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Preface

Dynamical systems theory in mathematical biology and environmental sci-
ence has attracted much attention from many scientific fields as well as math-
ematics. For example, “chaos” is one of its typical topics. Recently the preser-
vation of endangered species has become one of the most important issues
in biology and environmental science, because of the recent rapid loss of
biodiversity in the world. In this respect, permanence or persistence, new
concepts in dynamical systems theory, seem important. These concepts give
a new aspect in mathematics that includes various nonlinear phenomena such
as chaos and phase transition, as well as the traditional concepts of stability
and oscillation. Permanence and persistence analyses are expected not only
to develop as new fields in mathematics but also to provide useful measures
of robust survival for biological species in conservation biology and ecosystem
management. Thus the study of dynamical systems will hopefully lead us to
a useful policy for bio-diversity problems and the conservation of endangered
species. The above fact brings us to recognize the importance of collabora-
tions among mathematicians, biologists, environmental scientists and many
related scientists as well. Mathematicians should establish a mathematical
basis describing the various problems that appear in the dynamical systems
of biology, and feed back their work to biology and environmental sciences.
Biologists and environmental scientists should clarify/build the model sys-
tems that are important in their own global biological and environmental
problems. In the end mathematics, biology and environmental sciences de-
velop together.

The International Symposium “Dynamical Systems Theory and Its Appli-
cations to Biology and Environmental Sciences”, held at Hamamatsu, Japan,
March 14th–17th, 2004, under the chairmanship of one of the editors (Y.T.),
gave the editors the idea for the book Mathematics for Ecology and Environ-
mental Sciences and the chapters include material presented at the sympo-
sium as the invited lectures.
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The editors asked authors of each chapter to follow some guidelines:

1. to keep in mind that each chapter will be read by many non-experts, who
do not have background knowledge of the field;

2. at the beginning of each chapter, to explain the biological background
of the modeling and theoretical work. This need not include detailed
information about the biology, but enough knowledge to understand the
model in question;

3. to review and summarize the previous theoretical and mathematical
works and explain the context in which their own work is placed;

4. to explain the meaning of each term in the mathematical models, and
the reason why the particular functional form is chosen, what is different
from other authors’ choices etc. What is obvious for the author may not
be obvious for general readers;

5. then to present the mathematical analysis, which can be the main part of
each chapter. If it is too technical, only the results and the main points of
the technique of the mathematical analysis should be presented, rather
than of showing all the steps of mathematical proof;

6. in the end of each chapter, to have a section (“Discussion”) in which the
author discusses biological implications of the outcome of the mathemat-
ical analysis (in addition to mathematical discussion).

Mathematics for Ecology and Environmental Sciences includes a wide va-
riety of stimulating topics in mathematical and theoretical modeling and
techniques to analyze the models in ecology and environmental sciences. It is
hoped that the book will be useful as a source of future research projects on
aspects of mathematical or theoretical modeling in ecology and environmen-
tal sciences. It is also hoped that the book will be useful to graduate students
in the mathematical and biological sciences as well as to those in some areas
of engineering and medicine. Readers should have had a course in calculus,
and a knowledge of basic differential equations would be helpful.

We are especially pleased to acknowledge with gratitude the sponsorship
and cooperation of Ministry of Education, Sports, Science and Technology,
The Japanese Society for Mathematical Biology, The Society of Population
Ecology, Mathematical Society of Japan, Japan Society for Industrial and
Applied Mathematics, The Society for the Study of Species Biology, The
Ecological Society of Japan, Society of Evolutionary Studies, Japan, Hama-
matsu City and Shizuoka University, jointly with its Faculty of Engineering;
Department of Systems Engineering.

Special thanks should also go to Keita Ashizawa for expert assistance with
TEX. Drs. Claus Ascheron and Angela Lahee, the editorial staff of Springer-
Verlag in Heidelberg, are warmly thanked.

Shizouka, Yasuhiro Takeuchi
Fukuoka, Yoh Iwasa
June 2006 Kazunori Sato
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1

Ecology as a Modern Science

Kazunori Sato, Yoh Iwasa, and Yasuhiro Takeuchi

Mathematical or theoretical modeling has gained an important role in ecol-
ogy, especially in recent decades. We tend to consider that various ecological
phenomena appearing in each species are governed by general mechanisms
that can be clearly or explicitly described using mathematical or theoret-
ical models. When we make these models, we should keep in mind which
charactersitics of the focal phenomena are specific to that species, and ex-
tract the essentials of these phenomena as simply as possible. In order to
verify the validity of that modeling, we should make quantitative or quali-
tative comparisons to data obtained from field measurements or laboratory
experiments and improve our models by adding elements or altering the as-
sumptions. However, we need the foundation of mathematics on which the
models are based, and we believe that developments both in modeling and in
mathematics can contribute to the growth of this field.

In order for ecology to develop as a science we must establish a solid
foundation for the modeling of population dynamics from the individual level
(mechanistically) not from the population level (phenomenologically). One
may compare this to the historical transformation from thermodynamics to
statistical mechanics. The derivation of population dynamical modeling from
individual behavior is sometimes called “first principles”, and several kinds of
population models are successfully derived in these schemes. The other kind
of approaches is referred to as “physiologically structured population models”,
which gives the model description by i-state or p-state at the individual or the
population level, respectively, and clarifies the relation between these levels.
In the next chapter Diekmann et al. review the mathematical framework for
general physiologically structured population models. Furthermore, we learn
the association between these models and a dynamical system.

Behavioral ecology or social ecology is one of the main topics in ecology.
In these study areas the condition or the characteristics for evolution of some
kind of behavior is discussed. Evolutionarily stable strategy (ESS) in game
theory is the traditional key notion for these analyses, and, for example, can
help us to understand the reason for the evolution of altruism, which has
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been one of the biggest mysteries since Darwin’s times, because it seems to
be disadvantageous to the altruistic individuals at first glance. Reciprocal
altruism may be considered as one of the most probable candidates for the
evolution of altruism, which initially appears to cause the decrease of each
individual’s fitness with such behavior but an increase over a longer period,
namely within his or her lifespan. Brandt et al. give an excellent review
on indirect reciprocation and investigate the evolutionary stability for their
model.

Classical population dynamics assumes that interactions such as com-
petition or prey-predator between species are described by total densities
of a whole population. However, it is natural to consider that these inter-
actions occur on a local spatial scale, and the models incorporating space,
sometimes called “spatial ecology”, have been intensely studied recently. The
metapopulation model is the most studied. It consists of many subpopulations
with the risk of local extinction in each subpopulation and the recolonization
by other subpopulations. Sometimes the metapopulation can persist longer
than the single isolotated population because of the asynchronized dynam-
ics between these subpopulations which is considered one of the important
characteristics of metapopulation dynamics. We have recognized the useful-
ness of the metapopulation structure by the accumulating number of cases
in which the metapopulation model seems to resemble the real ecological
dynamics, especially concerning the local extinction and recolonization key
concepts in the conservation of species (conservation biology). The simplest
case of metapopulation corresponds to the two-patch structured models, and
Cui & Takeuchi analyze the time dependent dispersal between these patches
by non-autonomous equations with periodic functions or with dispersal time
delays.

Lattice models are another kind of spatial model, in which individuals or
subpopulations are regularly arranged in space and the interactions between
them are restricted to neighbors. We also use the terms “interacting particle
systems” or “cellular automata” when we categorize these models, depending
on whether the dynamics is given in continuous or discrete time, respectively.
Sato reviews the sexual reproduction process in which the mean-field approx-
imation never corresponds to the fast stirring or diffusion, and utilizes the
pair approximation, which is well known as a useful technique in the analysis
of lattice models, to study the case without stirring for this model.

We need to consider ecological matters for a wide range of biological
species (from bacteria to mammals), the various environments that are their
habitats (soil, terrestrial, or aquatic) and the scale (from individual to ecosys-
tem). We should take care to adopt the optimal modeling for each of these
domains. The population dynamics of microorganisms can be most appro-
priately dealt with using deterministic differential equations. Imran & Smith
analyze the population dynamics of bacteria with and without plasmids on
biofilms.
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Next we want to take an unsual interdiciplinary research project “Non-
linear Population Dynamics” which is a well known collaboration between
experimentalists and mathematicians named “Beetles”, dealing with flour bee-
tles Tribolium. Cushing gives an excellent review of the results obtained by
this project and leads us to recognize the importance of nonlinearity and
stochasticity in population dynamics afresh.

In the final chapter, Dieckmann et al. explain in detail the notion of the
adaptive dynamics theory with several examples. This is expected to become
the model for understanding community structures by the linking of ecology
and evolution. We learn how this theory analyzes the community structure
in terms of stability, complexity or diversity, structure that is produced by
the interaction of ecological communities and evolutionary processes.

In this volume readers will become familiar with various kinds of math-
ematical and theoretical modeling in ecology, and also techniques to ana-
lyze the models. They may find some treasures for the solution of their own
present questions and new problems for the future. We believe that mathe-
matical and theoretical analyses can be used to understand the corresponding
ecological phenomena, but the models should if necessary be revised so that
they coincide with field measurements or experimental data. Today’s modern
science of ecology integrates theories, models and data, all of which interact
to continually improve our understanding.
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Physiologically Structured Population Models:
Towards a General Mathematical Theory

Odo Diekmann, Mats Gyllenberg, and Johan Metz

Summary. We review the state-of-the-art concerning a mathematical framework
for general physiologically structured population models. When individual develop-
ment is affected by the population density, such models lead to quasilinear equa-
tions. We show how to associate a dynamical system (defined on an infinite dimen-
sional state space) to the model and how to determine the steady states. Concerning
the principle of linearized stability, we offer a conjecture as well as some preliminary
steps towards a proof.

2.1 Ecological motivation

How do phenomena at the population level (p-level) relate to mechanisms at
the individual level (i-level)? When investigating the relationship, it is often
necessary to distinguish individuals from one another according to certain
physiological traits, such as body size and energy reserves. The resulting
p-models are called “physiologically structured” (Metz and Diekmann 1986).
They combine an i-level submodel for “maturation”, i. e., change of i-state,
with submodels for “survival” and “reproduction”, which concern changes in
the number of individuals. So they are “individual based”, in the sense that
the submodels apply to processes at the i-level. Yet they usually (but not
necessarily) employ deterministic bookkeeping at the p-level (so they involve
an implicit “law of large numbers” argument).

A first aim of this paper is to explain a systematic modelling approach
for incorporating interaction. The key idea is to build a nonlinear model in
two steps, by explicitly introducing, as step one, the environmental condition
via the requirement that individuals are independent from one another (and
hence equations are linear) when this condition is prescribed as a function
of time. The second step then consists of modelling the feedback law that
describes how the environmental condition depends on the current population
size and composition.
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Let us sketch three examples, while referring to de Roos and Persson
(2001, 2002) and de Roos, Persson and McCauley (2003) for more details,
additional examples and motivation as well as further references.

If juveniles turn adult (i. e., start reproducing) only upon reaching a cer-
tain size, there is a variable maturation delay between being born and reach-
ing adulthood. Since small individuals need less energy for maintenance than
large individuals, the juveniles can outcompete their parents by reducing the
food level so much that adults starve to death. Thus “cohort cycles” may
result, i. e., the population can consist of a cohort of individuals which are
all born within a small time window. Once the cohort reaches the adult size
it starts reproducing, thus producing the next cohort, but then quickly dies
from starvation. So here the p-phenomenon is the occurrence of cohort cycles
(which are indeed observed in fish populations in several lakes (Persson et al.
2000)) and the i-mechanism is the combination of a minimal adult size with
a food concentration dependent i-growth rate.

The second example concerns cannibalistic interaction. Again we take i-
size as the i-state, now since bigger individuals can eat smaller ones, but not
vice versa. The p-phenomenon is that a population may persist at low renewal
rates for adult food, simply since juvenile food becomes indirectly available
to adults via cannibalism (the most extreme example is found in some lakes
in which a predatory fish, such as pike or perch, occurs but no other fish
whatsoever, cf. Persson et al. 2000, 2003). So reproduction becomes similar
to farming, gaining a harvest from prior sowing (Getto, Diekmann and de
Roos, submitted).

The third example is a bit more complex. It concerns the interplay be-
tween competition for food and mortality from predation in a size structured
consumer population that is itself prey to an exploited (by humans) preda-
tor population, where the predators eat only small prey individuals. The
phenomenon of interest is a bistability in the composition of the consumer
population with severe consequences for the predators. At low mortality from
predation, a large fraction of the consumers pass through the vulnerable size
range, leading to a severe competition for food and a very small per capita
as well as total reproductive output. The result is a consumer population
consisting of stunted adults and few juveniles, a size structure that keeps
the predators from (re-)entering the ecosystem. However, if the ecosystem is
started up with a high predator density, due to a history in which parameters
were different, these predators, by eating most of the young before they grow
large, cause the survivors to thrive, with a consequent large total reproductive
output. Thus, the predators keep the density of vulnerable prey sufficiently
high for the predator population to persist. If exploitation lets the predator
population diminish below a certain density, it collapses due to the attendant
change in its food population.

Interestingly, a similar phenomenon can occur if the predators preferen-
tially eat the larger sized individuals only. A more detailed analysis by de
Roos, Persson and Thieme (2003) shows that the essence of the matter is
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that in the absence of predators the consumer population is regulated mainly
by the rate at which individuals pass through a certain size range, with the
predators specialising on a different size range. As noted by de Roos and
Persson (2002), a mechanism of this sort may well explain the failure of the
Northwest Atlantic cod to recover after its collapse from overfishing: After
the cod collapsed, the abundance of their main food, capelin, increased, but
capelin growth rates decreased and adults became significantly smaller. (See
Scheffer et al. (2001) for a general survey on catastrophic collapses.)

A large part of this paper is based on earlier work of ours, viz. (Diekmann
et al. 1998, 2001, 2003), which we shall refer to as Part I, Part II, and Part III,
respectively. The reader is referred to (Ackleh and Ito, to appear; Calsina and
Saldaña, 1997; Cushing, 1998; Tucker and Zimmermann, 1988) for alternative
approaches.

2.2 Model ingredients for linear models

Let the i-state, which we shall often denote by the symbol x, take values in
the i-state space Ω. Usually Ω will be a nice subset of Rk for some k. As an

example, let x =
(

a
y

)
with a the age and y the size of an individual. Then

Ω could be the positive quadrant {x : a ≥ 0, y ≥ 0} or some subset of this
quadrant.

We denote the environmental condition, either as a function of time or
at a particular time, by the symbol I. In principle I at a particular time is
a function of x, since the way individuals experience the world may very well
be i-state specific. For technical reasons, we restrict our attention to envi-
ronmental conditions that are fully characterized in terms of finitely many
numbers (i. e., I(t) ∈ Rk for some k and x-dependence is incorporated via
fixed weight functions as explained below by way of an example). The tech-
nical reasons are twofold. Firstly, this seems a necessary approximation when
it comes to numerical solution methods. Secondly, as yet we have not devel-
oped any existence and uniqueness theory for the initial value problem in
cases in which the environmental condition is i-state specific (and to do so
one has to surmount substantial technical problems (Kirkilionis and Saldaña,
in preparation).

As an example, think of I =
(

I1

I2

)
, with I1 the concentration of juve-

nile food and I2 the concentration of adult food. We may then describe the
food concentration as experienced by an individual of size y by the linear
combination φ1(y)I1 + φ2(y)I2, where φ1 is a decreasing function while φ2

is increasing. Thus we can incorporate that the food preference is y-specific
and gradually changes from juvenile to adult food.

The environmental condition should be chosen such that individuals are
independent from one another when I is given as a function of time. The
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i-state should be such that all information about the past of I, relevant
for predicting future i-behaviour, is incorporated in the current value of the
i-state. Here “i-behaviour” first of all refers to contribution to population
changes, i. e., to death and reproduction (note that at the i-level this may
very well amount to specifying probabilities per unit of time), but once the
i-state has been introduced it also refers to predicting future i-states from
the current i-state (possibly in the form of specifying a probability density).

As a notational convention we adopt that an environmental condition I
is defined on a time interval [0, �(I)). Often we call I an input and �(I) the
length of the input. For s ≤ �(I) we then denote by ρ(s)I the restriction of I
to the interval [0, s). By defining

(θ(−s)I)(τ) = I(τ + s) for 0 ≤ τ < �(I) − s (1)

we achieve that θ(−s)I incorporates the information about the restriction
of I to [s, �(I)) but, by shifting back, in the form of a function defined on
[0, �(I) − s). We write

I = θ(−s)I � ρ(s)I (2)

where the symbol � denotes concatenation defined by

(J � K)(τ) =
{

K(τ) 0 ≤ τ < �(K)
J(τ − �(K)) �(K) ≤ τ < �(K) + �(J) (3)

A linear structured population model is defined in terms of two ingredi-
ents, u and Λ, which are both functions of I, x and ω, where ω is a measurable
subset of Ω (which thus implies the requirement that Ω comes equipped with
a σ-algebra Σ). The interpretation is as follows:

uI(x, ω) is the probability that, given the input I, an individual which has
i-state x ∈ Ω at a certain time, is still alive �(I) units of time later
and then has i-state in ω ∈ Σ;

ΛI(x, ω) is the number of offspring, with state-at-birth in ω ∈ Σ, that an in-
dividual is expected to produce when it gets exposed to the input I
while starting in x, during the total length of the input.

This interpretation requires that certain consistency relations and monotonic-
ity conditions should hold. In order to formulate these we first introduce some
terminology and notation. We want u and Λ to be parametrized positive ker-
nels, where I is the “parameter” and a kernel k is a map from Ω × Σ into
R which is bounded and measurable with respect to the first variable and
countably additive with respect to the second variable. We call a kernel pos-
itive if it assumes non-negative values only. The product k × l of two kernels
k and l is the kernel defined by

(k × l)(x, ω) =
∫

Ω

k(ξ, ω)l(x, dξ) . (4)
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Assumption 2.2.1

(i) Chapman-Kolmogorov:

uI�J = uI × uJ (5)

(ii) Reproduction-survival-maturation consistency:

ΛI�J = ΛJ + ΛI × uJ (6)

(iii) σ �→ Λρ(σ)I(x, ω) is non-decreasing with limit zero for σ ↓ 0 (the mono-
tonicity actually follows from (6) and positivity).

(iv) σ �→ uρ(σ)I(x, Ω) is non-increasing and

lim
σ↓0

uρ(σ)I(x, ω) = δx(ω) .

(v) In addition we require finite life expectancy: there exists M < ∞ such
that ∫

(0,�(I))

σuρ(dσ)I(x, Ω) ≤ M

for all x ∈ Ω and all I.

If maturation is deterministic, the ingredient uI can be put into a par-
ticularly simple and useful form. Consider an individual with i-state x at
a certain time. Let XI(x) be the i-state of that individual �(I) units of time
later, given the input I and let FI(x) be its survival probability. Then

uI(x, ω) = FI(x)δXI (x)(ω) . (7)

Concerning the specification of Λ, it makes first of all sense to introduce
the set Ωb of possible states-at-birth (cf. Part I, Definition 2.5; the idea is
that ΛI(x, ω) = 0 whenever ω∩Ωb = ∅). Two situations are of special interest

• the discrete case: Ωb is a finite set {xb1 , xb2 , . . . , xbm} (with the case m = 1
being of even stronger special interest)

• the absolutely continuous case: Ωb is a lower dimensional manifold with a
“natural” (Lebesgue) measure dξ defined on it, and ΛI(x, ·) is absolutely
continuous with respect to that measure. Here the archetypical example
is Ωb = {(a, x) : a = 0, xmin ≤ x ≤ xmax} that arises when modeling an
age-size structured population.

In the case of a finite Ωb we put

ΛI(x, ω) =
m∑

j=1

jLI(x)δxbj
(ω) (8)

where jLI(x) is the expected number of children, with i-state at birth xbj ,
produced, given the input I and in the period of length �(I) of this input,
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by an individual having i-state x at the start of the input. In the case of Ωb
being a lower dimensional manifold we put

ΛI(x, ω) =
∫

ω∩Ωb

ξLI(x)dξ , (9)

where ξLI(x) has an analogous interpretation (but note that now it is a den-
sity with respect to ξ: only after integrating with respect to ξ over a subset
of Ωb do we get a number).

The building blocks X , F and L are, in turn, obtained as solutions of
differential equations when the i-model is formulated in terms of a maturation
rate g, a per capita death rate µ and a per capita (state-at-birth specific)
reproduction rate β. These read{

d
dtXρ(t)I(x) = g(Xρ(t)I(x), I(t))
Xρ(0)I(x) = x

(10){
d
dtFρ(t)I(x) = −µ(Xρ(t)I(x) , I(t))Fρ(t)I(x)
Fρ(0)I(I) = 1

(11){
d
dt ξ

Lρ(t)I(x) = βξ(Xρ(t)I(x), I(t))Fρ(t)I(x)
ξLρ(0)I(x) = 0

(12)

or, in short hand notation, ⎧⎪⎪⎨⎪⎪⎩
dX
dt = g(X, I)
dF
dt = −µ(X, I)F
dL
dt = β(X, I)F

(13)

We conclude that the ingredients u and Λ for a linear structured popu-
lation model can be constructively defined in terms of solutions X,F and L
of ordinary differential equations involving the ingredients g, µ and β which
specify the i-behaviour in terms of rates as a function of the current i-state
and the prevailing environmental condition.

When i-state development is stochastic, rather than deterministic, one
needs to replace (10). For instance, if i-state corresponds to spatial position
and individuals perform Brownian motion, one needs to replace (10) by the
diffusion equation for the probability density of finding the individual at
a position after some time, given I. The advantage of “starting” from the
ingredients u and Λ is that they encompass all such variations.

It is straightforward to check that, under appropriate assumptions on g, µ
and β, (7)–(8)/(9) define parametrised positive kernels satisfying Assump-
tion 2.2.1.

The true modelling consists of a specification of g, µ and β, see e. g.
(Kooijman, 2000).
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2.3 Feedback via the environmental condition

At any time t a population is described by a positive measure m(t) on Ω.
Possibly this measure is absolutely continuous (with respect to the Lebesgue
measure; again we think of Ω as a subset of Rk). Then there is a density
function n(t, ·), defined on Ω, such that

m(t)(ω) =
∫

ω

n(t, x)dx . (14)

To illustrate the idea of interaction via environmental variables, we con-
sider the situation of competition for food. Let the dynamics of the sub-
strate S be generated by

dS

dt
=

1
ε

(
S0 − S − S

∫
Ω

γ(x)m(t)(dx)
)

, (15)

where ε−1γ is the i-state specific per capita consumption rate. So an indi-
vidual with i-state x ingests ε−1γ(x)S units of substrate per unit of time. In
energy budget models (Kooijman, 2000) one often assumes that a fraction
1 − κ(x) of the ingested energy is scheduled to growth and maintenance and
the remaining fraction κ(x) to reproduction. Thus the ε−1γ(x)S enters in
the specification of g and β (and, in case of starvation, i. e., when mainte-
nance cannot be covered, also µ). So the S is (a component of) I. Vice versa,
the factor

∫
Ω

γ(x)m(t)(dx) corresponds to the environmental condition for
the substrate population. It appears that we can couple the substrate and
the consumer population via the idea that one constitutes the environmental
condition for the other.

If the time scale parameter ε in (15) is very small one can employ the
quasi-steady-state approximation for the substrate, i. e., require that the fac-
tor within brackets at the right hand side of (15) equals zero. This yields

S =
S0

1 + I
(16)

where
I(t) =

∫
Ω

γ(x)m(t)(dx) (17)

One should interpret these two identities as follows. When I is considered
as given, as an input, the formula (16) specifies what substrate density the
individuals of the consumer population experience. And this then in turn
determines how the I enters the expressions for g, β and, possibly, µ. The
identity (17), on the other hand, is the feedback law specifying how, in fact,
the I at a particular time relates to the extant population at that time. In
other words, the combination of (16) with rules for how g, β and µ depend
on S defines a linear structured population model. But if we add to that
the consistency requirement (17) we turn the linear model into a nonlinear



12 Odo Diekmann et al.

model in which it is incorporated that individuals interact by competing
for a limited resource S. Note that the ingredients g, µ and β of the linear
model need to be supplemented by the ingredient γ in order to define the
nonlinear model. One could call γ(x) the i-state specific contribution to the
environmental condition. (The precise interpretation depends on the meaning
of (the component of) I).

Since the environmental condition is chosen such that individuals are,
for given I, independent of one another, the feedback law (17) is necessarily
linear. Or, phrased differently, the components of I are linear functionals of
the p-state. We call (17) a pure mass-action feedback law.

Sometimes the specification of g, µ and β is based on submodels for be-
havioural processes at a very short time scale, the most well-known example
being the Holling type II functional response as derived from a submodel in
which predators can be either searching for prey or busy handling prey that
has been caught. In such cases the feedback law exhibits a certain hierarchi-
cal structure which is described in Part II, Sect. 6 and which we have called
generalized mass action. In this paper we restrict ourselves to the pure mass
action case (17).

Especially in the modeling phase it is often helpful to close the feedback
loop in two steps: first an output is computed, which then is fed back as input
via a feedback map. In the example considered above we would write (17) as

O(t) :=
∫

Ω

γ(x)m(t)(dx) . (18)

Considering S as the true input, we would then write (16) as

S = F (O) , (19)

where
F (O) =

S0

1 + O
. (20)

The advantage is twofold: i) it represents better what is going on biologically,
and ii) one can use (18) as a definition, with (19) as the equation that closes
the feedback loop. In contrast (16), by combining both steps in one, lacks
such a clear interpretation. From a mathematical viewpoint the role of (17)
is that of an equation only, while the modelling aspect, i. e., the definition of
what inputs and outputs amount to observationally, is lost from sight. On
the other hand, the drawback of distinguishing between I and O is that an
additional variable is introduced which clutters the analysis without playing
any useful role. So in the following we use only I.
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2.4 Construction of p-state evolution.
Step 1: the linear case.

For the sake of exposition we restrict ourselves here to the situation of a fixed
state-at-birth xb. Given an initial p-state m, we define the cumulative first
generation offspring function B1 by

B1(t) =
∫

Ω

Lρ(t)I(x)m(dx) . (21)

The cumulative second generation offspring function B2 is next defined by

B2(t) =
∫ t

0

Lρ(t−τ)θ(−τ)I(xb)B1(dτ) , (22)

et cetera (that is, replace in (22) B2 by Bn+1 and B1 by Bn). The cumulative
“all offspring” function

Bc =
∞∑

n=1

Bn (23)

then satisfies the renewal equation

Bc(t) = B1(t) +
∫ t

0

Lρ(t−τ)θ(−τ)I(xb)Bc(dτ) (24)

and one can view (23) as the generation expansion obtained by solving (24)
by successive approximation. Note that Bc depends on I, even though we do
not incorporate this in the notation.

If we denote by TIm the p-state at time �(I), given that the p-state at
time zero is m and given the time course I of the environmental condition,
then

TIm = uI × m +
∫ �(I)

0

uθ(−τ)I(xb, ·)Bc(dτ) (25)

where
(uI × m)(ω) =

∫
Ω

uI(x, ω)m(dx) (26)

describes the survival and maturation of the individuals present at time zero,
while the second term takes into account the survival and maturation of all
individuals born after time zero. The key result of Part I is that the operators
TI form a semigroup, that is, the map I �→ TI transforms concatenation
(recall (2)) into composition of maps:

Theorem 2.4.1
TI = Tθ(−t)ITρ(t)I

for any t ∈ [0, l(I))
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Let us recapitulate. Starting from g, µ and β, one constructs u and L
(recall (8)); if there is only one possible state-at-birth, then Λ is completely
determined by L). Given an initial p-state m one next constructively defines
the solution Bc of (24) by (23). The formula (25) then provides a way to
calculate, given I, the p-state after �(I) units of time from u, Bc and m. And
Theorem 2.4.1 justifies our use of the word “p-state”: our construction yields
a dynamical system.

Even though we rightfully refer to Part I for Theorem 2.4.1, readers who
want to see more details are advised to first consult Part II since some of our
current notation goes back only to that reference.

2.5 Construction of p-state evolution.
Step 2: closing the feedback loop.

If we substitute m(t) = Tρ(t)Im into (17) we obtain the equation

I(t) = γ × Tρ(t)Im =
∫

Ω

γ(x)(Tρ(t)Im)(dx) (27)

that I should satisfy in order to have consistency between input and output.
We view (27) as a fixed point problem for I, parametrised by the initial
p-state m.

In Sects. 7 and 8 of Part II one finds various assumptions on u, Λ and γ,
respectively, g, µ, β and γ that guarantee that the right hand side of (27)
defines a contraction mapping on a suitable function space. Here “suitable”
in particular involves a restriction for the length l of the interval on which
I is defined. Thus the contraction mapping principle yields a local solution
I = Im of (27). One next notes (see Diekmann and Getto, to appear, for
details) that:

• a fixed point on a smaller interval is a restriction of a fixed point on
a larger interval,

• θ(−t)Im = ITρ(t)Im m, roughly saying that shifted fixed points are the fixed
points corresponding to the updated p-state,

• uniqueness holds on any interval,
• fixed points can be concatenated to achieve continuation, that is, to obtain

solutions on longer time intervals

to conclude that the local solution can be extended to a maximal solution,
which we also denote by Im. A key result of Part II is that the definition

S(t, m) = Tρ(t)Im
m (28)

yields a semiflow:

Theorem 2.5.1
S(t + s, m) = S(t, S(s, m))
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(Again we refer to Diekmann & Getto, to appear, for details and for various
results about boundedness and global existence as well as weak∗- continuity
with respect to time t and initial condition m.)

2.6 Steady states

The symbol I denotes a constant input defined on [0,∞). (Slightly abusing
notation we do not distinguish between the function and the value it takes.)
A steady state is a measure m on Ω such that

Tρ(t)Im = m , ∀t ≥ 0 , (29)

where
I = γ × m =

∫
Ω

γ(x)m(dx) . (30)

Since T̃ (t) := Tρ(t)I is a semigroup of positive linear operators and m has
to be positive, (29) amounts to the condition that the spectral radius is an
eigenvalue and is equal to one. (For future reference we observe that, whenever
there is a spectral gap,

T̃ (t)m → c m as t → ∞

exponentially in the weak∗-sense, for any positive initial measure m. Here
c = c(m) is a positive real number.)

The defining relations (29)–(30) are not suitable for “finding” steady
states. For that purpose, the generation perspective is much more suitable.
In particular one can concentrate on newborn individuals and the offspring
they are expected to produce, with due attention to the state-at-birth of the
offspring.

In the simple case of one possible state-at-birth, a first steady state con-
dition is that the basic reproduction ratio, the expected number of offspring,
equals one:

R0(I) := Lρ(∞)I(xb) = 1 (31)

This is a condition on I. If dim I = 1 this is one equation in one unknown.
Very often R0 is monotone in I which then immediately yields uniqueness.

More generally we should, in the notation of (26), have

Λρ(∞)I × b = b , (32)

with b a positive measure on the set Ωb of possible birth states. Written out
in detail (32) reads ∫

Ωb

Λρ(∞)I(x, ω)b(dx) = b(ω) (33)
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for all measurable subsets ω of Ωb. And if Ωb is a nice subset of Rk for some
k and b has a density f we may rewrite this as∫

Ωb

ξLρ(∞)I(x)f(x)dx = f(ξ) , ξ ∈ Ωb . (34)

Equation (32) is a linear eigenvalue problem: the dominant eigenvalue of
a positive operator should be one. This is, just as (31) but now more im-
plicitly, a condition on the parameter I. If this condition is satisfied and the
eigenvalue is algebraically simple (a sufficient condition being the irreducibil-
ity of the positive operator) then the eigenvector b is determined uniquely
modulo a positive multiplicative constant, to be denoted by c below.

Returning to the case of a fixed state-at-birth, we note that (10)–(12)
simplify considerably when the input is constant. For given I we define x and
F by {

dx
da = g(x, I)
x(0) = xb

(35){
dF
da = −µ(x, I)F
F(0) = 1

(36)

and next we note that

R0(I) =
∫ ∞

0

β(x(a), I)F(a)da . (37)

Let c denote the steady p-birth rate. Then

m(ω) = c

∫ ∞

0

uρ(a)I(xb, ω)da = c

∫ ∞

0

F(a)δx(a)(ω)da (38)

and consequently (30) can be written as

I = c

∫ ∞

0

F(a)γ(x(a))da . (39)

Beware that F and x depend on I.

Theorem 2.6.1 m is a steady state, i. e., (29)–(30) hold, iff m is given
by (38), with x and F defined by (35)–(36), where I and c are such that (31)
(with R0(I) given by (37)) and (39) hold.

For the proof see Part III. Note that (31) and (39) are 1+dim I equations in
as many unknowns, viz., c and I. Also note that (37) is defined completely
in terms of solutions of ODE, since we may supplement (35)–(36) with{

dL
da = β(x, I)F
L(0) = 0

(40)
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and put
R0(I) = L(∞) . (41)

Similarly we may write (39) as

I = cG(∞) (42)

where G is obtained by solving{
dG
da = γ(x)F
G(0) = 0

. (43)

The main message of Kirkilionis et al. (2001) is that one can do a numerical
parameter continuation study of steady states of physiologically structured
population problems by combining standard ODE solvers with standard con-
tinuation algorithms when solving (31)–(39).

2.7 Linearized stability

Given a steady state, how do we determine whether or not it is stable? Apart
from the special situation in which we want to determine the ability of a miss-
ing species to invade successfully an existing community (see e. g. Part III,
Sects. 2 and 3 where it is explained that the answer can be given in terms of
R0), this is a difficult question. We say that the answer can be found by way
of a characteristic equation if it is possible to derive a function f : C → C

such that the steady state is asymptotically stable if all roots of the equa-
tion f(λ) = 0 lie in the left half plane while being unstable if at least one
root lies in the right half plane. We claim that for physiologically structured
population models the answer can indeed be found by way of a characteristic
equation and that, moreover, this equation takes the form

detM(λ) = 0 , (44)

where M is a dim I × dim I matrix. The intuitive explanation is that the
semigroup T̃ (t) = Tρ(t)I of positive linear operators introduced in the begin-
ning of Sect. 2.6 has dominant eigenvalue zero. Accordingly, the stability or
instability is completely determined by the feedback loop (and not by the
population dynamics per se) and this leads, after linearization, to a tran-
scendental characteristic equation in terms of a matrix of size dim I × dim I
(essentially the λ comes in via the Laplace transform of a time kernel; see
below).

The proof of this claim is involved and, in fact, some details still have to
be filled in. For the stability part there are two steps:

Step 1 assuming that Im(t) − I → 0 exponentially for t → ∞, show that
S(t, m) → m for t → ∞,
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Step 2 assuming that all roots of (44) are in the left half plane, show that
m − m small implies that Im(t) − I → 0 for t → ∞ (in fact exponentially).

As usual, the instability part is more difficult; it was proved, for age structured
models, by Prüß(1983); see also (Desch and Schappacher 1986; Clément et al.
1987). The difficulty is substantially enhanced in the present case by the fact
that the nonlinear semigroup is not differentiable (indeed, there is a problem
with, e. g., slightly shifted Dirac easures). Our “escape strategy” is to consider
an invariant and attracting subset of the p-state space on which we have more
smoothness. In work in progress, mainly by Philipp Getto, we use a different
p-state representation to characterize this subset, viz., we use the history
of I and the history of the population birth rate to identify the p-state.
In our further description below we restrict our attention to the stability
part.

The only nonlinear feature in the constructive definition of the semiflow S
is the fixed point problem (27) for the environmental variable I. So that is
the problem we should linearize. As a preparatory step we rewrite (27) in the
form

I(t) − I = γ × (Tρ(t)I − Tρ(t)I)m + γ × Tρ(t)I(m − m) (45)

and introduce the map Q that describes how the output depends on the
perturbation of the steady input

(QJ)(t) = γ × (Tρ(t)(I+J) − Tρ(t)I)m . (46)

Now think of J as extended by zero for negative arguments and define the
shift operator θ(s) by

(θ(s)J)(τ) = J(τ − s) . (47)

Proposition 2.7.1 Q is translation invariant:

Qθ(s) = θ(s)Q . (48)

Even though the map J �→ Tρ(t)(I+J)m is in general not smooth, the map Q
may very well be, as it involves the pairing with γ. We state this as an
assumption.

Assumption 2.7.2 Q is differentiable with derivative L.

This is basically a smoothness assumption on γ. Admittedly the assumption
is stated rather imprecisely, as we have not specified the function space of
inputs. The idea, however, is to compute the derivative for any fixed t and
to use the outcome to define a linear input-output map L.

Now observe that L inherits the translation invariance of Q and recall
that “linear + translation invariant ⇒ convolution” whence we have

Proposition 2.7.3 (LJ)(t) =
∫ t

0
k(t − τ)J(τ)dτ for some kernel k.
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Finally, we define M(λ) to be the Laplace transform of k minus the identity.
In fact one can express k, and hence M , explicitly in terms of solutions of
linearized ODE like, when one linearizes (10)

dY

da
=

∂g

∂x
Y +

∂g

∂I
J . (49)

We refer to Kirkilionis et al. (2001) for the details. Note that this char-
acterization of k allows a numerical implementation. Thus, despite all the
complications, one can make the linearized stability test operational in the
context of concrete examples!
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A Survey of Indirect Reciprocity

Hannelore Brandt, Hisashi Ohtsuki, Yoh Iwasa, and Karl Sigmund

Summary. This survey deals with indirect reciprocity, i. e. with the possibility
that altruistic acts are returned, not by the recipient, but by a third party. Af-
ter briefly sketching how this question is dealt with in classical game theory, we
turn to models from evolutionary game theory. We describe recent work on the
assessment of interactions, and the evolutionary stability of strategies for indirect
reciprocation. All stable strategies (the ‘leading eight’) distinguish between justi-
fied and non-justified defections, and therefore are based on non-costly punishment.
Next we consider the replicator dynamics of populations consisting of defectors,
discriminators and undiscriminating altruists. We stress that errors can destabilise
cooperation for strategies not distinguishing justified from unjustified defections,
but that a fixed number of rounds, or the assumption of an individual’s social
network growing with age, can lead to cooperation based on a stable mixture of
undiscriminating altruists and of discriminators who do not distinguish between
justified and unjustified defection. We describe previous work using agent-based
simulations for ‘binary score’ and ‘full score’ models. Finally, we survey the recent
results on experiments with the indirect reciprocation game.

3.1 Introduction

In evolutionary biology, the two major approaches to the emergence of co-
operation are kin-selection, on one hand, and reciprocation, on the other.
The latter, which is essential for understanding cooperation between non-
related individuals and very prominent in human societies, can be subdi-
vided into two parts of unequal size. In direct reciprocity, it is the recipient
of a helpful action who eventually returns the aid. In indirect reciprocity,
the return is provided by a third party. This possibility has originally been
named ‘third-party altruism’ or ‘generalised reciprocity’ by Trivers (1971).
Later, Alexander (1987) explored it under the (now common) heading of ‘in-
direct reciprocity’, see also Ferrière (1998) and Wedekind (1998). Indirect
reciprocity is much less well studied than direct reciprocity, and offers inter-
esting theoretical challenges.
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Several mechanisms for indirect reciprocity are conceivable. It could be,
for instance, that a person having been helped is enclined to help a third
party in turn. In cyclical networks, this provides a plausible feedback loop.
But studies by Boyd and Richerson (1989) and van der Heijden (1996) suggest
that such networks have to be rather small and rigid.

Alexander suggested, in contrast, that indirect reciprocation is based on
reputation and status. By giving help to others, individuals acquire a high
reputation. If help is directed preferentially towards recipients with a high
reputation, defectors will be penalised. Such indirect reciprocation based on
reputation and status is the topic of this paper.

The two main reasons why reputation mechanisms are interesting show
up at two stages in human evolution which could not be further apart. On
the one hand, status and reputation may well have played a major role in
the evolution of moral systems since the dawn of prehistory, boosting coop-
eration between non-relatives (a major cause for the evolutionary success of
hominids) and possibly providing a major selective impetus for the emergence
of language, as a means of transmitting information about group members
through gossip (Alexander, 1987, Nowak and Sigmund, 1998a, Panchanathan
and Boyd, 2003). On the other hand, the very recent advent of e-commerce
makes the efficient assessment of reputations and moral hazard in trust-based
transactions a burning issue. Anonymous one-shot interactions in global mar-
kets, rather than long-lasting repeated interactions through direct reciproca-
tion, seem to play an ever-increasing role in today’s economy (Bolton et al,
2002, Keser, 2002, Dellarocas, 2003).

The aim of this paper is to provide a survey of the model-based theoretical
investigations of the concept of indirect reciprocation, and of the remarkable
results on experimental economic games inspired by them.

3.2 Indirect reciprocation for rational players

Before approaching the subject in the spirit of evolutionary game dynamics,
we should stress that the same topic can also be addressed within classical
game theory. At a first glance, it may almost look like a non-issue in this
context. Indeed, it is easy to see that the main classical results on repeated
games survive unharmed if the single co-player with whom one interacts in
direct reciprocation is replaced by the wider cast of co-players showing up
in indirect reciprocation. This holds, in particular, for the folk theorem on
repeated games. It states, essentially, that every feasible payoff larger than
the maximin level which players can guarantee for themselves is obtainable
by strategies in Nash equilibrium, provided that the probability for another
round is sufficiently large (Fudenberg and Maskin, 1986, Binmore, 1992).
This can be achieved, in particular, by ’trigger strategies’ that switch to
defection after the first defection of the co-player: for in that case, it makes
no sense to exploit the co-player in one round, thereby forfeiting all chances
for mutual cooperation in further rounds. Exactly the same argument holds
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for indirect reciprocation in a population where players are randomly matched
between rounds, if they know the case-history of every co-player which they
encounter, and refuse help to any individual who ever refused to help someone
(Rosenthal 1979; Okuno-Fujiwara and Postlewait 1989; Kandori 1992). The
difference between personal enforcement, in the former case, and community
enforcement, in the latter, is irrelevant to the sequence of payoffs encountered
by an individual player.

It must be noted, however, that with such trigger strategies, the defection
of a single player A results in the eventual punishment of all players, and the
breakdown of cooperation in the whole population. Indeed, if A defects in
a given round, then the next player B who is asked to help A will refuse, and
so will C when asked to help B, etc, so that defection spreads rapidly through
the population. If the population consists of rational agents, player A will not
defect. But if even one player fails to be rational, the whole community is
under threat.

As Sugden (1986) suggested, this can be remedied by another trigger strat-
egy, which distinguishes between justified and unjustified defections. Such
a strategy is based on the notion of standing. Each individual has originally
a good standing, and loses this only by refusing help to an individual in good
standing. Individuals refusing help to someone in bad standing do not lose
their good standing. In this way, cooperation can be channelled towards those
who cooperate.

