’ The difference in angular frequency is

!nl ¼
1

�hh
En � Elð Þ ð7:16:28Þ

where En (etc.) refers to the energy of nth level of the system. Notice that !nl can be
negative.

Define matrix elements

�
að Þþ

nlkm ¼
1

�hh2

X
ij

nh jŜS að Þ
i lj i kh jŜS að Þ

j mj i

Z 1
o

d	 e�i!km	 R
^ að Þ

i 	ð ÞR
^ að Þ

j 0ð Þ

� �
ð7:16:29Þ

�
að Þ�

nlkm ¼
1

�hh2

X
ij

nh jŜS að Þ
j lj i kh jŜS að Þ

i mj i

Z 1
o

d	 e�i!nl	 R
^ að Þ

j 0ð ÞR
^ að Þ

i 	ð Þ

� �
ð7:16:30Þ
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and also the relaxation matrix elements

R að Þ
klmn ¼ ��ln

X
r

�
að Þþ

krrm þ �
að Þþ

nllm þ �
að Þ�

nlkm � �km

X
r

�
að Þ�

nrrl ð7:16:31Þ

Substitute all Equations 7.16.27 through 7.16.31 into Equation 7.16.26 to find

kh j
_
�
^
�
^

s tð Þ lj i ¼
X
nma

mh j �
^

s tð Þ nj iR að Þ
klmnei !kmþ!nlð Þt ð7:16:32Þ

Applying the rotating wave approximation (RWA) requires

!km þ !nl ¼ 0

There are three cases implied by the RWA

ðk ¼ m, l ¼ nk 6¼ lÞ ðk ¼ l,m ¼ n, k 6¼ nÞ ðk ¼ l ¼ n ¼ mÞ

From these, two separate equations can be found

kh j
_
�
^
�
^

s tð Þ lj i ¼
X

a

kh j �
^

s tð Þ lj iRðaÞklkl and kh j
_
�
^
�
^

kj i ¼
X

a

X
n
n 6¼k

nh j �
^

sðtÞ nj i RðaÞkknn

Define

Rijkl ¼
X

a

R að Þ
ijkl

and combine the previous two equations to obtain

kh j
_
�
^
�
^

s tð Þ lj i ¼ kh j �
^

s tð Þ lj iRklkl þ �kl

X
n
n 6¼k

nh j �
^

sðtÞ nj i Rkknn ð7:16:33Þ

Notice that the effect of all the reservoirs combines into a single constant. This equation
clearly shows that the reservoir causes a relaxation of the density operator (the system
changes state due to the reservoir interaction). If k¼ l, then the first term on the right side
represents the number of electrons, for example, leaving state k, while the second term
represents the number entering state k from a different state n.

Equation 7.16.33 shows how the density operator changes due to the interaction
between the reservoir and system in the interaction representation. Now we write the
equation of motion in the Schrodinger representation. Equation 7.15.29b in 7.15.5 is
repeated here as

@�̂�s tð Þ

@t
¼ ûus

_
�
^
�
^

s tð Þ ûuþs þ
1

i�hh
ĤHs, �̂�s tð Þ
h i

ð7:16:34Þ

To combine Equations 7.16.33 and 7.16.34, requires that we take the ‘‘kl’’ matrix element
of Equation 7.16.34.

@�̂�s tð Þ

@t

�
kl

¼ kh j ûus
_
�
^
�
^

s tð Þ ûuþs

h i
lj i þ

1

i�hh
ĤHs, �̂�s tð Þ
h i

kl

¼ kh j e
ĤHst
i�hh

_
�
^
�
^

s tð Þ e�
ĤHst
i�hh

h i
lj i þ

1

i�hh
ĤHs, �̂�s tð Þ
h i

kl

ð7:16:35Þ
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Operating with the unitary operators inside the first expectation value on the
right-hand side provides

kh j e
ĤHst
i�hh

_
�
^
�
^

s tð Þ e�
ĤHst
i�hh

h i
lj i ¼ ei!lkt kh j

_
�
^
�
^

s tð Þ lj i

so that Equation 7.16.34 becomes

@�̂�s tð Þ

@t

�
kl

¼ ei!lkt kh j
_
�
^
�
^

s tð Þ lj i þ
1

i�hh
ĤHs, �̂�s tð Þ
h i

kl
ð7:16:36Þ

Combining Equations 7.16.33 and 7.16.36 provides

@�̂�s tð Þ

@t

�
kl

¼
1

i�hh
ĤHs, �̂�s tð Þ
h i

kl
þ ei!lkt kh j �

^

s tð Þ lj iRklkl þ ei!lkt�kl

X
n
n 6¼k

nh j �
^

sðtÞ nj i Rkknn

Writing the interaction density operator in terms of the Schrodinger operator, yields

@�̂�s tð Þ

@t

�
kl

¼
1

i�hh
ĤHs, �̂�s tð Þ
h i

kl
þ ei!lkt kh jûuþs �̂�s tð Þ ûus lj iRklkl þ ei!lkt�kl

X
n
n 6¼k

nh j ûuþs �̂�sðtÞ ûus nj i Rkknn

The equation can be rewritten by substituting the exponential form of the unitary
operators ûus ¼ expðĤHst=i�hhÞ which can operate on the basis vectors. The operation
yields a factor of e�i!lkt to yield

@�̂�kl

@t
¼

1

i�hh
ĤHs, �̂�s tð Þ
h i

kl
þ ei!lkte�i!lkt kh j �̂�s tð Þ lj iRklkl þ ei!lkt�kl

X
n
n 6¼k

ei!nt�i!nt nh j �̂�sðtÞ nj i Rkknn

Canceling exponential terms and noting that the factor �kl results in !lk ¼ !l � !k ¼ 0,
we end up with

@�̂� sð Þ
kl

@t
¼

1

i�hh
ĤHs, �̂�

sð Þ tð Þ
h i

kl
þ kh j �̂� sð Þ tð Þ lj iRklkl þ �kl

X
n
n 6¼k

nh j �̂� sð ÞðtÞ nj i Rkknn ð7:16:37Þ

Equation 7.16.37 is the Liouville equation for the density matrix as discussed in the
first several sections of this chapter. The commutator provides the dynamics internal
to the system itself. As a very important point, the exact composition of the ‘‘system’’ is
unspecified; it can be composed of an atom and an electromagnetic wave interacting
with the atom. Using notation previously employed, the last two terms in Equation
7.16.37, can be written as

@�̂� sð Þ
kl

@t

�����
environ

¼ kh j�̂� sð Þ tð Þ lj iRklkl þ �kl

X
n
n 6¼k

nh j�̂� sð ÞðtÞ nj iRkknn
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The rate of change of the diagonal elements must be

@�̂� sð Þ
kk

@t

�����
environ

¼ kh j�̂� sð Þ tð Þ kj iRkkkk þ
X
n
n 6¼k

nh j�̂� sð ÞðtÞ nj iRkknn

The first term is the transition out of level ‘‘k’’ and the second term is the transition rate
into level ‘‘k’’ from other levels ‘‘n.’’ Figure 7.16.3 indicates the transition rates by W.

7.17 Quantum Mechanical Fluctuation-Dissipation Theorem

The laser rate equations must incorporate fluctuation and dissipation sources in accord-
ance with the fluctuation-dissipation theorem. Usually we assume a long enough time

show the dissipation terms such as that for spontaneous recombination. This section
demonstrate how the dissipation-fluctuations arise from quantum mechanical interac-
tions between a system and a reservoir. In particular, the Langevin source terms appear
as the Fourier transforms of the reservoir-system coupling coefficients. For the Langevin
forces to be truly delta-function correlated, the coupling strengths (as a function of
frequency) must be broadband (approximately independent of frequency). The jitter
and relaxation effects for a single atom can be most clearly seen in the Hesienberg
representation of the raising/lowering operators.

7.17.1 Some Introductory Comments

Recall that the Liouville equation comes from writing the Hamiltonian as

ĤH ¼ ĤHo þ ĤHenviron ¼ ĤHa þ V̂V þ ĤHenviron

which leads to

@�̂�

@t
¼

1

i�hh
ĤHo, �̂�
h i

þ
@�̂�

@t

� �
environ

¼
1

i�hh
ĤHo, �̂�
h i

þ
@�̂�

@t

� �
pump

þ
@�̂�

@t

� �
coll

þ
@�̂�

@t

� �
spont

The density operator provides both a macroscopic statistical average and the microscopic
quantum mechanical average. The ĤHenviron term indicates that an ‘‘external’’ agent acts on
the system. These external agents cause the relaxation effects. The external agents can
be modeled as ‘‘reservoirs’’ (similar concept to thermal reservoirs). This section shows
that a reservoir induces rapid fluctuations (Langevin noise) as well as damping. 2.6.3
discusses the reservoir and the fluctuation-dissipation theorem in more detail.

FIGURE 7.16.3

The rates of transition ‘‘W ’’ between energy levels ‘‘E.’’ The diagonal
density matrix elements give the population of each level.
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The Liouville equation for the density operator is essentially a differential equation
for the energy level occupation number (i.e., nh j �̂� nj i) and the induced polarization
(off-diagonal terms). This section shows how a quantum mechanical reservoir gives
rise to damping and fluctuation terms in the Liouville equation (a.k.a., master equation).
The damping term appears as

@�̂�

@t

����
other

while, as expected, the average of the fluctuations disappears. The next sections will use
the trace over the reservoir states to calculate the average. The tracing operation produces
a zero average for the fluctuations and removes the reservoir degrees-of-freedom from
the differential equation.

The formalism can be applied to spontaneous and stimulated emission from atoms.
The density operator can incorporate the various types of EM states (Fock, coherent
and squeezed) and various atomic states. The density operator/matrix accounts for all
possible knowledge of the system.

7.17.2 Quantum Mechanical Fluctuation Dissipation Theorem

Consider a small system composed of a single harmonic oscillator and a reservoir with
a very large number of harmonic oscillators. Let fR̂Rþ! g and fR̂R�! gbe the creation and
annihilation operators for mode ! in the reservoir (in the Schrodinger representation).
Let ŜSþand ŜS� be raising and lowering operators for a harmonic oscillator defining a
small system. Alternatively, the same conclusions can be drawn for the raising �̂�þ and
�̂��, lowering operators for the Jaynes-Cummings’ 2-level atoms. The Hamiltonian for
the system and reservoir ĤH ¼ ĤHs þ ĤHr þ ĤHsr consists of the Hamiltonians for the system
ĤHs, reservoir ĤHr and system-reservoir interaction ĤHsr defined by

ĤHs ¼ �hh!s ŜSþŜS� þ
1

2

� �
ĤHr ¼

X
!

�hh! R̂Rþ! R̂R�! þ
1

2

� �

ĤHsr ¼
X
!

�!ŜSþR̂R�! þ
X
!

��!ŜS�R̂Rþ! ¼ ŜSþ
X
!

�!R̂R�! þ ŜS�
X
!

��!R̂Rþ!

The system-reservoir interaction Hamiltonian consists of terms that explicitly conserve
energy. For example, the annihilation operator fR̂R�! g removes a quantum of energy from

the reservoir and the raising operator ŜSþincrease the energy of the system. The symbols
�! represent the coupling strength of a reservoir oscillator (with angular frequency !) to
the system. The operators obey the following commutation relations.

ŜS�, ŜS�
h i

¼ 0 ¼ ŜSþ, ŜSþ
h i

ŜS�, ŜSþ
h i

¼ 1

R̂R�i , R̂R�j

h i
¼ 0 ¼ R̂Rþi , R̂Rþj

h i
R̂R�i , R̂Rþj

h i
¼ �ij

ŜS	, R̂R	
h i

¼ 0
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which also apply for equal-time commutators in the Heisenberg representation. The
Heisenberg representation of an operator ÔO is given by

~OO ¼ ûuþÔO ûu

where, for a closed system, the evolution operator must be ûu ¼ expðĤHt=i�hhÞ. Note the
use of the symbol over the operator ‘‘ ~OO’’ to indicate the Heisenberg representation. The
total Hamiltonian has the same form for either the Schrodinger or the Heisenberg
representations since ûu and ĤH commute

~HH ¼ ûuþĤH ûu ¼ ûuþûu ĤH ¼ ĤH

However, each individual Hamiltonian such as ĤHsr does not necessarily commute with
the full Hamiltonian. The Heisenberg Hamiltonian can be found just by adding the
‘‘twiddle’’ to each operator. The equation of motion for a Heisenberg operator ~OO is

d ~OO

dt
¼

i

�hh
~HH, ~OO

h i
þ ûuþ

@ÔO

@t
ûu

Usually the last term must be zero for most operators (except possibly the density
operator).

The operators of the theory therefore satisfy the following rate equations

_~SS~SS
�
¼

i

�hh
~HH, ~SS�

h i
¼

i

�hh
~HHs þ ~HHr þ ~HHsr, ~SS�

h i
¼

i

�hh
~HHs þ ~HHsr, ~SS�

h i
ð7:17:1Þ

The first commutator can be computed

~HHs, ~SS�
h i

¼ �hh!s
~SSþ ~SS� þ

1

2

� �
, ~SS�

 �
¼ �hh!s

~SSþ ~SS�, ~SS�
h i

¼ �hh!s
~SSþ, ~SS�
h i

~SS� ¼ ��hh!s
~SS�

The second commutator in Equation 7.17.1 can also be computed

~HHsr, ~SS�
h i

¼ ~SSþ
X
!

�! ~RR�! þ
~SS�
X
!

��!
~RRþ! , ~SS�

" #

¼ ~SSþ
X
!

�! ~RR�! , ~SS�

" #
¼ ~SSþ, ~SS�
h iX

!

�! ~RR�! ¼ �
X
!

�! ~RR�!

Combining the commutators into Equation 7.17.1 yields

_~SS~SS
�
¼ �i!s

~SS� �
i

�hh

X
!

�! ~RR�! ð7:17:2Þ

The adjoint of Equation 7.17.2 provides a similar equation for the raising operator.

_~SS~SS
þ
¼ i!s

~SSþ þ
i

�hh

X
!

��!
~RRþ! ð7:17:3Þ
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It is also necessary to find the equations of motion for the reservoir operators because
they occur in Equations 7.17.2 and 7.17.3.

_~RR~RR
�

! ¼
i

�hh
~HH, ~RR�!

h i
¼

i

�hh
~HHs þ ~HHr þ ~HHsr, ~RR�!

h i
¼

i

�hh
~HHr þ ~HHsr, ~RR�!

h i
ð7:17:4Þ

The first commutator provides

~HHr, ~RR�!

h i
¼

X
!0

�hh!0 ~RRþ!0
~RR�!0 þ

1

2

� �
, ~RR�!

" #
¼
X
!0

�hh!0 ~RRþ!0 ,
~RR�!

h i
~RR�!0 ¼ �

X
!0

�hh!0�!!0 ~RR
�
! ¼ ��hh! ~RR�!

The second commutator gives

~HHsr, ~RR�!

h i
¼ ~SSþ

X
!0
�!0 ~RR

�
!0 þ

~SS�
X
!0
��!0

~RRþ!0 ,
~RR�!

" #
¼ ~SS�

X
!0
��!0

~RRþ!0 ,
~RR�!

" #
¼ ���!

~SS�

Combining the last two commutators into Equation 7.17.4 gives

_~RR~RR
�

! ¼ �i! ~RR�! �
i

�hh
��!

~SS� ð7:17:5Þ

The adjoint gives

_~RR~RR
þ

! ¼ i! ~RRþ! þ
i

�hh
�!

~SSþ ð7:17:6Þ

An equation for the lowering operator (for the system) can be found by combining
Equations 7.17.5 and 7.17.2. First, formally solve equatsion 7.17.5 by using an integrat-

_

has the solution

yðtÞ ¼
�ð0Þyð0Þ

�ðtÞ
þ

1

�ðtÞ

Z t

o
d	 � 	ð Þ f 	ð Þ

with �ðtÞ ¼ e�at. Equation 7.17.5 has the integrating factor � ¼ ei!tand the formal solution

~RR�! ðtÞ ¼ e�i!t ~RR�! 0ð Þ þ
i��!
�hh

Z t

o
d	e�i!ðt�	Þ ~SS� 	ð Þ ð7:17:7Þ

Substituting Equation 7.17.7 into Equation 7.17.2, specifically
_~SS~SS
�
¼ �i!s

~SS� � i
�hh

P
! �!

~RR�!,
provides

_~SS~SS
�
þ i!s

~SS� þ
1

�hh2

X
!

�!
�� ��2 Z t

o
d	e�i!ðt�	Þ ~SS� 	ð Þ ¼ �

i

�hh

X
!

�!e�i!t ~RR�! 0ð Þ

which can be rewritten as

_~SS~SS
�
þ i!s

~SS� þ
1

�hh2

Z t

o
d	 ~SS� 	ð Þ

X
!

�!
�� ��2e�i!ðt�	Þ ¼ �

i

�hh

X
!

�!e�i!t ~RR�! 0ð Þ ð7:17:8Þ
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The integral in Equation 7.17.8 gives the damping whereas the summation is the
Langevin fluctuation. First evaluate the integral. The summation in the integrand can
be evaluated. Let g !ð Þ be the density of states (i.e., the number of �! per unit fre-
quency range).

X
!

�!
�� ��2e�i!ðt�	Þ ¼

Z y

x
d! g !ð Þ �!

�� ��2e�i!ðt�	Þ ð7:17:9Þ

where x, y are the smallest and largest allowed frequencies, respectively. A typical
assumption is that gð!Þ j�!j

2 is essentially independent of frequency, which is usually
stated as the coupling strength �! being relatively constant. For a number of calcu-
lations, the upper limit on the integral remains finite, which avoids pesky infinities. A

We take the upper limit to be infinity for simplicity. The summation becomes

X
!

�!
�� ��2e�i!ðt�	Þ ¼

Z 1
x

d! g !ð Þ �!
�� ��2e�i!ðt�	Þ ¼ g �

�� ��2 Z 1
x

d! e�i!ðt�	Þ ð7:17:10Þ

Two basic methods appear in texts and papers to calculate the integral. Some authors
include negative frequencies in the integral to obtain a Dirac delta function; however,
it is nonphysical to have negative frequencies since this corresponds to negative energies
for the harmonic oscillator.

Z 1
x

d! e�i!ðt�	Þ ¼

2� � t� 	ð Þ x ¼ �1

�g �
�� ��2� t� 	ð Þ � ig �

�� ��2 P

t� 	
x ¼ 0

8><
>: ð7:17:11Þ

The ‘‘P’’ in the above relation refers to the principal part. The development in this book
uses the expression with the negative frequencies.

We obtain the fluctuation-damping expression for the system operators by substituting
the top of Equations 7.17.11 into Equation 7.17.8.

_~SS~SS
�
þ i!s

~SS� þ
g �
�� ��22�

�hh2

Z t

o
d	 ~SS� 	ð Þ � t� 	ð Þ ¼ �

i

�hh

X
!

�!e�i!t ~RR�! 0ð Þ ð7:17:12Þ

With the definition of the Dirac delta function

Z b

o
d	� 	 � að Þ ¼

1 a 2 0, bð Þ

1=2 a ¼ 0 or b

0 a =2 0, b½ �

8>><
>>:

the equation of motion (7.17.12) becomes

_~SS~SS
�
þ i!s

~SS� þ
�g �
�� ��2
�hh2

~SS� tð Þ ¼ �
i

�hh

X
!

�!e�i!t ~RR�! 0ð Þ ð7:17:13aÞ
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The adjoint of this last result provides the equation of motion for the raising operator.

_~SS~SS
þ
� i!s

~SSþ þ
�g �
�� ��2
�hh2

~SSþ tð Þ ¼
i

�hh

X
!

��!eþi!t ~RRþ! 0ð Þ ð7:17:13bÞ

Now examine the terms in Equations 7.17.13a and 7.17.13b. The second term, which
is i!sS

^�
, controls the frequency of oscillation. The third term

�g �
�� ��2
�hh2

~SS� tð Þ

controls the damping/relaxation. Define the damping coefficient as

� ¼
�g �
�� ��2
�hh2

The last term in Equation 7.17.13 comprises the Langevin ‘‘force’’ describing the
random fluctuations that the reservoir induces in the system. The Langevin force term

~�� tð Þ ¼ �
i

�hh

X
!

�!e�i!t ~RR�! 0ð Þ ð7:17:14Þ

averages to zero as shown in 7.17.3. The final topic shows how Equations 7.17.13 lead
to an exponential decay.

7.17.3 The Average of the Langevin Noise Term

The average of the Langevin noise term ~�� tð Þ ¼ �ði=�hhÞ
P

! �!e�i!t ~RR�! 0ð Þ in Equation 7.17.14
can be calculated by either taking the time average or the ensemble average. For
ergodic systems, the two types of averages must produce identical results. The ensemble
average is

� tð Þ
� �

reserv
¼ Tr �r� tð Þð Þ ð7:17:15Þ

The density operator �̂�r is defined through a Boltzmann distribution as discussed in

�̂�r ¼
1

Z
exp �

ĤHr

kBT

 !
Z ¼ Trr exp �

ĤHr

kBT

 !( )

For this calculation, we really only require that the density operator be diagonal (a pure
state). For a reservoir consisting of a very large number of Harmonic oscillators with
many possible frequencies, the Hamiltonian must be

ĤHr ¼
X
!

�hh! R̂Rþ! R̂R�! þ
1

2

� �
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Denote a Fock state by

nf gj i ¼ n1, n2, n3, . . .j i

Returning to Equation 7.17.15, the average of the fluctuation term becomes

� tð Þ
� �

reserv
¼ Tr �̂�r� tð Þð Þ ¼ �

i

�hh
Tr �̂�r

X
!

�!e�i!tR
^�

! 0ð Þ

 !

¼ �
ie�i!t

�hhZ

X
!

�!Trr exp �
ĤHr

kBT

 !
R̂R�!

( )

This last equation uses the notation of R̂R�! ¼ R
^�

! 0ð Þ . We can easily calculate the trace as
follows

Trr exp �
ĤHr

kBT

 !
R̂R�!

( )
¼
X

nf g

nf gh j exp �
ĤHr

kBT

 !
R̂R�! nf gj i

Inserting the closure relation provides

Trr exp �
ĤHr

kBT

 !
R̂R�!

( )
¼

X
nf g, mf g

nf gh j exp �
ĤHr

kBT

 !
mf gj i mf gh j R̂R�! nf gj i

Here’s where the fact that �̂�r is diagonal becomes important.

Trr exp �
ĤHr

kBT

 !
R̂R�!

( )
¼

X
nf g, mf g

exp �
1

kBT

X
mf g

E mf g

 !
nf g j mf gh i mf gh j R̂R�! nf gj i

where E{m} is an obvious notation. The orthonormality of the Fock states provides

nf g j mf gh i ¼ � nf g, mf g

The trace becomes

Trr exp �
ĤHr

kBT

 !
R̂R�!

( )
¼

X
nf g, mf g

exp �
1

kBT

X
mf g

E mf g

 !
nf gh j R̂R�! nf gj i

Now its clear that the trace operation gives zero because the annihilation operator
removes a quanta of energy from the ket. For example

n1, n2 . . .h j R̂R�1 n1, n2 . . .j i ¼ n1, n2 . . . j n1 � 1,n2 . . .h i ¼ 0
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since Fock states with unequal occupation numbers must be orthogonal. Therefore we
find the expectation value of the Langevin fluctuation to be

� tð Þ
� �

reserv
¼ Tr �r� tð Þð Þ ¼ 0

7.17.4 Damping of the Small System

The raising and lowering operators for the small system have the form

_~SS~SS
�
þ i!s

~SS� þ
�g �
�� ��2
�hh2

~SS� tð Þ ¼ ~��ðtÞ ð7:17:16Þ

_~SS~SS
þ
� i!s

~SSþ þ
�g �
�� ��2
�hh2

~SSþ tð Þ ¼ ~��þðtÞ ð7:17:17Þ

where �ðtÞ ¼ � i
�hh

P
! �!e�i!t ~RR�! 0ð Þ. These equations can be solved (chapter exercises)

to find

~NNðtÞ ¼ e�2�t ~NNð0Þ ð7:17:18Þ

where ~NNðtÞ ¼ ~SSþðtÞ ~SSðtÞ is the Heisenberg representation of the number operator and

� ¼ �g �
�� ��2=�hh2. Notice that this solution can only hold when the system starts in a level

higher than the ground state.

7.18 Review Exercises

7.1 Consider a permanent dipole with charges 	e separated by a distance vector ~dd
pointing from �e, located at ~rr, to þe, located at ~rrþ ~dd. Show the total force (not
torque) acting on an electric dipole can be written as ~FF ¼ ~�� � r~EE, where ~EE denotes the
electric field. Hint: First work the problem for E x by Taylor expanding E xð~rrþ ~ddÞ.

7.2 Consider a permanent dipole with charges 	q which can oscillate about its center
of mass in the x-y plane. The charged particles both with mass m are separated by
a distance d. Let I denote the moment of inertia of the dipole. A torque ~		e ¼ �~zzc1I

returns the dipole to its equilibrium orientation along the x-axis (i.e., ~�� ¼ qd ~xx
at equilibrium) where ~xx, ~yy, ~zz represent unit vectors. A damping torque of the form
~		d ¼ �c1I _

 acts on the dipole. A very small electromagnetic wave ~EE ¼ ŷyEocos !tð Þ
incident on the dipole induces small oscillations.

1. Find the moment of inertia I.

2. Find the torque produced by the electric field.

3. Using Newton’s law relating torque and angular momentum, write the equation
of motion for the dipole. Explain the effect of the various terms.

4. Find the frequency response and detail any assumptions.

Matter–Light Interaction 601
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7.3 Show that a pure state �̂� ¼ j ih j reduces �̂�h i ¼ Trð�̂��̂�Þ to h ~��i ¼
R

d3r �ðq ~rrÞ .
7.4 A student is playing with a high-voltage distributor coil (30 kV) from an old car.

The student is trying to make a ‘‘shock box’’ for a demonstration. Another student
has a demonstration nearby that which has excited gas molecules enclosed in a glass
jar; most of the atoms have electrons in the n¼ 2 excited state. The first student
powers up the shock box and it emits a HUGE spark. With hair still smoking, the
student notices that the nearby gas emits a photon. Assume the spark produces
an electromagnetic field of the form

E ¼
E offiffiffiffiffiffi
2�
p

�
exp �

t2

2�2

 �

at the position of the atoms. The perturbation potential is then

V̂V ¼ �̂� � ~EE or V ¼ �~EE so that V12 ¼ �12
E offiffiffiffiffiffi
2�
p

�
exp �

t2

2�2

 �

Show the approximate probability of transition from state #2 to #1 has the form

E o
�12

i�hh

h i
exp �

�2

2
!2

12

 �

Hint: Integrate using

exp �
	2

2�2
þ i!12	

� �
¼ exp �

�2

2
!2

12

� �
exp �

1

2�2
	 þ i�2!12

� �2
� �

Z 1
�1

d	
1ffiffiffiffiffiffi
2�
p

b
exp �

	 	 að Þ
2

2b2

 �
¼ 1

7.5 For the electron harmonic oscillator ĤH ¼ ðp̂p2=2mÞ þ ðk=2Þx̂x2 with ! ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, define

Q̂Q ¼ ðâaþ âaþÞ=
ffiffiffi
2
p

and P̂P ¼ �iðâa� âaþ=
ffiffiffi
2
p
Þ, where âa, âaþ represent the ladder operators

1. Show x̂x ¼ Q̂Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hh=m!Þ

p
and p̂p ¼ P̂P

ffiffiffiffiffiffiffiffiffiffi
m!�hh
p

2. Show ½Q̂Q, P̂P� ¼ i.

3. Show ĤH ¼ ð�hh!=2ÞðQ̂Q2 þ P̂P2Þ

7.6 Using the Schrodinger representation of the electron coherent state

�ðtÞ
�� �

� eĤHt=i�hh �j i ¼ ei!t=2e� �ðtÞj j
2
=2
X

n

�ðtÞnffiffiffiffi
n!
p nj i

where �ðtÞ � �e�i!t ¼ �j jei��i!t. Show the center position of the coherent state must
oscillate according to �QQðtÞ ¼ h�ðtÞjQ̂Qj�ðtÞi ¼

ffiffiffi
2
p

Re �ðtÞ½ � ¼
ffiffiffi
2
p

�j j cos �� !tð Þ.
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7.7 Starting with �j i ¼ D̂D �ð Þ 0j i ¼ e�âaþ��� âa 0j i, show all of the steps leading to

 � Qð Þ ¼ Q
�� �� �
¼ Q
� ��D̂D �ð Þ 0j i ¼ ei �PPQe�i �PP �QQ=2 Q

� ��e�i �QQP̂P 0j i ¼ ei �PPQe�i �PP �QQ=2uo Q� �QQ
� �

and

 � ¼
1

�1=2
e� Q� �QQð Þ

2

:

7.8 Suppose a density operator has the form �̂� ¼
R 2�

o d�P �ð Þ �j i �h j, where � ¼ r ei�

and P denotes a probability density. Show, unlike the results of Problem 7.6, hQ̂Qi ¼ 0
for a uniform distribution P ¼ 1=2� for �.

7.9 Show the antisymmetry property of the electromagnetic field tensor F� ¼ �F�.
7.10 Use @�F� ¼ j to show the equation of continuity @t�þ r � ~JJ ¼ 0.

7.11 Show Ampere’s law r 
 ~BB ¼ ~JJþ ð@~EE=@tÞ starting with @�F� ¼ j.
7.12 Show the relation @1F23 þ @2F31 þ @3F12 ¼ 0 for the field tensor F.
7.13 Show F�F� ¼ �2ðE2 �B2Þ

7.14 Show all of the mathematical detail leading to the momentum density �� ¼
�@0A� þ @�A0 in Section 7.5 starting with

�� ¼
@

@ _AA�

�
1

4
F�F

� � j�A�

� �
¼ �

1

4

@

@ _AA�

F�F
�

7.15 Show the relation ~pp ¼ ðim=�hhÞ½ĤHA, r̂r�, where ‘‘A’’ denotes the atomic Hamiltonian.
7.16 For the interaction Hamiltonian ĤH A�L ¼ �̂� � ÊE, find its semiclassical form ĤHAL ¼

��h j�̂� � ÊE ��j i and compare it with the result for the pure coherent state given at
the end of Section 7.6.

7.17 Calculate the transition rate in Equation 7.8.6 for the transition from atomic level 2
to 1. Perform the calculation for the following optical parts of the transition.

1. Two different coherent states as in h�jÊE �j i.

2. A squeezed state as in ��h jÊE ��j i.

7.18 Let P̂Pab ¼ jai bh j and �̂� ¼
P

 P j ih j, respectively, be a basis vector in the direct
product space and the density operator where j i ¼

P
n �n nj i. Show hP̂Paaj�̂�i ¼ hj�aj

2i.
Explain the significance of this results.

7.19 Assume the electromagnetic interaction has been turned-off ĤHA�L ¼ V̂V ¼ 0. Find the
density operator as a function of time using the situation depicted in Figure P7.19
and assume the Liouville equation holds.

7.20 Find the matrix elements of the solution to the Liouville equation for the density
operator when the light-field and the relaxation mechanisms are switched off.
Assume a collection of 2-level atoms with energy basis satisfying ĤHo nj i ¼ En nj i.

1. Find the diagonal and off-diagonal elements for �̂�ðtÞ in terms of the �n in the
wave function expansion.

2. Assume at t¼ 0, the density matrix �ð0Þ ¼ �o is diagonal. Further assume initially
that any given atom has its electron definitely in atomic state j1i or j2i but not

Matter–Light Interaction 603
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a superposition of both. Explain with diagrams for a wave function in a 2-level
Hilbert space why the following relation holds h�nð0Þ�

�
mð0Þi ¼ PðnÞ�nm.

3. Write all elements of the density matrix as a function of time.

7.21 A small time-varying electric field is incident on a collection of two-level atoms
starting at t¼ 0. Assume initially that any given atom has its electron definitely in
atomic state 1j i or 2j i but not a superposition of both, where ĤHo nj i ¼ En nj i. Assume

the perturbation has the form V̂V ¼ Eð 0 �
� 0 Þ, where the field is assumed small. Let

�o represent the density matrix at t¼ 0. Find the lowest order terms in �ðtÞ. Do not
include the relaxation terms in the Liouville equation.

