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Preface

First of all, we would like to thank all the authors who submitted their full papers
to the GeoAdvances 2012 workshop, which was held from 7 to 8 November at the
Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, Johor
Bahru, Johor, Malaysia. All the submitted full papers (42 of them) were blind peer-
reviewed by the Scientific Program Committee members, and the 16 accepted
papers are published in this Springer book of the Lecture Notes on Geoinformation
and Cartography (LNG&C) series. The book discusses recent developments, in
multidimensional spatial data modeling, and contains 16 chapters. Each chapter
has been thoroughly reviewed by at least three people from the committee and the
scored average marks determined the acceptability of the paper. We are very
pleased with the quality of the result, and hope that these recent developments in
multidimensional spatial data modeling add significant geospatial science
knowledge to the GIS community, especially for researchers and professionals in
the industry.

The successful completion of this book required the cooperation and under-
standing of several key individuals. We thank the GeoAdvances 2012 secretariat
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Medial Axis Approximation of River
Networks for Catchment Area Delineation

Farid Karimipour, Mehran Ghandehari and Hugo Ledoux

Abstract The hydrological catchment areas are commonly extracted from digital
elevation models (DEMs). The shortcoming is that computations for large areas are
very time consuming and even may be impractical. Furthermore, the DEM may be
inaccessible or in a poor quality. This chapter presents an algorithm to approximate
the medial axis of river networks, which leads to catchment area delineation. We
propose a modification to a Voronoi-based algorithm for medial axis extraction
through labeling the sample points in order to automatically avoid appearing
extraneous branches in the media axis. The proposed approach is used in a case
study and the results are compared with a DEM-based method. The results illus-
trate that our method is stable, easy to implement and robust, even in the presence
of significant noises and perturbations, and guarantees one polygon per catchment.

Keywords Voronoi diagram - Delaunay triangulation - Medial axis - River
network - Catchment area delineation

1 Introduction

A catchment area is a hydrological unit where precipitations that fall into this area,
eventually end up in the same river. The raster-based algorithms, which usually
use DEM in their approach, are very common in automated catchment area
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delineation (Martz and Garbrecht 1992, 1993; Turcotte et al. 2001; Chorowicz
et al. 1992; Mark 1984; Tarboton 1997; Lin et al. 2006; Yang et al. 2010; Nelson
et al. 1994; Mower 1994; Jones et al. 1990). Nevertheless, they have some diffi-
culties: Firstly, the raster-based analyses can be time consuming. Secondly, the
accuracy of these methods depends on the quality and type of the DEM used, that
is, per se, affected by the accuracy, density and distribution of the source data, the
smoothness of the terrain surface and the deployed interpolation method (Li et al.
2005). Thirdly, the limitations in flow direction computation affect the results. The
flow path is biased to the grid axes and the water is trapped in sinks and flat areas.
Finally, the raster to vector conversion of boundaries may create some intersec-
tions and the boundaries are not explicitly defined.

On top of these, the river network may be the only available data in some cases,
and the DEM is either inaccessible or in a poor quality. In this situation, the best
approximation of the catchment areas would be to extract the region that is closer
to a certain river segment than to any other and consider it as the catchment area
corresponding to that river (Gold and Dakowicz 2005; Dillabaugh 2002; McAll-
ister 1999). This approximation is achieved through medial axis (MA) extraction,
which is defined as the set of points that are equidistant from at least two points on
the boundary of the shape.

This chapter aims to verify the hypothesis stated by Gold and Snoeyink (Gold
and Snoeyink 2001) to use a Voronoi-based MA extraction method (called one-
step crust and skeleton algorithm) for delineation of catchment areas: The river
network is sampled with a set of points, and Delaunay triangulation and Voronoi
diagrams are used to extract the MA, which results in an approximation of the
catchment areas. The initial investigation shows that this method gives a fair
approximation of the catchments. However, there are many extraneous branches in
the extracted MA (the catchment area, here) due to small perturbations of the
sample points.

This chapter proposes a modification to the one-step crust and skeleton algo-
rithm to overcome the above issue through labeling the sample points. Each river
segment is considered as a curve segment and its corresponding sample points are
assigned the same label. Furthermore, we explain how the catchment polygons are
constructed from the extracted MA, which is a set of lines. The conceptual
structure and the results illustrate that our method is stable, easy to implement and
robust, even in the presence of significant noise and perturbations and guarantees
one polygon per catchment.

The rest of the chapter is organized as follows: Sect. 2 represents some geo-
metric definitions, including Delaunay triangulation, Voronoi diagram, medial axis
and two definitions related to sampling. Section 3 describes the one-step crust and
skeleton algorithm. Simplification and pruning methods for filtering the MA are
introduced briefly in Sect. 4. In Sect. 5, we propose a method for catchment area
delineation through a modification to the algorithm presented in Sect. 3. The
proposed method is used in a case study in Sect. 6 and the results are compared
with a DEM-based method. Finally, Sect. 7 discusses the concluding remarks.
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2 Geometric Definition

This section represents some geometric preliminaries, including Delaunay trian-
gulation, Voronoi diagram and medial axis. Two definitions related to sampling
are presented. In this section, O is a 2D object, 0O is its boundary and S C 0O is a
dense sampling of 0O.

2.1 Delaunay Triangulation

Definition 1 Given a point set S in the plane, the Delaunay triangulation (DT) is a
unique triangulation (if the points are in general position) of the points in S that
satisfies the circum-circle property: the circum-circle of each triangle does not
contain any other point s € S (Ledoux 2006) (Fig. 1a).

2.2 Voronoi Diagram

Definition 2 Let S be a set of points in R>. The Voronoi cell of a point p € S,
denoted as V,, (S), is the set of points x € R? that are closer to p than to any other
point in S:

Vo(S) = {x e B*lllx—pl <llx —qll,g € S,.q # p} (1)

The union of the Voronoi cells of all points s € S forms the Voronoi diagram of
S, denoted as VD(S):

vD(S) = JVp(S).p € S (2)

Figure 1b shows the Voronoi diagrams of a set of points in the plane. Delaunay
triangulation and Voronoi diagram are dual structures: the centers of circum-
circles of the Delaunay triangles are the Voronoi vertices; and joining the adjacent

(@) (b)

Fig. 1 a Delaunay triangulation and b Voronoi diagram of a set of points in the plane; and ¢ their
duality
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generator points in the Voronoi diagram yields their Delaunay triangulation
(Fig. 1c) (Karimipour et al. 2010).

For Voronoi diagram of sample points S, the Voronoi vertices are classified into
inner and outer vertices, which lie inside and outside O, respectively. Then, the
Voronoi edges are classified into three groups: edges between two inner vertices
(inner Voronoi edges), edges between two outer vertices (outer Voronoi edges),
and edges between an inner and an outer vertices (mixed Voronoi edges).

2.3 Medial Axis

The medial axis was first introduced by Blum (1967) as a tool in image analysis.
Grassfire model is the most popular definition of the MA with an intuitive concept:
consider starting a fire on the boundary of a shape in the plane. The fire starts at the
same moment, everywhere on the boundary and it propagates with homogeneous
velocity in every directions. The MA is the set of points where the front of the fire
collides with itself, or other fire front. Mathematically:

Definition 3 The medial axis is (the closure of) the set of points in O that have at
least two closest points on the object’s boundary 00. (Amenta et al. 1998).

Another description defines the medial axis as the centers of the set of maximal
disks contained in O (a maximal disk is a disk contained in a shape that is not
completely covered by another disk contained in the shape) (Fig. 2).

2.4 Local Feature Size and r-Sampling

Quality of the sample points S has a direct effect on the extracted MA. Local
feature size is a quantitative measure to determine the level of details at a point on
a curve, and the sampling density needed for curve reconstruction and MA
extraction.