So far, so obvious. The situation becomes more interesting if one assumes
that players have only a limited knowledge of their co-players past, or must
cope with unintended defections caused, for instance, by an error, or by the
lack of adequate ressources to provide the required help. Kandori (1992)
seems to have been the first to study the effects of limited observability
in this context. In the extreme case, players know only their own history.
Kandori has shown that under certain conditions a so-called ‘contagious’
equilibrium can still ensure cooperation among rational players: the strategy
consists in switching to defection after having encountered the first defection.
A single defection by one player is ‘signalled’, in this sense, to the whole
community: but the retaliation may reach the wrong-doer only after many
rounds, creating havoc among innocents. Moreover, Kandori has shown that
with random matching and no information processing, cooperation cannot be
sustained if the population is sufficiently large. Interestingly, Ellison (1994)
has shown that cooperation can be resumed, eventually, if such ‘contagious’
punishments stop after a signal defined by a public random variable. He
notes, however, that such cooperative equilibria are very dependent on the
assumption that all players are rational. On the other hand, Kandori (1992)
has shown, that decentralised mechanisms of local information processing
based on a label carried by each agent may allow simple equilibrium strategies
leading to cooperation even if occasionally errors occur. After a unilateral
defection, players must ‘repent’ by cooperating, while meekly accepting the
defection of their co-players for a certain number of rounds.
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3.3 Indirect reciprocation for evolutionary games

In evolutionary games, it is no longer possible to postulate that players set-
tle on an equilibrium which is sustained by their anticipation of the payoff
obtained when they deviate unilaterally. Players are not assumed to be ratio-
nal, or able to think ahead, deliberate, or coordinate. Strategies are simple
behavioral programs; they are supposed to spread within the population if
they are successful in the sense of yielding a high payoff (see e. g. Hofbauer
and Sigmund, 1998). Typically, one assumes that such strategies arise ran-
domly within a small minority of the population, by mutation or some other
process. The question then becomes whether simple trial-and-error mecha-
nisms resembling natural selection are able to lead, in the long run, to the
emergence of cooperative behaviour.

The first papers in this field, by Nowak and Sigmund (1998a,b), led to
a number of theoretical and experimental investigations. Roughly speaking,
by now the fact that cooperative behaviour based on indirect reciprocity can
emerge through evolutionary mechanisms is no longer in doubt, but there is
debate on which strategy it is most likely to be based.

In the evolutionary version of the indirect reciprocity game, one consid-
ers populations of players which are endowed with some simple strategies.
Whenever two players meet in one round of that game, one of them is ran-
domly assigned the role of the donor and the other the role of the recipient.
The donor can give help to the recipient: in this case, the recipient’s payoff
increases by a benefit b whereas the donor’s payoff decreases by −c, the cost
of giving (with c < b). The donor can, alternatively, refuse to help, in which
case the payoffs of both players are not affected. A player’s strategy specifies
under which conditions the player should give help, when in the role of the
donor.

From time to time, players leave the population and are replaced by new
players. The probability that a new player inherits a given strategy occuring
within the population is proportional to its frequency, and to the average
payoff achieved by players using this strategy. This mimicks selection, but
it can just as well be interpreted as a learning process: in that case, players
switch their strategies without actually having to die. Some models of evolu-
tionary games also incorporate mutations, which introduce small numbers of
players using strategies which were not present in the resident population.

The first model by Nowak and Sigmund (1998a) was based on the concept
of a score, a numerical value for reputation. A player’s score, at any given
time, is defined as difference between the number of decisions to give help,
and the number of decisions to refuse help, up to that time. The score of
a player entering the game is zero: it then increases or decreases by one point
in each round in which the player is in the position of a donor. The range
of the score is the set of all integers. This is called the ‘full score’ model.
In a second, ‘binary’ model, discussed in Nowak and Sigmund (1998b), the
range is reduced to two numbers only, 0 (bad) or 1 (good). This reflects only
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the players’ behaviour in their previous round as a donor. One can, of course,
conceive many other ways for keeping score: for instance, by considering nei-
ther all the previous actions of the players, nor their last action only, but their
last five or ten actions, etc. The decision whether to give help or not should
then be based on the scores of the players involved. In particular, a recipient
with a high score should be more likely to receive help.

3.4 Assessment and reprobation

So far, the length of the memory is an aspect which has not attracted much
attention. Most of the debate has concentrated on another issue: how should
the score be updated? The basic issue is the same as in the framework of
games between rational players. Cooperation cannot be sustained without
discriminating against defectors. Players who discriminate must, on occasion,
refuse help. If this lowers their score, they will be discriminated against, in
future encounters, and obtain a lower payoff. How can such strategies be
selected?

One solution is almost obvious. It is to use the same distinction between
justified and non-justified defections as Sugden, and hence to rely on the
notion of standing. As Nowak and Sigmund (1998b) described it, ‘a player is
born with good standing, and keeps it as long as he helps players who are in
good standing. Such a player can therefore keep his good standing even when
he defects, as long as the defection is directed at a player with bad standing.
We believe that Sugden’s strategy is a good approximation to how indirect
reciprocation actually works in human societies.’ And to the question of Fehr
and Fischbacher (2003): ‘Should an individual who does not help a person
with a bad reputation lose his good reputation?’, the answer is, clearly no.

However, two aspects make it worthwhile to investigate image-scoring
more closely: one is the argument that standing is a rather complex notion,
and seems to require a constant monitoring of the whole population which
may overtax the players. Suppose your recipient A has refused help to a re-
cipient B in a previous round. Was this refusal justified? Certainly so, if B
has proved to be a helper. But what if B has refused help to some C? Then
you would have to know whether B’s defection towards C was justified, etc.
With direct reciprocation, you have only to keep track of your previous in-
teractions with B. Even here, an error in perception can lead to a deadlock:
it may happen that both players believe that they are in good standing and
keep punishing each other in good faith (see Boerlijst et al. 1997). With indi-
rect reciprocation the problem becomes much more severe: you have to keep
track, not only of the antecedents of your current recipient, but of the past
actions of the recipient’s former recipients etc.

The second interesting aspect of scoring is related to the concept of costly
punishment. It is easy to see that the threat of punishment can keep players
on the path of cooperation, and thus can solve the social dilemma, which is
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resumed in the question: why do players contribute to a public good, instead
of just exploiting it? They may simply do it to avoid punishment. But if
punishment is costly to the punisher, a ‘second order social dilemma’ arises:
why should players shoulder the burden of punishing others? The doctrine
of strong reciprocation asserts that many humans are willing to do it, even
if they know that they will not meet the punished (and possibly reformed)
wrong-doer ever again. Strong reciprocators contribute to the public good,
and punish those who don’t. There exist several attempts to explain this
trait (e. g. Gintis 2000, Fehr and Fischbacher 2003) of which at least one,
incidentally, is based on reputation (Sigmund et al. 2001). In the context of
indirect reciprocation, we can view discrimination as a form of punishment:
low-scorers are deprived of help. If players assess each other according to their
standing, the punishment is not costly for the punisher. But if they register
only whether the other defected or not, without distinguishing between jus-
tified and non-justified defections, then punishment is costly. In view of the
fact that many humans are ready to engage in costly punishment in a great
variety of contexts (see e. g. Fehr and Gächter 2002), it cannot altogether be
excluded that this factor also plays a role in indirect reciprocation. As we
shall see in the last section, experiments support this view (Milinski et al.
2001).

On theoretical grounds, it is therefore not obvious how individuals update
the scores of their co-players. In fact, this standard of moral judgement, which
eventually leads to a social norm, can also be subject to evolution.

In the following investigation we shall assume that individuals engaged in
the indirect reciprocation game keep track of the scores in their community,
and then decide, when in the role of the donor, whether to give help or not,
depending on the recipient’s score, and possibly on their own. Needless to
say, one can envisage many other strategies, taking into account the accumu-
lated payoffs for donor and recipient, the prevalence of cooperation within
the community, the outcome of the last round as a recipient etc. We shall not
consider these possibilities in the following models, but start by describing
the recent results obtained in two papers, one by Ohtsuki and Iwasa (2004),
the other by Brandt and Sigmund (2004), which both, independently, adress
the issue of the evolution of updating mechanisms for the indirect reciprocity
game. This can be viewed as investigating simple mechanisms for local infor-
mation processing. But it has farther-ranging implications for the evolution
of social norms, and hence of moral judgements. When is a defection justified,
or not? When is a player good, or bad? Let us first consider this question in
a very limited context, when the score can only take two values.

3.5 Binary models

We shall assume that every strategy consists of two modules, an assessment
module and an action module. The assessment module comes into play when
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individuals observe interactions between two players. The image of the player
acting as potential donor is possibly changed. The image of the recipient, who
is the passive part in the interaction, remains unchanged. The action module
prescribes whether a player in the position of a potential donor provides help
or not, based on the information obtained through the player’s assessment
module.

Starting with the assessment module, we shall for simplicity assume that
individual A’s score of individual B depends only on how B behaved when
last observed by A as a potential donor, i. e. whether B gave or refused help
to some third party C. Thus A has a very limited memory, and the score
of B can only take two values, good and bad. (In this context, we note that
Dellarocas (2003) found that binary feedback mechanisms publishing only
the single most recent rating obtained by an online seller are just as efficient
as mechanisms publishing the sellers total feedback history). We shall assume
that all players are born good. In every interaction observed by A, there are
two possible outcomes (B can give help or not), two possible score values
for B and two for C. Thus there are eight possible types of interaction, and
hence, depending on whether they find A’s approval or not, 28 = 256 different
value systems.

As intuitively appealing examples of such assessment modules, let us con-
sider three of these value systems, or ‘morals’. We shall say that they are
based on SCORING, STANDING and JUDGING, respectively (these terms
are not completely felicitous, but the names of the first two, at least, are
fixed by common use). These morals differ on which of the observed inter-
actions incur reprobation, i. e. count as bad. Someone using the SCORING
assessment system will always frown upon any potential donor who refuses to
help a potential recipient, irrespective of the latter’s image. Someone using
the STANDING assessment system will condemn those who refuse to help
a recipient with a good score, but will condone those who refuse to help a re-
cipient with a bad score. Those using the JUDGING assessment system will,
in addition, extend their reprobation to players who help a co-player with
a bad score.

Thus these three value systems are of different strictness towards wrong-
doers. Roughly speaking, someone who refuses to help is always bad in the
eyes of a SCORING assessor. Only those who fail to give to a good player
are bad in the eyes of a STANDING assessor. Someone who fails to give to
a good player, but also someone who gives help to a bad player is bad in the
eyes of a JUDGING assessor (see Table 3.1).

Turning to the action module, we shall assume that a player’s decision
on whether to help or not is based entirely on the scores of the two players
involved. Since there are four situations (donor and recipient can each be good
or bad), there are 24 = 16 possible decision rules. Four intuitively appealing
examples would be CO, SELF, AND and OR. CO is uniquely affected by the
score of the potential recipient, and gives if and only if that score is good.
SELF worries exclusively about the own score, and gives if and only if this
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Table 3.1. The assessment module specifies which image to assign to the potential
donor of an observed interaction (‘good → bad’ means ‘a good player helps a bad
player’, ‘bad �→ good’ means ‘a bad players refuses to help a good player’, etc)

Assessment Modules

situation/strategy SCORING STANDING JUDGING

good → good good good good
good → bad good good bad
bad → good good good good
bad → bad good good bad

good �→ good bad bad bad
good �→ bad bad good good
bad �→ good bad bad bad
bad �→ bad bad bad bad

Table 3.2. The action module prescribes whether to help or not given the own
image, and the image of the potential recipient (‘bad ?→ good’ prescribes whether
a bad player should help when faced with a good co-player, etc.)

Action modules

situation/strategy SELF CO AND OR AllC AllD

good ?→ good no yes no yes yes no
good ?→ bad no no no no yes no
bad ?→ good yes yes yes yes yes no
bad ?→ bad yes no no yes yes no

score is bad. AND gives aid if the recipient’s score is good and the own score
bad, and OR gives aid if the recipient’s score is good or the own score bad. Of
course the 16 decision rules also include the two unconditional rules, always
to give, and never to give, ALLC and ALLD, which do not rely on scores at
all. (see Table 3.2).

A strategy in this model for indirect reciprocity is determined by a specific
combination of action and assessment module. This yields altogether 24×28 =
212 = 4096 different strategies.

3.6 The leading eight

Ohtsuki and Iwasa (2004) have investigated the evolutionary stability of these
strategies. Thus they looked for strategies with the property that a population
whose members all use this strategy cannot be invaded by a small minority
using another strategy. Ohtsuki and Iwasa assumed that players were subject
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to errors, by implementing an unintended move (with a probability µ) or by
assigning an incorrect score to a player (with probability ν). Depending on
the values of µ, ν, b and c, they found various evolutionarily stable strategies
(ESS), including of course ALLD. Most remarkably, they singled out eight
strategies (called ‘the leading eight’) which are robust against errors and lead
to cooperation even if b is only slightly larger than c (the ratio must exceed
1 by a factor proportional to the error probabilities).

Only the CO and the OR action module occur among the leading eight.
Such players always give help to a good player, and defect (when good) against
a bad player. The assessment module of the leading eight is consistent with
this prescription: they all assess players as good or bad if they give (resp.
withhold) help to a good player, irrespective of their own score, and they all
allow good players to refuse help to bad players without losing their repu-
tation. Interestingly, all other actions towards a bad player are possible, i. e.
whether a good player gives help to a bad player, or a bad player gives (or
refuses) help to a bad player. These are just the eight alternatives making
up the leading eight. If the assessment module requires a bad player to give
to a bad player, the corresponding action module is OR; in all other cases
it is CO. We note that strategies with the STANDING and the JUDGING
assessment module can belong to the leading eight, but not those with the
SCORING module.

It seems obvious that in an ESS leading to cooperation, assessment rules
and action rules should correspond. This requirement does not hold for CO-
SCORING, for instance, where good players have to refrain from helping bad
players although this makes them lose their good score. Interestingly, there
is one exception to this requirement, among the leading eight: for the last
two strategies displayed on Table 3.3, bad players meeting bad co-players
cannot redress their score one way or the other. However, in a homogenous
population playing this strategy, encounters between two bad players are
exceedingly rare.

Ohtsuki and Iwasa obtained their analytical results under the assumption
that players experience infinitely many interactions during their life-time (an
approximation which implies that the population is very large). Furthermore,
they demand from their ESS strategies only that they are able to repel inva-
sions by strategies with the same assessment module. They also assume that
a player’s score is the same in the eyes of all co-players. This last assumption
is justifed by the so-called ‘indirect observation model’, which postulates that
an interaction between A and B, say, is observed by one player only, for in-
stance C, and that all other members of the population adopt C’s assessment.
A similar model is used in Panchanathan and Boyd (2003). Other authors, for
instance Nowak and Sigmund (1998), Lotem and Fishman (1999) or Leimar
and Hammerstein (2001), adopt a ‘direct observation model’ where all play-
ers keep their own, private score of their co-players. Ultimately, it would
seem that the evolution of assessment modules will have to be addressed in
this context. It is argued that thanks to language, all members of a popu-
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Table 3.3. The leading eight ESS strategies, specified by as assessment module
(first 8 rules) and an action module (last 4 rules), obtain highest payoffs among all
ESS pairs, and keep their evolutionary stability even for benefit-to-cost ratios close
to one. Strategy 1 corresponds to OR-STANDING (Contrite Tit For Tat, or CTFT,
in Panchanathan and Boyd, 2003), strategy 8 corresponds to CO-JUDGING. Note
that neither CO-STANDING, the RDISC strategy from Panchanathan and Boyd,
2003, nor any SCORING strategy occurs in the list

The leading eight

situation/strategy 1 2 3 4 5 6 7 8

good → good good good good good good good good good
good → bad good bad good good bad bad good bad
bad → good good good good good good good good good
bad → bad good good good bad good bad bad bad

good �→ good bad bad bad bad bad bad bad bad
good �→ bad good good good good good good good good
bad �→ good bad bad bad bad bad bad bad bad
bad �→ bad bad bad good good good good bad bad

good ?→ good yes yes yes yes yes yes yes yes
good ?→ bad no no no no no no no no
bad ?→ good yes yes yes yes yes yes yes yes
bad ?→ bad yes yes no no no no no no

lation should agree on their scores, and it may well be indeed that gossip
is powerful enough to furnish all individuals with information about all past
interactions. But it is common-day experience that even if two people witness
the same interaction directly, they can differ in their assessment of that inter-
action. This strongly argues for private scores, and has strong implications:
as Ohtsuki and Iwasa stressed, CO-STANDING is not an ESS in the direct
observation model, but can be invaded, if errors in perception occur, by the
undiscriminating ALLC.

3.7 Replicator dynamics

Another way to approach analytically the evolution of indirect reciprocity is
via replicator dynamics. For this, one clearly has to drastically reduce the
number of strategies involved. Typically, one considers only three: ALLC,
ALLD and a discriminating strategy. Indeed, the main problem for the emer-
gence of discriminating cooperation is that it is threatened by strategies which
do not punish defection, and eventually undermine the stability of the helping
behavior.
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The discriminating strategy usually investigated in this context is CO-
SCORING. Let us assume that each player has two interactions per round,
one as a donor and one as a recipient, against two different, randomly chosen
co-players. (Assuming one interaction only, with equal probability as donor
or recipient, changes the expressions but not the conclusions). We denote
the frequency of the indiscriminate altruists, i. e. the ALLC-players, with x,
that of defectors, i. e. the ALLD-players, with y, and the frequency of the
discriminate altruists, i. e. the CO-SCORING players, with z = 1− x− y. To
begin with, we assume that in the first round, discriminators consider their
co-players as good. With Px(n), Py(n) and Pz(n) we denote the expected
payoff in the n-th round for ALLC, ALLD and CO-SCORING, respectively.
It is easy to see that

Px(1) = −c + b(x + z) ,

Py(1) = b(x + z) ,

and
Pz(1) = −c + b(x + z) .

In the n-th round (with n > 1) it is

Px(n) = −c + b(x + z) ,

Py(n) = bx

and
Pz(n) = −cgn + b(x + zgn−1)

where gn denotes the frequency of good players at the start of round n (with
g1 = 1) and gn−1, therefore, is the probability that the discriminator has met
a good player in the previous round. Clearly gn = x + zgn−1 for n = 2, 3, . . .
(the good players consist of the ALLC players and those discriminators who
have met players with a good score in the previous round). Hence

Pz(n) = (b − c)gn

and by induction
gn =

x

x + y
+ zn−1 y

x + y
.

In the limiting case n → +∞ this yields

Pz = (b − c)
x

1 − z
.

If there is only one round per generation, then defectors win, obviously.
This need no longer the case if there are N rounds, with N > 1. The total
payoffs P̂i := Pi(1) + · · · + Pi(N) are given by

P̂x = N [−c + b(x + z)] , P̂y = Nbx + bz ,
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and
P̂z = N(b − c) + y[−b +

b − c

1 − z
(1 + z + . . . + zN−1 − N)] .

Let us now assume that the frequencies of the three strategies evolve under
the action of selection, with growth rates given by the difference between their
payoff P̂i and the average P̂ = xP̂x + yP̂y + zP̂z. This yields the replicator
equation ẋ = x(P̂x − P̂ ), ẏ = y(P̂y − P̂ ) and ż = z(P̂z − P̂ ) on the unit
simplex S3 spanned by the three unit vectors ex, ey and ez of the standard
base.

In there are exactly N rounds in the game, this equation has no fixed
point with x > 0, y > 0 and z > 0, hence the three types cannot co-exist in
the long run. The fixed points are: the defectors corner ey with y = 1; the
point F yz with x = 0 and z+ . . .+zN−1 = c/(b−c); and all the points on the
edge exez. Hence in the absence of defectors, all mixtures of discriminating
and indiscriminating altruists are fixed points.

The overall dynamics can be most easily described in the case N = 2 (see
Fig. 3.1).

The parallel to the edge exey through F yz is invariant. It consists of an
orbit with ω-limit F yz and α-limit F xz. This orbit l acts as a separatrix. All
orbits on one side of l converge to ey. This means that if there are too few
discriminating altruists, i. e. if z < c/(b− c), then defectors take over. On the
other side of l, all orbits converge to the edge exey. In this case, the defectors
are eliminated, and a mixture of altruists gets established.

This leads to an interesting behaviour. Suppose that the society consists
entirely of altruists. Depending on the frequency z of discriminators, the state
is given by a point on the fixed point edge exez. We may expect that random
drift makes the state fluctuate along this edge and that from time to time,
mutation introduces a small quantity y of defectors. What happens then? If

Fig. 3.1. Replicator dy-
namics when the number
of rounds is constant.
In the absence of errors,
any mixture of AllC and
CO-SCORING is a fixed
point
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the state is between F xz and ex, the defectors will take over. If the state is
between ez and F, the state with z = 2c/b, they will immediately be selected
against, and promptly vanish. But if a minority of defectors invades while the
state is between F and F xz, then defectors thrive at first on the indiscrim-
inating altruists and increase in frequency. But thereby, they deplete their
resource, the indiscriminating altruists. After some time, the discriminating
altruists take over and eliminate the defectors. The population returns to
the edge exez, but now somewhere between ex and F , where the ratio of
discriminating to indiscriminating altruists is so large that defectors can no
longer invade. The defectors have experienced a Pyrrhic victory. They can
only take over if their invasion attempt starts when the state is between F xz

and ex. For this, the fluctuations have to cross the gap between F and F xz.
This takes some time. If defectors try too often to invade, they will never
succeed.

In the limiting case that the number of rounds N is infinite, we obtain
for the average payoffs Pi per round, that

Px − Py = bz − c

and
Pz − Py =

x

1 − z
(Px − Py) .

In the interior of S3, the fixed points form a line z = c/b parallel to the edge
exey. We denote this line by l (it is just the limit of the separatrix l in the
previous paragraph, for N → +∞). The edges with x = 0 and y = 0 consist
of fixed points. In the interior of S3 all orbits are parallel to l. Those with
z < c/b converge to the left (the discriminating altruists vanish), those with
z > c/b to the right (the undiscriminate altruists vanish) (see Fig. 3.2).

Fig. 3.2. Replicator dy-
namics in the limiting
case of infinitely many
rounds, and no errors. In
addition to the fixed point
edges, we obtain a line of
fixed points in the interior
of the simplex
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Fig. 3.3. Replicator dy-
namics when the number
of rounds follows a geo-
metric distribution and
no errors occur

If there is a fixed probability w < 1 for a further round (see Nowak and
Sigmund, 1998b), we obtain for the total payoff values:

Px − Py =
wbz − c

1 − w

and
Pz − Py =

1 − w + wx

1 − wz
(Px − Py)

and the fixed points form the line l defined by z = c/wb, as well as the exez-
edge. In the interior of S3 the orbits are on the curves with z = ax1−w (see
Fig. 3.3).

Above l the orbits converge to the fixed point edge with y = 0, below l
to the vertex with y = 1. The state will drift along the fixed point lines until
a mutation sends it to the region below l, where the defectors win.

It is clear that such a degenerate behaviour is rather sensible to perturba-
tions. Let us assume that errors in implementation can occur. For simplicity,
we consider only errors turning an intended cooperation into a defection with
a certain probability 1− r. Equivalently we may assume, following Lotem et
al. (1999), that 1 − r is the probability that an individual is actually unable
to perform the intended act of giving help (this incapacity may be due, for
instance, to a lack of resources or an injury). Such an incapacity is highly
likely: as Fishman (2004) wrote, individuals who are always able to help do
not need help from others. . . In practice, one donates help when the costs
are small, in order to secure reciprocity in the hour of need. ‘The defectors’
payoff in the first round is Py(1) = rb(x + z), and in all further rounds it is
Py(n) = rbx. In the n-th round (n > 1) we obtain Px(n) = −rc+br2z+Py(n),
and Pz(n) = −rcgn + rbzrgn−1 = r(b − c)gn − br2x + Py(n), where gn, the
frequency of players with a good image at the start of the n-th round, satisfies
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gn = r(x + zgn−1) and is given by

gn =
rx

1 − rz
+ (rz)n−1 1 − rx − rz

1 − rz

(clearly g1 = 1 and Px(1) = Pz(1) = −rc + Py(1)). These expressions have
been obtained by Panchanathan and Boyd (2003) and by Fishman (2004). In
the limiting case of infinitely many rounds,

Pz − Py =
rx

1 − rz
(Px − Py) .

Once more, we obtain a line l of equilibria in the interior of S3, given by
z = c/br. This line intersects the edge exez (where all players are altruists)
at the point F xz. This time, the edge does not consist of fixed points: in fact
F xz is the only equilibrium mixture of discriminating and indiscriminating
altruists, and it is stable within the edge exez of altruists. Indeed, if almost
all altruists are indiscriminating, then the unintended defections which cause
discriminating altruists to refuse help in the next round will allow them to
obtain a higher payoff than ALLC-players without being taken to account too
frequently; whereas if most altruists are discriminating, most refusals to help
will be severely punished. If we consider an arbitrary mixture of defectors
and altruists, the orbit will either converge to ey or it will first converge to
the line l, drift along this line and then, if a random shock introduces some
more defectors while the frequency of undiscriminating altruists is sufficiently
low, to ey. In any case the evolution will ultimately lead to the fixation of
defectors (see Fig. 3.4).

Panchanathan and Boyd (2003) have noticed that the same happens if the
number of rounds is not infinite, but a random variable with a geometric dis-
tribution given by a parameter w (a constant probability for a further round).

Fig. 3.4. Replicator dy-
namics if individuals make
errors in implementation,
and the number of rounds
follows a geometric dis-
tribution. In the long
run, AllD is established.
A similar dynamics holds
for the asynchronous en-
try case, for all probability
distributions of rounds
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Fig. 3.5. Replicator dy-
namics when individuals
make errors in implemen-
tation and the number
of rounds is constant.
A bistable outcome re-
sults. The same holds
if the rounds are Pois-
son distributed, or in the
asynchronous entry case
when each player’s social
network grows with time

In contrast, they found that if the discriminating strategy is OR-STANDING
or CO-STANDING, then the monomorphic state with all players discrimi-
nating is stable. They also found that OR-STANDING is slightly superior to
CO-STANDING (which does not belong to the ‘leading eight’, incidentally).
Panchanathan and Boyd concluded that ‘when errors are added, indirect
reciprocity cannot be based on an image-scoring strategy’. And indeed they
have pointed out an important vulnerability of the CO-SCORING strategy.
Nevertheless, the verdict seems to depend on the modelling assumptions.

Indeed, as shown by Fishman (2004), if one assumes that the number N
of rounds is constant, then the equilibrium F xz is transversally stable, i. e. it
cannot be invaded by defectors if c/b < 1− 1/N , and if r is sufficiently large:
for this, one has only to check that the payoff values Px = Pz at F xz exceed
Py. Hence cooperation can be stably sustained. Brandt and Sigmund (2004)
showed that the same holds if the number of rounds is a random variable with
a Poisson distribution with parameter λ, provided b > 2c and λ is sufficiently
large. In both cases, the model leads to a bistable dynamics (see Fig. 3.5).

Depending on the initial condition, either defectors take over, or the pop-
ulation converges to a stable mixture of discriminating and undiscriminating
altruists, and hence to a cooperative regime.

Fishman stressed, therefore, that involuntary defection (caused by errors,
or by incapacitation) stabilises indirect reciprocity. He states: ‘Indirect reci-
procity, at least in the current case, is stable only among imperfect individ-
uals.’ In Lotem et al. (1999), Lotem et al. (2002), and Sherratt and Roberts
(2001), this inability of giving help, due to lack of quality, is further analysed:
helping behaviour is used as a way of signalling high quality (see also Zahavi,
1995).

Ohtsuki (2004) studied adaptive dynamics for stochastic strategies of the
CO-SCORING type. His strategies are given by triples (p0, p1, p2) where p0
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is the probability to help a player in the absence of information about his
score (an event whose likelihood is q), whereas p1 and p2 are the probabilities
to help an individual with good resp. bad score. In his analysis of monomor-
phic populations, Ohtsuki finds that there exist two regions, one in which
all pi-values increase and one in which all decrease. As in the case of direct
reciprocation (see Nowak and Sigmund, 1990), the discriminating strategies
(with p1 = 1 and p2 = 0) act not as end-points but rather as pivots of the
evolution: in their neighborhood all pi-values increase but the degree of dis-
crimination p1 − p2 decreases so that eventually a continuum of equilibria
is approached. Once there, mutations can send the population towards de-
fection. This instability is even more pronounced if errors in perception or
implementation are included.

3.8 Asynchronous entry

So far, we have assumed that the whole population lives according to the
same schedule: all players engage together in the first round (once as donor
and once as recipient), then all in the second round etc. . . This can indeed
model what happens with a group of persons volunteering for an experimental
game. But for real-life interactions, it may seem more appropriate to model
a population with generations blending into each other. Occasionally, a new
player is born, and will from time to time play a round of the game. In contrast
to the previous model, different players will usually experience a different
number of rounds: these rounds are no longer synchronised. Let us denote by
g the frequency of individuals with good reputation in the population. If the
population is sufficiently large, and stationary, then g will not be affected by
the birth of a new individual, or its age. Let us assume, to begin with, that
newcomers are considered as good. After the first round, an ALLC player will
have a good reputation with probability r, an ALLD player with probability
0 and a discriminator with probability rg. Hence g = rx + rzg and thus

g =
rx

1 − rz
.

The payoff for an ALLC player is −cr + br(x + z) in the first round and
−cr+br(x+zr) in all following rounds. For an ALLD player it is br(x+z) in
the first round and brx in all following rounds. For a discriminator the payoff
is−cgr + br(x + z) in the first round and −cgr + br(x + gzr) in all following
rounds. Thus Pz − Py = g(Px − Py).

In the limiting case of infinitely many rounds we see that

Pz − Px = r(1 − g)(c − brz)

which yields again a line l of fixed points satisfying z = c/br. The phase
portrait looks like that of Fig. 3.4 (if r > c/b), and defectors will always win
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in the end. This holds also if the number of rounds is any random variable
with expectation value E, except that the z-value of l has to be multiplied
with a certain factor. Indeed, since Px = Pz holds if and only if Px = Py, it
follows that Px = Pz always defines a line of fixed points.

A similar result is obtained in a model where discriminators know their co-
player’s reputation (i. e. their behaviour in the last round) only with a certain
probability q, and assume that it is good if they have no information We note
in this context that Panchanathan and Boyd (2003) have shown that for
sufficiently large q and b/c, it is selectively advantageous to be trustful in
this sense. For ALLC players, the payoff is −cr + br(x + z) in the first round
and −cr + br[x+(1− q)z + qzr] in all subsequent rounds. For ALLD players,
it is br(x + z) in the first and br[x + (1 − q)z] in all subsequent rounds. For
discriminators, it is −cr(1 − q) − crqg + br(x + z) in the first round and
−cr(1 − q) − crqg + brx + br(1 − q)z + brqzr[(1 − q) + qg] in all subsequent
rounds. ALLC players and discriminators have the same payoff iff z = c/br,
in the limiting case of infinitely many rounds. Since

Px − Pz = rq(1 − g)(Px − Py)

holds in every round, there exists, for sufficiently large r, a stable equilibrium
mixture of discriminating and undiscriminating altruists, but defectors can
invade through random drift. The same holds also for other scoring strategies,
as for instance for OR-SCORING; it also holds if we assume that a discrim-
inator who does not know the recipient’s score defects. Thus we see that
the argument of Panchanathan and Boyd (2003) is even more robust for the
asynchronous entry case than for the case of synchronised rounds: it holds
whenever the probability that a discriminator gives help is the same from one
round to the next.

But assume now that qn, the probability that a discriminator engaged in
round n knows the score of the co-player, is increasing in n. This assumption
is plausible: with time, a player’s social network grows, and therefore also
the player’s probability to have information about the recipient. Of course, if
the population has reached a steady state, then the average probability that
a randomly chosen player knows a co-player’s score is just the mean value
of the qn, i. e. some constant q. If we assume, as before, that discriminators
are trustful, in the sense that they provide help if they do not know the
co-player’s score, then we obtain as payoffs in the n-th round:

Px(n) = −cr + brx + br(1 − q)z + br2qz

Py(n) = brx + br(1 − q)z

and

Pz(n) = −cr[(1 − qn) + qng] + brx + br(1 − q)z
+ brqzr[(1 − qn−1) + qn−1g] .
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Thus
Px(n) − Py(n) = −cr + br2qz

and

Pz(n) − Py(n) = Px(n) − Py(n) + r(1 − g)[cqn − brzqqn−1] .

Clearly
Px(n) − Pz(n) = r(1 − g)(−cqn + zbrqqn−1) .

Let w(n) be the probability that a randomly chosen donor is in round n, then

q =
∑

w(n)qn > q̂ :=
∑

w(n)qn−1 .

In Brandt and Sigmund (2005) it is shown that with zcr = c
brq̂ , there

exists a mixture of discriminating and indiscriminating altruists F xz = (1 −
zcr, 0, zcr) which is a fixed point. For sufficiently small w(1) (i. e. a sufficiently
large likelihood of having more than one round)

Px(zcr) > Py(zcr) .

Hence F xz cannot be invaded by the defectors. The resulting replicator equa-
tion is bistable: one attractor consists of defectors only, the other of a mixture
of discriminating and undiscriminating altruists.

If qn < qn−1 this would not be valid: except if we assume that discrimina-
tors who do not know the recipient’s score, instead of helping, i. e. according
the benefit of doubt, prefer to refuse help, i. e. to act distrustfully. To resume,
we see that if either players are trusting and have a growing social net, or
if they are distrustful and have a shrinking net of acquaintances, a stable
mixture of discriminating and indiscriminating altruists can be supported by
the SCORING assessment module.

3.9 Numerical simulations

It seems hard to derive analytical expressions for the payoff values if several
discriminating strategies are present, and errors in perception and imple-
mentation, limited observability etc are taken into account. Thus while it is
easy to compute the payoff expressions for mixtures of CO-SCORING with
ALLC and ALLD, merely adding OR-SCORING or CO-STANDING to the
cast greatly complicates things. Often, pairs of discriminating strategies per-
form equally well against each other, so that their frequencies drift randomly
around: but the success of other strategies at invading them depends on their
frequencies, etc. One is often reduced to numerical simulations to investigate
such polymorphic states.

In Nowak and Sigmund (1998a,b), well-mixed populations are considered,
consisting of some 100 individuals each engaged in some five or ten interac-
tions, sometimes as as a donor, and sometimes as a recipient. But in order
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to avoid spurious effects of random drift, it is convenient to adopt, following
Leimar and Hammerstein (2001), a population structure conveying a more
realistic image of prehistoric mankind, and consider some 100 tribes, for in-
stance, with 100 players each, with some modest gene flow between the tribes.
We shall start by describing the extensive statistical investigations of Brandt
and Sigmund (2004), based on such a population structure, and the assump-
tion of a binary score.

Let us consider the case of separate generations. During one generation,
there will be 1000 games within each tribe, so that on average each player
is engaged in 10 rounds (a larger number does not significantly change the
outcome). Each individual keeps a private score of all tribe-members. We
normalise payoffs by setting c = 1, so that b is now the cost-to-benefit ratio.
At the end of each generation, each tribe forms a new generation of 100
individuals: with probability p the new individual will be ‘locally derived’
and inherit a strategy from a member of the tribe, and with probability 1−p,
the new individual will inherit a strategy from some member at large, in each
case with a probability which is proportional to that member’s total payoff. In
order to avoid transitional effects, we present averages over 1000 generations,
after an initial phase of 9000 generations. (Usually, a stable composition is
reached within 100 generations). In Brandt (2004) one can find an online
approach to such numerical simulations which allows the visitors of that site
a great deal of experimentation.

Let us first ask which strategies are best at invading a population of defec-
tors, when introduced as a minority of, for instance, 10 percent. It turns out
that in the absence of errors, STANDING and JUDGING, together with the
CO and the OR module, do best and lead to cooperation whenever b ≥ 4.5,
whereas SCORING requires considerably higher b-values. In the presence of
errors, this is attenuated: if, for instance, ALLC, ALLD and a single discrim-
inating strategy are initially equally frequent, then CO-STANDING and OR-
STANDING eliminate defectors whenever b > 3.5, whereas CO-JUDGING
and CO-SCORING require b > 4.5, and OR-JUDGING and OR-SCORING
even b > 6.5.

If a given assessment module is held fixed and several action-modules start
at similar frequencies, then cooperation dominates for STANDING and for
SCORING as soon as b > 4, usually with the CO or the OR module (together
with a substantial ALLC population). Less cooperative action modules, as
for instance SELF or AND, are rapidly eliminated.

There is a strong propensity for cooperation based on polymorphisms. Let
us, for instance, start with a population where the three assessment modules
SCORING, STANDING and JUDGING as well as the action modules AND,
OR, CO and SELF, together with the indiscriminate strategies ALL C and
ALL D are present in equal frequencies. Even if only every second interaction
is observed, a cooperative outcome is usually achieved as soon as b > 2.5,
and CO-SCORING, OR-SCORING, CO-STANDING and OR-STANDING
prevail at nearly equal frequencies. JUDGING is grealy penalised by the lack
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of reliable information. On the other hand, if all interactions are observed and
only errors in implementation occur, then CO-JUDGING and OR-JUDGING
dominate, eliminating ALLC players and establishing a very stable cooper-
ative regime. If errors in perception occur, then JUDGING is completely
eliminated, and SCORING and STANDING perform on a similar level. This
also holds if errors in implementation or limited observability are taken into
account.

In a recent and as yet unpublished paper, Takahashi and Mashima (2004)
have shown that STANDING is highly vulnerable to errors in perception,
if one does not consider a subdivided population linked by migration, as in
Leimar and Hammerstein, but a single well-mixed tribe. On the other hand,
they emphasised the success of a strategy which had not been considered
before, and in particular is not a member of the ‘leading eight’. Its action
module is CO, and its assessment module ascribes a bad score, not only to
those refusing help to a good player, but to all those who interacted with
a bad player (irrespective of whether they provided help or not). Players
who have met a bad player are bad and remain so until they are able to
redeem themselves by giving to a good player. According to Takahashi and
Mashima, it remains still to be checked whether such intriguing strategies
can get established in more polymorphic populations.

3.10 Spatial indirect reciprocation

In a variant of evolutionary games, spatially distibuted populations are con-
sidered, with each individual interacting only with the closest neighbors and
updating by switching to the strategy of a random neighbor with a proba-
bility proportional to the payoff difference. Let us assume, for instance, that
the players sit on an N × N -lattice, with the usual identification of opposite
borders, and that the neighborhood of site (i, j) consists of the 8 sites whose
coordinates differ by at most one unit (a Moore neighborhood). Since the
score depends on how many games have already been played, it is impor-
tant to introduce no systematic bias in the ordering of the games. A simple
approach is to arrange all individuals in a random sequence and let the inter-
actions take place in that order, with this individual as recipient, and one of
the neighbors (randomly chosen) as potential donor. Individuals cannot re-
ceive help more than once per round, but they may be asked more than once
to help a co-player. Not surprisingly, the spatial games lead to the evolution
of cooperation for even smaller b/c-values than in the well-mixed case (see
Fig. 3.6 and, for interactive experimentation, Brandt 2004). In these simu-
lations, a small mutation probability and a probability of not being able to
cooperate, due to lack of resources for example, is included. Moreover, dis-
criminators are tempted to defect instead of helping with a small temptation
rate. Every generation consists of 5 rounds played as described. Then, in the
spatial case, sites are updated by comparing their payoff with that of a ran-
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Fig. 3.6. In both graphs, long-term frequencies for a population initialized ran-
domly with strategies AllC (short dashes), AllD (long dashes), and CO-SCORING
(solid line) are shown, a mutation rate 0.001, an error rate of 0.05, and a temptation
rate for discriminators to defect of 0.05 are included. Five rounds per generation
are played. Spatial indirect reciprocity, where individuals are confined to the sites
of a square lattice and interact only with their neighbors, promotes cooperation for
smaller benefits (with c = 1) than in the well-mixed case. In the spatial case, how-
ever, defectors can survive more easily within clusters of AllC players, and subsist
at frequencies of around 15%

domly chosen neighboring site (a randomly chosen site of the full lattice, in
another variant) and switching to the strategy at that site with a probability
proportional to the payoff difference, if the own payoff is lower. In the spatial
case, when updating occurs only between neighbors, cooperation dominates
for b/c ≥ 2, whereas if the population is well-mixed, it takes b/c ≥ 3.5 to
suppress defectors to a small minority.

3.11 Full score

The original numerical simulations of Nowak and Sigmund (1998a) considered
the case, not of a binary score, but of a full score ranging through all integer
values. This means that if, on average, individuals experience only five rounds
as a donor, their score cannot exceed ±5. This score range seems much more
natural than the restriction to a binary score. In fact, binary scores were only
introduced as a crude simplification to allow for analytical results.

With a full score, one can again consider the same assessment modules as
before, and in particular SCORING or STANDING. One can also consider
different action modules, but their number vastly increases. For instance, in
the OR-family, we would find all strategies of the type (k∨h), meaning ‘help
if the recipient’s score exceeds k or if your own score is below h’. It seems
intuitively clear that the main disadvantage of SCORING, namely that pun-
ishing is costly, is greatly reduced. Indeed, players with a high reputation for
helping will be able to refrain occasionally from helping a low-scorer without
threatening their own score, which will be reduced by one unit but remain in
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the high range. The numerical simulations of Nowak and Sigmund (1998a)
were confirmed by Leimar and Hammerstein (2001), who found, however,
that a modest gene-flow between groups reduced the success of SCORING.
Thus while, for b/c = 4, AND-SCORING produces on average 40 percent
of cooperation in isolated groups without migration, it does much less well
if mixing occurs between the groups. We note that the poor showing of the
AND-module is also reflected in the simulations with a binary module. Such
strategies are not cooperative in the sense that they do not always lead to
help-giving in a monomorphic population.

Leimar and Hammerstein also reported an interesting robustness of the
STANDING module against errors of perception, adding that the issue was
not fully resolved yet. Indeed, a systematic investigation of the different as-
sessment modules for the full-score case is lacking so far, due in part to ana-
lytical difficulties, and in part to the fact that the proliferation of strategies
for each assessment module often leads to neutral polymorphisms which are
dominated by random drift rather than a clear-cut selective force. It seems
safe to predict that the costs of complexity, the prevalence of phenotypic de-
fectors (i. e. players unable to give help even if they want to) and the issue of
public vs private scores will become essential topics for these investigations.

In an interesting approach, Mohtashemi and Mui (2003) have performed
agent-based simulations based on the SCORING module, using players with
growing networks of acquaintances (in every round, the donors and their
acquaintance are added to the acquaintance of the recipients). They found
that this greatly promotes the emergence of cooperation, a result which agrees
well with our analysis of the replicator dynamics in the asynchronous entry
case.

3.12 Experimental games

Wedekind and Milinski (2000) set up experiments with 79 undergraduate
students, who were divided into eight groups. All players were provided with
a starting account, and were repeatedly offered the possibility to give 4 Swiss
Francs to another person of the same group, at a cost of 1 (or, in some groups,
2) Swiss Franc to themselves. Players knew that they would never meet the
same person in the reciprocal role. The interactions were anonymous, but
the potential donors were shown the history of giving or not giving of the
potential recipient before they were asked for their decision. There were six
rounds in each group, and each player was once per round a potential donor,
and twice per round a receiver, although this was not announced beforehand.
The frequency of giving ranged from 48 to 87 percent, depending on the
group. As expected, those groups with a lower cost of giving (or with a higher
starting account) donated more often. The image score of potential recipients
correlated well with their expectation to actually receive money. The amount
of discrimination was higher among those players who donated less often:
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apparently, those who were more generous cared less about the recipient’s
image score.