7.22 Show the algebra for the following transformation and identify the time 	. Neglect
thermal equilibrium statistics.

@�

@t

� �
env

¼

�aJ þ c�22 þ b�22 �
�12

T2

�
�21

T2
aJ � c�22 � b�22

2
64

3
75!�

�11 � ���11

	
�
�12

T2

�
�21

T2

�22 � ���22

	

2
64

3
75

7.23 Consider the Liouville equation for the density operator

@�ab

@t
¼

1

i�hh
ĤH, �̂�
h i

ab
�
�ab � ���ab

	ab

Assume the field has been removed and neglect thermal equilibrium statistics.

1. Explain why the current density must be small in ���22 ¼ ðaJÞ=ðbþ cÞ. If J becomes
large, what must change. Explain the physical significance.

2. Find �22 as a function of time and the pump-number current J.

7.24 Consider

@�

@t

� �
env

¼

�aJ þ cþ bð Þ �22 � f2
� �

�
�12

T2

�
�21

T2
aJ � cþ bð Þ �22 � f2

� �

2
664

3
775

that includes thermal equilibrium statistics.

1. Show ���11 ¼ �11ðt ¼ 1Þ ¼ �ðaJÞ=ðbþ cÞ þ f1 and ���22 ¼ �22 t ¼ 1ð Þ ¼ ðaJ=bþ cÞ þ f2

2. Show the rate of change of the density matrix due to environmental effects can
be written as ð@�ab=@tÞenv ¼ �ð�ab � ���abÞ=	ab

3. Find �abðtÞ for the environmental effects in terms of a, b, c, etc. You will also
need to include the value at t¼ 0 defined by �ð0Þ ¼ �o.

7.25 Assume the probability of finding an electron in state E has the form given by
P � e�E=kT. Assume N independent 2-level atoms with energy levels E1 ¼ 0 and
E240. Assume E1¼ 0.

1. What is the probability of an electron occupying level n where n¼ 1 or 2.
Hint: probabilities must add to 1.
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2. When 05E2 � kT, why is PðE2Þ ¼ 1=2? Show this mathematically and explain
physically.

3. Show LimT!0 PðE1Þ ¼ 1 and LimT!0 PðE2Þ ¼ 0. Explain this result physically.

4. Show the relaxation terms for the case with thermal equilibrium reduce to those
for the case without thermal equilibrium using the results of part c.

7.26 Work through the algebra in Section 7.11. Be sure to fill-in any missing steps.
7.27 Show the Lorentz line shape function Lð!Þ ¼ ð2T2Þ=ð1þ ð!� !oÞ

2 T2
2Þ has the full-

width half-max of 2=T2.
7.28 Suppose N two-level atoms are embedded in a host dielectric (fiber) with real

susceptibility �b. Assume an external, monochromatic light source pumps the
embedded atoms and induces susceptibility �p. Assuming the total polarization
is linear in the EM field, show the total susceptibility must be � ¼ �b þ �p.

7.29 Consider an optical amplifier made from a collection of two-level atoms having
having relaxation time 	 and phase decoherence time T2. A pump-number density
J excites the atoms. A beam with optical power Po enters the collection at z¼ 0.
Neglect the thermal distribution and assume the real part of the index remains
approximately constant.

1. Write the gain as a function of J, 	, T2, etc. Find the constants in

g ¼
c1

c2ð!Þ þ P=Ps

Be sure to show the equations for P in terms of Eo starting with the Poynting
vector.

2. Show the optical power P as a function of distance z has the form

Ln
P

Po
¼

c1

c2
z�

1

c2

P� Po

Ps

3. For small EM fields, show the exponential form for P versus z.

4. Briefly discuss the significance of c1 and c2 in terms of the material gain in

2

7.30 Consider a collection of two-level atoms used as an optical amplifier as in the
previous problem. The beam starts at z¼ 0 and propagates along z.

1. Find the asymptotic behavior of P(z) for large z.

2. Suppose c1 ¼ 50 cm�1, Po ¼ 0:1 mW, Ps ¼ 5 mW, with a center wavelength of
�o ¼ 1000 nm. Let z range from 0 to 0.1 cm and let !� !o ¼ 0. Make a plot of
P vs. z. Plot the unsaturated gain (i.e., Ps ¼ 1) on the same plot. Explain any
differences in magnitude and shape.

3. For the frequency !� !o ¼ 1=T2 , make a plot of the gain vs. distance for the same
conditions in part b.

7.31 Consider a collection of two-level atoms used as an optical amplifier as discussed in
the previous two problems. Make a rough sketch of the single-pass gain defined by

G ¼
P� Po

Po

Matter–Light Interaction 605
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for the peak frequency and another at half-max.
7.32 For homogeneous broadening of two-level atoms, show

FWHMð ÞSat¼
2

T2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2	T2

p

as discussed in Section 7.13.
7.33 Suppose a dipole p oscillates with frequency !o but is exponentially damped

pðtÞ ¼ e�t=Tei!ot for t40 and zero otherwise.

1. Find the Fourier Transform and make a sketch of the power spectrum pð!Þ
�� ��2.

2. Find the Full-Width at Half Max (FWHM).

3. Discuss how this results applies to homogeneous broadening.

7.34 Find all of the parameters in g !ð Þ ¼ ðgE¼0ð!ÞÞ= ð1þ I=ðIs!ð!ÞÞÞ for homogeneous
broadening. Be sure to find the intensity I using the Poynting vector.

7.35 Show the inhomogeneously broadened line L I

L I !ð Þ ¼

Z 1
�1

d!oL h !,!oð Þ f !oð Þ

is normalized to 1 provided L h is normalized to 1.
7.36 Consider the gain for inhomogeneously broadened atoms

gI !ð Þ ¼

Z 1
�1

gpeakð JÞ f !oð Þ d!o

1þ !� !oð Þ
2T2

2 þ
I
Is

1. What is the inhomogeneous gain for atoms with only a single resonant
frequency?

2. Show for a very broad distribution fð!oÞ that the inhomogeneous gain must be

gI !ð Þ ¼
f !ð Þgpeakð JÞ�=T2ffiffiffiffiffiffiffiffiffiffiffi

1þ I
Is

q

7.37 For j i ¼ ð1=
ffiffiffi
2
p
Þj1i þ ð1=

ffiffiffi
2
p
Þj2i, use matrices to show h j�̂�zj i ¼ 0.

7.38 For a two-level atom with operators �̂�ij ¼ jiihjj , find all of the commutation relations
�̂�ab, �̂�cd½ �, �̂��, �̂�þ½ �, and ½�̂�ab, �̂�

	�.
7.39 Problem on how haken or miloni handle the constant in cfþ b- etc.
7.40 Generalize the Jaynes-Cumming’s hamiltonian to a 3 level atom. Assume transition

only, between adjacent levels. Assume a two mode field to match.
7.41 Starting with the definition of the atomic lowering operator in the interaction

representation for a two-level atom �
^� ¼ ûuþa �̂�

�ûua ¼ �̂�
� � ½ðĤHat=i�hhÞ, �̂��� þ � � �, show

�
^�ðtÞ ¼ �̂�� e�i!ot, using the matrix representation.
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7.42 Starting with the definition of the EM lowering operator in the interaction
representation b

^

~kks
ðtÞ ¼ ûuþf b̂b~kks

ûuf , show b
^

~kks
ðtÞ ¼ b̂b~kks

e�i!kt.
7.43 Show the interaction representation of the ‘‘free-field’’ density operator has the form

�
^

f ¼ ûuþf �̂�f ûuf where ûuf ¼ expfĤHft=i�hhg and ĤHf ¼
P

~kks
�hh!~kkðb̂b

þ

~kks
b̂b~kks
þ 1=2Þ.

7.44 Show the following relation from 7.16.4

Tr1���N V
^

, �ð0Þ
h i

¼ Tr1���N

X
aij

�ðsÞ 0ð ÞS
^ðaÞ

i R
^ ðaÞ

j , � 1...Nð Þð0Þ

 �
þ S

^ðaÞ

i , �ðsÞ 0ð Þ

 �
R
^ ðaÞ

j �
1...Nð Þð0Þ

� �

and work through to find the result TraR
^ að Þ

j �
að Þð0Þ ¼ Tra �

að Þð0ÞR
^ að Þ

j ¼ hR
^ að Þ

i ires
a

.

7.45 Work through the reasoning in Section 7.16 to show

Term 2:2 ¼

Z t

o
d	
X
ij,mn

a

S
^ðaÞ

i tð Þ �
^ðsÞ
ð0Þ S

^ðaÞ

m t� 	ð Þ R
^ að Þ

j 0ð ÞR
^ að Þ

n 	ð Þ
D E

7.46 Derive the equation below (Equation 7.16.26)

kh j S
^ að Þ

i ðtÞ, S
^ að Þ

j t� 	ð Þ �
^ sð Þ

tð Þ

 �
lj i ¼

X
nm

mh j �
^ sð Þ

tð Þ nj i

(
�ln

X
r

kh jS að Þ
i rj i rh jS að Þ

j mj ie�i!rmtþ

� nh jS að Þ
i lj i kh jS að Þ

j mj ie�i!kmt

)
ei !kmþ!nlð Þ t

7.47 Find the differential equations for the Jaynes-Cummings’ 2-level-atom raising
and lowering operators following the procedure outlined in Section 7.16. Find
the equation of motion for the number operator.

7.48 Consider a Homonic oscillator interacting with a reservoir where the raising and
lowering operators satisfy

_~SS~SS
�
þ i!s

~SS� þ
�g �
�� ��2
�hh2

~SS� tð Þ ¼ ~��ðtÞ
_~SS~SS
þ
� i!s

~SSþ þ
�g �
�� ��2
�hh2

~SSþ tð Þ ¼ ~��þðtÞ

as in Section 7.17.

1. Find a solution to each equation and explain why the � can be neglected to
lowest order.

2. Show ~NNðtÞ ¼ e�2�t ~NNð0Þ.

7.49 Read how it might be possible to see through solid objects and report your
findings.

� Harris, Electromagnetically Induced Transparency, Physics Today, July 1997, p. 36.
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7.50 Read and report on M. Lax’s account of Laser Noise in
The Theory of Laser Noise, SPIE Vol. 1376, pp. 1–18 (1990).

7.51 Provide a brief summary on interesting new ideas that perhaps make SciFi-a
reality. Can you find any other publications along these lines? Search the internet
but accept only legitimate publications. How many ‘‘crack pot’’ schemes do you find?

� Jaekel and Reynaud, Quantum Fluctuations and Inertia, Proceedings of NATO-ASI
Conference on Electron Theory and Quantum Electrodynamics—100 years later, Edirne,
Turkey, Sept. 5–16, 1994.
� Alcubierre, The Warp Drive: Hyper-Fast Travel within General Relativity, Class.

Quantum Grav., 11, L73–L77 (1994).
� Coule, No Warp Drive, Class. Quantum Grav., 2523 (1998).
� Search the internet on ‘‘Faster than Light Communications’’.

7.52 Find and report on the Unruh effect (i.e., Unruh-Davies effect). You will find some
information in Milonni’s quantum vacuum book.

7.53 Read and report on the Casimir force from the following sources. Look up any of
their references pertinent to these effects. Use the citation indices to find newer
publications.

� Read Sections 2.7 on the Casimir force in Milonni’s quantum vacuum book.
� Hawton, One Photon Operators and the Role of Vacuum Fluctuations in the

Casimir Force, Phys. Rev., A50, 1057 (1994).
� Maclay, Fearn, Milonni, Of some theoretical significance: implications of Casimir

effects, Eur. J. Phys., 22 463 (2001).

7.19 Further Reading

The following list contains well-known references for the material presented in the
chapter.

General

1. Heitler W., The Quantum Theory of Radiation, 3rd ed., Dover Publications, Mineola, NY (1984).
2. Allen L., Eberly J.H., Optical Resonance and Two-Level Atoms, Dover Publications, Mineola, NY

(1987).

Liouville Equation

3. Milonni P.W., Eberly J.H., Lasers, Wiley-Interscience, New York (1988).
4. Yariv A., Quantum Electronics, 3rd ed., John Wiley & Sons, New York (1989).

Matter-Fields

5. Sakurai J.J., Advanced Quantum Mechanics, Addison-Wesley Publishing, Reading, MA (1967).
6. Milonni P.W., The Quantum Vacuum, An Introduction to Quantum Electrodynamics, Academic

Press, Boston (1994).
7. Jackson J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York (1975).
8. Rohrlich F., Classical Charged Particles, Addison-Wesley Publishing, Reading, MA (1965).
9. Jauch J.M., Rohrlich F., The Theory of Photons and Electrons, Springer-Verlag, New York (1976).
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Reservoir Theory

10. Haken H., Laser Theory, Springer-Verlag, Berlin (1970).
11. Weissbluth M., Photon-Atom Interactions, Academic Press, Boston (1989).
12. Yokoyama H., Ujihara K., Eds, Spontaneous Emission and Laser Oscillation in Microcavities, CRC

Press, Boca Raton, FL (1995).
13. Berman P.R., Ed., Cavity Quantum Electrodynamics, Academic Press, Boston (1994).
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8
Semiconductor Emitters and Detectors

Modern technology uses a variety of semiconductor devices in a myriad of applications.
This chapter focuses on optoelectronic devices capable of emitting and detecting light.
It completes and summarizes the material by deriving the gain and rate equations for
semiconductor lasers and detectors. The study proceeds along two paths. First, we start
with Fermi’s golden rule. The gain curves have sharp features and not the rounding
expected from the spectral broadening mechanisms. The second method uses the
results for the Liouville equation, for the independent atoms. We will show why the
development applies to the semiconductor laser with ‘‘vertical transitions.’’

The two approaches share important common features. Fermi’s golden rule requires
matrix elements involving the electromagnetic interaction. The matrix elements use the
energy basis set of wave functions. For semiconductors, the electron basis set consists of
the Bloch functions. The Liouville equation implicitly incorporates the Bloch functions
by considering only vertical transitions. Both approaches, Fermi’s golden rule and
the Liouville equation, require the density of states. Fermi’s golden rule provides the
transition rate from a single initial state to a range of final states. For the semiconductor,
we must develop the reduced density of states. The reduced density of states applies to
all semiconductor lasers including the quantum diode, well, wire and dot lasers.

The chapter shows how the parts of the emitter and detector fit together. It shows
how to compute the gain required for lasing and the range of useful wavelengths for
detectors. Reverse biasing a device can emphasize effects not normally important for
the forward biased regions. Changing the bias applied to a homojunction device
necessarily changes the internal electric field and the shape of the band edge. Forward
biased devices tend to have flat bands at least for high levels of injection.
Reversed biased quantum well devices do not have flat bands; the wells become
triangular shape.

8.1 Effective Mass, Density of States and the Fermi Distribution

The density of states has a primary role in determining the gain and absorption for
semiconductor lasers, light emitting diodes and detectors. This distribution of extended
states versus energy determines the range of optical wavelengths involved in the
transitions. The bulk materials, without nanostructure, produce a density of states with
an energy profile of the form Eðn�2Þ=2 for n-dimensions. Nanostructure embedded within
a bulk crystal produces sub-bands and a density of states that differs from that of the
bulk. The present section discusses the basics of the density of states for the bulk material
and shows how it depends on the effective mass.
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8.1.1 Effective Mass

The introductory material in reviewed the formation of bands in bulk
semiconductor material. A kinetic energy of a free electron can be plotted as a quadratic
dispersion curve in terms of energy E versus momentum p or equivalently, angular

with a periodic potential. This interaction alters the topology of the dispersion curve from
a single solid curve into one consisting of disjoint sections that form bands. For example,
Figure 8.1.1 shows the structure of the dispersion curves in the extended zone (solid
curved lines) and the reduced zone (dotted curved lines within the confines of the outer

An electron moving through a crystal experiences the periodic crystal potential due
to the atomic charge distribution. The Schrodinger equation incorporates the crystal
potential and the mass of the electron. The energy eigenfunctions consist of the Bloch
wave functions as discussed in the next section. The crystal potential can be eliminated
so long as the Schrodinger’s equation uses the effective mass and the envelope part of
the Bloch wave function. The effective mass describes the curvature of the band in which
the electron (or hole) moves. If the band diagram has the form E ¼ p2=2me where p ¼ �hhk,
then the effective mass me must have the form

m�1
e ¼

@2E

@p2
or m�1

e ¼
1

�hh2

@2E

@k2
ð8:1:1Þ

This equation shows that the curvature of the band determines the effective mass. As
discussed in the companion volume on Solid State and Quantum Theory, the effective
mass in 8.1.1 relates the force applied to an electron (not due to the periodic crystal
potential) to its group velocity according to dv=dt ¼ F=me.

The effective mass cannot be a scalar since the dispersion curves for two different

The band shape depends on the direction of electron motion (i.e., E versus k). The
parabolic band E versus k for the 1-D case can be generalized to

E ¼ Ec þ A kx � koxð Þ
2
þB ky � koy

� �2
þC kz � kozð Þ

2
ð8:1:2Þ

where the wave vector has the form ~kk ¼ kx ~xxþ ky ~yyþ kz ~zz. The coordinates ðkox, koy, kozÞ
describe the band minimum (or maximum for the valence band) and the coeffi-
cients A, B, C describe the shape of the band along the corresponding direction. If the
constants A, B, C differ then the parabola curvatures differ with direction and therefore

FIGURE 8.1.1

Comparing the dispersion curves for the free electron and the nearly-free electron. The symbol ‘‘a’’ represents
the inter-atomic spacing so that 2�=a gives the width of the first Brillouin zone.
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directions do not necessarily have the same shape as shown in Figure 8.1.2 for bulk GaAs.

Chapter

frequency ! versus wave vector k (or any combination). An electron in a crystal interacts

parabola representing the free electron dispersion curve).

1



the effective mass must also differ with direction.

mxð Þ
�1
¼

1

�hh2

@2E

@k2
x

¼
2A

�hh2
my

� ��1
¼

1

�hh2

@2E

@k2
y

¼
2B

�hh2
mzð Þ

�1
¼

1

�hh2

@2E

@k2
z

¼
2C

�hh2
ð8:1:3Þ

The acceleration of an electron in the crystal due to noncrystalline forces (i.e., due to
forces other than the periodic force caused by the periodic charge distribution).

ax ¼ mxð Þ
�1Fx ¼

2AFx
�hh2

ay ¼ my

� ��1
Fy ¼

2BFy
�hh2

az ¼ mzð Þ
�1Fz ¼

2CFz
�hh2

ð8:1:4Þ

An average effective mass often appears in formulas such as for the density of states.
The average usually appears as a geometric average such as hmi ¼ ðmxmymzÞ

1=3 (refer to
the companion volume on the solid state).

Equation (8.1.4) indicate that the effective mass should be represented by a dyad

~aa ¼ m
$�1

� ~FF ð8:1:5Þ

Although Equation (8.1.2) is useful for illustration, it does not describe the general band
shapes depicted in Figure 8.1.2. At minimum, the coefficients must depend on the
components of the wave vector. The companion volume shows the effective mass can be
written as

m
$�1

¼
1

�hh2
rkrkE ð8:1:6Þ

Example 8.1.1

Find the effective mass mij for the isotropic band

E ¼ A�hh2k2 ¼ A�hh2 k2
x þ k2

y þ k2
y

� �
Solution: Using 7.8.12, namely ðm�1Þij ¼ 1=�hh2ð@2EÞ=ð@ki@kjÞ produces ðm�1Þij ¼ 2A �ij.
Therefore the effective mass m ¼ 1=2A must be isotropic.

FIGURE 8.1.2

GaAs Band diagram for two different crystal directions. The bands are conduction band CB, heavy hole HH,
light hole LH and split-off SO bands.
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8.1.2 Introduction to Boundary Conditions

The previous topic treats the semiconductor bands as continuous. The energy E~kk versus k
dispersion curve represents the eigenvalues for the time-independent Schrodinger
equation for the crystal. Boundary conditions over a finite region of space produce a
discrete set of wave vectors f~kkg and hence a discrete set of energy eigenvalues fE~kkg.
The energy bands consist of the collection of closely spaced points fð~kk,E~kkÞg that represent
the Bloch eigenfunctions. The envelope part of the Bloch wave function consists of plane
waves with wavelength l ¼ 2�=j~kkj and angular frequency !k ¼ Ek=�hh.

The Bloch wave functions, as eigenfunctions of the Schrodinger wave, must be
normalized over some region of space. In general, either an electron can be confined to a
finite region of space as for an atom or it can remain unconfined as for the case of a
plane wave. In either case, the wave function must be normalized over a finite volume of
space by requiring it to satisfy boundary conditions over a finite region of space. These
boundary conditions place conditions on the particle wavelength and hence also on
the wave vector. Finite regions of space produce discrete allowed wave vectors and
therefore discrete energy values. Two types of boundary conditions, specifically fixed-
endpoint and periodic, are typically applied to the electron.

The fixed-endpoint boundary conditions require the particle wave function to have a
fixed value at the boundary of the finite region of space. Often the wave function must be
zero at both the boundary and outside the finite region since the particle should not
be found anywhere except inside the finite region. These fixed-endpoint boundary
conditions produce sine and cosine standing waves for the energy eigenfunctions (i.e., the
energy basis set). The wave vectors ~kk have only positive components since negative
values do not change the form of the basis function. Electrons confined to nanostructure
can use this type of boundary condition.

Travelling waves usually require periodic boundary conditions whereby the wave
function must repeat every macroscopic distance L. The plane wave functions comprising

across larger distances. In this case, the wave vectors ~kk have both positive and negative
components in order to account for motion along the positive and negative directions.
However, the finite size of L leads to discrete allowed wavelengths, wave vectors, and
therefore also energy. Very large regions L produce closely space wavelengths, wave
vectors and energy and therefore approximate a continuum. It is customary to use the
length L of a real crystal as the repetition length for the boundary conditions. In such a
case, the size of the crystal sets a minimum spacing for allowed k.

Once we know the allowed energies for a finite system, we can count the number of

count the number of states �N in the energy range �E to find the density of states
gðEÞ � �N=�E. The figure shows how the number of states along the energy axis must be
related to the number along the k-axis. In fact, the total number of states in the range �E
comes from the two regions marked �k. For 2-D systems, the �k region corresponds to
an annular region between two circles.

8.1.3 The Fixed Endpoint Boundary Conditions

The fixed-endpoint boundary conditions require a wave to be zero at the edges of the
bounding region. The fundamental modes fitting the region appear as sine and cosine

l1 ¼ 2L
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allowed states. Figure 8.1.3 shows the descrete states for the conduction band. We can

waves as shown in Figure 8.1.4. The wavelengths cannot be larger than

the basis set must be normalized over this same distance L although the wave extends



In fact, the wave must exactly fit into the distance L according to the relation

l ¼
2L

1
,

2L

2
,

2L

3
, . . . ,

2L

n
, . . .

Therefore, the allowed wave vectors must be

kn ¼
2�

2L=nð Þ
¼

n�

L
n ¼ 1, 2, 3, . . . ð8:1:7Þ

The finite region of space 05x5L produces sinusoidal functions

Bs ¼ sin knx ð8:1:8Þ

Three-dimensional problems require three-dimensional wave vectors. For a cube, with
sides of length L, the allowed wave vectors can be written as

~kk ¼
nx�

L
~xxþ

ny�

L
~yyþ

nz�

L
~zz ð8:1:9Þ

where nx, ny, nz ¼ 0, þ1, þ2, . . . for plane waves. As we will see, traveling waves most
naturally use the periodic boundary conditions since then the waves don’t need to be zero
at the boundaries.

FIGURE 8.1.4

The fixed end-point boundary conditions.

FIGURE 8.1.3

The density of energy states must be related to the density of k-states.
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8.1.4 The Periodic Boundary Condition

Periodic boundary conditions describe macroscopically sized real crystals. The electron
wavefunction must repeat itself every distance L, which usually matches the physical size
of the crystal. For free space or physically large media, the length L can be increased
without bound. We have primary interest in finite physical crystals. In this case, the
waves can be imagined to have infinite extent by imagining copies of the physical crystal
placed next to each other as shown in Figure 8.1.5.

Two allowed modes with the longest wavelengths appear in Figure 8.1.6. The allowed
wavelengths must be given by

ln ¼
L

n
n ¼ 0, �1, . . .

and the allowed 1-D wave vectors must be

kn ¼
2�

ln
¼

2�n

L
ð8:1:10aÞ

The value of n can assume any nonzero integer value in the range ð�1,1Þ for the
extended-zone band diagram.

The reduced-zone band diagrams use only the First Brillouin Zone (FBZ). If we assume
an even number of atoms N spaced apart by lattice constant ‘‘a’’ in the 1-D crystal then
we can write L¼Na and

kn ¼
2�

ln
¼

2�

a

n

N
ð8:1:10bÞ

The longest wavelength corresponds to L¼Na so that the closest spacing of k-values
must be �k ¼ 2�=L ¼ 2�=Na. The wavelengths lmin ¼ 2a correspond to k-vectors
kFBZ ¼ �=a at the edge of the First Brillouin Zone (FBZ). This smallest wavelength
sets the maximum integer n in Equation (8.1.10b).

kn ¼
2�

ln
¼

2�

a

n

N
n ¼ �1, �2, . . . , �N=2 ð8:1:10cÞ

We see that each band (in the reduced band scheme) must have N states. For crystals
with an atomic basis, N represents the number of unit cells.

FIGURE 8.1.6

The first two allowed modes that satisfy the periodic
boundary conditions.

FIGURE 8.1.5

Repeating the physical crystal every distance L.
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Three-dimensional crystals use similar periodic boundary conditions

~kk ¼
2�nx
Lx

~xxþ
2� ny
Ly

~yyþ
2� nz
Lz

~zz nx, ny, nz ¼ 0, �1, . . . ð8:1:11aÞ

where, Lx, Ly, Lz represent the lengths of the three sides of the normalization volume.
The lengths refer to the size of the normalization volume and not necessarily to the
crystal. For convenience, we can assume that all of the sides have the same length
L ¼ Lx ¼ Ly ¼ Lz. Consequently, the wave function must be normalized to the volume of a
cube. For N atoms along each edge of the cube (N3 total atoms), the length L must
be L¼Na and the allowed k-vectors become

~kk ¼
2�nx
aN

~xxþ
2�ny
aN

~yyþ
2�nz
aN

~zz nx, ny, nz ¼ 0, �1, . . . ð8:1:11bÞ

The size of the crystal sets the smallest spacing of the components of the wave vectors

�kx ¼ �ky ¼ �kz ¼
2�

L
¼

2�

aN

The upper limit corresponds to a wave vector kFBZ at the edge of the FBZ for which
the wave does not propagate. Strong reflections occur for the smallest wavelength l ¼ 2a
so that

kFBZ
x ¼ kFBZ

y ¼ kFBZ
z ¼

�

a

Therefore the allowed wave vectors must be

~kk ¼
2�nx
L

~xxþ
2�ny
L

~yyþ
2�nz
L

~zz ¼
2�

a

nx
N

~xxþ
2�

a

ny
N

~yyþ
2�

a

nz
N

~zz

nx,ny, nz ¼ 0, �1, . . . , �N=2

ð8:1:11cÞ

Again we see each k-axis has N states corresponding to the number of atoms along the
axis. The number of states for the entire 3-D band must be N3 corresponding to the total
number of atoms within the solid. The total number of atoms will be very large for any
physically sized crystal (on the order of Avagadro’s number). Notice that the k-vectors
can have positive or negative values depending on the direction of wave propagation
unlike for the fix-endpoint boundary conditions.

The plane waves corresponding to these macroscopic boundary conditions have
the form

B1-D ¼
eiknxffiffiffi

L
p

� �
or B3-D ¼

ei
~kk�~rrffiffiffiffi
V

p

( )
ð8:1:12Þ

where V ¼ L3 for the 3-D case. These wave functions correspond to the envelope part of
the Bloch wave function. The next topics show how the macroscopic boundary conditions
determine the density of states.
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8.1.5 The Density of k-States

The ‘‘density of k-states’’ measures the number of possible modes in a given region of
k-space. Consider a two-dimensional bulk crystal. Figure 8.1.7 shows a 2-D region of k-space
with a point for each k-vector

~kk ¼
2�m

L
~xxþ

2�n

L
~yy m, n ¼ 0, �1, . . .

from periodic boundary conditions. Consider the horizontal direction for a moment.
The distance between adjacent points can be calculated as

2� mþ 1ð Þ

L
�

2�m

L
¼

2�

L

Therefore, each elemental area of k-space

2�

L
�
2�

L
¼

2�

L

� 	2

corresponds to precisely one mode. The number of modes per unit area of ~kk-space must
then be given by

gð2DÞ

~kk
¼

1

2�=Lð Þ
2
¼

L2

4�2
¼

Axal

4�2
ð8:1:13Þ

where Axal represents the area of the crystal. Note the use of the ‘‘vector k’’ as opposed to
the ‘‘scalar k’’ as a subscript on g.

In general, n-dimensions produces a k-spaced density of states (DOS) of

g n-Dð Þ

~kk
¼

1

2�=Lð Þ
n ¼

L

2�

� 	n

ð8:1:14Þ

where bulk crystals can be 3-D, 2-D, or a line of atoms for 1-D.

FIGURE 8.1.7

The allowed values of ~kk as determined by periodic boundary conditions.
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8.1.6 The Electron Density of Energy States for a 2-D Crystal

Semiconductor-based devices require the density of states. For electronic devices,
recall the combination of the Fermi-Dirac distribution FðEÞ with the density of energy
states g(E) leads to the number of electrons per crystal volume in a given energy range
according to

n ¼

Z
dE gðEÞ FðEÞ

This topic finds the density of energy states using a graphical technique. The interested
reader should consult the companion volume on the solid state and introduction to
quantum theory for more detail.

We need to clearly distinguish the bulk cases from those encountered with reduced
dimensional systems such as quantum wells, wires, and dots. These latter systems still
have 3-D arrangements of atoms. However, the 3-D pattern of atoms (heterostructure)
produces potentials that tend to confine electrons to wells. In this topic, we discuss 2-D
and 3-D arrays of atoms without regard to confining the electron to smaller wells. For
simplicity, we apply the procedure to portions of the band having a parabolic shape. The
density of states for the entire band requires the full dispersion curve E¼E(k) and not just
the portion at the top or bottom of the band.

For simplicity of drawing figures, consider the 2-D case for the electronic density of
energy states. We want to calculate the number N of energy states per unit energy,
specifically gðEÞ ¼ dN=dE, whereas the previous topic calculates the density of k-states
with units of k-states per unit k-region. The calculation requires the energy versus wave
vector k in terms of the effective mass me

E ¼
�hh2k2

2me
k2 ¼ k2

x þ k2
y ð8:1:15Þ

where for convenience, we start the energy scale at the bottom of the conduction band so
that Ec ¼ 0. For constant effective mass me, Equation (8.1.15) represents the conduction
band only near the minimum. The number N can be related to E through Equation
(8.1.15) provided we can find the number of states up to the value k ¼ j~kkj.

To calculate the number of states up to the value k for the 2-D case, first plot the allowed

of states up to radius k can be calculated as

NðkÞ ¼
# States

k-area
k-area ð8:1:16aÞ

or

NðkÞ ¼ g2D
k �k

2 ¼
L

2�

� 	2

�k2 ¼
Axal

2�ð Þ
2
�k2 ð8:1:16bÞ

where Axal represents the area of the 2-D crystal. The total number of states per unit
energy then becomes

g2DðEÞ ¼
dNðkÞ

dE
¼

dk

dE

dN

dk
¼

1

dE=dk

dN

dk
ð8:1:16cÞ
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k-states and then use k as the radius of a circle in k-space (see Figure 8.1.8). The number



Dividing out the area Axal and substituting Equations (8.1.16b) and (8.1.15) provides

g 2Dð Þ

E ¼
1

2�

me

�hh2
ðno spinÞ ð8:1:17aÞ

Usually a factor of ‘‘2’’ should be included for the degenerate electron spin

g 2Dð Þ

E ¼
1

�

me

�hh2
ðspinÞ ð8:1:17bÞ

Notice that the density of energy states for the 2-D bulk case remains constant above the
bottom of the band. In the case of a band increasing upward from a vertex at Ec, the
formula must include the step function �.

g 2Dð Þ

E ¼
1

�

me

�hh2
� E� Ecð Þ ðspinÞ ð8:1:17cÞ

The density of state must be zero for energy E smaller than Ec and constant for energy
larger than Ec.

