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PREFACE 

This monograph contains the revised and edited lecture notes of the International 
School GPS for Geodesy in Delft, The Netherlands, March 26 through April 1, 
1995. The objective of the school was to provide the necessary information to 
understand the potential and the limitations of the Global Positioning System for 
applications in the field of geodesy. The school was held in the excellent facilities 
of the DISH Hotel, and attracted 60 geodesists and geophysicists from America, 
Asia, Australia, and Europe. 

The school was organized into lectures and discussion sessions. There were two 
lecture periods in the morning and two lecture periods in the afternoon, followed by 
a discussion session in the early evening. A welcome interruption to this regular 
schedule was a visit to the European Space Research and Technology Centre 
(ESTEC) in Noordwijk in the afternoon of March 29. A tour of the Noordwijk 
Space Expo and the ESA satellite test facilities, and presentations by ESTEC 
personnel of GPS and GNSS related activities at ESTEC, provided a different 
perspective to space geodesy. 

The school had the support of the International Association of Geodesy, the 
Netherlands Geodetic Commission, the Department of Geodetic Engineering of the 
Technical University of Delft, the Department of Geodesy and Geomatics 
Engineering of the University of New Brunswick, and the Survey Department of 
Rijkswaterstaat. This support is gratefully acknowledged. 

The organization of the International School began in early 1994, with the 
knowledgeable help of Frans Schrrder of the Netherlands Geodetic Commission. 
Throughout the year of preparation and during the school, Frans SchrOder looked 
after student registration and organized facilities, and thereby ensured the success of 
the school. 

The International School GPS for Geodesy would not have been possible 
without a team of dedicated lecturers of international reputation with expertise in 
GPS geodesy. The lecturers were willing to agree beforehand to a shared 
responsibility for parts of the school presentation and the preparation of the 
corresponding lecture notes. All authors tried to adhere to a common notation 
throughout the chapters of the lecture notes, and avoided unnecessary repetitions. 

The typescript of these lecture notes was edited by Wendy Wells of the 
Department of Geodesy and Geomatics Engineering of the University of New 
Brunswick. She received expert help on Chapter 8 from Jasmine van der Bijl of the 
Department of Geodetic Engineering, Delft University of Technology. Ms Wells 
succeeded in producing a coherently formatted manuscript from bits and pieces 
created with three different word processors on two different computer platforms. 

January 1996 
Fredericton, Canada 
Delft, The Netherlands 

Alfred Kleusberg 
Peter Teunissen 



T A B L E  O F  C O N T E N T S  

Introduct ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 Reference  Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Yehuda Bock 

2 GPS  S a t e l l i t e  O r b i t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Gerhard Beutler 

37 

3 Propaga t ion  of the GPS Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Richard B. Langley 

103 

4 GPS Receivers and the Observables . . . . . . . . . . . . . . . . . . . . . . . . . .  
Richard B. Langley 

141 

5 GPS Observat ion Equations and Positioning Concepts . . . . .  
Peter J. G. Teunissen and Alfred Kleusberg 

175 

6 Single-Site GPS Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1 9  
Clyde C. Goad 

7 Short Distance GPS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 3 9  
Clyde C. Goad 

8 GPS Car r ie r  Phase Ambiguity Fixing Concepts . . . . . . . . . . . . .  
Peter J. G. Teunissen 

263 

9 Medium Distance GPS Measurements  . . . . . . . . . . . . . . . . . . . . . . . .  337  
Yehuda Bock 

10 The GPS as a Tool in Global Geodynamics  . . . . . . . . . . . . . . . . . .  3 7 9  
Gerhard Beutler 



I N T R O D U C T I O N  

The topic of these lecture notes of the International School GPS for Geodesy is 
the description of the use of the Global Positioning System (GPS) measurements 
for geodetic applications. The term geodetic applications is used in the sense that it 
covers the determination of precise coordinates for positions in a well defined 
reference system, and the monitoring of temporal changes of these coordinates. 

These lecture notes are organized in ten chapters, each of which begins with the 
full address of the author(s), and a section introducing the theme of the chapter. 
After the main body of text, each chapter is concluded by a summary section and a 
list of references. The individual chapters have been written independently, and 
they can also be read and studied independently. Their sequence, however, has 
been arranged to provide a logical and coherent coverage of the topic of GPS for  
G e o d e s y .  

Chapter 1 introduces global reference systems for Cartesian and ellipsoidal 
coordinates and local reference frames, and their basic relation to the GPS 
measurements. Transformations between and motions of the Celestial and 
Terrestrial Reference Frames are described. Time systems are introduced to 
provide an independent variable for the description of motion and earth 
deformation. The concepts and realizations of Conventional Reference Systems are 
explained. 

The topic of Chapter 2 is the description of the computation of GPS satellite 
orbits, and the dissemination of GPS satellite ephemerides. Starting from the 
equations of motion for satellites, first the Keplerian orbit is introduced and then 
generalized to include the perturbations resulting from non-central forces. Various 
sources of orbital information to GPS end users are described, and the chapter is 
concluded with a brief discussion of the effect of unmodelled orbit errors on 
positions determined from GPS measurements. 

Chapter 3 introduces the GPS signal, its components, and its generation in the 
satellites' circuitry. The aspects of signal propagation from the satellite to the GPS 
receiver are described, including the effects of refraction, multipath, and scattering. 
Chapter 4 begins with an introduction to the basic building blocks of a GPS 
receiver, and shows how pseudoranges and carrier phases are being measured in 
the receiver circuits. The chapter is concluded with a discussion of the 
measurement errors in these two observables. 

Chapter 5 starts from the complete non-linear observation equations for 
pseudoranges and carrier phases and introduces a number of different linear 
combinations, in order to eliminate, reduce, and/or emphasize parts of the 
equations. Following this exploratory analysis, the observation equations are 
linearized with respect to the parameters to be determined. Basic properties of the 
linearized equations in the context of single point positioning and relative 
positioning are discussed, with particular emphasis on parameter estimability. 

Chapter 6 begins with a description of the pseudorange observation in terms of 
geocentric coordinates, and proceeds to discuss single site solutions through 
linearization of the observation equations. Also included is a presentation of the 



direct solution of pseudorange equations without the requirement of a priori 
information. The concept of dilution of precision is introduced. The chapter 
concludes with a description of carrier phase and pseudorange combinations for the 
reduction of pseudorange noise. 

Chapters 7 through 10 present details on the use of GPS measurements for the 
spectrum of geodetic applications. There might be a number of ways of structuring 
these applications; we have chosen to use the network scale as the criterion. 
Accordingly we begin with a chapter on short distance GPS models. In the context 
of these Lecture Notes, "short" means that atmospheric and orbital errors do not 
significantly affect the accuracy of the positioning result, and do not have to be 
included explicitly. 

The determination of short baselines and small scale networks with GPS typically 
exploits the integer nature of carrier phase ambiguities, and thereby reduces the 
required observation time considerably. The process of finding and validating the 
correct integer values, often referred to as "ambiguity fixing", is not a trivial one. 
Chapter 8 outlines various strategies to search for and identify integer carrier phase 
ambiguities in the context of least squares estimation algorithms. 

In order to retain the full accuracy capability of GPS in networks of larger scale 
(typically between 50 km and 1000 km), the atmospheric refraction effects and 
inaccuracies of the GPS satellite orbits need to be explicitly included. The 
corresponding mathematical models for the GPS measurements and procedures for 
the estimation of geodetic parameters are outlined in Chapter 9. 

Finally, Chapter 10 discusses the Global Positioning System for geodynamics 
applications on a global scale. While primarily discussing the estimation of various 
parameters of interest, this chapter also closes the circle by connecting to Chapter 1. 
The determination and maintenance of global reference systems with GPS is 
intrinsically connected to the applications discussed in this last chapter of the lecture 
notes. 



1. REFERENCE SYSTEMS 

Yehuda Bock 
Institute of Geophysics and Planetary Physics, Scripps Institution of 
Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, 
California, 92093-0225 U.S.A. 

1.1 INTRODUCTION 

Of fundamental importance in space geodetic positioning is the precise definition 
and realization of terrestrial and inertial reference systems, It is appropriate then 
that this topic be covered in the first chapter of these notes on the Global 
Positioning System (GPS). 

As its name implies, the purpose of GPS is to provide a global absolute 
positioning capability with respect to a consistent terrestrial reference frame. The 
original intention was instantaneous and global, three-dimensional position with 1-2 
meter precision, for preferred users. Ordinary users would be allowed 1-2 orders 
of magnitude less precision. Geodesists realized, at least 15 years ago, that GPS 
could be used in a differential mode, much like very long baseline interferometry 
(VLBI), to obtain much more accurate relative positions. Relative positioning with 
1 mm precision was demonstrated in the early 1980s using single-frequency 
geodetic receivers over short distances (100's of meters). Precision decreases, 
however, in approximate proportion to intersite distance, about 1-2x 10 .6 (1-2 ppm) 
circa 1983, primarily due to satellite orbital errors and ionospheric refraction. 
Between the years 1983 to 1992, geodesists have been able to attain about an order 
of magnitude improvement in horizontal precision about every three years (Table 
1.1). Vertical precision has also improved and, as a rule of thumb, has always 
been about 3-4 times less precise than the horizontal, although with less dependence 
on baseline length at distances greater than several tens of kilometers. 

T a b l e  1.1. I m p r o v e m e n t s  in horizontal  precis ion and  l imi t ing error sources .  

Y e a r  b tppm) 
- 1983 1 
~ 1986 0.1 
~ 1989 0.01 
~ 1992 0.001 

Primary Limiting Error Sources 
ionospheric refraction, orbital accuracy 
orbital accuracy 
orbital accuracy 
reference sys tems ,  station specific errors 

o a ~ t a  (ram2) = (0.1 - 1.0 mm) 2 + [(2 • b) sli0cm)]2 

sij is the dis tance be tween si tes i and j 

One part per billion precision corresponds to 1 cm over a 10,000 km line. 
Therefore, GPS can be considered today a global geodetic positioning system 
(GGPS) providing nearly instantaneous three-dimensional position at the 1-2 cm 
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level for all users, with respect to a consistent global terrestrial reference system. 
These dramatic improvements could not have been achieved without full 
implementation of the GPS satellite constellation, expansion and improved global 
distribution of the worldwide GPS tracking network, determination of increasingly 
accurate positions and velocities for the tracking stations (and in turn improved 
satellite orbit determination), and advancements in geodetic GPS receiver 
technology. 

1 . 1 . 1  Basic GPS Model 

The geometric term of the model for GPS carder phase can be expressed in simple 
terms as a function of the (scalar) range p~ 

fik(t) = ~[~( t , t - -  tik(t))] = ~ I r k ( t - t i k ( t ) )  - r i ( t ) l  (I.I) 

where x~(t) is the travel time of the radio signal, r i is the geocentric vector for 
station i at reception time t, r k is the geocentric vector for satellite k at satellite 
transmission time (t - x~(t)), f0 is the nominal signal frequency and c is the speed 
of light. The station position vector is given in a geocentric Cartesian reference 
frame as 

[Xi(t)] 
ri(t) = / Yi(t) / 

[ Zi(t) ] 
(1.2) 

The equations of motion of a satellite can be expressed by six first-order differential 
equations, three for position and three for velocity, 

d ( r  k) = t k (1.3) 

d~t(i -k) = ~ rk + ~kerturbing (1.4) 

where G is the universal constant of attraction and M is the mass of the Earth. The 
fin-st term on the right-hand side of (1.4) contains the spherical part of the Earth's 
gravitational field. The second term represents the perturbing accelerations acting 
on the satellite (e.g., non-spherical part of the Earth's gravity field, luni-solar 
effects and solar radiation pressure). 

In order to difference the station vector and satellite vector in (1.1), both must be 
expressed in the same reference frame. The station positions are conveniently 
represented in a terrestrial (Earth-fixed) reference frame, one that is rotating in some 
well defined way with the Earth. Solving the equations of motion of the GPS 
satellites (i.e., orbit determination) requires a geocentric celestial (inertial) reference 
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frame. In order to compute (1.1), either the station position vector needs to be 
transformed into a celestial frame or the satellite position vector needs to be 
transformed into a terrestrial reference frame. Furthermore, fundamental concepts 
of time epoch, time interval and frequency must be rigorously described and 
fundamental constants (e.g., speed of light and the GM value 1) must be defined. 

I .  1 .2 The Fundamental Polyhedron 

As we shall see in this chapter, the orientation of the Earth in space is a complicated 
function of time which can be represented to first order as a combination of time 
varying rotation, polar motion, a nutation and a precession. The realization of 
celestial and terrestrial reference systems are quite involved because of  the 
complexity of the Earth's composition, its interaction with the atmosphere, and its 
mutual gravitational attraction with the Moon and the Sun. The definition of the 
terrestrial reference system is complicated by geophysical processes that make the 
Earth's crust deform at global, regional and local scales, at a magnitude greater than 
the precision of present-day space geodetic measurements. The definition of the 
celestial reference system is complicated by the fact that stellar objects have proper 
motions and are not truly point sources. 

The realization of a reference system is by means of a reference frame, i.e., by a 
catalogue of positions which implicitly define a spatial coordinate system. The 
celestial reference system is realized by a catalogue of celestial coordinates of 
extragalactic radio sources determined from astrometric observations (VLBI). 
These coordinates define at an arbitrary fundamental epoch a celestial reference 
frame (CRF). The terrestrial reference system is realized through a catalogue of 
Cartesian station positions at an arbitrary fundamental epoch, to, i.e., 

[r(t)] o = [X(t), Y(t), X(t)] 0 (1.5) 

determined from a combination of space geodetic observations, including satellite 
laser ranging (SLR), VLBI, and GPS. These positions define a fundamental 
polyhedron. Implicit in the coordinates of its vertices are conventional spatial 
Cartesian axes that define the terrestrial reference frame (TRF). Maintaining the 
reference frame means relating the rotated, translated and deformed polyhedron at a 
later epoch to the fundamental polyhedron. Those motions that are common to all 
stations (i.e., rotations and translations) define the relationship between the 
polyhedron and the celestial system. The deformations of the polyhedron, by 
def'mition those motions that do not contain any rotations or translations, relate the 
polyhedron to the terrestrial system. Earth deformation is accommodated, at least to 
fn'st order, by supplementing the station catalogue with station velocities derived 
from global plate models and/or long-term geodetic measurements. The reference 
frame does not change (unless a new one is defined, of course). It is fixed to the 
station positions (the polyhedron) at to and consists of a set of spatial Cartesian axes 

IIERS [1992] adopted values: c=299792458 m/s and GM - 3986004.418 x 108 m3/s 2. 
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with a particular origin and orientation. It is the reference system that is changing 
and moving with the polyhedron. 

The connection between the fundamental polyhedron and the celestial system is 
given by earth orientation parameters (EOP). The connection between the 
fundamental polyhedron and the terrestrial system is given by deformation of the 
station positions. Therefore, the terrestrial system and its frame coincide, in 
principle, only at the initial epoch. Furthermore, the terrestrial system is not only a 
set of changing positions. Its definition includes descriptions of anything that 
influence these coordinates (e.g., the initial station positions (1.5), plate motion 
models, gravity models, fundamental constants, precession models, nutation 
models, etc.). The purpose of the terrestrial system is to make the reference frame 
accessible to the user who can then determine time-tagged positions on the Earth's 
surface. 

Positioning, therefore, is intricately linked to a reference system. The reference 
system is realized by the reference frame which is in turn defined by station 
positions. Thus, space geodetic positioning is a bootstrapping process of 
incremental improvements in station positions, physical models, reference frames, 
and reference systems. Any factor that affects station positions and satellite 
positions affects the reference frame, and vice  ve r sa .  Any change in adopted 
physical models affects the reference system and therefore the reference frame. 

Today, the TRF and CRF are maintained through international cooperation under 
the umbrella of the International Earth Rotation Service (IERS). The IERS is also 
responsible for maintaining continuity with earlier data collected by optical 
instruments. Global GPS activities are coordinated by the International GPS 
Service for Geodynamics (IGS), in collaboration with the IERS. These 
international efforts are under the umbrella of the International Association of 
Geodesy (IAG) with important links to the International Astronomical Union 
(IAU). 

1.2 TRANSFORMATION BETWEEN THE CRF AND TRF 

It is useful to consider the transformation of the position of a stellar object in the 
CRF into TRF coordinates as two rotations such that 

rTR F = T3x 3 U3x3 rCRF (1.6) 

where U includes the rotations of the Earth caused by external torques, and T the 
rotations to which the Earth would be subjected to if all external torques would be 
removed. This formulation is approximately realized in practice by the welt known 
transformation consisting of 9 rotation matrices 
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rTR F = R2(-Xp) RI(-y P) R3(GAST) * 

�9 R I (-8-As R3(-A V) R 1 (e) R3(-ZA)R2(0A)R3(-~ A) rCRF 

= S N P rCR F 

(1.7) 

whose elements are described in the sections below such that 

S = R2(-x P )R l ( -y  P) R3(GAST) =_ T (1.8) 

[N][P] = [RI(-e-Ae) R3(-A~/) Rl(e)][ R3(-ZA)R2(0A)R3(-~A)] ~ U 
(1.9) 

Ri represents a single right-handed rotation about the i axis with a positive rotation 
being counterclockwise when looking toward the origin from the positive axis. The 
elements of Ri may be computed [Kaula, 1966] by 

j = i (modulo 3) + 1; k =j  (modulo 3) + 1 

rii = 1, rij = rji = rik = rki = 0 

rjj = rkk = cos (iX) ; rjk = sin (ix) ; rkj = -sin (ix) 

For example for i=3, j= 1, and k=2 so that 

[ c o s ( ~ ) s i n ( c t ) ! ]  
R3((~) = | -  sin (ct) cos (tx) 

t 0 0 

R i is an orthogonal matrix with the properties 

R~ -1 : R  T ; R i R T = R T R i : I  

where I is the (3x3) identity matrix. 

The rotation matrix S (1.8), including the transformation for polar motion and 
Earth rotation, approximates T, and the matrix product NP (1.9) of the rotation 
matrices for nutation (N) and precession (P) approximates U. The tidal response 
of the Earth prevents the separation (1.6) from being perfectly realized (see section 
1.6.2); by def'mition, S also contains the tidally induced nearly-diurnal forced terms 
of polar motion and free nutation terms, or equivalently, NP does not contain the 
tidally induced free nutation terms. 

The transformation (1.7), then, describes the rotation of position from the CRF to 
the TRF. We see now that (1.1) should be more properly expressed as 
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~k(t) : -~[pik(t,t - ,qk(t))] : -~ ISNprk(t- "c~(t))- ri(t) [Terrestria 1 

f0 I rk(t _ X~(t)) - pTNTSTri(t)IIne~tiat 
-- C 

(1.10) 

The elements of this transformation include the EOP, and the conventional 
precession and nutation models. 

It is only by convention that the net celestial motion of the Earth's pole of rotation 
is split into precession and nutation. It could just as well have been defined by 
three rotations (rather than six rotations). Although more complicated, the six 
rotation representation is still in use because it is geometrically and physically 
intuitive, it allows continuity with earlier astronomic measurements and it is 
convenient for intercomparison of space geodetic techniques. For example, 
elements of the current adopted expressions for P and N are still being updated 
according to improved Earth models based on discrepancies detected by the analysis 
of space geodetic measurements. The EOP elements of S include the unpredictable 
part of the Earth's rotation and must be determined empirically from space geodetic 
observations. 

1 .3  TIME SYSTEMS 

Space geodesy essentially measures travel times of extraterrestrial signals. Precise 
definition of time is therefore fundamental. Two aspects of time are required, the 
epoch and the interval. The epoch defines the moment of occurrence and the 
interval is the time elapsed between two epochs measured in units of some time 
scale. Two time systems are in use today, atomic time and dynamical time. GPS 
receivers tag phase and pseudorange measurements in atomic time (UTC or GPS 
time) which is the basis of modem civilian timekeeping. The equations of motion 
of the GPS satellites are expressed in dynamical time. 

Prior to advent of atomic time, the civilian time system was based on the Earth's 
diurnal rotation and was termed universal (or sidereal) time. This is no longer the 
case although atomic time (UTC) is made to keep rough track of the Sun's motion 
for civil convenience. Nevertheless, it is necessary to retain the terminology of 
sidereal and universal "time" since the primary rotation angle between the CRF and 
the TRF is given as a sidereal angle (the Greenwich Apparent Sidereal Time m 
GAST). In addition, variations in the Earth's rotation are expressed as differences 
between universal time (UT1) and atomic time (UTC). 