In a similar experiment, Seinen and Schram (2001) found corresponding
results. In particular, they concluded that subjects are much more likely to
help if they know that their score is passed on. They also found that groups
develop different norms, i. e. minimal thresholds for the score. ‘Finding a norm
that is consistent with the own social status. . . is important in synchronizing
norms within a group’. Seinen and Schram also found clear evidence that the
own score becomes an important factor in the decision to help, when players
know that it is communicated to future donors.

In an interesting variant of the indirect reciprocation game, Milinski et al.
(2002a) showed that if players were given the opportunity, between rounds, to
make a public donation to a charity, the amount of their donation correlated
positively with the likelihood that they would receive money, in subsequent
rounds, from their co-players.

Bolton, Katok and Ockenfels (2001) performed a variety of experiments
with high or low costs (b/c = 5 or = 5/3) and with three different infor-
mation conditions: (a) no information, (b) first order information (whether
the recipient gave help when last in the role of the donor) and (c) second
order information (the recipient’s decision when last in the role of the donor,
and the previous move of the recipient of that game). We note that (b) and
(c) both allow SCORING to be implemented, but that (c) does not provide all
the information needed to implement a STANDING strategy. The hypothesis
that more information leads to more giving is confirmed in the experiments
of Bolton et al. (2001). Also, giving is higher in earlier rounds, when repu-
tation has a higher impact on the future income. However, it appears that
even if there is no information, some players are prone to cooperate. Fur-
thermore, the decisions of the donors seem also to be affected by how often
they were given. This shows that some relevant aspects of the game have
not yet been covered by models. Players seem to be affected by what they
have received, and tend to give because they received help. Strategies basing
the decision to give on the score and, additionally, on the payoff history, i. e.
the donor’s past income, seem plausible, but apparently have not yet been
investigated. But let us stress that Bolton et al. (2001) found a significant
positive correlation between the number of gifts given by players and the
number they receive. They also found that there is a slight, negative corre-
lation between the number of gifts given and the total payoff obtained by
a player.

This last result stands in contradiction to the findings obtained by
Wedekind and Braithwaite (2002): in their experiment, those who gave much
ended up with the highest payoff. Donors knew only the score of the recipi-
ent, calculated according to the SCORING rule, on a scale of integers ranging
from −6 to +6. Wedekind and Braithwaite found evidence for the OR mod-
ule. From the twelfth round onward, there was a positive correlation between
image score and total payoff, statistically significant in most rounds. Thus
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generosity pays in this kind of game, which argues for its selective advan-
tage. The correlation within a population increases with the mean generosity
of the group. In a subsequent game of direct reciprocity (six rounds of the
Prisoner’s Dilemma game between the same two players) the display of the
previous end score tended to boost cooperation towards generous players in
the first three rounds, and then was superseded, reasonably enough, by the
personal experience obtained with the given co-player.

A similar interconnection between direct and indirect reciprocation can
be found in Milinski et al. (2002b). They combine rounds of an indirect reci-
procity game with rounds of a public good game. The donors in the indirect
reciprocity game are also informed about the recipients’ actions in the public
goods game. If the two games alternate, contributions to the public good
game remain high, while they quickly deteriorate in an unbroken succession
of public good games. This experiment provides evidence that indirect reci-
procity has a similar impact as direct reciprocity. Moreover, the version with
alternating rounds can be viewed as a sequence of public good games with
the possibility, after each round, of rewarding contributors. It thus offers an
intriguing complement to the literature on public goods with punishment
(see, e. g., Fehr and Gächter 2000).

Engelmann and Fischbacher (2002) ran experiments designed to find out
whether donors were more motivated with keeping up their own score or with
reacting to the recipients’ score. At any time, only half of the players had
a public score (assessed according to SCORING), which was displayed when
they were recipients. There was clear evidence that donors without score react
to the recipient’s score; such donors cannot be guided by selfish motives. On
the other hand, the propensity to give more than doubled, for many players,
if they were told that their action would affect their own score. Such subjects
also seem to be less influenced by the recipient’s score. This provides strong
evidence for selfish reputation-building. Further evidence for such ‘strategic’
use of reputation has been obtained by Semmann et al. (2004).

In another series of experiments, Milinski et al. (2001) addressed the ques-
tion of STANDING versus SCORING. Each group included a bogus player
who always refused to help. Discriminating players should always refuse to
give aid to such a player. The question was: would these players, in turn, be
penalised by their co-players or not? The former outcome would speak for
the prevalence of a SCORING strategy, the latter for STANDING. Players
were again anonymous, and were given, not only the history of the receiver,
but also that of the receivers’ previous receivers, so that they could judge
whether a defection by the receiver was justified or not. It was found that
the potential donors of the sham defector (whose refusals were justified) expe-
rienced significantly more defections than STANDING would predict, but less
than SCORING would predict. Interestingly, the donors of the sham defector
tended to be more generous in their other interactions, as if they expected to
be punished and wanted to redress their score. This suggests that players do
not expect that other players follow a STANDING strategy.
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The same result held, surprisingly, when the experimenters provided only
the history of the receiver (so that a STANDING strategy was actually impos-
sible to implement). Indeed, the statistics of the games with full information
(where donors were provided with the complete histories of all co-players)
and with restricted information (where players were only provided with the
list of previous actions of the potential recipient) look remarkably similar.
With full information, the players took a longer time to reach their decision.
This suggests that they tried to interpret the complex histories. But after
three or four rounds, it becomes rather complicated to work back through
the histories of the recipient’s recipients etc., so that players most likely were
overburdened, cognitively, and simply stopped to care about details, possibly
falling back to some mixture of SCORING and STANDING.

This cognitive problem is, in part, due to the design of the economic
experiments. The players do not have a close acquaintance with each other,
and can distinguish their group members just by their pseudo-names, so that
they are not really involved with them. It could be argued that in more
life-like interactions within a real group, individuals are familiar with each
other’s personalities, and thus find it easier to update their image scores in
real time. It would facilitate the players’ task of keeping track of their co-
players’ standing if they were told, after each round, to update all the image
scores within the group, and note them down. The drawback of such an
instruction is that it necessarily suggests to the participants that these image
scores form a key element of the game. The players would no longer be ‘naive’
with respect to the experiment, but approach it with a certain bias. On the
other hand, given that it can by now be granted that some type of image
score is involved in this kind of game, it could be worth trying to provide
players with an instruction like: ‘Write down, between each round, who did
the right thing, in your eyes, and who did not.’ From the resulting protocols,
it should be possible to find out the assessment modules and, comparing this
with the decisions taken by the players, the action modules.

Another possible way of clarifying the situation would be to subject play-
ers to very short histories only. For instance, one could start by explaining the
rules of the game, and then let groups of six or ten players actually play ten
or twelve rounds, sitting face to face with each other, so that they thoroughly
understand what they are about. Then, one could separate the players, place
each into some cubicle, and tell them that they would now play the same
game, with a new group of co-players with whom they could interact only
via computer. In reality, they would all be confronted, in the third round,
with a fictitious co-player who had given in the first round, but refused to
give in the second round against a recipient who had refused to give in the
first round. This should disentangle the SCORING vs STANDING issue. It
is considered bad form, in economic games, to mislead players. But in view of
the importance of the question, this may be considered a white lie. Morally
it may not be quite right, but it can help us to better understand morals and
their evolution.
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4

The Effects of Migration
on Persistence and Extinction

Jingan Cui and Yasuhiro Takeuchi

Summary. The interrelationship between organisms and the environment is es-
sential to the stability or permanence of an ecological system, and the effect of
migration on the possibility of species coexistence in an ecological community has
been an important subject of research in population biology. Numerous types of
models have been proposed and have been used to describe movement or dispersal
of population individuals among patches. Some of the existing models deal with
a single population dispersing among patches and others deal with predator-prey
and competition interactions in patchy environments. Most previous models are
based on autonomous ordinary differential equations. Recently, some authors have
also studied the influence of migration on time-dependent population models.

In this chapter, we attempt to review key related research and introduce a set of
new results for time-dependent population models in patchy environments. We con-
sider a single-species model described by a set of autonomous ordinary differential
equations or non-autonomous equations with periodic functions or with dispersal
time delays. Also, we consider an age-structure model with or without dispersal
delays. Further, we discuss predator-prey or competitive models described by au-
tonomous or time-dependent ordinary differential equations.

4.1 Introduction

The concept of metapopulation is widely used by modelers to explore the
effects of spatial heterogeneity on population dynamics. Metapopulation de-
scribes a ‘population‘ consisting of many local populations, analogously to
a local population consisting of individuals. One kind of basic metapopula-
tion models is the so-called two-population model, which is an extension of
traditional single-population models for two local populations connected by
migration. These models are deterministic at the population level, and the
main issue is the influence of migration on local dynamics. A two-population
model can, of course, be extended to many (n) populations connected by
migration, though at the cost of not obtaining much meaningful informa-
tion. Most metapopulation models used by conservationists are n-population
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dynamic models. A general two-population model takes the form (Hanski
1999):

ẋ1 = g1(x1)x1 − γ12(x1)x1 + γ21(x2)(1 − δ1)x2

ẋ2 = g2(x2)x2 − γ21(x2)x2 + γ12(x1)(1 − δ2)x1 ,
(1)

where gi(xi) is the per capita rate of change of population i due to births
and deaths, γij(xi) is the per capita rate of emigration from population i
to population j, and δi is the fraction of migrants dying during migration.
The two populations and the respective habitat patches might or might not
be similar. In source-sink metapopulations, there are substantial differences
between the intrinsic growth rates of local populations.

Since the interrelationship between organisms and the environment seems
to be essential to the stability of an ecological system, the effect of migra-
tion on the possibility of species coexistence in an ecological community is
an important aspect of population biology. Many kinds of models have been
proposed and have been used to describe movement or dispersal of popu-
lation individuals among patches. Some existing models deal with a single
population dispersing among patches (Allen 1983, 1987; Amarasekare 1998;
Beretta et al. 1987; Cui et al. 2000 ; Gruntfest et al. 1997; Gyllenberg et al.
1997; Hanski, 1999; Hastings, 1983; Holt, 1985; Hui et al. 2005; Levin, 1974;
Lu et al. 1993; Mahbuba et al. 1994; Skellam, 1951; Takeuchi, 1989, 1996;
Teng et al. 2001; Wang et al. 1997; Zhang et al. 1996). Others deal with
predator-prey and competition interactions in patchy environments (Beretta
and Solimano 1987; Cui 2002; Cui and Chen 1999, 2001; Cui and Takeuchi
2005; Freedman and Waltman 1977; Hastings 1977; Jansen and Lloyd 2000;
Kuang and Takeuchi 1994; Namba et al. 1999; Song and Chen 1998a, 1998b;
Takeuchi 1986, 1989; Takeuchi et al. preprint; Teng and Chen 2003; Xu and
Chen 2001; Zeng et al. 1994). Most previous models are autonomous ordinary
differential equations. Recently, some authors have also studied the influence
of migration on time-dependent population models.

In this chapter, we attempt to review key related research and intro-
duce new results for time-dependent population models in patchy environ-
ments. In Sect. 4.2, we consider a single-species model described by a set of
autonoumous ordinary differential equations or non-autonoumous equations
with periodic functions or with dispersal time delays. Also, we consider an
age-structure model with or without dispersal delays. In Sect. 4.3, we describe
predator-prey models based on autonomous or time-dependent ordinary dif-
ferential equations. Finally, in Sect. 4.4, competitive models are discussed.

4.2 Single-species system

4.2.1 Population size

How does migration affect the population sizes? This is a basic but important
issue. As a standard and not too unrealistic specific example, let us assume
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that local dynamics are given by the logistic model, and that emigration is
density-independent and the same in the two populations. Equation (1) then
becomes:

ẋ1 = r1x1(1 − x1/k1) − mx1 + m(1 − δ)x2

ẋ2 = r2x2(1 − x2/k2) − mx2 + m(1 − δ)x1 ,
(2)

where ri and ki are the intrinsic rate of population increase and the carrying
capacity of population i respectively, and m is the constant emigration rate.

For positive ri and ki, the two-population metapopulation has two equilib-
ria, of which the one corresponding to metapopulation extinction, (x̄1, x̄2) =
(0, 0), is unstable, and the one with x̄1 > 0 and x̄2 > 0 is stable (x̄ de-
notes the equilibrium value). The pooled size of two populations with migra-
tion will reduce the overall metapopulation size. The pooled metapopulation
size is reduced even if there is no mortality during migration, provided that
there is a difference between the two carrying capacities− more individuals
move from the population with a larger carrying capacity to that with the
smaller one, where their per capita reproductive success is lower than in their
parent population. Therefore, random migration of the type assumed in (2)
is not expected to evolve by natural selection (Hastings 1983; Holt 1985),
implying that migration in natural populations has evolved in response to
some forces not considered in this model. The equilibrium population size
in the patch with small carrying capacity might, of course, be higher with
than without migration, even if there is substantial mortality during migra-
tion.

The logistic model assumes that the per capita growth rate decreases
linearly with increasing population size. This is a convenient mathematical
assumption, but perhaps unrealistic in biology; for instance, density depen-
dence might become strong only when population size is close to the carrying
capacity, as would happen when growth is limited by space for individuals’
territories. Such situations can be modelled by raising the term x/k in the
logistic model to power θ, (x/k)θ. Assuming that θ is small (< 1), which cor-
responds to weak density dependence near the carrying capacity, has the in-
teresting consequence that the two populations connected by migration tend
to become similar in size, even if the respective carrying capacities are quite
different. With increasing mortality during migration, metapopulation size
decreases because of the generally reduced growth rate, and with a high rate
of mortality during migration the metapopulation might become extinct. The
message here is that nonlinearity per capita density dependence makes it ever
harder to use observed population sizes or densities to draw inferences about
the quality of the respective habitat patches. Assuming that in one popula-
tion density dependence is weak near the equilibrium (θ < 1) and that the
other population has a large carrying capacity, leads to the surprising result
that the pooled size of the metapopulation may exceed the sum of the two
carrying capacities, even if there is mortality during migration. This happens
because one of the populations, the one with the greater carrying capacity,
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feeds large numbers of migrants to the other population, where weak density
dependence allows population density to persist at a high level, much higher
than the local carrying capacity. In other words, population sizes in this case
are biased towards the k of the population with stronger density dependence,
and if this population has larger k, metapopulation size might exceed k1 +k2

(Holt 1985).

4.2.2 Stability, critical patch number

The n-population model, n populations connected by migration, has been
well studied. By applying cooperative system theory (see Smith 1986), Lu
and Takeuchi (1993) considered a single-species diffusion system described
by

ẋi = xifi(xi) +
∑
j �=i

Dij(xj − αijxi) , i = 1, 2, . . . , n . (3)

Here, n is the number of patches, xi represents the population density of
the species in the i-th patch and fi(xi) is the per capita rate of change of
the population in this patch. Dij is a non-negative diffusion coefficient from
patch j to patch i and Dii = 0 (i = 1, 2, . . . , n). The parameter αij >
0 corresponds to the boundary conditions of the continuous diffusion case,
αij = 1 for Neumann condition, αij �= 1 for Dirichlet or Robin conditions
(Allen 1983). Further, dispersal by linear diffusion implies that the species
can move to the interconnected patches with equal probability (Allen 1983).

Define a matrix D = (dij) satisfying

dij =

⎧⎪⎨⎪⎩
Dij for i �= j ,

−
n∑

k=1

Dikαik for i = j ,

and assume that D is an irreducible matrix, which implies that the species
can reach any i-th patch from any j-th patch. Note that system (3) and D
are cooperative (see the definition for cooperative matrix given below).

A matrix A = (aij) is called cooperative if all its off-diagonal elements
are non-negative, that is, if aij ≥ 0 for i �= j. The spectrum of matrix A,
written as δ(A), is the set of eigenvalues of A. Define the stability modulus
of A, s(A), as

s(A) = max {Reλ : λ ∈ δ(A)} .

First, we consider the critical patch number of system (3). Define the following
two matrices

Ar = D + diag(r1, . . . , rn) ,

Af = D + diag(f1(0), . . . , fn(0)) ,

where ri = supxi≥0 fi(xi).
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Theorem 1. (Lu and Takeuchi, 1993) Consider system (3).

(i) If s(Ar) < 0, then limt→∞ xi(t) = 0 for i = 1, 2, . . . , n;
(ii) If s(Af ) > 0, then lim inft≥0 xi(t) ≥ δ > 0 for i = 1, 2, . . . , n, where δ is

independent of initial data.

Let us consider the system described by

ẋi = xif(xi) + D(xi+1 − xi) + D(xi−1 − xi) , i = 1, 2, . . . , n, (4)

where D is positive and x0 = xn+1 = 0. This system is considered in Allen
(1987). Note that (4) has an identical within-patch dynamics. Suppose that
f(xi) = a (exponential growth) or f(xi) = a − bxi (logistic growth) (i =
1, 2, . . . , n), where a and b are positive constants. By using Theorem 1, we
have

Corollary 1. Consider system (4) with f(xi) = a or f(xi) = a − bxi.

(i) If a < 2D
(
1 + cos nπ

n+1

)
, then limt→∞ xi(t) = 0 for i = 1, 2, . . . , n;

(ii) If a > 2D
(
1 + cos nπ

n+1

)
, then lim inft≥0 xi(t) ≥ δ > 0 for i = 1, 2, . . . , n,

where δ is independent of initial data.

By Corollary 1, the critical number of patches for system (4) with an expo-
nential growth or a logistic growth is

nc =
arccos(a/(2D) − 1)

π − arccos(a/(2D) − 1)
.

This means that fewer patches than nc imply extinction of the species whereas
more patches imply survival.

Now let us consider the global behavior such as extinction of the species
and global stability of a positive equilibrium of system (3). It is assumed that
fi(xi) satisfies a general logistic form, that is, for each i = 1, 2, . . . , n,

fi(0) > 0,
dfi

dxi
< 0 for xi > 0 . (5)

Define matrix A as

A = D + diag(f1(0), . . . , fn(0)) .

Note that Ar = Af = A by (5).

Theorem 2. (Lu and Takeuchi 1993) Consider (3) satisfying (5).

(i) If s(A) ≤ 0, then x = 0 is globally stable;
(ii) If s(A) > 0, then one of the following two holds:

(a) limt→Tx x(t) = ∞ for every x(0) ∈ Rn
+, or

(b) limt→∞ x(t) = x∗ > 0 for every x(0) ∈ Rn
+.
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Here, (0, Tx) is the maximal interval of existence for x(t) and x∗ is a positive
equilibrium point of system (3).

This theorem implies that x = 0 is globally stable even if s(A) = 0. Compare
it with Theorem 1. Note also that the theorem classifies the dynamical be-
havior for system (3), which was shown to be ultimately bounded from below
by Theorem 1 (ii). Note that Theorem 2 has assumption (5), which is not
supposed in Theorem 1.

Corollary 2. Consider system (4) with f(xi) = a − bxi(a > 0, b > 0),

(i) If a ≤ 2D
(
1 + cos nπ

n+1

)
, then x = 0 is globally stable;

(ii) If a > 2D
(
1 + cos nπ

n+1

)
, then system (4) possesses a globally stable

positive equilibrium point x∗.

Finally, let us consider the system described by (3) with Neumann boundary
condition, that is, with αij = 1(i, j = 1, 2, . . . , n):

ẋi = xifi(xi) +
∑
j �=i

Dij(xj − xi), i = 1, 2, . . . , n . (6)

Suppose that

(H1) All solutions of the initial value problem for (6) exist, are unique and
are continuable for all positive time;

(H2) fi(0) > 0, dfi(xi)/dxi < 0 for xi > 0 and fi(xi) < 0 as xi → +∞, i =
1, 2, . . . , n.

Theorem 3. (Takeuchi 1989) System (6) always has a positive and globally
stable equilibrium point, provided assumptions (H1) and (H2) hold.

When Dij = 0 for i, j = 1, 2, . . . , n, (6) gives the dynamics of isolated n
patches. By assumption (H2), each isolated patch has a positive and globally
stable equilibrium point. Hence, Theorem 3 implies that any diffusion cannot
change global stability of system (3). This result greatly generalizes some
previous results (cf. Kuang and Takeuchi 1994).

4.2.3 Allee effects

When the population is small, or sparse, reproduction tends to be inhibited.
The resulting phenomenon of a positive density dependence in population
growth rate at low densities (Allee et al. 1983) is known as the Allee effect.
The most obvious, and perhaps the most universal cause of the Allee effect
is the increased cost of mate finding at low densities, necessarily experienced
by biparentally reproducing organisms.

In order to determine conditions which allow the Allee effect (caused by
biparental reproduction) to conserve and create spatial heterogeneity in pop-
ulation densities, Gyllenberg and Hemminki (1997) developed a determin-
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istic model of a symmetric two-patch metapopulation. The subpopulations
are assumed to have basically independent dynamics, but their interference
can occur both by migration and competition. Let xi denote the population
density in patch i. They arrive at the metapopulation model

ẋi = β(xi)xi − µxi − γxi(xi + sxj) + D(xj − xi) , i, j = 1, 2, i �= j . (7)

The death rate µ and the migration rate D are the same for both patches.
The per capita rate of removal due to competition in patch i is assumed to
be proportional (with proportionality constant γ) to xi + sxj(j �= i). The
parameter s reflects the degree of inter-patch competition and, normally, 0 ≤
s ≤ 1. If s = 0, competition occurs only within a patch. If s > 1, inter-patch
competition is stronger than intra-patch competition, which is biologically
quite unrealistic. Competition embraces various types of negative interactions
between the subpopulations, including apparent competition. Note that if
D = 0, the model can be interpreted as a two-species competition model.
Accordingly, the between-patch competition is incorporated in the way widely
used in mathematical formulation of between-species competition, going back
to the classical work of Lotka and Volterra (Murray 1993). In turn, the special
case s = 0 is analogous to Gruntfest et al. (1997) and Amarasekare (1998).
The Allee effect is introduced by assuming β, the per capita birth rate, to
represent a function of population density.

Assume first that β(xi) = β. After rescaling of system (7), the metapop-
ulation model can be written as

ẋi = bxi − xi(xi + sxj) + D(xj − xi) , i, j = 1, 2, i �= j , (8)

where b = β − µ. System (8) can have at most four equilibria:

E0 = (0, 0), E1 = (e1, e1), E2 = (e2, e3), E3 = (e3, e2) ,

where

e1 =
b

s + 1
, e2 =

w −√
w(w + 4D)

2(1 − s)
, e3 =

w +
√

w(w + 4D)
2(1 − s)

,

w = (1 − s)(b − 2D) .

If the birth rate exceeds the death rate, i. e., if b > 0, then E0 is unstable
for all parameter values. This implies that the metapopulation will never go
extinct.

If initial population densities are unequal, two kinds of behavior are pos-
sible depending on the values of D and s. If D > b(s − 1)/2(s + 1), then the
asymmetric steady state E2 and E3 do not exist and the symmetric equi-
librium E1 is stable. Thus, any initial differences between the densities of
subpopulations will disappear and we have symmetric coexistence.

Note, however, that the situation is more complicated if the inter-patch
competition is stronger than the intra-patch competition, s > 1, a case of
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questionable biological relevance. Now, if the migration rate is sufficiently
weak, D < b(s− 1)/2(s + 1), the asymmetric equilibria E2 and E3 exist and
are stable, and the symmetric equilibrium E1 is unstable.

For biparental reproduction, we assume β(xi) = βxi/(H + xi). To facili-
tate the analysis, we reduce the number of parameters of the system (7) by
scaling. System (7) becomes

ẋi =
βx2

i

xi + 1
− xi − γxi(xi + sxj) + D(xj − xi) , i, j = 1, 2, i �= j . (9)

At most, three symmetric equilibria exist:

E0 = (0, 0) , E1 = (z1, z1) , E2 = (z2, z2) ,

where

z1 =
ᾱ −√

ᾱ2 − 4γ̄

2γ̄
, z2 =

ᾱ +
√

ᾱ2 − 4γ̄

2γ̄
,

γ̄ = γ(s + 1) , ᾱ = β − γ̄ − 1 .

The equilibrium E0 is asymptotically stable and E1 is unstable for all
positive parameter values. The equilibrium E2 is stable if, and only if D >
h(z2) = 1

2 [βz2(z2 +2)/(z2 +1)2−1−2γz2]. Gyllenberg and Hemminki (1997)
have shown that asymmetric coexistence is possible.

The stability of the equilibrium E0 implies that the metapopulation will
go extinct if the population densities in both patches are sufficiently low. This
result differs from the uniparental case.

4.2.4 Periodic system

So far, we have assumed that every population lives in a suitable local habitat,
in the sense that the population persists in its local patch in the absence of
emigration.

In nature, however, this is not always the case for the actual living envi-
ronment of endangered species. Because of ecological effects of human activ-
ities and industry, e. g., the location of manufacturing industries, pollution
of the atmosphere, rivers, and soil, ever more habitats have been broken up
into patches and many of these patches are polluted. In some patches, even
in all patches, the species will go extinct without a contribution from other
patches, and hence the species live in a weak patchy environment. The living
environments of some endangered and rare species such as the giant panda
(Xun 1994; Yange 1994; Yucun 1994) and Alligator sinensis (Zhou 1997) are
some convincing examples.

In order to protect endangered and rare species, we have to consider
the effects of habitat fragmentation and diffusion on the permanence and
extinction of single and multiple species living in weak environments. The
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present section focuses on the following interesting problem: to what extent
does dispersal lead to permanence or extinction of endangered single species
which can not persist within isolated patches. The research on this problem
firstly appeared in 1998 (see Cui and Chen 1998). Then, Teng and Lu (2001)
and Cui and Takeuchi (2004) have recently further investigated this aspect.

Consider

ẋi = xi[ai(t) − bi(t)xi] +
n∑

j=1

(1 − λij(t))Dij(t)xj −
n∑

j=1

Dji(t)xi ,

i = 1, 2, . . . , n ,

(10)

where xi (i = 1, 2, . . . , n) denotes the species number in patch i. bi(t), ai(t),
λij(t) and Dij(t) are all continuous functions of time t ∈ (−∞, +∞) and are
assumed to be periodic with a common period ω > 0. ai(t) is the intrinsic
growth rate for species in patch i; bi(t) represents the self-inhibition coefficient
and is assumed to be positive for 0 ≤ t < ω; λij(t) expresses the loss for the
species in the process of movement from patch j to patch i and satisfies
0 ≤ λij(t) ≤ 1, and Dij(t) is the dispersal non-negative coefficient of the
species from patch j to patch i.

Let C denote the space of all bounded continuous functions f : R → R,
C0

+ is the set of non-negative f ∈ C and C+ is the set of all f ∈ C, such
that f is bounded below by a positive constant. Given f ∈ C, we denote

fM = sup
t≥0

f(t) , fL = inf
t≥0

f(t)

and define the lower average AL(f) and upper average AM (f) of f by

AL(f) = lim inf
r→∞,t−s≥r

(t − s)−1

∫ t

s

f(τ)dτ

and

AM (f) = lim sup
r→∞,t−s≥r

(t − s)−1

∫ t

s

f(τ)dτ

respectively. If f ∈ C is ω-periodic, then the average Aω(f) of f must be
equal to AL(f) and AM (f), that is

Aω(f) = AL(f) = AM (f) = ω−1

∫ ω

0

f(t)dt .

In general, the system of differential equations

ẋ = F (t, x) , x ∈ Rn

is said to be permanent if there exists a compact set K in the interior of
Rn

+ = {(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n}, such that all solutions
starting in the interior of Rn

+ ultimately enter K and remain in it.



60 Jingan Cui and Yasuhiro Takeuchi

Theorem 4. (Cui and Takeuchi 2005) Assume that there is a non-empty
subset I of N = {1, 2, . . . , n} such that

DL
ji > 0(i ∈ I, j ∈ I, i �= j) , Aω(φI(t)) > 0 , (11)

where

φI(t) = min
i∈I

⎧⎨⎩ai(t) −
∑

j∈N−I

Dji(t) −
∑
j∈I

λji(t)Dji(t)

⎫⎬⎭ , (12)

and, for every j ∈ N − I, there exists at least an integer i0 ∈ I such that
DL

ji0 > 0. Then, (10) is permanent.

Note that system (10) includes the possibility of loss for the species during
its dispersion among patches. The system considered in Cui et al. (2005)
assumed “safe” dispersion (that is, λji(t) = 0 for any i, j ∈ N).

Let us consider the biological meaning of Theorem 4. Remember that
ai(t) is the intrinsic growth rate for the species in patch i and Dji(t) is the
diffusion coefficient for the species from patch i to patch j. Hence, ai(t) −∑

j∈N−I Dji(t)−
∑

j∈I λji(t)Dji(t) represents the net increasing rate for the
species in patch i (that is, intrinsic growth in patch i minus outflow from
patch i to patch j ∈ N − I minus the loss for the species in the process of
movement among patches i ∈ I). The assumption Aω(φI(t)) > 0 implies that
the above rate is strictly positive on average. Note that we do not require
that φI(t) > 0 for all t (0 ≤ t < ω), that is, ai(t) can be negative at some
time durations in 0 ≤ t < ω. We call such a patch belonging to I “food-
rich”. On the contrary, the patch j ∈ N − I is called “food-poor”. Note
that φI(t) is defined by ai(t) −

∑
j∈N−I Dji(t) −

∑
j∈I λji(t)Dji(t), not by

ai(t) −
∑

j∈N Dji(t) −
∑

j∈N λji(t)Dji(t). Hence, patch i is food-rich in the
sense that it can provide outflow only for food-poor patch j ∈ N − I, not
necessarily to all patchs j ∈ N .

To be permanent for (10), it is sufficient (besides the existence of food-rich
patches i ∈ I) that each food-rich patch be connected with all other patches
in I (DL

ji > 0(i ∈ I, j ∈ I, i �= j)) and each food-poor patch be connected
with at least one food-rich patch (DL

ji0 > 0(i0 ∈ I, j ∈ N − I)).
According to (11), (12) and Theorem 4, suitable dispersal between “food-

rich” and other patches implies permanence. Note that we do not need to
take care of the dispersal movement among the “food-poor” patches. This
observation may be useful in planning and controlling ecosystems.

Theorem 5. (Cui and Takeuchi 2004) Assume that there is a non-empty
subset I of N such that

DL
ji > 0(i ∈ N, j ∈ N, i �= j) , Aω(φI(t)) > 0 , (13)

then (10) has a unique positive ω-periodic solution (x∗
1(t), x

∗
2(t), . . . , x

∗
n(t))

which is globally asymptotically stable.
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The detailed proof of the theorems can be found in Cui and Takeuchi
(2004). Note that for the global asymptotic stability, we assume in Theorem 5
that all patches are connected by dispersion (DL

ij > 0 required for all i, j ∈ N ,
not only for i, j ∈ I).

Here, we focus on the difference between systems (6) and (10). Note that
ai(t) is the intrinsic growth rate for the species in patch i in system (10).
ai(t) can become negative at some time durations in 0 ≤ t < ω because the
natural birth rate may be less than the natural death rate in some seasons.
On the other hand, in system (6), fi(0), the intrinsic growth rate for the
species in patch i, is always positive. So, (10) can be used to describe the
poor local living environment of some endangered and rare species but (6)
can not be used. Equation (6) can be used only to describe the suitable local
living environment for some species.

The dispersal term in (10) is different from that in system (6). In fact,
in system (6) the individuals can move only from high-density patch to low-
density patch, but there is no such unreasonable restrictive condition in sys-
tem (10).

Example. Consider the following system with five isolated, discrete patches

ẋ1 = x1(1 + sin t − x1) ,

ẋ2 = x2(1/2 + sin t − x2) ,

ẋ3 = x3(sin t − x3) ,

ẋ4 = x4(−1 + sin t − x4) ,

ẋ5 = x5(−1 + cos t − x5) .

(14)

In isolated patches 3, 4 and 5, the local species will go extinct without the
contribution from patches 1 and 2.

Now, let us apply Theorem 4 to the patches, some of which are poor
living environments, and obtain schemes to ensure permanence of all patches
by connecting them suitably.

Questions. Can we choose connective corridors to rescue some endangered
local species from extinction? If we can, how many kinds of schemes can be
chosen?

Scheme 1. Let I = {1}. Connecting patch 1 with the other four patches, we
have the following model:

ẋ1 = x1(1 + sin t − x1) + 1/4D(t)(x2 + x3 + x4 + x5) − D(t)x1 ,

ẋ2 = x2(1/2 + sin t − x2) + 1/4D(t)x1 − 1/4D(t)x2 ,

ẋ3 = x3(sin t − x3) + 1/4D(t)x1 − 1/4D(t)x3 ,

ẋ4 = x4(−1 + sin t − x4) + 1/4D(t)x1 − 1/4D(t)x4 ,

ẋ5 = x5(−1 + cos t − x4) + 1/4D(t)x1 − 1/4D(t)x5 .

(15)

If Aω(D(t)) < 1, then (15) is permanent from Theorem 4.
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Scheme 2. Let I = {2}. Connecting patch 2 with the other four patches, we
have the following model:

ẋ1 = x1(1 + sin t − x1) + 1/4D(t)x2 − 1/4D(t)x1 ,

ẋ2 = x2(1/2 + sin t − x2) + 1/4D(t)(x1 + x3 + x4 + x5) − D(t)x2 ,

ẋ3 = x3(sin t − x3) + 1/4D(t)x2 − 1/4D(t)x3 ,

ẋ4 = x4(−1 + sin t − x4) + 1/4D(t)x2 − 1/4D(t)x4 ,

ẋ5 = x5(−1 + cos t − x4) + 1/4D(t)x2 − 1/4D(t)x5 .

(16)

If Aω(D(t)) < 1/2, then (16) is permanent from Theorem 4.

Scheme 3. Let I = {1, 2}. Connecting patch 1 with patches 2, 3 and 4, patch 2
with patch 5, we have the following model:

ẋ1 = x1(1 + sin t − x1) + 1/4D(t)(x2 + x3 + x4) − 3/4D(t)x1 ,

ẋ2 = x2(1/2 + sin t − x2) + 1/4D(t)(x1 + x5) − 1/2D(t)x2 ,

ẋ3 = x3(sin t − x3) + 1/4D(t)x1 − 1/4D(t)x3 ,

ẋ4 = x4(−1 + sin t − x4) + 1/4D(t)x1 − 1/4D(t)x4 ,

ẋ5 = x5(−1 + cos t − x4) + 1/4D(t)x2 − 1/4D(t)x5 .

(17)

In this case

φI(t) = min {1 + sin t − 1/2D(t) , 1/2 + sin t − 1/4D(t)} .

If D(t) < 2 for 0 ≤ t < ω, then (17) is permanent from Theorem 4.
From the above discussion, we know that some suitable connections be-

tween food-rich patches and food-poor ones can make the system permanent.

4.2.5 Dispersal delay

System (10) describes a time-dependent single-species model with a homo-
geneous spatial patchy environment, and the species instantaneous dispersal
among the patches can make the model permanent if there exist “food-rich”
patches with suitable connection to all other patches. From a biological point
of view, however, it can be argued that the species would require some time
to disperse between patches (Y. Takeuchi et al. preprint).

We consider the following single-species system with dispersal time delay
in a patchy environment:

ẋi(t) = xi(t)[ai(t) − bi(t)xi(t)] +
n∑

j=1

(Dij(t − τ)xj(t − τ) − Dji(t)xi(t)) ,

i = 1, 2, . . . , n ,
(18)

where xi(i = 1, 2, . . . , n) denotes the species in patch i. ai(t), bi(t) and Dij(t)
are all bounded continuous functions of time t ∈ R. τ is a positive constant,
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which represents the time for the species to disperse between two patches.
ai(t) is the intrinsic growth rate for the species in patch i; bi(t) represents
the self-inhibition coefficient and is assumed to be positive; and Dij(t) is the
dispersal coefficient of the species from patch j to patch i, Dij(t) ≥ 0, Dii(t) =
0, and is supposed to be bounded above.

Note that in model (18) with τ = 0, the dispersal term Dij(t)xj(t) −
Dji(t)xi(t) is different from the commonly used dispersal term Dij(xj(t) −
xi(t)) (see Amarasekare 1998; Berreta and Takeuchi 1987, 1988; Cui et al.
2000; Gruntfest et al. 1997; Gyllenberg and Hemminiki 1997; Hanski 1999;
Hastings 1983; Holt 1985; Lu and Takeuci 1993; Mahbuba and Chen 1994;
Namba et al. 1999; Takeuchi 1996, etc.). We adopt a new type of dispersal in
order to describe another kind of dispersal movement: there is neither cost
nor gain during the dispersal process.

Denote by CB the Banach space of continuous functions ϕ(t) : [−τ, 0] →
Rn

+ = {x ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n} with the norm ‖ ϕ ‖= sup−τ≤t≤0

| ϕ(t) |. We denote the phase space of system (18) to be the Banach space CB.
By the fundamental theory of functional differential equations, we know that
for any ϕ ∈ CB and ϕ(0) > 0, system (18) has a unique non-negative solution
(x1(t, ϕ), x2(t, ϕ), . . . , xn(t, ϕ)) starting at t = 0 with the initial function ϕ.

Now, we suppose that (18) is ultimately bounded (this is true from The-
orem 6 given later). We say that system (18) is partially persistent if there
exist some sets I ⊂ N = {1, 2, . . . , n} such that lim inft→∞ VI(t, ϕ) > 0
for all solutions, where VI(t, ϕ) =

∑
i∈I xi(t, ϕ). Further, system (18) is

partially permanent if there exist some sets I ⊂ N and a positive con-
stant δ such that lim inft→∞ VI(t, ϕ) > δ for all solutions. System (18) is
called permanent if there are positive constants δi, i = 1, 2, . . . , n such that
lim inft→∞ xi(t, ϕ) > δi for all solutions.

We now state the main results with respect to model (18).

Theorem 6. Y. Takeuchi et al. (2006) There exists a positive constant M ,
which is independent of any solution (x1(t, ϕ), x2(t, ϕ), . . . , xn(t, ϕ)) of (18)
with positive initial conditions, such that

lim sup
t→∞

xi(t, ϕ) ≤ M, i = 1, 2, . . . , n . (19)

Theorem 6 ensures that the population in each patch is ultimately bounded,
which is a prerequisite property for a population model.

Theorem 7. Y. Takeuchi et al. (2006)

(A) If there is a positive constant m such that lim inf
t→∞ xi(t, ϕ) > m for some

i ∈ N and for any ϕ, then there is a positive constant ρ, which is
independent of any positive solution of (18), such that lim inf

t→∞ xj(t, ϕ) >

ρ provided DL
ji > 0 (j �= i).

(B) Assume that there are some i ∈ N such that lim inf
t→∞ xi(t, ϕ) > 0 for any

ϕ, then lim inf
t→∞ xj(t, ϕ) > 0, provided DL

ji > 0 (j �= i).
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(C) Assume that there are some i ∈ N such that lim sup
t→∞

xi(t, ϕ) > 0 for any

ϕ, then lim sup
t→∞

xj(t, ϕ) > 0, provided DL
ji > 0 (j �= i).

Theorem 7 (A) (or (B)) says that if the species in some patch i is survival
in the sense of lim inf

t→∞ xi(t, ϕ) > m (or lim inf
t→∞ xi(t, ϕ) > 0), then the species

in all the patches j connected always to the patch i (DL
ji > 0 (j �= i))

are also survival in the same sense. This is natural from a biological point
of view, since the model describes the single species dispersal. (C) ensures
that the species in all the patches connected with a survival patch i, in the
sense of lim sup

t→∞
xi(t, ϕ) > 0, are also survival in the same sense. We note no

restriction on time delay in (A) through (C). This means that the time delay
of the dispersal process has a harmless effect on survivability for the system.

The following two theorems give sufficient conditions for partial perma-
nence, permanence and partial persistence of the model.

Theorem 8. Y. Takeuchi et al. (2006)

(A) If there are some sets I ⊂ N such that

AL(φI(t)) > 0, φI(t) = min
i∈I

⎧⎨⎩ai(t) −
∑

j∈N−I

Dji(t)

⎫⎬⎭ , (20)

then there exists a positive constant δ such that

lim inf
t→∞ VI(t, ϕ) > δ

for sufficiently small Dji(t)(i, j ∈ I, i �= j) in the sense that

AM (ψI(t)) < AL(φI(t)) , (21)

where ψI(t) = max
i∈I

⎧⎨⎩∑
j∈I

Dji(t)

⎫⎬⎭.

(B) If further there exists at least one i ∈ I such that DL
ki > 0 for every

given k ∈ N − I and Dji(t) > 0 (i, j ∈ I, i �= j), then (18) is permanent,
that is, there exists δi > 0 such that

lim inf
t→∞ xi(t, ϕ) > δi , i = 1, 2, . . . , n . (22)

Conditions (20) and (21) guarantee the partial permanence of the model.
First, let us consider the biological meaning of (20). Recall that ai(t) is
the intrinsic growth rate for the species in patch i and Dji(t) represents
the dispersion coefficient for the species from patch i to patch j. Hence,
ai(t) −

∑
j∈N−I Dji(t) is the net increasing rate for the species in patch i.
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The assumption AL(φI(t)) > 0 implies that the net increasing rate is strictly
positive in the lower average. We call such patches belonging to class I “food-
rich” again. Conversely, patches in N − I are called “food-poor”. (20) means
that there exist some food-rich patches in the system. Note that (20) is iden-
tical with (11) (now λji(t) = 0 for any i, j ∈ N in (18)).

Now consider (21).
∑

j∈I Dji(t) represents the summation of dispersion
from some patch i to any other patches j ∈ I, that is, dispersion among food-
rich patches. (21) implies that the net increasing rate for the species belonging
to food-rich patches exceeds dispersion among them in the lower average, in
the sense that AL(φI(t) − ψI(t)) > 0. Compared with Theorem 4 that only
the existence of food-rich patches is sufficient for the partial permanence
of system (18) without the dispersion time delay (i. e., τ = 0), (21) is an
additional condition to show partial permanence for (18) with the dispersion
time delay. From a biological point of view, however, it may be natural for
the species in food-rich patches to have small dispersion among each other
because they do not need a high frequency of dispersion to other patches to
get more food.

Theorem 8 (B) implies that partial permanence ensures permanence if
each food-poor patch is connected to at least one food-rich patch in the sense
DL

ki > 0 for k ∈ N − I, i ∈ I, and if each pair in the food-rich patches
is connected. The former requirement may be natural for the survival of
the species in food-poor patches. On the other hand, the latter requirement
needs some explanation. (20) and (21) do not necessarily imply (22) for each
patch in food-rich patches, since the two conditions ensure only for partial
permanence, and there may exist a patch where the species goes extinct even
in food-rich patches.

Next, we consider the partial persistence of system (18). Denote

bI(t) = min
i∈I

bi(t) , b̄I(t) = max
i∈I

bi(t), φ̄I(t) = max
i∈I

⎧⎨⎩ai(t) −
∑

j∈N−I

Dji(t)

⎫⎬⎭
Theorem 9. Y. Takeuchi et al. (2006) Assume that φ̄I(t)/bI(t) and b̄I(t)
are bounded above. Moreover, assume that

lim inf
t→∞

φI(t)
b̄I(t)

> 0 , lim inf
t→∞ b̄I(t) > 0 .