In general, an n-dimensional bulk crystal has the density of energy states
(including spin) given by

g 3Dð Þ

E ¼

ffiffiffi
2

p
m3=2

e

�2�hh3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
� E� Ecð Þ ð8:1:18aÞ

g 2Dð Þ

E ¼
1

�

me

�hh2
� E� Ecð Þ ð8:1:18bÞ

g 1Dð Þ

E ¼

ffiffiffi
2

p

��hh

ffiffiffiffiffiffi
me

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p � E� Ecð Þ ð8:1:18cÞ

where the step function � has a value of one for E � Ec and zero otherwise, and the
equations have units of # states/xal-vol/energy, # states/xal-area/energy, # states/
xal-length/energy, respectively.

As an example, the 3-D density of energy states can be plotted next to the band diagram

FIGURE 8.1.8

Number of modes N in circle of radius k.
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as illustrated in Figure 8.1.9. Both the conduction band and heavy-hole valence band



produce a density of states that increase as
ffiffiffi
E

p
. The effective mass controls the shape of

the density of states as illustrated in Figure 8.1.10. The two bands have different
curvatures. The boundary conditions produce equally spaced states along the horizontal
k-axis. Let �E represent a small fixed energy interval. The curvature of the bands
produces two different numbers of states within the energy interval. The band with the
larger curvature and therefore smaller effective mass has fewer states within the energy
interval. The flatter band with the larger effective mass has more states within the
interval.

8.1.7 Overlapping Bands

Gallium Arsenide has overlapping Heavy Hole (HH) and Light Hole (LH) valence
bands as shown in Figure 8.1.11. We will find overlapping sub-bands for the
reduced dimensional structures such as quantum wells. Each band must have states
corresponding to the allowed discrete wave vectors k. Therefore the number of states
within the energy range �E must include states from both the HH and LH bands.

We now discuss the method for calculating the density of states for overlapping bands.
The calculation for the quantum well sub-bands will be very similar. For simplicity, let
�E ! E in Figure 8.1.11 and consider the two overlapping bands now with positive
curvature as shown in Figure 8.1.12. We demonstrate that the density of states must

FIGURE 8.1.9

The conduction and valence band both have a
density of states function.

FIGURE 8.1.10

Bands with different curvatures have different numbers
of states in a fixed energy interval.

FIGURE 8.1.11

Light and heavy hole valence bands.

FIGURE 8.1.12

Two over-lapping 3-D bands (inverted for convenience).

Semiconductor Emitters and Detectors 621

© 2005 by Taylor & Francis Group, LLC



be given by

g 3Dð Þ

E Eð Þ ¼
m3=2

1ffiffiffi
2

p
�2�hh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E1

p
� E� E1ð Þ þ

m3=2
2ffiffiffi

2
p
�2�hh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E2

p
� E� E2ð Þ ð8:1:19Þ

The figure shows that the density of states must be zero below E1. As E increases, we
eventually encounter band #1 starting at energy E1 where the states start. The density
of states (3-D crystal) must therefore increase as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E1

p
according to Equation (8.1.18).

At energy E2, the number of states in band 2 must be included. The density of states in
band 2 increases as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� E2

p
again according to Equation (8.1.18). To find the total number

of states for energy larger than E2, we must add the states from bands 1 and 2. Therefore,
we find Equation (8.1.19).

8.1.8 Density of States from Fixed-Endpoint Boundary Conditions

The topics in the present section find the density of states using the periodic boundary

endpoint boundary conditions, the length L matches the physical length of the crystal. We
make the same requirement for the length L in the periodic boundary conditions as

more accurate density of states since electrons must surely be confined to the crystal and
therefore cannot be standing wave that repeat every length L. Let’s examine how the
choice of the type of boundary conditions affects the density of states. We will find that
both types give precisely the same density of energy state function.

The following table compares the wavelength, wave vectors and minimum wave vector
spacing using periodic and fixed-endpoint boundary conditions for a 2-D crystal
(for example).

Periodic BCs Fixed-Endpoint BCs
lx ¼ L=m ly ¼ L=n lx ¼ 2L=m ly ¼ 2L=n
kx ¼ 2�m=L ky ¼ 2�n=L kx ¼ �m=L ky ¼ �n=L
�kx ¼ 2�=L �ky ¼ 2�=L �kx ¼ �m=L �ky ¼ �n=L
Travelling waves Standing waves
m, n can be positive and negative m, n must be nonnegative

The periodic boundary conditions produce twice the spacing between allowed k values
as does the fixed-endpoint ones. Figure 8.1.13 shows the Periodic Boundary Conditions

FIGURE 8.1.13

Large dots represent allowed k for periodic BC while the small dots represent the fixed-endpoint BCs.
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conditions. The length L in Figure 8.1.6 appears to be rather arbitrary. For the fixed-

illustrated in Figure 8.1.5. However, the fixed-endpoint conditions might seem to give the



(PBC) produce density of k-states 4 times smaller than that from the Fixed-Endpoint
Boundary Conditions (FEBC)

gð2-DÞ

~kkðpbcÞ
¼

gð2-DÞ

~kkðfebcÞ

4
ð8:1:20aÞ

Next, we see that constant energy circle covers 4 times the area for the PBCs as it does
for the FEBCs.

Apbc ¼ 4Afebc ð8:1:20bÞ

The density of energy states can then be calculated from the product of Equations
(8.1.20). We find the same result for either set of boundary condtions.

gðEÞ ¼ gð2-DÞ

~kkðpbcÞ
AðpbcÞ ¼

gð2-DÞ

~kkðfebcÞ

4
4AðfebcÞ ¼ gð2-DÞ

~kkðfebcÞ
AðfebcÞ ð8:1:20cÞ

8.1.9 Changing Summations to Integrals

The density-of-states can be used to convert summations to integrals. Suppose we start
with a summation of coefficients C~kk of the form

S ¼
X
~kk

C~kk

The index ~kk on the summation means to sum over allowed values of kx, ky, kz; i.e., think
of the two-dimensional plot in the previous topics and imagine that C~kk has a different
value at each point on the plot. For one-dimension, a plot of ‘‘Ck vs. k’’ might appear as
in Figure 8.1.14. Suppose the allowed values of ‘‘k’’ are close to one another. Let �ki be a
small interval along the k-axis but assume that it contains 4 of the ‘‘k’’ points. Let ki be the
center of each of these intervals. The figure shows that

S ¼ C1:00 þ C1:01 þ C1:02 þ C1:03ð Þ þ C1:04 þ C1:05 þ C1:06 þ C1:07ð Þ þ � � �

The sum can be recast into

S ¼ 4C1:00 þ 4C1:04 þ � � � ¼
X

g kð Þ�k

 �

Ck �
X

C kð Þ g kð Þ�k ffi

Z
dkC kð Þ g kð Þ

where, for the figure, �k ¼ 0:04 and gðkÞ ¼ 4=0:04 ¼ 100 (states per k-length).

FIGURE 8.1.14

Example of closely spaced modes.
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Alternatively, suppose a slowly varying function f(x) is defined at the points in the set
fx1, x2, . . .gwhere the points xi are equally spaced and separated by the common distance
�x. The summation can be rewritten as

X
i

f xið Þ ¼
X
i

1

�xi
f xið Þ�xi

We recognize the quantity 1=�x as the density of states; that is, g ¼ 1=�x. Recognizing
the second summation as an integral for sufficiently small �x, the summation can be
written as

X
i

f xið Þ ffi

Z
dxg xð Þf xð Þ ð8:1:21Þ

The last expression generalizes to a 3-D case most commonly applied to the wave
vectors discussed in the preceding topics.

X
~kk

fð~kkÞ !

Z
d3kgð~kkÞfð~kkÞ ¼

V

ð2�Þ3

Z
d3kfð~kkÞ ð8:1:22Þ

where V represents the normalization volume coming from periodic boundary
conditions. We essentially use this last integral when we find the total number of
discrete states within a sphere or circle.

8.1.10 A Brief Review of the Fermi-Dirac Distribution

At thermal equilibrium the number of electrons occupying a conduction band state or a
valence band state can be written as

Fe ¼
1

1 þ e ðE�Ef Þ=kT
ð8:1:23aÞ

where Ef represents the Fermi level. The average number of electrons per state can
range between 0 and 1. Equation (8.1.23) can be interpreted as a probability. At E ¼ Ef ,
the probability has the value of 0.5. The probability of a hole occupying a state necessarily
has the form

FhðEÞ ¼ 1 � Fe ¼
1

1 þ e�ðE�Ef Þ=kT
ð8:1:23bÞ

If the states in either case have energy at least several kT away from the Fermi level then
these two equations reduce to the Boltzman distribution for electrons in the conduction
band and holes in the valence band, respectively.

Fe ¼ e�ðE�Ef Þ=kT Fh ¼ eþðE�Ef Þ=kT ð8:1:23cÞ

These do not apply to electrons in the valence band or holes in the conduction bands
since otherwise the Fermi functions would be larger than 1 for sufficiently large energy.
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The number of electrons (per volume) over a range of energy must be given as follows

n ¼
X

energy

#e ¼
X

energy

#e

State

#States

Energy
!

Z
dEFeðEÞ gðEÞ ð8:1:24Þ

As discussed in solid state and device physics books, the doping level determines the
placement of Ef. The law of mass action np ¼ n2

i holds regardless of the doping level
where ni refers to the number of electrons at thermal equilibrium without doping
(ni ¼ pi).

8.1.11 The Quasi-Fermi Levels

Thermal equilibrium requires the number of electrons and holes to satisfy the Fermi-
Dirac distribution. There exists only one Fermi level Ef as shown on the left side of

produces more carriers than should be present for temperature T as dictated by the
Fermi-Dirac distribution. Therefore, the distribution does not obey the Fermi-Dirac
distribution and the position of the Fermi level Ef cannot simultaneously describe the
number of free electrons and holes. Instead, the Fermi level splits into two quasi-Fermi
levels Efc and Efv for the conduction and valence electrons, respectively.

The probability of an electron occupying a state in the conduction and valence bands,
respectively, becomes

FcðEÞ ¼
1

1 þ expðE� EfcÞ=kT
ð8:1:25aÞ

FvðEÞ ¼
1

1 þ expðE� EfvÞ=kT
ð8:1:25bÞ

The probability of a valence or conduction band state being empty must be 1 � Fv and
1 � Fc, respectively.

The quasi-Fermi functions provide the number of electrons in the conduction and
valence bands. The number of conduction electrons (per volume), for example, can be
written as

n ¼

Z 1

Eg

dEgcðEÞFcðEÞ ð8:1:26Þ

FIGURE 8.1.15

Nonthermal generation of carriers splits a single Fermi level Ef into two quasi-Fermi levels Efc and Efv. Both cases
are maintained at the same temperature T.
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Figure 8.1.15. Nonthermal generation of carriers (such as photogeneration or injection)



The quasi-Fermi level fixes the number of electrons as will now be demonstrated. This
is important for lasers since the separation of the quasi-Fermi levels must generally be
larger than the band gap. In the parabolic band approximation for a 3-D bulk crystal,
the number of electrons must be

n ¼

Z 1

Eg

dECm3=2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Eg

p
1 þ eðE�EfcÞ=kT

ð8:1:27Þ

where C denotes constants associated with the 3-D bulk density of states C ¼
ffiffiffi
2

p
= ð�2�hh3Þ.

Setting

� ¼
E� Eg

kT
d ¼

Efc � Eg

kT
ð8:1:28Þ

where ‘‘d’’ signifies the difference in energy between the quasi-Fermi level Efc and the
band gap energy Eg. Equation (8.1.27) for the total number of electrons in the conduction
band can be rearranged into either of two equivalent forms

n ¼ CðkTÞ3=2m3=2
e FðdÞ ð8:1:29aÞ

n ¼ CðkTÞ3=2ðmedÞ
3=2FdðdÞ ð8:1:29bÞ

where the functions F and Fd are

FðdÞ ¼

Z 1

0

d�

ffiffiffi
�

p

1 þ e��d
Fd ¼

Z 1

0

d�

ffiffiffiffiffiffiffiffiffi
�=d3

p
1 þ e��d

ð8:1:29cÞ

These equations differ only by the placement of the energy separation d. Equation
(8.1.29b) incorporates the energy separation d with the effective mass whereas Equation
(81.29a) includes it in the function Fd. Figure 8.1.16 plots both functions. In particular,
notice Fd approaches 0.7 for large energy separation d42 or equivalently Efc4Eg þ 2kT.
Therefore, the number of electrons can be characterized by med in Equation (8.1.29b)
when the quasi-Fermi level is more than several kT beyond the band edge. The number of

FIGURE 8.1.16

A plot of the Fermi F and Fd.
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electrons becomes approximately

n ffi 0:7CðkTÞ3=2ðmedÞ
3=2

ffi
ðkTÞ3=2

�2�hh3
ðmedÞ

3=2
ð8:1:30Þ

where me represents the effective mass of the electron and d ¼ ðEfc � EgÞ=kT.

8.2 The Bloch Wave Function

The free electron does not interact with matter or fields. The Hamiltonian produces plane
wave eigenfunctions and the collection of energy eigenvalues forms a parabolic
dispersion curve. The nearly-free electron weakly interacts with the periodic potential
in a crystal. The Schrodinger equation includes the periodic potential and produces Bloch
energy eigenfunctions rather than the pure plane waves for the free electron. The periodic
potential modifies the energy eigenvalues; the dispersion curve becomes nonparabolic
and develops band gaps. In either case, the macroscopic boundary conditions lead to
closely-spaced discrete states. The envelope portion of the Bloch wave function has the
form of a plane wave. The Hamiltonian for the nearly free electron can incorporate an
externally applied potential VE in addition to the kinetic energy and the periodic lattice
potential VL. The external potential describes situations such as the square well or the
p-n junction.

The Schrodinger equation for the electron in a crystal can be simplified by making the
effective mass approximation. In this case, the lattice potential can be removed from the
Hamiltonian and the Bloch wave function can be reduced to the plane wave by using
the effective mass rather than the free mass. The effective mass approximation essentially
allows us to use Newton’s laws without including the forces exerted by the crystal
periodic potential. The curvature of the dispersion curve determines the effective mass.

8.2.1 Free Electron Model

The free electron model treats the motion of the electron in a crystal as if it were free of the
periodic potential due to the atomic cores on the lattice. Figure 8.2.1 shows the electro-
static potential energy of the electron in the neighborhood of the charged cores for
a 1-D crystal (for example). The periodic potential appears in the Schrodinger wave
equation as VL(x).

�
�hh2

2m
r2 ðxÞ þ VLðxÞ ðxÞ ¼ i�hh

@

@t
 ðxÞ ð8:2:1Þ

The potential VL(x) has the periodicity of the lattice. For sufficiently large total
energy E � VLðxÞ, we might consider the periodic potential energy VL(x) to be negligible.

FIGURE 8.2.1

Periodic potential V(x) for a 1-D monatomic crystal.
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In this case, we should drop the potential energy term from the Schrodinger wave
equation.

�
�hh2

2m
r2 ðxÞ ¼ i�hh

@

@t
 ðxÞ ð8:2:2Þ

 � ei
~kk�~rr�i!t ð8:2:3Þ

Substituting Equation (8.2.3) in Equation (8.2.2) produces

�hh2k2

2m
¼ �hh!k ¼ E ð8:2:4Þ

The energy E represents the kinetic energy of the particle and provides the quadratic
dispersion curve for the free particle as shown in Figure 8.2.2.

The periodic boundary conditions allow only certain wave vectors. The periodic
boundary conditions require the wave to repeat itself every macroscopic distance L. For
1-D motion, the plane waves can only have the wave vectors kn ¼ 2�n=L where n denotes
an integer. The dispersion curve must be augmented with information on the allowed
wave vectors. Figure 8.2.2 shows the allowed states corresponding to allowed plane
waves. Each allowed k has a corresponding allowed energy Ek. For very large macro-
scopic length L, the allowed wave vectors will essentially form a continuum.

In addition to quantizing the wave vector and energy, the boundary conditions must be
used to normalize the wave function in Equation (8.2.3). The finite interval of integration
L produces a finite amplitude for the wave (as opposed to an infinitesimal one as L ! 1).
The plane waves can be normalized to describe either one electron per volume 1/V
or to describe N electrons per volume N/V. That is, for periodic boundary conditions,
the plane wave can be normalized to

ffiffiffiffiffiffiffiffiffiffi
N=V

p
or 1=

ffiffiffiffi
V

p
for 3-D.

8.2.2 The Nearly Free Electron Model

The nearly free electron model describes electrons moving through a periodic potential.
The electron although free to move, experiences the periodic potential of the crystal as
shown in so that the periodic potential VLðxÞ must be included in the
Schrodinger equation. The periodic potential gives rise to band structure (Figure 8.2.3)
and determines the form of the wave function. Even a small infinitesimal periodic

FIGURE 8.2.2

The dispersion curve for the QM free electron. The
circles represent the wave vectors and correspond-
ing energy allowed by the periodic boundary
conditions.

FIGURE 8.2.3

Comparing the dispersion curves for the free electron
and the nearly free electron. The symbol ‘‘a’’ represents
the inter-atomic spacing so that 2�=a gives the width of
the first Brillouin zone.
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Figure 8.2.1



potential radically alters the topology of the dispersion curve by opening small gaps.
However, for small periodic potential, the gaps become smaller and the dispersion
curves for the free and nearly free electron models coincide.

As just mentioned, the allowed values of the wave vector ~kk come from the macroscopic
boundary conditions, which usually span a distance on the order of L � 100 angstroms
or more. Therefore, the spacing between allowed wave vectors must be on the order
of �k � 2�=L � 0:06. The reciprocal lattice vectors G provide important markers for the
band diagram. The set of reciprocal lattice vectors G ¼ 2n�=a (for 1-D) come from the
inter-atomic spacing ‘‘a.’’ For a lattice constant on the order of a � 2 angstroms, we find
�G � 2�=a � 3. The first value of G denotes the First Brillouin Zone (FBZ) for k-space,

much larger than the wave vectors k.
The band gaps in the dispersion curves occur near the Brillouin zone edges defined

by the reciprocal lattice vectors. Near the zone edges, the dispersion curve has zero slope
and the electron must have negligible group velocity there. We can understand this
behavior as follows. Electron waves propagating through the periodic structure experi-
ence reflections at the atomic cores (i.e., the periodic potential). Those electrons having
wavelengths approximately twice the inter-atomic spacing experience strong reflections
that prevent forward motion of the electron wavefunction. These effects occur for
wave vectors near the Brillouin zone edges.

The energy eigenfunctions form a basis for the Hilbert space so that a general
solution to the Schrodinger wave equation can be represented as a time-dependent sum
over these functions. The eigenfunctions have the form of a plane wave but with some
modification. The Bloch wave functions resemble plane waves except they consist of a
type of carrier with a modulation as suggested by Figure 8.2.4. For the electron wave
function, the carrier portion of the wave has the periodicity of the lattice. The envelope
function solves the free-electron Schrodinger wave equation so long as it incorporates
the effective electron mass rather than the free electron mass, and neglects the periodic
potential.

8.2.3 Introduction to the Bloch Wave Function

Schrodinger’s equation for a single electron in the periodic potential VLð~rrÞ can be written as

�
�hh2

2m
r2 þ VL þ VE

� 
� ¼ i�hh

@

@t
� ð8:2:5Þ

where ‘‘m’’ represents the actual mass of the electron (not the effective mass). The external
potential VE denotes any potential in addition to the periodic crystal potential such as for
the quantum well at heterostructure interfaces and in regions of band bending for p-n

FIGURE 8.2.4

A Bloch wave-function for an electron in a semiconductor infinitely
deep well. The long wavelength satisfies the macroscopic boundary
conditions at x¼ 0, L. The small wavelengths provide a periodicity
matching that of the crystal.
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which has the width 2�=a (see Figure 8.2.3 for example). The wave vectors G have spacing



junctions. In order to focus on the effects of the crystal potential, set VE ¼ 0. The potential
energy VL has the periodicity of the lattice when, for ~RR a direct lattice vector (i.e. points
from one lattice point to another), the potential has the property that

VLð~rrþ ~RRÞ ¼ VLð~rrÞ ð8:2:6Þ

The time-independent Schrodinger equation can be found by setting �ð~rr, tÞ ¼ �ð~rrÞTðtÞ
in Equation (8.2.5).

�
�hh2

2m
r2 þ VL

� 
� ¼ E� ð8:2:7Þ

As usual, we want to find the eigenfunctions and eigenvalues for the time inde-
pendent Schrodinger equation in Equation (8.2.7). The eigenvalues E depend on k and
produce the dispersion curves (i.e., band diagrams with gaps). The eigenfunction of
Equation (8.2.7) form a basis set—the Bloch wavefunctions. The general solution to the
time-dependent Schrodinger wave equation consists of the time-dependent superposition
of these energy eigenfunctions.

Each energy state Ek in each band corresponds to a basis state. The allowed k values
come from the periodic boundary conditions. Aside from the bandgaps caused by
the periodic lattice potential, the boundary conditions impose quantization conditions
on the wave vectors and hence the energy; therefore, the system supports only certain
wave vectors k and energies Ek.

For simplicity, consider a two-band model as shown in the ‘‘zoomed-in’’ view of
Figure 8.2.5. Each k value provides a state in both the conduction and valence band.
We must distinguish between the two allowed energies for each wave vector ~kk. Let
the integer n represent the band. The energy eigenvalue En, k specifies the energy of an
electron in band ‘‘n’’ with wave vector k. The function E

1, ~kk
¼ E1ð

~kkÞ represents the energy
states in the valence band (it gives the dispersion curve) and E

2, ~kk
¼ E2ð

~kkÞ represents
the energy states in the conduction band. Generally, semiconductors have more than
just two bands, which can be labeled by the band index ‘‘n.’’ The k-p theory and
its derivatives provide the states for degenerate bands.

Having specified notation for the eigenvalues, we can now enumerate the eigenstates
forming a basis for the Hilbert space. Continuing with the two-band example in
Figure 8.2.5, we must specify one eigenfunction for each energy eigenstate. The single

eigenstate corresponding to E
n, ~kk

can be written as jE
n, ~kk

i ¼ jn, ~kki ¼ jn, kx, ky, kzi. In the

FIGURE 8.2.5

A zoomed-in view of the bands showing individual states.
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coordinate representation, we can write jE
n, ~kk

i ¼ jn, ~kki ! �
n~kk
ð~rrÞ. These eigenfunctions

are the Bloch wavefunctions and satisfy ĤHjn, ~kki ¼ E
n~kk
jn, ~kki where ĤH ¼ �ð�hh2=2mÞr2 þ VL.

The Bloch wavefunctions make up the energy basis states and consist of two separate
functions.

�
n~kk
ð~rrÞ ¼

ei
~kk�~rrffiffiffiffi
V

p u
n~kk
ð~rrÞ ð8:2:8Þ

where V represents the normalization over the region of space L characterizing the
periodic boundary conditions. The product contains the plane wave ei

~kk�~rr and a function u
having the periodicity of the lattice. That is, for ~RR a lattice vector, the function u has the
property that u

n~kk
ð~rrþ ~RRÞ ¼ u

n~kk
ð~rrÞ. The subscripts indicate the possibility of different

periodic functions u
n~kk
ð~rrÞ depending on the band. Equation (8.2.8) is the coordinate

representation of the eigenvector jE
n, ~kk

i ¼ jn, ~kki where ‘‘u’’ represents the wave function
for a single unit cell. The traveling plane wave ei

~kk�~rr constitutes an envelope function. The

full solution �ð~rr, tÞ to the time-dependent wave equation requires a
summation over the basis functions (the eigenfunctions  ).

�ð~rr, tÞ ¼
X
n, k

�
n~kk
ðtÞ�n, kð~rrÞ ¼

X
n, k

�
n~kk
ðtÞ

ei
~kk�~rrffiffiffiffi
V

p u
n~kk
ð~rrÞ ¼

X
n, k

�
n~kk
ð0Þ

ei
~kk�~rr�i!ntffiffiffiffi
V

p u
n~kk
ð~rrÞ ð8:2:9Þ

where !n ¼ Enk=�hh. Notice that the envelope has the form of a plane wave.
The envelope function can be used to satisfy the macroscopic boundary conditions

(see For example, consider the infinitely deep well where the wave-
function must be zero at the boundaries, which produces sinusoidal wave functions.
A solution to the time-independent Schrodinger wave equation might be expected to
have the form

XðxÞ ¼ C1eikxu2, kðxÞ þ C2e�ikxu2,�kðxÞ

for an electron in the conduction band (n¼ 2). The portion of the wave function u periodic
in the crystal potential has negligible dependence on k. Often ~kk, in the function ‘‘u,’’ is set
to zero ~kk ¼ 0 because of the insensitivity of ‘‘u’’ to the macroscopic boundary conditions.
Equivalently, for u symmetric in k we find

XðxÞ ¼ ðC1eikx þ C2e�ikxÞu2, kðxÞ

Therefore the summation over the envelope wave functions must be zero at the
boundaries so that C1 ¼ �C2 � C and

XðxÞ ¼ ðC1eikx � C1e�ikxÞu2, kðxÞ � sinðkxÞu2, kðxÞ

FIGURE 8.2.6

R indicates the center of the cell and r ranges over the interior of the cell.
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Figure 8.2.4).

Schrodinger’s



when the Schrodinger equation includes the crystal potential but not the effective mass.
However, the effective mass Schrodinger equation eliminates the crystal potential VL

but includes the effective mass. In this case, the periodic part of the wave function can
be dropped.

We might picture the energy eigenfunctions �
n~kk

curve corresponds to the envelope. For the standing wave shown in the figure, we have
assumed the electron is in the conduction band (n¼ 2) and that the envelope function
consists of right-traveling and left-traveling plane wave (i.e., k4 0, and �k). Of course,
the same reasoning applies to other physical situations besides the infinitely deep
well. Another example might be the wave packet travelling through a semiconductor.
As discussed in the companion volume on Solid State and Quantum Theory, the
boundary conditions at an interface do not necessary have the simple requirements of
the wave function and its spatial derivative being continuous across the interface.
However, this is a fairly close approximation for two different materials with identical
effective mass and lattice constants.

Equation (8.2.4) can be restated as

�
n~kk
ð~rrþ ~RRÞ ¼ ei

~kk�~RR �
n~kk
ð~rrÞ ð8:2:10Þ

where ~RR is a direct lattice vector. We can easily demonstrate this result by using
Equation (8.2.8).

�
n~kk
ð~rrþ ~RRÞ ¼ ei

~kk�ð~rrþ~RRÞu
n~kk
ð~rrþ ~RRÞ ¼ ei

~kk�~RR ei
~kk�~rru

n~kk
ð~rrÞ ¼ ei

~kk�~RR�
n~kk
ð~rrÞ ð8:2:11Þ

where we have used the periodicity of the function ‘‘u,’’ namely u
n~kk
ð~rrþ ~RRÞ ¼ u

n~kk
ð~rrÞ.

8.2.4 Orthonormality Relation for the Bloch Wave Functions

Now we demonstrate the normalization of the Bloch wave functions. First, these
wavefunctions represent a type of plane wave throughout space—a crystal actually has
infinite size based on the definition of a lattice. Therefore, the wave function must be
normalized on a finite region of space with volume V that usually comes from periodic
boundary conditions over the length L so that V ¼ L3.

We start with the definition of

�
n~kk
ð~rrÞ ¼

ei
~kk�~rrffiffiffiffi
V

p u
n~kk
ð~rrÞ ð8:2:12Þ

and explicitly demonstrate the normalization for u. We want to satisfy the orthonormality
relation for jn, ~kki.

�
m~��, n~kk

¼ m, ~��
��� n, ~kkD E

¼

Z
V
d3r

e�i~���~rrffiffiffiffi
V

p u	m~��ð~rrÞ
eþi~kk�~rrffiffiffiffi

V
p u

n~kk
ð~rrÞ ð8:2:13Þ

The orthonormality in ~kk mostly comes from the ei
~kk�~rr term since ~kk corresponds to a

wavelength having the size of many unit cells whereas the periodic function u
n~kk
ð~rrÞ has

relatively independent of ~kk.
To simplify the calculation, we make the substitution of ~rr ! ~RRj þ ~rr where ~RRj gives

the center of unit cell #j and we now confine ~rr to a unit cell. Note that uð~rrþ ~RRjÞ ¼ uð~rrÞ
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as shown in Figure 8.2.4; the dotted

As discussed below, the wave function includes the periodic part of the wave function

distinct values only within the unit cell (Figure 8.2.6). Therefore, we expect u to be



since u is periodic. This means that the integral in Equation (8.2.13) must be divided
into a summation over all unit cells.

�
m~��, n~kk

¼
XN
j¼1

eið
~kk�~��Þ�~RRj

V

Z
Vj

d3reið
~kk�~��Þ�~rru	m~��ð~rrÞun~kkð~rrÞ ð8:2:14Þ

The wavevectors k must have very small magnitude since the electron wavelength
spans many unit cells. In fact, ~kk � ~rr � 2�ðj~rrj=lÞ � 0 since ~rr is now confined to a single cell.
We therefore take the exponential under the integral to be unity and Equation (8.2.14)
becomes

�
m~��,n~kk

¼
XN
j¼1

eið
~kk�~��Þ�~RRj

V

Z
Vj

d3r u	m~��ð~rrÞun~kkð~rrÞ ð8:2:15Þ

To continue, set ~�� ¼ ~kk otherwise the sum over the exponentials will add approximately
to zero. The functions ‘‘u’’ are periodic which means that their integral must be
independent of the particular unit cell Vj. Therefore, as far as the summation is concerned,
the integrals are constants. We have

�m, n ¼
1

V

XN
j¼1

Z
Vj

d3r u	
m~kk
ð~rrÞu

n~kk
ð~rrÞ ¼

N

V

Z
Vj

d3r u	
m~kk
ð~rrÞu

n~kk
ð~rrÞ ð8:2:16Þ

Using the fact that there are N unit cells in the volume V yields V ¼ NVcell and

Z
Vcell

d3r u	
m~kk
ð~rrÞu

n~kk
ð~rrÞ ¼ Vcell�m, n ð8:2:17Þ

We can go further by noting the functions ‘‘u’’ are approximately independent of k.
Then we have Z

Vcell

d3ru	m~��ð~rrÞun~kkð~rrÞ ffi Vcell�m,n ð8:2:18Þ

We assume that for a given ~kk, the functions u
n, ~kk

form a complete set (where ‘‘n’’ runs
over all of the bands).

We can see the normalization factor Vcell must be correct by using the case of the
periodic potential going to zero since then u ! 1 and the integral then produces Vcell.
Given that u is relatively independent of k, the exponential carries most of the
orthonomality over the k variable. We can normalize the function u so that the integral
does not require the extra Vuc factor. Making the replacement

u
n~kk

!
ffiffiffiffiffiffiffi
Vuc

p
u
n~kk

or u
n~kk

!
ffiffiffiffi
V

p
u
n~kk

ð8:2:19aÞ

we then have the orthonormality relation

Z
Vuc

d3r 0u	m~��un~kk ¼ �mn or

Z
V
d3r 0u	m~��un~kk ¼ �mn ð8:2:19bÞ

However, this is not the usual procedure.
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8.2.5 The Effective Mass Equation

The Hamiltonian for the Schrodinger equation incorporates the periodic crystal
potential VL as

ĤH ¼
p̂p2

2m
þ VL ð8:2:20aÞ

This Hamiltonian uses the electron free mass m. The energy basis states have the
Bloch form

�
n~kk
ð~rrÞ ¼

ei
~kk�~rrffiffiffiffi
V

p u
n~kk
ð~rrÞ ð8:2:20bÞ

The periodic boundary conditions over the macroscopic length L for all three direc-
tions (V ¼ L3) determine the normalization and the number (and form) of the Bloch
wave functions. In general, extra potentials VE can be added to the Hamiltonian to
account for band bending and so on.