Fig. 2 The MA of a 2D
curve (rectangle)

L]
3
L ]

L ]
L ]
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Fig. 3 The local feature size
of a point p (line segment pm)
(Wenger 2003)

Definition 4 The local feature size of a point p € 00, denoted as LFS(p), is the
distance from p to the nearest point m on the MA (Amenta et al. 1998) (Fig. 3).

Definition 5 The object O is r-sampled by a set of sample points S if for each
point p € 00, there is at least one sample point s € S that || p-s || < r % LFS(p)
(Amenta et al. 1998).

The value of r is less than 1; and usually r = 0.4 is considered a reasonably
dense sampling (Amenta et al. 1998). Figure 4 shows an example where sample
points around the center are denser in order to provide a proper sampling.

3 One-Step Crust and Skeleton Algorithm

Amenta et al. (1998) proposed a Voronoi-based algorithm (called crust algorithm)
to reconstruct the boundary from a set of sample points forming the boundary of a
shape. Gold and Snoeyink (2001) improved this algorithm so that both the
boundary (crust) and the MA (skeleton) are extracted, simultaneously and the
coined the name “one-step crust and skeleton” for this algorithm.

In the one-step crust and skeleton algorithm every Voronoi/Delaunay edge is
either part of the crust (Delaunay) or the skeleton (Voronoi), which can be
determined by a simple inCircle test. Each Delaunay edge (DD, in Fig. 5a)
belongs to two triangles (D{D,D; and D\D,D, in Fig. 5a). For each Delaunay
edge, there is a dual Voronoi edge (V;V, in Fig. 5a).

Suppose two triangles D;D,D; and D{D,D,4 have a common edge DD, whose
dual Voronoi edge is V| V,. The InCircle(D,, D,, Vy, V,) determines the position of
V, respect to the circle passes through Dy, D, and V. If V, is outside the circle,
DD, belongs to the crust (Fig. 5b). If V, is inside, however, V|V, belongs to the
skeleton (Fig. 5¢).

As illustrated in Fig. 6, if the one-step crust and skeleton algorithm is applied
on a river network, the extracted MA yields a fair approximation of the
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(a) L B e -

(a) (b) -, (C) ‘\\smwmnmumhp ; /’/

Fig. 5 One-step crust and skeleton extraction algorithm: a Delaunay triangulation and Voronoi
diagram of four sample points D; to D4; b V, is outside the circle passes through Dy, D, and Vi,
so DD, belongs to the crust; ¢ V, is inside the circle passes through Dy, D, and Vi, so V,V,
belongs to the skeleton

Fig. 6 MA extraction of a
river network, which yields
an approximation of the
catchments

corresponding catchments. However, there are many extraneous branches in the
extracted MA due to small perturbations of the sample points, which must be
filtered out as discussed in the next section.
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Fig. 7 Similar shapes may
have significantly different
MA:s in the presence of
boundary perturbations

Fig. 8 MA approximation of (a)
a river network: a before and
b after simplification

1 (b)

4 Filtering the Extraneous Edges in the Medial Axis

The MA is inherently unstable under small perturbations; i.e., it is very sensitive to
the small changes of the boundary, which produce many extraneous branches in
the MA. As a result, two similar shapes may have significantly different MAs
(Fig. 7). Filtering extraneous branches is a common approach to extract the major
parts of the MA. Such filtering may be applied as pre-processing through sim-
plifying (smoothing) the boundary, or as post-processing through pruning that
eliminate the extraneous branches of the extracted MA.

4.1 Simplification

Some of the filtering methods simplify the boundary before computing the MA by
removing perturbations or boundary noises (Siddiqi et al. 2002; Attali and
Montanvert 1996) (Fig. 8). Although these methods aim to remove unwanted
boundary noises, they may not provide the ideal results: (1) Some extraneous
edges may still exist in the extracted MA; (2) the distinction between boundary
data and noise can be difficult; and (3) these methods can alter the topological
structure and thus the MA position.

4.2 Pruning

The purpose of the pruning algorithms, as a post-processing step, is to remove
extraneous branches of the extracted MA, in order to preserve only the stable parts
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of the MA. An importance value (based on angle, distance, area, etc.) is assigned
to each branch, and then the branches with the importance value less than a given
threshold are removed (Attali et al. 1995; Chazal and Lieutier 2005; Attali and
Montanvert 1994; Giesen et al. 2009).

The pruning algorithms have some drawbacks: (1) Some extraneous branches
may not be eliminated; (2) Eliminating extraneous branches usually shorten the
main branches; (3) A disconnection in the main structure of the MA may occur; (4)
Most of the pruning methods do not preserve the topology of complex shapes; (5)
In some cases, multiple parameters are required and it is difficult to determine
appropriate thresholds, simultaneously. Finally, most pruning methods require user
checks at the end.

5 Proposed Algorithm for Medial Axis Extraction

In this section, we propose an improvement to the one-step crust and skeleton
algorithm through labeling the sample points in order to automatically avoid
appearing extraneous branches in the MA, and show how our proposed approach
improves the results (Karimipour and Ghandehari 2012; Ghandehari and Karimipour
2012).

Figure 9a illustrates the MA of a shape extracted using the one-step crust and
skeleton algorithm. As this figure shows, this algorithm detects some extraneous
edges as parts of the MA, which are filtered through simplification or pruning. We
observed that such extraneous edges are the Voronoi edges created between the
sample points that lie on the same segment of the curve. It led us to the idea of
labeling the sample points in order to automatically avoid appearing such edges in
the MA (Fig 9b).

We consider the shape boundary as different curve segments 0; such that:

00 = Joo, (3)
i=1

@ <N () PN, (©)
- \ - \ . ~—rt ' ° Sample Point
+ 5 L Junction
\"- ————  Crust Edge

iy Al D A —————  Delaunay Edge

s Voronoi Edge

Fig. 9 a One-step crust and skeleton algorithm detects some extraneous edges as parts of the
MA. They are the Voronoi edges created between the sample points that lie on the same segment
of the curve; b our proposed method automatically avoid such edges in the MA
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Fig. 10 MA approximation
of river network using our
proposed algorithm avoids
appearing the extraneous
branches in the MA

Inner and outer Voronoi edges do not intersect with 0, but mixed Voronoi edges
do (Giesen et al. 2007). The same applied to the Delaunay edges: Delaunay edges
of the sample points § are classified into three classes: Mixed Delaunay edges that
join two consecutive points and belong to the crust; and inner/outer Delaunay
edges that join two non-consecutive points and are completely inside/outside O
(all Delaunay vertices lie on the 00). Note that the inner/outer/mixed Voronoi
edges are dual to the inner/outer/mixed Delaunay edges.

Based on the above definitions, the extraneous MA edges are the inner Voronoi
edges whose both end points lie on the same curve segment. However, the dual of
the main MA edges are the inner Voronoi edges (or its dual inner Delaunay edges)
whose end points lie on two different curve segment. Therefore, the main idea of
the proposed approach is to remove all the MA edges whose corresponding Del-
aunay vertices lie on the same boundary curve.

We start with labeling the sample points: Each segment of the shape is assigned
a unique label; and all of its sample points are assigned the same label. The points
that are common between two curve segments are called junctions, which are
assigned a unique negative label to distinguish them from other sample points.

Filtering in our proposed method is not a pre- or post-processing step, but it is
performed simultaneously with the MA extraction. To extract the MA, we use one-
step crust and skeleton algorithm. Each Delaunay edge passes the InCircle test: If
the determinant is negative and the corresponding Delaunay vertices have the
same labels or one of them is a junction, that Delaunay edge is part of the crust.
Otherwise, if the determinant is positive and the corresponding Delaunay vertices
have different labels, its dual is added to the MA. Figure 10 illustrates the result of
using our proposed algorithm to extract the MA of the river network presented in
Fig. 6, in which the extraneous branches are automatically avoided.
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KK
R BN .