The interrelationships between atomic (TAI, UTC) and dynamic (TDT) times and 
the sidereal (GMST, GAST) and universal (UT1) angles can be visualized in this 
expression for GAST, 
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GAST = GMST 0 + d(GMST) [TDT - (TDT - TAI) 
dt 

- (TAI - UTC) - (UTC - UT1)] + Eq. E 

where the individual terms are discussed below. 

(1.Ii) 

1 . 3 . 1  Atomic Time 

Atomic time is the basis of a uniform time scale on the Earth and is kept by atomic 
clocks. The fundamental time scale is International Atomic Time (Temps Atomique 
International - -  TAI) based on atomic clocks operated by various national agencies. 
It is kept by the International Earth Rotation Service (IERS) and the Bureau 
International des Poids et Mesures (BIPM) in Paris who are responsible for the 
dissemination of standard time and EOP. TAI is a continuous time scale, related by 
definition to TDT by 

TDT = TAI + 32.184 sec (1.12) 

Its point of origin was establisbed to agree with universal time 2 (see below) at 
midnight on 1 January, 1958. 

The fundamental interval unit of TAI is one SI second. The SI second was 
defined at the 13th general conference of the International Committee of Weights 
and Measures in 1967, as the "duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine levels of the ground state 
of the cesium 133 atom." The SI day is defined as 86,400 seconds and the Julian 
century as 36,525 days. The time epoch denoted by the Julian date (JD) is 
expressed by a certain number of days and fraction of a day after a fundamental 
epoch sufficiently in the past to precede the historical record, chosen to be at 12 h 
UT on January 1, 4713 BCE. The Julian day number denotes a day in this 
continuous count, or the length of time that has elapsed at 12 h UT on the day 
designated since this epoch. The JD of the standard epoch of UT is called J2000.0 
where 

J2000.0 = JD 2,451,545.0 = 2000 January 1.d5 UT 3 (1.13) 

All time arguments denoted by T are measured in Julian centuries relative to the 
epoch J2000.0 such that 

T = (JD - 2451545.0) / 36525 (1.14) 

2At this date, universal and sidereal times ceased effectively to function as time systems. 
3The astronomic year commences at O h UT on December 31 of the previous year so that 2000 
January ld.5 UT = 2000 January 1 12 h LIT. JD which is a large number is often replaced by the 
Modified Julian Date (MID) where MJD = JD - 2,400,000.5, so that J2000.0 = MJD 51,444.5. 
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Because TAI is a continuous time scale, it does not maintain synchronization with 
the solar day (universal time - see below) since the Earth's rotation rate is slowing 
by an average of about 1 second per year. This problem is solved by defining 
Universal Coordinated Time (UTC) which runs at the same rate as TAI but is 
incremented by leap seconds periodically 4. 

The time signals broadcast by the GPS satellites are synchronized with the atomic 
clock at the GPS Master Control Station in Colorado. Global Positioning System 
Time (GPST) was set to O h UTC on 6 January 1980 but is not incremented by UTC 
leap seconds. Therefore, there is an integer-second offset of 19 seconds between 
GPST and TAI such that 

GPST + 19 see = TAI (1.15) 

At the time of this writing (April 1995), there have been a total of 10 leap seconds 
since 6 January 1980 so that currently, GPST = UTC + 10 sec. 

1 . 3 . 2  D y n a m i c a l  T i m e  

Dynamical time is the independent variable in the equations of motion of bodies in a 
gravitational field, according to the theory of General Relativity. The most nearly 
inertial reference frame to which we have access through General Relativity is 
located at the solar system barycenter (center of mass). Dynamical time measured 
in this system is called Barycentric Dynamical Time (Temps Dynamique 
Barycentrique - -  TDB). An earth based clock will exhibit periodic variations as 
large as 1.6 milliseconds with respect to TDB due to the motion of the Earth in the 
Sun's gravitational field. TDB is important in VLBI where Earth observatories 
record extragalactic radio signals. For describing the equations of  motion of an 
Earth satellite, it is sufficient to use Terrestrial Dynamical Time (Temps Dynamique 
Terrestre - -  TDT) which represents a uniform time scale for motion in the Earth's 
gravity field. It has the same rate (by definition) as that of  an atomic clock on 
Earth. 

According to the latest conventions of the IAU [Kaplan, 1981 ] 

TDB = TDT + 0. s 001658 sin (g + 0.0167 sin g) (1.16) 

where 

g = (3570.528 + 359990.050 T) (1-~00) (1.17) 

where T is given by (1.14) in Julian centuries of TDB. 

4Leap seconds are introduced by the IERS so that UTC does not vary from UT1 (universal time) 
by more than 0.9s. FLrst preference is given to the end of June and December, and second 
preference to the end of March and September. DUTI is the difference UTI-UTC broadcast with 
time signals to a precision of i-0.1 s. 
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1 . 3 . 3  Sidereal  and Universal  Time 

Prior to the advent of atomic clocks, the Earth's diurnal rotation was used to 
measure time. Two interchangeable time systems were employed, sidereal and 
universal time (not to be confused with UTC which is atomic time). Their practical 
importance today is not as time systems (they are too irregular compared to atomic 
time) but as an angular measurement used in the transformation between the 
celestial and terrestrial reference frames. 

The local hour angle (the angle between the observer's local meridian and the 
point on the celestial sphere) of the true vernal equinox (corrected for precession 
and nutation) is called the apparent sidereal time (AST). When the hour angle is 
referred to the Greenwich mean astronomic meridian, it is called Greenwich 
apparent sidereal time (GAST). Similarly, MST and GMST refer to the mean 
vernal equinox (corrected for precession). The equation of the equinoxes, due to 
nutation, relates AST and MST 

Eq. E = GAST - GMST = AST - MST = A~cos (E + A8) (1.18) 

which varies with short periods with a maximum value of about 1 second of arc. 
See section 1.4.1 for definition of the nutation terms on the right side of (1.18). 

Since the apparent revolution of the Sun about the Earth is non-uniform (this 
follows from Kepler's second law), a fictitious mean sun is defined which moves 
along the equator with uniform velocity. The hour angle of this fictitious sun is 
called universal time (UT). UTI is universal time corrected for polar motion. It 
represents the true angular rotation of the Earth and is therefore useful as an angular 
measurement though no longer as a time system 5. 

The conversion between sidereal and universal time is rigorously defined in terms 
of the IAU (1976) system of constants [Kaplan. 1981; Aoki et al., 1982] 

GMST = UTI + 6 h 41 m 50s.54841 + 8640184s.812866 T u 
- 6  3 +0s.093104Tu 2 -6S.2x 10 T u 

(1.19) 

in fractions of a Julian century 

Tu (Julian UT 1 date - 2451545.0) 
= 36525 

(1.20) 

The first three terms in (1.19) are conventional and come from the historical 
relationship 

UT = h m + 12 h = GMST - o~ m + 12 h (1.21) 

5The instability of TAI is about six orders of magnitude smaller than that of UTI. 
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where h m and a m are the hour angle and right ascension of the fictitious 
sun, respectively. The last term is an empirical one to account for irregular 
variations in the Earth's rotation. The relationship between the universal and 
sidereal time interval is given by 6 

d(GMST) 
dt = 1.002737909350795 + 5.9006 x I0-11Tu _ 5.9 x 10-15 T 2 ( 1.22) 

such that 

d(GMST) UT1 (1.23) GMST = GMST o + dt 

In order to maintain a uniform civilian time system, national and international time 
services compute and distribute TAI-UTC (leap seconds) where UTC is made to 
keep rough track of the Sun's motion for civil convenience Thus, UT1-UTC 
establishes the relationship between atomic time and the universal (sidereal) angle, 
and describes the irregular variations of the Earth's rotation. These variations are 
best determined by analysis of VLBI data which provides long-term stability and 
the connection between the celestial and terrestrial reference systems, although GPS 
could supplement VLBI by providing rapid service values. 

1 .4  M O T I O N  OF T H E  EARTH'S  ROTATION AXIS 

The Earth's rotation axis is not fixed with respect to inertial space, nor is it fixed 
with respect to its figure. As the positions of the Sun and Moon change relative to 
the Earth, the gradients of their gravitational forces, the tidal forces, change on the 
Earth. These can be predicted with high accuracy since the orbits and masses of 
these bodies are well known. The main motion of the rotation axis in inertial space 
is a precession primarily due to luni-solar attraction on the Earth's equatorial bulge. 
In addition, there are small motions of the rotation axis call nutation. The motion of 
the Earth's rotation axis with respect to its crust (in the terrestrial system) is called 
polar motion. The nutation and polar motion are due to both external torques 
(forced motion) and free motion. The nutation represents primarily the forced 
response of the Earth; the polar motion represents the forced and free response in 
almost equal parts, Currently, only the forced response of the nutation can be well 
predicted from available geophysical and orbital models, supplemented by space 
geodetic measurements (VLBI). The free response of nutation and polar motion 
can only be determined by space geodesy (by VLBI and increasingly by GPS). 
Knowledge of the motions of the Earth's rotation axis are essential for GPS 
positioning and are described in detail in this section. 

6This relationship shows why the GPS satellites (with orbital periods of 12 hours) appear nearly 4 
minutes earlier each day. 
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1 .4 .1  Motion in Celestial System 

The pole of rotation of the Earth is not fixed in space but rotates about the pole of 
the ecliptic. This motion is a composite of two components, precession and 
nutation (e.g., Mueller, [1971]) and is primarily due to the torques exerted by the 
gravitational fields of the Moon and Sun on the Earth's equatorial bulge, tending to 
turn the equatorial plane into the plane of the ecliptic. Luni-solar precession is the 
slow circular motion of the celestial pole with a period of 25,800 years, and an 
amplitude equal to the obliquity of the ecliptic, about 23~ resulting in a westerly 
motion of the equinox on the equator of about 50".3 per year. Planetary precession 
consists of a slow (0~ per year) rotation of the ecliptic about a slowly moving axis 
of rotation resulting in an easterly motion of the equinox by about 12".5 per century 
and a decrease in the obliquity of the ecliptic by about 47" per century. The 
combined effect of luni-solar and planetary precession is termed general precession 
or just precession. Nutation is the relatively short periodic motion of the pole of 
rotation, superimposed on the precession, with oscillations of 1 day to 18.6 years 
(the main period), and a maximum amplitude of 9".2. 

By convention, the celestial reference frame is defined by the 1976 IAU 
conventions (i.e., the precession model - see below) as a geocentric, equatorial 
frame with the mean equator and equinox of epoch J2000. This definition is 
supplemented by the 1980 nutation series which defines the transformation from the 
mean equinox and equator to the true or instantaneous equinox and equator. In 
practice, the best approximation to a truly inertial reference frame is a reference 
frame defined kinematically by the celestial coordinates of a number of extragalactic 
radio sources observed by VLBI, and assumed to have no net proper motion. Their 
mean coordinates (right ascensions and declinations) at epoch J2000 define the 
Celestial Reference Frame (CRF). GPS satellite computations are performed with 
respect to the CRF by adopting the models for precession and nutation. See section 
1.6 for more details. 

Precession Transformation. The transformation of stellar coordinates from 
the mean equator and equinox of date at epoch ti to the mean equator and equinox at 
another epoch tj is performed by the precession matrix composed of three 
successive rotations 

P = R3(-ZA)R2(0A)R3(-~A) (1.24) 

The precessional elements are defined by the IAU (1976) system of constants as 

~A = (2306".2181 + 1".39656T u - 0".000139T2)t 

+ (0".30188 - 0".000344Tu)t 2 + 0".017998t 3 
(1.25) 

z A ----(2306".2181 + 1".39656T u - 0".000139T2)t 

+ (1".09468 -0".000066Tu)t 2 + 0".018203t 3 
(1.26) 
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0 A = (2004".3109 - 0".85330T u - 0".000217TuZ)t 

- (0".42665 - 0".000217Tu)t 2 - 0".041833t 3 
(1.27) 

where again 

T u = (JD -2451545.0)/36525 

and t is the interval in Julian centuries of TDB between epoch tj and ti. 

N u t a t i o n  T r a n s f o r m a t i o n .  The transformation of stellar positions at some 
epoch from the mean to the true equator and equinox of date is performed by 
multiplying the position vector by the nutation matrix composed of three successive 
rotations 

N = R l ( - e -  A~) R3(-A V) Rl(e) (1.28) 

where e is the mean obliquity of date, z~ is the nutation in obliquity and A V is 
the nutation in longitude. The 1980 IAU nutation model is used to compute the 
values for A V and z~ .  It is based on the nutation series derived from an Earth 
model with a liquid core and an elastic mantle developed by Wahr [1979]. The 
mean obliquity is given by 

E = (84381".448 - 46".8150T u + 0".00059T 2 + 0".001813T 3) 

+ ( - 46".8150 - 0".00177T u + 0".005439T2)t 

+ ( - 0" . 00059  + 0".005439T )t 2 + 0".0018It 3 

(1.29) 

The nutation in longitude and in obliquity can be represented by a series 
expansion 

N 

Aq/ = j~l= [(A0j + AIjT) sin (.= kjio~i(T))] (1.30) 

~ = ~ + B l j T ) c o s ( i ~  j = 1 [(B0j kji~ (1.31) 

of the sines and cosines of linear combinations of five fundamental arguments of 
the motions of the Sun and Moon [Kaplan, 1981]: 
(1) the mean anomaly of the Moon 

a I = 1 =485866".733 + (1325 r + 715922".633)T 

+31".310T 2 + 0".064T 3 
(1.32) 
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(2) the mean anomaly of the Sun 

=1 '  t~ 2 = 1287009".804 + (99 r + 1292581".224)T 

_ 0,,.577T 2 _ 0,,.012T 3 
(1.33) 

(3) the mean argument of latitude of the Moon 

~3 = F = 335778".877 + (1342 r + 295263".137)T 

- 13".257 T 2 + 0".011T 3 
(1.34) 

(4) the mean elongation of the Moon from the Sun 

~4 = D = 1072261".307 + (1236 r + 1105601".328)T 

- 6".891 T 2 + 0".019 T 3 
(1.35) 

(5) the mean longitude of the ascending lunar node 

ct 5 = ~ = 450160".280 - (5 r + 482890".539)T 

+ 7".455 T 2 + 0".008 T 3 
(1.36) 

where 1 r = 360 ~ = 1296000". The coefficients in (1.30-1.31) are given by the 
standard 1980 IAU series (e.g., Sovers and Jacobs, [1994], Table A.I). 

The 1980 IAU tabular values for A~g and Ae have been improved by several 
investigators, including additional terms (free core nutations) and out-of-phase 
nutations: 
(1) Zhu and Groten [1989] and Zhu et al. [1990] have refined the IAU 1980 

model by reexamining the underlying Earth model and by incorporating 
experimental results (see Sovers and Jacobs, [1994], Tables A.II-IV); 

(2) Herring [1991] has extended the work of Zhu et al. and used geophysical 
parameters from Mathews et al. [1991] to generate the ZMOA 1990-2 
nutation series (ZMOA is an acronym for Zhu, Mathews, Oceans and 
Anelasticity) (see Sovers and Jacobs, [1994], Table A.V-VID. 

1 . 4 . 2  M o t i o n  in Terres tr ia l  S y s t e m  

If  all external torques on the Earth were eliminated, its rotation axis would still vary 
with respect to its figure primarily due to its elastic properties and to exchange of 
angular momentum between the solid Earth, the oceans and the atmosphere. Polar 
motion is the rotation of the true celestial pole as defined by the precession and 
nutation models presented in section 1.4.1 with respect to the pole (Z-axis) of a 
conventionally selected terrestrial reference frame. Its free component (all external 
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torques eliminated) has a somewhat counterclockwise circular motion with a main 
period of about 430 days (the Chandler period) and an amplitude of 3-6 m. Its 
forced component (due to tidal forces) is about an order of magnitude smaller, with 
nearly diurnal periods (hence, termed diurnal polar motion), whereas its forced 
annual component due to atmospheric excitation is nearly as large as the Chandler 
motion. 

Polar motion is not adequately determined by the most sophisticated Earth models 
available today so as to have a negligible effect on space geodetic positioning. 
Therefore polar motion is determined empirically, i.e., by space geodetic 
measurements. Its observed accuracy today is 0.3-0.5 milliseconds of arc which is 
equivalent to 1.0- t.5 cm on the Earth's surface. Polar motion values are tabulated 
at one day intervals by the IERS based on VLBI, SLR and GPS observations. The 
latter is playing an increasingly important role in this determination because of  the 
expansion of the global GPS tracking network and the implementation of the full 
GPS satellite constellation. 

Ea r th  Or ienta t ion  Transformat ion.  The Earth orientation transformation 
was introduced in section 1.2 as a sequence of three rotations, one for Earth 
rotation and two for polar motion 

S = R2(-x P) Rl(-yp) R3(GAST) (1.8) 

Earth Rotation Transformation. The transformation from the true vernal equinox 
of date to the zero meridian (X-axis) of the TRF, the 1903.0 Greenwich meridian of 
zero longitude 7, is given by a rotation about the instantaneous (true) rotation axis 
(actually the CEP axis m see section 1.62) such that 

cos0  sin0 ! ]  

R3(0) = - s i n 0  cos0 ;0  =GAST 

0 0 

(1.37) 

where GAST is given by 

d(GMST) [UTC - (UTC - UT1)] + Eq. E GAST = GMST 0 + dt (1.38) 

such that GMST is given by (1.19), the time derivative of GMST is given by 
(1,22), UTC-UT1 is interpolated from IERS tables and Eq. E is given by (1.18). 

Polar Motion Transformation. The polar motion rotations complete the 
transformation between the CRF and TRF. Polar motion is defined in a left-handed 
sense by a pair of angles (xp, yp). The first is the angle between the mean direction 

7Referred to today as the IERS Reference Meridian (IRM). 
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of the pole during the period 1900.0-1906.0 (the mean pole s of 1903.0 - -  see 
section 1.6.3) and the true rotation axis. It is defined positive in the direction of the 
X-axis of the TRF. The second is the angle positive in the direction of the 270 ~ 
meridian (the negative Y-axis). Recognizing that these angles are small, the polar 
motion transformation can be approximated by 

'0 0 xp 1 R2( - Xp) Rl ( -y  P) = 1 -Yo 
1 -Xp yp 

(1.39) 

where the two angles are interpolated from IERS tables at the epoch of observation. 

Tidal  Variations in Polar Motion and Earth Rotation.  Tidal forces 
effect mass redistributions in the solid Earth, i.e., changes in the Earth's moment of 
inertia tensor. This causes changes in the Earth's rotation vector in order to 
conserve a constant angular momentum. 

Solid Earth Tidal Effects on UT1. Yoder et al. [1981] computed the effects of 
solid Earth tides and some ocean effects on UT1, represented by 

41 5 

AUT1 = i=l ~ [Ai sin(j--~l kij~ (1.40) 

and including all terms with periods from 5 to 35 days. The values and periods for 
Ai and kij (i=1,41; j---l,5) are tabulated by Sovers and Jacobs [1994, Table VI] and 
o~j for (j= 1,5) are the fundamental arguments for the nutation series (1.32)-(1.36). 

Ocean Tidal Effects. The dominant effects on polar motion and UT1 are diurnal, 
semidiurnal, fortnightly, monthly and semiannually. The ocean tidal effects can be 
written compactly as 

~I ~ ~ kij~j+ni(O+~)]} (1.41) A(~I = i= {All cos[j = 1 kijO~j + hi(0 + •)] + Bit sin [j = 1 

for I = 1,2,3 (polar motion and UT1 respectively) and 0 = GMST (1.19). The 
cosine and sine amplitudes A and B can be calculated from tidal models [Brosche et 
al., 1989; 1991; Gross, 1993] or from space geodetic data [Herring and Dong, 
1991; Herring, 1992; Sovers et al., 1993]. The argument coefficients (for i=l,  8) 
are tabulated for polar motion and UT1 by Sovers and Jacobs [1994; Tables VII 
and VIII]. 

8Referred to today as the IERS Reference Pole (IRF). 
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Estimation of  Earth Orientation Parameters (EOP). In GPS analysis 
earth orientation parameters (Chapter 10) are typically estimated as corrections to 
tabulated values of  UTC-UT1, Xp and yp ,  and their time derivatives. For 
example, we can model changes in UT1 by 

(UTC - UT1)to 

= (UTC - UT1)tab(to ) + A (UTC - UT1)to + 
d (UTC - UT 1 ) 

dt ( t - t  0 ) 
(1.42) 

where the time derivative of UTC-UT 1 is often expressed as changes in length of 
day (lod). 