ĤH ¼
p̂p2

2m
þ VL þ VE ð8:2:21Þ

The effective mass approximation includes the effects of the lattice potential by
replacing the free mass in Equation (8.2.21) with the effective mass me. The potential VL

is removed from the Hamiltonian.

ĤH ¼
p̂p2

2me
þ VE ð8:2:22aÞ

In these cases, the periodic part of the wave function should be removed and the basis
states become plane waves equivalent to those for free-particle transport.

�
n~kk
ð~rrÞ ¼

ei
~kk�~rrffiffiffiffi
V

p ð8:2:22bÞ

The solution found for free-space can be applied to the equivalent case with a
semiconductor so long as the effective mass is used.

me ¼ �hh2 @2E

@k2

� 	�1

ð8:2:23Þ

The Schrodinger equation incorporating the tensor mass can be written as

ĤH ¼ �
�hh2

2
r �m

$�1

e � r þ VE ¼ �
�hh2

2

X
a, b

ðm�1
e Þab@a@b þ VE ð8:2:24Þ

634 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



8.3 Density of States for Nanostructures

One of the most exciting areas of modern research focuses on fabricating reduced
dimensional structures. These structures can incorporate dissimilar groups of atoms
arranged and grouped on scales of 5 to 100 angstroms. Such small sizes induce quantum
confinement effects in the system, which radically affects the band structure and most of
the opto electronic properties.

In this section, we develop the density of states for these reduce dimensional struc-
tures after briefly reviewing the solution to the Schrodinger wave equation in the effec-
tive mass approximation. The companion volume on solid states contains the full
mathematical treatment.

8.3.1 Envelope Function Approximation

We want to model 3-D crystals using potentials that reduce the Schrodinger wave
equation to simpler 1-D or 2-D problems. To fix our thoughts, Figure 8.3.1 shows a
3-D heterostructure with varying aluminum concentration along the growth axis z.
The GaAs forms a 2-D reduced dimensional structure, namely a quantum well. The
crystal atoms produce a periodic potential VL (L for lattice) and the interfaces produce
the ‘‘macroscopic’’ confining potential V. The 3-D character of the structure leads to a 2-D
equation for the x-y directions and a 1-D equation for the z direction. All three directions
generally use the Bloch wavefunctions. Figure 8.3.2 shows the Bloch wavefunction for
the z-direction.

The Schrodinger wave equation for the heterostructure can be written as

�
�hh2

2m
r2�þ V þ VLð Þ� ¼ i�hh

@

@t
� ð8:3:1Þ

FIGURE 8.3.1

The band offset produces quantum wells in a
heterostructure.

FIGURE 8.3.2

The wave function for the finitely deep well.
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where m denotes the free mass of the electron. The wave function has the form

�ðtÞ
�� �

¼
X
~kk

�
n~kk
ðtÞ n, ~kk

��� E
¼

X
~kk

�
n~kk
ð0Þ n, ~kk

��� E
e�iE

n~kk
t=�hh ð8:3:2Þ

where the eigenfunctions have the form

n, ~kk
��� E

�  ð~rrÞ ¼
1ffiffiffiffi
V

p ei
~kk�~rru

n, ~kk
ð~rrÞ ð8:3:3Þ

and we confine our attention to the conduction band. A similar expression can be used
for the valence bands so long as the light and heavy hole bands have sufficient separation
in energy (nondegenerate bands). The basis functions for the Hilbert space of envelope
functions

�~kkð~rrÞ ¼
1ffiffiffiffi
V

p ei
~kk�~rr ð8:3:4aÞ

satisfy the orthonormality relation

�~KK

��� �~kkD E
¼ �~kk~KK ð8:3:4bÞ

The Bloch functions u
n, ~kk

are periodic on the crystal so that the values of u
n, ~kk

repeat
from one unit cell to the next. As discussed in the previous section, the Bloch wave
function u

n, ~kk
are normalized so that they satisfy an inner product over the unit cell of

the form

u
n~kk

��� u
m~kk

D E
uc
¼

Z
uc
dV u	

n~kk
u
m~kk

¼ Vcell�mn ð8:3:5Þ

We consider only the conduction band (n¼ 2) and redefine the notation as u
2, ~kk

¼ u~kk.
The general vector in the space spanned by the basis set

n, ~kk
��� E

�  
n, ~kk

ð~rrÞ ¼
1ffiffiffiffi
V

p ei
~kk�~rr u

n, ~kk
ð~rrÞ ð8:3:6aÞ

has the form

�ð~rr, 0Þ ¼
X
~kk

�~kk n, ~kk
ð~rrÞ ¼

X
~kk

�~kk�~kkun, ~kkð~rrÞ ð8:3:6bÞ

The envelope approximation allows Equation (8.3.6b) to be simplified. For this
approximation, the functions u

n, ~kk
ð~rrÞ are assumed to be relatively independent of the

wave vector ~kk since it corresponds to a wavelength having the size of many unit
cells whereas u

n, ~kk
ð~rrÞ has distinct values only within the unit cell. Therefore, writing

u
n, ~kk

ð~rrÞ � un, 0ð~rrÞ � unð~rrÞ, we can write

�ð~rr, 0Þ ¼
X
~kk

�~kk�~kkun, ~kkð~rrÞ ffi
X
~kk

�~kk �~kkð~rrÞ

2
4

3
5unð~rrÞ ¼ Fð~rrÞunð~rrÞ ð8:3:6cÞ
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The envelope function Fð~rrÞ resides in the Hilbert space spanned by the envelope
basis set f�~kkð~rrÞg. We therefore see that the solution (8.3.6c) to the Schrodinger wave
equation must have the form of a modulated carrier. The envelope function must satisfy
the boundary conditions for the microstructure. We can find the density of states
using either the full basis set fj2, ~kkig or those for the envelope functions f�~kkð~rrÞg since
for each ~kk, there exists a basis vector in either set.

The effective mass Schrodinger equation eliminates the periodic potential VL in
Equation (8.3.1) but replaces the free mass with the more complicated effective mass me.

�
�hh2

2me
r2�þ V� ¼ i�hh

@

@t
� ð8:3:7aÞ

The solution has the form

�ðtÞ
�� �

¼
X
~kk

�
2~kk
ðtÞ �~kk

��� E
ð8:3:7bÞ

As usual, the functions �~kk satisfy the eigenvector equation

ĤH�~kk ¼ E~kk�~kk ð8:3:8Þ

where E~kk ¼ E
2, ~kk

and ĤH ¼ �ð�hh2=2meÞr
2�þ V�

8.3.2 Summary of Solution to the Schrodinger Wave Equation
for the Quantum Well

Consider an electron confined to a well. To find the energy basis states for the quantum
well, separate variables in the time-independent Schrodinger wave equation

�
�hh2

2me
r2 ðx, y, zÞ þ VðzÞ ðx, y, zÞ ¼ E ðx, y, zÞ ð8:3:9Þ

where E represents the total energy of the electron. The total kinetic energy consists of
the motion perpendicular and parallel to the interfaces in the heterostructure. The
total energy inside the quantum well where VðzÞ ¼ 0 for 0 
 z 
 L must be the same
as the total kinetic energy. A standing wave describes the electron motion along the

the equation by substituting

 ¼ XðxÞYð yÞZðzÞ ð8:3:10Þ

and then divide by  to find

�
�hh2

2me

1

X

@2

@x2
XðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ex

�
�hh2

2me

1

Y

@2

@y2
YðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ey

�
�hh2

2me

1

Z

@2

@z2
ZðzÞ þ VðzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ez

¼ E ð8:3:11Þ

The total energy consists of the sum of the energies for motion in the x, y, z directions

E ¼ Ex þ Ey þ Ez ð8:3:12Þ
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confinement direction z similar to the one shown in Figure 8.3.2. As usual, we separate



We already know the eigenfunctions and eigenvalues for motion in the x and y
directions.

Xkx ¼ eikxx Yky ¼ eikyy Ex ¼
�hh2k2

x

2me
Ey ¼

�hh2k2
y

2me
ð8:3:13Þ

These last two equations represent dispersion curves for the x and y directions; the
electron acts as a free electron so long as the effective mass replaces the free mass.
Equation (8.3.13) assumes spherical bands but the effective masses can be replaced with
mx and my as necessary. The allowed values of kx and ky come from macroscopic periodic
boundary conditions as usual. The equation for the z-direction takes the form of

�
�hh2

2me

@2

@z2
Zþ VðzÞZ ¼ EzZ ð8:3:14Þ

We need to find the eigenfunctions and eigenvalues for this last equation.
For the infinitely deep well, we assume that the envelope wave function must be zero

outside the well as given by the fixed-endpoint boundary conditions z¼ 0 and z¼ Lz. The
basis set has the form

ZðzÞ ¼

ffiffiffiffiffi
2

Lz

r
sinðkzzÞ kz ¼ n�=Lz n ¼ þ1, þ2, . . . ð8:3:15aÞ

and the energy eigenvalues can be written as

EðzÞn ¼
�hh2k2

z

2me
¼

n2�2�hh2

2meL2
z

ð8:3:15bÞ

The solution applies to the infinitely deep well, the density of states only needs the
dependence of energy on kz and not the exact form of the wave function.

Now that we have the allowed energies and the eigenfunctions for the z-direction, the
general solution to the original Schrodinger time-dependent equation can be determined.
The total energy consists of the quantum well energy Ez plus the energy due to motion
parallel to the interfaces.

E ¼ Ez þ
�hh2

2me
ðk2

x þ k2
yÞ ð8:3:16Þ

and the general wavefunction must have the form

� ¼
X
kxkykz

CkxkykzXkxYkyZkze
�itE=�hh

¼
X
kxkykz

CkxkykzXkxYkyZkze
�itEz=�hhe�itExy=�hh

ð8:3:17Þ

where

E ¼ Ez þ
�hh2

2me
ðk2

x þ k2
yÞ Exy ¼

�hh2

2me
ðk2

x þ k2
yÞ ð8:3:18Þ
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The dispersion relation Exyðkx, kyÞ applies to directions parallel to the plane of the
quantum well. It describes the motion of a free particle with mass me.

The sequence of parabaloids in represents the total energy in
Equation (8.3.16). The vertex of each one increases in energy according to the energy
Ez in Equation (8.3.15b). Electron motion in the x-y plane of Figure 8.3.1 is similar to
the motion of free electrons because of the parabolic dispersion relations. Each paraba-
loid in Figure 8.3.3 corresponds to the portion of the electron motion parallel to the
layers. However the parabaloids must be displaced from the origin along the energy
axis because of the additional discrete energy levels due to the quantum well. For
simplicity, the dispersion curves in Equation (8.3.16) are usually plotted as shown in
Figure 8.3.4.

8.3.3 Density of Energy States for the Quantum Well

bulk case. A more rigorous treatment can be found in the companion volume for Solid
State and Quantum Theory.

of a 2-D plane
embedded within a crystal. Electrons can freely move parallel to the plane but the well
produces widely separated wave vectors kz and the corresponding energy Ez values.

shows the produced by a quantum well. Each sub-band
corresponds to motion along the 2-D plane. We therefore expect the density of states
for each sub-band to correspond to the 2-D bulk case.

g2DðEÞ ¼
meAxal

2��hh2
ðno spinÞ ð8:3:19Þ

FIGURE 8.3.3

The energy sub-bands from Equation (8.3.16).

FIGURE 8.3.4

Sub-bands for the quantum well in the 3-D crystal.
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Figure 8.3.16

As indicated in Figure 8.3.1, the quantum well essentially consists

Figure sub-bands

We now calculate the density of states inside the quantum well using the results for the

8.3.5



where Axal ¼ LxLy represents the crystal area and Lx, Ly represent the macroscopic lengths
for the periodic boundary conditions along the x and y directions, respectively. The area
will be removed later.

The density of states for the quantum well can now be found. For the region of energy
0 
 E5E1, the density-of-states for the well gwell must be zero. For the energy range
E15E5E2, only one sub-band must be considered. The density of states must correspond
to a single 2-D parabaloid given by equation 8.3.19. Finally the energy range E25E5E3

requires us to count states in two sub-bands in the energy range �E. We therefore expect
to include Equation (8.3.19) twice. In general then, the density of states for the quantum
well must be

gwellðEÞ ¼
me

2��hh2

X
En

�ðE� EnÞ per xal area no spin

gwellðEÞ ¼
me

��hh2Lz

X
En

�ðE� EnÞ per xal vol with spin

ð8:3:20Þ

where we have divided out the well volume AxalLz in the second equation. The
units of ‘‘per crystal volume’’ allow us to compare bulk and quantum well density of
states.

Typically, the literature shows the density of energy states for the quantum well next
to a plot of the sub-bands as in Figure 8.3.6. Each 2-D plane of ~kk vectors leads to a
constant density of energy states (independent of energy). Larger energy E requires more
sub-bands be included in the energy state counting. A step occurs in the well density of

FIGURE 8.3.6

The density of energy states for the quantum well and its relation to the sub-band diagram. Both DOS are
normalized to crystal volume.

FIGURE 8.3.5

The sub-bands produced by a quantum well.
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states at the start of each sub-band as shown. By the way, the step-like form for the well
density of states means that thermal electrons occupy narrower range of energy than for
the bulk material. This also means that the population inversion required for lasing can
also occupy more narrow range.

8.3.4 The Density of Energy States for the Quantum Wire

The quantum wire confines the electron in two directions, say the x and y directions. For
example, Figure 8.3.7 shows a GaAs ‘‘wire’’ embedded within AlGaAs. We assume the
wire length along z has macroscopic size compared with the microscopic size along either
x or y.

Lx, Ly � Lz

The lengths along x or y are approximately 50–100 angstroms.
We can solve Schrodinger’s equation in the effective mass approximation for

the infinitely deep well. The solutions along x and y must have a sinusoidal form while
those for the ‘‘z’’ direction can be taken as traveling waves. The allowed wave vectors can
be written as

kðxÞm ¼
m�

Lx
k
ðyÞ
n ¼

n�

Ly
kðzÞq ¼

2q�

Ly
m, n ¼ þ1, þ2, . . . q ¼ �1, �2, . . . ð8:3:21Þ

with the spacing between states

�kx ¼
�

Lx
�ky ¼

�

Ly
�kz ¼

2�

Lz
¼ small ð8:3:22Þ

and the energy

E ¼ Ex þ Ey þ Ez ¼
�hh2k2

x

2me
þ
�hh2k2

y

2me
þ
�hh2k2

z

2me
¼

�hh2k2

2me
ð8:3:23Þ

where k2 ¼ k2
x þ k2

y þ k2
z and kz is essentially continuous.

The density of states can be calculated using a diagram very similar to those in
and In this case, the parabola represents free motion along the

z-direction. The parabolas have vertices given by the various energy levels in the wire for
the x and y directions.

Emn ¼ Ex þ Ey ¼
�hh2k2

x

2me
þ
�hh2k2

y

2me
¼

m2�2�hh2

2meL2
x

þ
n2�2�hh2

2meL2
y

ð8:3:24Þ

FIGURE 8.3.7

The quantum wire confines electrons along the x and y direction.
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The density of states of a single sub-band has the same form as for the bulk 1-D crystal

g1DðEÞ ¼
Lz
2�

ffiffiffiffiffiffiffiffi
2me

�hh2

r
1ffiffiffi
E

p ð8:3:25Þ

The crystal scale factor Lz will be separately handled. If the energy E in question is
larger than the vertex energy for several sub-bands, then the density of states must
include several terms similar to equation 8.3.25 to give

gwireðEÞ ¼
Lz
2�

ffiffiffiffiffiffiffiffi
2me

�hh2

r X
Emn

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Emn

p �ðE� EmnÞ per length, no spin

gwireðEÞ ¼
1

�LxLy

ffiffiffiffiffiffiffiffi
2me

�hh2

r X
Emn

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Emn

p �ðE� EmnÞ per volume, with spin

ð8:3:26Þ

The units of ‘‘per volume’’ allow the quantum wire and 3-D bulk density-of-states to be
compared.

The density of energy states for the quantum wire appears in Figure 8.3.8. The density
of states rapidly falls off after each confinement energy Emn. Combining this density of
states with the Fermi-Dirac distribution produces very sharp electron (vs. energy)
distributions.

As an important note, we have assumed an infinitely deep well. The energy levels
for the finitely deep well have different values than those for the finitely deep ones.
Therefore we expect a density of states function that appears similar to Figure 8.3.8
except that the steps must occur at different values of E. Further, the finitely deep
well only binds the electron for a fixed number of states; the remaining states corre-
spond to plane waves. Therefore only a finite number of steps appear in the density of
states plot.

8.3.5 The Quantum Box

The quantum box confines the electron in all dimensions and therefore produces a series
of spikes for the density of states. For a box with sides of length Lx, Ly, Lz, the density of
states must have the form

gboxðEÞ ¼
X
m, n, p

�ðE� EmnpÞ no spin

FIGURE 8.3.8

The density of energy states for the quantum wire.
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8.4 The Reduced Density of States and Quasi-Fermi Levels

The laser gain and rate equations for semiconductor lasers can be deduced using a variety
of methods. The phenomenological approach in Chapter 2 provides the rate equations
and the gain using basic energy conservation but does not include any wavelength
dependence nor broadening mechanisms. Fermi’s golden rule incorporates the quantum
mechanics of the transition process but not the collision broadening and the steady state
conditions. The Liouville equation includes all of these and describes the rounding of the
spectral features due to the homogeneous broadening.

All of the approaches require the reduced density of states and the Bloch wave
functions. The reduced density of states provides the number of pairs of states (between
the conduction and valence bands) that contribute to the emission process at a partic-
ular wavelength. In this way, the transition process includes the density of states for
each band.

This section starts with Fermi’s golden rule and shows how to include the reduced
density of states and the effects of the pump through the quasi-Fermi levels. Section 7.3
shows the transition rate from an initial state with energy Ei to a group of final states
centered on energy Ef.

Ri!f ¼
d

dt
PV ¼

�

2�hh
ð�EoÞ

2	f ðEf ¼ Ei � �hh!Þ ð8:4:1Þ

This rate provides the number of transitions per second per crystal volume. The symbol
	 denotes the density of states to distinguish it from the gain g. The symbols �,Eo

represent the induced dipole moment and the electric field amplitude, respectively. The
section replaces the density of states 	f with the reduced density of states and explains
the reason for including the Fermi distributions as an extra factor.

8.4.1 The Reduced Density of States

The number of final and initial states partly determines the transition rate. If there were
only one final state but many electrons in initial states, then we could have only one
transition to a final state. Increasing the number of final states (receptors) means many
more of the electrons in the initial states can make transitions. Therefore the transition
rate must increase with greater numbers of final states. Likewise, a single initial state
(source) can have only a single electron. Therefore there can be only one upward
transition. Increasing the number of initial states (assuming they have electrons) must
therefore increase the transition rate. It should also be apparent that the Fermi
distribution must play a role in the transition rate. Initial states without electrons do
not contribute to upward transitions. Likewise, filled final states cannot receive another
electron and therefore cannot contribute to the transition rate.

A complication arises since Equation (8.4.1) has a single density of states but the
conduction and valence bands each have their own density of states. How do we
combine the two density of states into a single one for Fermi’s golden rule? The paradox
can be resolved by realizing that the density of states in Equation (8.4.1) actually refers to
the transition energy ET ¼ �hh!. We actually want the number of states per unit transition

two bands indicate the possible transitions. Each electron wave vector ~kk has a different
transition energy associated with it. The transitions appear vertical because the photon
has very little momentum compared with the energy difference it provides to the
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energy. Figure 8.4.1 shows a conduction and valence band. The vertical lines between the



electrons. An electron in the conduction band can emit a photon and drop into the
valence band. The energy difference between the initial and final states for the electron
exceeds the gap energy Eg. If phonons were involved with the transition, then the
transitions would no longer appear approximately vertical. Consequently, each transition
can be uniquely associated with an electron wave vector ~kk.

We can find the reduced density of states. Figure 8.4.2 shows the transition energy can
be written as a sum of two energies so long as the sum adds to �hh! where ! denotes the
optical angular frequency. We want the quantity

	rðETÞ ¼
dN

dET
ð8:4:2Þ

where N denotes the number of pairs of electron-hole states separated by the transition
energy ET.

ET ¼ E2j j þ Eg þ E1j j

Then we can write

dET ¼ dE2 þ dE1

We can now write

1

	r
¼

dET

dN
¼

dE2

dN
þ
dE1

dN
¼

1

	c
þ

1

	v
or 	r ¼

	c	v
	c þ 	v

ð8:4:3Þ

where 	c, 	v represent the density of states in the conduction and valence bands
respectively. These last equations use the fact that N represents the number of pairs
of electron-hole states; it therefore must also represent the number of states in the
conduction band in �E2 and the number of states in the valence band in �E1. The second
of Equations (8.4.3) shows the reason for the name ‘‘reduced;’’ it has a form resembling
the reduced mass from classical mechanics. The reduced density of states must be
smaller than either the conduction or valence band density of states.

The method of calculating the reduced density of states can perhaps be best understood
from the simple case of equal numbers of states for the conduction and valence bands

T5Eg, then the transition energy ET does not connect
states in the conduction and valence band so that the reduced density of states must be
zero. In other words, there does not exist any pairs of states separated by energy ET.
If ET ¼ Eg, then the states at the band edges can participate in transitions; these transi-
tions can involve the absorption or emission of photons with energy ET. In this case, the

FIGURE 8.4.1

Vertical transitions.

FIGURE 8.4.2

The transition energy ET ¼ E2j j þ Eg þ E1j j.

644 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC

as plotted in Figure 8.4.3. If E



reduced density of states begins to increase from zero. For ET4Eg as shown in the figure,
a large number of states in the valence band can be connected with a large number
of states in the conduction band by the transition energy. The figure shows equal
density of states for both bands. Therefore, the reduced density of states must be
	r ¼ 	c=2 ¼ 	v=2. In this case, the reduced density of states is easy to calculate just by
drawing a horizontal bar representing the length ET; this bar is symmetrical about the
band gap.

We need a method for calculating the reduced density of states when the conduction
and valence bands do not have equal numbers of states. We need to find the location
(i.e., the energy) of the states in the conduction band and the location of those in the
valence band that are connected by the transition energy ET. Assuming a bulk 3-D crystal
with parabolic bands and direct band gap, the functional form of the reduced density
of states can be found from Equations (8.4.3) and the relation found in Problems 8.15,
namely mcE2 ¼ �mvE1 (for Ev50). The reduced density of states in Equations (8.4.3)
requires E2 and E1 to be written in terms of the constant e.g., and ET.

E2 ¼
mv

mc þmv
ðET � EgÞ E1 ¼ �

mc

mc þmv
ðET � EgÞ ð8:4:4aÞ

Equivalently, using Ec ¼ Eg þ E2 and Ev ¼ E1 we find

Ec ¼
mvET þmcEg

mc þmv
Ev ¼ �

mc

mc þmv
ðET � EgÞ ð8:4:4bÞ

Using Equation (8.4.4b), the reduced density of states in Equation (8.4.3) becomes

1

	rðETÞ
¼

1

	cðmvET þmcEgÞ=ðmc þmvÞ
þ

1

	v � ðmc=ðmc þmvÞÞðET � EgÞ
ð8:4:5Þ

The last equation for the reduced density of states indicates the ‘‘transition energy bar’’
does not have a symmetrical position relative to the band gap nor is it parallel to the
energy axis in a plot of the density of states versus energy (unlike Figure 8.4.3).
The relation mcE2 ¼ �mvE1 with unequal effective masses, rather than E2 ¼ �E1, sets the
position of the bar relative to the band gap. One of the chapter review exercises has
an example for applying this equation.

8.4.2 Quantum Well Reduced Density of States

An infinitely deep quantum well of width Lz has the density of states

	ðEÞ ¼
me

��hh2Lz

X
En

�ðE� EnÞ per xal vol, with spin ð8:4:6Þ

FIGURE 8.4.3

The reduced density of states (right) and its relation to the conduction and valence band density of states (left).
For equal valence and conduction band density of states, the ‘‘transition bar,’’ denoted by ET is symmetrically
placed about the gap.
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where me denotes the effective mass. This equation includes spin degeneracy. The
sub-bands produce the step functions � in Equation (8.4.6). A step occurs in the well
density of states at the start of each sub-band as shown in Figure 8.4.4. The density of
states for the well is smaller than that for the bulk. This lowers the total number of
thermal electrons and holes for the well.

The reduced density of states must include both the conduction and valence sub-bands
as shown in Figure 8.4.4. Notice that the valence sub-bands do not start at E¼ 0 unlike the
bulk density of states. This occurs because the quantum well pushes the vertex energy
away from the typical minimum or maximum.

The reduced density of states can be written using

1

	r
¼

1

	c
þ

1

	v

where

	cðEÞ ¼
mc

��hh2Lz

X
Ecn

�ðE� EcnÞ per xal vol ð8:4:7aÞ

	vðEÞ ¼
mv

��hh2Lz

X
Evn

�ðE� EvnÞ per xal vol ð8:4:7bÞ

FIGURE 8.4.4

The sub-bands and density of states for an infinitely deep quantum well.

FIGURE 8.4.5

The density of states for the 3-D bulk, quantum well and the reduced density of states. The reduced DOS must
be a function of ET.
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For simplicity, assume identical effective masses for valence and conduction bands. The

the height of the other curves and it’s displaced toward larger energy. The energies Ec1

and Ev1 refer to the first well energy levels for the conduction and valence bands,
respectively. The displacement occurs since the energy ET must be larger than Ec1 � Ev1

for transitions.

8.4.3 The Quasi-Fermi Levels

Replacing the density of states with the reduced density of states in Equation (8.4.1)
does not complete the prescription for the rate of transition. We must include the number
of filled or empty initial and final states. As discussed in Section 8.1, photogeneration
or charge injection produces more carriers in some states than should be present for
temperature T as dictated by the Fermi-Dirac distribution. Therefore, the distribution
does not obey the Fermi-Dirac distribution and the Fermi level Ef splits into two quasi-
Fermi levels Efc and Efv for conduction and valence electrons, respectively.

The laser necessarily involves nonequilibrium statistics by virtue of the pumping
mechanism. The probability of an electron occupying a state in the conduction and
valence bands, respectively, becomes

FcðEÞ ¼
1

1 þ exp ðE� EfcÞ=kT
� � FvðEÞ ¼

1

1 þ exp ðE� EfvÞ=kT
� � ð8:4:8Þ

The probability of a valence or conduction band state being empty must be 1 � Fv and
1 � Fc, respectively. In order for a laser to oscillate, a population inversion must exist. In
the language of Sections 7.9 and 7.11, we require the population difference �N ¼ N2 �N1

to satisfy �N40. This means a large number of electrons must occupy the upper state
E2 and only a few occupy the lower state E1. For the semiconductor laser, generally
the conduction quasi-Fermi level Efc must be above the conduction band edge and the
valence quasi-Fermi level Efv must be near or below the valence band edge as shown
in Figure 8.4.6. The separation of the quasi-Fermi levels must generally be larger than
the band gap.

The number of conduction electrons and valence holes (per unit volume) can be
written as

n ¼

Z 1

Eg

dE	cðEÞFcðEÞ p ¼

Z 0

�1

dE	vðEÞFvðEÞ ð8:4:9Þ

FIGURE 8.4.6

A possible position of the quasi-Fermi levels for lasing.
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reduced density of states appears as in Figure 8.4.5. Notice how the reduced DOS has half



The quasi-Fermi level fixes the number of electrons as demonstrated in Section 8.1. Set
dc ¼ ðEfc � EgÞ=kT and dv ¼ Ev=kT similar to that done for Topic 8.1.11. For a quasi-Fermi
level more than several kT beyond the band edge, the number of conduction electrons
can be characterized by mcdc and the number of valence holes by mvdv where mc and
mv denote the conduction and valence band effective masses, respectively. Specifically,
the number of conduction and valence holes can be approximated by

Equation (8.1.29b) when the quasi-Fermi level is more than several kT beyond the band
edge. The number of electrons becomes approximately

Equation (8.1.30) provides the approximate number of electrons and holes

n ffi
ðkTÞ3=2

�2�hh3
ðmcdcÞ

3=2 p ffi
ðkTÞ3=2

�2�hh3
ðmvdvÞ

3=2
ð8:4:10Þ

The characterization of the number of electrons in the conduction band or the holes
in the valence band is conceptually important for lasers. For sufficient gain to initiate
lasing, the quasi-Fermi level separation Efc � Efv must exceed the band gap e.g., We
can approximately position the quasi-Fermi levels in the bands by requiring the number
of holes to be the same as the number of electrons p¼ n. Therefore, Equations (8.4.10)
give medc ¼ �mvdv where the minus sign occurs because the valence band has nega-
tive energy. This can be equivalently written as meðEfc � EgÞ ¼ �mvEfv. However, for
the most part, this simple relation must be modified for energy near the quasi-Fermi
level where the approximation breaks down.

These quasi-Fermi levels should appear in Fermi’s golden rule. For downward
transitions, we need a large number of electrons in the conduction band and very few in
the valence band. Absorption requires the reverse. Therefore for emission, we need to
know the number of filled conduction states and the number of empty valence states.
Fermi’s golden rule should be written as follows.

R ¼
�

2�hh
ð�EoÞ

2	rðETÞ �
Fcð1 � FvÞ Emission

Fvð1 � FcÞ Absorption

(
ð8:4:11Þ

Keep in mind that the transition energy refers to the difference in energy for
the semiconductor but will be later linked to the photon energy as ET ¼ E
 ¼ �hh!. The
factors Fc and Fv must be evaluated at Ec and Ev, respectively, for which ET ¼ Ec � Ev

where Ev50.

8.5 Fermi’s Golden Rule for Semiconductor Devices

Fermi’s Golden Rule provides the rate of transition from a single filled state to a single
final state (or group of states. Section 7.3 states Fermi’s Golden Rule for an electromag-
netic interaction as

R ¼
�

2�hh
ð�EoÞ

2�ðEf ¼ Ei � �hh!Þ ðsingle final stateÞ ð8:5:1aÞ

R ¼
�

2�hh
ð�EoÞ

2	f ðEf ¼ Ei � �hh!Þ ðgroup of final statesÞ ð8:5:1bÞ
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where the ‘‘þ’’ refers to absorption and ‘‘�’’ refers to emission of a photon. The
electromagnetic interaction has the form

V̂V ¼ �̂�Eocosð!tÞ ¼ ĤH0e�i!t þ ĤH0eþi!t ð8:5:2Þ

where �̂� denotes the dipole operator and Eo denotes the amplitude of the incident
electric field. Equation (8.5.2) relates the time-independent interaction energy ĤH0 to the
dipole operator and the electric field according to ĤH0 ¼ �̂�Eo=2. In such a case, Fermi’s
Golden rule can be restated as

R ¼
2�

�hh
H0

fi

��� ���2	f ðEf ¼ Ei � �hh!Þ ð8:5:3aÞ

where i, f represent the initial and final states, respectively. Taking into account the
reduced density of states and the Fermi factor as in Equation (8.4.11), we can write

R ¼
2�

�hh
H0

fi

��� ���2	rðETÞ FðETÞ ð8:5:3bÞ

where we define

FðETÞ ¼
Fcð1 � FvÞ Emission

Fvð1 � FcÞ Absorption

(
ð8:5:3cÞ

and where 	r, Fc,Fv denote the reduced density of states, the probability of finding
an electron in a conduction state, and the probability of finding an electron in a valence
state, respectively.