Then lim inf
t→∞ VI(t, ϕ) > 0, if the following (i) or (ii) holds:

(i) lim inf
t→∞

φI(t)
b̄I(t)

> lim sup
t→∞

ψI(t),

(ii) lim inf
t→∞

φI(t)
b̄I(t)

≤ lim sup
t→∞

ψI(t) and τ lim sup
t→∞

ψI(t) < 1.

Boundedness for the function φ̄I(t)/bI(t) and b̄I(t) is reasonable for biologi-
cal systems. Conditions lim inft→∞ φI(t)/b̄I(t) > 0, lim inft→∞ b̄I(t) > 0 im-
ply (20). Note that condition (i) in Theorem 9 is essentially the same as (21)
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if b̄(t) is ignored. Hence, for (18), the possibility of partial persistence is en-
hanced when the self-inhibition of the species decreases, that is, when the
carrying capacity of food-rich patches is increased. This may be reasonable
from the biological viewpoint. Theorem 9 (ii) gives the possibility of par-
tial persistence for (18) when the dispersion of the species among food-rich
patches is large. Remember that we require small dispersion in Theorem 8
for partial permanence. Theorem 9 (ii) says that, for large dispersion, the
time τ necessary for the movement between food-rich patches must be small
in the sense τ lim supt→∞ ψI(t) < 1.

4.2.6 Age-structured model

In this section, we shall study models for populations structured by age. Cui
et al. (2000) have considered an age-structured model for Rana chensinensis,
which occurs mainly in the north and east of China, particularly in Jilin, and
is a well-known rare species that has an important medical value. Normally,
the adults of R. chensinensis live in forests, and they migrate to water fields
for reproduction, because water fields or moist habitats are necessary for the
growth of young R. chensinensis into mature individuals.

Recently, because of ecological effects of human activities and industry,
e. g., the location of manufacturing industries, and the pollution of rivers, ever
more living habitats of R. chensinensis have been disrupted into patches and
breeding areas have been damaged in some of these patches. Finally, in these
patches, adult R. chensinensis will become extinct without contributions
from other patches. In fact, many endangered and rare species – e. g., the
Chinese sturgeon (Deng et al. 1997), Alligator sinesis (Zhou 1997), Nipponia
nippon (Wang 1997) – face analogous problems because of the destruction
and fragmentation of their habitats. In order to protect these species, Cui et
al. (2000) put forward the following problem.

Can the local extinction of species in some patches be avoided by building
corridors between the patches and controlling the dispersal rates?

To solve this problem, Cui et al. (2000) suppose that the ecosystem is
composed of two isolated patches and occupied by a single species of which the
individual members have a life history that takes them through two stages,
the immature and the mature. Further, the breeding areas are damaged in
patch 2. Let Ii(t) and Mi(t) (i = 1, 2) denote the density of the immature
and mature population in the i-th patch, respectively. To derive our model
equations, the following assumptions are made.

A. The birth rate into the immature population in patch 1 is proportional
to the existing mature population with proportionality constant a.

B. The death rate of the immature population in patch 1 is proportional
both to the existing immature population and to the square of this with
proportionality constants c and b, respectively.
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C. The death rate of the mature population in the i-th patch is of a logistic
nature, i. e., proportional to the square of the population with propor-
tionality constant βi > 0, i = 1, 2.

D. The rate of transition from immature individuals to mature individuals
is proportional to the existing immature population with proportionality
constant α.
If some corridors between the two patches are built, then the mature
individuals can move from one patch to another. Then, Cui et al. (2000)
assume further:

E. The net exchange of the mature population from patch j to patch i is
proportional to the difference of the concentrations Mj(t) − Mi(t) with
proportionality constants Dij ≥ 0, i, j = 1, 2, i �= j.

Then, the following dispersal model of single-species growth with non-
delayed stage structure is obtained by

İ1(t) = aM1(t) − bI2
1 (t) − cI1(t) − αI1(t) ,

Ṁ1(t) = αI1(t) − β1M
2
1 (t) + D12(M2(t) − M1(t)) ,

Ṁ2(t) = −β2M
2
2 (t) + D21(M1(t) − M2(t)) .

(23)

If the populations’ physical environment fluctuates periodically, then the
coefficients in system (23) are all positive and periodic functions with a com-
mon period ω. Hence, Cui et al. (2000) obtain the following system corre-
sponding to system (23).

İ1(t) = a(t)M1(t) − b(t)I2
1 (t) − c(t)I1(t) − α(t)I1(t) ,

Ṁ1(t) = α(t)I1(t) − β1(t)M2
1 (t) + D12(t)(M2(t) − M1(t)) ,

Ṁ2(t) = −β2(t)M2
2 (t) + D21(t)(M1(t) − M2(t)) .

(24)

The authors (Cui et al. 2000) assume that these functions a(t), b(t), c(t),
α(t), β1(t), β2(t), D12(t) and D21(t) in system (24) are all positive and contin-
uous periodic functions with common period ω. Then, we are able to analyze
the effect of dispersal on the species survival in system (24), where there are
two cases to consider:

Case A. Without dispersal. That is, D12 = D21 = 0 for system (23) and
D12(t) ≡ D21(t) ≡ 0 for all t ∈ [0, ω] in system (24).

Then, systems (23), (24) become the following, respectively.

İ1(t) = aM1(t) − bI2
1 (t) − cI1(t) − αI1(t) ,

Ṁ1(t) = αI1(t) − β1M
2
1 (t) , (25)

Ṁ2(t) = −β2M
2
2 (t) .
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İ1(t) = a(t)M1(t) − b(t)I2
1 (t) − c(t)I1(t) − α(t)I1(t) ,

Ṁ1(t) = α(t)I1(t) − β1(t)M2
1 (t) , (26)

Ṁ2(t) = −β2(t)M2
2 (t) .

Obviously, M2(t) → 0 as t → ∞ in both systems (25) and (26). I1(t), M1(t)
for system (25) will globally converge some positive constants, ω-periodic
solution, respectively (Theorem 4 in Cui et al. 2000).

Case B. With dispersal.
Two results are obtained for this case (Cui et al. (2000), Theorem 2,

Theorem 6), as follows.

Theorem 10. Cui et al. (2000) System (23) has a unique positive equilibrium
and all trajectories in R3

+ \ {0} tend to it.

Theorem 11. Cui et al. (2000) If DM
12 (cM + αM ) − aLαL < 0, then sys-

tem (24) has a unique ω-periodic solution which is globally asymptotically
stable.

By Theorem 10 and Theorem 11, we know the following: any dispersal enables
the species in system (23) to avoid future extinction; in system (24), prop-
erly controlling the dispersal coefficient D12(t) will also lead to permanence
of the species. Therefore, the dispersal of the species between the patches
that had been isolated from each other will be effective for this species to en-
sure permanence. This shows that, by building corridors between the isolated
patches, as done in system (23), (24), to allow the adults species to move from
one patch to another for reproduction and other behavior, and by controlling
the dispersal rates between the patches, we can avoid the local extinction of
species in some patches. Hence, corridors between patches and controlling of
dispersal rates play an important role in population conservation.

4.2.7 Age-structured model with time delay

Lu and Chen (2002) construct and analyze a fish species age-structured model
with diffusion. Fish is a major renewable resource for the human commu-
nity. Along with developments in science technology, catches of fish have
increased. For example, in China traditional fishing used mainly backward
manual production tools and was confined to inshore waters, but now the
gradual improvement in the technical efficiency of fishing gear and vessels
has radically changed the fishing scenario. With the advent of sophisticated
fishing instruments, the fishing grounds have been expanded from inshore to
offshore waters to meet the ever-growing human demand, and offshore fishing
has even become more intensive than that inshore. It appears that some im-
mature fish is being caught, which would affect the resilience of fish resources
in the future, negatively impacting on environmental sustainablility. It has
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become imperative to ensure scientific management of exploitation of biolog-
ical resources. Thus, an appropriate policy should be put forward to ensure
the sustainability of fish prodution. In fact, some relevant measurements have
already been taken in China. For instance, the mesh used for fishing needs
to meet specified standards in order to avoid immature populations being
harvested; fishing activity is restricted to some months of the year to avoid
adversely affecting the reproduction and growth of fish. Therefore, it is neces-
sary to attempt modelling the exploitation of inshore-offshore fish with only
a mature population harvested.

Clark (1990) dealt with two preliminary models on an inshore-offshore
fishery. Pradhan and Chandhuri (1999) investigated an explicit inshore-
offshore fishery model, of which the coupling between the inshore and offshore
sub-populations of the fish species took place through diffusion from the off-
shore to the inshore area, and the inshore area was the breeding place. In Lu
and Chen (2002), it is assumed that the fish species can breed inshore well as
offshore, but the immature individuals can not disperse between the inshore
and offshore because they are too weak. The mature fish is harvested both
inshore and offshore while it is forbidden to fish the immature. Further, the
authors (Lu and Chen 2002) find that the physical environment for the fish
population fluctuates periodically due to seasonal effects, long-term changes
in climate, and so on. Based on this assumption, a mathematical model is
put forward and investigated, and a sustainable harvest policy is formulated.

Let N(t) denote a given population at time t, then the population number
that survives from t1 to t2 is

N(t2) = N(t1)e−γ(t2−t1) ,

where γ is the death rate. Let xi1 denote the respective immature biomass
of the inshore (i = 1) or the offshore (i = 2) sub-population of the same fish
at time t(> 0); xi2 denotes the mature biomass of those at time t. To derive
our model equations, the following assumptions are made.

(H1) The birth rate of the immature population in the inshore (offshore)
is proportional to the existing mature population with proportionality
constant α1(α2) > 0. The death rate of the immature population in
the inshore (offshore) is proportional to the immature population with
proportionality constant γ1(γ2) > 0.

(H2) The immature born at time t − τ that survive to time t exit from the
immature population and enter the mature population.

(H3) The death rate of the mature population in the inshore (offshore) is of
logistic mature, i. e., proportional to the square of the population with
proportionality constant β1(β2) > 0.

(H4) The net exchange of the mature population from the offshore (inshore)
area to the inshore (offshore) area is proportional to the difference of
the concentrations xi2(t)−xj2(t) (xj2(t)−xi2(t)) with proportionality
constants Dji(Dij) ≥ 0.
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(H5) Selective harvesting of the two sub-populations is considered on the
basis of the CPUE (catch-per-unit-effect) hypothesis (Clark, 1990).

Under the above assumptions, Lu et al. (2002) propose a model to describe
the inshore-offshore fishing activity as follows:

ẋi1(t) = αixi2(t) − γixi1(t) − αi e−γiτxi2(t − τ) ,

ẋi2(t) = αi e−γiτxi2(t − τ) − βix
2
i2(t) + Dij(xj2(t) − xi2(t)) − Eiqixi(t) ,

xij(t) = φij(t) ≥ 0 , t ∈ [−τ, 0] , φij(0) > 0 , i, j = 1, 2 ,
(27)

where αi, βi, γi, Dij , τ have the definitions as above in (H1) − (H4). E1 is
the harvesting effect for the inshore mature population, E2 for the offshore.
q1 is the catchibility coefficient of the inshore population, q2 of the offshore.
φ12(t) (φ22(t)) is the given initial mature population in the inshore (offshore),
and φ11(t) (φ21(t)) is the derived initial immature population in the inshore
(offshore). For continuity of initial conditions, one requires

xi1(0) =
∫ 0

−τ

αixi2(s)eγis ds . (28)

If the population’s physical environment fluctuates periodically, then the
coefficients in system (27) are all positive and periodic functions with a com-
mon period ω. Then, Lu and Chen (2002) obtain the following system (29).

ẋi1(t) = αi(t)xi2(t) − γi(t)xi1(t) − αi(t − τ)e−
R t

t−τ
γi(s)dsxi2(t − τ) ,

ẋi2(t) = αi(t − τ)e−
R

t
t−τ

γi(s)dsxi2(t − τ) − βi(t)x2
i2(t)

+ Dij(t)(xj2(t) − xi2(t)) − Ei(t)qi(t)xi2(t) ,

xij(t) = φij(t) ≥ 0 , t ∈ [−τ, 0] , φij(0) > 0 , i, j = 1, 2 .

(29)

Obviously, exp(− ∫ t

t−τ
γi(s)ds) is also a periodic function with period ω.

φ12(t)(φ22(t)) is the initial mature population in the inshore (offshore) area,
and φ11(t)(φ21(t)) is the derived initial immature population in those areas.
For continuity of initial conditions, it is required that

xi1(0) =
∫ 0

−τ

αi(s)xi2(s)e
R

s
0 γi(θ)dθ ds . (30)

Lu and Chen (2002) obtain:

Theorem 12. If αi(t), γi(t), βi(t), Ei(t), qi(t) are continuous positive peri-
odic functions with period ω, EM

i qM
i < αL

i e−rM
i

i , then system (29) has
a unique positive ω-periodic solution which attracts all positive solutions.

The results in Lu and Chen (in press) illustrate that the fish production
would be sustainable if the harvesting were controlled suitably and only for
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the mature fish both in inshore and offshore areas. This is a benefit for the
policy of sustainability and development. Hence, by prohibiting the harvest-
ing of immature fish species, and through the dispersal of mature species
between inshore and offshore areas and control of the harvesting effort, the
continuously fluctuating fish environment would be maintained, in the sense
that all species would be permanent both in inshore and offshore areas.

4.3 Predator-prey system

Let us now consider predator-prey systems with diffusion. These systems have
been considered by many authors (for example, Cui and Chen 2001; Cui and
Takeuchi to appear; Freedman and Waltman 1977; Holt 1985; Kuang and
Takeuchi 1994; Namba et al. 1999; Song and Chen 1998; Takeuchi 1996; Xu
and Chen 2001).

4.3.1 Autonomous predator-prey system

Consider a model with barriers only for prey dispersion (Freedman et al.
1977).

ẋi = xigi(xi) − ypi(xi) − εihi(xi) +
n∑

j=1,j �=i

πjiεjhj(xj) ,

ẏ = y[−s(y) +
n∑

i=1

cipi(xi)] , i = 1, . . . , n .

(31)

Here, xi(t) represents the prey population in the i-th patch for i = 1, . . . , n.
The barriers are considered only as far as the dispersion of the prey population
is considered. The predator population has no barriers between the patches,
and y(t) is the total predator population for all n patches.

gi(xi) is the specific growth rate for the prey population in the i-th patch.
The gi(xi) is assumed to be a decreasing function of xi, eventually becoming
negative, since the i-th patch can support only a finite population due to
limited resources. That is,

(P1) gi(0) > 0, dgi(xi)/dxi < 0; there is a Ki > 0 such that gi(Ki) = 0, i =
1, . . . , n.
pi(xi) is the predator functional response of the predator population
to the prey in the i-th patch. Since the predator functional response is
an increasing function of prey numbers, we assume that

(P2) pi(0) = 0, dpi(xi)/dxi > 0, i = 1, . . . , n.
hi(xi) represents the pressure or need for the prey population to leave
the i-th patch and seek another patch in the environment. Clearly, the
pressure to disperse increases with increasing population size. Hence,
we assume that
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(P3) hi(0) = 0, ηi ≥ dhi(xi)/dxi ≥ dhi(0)/dxi > 0, i = 1, . . . , n.
εi(i = 1, . . . , n) is an inverse barrier strength. If εi = 0, then the prey
population may not leave the i-th patch.
πji is the probability that a given member of the prey population,
having left the j-th patch, will arrive safely at the i-th patch. Clearly,

0 ≤ πji ≤ 1,

n∑
j=1,j �=i

πji ≤ 1, (i, j = 1, . . . , n; i �= j) .

s(y) is the density-dependent death rate of the predator in the absence
of prey. Since this is likely to be an increasing function of y (when food
is scarce, large populations will compete more rigorously for the food),
we assume that

(P4) s(0) > 0, ds/dy ≥ 0.
ci is the conversion ratio of prey into predator.
Finally, we assume the following:

(P5) All functions are sufficiently smooth, so that solutions to initial value
problems of system (31) exist, are unique and are continuable for all
t > 0.
Let

εi = αiε(αi > 0) , πii = −1 , πji �= 0 , i, j = 1, . . . , n .

System (31) becomes

ẋi = xigi(xi) − ypi(xi) + ε
n∑

j=1

πjiαjhj(xj) ,

ẏ = y[−s(y) +
n∑

i=1

cipi(xi)] , i = 1, . . . , n .

(32)

Let us first consider equilibrium points of (32). The origin, E0 =
(0, . . . , 0), is clearly an equilibrium. There may be an equilibrium
in the positive x subspace, that is, of the form Ē = (x̄1, . . . , x̄n; 0),
where x̄i > 0 (i = 1, . . . , n). Note that Ē is a function of ε and
Ē = (K1, . . . , Kn; 0) at ε = 0. Ē and E0 are the only possible equilibria
with y = 0. There may exist a positive equilibrium point.

Theorem 13. (Freedman and Waltman 1977) The Ē exists for ε satisfying

0 ≤ ε ≤ min(gi(0)/αi) , i = 1, . . . , n . (33)

Theorem 14. (Freedman and Waltman 1977) Suppose that Ē does not exist.
Then

lim
t→∞xi(t) = 0 , i = 1, . . . , n , lim

t→∞ y(t) = 0
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Theorem 15. (Freedman and Waltman 1977) Let Ē exist uniquely. Further,
let E = (x̄1, . . . , x̄n) be a globally stable equilibrium point of the following
subsystem of (32):

ẋi = xigi(xi) − εαihj(xi) + ε

n∑
j=1,j �=i

πjiαjhj(xj) . (34)

Define

d(ε) = −s(0) +
n∑

i=1

cipi(x̄i(ε)) .

If d(ε) < 0, then limt→∞ xi(t) = x̄i for i = 1, . . . , n, and limt→∞ y(t) = 0.

Theorem 16. (Freedman and Waltman 1977) Let E exist and be globally
stable in intRn

+ with respect to (34). Then, system (32) is persistent, provided
d(ε) > 0.

4.3.2 Time-dependent predator-prey system

Consider the following periodic system

ẋ1 = x1[a1(t) − b1(t)x1 − c1(t)y] + D12(t)x2 − D21(t)x1

ẋ2 = x2[a2(t) − b2(t)x2] + D21(t)x1 − D12(t)x2

ẏ = y[−d(t) + e(t)x1 − f(t)y].
(35)

Here, x1 and x2 are the density of the prey in patch 1 and in patch 2, respec-
tively, and y represents the density of the predator in patch 1. All coefficients
in (35) are ω-periodic and continuous for t ≥ 0, b1(t), b2(t), f(t), D12(t) and
D21(t) are all positive, and d(t), a1(t), c1(t), e(t) are non-negative.

For (35) we make the following assumptions
(P6) Aω [a1(t) − D21(t)] > 0.

Theorem 17. (Cui 2002) Under the assumption (P6), system (35) is per-
manent if, and only if

Aω[−d(t) + e(t)x∗
1(t)] > 0 .

Here, (x∗
1(t), x

∗
2(t)) is the positive periodic solution of the system

ẋ1 = x1[a1(t) − b1(t)x1] + D12(t)x2 − D21(t)x1

ẋ2 = x2[a2(t) − b2(t)x2] + D21(t)x1 − D12(t)x2 .

Note that a2(t) may be negative on some intervals of [0, ω).
Recently, Cui and Takeuchi (2005) obtained a more general result than

Theorem 17.
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We consider the following predator-prey system in a patchy environment:

ẋ1 = x1[a1(t) − b1(t)x1 − yϕ(t, x1)] +
n∑

j=1

(D1j(t)xj − Dj1(t)x1)

ẋi = xi[ai(t) − bi(t)xi] +
n∑

j=1

(Dij(t)xj − Dji(t)xi) , i = 2, . . . , n

ẏ = y[−d(t) + e(t)x1ϕ(t, x1) − f(t)y] .

(36)

All coefficients in (36) are ω-periodic and continuous for t ≥ 0. Suppose that

ϕ(t, x1) ≥ 0,
∂

∂x1
ϕ(t, x1) ≤ 0,

∂

∂x1
(x1ϕ(t, x1)) ≥ 0 , (37)

DL
ji > 0(i, j ∈ N, i �= j) , Aω(φI(t)) > 0 , (38)

where

φI(t) = min
i∈I

⎧⎨⎩ai(t) −
∑

j∈N−I

Dji(t)

⎫⎬⎭ .

Theorem 18. (Cui and Takeuchi 2005) Suppose that there exists a non-
empty set I ⊂ N = {1, 2, . . . , n} such that the assumption (38) holds. If

Aω (−d(t) + e(t)x∗
1(t)ϕ(t, x∗

1(t))) > 0 , (39)

then system (36) is permanent, where x∗(t) = (x∗
1(t), x∗

2(t), . . . , x∗
n(t)) is the

globally asymptotically stable positive ω-periodic solution of the system

ẋi = xi[ai(t) − bi(t)xi] +
n∑

j=1

(Dij(t)xj − Dji(t)xi) , (i = 1, 2, . . . , n) . (40)

If
Aω (−d(t) + e(t)x∗

1(t)ϕ(t, x∗
1(t))) ≤ 0 , (41)

then limt→∞ y(t) = 0.

Under (38), system (36) without predator y(t) has a unique positive periodic
solution which is globally asymptotically stable (see Theorem 5). Theorem 18
says that system (36) with y(t) is permanent under (39) if the prey dispersal
system has such a globally asymptotically stable positive ω-periodic solution.
Otherwise, the predator goes extinct by Theorem 18.

In (39), the term e(t)x∗
1(t)ϕ(t, x∗

1(t)) describes the growth of the predator
by foraging the prey in patch 1, of which the quantity is specified as x∗

1(t).
Note that (x∗

1(t), x
∗
2(t), . . . , x

∗
n(t)) is a globally asymptotically stable periodic

solution in the prey dispersal system and the predator is confined only to
patch 1. Hence, condition (39) implies that growth by foraging minus death
for the predator is positive on average. If it is non-positive, then extinction
is inevitable for the predator. Note that we assumed (37), of which the last
condition implies that the system can be permanent if x∗

1(t) is large. This is
reasonable, since the predator is confined to patch 1.
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4.4 Competitive system

4.4.1 Autonomous competitive system

Let us consider a two-species competitive Lotka-Volterra system connected by
diffusion (Takeuchi 1996), that is, competition between two species (denoted
by x and y) over two patches (denoted by 1 and 2) described as follows:

ẋi = xi(Ki − pixi − qiyi) + εi(xj − xi) ,

ẏi = yi(Li − rixi − siyi) + δi(yj − yi) , i, j = 1, 2; i �= j ,
(42)

where xi and yi(i = 1, 2) are the numbers of species x and y in patch i, and
the parameters Ki, Li, pi, qi, ri, si, εi, δi(i = 1, 2) are all positive constants.

Clearly, the origin E0 = (0, 0, 0, 0) is always an equilibrium point. For any
εi > 0, there exists an equilibrium Ex = (x̄1, x̄2, 0, 0) where x̄i > 0, i = 1, 2.
Similarly, there exists an equilibrium Ey = (0, 0, ȳ1, ȳ2) for any δi > 0, where
ȳi > 0, i = 1, 2. There may exist a positive equilibrium point which is of
interest to us when we consider global stability of the system.

The Jacobian matrix of system (42) evaluated at equilibrium Ex is

J(Ex) =
(

Jx(Ex) −Mx

0 Jy(Ex)

)
,

where
Jx(Ex) =

(
K1 − 2p1x̄1 − ε1 ε1

ε2 K2 − 2p2x̄2 − ε2

)
,

and
Jy(Ex) =

(
L1 − r1x̄1 − δ1 δ1

δ2 L2 − r2x̄2 − δ2

)
.

Similarly, the Jacobian matrix at Ey is

J(Ey) =
(

Jx(Ey) 0
−My Jy(Ey)

)
.

Remember that the stability modulus of A is given by s(A), as

s(A) = max{Reλ : λ ∈ δ(A)} .

We have the following result.

Theorem 19. (Takeuchi 1996) If both sx = s(Jy(Ex)) and sy = s(Jx(Ey))
are positive, then system (4.1) is permanent. Furthermore, if a positive equi-
librium point is unique, it is globally stable.

It is easy to extend this theorem to the systems which have three or more
patches (see Takeuchi 1996).
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4.4.2 Periodic competitive system

Now let us consider the system

ẋi = xi[ai(t) − bi(t)xi − ci(t)yi] +
n∑

j=1

Dij(t)(xj − xi)

ẏi = yi[di(t) − ei(t)xi − qi(t)yi] +
n∑

j=1

λij(t)(yj − yi)

i = 1, 2, . . . , n .

(43)

where yi is the number of species y in patch i, ci(t), ei(t), and λij(t) are all
non-negative and bounded continuous functions. In addition, di ∈ C, qi ∈ C+

and λii(t) ≡ 0. We will consider the effect of the dispersal and competitive
species y on the survival of the native species x.

Theorem 20. (Cui and Chen 2001) If (x1(t), . . . , xn(t), y1(t), . . . , yn(t)) is
the solution of (43) with a positive initial condition, then there exist positive
constants Nxi, Nyi and τ1, such that

0 < xi(t) ≤ Nxi, 0 < yi(t) ≤ Nyi , i = 1, 2, . . . , n , t ≥ τ1 .

Theorem 21. (Cui and Chen 2001)

(I). Suppose that the assumption (C1) or (C2) holds,

(C1) There exists i0(1 ≤ i0 ≤ n), such that AL(µ1) > 0, where µ1(t) =

ai0(t) − ci0(t)Nyi0 −
n∑

j=1

Di0j(t),

(C2) AL(φ1) > 0, where φ1(t) = min
1≤i≤n

{ai(t) − ci(t)Nyi −
n∑

j=1

Dij(t) +

n∑
j=1

Dji(t)}.

Then, there exist ζxi (0 < ζxi ≤ Nxi) and τ2 ≥ τ1, such that

xi(t) ≥ ζxi for i = 1, 2, . . . , n , t ≥ τ2

(II). Suppose that λij(t)(i �= j) are continuous and bounded above and below
by positive constants, and the assumption (C3) or (C4) holds.

(C3) There exists i0(1 ≤ i0 ≤ n), such that AL(µ2) > 0, where µ2(t) =

di0 (t) − ei0(t)Nxi0 −
n∑

j=1

λi0j(t),
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(C4) AL(φ2) > 0, where φ2(t) = min
1≤i≤n

{di(t) − ei(t)Nxi −
n∑

j=1

λij(t) +

n∑
j=1

λji(t)}.

Then, there exist ζyi(0 < ζyi ≤ Nyi) and τ3 ≥ τ2, such that

yi(t) ≥ ζyi for i = 1, 2, . . . , n , t ≥ τ3 .

Theorem 22. (Cui and Chen 2001) Under the assumption (C3) or (C4), if∫ +∞
0 E(t)dt = −∞, where

E(t) = max
1≤i≤n

{ai(t) − ci(t)ζyi −
n∑

j=1

Dij(t) +
n∑

j=1

Dji(t)} ,

then the solution of (43) satisfies

lim
t→+∞ xi(t) = 0 , i = 1, 2, . . . , n

In this section, we have discussed permanence of dispersal models with two
competitors. Theorem 19 shows that permanence of (42) is realized if the two
boundary equilibria Ex and Ey are unstable. By choosing proper values of
dispersal coefficients, the two equilibria can be made unstable. The choices
depend on the patch dynamics without diffusion (see Takeuchi 1996 in detail).
By constrast, we can not obtain such exquisite results for time-dependent
models (43). In Theorem 21, the permanence of (43) is considered. We have
obtained some sufficient conditions which depend on the upper bounds of the
positive solution of system (43). These results on permanence of (43) have
room for improvement.

The results presented in this chapter suggest that dispersal movements
of populations among discrete patches is an important factor influencing the
dynamics of ecosystems. Dispersal can make the species either permanent or
extinct, based on changing dispersal rates.
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5

Sexual Reproduction Process
on One-Dimensional Stochastic Lattice Model

Kazunori Sato

Summary. I consider the stochastic lattice model for sexual reproduction process
on one-dimensional lattice investigated by Dickman and Tomé (1991), Noble (1992)
and Neuhauser (1994). This model concerns the reproduction to the empty neigh-
boring habitat by a pair of individuals on one-dimensional lattice. Noble (1992)
and Neuhauser (1994) mathematically analysed the model with rapid stirring and
long-range interaction, respectively. In this chapter, after reviewing the process
with rapid stirring briefly, I concentrate on the case with the nearest neighboring
interactions and without stirring, and the qualitative features of the dynamics for
this model are studied by using pair approximation, which shows the comparative
difference from the mean-field approximation.

5.1 Introduction

To date, lattice models in ecology have been successfully applied in explain-
ing various ecological phenomena. From the points of view of mathematics,
the interacting particle systems have their own long history (e. g. Liggett
1999 and references therein) based on the basic contact processes introduced
by Harris (1974), which can be considered as the SIS epidemic model or
logistic model with local competition for space being the limited resource.
On the other hand, the procedures or methods of theoretical analyses of
lattice models used in statistical physics have been successfully applied to
theoretical ecology, and especially, the technique of approximation for the
dynamics called pair approximation became popular and neccessary to study
both qualitative and quantitative features of lattice models (Matsuda et al.
1992).

In this chapter, I consider the sexual reproduction process on the one-
dimensional lattice space, originally proposed by Dickman and Tomé (1991)
in the context of autocatalytic reactions, and mathematically studied by No-
ble (1992) and Neuhauser (1994) for the case of rapid stirring and long-
range interaction, respectively. Before their studies, similar processes on two-
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dimensional lattices were analyzed by several authors (see Chen 1992, Durrett
1999, 1986; Durrett and Neuhauser 1994).

As Noble pointed out, the model with rapid stirring has remarkable char-
acteristics such as dynamical behavior independent of the initial configura-
tion, which can be contrasted to the complete mixing model (or mean-field
dynamics) with bistability. I study the dynamics of pair approximation (and
triplet decoupling approximation) for this model, compare this to Monte
Carlo simulation, and provide qualitative insight for the case without stir-
ring.

5.2 Sexual reproduction process with stirring

Noble (1992) considers the sexual reproduction process with stirring as fol-
lows. It seems to be hard to find the correspondence to the biological system
in the real world, but one may interpret this model as the abstract and sim-
plest model for the mechanism of self-imcompatibility.

I consider εξt as the interacting particle system on εZ or one-dimensional
(infinite size of) lattice model defined as the state of the process at time t and
the unit of the spatial scale with ε. If εξ

+
t indicates the process starting from

all the sites occupied by “+”, then I can be confident of the existence of the
equilibrium because of the attractiveness of this process defined below. Also,
εξt(x) has either the value “+" or “0", which indicates the site x at time t
is either an occupied site (by an individual or organism) or an empty site,
respectively. Each individual dies at a constant rate. Each empty site can be
given birth by an individual when the adjacent pair of sites is occupied by
two individuals at a rate proportinal to the number of adjacent pair of the
occupied sites. Choosing the proper time scale, I can use the death rate as 1
and the birth rate as b/2 for each pair of occupied sites.

I use the following notation as the probability measure:

ρσ−m,...,σ−1,σ0,σ1,...,σn(t) = P{εξ
+
t (x + kε) = σk for − m ≤ k ≤ n} ,

where σi ∈ {0, +} and the underline indicates the focal site. I also define the
critical value of the birth rate for the survival as

bc(ε) = inf{b : εξ
+
t survives}.

The dynamics of the model by probability measure for a single site can
be written as follows:

d
dt

ρ+ = −ρ+ +
b

2
ρ++0 +

b

2
ρ0++

+
1
2
ε−2(ρ0+ − ρ0+ + ρ+0 − ρ+0)

= −ρ+ +
b

2
ρ++0 +

b

2
ρ0++ .
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By the symmetry of the transition rules, the relation ρ++0 = ρ0++ holds,
and I omit the underline because of the translation invariance of the process.
Then, I can obtain the following dynamics:

dρ+

dt
= −ρ+ + bρ++0 . (1)

The first term corresponds to the death of an individual, and the second to
the birth by contact of two individuals.

5.2.1 Mean-field approximation

I review the result by mean-field approximation as the first approximation for
the present stochastic spatial model (Noble 1992). In this approximation, the
interactions occur between randomly chosen sites, so this assumption turns
out to be without spatial configuration of the process, i. e. the events are
independent of spatial configurations:

ρσσ′σ′′ � ρσρσ′ρσ′′ ,

then Eq. (1) becomes

dρ+

dt
= −ρ+ + bρ2

+ρ0

= −ρ+ + bρ2
+(1 − ρ+) ,

(2)

where I use ρ0 = 1 − ρ+ in the last equality.
Although I can obtain the solution of Eq. (2) as a rather complicated form

of implicit function using logarithmic function and arc tangent, I consider only
the ω-limit of the solution. When b < 4, there exists only one fixed point: 0.
When b = 4, there exist two fixed points: 0, 1

2 . When b > 4 there exist three

fixed points: 0, ρc = 1−
√

1−4/b

2 , ρf = 1+
√

1−4/b

2 . The stability analyses reveal
the following results. Suppose that ρ+(0) > 0. When b < 4, limt→∞ ρ+(t) = 0.
When b = 4, limt→∞ ρ+(t) = 1

2 . When b > 4,

lim
t→∞ ρ+(t) =

⎧⎪⎨⎪⎩
ρf if ρ+(0) > ρc ,

ρc if ρ+(0) = ρc ,

0 if ρ+(0) < ρc .

This result shows that the mean-field approximation fails to explain the cor-
rect dynamics because Noble (1992) proved the independence of the initial
configuration with any positive density for the ω-limit of the solution. The
mean-field approximation also indicates the discontinuity of the solution in
the parameter b at bc = 4.
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5.2.2 Pair approximation

Similarly to Eq. (1), I can derive the dynamics of probability measure for the
pair of (++) as follows:

dρ++

dt
= −2ρ++ + bρ++0 + bρ++0+ − 1

ε2
ρ++0 +

1
ε2

ρ+0+ . (3)

I introduce the quantity q as the conditional probability (Matsuda et al.
1992). For example, qσ/σ′σ′′ corresponds to the probability that the focal site
has the state σ with the nearest neighboring site of the state σ′ and the
next-nearest neighboring site of the state σ′′. Similarly, I use qσ/σ′ as the
conditional probability that the focal site has the state σ with the nearest
neighboring site of the state σ′.

Then, I can construct the dynamics by pair approximation, assuming that

ρσσ′σ′′ = ρσσ′qσ′′/σ′σ � ρσσ′qσ′′/σ′

and

ρσσ′σ′′σ′′′ = ρσσ′σ′′qσ′′′/σ′′σ′σ � ρσσ′qσ′′/σ′qσ′′′/σ′′ ,

which indicates the interactions with next-nearest neighboring sites are less
important than those with the nearest neighboring sites. Besides that, in or-
der to close the system by two variables, ρ+ and q+/+, the following relations
are used:

ρ++ = ρ+q+/+,

q0/+ = 1 − q+/+,

q+/0 =
ρ+(1 − q+/+)

1 − ρ+
.

Then, the system with (1) and (3) can be approximated as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dρ+

dt
= −ρ+ + bρ+q+/+(1 − q+/+) ,

dρ++

dt
= −2ρ+q+/+ + bρ+q+/+(1 − q+/+)

+bρ+q+/+(1 − q+/+)ρ+(1−q+/+)

1−ρ+

− 1
ε2 ρ+q+/+(1 − q+/+) + 1

ε2 ρ+(1 − q+/+)ρ+(1−q+/+)

1−ρ+
.

(4)

Noting that
dq+/+

dt
=

d(ρ++/ρ+)
dt

= −ρ++

ρ2
+

dρ+

dt
+

1
ρ+

dρ++

dt

(Harada and Iwasa 1994), and putting x = ρ+, y = q+/+ into Eq. (4) yields⎧⎪⎨⎪⎩
dx

dt
= −x + bxy(1 − y),

dy

dt
= −y + by(1 − y)2 +

bxy(1 − y)2

1 − x
− 1

ε2
y(1 − y) +

1
ε2

x

1 − x
(1 − y)2 .

(5)
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Within the limit of rapid stirring with ε → 0 the system (5) gives the
steady state as the solution of the following algebraic equations:{

−x + bxy(1 − y) = 0 ,

−y + x
1−x (1 − y) = 0 ,

and it becomes x = y = 0, x = y = ρc or x = y = ρf, where ρc and ρf are
the equilibria by mean-field approximation. Therefore, the equilibria by pair
approximation coincide with those by mean-field approximation in the case
of ε → 0.

5.3 Sexual reproduction process without stirring

Next, I consider the case without stirring, i. e. ε → ∞. First, the reader should
note that the assumption of the mean-field approximation does not account
for spatial configuration, so it makes no difference whether the mean-field
model includes the stirring or not.

5.3.1 Pair approximation

In the case without stirring, pair approximation (5) reduces as follows:⎧⎪⎨⎪⎩
dx

dt
= x[by(1 − y) − 1],

dy

dt
=

y[b(1 − y)2 − 1 + x]
1 − x

.

(6)

Here, I should note that the two-dimensional system by pair approximation
is resricted to the region

Ω =
{

(y, x)
∣∣∣∣ 0 ≤ y ≤ 1, 0 ≤ x ≤ 1

2 − y

}∖
{(1, 1)} ,

because the two variables y and x correspond to probabilities and then 0 ≤
ρ00 = 1 − ρ++ − 2ρ0+ = 1 − ρ+(2 − q+/+) = 1 − x(2 − y). In addition,
I exclude only one point (1, 1) on which the dynamics cannot be defined
in pair approximation. I can show that the region Ω is positive invariant
(Appendix A). When I consider the initial condition restricted to the positive
quadrant, it is also convenient to define the following notation:

Ω+ =
{

(y, x)
∣∣∣∣ 0 < y ≤ 1, 0 < x ≤ 1

2 − y

}∖
{(1, 1)} .

This system (6) has the possibility of three equilibria,
E00 : (y0, x0) = (0, 0),

E+0 : (y1, x1) =
(

1 − 1√
b
, 0
)

,

E++ : (y2, x2) =

(
1 +

√
1 − 4/b

2
,
b
√

1 − 4/b(1 −√
1 − 4/b)

2

)
.
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I have the trivial equilibrium E00 for all b > 0. When 0 < b ≤ 1, then
E00 is the unique equilibrium and it becomes globally stable with respect
to Ω. When 1 < b < 4, then E+0 also becomes the equilibrium. In this
case, E00 is an unstable saddle point and E+0 is the locally stable boundary
equilibrium, and then I know that E+0 is globally stable with respect to
Ω+ ∪ {(y, 0) | 0 < y ≤ 1}. When b ≥ 4, then the internal equilibrium E++

also exists and in this case I can conclude that E++ is globally stable with
respect to Ω+ (Appendix B, Fig. 5.2).

5.3.2 Triplet decoupling approximation

I can construct the dynamics by triplet of contact sites assuming that

ρσσ′σ′′σ′′′ = ρσσ′σ′′qσ′′′/σ′′σ′σ � ρσσ′σ′′qσ′′′/σ′′σ′

and

ρσσ′σ′′σ′′′σ′′′′ = ρσσ′σ′′σ′′′qσ′′′′/σ′′′σ′′σ′σ � ρσσ′σ′′qσ′′′/σ′′σ′qσ′′′′/σ′′′σ′′ ,

which indicates the interactions with distant neighboring sites are less impor-
tant than those with the closer neighboring sites (see also Sect. 5.2). Using
the relationship between ρ and q, I can obtain the system of triplet decoupling
approximation in the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ+

dt
= −ρ+ + bρ++0 ,

dρ++

dt
= −2ρ++ + bρ++0 + bρ++0+

� −2ρ++ + bρ++0 + bρ++0
ρ+−ρ++−ρ+00

ρ+−ρ++
,

dρ+++

dt
= −3ρ+++ + bρ++0 + bρ++0++ + bρ+0++

� −3ρ+++ + b(ρ++ − ρ+++)

+b(ρ++ − ρ+++)ρ+−ρ++−ρ+00
ρ+−ρ++

ρ++−ρ+++
ρ+−ρ++

+ bρ++0
ρ+−ρ++−ρ+00

ρ+−ρ++
,

dρ+00

dt
= −ρ+00 − b

2ρ++00 − b
2ρ+00++ + b

2ρ++000 + ρ++0 + ρ+0+

� −ρ+00 − b
2 (ρ++ − ρ+++)(1 − ρ+−ρ++−ρ+00

ρ+−ρ++
)

− b
2 (ρ++ − ρ+++)(1 − ρ+−ρ++−ρ+00

ρ+−ρ++
) ρ+00
1−2ρ++ρ++

+ b
2 (ρ++ − ρ+++)(1 − ρ+−ρ++−ρ+00

ρ+−ρ++
)(1 − ρ+00

1−2ρ++ρ++
)

+(ρ++ − ρ+++) + (ρ+ − ρ++ − ρ+00) .

This system is closed by the four variables ρ+, ρ++, ρ+++ and ρ+00. The
numerical calculation suggests that bc, the critical value for survival, is about
5.89.
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5.3.3 Monte Carlo simulation

I execute the Monte Carlo simulation to estimate the steady states of the
model. The total size of the lattice (i. e., the number of the total sites) is
10000, and the periodic boundary condition (i. e., the leftmost site is con-
nected to the rightmost site) is used to avoid the effect of the boundary. I
terminate the calculation at 10000 MCS (= Monte Carlo steps), and show the
average for the last 100 MCS, along with the equilibrium values by mean-field
approximation, pair approximation, and triplet decoupling approximation in
Fig. 5.1. These graphs indicate that the equlibrium value ρ+ suddenly but
continuously increases for the birth rate b, which is conjectured by Durrett
and Neuhauser (1994), but mean-field approximation fails to explain this.
On the other hand, pair approximation succeeds in providung not only this
continuity but also closer estimation (and triplet decoupling approximation
gives better quantitative results).
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Fig. 5.1. Equilibrium values ρ+ as a function of b for the model without stir-
ring. (a) mean-field approximation, (b) pair approximation, (c) triplet decoupling
approximation, (d) Monte Carlo simulation

5.4 Discussion

Noble (1992) rigorously analysed the sexual reproduction process with rapid
stirring, and he showed that the dynamical behavior toward the unique equi-
librium can be compared to the corresponding PDE model. By contrast,
mean-field dynamics, or PDE without spatial heterogeneity in the initial
configuration, gives the bistability dependent on the initial state. The critical
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birth rate bc, which is larger than the value given by mean-field dynamics,
can be obtained by the traveling wave solution of the corresponding PDE. It
seems to be rather difficult to intuitively understand the spatial heterogeneity
causes that difference, but this may be better understood when I analyse the
dynamics of the spatial pattern.

Pair approximation seems to have the transition from unique stability to
bistability at some stirring rate εc. For smaller stirring rates, some spatial
characteristics such as stronger spatial clumping or higher spatial correlation
probably play an important role in producing the difference vis-à-vis mean-
field dynamics. The critical point by pair approximation is the same as that by
mean-field, but the triplet decoupling approximation suggests to give a larger
value, which indicates a quantitative improvement. Besides that, as Durrett
and Neuhauser (1994) conjectured and in contrast to Dickman and Tomé
(1991), I also expect the continuity of the equilibria on the parameter b
obtained by pair approximation.