(al) (a2)
y ~_. = %
(b1) (b2)
=
LY
(c1) (c2)

Fig. 11 Different configuration of the MA around the junction

5.1 Closing the Polygons

The calculated MA is a set of lines, whose union does not necessarily construct
real polygons (catchments, here). A final check is needed to find and fix the gaps.
For this, each junction is connected to three of the vertices of the Voronoi cell that
contains the junction. Depending on the configuration of the MA around the
junction, three cases may happen:

e The Voronoi cell of the junction point is a triangle (Fig. 11al). Here, the three
vertices of the Voronoi cell are connected to the junction point (Fig. 11a2).
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Fig. 12 Hierarchical
delineation of catchments
using the MA

e The Voronoi cell of the junction point has more than three vertices, and k of
these vertices are dangle nodes. If k = 3 (Fig. 11bl), the three dangle vertices
are connected to the junction point (Fig. 11b2). Otherwise, if k < 3 (Fig. 11cl),
the k dangle nodes plus 3-k random vertices are connected to the junction
(Fig. 11c2).

5.2 Hierarchical Delineation

Having extracted the MA using the one-step crust and skeleton algorithm, each
branch of the streams is assigned a catchment polygon. Merging the polygons
extracted for the branches of the same stream yields the catchment area of that
stream. In our proposed method, however, a single polygon is already assigned to
all the branches of the stream because they all have the same label (Fig. 12).

6 Implementation Results

We used the proposed approach for a case study and compared the result with a
DEM-based method. Numerous techniques exist for automated extraction of
catchment boundaries from DEM. The DEM is as a set of points in a Triangular
Irregular Network (TIN) (Nelson et al. 1994; Jones et al. 1990), or a raster surface
(Mower 1994). These methods usually simulate rainfall and assume that water
always flows along the path of steepest descent.
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Fig. 14 Catchment area delineation of the study area from the river network using the proposed
method

The study area is San Marcos basin located at the upstream of San Marcos
River in the south of Texas State, USA (Fig. 13). It has an area of 3528 km? and its
elevation varies from 70 to 618 m. The data used here consists of river data from
the National Hydrography Dataset (NHD) and a raster DEM of the San Marcos
Basin from the National Elevation Dataset (NED) with the spatial resolutions of 1
arc-second (approximately 30 m). Figures 14 and 15 respectively illustrate the
catchment area delineated using the proposed approach and the DEM-based
method implemented in ArcHydro extension of ArcGIS software, which are fairly
similar.
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Fig. 15 Catchment area delineation of the study area from DEM using ArcHydro

7 Conclusion and Future Works

This chapter verifies the idea of Gold and Snoeyink (Gold and Snoeyink 2001) to
use the MA of river networks as an approximation of the catchment areas. The
advantages are: (1) It is simple and easy to implement (2) The method can handle
very large areas and produce catchment polygons quickly. While, by increasing the
spatial resolution of DEM or for a large area, the size of the raster DEMs required
to delineate catchments would be large and the related processing like flow
direction and flow accumulation can be so time consuming.

We also modify the algorithm proposed by Gold and Snoeyink to automatically
avoid appearing extraneous branches in the MA. This solution is simple, easy to
implement and robust to boundary perturbations of the sample points (river
network).

The proposed method gives an approximation of the catchment area boundaries
using the MA of the river networks. Although the output of the proposed method
may not be as accurate as DEM-based methods, it can be efficiently used when
DEM data is either inaccessible or in a poor quality.

References

Martz LW, Garbrecht J (1993) Automated extraction of drainage network and watershed data
from digital elevation models. JAWRA 29:901-908

Turcotte R, Fortin JP, Rousseau A, Massicotte S, Villeneuve JP (2001) Determination of the
drainage structure of a watershed using a digital elevation model and a digital river and lake
network. J Hydrol 240:225-242



14 F. Karimipour et al.

Chorowicz J, Ichoku C, Riazanoff S, Kim YJ, Cervelle B (1992) A combined algorithm for
automated drainage network extraction. Water Resour Res 28:1293-1302

Martz LW, Garbrecht J (1992) Numerical definition of drainage network and subcatchment areas
from digital elevation models. Comput Geosci 18:747-761

Mark DM (1984) Part 4: mathematical, algorithmic and data structure issues: automated detection
of drainage networks from digital elevation models. cartographica. Int J Geogr Info
Geovisualization 21:168-178

Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in
grid digital elevation models. Water Resour Res 33:309-319

Lin WT, Chou WC, Lin CY, Huang PH, Tsai JS (2006) Automated suitable drainage network
extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrol Process
20:289-306

Yang W, Hou K, Yu F, Liu Z, Sun T (2010) A novel algorithm with heuristic information for
extracting drainage networks from Raster DEMs. Hydrol Earth Syst Sci Discuss 7:441-459

Nelson EJ et al (1994) Algorithm for precise drainage-basin delineation. J Hydraul Eng 120:298

Mower JE (1994) Data-parallel procedures for drainage basin analysis. Comput Geosci
20:1365-1378

Jones NL, Wright SG et al (1990) Watershed delineation with triangle-based terrain models.
J Hydraul Eng 116:1232

Li Z, Zhu Q, Gold C (2005) Digital terrain modeling: principles and methodology. CRC Press,
USA

Gold C, Dakowicz M (2005) The crust and skeleton—applications in GIS. Second international
symposium on Voronoi diagrams in science and engineering, pp 33—42

Dillabaugh C (2002) Drainage basin delineation from vector drainage networks. Joint
international symposium on geospatial theory, processing and applications, Ottawa, Ontario,
Canada

McAllister M (1999) The computational geometry of hydrology data in geographic information
system. PhD thesis, University of British Columbia

Gold C, Snoeyink J (2001) A one-step crust and skeleton extraction algorithm. Algorithmica
30:144-163

Ledoux H (2006) Modelling three-dimensional fields in geo-science with the Voronoi diagram
and its dual. PhD Thesis. School of Computing, University of Glamorgan, Pontypridd, Wales,
UK

Karimipour F, Delavar MR, Frank AU (2010) A simplex-based approach to implement dimension
independent spatial analyses. Comput Geosci 36:1123-1134

Blum H et al (1967) A transformation for extracting new descriptors of shape. Models for the
perception of speech and visual form 19, 362-380

Amenta N, Bern MW, Eppstein D (1998) The crust and the beta-skeleton: combinatorial curve
reconstruction. Graphical Models Image Process 60:125-135

Wenger R (2003) Shape and medial axis approximation from samples. PhD thesis. The Ohio
State University

Siddiqi K, Bouix S, Tannenbaum A, Zucker SW (2002) Hamilton-Jacobi Skeletons. Int J Comput
Vision 48:215-231

Attali D, Montanvert A (1996) Modeling noise for a better simplification of skeletons. In: IEEE
international conference on image processing, vol 3. pp 13-16

Attali D, di Baja G, Thiel E (1995) Pruning discrete and semicontinuous skeletons. In:
Proceedings of the 8th international conference on image analysis and processing, vol 974.
pp 488-493

Chazal F, Lieutier A (2005) The Lambda Medial Axis. Graph Models 67:304-331

Attali D, Montanvert A (1994) Semicontinuous skeletons of 2D and 3D shapes. In: Proceedings
of the second international workshop on visual form, pp 32-41

Giesen J, Miklos B, Pauly M, Wormser C (2009) The scale axis transform. In: Proceedings of the
25th annual symposium on computational geometry, pp 106-115



Medial Axis Approximation of River Networks 15

Karimipour F, Ghandehari M (2012) A stable Voronoi-based algorithm for medial axis extraction
through labeling sample points. In: Proceedings of the 9th international symposium on
Voronoi diagrams in science and engineering (ISVD 2012), New Jersey, USA

Ghandehari M, Karimipour F (2012) Voronoi-based curve reconstruction: issues and solutions.
The international conference on computational science and its applications (ICCSA 2012),
Lecture notes in computer science (LNCS), vol 7334. pp 194-207. Springer, Brazil

Giesen J, Miklos B, Pauly M (2007) Medial axis approximation of planar shapes from union of
balls: a simpler and more robust algorithm. In: Proceedings of the 19th Canadian conference
on computational geometry (CCCG), pp 105-108



Representing the Dual of Objects
in a Four-Dimensional GIS

Ken Arroyo Ohori, Pawel Boguslawski and Hugo Ledoux

Abstract The concept of duality is used to understand and characterise how
geographical objects are spatially related. It has been used extensively in 2D to
qualify the boundaries between different types of terrain, and in 3D for navigation
inside buildings, among others. In this chapter, we explore duality in four
dimensions, in the context where space and other characteristics (e.g. time) are
modelled as being in four dimensional space. We explain what duality in 4D
entails, and we present two data structures that can be used to store the dual graph
of a set of 4D objects. We also discuss applications where such data structures
could be useful in the future.