Previous sections have examined the reduced density of states and the Fermi factor.
The present section shows how to calculate the remaining factor for the transition matrix
element. For semiconductors, the states have the form of Bloch states. We will find the
gain for a semiconductor material (unsaturated) using the vector potential form ~AA � p̂p for
the Hamiltonian rather than ĤH0 ¼ �̂�Eo=2. This alternate form proves most useful when
calculating the effects of multiple bands. The matrix element describes emission or
absorption between the valence and conduction band and therefore involves the Bloch
wave functions for the valence and conduction bands. The calculation proceeds by using
p̂p in differential form and dividing the resultant integral into a portion specific to the unit
cell and another applicable to the entire crystal without reference to the unit cell. The
integral over the unit cell produces a type of dipole moment and harbors the transition
selection rules. The integral over the entire crystal provides the vertical transitions
expected for the interaction between matter and light. The results apply to emitters and
detectors.

The next section puts together all of the pieces in Equation (8.5.3b) to calculate the gain.
It shows a graphical method to calculate the gain for a semiconductor laser.

8.5.1 Vector Potential Form of the Interaction

Before calculating the transition matrix element, we first state the vector potential form
of the interaction. Rather than use the �̂� � ~EE form of the matter–light interaction, we use
the alternative form given in Section 7.6

ĤH ¼
ðp̂p� q ~AAÞ

2

2m
þ V̂V ð8:5:4Þ
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where V̂V represents the internal potentials of the atom (such as the Coulomb potential
due to the nucleus), and ~AA represents the vector potential (Section 3.12). The charge q
has the value q ¼ �e for an electron where e ¼ 1:6 � 10�19 coulombs. The vector potential
satisfies the coulomb gauge condition r � ~AA ¼ 0. Neglecting the square of the
vector potential, we can identify the EM interaction Hamiltonian as

V̂V ¼
e

2m
ð p̂p � ~AAþ ~AA � p̂pÞ ð8:5:5Þ

where p̂p ¼ �hh=ir.
The interaction Hamiltonian (Equation (8.5.5)) can be simplified by allowing it to

operate on a wave function

p̂p � ~AAþ ~AA � p̂p
� �

 ¼ p̂p � ~AA 
� �

þ ~AA � p̂p ¼ p̂p � ~AA
� �

 þ ~AA � p̂p 
� �

þ ~AA � p̂p ð8:5:6aÞ

where the derivative of a product has been used (since p̂p involves a derivative). The first
term on the right hand side must be zero due to the Coulomb gauge condition

p̂p � ~AA ¼
�hh

i
r � ~AA ¼ 0

Therefore, Equation (8.5.6a) becomes

p̂p � ~AAþ ~AA � p̂p
� �

 ¼ 2 ~AA � p̂p ð8:5:6bÞ

and Equation (8.5.5) becomes

V̂V ¼
e

m
~AA ~rr, t
� �

� p̂p ð8:5:7Þ

The vector potential ~AAð~rr, tÞ must be real. It has the form

~AA ~rr, t
� �

¼ Re ~AA ~rr
� �

e�i!t
n o

¼
1

2
~AAe�i!t þ ~AA	eþi!t

h i
ð8:5:8Þ

where we have used zþ z	 ¼ 2 ReðzÞ and Að~rrÞ ¼ Aoe
i~kk
 �~rr. Therefore, Equation (8.5.7)

becomes

V̂V ¼
e

2m
~AA � p̂pe�i!t þ ~AA	 � p̂peþi!t ¼

e

2m
Að~rrÞ~ee � p̂pe�i!t þ A	ð~rrÞ~ee � p̂peþi!t

 �

ð8:5:9Þ

where ~ee gives the direction of the vector potential and hence also the direction of the
electric field. Recall from Section 6.2 that the vector potential must be perpendicular to
the direction of the wave vector ~kk because of the Coulomb gauge condition. Comparing
this last result with Equation (8.5.2) shows the time independent Hamiltonian must be

ĤH0 ¼
e

2m
A ~rr
� �

~ee � p̂p ð8:5:10Þ

where ~ee gives the polarization direction of the vector potential.
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8.5.2 The Matrix Elements for the Homojunction Devices

Homojunction devices include lasers, detectors and LEDs made from a single semi-
conductor but with different types of doping. The matrix element provides the quantum
mechanics of the transition.

For simplicity, assume we want to calculate the transition matrix element for an
emission event. Assume an electron can make a transition from a state in the conduction
band to one in the valence band as shown in Figure 8.5.1. The electron initially in
the conduction band state j2k2i transitions to the valence band state j1k1i. We will be able
to find the transition matrix element and also demonstrate k1 ¼ k2 which produces the
‘‘vertical transition.’’

We want to calculate the transition matrix element

Hfi ¼ 1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m
1~kk1

D ���A ~rr
� �

~ee � p̂p 2~kk2

��� E
ð8:5:11Þ

in Equation (8.5.3b). Each band has a state labeled by k. The Bloch wave function
�

n, ~kk
� jn, ki distinguishes between these states by the band index n. Recall that the Bloch

wavefunction has the form

�
n, ~kk

~rr
� �

¼
ei
~kk�~rrffiffiffiffi
V

p u
n, ~kk

~rr
� �

ð8:5:12Þ

as suggested by Figure 8.5.2. The function u
n~kk

has the periodicity of the lattice while
the envelope function corresponds to a wavelength very large compared with the unit
cell. The large normalization volume V can be written as V¼ LxLyLz and the wave vector
~kk becomes

~kk ¼
2m�

Lx
~xxþ

2n�

Ly
~yyþ

2q�

Lz
~zz

FIGURE 8.5.1

A hypothetical optical transition from the conduction to the valence band.

FIGURE 8.5.2

The envelope and periodic function.
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as a result of periodic boundary conditions. The envelope function applies to either the
valence or the conduction band states and depends only on the electron wave vector ~kk.
The envelope portion satisfies the following inner product

ei
~kk1�~rrffiffiffiffi
V

p

����� ei
~kk2�~rrffiffiffiffi
V

p

* +
¼ �~kk1, ~kk2

ð8:5:13aÞ

where the integral covers only the volume V. The periodic part satisfies

u
m, ~kk

��� u
n, ~kk

D E
¼ Vuc�mn ð8:5:13bÞ

where the integral covers only the volume of the unit cell Vuc. The plane wave envelope
functions apply to a homojunction whereas a quantum well requires a linear combination
of the plane waves.

Now we can evaluate the transition matrix element in 8.5.11.

Hfi ¼ 1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m
1~kk1

D ���A ~rr
� �

~ee � p̂p 2~kk2

��� E
where Að~rrÞ ¼ Aoe

i~kk
 �~rr. The inner product becomes

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p u	
1, ~kk1

~rr
� �

A ~rr
� �

~ee � p̂p
� � ei

~kk2�~rrffiffiffiffi
V

p u
2, ~kk2

ð~rrÞ ð8:5:14Þ

The operator p̂p ¼ ð�hh=iÞr requires us to differentiate the two functions on the right hand
end to find

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e ~ee � �hh~kk2

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

u
2, ~kk2

þ
e

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

~ee � p̂p u
2, ~kk2

ð8:5:15Þ

We can identify s ¼ e�i~kk1�~rrAð~rrÞei
~kk2�~rr=V as a slowly varying function since the EM wave

usually has wavelength much larger than 1000 angstroms and the electron wave vector
(near the cb minimum or vb maximum) has a large size compared with the lattice
constant. The electron wavelength is larger than 10 lattice constants for the typical
quantum well. The functions f ¼ u	

1, ~kk1

u
2, ~kk2

and f ¼ u	
1, ~kk1

~ee � p̂pu
2, ~kk2

must be rapidly varying

functions since they must repeat over each unit cell. Therefore, we can write the integrals
in Equation (8.5.15) using the results of Appendix 7 as

I ¼

Z
V
dV sð~rrÞ fð~rrÞ

� �
where the average must be taken over the unit cell located at position ~rr. Because the
function ‘‘u’’ in f must be periodic in the crystal lattice, the average must be independent
of location of the unit cell. The integral can now be written as

I ¼ f
� � Z

V
dV sð~rrÞ ð8:5:16Þ
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The same result can be found using a cellular procedure similar to that in Topic 8.2.4
(refer to the chapter review exercises).

The first integral in Equation (8.5.15) can now be written as

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

u
2, ~kk2

¼ u	
1, ~kk1

u
2, ~kk2

D E
uc

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p ð8:5:17Þ

where Að~rrÞ ¼ Aoe
i~kk
 �~rr. Using the typical definition of the average from elementary calculus

hfiuc ¼ 1=Vuc

R
Vuc

dV fð~rrÞ, the average in Equation (8.5.17) becomes

u	
1, ~kk1

u
2, ~kk2

D E
uc
¼

1

Vuc

Z
Vuc

dV u	
1, ~kk1

u
2, ~kk2

¼ �12 ¼ 0

by virtue of the orthogonality relation in Equation (8.5.13b). Therefore, Equation (8.5.15)
reduces to

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

~ee � p̂p u
2, ~kk2

ð8:5:18Þ

We can find the matrix element in Equation (8.5.18) by again applying the results of

identified as s ¼ e�i~kk1�~rrAð~rrÞei
~kk2�~rr=V. This time, the fast function must be

f ¼ u	
1, ~kk1

~ee � p̂p u
2, ~kk2

Using the results 8.5.16, the integral in Equation (8.5.18) can be written as

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m
u	

1, ~kk1

~ee � p̂p u
2, ~kk2

D E
uc

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p ð8:5:19aÞ

Notice the matrix element of the Bloch function can be written in either of two ways

u	
1, ~kk1

~ee � p̂p u
2, ~kk2

D E
uc
¼

1

Vuc

Z
Vuc

dv u	
1, ~kk1

~ee � p̂p u
2, ~kk2

¼
u

1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
Vuc

where the middle term comes from the elementary calculus formula for averages given
by h f iuc ¼ V�1

uc

R
Vuc

dV fð~rrÞ .
Next, examine the envelope matrix element in Equation (8.5.19a). The homojunction

uses the plane wave envelope functions while the quantum well requires a linear
combination of plane waves.

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e

2m

u
1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
uc

Vuc

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p ð8:5:19bÞ
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Appendix 7 or using the technique illustrated in Topic 8.2.4. The slow function can be



The integral in this last equation requires the transitions to be vertical, as we will see.
Equation (8.5.8) uses Að~rrÞ ¼ Aoe

i~kk
 �~rr where ~kk
 denotes the photon wave vector.
Substituting we find

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p ¼ Ao

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p
ei

~kk2þ
~kk


� �
�~rrffiffiffiffi

V
p ¼ Ao�~kk2þ

~kk
 , ~kk1
ð8:5:20Þ

The Kronecker delta function comes from the fact that the integral has the form of
an inner product between two basis vectors. Therefore combining Equations (8.5.19a)
and 8.5.20, we find the transition matrix element has the form

1~kk1

D ���ĤH0 2~kk2

��� E
¼

eAo

2m

u
1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
Vuc

�~kk2þ
~kk
 , ~kk1

ðhomo junctionÞ ð8:5:21aÞ

The delta function requires the final momentum of the electron �hh~kk1 to equal the initial
momentum �hh~kk2 plus the photon momentum �hh~kk
 so that ~kk1 ¼ ~kk2 þ

~kk
 . However, we set
~kk1 ¼ ~kk2 because the photon momentum is very small. Therefore the transition matrix
element must be

1~kk
D ���ĤH0 2~kk

��� E
¼

eAo

2m
MT ðhomo junctionÞ ð8:5:21bÞ

where we have eliminated the unnecessary subscript on the k vector and defined the
matrix element MT ¼ hu

1, ~kk
j~ee � p̂pju

2, ~kk
i=Vuc

Using the transition matrix element in Equation (8.5.21b), Fermi’s golden rule for the
homojunction laser can be written as

R ¼
2�

�hh
H0

fi

��� ���2	r ETð Þ F ETð Þ ð8:5:22aÞ

where, for emission, the marix element has the form

H0
fi ¼ 1~kk

D ���ĤH0 2~kk
��� E

¼
eAo

2m
MT ¼

eAo

2mVuc
u

1, ~kk

D ���~ee � p̂p u
2, ~kk

��� E
ð8:5:22bÞ

The Fermi factor depends on whether the transition produce emission or absorption

F ETð Þ ¼
Fc 1 � Fvð Þ Emission

Fv 1 � Fcð Þ Absorption

(
ð8:5:22cÞ

8.5.3 The Quantum Well System

The quantum well falls within the class of reduced dimensional structures or
nanostructure. Combining dissimilar materials such as GaAs and AlGaAs produce
wells owing to the difference in band gap. Fermi’s Golden rule can be applied to the
quantum well devices (emitters or detectors) with very little modification. Only
the reduced density of states and the matrix elements for the envelope wave function
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need to be re-examined. Section 8.4 discusses the reduced density of states for the
quantum well laser. We now discuss the matrix elements for the quantum well laser.

For band #n, the general time-independent electron wave function has the form

�j i ¼
X
~kk

�
n~kk

n~kk
��� E

ð8:5:23aÞ

Writing the expansion in terms of the coordinate representation of the Bloch functions
provides

� ¼
X
~kk

�
n~kk

ei
~kk�~rrffiffiffiffi
V

p u
n~kk
ð~rrÞ ð8:5:23bÞ

The periodic part of the Bloch wave function is essentially independent of the wave

vector ~kk. We can write

� ¼ un, 0ð~rrÞ
X
~kk

�
n~kk

ei
~kk�~rrffiffiffiffi
V

p ¼ un, 0ð~rrÞ  ~rr
� �

ð8:5:23cÞ

where

 ~rr
� �

¼
X
~kk

�
n~kk

ei
~kk�~rrffiffiffiffi
V

p ð8:5:23dÞ

The basis set jn~kki satisfies the Hamiltonian with the crystal potential VL according to

p̂p2

2m
þ VL

� 	
n, ~kk
��� E

¼ E
n, ~kk

n, ~kk
��� E

The envelope wavefunction satisfies the effective mass equation

p̂p2

2mn
þ VE

� 	
 ~rr
� �

¼ E~kk ~rr
� �

ð8:5:24Þ

where mn denotes the effective mass for band #n and VE represents the potential
beyond the periodic crystal potential. Assuming the effective mass is continuous across
a heterostructure interface, the boundary conditions lead to solutions similar to those for
a particle in a nonsemiconductor well. Infinitely deep quantum wells have sinusoidal
waves for the envelope basis states. The conduction electrons and valence holes must

ary conditions select the appropriate coefficients � in Equation (8.5.23d) to produce the
sinusoidal functions.

Let  ðcÞ and  ðvÞ denote the envelope wave functions for electrons in the conduction
and valence bands, respectively. Following the steps leading to Equation (8.5.19b), the
transition matrix elements must be

1, ~kk1

D ���ĤH0 2, ~kk2

��� E
¼

e

2m
MT

Z
V
d3r  ðvÞ

~kk1

A ~rr
� �
 ðcÞ
~kk2

ð8:5:25aÞ
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have their own wave functions as indicated in Figure 8.5.3. This means that the bound-



where

MT ¼

u
1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
uc

Vuc
ð8:5:25bÞ

As we will see, the integral leads to momentum conservation again.
We must evaluate the inner product for the envelope wave functions in Equation

(8.5.25b); this inner product provides selection rules. We can see this by using the results
of Topic 8.3.2. The well confines the electron in the z-direction and produces quantized
energy for kz direction but leaves the energy parabolic in kx and ky. This fact leads to the
notion of sub-bands as depicted on the left side of Figure 8.5.3. The energy levels have
the form

E ¼ Ez þ
�hh2

2me
k2
x þ k2

y

� �
The general wave function has the form

� ¼
X
kxkykz

CkxkykzXkxYkyZkze
�itE=�hh ¼

X
kxkykz

CkxkykzXkxYkyZkze
�itEz=�hhexp �

it

�hh

�hh2

2me
k2
x þ k2

y

� �� 

ð8:5:26Þ

where X and Y must satisfy periodic boundary conditions and Z satisfies the fixed
endpoint boundary conditions appropriate for the infinitely deep well.

Xkx ¼
eikxxffiffiffiffiffi
Lx

p Yky ¼
eikyyffiffiffiffiffi
Ly

p Zkz ¼

ffiffiffiffiffi
2

Lz

r
sin kzzð Þ ð8:5:27Þ

The basis function live in a direct product space and we can write

 ~kk
¼ XkxYkyZkz ¼

eikxxffiffiffiffiffi
Lx

p
eikyyffiffiffiffiffi
Ly

p ffiffiffiffiffi
2

Lz

r
sin kzzð Þ ¼

ffiffiffiffi
2

V

r
eikxxþikyysin kzzð Þ ð8:5:28Þ

FIGURE 8.5.3

The subbands and the infinitely deep well.
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Now we evaluate the inner product of the envelope wave functions in Equation
(8.5.25). Setting

A ~rr
� �

¼ Aoe
i~kk
 �~rr ð8:5:29Þ

we find

 ðvÞ
~kk1

���  ðcÞ
~kk2

D E
¼

Ao

2

eik
ðvÞ
x xffiffiffiffiffi
Lx

p

����� ei kðcÞx þk 
ð Þ
xð Þxffiffiffiffiffi

Lx
p

* +
eik

ðvÞ
y yffiffiffiffiffi
Ly

p
����� ei kðcÞy þk 
ð Þ

yð Þyffiffiffiffiffi
Ly

p
* +

�

ffiffiffiffiffi
2

Lz

r
sin kðvÞz z

� �* �����eik 
ð Þ
z z

ffiffiffiffiffi
2

Lz

r
sin kðcÞz z

� ������
+ ð8:5:30Þ

where the integrals in the first two inner products on the right hand side integrate over
the macroscopic lengths Lx and Ly while the last inner product integrate over the width
of the well Lz. The first two inner products provide

k vð Þ
x ¼ k cð Þ

x þ k 
ð Þ
x and k vð Þ

y ¼ k cð Þ
y þ k 
ð Þ

y ð8:5:31aÞ

Small photon momentum requires

k vð Þ
x ¼ k cð Þ

x and k vð Þ
y ¼ k cð Þ

y ð8:5:31bÞ

which can be conveniently summarized by

~kk cð Þ
? ¼ ~kk vð Þ

? ð8:5:31cÞ

where ~kk? ¼ ~xx kx þ ~yy ky and ~xx, ~yy denote unit vectors. The third inner product in
Equation (8.5.30) simplifies by noting the wavelength of the EM wave is much larger
than the size of the well. Assume the well is located near z¼ 0. The argument kð
Þz z must
be approximately zero over the width of the well. Therefore, the exponential in the third
inner product becomes equal to 1. Returning to Equation (8.5.30), assuming eik

ð
Þ
z z is

constant over the width of the well, we find

 ðvÞ
~kk1

���  ðcÞ
~kk2

D E
¼ �~kk cð Þ

?
, ~kk vð Þ

?

Ao

2

ffiffiffiffiffi
2

Lz

r
sin kðvÞz z

� � �����
ffiffiffiffiffi
2

Lz

r
sin kðcÞz z

� �* +
ð8:5:32Þ

The matrix element in 8.5.25 becomes

�
1, ~kk1

D ���ĤH0 �
2, ~kk2

��� E
¼

eAo

2m
MT �~kk cð Þ

?
, ~kk vð Þ

?

ffiffiffiffiffi
2

Lz

r
sin kðvÞz z

� � �����
ffiffiffiffiffi
2

Lz

r
sin kðcÞz z

� �* +
ð8:5:32Þ

This last equation provides one of the most basic selection rules. We see that
kðvÞz ¼ kðcÞz and given that k ¼ n�=L for n an integer, we find nðcÞ ¼ nðvÞ. Therefore the

electron can make transitions only between energy levels with the same quantum
numbers (i.e., the envelope wavefunctions must have the same shape). The transition
from nðcÞ ¼ 1 to nðvÞ ¼ 2 in Figure 8.5.3 cannot occur.
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We can write a convenient form for Fermi’s golden rule

R ¼
2�

�hh
f
� ��ĤH0 ij i
��� ���2	r ETð Þ F ETð Þ F ETð Þ ¼

Fc 1 � Fvð Þ Emission

Fv 1 � Fcð Þ Absorption

�
ð8:5:33aÞ

where the matrix element Hfi for emission is

H0
fi ¼ 1, ~kk1

D ���ĤH0 2, ~kk2

��� E
¼

eAo

2m
MT  

ðvÞ
~kk1

���  ðcÞ
~kk2

D E
ð8:5:33bÞ

and recalling Eo ¼ i!Ao and ~EE ¼ �
_~AA~AA from Section 6.2, we have

R ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2  ðvÞ
~kk1

���  ðcÞ
~kk2

D E��� ���2	r ETð Þ F ETð Þ ð8:5:33cÞ

where

MT ¼
hu

1, ~kk
j~ee � p̂pju

2, ~kk
iuc

Vuc
ð8:5:33dÞ

8.6 Fermi’s Golden Rule and Semiconductor Gain

The rate equations in 
expression incorporating the transition energy or makes it possible for
the rate equations wavelength-dependent effects. For example, the effect
of a DBR mirror or the effects of two beams of light with two different wavelengths
interacting with a gain medium. Fermi’s golden rule provides the gain without the

gain versus wavelength various light emitters or photo-

of interest. Semiconductor lasers can operate with a gain curve simultaneously having

8.6.1 Homojunction Emitters and Detectors

Fermi’s Golden rule provides the gain for the semiconductor laser rate equations. The
rate R has units of transitions per second per unit volume and therefore accounts for
the number of photons emitted or absorbed per second per volume d
=dt in the
rate equations. The gain takes into account the difference between stimulated emission
Rc!v and absorption events Rv!c where ‘‘c’’ and ‘‘v’’ refer to the conduction and valence
bands, respectively. The difference R ¼ Rc!v � Rv!c can be calculated from Fermi’s
golden rule using the nonequilibrium Fermi-Dirac distributions.

To start, consider the rate of transition from Section 8.5

R ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2	r ETð Þ F ETð Þ ð8:6:1Þ
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Chapter

gain

it can absorb light as a pumping mechanism in the negative regions.

describes

both positive and negative values. The laser emits light in the positive regions while

intraband relaxation effects that otherwise broaden the spectrum and ‘‘smear out’’ the

detectors depending on whether the gain is positive or negative in a wavelength range
Theprofile.

wavelength
require an accurate expression for the gain. An

to describe

2



where MT refers to a momentum matrix element. The rate of emission from the
conduction to valence band must be

Rc!v ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2	r ETð Þ Fc 1 � Fvð Þ ð8:6:2aÞ

and the rate of absorption must be

Rv!c ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2	r ETð Þ Fv 1 � Fcð Þ ð8:6:2bÞ

found by interchanging the ‘‘c’’ and ‘‘v’’ subscripts. The net rate of emission must be

R ¼ Rc!v � Rv!c ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2	r ETð Þ Fc � Fvð Þ ð8:6:3Þ

Therefore the net rate of photon emission per volume becomes

d


dt
¼ R ð8:6:4Þ

where 
 denotes the number of photons per unit volume.
Let’s rewrite the emission rate R in a more familiar form by changing the electric

field on the right-hand side of Equation (8.6.3) into the photon density. The electric field
term jEoj

2 can be related to the power in the cavity. The Poynting vector gives power
per unit area

S ¼
1

2
E�H	j j ¼

nr Eoj j2

2�o
ð8:6:5aÞ

where �o denotes the permeability of free space. Assuming a uniform distribution of
EM energy in a material with refractive index nr, the Poynting vector and the energy
density 	E (energy per volume) must be related by

S ¼ 	E
c

nr
ð8:6:5bÞ

The energy density can be written as

	E ¼
n2
r Eoj j2

2�oc
ð8:6:5cÞ

Therefore, the photon density must be given by


 ¼
#Phots

Vol
¼

Energy

Volume

Energy

Photon

� 	�1

¼ 	E
1

�hh!
¼

n2
r Eoj j2

2�oc�hh!
ð8:6:5dÞ

Substituting this last result for jEoj
2 in Equation (8.6.3) produces

R ¼ Rc!v � Rv!c ¼
�

2�hh

e

m

� �2 2�oc�hh

!n2
r




� �
MTj j2	r ETð Þ Fc � Fvð Þ ð8:6:6aÞ

Semiconductor Emitters and Detectors 659

© 2005 by Taylor & Francis Group, LLC



where the electron occupation probability for the conduction and valence band is Fc and
Fv, respectively. Canceling terms and substituting �o ¼ 1="oc2 provides

d


dt
¼ R ¼

�e2

!n2
rm

2"oc
MTj j2	r ETð Þ Fc � Fvð Þ

� �

 ð8:6:6bÞ

where m denotes the free mass of the electron (not the effective mass).
We can identify the semiconductor gain in Equation (8.6.6b) as

g ¼
�e2�hh

�hh!ð Þn2
rm

2"oc
MTj j2	r ETð Þ Fc � Fvð Þ

� �
ð8:6:7Þ

Recall from Section 8.4 that the occupation probability Fc must be evaluated at energy
Ec and Fv at Ev in such a way that ET ¼ Ec � Ev. Notice we must have FcðEcÞ � FvðEvÞ40
to have positive gain. This relation along with properties for the reduced density of states
requires Eg5ET5Efc � Efv for the system to have positive gain. A system in thermal
equilibrium has one Fermi energy Ef ¼ Efc ¼ Efv so that FcðEcÞ � FvðEvÞ50 and the gain
satisfies g 
 0 regardless of the temperature T � 0. High temperatures do not produce
population inversions.

Three terms in Equation (8.6.7) account for the energy dependence (i.e., the wavelength
dependence) of the gain. The dependence is primarily determined by the product
	rðETÞ ðFc � FvÞ, which is often highly peaked over a relatively narrow energy band.
The photon energy term �hh! can often be taken as relatively constant for sufficiently
narrow peaks.

As an example, we can calculate the primary factor 	rðETÞ ðFc � FvÞ that determines
the gain using a graphical approach. Suppose we apply a bias voltage to a homojunction
laser that has equal conduction and valence band masses. The top portion of Figure 8.6.1
shows the density of states for the conduction and valence bands 	c, 	v, respectively,
and the nonequilibrium Fermi distributions Fc, Fv. The bias voltage separates the two
quasi-Fermi levels as shown. To calculate the gain, imagine a horizontal line of length ET

FIGURE 8.6.1

The applied voltage V sets the quasi-Fermi levels and therefore the gain.
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connecting states in the valence band with those in the conduction band. For example,
at 0 
 ET5Eg the density of states in both the conduction and valence band is zero and
therefore the reduce density of states must likewise be zero in this region as shown in the
figure. Next, suppose ET ¼ Eg so that the line ET starts at Ev ¼ 0 and ends at Ec ¼ Eg. At
the value Ec ¼ Eg, the quasi-Fermi function Fc has a value approximately equal to one
while at Ev ¼ 0 the valence quasi-Fermi function Fv has a value approximately equal to
zero. Consequently, the Fermi factor provides

FðET ¼ EgÞ ¼ Fc � Fv ¼ 1

The other values can be similarly calculated. For example, consider ET such that
Fc¼ Fv¼ 1/2. In this case, the transition energy is ET ¼ Ec � Ev ¼ Efc � Efv. The Fermi
factor produces zero as illustrated since

F ¼ Fc Ecð Þ � Fv Evð Þ ¼ 0:5 � 0:5 ¼ 0

shows the reduced density of states must be approximately half of either the valence
or conduction band density-of-states.

Figure 8.6.1 shows the gain

g � 	r ETð Þ Fc � Fvð Þ

must be positive where the Fermi factor Fc � Fv is positive. The electron density reaches
its peak value within this region of the plot. Therefore, the figure verifies that emitted
photons will have an energy �hh! in the range Eg5�hh!5Efc � Efv. The gain is small near
the band edge e.g., since the density of states is small there. The gain is also small for
large energy since the Fermi factor decreases at higher energy.

8.6.2 The Gain for Quantum Well Materials

We now develop the gain for semiconductor quantum well lasers. The previous section
provides the transition rate as

R ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2  ðvÞ
~kk1

���  ðcÞ
~kk2

D E��� ���2	r ETð Þ F ETð Þ ð8:6:7aÞ

where

MT ¼

u
1, ~kk

D ���~ee � p̂p u
2, ~kk

��� E
uc

Vuc
ð8:6:7bÞ

and h ðvÞ
~kk1

j  ðcÞ
~kk2

i represents the overlap of the envelop wavefunctions for the basis states.

It consists of sinusoidal functions for the quantum well and complex exponentials for
the nonconfined directions. The amplitude Eo gives the electric field amplitude in
E ¼ Eocosð!tÞ where ! represents the angular frequency of the EM wave.

For the quantum well laser with ‘‘z’’ as the confinement direction, the rate reduces to

R ¼
�

2�hh

e

m

� �2 Eo

!

� 	2

MTj j2�nðvÞ,nðcÞ	r ETð Þ F ETð Þ ð8:6:8aÞ
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Figure 8.6.1 shows the Fermi factor F as a function of the transition energy. It also



where nðvÞ, nðcÞ denote the valence and conduction sub-bands, respectively. Proceeding
similarly to Equation (8.6.7), we can write the gain as

g ¼
�e2�hh

�hh!ð Þn2
rm

2"oc
�nðvÞ, nðcÞ MTj j2	r ETð Þ Fc � Fvð Þ

� �
ð8:6:8bÞ

where m denotes the free mass of the electron. The primary difference between the
homojunction and quantum well lasers appears to be the reduced density of states.
However, the Kronecker delta function also forces the quantum well material to make
transitions between envelope states with the same principal quantum number.

Figure 8.6.2 shows a plot of the sub-bands (left), the density of states (middle) and
the normalized gain curve 	rðETÞ ðFc � FvÞ (right). The spacing of the sub-bands depends
on the quantized energy levels due to electron and hole confinement along the z direction.
We assume an infinitely deep well for convenience. The discrete levels have the energy

Ezn ¼
�hh2k2

zn

2me
¼
�2�hh2n2

2meL2
z

ð8:6:9Þ

where me denotes the effective mass for the band and n denotes an integer. The sub-bands
have a parabolic form since the electrons can freely move along the unconfined x and
y directions. This can be seen from Schrodinger’s equation that gives the disper-
sion relation as E ¼ �hh2k2=2me where k2 ¼ k2

x þ k2
y þ c and the constant c represents the

quantized kzn component in Equation (8.6.9). Each value of En ¼ �hh2k2
zn=ð2meÞ therefore

determines the position of the corresponding parabola along the energy axis.
Different effective masses between the conduction and valence bands lead to different
positions for the sub-bands along the energy axis. The collection of states in all of the
sub-bands represents the allowed energy states for the system.

The density of states and the quasi-Fermi distributions appear in the middle graph
of Figure 8.6.2. The figure shows both the bulk and quantum well density of states

FIGURE 8.6.2

Hypothetical quantum well structure with equal electron and hole masses. Left: Sub-bands. Middle: Density of
States. Right: the Fermi factor multiplied by the reduced density of states.
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(refer to Section 8.4). The position of the conduction sub-band minimums (or maximums



for the valence sub-band) determines the position of the steps for the well density of
states. The minimum of the quantum well density-of-states occurs at a larger energy
than the minimum for the bulk because the quantum-well energy levels sit above the
bottom of the well, which corresponds to the bottom of the conduction band.

Briefly, recall why the well produces a step-like structure for the density of states.
Consider the conduction states. For energy E in the interval 05E5Ez1, none of the states
have energy smaller than the bottom of the n¼ 1 sub-band. For energy E between the
bottoms of the n¼ 1 and n¼ 2 sub-bands in Ez15E5Ez2, the density of states comes from
only the n¼ 1 sub-band. Section 8.4 shows the density of states is a constant for a single
sub-band. Next consider energy between the bottoms of the n¼ 2 and n¼ 3 sub-bands.
In this case, the total density of states at energy E must be the sum of the number of states
in the n¼ 1 sub-band plus the number of states in the n¼ 2 sub-band. This total density-
of-states must be given by the sum of two constants and therefore the density of states
plot must reach a new, higher plateau. The other plateaus occur for similar reasons.