The effect of small errors in EOP (in radians) on a GPS baseline can be computed 
by 

1 = 80 0 8yp 
[ 8Z ] 8Xp - 8yp 

1 .5  E A R T H  D E F O R M A T I O N  

1 . 5 . 1  Rotat ion vs. Deformation 

The time derivative of the position vector for a station fixed to the Earth's surface is 
given by 

[d-a-~] = [d-d~ ] + r r 
I T 

(1.43) 

or  

v I = v T + t ex  r (1.44) 

where I and T indicate differentiation with respect to an inertial and terrestrial 
reference frame, respectively, and c0 is the Earth's rotation vector. For a rigid 
Earth, vr = 0 since there are no changes in the station position vector r with respect 
to the terrestrial frame. For a deformable Earth, station positions are being 
displaced so that the rotation vector may be different for each station. However, 
deviations in the rotation vector are small and geophysicists have defined an 
instantaneous mean rotation vector such that 

f f f (V  T VT) p dE = min imum (1.45) 
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where the integration is taken over the entire Earth and 13 denotes density. This 
condition defines the Tisserand mean axes of body. If the integration is evaluated 
over the Earth's outer layer (the lithosphere) then this condition defines the 
Tisserand mean axes of crust. Since geodetic stations are only a few in number, the 
discrete analog of (1.45) is 

P 
X mi(vT i "VTi)= minimum (1.46) 
i=l 

Now let us consider a polyhedron of geodetic stations with internal motion 
(deformation) and rotating in space with the Earth. Its angular momentum vector H 
is related to the torques L exerted on the Earth by Euler's equation 

I T 

The total angular momentum is given by 

P 
H =  X mi(ri XVi) (1.48) 

i=l 

From (1.44) 

P 
- - -  z mi[r,• +VTi)] 

i=l 

P P 
= ~, mi [ri x ( ~ x r i ) ] +  ~lmi[r i  XVTi] 

i=l i 
(1.49) 

= I . r  = H R + h  (1.5o) 

where I is the inertia tensor, so that the angular momentum is split into a rigid body 
term H R and a relative angular momentum vector h. Now returning to (1.46) 

P 

T = ~  mi(vTi * VTi ) 
i-1 

P 
= X mi(vI- •215 

i=l 
(i.51) 

Minimizing T with respect to the three components of m,  i.e., 

~T 3T ~T = o  
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yields in matrix form 

y2 Z 2 p + - X Y  
__~!m i - X Y  X 2 + Z  2 

i = - X Z  - YZ 

-xz ] ro,11 r YVz-ZV  1 
YZ / / ~ / = ~ m i / x v z  ZVx 

y ~ + x 2 ] i [ ( . o 3 ]  i= l  [YVx xvv 
(1.52) 

or  

I . c o = H  R ( 1 . 5 3 )  

implying that h = 0 from (1.50) or 

P / O - Z  Y ] [ V x ]  e [ 0 - Z  Y ] [ d X ]  
h =i_~l m i Z 0 - x / I V y / =  0 = • m i Z 0 - x / / d Y /  

= - X 0]i[Vz]i i=! - Y  X 0] i [dZ]  i 
(1.54) 

in terms of differential station displacements (or deformation of the polyhedron with 
respect to the fundamental polyhedron - -  see section 1.1.2). 

As pointed out by Munk and McDonald [1975] only the motions of the Tisserand 
axes are defined by the above constraints; the origin and orientation are arbitrary. 
Therefore the constraints (1.46) and equivalently (1.54) can be used to maintain the 
orientation of the fundamental polyhedron at a later epoch, i.e., a no net rotation 
constraint. An origin constraint can take the form of 

I! O0][dX 1 ,~=Imi|O!O]|dY = 0 
= [00 l][dZ i 

(1.55) 

where the mass elements in the equations above can be interpreted as station 
weights [e.g., Bock, 1982]. 

1 . 5 . 2  G l o b a l  P l a t e  M o t i o n  

The NNR-NUVEL1 (NNR - -  no net rotation) plate tectonic model [Argus et al., 
1994] describes the angular velocities of the 14 major tectonic plates defined by a 
no net rotation constraint. Fixing any plate (the Pacific Plate is usually chosen) to 
zero velocity will yield velocities in the NUVEL-1 relative plate motion model 
which are derived from paleomagnetic data, transform fault azimuths and 
earthquake slip vectors [DeMets et al., 1990]. Note that a recent revision o f  the 
paleomagnetic time scale has led to a rescaling of the angular rates by a factor of 
0.9562 defining the newer models NUVEL-1A and NNR-NUVEL 1A [DeMets et 
al., 1994]. 
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The velocity of station i on plate j in the NNR (or other) frame is given on a 
spherical Earth as a function of spherical latitude, longitude and radius (~, X, R)s 
by 

vij = q x ri ( 1 . 5 6 )  

cos Sj sin % sin Lj - sin ~j cos sin ~'i ] 
=Rcoj sin~j cosOi cos L i - c o s  d~j sin$i cos~,j[ (1.57) 

cos Oj cos ~ sin (~.i - ~.j) J 
where the angular velocity of plate j is 

D O = o~ = coj ] cos , j  sin ~,j (1.58) 
COz [ sin ~j 

with rate of rotation coj and pole of rotation (d~j ,~.j), and 

ri = Yi = R~ cos ~ sin ~'i~ (1.59) 
Z i [ sin d0i ] 

is the coordinate vector of station i. Station coordinate corrections for global plate 
motion are then given by 

rij(t ) = rij(to) + (~j x ri)(t - to) (1.60) 

1 . 5 . 3  Tidal Effects 

The gravitational attractions of the Sun and Moon induce tidal deformations in the 
solid Earth. The effect is that instantaneous station coordinates will vary 
periodically. The amplitude and period of these variations and the location of the 
station will determine the effect on station position. For GPS measurements, the 
penalty for ignoring tidal effects will generally be more severe as baseline length 
increases. 

In principle, Earth tides models need to be defined as part of the definition of the 
terrestrial reference system. To ftrst order, Earth tide deformation is given by the 
familiar solid Earth tides. Three other secondary tidal affects may need to be 
considered; ocean loading, atmospheric loading and the pole tide. Their 
descriptions are extracted from the excellent summary of Sovers and Jacobs [1994]. 
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Solid Earth Tides. The tidal potential for the phase-shifted station vector r s , 
due to a perturbing object at Rp is given by 

GMP[Rp ( ~ ) 2  P2 (cos 0) + r s 3 Utidal = (~pp) P3 (cos 0)] 

= U2 + U3 

(1.61) 

where G is the universal gravitational constant, Mp is the mass of the perturbing 
object, P2 and P3 are the 2nd and 3rd degree Legendre polynomials and 0 is the 
angle between r s and Rp. To allow a phase shift W of the tidal effects from its 
nominal value of 0, the phase-shifted station vector is calculated by applying the lag 
(fight-handed rotation) matrix L about the Z-axis of date 

r s = L r 0 = R 3 (~) r 0 (1.62) 

The tidal displacement vector on a spherical Earth expressed in a topocentric 
system is 

~5 = .~ [gt i), g~i), g~i)]T (1.63) 
1 

where g~i)(i = 2,3) are the quadrupole and octupole displacements. The components 

of 8 are obtained from the tidal potential as 

hi Ui (1.64) gt i) = g 

1 i COS ~s ~ ' s  
g~) = g (1.65) 

~U i 
li ( "~-~s ) 

g~i) = g (1.66) 

where hi(i = 2,3) are the vertical (quadrupole and octupole) Love numbers, 
l i (i = 2,3) are the corresponding horizontal Love numbers, and g is the gravity 
acceleration 

GME (1.67) 
g =  rs2 

In this formulation, the Love numbers are independent of the frequency of the tide- 
generating potential. A more sophisticated treatment involves harmonic expansions 
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of (1.65) and (1.66) and different vertical and horizontal Love number for each 
frequency. Currently the f'u'st six largest nearly diurnal components are allowed to 
have frequency-dependent Love numbers (see McCarthy [ 1992]) 9. 

There is a permanent deformation of the solid Earth due to the average gradient of 
the luni-solar attraction, given approximately in meters as a function the geodetic 
latitude (see section 1.6.6) by 

AW = -0.12083 (3sin 2 # _ 1 )  

~U = -0.05071 cos r sin 
(1.68) 

in the up and north directions, respectively. 

Ocean Loading. Ocean loading is the elastic response of the Earth's crust to 
ocean tides. For stations near continental shelves, the displacements can reach tens 
of millimeters. The model of Scherneck [1983, 1991] includes vertical and 
horizontal displacements. All eleven tidal components have been adopted for the 
IERS standards [McCarthy, 1992]. Corrections for ocean tide displacements take 
the form of 

N 
~j = ~ ~ i c ~ 1 7 6  (1.69) 

i=l 

where ~ .  is the frequency of tidal constituent i, V i is the astronomical argument, 
~i and 5~ are the amplitude and phase lag of each tidal component j determined 
from a particular ocean loading model. The first two quantities can be computed 
from the Goad algorithm [Goad, 1983]. The eleven tidal components include K2, 
$2, M2, N2 (with about 12-hour periods); K1, P1, O1, Q1 (24 hour periods); Mf 
(14 day periods); Mm (monthly periods); Ssa (semiannual periods). 

Atmospheric Loading, Atmospheric loading is the elastic response of the 
Earth's crust to a time-varying atmospheric pressure distribution. Recent studies 
have shown that this effect can have a magnitude of several millimetres in vertical 
station displacement. Unlike the case of ocean loading, however, it does not have a 
well-understood periodic driving force. A simplified model proposed by Rabbel 
and Schuh [1986] requires a knowledge of the instantaneous pressure at the site and 
an average pressure over a circular region of radius R=2000 km surrounding the 
site. The expression for vertical displacement (in ram) is 

AW = - 0.35P0 - 0.55p (1.70) 

9For tidal computations the following physical constants have been recommended by the IERS 
Standards [1992]: h2 = 0.609; 12 = 0.0852; h 3 = 0.292; 13 = 0.0151 

GM E = 3986004.418 x 108 m3/s 2 (Earth) 
GMs = 1.3271243993544841 x 1020 m3/s 2 (Sun) 
MF_/MM = 81.300587 (Earth/Moon mass ratio) 
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where P0 is the local pressure anomaly (relative to the standard pressure of 
1013.25 mbar), and [~ is the pressure anomaly within the 2000 km region. The 
reference point is the site location at standard (sea level) pressure. 

Pole Tide. The pole tide is the elastic response of the Earth's crust to shifts in 
the pole of rotation. An expression for pole tide displacement in terms of unit 
vectors in the direction of geocentric spherical latitude, longitude and radius (d?, ~, 
R)s is given by Wahr [1985] 

8 = - _~..__RR [ sin r cos r (Xp cos ~L + yp sin •) h 21~ 

+cos2*(Xp cosk + yp sink)12r 

+sin,(-Xp sin ~. + yp cos~.)12~. ] 

(1.71) 

where o is the rotation rate of the Earth (Xp, yp) represent displacement from the 
mean pole, g is the surface acceleration due to gravity and h and l are the vertical 
and horizontal quadrupole Love numbers 10. Considering that the polar motion 
components are on the order of 10 m or less, the maximum displacement is 10-20 
m m .  

1 . 5 . 4  Regional and Local Effects 

Other significant deformation of the Earth's crust are caused by a variety of regional 
and local phenomena, including 
(1) diffuse tectonic plate boundary (interseismic) deformation, with magnitudes 

up to 100-150 mm/yr; 
(2) coseismic and postseismic deformation with magnitudes up to several 

meters, and several mm/day, respectively, for major earthquakes; 
(3) postglacial rebound (mm/yr level in the vertical) in the higher latitudes; 
(4) monument instability due to varying local conditions. 

1 . 5 . 5  Non-Physical  Effects 

Site survey errors are not due to deformation per se but contribute nevertheless to 
station position error. For example, a GPS antenna may be displaced from its 
surveyed location, not oriented properly, and have its height above the monument 
erroneously recorded, or a tie error may be made when surveying the offset 
between a VLBI reference point and a GPS reference point. Surprisingly, site 
survey errors of the latter type are one of the largest error sources remaining today 

10IERS [1992] standards include R=6378.140 kin, r = 7.2921151467 x 10-5rad/s, g=9.80665 
rn/s 2. 
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in defining the terrestrial reference frame from a combination of space geodetic 
techniques. 

A similar error is due to differing phase center characteristics between unlike (and 
like) GPS geodetic antennas. In general, for highest precision, referencing the 
phase center to the monument position requires careful antenna calibration [e.g., 
Schupler et al., 1994; Elosegui et al., 1995]. Switching antennas at a particular site 
may result in an apparent change of position (primarily in the vertical, but horizontal 
offsets are also a possibility). 

1 .6  C O N V E N T I O N A L  R E F E R E N C E  SYSTEMS 

1 .6 .1  International Earth Rotation Service (IERS) 

Present day reference systems are maintained through international cooperation by 
the International Earth Rotation Service (IERS) 11 under the umbrella of the 
International Association of Geodesy (IAG) and with links to the International 
Astronomical Union (IAU). There are IERS Analysis Centers for each of the 
different space geodetic methods including VLBI, SLR, LLR (lunar laser ranging) 
and GPS. The Central Bureau combines the results, disseminates information on 
the Earth's orientation and maintains the IERS Celestial Reference Frame (ICRF) 
and the IERS Terrestrial Reference Frame (ITRF). 

The IERS Reference System is composed of the IERS standards [McCarthy, 
1992], the ICRF and the ITRF. The IERS standards are a set of  constants and 
models used by the analysis centers. These standards are based on state of  the art 
in space geodetic analysis and Earth models and may differ from the LAG and IAU 
adopted values such as precession and nutation. The ICRF is realized by a 
catalogue of compact extragalactic radio sources, the ITRF by a catalogue of station 
coordinates and velocities. 

1 . 6 . 2  Celestial Reference System 

Def'mition. The small motions of the Earth's rotation axis can be described as the 
sum of two components (1) astronomical nutation with respect to a celestial 
(inertial) coordinate system as described in section 1.4.1 and (2) polar motion with 
respect to a terrestrial reference system as described in section 1.4.2. We indicated 
earlier that free polar motion is not adequately modeled analytically and must be 
determined from space geodetic measurements. Luni-solar effects can be predicted 
much better in both (free) nutation and (forced) polar motion, although 
improvements are also being made in these models (see 1.4.1). Therefore, it is 

111ERS information is provided through Internet from the IERS Central Bureau located at the 
Paris Observatory [E-mail: iers@iap.fr; anonymous ftp: mesiom.obspm.fr or 145.238.2.21] and 
the IERS Sub-Bureau for Rapid Service and Predictions located at the U.S. Naval Observatory, 
Washington, D.C. [E-mail: eop@usno01.usno.navy.mil; anonymous ftp: maia.usno.navy.mil or 
192.5.41.22; NEtS Bulletin Board (202 653 0597)]. 
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reasonable to compute precession and nutation for the angular momentum axis 
whose small motions are not affected by nearly diurnal (forced) polar motion as 
viewed from the terrestrial frame and by nearly diurnal (free) nutation as viewed 
from the inertial frame. This axis is called the Celestial Ephemeris Pole (CEP), i.e., 
the one defined by the theory of nutation and precession. It differs from the Earth's 
instantaneous rotation axis by quasi-diurnal terms with amplitudes under 0".01 
[Seidelmann, 1982]. 

The celestial reference frame (CRF) is defined by convention to be coincident 
with the mean equator and equinox at 12 TDB on 1 January 2000 (Julian date 
2451545.0, designated J2000). The transformation from the CRF to the true of 
date frame (with third axis in the direction of the CEP) is given by the precession 
and nutation transformations. 

Realization. The CRF frame is realized by a catalogue of adopted equatorial 
coordinates (right ascensions and declinations) of compact extragalactic radio 
sources at epoch J2000, computed to have no net proper motion. Typical source 
structure effects for compact radio sources are on the milliarcsecond level. The 
ICRF celestial coordinates implicitly define then the direction of the frame axes. 
The origin is at the solar system barycenter. The direction of the polar axis is given 
at epoch J2000 by the IAU 1976 Precession Theory and the IAU 1980 Theory of 
Nutation. The origin of right ascension is consistent with the stellar FK5 system 
(_--H)".04). 

1 .6 .3  Terrestrial Reference System 

Definition. The Celestial Ephemeris Pole also moves with respect to the Earth 
itself. The IERS terrestrial reference frame (ITRF) is defined with origin at the 
Earth's geocenter and pole at the 1903.0 Conventional International Origin (CIO) 
frame adopted by the IAU and IAG in 1967. The X-axis is oriented towards the 
1903.0 meridian of Greenwich (called the IERS Reference Meridian - IRM), the Z 
axis is towards the CIO pole (called the IERS Reference Pole - IRP) and the Y-axis 
forms a fight-handed coordinate system. The CIO pole is the mean direction of the 
pole determined by measurements of the five International Latitude Service (ILS) 
stations during the period 1900.0 to 1906.0. Although this definition is somewhat 
cumbersome it helps to preserve continuity with the long record of optical polar 
motion determinations which began formally in 1899 with the establishment of the 
ILS. 

Realization.  The ITRF is defined by the adopted geocentric 12 Cartesian 
coordinates and velocities of global tracking stations derived from the analysis of 
VLBI, SLR and GPS data. The ITRF coordinates implicitly define the frame 
origin, reference directions and scale. The unit of length is the SI meter. The latest 
in a series of annual ITRF frames is ITRF 93 with coordinates given at epoch 
1993.0. Also included are station velocities computed by the IERS from a 

12The origin is located at the Earth's center of mass (:~_5 cm). 
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combination of the adopted NNR-NUVEL1 model [Argus and Gordon, 1991] and 
long-term space geodetic measurements. Annual refinements of the ITRF are to be 
expected at up to the 1 cm level in position and several mm/yr in velocity, with a 
gradual increase in the number of defining stations (mainly GPS). 

1 . 6 . 4  Transformation Between ICRF and ITRF 

The IERS earth orientation parameters in conjunction with the conventional 
precession and nutation models, describe the rotation of the ICRF with respect to 
the ITRF. Pole positions (Xp and yp) are the displacements of the CEP relative to 
the IRP. UT1 (see section 1.3.3) provides access to the direction of the IRM in the 
ICRF, reckoned around the CEP axis. It is expressed as the difference UT 1-UTC 
(or UT 1-TAI). 

Two IERS bulletins provide Earth orientation information in the IERS Reference 
System, including UT1, polar motion, and celestial pole offsets. Bulletin A gives 
advanced daily solutions and is issued weekly by the Sub-Bureau for Rapid Service 
and Predictions. Bulletin B gives the standard solution and is issued at the 
beginning of each month by the Central Bureau. An Annual Report is issued six 
months after the end of each year, and includes the technical details of how the 
products are determined and revised solutions for earlier years. The IERS is also 
responsible for maintaining continuity with earlier data collected by optical 
instruments 13. Long term homogeneous series including polar motion (from 
1846), UT 1 (from 1962) and nutation parameters (from 1981) are also available. 

1 . 6 . 5  WGS 84 

The terrestrial reference system used by the U.S. Department of Defense (DoD) for 
GPS positioning is the World Geodetic System 1984 (WGS 84). The GPS 
navigation message includes earth-fixed satellite ephemerides expressed in this 
system. WGS 84 is a global geocentric coordinate system defined originally by 
DoD based on Doppler observations of the TRANSIT satellite system (the 
predecessor of GPS). WGS 84 was first determined by aligning as closely as 
possible, using a similarity transformation (see section 1.6.7), the DoD reference 
frame NSWC-9Z2 and the Bureau International de l'Heure (BIH) Conventional 
Terrestrial System (BTS) at the epoch 1984.0 (BIH is the predecessor of the IERS, 
and BTS is the predecessor of 1TRF). It was realized by the adopted coordinates of 
a globally distributed set of tracking stations with an estimated accuracy of 1-2 
meters (compare to the 1-2 cm accuracy of ITRF). In January 1987, the U.S. 
Defense Mapping Agency (DMA) began using WGS 84 in their computation of 
precise ephemerides for the TRANSIT satellites. These ephemerides were used to 
point position using Doppler tracking the coordinates of the ten DoD GPS 

13The IERS Reference Pole (IRP) and Reference Meridian (IRM) are consistent with the earlier 
BIH Terrestrial System (BTS) (L~0.005") and the Conventional International Origin (CIO) 
(_+0.03"). 
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monitoring stations. GPS tracking data from these stations were used until recently 
to generate the GPS broadcast orbits, fixing the Doppler derived coordinates 
(tectonic plate motions were ignored). 