1 Introduction

The concept of duality is used in geographical information systems (GIS) to
understand and represent how things are connected, and to characterise spatial
relationships. In two dimensions, one application is qualifying the spatial rela-
tionships between adjacent objects: as shown in Fig. 1, Gold (1991) uses two
connected data structures to store simultaneously a polygonal map (where each
polygon has certain attributes) and its dual (the boundaries between two map
objects having certain attributes, e.g. the boundary type or the flow direction).
He argues that the boundaries do not characterise per se any of the objects, but
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(a)

Fig. 1 a Six map objects and their boundaries. b The same map stored as a graph and its dual
(dotted lines). ¢ The dual graph is used to describe the relationships between adjacent polygons.
[Figure after Gold (1991)]

rather the adjacency relationships that exist between them. The data structure used
was the quad-edge structure of Guibas and Stolfi (1985). In three dimensions,
duality also permits us to understand how different solids are spatially related (e.g.
two rooms in a building are adjacent). Arguably the most known use of the dual is
to model navigational paths inside three-dimensional buildings. Lee and Zlatanova
(2008) and Lee and Kwan (2005) extract from a 3D building a graph that can be
used in case of emergency, and Boguslawski et al. (2011) and Boguslawski (2011)
perform the same using a data structure, the dual half-edge (DHE), which
simultaneously represents the buildings (the rooms and their boundaries) and the
navigation graph. With the DHE, the construction and manipulation operations
update both representations at the same time, permitting the simultaneous mod-
elling and characterisation of buildings. There are several other examples of
duality in GIS: the Delaunay triangulation and the Voronoi diagram are often used
to model continuous phenomena, these two structures being dual to each other.
Dakowicz and Gold (2003) use them for terrain modelling, Lee and Gahegan
(2002) for interactive analysis, and Ledoux and Gold (2008) for three-dimensional
fields in geosciences.

In this chapter, we are interested in the concept of duality in four-dimensional
space to model four dimensional objects. These objects are the result of the
integration of a non-spatial dimension to the three dimensions of space, to create
4D objects where all dimensions are treated as spatial (Raper 2000). Examples of
the non-spatial dimensions that can be used are: time (Peuquet 2002; Worboys
1994), scale (van Oosterom and Meijers 2011; Li 1994) and attributes (beyond
2.5D-type modelling). As van Oosterom and Stoter (2010) argue, the main
advantage of such an integration is the consistency of data, both across space and
the other dimensions modelled—with the proper validation functions, one can
ensure that all the data for a given region is consistent across time or across
different scales, for instance.

Adding an extra dimension implies that a 4D primitive has to be modelled: the
polychoron', which is the 4D analogue of a polygon or polyhedron. To understand

! Also called a 4-polytope or a 4-polyhedron.
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and characterise the spatial relationships between polychora (and between these
and the lower-dimensionality primitives from which they are built), the dual graph
of a set of polychora can be constructed and analysed. For example, in a 3D model
of a building where rooms are represented by polychora we could locate people
inside the building. With the dual graph, a user would be able to know where in 3D
space a given user was at any time, when this person moved from a given room to
another one, or the shortest path between any two rooms at any given time.

We first describe in Sect. 2 our terminology, the kinds of objects we are
modelling in 4D, and the concept of duality. We then present in Sect. 3 potential
data structures to store the dual graph of a partitioning of a 4D space. We first
describe how generalised maps (Lienhardt 1994) can be used to extract and store
the graph, and then we discuss how the DHE (Boguslawski et al. 2011; Bogu-
slawski 2011) can be modified to store simultaneously both the partitioning and the
dual in 4D. We analyse in Sect. 4 the storage of each structure, as one of our aims
is to efficiently implement a 4D structure where the dual is available, and we
briefly discuss in Sect. 5 potential applications of such data structures.

2 The Four-Dimensional Euclidean Space, and Duality

If we denote the three axes of the three spatial dimensions by x, y and z, then the
axis w of the fourth dimension is perpendicular to that of all the spatial dimensions.
In 4D Euclidean space (denoted R*), the simplest 4D primitive, called a simplex, is
a 5-vertex polychoron and it is analogous to the triangle in 2D and to the tetra-
hedron in 3D. More generally, a d-dimensional simplex, also denoted as a d-
simplex, is the convex hull of a set of (d + 1) linearly-independent points in R
Constructing a 4-simplex can be performed hierarchically: from a tetrahedron, we
first embed its 4 vertices in 4D (with four coordinates each), then one new vertex is
added, and finally 4 new edges must be constructed (these join the new vertex to
the existing 4 of the tetrahedron). The resulting polychoron has 5 vertices, 10
edges, 10 triangular faces (2-simplices), and its boundary is formed by 5 tetrahedra
(3-simplices).

By integrating 3D space and the extra dimension into 4D space, we ensure that
there are no gaps or overlaps. This implies that we create a partitioning of R*. This
can be achieved by keeping a so-called “universe polychoron” which encloses all
the other polychora present in the model, in a manner similar to Liu and Snoeyink
(2005). The structure we create is thus a partitioning into cells, where a 0-cell is a
vertex, a 1-cell an edge, a 2-cell a polygon, a 3-cell a polyhedron, and a 4-cell a
polychoron. Currently, no holes inside cells are allowed in our definition.
We name a (k — 1)-cell incident to a k-cell a facet of it; a facet of a 4-cell is thus a
3-cell that lies in its boundary. This resulting partitioning forms a cell complex C,
which is a finite set of cells having the following two conditions:
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Fig. 2 A graph G (solid “

lines), and its dual graph G* N
(dashed lines). For the sake of

simplicity the dual edges to

the edges on the boundary of

G are not drawn ﬁ:
1. A facet of a k-cell in C is also in C;

2. The intersection of two cells ¢ and o, in C, denoted g} N g3, is either empty or

isin C.

A cell complex in R* can be represented by a graph where the vertices and edges
are embedded in R* such that a set of vertices and edges implicitly represent a cell.
Observe that since there are no holes allowed, the graph is connected.

Duality can have many different meanings in mathematics, but it always refers
to the translation or mapping in a one-to-one fashion of concepts or structures.
We use it here in the sense of the dual of a given graph. Let G be a planar graph
(thus embedded in R?), as illustrated in Fig. 2 (solid edges); observe that G can
also be seen as a cell complex in R?. The duality mapping is defined as follows;
the dual graph G* has a vertex for each face (polygon) in G, and these vertices are
linked by an edge if and only if their two corresponding dual faces in G are
adjacent (in Fig. 2, G* is represented with dashed lines). Notice also that each
polygon in G* corresponds to a vertex in G, and that each edge of G* (arcs in
Fig. 2) is dual to an edge in G.

The concept of duality is valid in any dimension, as we consider a graph
embedded in R? as a d-dimensional cell complex. The mapping between the
elements of a cell complex in R? is simple: let C be a k-cell, the dual cell of C in
R? is denoted by C* and is a (d — k)-cell. As a result, in four dimensions, a 0-cell
becomes a 4-cell, and vice versa; a 1-cell becomes a 3-cell, and vice versa; and a
2-cell stays a 2-cell. Figure 3 shows the duality of a cell complex in R>.