As a future problem, I aim to study the present model with a finite stirring
rate. I expect that this model gives the unique stable equilibrium and larger
critical point for survival than that obtained for the model with rapid stirring,
as I show the case without stirring by pair approximation in this chapter.

Acknowledgement. I sincerely thank Prof. Takeuchi for his helpful comments on
the earlier version of the draft.

Appendix A: Positive invariance of Ω

Here I set two axes of y and x as the horizontal and the vertical, respectively,
for ease of handling (Fig. 5.2). In this Appendix A, I concentrate on the case
of b > 4 (Fig. 5.2d), but I can check the positive invariance of Ω for other
cases in a similar way.

To examine the positive invariance, it is enough to consider the behavior
of the solutions on the boundaries. On the x-axis, the solution moves toward
the origin. On the other hand, on the y-axis, the solution moves toward the
point (ŷ, 0), starting from the point in the interval (0,1] on y-axis, where (ŷ, 0)
is the unique intersection between the null cline of dy

dt = 0 and the y-axis,
and putting ŷ = 1 − 1√

b
. On the line y = 1, dy

dt = −1 < 0 implies that the
solutions move inside Ω.

Next, I show that the solutions do not go outside Ω by evaluating the
magnitude of the gradients at each point on the boundary x = h(y) = 1

2−y

for y ∈ I1 = (y−, y+) and y ∈ I2 = (y∗, 1]. Here, (y±, 0) are the intersections

between the null cline of dx
dt = 0 and the y-axis, and I put y± = 1±

√
1−4/b

2 ,
obtained from the quadratic equation f(y) = −1 + by(1− y) = 0. Besides y∗



5 Lattice Model of Sexual Reproduction 89

Fig. 5.2. Phase portrait of pair approximation; x = ρ+, y = q+/+. The graphs
change depending on the values of b: a 0 < b ≤ 1/2, b 1/2 < b ≤ 1, c 1 < b ≤ 4,
d b > 4. The arrow represents the flow of the points in each region. The filled and
empty circles correspond to the stable and unstable equilibrium, respectively

and 1 are the y-values in the intersections between the null cline of dy
dt = 0

other than the y-axis and the boundary x = h(y), and I put y∗ = 3−
√

1+4/b

2 ,
which is the solution of the quadratic equation g(y) = b(1 − y)(2 − y) − 1 =
0 within [0, 1]. The magnitude of the gradient on the point (y, x) on the
boundary x = h(y) can be evaluated by dh(y)

dy , and the slope of the solution by
ẋ
ẏ . Therefore, if I can show dh(y)

dy − ẋ
ẏ > 0 in the case y ∈ I1 and dh(y)

dy − ẋ
ẏ < 0

in the case y ∈ I2, then I can conclude that Ω is positive invariant.
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In the former case, y ∈ I1, I have f(y) > 0 because y− and y+ are the
solutions of the quadratic equation f(y) = 0. Then, I have

dh(y)
dy

− ẋ

ẏ
=

1
(2 − y)2

− x[−1 + by(1 − y)]

y
[
−1 + b(1 − y)2 + bx(1−y)2

1−x

]
=

1
y(2 − y)2

2(1 − y)
[by(1 − y) − 1] + 2b(1 − y)2

> 0 .

In the latter case, y ∈ I2, note that g(y) < 0 because y∗ is the solution of
the quadratic equation g(y) = 0. Then, I have

dh(y)
dy

− ẋ

ẏ
=

1
(2 − y)2

− x[−1 + by(1 − y)]

y
[
−1 + b(1 − y)2 + bx(1−y)2

1−x

]
=

1
y(2 − y)2

2(1 − y)
b(1 − y)(2 − y) − 1

< 0 .

Appendix B: Global stability analysis
of internal equilibrium by pair approximation

I can show the global stability of the internal equilibrium by using the Butler–
McGehee theorem, Poincaré–Bendixson theorem and Dulac criterion for the
two-dimensional autonomous pair approximation system (Smith and Walt-
man 1995). For a start, the boundedness of the solutions is clear from the
positive invariance of Ω by Appendix A. Next, I show that any trajectory
starting from Ω+ cannot contain the origin and the boundary equilibrium
in its ω limit set by Butler–McGehee theorem. Poincaré-Bendixson theorem
tells us that the ω limit set of any such trajectory must be either a periodic
orbit or an internal equilibrium. Finally, I can deny the possibility of the ω
limit set being a periodic orbit by finding a Dulac function.

(i) Local stability of three equiliria E00, E+0 and E++

I obtain the Jacobian matrix for equilibrium (ȳ, x̄) as follows:(
−−(1−x)+b(1−y)(1−3y)

1−x̄
bȳ(1−ȳ)2

(1−x̄)2

bx̄(1 − 2ȳ) bȳ(1 − ȳ) − 1

)
.

This matrix becomes the following in the case of E00:(
b − 1 0

0 −1

)
,

then it indicates that E00 is a saddle point. Indeed, as I mentioned above
(Appendix A), an interval [0, 1/2] on the x-axis and an interval (0, y∗) on
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the y-axis correspond to a stable and an unstable manifold for E00, respec-
tively. Therefore, starting from Ω+, E00 itself cannot be the entire ω limit
set. By using the Butler–McGehee theorem as well as the fact that our ω
limit set is closed and invariant, if the ω limit set contains E00, then it must
also contain an interval [0, 1/2] on the x-axis. However, the ω limit set can-
not contain a point (0, 1/2) on the x-axis, which is not approached from
any direction, and so there is no possibility of E00 being in the ω limit set.
Next, I consider the case of E+0 with the Jacobian matrix as(

−2(
√

b − 1) 1 − 1√
b

0
√

b − 2

)
,

which tells us that E+0 is also a saddle point. Indeed (Appendix A), an
interval [0, 1] on y-axis becomes a stable manifold for E+0. An eigenvector(
1,

√
b(3−4/

√
b)

1−1/
√

b

)
for a positive eigenvalue

√
b−2 points into Ω+. Similarly

as for the case of E00, starting from Ω+, E+0 itself cannot equal the ω
limit set. Noting that our ω limit set is closed and invariant, the Butler–
McGehee theorem tells us that if the ω limit set contains E+0, then it must
also contain an interval [0, 1] on the y-axis. However, as mentioned above,
E00 cannot be contained in the ω limit set, which represents a contradic-
tion. Then, I can conclude that E+0 is not contained in the ω limit set.
For the internal equilibrium E++, substituting the equilibrium values

y2 =
1 +

√
1 − 4/b

2
and x2 =

b
√

1 − 4/b(1 −√
1 − 4/b)

2
into the Jacobian matrix results in the following:⎛⎝ 4

b[
√

1−4/b−(1−2/b)]

2(1−
√

1−4/b)

b2[(1−2/b)−
√

1−4/b]2

− b(b−4)(1−
√

1−4/b)

2 0

⎞⎠ =
(− +
− 0

)
,

where the last matrix represents the signature of each element, and then
I can find that the real parts of all the eigenvalues of this matrix are
negative.

(ii) No cyclic solution by Dulac function β(x, y)
When I choose β(x, y) = 1

(1−x)y , then

∂

∂x

[
β(x, y)

dx

dt

]
+

∂

∂y

[
β(x, y)

dy

dt

]

=
∂

∂x

[−x + bxy(1 − y)
(1 − x)y

]
+

∂

∂y

⎡⎣−y + by(1 − y)2 + bxy(1−y)2

1−x

(1 − x)y

⎤⎦
= − by(1 − y) + 1

y(1 − x)2
< 0

for all x and y, which indicates the absence of cyclic solution.
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6

A Mathematical Model
of Gene Transfer in a Biofilm

Mudassar Imran and Hal L. Smith

Summary. Based on our previous work, a model of plasmid transfer between
micro-organisms in a heterogeneous environment consisting of a biofilm immersed
in a fluid medium is constructed. A review of previous modeling of gene transfer
is provided in order to place our work in context. The key question is whether
the plasmid can persist in the bacterial population. We answer this question by
constructing a basic reproductive number which takes into account the advantages
conferred by the plasmid and its costs to the bacterial host.

6.1 Introduction

Plasmids, small circular strands of DNA separate from the main genome
of the organism, are common in natural bacterial populations such as soils,
lakes and stream and in the gut of mammals. They often carry genes for such
beneficial factors as resistence to antibiotics and heavy metals, the ability to
ferment sugars, or to produce toxins. Some carry genes for pili production
and mating pair formation that allow the infectious transfer of the plasmid
to other bacteria – a process called conjugation. However, many plasmids
have no known function in bacteria and may simply be parasitic. Vertical
transmission of plasmids occurs during cell division when the plasmids in the
cell are duplicated and partitioned among the daughter cells; rarely, however,
one daughter cell may end up without plasmid while the other daughter cell
receives multiple copies. This loss of plasmid is referred to a segregative loss.
Furthermore, there is some cost to an organism carrying plasmids since the
cell may produce plasmid gene products and must duplicate it during cell
division which leads to a reduced reproductive rate. See Simonsen (1991) for
a readable review, particularly of modeling aspects, and Summers (1996) for
a general review. Because the benefits of plasmid carriage, if any, depend on
ever-changing environmental conditions while the costs are always present,
a longstanding focus of theoretical studies has been to determine conditions
under which plasmids can be maintained in bacterial populations. See Stewart
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and Levin (1977), Levin and Rice (1980) and Bergstrom, Lipsitch, and Levin
(2000) for modeling results related to this problem.

According to Angles and Goodman (2000):

Biofilms are environments of high microbial density where cell-cell
contact is likely. Such conditions create a favorable niche for the
spread of self-transmissible as well as mobilisable plasmids among
members of the bacterial communities. Studies have demonstrated
plasmid transfer among bacteria in a wide range of biofilm habitats,
including the surface of stones in a river, the air-water interface, sur-
faces in soil and water microcosms, plant surfaces and insect as well
as animal intestinal surfaces.

In a recent paper Ghigo (Ghigo 2001) established that several natural con-
jugative plasmids express factors that induce some bacteria to form biofilms.
Experimental studies showed that a strain of E. Coli bearing a certain plas-
mid formed a thick biofilm within one day while those not carrying the plas-
mid produced no macroscopically observable biofilm. Interestingly, Ghigo’s
results suggest that the pili responsible for the horizontal transfer of the
plasmid, may also act as an adhesion factor for cell-to-surface contact. See
also Pratt and Kolter (1998) and O’Toole and Kolter (1998). Ghigo points
out the many beneficial aspects for bacteria in biofilms relative to the fluid
environment and speculates that such factors “may provide a rationale for
the unexplained vertical maintenance of the numerous uninfectious cryptic
plasmids found in natural populations”. He also observes that by inducing
bacteria to form the denser communities characteristic of biofilms the plas-
mid increases the likelihood of its own horizontal transfer via conjugation.

In this chapter, we explore the suggested link between plasmid mainte-
nance and biofilms by modifying slightly the mathematical model proposed by
us in (Imran et al. preprint) of a bacterial population consisting of plasmid-
bearing and plasmid-free organisms in a continuous culture with a surface
on which a biofilm may form. The question we address is under what cir-
cumstances can the plasmid be maintained in a population. Heuristically,
the advantageous genes carried by the plasmid together with the ability of
the plasmid-bearing organism to pass the plasmid to other organisms must
compensate for the energetic cost of bearing the plasmid and the occasional
segregative loss of the plasmid during cell division. We seek to quantify this
trade-off. Our model builds on the plasmid model of Stephanopoulus and
Lapidus (1988) and Ryder and DiBiasio (1984), includes conjugation terms
used by Stewart and Levin (1977), and models the biofilm following the model
of Pilyugin and Waltman (1999). Consequently, we briefly review these mod-
els in order that the foundation of our model is made more clear.

Two cases are considered: (1) the plasmid is parasitic, conferring no ad-
vantage on its host, and (2) the plasmid codes for enhanced biofilm forming
ability in its bacterial host which in its absence can form only a macro-
scopically unobservable biofilm. In the first case, the question is under what
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circumstances can a parasitic plasmid can be maintained. In the second case,
the question is under what circumstances can the ability to form a robust
biofilm community in which conjugative transfer of the plasmid may occur
be sufficiently advantageous for the plasmid-bearing organism to compensate
for the energetic cost of bearing the plasmid and the segregative loss of the
plasmid. In each case, we provide a quantitative expression of a potential
mechanism which may be significant in plasmid maintenance.

Our work corroborates the conjectures of Ghigo. The availability of colon-
alizable surfaces that provide a selective advantage for an organism carrying
a plasmid containing a biofilm-enhancing gene may contribute to the main-
tenance of such plasmids in natural bacterial populations.

The same models developed in this paper could also be used to study
the important phenomena of horizontal spread of antibiotic resistance in the
gut. Rather than assuming the plasmid codes for enhanced biofilm forming
ability one would assume that it codes for antibiotic resistance. Selection
for the resistant strain could, of course, be arranged by adding antibiotic.
Ingestion of bacteria containing plasmid coding for antibiotic resistance could
lead to the spread of resistance to the gut microflora. This phenomena may
play a significant role in the proliferation of antibiotic resistant pathogens
(Summers 1996).

6.2 A model of plasmid transfer with wall growth

We consider a population of bacteria in a continuous culture which colo-
nize both the fluid environment and a portion of a surface immersed in the

Table 6.1. Model parameters for the chemostat: t =time, m = mass, l =length

Symbol Description Dimension

u, u+ biomass concentration of planktonic bacteria. ml−3

w, w+ areal biomass density of adherent bacteria. ml−2

β, β+ sloughing rate. t−1

α, α+ rate constant of adhesion. t−1

S concentration of limiting substrate. ml−3

S0 concentration of the substrate in the feed. ml−3

γ yield constant. –
a half saturation constant. ml−3

m maximum growth rate of plasmid-free organism. t−1

c fractional energetic cost of plasmid carriage, 0 < c < 1. –
q fractional segregation loss factor, 0 < q < 1. –
D dilution rate. t−1

µ biofilm conjugational transfer parameter. l2(mt)−1

µ̄ planktonic conjugational transfer parameter. l3(mt)−1
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Fig. 6.1. Flow chart of biomass flow between model compartments, u, u+, w, w+

fluid. Bacteria are labelled according to their location (fluid or wall: the for-
mer called planktonic cells, the latter called adherent cells) and according
to whether or not they possess the plasmid of interest (subscript ‘+’ means
they have plasmid). Let u (u+) denote the density of planktonic plasmid-
free (plasmid-bearing) organism and w (w+) denote the areal density of
wall-adherent plasmid-free (plasmid-bearing) organism. These populations
are supported by the substrate S in continuous culture.

Model parameters are described in the Table 6.1 and a schematic diagram
of the model is depicted below it. Bacterial variables and parameters without
the “+” sign refer to plasmid-free cells while those with subscript “+” refer
to plasmid-bearing cells.

The model equations in the setting of a continuous culture of volume V ,
colonizable surface area A and flow rate Φ takes the form (D = Φ/V , δ =
A/V ):

S′ = D(S0 − S) − γ−1 [fu(S)u + fu(S)(1 − c)u+]

− γ−1 [ δfw(S)w + δfw(S)(1 − c)w+]
u′ = (fu(S) − D)u + qfu(S)(1 − c)u+ − αu + βδw − µ̄uu+

w′ = fw(S)w + qfw(S)(1 − c)w+ + αδ−1u − βw − µww+

u′
+ = [fu(S)(1 − c)(1 − q) − D]u+ − α+u+ + β+δw+ + µ̄uu+

w′
+ = fw(S)(1 − c)(1 − q)w+ + α+δ−1u+ − β+w+ + µww+

(1)

These equations represent a modification of the model first proposed in (Im-
ran et al. preprint). See the discussion section for a description of this modifi-
cation. Because the model is an amalgamation of models in the literature we
do not give a detailed description of it here. Instead, we indicate below how
it was constructed from earlier models and, in subsequent sections, review
these earlier and simpler models. In this way, the basic features of the model
may be discussed in a simpler setting without all the distractions present in
the full model. After doing this, we return to the full model.
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In the absence of the plasmid-bearing organism (u+ = w+ = 0), the
system reduces to the wall growth model of Pilyugin and Waltman(1999):

S′ = D(S0 − S) − γ−1 [fu(S)u + δfw(S)w]
u′ = (fu(S) − D)u − αu + βδw

w′ = fw(S)w + αδ−1u − βw

(2)

This system is described in detail in the next section.
Neglecting the wall-attached population (w = w+ = 0 and α = 0) in

(1) we obtain a model of plasmid transfer in the fluid environment of the
chemostat:

S′ = D(S0 − S) − γ−1[fu(S)u + fu+(S)u+]
u′ = (fu(S) − D)u + qfu+(S)u+ − µ̄uu+

u′
+ = [fu+(S)(1 − q) − D]u+ + µ̄uu+

fu+(S) : = (1 − c)fu(S)

(3)

This model is similar to the classic model of Stewart and Levin (1977). We
consider and compare both of these in Sect. 6.4.2.

Ignoring the wall population and plasmid transfer (conjugation), but
not segregation, the system reduces to a special case of the model of
Stephanopoulus and Lapidus (1988) for (non-infectious) plasmid-bearing or-
ganisms in the chemostat:

S′ = D(S0 − S) − γ−1[fu(S)u + fu+(S)u+]
u′ = (fu(S) − D)u + qfu+(S)u+

u′
+ = [fu+(S)(1 − q) − D]u+

fu+(S) : = (1 − c)fu(S)

(4)

Stephanopoulus and Lapidus borrowed ideas from the earlier work of Ryder
and DiBiasio (1984). System (4) and similar models are especially relevant to
issues in biotechnology involving the production of biologically useful com-
pounds by genetically altered organisms. See Hsu et. al. (1994, 1997, 2004).

As (1) is inspired by these earlier models, it is also perhaps best un-
derstood once one is familiar with them. We review them in the sections
immediately following before returning to analyze (1).

6.3 Pilyugin–Waltman model

Pilyugin–Waltman (1999) proposed a simple chemostat model with wall
growth in the form of three nonlinear differential equations. The key dif-
ference between their model and the standard chemostat model (see e. g.
Smith and Waltman 1995) is that the population growing on the wall does
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not wash out of the chemostat. Due to this modification the basic conserva-
tion principle of the chemostat is lost so the system is no longer reducible to
a planar system. With some change in notation, their model is given by

S′ = D(S0 − S) − γ−1fu(S)u − γ−1δfw(S)w
u′ = (fu(S) − D)u − αu + βδw

w′ = fw(S)w + αδ−1u − βw

(5)

where u denotes the volume density of the organism in the fluid (planktonic
cells) and w denotes the areal density of the organism on the wall (adherent
cells). Planktonic cells adhere to the wall at rate α and adherent cells slough
off the wall at rate β. D is the dilution rate, γ is the yield coefficients ex-
pressing the proportionality between the uptake rate and growth rate. The
nutrient uptake rate fu(S) should satisfy

fu(0) = 0 , f ′
u(S) > 0 .

In practice, they are often taken to be of Michaelis–Menten form

fu(S) =
mS

a + S
, m, a > 0 . (6)

The same conditions hold for fw, which may be distinct from fu. Parameter δ
is the ratio of the colonizable area A to the volume V of the chemostat. It
can be scaled out of the system by replacing w by δw in the model which we
routinely do in computing Jacobian matrices below.

A key parameter in the model is the mean residence time (MRT) of a bac-
terial cell in the chemostat. From the Appendix, we have

MRT =

[
2

D + α + β −√
(D + α + β)2 − 4βD

]
(7)

Because α and β are assumed to be positive, there are only two possible
types of steady states, the washout steady state (S0, 0, 0) and possibly one
or more survival steady states having the form (S̄, ū, w̄) with all components
positive. The stability of the washout steady state can be determined by the
eigenvalues of the variational matrix at (S0, 0, 0)

J :=

⎛⎝−D −γ−1fu(S0) γ−1fu(S0)
0 fu(S0) − D − α β
0 α fw(S0) − β

⎞⎠
We denote by A the lower right two-by-two sub-matrix of J and by s(A)
its stability modulus, the maximum of its two real eigenvalues. Evidently,
the washout steady state (S0, 0, 0) is hyperbolically stable if s(A) < 0 and
unstable if s(A) > 0.
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The survival steady state can be described most efficiently by introducing
the quasi-positive irreducible matrix function of S given by

B(S) :=
(

fu(S) − D − α β
α fw(S) − β

)
(8)

In order that (S̄, ū, w̄) be a positive steady state, (ū, δw̄) must be a positive
eigenvector corresponding to the zero eigenvalue of B(S̄). As S → B(S)
is increasing (along the diagonal), Perron–Frobenius theory (Berman and
Plemmons 1979) implies that S → s(B(S)) is strictly increasing so there
can be at most one value of S at which s(B(S)) = 0. Since A = B(S0) and
s(B(0)) < 0, we see that if s(A) > 0, there is a unique S̄ ∈ (0, S0) such that
s(B(S̄)) = 0. Then, (ū, δw̄) is uniquely determined up to a positive multiple,
p, as the positive eigenvector of B(S̄). This scalar multiple p is uniquely
determined by the steady state equation S′ = 0 when S̄ < S0. If s(A) ≤ 0,
then there may be no S̄ for which s(B(S̄)) = 0 and even if there is one,
S̄ ≥ S0 so no survival steady state exists.

The main result is the following:

Theorem 6.3.1 [Pilyugin & Waltman]The following hold for (5):

(a) The washout state is globally attracting when it is locally asymptotically
stable in the linear approximation, i. e., when s(A) < 0.

(b) there is a positive “survival” steady state if and only if the washout state
is unstable in the linear approximation. When it exists, it is unique and
asymptotically stable in the linear approximation.

(c) If the washout steady is unstable, then the bacterial population persists.
More precisely, there exists ε > 0, independent of initial data, such that
for all solutions of (5) satisfying u(0) + δw(0) > 0, there is T > 0 such
that

u(t) + δw(t) > ε , t > T .

(d) If fu = fw, then the washout state is stable if R0 := MRT · fu(S0) < 1
and unstable when R0 > 1. In the latter case, the survival steady state
(S̄, ū, w̄) attracts all solutions with u(0) + δw(0) > 0.

In part (d), R0 represents the number of progeny produced by a single cell
introduced into the washout steady state.

Pilyugin and Waltman establish the global stability assertion in part (d)
by passing to new variables z = u+ δw and v = u/z and noting that one can
reduce the dimension by one since v converges. An interesting open problem
is to show that the global stability assertion in (d) holds more generally.

Part (a) is not contained in the results of Pilyugin and Waltman 1999 so
we give the argument here. If s(A) < 0 then s(B(S0 + ε)) < 0 for sufficiently
small ε > 0 by continuity of the stability modulus. The first of Eqs. (5) implies
that S′ ≤ D(S0 −S) so there exists T > 0 such that S(t) < S0 + ε for t ≥ T .
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Consequently, for t ≥ T ,

u′ ≤ (fu(S0 + ε) − D)u − αu + βδw

w′ ≤ fw(S0 + ε)w + αδ−1u − βw
(9)

By a well-known comparison theorem (see Theorem B.1 in (Smith and Walt-
man 1995)), it follows that

(u(t), w(t)) ≤ (U(t), W (t)) , t ≥ T

where (U(t), W (t)) satisfies the linear system obtained by replacing the in-
equalities by equalities in (9) and the initial conditions (U(T ), W (T )) =
(u(T ), w(T )). Because s(B(S0 + ε)) < 0, we conclude that (U(t), W (t)) →
(0, 0) as t → ∞ so the same holds for (u(t), w(t)), completing the argument.

6.4 Models of plasmid transfer without wall growth

6.4.1 Stewart and Levin model

Stewart and Levin (1977) presented a model that describes the dynamics
of conjugationally transmitted plasmids in bacterial populations. They also
analyzed the steady state properties of the model. With some change in
notation, their model is

S′ = D(S0 − S) − γ−1fu(S)u − γ−1
+ fu+(S)u+

u′ = (fu(S) − D)u + qu+ − µ̄uu+

u′
+ = [fu+(S) − D − q]u+ + µ̄uu+

(10)

where u and u+ are plasmid-free and plasmid-bearing bacterial population
densities and S is the concentration of substrate on which they grow. These
populations reproduce at rates fu(S) and fu+(S) respectively, with properties
as in the previous section. Parameters γ−1 and γ−1

+ are yield coefficients.
Stewart and Levin model conjugation as a mass action type infectious

process for the reaction u + u+ → 2u+ with infectious rate constant µ̄. This
mass action model of conjugation, similar to that used in epidemiological
modeling (Diekmann and Heesterbeek 2000), will be used throughout this
paper. Segregation is modelled as if a plasmid-bearing cell has per unit time
probability q of losing its plasmid and reverting to a plasmid-free organism.

We briefly summarize the results of Stewart and Levin. The washout
steady state (S0, 0, 0) is locally asymptotically stable if fu(S0) < D and
unstable if the reverse inequality holds. A unique plasmid-free steady state,
(λ, ū, 0) where ū = γ(S0 − λ) and fu(λ) = D, exists only when the washout
steady state is unstable, i. e. when fu(S0) > D. The plasmid-free steady state
is stable if µ̄ū < D+q−fu+(λ). They found that a unique coexistence steady
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state (S∗, u∗, u∗
+) will exist if:

µ̄ū > D + q − fu+(λ)

which can be rewritten as

µ̄ū > χD + q

where χ = 1− fu+ (λ)

fu(λ) . In the usual case that χ > 0 when the plasmid-bearing
population is at a growth disadvantage, the plasmid is maintained and the
coexistence steady state exists if the density of plasmid-free organisms is
sufficiently large relative to the cost of carrying the plasmid (χ) and the
miss-segregation rate q. If

fu+(S) = fu(S)(1 − c) (11)

where c is the fractional energetic cost for plasmid carriage with 0 < c < 1,
the condition for coexistence becomes µ̄u > cD + q.

The following result can be proved in a similar manner as those to follow.

Theorem 6.4.1 Assume that (11) holds and γ = γ+. Then the following
hold for (10):

(a) The washout state is globally stable whenever it is locally stable, which
holds when fu(S0) < D.

(b) When fu(S0) > D, the plasmid-free steady state exists and it is asymp-
totically stable in the linear approximation if and only if µ̄ū < cD + q. In
this case, it attracts all solutions with u(0) + u+(0) > 0.

(c) When µ̄ū > cD + q the unique coexistence steady state exists and attracts
all solutions with u+(0) > 0.

6.4.2 Stephanopoulus–Lapidus competition model

Stephanopoulus–Lapidus (1988) proposed a chemostat model of competi-
tion between plasmid-free and plasmid-bearing organisms which takes the
form (4). It is based on earlier work of Ryder–DiBiasio (1984) who modeled
segregation in a much different way than Stewart and Levin. They proposed
that a fraction q of the daughter cells of the plasmid-bearing population pro-
duced in the time interval [t, t+ dt], given by fu+(S)u+ dt, acquire no plasmid
during cell division, and therefore contribute to the plasmid-free population,
while the fraction 1 − q acquire one or more plasmid and thus contribute
to the plasmid-bearing population. More precisely, of the daughter cells
fu+(S)u+ dt, qfu+(S)u+ dt are plasmid-free cells while (1 − q)fu+(S)u+ dt
are plasmid-bearing cells. This treatment of segregation seems to us more
faithful to the biology since miss-segregation is associated with cell division.
Cells don’t lose plasmid, they just may not get one from the mother cell.
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See also Hsu and Waltman (1997, 2004) for a similar approach in a different
application.

The model of Stephanopoulus–Lapidus is given by

S′ = D(S0 − S) − γ−1[fu(S)u + fu+(S)u+]
u′ = (fu(S) − D)u + qfu+(S)u+

u′
+ = [fu+(S)(1 − q) − D]u+

(12)

It has little to do with gene transfer so we include it here only because we
adopt their approach to the modeling of segregation. The model is important
in biotechnology where u+ has been genetically engineered to produce some
useful protein but miss-segregation implies that it must compete with the
“wild-type” organism u. See the review article of Hsu and Waltman (2004)
for more on models of this sort.

6.4.3 A model of gene transfer without wall growth

In this section we consider a model that is similar to the Stewart Levin model
except that we employ the modeling of segregation introduced in (Ryder and
DiBiasio 1984). Using (11), we are lead to consider the system

S′ = D(S0 − S) − γ−1fu(S)[u + (1 − c)u+]
u′ = (fu(S) − D)u + qfu(S)(1 − c)u+ − µ̄uu+

u′
+ = [fu(S)(1 − c)(1 − q) − D]u+ + µ̄uu+

(13)

where u and u+ are the biomass concentrations of plasmid-free and plasmid-
bearing organisms. As all the terms in (13) carry over from previous sections,
no further motivation is needed. Observe that the plasmid bearing organism
is assumed to have no advantage over the plasmid-free organism.

Adding all three equations in the above model and using the new variable
Σ = γ(S0 − S) − u − u+ in place of S gives

Σ′ = −DΣ

u′ = (fu(S) − D)u + qfu(S)(1 − c)u+ − µ̄uu+

u′
+ = [fu(S)(1 − c)(1 − q) − D]u+ + µ̄uu+

S = S0 − γ−1(Σ + u + u+)

(14)

It follows at once that Σ(t) → 0, so the limiting system given by:

u′ = (fu(S) − D)u + qfu(S)(1 − c)u+ − µ̄uu+

u′
+ = [fu(S)(1 − c)(1 − q) − D]u+ + µ̄uu+

S = S0 − γ−1(u + u+)

(15)

is the key to understanding the global dynamics of (13). We observe that in
both (14) and (15), there are additional restrictions on the initial data aside
from nonnegativity.
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It is a routine exercise to show that solutions remain nonnegative. The
ultimate boundedness of solutions of (13) is obvious from the fact that Σ → 0.

Exactly as for the Stewart and Levin model, the steady states of (13) con-
sist of a washout steady state (S0, 0, 0), a plasmid-free steady state (λ, ū, 0)
where ū = γ(S0 − λ) and a coexistence steady state denoted by (S∗, u∗, u∗

+).
We summarize our main results for (13).

Theorem 6.4.2 The following hold:

(a) the washout steady state is globally asymptotically stable whenever it is
locally asymptotically stable and this occurs if and only if fu(S0) < D.

(b) When fu(S0) > D, the plasmid-free steady state exists and it is asymp-
totically stable in the linear approximation if and only if fu(λ)(1− c)(1−
q) + µ̄ū < D. It attracts all solutions with u(0) + u+(0) > 0.

(c) When fu(λ)(1− c)(1− q)+ µ̄ū > D then a unique coexistence equilibrium
exists and attracts all solutions with u+(0) > 0.

The proof of this theorem follows from Poincare–Bendixson Theorem and the
following lemmas.

The stability of washout steady state of (13) can be determined by the
eigenvalues of the variational matrix at (S0, 0, 0)

J1 :=

⎛⎝−D −γ−1fu(S0) −γ−1fu(S0)(1 − c)
0 fu(S0) − D qfu(S0)(1 − c)
0 0 fu(S0)(1 − c)(1 − q) − D

⎞⎠
This leads immediately to the following result.

Lemma 6.4.3 The washout steady state (S0, 0, 0) of (13) is locally asymp-
totically stable if and only if fu(S0) < D.

Lemma 6.4.4 If fu(S0) < D then u, u+ → 0 as t → ∞.

Proof : Since fu(S0) < D, we can choose ε > 0 small enough so that fu(S0)+
ε < D. From the first equation of (13)

S′ ≤ D(S0 − S)

from which we conclude that lim supt→∞ S(t) ≤ S0. Monotonicity of fu im-
plies that, for large enough t, fu(S(t)) ≤ fu(S0) + ε/2, where ε is chosen
above. Adding the last two equations of (13) and taking v = u + u+ we have
for large t,

v′ = (fu(S) − D)u + fu(S)(1 − c)u+ − Du+

≤ 2(fu(S) − D)v

≤ 2(fu(S0) + ε/2 − D)v
≤ −εv .

Since u ≥ 0 and u+ ≥ 0, the result follows immediately. �
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The criterion for stability of the plasmid-free steady state (λ, ū, 0) of (13) is
related to the variational matrix of (14) at the corresponding steady state
(0, ū, 0):

J2 :=

⎛⎝−D 0 0
z z z + qD(1 − c) − µ̄ū
0 0 D(1 − c)(1 − q) − D + µ̄ū

⎞⎠
where z := −γ−1f ′

u(λ)ū and we have used that fu(λ) = D.

Lemma 6.4.5 The plasmid-free steady state (λ, ū, 0) of (13) is stable if and
only if µ̄ū < D[1 − (1 − c)(1 − q)].

Proof: The variational matrix J2 of (14) has eigenvalues −D and the eigen-
values of the lower right two-by-two sub-matrix. The eigenvalues of J2 have
negative real parts when the above stated condition is satisfied. �

The plasmid-free steady state (λ, ū, 0) is unstable if

µ̄ū

D
+

fu(λ)(1 − c)(1 − q)
D

> 1 . (16)

The first term on the left gives the number of infections produced by a sin-
gle plasmid-bearing cell in the environment determined by the plasmid-free
steady state before being washed out. The second term gives the number of
plasmid-bearing daughter cells of a single plasmid-bearing cell before washing
out. Of course, the factor fu(λ)/D = 1 but we leave it in for interpretations
sake. Thus, the sum gives the number of horizontal and vertical transmissions
of the plasmid before washout. That number must exceed one for plasmid
persistence.

Lemma 6.4.6 There exists a unique coexistence steady state (S∗, u∗, u∗
+)

where S0 > S∗ > λ when the plasmid-free steady state is unstable. There
can be no coexistence steady state when it is stable.

Proof: Adding the three steady state equations for (13) gives

γ(S − S0) = u + u+ (17)

Solving the second and third equation for u and u+, we get

u =
D − fu(S)(1 − c)(1 − q)

µ̄

u+ =
[D − fu(S)]

fu(S)(1 − c) − D

D − fu(S)(1 − c)(1 − q)
µ̄
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Substituting these into (17) and a little algebra leads to a single equation
for S:

µ̄γ(S0 − S) = cfu(S)[1 +
qfu(S)(1 − c)

D − fu(S)(1 − c)
]

Positivity of u, u+ implies that we must have fu(S) > D and fu(S)(1−c) < D;
clearly, 0 < S < S0. Let F (S) denote the left hand side and G(S) denote the
right hand side of the equality. F is obviously decreasing. The term in square
brackets in G is a monotonically increasing function of S and is positive when
D − fu(S)(1 − c) > 0. Thus G(S) is a monotonically increasing function
of S so long as D − fu(S)(1 − c) > 0 and it satisfies G(0) = 0, G(λ) =
D[1 − (1 − c)(1 − q)] since fu(λ) = D. Thus, there is at most one value of S
where F (S) = G(S) on the interval where D − fu(S)(1 − c) > 0. Note that
F (λ) = µ̄ū. If the plasmid-free state is hyperbolically stable then F (λ) <
G(λ) so the intermediate value theorem gives the unique value S∗ ∈ (0, λ)
where F = G. But fu(S∗) < fu(λ) = D implying that u and u+ are not
both positive. There exists no coexistence steady state when the plasmid-free
state is hyperbolically stable. Similarly, when µ̄ū = D[1 − (1 − c)(1 − q)] we
get the same contradiction. When µ̄ū > D[1 − (1 − c)(1 − q)], that is, when
the plasmid-free steady state is unstable, then F (λ) > G(λ) so S∗ > λ if it
exists. There are two cases depending on whether D − fu(S0)(1 − c) > 0 or
D − fu(S0)(1 − c) ≤ 0. In the first case, F (S0) = 0 < G(S0) so S∗ ∈ (λ, S0)
exists by the intermediate value theorem. In the second case, G has a vertical
asymptote at some S̃ ≤ S0 and in this case too, the intermediate value
theorem implies the existence of S∗ ∈ (λ, S̃). Since D−fu(S∗) < D−fu(λ) =
0, the values of u and u+ above are positive. �

The local stability of the coexistence steady state (S∗, u∗, u∗
+) of (13) can

be determined from the eigenvalues of the variational matrix of (14) at its
corresponding steady state (0, u∗, u∗

+)

J3 :=

⎛⎝−D 0 0
· j22 j23
· j32 j33

⎞⎠
where

j22 = fu(S∗) − D − γ−1u∗f ′
u(S∗) − qγ−1u∗

+f ′
u(S∗)(1 − c) − µ̄u∗

+

j23 = −γ−1u∗f ′
u(S∗) + qfu(S∗)(1 − c) − γ−1qu∗

+f ′
u(S∗)(1 − c) − µ̄u∗

j32 = −γ−1u∗
+f ′

u(S∗)(1 − c)(1 − q) + µ̄u∗
+

j33 = −γ−1u∗
+f ′

u(S∗)(1 − c)(1 − q)



106 Mudassar Imran and Hal L. Smith

Note that the entries denoted “ ·” play no role in the stability of coexistence
steady state. In the remainder of the proof, we use the notation

d = 1 − c , p = 1 − q

in order to shorten lengthy formulae. The coexistence steady state of (13) is
stable if the eigenvalues of the matrix E = (jjk)j,k∈{2,3} have negative real
parts i. e. trace(E) < 0 and det(E) > 0. Since µ̄u∗

+ > fu(S∗)−D, j22 < 0 and
since j33 < 0, trace(E) < 0. In order to show that det(E) > 0 we simplify j23
as follows:

j23 = −γ−1u∗f ′
u(S∗) + qfu(S∗)d − qγ−1u∗

+f ′
u(S∗)d − µ̄u∗

= −γ−1u∗f ′
u(S∗) + qfu(S∗)d − qγ−1u∗

+f ′
u(S∗)d

− D + fu(S∗)dp

= −γ−1u∗f ′
u(S∗) − qγ−1u∗

+f ′
u(S∗)d − D + fu(S∗)d

< 0 .

because the sum of the last two terms is negative. If µ̄ ≥ γ−1f ′
u(S∗)dp then

j32 ≥ 0 so det(E) > 0 while if µ̄ < γ−1f ′
u(S∗)dp then

det(E) = −γ−1u∗
+f ′

u(S∗)dpfu(S∗) + γ−1u∗
+f ′

u(S∗)dpD

+ γ−1u∗
+f ′

u(S∗)dpqfu(S∗)d + µ̄γ−1(u∗
+)2f ′

u(S∗)dp

− µ̄u∗γ−1u∗
+f ′

u(S∗)dp + µ̄u∗
+γ−1u∗f ′

u(S∗)

− µ̄u∗
+qfu(S∗)d + µ̄u∗

+γ−1u∗
+qf ′

u(S∗)d + µ̄u∗µ̄u∗
+

= γ−1f ′
u(S∗)dpu∗

+[µ̄u∗
+ + D − fu(S∗)]

+ qfu(S∗)du∗
+[γ−1f ′

u(S∗)dp − µ̄]

+ γ−1f ′
u(S∗)µ̄u∗u∗

+[1 − dp] + γ−1u∗
+qf ′

u(S∗)d + µ̄u∗µ̄u∗
+

> 0 .

The above inequality is true because all three terms inside the square brackets
are positive. Thus we have, trace(E) < 0 and det(E) > 0 and so (S∗, u∗, u∗

+)
is locally asymptotically stable.

Lemma 6.4.7 System (15) has no periodic solutions.

Proof of Lemma 6.4.7: We apply the Dulac criterion with the auxiliary
function

g(u, u+) =
1

uu+

to the system (15) and find that

∂

∂u
[g(u, u+)u′] +

∂

∂u+
[g(u, u+)u′

+]

= −γ−1f ′
u(S)

u+
− q(1 − c)

γ−1uf ′
u(S) + fu(S)

u2
− γ−1f ′

u(S)(1 − c)(1 − q)
u

< 0 .
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Hence, the Dulac criterion implies that the above system does not have any
periodic solution. �

Proof of Theorem 6.4.2: Part (a) follows from Lemma 6.4.4. For parts (b)
and (c), we first consider the planer system (15). If fu(S0) > D and
fu(λ)(1 − c)(1 − q) + µ̄ū < D, there are two steady states: the washout
state (0, 0) is unstable and the plasmid-free state (ū, 0) is asymptotically
stable and it is attracts all orbits with u(0) > 0 by the Poincare–Bendixson
theorem and Lemma 6.4.7. If If fu(S0) > D and fu(λ)(1−c)(1−q)+ µ̄ū > D,
both the washout and the plasmid-free states are unstable and the coexis-
tence state (u∗, u∗

+) is stable. Again, by the Poincare–Bendixson theorem and
Lemma 6.4.7, the coexistence state attracts all orbits with initial condition
u+(0) > 0.

Now we consider the system (14). For case (b) and (c), all steady states
are hyperbolic under our hypotheses so hypotheses (H1) − (H4) of theorem
(F.1) of [17] are satisfied. There are no cycles of equilibria, so (H5) is also
satisfied. Theorem (F.1) of (Smith and Waltman 1995) implies that those
trajectory identified in cases (b) and (c) tend to the locally asymptotically
stable steady state. �

Figure 6.2 depicts the invasion of the plasmid-free state by a tiny inoculum
of plasmid-bearing organisms. We use (6) for growth and uptake. The output
has been scaled by S/a, u/(aγ) and u+/(aγ). Parameter values are chosen
as in Freter (1983), as used in Jones et al. (2002). In particular, γ = 0.5,
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Fig. 6.2. Time series of the invasion of the plasmid-free steady state by an inoculum
of plasmid-bearing organisms with µ̄ = .0018×107
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Fig. 6.3. Bifurcation diagram depicting the coexistence steady state value of u+

versus µ̄

a = 9×10−7 g/ml, m = 1.66 hr−1, S0 = 2.09×10−6 g/ml, D = 0.23 hr−1,
V = 1 cm3, A = 6 cm2. Simonsen (1991) suggests c = 0.01 and q = 0.0001.
He also points out that the value of µ̄ (aγµ̄ with current scaling) is highly
uncertain. We take µ̄ = .0018×107, a factor of 107 larger than biologically
reasonable, in order to satisfy condition (c) of Theorem 6.4.2.

Initial data are chosen to be near the plasmid-free steady state (λ, ū) =
(0.16084, 2.1614) with S, u exactly at steady state and u+ = 0.001.

Figure 6.3 plots the coexistence value of u+ versus the conjugational trans-
fer parameter µ̄. A very large value of µ̄ is required for the persistence of the
plasmid-bearing organism, reflecting our assumption that the plasmid confers
no advantage on its host.

6.5 A model of gene transfer in biofilms

In this section we obtain our main results concerning (1), restated below for
the convenience of the reader.

S′ = D(S0 − S) − γ−1fu(S) [u + (1 − c)u+] − γ−1δfw(S) [w + (1 − c)w+]
u′ = (fu(S) − D)u + qfu(S)(1 − c)u+ − αu + βδw − µ̄uu+

w′ = fw(S)w + qfw(S)(1 − c)w+ + αδ−1u − βw − µww+

u′
+ = [fu(S)(1 − c)(1 − q) − D]u+ − α+u+ + β+δw+ + µ̄uu+

w′
+ = fw(S)(1 − c)(1 − q)w+ + α+δ−1u+ − β+w+ + µww+

(18)
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Key features of the model are summarized as follows:

1. growth and uptake rates of the plasmid-bearing organism are a factor
1 − c lower than those for the plasmid-free organism reflecting the cost
of bearing plasmid.

2. adhering and sloughing rates for plasmid-bearing (α+, β+) and plasmid-
free organism (α, β) may differ.