In an attempt to align WGS 84 with the more accurate ITRF, the DoD has 
recoordinated the ten GPS tracking stations at the epoch 1994.0 using GPS data 
collected at these stations and a subset of the IGS tracking stations whose ITRF 91 
coordinates were held fixed in the process [Malys and Slater, 1994]. This refined 
WGS 84 frame has been designated WGS 84 (G730). The 'G' is short for GPS 
derived, and '730' is the GPS week number when these modifications were 
implemented by DMA in their orbit processing (the first day of this week 
corresponds to 2 January 1994). In addition, the original WGS 84 GM value was 
replaced by the IERS 1992 standard value of 3986004.418 x 108 m3/s 2 in order to 
remove a 1.3 m bias in DoD orbit fits. Swift [1994] and Malys and Slater [1994] 
estimate that the level of coincidence between 1TRF (91 & 92) and WGS 84 (G730) 
is now of the order of 10 cm. The Air Force Space Command implemented the 
WGS 84 (G730) coordinates on 29 June, 1994, with plans to implement the new 
GM value as well. 

1 . 6 . 6  Ellipsoidal and Local Frames 

Although the geocentric Cartesian frame is conceptually simple, other frames are 
more convenient for making certain model corrections, in particular tidal corrections 
and site eccentricity computations. 

Geodet ic  Coordinates  (r 7t, h)G. For an ellipsoid with semi-major axis 'a' 
and eccentricity 'e' the geocentric Cartesian coordinates can he computed in closed 
form from geodetic coordinates (geodetic latitude, geodetic longitude and height 
above the ellipsoid) by 

X = 0q + h] cos r cos 2L 
Y = [N + h] cos r sin ~, 
Z = [N(1 - e 2) + h] sine 

(1.72) 

where 

N = a (1.73) 
j 1 - e 2 sin 2 r 

is the radius of  curvature of the ellipsoid in the prime vertical. The reverse 
transformation can be computed by [Heiskanen and Moritz, 1967] 

tan ~ - Y ( 1 . 7 4 )  - X  
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and solving the following two equations iteratively for h and r 

P - N  
h = cos d~ (1.75) 

tan r =Z(1-e  2 .N,~-I  
P ~ + h  + (1.76) 

where 

p = (X 2 + y2) l / 2 (= (N + h) cos 0) (1.77) 

Topocentric Coordinate Frame (U, V, W). The conversion from (right 
handed) geocentric Cartesian coordinates to a left-handed topocentric system (U- 
axis positive towards north, V-axis positive to the east, and W-axis positive up 
along the ellipsoidal normal) by 

= P2 R2(r - 90~ R3(TL - 180 ~ (1.78) 

['~ P2 = 0 - 1  
0 0 

(1.79) 

This transformation is useful for reducing GPS antenna height to geodetic mark, 
expressing baseline vectors in terms of horizontal and vertical components, and 
correcting for site eccentricities. 

1.6.7 Similarity Transformation 

A seven-parameter (three-translations, three rotations and scale) similarity 
transformation (sometimes referred to erroneously as a 'Helmert transformation') is 
often used to relate two terrestrial reference frames 

r 2 = sRr I +t12 (1.80) 

where 

R = RI(8 ) R2(q/) R3(t,o ) (1.81) 

For infinitesimal rotations (1.80) can be written as 



1. Reference Systems 30 

ix2} [ 1  llxll i 121 
Y2 =(1 + A s ) - 0 0  1 e Yl +lAY12] 
Z 2 ~ / - E  1 Z 1 [AZI2 ] 

(1.82) 

1 .7  T H E  IGS 

The International GPS Service for Geodynamics (IGS) contributes essential data to 
the IERS Reference System, including precise geocentric Cartesian station 
positions and velocities (the global polyhedron) and Earth orientation parameters 
[Beutler and Brockmann, 1993]. The IGS was established in 1993 by the 
International Association of Geodesy (IAG) to consolidate worldwide permanent 
GPS tracking networks under a single organization. Essentially two major global 
networks, the Cooperative _International GPS Network (CIGNET) spearheaded by 
the U.S. National Oceanic and Atmospheric Administration (NOAA) and Fiducial 
Laboratories for an International Natural science Network (FLINN) led by the U.S. 
National Aeronautics and Space Administration (NASA), were merged with several 
continental-scale networks in North America, Western Europe and Australia 
[Minster et al., 1989; 1992]. A highly successful proof of concept and pilot phase 
was initiated in June 1992, and formal operations began in January 1994. The IGS 
collaborates closely with the IERS (section 1.6.1). 

The current operational and planned stations of the IGS network are shown in 
Figure 1.1 [IGS, 1995]. The IGS collects, distributes, analyzes, and archives GPS 
data of geodetic quality (dual frequency phase and pseudorange) from these 
stations. The data are exchanged and stored in the Receiver Independent Exchange 
Format (RINEX) [Gurtner, 1994]. The primary IGS products includes high- 
quality GPS orbits and satellite clock information, Earth orientation parameters, and 
ITRF station positions and velocities. The coordinate and EOP information are 
provided to the IERS to include in their products. The orbital and clock information 
are provided to the geophysical and geodetic user communities. The IGS supports 
worldwide geodetic positioning with respect to the International Terrestrial 
Reference Frame. Approximate accuracies of IGS products are given in Table 1.2. 

Table 1.2. Approximate accuracy of IGS products. 

IGS Products Accuracy 
Polar Motion (Daily) 0.2-0.5 mas 
UT1-UTC rate (Daily) 0.1-0.5 ms/day 
Station Coordinates (Annual) 14 3-20 mm 
GPS Orbits 100 mm 
GPS clocks 0.5-5 nsec 

14Station coordinate and full covariance information will be computed on a weekly basis starting 
in late 1995 and distributed in the new Software Independent Exchange Format (SINEX) format 
(see Chapter 9). 
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The organization of the IGS is shown in Figure 1.2 [Zumberge et al., 1994]. It 
includes three Global Data Centers, five Operational or Regional Data Centers, 
seven Analysis Centers, an Analysis Center coordinator, a Central Bureau 15, and 
an International Governing Board. Currently more than 50 institutions and 
organizations contribute to the IGS. 

1 . 8  S U M M A R Y  

We have described the fundamental importance of terrestrial and inertial reference 
systems in GPS positioning. A reference system is realized through the definition 
of  a reference frame at a fundamental epoch and all the physical models and 
constants that are used in the determination of coordinates at an arbitrary epoch in 
time. The celestial reference system is realized through a catalogue of coordinates 
of extragalactic radio sources. The right ascensions and declinations of these radio 
sources at epoch J2000.0 define the IERS celestial reference frame (ICRF). The 
terrestrial reference system is realized through the station coordinates of a global 
space geodetic tracking network defining the vertices of a deforming terrestrial 
polyhedron. The coordinates of these stations at a specified epoch define the IERS 
terrestrial reference frame (currently ITRF 93), and the fundamental polyhedron. 

The transformation from the ICRF to the ITRF includes a sequence of rotations 
including precession, nutation, Earth rotation and polar motion, as well as precise 
definitions of time systems. These are described in sections 1.2-1.4. Maintenance 
of the terrestrial reference system requires a knowledge of how the terrestrial 
polyhedron is deforming in time. The different phenomena that cause the Earth to 
deform are presented in section 1.5. The celestial and terrestrial reference systems 
in use today are described in section 1.6. In section 1.7, the International GPS 
Service for Geodynamics (IGS) is discussed. 
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2.1 ~ T R O D U C T O N  

Nominally the Global Positioning System (GPS) consists of 24 satellites (21 + 3 
active spares). The satellites are in almost circular orbits approximately 20 000 km 
above the surface of the Earth. The siderial revolution period is almost precisely 
half a siderial day (11 h 58m). All GPS satellites, therefore, are in deep 2:1 
resonance with the rotation of the Earth with respect to inertial space. This 
particular characteristic gives rise to perturbations to be discussed in section 2.3.3. 
Thanks to this particular revolution period essentially the same satellite 
configuration is observed at a given point on the surface of the Earth at the same 
time of the day on consecutive days (the constellation repeats itself almost 
perfectly after 23 h 56" UT). 

The lust GPS satellite, PRN 4, was launched on 22 February 1978. PRN 4 was 
the ftrst in a series of 11 so-called Block I satellites. Today satellite PRN 12 is the 
last of the Block I satellites still active. The orbital planes of the Block I satellites 
have an inclination of about 63 degrees with respect to the Earth's equator. The 
test configuration was optimized for the region of North America in the sense that 
four or more satellites could be observed for a considerable fraction of the day 
there. The test configuration was not optimal in other parts of the world. 

In February 1989 the first of the Block II (or production) satellites was launched. 
The Block II satellites are arranged in six orbital planes (numbered A, B, C, D, E, 
and F), separated by about 60 degrees on the equator, and inclined by about 55 
degrees with respect to the Earth's equator. Twenty-four Block II satellites are 
operational today. Figure 2.1 gives an overview of the arrangement of the satellites 
in the orbital planes, Figure 2.2 contains a drawing of a Block I, a Block II, and a 
Block IIR satellite (taken from Fliegel et al. [1992]). Figure 2.3 gives an 
impression of the orbital planes around the Earth in space as seen from a point in 
35 degrees latitude in respect of. the pole (North or South). The philosophy behind 
the 21+3 active spare satellites may be found in Green et al. [1989]. 

The present constellation allows for a simultaneous observation of at least four 
GPS satellites from (almost) every point on the surface of the Earth at (almos0 
every time of the day. Eight or more satellites may be observed at particular ames 
and places. Figure 2.3 shows that the constellation is problematic in the Arctic 
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G P S  orbits v i ewed  GPS orbits v i e w e d  

from latitude 13 = 35 ~ from latitude 13 = 90 ~ 

Figure 2.3. The GPS as seen from the outside of the system (Earth and orbital planes in scale). 

regions: The maximum elevation for the satellites is 53 degrees only. In view of the 
fact that tropospheric refraction is roughly growing with 1/cos(z), z = zenith 
distance, this may be considered as a disadvantage of the system. On the other 
hand, a receiver set up at the pole will be able to see simultaneously all six orbital 
planes which implies that a fair number of satellites will always be visible 
simultaneously at the poles! 

Let give us an overview of the sections of Chapter 2: In section 2.2 we will 
present and discuss the equations of motion for an artificial Earth satellite. We will 
introduce the Keplerian elements as the solution of the two body (or one body) 
problem, and introduce the concept of osculating elements in the presence of 
perturbing forces. Subsequently we will present and discuss the so-called 
perturbation equations, first-order differential equations for the lime development 
of the osculating elements. We will make the distinction between osculating and 
mean elements to get an overview of the long-term evolution of the GPS orbits. 
Most of the perturbing accelerations may be considered as known from earlier 
investigations in satellite geodesy. This is true in particular for the Earth's gravity 
field m with the possible exception of some resonance terms - -  and for the 
gravitational effects of Sun and Moon (including tidal variations). Due to the 
bulkiness of the satellites the same is not true for the radiation pressure. If highest 
orbital accuracy is aimed at, we have to solve for parameters of the radiation 
pressure acting on the satellites in addition to the initial conditions (position and 
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velocity components at an initial epoch) with respect to the osculating elements at 
the same epoch. Thus, in general, each arc of a GPS satellite is de,%-ribed by more 
than six parameters. We have to define one possible set of such parameters. We 
will also briefly review numerical integration techniques as the general method to 
solve the so-called initial value problem in satellite geodesy. 

In section 2.3 we will analyse the perturbing forces (with respect to 
accelerations) in the case of GPS satellites. We will in particular look at radiation 
pressure and at the resonance terms of the Earth's gravity field. The section will be 
concluded by studying the development of the GPS since mid-1992. This includes 
the detected manoeuvres of GPS satellites. 

In section 2.4 we will present the two most commonly used types of orbits; 
namely, the broadcast and the IGS orbits. We will give some indication of  the 
accuracies achieved and achievable today. 

The chapter will be concluded by a summary (section 2.5) and by a bibliography 
for the topic covered here. 

2.2 EQUATIONS OF MOTION FOR GPS 

2.2.1 The Keplerian Elements 

In 1609 Johannes Kepler published his ftrst two laws of planetary motion in his 
fundamental work Astronomia Nova [Kepler, 1609]. The third law was published 
ten years later in Harmonices Mundi Libri V [Kepler, 1619]. 

The Keplerian Laws [Danby, 19891: 

1231 . The orbit of each planet is an eUipse; with the Sun at one of the fool. 
Each planet revolves so that the line joining it to the Sun sweeps out equal 
areas in equal intervals of time (/aw of areas). 
The squares of the periods of any two planets are in the same proportion as 
the cubes of their mean distances to the Sun. 

These laws - -  to a first order - -  are also valid for the revolution of (natural and 
artificial Earth satellites around the Earth. We just have to replace the terms "Sun" 
resp. Planet by Earth resp. Satellite in the laws above. The parametrization of 
orbits is essentially still the same as that given by Kepler:. 
Keplerian Elements (for an argflcial Earth satellite): 
a : semi-major axis of the ellipse 
e : numerical eccentricity (or just eccentricity) 
i : inclination of the orbit with respect to the reference plane, the mean Earth's 

equatorial plane referring to a standard epoch 
f l  : right ascension of the ascending node 
co : argument of perigee (angle between the perigee and the ascending node, 

measured in the orbital plane in the direction of motion) 
To: perigee passing time. 

(2.1) 
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Figure 2.4 shows the Keplerian elements, which are very easy to understand. 
This probably is the reason for their popularity. 

b ,op 

0,~ 

§ 
r (t) 

'i 
Figure 2.4. The Keplerian elements. 

Kepler also solved the problem of computing the position of the celestial body at 
an arbitrary time t using the above set of elements. To be honest, he had to know 
in addition the revolution period U of the planet (the satellite in our case) to solve 
this problem. From this revolution period U he computed what he called the mean 
motion n. In radians we may write: 

2 �9 
n = (2.2) 

U 

Obviously n is the mean angular velocity of the satellite in its orbital plane around 
the Sun. In order to solve the problem of computing the position and velocity 
vector for any given point in time he introduced the so-called mean anomaly M and 
the eccentric anomaly E. M is a linear function of time, namely 

M = n -  (t - T o )  (2.3)  

Often, not the perigee passing time To but the mean anomaly 
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at an initial epoch to is used as the sixth of the Keplerian elements. In this case the 
mean anomaly at time t is computed as: 

M = r + n. (t - t o) (2.4) 

The eccentric anomaly E is the angle (in the orbital plane) between the line of 
apsides (center of ellipse to perigee) and the line from the center of the ellipse to 
the projection P' (normal to the semi-major axis) of the satellite P on the circle of 
radius a around the ellipse. Figure 2.5 illustrates the situation. In the same figure 
we also find the true anomaly v. From Kepler's second law (by applying it to the 
time intervals (Tat) and (T~To + L0 and by using Figure 2.5) it is easy to come up 
with Kepler's Equation: 

E = M + e. sin E (2.5) 

E 

It 

a ~  

a 

Figure 2.5. Eccentric and true anomalies E and v plus other useful relationships in the ellipse 
geometry. 

This equation may be used to compute the eccentric anomaly E as a function of 
the mean anomaly M (and the orbital element e of course). Introducing a 
coordinate system with the orbital plane as reference plane, with the line of apsides 
as f'u'st coordinate axis, we may compute the coordinates x, y, z of the satellite in 
this particular system: 
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x = a .  (cos E - e) 

y = a .  O~-e~).fanE 

z = 0  

From these equations we conclude that 

(2.6) 

r =  4 x  2 +y2 +z 2 =a.(1-e.cosE) 

(2.7) 

Denoting by Ri(w) the 3x3 matrix describing a rotation about angle w around axis 
i, we may compute the coordinates x', y', z' in the equatorial system as: 

y'  = R 3 (-f~)" R 1 (-i)" R 3 (-co). 

Z' 

(2.8) 

The same type of transformation must be applied for the computation of the 
velocity components u', v', w' in the equatorial system as a function of the 
components u, v, w in the orbital system: 

/ul V' = R 3 ( - ~  ) . R t ( - i ) .  R3(----(o ) �9 

w'  

(2.9) 

where u, v, w are obtained by taking the first derivatives of eqns. (2.6) with respect 
to time t (using Kepler's equation): 

a 2 
u = - a .  s inE. /~  = - n  . - - . s i n e  

r 

w = 0  = 0  

(2.10) 

where we have used that 

E =  n a ~ n  o m  

( 1 - e . c o s E )  r 
(2.11) 
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a result which is obtained by taking the fast time derivation of Kepler's equation 
(2.5). We have thus given - -  in the Keplerian approximation - -  the algorithms to 
compute the rectangular coordinates of the position and the velocity vectors at any 
instant of time t using the Keplerian elements as input. We have thus shown that 
the position and the velocity vectors are a function of the Keplerian elements (and 
of time t). 

2.2.2 Equations of Motion in Rectangular Coordinates 

Sir Isaac Newton (1643-1727) published his Philosophiae naturalis principia 
mathematica in 1687 [Newton, 1687]. His well known laws of  motion, but also his 
famous law of universal gravitation are written down in this outstanding book. 
Newton could show that Kepler's laws are a consequence of his more general laws 
of motion and the law of universal gravitation. He could also show that Kepler's 
laws are only valid if two (spherically symmetric) bodies are involved. 

Newton's laws of motion [Danby,1989]: 
1. Every particle continues in a state of rest or uniform motion in a straight 

one unless it is compelled by some external force to change that state. 
2. The rate of change of the linear momentum of a particle is proportional to 

the force applied to the particle and takes place in the same direction as 
that force. 

3. The mutual actions of any two bodies are always equal and oppositely 
directed. 

It was Leonhard Euler (1707-1783) who for the fast time transformed these 
laws into a modem mathematical language and formulated what we now call the 
Newton-Euler equations of motion [Euler, 1749]. These are differential equations 
of second order in time: the momentum (in law no. 2) is the fast derivative o f  the 
product mass. velocity of a particle, the term change of  momentum has to be 
interpreted as the time derivative of the mentioned product. This obviously 
involves a first derivative of the velocity vector, thus a second derivative o f  the 
position vector. Newton's laws also imply the concept of a force acting on the 
bodies of a system. Assuming that the mass of our particle is constant in time Euler 
concluded from law number 2: 

m.r = F (2.12) 

where: m is the (constant) mass of the particle, 
F its position vector in inertial space, 
P the force acting on particle with mass m. 

Actually, P should be understood as the vectorial sum of all forces acting on the 
particle resp. the satellite. 

Newton's law of gravitation states that between two particles of masses M and m 
there is an attracting force P of magnitude F = 
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m . M  
F = G.-- (2.13) 

r 2 

where: G is the Newtonian gravitational constant 
r is the distance between the two bodies. 

It is assumed that either the (linear) dimensions of the two particles are very 
small (infinitesimal) compared to the distance r between the two bodies or that the 
mass distribution within the bodies is spherically symmetric. 

Assuming that M is the total mass of the Earth, that the mass distribution within 
the Earth is spherically symmetric, Interpreting m as the mass of an artificial Earth 
satellite, and neglecting all other forces that might act on this satellite, we obtain 
the equations o f  motion for an artificial Earth satellite in their simplest form: 

m. M F  
m . r  = - G  

r 2 r 

o r  
. -  

= - G M . - -  
r 3 

(2.14) 

where: G M  = 398.600415.1012m3.s -2 is the product of the gravitational constant 
G and the Earth's mass M (value taken from the IERS Standards 
[McCarthy, 1992]). 

One easily verties that the vector def'med by its components (2.8) is a solution of 
the above equations of motion (2.14) provided we adopt the relationship 
n 2 .a 3 = G M  (2.15) 

This is in fact the equivalent to Kepler's law no. 3 in the Newtonian (Eulerian) 
formulation. It is true if the mass m of our test particle may be neglected. If this is 
not the case (e.g., for the Moon) the right-hand side of eqn. (2.15) must be 
replaced by G.(M+m). In the case of an artificial Earth satellite we may always 
neglect m. 

It is relatively easy to verify Kepler's laws starting from the equations of motion 
(2.14). We may, e.g., multiply eqn. (2.14) by F x (vector product) and obtain: 

. .  

F x F=O 
which implies that the vector product of F and F is constant in time, which in turn 
proves that the motion is raking place in a plane (the so-called orbital plane,  where 
h is a vector normal to the orbital plane): 

~ x ~ ' = g  (2.16) 

If we denote by h~, h2, h3 the components of it in the equatorial system we may 
immediately compute the right ascension of the ascending node ~ and the 
inclination i with respect to the equatorial plane as 

f~ = arctan(ha / (-/12)) (2.16a) 
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/ - -  (2.16b) 

We have thus demonstrated that two of the Keplerian elements may be written as 
a function of the (components of) position vector ~(t) and the velocity vector 

P(t) = ~(t). This actually is a characteristic of all six Keplerian elements: each of 
the elements may be written as a function of the position and velocity vectors at 
one and the same (arbitrary) time t. Without proof we include these relationships: 

1 2 v 2 
-- = - - ~  (2.16c) 
a r GM 

h 2 
e 2 = 1 (2.16d) 

GM .a 

(2.16e) 

E = 2 .  ~.Vl+e ~. 2 J)  

r = E - e. sin E (2.160 

T O = t - ~ /n  (2.16g) 

where u is the argument o f  latitude of the satellite at time t, i.e., the angle in the 
orbital plane measured from the ascending node to the position of the satellite at 
time t. The above formulae, together with the formulae for the position and the 
velocity components (2.8) resp. (2.9), prove that there is a one to one 
correspondence between the position and velocity vector at time t on one hand and 
the Keplerian elements on the other hand. This fact is of importance for our 
subsequent developments. 