(@ (b) (© (d)

Fig. 3 Duality in a 3D cell complex
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3 Potential Data Structures

There are several data structures that are able to represent models in four or more
dimensions. Notable ones include: simplex-based ones (Paoluzzi et al. 1993;
Shewchuk 2000), polytopal meshes (Sohanpanah 1989), (convex) decompositions
of polytopes (Bulbul et al. 2009), and Nef polyhedra (Bieri and Nef 1988).
However, despite the fact that they maintain various topological relationships,
none of them provide efficient access to the dual graph of a model. We have
nevertheless identified two candidate data structures that are able to do so, gen-
eralised maps and the dual half-edge. In this section, these are first introduced in
their general form, and afterwards we specifically analyse how they could handle
the dual graph in four dimensions.

3.1 Dual Half-Edge

The dual half-edge (DHE) structure, as proposed by Boguslawski et al. (Bogu-
slawski et al. 2011, Boguslawski 2011), is a data structure that is able to represent
a set of connected polyhedra forming a cell complex. It does so by simultaneously
storing both the primal and the dual graphs of the objects, in a similar manner as
the quad-edge structure of Guibas and Stolfi (1985) in 2D.

As shown in Fig. 4a, with the DHE each polyhedron is represented indepen-
dently with an edge-based structure (a b-rep model), and adjacent polyhedra are
linked together by their shared faces, which are represented by half-edges joining
3-cells. These form a graph of connections in the dual of the original (primal)
graph. Both the primal and the dual graphs are identical in terms of structure (i.e.
their basic elements and connections). Figure 4b shows an idea of the relationships
that are stored for each edge. Since these graphs conform to the duality concept as
explained in Sect. 2, the only cells that are needed to build a 3D model are the O-
cells (nodes) and 1-cells (edges); the nodes store the vertex coordinates, while the
edges store the connections between the nodes. Meanwhile, the 2-cells (faces) and
3-cells (volumes) are only implicitly represented, but their attributes can be stored
in their dual counterparts, the 1-cells and O-cells in the dual graph.

However, an edge is not an atomic element in the DHE. Each edge consists of
two half-edges, each of them being permanently connected with its corresponding
half-edge in the dual. This pair, half-edge in the primal graph and half-edge in the
dual one, is called the dual half-edge, and forms the atomic element in this model.
Each half-edge is represented with five pointers which keep references to: an
associated vertex, the next edge around a shared vertex, the next edge around a
shared face, the second half-edge of the edge, and to the dual half-edge.

These five pointers are necessary to represent complex models including non-
manifold cases—when two cells are only linked by a shared vertex or edge.
However, the number of pointers can be reduced by one if only cells linked by a



22 K. Arroyo Ohori et al.

(a) (b)
he.N,

iR
he.D.V—#-]_
v -

he.D.N 1 o o T
DNy A

I Iz

I 4

7

She.S.V

Fig. 4 The dual half-edge data structure in 3D. a The DHE models 3D subdivisions by
representing the boundary of each polyhedron separately with a graph (edges are solid lines), and
two adjacent polyhedra are linked together by the dual graph (edges are dashed lines). b The
DHE pointer based data structure; the primal graph (solid lines) is connected permanently with
the dual graph (dashed lines); he - original half-edge; S, Ny, Np, D,V - pointers

shared face are taken into consideration. Additionally, a primal and dual half-edge
pair can be merged and stored as a single record, since they are permanently
connected—the number of pointers is reduced by one.

Using the data structure directly, without higher level construction operators
would be extremely difficult—‘manual’ updating of pointers while edges are
added to a model can easily cause many mistakes. Therefore, it is preferred to use
the construction operators from Boguslawski (2011). They allow for model con-
struction in an easy way, edge-by-edge, like in various CAD systems. Addition-
ally, the dual graph is created automatically as the edges are added to the model
and single cells are linked into a complex. These operators, used for modifications
of the existing model, make only local changes in the primal and dual graph, and
thus the whole dual graph does not need to be reconstructed after each
modification.

During the construction process, the external cell, which encloses cells in a
complex representing a modelled object, is automatically created. It can be con-
sidered as ‘the rest of the world’. This external cell prevents topological incon-
sistencies at the boundary of the complex, where cells do not have an adjacent cell
to connect to. Also, navigation can be implemented without testing if a boundary
of the complex is approached.

Figure 5 shows one possible way to construct two cubes linked into one
complex. It is based on CAD-like operators—Euler operators (Baumgart 1975;
Braid et al. 1980; Mintyld 1988) and extended Euler operators (Masuda 1993).
First, two separate cubes are created (see Fig. 5a). Then, they are linked by a
shared face (see Fig. 5b). It is possible to define different sequences which results
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in the same model. It should be noted that the external cell and dual graph are
present at each step of the process, but for the sake of clarity the external cell and
dual graph are not shown. The final model consists of three cells: two internal
cubes and one external cell (see Fig. 5c).

The DHE was originally designed for 3D models. However, a single poly-
choron can be represented using the DHE without any modifications, except for
the use of 4D coordinates. This is done by instead representing the polyhedra that
lie on its boundary, in a similar manner as a 2D data structure is commonly used to
represent a single polyhedron by storing the polygons in its boundary,

(a) |
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Fig. 5 Cell complex construction process. a A cube construction scenario. b Cubes share a
common face (grey). Cells in the complex are connected using dual edges (dotted lines). ¢ The
resulting model consists of two internal (solid lines) and one external (dotted grey lines) cells
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cf. Baumgart (1975). While this is not sufficient to represent a 4D cell complex
with adjacent 4-cells or a non-manifold object, we believe that the data structure
can be extended to represent objects in 4D. The biggest challenge is to correctly
manage all the connections between the 4-cells, so as to fulfil the 4D duality rules.

3.2 Generalised Maps

Generalised maps (G-maps) are an ordered topological model developed by
Lienhardt (1994) based on the concept of a combinatorial map, also known as a
topological map, which was described by Edmonds (1960). They are roughly
equivalent to the cell-tuple structure of Brisson (1989), but have been shown to be
able to represent a wider class of objects known as cellular quasi-manifolds—
manifolds that allow certain types of singularities, as long as every n-cell is
incident to no more than two (n + 1)-cells.

Intuitively, a G-map is composed of two elements: a set of darts, each of which
is defined by a unique combination of a specific n-cell from every dimension, and
are often represented visually as half-edges or oriented edges; and involutions (o),
bijective operators connecting darts that are related along a certain dimension.
In this manner, oy joins vertices to form edges, «; connects consecutive edges
within a face, a, connects adjacent faces within a volume, and so on.

One can obtain the connected darts that form a specific cell by the use of the
orbit operator, which returns a (possibly ordered) set of darts that are reachable by
following certain involutions only. To obtain the darts that are part of a certain i-
cell only, one can start from any dart d belonging to the i-cell, following all
involutions except for o;. This is commonly denoted as <o, > (d) (Lévy and
Mallet 1999). Since o; connects adjacent i-cells, not following it means remaining
in the same cell. For simple construction, the sew operation is used, connecting
two i-cells of the same dimension along the common part of their boundary. It does
parallel traversals of two orbits, adding involutions that connect corresponding
darts from each. Note that this implies certain ordering criteria in the orbit oper-
ator. Analogously, the unsew operation removes these involutions. An example of
a 3D G-map representation of two adjacent cubes is shown in Fig. 6.

The aforementioned elements and operations represent the combinatorial
structure of a generalised map. However, to represent the geometry of the model,
an additional embedding structure is used. If only linear geometries are required,
only the O-dimensional point embeddings are actually needed. These store the
coordinates of each vertex.