3. fraction q of daughter cells of plasmid-bearing cells do not receive plasmid.
4. plasmid-bearing organisms transmit plasmid via conjugation to plasmid-

free organisms in both fluid and wall environments, though perhaps at
different rates (µ̄ �= µ).

5. all yield coefficients have been taken to be the same (γ).

The model differs from the one in (Imran et al. preprint) where the
plasmid-bearing organism’s growth rate, but not its uptake rate, was assumed
to be reduced by a factor 1− c. See the discussion section for an elaboration
of this difference.

Our main focus is on conditions under which the plasmid-bearing organ-
ism, whose densities are given by u+, w+ can survive. The set u+ = w+ = 0,
where they are absent, is invariant and the equations describing the dynamics
on this subset are

S′ = D(S0 − S) − γ−1 [fu(S)u + fw(S)δw]
u′ = (fu(S) − D)u − αu + βδw

w′ = fw(S)w + αδ−1u − βw (19)

We refer to it as the plasmid-free system, noting that it is identical to (5).
Our main assumptions concern (19) and are collected in the following:

(H) The washout state (S0, 0, 0) is unstable for (19) (i. e., s(B(S0)) > 0, see
(8)) and the survival state (S̄, ū, w̄) attracts all solutions of (19) satisfying
u(0) + δw(0) > 0.

As noted in Theorem 6.3.1 (d), (H) holds when fu = fw and R0 > 1. We
ignore the case that the washout state for (19) is stable because then it is
a global attractor for (19) by Theorem 6.3.1 (a) and, we conjecture, also for
(18) although we do not yet have a proof of this.

The structure of (18) implies a restriction on the types of steady states.
Obviously, we have the washout state (S0, 0, 0, 0, 0) and, we will show that
the plasmid-free state (S̄, ū, w̄, 0, 0) exists when the washout state is unstable.
However, there is no comparable “plasmid-bearing” state because the segrega-
tional loss of plasmid guarantees that where there are plasmid-bearing cells,
there will be plasmid-free cells. Especially important are possible coexistence
states (S∗, u∗, w∗, u∗

+, w∗
+) which imply plasmid persistence.

The key question is whether or not the plasmid-bearing population can
invade the plasmid-free steady state (S̄, ū, w̄, 0, 0) leading to the persistence
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of the plasmid. The answer comes from the linearization of (18) about the
plasmid-free state, the jacobian matrix of which, takes the form

J :=
(

J3×3 X3×2

02×3 C2×2

)
where 02×3 is the zero matrix and J3×3 is a stable matrix because the plasmid-
free state is asymptotically stable for (19) by Theorem 6.3.1. Thus, the sta-
bility of the plasmid-free state is determined by the eigenvalues of the sub-
matrix C, given by:(

fu(S̄)dp − D − α+ + µ̄ū β+

α+ fw(S̄)dp − β+ + µw̄

)
(20)

where d = 1 − c and p = 1 − q. If the stability modulus, s(C), of C (the
largest eigenvalue) is negative then the plasmid-free state is locally attracting;
if s(C) > 0 then the plasmid-free state is unstable. In this case, the plasmid
is maintained.

Theorem 6.5.1 Assume hypothesis (H) holds. If s(C) > 0 then the plasmid-
bearing population persists. More precisely, there exists ε > 0, independent of
initial data, such that for all solutions of (18) satisfying u+(0)+ δw+(0) > 0,
we have

u+(t) + δw+(t) > ε (21)

for all sufficiently large t. In addition, there is at least one coexistence steady
state:

(S∗, u∗, w∗, u∗
+, w∗

+)

with positive components.

Figure 6.4 depicts the invasion of the plasmid-free state by a tiny inocu-
lum of plasmid-bearing organisms. The output has been scaled by S/a,
u/(aγ), δw/aγ and similarly for u+, w+. Parameter values are the same
used in previous section except for µ, which is taken as in (Imran et al.
preprint). Initial data are chosen to be near the plasmid-free steady state
(S̄, ū, w̄, 0, 0) = (.11, 2.21, .93, 0, 0) with S, u and w exactly at steady state
and u+ = 0.001, w+ = 0. Observe that the simulation tracks the plasmid-free
steady state for the first 60 hours then makes a transition to a coexistence
state dominated by wall-adherent, plasmid-bearing cells.

Local existence and positivity of solutions of (18) are standard (see Smith
and Waltman 1995). A key to proving Theorem 6.5.1 is establishing a uniform
ultimate upper bound on solutions.

Lemma 6.5.2 All nonnegative solutions of (18) are ultimately uniformly
bounded in forward time, and thus they exist for all positive time. In fact,

lim sup
t→∞

(S +
u

γ
+

δw

γ
+

u+

γ
+

δw+

γ
) ≤ S0/b (22)
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Fig. 6.4. Time series of the invasion of the plasmid-free steady state by inoculum of
plasmid-bearing organisms that are better adherers. α = α+ = β = .1, β = .4, µ = 1
and µ̄ = .0018

where β̄ = min{β, β+}, d = max{D + α + β̄ + fw(S0), fu(S0)c + D + α+ +

β̄ + fw(S0)}, e = fu(S0), and b = −d+
√

d2+4β̄e

2e .

Proof: From the inequality

S′ ≤ D(S0 − S)

we conclude that lim supt→∞ S ≤ S0. Monotonicity of fu and fw imply that,
for given ε > 0 we have fu(S(t)) ≤ fu(S0)+ ε and fw(S(t)) ≤ fw(S0)+ ε, for
t ≥ T

For given a solution we define

M(t) =
u + u+

u + u+ + δw + δw+
.

Then

M ′ = [
(u + u+)′

(u + u+ + δw + δw+)
] − [

(u + u+ + δw + δw+)′(u + u+)
(u + u+ + δw + δw+)2

] =: l − n .

The first square bracket, l, is

l =
(fuu − Du − αu + βδw + fu(1 − c)u+ − Du+ − α+u+ + β+δw+)

(u + u+ + δw + δw+)
,
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where fu = fu(S(t)) and fw = fw(S(t)). If a = a(t) := min{(fu − D −
α), (fu(1 − c) − D − α+)}, then

l ≥ aM + β̄(1 − M) .

The second square bracket, n, in M ′ is

n = − (fuu − Du + fwδw + fu(1 − c)u+ − Du+ + (fw(1 − c)δw+)(u + u+)
(u + u+ + δw + δw+)2

n ≥ (−fuu − fuu+ − fwδw − fwδw+)
(u + u+ + δw + δw+)

M + DM2

n ≥ −fwM − fuM2 + fwM2 + DM2

So

M ′ ≥ β̄ + (a − β̄ − fw)M + M2(D + fw − fu) .

Using the result of the first paragraph of the proof, and considering both
cases one by one for a, given ε > 0, there is T > 0 such that

a − β̄ − fw ≥ −d − ε + fu

≥ −d − ε

for all t ≥ T . So M ′ ≥ β̄ − M(d + ε) − M2e/2. The right hand side of this
inequality is a parabola opening down wards. Inside the positive region there
is only one stable rest point. Consequently,

−(d + ε) +
√

(d + ε)2 + 2β̄e

e
≤ lim inf

t→∞ M

and since ε > 0 is arbitrary,

−d +
√

d2 + 2β̄e

e
≤ lim inf

t→∞ M

Let z = S + u
γ + δw

γ + u+
γ + δw+

γ . Adding the five equations of (1) we find
that,

z′ = D(S0 − S − u

γ
− u+

γ
)

For ε satisfying b = −d+
√

d2+2β̄e

e > ε > 0, there exists T > 0 such that for
t ≥ T

u + u+ ≥ [b − ε](u + u+ + δw + δw+) .
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Therefore, for t ≥ T

z′ ≤ D(S0 − S) − Dγ−1(b − ε)(u + u+ + δw + δw+)

≤ D[S0 − (b − ε)z]

implying that lim supt→∞ z ≤ S0/b. �

Note that it is critical for the proof that β, β+ > 0. If, for example, β = 0,
the wall population may grow unboundedly.

Proof of Theorem 6.5.1: We follow a similar argument used in Theo-
rem 5.3 of (Stemmons and Smith 2000), applying Theorem 4.6 in (Thieme
1993). Lemma 22 establishes that (18) has a compact attractor so that the
dissipativity requirement of Theorem 4.6 holds.

Using the notation of that result, we set X = R5
+, X2 = {(S, u, w, u+, w+)

∈ X : u+ = 0 or w+ = 0}, and X1 = X \ X2. Observe that solu-
tions of (18) starting in X2 immediately enter X1, where u+, w+ > 0,
unless u+(0) = w+(0) = 0. We want to show that solutions which start
in X1 are eventually bounded away from X2. Using the notation x(t) =
(S(t), u(t), w(t), u+(t), w+(t)) for a solution of (18), define

Y2 = {x(0) ∈ X2 : x(t) ∈ X2, t ≥ 0} = {x(0) ∈ X : u+(0) = w+(0) = 0}
and Ω2, the union of omega limit sets of solutions starting in X2, is, by our hy-
potheses, the set {E0, E1} where E0 := (S0, 0, 0, 0, 0) and E1 := (S̄, ū, w̄, 0, 0).
We will show that if M0 = {E0} and M1 = {E1}, then {M0, M1} is an iso-
lated acyclic covering of Ω2 in Y2 and each Mi is a weak repeller. All solutions
starting in Y2 but not on the S-axis converge to E1 while those on the axis
converge to E0. E1, being locally asymptotically stable relative to Y2, cannot
belong to the alpha limit set of any full orbit in X2 different from E1 itself.
Similar arguments apply to E0; the only solutions converging to it lie on the
S-axis and these are either unbounded or leave X in backward time. Thus
{M0, M1} is an acyclic covering of Ω2. If M1 were not a weak repeller for
X1, there would exist an x(0) ∈ X1 such that x(t) → E1 as t → ∞. Let
V (t) = (u+(t), δw+(t))t and define the matrix P (f(S), u, w) (f = (fu, fw))
by(

fu(S)(1 − c)(1 − q) − D − α+ + µ̄u β+

α+ fw(S)(1 − c)(1 − q) − β+ + µw

)
(23)

Then A = P (f(S̄), ū, w̄) and we may write the equation satisfied by V (t) as

V̇ = P (f(S̄), ū, w̄)V + [P (f(S), u, w) − P (f(S̄), ū, w̄)]V

If P (f(S̄), ū, w̄)tW = qW where q = s(P (f(S̄), ū, w̄)) = s(C) > 0 and W =
(m, n)t with m, n > 0 is the Perron–Frobenius eigenvector, then on taking
the scalar product of both sides of the differential equation by W and using
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that S(t) → S̄ and w(t) → w̄, we have

d
dt

(mu+ + nδw+) ≥ q/2(mu+ + nδw+)

for all large t. But this leads to the contradiction to x(t) → E1, namely that
mu+(t)+nδw+(t) → ∞ as t → ∞. Thus M1 is a weak repeller. The argument
above together with the fact that E1 is locally asymptotically stable relative
to the subspace (u+, w+) = (0, 0) implies that it is an isolated compact
invariant set in X . Similar arguments show that M0 is a weak repeller and an
isolated compact invariant set in X . Therefore, Theorem 4.6 in (Thieme 1993)
implies our result: there exists ε > 0 such that lim inft→∞ d(x(t), X2) > ε for
all x(0) ∈ X1, where d(x, X2) is the distance from x to X2.

The existence of at least one coexistence steady state follows from Theo-
rem 1.3.7 of (Zhao 2003). �

6.6 Discussion

Building on previous work, we have constructed a model of gene transfer be-
tween micro-organisms in a heterogeneous environment consisting of a biofilm
immersed in a fluid medium. The chemostat setting of our model may not
be appropriate in many natural environments so we point out here how
the model can be modified for different settings (but see also (Imran et al.
preprint) for a spatially explicit setting). Equations (1) reflect the chemostat
mainly due to the fact that the same term D serves simultaneously as the
input rate of supply of fresh substrate, the outflow rate of unused substrate
and the removal rates of planktonic cells, both u and u+. If one replaces the
removal rates of planktonic cells by a parameter D′, possibly distinct from
D, then (1) is extended in a way that may better capture natural environ-
ments. Even in the chemostat setting, one may view D′ as D + d where d is
a death rate of bacteria. Our analysis continues to hold although one must
modify slightly Lemma 5.2 and note that the quoted results of Pilyugin and
Waltman (1999) have not been established in this setting.

Our model (1) represents a slight modification of the one originally
proposed in (Imran et al. preprint). In (Imran et al. preprint), it was as-
sumed that plasmid bearing organisms have the same nutrient uptake rate as
plasmid-free organisms but their growth rates are reduced by a factor 1 − c;
bearing plasmid negatively affects growth but not uptake. This implies that
the effective yield of plasmid-bearing organisms is reduced by this same fac-
tor. In the present work, we follow previous workers by assuming that both
uptake and growth of plasmid-bearing organisms are reduced by the factor
1− c so the yield remains the same. In other words, it is assumed that bear-
ing plasmid reduces both uptake and growth rates. This assumption has the
effect of greatly improving the mathematical tractability of the model of gene
transfer without wall growth (because a conservation relation holds) but does
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not significantly affect the analysis of (1). It is likely that uptake and growth
rate are affected differently and that the magnitude of each effect depends
both on the particular microorganism and on the particular plasmid.

In order to better understand our model, we have reviewed previous work
where the key modeling ideas were first developed. These include the work of
Levin and Stewart from which most of the mathematical modeling of plasmid
transfer can be traced, work of Ryder and DiBiasio (1984) and Stephanopolis
and Lapidus (1988) where a more realistic modeling of miss-segregation was
proposed, and the work of Pilyugin and Waltman (1999) whose simple biofilm
model forms the basis of our model. Our focus in the present chapter, as in
these earlier works, is on understanding the conditions that allow the plasmid
to persist in a bacterial population despite conferring a growth disadvantage
to its bearer and despite the occasional leakage in its vertical transmission
from mother to daughter cells. In each of the models considered here, the key
to understanding plasmid persistence lies in determining the basic reproduc-
tion number R0, the number of plasmid-bearing progeny that a hypothetical
single plasmid-bearing cell would leave if introduced into the plasmid-free
steady state environment. These progeny consist of daughter cells born with
plasmid and formerly plasmid-free organisms that have acquired the plasmid
via conjugation. In the chemostat setting of these models, a cell eventually
washes out so a key quantity involved in the calculation of R0 is the mean
residence time (MRT) in the chemostat. Plasmid persistence requires that
R0 > 1.

The Stewart and Levin model (10) is chemostat based so MRT = 1/D
but a plasmid-bearing cell reverts to a plasmid-free cell at rate q so the mean
time our plasmid-bearing cell remains in the chemostat and remains plasmid-
bearing is 1/(D + q). This leads to

R0 = [fu+(λ) + µ̄ū]/(D + q)

The term fu+(λ)/(D + q) gives the number of daughter cells born to the
single plasmid-bearing cell before washout. The term µ̄ū/(D + q) gives the
number of plasmid-free cells infected by the plasmid-bearing cell before it
washes out. Consequently, the condition R0 > 1 for plasmid persistence just
says that the number of plasmid-bearing progeny must exceed one.

Our model of gene transfer without wall growth (13) contains the more re-
alistic modeling of miss-segregation developed by Ryder and DiBiasio (1984)
and Stephanopolis and Lapidus (1988). This model does not allow a plasmid-
bearing cell to revert to a plasmid-free cell-only one of its daughter cells can
be plasmid free. In this case

R0 = [fu(λ)(1 − c)(1 − q) + µ̄ū]/D

The interpretation is similar to that above since fu+(S) = fu(S)(1 − c) but
one must discount the progeny qfu(λ)(1−c)/D of our single plasmid-bearing
cell that do not carry the plasmid.
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We would like to determine the basic reproductive number for our gene
transfer model in a biofilm (Berman and Plemmons 1979). How are we to
reinterpret the condition for plasmid persistence

s(C) > 0

in biological terms? As we will see, the Perron–Frobenius theory (see [2])
gives estimates of s(C) which are biologically interpretable. Let

Q+ :=
(−D − α+ β+

α+ −β+

)
In the appendix we show that the mean residence time of a plasmid-bearing
cell in the chemostat is given by

MRT+ = −1/s(Q+)

Define

k : = min{fu(S̄)dp + µ̄ū, fw(S̄)(1 − c)(1 − q) + µw̄}
K : = max{fu(S̄)dp + µ̄ū, fw(S̄)(1 − c)(1 − q) + µw̄}

Then

kI + Q+ ≤ C ≤ KI + Q+

which implies that

k + s(Q+) = s(kI + Q+) ≤ s(C) ≤ s(KI + Q+) = K + s(Q+) .

Consequently, we may express s(C) as follows

s(C) = F+[fu(S̄)dp + µ̄ū] + (1 − F+)[fw(S̄)dp + µw̄] + s(Q+)

for some F+ with 0 ≤ F+ ≤ 1. The condition 0 < s(C) for plasmid persistence
can then be equivalently expressed as 0 < −s(C)/s(Q+), or as

1 < F+[fu(S̄)dp + µ̄ū] + (1 − F+)[fw(S̄)dp + µw̄]) · MRT+ (24)

Inequality (24) can be viewed as requiring that a single plasmid-bearing cell,
introduced into the plasmid-free steady state, leave more than one plasmid-
bearing progeny in order for persistence of the plasmid. Indeed, the term

fu(S̄)dp · MRT+

gives the number of daughter cells carrying plasmid born of the single
plasmid-bearing cell before it washes out of the chemostat, assuming that
it resides in the fluid during this time. Replacing the first factor by fw(S̄)dp



6 A Mathematical Model of Gene Transfer in a Biofilm 117

gives the corresponding number of plasmid-bearing progeny assuming that
the cell spends its time adhering to the wall. The term

µ̄ū · MRT+

gives the number of infectious transfers of plasmid from our single plasmid-
bearing cell to plasmid-free cells before washout, assuming that it resides in
the fluid during this time. Replacing the first factor by µw̄ gives the corre-
sponding number of infectious tranfers of plasmid given that the cell resides
on the wall during its time in the chemostat.

But we must take into account that our lone plasmid-bearing cell, intro-
duced into the plasmid-free steady state, will spend a certain fraction F+

of its residence time in the fluid and a complementary fraction 1 − F+ on
the wall. In this way, the interpretation of (24)is clear-a plasmid-bearing cell
must leave more than one plasmid-bearing progeny.

Diekmann and Heesterbeek (2000) (see Thm 6.13) show that

s(C) > 0 ⇔ ρ(−TQ−1
+ ) > 1

where ρ(A) denotes the spectral radius of A,

T = diag[fu(S̄)dp + µ̄ū, fw(S̄)dp + µw̄]

and

−Q−1
+ =

(
1/D 1/D

α+/Dβ+ (α+ + D)/Dβ+

)
See (Imran et al. preprint) for a discussion of the biological meaning for the
entries of this matrix.

Thus they are lead to define the basic reproductive number

R0 = ρ(−TQ−1
+ ) .

We observe that

ρ(−Q−1
+ ) = −1/s(Q+) = MRT+

where the subscript “+” denotes that the plasmid-bearing organisms parame-
ters α+ and β+ are used. Using the Perron–Frobenius theory, with ρ(−TQ−1

+ )
instead of s(C), as before leads to

R0 = (F+[fu(S̄)dp + µ̄ū] + (1 − F+)[fw(S̄)dp + µw̄]) · MRT+ (25)

Let’s return to the biology and first ask whether the plasmid could survive
if it confers no advantage in biofilm forming ability on its host. That is,
assuming:

α = α+ , β = β+ ,
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can the plasmid survive as a parasite. This question was considered by Stew-
art and Levin (1977) for the simple chemostat-based model ignoring wall
growth. The question boils down to whether or not its advantage in horizon-
tal spread outweighs its growth and segregation disadvantages. In this case,
both plasmid-bearing and plasmid-free cells have identical mean residence
times in the chemostat, MRT = MRT+. In order to interpret formula (24)
in this case, consider that at the plasmid-free steady state each plasmid-free
organism leaves exactly one daughter cell. Thus

F · fu(S̄) · MRT + (1 − F ) · fw(S̄) · MRT = 1

Not surprisingly, in the absence of horizontal transmission µ = µ̄ = 0, a par-
asitic plasmid cannot satisfy the persistence condition since F = F+ in that
case. In the interesting case that µ, µ̄ > 0, we cannot assert that F = F+

since F+ depends on µ and µ̄. However, it is reasonable to speculate that
F − F+ is small. Putting F = F+, (24) for plasmid persistence becomes:

MRT · [F · µ̄ū + (1 − F ) · µw̄] > 1 − (1 − c)(1 − q) = c + q − cq (26)

The left hand side of the inequality gives the number of plasmid transfers
made by a single plasmid-bearing cell before being washed out of the chemo-
stat. It must exceed a positive threshold which depends on the cost of carriage
c and the probability of miss-segregation q for the plasmid to survive.

Equation (26) indicates that the conjugation terms must exceed a thresh-
old to maintain a parasitic plasmid. In order to see this more clearly, we fix
α = α+ = 0.1 and β = β+ = 0.4, with all other parameters as in Fig. 6.4,
except that µ̄ = µ × 10−3. We then vary µ and plot the resulting stable
steady state value of u+ + δw+ in Fig. 6.5. This was done by integrating
the differential equations, starting with a tiny inoculum of plasmid-bearing
cells, to steady state. If u+ + δw+ = 0, as it does for small µ, that means
the stable steady state is the plasmid-free state; if u+ + δw+ > 0, then we
are plotting the coexistence steady state value of u+ + δw+. This bifurcation
diagram shows that the critical value µc ≈ 6×104 at which the coexistence
steady state appears is much larger than our order of magnitude estimate of
a biologically reasonable value of µ ≈ 1.

We are particularly interested in the case that the plasmid-free organism
cannot form a macroscopically significant biofilm, for example, this may mean
that it can form only a monolayer (see e. g. Pratt and Kolter (1998) and
O’Toole and Kolter (1998)), while the plasmid-bearing organism can form
a healthy biofilm. In this case, it is reasonable to assume that the plasmid-
bearing organisms sloughing rate does not exceed that of the plasmid-free
organism and that its adhesion rate constant is not less than that of the
plasmid-free organism:

β+ ≤ β and α ≤ α+. (27)

Strict inequality is assumed to hold in at least one of these. In this case, as
noted in the appendix, the plasmid-bearing organism has a residence time
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Fig. 6.5. Bifurcation of coexistence steady state from the plasmid-free steady state
at a critical value of µ. Vertical axis is the coexistence steady state value of total
plasmid-bearing biomass u+ + δw+. Horizontal axis is the conjugation rate µ

advantage over its plasmid-free rival:

MRT+ > MRT

and it should spend more of this time on the wall than the plasmid-free
organism so we conjecture that:

F > F+

where, presumably, bacterial densities are higher than in the fluid state and
contact rates between organisms are higher:

µ̄ū >> µw̄ .

(24) says that these advantages must outweigh the cost of carriage and seg-
regational loss.

6.7 Appendix: Mean residence times

Consider the linear compartmental system with no inputs

x′ = Ax (28)

where A is a stable, quasi-positive (aij ≥ 0, i �= j), irreducible n × n matrix
satisfying

A = B − C
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where C > 0 and B is quasi-positive with zero column sums. Matrix B
accounts for the “internal transitions” of mass between compartments while
C accounts for the loss of mass to the external environment. To see this, let
1 be the vector of ones. The total mass of x is 1 · x. Then the rate of loss
from the system to the environment is given by

(1 · x)′ = 1 · Ax = 1 · Bx − 1 · Cx = −1 · Cx ≤ 0 .

Let x0 > 0 be such that 1 ·x0 = 1. We call x0 a probability vector. If we start
the system off at x0, then x(t) = eAtx0. The probability of still being in the
system at time t is given by

P (in system at time t) =
∫ ∞

t

1 · Cx(s)ds = 1 · C
∫ ∞

t

x(s)ds

The mean residence time (MRT) is given by

MRT(x0) =
∫ ∞

0

t1 · Cx(t)dt

=
∫ ∞

0

C

∫ ∞

t

x(s)dsdt · 1

=
∫ ∞

0

C

∫ ∞

t

eAs dsdtx0 · 1

= C

∫ ∞

0

eAt

∫ ∞

t

eA(s−t) dsdtx0 · 1

= C

∫ ∞

0

eAt

∫ ∞

0

eAr drdtx0 · 1

= C(
∫ ∞

0

eAr dr)2x0 · 1

= C(−A−1)2x0 · 1

where we have used that

−A−1 =
∫ ∞

0

eAt dt .

We see that the MRT(x0) depends on x0, the initial distribution among the
compartments. In order to obtain a quantity that is independent of the initial
distribution, we might average the above quantity over the standard simplex
of probability vectors Σ = {x0 ∈ IRn : x0 ≥ 0, x0 · 1 = 1}, obtaining the
result

MRT =
1
|Σ|

∫
Σ

C(−A−1)2x0 · 1dS(x0) =
1
n

C(−A−1)21 · 1

where |Σ| denotes the area of Σ.
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Instead, we note that the matrix A has a dominant eigenvector v corre-
sponding to s(A) := max�λ where the maximum is taken over all eigenvalues
of A.

Av = s(A)v , 1 · v = 1 , v > 0 .

s(A), the stability modulus of A, is an eigenvalue and our assumptions are
that s(A) < 0. All non-negative solutions of (28) are asymptotic to x(t) =
es(A)tv.

If x0 = v, then we may easily compute MRT(v) from the formula above:

MRT(v) = CA−2v · 1 =
1

s(A)2
Cv · 1 .

On the other hand, with x0 = v, x(t) = es(A)tv so (1 ·x(t))′ = s(A)es(A)t1 ·v.
Thus

P (leave system at between t and t + dt) = −s(A)es(A)t1 · vdt

so we define MRT for (28) to be:

MRT =
∫ ∞

0

1 · es(A)tvdt =
∫ ∞

0

es(A)t dt1 · v =
−1

s(A)
.

As an example consider the case

A = A(α, β, D) :=
(−D − α β

α −β

)
=
(−α β

α −β

)
−
(

D 0
0 0

)
A simple calculation gives

s(A) = −
[

D + α + β −√
(D + α + β)2 − 4βD

2

]
. (29)

The corresponding eigenvector of unit mass is given by

v = [−s(A)/D, (1 + s(A)/D)]T .

Using

A−1 =
1

Dβ

(−β −β
−α −D − α

)
we find that

MRT(x0) =
(β + α)x1

0 + (β + α + D)x2
0

Dβ
.
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Obviously,

(β + α)
Dβ

≤ MRT(x0) ≤ (β + α + D)
Dβ

where the two extremes arise from starting with all cells in the fluid and
starting with all cells on the wall. In particular, we obtain the estimate

1
D

<
(β + α)

Dβ
≤ MRT = − 1

s(A)
≤ (β + α + D)

Dβ
. (30)

Recall that 1/D is the mean residence time for a bacterial cell in the
fluid for the classical chemostat model. The possibility of a cell adhering to
the wall obviously has the consequence that the mean residence time in the
chemostat increases. The inequality (30) also implies v > 0.

Simple calculations give that

d
dβ

MRT < 0 ,
d
dα

MRT > 0 .

It is intuitive that the mean residence time increases with the wall affinity α
and decreases with the sloughing rate β.
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7

Nonlinearity and Stochasticity
in Population Dynamics

J. M. Cushing

Summary. Theoretical studies of population dynamics and ecological interactions
tend to focus on asymptotic attractors of mathematical models. Modeling and ex-
perimental studies show, however, that even in controlled laboratory conditions the
attractors of mathematical models are likely to be insufficient to explain observed
temporal patterns in data. Instead, one is more likely to see a collage of many
patterns that resemble various dynamics predicted by a deterministic model that
arise during randomly occurring temporal episodes. These deterministic “signals”
might include patterns characteristic of a model attractor (or several model attrac-
tors – even from possibly different deterministic models), transients both near and
far from attractors, and/or unstable invariant sets and their stable manifolds. This
paper discusses several examples taken from experimental projects in population
dynamics that illustrate these and other tenets.

7.1 Introduction

During the last century mathematicians and theoretical ecologists developed
a plethora of deterministic models for the dynamics of biological populations
and ecological systems. The mathematical analysis of these models, most
of which are based on differential or difference equations, is overwhelmingly
focussed on the asymptotic dynamics of model solutions. The standard pro-
cedure is to locate equilibrium states and perform a linearization stability
analysis. In some cases a global analysis of asymptotic dynamics is possible
(using Lyapunov functions, Poincaré-Bendixson theory, etc.). Periodic solu-
tions play an important role in some models and their existence and asymp-
totic stability often preoccupies the mathematician. In more recent years,
considerable interest has arisen in more complicated asymptotic dynamics
and attractors (such as chaotic attractors), although their study has been
mostly by means of computer simulations.

With all the historical and current attention paid to the attractors of
deterministic models, one would naturally assume that they must play an
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important role in our understanding of biological ecosystems and in the de-
scription and explanation of observed patterns in population data. Yet, it
is widely recognized that there is a serious gap between theoretical models
and ecologically data (for example, see (Aber 1997)). Few examples exist of
models that provide quantitatively accurate descriptions of population time
series data, and even less that provide quantitatively accurate and reliable
predictions of population and ecosystem dynamics. Of what use, then, to the
ecological sciences – particularly the applied ecological sciences – is the vast
literature on mathematical models whose asymptotic dynamics we mathe-
maticians spend so much time and effort analyzing?

What should one expect to see when examining ecological time series
data? Should one look for temporal patterns that are explainable by the
attractors of deterministic models? Given that “noise” is inevitable in eco-
logical time series data, should one look for “fuzzy versions” of attractors?
Something of the sort is usually uttered when noise is mentioned in model
studies (although when noise is considered it is usually not carefully mod-
eled). In addition, the (rather obvious) caveat is usually mentioned that too
much noise will completely obliterate deterministic attractors (in which case,
of course, their role is not clear). To relate a model to data one has to think
carefully about the source of the “noise” in the data (i. e., the inevitable de-
viations of data from model predictions). Are these “errors” due primarily
to inaccurate measurements? If so, then of course too much noise will likely
obliterate any deterministic trends (attractors or other), and the problem of
connecting model to data is more concerned with the problem of obtaining
accurate data. Even if data is highly accurate (even exact) there will be de-
viations of data from model predictions because no model can capture all
of the mechanisms that determine the dynamics of a biological population.
External forces and internal processes not a part of the model result in “en-
vironmental” and “demographic” noise. Another possibility is, then, that one
might come to find in an ecological data set that transient dynamics predom-
inate (relative to a given model) and take precedence over model predicted
asymptotic attractors. Perhaps it is even the case that ecological data typi-
cally exhibit repeated episodes of transients as they are continuously buffeted
by stochastic perturbations and, as a result, asymptotic attractors play only
a small role or even no role at all.

The answers to these questions can determine what one looks for in data
and what tools one uses to analyze data; in other words, they can determine
what one actually “observes” in data and hence one’s judgement about the
“validity” of a model and the accompanying theory.

For ecology to become a more precise science and to raise its principles
above qualitative descriptions and general verbal metaphors, it is necessary
to make stronger connections between models and data. This involves not
just new deterministic model equations and their mathematical analysis, but
methods to deal with model parameterization/validation and stochasticity
(the inevitable deviation of data from model predictions). A time tested pro-
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cedure used in science to connect theory and models to data is to isolate
phenomena, under controlled and replicated experimental conditions, and to
manipulate and perturb a system in order to observe its responses. The un-
derstanding resulting from such experimental and modeling procedures form
a basis for the study of larger scale systems. To quote E. O. Wilson (2002):

“When observation and theory collide, scientists turn to carefully de-
signed experiments for resolution. Their motivation is especially high
in the case of biological systems, which are typically far too complex
to be grasped by observation and theory alone. The best procedure,
as in the rest of science is first to simplify the system, then to hold
it more or less constant while varying the important parameters one
or two at a time to see what happens.”

It was in this spirit that I began a collaboration nearly fifteen years ago
with a team of mathematicians, statisticians and biologists (R. F. Costantino,
R. A. Desharnais, B. Dennis and more recently including S. M. Henson,
and A. King). This team’s collaborations has had two broad goals. First,
we wanted to derive and validate a successful model for the dynamics of
an experimental population (in this case, species of Tribolium). We sought
a model that makes quantitatively accurate descriptions of observed data and
that we could show makes accurate predictions, under a wide variety of cir-
cumstances – predictions that could be corroborated by means of controlled
experiments. Second, we would then use our model/experimental system to
conduct studies of a wide range of nonlinear phenomena. Initially our funda-
mental focus was on the asymptotic dynamics predicted by a deterministic
model (although we developed stochastic versions of the model to explain
the deviations of data from model predictions in order to validate the model
and to conduct simulations). To date, we have successfully used our system
(and several adaptations and modifications) to study a long list of dynamic
phenomena, including equilibria and periodic cycles, stability and destabiliza-
tion, bifurcations, quasi-periodic motion, routes-to-chaos, temporal patterns
on chaotic attractors, sensitivity to initial conditions, the control of chaos,
temporal phase shifting, periodicity due to environmental forcing, nonlin-
ear resonance, multiple attractors, lattice effects, the role of spatial scale on
dynamics, the effect of genetic adaptation on population dynamics, and com-
petition between two species. See the books (Caswell 2001) and (Cushing et
al. 2003) (and the references cited therein) for expositions of our methods
and for many of our results.

The final chapter of the book (Cushing et al. 2003) contains a list of gen-
eral conclusions concerning the modeling of biological populations and var-
ious nonlinear phenomena that we have studied. The purpose of this paper
is to elaborate on one of the main conclusions in that list: “full explanation
of a ecological times series data is unlikely to be found by analyses that
rely solely on deterministic model attractors.” Instead, it is suggested that
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what one is more likely to see in time series data is a mixture – a tempo-
ral collage – of many patterns that resemble various deterministic dynamics
predicted by a model that arise, perhaps only in part, during randomly oc-
curring temporal episodes. These deterministic “signals” might include one or
several attractors, transients both near and far from attractors, and unstable
invariant sets and their stable manifolds. Moreover, we found in some of our
projects that these deterministic patterns might arise from more than one
deterministic model! In this paper, I present several examples taken from our
experimental projects that are selected to illustrate these tenets.

7.2 Saddles flybys

In 1980, David Jillson (1980) reported an experiment with Tribolium casta-
neum in which a nonlinear resonance phenomenon was observed in a habitat
of periodically fluctuating volume (Henson et al. 1997). Our first example
comes from Jillson’s control treatments in which the habitat was of constant
volume. Figure 7.1 shows plots of the larval stages in the three replicate
cultures. Also shown is the model predicted orbit of the LPA model

Lt+1 = bAt exp (−celLt − ceaAt)
Pt+1 = (1 − µl)Lt

At+1 = Pt exp (−cpaAt) + (1 − µa)At

(1)

with parameter estimates obtain from the data (using maximum likelihood
methods and a stochastic version of the model (Dennis et al. 1995; Cushing
et al. 1998)). The time unit in this model is two weeks and the generation
time is four weeks. The predicted (global) attractor is a 2-cycle. There is also
a (unique) positive equilibrium which is a saddle. After a short period of time,
two of the three replicate plots of the larval stage resemble the crash-boom
cycles predicted by the 2-cycle attractor.

The third replicate is strikingly different, however. Initially it also ap-
proaches the 2-cycle attractor, but the approach is interrupted by a long
period of subdued oscillation (from t = 6 to about t = 20 or 21, or in other
words over seven generations). Figure 7.1 indicates that the larval stage, dur-
ing this period, is close to the unstable equilibrium predicted by the model.
Figure 7.2 shows the data plotted in three dimensional phase space. The
initial approach to the 2-cycle attractor was interrupted by a random event
that placed the orbit near the (one dimensional) stable manifold of the sad-
dle equilibrium. The data then closely followed the model predicted stable
manifold, until it arrived near the saddle where it lingered for 13 time steps.
Subsequently this replicate made an oscillatory departure from the saddle
(as predicted by the one dimensional unstable manifold) until it too finally
arrived near the 2-cycle attractor.
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Fig. 7.1. The first three
plots show the larval stage
of three replicate control
cultures from an experi-
ment of Jillson (1980). The
fourth plot is that of the
LPA model predicted time
series of the larval stage
with the parameter val-
ues b = 4.44, µl = 0.479,
µa = 0.154, cel = 0.0584,
cea = 0.00580, cpa =
0.0105. The attractor is
a periodic 2-cycle. The
dashed line shows the
larval component of the
model predicted saddle
equilibrium

To explain the observed time series in the third replicate of Jillson’s con-
trols we see that it is necessary to include not just the model predicted
2-cycle attractor, but also the saddle equilibrium and the geometry of its sta-
ble and unstable manifolds. This “unusual” replicate should not be discarded
as anomalous (or averaged with the other replicates). Indeed it is valuable.
The “saddle flyby” provides more model validation than we would get from
time series data that did not visit the saddle (i. e., data orbits like the other
two replicates), because it confirms the model predicted dynamics away from
the attractor and near the saddle. Stochastic perturbations allow visitation
of a wider range of phase space and deepen our understanding of the pop-
ulations dynamics. (For the same reason they also improve our parameter
estimates, since the parameterization procedure is based on the residuals of
one-step predictions from each datum point which then have a wider range
in phase space (Cushing et al. 2003).)

We have seen such saddle flybys in virtually all of our experimental
projects (including saddle cycles as well as saddle equilibria). Figure 7.3 shows
another example taken from one of the treatments of a route-to-chaos exper-
iment reported in (Costantino et al. 1997; Cushing et al. 2003; Dennis et al.
2001). In this example, the local unstable manifold is two dimensional (in-
stead of one dimensional as in the example of Fig. 7.1) and is associated with
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Fig. 7.2. The data from Jillson’s replicate 3 produce an orbit in three dimensional
phase space. Plots are shown of this orbit over selected temporal subintervals. a Ini-
tially, from t = 0 to 6 the data orbit approaches the 2-cycle attractor denoted by
the solid circles. b At time t = 7 a random perturbation placed the data point
near the stable manifold of the saddle equilibrium (denoted by the diamond). The
vertical lines L1 and L2 are tangents to the two dimensional stable manifold at the
saddle (as determined from the eigenvectors of the two eigenvalues λ = 0.80285 and
−0.071169 of the Jacobian matrix respectively). The data orbit from t = 7 to 11
closely follow the tangent line L1. c From t = 12 to 21 the data orbit lingers near
the saddle equilibrium, eventually d to return to the 2-cycle attractor

a complex eigenvalue (of magnitude greater than one). The predicted dynamic
near the equilibrium is, therefore, quite different from that in Fig. 7.1. The de-
parture of orbits from the unstable equilibrium is expected to be “spiral-like”
(with a rotational angle predicted by the argument of the complex eigen-
value). The observed data exhibits this prediction to a remarkable accuracy.
This data is from one of three replicates, the other two of which did not un-
dergo such a saddle flyby (Cushing et al. 2003). Notice again that to explain
the “anomalous” replicate in Fig. 7.3, as well as the differences between it and
the other replicates, we need to include both the attractor and the unstable
saddle (and its characteristics) in the analysis.

Sometimes a data time series will undergo a saddle flyby after spending
considerable time on or near the attractor. For example, a distinctive sad-
dle equilibrium flyby, lasting 38 weeks (over 9 generations), occurred during
the 7th year of an 8 year experiment that placed a culture of Tribolium on
a chaotic attractor (King et al. 2003). In other examples, saddle flybys oc-
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Fig. 7.3. These four graphs show one replicate from one of the treatments of
the route-to-chaos experiment reported in (Costantino et al. 1997; Dennis et al.
2001; Cushing et al. 2003). For the estimated and controlled parameter values (b =
10.45, µl = 0.2000, µa = 0.9600, cel = 0.01731, cea = 0.01310, cpa = 0.05000)
the LPA model predicts an invariant loop attractor, appearing in the graphs as
a triangular shaped loop. The four graphs show the data orbit broken into four
temporal segments. The first and fourth segments in graphs a and d, corresponding
to the beginning and the end of the experiment, show a temporal motion around the
model predicted invariant loop. A notable perturbation away from the loop attractor
occurs when a stochastic event at t = 8 (week 16) placed the data point near a model
predicted equilibrium. Graph b shows this second segment of the orbit which lingers
near the unstable equilibrium for t = 8 to 13 (about 8 weeks or, in other words, two
generations). The saddle equilibrium has a two dimensional unstable manifold (the
linearization has complex eigenvalues of magnitude greater than one) and therefore
the model predicts a rotational departure from the equilibrium with, as it turns
out, an rotational angle of approximately 145 degrees. This rotation is clearly seen
in the data plotted in c

cur more than once in a single time series of data; see (Cushing et al. 2003,
p. 142) for an example that occurred in the route-to-chaos experiment.

A stochastic version of a deterministic model provides a means by which
to study such randomly occurring saddle flybys. We can view simulations
of a stochastic model as possible outcomes of an experiment (and repeated
simulations as replicates of the experiment). Such a model should not be
derive in a cavalier fashion. It is not always appropriate, for example, simply
to add noise to the right hand side of the equations in a dynamic model, as
is often done. Instead one should place random variables of an appropriate
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Fig. 7.4. The graphs in the left column show three simulations of a demographic
stochasticity version of the LPA model (1) with parameter values as in Fig. 7.1.
Noise was added to each of the three equations in the LPA model on the square root
scale (uncorrelated normal random variables with variances 10, 1 and 1 respectively)
(Dennis et al.1995; Cushing et al. 2003). Simulations were started near the 2-cycle
attractor, plotted as the solid circles in the upper graph. The open circles graphs
show the L-stage component of the simulations and the dashed line that of the
saddle equilibrium. The upper graph show no saddle flyby, while that in the middle
graph shows one and the bottom graph shows two flybys. The open circles in the
right column graphs show Euclidean distance to the saddle of the simulated orbits at
each point in time. The solid triangles show the average of the Euclidean distances
of the orbit point and its immediate predecessor from the two points on the 2-cy-
cle attractor. (The triangles pointing up are distances to the phase of the 2-cycle
shown in the upper graph in the left column, while the triangles point down are
the distances to its phase shift)

kind in appropriate terms, so as to describe the type of stochasticity present
in the biological system of interest. Figure 7.4 shows three realizations of
a version of the LPA model that approximates demographic stochasticity1,

1 This model adds a normal random variable of mean zero to each of the three
equations in the LPA model on a square root scale. These random variables are
uncorrelated in time. In these simulations covariances among them are assumed
equal to zero. This kind of stochastic model is one way to describe demographic
stochasticity. See (Dennis et al. 1995; Cushing et al. 2003).
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with parameter values from Jillson’s experiment in Fig. 7.1, that were selected
to illustrate saddle flybys. Using a stochastic model, one can study what the
model predicts will likely be observed in experimental or observational data
(the frequency of flybys, transient characteristics due to the geometry of the
saddle in phase space, the relative roles of transients and the attractors, etc.).