Let us now generalize the equations of motions (2.14). We have to take into 
account that the mass distribution within the Earth is not spherically symmetric and 
the gravitational attractions on our artificial satellite stemming from the Moon and 
the Sun; moreover we allow for non-gravitational forces (like the radiation 
pressure). We first have to write down equations of motion for the satellite and for 
the center of mass of the Earth with respect to an (arbitrary) inertial system. Figure 
2.6 illustrates the situation. 

The equations of motion for the satellite (in the inertial system) may be written in 
the following form (direct consequence of Newton's laws of motion and Newton's 
law of gravitation): 
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dV 

Figure 2.6. Center of mass of the Earth E, Sun S, Moon M, a volume element dV in the Earth's 
interior, their position vectors r e,$s,.~M, "~ with respect to the origin of the inertial system, and 

their geocetric position vectors 0,rs,rM, and/~. 

�9 x- X x-xM 
m. x = - G . m .  vo'l - -  _'ZS,XI p( X ) . d V - G . m . m M  . 1,~- xM 1' 

�9 X - - X s  ~'NG -Gins (2.17) 

where: /tiM, ms 

FNG 
p(X) 

are the masses of Moon and Sun respectively 
is the sum of all non-gravitational forces 
is the mass density at point x' of the Earth's interior. 

The equations of motion for the center of mass of the Earth may be written 
down in the following form: 

M.~E=_G.M.mM .~E-fgM G.M.ms ~E-X-s (2.18) 3 

Dividing eqn. (2.17) by the mass m of the satellite, dividing eqn. (2.18) by the 
mass M of the Earth and forming the difference of the two resulting equations we 
obtain the equations of motion for the geocentric motion f(t) of  the satellite: 
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" av f 
" , ~  " t l r_ru  ['~'-3C3+'Tru I - 

- G  . m s �9 ~ ,_'S-"7~,3 + ~3 ~ + F'Mo 

LF- I "s J 
(2.19) 

where/~NO is the sum of all non-gravitational accelerations, P~o =/~r / m. 
In order to solve the equations of motion (2.19) we have to introduce a 

coordinate system. In this chapter we will select the equatorial system referring to 
a reference epoch; we may think, e.g., of using the system J2000. The geocentric 
system underlying eqn. (2.19) is n o t  an inertial system (because of the motion of 
the Earth's center of mass around the Sun), but it is at any time parallel to the 
inertial system underlying the original equations (2.17). Due to the rotation of the 
Earth, the mass density O(/b is a function of time. This time dependence may be 
taken out of the integral, if we formulate the equations of motion in the Cartesian 
coordinates referring to the equatorial system. 

Let: /r/ 
r = r 2 

r3 

(2.20a) 

the Cartesian coordinates of r in the equatorial system referring to a standard 
epoch, 

(r:') 

the Cartesian coordinates of r "  in an Earth-fixed system. Let furthermore the 
transformation matrix between the two systems be described by the following 
sequence of rotation matrices (orthonormal matrices): 

r" = R2(-x).R~(-y).R3(O).N(t).P(t).r =: R(t).r (2.21) 

where: R~(w) characterizes a rotation around axis i and about angle w. 
x, y are the components of polar motion, 

0 is the true Greenwich siderial time, 
N(t), P ( t )  are the  precession resp. nutation matrices. 

For a detailed discussion of the transition between the Celestial and the 
Terrestrial Reference Frames we refer to the IERS Standards (1992), [McCarthy, 
1992]. 
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Using the abbreviated form of eqns. (2.21) we may write eqns. (2.19) in 
coordinate form as follows: 

fr"zW" = - G .  R( t ) .  j 3 
Vo, [r - R I 

r r - r ~  r ~ ]  

f ,--,, r,]  
- G . m  s �9 ~7-------~, 3 +-q-> + F ' ~  

tlr-rsl rsJ 

(2.22) 

Assuming that the Earth is a rigid body, the mass distribution p ( R " )  in the 

Earth-fixed system is no longer time dependent. 
The integral in equation (2.22) may be written as the gradient V of the so-called 

Earth potential V, a scalar function of the coordinates of the satellite position: 

r "  - R" - tR"~ 
v ! , 7 - - ~  ;olr-KlfP' ) d V  - c  , (R") ,iv -- o v . S - - = .  --.vv (2.23) 

We follow the usual procedure and develop V(r ' ) into a series of normalized 

Legendre functions (see, e.g., Heiskanen and Moritz [1967]). Using the polar 
coordinates r (length of geocenric radius vector), ~ (geocentric longitude), and 13 
(geocentric latitude) instead of the Cartesian coordinates we may write: 

G . M  
V(r,~, ,~) = ~ .  

1" 
1+ . ~ , P ~ ' ( g m ~ ) . ( C , , . c o s ( m . X ) +  S _ . s i n ( m . X ) )  

mm0 

(2.24) 

where: P," (sin I]) are the (fully normalized) associated Legendre functions, 

defined, e.g., in Heiskanen and Moritz [1967], 
a~ is the equatorial radius of the Earth, C~, and S~, are the coefficients. 

In general, if we are working in the center-of-mass-system, where the terms with 
n = 1 and Cz~, $2~ are all equal to zero. For the numerical values of the coefficients 
we again refer to the IERS Standards tMcCarthy, 1992], where the references to 
the more important gravity models may be found. 

We distinguish between the zonal terms (where m--- 0), which depend only on 
latitude, the sectorial terms and (where n = m), which only depend on longitude, 
and the tesseral terms (n and m arbitrary), which depend on both, latitude and 
longitude. Examples may be found in Figures 2.7a, 2.7b, and 2.7c. 

Let us briefly summarize this section. We started from Newton's laws of motion 
and wrote down the equations of motion in their simplest form (2.14). We stated 
that each of the Keplerian elements may be written as a function of the position 
and velocity vectors. We then wrote down the general equations of motion for an 
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Figure 2.7a. Zonal harmonics - zones of equal sign (n=6, m---0). 

Figure 3.7b. Sectorial harmonics - sectors of equal sign (n=m=7). 
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artificial Earth satellite, first referring to an inertial system (eqns. (2.17)), then 
referring to a geocentric system (2.19). After that we wrote the equations of 
motion for the Cartesian coordinates (eqns. (2.22)), which allowed us to compute 
the gravitational attraction stemming from the Earth in an Earth-fixed coordinate 
system. The Earth's gravitational potential (2.24) was introduced, where we made 
(as usual) the distinction between zonal, sectorial, and tesseral terms. 

Figure  2.7c. Tesserai harmonics - regions of equal sign (n = 13, m = 7). 

Let us conclude the section with the remark that the effects due to the elastic 
properties of the Earth may still be taken into account by the development (2.24), 
if we allow the coefficients C~, S~, to be functions of time. Only the lowest terms 
must be taken into account usually. This is, e.g., the case for the solid Earth tides 
[McCarthy, 1992, chapter 7]. 

Let us mention that major parts of this section were extracted from Beutler and 
Verdun [1992], where more details concerning the development of the Earth's 
gravitational potential may be found. 

2.2.3 The Perturbation Equations in the Elements 

The equations of motion (2.22) may be written in the form 
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= - G M  "r + P(r,i', t) (2.25) 

where the first term is the Keplerian term (eqn. (2.14)), the second the 
perturbation term. P(r,i ',t)contains all but the main term stemming from the 

Earth's gravitational potential (2.24), the gravitational attractions by Sun and 
Moon, and, last but not least, all non-gravitational terms F'st ~. Usually we may 
assume that 

G M  )) [P(r,~,/] (2.26) 
r 2 

This relation certainly holds for GPS satellites. The solution of the unperturbed 
equation (2.14) thus is a relatively good approximation of the equation (2.22) if 
the same initial conditions are used in both cases (at an initial epoch to) - at least in 
the vicinity of this initial epoch. It thus makes sense to speak, e.g., of an orbital 
plane which evolves in time. It also makes sense to introduce an instantaneous or 
osculating ellipse, and to study the semi-major axis and the eccentricity as a 
function of time. 

In the preceding section we said that there is a one-to-one correspondence 
between the Keplerian elements on one hand and the components of the position 
and the velocity vector on the other hand in the case o f  the Keplerian motion. Let 
us assume that r(t) and i'(t) for each time argument t are the true position and 

velocity vectors as they emerge from the solutions of the equations of motion 
(2.22) (corresponding to one and the same set of initial conditions r(to), v(to)). We 
now define the osculating elements at time t as the Keplerian elements computed 
from r(t), v(t) using the relationships (2.16a-g) of the unperturbed two body 
problem. Through this procedure we define time series of osculating elements a(t), 
e(t), i(t), f~(t), ~ t ) ,  t~(t) (or To(t)) associated with the perturbed motion. The 
Keplerian orbit corresponding to the osculating elements at time t are by design 
tangential to the perturbed orbit (at time t) because the two orbits (perturbed and 
unperturbed) share the same position and velocity vectors. 

The celestial mechanic is used to think in terms of these osculating elements. 
They are the ideal quantifies to study the evolution of an orbit. Of course we 
should keep in mind that, in principle, each orbit is completely specified by one set 
of osculating elements (e.g., at time t) and by the perturbation equations (2.25). 

It is possible to introduce (and solve) differential equations not for the 
rectangular coordinates of the position vector, but directly for the osculating 
elements. It is very instructive to study the perturbation equations for the 
osculating elements. Let us first introduce the following notation: 

{Kt(t) ,K~(t) ,K3(t) ,K,( t) ,K~(t) ,K~(t)}:= {a(t),e(t),i(t),f~(t),o~(t),c(t)} (2.26a) 

Furthermore, let 

Ki ( t )~  {Kl(t ), i =  1,...6} (2.26b) 
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In view of the relationships we gave in the previous section we may write: 

Ki(t) = K~ (r(t), v(t)) = K~(r(t),~(t)) (2.26(:) 

i.e., the time dependence of Ki is only given through the vectors r(t), v(t). Let us 
now take the first derivative of eqn. (2.26c) 

K, i K, = rj + 2 . , ~ . r j  (2.26d) 
j=l Or j j=l OV j 

Replacing the second time derivative in eqn. (2.26d) by the fight-hand side of the 
equations of motion, and taking into account that Ki is constant for the 
unperturbed motion, we obtain the following simple relation: 

g, = ~ OK~ . Pj(r, v , t )  =: V ,  (K~ ). P(r, v , t )  (2.26e) 
/=~ Ov/ 

Keeping in mind that: 

r = r(K~,K: ..... K6,t ), v = v(K1,K ~ ..... K6,t ) (2.260 

we have thus shown that the set of osculating elements may be described by a fh'st- 

order differential equation system in time t. Instead of one system of second order 
of type (2.25) we may thus consider one first-order differential equation system of 
six equations: 

s = V , ( K ~ ) . P ( K I , K  2 ..... K6,t ) i = 1 ..... 6 (2.27) 

The differential equation systems (2.25) and (2.27) are equivalent in the sense 
that the same orbit will result, provided the same initial conditions are used to 
produce particular solutions. Equations (2.25) and (2.27) are different 
mathematical formulations of one and the same problem. 

Apart from the fact that eqns. (2.27) are of first, whereas eqns. (2.25) are of 
second order, eqns. (2.27) are by no means of simpler structure than eqns. (2.25). 
However, eqns. (2.27) allow for relatively simple approximate solutions. Let us 
first state that for 

P(K,, K: ..... K s, t) = 0 (2.28a) 

we have 

K, = 0 or r ,  = K,o = K,(t o) (2.28b) 

Equations (2.28b) simply repeat that in the case of the unperturbed motion the 
Keplerian elements are constants of integrations. In view of inequality (2.26) the 
elements Ki may nevertheless be considered as an approximate solution for 
equations (2.27). First-order perturbation theory gives us a much better (but not 
yet the correct) solution: 
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KI=V(KI) .P(KIo,K2o ..... K6o,t ) i = 1  ..... 6 (2.29a) 

That is, we compute the perturbing acceleration P (and the gradien0 using the 
Keplerian approximation for the orbit. Equations (2.29a) are much easier to solve 
than the original equations (2.27), because the unknown functions are no longer 
present on the right-hand sides. As a matter of fact equations (2.29a) consist o f  six 
uncoupled integrals only which may be solved easily: 

l 

K~(t)= K,o +IV,(Kio) .P(Kto,K2o ..... K6o,t').dt" i =  L .... 6 (2.29b) 
tO 

In first-order perturbation theory it is therefore possible to study the perturbation 
o f  each orbit element independently of  the others. This is a remarkable advantage 
over the formulation (2.25) which does not allow for a similar structuring of  the 
problem. 

Let us go back to the perturbation equations (2.27) and derive the perturbation 
equation for the semi-major axis a. Equation (2.16c) gives a as a function of 
position and velocity: 
1 2 v 2 

a r GM 
From this equation we conclude 

2 .a  2 
V,a  = �9 v 

GM 
and therefore: 

ti = ._2_2. (v. P) (2.29c) 
n2a 

We are of course free to choose any coordinate system to compute the scalar 
product (v.P) in the above equation. We may even select different coordinate 
systems at different instants of time t;, we only have to use the same coordinate 
system for v and P at time t (!). Several coordinate systems are actually used in 
celestial mechanics. Subsequently we will decompose P into the components R, S, 
and W, the unit vectors ~R,~s, and ~,, in R, S, and W directions from a right- 
handed coordinate system, where ~R points in the radial direction, ~,, is normal to 
the orbital plane, and ~s lies in the instantaneous orbital plane and points 
approximately into the direction of motion. Figure 2.8 illustrates the 
decomposition. 

Without proof we give the perturbation equations using the R, S, W 
decomposion of the perturbing accelerations. For the derivation of these equations 
we refer to Beutler and Verdun [1992]. 

GM 1"~e 2 e .s inv.  R+ .S (2.30a) 
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Figure 2.8. The decomposition of the perturbing acceleration into the components R, S, and W. 
(Only t-n-st two components drawn.) 

~= O~-----~PM-{si.v.R+(cosv+cosE).S} (2.30b) 

iO ) = r cos(co + v) W 

n . a  2 . ( l - e 2 )  'a 
(2.30c) 

t~ = r - s in (o~  + v )  �9 w 

n . a  2 �9 ( 1 - e 2 )  u2 -sine 
(2.3od) 

+(,+~/ov s}_cos,,~ (2.30e) 

I l - e  2 
d =  

n a  e 
I ( c o ~ v - ~ l . - ( l + ~ l ~ . v , ~ + ~ - " - ~ , - , o ~  ~ a , 

(2.300 
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where p = a .  ( 1 - e  2) is the parameter of the ellipse, and v denotes the true 

anomaly. 
Equations (2.30) are convenient in the sense that we may discuss the influence of 

the components R, S, and W separately. We can, e.g., see at once that only the 
component W perpendicular to the orbital plane is capable of changing the position 
of the orbital plane (elements i and f~). We can also see that for e << 1 it is mainly 
the acceleration S which will change the semi-major axis. Actually eqn. (2.29c) 
tells us that in this particular case a may only be influenced by an acceleration in 
tangential direction (direction of velocity). This will, e.g., be of importance when 
considering satellite manoeuvres. 

If we want to study the influence of any perturbing acceleration, we have to 
compute the components R, S, and W of this acceleration, and we have to integrate 
eqns. (2.30). If we are satisfied with first-order perturbation theory, we may use 
the osculating elements of the initial epoch on the right-hand sides of eqns. (2.30). 
In this case the problem of solving a coupled system of non-linear differential 
equations is reduced to the solution of six definite integrals. 

Let us conclude this section by two types of examples: 
(1) we outline an approximate solution for the elements a(t), i(t), f2(t), and for 

the term C2o of the Earth's gravitational potential using the characteristics 
of GPS orbits. 

(2) we give the osculating elements as a function of time for a time period of 3 
days using the complete force field for one GPS satellite. 

The perturbing acceleration due to the term C~o may be written in the equatorial 
coordinate system as [Beutler and Verdun, 1992, eqn. (8.25)]: 

P = - 3 . G M  . ,Z o 
2 "aE r 

r , ' (3-5"r;Ir2))  
(2.31a) 

where ./20 = 1082.6.10 -6 (2.31b) 
The R, S, W components may easily be computed (by a series of transformations 

[Beutler and Verdun, 1992, eqns. (8.29), (8.30)]): 

= - 3 " G M ' a E  r 
:I- 3. sin 2 i.sin 2 u 1 

sin 2 i. sin(2u) 

 n(2i). u 
(2.3 lc) 

where u is the argument of latitude at time t, i.e. u = co+v(t), and v is the true 
anomaly. 

If we are only interested in a crude approximation we may neglect the terms of 
order 1 or higher in e in the perturbation equations, because the GPS orbits are 
almost circular. This means that we may replace r and P by the semi-major axis a 
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in the perturbation equations. Moreover we do of course use fu'st-order 
perturbation theory. 

With these simplifying assumptions the perturbation equation for the semi-major 
axis a reads as 

t i = 2 . S  
n 

Replacing the component S in the above equation according to eqn. (2.31c), 
where we again use the approximation r = a we obtain 

d = -3" n . a .  "J2o" sin2 i. sin(2u) 

In view of the fact that in our approximation we may write u(t) = ~ + n . ( t  - T o) 

this equation may easily be integrated to yield 

a(t)=3.a.(aE] 2. 
2 ~, a ) J2~176 (2.32a) 

where the integration constant is of no interest to us here. We see that the main 
effect in the semi-major axis due to the oblateness of the Earth is a short periodic 
perturbation (period = half a revolution --- 6 hours for GPS satellites). The 
amplitude A is 

2 �9 J2o" sin2 i = L67 km (2.32b) 

using the values a = 26'500 km, ae = 6'378 kin, i = 55 ~ J2o = 1082.6"10 6. 
In the same approximation and with e = 0 the equation for the right ascension of 

the ascending node has the form 

) 
2 ~ a  ) "J2~176 (2.32c) 

1 _  

where we have made use of the formula sin 2 u = ~ .  (1 -  cos(2u)). 

Equation (2.32) might be solved easily, but we already see the essential 
properties: there is a regression (backwards motion) of the node with an average 
rate of 

~ = - 3 , ( a e )  2 
2 ~, a ) "J2o" cosi .n = -0.039[~ = 142.[~ (2.32d) 

where we used the same numerical values as above. We also mention that twice 
per revolution, for u = 0 ~ and u = 180 ~ (i.e., in the nodes) the instantaneous 
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regression vanishes, the maximum backwards motion is expected for u = 90 ~ and 
u = 270 ~ (i.e., at maximum distances form the equatorial plane). We thus expect 
that the nodes of all GPS satellites are performing a rotation of 360 ~ in about 25 
years on the equator. How does the inclination behave? Using the same 
approximations we obtain: 

= - - . n .  "J20. sin(2i)- sin(2u) 
4 

i( t)=3.1~-~)2 . Jao .fln(2i)'cos(2u ) (2.32e) 

which means that there is no secular effect on the inclination i due to the 
oblateness perturbation term. There is, however, a short period term with the 
period of half a revolution. We thus expect the normal vectors to the orbital planes 
to perform essentially a complete revolution on a latitude circle of 35 ~ in about 25 
years. 

Let us now reproduce in Figures 2.9a-f the osculating elements for a particular 
GPS satellite (PRN 14) over three days (in November 1994). The figures were 
based on a numerical integration for the orbit of PRN 14, where the entire force 
field (to be introduced in section 2.3) was included. PRN 14 was not in an eclipse 
season at that time, it is meant to be an average GPS satellite for the time interval 
considered. 

Let us mention a few aspects: 
�9 We easily see that our crude approximation (2.32a-e) is not too far away 

from the the truth. We see in particular that the dominating effect in the 
semi-major axis a actually is an oscillation with an amplitude of about 
1.7 km (Figure 2.9a), and that the node is moving backwards with an 
average speed of about 0.04 ~ . We also see that the backwards motion is 
zero twice per revolution as mentioned above. That real life is so close to 
our crude approximations due to the fact that actually the GPS satellites 
are low-eccentricity satellites (e = 0.003 in that time period for PRN 14) 
and that the term C2o is the dominant perturbation term. 