Since an o; involution connects adjacent i-cells in the primal graph of a d-
dimensional model, per definition o;_; does so in the dual graph. These can
therefore be easily swapped to convert a graph into its dual. For the 4D case, oy
connects corresponding involutions for the dual of the nodes (0-cells), a3 for the
edges (1-cells), o, for the faces (2-cells), o for the volumes (3-cells), and o for
the 4-cells.
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Fig. 6 A 3D G-map representation of a pair of adjacent cubes, showing the o (dashed), o,
(solid), o, (double), o3 (triple), and #; operators. a A G-map representation of a cube. b The ¢,
operator obtains all the darts belonging to a specific i-cell. Thus, ¢, obtains the darts belonging to
a vertex, #, those belonging to an edge, and ¢, those belonging to a face. ¢ A G-map
representation of two cubes. Note how the individual cubes have identical involutions to those of
(a), with the addition of an o3 involution that connects the two cubes at their common face. In the
other darts, this involution is not used

Unlike the DHE that permits us to represent both the primal and the dual graph
simultaneously, G-maps permits us to directly represent either one or the other.
Transforming a 4D cell complex into its dual is however a straightforward oper-
ation, the combinatorial part of it being performed in linear time. Alternatively,
any cell’s dual can be directly obtained from the graph by interpreting an o;
involution as an o,_; one. This is similar to how a Voronoi diagram is instead often
manipulated from a Delaunay triangulation, cf. Boots (1974). Duality in the
combinatorial structure of G-maps is therefore trivial to obtain, and can be done in
real time.
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Meanwhile, a geometric interpretation of the dual graph is also simple to get.
Assuming linear geometries, only the point embeddings for the dual of the 4-cells
need to be generated, e.g. using the centroid of the 4-cell, or simply an average of
the point embeddings of the O-cells in the boundary of the 4-cell. These are both
easy to obtain using the <g, > orbit corresponding to the 4-cell. Note that if the
initial model (primal graph) is bounded, the dual representation will have
unbounded cells. The running time of the geometric part of the duality transfor-
mation depends on the manner in which new point embeddings are computed.
When each of these can be computed in constant time (e.g. using a few darts in
their orbit), the entire transformation can be done in linear time. Otherwise, the
complexity will be higher.

The process of the duality transformation of a 4D G-map is shown in Algo-
rithm 1. For simplicity of explanation, three things are assumed to exist: an
additional pointer to store the new point embeddings, a global list of embeddings,
and a pointer from each embedding to a dart in its boundary. Note however that
these are not strictly necessary. Their existence depends on the manner in which
G-maps are implemented.

Algorithm 1: DUALTRANSFORM(G)
Input :A 4D G-map G
Output: The dual transformation of G
foreach 4-Cell ¢ in G do
p < the centroid of ¢
O < dy4> (c.dart)
foreach Dart d in O do
d.embeddingp < p
end
end
foreach Dart d in G do
swap(d.ayp, d.o)
swap(d.«a, d.ay)
swap(d.embeddingop, d.embeddingp)
end

For consistency in our dual representation, we assume that there is an external
(unbounded) cell. This ensures that applying the dual operation twice returns a
model that is topologically equivalent to its original representation. The trans-
formation of a 2D G-map into its dual is shown step by step in Fig. 7.
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Fig. 7 A step by step transformation of a 2D G-map into its dual representation. a A 2D G-map
representation of 3 adjacent triangles. b oy and o, are swapped, and a point embedding for each
triangle is created. ¢ The final result after linking to the new point embeddings

Fig. 8 A 3D projection of a
tesseract: a a tesseract is a
simple polychoron, b a
tesseract is bounded by eight
cubes, and can be represented
as a cellular complex of these
cubes. Note that they have
different shapes due to the
projection used

4 Storage of a 4D Cell Complex and its Dual

In this section we consider a 4D cell complex consisting of adjacent tesseracts and
its dual. A tesseract, also known as a 4-cube or cubic prism, is the four dimensional
analogue of a cube. As shown in Fig. 8, it is a closed four-dimensional polytope
bounded by eight cubes. It contains 8 cubical 3-cells, 24 square 2-cells, 32 1-cells,
and 16 O-cells.
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4.1 Dual Half-Edge

Using the 3D DHE, a single tesseract can be represented as a complex of seven
internal and one external 3-cells. This perfectly fits to the DHE concept of models
enclosed by the external cell. Once each tesseract is created individually, it is
necessary to link them into a 4D complex. Using the DHE, at this moment only
adjacency by a shared 3-cell (a cube) is taken into consideration—other rela-
tionships between lower dimensional cells (i.e. by a shared face, edge, and vertex)
are not allowed. This significantly simplifies the problem.

To extend the concepts of the original 3D DHE to 4D, it is necessary to
introduce the concept of an external 4-cell into the model. In a model with only
one object, e.g. a single tesseract, there will be two 4-cells—internal and exter-
nal—connected into a complex by adjacent 3-cells. Thus, in the dual of this model,
there would be two vertices, which correspond to the internal and external 4-cells.
The vertex corresponding to the internal one can be calculated as the centroid of
the tesseract; while the node for the external one may be located at infinity—these
two dual nodes are connected by eight dual edges representing all the bounding 3-
cells of the internal and external 4-cells. Technically, each 3-cell is represented by
a bundle of dual edges, but since the bounding nodes of the edges in the bundle are
geometrically the same, and the edges are connected in a radial cycle, they are
considered as a single edge. Each cube in this example is represented by a bundle
of 12 dual edges. Since every primal half-edge is associated with a dual half-edge,
the number of dual edges is the same as the number of primal edges of the cell.

A simple calculation determines that the number of atomic elements, dual half-
edges, required to represent the above model is 384: there are two tesseracts
(internal and external) consisting of eight cubes each; each cube consisting of 12
edges; and each edge consisting of two DHEs. It should be noted that the 3D dual
graph originally used to connect 3-cells of a complex is replaced by the new 4D
graph connecting 4-cells. However, at the current stage of our research we cannot
determine all the DHE connections between the dual edges, and the exact number
of pointers necessary to represent these connections.

4.2 Generalised Maps

A complex of two or more adjacent tesseracts can be represented using a 4D
generalised map (4-G-map), in which each dart has 5 involutions (og—04). The
construction of the model proceeds incrementally, starting from the vertex level.
A vertex is defined by a point embedding, where its 4D coordinates are stored. An
edge is defined by creating a pair of darts, linked to each other along the o
involution. Four of these edges, linked along their shared vertices at the o
involution, form a square face. Six of these faces, linked along their shared edges
at the o involution, form a cube. Eight of these cubes, linked along their shared
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faces at the o3 involution, form a tesseract. The resulting tesseract is thus formed
of 2 x 4 x 6 x 8 = 384 darts and 16 point embeddings. Since each dart requires 6
pointers (one for each involution plus one for its point embedding), there are 2,304
pointers in the combinatorial structure.

The o4 involutions have not been used up to this point. These are however used
to link 3D-adjacent tesseracts together. Since no additional pointers are required,
the total storage used for a cell complex of 4D tesseracts is the sum of the storage
for each individual tesseract.

To obtain the dual of this model, the procedure described in Sect. 3.2 may be
used. The «; and o;_; involutions are first swapped in the combinatorial structure.
In this manner, o becomes o4 and vice versa, and o; becomes o3 and vice versa.
Afterwards, a new point embedding at the centre of each tesseract is created and
linked to the darts on its boundary.

5 Discussion

We have shown how it is possible to store the dual graph of a 4D object by
applying and extending existing data structures. G-maps already offer this possi-
bility, although simultaneous storage of both graphs is not possible. The dual half-
edge offers this possibility and is thus a promising alternative, especially as the
dual graph is updated automatically while the primal is modified.

We also envision being able to use the 4D dual graph for various applications,
navigation in 4D being an interesting possibility. For instance, it would make it
possible to create a 3D indoor and outdoor way-finding application, where a user
can select any given start and end points, and be given the best 3D route at any
point in time, taking into account topological changes (e.g. a connecting corridor
being only open during office hours).