ðFc � FvÞ	r related to the gain in Equation (8.6.8b). The quasi-Fermi levels Efc and Efv

occupy positions within the sub-bands above the first quantized energy levels. Therefore,
the gain g � ðFc � FvÞ	r must be positive for E5Efc � Efv and negative for E4Efc � Efv.
Basically, the material emits light for those energies where the gain is positive. It absorbs
light for those energies where the gain is negative. Keep in mind that the energy width
for regions of positive or negative gain depend on the pumping level of the material
(i.e., the separation of the quasi-Fermi levels). Those regions where the gain is negative
can be used for photodetectors or for pumping a laser. The gain curve in Figure 8.6.3
therefore gives the spectral response of the photodetector.

8.6.3 Gain for Quantum Dot Materials

The quantum dot materials confine the electron in three dimensions. In this case, Fermi’s
golden rule once again provides a relation of the form

g ¼
�e2�hh

�hh!ð Þn2
rm

2"oc
MTj j2	r ETð Þ Fc � Fvð Þ

FIGURE 8.6.3

Density of states plots.
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The right-hand graph of Figure 8.6.2 shows the reduced density of states and the term



for allowed transitions (i.e., between envelope wavefunctions with the same set of
quantum numbers). The reduced density of states appears as a set of spikes as in

and absorption spectra to have the form of a sequence of very narrow spikes. The reduced
density of states would equip an emitter or detector sharp filtering characteristics.

8.6.4 Example of a Homojunction 2-D Laser with Unequal Band Masses

Consider a 2-D bulk homojunction laser with a bias voltage set by a battery that sepa-
rates the quasi-Fermi levels according to qVb ¼ Efc � Efv where q5 0 for an electron.
Note that a bias current does not completely determine the separation of the Fermi levels
since the recombination terms reduce the number of carriers while the pump current
increases it; consequently, a balance between pump and recombination determines the
separation. Assume for the example that the effective valence band mass is twice that
of the conduction band mv ¼ 2mc, the energy gap is Eg ¼ 1:7 eV and qVb ¼ Efc � Efv ¼ 3:3.

The 2-D bulk cyrstal has conduction and valence bands described by

	v ¼
1

�

mh

�hh2
� �Eð Þ 	c ¼

1

�

me

�hh2
� E� Eg

� �
ð8:6:10Þ

where � is the step function. Figure 8.6.4 shows the conduction, valence and reduced
density of states. To calculate the gain g � 	rðETÞ ðFc � FvÞ, we need to know how to place
ET ¼ �hh! and ðFc � FvÞ in a diagram similar to Figure 8.6.4. The position of ET depends
on the effective mass of the bands. The Fermi factor can be positioned using n¼ p
(number of electrons per unit volume equals number of holes per unit volume) and by
knowing the shape of the bands (effective mass).

First consider ET. The relation for the transition energy

ET ¼ Ec � Ev ð8:6:11Þ

requires placement of the energy Ec and Ev (Figure 8.6.5). The energy Ev has a minus sign
since the top of the valence band is taken to be zero. Section 8.4 indicates the energies Ev

and Ec must be related by

mvEv ¼ �mc Ec � Eg

� �
ð8:6:12Þ

FIGURE 8.6.4

The density of states for the 2-D crystal.
FIGURE 8.6.5

Relation between Ec and Ev.
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Figure 8.6.3. Without collision broadening mechanisms, we would expect the emission



where mv and mc represent the valence and conduction band effective masses. As
demonstrated in Equation (8.4.4b),

Ec ¼
mvET þmcEg

mc þmv
Ev ¼ �

mc

mc þmv
ET � Eg

� �
ð8:6:13Þ

For this example, the relation mv ¼ 2me produces Ec ¼ ð2=3ÞET þ ð1=3ÞEg and Ev ¼ �1=3
ðET � EgÞ. For example, when ET ¼ Eg, then Ec ¼ Eg and Ev ¼ 0 so that 	r ¼ 0. When
ET ¼ 2 then Ec ¼ 1:9 and Ev ¼ �0:1. Equations (8.6.10) indicate density of states of 	c ¼ mc

and 	v ¼ mv in units of 1=ð��hh2Þ for the values of Ec ¼ 1:9 and Ev ¼ �0:1. The
reduced density of states for mv ¼ 2me must be 	r ¼ mcme=ðmc þmvÞ ¼ 2=3 as shown in

Next, find the position of Efv and Efc for the Fermi factor Fc � Fv. The number of
electrons equals the number of holes n¼ p when they remain approximately confined
to an intrinsic region. Relating n to the density of conduction states and to the quasi-
Fermi distribution produces

n ¼

Z 1

Eg

dE 	c Eð Þ Fc Eð Þ ¼

Z 1

Eg

dE
1

�

mc

�hh2

1

1 þ eðE�EfcÞ=kT
¼

kT

�

mc

�hh2
Ln 1 þ eðEfc�EgÞ=kT


 �
ð8:6:14aÞ

Therefore, for Efc � Eg42kT ¼ 0:05 eV at room temperature, the density of electrons
(per area in this case) becomes

n ¼
mc

��hh2
Efc � Eg

� �
ð8:6:14bÞ

This approximation holds since the number of states not completely filled near Efc

becomes small in comparison to those filled below Efc. Figure 8.6.6 show the relation.
A similar expression for the number of holes in the valence band must hold

p ¼ �
mv

��hh2
Efv ð8:6:14cÞ

The conditions Efc � Eg42kT and Efv5� 2kT should be verified at the end. The
condition n¼ p produces

me Efc � Eg

� �
¼ �mvEfv ð8:6:15Þ

FIGURE 8.6.6

The number of electrons at energy E. The number is normalized to the density of states.
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Figure 8.6.4.



Combining 8.6.15 with qVb ¼ Efc � Efv produces

Efc ¼
mcEg þmvqVb

mc þmv
Efv ¼

mcEg �mcqVb

mc þmv
ð8:6:16Þ

For this example with mv ¼ 2me, the quasi-Fermi levels become Efc ¼ 2:8 Efv ¼ �0:53.

Fermi levels.
Finally, the gain can be determined as

g � 	r ETð Þ Fc Ecð Þ � Fv Evð Þ½ 

where ET ¼ Ec � Ev. Figure 8.6.7 shows the gain versus the transition energy. To obtain
the plot, first select a transition energy ET and calculate the corresponding Ec and Ev

using Equations (8.6.13). Calculate the density of states from Equations (8.6.10) using Ec

and Ev. The Fermi factor FcðEcÞ � FvðEvÞ comes from Equations (8.4.8), (8.6.16), and
(8.6.13). The results appear in Figure 8.6.7.

8.7 The Liouville Equation and Semiconductor Gain

The second approach to semiconductor gain and absorption starts with the results from
the Liouville equation for the density matrix. In this approach, the Liouville equation
includes the relaxation effects similar to the rate equations in Chapter 2 so that the
solution incorporates saturation and gain-broadening effects. We start with the suscepti-
bility, substitute an expression for the population difference based on the density of
states, and then develop the gain and absorption. Unlike the results from Fermi’s golden
rule, the gain incorporates the line broadening.

8.7.1 Homojunction Devices

The Liouville equation for the density matrix

_		ab ¼
1

i�hh
H, 	
h i

ab
�
	ab � �		ab
�ab

ð8:7:1Þ

FIGURE 8.6.7

Gain for 2-D crystal.
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Figure 8.6.4 shows the relation between the reduced density of states and the quasi-



The Hamiltonian H includes the atomic Hamiltonian HA and the EM interaction V̂V
according to H ¼ HA þ V. The relaxation term includes the population relaxation time
constant � ¼ �11 ¼ �22 and the dipole dephasing time T2 ¼ �12 ¼ �21. Recall the applied
voltage essentially sets the ‘‘no light steady state (NLSS)’’ density operator �		ab. The quasi-
Fermi levels determine the NLSS density operator. The Liouville equation produces an
expression for the susceptibility (Topic 7.12.3)

�r ¼
�2��nn

"o�hh

T2 !� !oð Þ

1 þ !� !21ð Þ
2T2

2 þ 4�2�T2

�i ¼ �
�2��nn

"o�hh

1

1 þ !� !oð Þ
2T2

2 þ 4�2�T2

ð8:7:2Þ

where � ¼ �oEo=ð2�hhÞ, Eo denotes the electric field amplitude, ! denotes the angular
frequency of the driving EM field, and !o ¼ ½Eð~kkcÞ � Eð~kkvÞ=�hh ¼ ðEc � EvÞ=�hh ¼ ET=�hh and
ET v

depend on the NLSS value of the population difference �n ¼ nc � nv (units of ‘‘per unit
volume’’). We want to know the susceptibility under actual operating conditions. We
need to use the actual population difference �n ¼ nc � nv for the susceptibility and not
the NLSS population difference �n ¼ nc � nv. The rate equations use a gain that depends
on the number of electrons at time t and not at steady state, and they include the NLSS
population difference through the pump-number current density. In fact, the rate
equation for dn=dt can be solved for steady state to find a result reminiscent of Equations
(8.7.2) with the saturation term.

Let the quantity nc represents the number of electrons (per unit volume) in the
conduction band at energy Ec ¼ EðkcÞ and nv represents the number of electrons in the
valence band at energy Ev ¼ EðkvÞ. The differential form of the susceptibility comes from
Topic 7.12.3

d� Eð Þ ¼
�2
oT2 dnð Þ E� ETð ÞT2 � i½ 

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 � ð8:7:3Þ

where dn ¼ dnc � dnv has units of ‘‘per unit volume.’’ The real and imaginary parts of
the susceptibility contribute to the refractive index and gain respectively. Section 3.2
(Equation (3.2.17)) shows the relations

g ¼ �
ko
nr

Im �ð Þ þ


"o!

� 	
¼ �� nr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Reð�Þ þ �b

p
ð8:7:4Þ

where in this case, �b is approximately real and represents the susceptibility of the
host crystal at the frequency of the EM field. Recall the gain refers to the power in the
electric field according to

Ej j2¼ Eo exp i kon� ig=2Þz
� �
 ��� ��2¼ Eoj j2expðgzÞ ð8:7:5aÞ
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represents the transition energy (since E 50 as shown in Figure 8.7.1). These equations



so that the rate equation has the form

dP

dt
¼ gP or

d


dt
¼ g
 ð8:7:5bÞ

where the optical power P � jEj2 and 
 denotes the photon density. We assume negligible
conductivity  and write

g ¼ �
ko
nr

Im �ð Þ ¼ �� ð8:7:6Þ

where ko denotes the wave vector for the EM wave in vacuum. To find the gain in
Equation (8.7.6), we must find the susceptibility in 8.7.3 and the population difference.

The population difference must depend on the position of the quasi-Fermi levels
(under operating conditions) and on the position of the states within the band. The
population difference can be written in terms of the reduced density of states and the
quasi-Fermi distributions as in Topic 8.1.11. First starting with the density of states for the
conduction and valence bands, we have

dnv ¼ 	vdEvð ÞFv dnc ¼ 	cdEcð ÞFc ð8:7:7Þ

where 	vdEv and 	cdEc give the number of states within the energy range dEv and
dEc respectively. The quasi-Fermi distributions Fv and Fc describe the probability of
an electron occupying a valence band or conduction band state at energy Ev or Ec,
respectively.

Fv, c ¼
1

1 þ exp ðE� Efv, fcÞ=ðkbTÞ
� � ð8:7:8Þ

where Efv and Efc denote the valence and conduction quasi-Fermi levels respectively.
Furthermore Section 8.4 shows that the ‘‘reduced density of states 	r’’ describes the
number of pairs of states at energy ET ¼ Ec � Ev, which must be the same as the number
of states at Ec in range dEc and also the same as the number of states at Ev in range dEc

	rdET ¼ 	cdEc ¼ 	vdEv ð8:7:9Þ

Now we can combine Equations (8.7.7) and (8.7.9) to find the population difference

dn ¼ dnc � dnv ¼ 	cdEcð ÞFc � 	vdEvð ÞFv ¼ 	rdET Fc � Fvð Þ ð8:7:10Þ

FIGURE 8.7.1

The band diagram.
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The susceptibility can now be written in terms of the reduced density of states as

d� Eð Þ ¼
�2
oT2 dnð Þ E� ETð ÞT2 � i½ 

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 � ¼ �2
oT2 E� ETð ÞT2 � i½ 

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 � 	rdET Fc � Fvð Þ ð8:7:11Þ

The gain in Equation (8.7.6) becomes

g ¼

Z 1

0

ko
nr

�2
oT2

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 � 	rdET Fc � Fvð Þ ð8:7:12Þ

The dephasing collisions described by T2 broaden the gain curve. The expression can
be compared with the results of Fermi’s golden rule in Section 11.4, which does not
include any relaxation effects.

Example 8.7.1

Find the gain for large dephasing time T2 (very few collisions).

Solution: The integrand is nonzero only for small energy differences. We can make the

Lim
T2!1

T2

� 1 þ E� ETð Þ
2T2

2=�hh
2


 � ¼ � E� ETð Þ ð8:7:13Þ

The gain becomes

g ¼
�ko�2

o

"o�hh2nr
	r Fc � Fvð Þ ð8:7:14Þ

We can see that the results of Equation (8.7.14) must be equivalent to the results in
Equation (8.6.7), specifically

g ¼
�e2�hh

�hh!ð Þn2
rm

2"oc
MTj j2	r ETð Þ Fc � Fvð Þ

� �

by using the relation �cvE ¼ e=mAMT , where E,A represent the electric field and vector
potential, respectively.

8.7.2 Quantum Well Material

The results from the Liouville equation remain independent of the type of material.
Equation (8.7.12) provides

g ¼

Z 1

0

ko
nr

�2
oT2

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 � 	rdET Fc � Fvð Þ ð8:7:15Þ

We just need to replace the reduced density of states with the one appropriate for the
quantum well.
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substitution (see Appendix 5)



The lineshape function

LðE� ETÞ ¼
T2

� 1 þ E� ETð Þ
2T2

2=�hh
2


 � ð8:7:16Þ

provides a convolution type of average. We can see this as follows. For very large T2,
the lineshape function becomes a Dirac delta function as indicated in Example 8.7.1.
Taking the delta function limit, we find a result similar to that for Fermi’s golden rule
in Section 11.4.

gT2!1 ¼
��2

oko
nr"o�hh2

	r ETð Þ Fc � Fvð Þ ð8:7:17Þ

Next consider the case 0 � T251.
For simplicity consider a region where ðFc � FvÞ ¼ þ1 and where 0 � T251. The

lineshape function has its largest value at ET ¼ E where E is the given energy of
the photons and ET is the integral in Equation (8.7.15). The gain for photons at energy E
has the form

gðEÞ �

Z b

a
LðE� ETÞ	r ETð ÞdET ð8:7:18aÞ

It is clear from this last equation that the gain (or absorption) is the convolution
between the reduce density of states and the lineshape function. The lineshape function
rounds-off the gain curves. This can be seen as follows. Convert the integral in 8.7.18a
to a summation to find

gðEÞ �
X
i

LðE� ETiÞ	r ETið ÞdEi ð8:7:18bÞ

The prescription in 8.7.18b then says to multiply the density of states by the sequence
of lineshape functions shown in Figure 8.7.2 and sum. Those lineshape functions for
ET5E multiply a constant density of states and reproduce essentially the value of 	r near
E. However, the lineshape functions for ET4E multiply a larger density of states and
therefore add values somewhat larger than the value of 	r near E. For this reason, the gain
g(E) increases near E even though the density of states does not increase at E. Figure 8.7.3

FIGURE 8.7.2

The density of states and the lineshape function.

FIGURE 8.7.3

The lineshape function rounds off the corners of the
gain.
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shows how the convolution integral therefore rounds off the corners of the density of
states to produce g(E).

The collisional broadening leads to broad linewidths rather than the delta function
type that might be expected. The broadening also leads to the rounding off of corners.
If the phonon is responsible for broadening, then we would expect to find more
narrow linewidths for lower temperatures.

8.7.3 Quantum Dot Material

Similar to the development of the gain and absorption for the quantum well, we expect
the broadening mechanisms to produce similar effects in the quantum dot material.
Equation (8.7.18a) provides

gðEÞ �

Z b

a
LðE� ETÞ	r ETð ÞdET ð8:7:19Þ

For delta function density of states

	r ¼
X
i

Ci� E� ETið Þ ð8:7:20Þ

the gain has the form of a sequence of lineshape functions

gðEÞ ¼
X
i

CiLðE� ETiÞ ð8:7:21Þ

Figure 8.7.4 shows the broadening.
Quantum dot gain curves can also become broadened as a result of nonuniform sizes.

Slightly different sized dots produce slightly different energy levels. This would result
in gain curves similar to Figure 8.7.4.

8.8 Review Exercises

8.1 Find the effective mass mij for the band E ¼ A�hh2k2 ¼ �hh2ðAk2
x þ Bk2

y þ Ck2
zÞ and find an

expression for the force given the components ax, ay, az.
8.2 Find the effective mass matrix for E� Ec ¼ 3ðkx � 1Þ2 þ 3ðky � 2Þ2. Be sure to discuss

the effective mass mzz.

FIGURE 8.7.4

Gain broadening for the quantum dot.
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8.3 Find the effective mass for E ¼ Ec þ
P3

a, b¼1 Cabkakb where Ec represents the bottom
of the conduction band and Cab is a constant. Using a plane wave  � ei

~kk�~rr, show
the Hamiltonian ĤH ¼ ��hh2=2r �m

�1
e � r þ VE can be written as ĤH ¼ ��hh2=2

P
a, b

ðm�1
e Þabkakb þ VE

8.4 For a bulk 3-D crystal, show the density of energy states must be

g 3Dð Þ

E ¼

ffiffiffi
2

p
m3=2

e

�2�hh3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p
� E� Ecð Þ

8.5 For a bulk 1-D crystal, show the density of energy states must be

g 1Dð Þ

E ¼

ffiffiffi
2

p

��hh

ffiffiffiffiffiffi
me

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Ec

p � E� Ecð Þ

8.6 Show the law of mass action np ¼ n2
i holds regardless of the doping lever where

ni refers to the number of electrons at thermal equilibrium without doping (ni ¼ pi).
8.7 Explain why the electron wave does not propagate for wave vectors at the edge of

the FBZ. Show the wave functions B3D ¼ fei
~kk�~rr=

ffiffiffiffi
V

p
g are correctly normalized when

~kk ¼ ð2�nx=LxÞx̂xþ ð2�ny=LyÞŷyþ ð2�nz=LzÞẑz and V ¼ LxLyLz.
8.8 Show for a conduction band for a 3-D crystal with nonspherical constant energy

surfaces that the density of states must be gðEÞ ¼ Vxalm
3=2
e

ffiffiffi
E

p
=ð

ffiffiffi
2

p
�2�hh3Þ where the

effective mass is me ¼ ðmxmymzÞ
1=3 as shown in Figure P8.8. Assume the dispersion

relation has the form E ¼ ��hh2=2
P

a, b ðm
�1
e Þ abkakb where ðm�1

e Þab ¼

� 1=mx 0 0
0 1=my 0

0 0 1=mz

�
.

Hint: you will need the volume enclosed by an ellipsoid V ¼ 4�=3abc where a, b, c

are the intercepts with the x, y, z axis.
8.9 Consider a line of atoms space by lattice constant ‘‘a.’’ Suppose f(x) is a function

periodic on the lattice fðxÞ ¼ fðxþ RÞ for all direct lattice vectors R¼ na where ‘‘n’’
denotes an integer. Using the Fourier expansion of f(x) of the form fðxÞ ¼

P
m BmeiGmx

to find the allowed reciprocal lattice vectors G.
8.10 Suppose someone suggests the following wave function for an electron traveling

along a line of atoms separated by a distance ‘‘a.’’

 ¼
1

2�ð Þ
1=4 ffiffiffi


p e�

x��xxð Þ2

42 Asin Cxð Þ

where �xx represents the center of the packet and depends on time, and  describes
the width of the packet.

1. If n deBroglie wavelengths fit within the length ‘‘a,’’ then find C.

FIGURE P8.8

An ellipse in k-space as a constant energy surface.
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2. In terms of the previous problem, explain why the n deBroglie wavelengths
must fit within the distance a.

3. Find the value of A to normalize this wavefunction over all space x.
Assume  � a.

8.11 Find the eigenfunctions for an infinitely deep quantum well where the effective
mass has the form

me ¼

mx 0 0
0 my 0
0 0 mz

0
@

1
A

and the confinement direction is along z similar to that in Section 8.3.
8.12 Explain how the density of states differs between the finitely and infinitely deep

quantum wells.
8.13 Consider the conduction band for a GaAs heterostructure. The width of the finitely

deep well is L. Assuming the effective electron mass is constant across the interfaces,
apply boundary conditions for which the wave function and its derivative is
continuous across the interfaces. Find the conditions to find the wave vector k and
the corresponding energy of an electron in the well. You should find that the wave
vector k in the well can be written implicitly as

tan kLð Þ ¼
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k2

p

2k2 � �2

where �2 ¼ 2meVo=�hh
2, me denotes the electron effective mass, and Vo represents

the height of the well.
8.14 Consider an electron in a finitely deep GaAs quantum well embedded in an

AlxGa1�xAs as in the previous problem. Find the allowed values of k and
E ¼ �hh2k2=2me and find an expression for the density of states. Assume the band
offset is 0.3 eV, the electron effective mass is me¼ 0.0665 and the width of the well
is L¼ 70 angstroms. One method of finding k from the results of the previous
problem is to plot the left side and right side as two separate curves on the same
set of axes and find the intersection point.

8.15
form similar to

	 ¼
m3=2ffiffiffi
2

p
�2�hh2

ffiffiffi
E

p

where m¼mv represents the valence band effective mass and m¼mc represents
the conduction band effective mass. Assume a parabolic band near k¼ 0. Note
that E150.
Show mcE2 ¼ �mvE1 for vertical transitions defined by ET ¼ Eg þ jE1j þ jE2j. Hint,
draw a band diagram, identify a vertical transition and use E ¼ �hh2k2=ð2mÞ where
m refers to the effective mass of either band.

8.16 Consider the density of states plot and thermal equilibrium Fermi Function F shown

definitions of E1 and E2 in the previous problem. Assume an emission event.

1. Using a ruler and the results of problem 3, plot the reduced density of states
as a function of energy ET. Hint: use the results of the last problem to identify
E1 in terms of ET and then E2 in terms of E1.
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The density of states (Figure P8.15) for either the conduction or valence band has a

in Figure P8.16. Assume the hole and electron effective masses are identical. Use the



2. Plot the Fermi Factor Fcð1 � FvÞ assuming the semiconductor remains in thermal
equilibrium.
Hint: use F and (1� F) in the figure.

3. Explain why a laser composed of a semiconductor in thermal equilibrium can
never have gain regardless of the temperature.

4. Draw on rough sketch of the gain curve.

8.17 For parabolic bands, show the transition energy ET versus wave vector k has the
form ET ¼ �hh2k2=2mr where 1=mr ¼ 1=mc þ 1=mh gives the reduced mass and mc, mv

are the effective mass of the conduction and valence electron respectively.
8.18 Consider the reduced density of states discussed in Section 8.11 for parabolic

bands.

1. For mv ! 1, make a rough drawing of the conduction and valence density of
states versus energy. Calculate and draw the reduced density of states.

2. Show all steps leading to the following relations found in Topic 8.4.1

Ec ¼
mvET þmcEg

mc þmv
Ev ¼ �

mc

mc þmv
ET � Eg

� �
3. For parabolic bands with mc ¼ mv, find the reduced density of states in terms of

the conduction band density of states.

8.19 A 3-D bulk semiconductor with parabolic bands has a valence band density of
states twice as large as for the conduction band. For simplicity, normalize constants
such as

ffiffiffi
2

p
=ð�2�hh3Þ to one. Assume mc¼ 1 and Eg¼ 1.

1. Find the effective mass for the valence band in terms of the effective mass for
the conduction band.

FIGURE P8.16

The density of states and thermal equilibrium Fermi Function.

FIGURE P8.15

Density of states for the conduction and the valence bands.
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2. On a piece of graph paper or using computer software, plot the density of states
for the conduction and valence bands.

3. For transition energy ET ¼ 2Eg, find the energy E1 and E2 from the band edge to
the states participating in the transition for the valence and conduction bands,

4. Draw or generate a plot for the reduced density of states.

8.20 Repeat all steps in the previous problem when the valence band density of states is
3 times larger than for the conduction band.

8.21
nonparabolic (i.e., the effective mass depends on k) but produce a direct band gap.
What happens for indirect band gaps?

8.22

8.23 Suppose a quantum well is placed in a bulk 3-D crystal with a conduction band and
single valence band. Suppose the valence band density-of-states for the bulk 3-D
crystal is a factor of C times larger than that for the conduction band. Assume
the confined electrons and holes in the well have the same effective mass as they
do for the 3-D case.

1. Show the energy levels for the confined holes and electrons must be related by
Evn ¼ Ecn=C2=3 where ‘‘n’’ indicates the sub-band.

2. Show 	3-D
v ðEvnÞ ¼ C2=3	3-D

c ðEcnÞ

8.24 Use the information from Problem 8.23 and find an expression for the reduced
density of states (Figure P8.24). In this case, the transition energy ET must be ET ¼

�E1 þ E2 þ Eg � EðnÞ
vz þ EðnÞ

cz where E150 is the energy from the top of valence sub-
band #n to some point in the sub-band, E240 is the energy from the bottom of
conduction sub-band #n to some point in the band, Eg represents the usual 3-D bulk
band gap, EðnÞ

vz 50 is the energy to the top of the valence sub-band #n, and EðnÞ
cz 40 is

the energy to the bottom of conduction sub-band #n.

FIGURE P8.24

The sub-bands for the quantum well.
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vertex of each sub-band as indicated in Figure 8.4.5.

Explain any changes for finding the reduced density of states when the bands are

Show the 3-D bulk and quantum well density-of-states have the same value at the

respectively. Refer to Section 8.4 for notation if necessary.



8.25 Start with Equation (8.5.11) in Section 8.5,

1~kk1

D ���ĤH0 2~kk2

��� E
¼

e ~ee � �hh~kk2

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

u
2, ~kk2

þ
e

2m

Z
V
d3r

e�i~kk1�~rrffiffiffiffi
V

p A ~rr
� � ei

~kk2�~rrffiffiffiffi
V

p u	
1, ~kk1

~ee � p̂p u
2, ~kk2

and use the cellular method in Topic 8.2.4 to show

1~kk1

D ���ĤH0 2~kk2

��� E
¼

eAo

2m

u
1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
Vuc

�~kk2þ
~kk
 , ~kk1

for the homojunction.
8.26 Consider the quantum well discussed in Topic 8.5.3. Let  ðcÞ and  ðvÞ denote the

envelope wave functions for electrons in the conduction and valence bands, respec-
tively. Following the steps leading to Equation (8.5.19b), show the transition matrix
elements must be

1, ~kk1

D ���ĤH0 2, ~kk2

��� E
¼

e

2m
MT

Z
V
d3r  ðvÞ

~kk1

A ~rr
� �
 ðcÞ
~kk2

where MT ¼

u
1, ~kk1

D ���~ee � p̂p u
2, ~kk2

��� E
uc

Vuc
:

8.27 Based on the results of Section 8.5.3, can an electron make a transition from one
conduction sub-band to another conduction sub-band in an infinitely deep well?
Assume an electromagnetic interaction. What about a finitely deep well? Explain
and back up your argument with calculations.

8.28 Prove the relation Eg5ET5Efc � Efv must hold for the gain to be positive at the
transition energy ET, where Eg,Efc,Efv represent the gap energy, conduction quasi-
Fermi energy and the valence quasi-Fermi energy.

8.29
negative temperatures in oK.

8.30
with parabolic bands.

1. Show the largest ‘‘reduced density of states’’ occurs when the effective masses
for the conduction and valence band are equal mc ¼ mv.

2. Show that the gain must also be maximized by this choice for the effective
masses.

8.31 A student fabricates a new type of homojunction LED in the MERL fabrication
center. The LED can simultaneously emit two colors of light: Blue 410 nm (3 eV) and

3 semitransparent electrodes. The voltage Vb controls the blue LED and voltage Vr

controls the red LED. Assume the device is maintained at a temperature near 0oK.
Assume the density of states for the bands are step functions.

1.
Dirac distribution for the blue emitter. Draw a plot of the gain as a function of
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Red 620 nm (2 eV). Figure P8.31.1 shows a side view of the device. The device has

Show that a system at thermal equilibrium can only potentially exhibit gain for

Figure P8.31.2 shows the density of states and the thermal equilibrium Fermi-

A researcher fabricates a homojunction laser using a direct bandgap semiconductor



transition energy ET. Include the reduced density of states. Explain why this
device will work as a photodetector and what range of energies can be detected.

2. Consider
diagram of the reduced density of states (draw to scale). Explain what happens to
the wavelength range of the emitted light as the bias voltage V to either LED
increases. Assume the quasi-Fermi levels in each material satisfy a relation of the
form qV ¼ Efc � Efv and the relation n¼ p for electrons and holes causes the
quasi-Fermi levels to have equal energy to their respective band edge.

3. What voltage should be applied to the red LED so that its emission spectrum
does not overlap the emission spectrum from the blue LED?

8.32

for a 3-D crystal. Assume J starts at t¼ 0. Suppose the carrier recombination rate
is characterized by a constant �. Assume the same number of holes and electrons
(per unit volume) n¼ p.

1. For no initial electrons, find the number of electrons versus time n(t).

2. Find the difference in quasi-Fermi levels Efc � Efv.

8.33 The chapter found a condition on the quasi-Fermi levels for equal numbers of
holes and electrons n¼ p in a 3-D crystal when jEc � Efcj42kT and jEv � Efvj42kT.
Consider the case of �2kT5Ec � Efc52kT and �2kT5Ev � Efv52kT. Assume the
band edges are within 2kT of the respective quasi-Fermi level. Making a linear
approximation of the quasi-Fermi functions, find a relation between Efc and Efv for
the condition n¼ p. The valence and conduction effective masses do not need to
be identical.

8.34
normalized gain given by g 0 ¼ 	rðFc � FvÞ.

8.35 For draw the quasi-Fermi function Fv based on the quasi-Fermi
function Fc. Use a ruler and Figure P8.35 to find the reduced density of states and
normalized gain given by g 0 ¼ 	rðFc � FvÞ.

FIGURE P8.31.1

The two-color light emitting diode (LED).

FIGURE P8.31.2

The blue emitter at thermal equilibrium.
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Figure P8.31.3. Draw pictures for the gain for both LEDs and include a

Use a ruler and Figure P8.34 to calculate the reduced density of states and the

Figure

Consider a pump-number current density J (carrier pairs/volume/second) that

P8.35,

removes electrons from the valence band and places them in the conduction band



8.36 Based on Figure find the peak and the corresponding wavelength.
Repeat the procedure for qV ¼ ðEfc � EfvÞ ¼ 3, 4, 5. Make a plot of your findings.

8.37 Suppose a grating mirror has peak reflectivity at 413 nm. Based on Figure P8.34
and P8.35, what peak gain can be expected in both cases?

8.38 Explain why the saturated gain from the Liouville equation differs from the
unsaturated gain for the rate equations. Prove Equation (8.7.3)

d� Eð Þ ¼
�2
oT2 dnð Þ E� ETð ÞT2 � i½ 

"o�hh2 1 þ E� ETð Þ
2T2

2=�hh
2


 �
Why don’t the rate equations incorporate the saturated gain? Find the saturated

FIGURE P8.35

Quasi-Fermi functions and bands with unequal effective mass.

FIGURE P8.31.3

The diagrams for both the red and blue LEDs.

FIGURE P8.34

The density-of-states and quasi-Fermi functions.
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gain from the rate equations in Chapter 2 (Hint: refer to the Chapter 2 review

P8.34, gain

exercises).



8.39 First prove the relation

�cvE ¼
e

m
AMT

in Section 8.7 and then show the relations

g ¼
�ko�2

o

"o�hh2nr
	r Fc � Fvð Þg ¼

�e2�hh

�hh!ð Þn2
rm

2"oc
MTj j2	r ETð Þ Fc � Fvð Þ

� �

are equivalent. Discuss any assumptions.

8.9 Further Reading

The following list contains well-known references for the material presented in the
chapter.