�9 We can also see that there are long-period variations on top of the short 
period variations which we did not expect from our crude analysis. This is 
true in particular for the inclination i, where in addition to of  the short 
period variation of an amplitude we would expect from eqn. (2.32e) there 
is a long-period variation which we did not explain above. This variation is 
not caused by the oblateness. 

�9 We can also see that the osculating argument of perigee and the mean 
anomaly at time tO, the starting time of the arc, show rather big short 
period variations, but that they are highly correlated; would we compute 
the sum of the two terms (corresponding more or less (?) to the argument 
of latitude at time tO), the variations would be much smaller. This 
behaviour just reflects the fact that the argument of perigee is not well 
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def'med for low eccentricity orbits. We should thus avoid to use the 
argument of  perigee and the mean anomaly at an initial time as orbit 
parameters in an adjustment process. 

The osculating elements are no t  well suited to study the long-term evolution of  the 
satellite system. Small changes - well below the amplitudes of  the short-period 
perturbations - are not easily detected in Figures 2.9a-f. This is the motivation for 
the next section. 

2.2.4 Mean Elements 

There are many different ways to define mean orbital elements starting from a 
series of osculating elements. The purpose is the same, however, in all cases: one 
would like to remove the higher frequency part of the spectrum in the time series 
of the elements. There are subtle differences between different definitions of mean 
elements, but they are not relevant for our purpose. Here we just want to use mean 
elements to give an overview over the development of the GPS in time periods 
stretching from weeks to years. 

26562. 

26561. 

~. 26560 

26559, 

26558 

Osculating S e m i - M a j o r  Axis a of PRN 14 
(25 Dec 0 h - 27 Dec 24 h) 

1 
359 360 361 362 

Day of Year 

Figure 2.9a. Osculating semi-major axis a of PRN 14 (25 Dec 0 h - 27 Dec 24 h). 
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Let us use the notation introduced in equations (2.26a, b) Starting from the 
osculating element Ki(t) we define the mean element K~(t) using the following 

definition: 

I ,+vp ~(t)= V(t) [" K,(t').dt" (2.33) 
t-Ul2 

where U(t) es~ntialIy is the sidereal revolution period as computed from the 
osculating elements at time t. 
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Figure 2.9b. Osculating eccentricity e of PRN 14 (25 Dec 0 h - 27 Dec 24 h). 
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Figure 2.9c. Osculating inclination i of PRN 14 (25 Dec 0 h - 27 Dec 24 h). 
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Figure 2.9d. Osculating right ascension of the ascending node Q of PRN 14 (25 Dec 0 h - 27 
Dec 24 h). 
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Osculating Argument of Perigee of PRN 14 
(25 Dec0  h - 27 Dec 24h)  
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Figure 2.9e. Osculating argument of perigee co of PRN 14 (25 Dec 0 h - 27 Dec 24 h) 

Osculating Mean Anomaly at 1994 Dec 25 of PRN 14 
(25 Dec0  h - 27 Dec 24 h) 
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Figure 2.9f. Osculating mean anomaly o at 1994 Dec 25 of PRN 14 (25 Dec 0 h - 27 Dec 24 b) 
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Let us point out that neither eqn. (2.33) is the only possible definition, nor is it 
necessarily the best possible. In view of the importance the argument of latitude 
plays in the short period perturbations due to the oblateness of the Earth, it might 
have been better to use not the siderial revolution period, but the draconic 
revolution period in eqn. (2.33) (i.e., the revolution period from one pass through 
the ascending node to the next). The differences between different definitions of 
mean elements are of second order in the differences (osculating-mean elements). 

Be this as it may: our mean elements will all be based on the def'mition equation 
(2.33), and Figures 2.10a-e show the development of the mean elements in the 
time interval mid 1992 till end of 1994 for the same satellite which PRN 14 we 
already used in Figures 2.9a-f. We do not include a figure for the mean anomaly at 
an initial time to because, due to obvious reasons, such data are not readily 
available. The result would not be very instructive anyway: In essence we would 
see the difference between the mean perturbed motion and the mean Keplerian 
motion multiplied by the time interval (t-to) - in a figure this would be a straight 
line. 

A comparison of Figures 2.10a-2.10e with the corresponding Figures 2.9a-2.9d 
reveals that the short period perturbations were indeed removed successfully. Of 
course we have to take into account that the time interval is much longer in 
Figures 2.10 than in Figures 2.9. Interesting facts show up when looking at the 
mean elements! 

Let us first look at mean semi-major axis of PRN 14 in Figure 10a: We clearly 
see an average drift of about 7 m/day and two manoeuvres setting back the mean 
semi-major axis by about 2.5 km resp. 2.9 kin. The manoeuvres were necessary 
because of that drift in order to keep PRN 14 from overtaking the space vehicles in 
the same orbital plane in front of it. As a matter of fact PRN 14, which shows 
almost no drift in the semi-major axis, was 110 ~ ahead of PRN 21 in November 
1994 - no reason to worry at present. Let us see how this will change, now. 

We compute the change in the mean motion n associated with a change in the 
semi-major axis using Kepler's law no. 2 eqn. (2.15): 

a n  = �9 

2 a  
where in our case da is a linear function of time: 

(,-,0) 
Because the mean anomaly M is a linear function of time, too (at least if the 

mean motion n is constant), M ( t ) = n . ( t - T o ) ,  the change dM in the mean 

anomaly associated with the above drift must be computed in the following way: 
I 

3 n ,0) d,'--  3 a . ( t  , t o )  2 dM = dn( t ' ) .d t '~"  2 a 4 a 
to to 

The above formula gives dM in radian, (t-to) has to be express in seconds, the drift 
d in units of m/sec; to is an arbitrary initial epoch. It is more convenient to have a 
formula which gives dM in degrees, where the time argument is expressed in years, 
and d in m/day. The following relation (derived by simple scaling operations from 
the above equation) may be used for this purpose: 
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3 180 n (86400.36525)2/86400.(dT):.ti=,_2.7O.(dT)Z.ti (2.34) dM[~ 4 ~t a 

where dTis the time difference expressed in years, ti must be given in [m/day]; the 
values a = 26'500'000 m and n = (4.rd86400) were used to establish the numerical 
values in eqn. (2.34). According to eqn. (2.34) PRN 14 changes its nominal 
position in orbit by about 19 ~ per year, by about 86 ~ per two years. Corrective 
manoeuvres are therefore unavoidable about once per year for such a satellite 
(assuming that the other satellites in the orbital plane remain do not show a similar 
drift). Figure 2.10a shows that such manoeuvres actually took place. 

We should not conclude from Figure 2.10a that PRN 14 is on its way home 
down to Earth. The perturbation actually is periodic, but the period is very long 
(even compared to our time basis of about 2.5 years). We refer to section 2.3.3 for 
more information. 

Figure 2.10b shows that the eccentricity decreases linearly with time (very much 
like the semi-major axis). The reason again has to be sought in the resonance 
terms. We also see an expressed annual term (which we attribute mainly to 
radiation pressure) and perturbations of shorter period (caused by the Moon). We 
also see that the eccentricity was slightly changed at the times of the manoeuvres. 

Figures 2.10c again contains a perturbation of very long period. The reason 
again is resonance. The semi-annual perturbation with an amplitude of about 0.03 ~ 
is caused by the gravitational attraction due to the Sun, the semi-monthly terms by 
lunar attraction. There is no trace of a manoeuvre in the element i, which indicates 
that the impulse change took place in the osculating orbital plane. 

Figure 2.10d is really nice! We just see the backwards motion of the node (of 
about 14.5~ If we remove the linear drift, periodic variations show up, too, 
of course. Figure 2.11 gives the result. Figures 2.11 and 2.10c are of particular 
interest for people who want to estimate UT1-UTC or the nutation in longitude 
(actually the ftrst time derivatives of these quantities). Frequencies present in these 
Figures might also be found in UT1-UTC curves or in nutation drift curves derived 
by GPS, because the definition of the nodes is crucial for the estimation of these 
terms. Apart from that it is fair to state that Figure 2.10c (mean inclination) and 
Figure 2.11 look quite similar. There are prominent semi-annual perturbations in 
both cases, there is a semi-monthly term in both cases, and there is a resonance 
effect of very long period on top of that. In view of the close relationship o f  the 
corresponding perturbation equations (2.30c,d) this does not amaze us. 

Figure 2.10e shows the mean argument of perigee as a function of time. Again 
we have to point out that, in view of the small eccentricity, the motion of the node 
is not so dramatic for the orbit of the satellite: most of the effect would be counter- 
balanced by the perturbation in the mean anomaly. 
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Mean Semi-Major Axis a of PRN 14 
(Mid1992 - End of 1994) 
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Figu re  2.10a. Mean semi-major axis a of  PRN 14 (Mid 1992 - End of  1994). 
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Figure  2.10b. Mean eccentricity e of  PRN 14 (Mid 1992 - End of  1994). 
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Mean Inclination i of PRN 14 
( M i d 1 9 9 2  - End of 1994) 
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Figure 2.10c. Mean inclination i of PRN 14 (Mid 1992 - End of 1994). 

Mean Right Ascension of the Ascending Node of PRN 14 
(M id1992  - End of 1994) 
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Figure 2.10d. Mean right ascension of the ascending node f~ of PRN 14 (Mid 1992 - End of 
1994). 
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Mean Argument of Perigee of PRN 14 
( M i d 1 9 9 2  - End of 1994) 
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Figure 2.10e. Mean argument of perigee roof PRN 14 (Mid 1992 - End of 1994). 

Mean R.A. of Ascending Node minus linear drift of PRN 14 
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Figure 2.11. Mean R.A. of the ascending node of PRN 14 after removal of linear drift (Mid 
1992 - End of 1994). 
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2.2.5 The Parametrization of Satellite Orbits, Llnearizatlon of  the Orbit 
Determination Problem 

The developments and considerations in this section are based on the equations of 
motion of type (2.25). Let us mention, however, that we might as well use 
equations (2.30) as an alternative formulation of the equations of motion. 

In orbit determination we are never discussing the general solution of eqns. 
(2.25) but we are interested in a so-called particular solution of eqns. (2.25). Such 
a solution is uniquely defined, if, in addition to eqns. (2.25), initial conditions are 
given, as well. We are thus considering an initial value problem of the following 
kind (see eqns. (2.25), (2.26a)): 

1" 
= - G M  "-~- + P(r, v,q,,q: ..... qd ,t) (2.35a) 

r ( t o ) = r ( K l , K 2  . . . . .  K6 ,to ), # ( t o ) = v ( K t , K  2 . . . . .  K6 ,to) (2.35b) 

where we assume that the parameters K,,K~ ..... 1(.6 are the f~x osculating orbital 
elements at time to. 

In the equations of motion (2.35a) (in rectangular coordinates) we have assumed 
that d dynamical parameters q~,q2 ..... qd are unknown. In equations (2.35b) we 
described the initial position and velocity vectors (actually the component 
matrices) by the six osculating elements at time to. 

Our orbit determination problem has thus the following 6+d unknown 
parameters pbp2,...,pu, n = 6+d: 

{Pl,P2 ..... P , } = { K t , K 2  ..... K~,ql,q2 ..... q d } ,  n = 6 + d  (2.36) 

These parameters have to be determined using the observations made in a certain 
time interval I = (to,t0 by a network of tracking stations on ground. (Space borne 
GPS receivers might be used in addition.) 

If we are only considering the solution of the initial value problem (2.35a,b) in 
the time interval I = (to,tO we are also speaking of a satellite arc with an arc 
length e = It1 - tol. 

Usually in celestial mechanics the term orbit determination is used in a more 
restricted sense. One assumes that all dynamical parameters are known, i.e., that 
d = 0. This is the case, e.g., in the problem of first orbit determination in the 
planetary system, where from a short (few weeks) series of astrometric 
observations of a minor planet or a comet we have to derive a particular solution 
of the equations of motion without having any a priori information (other than the 
observations). 

Let us mention that alternatives to the formulation as an initial value problem are 
possible, too. As a matter of fact the most successful algorithm of ftrst orbit 
determination is due to C.F. Gauss (1777-1855), who based his considerations on 
a boundary value problem, i.e., he replaces the equation for the velocity in eqn. 
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(2.35b) by an equation for the position at a time t~ # to [Gauss, 1809]. We also 
refer to Beutier [1983] for more details. 

In the case of the GPS we may assume that most of the parameters of the force 
field on the right-hand side of eqns. (2.35a) are Imown. It should be formally 
acknowledged at this point that in GPS we are making extensive use of the 
information acquired by other techniques in satellite geodesy, in particular in SLR 
(Satellite Laser Ranging). Modeling techniques and the coefficients of the Earth's 
gravity field are essentially those established in SLR. On the other hand, when 
processing GPS observations, it is never possible to assume that all parameters are 
known. At present usually d = 2 dynamical parameters are determined by the IGS 
processing centers. They are both related to radiation pressure. 

We have thus seen that in the case of processing GPS data we have to solve a 
generalized orbit determination problem as compared to the standard problem in 
celestial mechanics. It is only fair to acknowledge that our orbit determination 
problem is simpler than the standard problem in the sense that we never have a 
problem to find a good a priori orbit. So, in principle, we should speak of orbit 
improvement (at times it might be even wise to speak of orbit modification). 

We may thus assume that we know an a priori orbit ro(t) which must be a 
solution of the following initial value problem: 

ro  ro = - G M " - T  + P(ro ,to ,ql0 ,q2o ..... qd0 ,t) =:f 
ro 

(2.37a) 

ro(to)=r(K,o,K2o ..... Keo,to), ro(to)=v(K,o,K=o ..... Keo,to) (2.37b) 

Let us now linearize the orbit determination problem: We assume that the 
unknown orbit r(t) may be written as a Taylor series development about the 
known orbit ro(t). As usual we truncate the series after the terms of order 1: 

,~" ~r(t) (p, 
r ( t ) = r o ( t ) + ~ - ~ p  �9 . - p , o )  (2.38) 

Equation (2.38) is the basic equation for the orbit determination process. It gives 
the unknown orbit as a linear function of the unknown orbit parameters pi, 
i=1,2 ..... n. 

We know that to(t) is the solution of the initial value problem (2.37a, b). We will 
now show that the partial derivatives of the approximate orbit are solutions of a 
linear initial value problem. We just have to take the derivative of eqns. (2.37a,b) 
for that purpose. But let us first introduce the following symbol for the partial 
derivatives of the orbit with respect to one orbit parameter p E {Pl, P2 ..... P, }: 

z(t)  = 3r~ (t) (2.39) 
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Taking the derivative of eqn. (2.37a) with respect to parameter p gives the 
following differential equation for z(t): 

~.= ,4 o . z + A  l �9 ~.+ Pp (2.40) 

where Ao and Al 
following way: 

are 3x3 matrices the elements of which are defined in the 

~fi i,k = 1,2,3 (2.40a) 
A~ 3ro, k 

~fi i, k = 1,2,3 (2.40b) AL~ ~foJ, 

~P 
~ m  PP c3p (2.40c) 

where all the partials have to taken at the known orbit position; f~ is the component 
no i of f. Equations. (2.40) are called the variational equations associated with 
the original equations of motion, which are also called primary equations in tiffs 
context. The initial conditions associated with eqns. (2.40) result by taking the 
derivative of the initial conditions (2.37b) of the primary equations: 

Z(to) = 0r o ~)v, (2.41) ,  to)= 

We can thus see that all of the partials in eqn. (2.38) are solutions of the same 
type of variational equations (2.40) but that the initial conditions are different. 

If p �9 (K 1 , K s ..... K 6 ) we have (2.42a) 

Pp = 0 and z(t o) ~ 0 , ~(t o) ~ 0 (2.42b) 

whereas f o rp  e {ql,q2 ..... qd } we have (2.43a) 

Pp ~ 0 and z(t o) = 0 , ~(t 0) = 0 (2.43b) 

In the case (2.42a,b) the variational equations (2.40) are even homogeneous. Let 
us also mention that for GPS orbits we may assume that At = 0 because at present 
no velocity-dependent forces are modeled, to our knowledge. 
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2.2.6 Numerical Integration 

In the present section we have to discuss methods to solve initial value problems of 
type (2.37a,b) and of type (2.40,41). The corresponding differential equations 
(2.37a) and (2.40) are ordinary differential equations, the latter is even linear. 

We know the true solution of eqn. (2.37a) in terms of trigonometric and 
elementary functions in the case of the two body problem. Unfortunately this is not 
true in the general case. Our initial value problems thus have to be solved 
approximately. In general one makes the distinction between 
a) analytical methods and 
b) numerical methods . 

In case (a) the perturbation equations (2.30) are used to describe the primary 
equations. The right-hand side of these equations has to be developed into a series 
of functions of the orbital elements and of time which may be formally integrated. 
Approximations are unavoidable in this process. The tools are those developed in 
perturbation theory: In first-order perturbation theory the orbital elements are 
considered as constant (time independent) on the right-hand side of the 
perturbation equations, in second-order theory the solutions of the first order are 
used on the right-hand side, in the theory of order n the solutions of order n-1 are 
used on the right-hand sides. In section 2.2.3 we have given very simple 
approximate solutions for some of the orbital elements using first order theory for 
the term C:o of the Earth's gravity field. It is a very important characteristic of 
these solution methods that the problem of finding the solution of a differential 
equation system is reduced to quadrature, i.e. to the problem of formally 
integrating known basic functions. It is most attractive that the solutions are 
eventually available as 0inear) combinations of known basic functions and that 
function values may be computed (relatively) easily for any time argument t (even 
if t is far away from the initial epoch to). Another nice characteristic has to be seen 
in the circumstance that - because the solution is available as a known function not 
only of time but also of the osculating elements (at time to) and of the dynamical 
parameters ql, q2 ..... qa - the partial derivatives with respect to the orbit parameters 
may be computed in a straightforward way, too. Thus, if we have solved the 
primary equations with analytical methods, we may also claim to have solved all 
variational equations associated with them. Analytical methods played an 
important role in the first phase of satellite geodesy. The first models for the 
Earth's gravity field stemming from satellite geodesy (SAO Standard Earth I, II, 
III) were all based on analytical developments of pioneers like I.G. Izaak, Y. 
Kozai, W.G. Kaula (see Lunquist and Veis [ 1966]). 

Analytical solution methods still play an important role in many domains of 
celestial mechanics and satellite geodesy. In particular, these methods are well 
suited for understanding phenomena like resonance (see, e.g., Hugentobler et al. 
[1994], Kaula [1966]). Analytical theories completely disappeared from the field of 
routine orbit determination, however. The reason may be seen in the extreme 
complexity of the method (every new force type asks for new developments), the 
difficulty to model phenomena like radiation pressure in the case of eclipsing 
satellites, and, mainly because of the growing precision requirements. Today we 
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have to ask (at least) for 1 cm orbit consistency even for very long arcs (think, 
e.g., of multiple months Lageos arcs). This accuracy requirement would ask for a 
very complex analysis indeed (many terms would have to be taken into account, 
high-order perturbation theory should be used). We will not consider analytical 
solution methods from here onwards. 

Our discussion of numerical solution methods (b) of the initial value problem is 
based on Beutler [1990] and on Rothacher [1992]. We should point out that the 
numerical solution of the initial value problem in satellite geodesy might serve itself 
as a topic for an one week series of lectures. We therefore have to limit the 
discussion to the basic facts. 

Let us fist discuss the solution of the initial value problem (2.37a, b). For the 
purpose of this section we may use the following simple notation: 

i ~ = f ( r , t , t )  (2.44a) 

r ( t  o) = r e, i'(to) = v,  (2.44b) 

Let us briefly characterize the following different techniques to solve the initial 
value problem (2.44a,b): 
a) The Euler Method 
b) Direct Taylor Series Methods 
c) Multistep Methods 
d) Runge-Kutta Methods 
e) Collocation Methods 

We assume that we want to have the solution (position and velocity vector) 
available at time t which is far away from the initial epoch to (by far away we 
understand that it will not be possible to bridge the time interval I = (to, t) with a 
truncated Taylor series of order < i0). 

The Euler Method. This method in a certain sense may be considered as the 
common origin for all other methods to be discussed afterwards. Most of the 
important aspects of numerical integration already show up in the Euler method 
[Euler, 1768]. As a matter of fact the Euler method plays an essential role in the 
existence and uniqueness theorems for the solutions of ordinary differential 
equations in pure mathematics. 