We also plan to work on duality when holes/cavities are allowed in any
dimension, up to 4D. An example of a 4D hole could be a section of a building
being closed due to refurbishing work and thus inaccessible and removed from the
graph. Note however that this assumption might not be true for all applications,
e.g. emergency response. In a 3D representation, there would not be a natural
connection between the building before and after the construction work, but it
would be there in the 4D dual graph. This will allow us to fully utilise existing
spatial datasets, and at the same time be able to represent a greater variety of
situations.
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Calibration and Accuracy Assessment
of Leica ScanStation C10 Terrestrial
Laser Scanner

Mohd Azwan Abbas, Halim Setan, Zulkepli Majid, Albert K. Chong,
Khairulnizam M. Idris and Anuar Aspuri

Abstract Requirement of high accuracy data in surveying applications has made
calibration procedure a standard routine for all surveying instruments. This is due
to the assumption that all observed data are impaired with errors. Thus, this routine
is also applicable to terrestrial laser scanner (TLS) to make it available for sur-
veying purposes. There are two calibration approaches: (1) component, and (2)
system calibration. With the intention to specifically identify the errors and
accuracy of the Leica ScanStation C10 scanner, this study investigates component
calibration. Three components of calibration were performed to identify the
constant, scale error, accuracy of angular measurement and the effect of angular
resolution for distance measurement. The first calibration has been processed using
closed least square solutions and has yielded the values of constant (1.2 mm) and
scale error (1.000008879). Using variance ratio test (F-Test), angles observation
(horizontal and vertical) for Leica C10 scanner and Leica TM5100A theodolite
have shown significance difference. This is because the accuracy of both sensors
are not similar and these differences are 0.01 and 0.0075° for horizontal and
vertical measurements, respectively. Investigation on the resolution setting for
Leica C10 scanner has highlighted the drawback of the tilt-and-turn target. Using
the highest resolution, Leica Cyclone software only able to recognize the tilt-and-
turn target up to 10 m distance compare to 200 m for the black and white target.
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1 Introduction

The current terrestrial laser scanners (TLS) has considerably improved the mea-
surement capability and the quality of the product in Geomatic field. Comparing
with other measurement approaches, the processing involved in constructing a
complete three-dimensional (3D) model is much simpler and faster (Varady and
Martin 2002; Rabbani 2006; Pu 2008). Furthermore, current TLS can capture
images using either an external or a built-in camera. This integration (TLS and
camera) enables it to provide coloured point clouds and photorealistic 3D model.

However, similar to other instruments available in Geomatics field (total sta-
tion, global positioning system, camera), observations from TLS is also impaired
by errors (Reshetyuk 2009). In order to provide accurate data, standardized cali-
bration routines exist for the traditional geodetic and photogrammetric instru-
ments. According to Schofield and Breach (2007), calibration is the process of
estimating the parameters that need to be applied to correct actual measurements to
their true values. Since TLS is also used for Geomatics application, thus, cali-
bration is also necessary in TLS measurement. Furthermore, the requirement of
accurate data for surveying applications such as deformation, industrial survey and
reverse engineering also has made this process crucial for TLS measurement. This
is to ensure that TLS are suitable for various surveying applications.

2 Calibration of Terrestrial Laser Scanner

There are many instruments available to carry out surveying work and all of them
require calibration in order to produce accurate data. This requirement also goes to
TLS instrument, and it is a prerequisite for the extraction of precise and reliable
3D metric information from the point clouds (Reshetyuk 2009). Based on the error
sources discussed in Sect. 3, there are several errors that can be evaluated during
calibration. Two approaches available to investigate these errors, are either sep-
arately (component calibration) or simultaneously (system calibration) using sta-
tistical algorithms.

Schulz (2007) has differentiated between both calibration approaches, the
system calibration derives either a mathematical model or a correction function,
without knowledge of individual instrumental error and its influence. This is
performed by properly design the network geometry of the control points. The
component calibration is based on mainly knowledge-based modeling of the
instrument and its instrumental errors. Individual error is investigated separately in
a specific experimental setup.

This study implements component calibration in order to specifically identify
the errors and accuracy of Leica ScanStation C10 scanner. There are three ele-
ments in the calibration and they are: (1) the determination of constant and scale
errors, (2) accuracy of angular measurement and, (3) the effect of angular reso-
Iution for distance measurement.



Calibration and Accuracy Assessment of Leica ScanStation C10 Terrestrial Laser Scanner 35

3 Error Sources

As discussed by Bohler et al. (2003), Gordon et al. (2005), Schulz (2007), Lichti
(2007) and Reshetyuk (2009), there are many error sources that may be modeled
from TLS measurement. All of these error sources can be summarised into two
groups as follows:

e Internal error which consists of errors from instrumental, data and resolution.
e External error that may include object related, environmental and georefer-
encing errors.

For this study, the Leica ScanStation C10 is evaluated as follows:

e Distance measurement system (constant and scale errors).
e Angle measurement system.
e Angular resolution.

3.1 Constant Error

Rueger (1996) defined that constant or zero error is caused by the virtual electro-
optical origin or center of instrument is not being coincident with their physical
center. This effect is a small correction which has to be added to all distance
measurements. A number of factors may affect the value of the constant error and
these factors may vary from instrument to instrument. Some instruments have
constants which are signal strength dependent, while others are voltage dependent.
The signal strength may be affected by the accuracy of the pointing or by pre-
vailing atmospheric conditions. It is very important, therefore, that periodical
calibrations are carried out.

3.2 Scale Error

Scale error is a scale factor in the measured distance. This error is largely due to
the fact that the oscillator is temperature dependent. The quartz crystal oscillator
ensures the frequency remains stable to within £5 ppm over an operational
temperature range of —20 to 50 °C. The modulation frequency can, however, vary
from its nominal value due to incorrect factory setting, ageing of the crystal and
lack of temperature stabilization. Most modern short-range instruments have
temperature-compensated crystal oscillators which have been shown to perform
well. However, warm-up effects have been shown to vary from 1 to 5 ppm during
the first hour of operation (Schofield and Breach 2007). Diode anomaly also causes
scale error, as they can result in the emitted wavelength being different from its
nominal value.



36 M. A. Abbas et al.

3.3 Accuracy of Angle Measurement System

According to Wunderlich (2003), the angular accuracy obtained by TLS is limited
by the quality of the angular encoders. Hebert and Krotkov (1992) have found that
poor synchronization also can be considered as sources of error in the angle
measurement system. The beam deflection unit and distance measurement system
should be accurately synchronised. Any deviation may result in errors along the
scan line direction, for instance, skewed images. This type of errors is relatively
constant as long as the scanner is stationary. Errors involved in angle measurement
affect the calculation of 3D point coordinates.

3.4 Angular Resolution

Angular resolution can be described as the ability to detect small objects or object
features in the point clouds (Bohler and Marbs 2005). Technically, there are two
options offered by current TLS regarding this ability, the smallest possible
increment angle between two successive points and the size of the laser spot itself
to the object. Most scanners allow operator to manually choose the setup of this
ability. Thoughts must be given to the selection of the setting because scanning
time can be very expensive for choosing high resolution setting and vice versa for
choosing low resolution where quality of the data is also relatively low.

4 Methodology

Due to similar measurement method between total station and TLS measurement,
this study adapts calibration procedure of total station for TLS calibration. How-
ever, there are several differences as compared to total station calibration, such as
target design, resolution setting and data reduction.