1. Zory P.S., Ed., Quantum Well Lasers, Academic Press, Boston (1993).
2. Chuang S.L., Physics of Optoelectronic Devices, John Wiley & Sons, New York (1995).
3. Yariv A., Quantum Electronics, 3rd ed., John Wiley & Sons, New York (1989).
4. Coldren L.A., Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, New York (1995).
5. Klingshirn C.F., Semiconductor Optics, Springer-Verlag, Berlin (1997).
6. Vedeyan J.T., Laser Electronics, 2nd ed., Prentice Hall, Englewood Cliffs, NJ (1989).
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Appendix 1
Review of Integrating Factors

This appendix provides a quick review of integrating factors as a method of solving first
order differential equations. Suppose we want to solve the equation

_yy� ay ¼ fðtÞ ðA1:1Þ

where y¼ y(t) and the dot indicates the first derivative with respect to time. Suppose we
multiply through out by a function �ðtÞ, the integrating factor,

�_yy� a�y ¼ �fðtÞ ðA1:2Þ

with the particular property that the left-hand side is an exact derivative

d

dt
ð�yÞ ¼ �_yy� a�y ðA1:3Þ

Then we could write Equation A1.2 as

d

dt
ð�yÞ ¼ �fðtÞ

If the forcing function f (t) starts at t¼ 0, we can integrate both sides of the equation
with respect to time to obtain

�ðtÞyðtÞ ¼ �ð0Þyð0Þ þ

Z t

0

d� �ð�Þfð�Þ

or

yðtÞ ¼
�ð0Þyð0Þ

�ðtÞ
þ

1

�ðtÞ

Z t

0

d� �ð�Þfð�Þ ðA1:4Þ

Once we know the integrating factor �ðtÞ then we also know the form of the solution
even when the exact form of the forcing function has not been specified. This is the
property that makes the integrating factor useful for our purposes.
How do we find the integrating factor? Use Equation A1.3 and expand the derivative

d

dt
ð�yÞ ¼ �_yyþ _��y ðA1:5Þ
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Combining Equations A1.3 and A1.5 we find

� _yyþ _�� y ¼ � _yy� a�y

to arrive at

_�� ¼ �a�

By separating variables, this simple first order differential equation has the solution

�ðtÞ ¼ e�at

Notice that constants of integration are unimportant for integrating factors—they
cancel out of the final equation.
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Appendix 2
Rate and Continuity Equations

Two rate equations can be obtained from two ‘‘equations of continuity’’ which have the
form

r � ~JJ þ
@�

@t
¼ S� R ðA2:1Þ

where S and R represent the source and sink. First consider an equation of continuity for
the charged carriers. The source and sink, S and R respectively, denote the carrier
generation and recombination rates (units of #/vol/sec). J is the current density (amps
per unit area), �¼ n is the density of carriers (number per volume). Equation A2.1 shows
that the rate of change of the number of carriers in the volume (time-derivative term)
decreases as carriers leave the volume (divergence term) or recombine (R), but increases
as more carriers are generated (S) within the volume by absorbing light. For a
semiconductor, � should be interpreted as the number of carrier pairs (one pair consists of
one hole and one electron) since they always recombine or generate as pairs.

� ¼ n

If none of the charges leave the volume, then the divergence term is negligible.

r � ~JJ ¼ 0

The source term describes the amount of carrier pairs created in the semiconductor.
In this case, carriers appear as a result of pump and the stimulated absorption process.
The recombination term corresponds to both stimulated recombination (i.e., stimulated
emission) and to the spontaneous recombination. Notice that the gain terms gt� already
includes the stimulated recombination and absorption. S can therefore be written as

S ¼ J� gt�

Substituting all the terms together gives the carrier rate equation found in the previous
topic.

dn

dt
¼ �gt� þJ� R

It is important to realize that the divergence term is not always negligible. For example,
carriers in a given region might diffuse away. In such a case, the divergence of the current
density must be related to the carrier diffusion. The current number density J is given by
nv where v is the speed of the carrier.
Next, consider an equation of continuity for the photons.

r � ~JJ þ
@�

@t
¼ S� R ðA2:2Þ
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J is the ‘‘photon current density’’ which is defined similarly to the usual current density

J ¼ ��vg ¼ �vg

‘‘Photon currents’’ can be useful for finding the photon density in a beam after it strikes
a mirror. Also notice how the speed of the photons in the medium multiplies the photon
density similar to that found in the photon rate equation. The rate of change of the photon
density @�=@t measures the rate of increase of photons in a small region of space even
though photons are never at rest (they are either moving at the speed of light or they are
absorbed). The source S of photons consists of stimulated and spontaneous emission. The
sink R of photons consists of stimulated absorption and the optical losses embodied in
the cavity lifetime �� . The photon equation of continuity can be rewritten as

vg � r� þ
@�

@t
¼ �gt� �

�

��
þ �Rspont ðA2:3Þ

where the confinement factor � and the geometry factor � are included.

Example A2.1

Demonstrate the photon rate equation from Equation A2.3.
Assume a ‘‘lumped’’ model with r� ¼ 0. Then Equation A2.3 reduces to the usual photon
rate equation

@�

@t
¼ �gt� �

�

��
þ �Rspont

Example A2.2

Show the rate equation that involves the z coordinate and the gain ‘‘g’’ can be found from
Equation A2.3.
Assume steady-state in Equation A2.3 so that @�=@t ¼ 0. For changes along the z direction,
we have

vg � r� ¼ vg
@�

@z

For simplicity, define gt ¼ vg g and 1=�� ¼ vg�. Substituting into Equation A2.3 provides

@�

@z
¼ �g� � �� þ �Rspont=vg

FIGURE A2.1

Schematic representation of the equation of continuity.
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Appendix 3
The Group Velocity

The group velocity describes a type of average speed of a wave packet. A wave packet
consists of many sinusoidal waves with each having a specific wavelength and frequency.
That is, a wave packet consists of the superposition of multiple plane waves.
Phase velocity describes the speed of a single sinusoidal wave with a single frequency.
The phase velocity of the plane wave

 ðx, tÞ ¼ Ake
ikx�i!t ðA3:1Þ

can be found by watching the motion of a single point of the wave. Focus on the point
initially at x¼ 0 at t¼ 0. Setting the phase to zero

kx� !t ¼ 0 ðA3:2Þ

provides the phase velocity

vp ¼
x

t
¼
!

k

The group velocity describes the average speed of ‘‘wave-packets’’ travelling in a
dispersive medium. Plane waves with different frequencies travel with different phase
velocities in a dispersive medium. For optics, this means that the index of refraction
depends on wavelength. Wave packets can represent photons, electrons, holes, and
phonons (etc.). These wave packets can perhaps be most conveniently pictured as
travelling Gaussian waves f(z, t) as indicated in Figure A3.1 although they can have any
arbitrary form. As we will shortly discuss, these Guassian waves are ‘‘envelope’’
wavefunctions.
The Fourier transform of the wave packet appears in Figure A3.2 that shows the

amplitude �ðkÞ of the various spectral components plotted against the wave vector.
For an optics example, the wave packet and its Fourier transform might describe a
pulse of light. Suppose the center wavelength corresponds to green and the smaller

FIGURE A3.1

A wave packet moving to the right with group velocity vg.
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amplitudes on either side of the center correspond to red and blue (see Figure A3.3).



Obviously, the average wave vector k ¼ 2�=l denoted by �kk cannot be anywhere near zero!
Also, some pulses have narrow Fourier transforms �ðkÞ (unlike the one shown in
Figure A3.3).
For a nondispersive medium, the wave packet shown in Figure A3.1 does not spread

because all of the constituent components travel at the same speed. On the other hand,
a dispersive medium (such as glass) requires the components to travel at different
speeds. This means that the wave packet will spread out with time. A dispersive medium
does not require the various components making up the pulse to interact with each other.
Two spectral components can interact with each other in a nonlinearmedium. For example,
a blue component might get larger at the expense of two nearby infrared components.
One issue concerns the motion of a packet as compared with the motion of a plane

wave. This is especially important for dispersive media where ! ¼ !ðkÞ or equivalently,
E ¼ EðkÞ. For optics, the relations are especially easy to picture. Consider the speed of the
wave. If we write the phase velocity of a given plane wave as v ¼ !ðkÞ=k, we see that
different colors travel at different speeds (this is dispersion). For example, blue light
interacts more with a piece of glass than red light; therefore blue light runs slower (some
materials are the reverse of this behavior). It is also blue light that is most deflected from
its straight-line path by a glass prism (the index of refraction is larger for blue). As an
example, consider Figure A3.3 showing that certain colors of light travel faster than the
average while others travel slower. We might expect the width of the Gaussian to change
as some of the wave run slower than an average while others run faster. The issue
becomes one of describing the motion of the wave packet (the envelope) in spite of
the fact that the various components travel at different speeds. The phase velocity is
not the correct measure. Usually, people describe the wave packet as consisting of
a slowly varying envelope function superimposed on the fast moving carrier waves. The
function in Figure A3.1 provides one example of the envelope, and Figure A3.4 pro-
vides another for two superimposed sine waves with nearly identical frequencies and
wavevectors (discussed in para A3.1). The envelope function is very long compared
with the small wavelength carrier. The figure shows the group velocity vg describing
the speed of the envelope.

FIGURE A3.3

Various colors of light travel faster or slower than
the average. Note that ‘‘k’’ refers to the carrier
wavevector.

FIGURE A3.2

The Fourier transform of the wave packet f.

FIGURE A3.4

Envelope and phase velocity.
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A3.1 Simple Illustration of Group Velocity

We can easily understand how the envelope can travel slower (much slower) than
the plane waves by considering a simple example of adding two traveling sine waves
together. We will work the same example in two ways that both lead to the same
conclusion. First, assume that 	, 	0 and !, !0 are wave vectors and angular frequencies
and that they are very close together in value. Assume two sine waves travel parallel to
each other.

y ¼ A sin 	x� !tð Þ þ A sin 	0x� !0tð Þ

¼ 2A cos
	� 	0

2
x�

!� !0

2
t

� �
sin

	þ 	0

2
x�

!þ !0

2
t

� � ðA3:3Þ

These last equations show that the summation of the two sine waves can be viewed as
another sine wave with modulated amplitude. We can identify the carrier as

sin
	þ 	0

2
x�

!þ !0

2
t

� �
ðA3:4Þ

having approximate wave vector and frequency of

	þ 	0

2
ffi 	 and

!þ !0

2
ffi !

(since 	 ffi 	0 and ! ffi !0). The envelope (modulation) function must be

cos
	� 	0

2
x�

!� !0

2
t

� �
ðA3:5Þ

The envelope function has a very long wavelength encompassing many cycles of the
sine term since

	� 	0 � 	 ! lenv ¼
2�

	� 	0ð Þ=2
� l ¼

2�

	

As far as Fourier series and transforms are concerned, the results seems a little unfamiliar
because we are adding two high-frequency waves whereas we normally add two low
frequency waves (with equal speed) to get a square wave etc. Anyway, to continue, the
speed of the carrier wave is approximately vp ¼ !=k and the speed of the envelope is

venv ffi
!� !0

	� 	0
¼

�!

�k
ffi

d!

dk
ðA3:6Þ

Notice we only required two waves (at high frequency) with slightly different phase
velocities vp ¼ !=k. So the wave packet motion is really the motion of the beat wave.
There is another way to see this result that perhaps better illustrates the role of the

y ¼ y1 � y2 ¼ A sin 	x� !tð Þ � A sin 	0x� !0tð Þ ðA3:7Þ
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different speeds of the two individual waves. Figure A3.4 shows the sum of two waves



near x¼ 0 and t¼ 0. The minus sign for the second term is chosen so that the envelope
function crosses zero near x¼ 0 for convenience. The point where the envelope crosses
through zero depends on the relative positions of the two waves y1 and y2. If one wave
moves faster than the other one then the zero point of y1 � y2 must move. Near the origin
x¼ 0 and t¼ 0 both y1 � y2 and the envelope crosses zero. To find the group velocity,
consider x and t to be very small but not necessarily zero. Focus on the zero point crossing
by setting the sum of the two waves y1 � y2 to zero to find

0 ¼ y ¼ y1 � y2 ¼ A sin 	x� !tð Þ � A sin 	0x� !0tð Þ ffi A 	x� !tð Þ � 	0xþ !0tð Þ½ �

from the lowest order Taylor approximation. Solving for vg¼ x/t provides

vg ¼
x

t
¼
!� !0

k� k0
¼

�!

�k
ffi

d!

dk
ðA3:8Þ

similar to the previous result. Figure A3.5 illustrates the results. The top portion of the
figure shows the superposition of two sine waves at t¼ 0. The wave vectors and angular
frequencies are k1¼1, k2¼ 1.03, !1¼10, and !2¼ 10.1 which gives two slightly different
phase velocities nearly equal to 10. The slight difference in the wave vectors yields a
group velocity three times smaller than the phase velocity. Focus on the point in the top
portion of Figure A3.5 where the envelope passes through zero. The bottom portion
shows a close-up view for three different times: t¼ 0, t¼ 0.03 and t¼ 0.06. Notice how
the zero-point crossing moves to the right; this motion corresponds to the envelope

FIGURE A3.5

Focus on the point where the envelope crosses zero. The velocity that it moves to the right is the same as the
group velocity.
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(wave packet) moving toward the right (top portion). You can measure directly from the
lower potion of the figure or calculate vg ¼ ð!2 � !1Þ=ðk2 � k1Þ to find a group velocity of
vg¼ 3.3.

A3.2 Group Velocity of the Electron in Free-Space

The above considerations apply equally well to the wave motion of electrons. This is
especially true for free-space since the free-space dispersion relation is

E ¼
p2

2m
¼

�hh2k2

2m
ðA3:9Þ

Using ! ¼ E=�hh, we see that the phase velocity vp ¼ !=k depends on k according to

vp ¼
�hhk

2m
ðA3:10Þ

(note the extra factor of 2). The reason for the k-dependence of the phase velocity
in Equation A3.10 is that �hhk is related to the particle momentum (however, infinitely
long plane waves don’t intuitively represent particles very well). The point of Equation
A3.10 is that the phase velocity of the electron depends on the wavevector (i.e.,
wavelength) even for a free particle. The free photon propagating through free space
behaves completely different. The speed of light in free space is independent of
the wavevector since the speed of light c ¼!/k is constant for all EM waves. The previous
section shows that the group velocity for a dispersion relation such as A3.9 must be

vg ¼
@!

@k
¼
@

@k

�hhk2

2m
¼

�hhk

m
ðA3:11Þ

A3.3 Group Velocity and the Fourier Integral

Now is a good time to talk about the mathematics for group velocity. Suppose f (x, t) is a
wave packet made up of a discrete set of spectral components—this is a good illustration
of converting summations to integrals.

f z, tð Þ ¼
X
j

cje
iðkjz�!jtÞ ðA3:12Þ

For each j, there is a k, so relabel the sum as

f z, tð Þ ¼
X
k

cke
i kz�!ktð Þ ðA3:13Þ
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We are considering a one-dimensional problem in k-space. Assume that the sums over
an extremely large number of k-values. In fact, left �ðkÞ dk be the number of k-values in
the length dk. The summation

P
k . . . can be changed to the integral

f z, tð Þ ¼

Z 1
�1

dk c kð Þ� kð Þei kz�!ktf g ¼

Z 1
�1

dk c kð Þ� kð Þeifkz�! kð Þtg

where � is the density of states (#k—values per unit length of k). Next defining the Fourier
amplitude for f (x, 0) as �ðkÞ ¼

ffiffiffiffiffiffi
2�
p

cðkÞ �ðkÞ we find the expansion

f z, tð Þ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk � kð Þ eifkz�! kð Þtg ðA3:14Þ

could have started with Equation A3.14 directly, but sometimes it’s nice to see how the
individual modes make up the wave packet.
An average wave vector k and angular frequency ! characterize the wave packet (as in

Figure A3.2). For a wave packet with a very narrow spread in frequency and wave vector,
we can write a Taylor expansion for the angular frequency (keeping only two terms)

! kð Þ ffi ! k
� �
þ
@!

@k

����
k

k� k
� �

� ! þ ! 0 � k� k
� �

ðA3:15Þ

Substituting this last result into f (z, t) in Equation A3.14, we find

f z, tð Þ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk � kð Þeikzeiðk�k Þzeitf!þ!
0 �ðk�k Þg ¼ ei kz�i! t

1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk � kð Þeiðk�k Þze�it!
0ðk�k Þ

Defining a new variable that shows the deviation between the wave vector and its
average as k0 ¼ k� k we find

f z, tð Þ ¼ ei k z�i! t|fflfflfflffl{zfflfflfflffl}
phase�factor

1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk0 � k0 þ k
� �

eik
0ze�it!

0 k0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Envelope

¼ ei k z�i! tf z� t! 0, 0ð Þ ðA3:16Þ

The leading phase factor is unimportant for our purposes. Equation A3.16 defines
�ðk0 þ k Þ ¼ �ðk0Þ to replace the original function f(z, t) by the envelope function

f z� ! 0t, 0ð Þ ¼ f z� t
@ !

@k
, 0

� �
ðA3:17Þ

where

f z� t
@ !

@k
, 0

� �
¼

1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk0 � k0ð Þ eik
0 z�t! 0f g
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The wave packet f and its Fourier transform �ðkÞ appear in Figures A3.2 and A3.3. We



To interpret this Equation A3.17, if the wave packet had the value fo at point zo¼ 0 at
time t¼ 0, then (to lowest approximation) it has the same value at the point z ¼ zo þ ! 0t
at time t. On average, the wave packet moves with speed (group velocity)

vgroup ¼
@!

@k
ðA3:18Þ

As a note, if ‘‘f ’’ above is the electric field (for EM) or the probability amplitude (for
QM), then the power or the probability becomes

f�f ¼ ei k z�i! tf z� t! 0, 0ð Þ

h i�
ei k z�i! tf z� t! 0, 0ð Þ

h i
¼ f z� t! 0, 0ð Þ
�� ��2

For electromagnetics and quantum theory, it is the modulus-squared that has physical
significance and the phase factor eið k z�t �!!Þ drops out. Equation A3.17 shows that the wave
packet does not change shape as it moves to the right with the group speed

vg ¼
@!

@k

All of the manipulations used for the Fourier Transform also hold for the periodic discrete
case.

A3.4 The Group Velocity for a Plane Wave

Consider a single frequency component

’ðkÞ ¼ 
ðk� koÞ

where


ðk� koÞ ¼
1 k ¼ ko

0 k 6¼ ko

(
such that

Z 1
�1

dk 
ðk� koÞ ¼ 1

(refer to the Dirac Delta Function). Equation A3.14

fðz, tÞ ¼
1ffiffiffiffiffiffi
2�
p

Z 1
�1

dk ’ kð Þ exp ikz� i!ktð Þ

reduces to

fðz, tÞ ¼
exp ikoz� i!ko t

� �ffiffiffiffiffiffi
2�
p

so that the phase velocity must be identical with the group velocity.
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Appendix 4
Review of Probability Theory and Statistics

The present appendix reviews selected topics from probability and statistics. Most of
the examples focus on optics and noise process. We first introduce the probability density,
cumulative probability and the average.

A4.1 Probability Density

The probability density function � measures the probability per unit ‘‘something’’ such
as per unit length or per unit volume. If �(x) dx is the probability of finding a particle
in the infinitesimal interval dx centered at the position x, then the probability of finding
the particle in the interval [a, b] is given by

Pða 	 x 	 bÞ ¼

Z b

a
dx �ðxÞ ðA4:1Þ

The integral presumes the random variable x is continuous. Discrete random variables
reduce the integral in Equation A4.1 to a summation. As is typical for classical probability
theory, the integral of density function � must be one

Z 1
�1

dx �ðxÞ ¼ 1 ðA4:2Þ

The fact that the integral over all space equals unity is a reflection of the fact that the
particle must be found somewhere in space (i.e., the total probability equals one for
finding the particle somewhere). For volume rather than length, the probability density
is �(x, y, z). The probability of finding a particle in a volume V of space is then

Pða 	 x 	 b, c 	 y 	 d, e 	 z 	 f Þ ¼

Z b

a

Z d

c

Z f

e
dx dy dz �ðx, y, zÞ ¼

Z
V
dV � ðA4:3Þ

The average of a real-valued random variable ‘‘x’’ can be symbolized several ways

x ¼ xh i ¼ E x½ � ðA4:4Þ
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where E( ) is the expectation operator from probability theory. These averages are
calculated as usual

fðxÞ
� 	

¼

Z 1
�1

dx fðxÞ �ðxÞ ðA4:5Þ

As will be elsewhere in the book for quantum mechanics, the state must be specified
before the average can be taken. This is essentially the same as saying for Equation A4.5,
the probability distribution must be specified before the average can be computed (which
is the usual way of doing things).
The variance of a real-valued random variable ‘‘x’’ can be written

�2 ¼ x� �xxð Þ
2� 	

ðA4:6Þ

where � is the standard deviation. The term ðx� �xxÞ measures the deviation between ‘‘x’’
and its average. The average of all of the terms ðx� �xxÞ gives zero since, by definition of
average, ‘‘x’’ is larger than �xx as often as it is smaller. Therefore taking the square ðx� �xxÞ2

makes the term always positive and it still tends to measure the deviation between x
and �xx. We are not interested in a point-by-point difference ðx� �xxÞ2 but instead, we want
the expected behavior over all the possible values. Therefore the variance is defined with
the average in Equation A4.6.
For a complex-valued random variable z, the average is given similar to Equation A4.5.

The average can have real and imaginary parts. The variance must be real (as a measure
of total deviation) and is given by

�2z ¼ z� �zzð Þ
� z� �zzð Þ

� 	
¼ z� �zzj j

2
� 	

ðA4:7Þ

The probability density leads to a probability for discrete random variables rather
than those having a continuous range as appropriate for the probability density.
We convert the integral for the average of an arbitrary function hfi ¼

R L
0 dx fðxÞ �ðxÞ into

a discrete summation. First divide the region of integration ð0, LÞ into very small
intervals 
x so that L ¼ N 
x. Let xi be a point in interval #i. Assume the interval 
x
centered on the interval #i small enough that a measurement of x produces value xi
with probability �i. The probability �i must be �i ¼ �ðxÞ 
x. Notice the units of �i

and � differ. We can now write

f
� 	
¼

Z L

0

dx fðxÞ �ðxÞ ffi
XN
i¼1

f xið Þ�i ðA4:8Þ

This suggests writing the discrete form of the probability density as

�ðxÞ ¼
XN
i¼1

�i 
 x� xið Þ ðA4:9Þ

A4.2 Processes

Making a series of measurements of a quantity Y produces a set of discrete points fyg.
Each measurement takes place at a separate time ti. For example, we might measure
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slight fluctuations in optical power PðtÞ from a laser as a function of time (Figure A4.1).
Each sequence of points (i.e., each possible graph like Figure A4.1) produces a realiza-
tion of a random process. For a given value of the parameter t, the quantity YðtÞ
represents a random variable. The collection of random variables fYg, with one such Y
for each parameter t, constitutes the random process. The set {yi : i ¼ 1, 2, . . . } provides
a representation of the random process. These sets might be so dense as to approximate
a continuous set.
Consider an example for the power PðtÞ from a laser or light emitting diode.

Measurements at time ftig produce results fPig that can be plotted as points on a graph.
The time t serves as an ‘‘index’’ for the points (t1, P1), (t2, P2) and so on. Each sequence of
points PðtÞ (i.e., each possible graph like Figure A4.1) represents a realization of the
random process. Let t1 be a specific time. The power P(t1), a random variable, can assume
any number of values. That is, for a given fixed time t1, the value of P can assume a range
of values. For example, P might be in the range [�1,1] or it might assume a set of discrete
values in that range. Therefore, for every time t1, t2, and so on, there exists a random
variable P1¼P(t1), and another random variable P2¼P(t2), and so on. The collection of all
random variables forms the random process PðtÞ. Sometimes people refer to quantities
such as PðtÞ as a time dependent random variable rather than a process.
A probability density � describes the distribution of possible values at a given value

of the parameter. The probability density �ðy1, t1Þ refers to a single random variable
Y1 ¼ Yðt1Þ indexed by a particular value of the parameter t1. The quantity �ðy1, t1Þ
represents the probability (density) for finding the random variable Y1 and has the value
y1 at the specific time t1. The joint probability density �ðy1, t1, y2, t2Þ gives the probability
of finding the value of Y1 ¼ y1 at t1 and Y2 ¼ y2 at t2. Sometimes people refer to
�ðy1, t1, y2, t2Þ as the ‘‘two-time probability density.’’ Notice that the two-time probability
refers to two-separate values of the parameter for the same process. The multi-time
probability density provides more information than does the single-time probability
density. As will be seen momentarily, the multi-time probabilities contain information on
correlation.

A4.3 Ensembles

An ensemble consists of the collection of all possible realizations of the random process.
To understand this statement, consider an experiment to measure the optical power P(t)
at times t1, t2, . . . from a semiconductor laser. Suppose the experiment starts at 2 pm
on December 3, ends at 3 pm, and produces the results given by plot #1 in Figure A4.2.
Now suppose the experimenter goes back in time to 2 pm on December 3rd and

FIGURE A4.1

A signal as a function of time. A large amount of noise is superimposed on the average signal.
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repeats the experiment. Realization #2 in Figure A4.2 shows this data set. In fact, suppose
that the experimenter goes back an infinite number of times and collects all possible
realizations. That collection represents the ensemble. Of course, we only imagine going
back in time and obtaining the ensemble; we can’t really collect the information. Some-
times we focus on a single time t such as t1. An ensemble might consist of all possible
values P(t1). The average power �PPðtÞ ¼ hPðtÞi can be found by averaging all of the possible
realizations of the process at time t1. Using the density function, the average becomes

�PP1 ¼ �PPðt1Þ ¼

Z
dP1 P1 �ðP1, t1Þ

That is, the average is found by a point-by-point average over the infinite number of
possible points at time t1.

A4.4 Stationary and Ergodic Processes

A process receives the designation of ‘‘stationary’’ when its characteristics do not
change with time. For example, the average and the standard deviation do not depend
on time. The time-dependence of the probability distribution determines the stationary
character of a process. Consider again the power from a laser. The single-time proba-
bility distribution �ðP1, t1Þ cannot depend on time for a stationary process. However,
a multi-time probability distribution �ðP1, t1;P2, t2;P3, t3;. . .Þ describing for example, the
power Pi in an optical beam at time ‘‘ti,’’ depends only on a difference in time.

� P1, t1;P2, t2;P3, t3:::ð Þ ¼ � P1, 0;P2, t2 � t1;P3, t3 � t1:::ð Þ ðA4:10Þ

FIGURE A4.2

The ensemble consists of all possible realizations.

696 Physics of Optoelectronics

© 2005 by Taylor & Francis Group, LLC



Some stationary processes have the designation of ‘‘ergodic’’ when the average such
as P ¼ hPðtÞi can be found by either (1) the ensemble average or by (2) a time average.
The two averages must produce identical results for the process to be ergodic. The
time-average has the usual definition

Ph iT ¼
1

N

XN
i¼1

P tið Þ PðtÞ
� 	

¼
1

T

Z T

0

dt PðtÞ ðA4:11aÞ

while the ensemble average uses only a single time ti and calculates

�PPi ¼ �PPðtiÞ ¼
X

Pi �ðPi, tiÞ Pih i ¼

Z
dPi Pi �ðPi, tiÞ ðA4:11bÞ

The distinction will become clear in the following examples. Strictly speaking, a process
can only be ergodic if every realization contains exactly the same statistical information as
the ensemble. In this case, the realizations don’t all need to start at the same time.

Example A4.4.1

Nonstationary process

Figure A4.3 shows two examples of nonstationary processes. The first one shows that
the standard deviation of the noise a(t) decreases with time. The second one shows that
the average value of b(t) decreases with time.

Example A4.4.2

Nonergodic Process

Figure A4.4 shows a nonergodic process because (for some reason) the standard
deviation differs for two different realizations (perhaps taken at widely different times).

FIGURE A4.3

A nonstationary processes.

FIGURE A4.4

Two realizations of a nonergodic process.
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A4.5 Correlation

This section discusses the meaning of correlation for a single random variable and cross
correlation for two random variables. Two random variables X and Y are correlated if the
values of one are ‘‘linked’’ (to some extent) with the values of the other. Probability and
statistics courses define the covariance. We freely interchange the name correlation and
covariance. The correlation (or perhaps more properly the covariance) of two random
variables X and Y is defined by

�XY ¼ covðX,Y Þ ¼ X � X
� �

Y� Y
� ��D E

ðA4:12Þ

The complex conjugate only applies to complex-valued random variables; the correlation
function generally has real and imaginary parts. Sometimes �XY is interpreted as an
element of a matrix (the covariance matrix); the elements are �XX, �XY, �YX, �YY. The
correlation coefficient is defined as

X � X
� �

Y� Y
� ��D E

�X �Y
ðA4:13Þ

where �X and �Y are the standard deviations for X and Y respectively. The complex
conjugate only applies to complex-valued random variables. Both the correlation function
and the correlation coefficient measure the linkage between two random variables.
However, the correlation coefficient removes arbitrary scaling factors. As an important
note, if X¼Y then the correlation function �X ¼ �X,YjX¼Y reduces to the usual variance
according to

�XY ¼ X � �XX
� �

Y� �YY
� ��D E

¼ X � �XX
�� ��2D E

¼ �2X ðA4:14Þ

Figure A4.5, as an example, shows two sets of measured values exhibiting positive
and negative correlation, and a third exhibiting negligible correlation. The values xi and
yi have positive cross correlation for the set marked ‘‘pos’’ because, as the values of one
increase, so do the values of the other. For example, the set of points might repre-
sent the x–y position of an ant as it follows a scent across a tabletop. The subscript ‘‘i’’
represents the time (in seconds) on a clock. For the eight points, the cross correlation

FIGURE A4.5

Three types of cross correlation.
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between x and y is

xðtÞ � �xxð Þ yðtÞ � �yy
� �� 	

¼
1

8

X8
i¼1

xi � �xxð Þ yi � �yy
� �

Next consider the autocorrelation function defined by

�X ¼ XðtÞ X�ðtþ �Þ
� 	

¼ �X t, tþ �ð Þ ðA4:15Þ

Equation A4.14 looks similar to the cross correlation function in Equation A4.12. In
some sense, the term X�ðtþ �Þ acts like a new random variable YðtÞ. This brings us back
to interpreting t and tþ � as indices in a sequence of measured values; the symbol � is
then similar to an offset. The autocorrelation function measures the similarity between
two subsets of a single string of numbers.
The following set of example lead the reader to the meaning of the correlation and

autocorrelation of the Langevin noise sources.

Example A4.4.3

Correlation (for illustration purposes)

Consider a discrete process with realization given by

x0, x1, . . . ,|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
 n !

xi, . . .

that is, xðt0Þ ¼ x0 and so on. The correlation between the set x0, x1, . . . and the set
xi, xiþ1, . . . must be given by

� ¼
1

N

XN
i¼1

xi � �xxð Þ xiþn � �xx0ð Þ

where a string of N numbers is taken for each subset. This is the same as the auto-
correlation. Notice that if the offset n¼ 0 then the autocorrelation becomes the variance

� ¼
1

N

XN
i¼1

xi � �xxð Þ xiþn � �xx0ð Þ ¼
1

N

XN
i¼1

xi � �xxð Þ xi � �xxð Þ ¼ �2x

We have not been careful to properly define estimators, which would require N to be
replaced by N– 1.

Example A4.4.4

Autocorrelation

Suppose a coin has sides labeled with þ1 and –1. Suppose 22 tosses of the coin yields the
following string of numbers.

x0 ¼ �1, þ 1, � 1, � 1, þ 1, þ 1, � 1, þ 1, � 1, þ 1, � 1, þ 1, � 1,

þ 1, þ 1, þ 1, � 1, � 1, þ 1, þ 1, þ 1, � 1 ¼ x22
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Consider two small subsets with N¼ 7 elements. Suppose the first subset starts at x0
and the second one starts at x12.

x0 ¼ �1, þ 1, � 1, � 1, þ 1, þ 1, � 1 ¼ x6 x12 ¼ �1, þ 1, þ 1, þ 1, � 1, � 1, þ 1 ¼ x18

The correlation between these two sets (assuming �xx ffi 0 for convenience) is therefore
�3=7. This is the autocorrelation because the two subsets are from the same initial string.
For the coin toss, the seven-number sets could produce a correlation value anywhere
between �1 and þ1 (with 0 as the expected outcome so long as the sets are different).
For this case, the offset is n¼ 12.