Euler divides the interval I in - let us say - m subintervals (Figure 2.12). In each 
of the subintervals he defines an initial value problem with the left interval 
boundary as init~tl epoch. In each of the subinterval he approximates r(t) by a 
Taylor series of order 2: 

tl t2 . . .  t~-l 

I----X . . . . . . . .  X . . . . . .  X . . . . . . . .  X . . . . . . . . .  X . . . . . . . . . .  X---X---X-- I 
to t 

Figure 2.12. Subdivision of time interval I = ( t~ t ) .  
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1 2 �9 
r i (t)  = r/o + (t - t/_ t) .  Vio + ~ .  (t - t/_ 1 ) �9 f (r/o, r/o, to) (2.45a) 

The corresponding formula for the velocity follows by taking the time derivative 
of eqn. (2.45a): 

i'i (t) = rio + ( t - t i _ l ) . f ( r l o , t i o , t o )  i = 1 . . . . .  m (2.45b) 

Equations (2.45a,b) define the approximate solution in the subinterval i. The 
initial conditions at the left initial boundaries are def'med in the following way: 

i = 1 : rio = r o, Vio = v o (2.46a) 

i>_l : rio = ri_l(ti_l), Vi0 =/'i_l(ti_l) (2.46b) 

Equation (2.45b) tells us that the errors in the velocities will be of the second 
order in the lengths of the subintervals (first omitted term in the Taylor series 
development). Without proof we mention that the error will also be of second 
order in r(t) for large It - tol. Therefore, by dividing each of the subintervals of I 
into two subinterval of equal length and by applying Euler's method to the grid 
with 2.m subintervals, we will get a solution which is four times more accurate 
than the solution corresponding to m subintervals. This procedure of finer and freer 
subdivisions of the interval I is in essence the procedure which is also used in the 
existence and uniqueness theorems. 

The idea of dividing the interval I into freer and finer subintervals and of defining 
subsidiary initial value problems at the left subinterval boundaries will be the same 
for all methods to be defined below. (The same procedure may be followed for a 
backwards integration; we just have to replace the left by the right interval 
boundary.) 

Therefore, from now on we only have to consider one of the subintervals (i.e., 
one of the initial value problems) in a small environment of the initial epoch. For 
the sake of simplicity of the formalism we will always consider the original initial 
value problem (2.44a,b). 

Direct Taylor Series Methods. This method may be very efficient if it is 
relatively easy to compute analytically the time derivatives of the function f(r , i ' ,  t). 
For the applications we have in mind this is an (almost) hopeless affair for higher 
than the fast derivative of f(..). The fast derivative may easily be computed if the 
matrices Ao(t), At(t) (see clef'tuitions (2.40a, b)) used to set up the variational 
equations are available: 

f (r , i - ,  t )  = Ao( t  ) �9 t + A~(t). f + O-~f 
0t 

For GPS satellites we may even write (no velocity dependent forces) 
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~ f  i '(r, t) = Ao( t )  i- +~-t  

where the partial derivative with respect to t might, e.g., be computed nnmerically. 
The next derivative would require the computation of the fast time derivative of 
AdO - a lost case! 

The direct Taylor series method would just add the terms of higher order in 
eqns. (2.45a, b). The advantage over the Euler method resides in the fact that the 
error is no longer proportional to the square but to higher orders of the lengths of 
partial intervals. 

Multistep Methods. Historically these methods were developed in the 
environment of interpolation theory. It is generally assumed that a series of  q-1 
error-free function values 

f(r(t, ~/'(t,),t, ), k = -(q- 2),-(q- 3),...,0 (2.46a) 

is available initially; no two time arguments are allowed to be identical. We may, 
e.g., imagine that such a series was established using the Euler method with a very 
f'me partition of the intervals. The approximating function r '  (t) of the true solution 
is now defined as a polynomial of degree q: 

q 

r ' ( t )  = Z ai" ( t -  t o)' (2.46b) 
i=l 

where the coefficients ai, i=I ..... q+l are def'med as follows: 

q 

r"(tk ~= Z i. (i- I)-ai. (t, -t o)'-2 = f(tk,r(t ,),/.(t k )) 
i=2 

k = - (q  - 2),-(q -- 3) ..... 0 

(2.46c) 

a o = r o, a 1 = v o (2.46d) 

Obviously r'(t) has the same values as r(t) at time to (the same is true for the fast 
derivatives at epoch to). The second derivative of r'(t), a polynomial of degree q- 1, 

is the interpolation polynomial of the function values (2.46a). The coefficients ai, 
i=2,3 ..... q are obtained by solving the systems of linear equations (2.46e). There is 
one such system of linear equations for each of the three components of r(0.  As 
we see from eqns. (2.46c) the same coefficient matrix results for each component. 

Once the coefficients a~, i=(0),(1),2 ..... q are determined we may use eqn. (2.46b) 

to compute the values r ' ( t , ) , i"( t t ) .  This allows us to compute the right-hand side 

of eqn. (2.44a) for the time argument t,. This already closes the loop for the 
simplest multistep method (an Adams-type method). Accepting 

f(t I ,r(q ), i'(q )) = f(q ,r'(t t ), U(q )) 
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as the finai function value for f(...) at time tl, we may shift the entire integration 
scheme by one partial interval and solve the initial value problem at time t~. If we 
do that we have used a pure predictor integration procedure. We also may refine 
the function value f(...) at time t~ by using the interpolation polynomial at times 
t_(q_3) ..... t I to solve the initial value problem at time to. In this case we would 

speak of a predictor-corrector procedure. 
Multistep methods may be very efficient. This is true in particular if we use 

constant step size, i.e., if all partial intervals are of the same length. This actually 
implies that the coefficient matrix of the system of linear equations (2.46c) is 
identical in every subinterval. In celestial mechanics constant step size is attractive 
in the case of low-eccentricity orbits, i.e., for eccentricities e ___ 0.02. This actually 
is the case for GPS satellites. 

Runge-Kutta Methods. Sometimes these methods are also called single step 
methods in particular when compared to the multi-step methods discussed above. 
Runge-Kutta methods are very attractive from the theoretical point of view and 
they are very simple to use, too. This is the main reason for their popularity. 

As opposed to the other methods discussed here Runge-Kutta methods never try 
to give a local approximation of the initial value problem in the entire environment 
of the initial epoch to. Their goal is to give an approximation for the solution of 
the initial value problem for exactly one time argument to+h. 

Runge-Kutta methods are equivalent to a Taylor series development up to a 
certain order q. Runge-Kutta algorithms usually are given for first-order 
differential equations systems - which do not pose any problems because it is 
always possible to transform a higher-order differential equation system into a 
first-order system. 

The original Runge-Kutta method is a method of order 4, i.e., the integration 
error is of order 5. This means that by reducing the step-size h by a factor of 2 the 
integration error is reduced by a factor of 25 = 32. Runge-Kutta methods were 
generalized for higher integration orders, too. Moreover, the method was adapted 
for special second-order systems (no velocity dependent forces [Fehlberg, 1972]). 

Let us comment the classical Runge-Kutta method of order 4. It approximates 
the following initial value problem: 

y = f ( y , t )  (2.47a) 

Y(to ) = Yo (2.47b) 

The algorithm 

y(t o +h)= Yo +l'(kt +2"k2 +2"k3 +k,) (2.47c) 

where: 
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kt =h'f(to,Yo) 

k 2 = h ' f ( to  + h / 2 , y  0 + k l / 2 )  

k 3 = h ' f ( t  o + h / 2 , y  o +k2/2)  

k 4 = h.f(t o +h,y o +k3) 

(2.47d) 

The solution of the initial value problem for time to+h is thus given as a linear 
combination of function values f(...) in the environment of the point (to,Yo). 
Obviously the function values have to be computed in the order kt,k2,k3 and then 
1~ because it is necessary to have the function values kl,k2,...,k,~ available to 
compute ki. 

The algorithm (2.47c,d) is a special case of the general Runge-Kutta formula of 
order 4: 

y(t o +h)=  Yo +al "kt +a2 "k2 +a3 "k3 +a, .k 4 (2.48a) 

where: 

kl =h'f(to,Yo) 

k 2 = h . f ( t  o +r 2 "h,y 0 +13 l ' k l )  

k3 =h'f(to +r Yo +~2"k t  +Y2 "k2) 

k, =h ' f ( t  0 +c~,-h,y 0 +l~ 3"k~ +Y3"k2 + ~3"k3) 

(2.48b) 

where the coefficients a...,~..,13...,T..., and 8... have to be selected in such a way 
that the Taylor series development of y(to+h) is identical with the series 
development of eqn. (2.48) up to terms of order 4 in (t-to). It is thus easy to 
understand the principle of the Runge-Kutta method. It is also trivial to write 
down the equations corresponding to eqns. (2.48b) for higher than fourth order. 
The actual determination of the coefficients, however, is not trivial at all: The 
conditions to be met are non-linear, moreover the solutions are not unique. For 
more information we refer to Fehlberg [1972]. 

Let us again point out that Runge-Kutta methods are not efficient when 
compared to multistep methods or collocation methods, but they are extremely 
robust and simple to use. As opposed to all other methods they do only give the 
solution vector at one point in the environment of the initial epoch. 

Collocation Methods. They are closely related to multistep methods. They are 
more general in the following respect: 
(1) It is not necessary to know an initial series of function values 1'(...). 



77 Gerhard Beutler 

(2) Multistep methods may be considered as a special case of collocation 
methods. 

Collocation methods may be used like single step methods in practice. In 
addition the function values and all derivatives may be computed easily after the 
integration. 

As in the case of multistep methods the approximating function (for each 
componen0 of the solution vector is assumed to be a polynomial of degree q: 

q 

r'(t)~= E a, .(t-to)'  (2.49a) 
i=1 

Here, the coefficients are determined by asking that the approximating functions 
has the same initial values at time to as the true solution, and that the 
approximating function is a solution of the differential equation at q- 1 different 
instants of time t~: 

q 

~(t, ~= ~_~i.(i - l)a, .(t, -t o)'-2 = f(t,,r'(t, ~'(t, )) 
i=2 

k = 0,1 ..... q - 1 (2.49b) 

a 0 = r 0, a I = v 0 (2.49c) 

The system of condition equations (2.49b) is a non-linear system of equations 
for the determination of the coefficients a~. It may be solved iteratively, e.g., in the 
following way: 

q 

~"+l(tk~= E i ' ( i - 1 ) . a :  § . ( t~-ko) i =f(t~,r't(tk),~'t(tk) ) 
i=2 

where I stands for the l-th iteration step. 
In the first iteration step we might, e.g., use the Keplerian approximation for r(t) 

and r(t) on the right-hand side, or, more in the tradition of numerical integration, 
the Euler approximation. The efficiency of the method depends of course to a large 
extent on the number of iteration steps. In the case of GPS orbits time intervals of 
one to two hours may be bridged in one iteration step essentially by using fast 
approximation stemming from first-order perturbation theory and methods of order 
q=10,11,12. 

As we pointed out at the beginning of this section we have to limit the discussion 
of numerical integration to the key issues. There are of course many more aspects 
which should be covered here (e.g., the distinction between stiff/non-stiff 
equations). Let us conclude this section with a few remarks concerning the 
problem of automatic step size control and the integration of the variational 
equations. 
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Automatic Step-Size Control. The problem is very difficult to handle for a 
broad class of differential equations, because, in general, we do not know the 
propagation of an error made at time t~ to a time tj, j >> i. 

In satellite geodesy we are in a much better position. We know that in the one- 
body problem the mean motion is a function of the semi-major axis only. The error 
analysis given by Brouwer [1937] is still the best reference. It thus makes sense to 
ask that the change d(a) in the semi-major axis a associated with the numerical 
solution of the initial value problem at time t~ should be controlled in the following 
s e ~ :  

Id(a~=l~,~r,.drk+~,-~k.dvkl=~-~--~k.dv k <e (2.50) 

where e is a user defined small positive value. For multistep and collocation 
methods we may use the last term (term with index q of the series (2.46b) resp. 
(2.49a)) to have a (pessimistic) estimation for the error dvk at time ti. In practice 
automatic step sign control would lead to much smaller step sizes near the perigee 
than near the apogee. For GPS satellites step size control is not of vital importance 
because the orbits are almost circular. We refer to Shampine and Gordon [1975] 
for a more general discussion. 

Integration of the Variational Equations. In principle we might skip this 
paragraph with the remark that each of the methods presented for the solution of 
the primary equations (2.44a,b) may also be used for the integration of the 
variational equations (2.40,41). This actually is often done in practice. Let us 
mention, however, that there are very efficient algorithms making use of the 
linearity of equations (2.40). The system of condition equations (2.49b) becomes, 
e.g., linear for such problems. It is thus not necessary to solve this system 
iteratively, it may be solved in one step. 

Let us add one more remark: whereas highest accuracy is required in the 
integration of the primary equations, the requirements are much less stringent for 
the variational equations. In principle we only have to guarantee that the terms 

(2.51) 

are small compared to the orbit accuracy we are aiming at (pi is one of the orbit 
parameters, p~o is the known a priori value). Because the quantifies dp~ are 
becoming small when the orbit determination is performed iteratively, rather crude 
approximations for the partials z~(t) are sufficient. In the case of the GPS even the 
Keplerian approximation is sufficient for the partials with respect to the initial 
conditions for arc length up to a few days! The partial derivatives for the two body 
problem may be found in Beutler et al. [ 1995]. 
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2.3 THE PERTURBING FORCES ACTING ON GPS SATELLITES 

2.3.1 Overview 

The discussions in the overview section are based on Rothacher [1992]. Here we 
consider essentially the same forces as Rothacher [1992] and as Landau [1988) 
before him. We left out ocean tides, albedo radiation pressure, and relativistic 
effects from our considerations because the effects are very small for arc lengths 
up to three days. Both authors present the (typical) accelerations for these terms 
and the orbit error after one day if the effect is neglected and identical initial 
conditions are used. 

Table 2.1 gives an overview of the important perturbing accelerations and the 
effect of neglecting these terms after one day of orbit integration. In addition we 
include in Table 2.1 the rms error of an orbit determination based on 1 day, resp. 3 
days of pseudo-observations (geocentric x, y, and z positions of the satellite every 
20 minutes) if the respective terms are not included in the force model. As in the 
routine environment we characterize each orbit by 8 parameters (six for the initial 
conditions, two for the radiation pressure). 

From Table 2.1 we conclude that all perturbations with the exception of 
radiation pressure should be known well enough from satellite geodesy using low 
Earth orbiters. In view of the fact that all gravitational parameters are known with 
a relative precision of about 10 .6 we conclude that it does not make sense to solve 
for such parameters in an orbit determination step in the case of GPS satellites. 

Due to the shape of the satellite and due to the fact that attitude control never 
can be done without an error the same is not true for the radiation pressure terms. 
We always have to include or model these effects when dealing with a particular 
satellite arc. 

Let us now consider resonance and radiation pressure in more detail. 

2.3.2 The Radiation Pressure Models 

For a satellite absorbing the entire solar radiation, the perturbing acceleration due 
to radiation pressure may be written as [Rothacher, 1992]: 

aa =Ix.{P,.cr.A.a 2. r - r ,  

m I r - r , I  3 
(2.52) 

where: 
ad 

A/m 

is the acceleration due to the direct radiation pressure, 
is the eclipse factor (= I if the satellite is in sunlight, = 0 if the 
satellite is in the Earth shadow), 
is the cross-section area of the satellite as seen from the Sun divided 
by its mass, 
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Table 2.1. Perturbing Acceleration and their effect on satellite orbits: Net effect when used/left 
out in the equations of motion and after an orbit determination using one resp. three days of data. 

Per turbat ion Acceleration Orbi t  e r ror  rms of orbit determination 
[m/s 2] after I day [m] 

[m] using 1 day using 3 days 
of observations 

Kepler term of 
Earth potential 0.59 ** ** ** 

Term Czo 5-10 "s 10'000 1'700 5'200 

Other terms of 
Earth potential 3.10 .7 200 15 50 

Attraction by 
the Moon 5. I0 "~ 3'000 100 300 

Attraction by 
the Sun 2. l i f  e 800 45 150 

Fixed body 
tides 1-10 -9 0.30 0.03 0.08 

Direct radiation 
pressure 9.10 .8 200 0.0 0.0 

y-bias 6.10 "1~ 1.5 0.0 0.0 

as 

Ps = S/c 

c~ 
r,r, 

is the astronomical unit (AU), 
is the radiation pressure for a completely absorbing object with 
A/m = 1 at the distance of one astronomical unit. (S is the solar 
constant, c the velocity of light), 
is a reflection coefficient, 
are the geocentric coordinates of satellite and Sun respectively. 

The same formula is valid for a perfectly spherical satellite even if we allow for 
absorption and reflection of solar radiation. The difference would only consist of 
different numerical values for the reflection coefficient C,. 

The perturbing acceleration due to radiation pressure (we also speak of direct 

radiation pressure in this context) always points into the direction Sun ~ satellite 
in model (2.52). For spherical satellites the ratio Alto may be assumed as constant. 

For GPS satellites the cross section area A as seen from the Sun is attitude 
dependent. This cross section area thus will be variable over one revolution, there 
also will be variations over the year due to the changing angle between the normal 
to the orbital plane and the unit vector pointing to the Sun. 

Moreover one has to take the reflective properties of the satellite into account. 
As soon as we allow for reflection there also are acceleration components 
perpendicular to the direction Sun ~ satellite. The most commonly used radiation 
pressure models for GPS satellites may be found in Fliegel et al. [1992]. The 
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authors give relatively simple formulae for the radiation pressure in a spacecraft 
fixed coordinate system (see Figure 2.13, taken from Rothacher [1992]): 

Assuming perfect attitude control Fliegel et al. [1992] show that the resulting 
force always lies in the (x, z) plane. They give simple algorithms to compute the 
force components in x- and z- directions as a function of one paramter B only. B is 
the angle between the positive z axis and the direction from the Sun to the satellite. 
The models are called Rock4 (for Block I satellites) and Rock42 models (for 
Block II satellites). They are recommended in the IERS standards [McCarthy, 
1992]. The distinction is made between the standard model or S-model (no longer 
recommended by the authors) and the T-model which includes thermal re-radiation 
of the satellite. 

It is worthwile pointing out that in practice the differences between the two 
Rock models (S or T) and the much simpler model assuming a constant 
acceleration in the direction Sun ---> satellite are very small, provided either a direct 
radiation pressure parameter, or (what is equivalent), a scaling parameter for the 
Rock - models is estimated. The differences between the three models are of the 
order of 2 % or the total radiation pressure only (i.e., of the order of the y-bias, see 
Table 2.1 and the discussion below). 

So far we assumed that the GPS attitude control is perfect. In theory the y-axis 
of the satellite (Figure 2.13) should always be perpendicular to the direction Sun 
---> satellite. The attitude control is based on a feedback loop using solar sensors, it 
is performed by momentum wheels. These momentum wheels rotate about the x- 
axis (with the goal that the z-axis is always pointing to the Earth) and about the z- 
axis (with the goal to have the y-axis perpendicular to the direction to the Sun). If 
the solar panels axes are perfectly normal to the direction to the Sun, there is no y- 
bias. In all other cases there will be a net force in the direction of the y-axis. It 
proved to be essential to solve for one so-called y-bias for each satellite arc of one 
day or longer. 

The perturbing acceleration due to the y-bias ~ has the following form: 

ay = It. P2" ey (2.53) 

where ay is the acceleration in the inertial space, ey is the unit vector of the solar 
panels' axis in inertial space, and la is the eclipse factor. 

Let us point out that the integration has to be initialized at the light-shadow 
boundaries in order to avoid numerical instabilities. 

In the section 2.3.4 we will present values for the direct radiation pressure and 
for the y-bias based on 2.5 years of results gathered at the CODE processing 
center. 

2.3.3 Resonance Effects in GPS Satellite Orbits 

All terms with m = 2,4 ..... n = 2,3,4 .... of the Earth's gravitational potential (2.24) 
are candidates to create resonance effects because identical perturbing 
accelerations result after each revolution for these terms (at least in the Keplerian 
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S 
Figure 2.13. The spacecraft-fixed coordinate system (x, y, z). 

approximation). A full discussion of the resonance problem is rather complex. 
Below we present a geometrical discussion only for the semi-major axis a and only 
for two terms (n = 2, m = 2 and n = 2, m = 3). For a more complete treatment of 
the problem we refer to Hugentobler and Beutler [1994] and to Hugentobler 
[1995]. 