In total station calibration, the use of prism is required in order to obtain high
accuracy measurement. In contrast, the use of prism or retro-reflectors are not rec-
ommended for TLS calibration since their high reflectivity (flaring and blooming)
causes errors in the range measurement (Gordon et al. 2005). According to Lichti
and Gordon (2004), flaring causes biases in range direction making the observed
distance to the objects too short. And blooming causes targets to appear much larger
than their actual size. To avoid those effects, this study employs the targets provided
or recommended by the manufacturer. Five types of targets are used in this research
and they are 76 mm (Fig. 1a) and 152 mm (Fig. 1b) tilt-and-turn (TT) targets. These
targets are provided by manufacturer and additionally three types of black-and-
white (BW) targets of various diameters of 150 mm (Fig. 1c), 200 mm (Fig. 1d) and
250 mm (Fig. le). For constant and scale errors determination, only the 76 mm TT
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Fig. 1 Target used for the calibration, 76 mm (a), and 152 mm (b), tilt and turn target, black and
white targets with diameter of 150 mm (c), 200 mm (d), and 250 mm (e)

(a) (b)

target was used. For comparison with the high accuracy total station purposes, the
second calibration employs 150 mm BW target. This is very important in order to
ensure that the total station is able to measure the target. For the angular resolution
calibration, all of the targets are used.

The main advantage of using TLS for data collection compared to total station
is the data density. The capability of TLS to provide dense 3D point clouds make it
applicable for various types of application especially 3D modeling. This density
value can be set up by the user based on the angular resolution (low, medium or
high). Even though, high resolution setting can give high accuracy data, the
scanning process requires more time and large storage space to record the data. In
contrast, choosing low resolution setting reduces the accuracy and this also affects
the determination of target center.

Target pointing using total station can be determined directly by the user. The
data reduction involves the calculation of horizontal distance from slope distance
and vertical angle only. For the TLS, data reduction is rather complicated as prior
to data reduction, the target center must be derived using the point clouds data. The
center of the target is computed by finding the mean of the coordinates of all point
clouds within the target.

By taking into account these differences between the total station and the TLS,
this study should be carried out using three specific calibrations as follows:

e Constant and scale errors calibration using EDM baseline.
e Angular accuracy assessment.
e Angular resolution versus distance.

4.1 Constant and Scale Errors

For this experiment, EDM baseline site located at Permas Jaya, Johor Bahru was
used. There are 10 pillars, which are maintained by the Department of Surveying
and Mapping Malaysia (DSMM) and the pillars’ position are determined using a
high accuracy total station (Leica TCA2003) regularly.

Based on the technical specification of the scanner used for this study (Leica
C10), this pulse based scanner is able to measure distance up to 300 m. However,
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Fig. 2 TLS baseline calibration

based on the result of angular resolution calibration (Sect. 4.3), the targets can be
recognized only up to 200.993 m (pillar 8). Therefore, the baseline calibration has
been performed up to pillar 8 according to the following procedure (Rueger 1996):

e Setting up scanner at pillar 1, measurement was made to pillar 2, 3, 4 up to pillar
8 (Fig. 2).

e Move scanner to pillar 2 and proceed in a similar manner by measuring pillar 3,
4, 5 up to pillar 8.

o Finally, the scanner was moved to pillar 3 and targets were positioned at pillar 5,
6, 7 and 8.

As shown in Fig. 1, there are several targets being used in this experiment.
However, in order to maintain the accuracy of scanning process, 6" tilt and turn
target provided by manufacturer were used. This is very crucial, for the purpose of
reducing the constant error of the target.

Data obtained from the calibration were processed using linear regression
solutions to resolve constant and scale errors as stated by Rueger (1996).

4.2 Angular Accuracy

This experiment compared the values of angles (horizontal and vertical) measured
using high accuracy theodolite (Leica TM5100A) and scanner (Leica C10).
In order to perform this test, eight targets were set up around the instruments as
shown in Fig. 3.

As depicted in Fig. 4, a high accuracy theodolite (Leica TM5100A) with 0.5”
accuracy for both angular measurement (Leica 2002) was used for the bench-
marking purposes. BW targets were chosen for this experiment due to its suit-
ability for measuring the center of the target using theodolite while this could not
be carried out on the TT target. To ensure the accuracy in the vertical angle
measurement, all targets were set up at the same height.

The target scanning was carried out by using a medium resolution setting. This
is based on the technique of Gordon et al. (2005). The authors noted in their study
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Fig. 3 Angular accuracy
experiment

Fig. 4 High accuracy theodolite (Leica TM5100A)

that it is not essential to undertake high resolution scans due to the length of time
required. Data captured from the scanning are set to a Cartesian coordinate system,
and subsequently, with aid of Fig. 5 converted into spherical coordinate system
using Eq. (1) (Reshetyuk 2009):

Range, (r) = VX* + Y + 72

X
Horizontal _direction, (¢) tan™" <?>

VX +Y?

zZ
Vertical _angle, (0) = tan ™! (—)
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Fig. 5 Relationship between z
Cartesian and spherical + A(Xa, Ya,Za)
coordinate system

Having the data in spherical coordinate system, the horizontal and vertical
angles between the targets can be extracted. To provide adequate redundancy, the
observations were repeated four times. For each set of observation, eight (8)
horizontal and vertical angles were taken. With four repetitions, total number of
observations were 64 and these are used to calculate a mean value and the pre-
cision of the mean value and these data were used to assess the accuracy of the
angle measurement system.

As mentioned previously, data from theodolite is used as the benchmark to
evaluate the data from Leica C10 scanner. This is carried out using the one-tailed
F-variance ratio test for two population variances. The confidence level for the test
is set as 95 % and the hypotheses of the test is:

Hp The variances are not significantly difference.
Ha The variances are significantly difference.

The F-variance ratio test is carried out using Eq. (2) (Gopal 1999):
F=—= (2)

where, o7 refers to the variance for theodolite data and o3 refers to the variance for
scanner data. The null hypothesis (Hy) is rejected if the calculated F value (Eq. 2) is
higher than the critical F value (predicted from the F-distribution table) with selected
level of significance (confidence level 95 % equal to 0.05 of significance level). The
rejection of Hy shows that the test parameters is not equal. In this study, the F-
variance ratio test is used to analyse the similarity of the data from both sensors.

4.3 Angular Resolution

Once again, the baseline calibration pillar discussed in Sect. 3.1 are used for the
angular resolution calibration (Fig. 6). In order to accurately evaluate the
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Fig. 6 Angular resolution calibration using baseline technique

Table 1 Resolution setting for Leica ScanStation C10

Resolution setting Horizontal spacing (m) Vertical spacing (m) Range (m)
Low 0.2 0.2 100
Medium 0.1 0.1 100
High 0.05 0.05 100
Highest 0.02 0.02 100

capability of the scanner to detect targets, several points have been established at
baseline calibration to provide roughly 10 m interval between points up to a 100 m
range. The five types of targets shown in Fig. 1 were measured in this calibration
using four setting of resolutions (Table 1). To avoid the effect of incidence angle
variation, all targets were aligned with respect to the scanner.

These resolution settings affect the determination of the targets center. Evalu-
ation is carried out based on the capability of Cyclone software to automatically
recognize the target. The result produces a yardstick for the resolution setting
against distance. This can avoid operator from spending more time during scan-
ning process to register all targets.
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Table 2 TLS baseline

; - Line Measured value (m) True values (m)
calibration
1-2 5.000 5.001
1-3 9.999 9.998
14 48.996 48.996
1-5 86.997 86.996
1-6 124.992 124.992
1-7 162.988 162.988
1-8 200.991 200.993
2-3 5.001 4.998
2-4 43.997 43.996
2-5 81.996 81.995
2-6 119.99 119.992
2-7 157.987 157.987
2-8 195.99 195.992
3-5 76.999 76.997
3-6 114.994 114.994
3-7 152.99 152.989
3-8 190.996 190.994
Standard deviation for observations 1.4 mm
Constant error 1.2 + 0.6 mm
Scale factor 8.9 + 5.1 ppm

5 Result and Analysis

As summarized in Table 2, constant and scale errors have been evaluated from the
17 observations. Utilising formula discussed in Sect. 3.1, both errors were cal-
culated using true and measured values from the baseline calibration. The standard
deviation for the measurement and both constant and scaling errors are presented.

For verification purpose regarding the significance of the calculated 