Example A4.4.5

The Kronecker-Delta Correlation

For the previous example, what is the autocorrelation for n¼ 0? The answer is 1. It’s
not too hard to imagine a situation where the correlation is 0 for n 6¼ 0. The correlation
as a function of ‘‘n’’ is then

�xðnÞ ¼ �
2
n,0 ¼

�2 n ¼ 0
0 n 6¼ 0




where 
a,b is the Kronecker delta function which is 1 when a¼ b and 0 otherwise.
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Appendix 5
The Dirac Delta Function

The Dirac Delta function (also called the impulse function) arises in many fields of
engineering and physics. In many respects, the Dirac Delta function can be thought of as
a function. The Dirac delta function departs from classical mathematical theory and must
be defined as the limit of a sequence of functions. Distribution function theory provides a
firm basis for the Dirac delta function. This section provides a number of representations
of the Dirac delta function. We will find that every basis set of functions provides another
representation. This section also discusses the idea of principal part.

A5.1 Introduction to the Dirac Delta Function

We often think of the Dirac delta function 
(x� xo) as a function with exactly one infinite
value at the point xo and zero everywhere else (Figure A5.1).


ðx� xoÞ ¼
1 x ¼ xo

0 x 6¼ xo

(
ðA5:1Þ

The function must be infinitely large at xo but infinitely narrow so that the area under the
function equals to one. Apparently, integrals over the delta function have wonderful
properties.
We might also consider an alternate definition of the Dirac delta function by the effect it

has on integrals. Define the delta function by

Z b

a
dx fðxÞ
ðx� xoÞ ¼

fðxoÞ xo 2 ða, bÞ

1
2 fðxoÞ xo ¼ a or b

0 else

8>>><
>>>: ðA5:2Þ

Notice that if f (x)¼ 1 then Equation A5.2 provides

Z b

a
dx 
ðx� xoÞ ¼

1 xo 2 ða, bÞ

1=2 xo ¼ a or b

0 else

8><
>: ðA5:3Þ

The integral of the delta function has the value of one when the point of discontinuity
xo appears entirely inside the integration interval. When you encounter a delta function
in an equation, you should consider it an ‘‘invitation to integrate.’’ The next topic shows
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how the Dirac delta function really comes from the limit of a sequence of functions,
which substantiates Equations A5.2 and A5.3.

Example A5.1

What is

Z 50

10

sin xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2
p 
 x� 458ð Þ dx ?

Z 50

10

sin xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2
p 
 x� 458ð Þ dx ¼

sin xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2
p

����
x¼458
¼

sin 45ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 45ð Þ2

q

A5.2 The Dirac Delta Function as Limit of a Sequence of Functions

The Dirac delta function should really be defined as the limit of a sequence of functions Sn
according to the definitionZ 1

�1

dz 
ðz� zoÞ ¼ Lim
n!1

Z 1
�1

dz Snðz� zoÞ ðA5:4Þ

The order of the limit, integral and function Sn should be carefully noted. Many different
sequences of functions Sn will work even those that can not be differentiated everywhere.

Example A5.2.1

Figure A5.2 shows a sequence of functions Snðz� zoÞ given by

S1 ¼ 1=6 x 2 ð0, 6Þ

S2 ¼ 1=2 x 2 ð2, 4Þ

S3 ¼ 1 x 2 ð2:5, 3:5Þ

..

. ..
.

Notice that the area under each function Sn equals to one. We can then trivially write

Lim
n!1

Z 9

0

dz Snðz� zoÞ ¼ Lim
n!1

1 ¼ 1 ¼

Z 9

0

dz 
ðz� zoÞ

FIGURE A5.1

Representation of the delta function as a narrow spike.
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This last example brings up an important point regarding the definition for the integral of
the delta function in terms of the limit of a sequence of functions.

Lim
n!1

Z b

a
dx fðxÞSnðx� xoÞ �

Z b

a
dx fðxÞ
ðx� xoÞ

The integral of each function Sn does not need to equal unity; however, at the very least,
the integral of Sn should approach ‘‘1’’ as ‘‘n’’ becomes large. In many cases, we require
each function in the sequence Sn to be everywhere differentiable. For example, Sn might
be Gaussian-shaped functions.
Many books use a shorthand notation for the Dirac delta function. For example, looking

at the defining relation Z 1
�1

dz 
ðz� zoÞ ¼ Lim
n!1

Z 1
�1

dz Snðz� zoÞ ðA5:5Þ

we might be tempted to make the identification


ðz� zoÞ ¼ Lim
n!1

Snðz� zoÞ ðA5:6Þ

However, this can only be correct when interpreted as in Equation A5.5. We can easily
see the problem with directly integrating Equation A5.6. Setting the Dirac delta function 

directly equal to the limit of a sequence of functions produces a limit function equal to
zero everywhere except at one point. This limit function matches the intuitive view of the
Dirac delta function. Taking the integral of this limit function must produce zero because
a Riemann integral is insensitive to a single point. The integral of the limit function does
not produce a value equal to unity contrary to the definition of the Dirac delta function.
Now let’s discuss why the first integral property in Equation A5.2 holds, namely

Z b

a
dx fðxÞ
ðx� xoÞ ¼

fðxoÞ xo 2 ða, bÞ

1
2 fðxoÞ xo ¼ a or b

0 else

8><
>: ðA5:7Þ

Figure A5.3 shows a sequence of functions Sn all enclosing unit area. The first graph
shows that f (z) varies along the nonzero portion of S1. The middle picture shows a case
with f (z) almost constant over the width of S2. Finally, the last graph shows a func-
tion S3(z� zo)ffi 
(z� zo) sufficiently narrow to provide a very good approximation

FIGURE A5.2

A sequence of functions with a ‘‘limit’’ that represents the Dirac delta function.
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f (z)ffi f (zo) over the nonzero width of S3(z� zo). As a result of this intuitive approach,
we can write

Z 1
�1

dz fðzÞ 
ðz� zoÞ ffi

Z 1
�1

dz fðzÞS3ðz� zoÞ ffi

Z 1
�1

dz fðzoÞ S3ðz� zoÞ

¼ fðzoÞ

Z 1
�1

dz S3ðz� zoÞ ¼ fðzoÞ

which demonstrates the first of the integrals. This last approximation also works for
functions that aren’t delta functions so long as they are very sharply peaked; however, the
result must be multiplied by a constant equal to the integral over the function.
Now what about the property in Equation A5.2 for zo ¼ a, namelyZ b

a
dz fðzÞ
ðz� zoÞ ¼

1

2
fðzoÞ

This property holds because the integral covers only half of the delta function. Using
Figure A5.4 and a fairly narrow Sn (as shown), we can again write

fðzÞ SnðzÞ ffi fðzoÞ SnðzÞ

and the integral becomesZ b

a
dz fðzÞ Snðz� zoÞ ffi

Z b

a
dz fðzoÞ Snðz� zoÞ orZ b

a
dz fðzÞ Snðz� zoÞ ¼ fðzoÞ

Z b

a
dz Snðz� zoÞ

FIGURE A5.4

The integral covers only ‘half’ of the delta function.

FIGURE A5.3

Making n sufficiently large makes Sn sufficiently narrow so that f (z) does not vary along the nonzero portion of
Sn. In this case, we can take 
 z� zoð Þ ffi S3 z� zoð Þ.
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Now, because a¼ zo, the integral covers only half of the width of Sn, and the integral
becomes Z b

a¼zo

dz Snðz� zoÞ ¼ 1=2

Finally, including f (z) Z b�zo

zo

dz fðzÞ
ðz� zoÞ ¼
1

2
fðzoÞ

A5.3 The Dirac Delta Function from the Fourier Transform

The Dirac Delta function is most often first encountered with Fourier transforms. The
following derivation shows how this comes about. Start with the Fourier integral

fðxÞ ¼

Z 1
�1

dk
eikxffiffiffiffiffiffi
2�
p f kð Þ

and then substitute the Fourier transform for f(k)

fðkÞ ¼

Z 1
�1

dX
e�ikXffiffiffiffiffiffi
2�
p f Xð Þ

FIGURE A5.6

The limit of the Gaussian probability distribution approaches the Dirac delta function.

FIGURE A5.5

Sequence of rectangles.
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to find

fðxÞ ¼

Z 1
�1

dk
eikxffiffiffiffiffiffi
2�
p f kð Þ ¼

Z 1
�1

dk
eikxffiffiffiffiffiffi
2�
p

Z 1
�1

dX
e�ikXffiffiffiffiffiffi
2�
p f Xð Þ

¼

Z 1
�1

dX

Z 1
�1

dk
e�ik X�xð Þ

2�
f Xð Þ ¼

Z 1
�1

dX f Xð Þ

Z 1
�1

dk
e�ik X�xð Þ

2�

Comparing both sides of the equation we see that the second integral must be related to
a Dirac Delta function in order that f (X) becomes f (x). Therefore


 x� Xð Þ ¼

Z 1
�1

dk
e�ik x�Xð Þ

2�

and similarly


 k� Kð Þ ¼

Z 1
�1

dx
e�i k�Kð Þx

2�

which can be proved in the same manner as for x-Delta function but starting with f(k)
instead of f(x).

A5.4 Other Representations of the Dirac Delta Function

This topic lists some common sequences for the Dirac delta function.

1. The previous topic discusses the sequence of rectangles defined by

S� ¼
1=� xj j 	 �=2

0 xj j 
 �=2

(

Note that S�(x� xo) is obtained by replacing x with x� xo in the formula.

2. The Gaussian probability density function

g�ðx� xoÞ ¼
1ffiffiffiffiffiffi
2�
p

�
exp �

ðx� xoÞ
2

2�2

� �

represents a delta function when the standard deviation � approaches zero. These
distribution functions can be written in terms of the integer ‘‘n’’ by setting �¼ 1/n
for example. The delta function can be written as

Lim
�!0

g�ðx� xoÞ ¼ 
ðx� xoÞ

with the understanding that this means

Lim
�!0

Z b

a
dx fðxÞ g�ðx� xoÞ �

Z b

a
dx fðxÞ 
ðx� xoÞ
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Without the integral, the limit of the sequence of distribution functions g�
would be zero at all points except at xo where the limit of the distribution is
infinite. The point xo is at the center of the distribution and � is the standard
deviation.

3: 
ðxÞ ¼ Lim"!0 S"ðxÞ ¼ Lim"!0
1

�

"

x2 � "2

4. The theory of Fourier transforms provides an integral representation (see Topic


ðxÞ ¼ Lim
	!1

Z 	

�	

dk
eikx

2�
¼

Z 1
�1

dk
eikx

2�
ðA5:8Þ

which can be written in two other forms


ðxÞ ¼ Lim
	!1

Z 	

0

dk
cosðkxÞ

�
ðA5:9Þ

and


ðxÞ ¼ Lim
	!1

sinð	xÞ

�x
ðA5:10Þ

Equation A5.9 is related to the ‘‘sinc’’ function. Figure A5.7 shows how increasing
the value of ‘‘	’’ causes the function ‘‘sinð	xÞ=�x’’ to become sharper and more narrow;
the height of the function is ‘‘	/�’’ and the distance from x¼ 0 to the first zero is ‘‘�/	.’’
Equation A5.9 follows from Equation A5.8


ðxÞ ¼

Z 1
�1

dk
eikx

2�
¼

Z 0

�1

dk
eikx

2�
þ

Z 1
0

dk
eikx

2�

¼

Z 1
0

dk
e�ikx

2�
þ

Z 1
0

dk
eikx

2�
¼

Z 1
0

dk
cosðkxÞ

�

FIGURE A5.7

A plot of Equation A5.10 for two values of 	.
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where the integral is divided into two (one over negative k and the other over
positive k), replacing k with –k in one of them (the one for negative k) and then
recombining the two integrals using one of Eulers’ equations cosðkxÞ ¼ ½eikx þ e�ikx�=2.
Equation A5.10 follows from Equation A5.8 as follows


ðxÞ ¼ Lim
	!1

Z 	

�	

dk
eikx

2�
¼ Lim

	!1

ei	x � e�i	x

2�ix

� �
¼ Lim

	!1

sin 	xð Þ

�x

Note that the sinð	xÞ=x appears as a sequence in ‘‘	’’ just like the previous examples while
Equations A5.8 and A5.9 have the parameter as the bounds on an integral.

A5.5 Theorems on the Dirac Delta Functions

There are some useful theorems on the Dirac delta function that allow a person to
simplify expressions. G. Barton’s book ‘‘Elements of Green’s Functions and Propagation’’
published by Oxford Science Publications in 1989 provides a good reference.

1. 
 x� �ð Þ ¼ 
 � � xð Þ

2: 
 axð Þ ¼
1

aj j

 xð Þ

3. If g(x) has real roots xn (that is, gðxnÞ ¼ 0) then


 gðxÞ
 �

¼
X
n


 x� xnð Þ

g0ðxnÞ
�� �� where g0ðxÞ ¼ dg=dx

4. For � 2 a, bð Þ,

Z b

a
dx fðxÞ 
0ðx� �Þ ¼ �f 0ð�Þ

This property is important because it allows for a weak identity that is exceedingly useful

fðxÞ 
0ðx� �Þ ¼ �f 0ð�Þ 
ðx� �Þ

A5.6 The Principal Part

If half the range of ‘‘k’’ is left off the integral in Equation A5.8 then a function ðxÞ can
be defined by

ðxÞ ¼ �i Lim
	!1

Z 	

0

dk
eikx

2�
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where an extra i ¼
ffiffiffiffiffiffiffi
�1
p

is added for later convenience. Integrating provides

ðxÞ ¼
1

2�
Lim
	!1

1� ei	x

x

� �
¼

1

2�
Lim
	!1

1� cosð	xÞ

x
� i

sinð	xÞ

x

� �

where the last step obtains using ei	x ¼ cosð	xÞ þ i sinð	xÞ. Half the range of the integral
in Equation A5.8 is removed to obtain the expression for ðxÞ. The reader should
realize that for Equation A5.9, half the range of the integral was not removed from
Equation A5.8; the range was folded up (so to speak) into the cosine term. Now for
ðxÞ, define the principal part } ð1=xÞ ¼ }=x

}

x
¼ Lim

	!1

1� cosð	xÞ

x

as the principal part of 1/x. The imaginary part of ðxÞ is related to the Dirac
delta function as shown in #4 above. Now it is possible to write an alternate expression
for ðxÞ as

ðxÞ ¼ Lim
	!1

1� cosð	xÞ

2�x
� i Lim

	!1

sinð	xÞ

2�x
¼

}

2�x
� i


ðxÞ

2

Restricting the range of ‘‘k’’ for the integral is therefore seen to give something that differs
from the delta function by the value of the principal part.
What is P(1/x)¼Lim

	!1
ð1� cosð	xÞÞ=ð2�xÞ? As a function of x, taking the limit literally,

only x¼ 0 is defined since cos (	x) does not have a limit (with 	 as the limit variable)
where x 6¼ 0. At x¼ 0, the limit becomes (by Taylor expanding the cosine function)

Pð1=xÞ ¼ Lim
	!1

1� cosð	xÞ

2�x
ffi Lim

	!1
Lim
x!0

1� 1� ð	 xÞ
2

2! þ � � �

h i
2�x

¼ 0

by L’Hospital rule. Now, because the principal part occurs in the same equation as the
Dirac delta function, the reader should anticipate that the principal part has special
integral properties. The integral of the terms in ðxÞ is found before taking the limit (the
limit is understood to be outside the integral).
The integral of P(1/x) requires some explanation. Consider two cases for the integration

interval of [a, b]. First assume that a4 0 and b4 0 and second, assume that a5 0 and
b4 0. Consider case 1 for a4 0 and b4 0. Figure A5.8 shows a plot of ½1� cosð	xÞ�=x
(solid curve) for a fixed 	 and also a plot of 1/x (dotted curve). Notice how 1/x appears as a
‘‘local’’ average for the curve. To evaluate the integral, divide the interval [a, b] into smaller
intervals [ai, bi] such that

1. ½a, b� ¼ [
n

i¼1
½ai, bi� where ai¼ bi�1 and [

n

i¼1
½ai, bi� means the union of the sub-intervals.

2. the function 1/x does not vary appreciably over [ai, bi],

3. ½1� cosð	xÞ� passes through many cycles over each [ai, bi]; this is certainly the case
for large 	 when bi� ai44 �. (see � in Figure A5.8).

Using the first property, the integral can be rewritten as

Z b

a
¼
Xn
i¼1

Z bi

ai
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We also need the mean value theorem from calculus, which can be written asZ bi

ai

dx fðxÞ ¼ fðxÞ
� 	

ðbi � aiÞ

Now, applying the mean value theorem to ½1� cosð	xÞ�=x keeping in mind that 1/x is
a local average, we find

Z bi

ai

dx
}

x
¼ Lim

	!1

Z bi

ai

dx
1� cosð	xÞ

x
¼ Lim

	!1

1� cosð	xÞ

x

� �
bi � aið Þ

¼ Lim
	!1

1

x
bi � aið Þ ¼

Z bi

ai

dx
1

x

The third and last terms were found by applying the mean value theorem. The limit
in the fourth term doesn’t matter and can be dropped. How is hð1� cosð	xÞÞ=xi found?
This can be seen in two ways. For the first way, 1/x was already noted to be the average
of ½1� cosð	xÞ�=x for small enough intervals. For the second way, we can write

Z bi

ai

dx
1� cosð	xÞ

x
ffi

1

x

Z bi

ai

dx ½1� cosð	xÞ� ¼
bi � ai

x
�
sinð	xÞ

	

����bi
ai

1

x
ffi

bi � ai
x

Thus for case 1, we can make the replacementZ bi

ai

dx fðxÞ
}

x
)

Z bi

ai

dx
fðxÞ

x

so long as f (x) is slowly varying. The original integral can be written as

Z b

a
dx fðxÞ

}

x
¼
Xn
i¼1

Z bi

ai

dx }
fðxÞ

x
¼
Xn
i¼1

Z bi

ai

dx
fðxÞ

x
¼

Z b

a
dx

fðxÞ

x

FIGURE A5.8

The function ‘‘1/x’’ is an average of [1� cos(	x)]/x.
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for a, b4 0. For this case, the principal part has no effect. Also notice that the sine term
(i.e. the delta function) in

ðxÞ ¼ Lim
	!1

1� cosð	xÞ

2�x
� i Lim

	!1

sinð	xÞ

2�x
¼

}

2�x
� i


ðxÞ

2

is approximately zero since the point of discontinuity is outside the interval (i.e.,
a4 0, b4 0).
Consider the second case of a5 0 and b4 0. Again divide up the interval into small

subintervals satisfying the properties on the previous page. Those subintervals that don’t
contain zero are handled just like case 1. Therefore consider the subinterval [–", "] where
" is a small number. As discussed above P(1/x)ffi 0 for ‘‘x’’ near zero. The integral over
the " subinterval becomes

Z "

�"

dx fðxÞ}
1

x

� �
¼ fðxÞ}

1

x

� �����"
�"

ffi 0

The smaller the value of ", the better the approximation. The original integral becomes

Z b

a
dx fðxÞ}

1

x

� �
¼

Z �"
a

dx fðxÞ}
1

x

� �
þ

Z "

�"

dx fðxÞ}
1

x

� �
þ

Z b

"

dx fðxÞ}
1

x

� �

¼

Z �"
a

dx
fðxÞ

x
þ 0 þ

Z b

"

dx
fðxÞ

x

Some people define the principal part of the integral as

}

Z b

a
¼

Z �"
a
þ

Z b

"

A5.7 Convergence Factors and the Dirac Delta Function

In many cases, the form of the Dirac delta function (for a given Hilbert space) is surmised
from the closure relation. This topic discusses one method of showing that the area under
a Dirac delta function is equal to one. Consider the Fourier representation of the Dirac
delta function 
ðk� 0Þ given by

IðkÞ ¼

Z 1
�1

dx
eikx

2�
ðA5:11Þ

The integral can be evaluated by including a ‘‘convergence’’ factor e��x with �40. The
‘‘positive’’ sign in e��x is used when ‘‘x’’ is negative and the ‘‘negative’’ sign in e��x is

The Dirac Delta Function 711

© 2005 by Taylor & Francis Group, LLC



used when ‘‘x’’ is positive. Including the appropriate integrating factor forces the
integrand in Equation A5.11 to approach zero near �1. After the calculation is complete,
the parameter � is set to zero.

IðkÞ ¼

Z 1
�1

dx
eikx

2�
¼

Z 1
0

dx
eikx

2�
þ

Z 0

�1

dx
eikx

2�
¼

Z 1
0

dx
e��xþikx

2�
þ

Z 0

�1

dx
e�xþikx

2�

Notice that integrating factors are included in the integrals. Carrying out the integrals
provides

IðkÞ ¼

Z 1
�1

dx
eikx

2�
¼ �

1

2� ��þ ikð Þ
þ

1

2� �þ ikð Þ
¼

1

2�

2�

k� i�ð Þ kþ i�ð Þ
ðA5:12Þ

Notice that if k¼ 0 then as � ! 0 the integral becomes infinite IðkÞ ! 1. On the other
hand, if k 6¼ 0 then as � ! 0 the integral becomes zero IðkÞ ! 0. This behavior matches
that for a Dirac delta function 
ðk� 0Þ.
Now to evaluate the integral of I(k)

Z 1
�1

dk IðkÞ

a contour integration can be performed on A5.12. The contour can be closed in either
the lower half plane or the upper half plane. A closed contour in the upper half
plane encloses a pole at k ¼ i�. The basic formula for residues can be used

I
dz

fðzÞ

z� zo
¼ 2�i

X
residues ¼ 2�i f zoð Þ

to find

I
dk IðkÞ ¼

I
dk

1

2�

2�

k� i�ð Þ kþ i�ð Þ
¼ 2�i

1

2�

2�

kþ i�ð Þ


 �
k¼i�

¼ 1
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Appendix 6
Coordinate Representations of the Schrodinger
Wave Equation

This appendix illustrates how the Schrodinger wave equation such as for the Harmonic
Oscillator

��hh2

2m

@2

@x2
þ
1

2
kx2

� �
�ðx, tÞ ¼ i�hh

@

@t
�ðx, tÞ ðA6:1Þ

can be found from operator-vector form of the equation

p̂p2

2m
þ
1

2
kx̂x2

� �
�ðtÞ
�� 	

¼ i�hh
@

@t
�ðtÞ
�� 	

ðA6:2Þ

We use the harmonic oscillator as an example with the understanding that other
Hamiltonians can be similarly treated.
We begin with Equation A6.2 by operating on both sides using the x-coordinate

projection operator hxj to get

xh j
p̂p2

2m
þ
1

2
kx̂x2

� �
�ðtÞ
�� 	

¼ i�hh
@

@t
x
���ðtÞ� 	

where the x-coordinate operator moves past the time derivative. On the left-hand side,
insert the unit operator

1 ¼

Z
x0
�� 	

dx0 x0
� ��

between the Hamiltonian operator and the ket j�ðtÞi. We obtain

xh j
p̂p2

2m
þ
1

2
kx̂x2

� � Z
x0
�� 	

dx0 x0
� ��� �

�ðtÞ
�� 	

¼ i�hh
@

@t
x �ðtÞ
��� 	

The x-terms can be moved under the integral since they do not depend on x0.

Z
dx0 xh j

p̂p2

2m
þ
1

2
kx̂x2

� �
x0
�� 	

x0
� �� �ðtÞ

�� 	
¼ i�hh

@

@t
x
���ðtÞ� 	

ðA6:3Þ
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The momentum and position operators are diagonal in ‘‘x’’ so that

x p̂p2
�� ��x0� 	

¼ x
��x0� 	

p̂pðx0Þ
 �2

¼ 
ðx0 � xÞ
�hh

i

@

@x0

� �2
and x x̂x2

�� ��x0� 	
¼ 
ðx0 � xÞ x0½ �2

since x̂xjx0i ¼ x0jx0i. Therefore Equation Al6.3 becomes

Z
dx0 
ðx0 � xÞ

��hh2

2m

@2

@x02
þ
1

2
kx02

� �
x0
���ðtÞ� 	

¼ i�hh
@

@t
x
���ðtÞ� 	

Integrating over the delta function yields

��hh2

2m

@2

@x2
þ
1

2
kx2

� �
x
���ðtÞ� 	

¼ i�hh
@

@t
x
���ðtÞ� 	

and, using hx j�ðtÞi ¼ �ðx, tÞ, gives the desired results

��hh2

2m

@2

@x2
þ
1

2
kx2

� �
�ðx, tÞ ¼ i�hh

@

@t
�ðx, tÞ
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Appendix 7
Integrals with Two Time Scales

Consider an integral of the form

I ¼

Z b

a
f tð Þ s tð Þ dt ðA7:1Þ

where f (t) and s(t) are ‘‘fast’’ and ‘‘slow’’ functions, respectively, in terms of their
variations along the t-axis. The figure shows an example of the functions f (t) and s(t). The
period of f (t) is small compared with all time scales of interest. The time axis is divided
into intervals �s that are small compared to the length of any variation of the slow
function s(t). We show the following properties

1: I ¼

Z b

a
d� sð�Þ fð�Þ

� 	
where the average h fðtÞi is over the interval �s. The ‘‘average’’ is the type that
every reader has learned in calculus. The average h fðtÞimight still depend on time
since the average of f (t) over each interval �s might depend on the location of that
interval.

2. Nom the average fðtÞ
� 	

is independent of time, the integral in Equation A7.1 can be
written as

I ¼ f
� 	

sh i ðb� aÞ

3. If the average fðtÞ
� 	

¼ 0 then I¼ 0

4.
R
d� fð�Þ þ sð�Þ
 �

¼
R
d� sð�Þ if fðtÞ

� 	
¼ 0

5. The Rotating Wave Approximation shows that an integral can be approxi-
mated as

Z t

0

d� ei !ni�!ð Þ� þ ei !niþ!ð Þ�
 �

ffi

Z t

0

d� ei !ni�!ð Þ�

for an angular frequency ! ffi !ni.

To prove the properties starting with the first, divide the small intervals �s into
smaller intervals 
sf which are small compared to the length of the variations for the fast
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function f (t). Using the basic definition from calculus, the integral in Equation A7.1 can
be written as

I ffi
X
sf

f tsf
� �

s tsf
� �


sf

where as usual tsf is a point in the small interval 
sf. Over each interval�s, the function s(t)
is constant. Let ts be a point in the interval �s so that s(ts)ffi s(tsf). The function s(tsf) can be
moved outside of one of the summations as follows

I ffi
X
s

s tsð Þ
X
f

f tsf
� �


sf

Multiplying and dividing by the larger interval �s produces

I ffi
X
s

s tsð Þ
X
f

f tsf
� �


sf ¼
X
s

s tsð Þ�s
1

�s

X
f

f tsf
� �


sf

2
4

3
5 ðA7:2Þ

The term in brackets provides the average of the function f (t) over the interval �s. The
summation in the brackets provides an integral

1

�s

X
f

f tsf
� �


sf ¼
1

�s

Z
�s

d� fð�Þ ¼ fðtÞ
� 	

¼ gðtÞ

Notice that the average of the fast function in this last equation g(t)¼hfðtÞi can depend
on time since the average over each of the subintervals �s might not be the same.
Equation A7.2 can now be written as

I ¼

Z b

a
d� sð�Þ gð�Þ ¼

Z b

a
d� sð�Þ fð�Þ

� 	

which proves the first property.

FIGURE A7.1

Slow s(t) and fast f (t) functions.
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If the average over the interval �s, namely g(t)¼h fðtÞi, does not depend on the location
of the interval �s, then the average must be independent of time h fðtÞi ¼ h fi and can be
removed from the integral

I ¼ f
� 	 Z b

a
d� sð�Þ

Using the definition of an average from calculus

sh i ¼
1

b� a

Z b

a
d� sð�Þ

The integral becomes

I ¼ f
� 	 Z b

a
d� sð�Þ ¼ f

� 	
sh i b� að Þ

which proves the second property.
Obviously, if as shown in the figure, the average of the function f (t) is zero hfðtÞi ¼ 0

then the integral is zero. The fourth and fifth properties follow.
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Appendix 8
The Dipole Approximation

The dipole approximation treats the wavelength of a traveling electric field (plane wave)
as large compared with the size of the atom. Consider the integral

1h j fð ~rr Þ e�i
~kk�~rr 2j i ¼

ZZZ
all space

dV u�1ð~rr Þ fð~rr Þ e
�i~kk�~rru2ð~rr Þ

where the volume V is centered at ~rr ¼ 0 and the wave functions u1 and u2 are essentially
confined to the volume V (they have tails that extend slightly beyond the volume V ).
Therefore, the integral must be zero for regions of space outside the volume V since the
wave functions in the integrand are zero outside the volume V. However, the spatial part
e�i

~kk�~rr of the plane wave is constant over the volume V; it has the value of e�i
~kk�~rr
���
~rr¼0
¼ 1.

Therefore the integral can be written as

1h j fð~rr Þ e�i
~kk�~rr 2j i ¼ e�i0

ZZZ
all space

dV u�1ð~rr Þ fð~rr Þ u2ð ~rr Þ ¼

ZZZ
all space

dV u�1ð~rr Þ fð~rr Þ u2ð~rr Þ

The approximation is called the ‘‘dipole approximation’’ because (classically) the volume
V is considered to be composed of dipoles (polarized atoms) that absorb and emit
electromagnetic radiation. These dipoles are small compared with the wavelength of the
electromagnetic wave. It should be obvious that the position of the atom can be at any
location (say ~rr 0) besides the origin. We would then have

1h j fð ~rr Þe�i
~kk�~rr 2j i ¼

ZZZ
all space

dV u�1ð~rr Þ fð ~rr Þe
�i ~kk � ~rr u2ð ~rr Þ ¼ e�i

~kk� ~rr0
ZZZ

all space

dV u�1ð~rr Þ fð~rr Þ u2ð~rr Þ

FIGURE A8.1

The electron wavefunction is nonzero over a region that is small compared with the wavelength of light.
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Appendix 9
The Density Operator and the
Boltzmann Distribution

We can define the density operator �̂�r through a Boltzmann distribution

�̂�r ¼
1

Z
exp �

ĤHr

kBT

 !

where Z denotes the normalization (partition function)

Z ¼ Trr exp �
ĤHr

kBT

 !( )

Consider the average of an operator ÔO

ÔO
D E
¼ Tr �̂�rÔO

� �
¼
X
n

nh j �̂�rÔO nj i ¼
X
n,m

nh j �̂�r mj i mh j ÔO nj i

where the closure relation for the energy basis set f jni ghas been inserted between the two
operators. The energy eigenstates are chosen for the basis since the density operator is
diagonal in that basis set. First, evaluate the matrix elements of the density operator.

nh j �̂�r mj i ¼
1

Z
nh j exp �

ĤHr

kBT

 !
mj i ¼

1

Z
n jmh i exp �

Em

kBT

� �

where the factor 1/Z can be removed from the inner product by virtue of it being a
c-number and where the last term obtains by operating with the Hamilton on the ket jmi.
Using the orthogonality of the basis provides

nh j �̂�r mj i ¼

nm
Z

exp �
En

kBT

� �

and the average of an operator becomes

ÔO
D E
¼ Tr �̂�rÔO

� �
¼
X
n

1

Z
exp �

En

kBT

� �
Onn
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Notice that this last expression only requires the diagonal matrix elements Onn of the
operator ÔO. The partition function can be similarly evaluated. The expectation value of
the operator ÔO shows that the density operator for the reservoir gives rise to the
Boltzmann probability distribution. The energy levels En are expected to be populated
according to the thermal distribution.
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