While the sorting out of the transient and attractor aspects of time se-
ries data not might be difficult in some examples, such as that in Figs. 7.1
and 7.4, in other cases it can fraught with difficulties and pitfalls. If, in an
investigation of a data set, one focuses only on attractors and uses diagnostic
methods designed for attractors, in a situation when transients are abundant,
then obviously it is possible that erroneous conclusions will be drawn. This
is particularly true when the attractor is complicated and complex. For ex-
ample, if stochastically produced transients cause orbits to often revisit the
neighborhood of a saddle (or even a repellor), then a large portion of time is
spent in regions of phase space where there is exponential separation of orbits.
Lyapunov exponents are diagnostic quantities for chaos based on an asymp-
totic average taken over the attractor. Applying this diagnostic to an orbit
that spends enough time near a saddle or repellor can result in the erroneous
conclusion that chaos is present. A specific example is given in (Desharnais
et al. 1997b), using a stochastic version of the famous Ricker map, in which
a “noisy equilibrium” is erroneously diagnosed as chaos by using Lyapunov
exponents. Also see (Dennis et al. 2003).

7.3 Basin hopping

Saddles and their stable manifolds also occur as boundaries between basins
of attraction in models with multiple attractors. While a deterministic model
with multiple attractors makes clear-cut predictions about the asymptotic
dynamics of orbits (depending on the initial conditions), when noise is present
the dynamics can become complicated, and saddles on the basin boundaries of
attraction can play an important role in what dynamic patterns are predicted
to be observed in experimental (or simulation) data.

A striking example of this occurs in one of our experiments designed
to observed a model predicted, two attractor scenario in a modification of
the Jillson experiments (Jillson 1980). Jillson investigated the dynamics of
T. castaneum in a periodically varying habitat by alternating the volume of
flour medium in which populations are cultured. Our analysis of Jillson’s data
utilizes the LPA model (1) in which habitat volume V is explicitly introduced:

Lt+1 = bAt exp
(
−cel

V
Lt − cea

V
At

)
Pt+1 = (1 − µl)Lt

At+1 = Pt exp
(
−cpa

V
At

)
+ (1 − µa)At .

(2)
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The hypothesis that the interaction (cannibalism) coefficients are inversely
proportional to habitat size has been experimentally confirmed (Costantino
et al. 1998). In a temporally varying habitat, V = V (t) is a function of t; in
a periodically varying habitat V (t) is a periodic function of t.

In our multiple attractor experiment the habitat volume was varied pe-
riodically with period two and selected amplitudes (Henson et al. 1999). So,
in (2) we have V (t) = 1 + α(−1)t where α is an amplitude and cel, cea, and
cpa are the coefficients in a standardized unit of volume (in our experiments,
the volume occupied by 20 grams of flour medium) under constant habitat
conditions (α = 0).

For parameter values estimated for T. castaneum in a constant habitat
(α = 0) (Costantino et al. 1997) the LPA model (2) predicts a stable 2-cy-
cle attractor. In a periodically varying habitat (α > 0) the model predicts
two different 2-cycle attractors that perturbed from the two phases of this
2-cycle. (This is true, in fact, in a rather general setting (Henson 2000).)
These 2-cycles, while out-of-phase, are not phase shifts of one another and
have distinctively different amplitudes; a large amplitude 2-cycle is a called
the “resonance” cycle and a small amplitude 2-cycle is called the “attenuant”
2-cycle (Costantino et al. 1998). An unstable (saddle) equilibrium present
when α = 0 perturbs to a saddle 2-cycle that sits on the basin boundary
separating to the regions of attraction for the resonance and attenuant 2-
cycles. This multi-attractor scenario occurs for 0 < α < 0.42. At α = 0.42
the attenuant and saddle 2-cycles annihilate one another in a saddle-node
bifurcation, leaving a single 2-cycle – the stable resonant cycle.

The experiments reported in (Henson et al. 1999) verified the occurrence
of the LPA model’s multiple attractor predictions by growing cultures for
appropriately selected amplitudes α of flour volume oscillations between 0
and 1. In particular, the presence of the two 2-cycle attractors – resonant and
attenuant – was observed in the experimental data at α = 0.4. (One reason
this is interesting is because the attenuant oscillation was counter-intuitive
biologically and seemed not to be a possible dynamic for the beetles.)

However, an interesting and unexpected phenomenon occurred in the
multi-attractor experiment. Each replicate culture whose initial conditions
were placed in the attenuant 2-cycle’s basin of attraction, while clearly ex-
hibiting the features (quantitatively and qualitatively) of the model predicted
attenuant 2-cycle early in the experiment, ultimately moved to the basin of
the resonant 2-cycle and assumed that attractor’s characteristics. No cul-
ture in the experiment made the reverse basin migration. The analysis of the
experiment presented in (Henson et al. 1999) showed how the saddle cycle
and its stable (two dimensional) manifold exhibited a strong influence on the
dynamics. Because of stochastic perturbations, the data orbits underwent
flybys of the saddle 2-cycle that caused a lingering near that saddle and the
basin boundary, which ultimately resulted in a stochastic jump to the res-
onant 2-cycle basin. These phenomena are in fact predicted by simulations
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of a stochastic version of the periodic LPA model (2). (Why reverse basin
jumps never occur in this case remains an open question.)

The multi-attractor experiment, and the stochastic model used to explain
it, show that the predictions of a deterministic model can be altered by noise
in important, but predictable and observable ways. In this experiment (and
in the stochastic model) one of the two deterministic attractors becomes, in
effect, a transient. While the deterministic model helps to explain the results
of the experiment, the stochastic version of the model “corrects” (or modifies)
the deterministic predictions and provides deeper understanding and insight
into the biological system.

Jillson’s experiments also included periodic forcing of the habitat volume
with other periods. An analysis of the temporal patterns observed in his data,
based on the periodically forced LPA model of period 4 and on attractor basin
switching and basin boundary saddles, appears in (Henson et al. 2002). In this
case, multiple basin switches (back and forth) are observed in some individual
time series.

Stochastic attractor basin hopping has also be used as a means to explain
phase shifts in oscillatory data time series in non-fluctuating habitats. See
(Henson et al. 1998, 2003).

7.4 Lattice effects

The most ambitious experimental project undertaken by our research team
during the last decade involved the investigation of a route-to-chaos. This
experiment is reported in (Costantino et al. 1997; Dennis et al. 2001) and
summarized in our book (Cushing et al. 2003). An analysis of the “chaos”
treatment in this experiment not only illustrates the issues described above –
the stochastic “dance” of attractors, saddles, and transients – but uncovered
some other interesting modeling issues and dynamic phenomena.

In the eight year (96 generations) time series data from the treatment that
was designed to corroborate the chaotic attractor predicted by the determin-
istic LPA model, one can observe a distinctive recursive temporal pattern –
a near 11-cycle. An explanation for this dynamic pattern was found when we
discovered that there exists an 11-cycle lying on the chaotic attractor that,
although a (unstable) saddle cycle, highly influences motion on the attrac-
tor. It was surprising to us that such a subtle pattern is discernible in real
population data, especially in the presence of chaos and noise2.

2 Others have also noted transient periodicity in data. Lathrop and Kostelich
(1989) found evidence for saddle cycles in a long series of data from the Belousov–
Zhabotinshii reaction. So et al. (1998) found evidence for saddle cycles in neu-
ronal electrophysiological recordings. Kendall et al. (1993) and Schaffer et al.
(1993) observed similarities between saddle cycles on a chaotic attractor pre-
dicted by an epidemiological model and historical measles case-report data.
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Furthermore, one finds an even more prominent cyclic pattern – a near
6-cycle pattern – in the times series data. However, it turns out that there is
no 6-cycle on the chaotic attractor (or anywhere else in phase space). There
is seemingly no explanation possible for this pattern based on the determin-
istic LPA model. This mystery was solved when, after thinking about the
details of the manipulations performed in the experimental protocol, we in-
vestigated various “integerized” version of the LPA model. (The experimental
data comes in whole numbers, of course, as do individuals in all life stages
of the beetle populations.) See for example the model described by Eqs. (4)
below. This and other “lattice” models predict, for the initial conditions of the
chaos treatment, that the final state of the orbit should be a 6-cycle that is
remarkably similar to the pattern observed in the data (Henson et al. 2001)!

On the other hand, a deterministic lattice model cannot predict chaos,
since bounded orbits necessarily reach, in finite time, a periodic cycle. More-
over, there are usually more than one “lattice” attractor in such a model.
This is true in the lattice LPA model used for the chaos experiment and, as
a result, numerous other cyclic patterns might be observable in the data. But
what then becomes of chaos? More generally, what roles do the continuous
state LPA model and its asymptotic attractors play?

When noise is added to the lattice LPA model we get a stochastic model
that predicts the dynamics of the integer value experimental data. Stochas-
ticity continually produces transients on the lattice and these transients, it
turns out, resemble the underlying continuous state space attractor (chaotic,
in this case). Thus, simulations of a stochastic integerized model predict an
episodic interplay of deterministic patterns – attractor, saddles, and tran-
sients – from both the deterministic lattice and the deterministic continuous
state space model. This phenomenon is illustrated using simpler “toy” models
in (Henson et al. 2001; Cushing et al. 2003) and such an example appears in
Fig. 7.5. An analysis of the chaos experiment using these notions appears in
(King et al. 2003).

Whereas the experiment was designed to put a population into chaotic
dynamics – as predicted by the deterministic, continuous state space LPA
model – other deterministic patterns are predicted by the lattice LPA model.
Specifically the lattice LPA model identified several cycles of various periods
as important on the lattice. Stochastic simulations of the lattice LPA model
predicted the observed data should contain (randomly occurring) episodes
of all these deterministic patterns – and even occasional flybys of the saddle
equilibrium (of the deterministic continuous state space model). Indeed, our
analysis of the data showed this to be the case; see Fig. 7.6.

In our analysis of the data obtained from the chaos treatment of our
experiment, in order to account for the observed temporal patterns it is not
sufficient to consider only the asymptotic (chaotic) attractor predicted by the
deterministic, continuous state space LPA model. The chaotic attractor does
play a role by contributing observable patterns not predicted by the determin-
istic lattice model, but conversely so also does the deterministic lattice model
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Fig. 7.5. a With b = 17 and c = V = 1, the Ricker map xt+1 = bxt exp (−cxt/V )
exhibits chaotic dynamics. b–e Show periodic lattice attractors of the integerized
Ricker map xt+1 = round[bxt exp (−cxt/V )] with b = 17 and c = 1 for increas-
ing values of V . Specifically a 2-cycle, 1-cycle (equilibrium), 13-cycle and 117-cycle
respectively. In the lagged phase space these attractors (plotted on a density lat-
tice) are seen to increasingly resemble the chaotic attractor. In f appears a re-
alization of the (environmental) stochasticity lattice Ricker model xt+1 = round
[bxt exp (−cxt/V ) + σzt] with b = 17 and V = c = 1. Here zt is a standard nor-
mal random variable (uncorrelated in time) and σ measures the magnitude of the
noise. This realization is to be compared with the continuous state space, chaotic
attractor in a and the equilibrium lattice attractor in c. Noise has “revealed” the
underlying continuous state space chaotic attractor. The time series shows intermit-
tent episodes of both the chaotic and the equilibrium dynamics of the continuous
and the lattice models

predict patterns that are not predicted the deterministic chaotic attractor.
Stochasticity is needed to explain how these patterns manifest themselves
(and in this sense stochasticity becomes an aid and not an obstacle, as it is
often viewed).

Henson et al. in (Henson et al. 2003b) consider in more generality the mod-
eling methodology that emerged from the chaos experiment. These authors,
using the LPA and other models, discuss how recurrent patterns in stochas-
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Fig. 7.6. One of the treatments of the route-to-chaos experiment reported in
(Costantino et al. 1997; Cushing et al. 2003; Dennis et al. 2001) was based on
a chaotic attractor predicted by the LPA model (1) with parameter values b = 10.45,
µl = 0.2000, µa = 0.9600, cel = 0.01731, cea = 0.01310, cpa = 0.9600. A “signature”
of the temporal dynamics on the chaotic attractor is a distinctive 11-cycle. The top
graph shows the eleven lag metrics (one for each phase of the 11-cycle) computed
using one replicate from the experimental treatment. The lag metric measures the
average distance of eleven consecutive data points from the corresponding points
on a selected phase of the 11-cycle. A low value indicates that the data was close
to the 11-cycle for eleven consecutive time steps. The “unravelled” portions of the
lag metric braid indicate time intervals during which the data followed closely this
signature of the chaotic attractor. (Recall that one generation is 4 weeks.) The
LPA model on an integer lattice predicts the experimental initial conditions (and
many others) ultimately arrive at a 6-cycle. The graph second from the top shows
the lag metrics for the lattice 6-cycle computed from the data. Unravelled portions
indicate intervals during which the data was close to this lattice model “attractor”.
The lattice LPA model has several other cycle attractors, one of which is an 8-cycle
whose lag metrics appear in the third graph. The bottom graph displays the lag
metric computed with respect to the saddle equilibrium. It clearly indicates a saddle
flyby late in the experiment. More details of this “anatomy” of the chaotic attractor
appear in (King et al. 2003)

tic processes can be predicted by various deterministic models derived from
a parent stochastic mode.

For example, a probabilistic model for Tribolium dynamics (based on
models of demographic stochasticity in life cycle stage specific birth and death
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rates) is described by the equations

Lt+1 ∼ Poisson
[
bat exp

(
−cea

V
at − cel

V
lt

)]
Pt+1 ∼ binomial [lt, 1 − µl]

Rt+1 ∼ binomial
[
pt, exp

(
−cpa

V
at

)]
St+1 ∼ binomial [at, 1 − µa]
at+1 = rt + st .

(3)

Here Rt is the number of sexually mature adult recruits, St is the number
of surviving mature adults, and lt, pt, rt and st are the respective numbers
observed at time t. The total number of mature adults is At = Rt + St and
at = rt+st is the number of mature adults observed at time t. The symbol ‘∼’
means ‘is distributed as’. This “Poisson/binomial” LPA (or PBLPA) model
is integer value and its dynamics occur on a lattice.

One way to construct a deterministic “skeleton” for the PBLPA model is
by iterating the conditional expectation (so that the “most likely” data triple
(Lt+1, Pt+1, At+1) to occur at time t+1, given the observed triple (lt, pt, at),
is assumed to be the mean of the random variables in the PBLPA model).
This results in the continuous state space LPA model (2).

On the other hand, we can obtain a deterministic skeleton that remains
on the integer lattice (where real data is observed) by using another measure
of central tendency, namely, the mode. By iterating the conditional mode we
obtain a deterministic lattice mode described, as it turns out (assuming the
unlikely event of a non-unique conditional mode), by the equations3

Lt+1 = floor
[
bAt exp

(
−cea

V
Lt − cea

V
At

)]
Pt+1 = floor [(1 − µl) (Lt + 1)]

At+1 = floor
[
(Pt + 1) exp

(
−cpa

V
At

)]
+ floor [(1 − µa) (At + 1)] .

(4)

3 These equations result from formulas for the mode of a binomial random variable
and the mode of a Poisson random variable. The following derivations are due
to Michael Trosset and Shandelle Henson (private communication). The pdf for
a binomial random variable binomial(n, p) is f (x) = n!

x!(n−x)!
px (1 − p)n−x. If

x = m is the mode, then f (m + 1) ≤ f (m) and hence p (n + 1) − 1 ≤ m.
Also f (m − 1) ≤ f (m) implies m ≤ p (n + 1). Since m is an integer, and since
p (n + 1) is almost always an integer, it follows that m = floor[p(n + 1)]. The
pdf fo a Poisson random variable poisson(µ) is f (x) = µx e−µ

x!
. For the mode m,

we see that f (m + 1) ≤ f (m) implies µ − 1 ≤ m and f (m − 1) ≤ f (m) implies
m ≤ µ. Since µ is almost always not an integer, we have m = floor[µ]. We also
point out that the equation for At+1 is different from that given in (Cushing
et al. 2003) because of the nature of the experimental protocol involved in the
study discussed in that book.
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Examples (in addition to the LPA models and the chaos experiment) given
by Henson et al. (2003b) show how temporal patterns from both mean (con-
tinuous state space) and mode (lattice state space) models are evident in
realizations of a stochastic model.

Notice that from this point of view it is not so appropriate to inquire
whether or not a specific time series of ecological data has a particular dy-
namic predicted by a deterministic model, and thus to identify the time series
with some type of asymptotic attractor (equilibrium, limit cycle, chaos, etc.).
Instead, one expects to observe intermittent episodes of various kinds of pat-
terns, attractor and transient, from perhaps more than one deterministic
skeleton. If one expects to see, and only looks for, deterministic attractor
patterns, then the modeling exercise used to study the data might be judged
a failure when in fact it is very much a success – a success because it can, using
an expanded analysis as described above, successfully explain the observed
temporal patterns.

For example, suppose one is looking for evidence of chaotic dynamics in
time series data. How reliable are conclusions (pro or con) obtained from
techniques and diagnostics (e. g., Lyapunov exponents) that are based on the
assumption that the data is on an attractor (with some noise, of course),
when, in fact, the dynamics might exhibit a stochastic “dance” of attractors,
saddles, and transients (Dennis et al. 2003)? A chaotic attractor could be
a role player – in this “dance” – and the fact be overlooked. If we found this
to be so in the controlled environment and accurately censused populations
cultured in our laboratory, then we would expect it to be so, perhaps even
more prominently, in field situations.

7.5 Habitat size

Another issue, relating to the important issue of scale in ecology, arose from
our route-to-chaos experiment. The predictions of a lattice model can depend
significantly on habitat size. This is the case for (3) or (4), whose dynamics
change in important ways with the volume V . This is not the case with the
continuous state space LPA model (2) whose dynamics only scale with V .

For example, with the estimated and controlled parameter values used in
the chaos treatment (Fig. 7.3), a change of V from V = 1 (corresponding
to the experimental habitat volume occupied by 20 g of medium) to V = 3
(60 g of medium) changes the lattice model prediction for the experimental
initial conditions from the 6-cycle that played such an important role in the
dynamics and analysis at V = 1 to a 14-cycle. The 6-cycle is no longer present
in the lattice dynamics at the larger habitat volume V = 3. Thus, a different
collage of patterns would have been predicted and utilized in analysis of the
data had the experiment been performed in 60 g of medium.

In the state space of densities, the number of lattice points increases with
V (the lattice mesh size decreases) and the dynamics of the deterministic
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Fig. 7.7. The top graph shows the chaotic attractor, plotted in phase space, pre-
dicted by the LPA model in the treatment of the route-to-chaos experiment dis-
cussed in the caption of Fig. 7.6. The graph on the lower left shows data points
(open circles) from all replicates clustered around the chaotic attractor. This ex-
periment was carried out in a volume occupied by 20 g of standard medium, which
corresponds to V = 1 in the LPA model (2). A follow-up experiment was conducted
in 60 g, or V = 3. The results, plotted (as densities) in the lower right hand graph,
show a tighter cluster of data points around the chaotic attractor (as predicted by
the stochastic lattice model (3))

lattice model converge to the deterministic attractor. This is illustrated for
the lattice Ricker model in Fig. 7.5. See Henson et al. (2001, 2003b) for
other examples, including the LPA model. Moreover, the stochastic PBLPA
model (3) predicts a stronger deterministic (continuous state space) signal as
V increases. This is typical of models with demographic stochasticity (May
2001). We have conducted an experiment that duplicates the chaos treatment,
but does so in the larger habitat of 60 g (V = 3). Although we have not yet
published an analysis of this experiment, one can see in Fig. 7.7 that the
prediction of a stronger deterministic signal in a larger habitat is supported
by the data.

Conversely, the continuous state space attractor is “lost” from the dynam-
ics of the corresponding lattice model if the habitat size is too small. In other
words, the size of the habitat effects the predicted dynamic patterns. In the
case of chaos, we know of no studies of chaos in ecological data that consider
habitat size as a possible factor.
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7.6 Concluding remarks

The examples taken from our experimental projects for inclusion in this pa-
per were chosen to illustrate that non-attractor dynamics can play an im-
portant role in explaining dynamic patterns observed in data. This is not to
say, of course, that attractors are unimportant. Indeed, we designed virtually
all of our experimental projects on the basis of model predicted attractors.
Nonetheless, we found that in order to obtain a complete and satisfactory
explanation of our data it is necessary to include unstable invariant sets, sta-
ble manifolds, and so on. This is true even though our experiments involve
(seemingly) low dimensional ecosystems cultured in controlled environments
in which population counts are highly accurate and stochasticity is mini-
mized. We can successfully account for the dynamic patterns observed in our
data by using deterministic model predicted patterns blended together by
stochasticity (in most of our cases, demographic stochasticity). In this set-
ting stochasticity becomes an aid, rather than a hindrance, in that it provides
the means by which the collage of observed patterns arise (and, in the pro-
cess, by which the “validation” of the deterministic skeleton that underlies
the model is strengthened).

Biological populations and ecosystems are complex, at all levels of or-
ganization, and our experience suggests that the mix of stochasticity and
nonlinearity will likely be important in most systems. The “higher dimen-
sions” (internal and external) ignored in models with a relatively few number
of state variables produces deviations from model predictions (which is mod-
eled as stochasticity). A good example is the plethora of models in which
state variables are total population sizes and which in effect treat all in-
dividuals as identical, a gross oversimplification in most biological systems.
Mathematicians could contribute more to theoretical and applied ecology by
extending their efforts beyond the analysis of asymptotic attractors in deter-
ministic models. The study of attractors is, of course, the first step. However,
by including stochasticity (in an appropriate way), one can suggest how the
deterministic dynamics are likely to manifest themselves in real data. (As we
have seen, one can do better than to say that attractors simply made “fuzzy”
by noise.) This will strengthen the connection between data and models, and
thereby aid ecologists in attempts to account for observed dynamic patterns.
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The Adaptive Dynamics
of Community Structure

Ulf Dieckmann, Åke Brännström,
Reinier HilleRisLambers, and Hiroshi C. Ito

8.1 Introduction

Attempts at comprehending the structures of ecological communities have
a long history in biology, reaching right back to the dawn of modern ecology.
A seminal debate allegedly occurred between early-twentieth-century plant
ecologists Frederic E. Clements and Henry A. Gleason. Textbooks have it
(e. g., Calow 1998: 145) that Clements viewed ecological communities as be-
ing structured by rich internal dependencies, akin to organisms (Clements
1916), while Gleason held that members of ecological communities were rel-
atively independent of each other, filling ecological niches provided by the
abiotic environment (Gleason 1926). While the actual approaches of these
two luminaries of plant ecology were more complex than this well-worn cari-
cature suggests (Eliot, in press), their purported positions conveniently estab-
lished an important conceptual continuum for the mechanistic interpretation
of community structures observed in nature.

Modern echoes of this old debate can be found in notions of niche con-
struction (Odling-Smee et al. 2003), leaning towards the Clementsian end
of the spectrum, or in the neutral theory of biodiversity and biogeography
(Hubbell 2001), which is more in line with a Gleasonian perspective. Like
in many other fundamental disputes in ecology, neither side turns out to be
simply right or wrong. Instead, disagreements of this kind tend to be resolved
at a higher level – by recognizing, firstly, that the original controversy was
based on unduly generalized and polarized claims, and secondly, by refocus-
ing scientific attention on elucidating the specific factors and mechanisms
that push ecological systems towards either end of the intermediary contin-
uum. Below we will propose such an overarching notion for reinterpreting the
Clements–Gleason debate.

Early theoretical models of community structure were based on the sim-
plifying concept of randomly established ecological communities (May 1973).
This first wave of models suggested that larger random communities were less
likely to possess stable fixed-point equilibria than smaller ones – thus giving
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rise to yet another long-lasting debate in ecology, about the relationship be-
tween community complexity or diversity on the one hand, and community
stability or productivity on the other (e. g., Elton 1958; McCann 2000). A sec-
ond wave of models subsequently imbued such investigations with a higher
degree of ecological realism by accounting for the historical route through
which new ecological communities are assembled from scratch, and consider-
ing more than only infinitely small community perturbations (Post and Pimm
1983; Drake 1990; Law 1999). These assembly models usually relied on the
notion of a species pool from which individual species are drawn successively
and at random, mimicking the arrival of immigrants from outside an incipient
community. A third, much more recent, wave of models rises above consid-
ering mere immigration from such a pre-defined species pool, by trying to
understand the potential of natural selection for shaping the dynamics and
structures of ecological communities (Caldarelli et al. 1998; Drossel al. 2001;
Loeuille and Loreau 2005; Ito and Ikegami 2003, 2006). Together, these al-
ternative suites of models suggest that community structures in ecology can
only be fully comprehended when processes of interaction (first-wave models),
immigration (second-wave models), and adaptation (third-wave models) are
taken into account. Appreciating the mechanisms that generate and maintain
diversity in ecological communities thus requires methods stretching across
the typically different time scales of interactions, immigrations, and adapta-
tions.

Once the dynamics of community formation are recognized to encom-
pass phenotypic adaptation, it is instructive to recast the classic Clements–
Gleason debate in terms of fitness landscapes. Under frequency- and density-
independent selection, the fitness landscapes experienced by members of
an ecological community are independent of the community’s composition,
directly corresponding to a Gleasonian view. The resultant constant fit-
ness landscapes result in what is known as ‘optimizing selection’. By con-
trast, when the fitness of community members depend on their overall den-
sity and individual frequency, fitness landscapes vary with a community’s
composition. A situation in which this variability is very pronounced, and
the frequency- and density-independent components of selection pressures
within the community accordingly are relatively weak, neatly corresponds to
a Clementsian view. As so often, reality is bound to lie in between these two
extremes.

Consequently, an evolutionary perspective on community ecology sheds
new light on two fundamental ecological debates. On the one hand, assessing
the degree to which fitness landscapes are varying with community compo-
sition provides a practical approach for locating specific communities along
the Clements–Gleason continuum. On the other hand, evolutionary dynamics
literally add new dimensions to concepts of community stability: community
structures that are ecologically stable are unlikely also to be evolutionarily
stable. This realization challenges earlier conclusions as to how the stability
of communities is affected by their complexity or diversity. In particular, eco-
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logically unstable communities may be stabilized by the fine-tuning afforded
through coevolutionary adaptations, while ecologically stable communities
may be destabilized by evolutionary processes such as arms races, taxon cy-
cles, speciation, and selection-driven extinctions.

In the time-honored quest for understanding community structures, ecol-
ogy and evolution are thus linked inevitably and intricately, with frequency-
and density-dependent selection pressures playing important roles. This sets
the stage for considering the utility of adaptive dynamics theory for under-
standing community structure. Adaptive dynamics theory is a conceptual
framework for analyzing the density- and frequency-dependent evolution of
quantitative traits, based on a general approach to deriving fitness functions,
selection pressures, and evolutionary dynamics from the underlying ecologi-
cal interactions and population dynamics (e. g., Metz et al. 1992; Dieckmann
1994; Metz et al. 1996; Dieckmann and Law 1996; Geritz et al. 1997, 1998).
After introducing the main concepts and models of this approach in Sect. 8.2,
this chapter proceeds, in Sects. 8.3 and 8.4, to brief discussions of how se-
lection pressures may drive the increase or decrease, respectively, of species
numbers in ecological communities. Armed with this general background,
four specific examples of increasingly complex community evolution models
are studied in Sects. 8.5 to 8.

Models of evolutionary community assembly are still in their infancy. Ac-
cordingly, much room currently exists for investigating systematic variations
of already proposed model structures, so as to separate critical from inci-
dental model assumptions and ingredients. The main purpose of this chapter
is to introduce readers to a particularly versatile mathematical toolbox for
carrying out these much-needed future investigations.

8.2 Models of adaptive dynamics

The theory of adaptive dynamics derives from considering ecological interac-
tions and phenotypic variation at the level of individuals. Extending classical
birth and death processes through mutation, adaptive dynamics models keep
track, across time, of the phenotypic composition of populations in which
trait values of offspring are allowed to differ from those of their parents.

Throughout this chapter we will adhere to the following notation. Time
is denoted by t. The number of species in the considered community is N .
The values of quantitative traits in species i are denoted by xi, be they uni-
variate or multivariate. The abundance of individuals with trait value xi is
denoted by ni(xi), while ni denotes the total abundance of individuals in
species i. If species i harbors individuals with mi distinct trait values xik,
its phenotypic density is given by pi(xi) =

∑mi

k=1 ni(xik)δ(xi − xik), where δ
denotes Dirac’s delta function. A species with mi = 1 is said to be monomor-
phic. For small mi, species i may be characterized as being oligomorphic,
when mi is large, it will be called polymorphic. The community’s pheno-
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typic composition is described by p = (p1, . . . , pN ). The per capita birth and
death rates of individuals with trait value x′

i in a community with phenotypic
composition p are denoted by bi(x′

i, p) and di(x′
i, p). Reproduction is clonal,

mutant individuals arise with probabilities µi(xi) per birth event, and their
trait values x′

i are drawn from distributions Mi(x′
i, xi) around parental trait

values xi.
If all species in the community are monomorphic, with resident trait val-

ues x = (x1, . . . , xN ), and if their ecological dynamics attain an equilibrium
attractor, with resident abundances n̄i(x), the resultant phenotypic compo-
sition is denoted by p̄(x). The per capita birth, death, and growth rates of
individuals with trait value x′

i will then be given by b̄i(x′
i, x) = bi(x′

i, p̄(x)),
d̄i(x′

i, x) = di(x′
i, p̄(x)), and f̄i(x′

i, x) = b̄i(x′
i, x) − d̄i(x′

i, x), respectively. In
adaptive dynamics theory, the latter quantity is called invasion fitness. For
a mutant x′

i to have a chance of invading a resident community x, its in-
vasion fitness needs to be positive. The notion of invasion fitness f̄i(x′

i, x)
makes explicit that the fitness f̄i of individuals with trait values x′

i can only
be evaluated relative to the environment in which they live, which, in the pres-
ence of density- and frequency-dependent selection, depends on x. Invasion
fitness can be calculated also for more complicated ecological scenarios, for
example, when species exhibit physiological population structure, when they
experience non-equilibrium ecological dynamics, or when they are exposed
to fluctuating environments (Metz et al. 1992). If a community’s ecological
dynamics possess several coexisting attractors, invasion fitness will be multi-
valued. While strictly monomorphic populations will seldom be found in na-
ture, it turns out that the dynamics of polymorphic populations can often
be well approximated and understood in terms of the simpler monomorphic
cases. For univariate traits, depicting the sign structure of invasion fitness
results in so-called pairwise invasibility plots (Matsuda 1985; van Tienderen
and de Jong 1986, Metz et al. 1992, 1996; Kisdi and Meszéna 1993; Geritz et
al. 1997).

Derivatives of invasion fitness help to understand the course and out-
come of evolution. The selection pressure gi(x) = ∂

∂x′
i
f̄i(x′

i, x)|xi=x′
i

act-
ing on trait value xi is given by the local slope of the fitness landscape
f̄i(x′

i, x) at x′
i = xi. When xi is multivariate, this derivative is a gradient

vector. Selection pressures in multi-species communities are characterized by
g(x) = (g1(x1), . . . , gN (xN )). Trait values x∗ at which this selection gradient
vanishes, g(x∗) = 0, are called evolutionarily singular (Metz et al. 1992). Also
the signs of the second derivatives of invasion fitness at evolutionarily sin-
gular trait values reveal important information. When the mutant Hessian
hmm,i(x∗) = ∂2

∂x′2
i

f̄i(x′
i, x)|x′

i=x∗
i ,x=x∗ is negative definite, x∗

i is at a fitness
maximum, implying (local) evolutionary stability. When hmm,i(x∗)−hrr,i(x∗)
is negative definite, where hrr,i(x∗) = ∂2

∂x2
i
f̄i(x′

i, x)|x′
i=x∗

i ,x=x∗ denotes the res-
ident Hessian, subsequent invasion steps in the vicinity of x∗

i will approach
x∗

i , implying (strong) convergence stability.
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Based on these considerations, four classes of models are used to inves-
tigate the adaptive dynamics of ecological communities at different levels of
resolution and generality. Details concerning the derivations of these models
are provided in the Appendix and their formal relations are summarized in
Fig. 8.2. We now introduce these four model classes in turn.

Individual-based birth-death-mutation processes: polymorphic and stochastic.
Under the individual-based model specified above, polymorphic distributions
of trait values stochastically drift and diffuse through selection and mutation
(Dieckmann 1994; Dieckmann et al. 1995). See Fig. 8.1a for an illustration.
Using the specification of the birth, death, and mutation processes provided
by the functions bi, di, µi, and Mi, efficient algorithms for this class of models
(Dieckmann 1994) will typically employ Gillespie’s minimal process method
(Gillespie 1976).

Fig. 8.1. Models of adaptive dynamics. Panel a illustrates the individual-based
birth-death-mutation process (polymorphic and stochastic), panel b shows an evo-
lutionary random walk (monomorphic and stochastic), panel c represents the
gradient-ascent model (monomorphic and deterministic, described by the canon-
ical equation of adaptive dynamics), and panel d depicts an evolutionary reaction-
diffusion model (polymorphic and deterministic)

Evolutionary random walks: monomorphic and stochastic. In large popula-
tions characterized by low mutation rates, evolution in the individual-based
birth-death-mutation process proceeds through sequences of trait substitu-
tions (Metz et al. 1992). During each trait substitution, a mutant with pos-
itive invasion fitness quickly invades a resident population, typically ousting
the former resident (Geritz et al. 2002). The concatenation of trait substi-
tutions produces the sort of directed random walk depicted in Fig. 8.1b,
formally described by the master equation

d
dt

P (x) =
∫

[r(x, x′)P (x′) − r(x′, x)P (x)]dx′

for the probability density P (x) of observing trait value x, with probabilistic
transition rates

r(x′, x) =
N∑

i=1

µi(xi)b̄i(xi, x)Mi(x′
i, xi)n̄i(x)si(x′

i, x)
N∏

j=1,j �=i

δ(x′
j − xj)
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Fig. 8.2. Formal re-
lations between the
models of adaptive
dynamics. The four
classes of model are
shown as rounded
boxes, and the three
derivations as ar-
rows. Arrow labels
highlight key as-
sumptions

(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here δ
again denotes Dirac’s delta function, and si(x′

i, x) = max(0, f̄i(x′
i, x))/b̄i(x′

i, x)
is the probability with which the mutant x′

i survives accidental extinc-
tion through demographic stochasticity while still being rare in the large
population of resident individuals (e. g., Athreya and Ney 1972). If also
the resident population is small enough to be subject to accidental ex-
tinction, si(x′

i, x) = (1 − e−2f̃i(x
′
i,x))/(1 − e−2f̃i(x

′
i,x)n̄i(x)) with f̃i(x′

i, x) =
f̄i(x′

i, x))/[b̄i(x′
i, x)+ d̄i(x′

i, x)] provides a more accurate approximation (e. g.,
Crow and Kimura 1970). The resulting evolutionary random walk models
are again typically implemented using Gillespie’s minimal process method
(Dieckmann 1994).
Gradient-ascent models: monomorphic and deterministic. If mutation steps
are not only rare but also small, the dynamics of evolutionary random walks
are well approximated by smooth trajectories, as shown in Fig. 8.1c. These
trajectories represent the evolutionary random walk’s expected path and can
be approximated by the canonical equation of adaptive dynamics (Dieckmann
1994; Dieckmann et al. 1995; Dieckmann and Law 1996), which, in its simplest
form, is given by

d
dt

xi =
1
2
µi(xi)n̄i(x)σ2

i (xi)gi(x)

for i = 1, . . . , N , where

σ2
i (xi) =

∫
(x′

i − xi)T(x′
i − xi)Mi(x′

i, xi)dx′
i



8 The Adaptive Dynamics of Community Structure 151

is the variance-covariance matrix of the symmetric mutation distribution Mi

around trait value xi. Implementations of this third class of models typically
rely on simple Euler integration or on the fourth-order Runge–Kutta method
(e. g., Press et al. 1992).

Reaction-diffusion models: polymorphic and stochastic. In large populations
characterized by high mutation rates, stochastic elements in the dynamics of
the phenotypic distributions become negligible. This enables formal descrip-
tions of reaction-diffusion type (e. g., Kimura 1965; Bürger 1998). Specifically,
the reaction-diffusion approximation of the birth-death-mutation process de-
scribed above is given by

d
dt

pi(xi) = fi(xi, p)pi(xi) +
1
2
σ2

i (xi) ∗ ∂2

∂x2
i

µi(xi)bi(xi, p)pi(xi)

for i = 1, . . . , N , where σ2
i (xi) is the variance-covariance matrix of the sym-

metric and homogeneous mutation distribution Mi, and where ∗ denotes the
elementwise multiplication of two matrices followed by summation over all
resultant matrix elements. An illustration of reaction-diffusion dynamics is
shown in Fig. 8.1d. Models of this fourth class are best implemented using
so-called implicit integration methods (e. g., Crank 1975). It ought to be high-
lighted, however, that the infinitely extended tails that the distributions pi

instantaneously acquire in this framework can give rise to artifactual dynam-
ics that offer no good match to the actual dynamics of the underling birth-
death-mutation processes in finite populations. The derivation of finite-size
corrections to the traditional reaction-diffusion limit overcomes these short-
comings (Dieckmann, unpublished).

At the expense of ignoring genetic intricacies, models of adaptive dynam-
ics are geared to analyzing the evolutionary implications of complex ecological
settings. In particular, such models can be used to study all types of density-
and frequency-dependent selection, and are equally well geared to describing
single-species evolution and multi-species coevolution. As explained above,
the four model classes specified in this section are part of a single concep-
tual and mathematical framework, which implies that switching back and
forth between alternative descriptions of any evolutionary dynamics driven
by births, deaths, and mutations – as mandated by particular problems in
evolutionary ecology – will be entirely straightforward.

8.3 Selection-driven increases in species numbers

Frequency-dependent selection is crucial for understanding how selection
pressures can increase the number of species within an ecological community:

• First, whenever selection is optimizing, a single type within each species
will be most favored by selection, leaving no room for the stable coexis-
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tence of multiple types per species. Frequency-dependent selection pres-
sures, by contrast, can readily create an ‘advantage of rarity,’ so that mul-
tiple types within a species may be stably maintained: as soon as a type’s
abundance becomes low, the advantage of rarity boosts its growth rate
and thus stabilizes the coexistence.

• Second, whereas gradual evolution under optimizing selection can easily
bring about stabilizing selection, it can never lead to disruptive selection.
This is because, under optimizing selection, the two relevant notions of
stability – evolutionary stability on the one hand (Maynard Smith and
Price 1973) and convergence stability on the other (Christiansen 1991) –
are strictly equivalent: a strategy will be convergence stable if and only
if it is evolutionarily stable, and vice versa (e. g., Eshel 1983; Meszéna et
al. 2001). Frequency-dependent selection pressures, by contrast, allow for
evolutionary branching points, at which directional selection turns disrup-
tive. A gradually evolving population is then trapped at the underlying
convergence stable fitness minimum until it splits up into two branches,
which subsequently will diverge. This makes the speciation process itself
adaptive, and underscores the importance of ecology for understanding
speciation.

It is thus clear that frequency-dependent selection is necessary both for the
endogenous origin and for the stable maintenance of coexisting types within
species.

For univariate traits, the normal form for the invasion fitness of mutants
with trait values x′ in resident populations with trait values x that are close
to an evolutionary branching point with trait value x∗ = 0 is given by

f(x′, x) = x′2 + cx2 − (1 + c)x′x

with c > 1 (e. g., Dieckmann 1994: 91). From this we can see that the selection
pressure at x∗ ceases, g(x∗) = 0, that x∗ is not locally evolutionarily stable,
hmm(x∗) = 1 > 0, and that x∗ is convergence stable, hmm(x∗) − hrr(x∗) =
1 − c < 0. Under these conditions, trait substitutions in x converge to x∗

as long as the evolving population is monomorphic, then respond to the
disruptive selection at x∗ by creating a dimorphism of trait values around
x∗, and finally cause the divergence of the two stably coexisting branches
away from x∗.

When considering processes of evolutionary branching in sexual popula-
tions, selection for reproductive isolation comes into play. As lineage splits are
adaptive at evolutionary branching points, in the sense of freeing populations
from being stuck at fitness minima, the evolution of premating isolation is
favored under such circumstances. Any evolutionarily attainable or already
existing mechanism of assortative mating can be recruited by selection to
overcome the forces of recombination that otherwise prevent sexual popu-
lations from splitting up (e. g., Udovic 1980; Felsenstein 1981). Since there
exist a plethora of such mechanisms for assortativeness (based on size, color,
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pattern, acoustic signals, mating behavior, mating grounds, mating season,
the morphology of genital organs etc.), and since only one out of these many
mechanisms is needed to take effect, it would indeed be surprising if many nat-
ural populations would remain stuck at fitness minima for very long (Geritz
et al. 2004). Models for the evolutionary branching of sexual populations cor-
roborate that expectation (e. g., Dieckmann and Doebeli 1999; Doebeli and
Dieckmann 2000, 2003, 2005; Geritz and Kisdi 2000; Doebeli et al. 2005).

Processes of adaptive speciation (Dieckmann et al. 2004), resulting from
the frequency-dependent mechanisms described above, are very different from
those stipulated by the standard model of allopatric speciation through geo-
graphical isolation (Mayr 1963, 1982), which have dominated speciation re-
search for decades. Closely related to adaptive speciation are models of sym-
patric speciation (e. g., Maynard Smith 1966; Johnson et al. 1996), of com-
petitive speciation (Rosenzweig 1978), and of ecological speciation (Schluter
2000), which all point in the same direction: patterns of species diversity are
not only shaped by exogenous processes of geographical isolation and immi-
gration, which can be more or less arbitrary, but can instead be driven by
endogenous processes of selection and evolution, which are bound to imbue
such patterns with a stronger deterministic component.

In conjunction with mounting empirical evidence that rates of race for-
mation and sympatric speciation are potentially quite high, at least under
certain conditions (e. g., Bush 1969; Meyer 1993; Schliewen et al. 1994), these
considerations suggest that understanding processes and patterns of commu-
nity formation will crucially benefit from notions developed in the context of
adaptive speciation.

8.4 Selection-driven decreases in species numbers

Frequency-dependent selection and density-dependent selection are also cru-
cial for understanding how selection pressures can decrease the number of
species within an ecological community:

• First, in evolutionary game theory – including all evolutionary models
based on matrix games or on the replicator equation – a population’s
density is not usually part of the model, which describes only the fre-
quencies of different types. Without enhancements, these types of model
therefore cannot account for any density-dependent selection pressures, or
capture selection-driven extinctions during which a population’s density
drops to zero.

• Second, in optimization approaches of evolution, a constant fitness land-
scape governs the course and outcome of evolution, and, accordingly,
frequency-dependent selection is absent. Again, the density of the evolving
population is usually not part of the model. Even when it is, selection-
driven extinctions cannot occur, as no acceptable constant fitness function
will be maximized when a population goes extinct.
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These two limitations explain why, until relatively recently, population ex-
tinctions caused by natural selection were rarely modeled. In particular, land-
marks of evolutionary theory are based on notions of optimizing selection: this
includes Fisher’s so-called fundamental theorem of natural selection (Fisher
1930) and Wright’s notion of hill climbing on fitness landscapes (Wright 1932,
1967). Also Levins’s seminal fitness-set approach to the study of constrained
bivariate evolution (Levins 1962, 1968) is based on the assumption that,
within a set of feasible phenotypes defined by a trade-off, evolution will max-
imize a population’s fitness. Even the advent of evolutionary game theory
(Maynard Smith 1982), with its conceptually most valuable refocusing of at-
tention towards frequency-dependent selection, did not help as such, since,
for the sake of simplicity, population densities were usually removed from
consideration in such models (for an alternative approach to game dynamics
aimed at including densities, see Cressman 1990).

And yet the potential of adaptations to cause the collapse of populations
was recognized early on. Haldane (1932) provided a verbal example by con-
sidering overtopping growth in plants. Taller trees get more sunlight while
casting shade onto their neighbors. As selection thus causes the average tree
height to increase, fecundity and carrying capacity decline because more of
the tree’s energy budget is diverted from seed production to wood production,
and the age at maturation increases. Arborescent growth as an evolutionary
response to selection for competitive ability can therefore cause the decline
of a population’s abundance as well as of its intrinsic growth rate, poten-
tially resulting in population extinction. The phenomenon of selection-driven
extinction is closely related to Hardin’s (1968) tragedy of the commons. In
both cases, strategies or traits that benefit the selfish interests of individuals,
and that are therefore bound to invade, undermine the overall interests of the
evolving population as a whole once these strategies or traits have become
common. Such a disconnect between individual interest and population inter-
est can only occur under frequency-dependent selection – under optimizing
selection, the two are equivalent. It is thus clear that frequency-dependent se-
lection and density-dependent selection are both necessary for capturing the
potential of adaptive evolution in a single species to cause its own extinction.

Processes of selection-driven extinction can come in several forms:
• First, evolutionary suicide (Ferrière 2000) is defined as a trait substitution

sequence driven by mutation and selection taking a population toward and
across a boundary in the population’s trait space beyond which the pop-
ulation cannot persist. Once the population’s trait values have evolved
close enough to this boundary, mutants can invade that are viable as long
as the current resident trait value abounds, but that are not viable on
their own. When these mutants start to invade the resident population,
they initially grow in number. However, once they have become suffi-
ciently abundant, concomitantly reducing the former resident’s density,
the mutants bring about their own extinction. Webb (2003) refers to such
processes of evolutionary suicide as Darwinian extinction.
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• Second, adaptation may cause population size to decline gradually through
perpetual selection-driven deterioration. Sooner or later, demographic and
environmental stochasticity will then cause population extinction. This
phenomenon has been dubbed runaway evolution to self-extinction by
Matsuda and Abrams (1994a).

• Third, the population collapse abruptly brought about by an invading
mutant phenotype may not directly lead to population extinction but
only to a substantial reduction in population size (Dercole et al. 2002).
Such a collapse will then render the population more susceptible to ex-
tinction by stochastic causes and may thus indirectly be responsible for
its extinction.

For univariate traits, the normal form for the invasion fitness of mutants with
trait values x′ in resident populations with trait values x that are close to
a critical trait value x∗ = 0 at which evolutionary suicide occurs is simply
given by

f(x′, x) = x′ − x ,

with the corresponding equilibrium abundance

n̄(x) =
{

1 + cx2 x ≤ 0
0 x > 0

with c > 0. From this we can see that the selection pressure at x∗ is positive,
g(x∗) = 1 > 0, so that trait substitutions in x converge to x∗, where the
evolving population’s equilibrium abundance abruptly drops from 1 to 0.

The occurrence here of a discontinuous transition to extinction is not
accidental. As has been explained by Gyllenberg and Parvinen (2001), Gyl-
lenberg et al. (2002), and Dieckmann and Ferrière (2004), such a catastrophic
bifurcation is a strict prerequisite for evolutionary suicide. The reason is that
selection pressures at trait values at which a continuous transition to extinc-
tion occurs (e. g., through a transcritical bifurcation) always point in the trait
direction that increases population size: evolution towards extinction is then
impossible. Allee effects, by contrast, provide standard ecological mechanisms
for discontinuous transitions to extinction.

The potential ubiquity of selection-driven extinctions is underscored by
numerous examples based on the evolutionary dynamics of many different
traits, including competitive ability (Matsuda and Abrams 1994a; Gyllen-
berg and Parvinen 2001; Dercole et al. 2002), anti-predator behavior (Mat-
suda and Abrams 1994b), sexual traits (Kirkpatrick 1996; Kokko and Brooks
2003), dispersal rates (Gyllenberg et al. 2002), mutualism rates (Ferrière et
al. 2002), cannibalistic traits (Dercole and Rinaldi 2002), maturation reac-
tion norms (Ernande et al. 2002), levels of altruism (Le Galliard et al. 2003),
and selfing rates (Cheptou 2004). Dieckmann and Ferrière (2004) showed, by
examining ecologically explicit multi-locus models, that selection-driven ex-
tinction robustly occurs also under sexual inheritance. Relevant overviews of
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the mathematical and ecological underpinnings of selection-driven extinction
have been provided by Webb (2003), Dieckmann and Ferrière (2004), Rankin
and López-Sepulcre (2005), and Parvinen (2006).

Also coevolutionary dynamics can cause extinctions. An early treatment,
which still excluded the effects of intraspecific frequency-dependent selec-
tion, was provided by Roughgarden (1979, 1983). This limitation has been
overcome in modern models of coevolutionary dynamics based, for exam-
ple, on the canonical equation of adaptive dynamics (e. g., Dieckmann et al.
1995, Dieckmann and Law 1996; Law et al. 1997). Also in this multi-species
context it is important to distinguish between continuous and discontinuous
transitions to extinction. As has been explained above, evolutionary suicide
cannot contribute to an evolutionarily driven continuous transition to ex-
tinction. Moreover, such continuous extinctions cause mutation-limited phe-
notypic evolution in the dwindling species to grind to a halt, since fewer and
fewer individuals are around to give birth to the mutant phenotypes that
fuel the adaptive process. This stagnation renders the threatened species in-
creasingly defenseless by depriving it of the ability to counteract the injurious
evolution of its partner through suitable adaptation of its own. For these two
reasons, continuous evolutionary extinctions are driven solely by adaptations
in the coevolving partners. By contrast, when a transition to extinction is
discontinuous, processes of evolutionary suicide and of coevolutionary forc-
ing may conspire to oust a species from the evolving community.

8.5 First example of community evolution:
monomorphic and deterministic

Simple community modules comprising two, three, or four interacting species
have often been used for investigating how trophic interactions organize sim-
ple communities. These studies have laid the foundations for theories (i) of
competition, including the R∗ rule (Tilman 1982), (ii) of predation within the
context of exploitative ecosystems, including work on trophic cascades (Oksa-
nen et al. 1981; Oksanen and Oksanen 2000), and (iii) of omnivory, including
research on intraguild predation (Holt and Polis 1997; Diehl and Feissel 2000;
Mylius et al. 2001; HilleRisLambers and Dieckmann 2003). All these stud-
ies, however, did not account for the potential of evolutionary changes in
the ecological interactions between the considered species. Overcoming this
restriction is important as patterns of species interactions encountered in na-
ture ought to be interpreted in light of not only ecological stability but also
of evolutionary stability.

Here we take a step in this direction by investigating the evolution of
feeding preferences within a simple community module. In particular, we ex-
amine evolutionary dynamics in simple food webs comprising a basal resource
and two antagonistic consumer species, where each consumer is capable of
feeding on the resource, on its antagonist, or on a combination of both (Hil-
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leRisLambers and Dieckmann 2003). The relative investments into resource
or antagonist feeding characterize the consumers’ feeding preferences and
can evolve subject to a trade-off. In this way, all of the classic three-species
community modules – including linear food chains, two consumers sharing
a resource, omnivory on the part of one consumer, and mutual intra-guild
predation between two consumers – can be realized in the model. By examin-
ing how feeding preferences – and thus the trophic linkages between species –
evolve, we can chart the possible evolutionary pathways connecting all these
classic community modules (HilleRisLambers and Dieckmann, submitted).
Since density- and frequency-dependent selection pressures are important for
addressing these questions, and since it is desirable to derive the considered
evolutionary dynamics from the underlying population dynamics, models of
adaptive dynamics provide a useful framework for this kind of analysis.

The abundances nC and nD of the two antagonistic consumers change ac-
cording to Lotka–Volterra dynamics, assuming intrinsic mortalities and linear
functional responses. The basal energetic input is provided by a dynamic re-
source, whose abundance nR changes according to semichemostat dynamics
and consumer feeding. The community’s population dynamics are thus given
by

d
dt

nC = nC(eCR aCR nR + eCD aCD nD − aDCnD − dC) ,

d
dt

nD = nD(eDR aDR nR + eDC aDC nC − aCDnC − dD) ,

d
dt

nR = rR(kR − nR ) − nR (aCR nC + aDR nD ) ,

with attack coefficients a, conversion efficiencies e, and intrinsic mortality
rates d. The carrying capacity and intrinsic growth rate of the resource are
denoted by kR and rR, respectively.

The feeding preferences of the two consumers are affected by a trade-off
between the attack coefficients for resource feeding and antagonist feeding,

aiR = amax,i x
si

i , aij = amax,i ( 1 − xi )si ,

for i = C, D and j = D, C, where, for consumer i, amax,i is the maximal attack
coefficient, si is the trade-off strength, and the adaptive trait 0 ≤ xi ≤ 1
determines the feeding preference, measured as the relative investment into
resource feeding. Intermediate feeding strategies, 0 < xi < 1, characterize
omnivorous consumers. For si > 1, generalist feeding strategies (xi ≈ 1

2 ) are
disfavored compared with specialist feeding strategies (xi ≈ 0, 1), resulting in
specialist advantage. The reverse is true for si < 1, which thus corresponds
to generalist advantage. On this basis, the canonical equations (Sect. 8.2) for
the two adaptive traits xC and xD are given by

d
dt

xi =
1
2
µiσ

2
i n̄iamax,i si[eiR xsi−1

i n̄R − eij (1 − xi )si−1 n̄j] ,
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for i = C, D and j = D, C, where equilibrium abundances are denoted by n̄,
and µi and σ2

i are the mutation probability and variance in consumer i.
Coevolutionary dynamics unfold within the constraints of ecological co-

existence. HilleRisLambers and Dieckmann (2003) found that, in the model
specified above, regions of coexistence open up around linear three-species
food chains, (xC, xD) = (0, 1), (1, 0), where one consumer is a better antago-
nist feeder, while the other consumer is a better resource feeder. When the
trade-off strengths sC and sD are varied together, sC = sD, two extreme
scenarios can be distinguished:

• At strong specialist advantage, linear three-species food chains are evo-
lutionarily stable (in the sense of the corresponding trait combinations
being asymptotically stable under the adaptive dynamics described by
the two simultaneous canonical equations for xC and xD). Under these
conditions, selection simplifies community structure by causing the evo-
lution of neighboring trait values towards (xC, xD) = (0, 1), (1, 0). This
means that the better resource feeder will invest even more into resource
feeding, while the better antagonist feeder will invest even more into an-
tagonist feeding, until the evolving three-species food chain has become
strictly linear.

• At strong generalist advantage, trait combinations ensuring ecological co-
existence are severely limited (HilleRisLambers and Dieckmann 2003).
Under these conditions, linear three-species food chains become evolu-
tionarily unstable, and both the better resource feeder and the better
antagonist feeder evolve towards generalist strategies, which ultimately
results in the exclusion of the former by the latter. Also here the end
result is a simplified community structure, in this case given by a simple
two-species food chain.

At intermediate trade-off strengths, ecologically feasible communities evolve
towards linear two- or three-species food chains, largely depending on the
initial feeding preference of the better antagonist feeder.

It must be expected that the trade-offs constraining the attack coeffi-
cients of consumer species are not identical, sC �= sD. Considering interme-
diate trade-off strengths, we find that if the better antagonist feeder is more
constrained at generalist feeding strategies than the better resource feeder,
linear food chains are evolutionarily unstable, and evolutionarily stable food
webs exhibiting more complex trophic interactions may be realized. Fig-
ure 8.3a shows such a coevolutionary attractor with (xC, xD) �= (0, 1), (1, 0).
Figure 8.3a also shows that different coevolutionary attractors may coexist.
Depending on the initial food web configuration, coevolution leads to one of
the three outcomes depicted in Fig. 8.3b: (i) coexistence between two om-
nivores, (ii) coexistence between an omnivore and a pure antagonist feeder,
or (iii) evolutionary exclusion of the better resource feeder. Which of these
occurs is affected largely by the initial feeding preference of the better antago-
nist feeder and also by the relative scaling of the evolutionary rates in the two
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Fig. 8.3. Evolution of community structure in first example. Traits xC and xD mea-
sure the degree to which consumers C and D invest into feeding on the resource R,
as opposed to feeding on each other. For xC > xD, C is the better resource feeder,
while D is the better antagonist feeder. In panel a, the evolutionary isoclines of
xC and xD are depicted by continuous and dashed curves, respectively. Regions in
panel a indicate different potentials for coexistence and coevolution. Region C: C
and R can coexist, while D goes extinct. Region D: D and R can coexist, while
C goes extinct. Region C/D: ecological bistability between coexistence of R with
either C or D. Regions (i), (ii), and (iii): C, D, and R can coexist, so that C and
D can coevolve. The community structures resulting from these coevolutionary dy-
namics then depend on the initial conditions for (xC, xD) and are shown in panel b.
Region (i): Coevolution towards attractor depicted by filled circle, corresponding
to omnivorous mutual intraguild predation. Region (ii): Coevolution towards at-
tractor depicted by filled square, corresponding to omnivory on the part of just
one consumer. Region (iii): Coevolution towards Region D, corresponding to the
exclusion of consumer C. Parameters: sC = 0.82, sD = 1.5, amax,C = amax,D = 0.4,
eCR = eDR = 0.2, eCD = eDC = 0.8, dC = dD = 0.05, rR = 0.2, kR = 100,
µCσ2

C/µDσ2
D = 5

consumers, measured by µCσ2
C/µDσ2

D. Specifically, the basin of attraction for
outcome (iii) increases when the better antagonist feeder evolves faster than
the better resource feeder. It is also possible that communities of type (i)
exhibit cyclical fluctuations in the feeding preferences xC and xD, akin to
those found by Dieckmann et al. (1995) for predator-prey coevolution and
by Law et al. (1997) for coevolution under asymmetric competition. These
evolutionary cycles may come dangerously close to the boundaries of coex-
istence, so that small environmental perturbations may then lead to a shift
from outcome (i) to (iii).

We can summarize the results of the analysis here by concluding that lin-
ear three-species food chains are most likely to persist evolutionarily under
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strong specialist advantage, whereas the evolutionary exclusion of consumers
is most likely under strong generalist advantage. By contrast, complex trophic
interactions in this model are difficult to stabilize evolutionarily. They are
most likely to occur in communities in which trade-off strengths are interme-
diate and the better antagonist feeder experiences a stronger trade-off than
the better resource feeder, especially when the latter evolves faster than the
former.

8.6 Second example of community evolution:
oligomorphic and stochastic

Some existing models of food web evolution incorporate realistic popula-
tion dynamics, but at the same time rely on interactions mediated by high-
dimensional traits that lack clear and direct ecological interpretations (e. g.,
Caldarelli et al. 1998; Drossel al. 2001). By contrast, a model by Brännström
et al. (in preparation), described below, builds on previous foundational work
by Loueille and Loreau (2005) and accordingly is based on body size as an
evolving trait of high physiological and ecological relevance.

The considered community comprises one autotrophic and N hetero-
trophic species evolving through mutation-limited phenotypic adaptation.
Each species i possesses a trait value xi determining its body size on a log-
arithmic scale. From these body sizes, species-specific properties such as en-
ergy requirements, competitive interactions, and attack coefficients are de-
termined. The community’s demographic processes follow lotka–volterra dy-
namics, with the dynamics of the non-evolving autotrophic species i = 0
given by

d
dt

n0 = n0

[
b0 − n0/k0 −

N∑
j=1

exp(xj − x0)F (xj − x0)nj

]
and the per capita birth and death rates, respectively, of the heterotrophic
species i = 1, . . . , N given by

bi(x, n) = e

N∑
j=0

exp(xj − xi)F (xi − xj)nj ,

di(x, n) = d(xi) +
N∑

j=1
F (xj − xi)nj +

N∑
j=1

C(xi − xj)exp(xj)nj .

The four terms on the two right-hand sides above correspond, in turn, to
reproduction, intrinsic mortality, mortality from predation, and mortality
from interference competition:

• Energy inflow from foraging results in reproduction as described by the
first term. The rate at which new individuals enter the focal species
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through birth thus depends on the abundance of available prey, on the
relative difference in size between predator and prey, and on a predator’s
ability to attack a prey. The latter is characterized by a shifted Gaussian
function F of the relative size difference, with F being referred to as the
foraging kernel. The degree to which energy is lost as prey biomass is
converted into offspring is measured by the trophic efficiency e.

• The intrinsic mortality rate in the second term is assumed to decrease with
body size according to a power law resulting in body-size-dependent gen-
eration times consistent with empirical observations (e. g., Peters 1983).

• Losses resulting from predation are captured by the third term, which im-
mediately follows from the considerations concerning the foraging kernel.

• Interference competition between individuals is described by the fourth
term. The increase in mortality caused by interference from other individ-
uals depends on their biomass and on the relative size difference. This is
characterized by a Gaussian function C, centered at zero and referred to
as the competition kernel. Accordingly, two individuals that greatly differ
in size will compete much less than two individuals that have similar sizes.
The exponential term ensures that smaller individuals are affected more
by interference competition.

The evolutionary dynamics of this community are modeled under the assump-
tion that mutations are rare, so that a new mutant will either successfully
invade the resident community or be extinct by the time the next successful
mutation occurs. We can then employ an oligomorphic extension of the evolu-
tionary random walk model described in Sect. 8.2. Mutations occur at a rate
proportional to the total birth rate of the corresponding resident species, and
mutant trait values are assumed to be normally distributed around those
of their parent. Whether or not a mutant morph can invade the resident
community will depend on its invasion fitness, with the success probabili-
ties of potentially invading mutants given in Sect. 8.2. When a successful
invasion occurs, its community-level consequences can be determined from
the Lotka–Volterra dynamics specified above. However, since the underlying
time integration is time-consuming, an approximate, but in practice accu-
rate, algorithm is used, known as the oligomorphic stochastic model (Ito and
Dieckmann, unpublished). The steps in this algorithm aim at infering the
structure of the post-invasion community without time integration whenever
possible. Simulations of the evolutionary process end when the community-
level probability of successful invasion falls below a prescribed threshold.

Figure 8.4a shows how the interplay between mutation and selection grad-
ually leads from a single ancestral species to a community of seven het-
erotrophic species, through a process of sequential evolutionary branching.
The structure of the resulting food web is depicted in Fig. 8.4b.

To isolate and determine the factors governing diversity, two complemen-
tary approaches were used. First, the asymptotic number of species was eval-
uated numerically, as described above. Second, the strengths of disruptive
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Fig. 8.4. Evolution of community structure in second example. Panel a shows
the temporal development of community structure through recurrent evolutionary
branching, utilizing a logarithmic time scale. Panel b depicts the resulting com-
munity structure. Each species is represented by a circle, with its vertical position
given by its trophic level. Circles are connected by arrows, from prey to predator,
where the energy flow between the two corresponding species account for more than
10% of the total energy inflow to the recipient species. Arrows connecting to the
bottom indicate consumption of the autotrophic species (or basal resource, which is
not displayed). Parameters: x0 = 1, k0 = 100, b0 = 1, e = 0.3, d(xi) = d0 exp(−qxi)
with d0 = 0.2 and q = 0.75; F is a lognormal function with mean 3, standard de-
viation 1.5, and amplitude 2.5; C is a lognormal function with mean 0, standard
deviation 0.6, and amplitude 0.0025

selection at the first and second branching points were determined as a func-
tion of model parameters. This enabled analytical insights into which param-
eters are important for the initial stages of food web evolution. Interference
competition and metabolic scaling (in the form of reduced mortality at larger
body size) proved to be critical components in this regard. The former pro-
motes evolutionary branching and is a prerequisite for diversity to develop,
while the latter offsets the advantage that smaller species enjoy in terms of
increased encounter rates per unit of biomass. In simulations in which either
interference competition or metabolic scaling were absent, evolution did not
lead to communities with more than just one or two species.

It proved useful to group parameters according to their role in the model,
with energy parameters directly affecting the energy flow, foraging parame-
ters determining the shape of the foraging kernel, and competition parameters
governing the interference competition between individuals of similar size.
With this grouping and terminology in place, it turned out that the initial
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stages of food web evolution primarily depend on the energy and competition
parameters. While these same parameters were naturally also important for
the asymptotically evolving diversity, their role there was largely overshad-
owed by the foraging parameters. The fact that some parameters are mainly
important in the early stages of community evolution while others become
crucial only during the later stages shows that an analysis that stopped pre-
maturely after investigating only the first or second incidence of evolutionary
branching would be insufficient for determining which mechanisms and pa-
rameters affect the longer-term structuring of ecological communities.

8.7 Third example of community evolution:
polymorphic and deterministic

Explaining the evolutionary origin and history of food webs through sequen-
tial adaptive diversification is a challenge that has as yet been tackled by
few evolutionary models. It is therefore interesting to explore to what extent
the coevolution of predator-prey interactions underlying trophic community
structures can induce recurrent evolutionary branching.

In nature the ecological dynamics of phenotypes engaged in trophic in-
teractions depend on how the considered individuals perform in their roles
as predator on the one hand and as prey on the other. Both of these com-
ponents must be expected to evolve. Ito and Ikegami (2003, 2006) therefore
considered bivariate adaptive traits x = (xr, xu), with the first trait com-
ponent xr determining how an individual is exposed as a resource (strat-
egy as prey) and the second trait component xu determining how the in-
dividual is utilizing such resources (strategy as predator). Resources may
have many relevant phenotypic properties – including body size, toxicity,
proportion of protective tissue, ability to hide, running speed etc. – which
jointly can be described by a vector z. The contribution an individual with
resource trait xr makes to the density in this potentially multivariate re-
source space is denoted by pr(xr, z), and analogously the utilization spec-
trum of an individual with utilization trait xu is p(xu, z). Given a phe-
notypic distribution p(x), the distribution of resource properties is thus
Pr(z) =

∫ ∫
p(xr, xu)dxupr(xr, z)dxr + S(z), where S accounts for sources

of resource supply from outside the modeled population. Likewise, the popu-
lation’s utilization spectrum is Pu(z) =

∫ ∫
p(xr, xu)dxrpu(xu, z)dxu. Ito and

Ikegami (2003, 2006) then considered the following ecological and evolution-
ary dynamics,

d
dt

p(x) =
(

e

∫
F (z)pu(xu, z)dz −

∫
F (z)

Pu(z)
Pr(z)

pr(xr, z)dz − d

)
p(x)

+
1
2
µσ2 ∗ ∂2

∂x2
p(x) ,
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where e measures trophic conversion efficiency and d is the intrinsic death
rate. The function F (z) = aPr(z)/(1 + Pr(z)/P1/2) is a Holling type II func-
tional response, with maximum a and half-saturation constant P1/2. As ex-
plained in Sect. 8.2 and in the Appendix, the population-level effect of fre-
quent mutations can be approximated by a diffusion term with diffusion
coefficient matrix 1

2µσ2 (to avoid dynamical artifacts, values of p(x) are reset
to zero after falling below a very low cutoff threshold).

Fig. 8.5. Evolution of community structure in third example. When two trait com-
ponents for an individual’s strategy as prey, xr, and for its strategy as predator, xu,
evolve under selection pressures resulting from predator-prey interactions, complex
food webs can emerge through recurrent evolutionary branching. Panel a shows the
temporal development of community structure, with the widths of tubes reflecting
the densities of phenotypic clusters. Panels b to d show the evolving food web at
three different moments in time. Spheres represent phenotypic clusters, with di-
ameters reflecting the corresponding densities. On the bottom planes, the shadows
of these spheres show the distribution p(x). Tubes represent trophic links, with
diameters reflecting the corresponding interaction strengths. Tubes connecting to
the bottom planes indicate consumption of the external supply of resources (which
is assigned trophic level 0). The resultant trophic levels of phenotypic clusters are
shown along the vertical axes in b to d. Parameters: e = 0.1, d = 1, a = 20,
P1/2 = 17, 1

2
µσ2 = ((3 · 10−2, 0), (0, 10−3)), S0 = 200, σS = 0.08
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For the sake of simplicity, here we assume a one-dimensional resource
space, strictly localized functions, pr(xr, z) = δ(z − xr) and pu(xu, z) =
δ(z − xu), where δ denotes Dirac’s delta function, a normally distributed
source of external resources, S(z) = S0N0,σ2

S
(z), and traits xr and xu confined

to the unit interval. Within a wide range of parameter values, the dynamics of
initially unimodal phenotypic distributions p(x) then comprises phases of di-
rectional evolution and evolutionary branching. Phenotypic clusters with few
prey and many predators go extinct, while phenotypic clusters with many
prey and few predators rapidly increase in density and subsequently split
through evolutionary branching. Since branching in xr often induces branch-
ing in xu, and vice versa, the branching sequences resulting from this posi-
tive feedback bring about a richly structured food web. Large food webs are
maintained through a dynamic balance between selection-driven branching
and extinction.

Implementation of sexual reproduction, akin to the model by Drossel and
McKane (2000), does not change these dynamics qualitatively (apart from
the fact that phenotypic clusters become reproductively isolated). Giving pr
and pu a certain width, by assuming Gaussian functions instead of delta
functions, also does not qualitatively affect evolutionary outcomes. Finally,
interference competition among predators can be considered by using F (z) =
aPr(z)/(Pu(z)+Pr(z)/P1/2), which gives rise to a ratio-dependent functional
response (Arditi and Ginzburg 1989) and facilitates the evolutionary origin
and maintenance of complex food webs, as illustrated in Fig. 8.5.

8.8 Fourth example of community evolution:
polymorphic and stochastic

The examples presented so far may create the impression that trophic inter-
actions were a necessary prerequisite for the evolutionary origin and mainte-
nance of complex community structures. This is clearly not the case. Purely
competitive interactions have long been shown to ensure the maintenance of
large species numbers, with early work on the species packing problem dating
back to MacArthur and Levins (1967), Vandermeer (1970), May (1973), and
Roughgarden (1974).

To illustrate and underscore the potential of purely competitive interac-
tions to bring about and structure multi-species communities through evo-
lutionary dynamics including adaptive radiations, we consider adaptations
under asymmetric competition. Specifically, we assume that interactions be-
tween individuals are affected by a univariate quantitative trait x, of which
we may think, for example, as representing stem height in plants or adult
body size in animals. In either case, individuals with a small trait value will
suffer a lot from competition against individuals with a large trait value,
while the reverse effects will often be negligible. And if individuals are too
far apart in their trait values, so as to occupy essentially different ecological
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niches, they will hardly interact at all. These qualitative dependencies are
captured by the function

C(x − x′) = exp
(

1
2
σ2

Cβ2

)
exp

(
− (x − x′ + σ2

Cβ)2

2σ2
C

)
,

which has been used to describe the strength of competition exerted by an
individual with trait value x′ on an individual with trait value x (Rummel
and Roughgarden 1985; Taper and Case 1992). Here β = 0 corresponds to
symmetric competition, while β > 0 causes asymmetric competition favoring
larger trait values. We also assume that trait values differ in their intrinsic
carrying capacity,

K(x) = K0 exp
(
−1

2
(x − x0)2/σ2

K

)
,

which, by itself, causes stabilizing selection towards x = x0. On this basis,
we can specify the per capita birth and death rates of individuals with trait
values x in a community with phenotypic density p,

b(x, p) = b0 , d(x, p) =
1

K(x)

∫
C(x − x′)p(x′)dx′ =

1
K(x)

n∑
k=1

C(x − xk) ,

resulting in simple population dynamics of Lotka–Volterra type.

Fig. 8.6. Evolution of community structure in fourth example. When a trait gov-
erning asymmetric competition evolves, selection-driven increases and decreases in
morph number are embedded into a macroevolutionary pattern of perpetual lam-
inar flow of morphs towards larger trait values. The individual-based dynamics
shown involved more than 420,000,000 explicitly simulated birth and death events.
Parameters: b0 = 1, K0 = 1000, x0 = 2, σK = 1, σC = 0.3, β = 2, µ = 0.005,
σ = 0.025
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The individual-based birth-death-mutation model introduced in Sect. 8.2
is well suited to explore the resultant evolutionary dynamics (Doebeli and
Dieckmann 2000). Figure 8.6 shows a typical realization of this stochastic pro-
cess. As we can see, directional selection towards larger trait values initially
causes convergence to a primary evolutionary branching point. Evolutionary
branching subsequently enlarges the number of morphs in the community,
until the maximum number resulting from limitations on species packing
has been reached. Perpetual coevolutionary change then ensues, through (i)
the extinction of morphs with large trait values, which run out of carrying
capacity, (ii) the laminar and gradual flow of resident morphs towards the
larger trait values favored by asymmetric competition, and (iii) the contin-
ual replenishment of morphs at low trait values through adaptive radiations
triggered by the opening up of ecological opportunities resulting from the
first two effects. It is worthwhile to highlight that in this model the incessant
coevolutionary turnover is caused entirely by intrinsic or endogenous mech-
anisms. No environmental forcing needs to be invoked for understanding the
systematic trends in the observed macroevolutionary pattern.

8.9 Summary

In this chapter we have shown how models of adaptive dynamics provide a va-
riety of flexible tools for studying the evolutionary dynamics of ecological
communities. Once demography and mutations have been specified, evolu-
tionary and coevolution processes – including those that increase or decrease
the number of species in the community – can be analyzed at several mutu-
ally illuminating levels of description. While individual-based descriptions of
birth, deaths, and mutations provide the finest level of detail, such models are
often too computationally intensive and too unwieldy to be comprehensively
examined. It is then helpful to have available other classes of models that
provide tried and tested approximations. Depending on the features of the
evolving community and the nature of the addressed research questions, evo-
lutionary random walks, gradient-ascent models, or reaction-diffusion mod-
els may alternatively be best suited for systematically investigating evolving
community structures.

Until relatively recently, community models have focused either on the
ecological dynamics of large communities or on the evolutionary dynamics
of small communities. Now the time seems ripe to bring together these two
previously independent strands of inquiry in a new, more ambitious synthe-
sis. Even though it thus has already become clear that a rich diversity of
ecological mechanisms can drive the persistent diversification of ecologically
relevant adaptive traits, and thus of ecological community structure, much
research remains to be done in this area. The eventual goal will be to ar-
rive at a systematic understanding of the ways through which processes of
interaction, immigration, and adaptation can work together to generate the
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rich, but at the same time not arbitrary, community structures observed in
nature.

Theoretical models of community evolution are revealing the stunning ca-
pacity of ecological interactions, in conjunction with the selection pressures
thus engendered, to result in the emergence of non-random community pat-
terns. It thus seems safe to conclude that neither of the old Clementsian or
Gleasonian notions – viewing ecological communities as either organismically
or externally structured – can do justice to the subtle interplay of endoge-
nous and exogenous demographic and evolutionary pressures unfolding in
real communities. Fueled by the mutual shaping and reshaping of ecological
niches caused by community evolution, natural community structures appear
to occupy a highly complex middle ground.

Appendix: Specification and derivation
of adaptive dynamics models

This appendix provides salient mathematical details on how the four models
of adaptive dynamics are defined and derived.

Polymorphic Stochastic Model. We start from an individual-based descrip-
tion of the ecology of an evolving multi-species community (Dieckmann 1994;
Dieckmann et al. 1995). The number of species in the considered commu-
nity is N . The phenotypic distribution pi of a population of ni individu-
als in species i is given by pi =

∑n1
k=1 δxik

, where xik are the trait val-
ues of individual k in species i, and δxik

denotes the Dirac delta function
peaked at xik, δxik

(xi) = δ(xi − xik). As a reminder we mention that Dirac’s
delta function is defined algebraically through its so-called sifting property,∫

F (xi)δ(xi − x0)dxi = F (x0) for any continuous function F . This implies
pi(xi) = 0 unless xi is represented in species i. We can thus think of pi(xi) as
a density distribution in the trait space of species i, with one peak positioned
at the trait value of each individual in that species. Since

∫
δxik

(x)dx = 1 for
any xik, we also have

∫
pi(xi)dxi = ni. If pi(xi) �= 0 for more than one xi,

the population in species i is called polymorphic, otherwise it is referred to as
being monomorphic. The community’s phenotypic composition is described
by p = (p1, . . . , pN).

The birth and death rates of an individual with trait value xi in species i
are given by bi(xi, p) and di(xi, p). Each birth by a parent with trait
value xi gives rise, with probability µi(xi), to mutant offspring with a trait
value x′

i �= xi, distributed according to Mi(x′
i, xi), whereas with probabil-

ity 1 − µi(xi) trait values are inherited faithfully from parent to offspring.
A master equation (e. g., van Kampen 1981) describes the resultant birth-
death-mutation process,

d
dt

P (p) =
∫

[r(p, p′)P (p′) − r(p′, p)P (p)]dp′ .
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The equation describes changes in the probability P (p) for the evolving com-
munity to be in state p. This probability increases with transitions from states
p′ �= p to p (first term) and decreases with transitions away from p (second
term). A birth event in species i causes a single Dirac delta function, peaked at
the trait value xi of the new individual, to be added to pi, p → p′ = p+uiδxi ,
where the elements of the unit vector ui are given by Kronecker delta sym-
bols, ui = (δ1i, . . . , δNi). Analogously, a death event in species i corresponds
to subtracting a Dirac delta function from p, p → p′ = p − uiδxi .

The rate r(p′, p) for the transition p → p′ is thus given by

r(p′, p) =
N∑

i=1

∫
[r+

i (xi, p)∆(p + uiδxi − p′) + r−i (xi, p)∆(p − uiδxi − p′)]dxi .

Here ∆ denotes the generalized delta function introduced by Dieckmann
(1994), which extends the sifting property of Dirac’s delta function to func-
tion spaces, i. e.,

∫
F (p)∆(p − p0)dp = F (p0) for any continuous functional

F . The terms ∆(p + uiδxi − p′) and ∆(p − uiδxi − p′) thus ensure that the
transition rate r vanishes unless p′ can be reached from p through a birth
event (first term) or death event (second term) in species i. The death rate
r−i (xi, p) is given by multiplying the per capita death rate di(xi, p) with the
density pi(xi) of individuals at that trait value,

r−i (xi, p) = di(xi, p)pi(xi) .

Similarly, the birth rate r+
i (xi, p) at trait value x is given by

r+
i (xi, p) = [1 − µi(xi)]bi(xi, p)pi(xi) +

∫
µi(x′

i)bi(x′
i, p)pi(x′

i)Mi(x′
i, xi)dx′

i ,

with the first and second terms corresponding to births without and with mu-
tation, respectively. The master equation above, together with its transition
rates, describes so-called generalized replicator dynamics (Dieckmann 1994)
and offers a generic formal framework for deriving simplified descriptions of
individual-based mutation-selection processes.

Monomorphic Stochastic Model. If the time intervals between successfully
invading mutations are long enough for evolution to be mutation-limited,
µi(xi) → 0 for all i and xi, the evolving populations will remain monomor-
phic at almost any moment in time (unless and until evolutionary branch-
ing occurs). We can then consider trait substitutions resulting from the
successful invasion of mutants into monomorphic resident populations that
have attained their ecological equilibrium. Denoting trait values and pop-
ulation sizes by xi and ni for the residents in species i = 1, . . . , N and
by x′

j and n′
j for a mutant in species j, we can substitute the density

p = (n1δx1 , . . . , nNδxN ) + ujn
′
jδx′

j
into the generalized replicator dynam-

ics defined above to obtain a master equation for the probability P (n, n′
j) of

jointly observing resident population sizes n and mutant population size n′
j .



170 Ulf Dieckmann et al.

Assuming that the mutant is rare while the residents are sufficiently abun-
dant to be described deterministically, this master equation is equivalent to
the joint dynamics

d
dt

ni = [bi(xi, p) − di(xi, p)]ni

for the resident populations with i = 1, . . . , N and

d
dt

P (n′
j) = bj(x′

j , p)P (n′
j − 1) + dj(x′

j , p)P (n′
j + 1)

for the mutant population in species j, where p = (m1δx1 , . . . , mNδxN ) and
P (m′

j) denotes the probability of observing mutant population size m′
j. The

rare mutant thus follows a homogeneous and linear birth-death process.
Assuming that the resident community is at its equilibrium, the con-

ditions bi(xi, p̄) = di(xi, p̄) for all species i = 1, . . . , N define n̄i(x) and
thus p̄(x) = (n̄1(x)δx1 , . . . , n̄N (x)δxN ), b̄j(x′

j , x) = bj(x′
j , p̄(x)), d̄j(x′

j , x) =
dj(x′

j , p̄(x)), and f̄j(x′
j , x) = b̄j(x′

j , x) − d̄j(x′
j , x). When the resident pop-

ulation in species j is small enough to be subject to accidental extinc-
tion through demographic stochasticity, sj(x′

j , x) = (1 − e−2f̃j(x
′
j ,x))/(1 −

e−2f̃j(x
′
j ,x)n̄j(x)) with f̃j(x′

j , x) = f̄j(x′
j , x))/[b̄j(x′

j , x) + d̄j(x′
j , x)] approx-

imates the probability of a single mutant individual with trait value x′
i

to survive accidental extinction through demographic stochasticity and to
go to fixation by replacing the former resident with trait value xi (e. g.,
Crow and Kimura 1970). When the resident population in species j is
large, n̄j(x) → ∞, this probability converges to the simpler expression
sj(x′

j , x) = max(0, f̄j(x′
j , x))/b̄j(x′

j , x) known from branching process theory
(e. g., Athreya and Ney 1972).

Once mutants have grown beyond the range of low population sizes in
which accidental extinction through demographic stochasticity is still very
likely, they are generically bound to go to fixation and thus to replace the
former resident, provided that their trait value is sufficiently close to that of
the resident, x′

j ≈ xj (Geritz et al. 2002). Hence the transition rate r(x′, x)
for the trait substitution x → x′ is given by multiplying (i) the distribution
µj(xj)b̄j(xj , x)Mj(x′

j , xj) of arrival rates for mutants x′
j among residents x,

with (ii) the probability sj(x′
j , x) of mutant survival given arrival, and with

(iii) the probability 1 of mutant fixation given survival,

r(x′, x) =
N∑

j=1

µj(xj)b̄j(xj , x)Mj(x′
j , xj)n̄j(x)sj(x′

j , x)
N∏

i=1,i�=j

δ(x′
i − xi)

(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here
the product of Dirac delta functions captures the fact that all but the jth

component of x remain unchanged, while the summation adds the transition
rates for those jth components across all species.
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Based on these transition rates, the master equation for the probability
P (x) of observing trait value x,

d
dt

P (x) =
∫

[r(x, x′)P (x′) − r(x′, x)P (x)]dx′ ,

then describes the directed evolutionary random walks in trait space resulting
from sequences of trait substitutions.

Monomorphic Deterministic Model. If mutational steps xi → x′
i are small,

the average of many realizations of the evolutionary random walk model
described above is closely approximated by

d
dt

xi =
∫

(x′
i − xi)r(x′, x)dx′

for i = 1, . . . , N (e. g., van Kampen 1981). After inserting r(x′, x) as derived
above, this yields

d
dt

xi = µi(xi)b̄i(xi, x)n̄i(x)
∫

si(x′
i, x)(x′

i − xi)Mi(x′
i, xi)dx′

i .

By expanding si(x′
i, x) = max(0, f̄i(x′

i, x))/b̄i(x′
i, x) around xi to first order

in x′
i, we obtain si(x′

i, x) = max(0, (x′
i − xi)gi(x))/b̄i(xi, x) with gi(x) =

∂
∂x′

i
f̄i(x′

i, x)
∣∣∣
xi=x′

i

; notice here that f̄i(xi, x) = 0. This means that in the

x′
i-integral above only half of the total x′

i-range contributes, while for the
other half the integrand is 0. If mutation distributions Mi are symmetric –
Mi(xi + ∆xi, xi) = Mi(xi − ∆xi, xi) for all i, xi, and ∆xi – we obtain

d
dt

xi =
1
2
µi(xi)n̄i(x)

∫
(x′

i − xi)T(x′
i − xi)Mi(x′

i, xi)dx′ gi(x) .

The integral is the variance-covariance matrix of the mutation distribution Mi

around trait value xi, denoted by σ2
i (xi). Hence we recover the canonical

equation of adaptive dynamics (Dieckmann 1994; Dieckmann and Law 1996),

d
dt

xi =
1
2
µi(xi)n̄i(x)σ2

i (xi)gi(x)

for i = 1, . . . , N . When mutational steps xi → x′
i are not small, higher-order

correction terms can be derived: these improve the accuracy of the canonical
equation and also cover non-symmetric mutation distributions (Dieckmann
1994; Dieckmann and Law 1996).

Polymorphic Deterministic Model. When mutation probabilities are high,
evolution is no longer mutation-limited, so that the two classes of models
introduced above – both being derived from the analysis of invasions into
essentially monomorphic populations – cannot offer quantitatively accurate
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approximations of the underlying individual-based birth-death-mutation pro-
cesses. Provided that population sizes are sufficiently large, it instead becomes
appropriate to investigate the average distibution-valued dynamics of many
realizations of the birth-death-mutation process,

d
dt

p(x) =
∫

[p′(x) − p(x)]r(p′, p)dp′ .

Inserting the transition rates r(p′, p) specified above for the individual-based
evolutionary model, we can infer (by collapsing the integrals using the sifting
properties of the Dirac delta function and of the generalized delta function)

d
dt

pi(x) = r+
i (xi, p) − r−i (xi, p)

for i = 1, . . . , N . Inserting r+
i (xi, p) and r−i (xi, p) from above, this gives

d
dt

pi(x) = [1 − µi(xi)]bi(xi, p)pi(xi)

+
∫

µi(x′
i)bi(x′

i, p)pi(x′
i)Mi(x′

i, xi)dx′
i − di(xi, p)pi(xi) .

Further analysis is simplified by assuming that the mutation distributions Mi

are not only symmetric but also homogeneous – Mi(x′
i + ∆xi, xi + ∆xi) =

Mi(x′
i, xi) for all i, x′

i, xi, and ∆xi. Expanding µi(x′
i)bi(x′

i, p)pi(x′
i) up to

second order in x′ around xi,

µi(x′
i)bi(x′

i, p)pi(x′
i) = µi(xi)bi(xi, p)pi(xi) + (x′

i − xi) ∂
∂xi

µi(xi)bi(xi, p)pi(xi)
+ 1

2 (x′
i − xi)T[ ∂2

∂x2
i
µi(xi)bi(xi, p)pi(xi)](x′

i − xi),

then yields

d
dt

pi(x) = fi(xi, p)pi(xi) +
1
2
σ2

i (xi) ∗ ∂2

∂x2
i

µi(xi)bi(xi, p)pi(xi) ,

with fi(xi, p) = bi(xi, p) − di(xi, p), σ2
i (xi) =

∫
(x′

i − xi)T(x′
i − xi)Mi(x′

i, xi)
dx′

i, and with ∗ denoting the elementwise multiplication of two matrices fol-
lowed by summation over all resultant matrix elements. This result also pro-
vides a good approximation when mutation distributions are heterogeneous,
as long as σ2

i (xi), rather than being strictly independent of xi, varies very
slowly with xi on the scale given by its elements.
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