The contributions due to the terms (n = 2, m = 2) and (n = 3,m = 2) may be 
written as follows (we are only interested in the mathematical structure of  the 
terms, not in the numerical values of the coefficients) : 

Vzz = cs22. r -3. cos ~. cos(22L + O22) (2.54a) 

v,2 = ~=~2 �9 ~-' �9 c o s ~ .  ~n(2~) .  co=(2~, + e,, ) (2.54b) 

Considering only circular orbits (i.e., using the approximation e = 0) we may 
write down the following simplified version of the perturbation equation for a (see 
eqn. (2.30a)): 

2 
ti = --. S (2.54c) 

n 

where n is the mean motion of the satellite, S is the pertubing acceleration in 
tangential direction (circular motion). Resonance will only show up i f  the mean 
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value o f  S over one revolution will significantly differ from zero. The mean value 
of d over one resultion simply may be approximated by 

a = 2 .  ~- (2.54d) 
n 

In order to compute this mean value S" we have to take the derivatives of the 
expressions (2.54a,b) with respect to r, L, and 13. We conclude right away that the 
derivative with respect to r is of no importance in this context (the resulting 
acceleration is by definition normal to the along-track component). We are thus 
left with the partials with respect to L and 1~ as contributors to S. Let us fast 
compute the accelerations a~ and a S parallel and normal to the equator due to the 

potential terms (2.54a,b) (again we are not interested in the numerical values of the 
coefficients): 

n = 2 ,  m=2: 
ax = cs~2" cos~. sin(2~, + 022) 

aa = cs~'2" sin 13. cos(2~, + 022 ) 

n = 3 ,  m = 2  

a~ = cs;2. sin213, sin(2L +032 ) 

(2.54e) 

aa = cs3" 2 �9 cos~. (3cos213 - 1)-cos(2~, + 032 ) 

These accelerations have to be projected into the orbital plane. Let us look at the 
geometry in an arbitrary point P (corresponding to a time argument t) of the orbit. 
Let us furthermore introduce in point P the angle y between the velocity vector at 
time t and the tangent to the sphere with radius a in the meridian plane and 
pointing towards the north pole (see Figure 2.14). 

The S component in point P is computed as 
S = al~ . cos ' /+az .  sin'/ 

Let us assume that at time to the satellite is in the ascending node and that the 
geocentric longitude of the node is ~ at time to. It is relatively easy to prove that 
S- = 0 for the term (n = m = 2). For the term (n = 2, m = 3) we have 

-~ : 1 .  cs~ .  sini. (1 - 2 cos- 3cos 2 i). cos(2- ~,o +* 32 ) 
4 

=..8-.15 GM.k(a'~3.1--L.a ) a 2 J2 . s in i . (1 -  2 . c o s i -  3cos 2 i).cos(2~, o +*32) 

(2.540 
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Pole 

S 

Figure 2.14. Accelerations a x, al~ and S at an arbitrary point P of the orbit. "t is the angle 
between the velocity vector and the tangent vector in P pointing to the north pole. 

Relation (2.54f) reveals that the satellites in one and the same orbital plane 
actually will have significantly different drifts in the mean semi-major axis. As a 
matter of  fact these drifts must be significantly different if the satellites are 
separated by 120 ~ nominally. Examples may be found in the next section. 

Let us conclude this section with a few remarks going beyond our geometrical 
treatment of  the problem: 

�9 Hugentobler and Beutler, [1994] show that the term with n = 2, m = 3 
actually is the dominant contributor to resonance for GPS satellites. 

�9 Two other terms, n = m = 2 and n = m = 4 also give significant 
contributions (about a factor of  5 smaller than the term n = 2, m = 3). Why 
did we not discover the term n = m = 2? Simply because we did not 
consider the radial perturbation component R in the perturbation equation 
(use of  eqn. (2.54c) instead of  eqn. (2.30a)). The term n = m = 2 gives rise 
to a term of  first order in the eccentricity e, whereas the other two terms 
are o f  order zero in e. 

�9 In Figure 2.10a we get the impression that the mean drift in a stays more  or  
less constant over a time period of  2.5 years. The impression is correct, but 
we have to point out that the mean drift over long time intervals (let us say 
over 25 years) must average out to zero. As a matter of  fact PRN 14 is 
artificially kept at this extremely high drift rate because of  the manoeuvres! 
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These manoeuvres prevent the satellite from significantly changing the 
longitude Xo of the ascending node! 
The actual periods for the periodic changes of a are different for different 
satellites. Typically these periods range between 8 and 25 years 
[Hugentobler, 1995]. 
Figure 2.15 shows the development of the semimajor axis for PRN 12. This 
spacecraft, an old Block I satellite, was not manoeuvred in the time period 
considered due to a lack of fuel. We see a significant change of the drift in 
a from 2.1 m/day to 3.6 m/day. Figure 2.15 illustrates that the changes in 
the semi-major axes due to resonance are not secular, but of long periods 
(if the satellites are no longer manoeuvred). 
Resonance phenomena also exist in the other orbital elements (see section 
2.2.4) but they are not important for the arrangement of the satellites in the 
orbital planes. 

2.3.4 Development of the Satellite Orbits Since mid 1992 

The material presented in this section is extracted from results produced by the 
CODE Analysis Center of the IGS, in particular from the annual reports for 1992, 
1993, and 1994. Let us start this overview with Table 2.3 containing the essential 
elements of the satellite constellation (Block II satellites only) on day 301 of year 
1994. 

We see that in general the six orbital planes are very well defined (inclination i 
and right ascension of the ascending node fl). The distribution of the satellites 
within the orbital planes is identical with that given in Figure 2.1. The longitude of 
the ascending node is of course no orbital element. It was added to Table 2.2 for 
later use in this section. 

Table 2.3 tells us that manoeuvres are rather frequent events in the life of the 
satellites (about one per year on the average). In general the semi-major axis is 
changed by 1.5 -3 km by such a manoeuvre. In general only the semi-major axis 
and the argument of perigee are dramatically changed by a manoeuvre. 
Perturbation equation (2.30a) tells us that the impulse change must take place in 
the orbital plane, more specifically in S-direction to achieve that. Since we know 
the masses of the satellites we even might calculate the impulse change involved in 
the individual manoeuvres, and, with some knowledge of chemistry (horribile 
dictu) even the fuel which was used during such events. 

The mean values for d or the Block II satellites were pretty stable during the 
time period considered. In view of the discussions in the preceeding section we 
might be tempted to display the mean drifts in a as a function of the argument 2~,. 
If actually what we said at the end of the preceding paragraph is true, we would 
expect a sinusoidal change of a as a function of the mentioned argument. Figure 
2.16 shows that the behaviour is as expected. Taking the coefficients C32 and $32 of 
the potential field (2.25) and computing the phase angle ~2 we even are able to 
verify that the maxima, minima, and zero crossings occur roughly at the corrects 
values of the argument. 
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Figure 2.15. Development of the semi-major axis a for PRN 12 (mid 1992 to end of 1994). 

Table 2.2, Mean orbit elements of Block II samllites on day 301 of year 1994, 

M'EAN EI.I~MENTS FOR ATJ. ~AT]~ .1JTEs Day 301 
SAT a e i fl  
r~ [m] [(leg] [aeg] 

of Year 1994 
co Uo  - 

[(leg] [(leg] 
Longitude of 
ascending node 
[deS] 

7 C 26561622 0.00685 55.2 12.1 208.5 151.2 52 
31 C 26560679 0.00507 55.2 12.2 37.1 256.5 104 
2g C 26560215 0.00486 55.6 12_6 170.2 287_6 120 
24 D 26561289 0.00580 55.8 72.7 235.9 47.1 60 
4 D 26560292 0.00312 55.2 73,1 288.2 84.9 80 
15 D 26560152 0.00699 55.5 75,0 103.4 177.0 127 
17 D 26560561 0.007g~ 55_6 77.0 1148 307.8 195 
14 E 26560461 0.00302 55.1 134.5 171.5 107.0 152 
21 E 26560589 0.01152 54.7 132.7 164.4 215.2 236 
23 E 26560573 0.00870 54.9 134.7 225.1 248.0 222 
16 E 26560643 0_00064 54,9 135.1 285.1 341_4 270 
18 F 2,6560649 0.00589 54.0 191,2 77,8 16.7 164 
29 F 26561616 0.00487 54.7 191.2 254.5 53.6 182 
1 F 26559252 0.00345 54.7 193.7 290.0 147.8 232 
26 F 26560~R O.00R'~4 _54.9 192.5 307.4 260_7 2R7 
25 A 26560728 0.00567 54.1 251.3 171.27 79.6 255 
9 A 26560768 0.00315 54.5 252.8 332.68 180.9 307 
27 A 26560634 0.01092 54.3 252.1 142.84 286.4 359 
19 A 26559916 0_00044 53_5 2 5 1 _ 5  201_00 318.1 14 
20 B 26561320 0.00462 54.9 311,6 81.21 87.7 319 
5 B 26561417 0.00223 54.7 311,9 236.93 120.8 336 
2 B 26560263 0.01364 54.6 311,0 210.81 221.9 26 
22 B 26560566 0 flf1759 54_6 31 l.q 347_62 359.4 96 
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Table  2.3. Satellite events since mid 1992, including the manoeuvres as they were detected at 
CODE processing centers, the change in the semi-major axis associated with the manoeuvres, 
and the mean rate of change of a over the time period mid 1992 to end of 1994. 

"n" : New satellite included into the CODE processing) 

"+" Old satellite excluded from the CODE processingJ Flags" F 

PRN Plane Processed F # Manoeuvre da da/dt 
since until Epochs 

09 A 1993 7 25 1994 12 31 n 1 1994 4 20 2113 m -3.1 m/d 
19 A 1992 7 26 1994 12 31 2 1993 1 16 1318 m -1.8 m/d 

1994 12 15 1467m 
27 A 1992 9 30 1994 12 31 n 1 1994 3 3 1701 m -2.7 m/d 
25 A 1992 726  19941231 2 1993 3 25 -2334m 6.0m/d 

1994 3 17 -2121m 
02 B 1992 7 27 1994 12 31 1 1993 8 30 -572 m 0.4 m/d 
05 B 1993 928  1994 12 31 n 1 1994 9 2 2980m -7.5m/d 
20 B 1992 7 26 1994 12 31 2 1993 4 13 2402 m -5.1 m/d 

1994 8 16 2755 m 
22 B 1993 4 7 1994 12 31 n 2 1993 5 27 526m 6.5 m/d 

1994 2 9 -3025 m 
06 C 1994 327 19941231 n 2 1994 4 11 53462m -5.4m/d 

1994 4 16 31744 m 
07 C 1993 6 18 1994 12 31 n 2 1993 12 16 594m 4.2m/d 

1994 11 10 -2386m 
28 C 1992 7 26 1994 12 31 1 1992 12 16 788 m -0.7 m/d 
31 C 1993 429  19941231 n 1 1993 I1 1 -2020m 4.3m/d 
04 D 19931121 19941231 n 1 1994 3 28 -2695m 7.0m/d 
15 D 1992 726  19941231 1 1993 8 2 1730m -2.5m/d 
17 D 1992 726  19941231 1 1994 1 20 720m -0.6m/d 
24 D 1992 7 26 1994 12 31 2 1993 9 27 -2539 m 5.3 m/d 

1994 11 29 -2334m 
14 E 1992 7 26 1994 12 31 2 1993 3 5 2579 m -6.9 m/d 

1994 4 27 2938 m 
16 E 1992 7 26 1994 12 31 2 1992 12 4 -2660m 6.7m/d 

1994 2 2 -3044 m 
23 E 1992 7 26 1994 12 31 1 1993 9 20 -1678 m 2.6 m/d 
21 E 1992 7 26 1994 12 31 0 0.4 m/d 
01 F 1992 12 7 1994 12 31 n 1 4.0 m/d 

1994 10 11 -2257 m 
18 F 1992 7 26 1994 12 31 2 1993 3 17 2569 m -5.8 m/d 

1994 5 6 2425 m 
26 F 1992 7 26 1994 12 31 I 1993 8 12 -2381 m 4.2 m/d 
29 F 1993 1 4 1994 12 31 n 3 1993 5 20 1914 m -4.4 m/d 

1993 9 7 -1161m 
1993 11 4 1528m 
1994 10 28 2006 m 

Block H Satellites 

03 1992 7 26 1994 04 07 + 0 0.2 m/d 
II 1992 7 26 1993 5 4 + 0 -0.1 m/d 
12 - 1992 7 26 1994 12 31 0 -2.9 m/d 
13 - 1992 7 26 1993 12 31 + 0 1.5 m/d 
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Figure 2.16. Drifts in a as a function of 2.Xo, ( ~ =  longitude of ascending node). 

Radiation pressure parameters (rpr-parameters) are estimated by all IGS 
processing centers. Each center has uninterrupted series of daily rpr-parameters 
available for each GPS satellite since the start of the 1992 IGS test campaign on 21 
June 1992. These parameters are (a) scale factors for the Rock models used or, 
alternatively, direct radiation pressure parameters on top of the Rock models, and 
(b) y-biases for each satellite and for each day since the start of the 1992 IGS test 
campaign. 

It was mentioned before that in practice, in consideration of the short arcs (1-3 
days) usually produced, the differences between different models for the direct 
radiation pressure (Rock4/42, versions S or T, or no a priori model) are small It is 
even possible to reconstruct from one series of results based on a priori model A 
the parameters for a series based on a priori model B without  actually reprocessing 
the entire series. 

Figure 2.17a contains the result of such a reconstruction for PRN 19, a Block II 
satellite. Based on the results of the CODE processing center, which uses 
Rock4/42 (Type S) as a priori rpr model, the direct radiation pressure parameters 
corresponding to the no (zero) radiation pressure model were computed. 

The mean value for the acceleration due to direct solar radiation is about 
1.10"Tm/s 2. Figure 1.17a thus shows the result corresponding to radiation pressure 
model (2.52) (where the variation due to the eUipticity of the Earth's orbit around 
the Sun was not  taken into account). The annual oscillation actually is caused by 
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Figure 2,17a. Direct radiation pressure for PRN 19 in m/s 2. 

the eUipticity of the Earth's orbit: the maximum is in January, the minimum in June, 
the expected variation is 

rp r (max)-  rpr((min) 

(rpr(max)+  pr(m n)) 
1 1 

( l - e ) :  ( l + e )  2 
- -  = 4. e -- 0.067 (2.55) 

So, we have just rediscovered the eUipticity of the orbit of the Earth ... ! This 
signature may of course be taken into account as indicated by eqn. (2.52). Let us 
mention that the rpr values gathered during eclipse seasons were taken out in 
Figures 2.17 - the results were somewhat noisier. 

Figure 2.17b shows that the dominant characteristic after removing the annual 
variation is roughly semi-annual (solid line, best fitting curve p.a21r(t) 2 subtracted). 
The residuals are clearly correlated with the angle 2.y, where y is the angle 
between the normal to the orbital plane and the direction from the Earth to the 
Sun. The dotted line shows the residuals after taking out in addition the semi- 
annual term (best fitting trigonometric series truncated after the terms of order 2 in 
the argument 2.x). 

Figure 2.17b demonstrates that the direct radiation pressure is constant in time 
over rather long time intervals. The semi-annual variations are of the order of a 
few units in 10~~ 2. We are thus allowed to conclude that direct radiation 
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Figure 2.17b. Direct radiation pressure (a) after removing annual term of the form 

(a 2 / r 2 ) (solid line), (b) after removing in addition the semi-annual variation (dotted P0" 
line). 

pressure may be predicted in a quite reliable way. This is also underlined by Figure 
2.18 which shows the mean values for the direct rpr-parameters over the time 
interval of 2.5 years for all GPS satellites processed in this time by the CODE 
processing center. We see in particular that the rpr parameters are quite consistent 
within the classes of Block II and Block IIA spacecrafts. PRN 23 is an exception: 
it seems that the solar panels are not fully deployed - the result is a somewhat 
smaller value for the direct radiation pressure. We should mention that the orbit of 
PRN 23 is particularly difficult to model. 

Let us have a look at the y-biases. We start with Figure 2.19 corresponding to 
Figure 2.17a, which gives the y-biases as a function of time for PRN 19. First of all 
we see that the y-biases are much smaller in absolute value than direct radiation 
pressure parameter (about a factor of 200). Nevertheless the y-bias is an important 
perturbing acceleration because the mean value of the S-component of the 
perturbing acceleration is not zero over one revolution. 

The y-biases seem to be quite consistent until mid 1994. Afterwards the mean 
values are quite different before and after the eclipse seasons. This behaviour might 
be caused by the change in the attitude control of the satellites [Bar Sever et al, 
1994]. Other satellites show a similar behaviour. 



91 Gerhard Beutler 

LU 

9 

8 ~ 

II 

11 

10 

Mean value for direct mdialJon pressure parameters 
over a time interval of 2.5 years 

§ 

§ § 

7 . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  i . . . . . . . . .  , . . . . . . . . .  , . . . . .  , . . . .  , 

0 5 10 15 20 25 30 35 

PRN - Number  

I + + + Block I * �9 �9 Block II * * * Block IIA 

Figure 2.18. Mean values for direct radiation pressure parameters over a time interval of 2.5 
years. 

The y-b ias  for PRN 19 in rn/s 2 
(Mid 1992 - End of 1994) 

- 2 t  

- 3 t  

- 4 t  

-5 t  

- 6 t  

- 7 - t  . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  

20O 3OO 4O0 500 6OO 7OO 8OO 9OO IOO0 
Day of 

1100 

Figure 2.19. The y-bias for PRN 19 mid 1992 - end of 1994 in m/s 2 



2. GPS Satellite Orbits 92 

All y-biases seem to be slightly negative, the absolute values are of the order of a 
few units of 10 ~~ m/s 2. It is of little value to reproduce a figure with the mean 
values for the y-biases for all GPS satellites. There are significant changes in time 
(like, e.g., those in Figure 2.19) and for some satellites there are also significant 
differences for the cases 7 < 90~ and 7 > 90~ These results have to be analysed in 
more detail before coming up with useful predictions. 

2.4 GPS ORBIT TYPES 

The information concerning Broadcast and Precise Orbits presented in this section 
was extracted from Rothacher [1992], Hofmann-Wellenhof [1994], van 
Dierndonck et al. [1978], the information concerning the IGS stems from papers 
listed in the references of this chapter. We refer to these references for more 
information. Below we have to confine ourselves to a short outline of the 
principles underlying the following orbit types: 
�9 Broadcast orbits which are available in real time, their name indicates that 

they are transmitted by the satellites, 
�9 Precise Orbits produced by the Naval Surface Warfare Center together 

with the DMA, available upon request about 4-8 weeks after the 
observations. 

�9 IGS orbits, produced by the International GPS Service for Geodynamics 
(IGS), available to the scientific world about 2 weeks after the 
observations. 

2.4.1 Broadcast and Precise Orbits 

The Operational Control System (OCS) for the GPS became operational in 
September 1985. The Master Control Station, situated at Colorado Springs, is 
responsible for satellite control, the determination, prediction and dissemination of 
satellite ephemerides and clocks information. Five monitor stations, at Colorado 
Springs, Hawaii (Pacific Ocean), Ascension Islands (Atlantic Ocean), Diego Garcia 
(Indian Ocean), and Kwajalein (Pacific Ocean, near Indonesia) are tracking the 
GPS satellites. Their recorded pseudorange data (not the phase data) are used for 
routine orbit and satellite clock determination and prediction. 

The Naval Surface Warfare Center (NSWC) together with the Defence Mapping 
Agency (DMA) generate the so-called Precise Orbits about two month after the 
actual observations. In addition to the five stations mentioned data from Quite 
(Ecuador), Buenos Aires (Argentina), Smithfield (Australia), Hermitage (England), 
and Bahrein are used for this routinely performed analysis. Relatively long spans of 
pseudorange data (8 days) are analysed to produce long arcs. 

In practice broadcast orbits are of much greater importance than precise orbits, 
because the former are available in real time. When we compare broadcast orbits 
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with the high precision orbits of the IGS (see section 2.4.3) we should keep in 
mind that broadcast orbits are predicted, the prediction period being somewhere 
between 12 and 36 hours. In view of this fact and in view of the small number of 
only five tracking stations used for orbit determination it must be admitted that 
broadcast orbits are of an amazing and remarkable quality. 

Broadcast orbits are based on a numerically integrated orbit. The orbits are made 
available in the so-called Broadcast Navigation Message [van Dierendonck et ai., 
1978]. Instead of just transmitting an initial state and velocity vector, or, 
alternatively, a list of geocentric satellite coordinates, pseudo-Keplerian orbit 
elements including the time derivatives for some of the elements are transmitted. 
The orbit parameters are determined to fit the numerically integrated orbit in the 
relevant time interval. New broadcast elements are transmitted every two hours. 
Broadcast orbits refer to the WGS-84 (World Geodetic System-84). For more 
information we refer to van Dierendonck et al. [1978] and to Hofmann-Wellenhof 
[1994]. 

2.4.2 The IGS Orbits 

IGS orbits are produced by the Analysis Centers of the International GPS Service 
for Geodynamics (IGS) since the start of the 1992 IGS Test Campaign on 21 June 
1992. One of the IGS Analysis Centers, Scripps Institution of Oceanography 
(SIO), started its orbit determination activities even about one year earlier. Today 
there are seven active IGS Analysis Centers (see Chapter 1). 

As opposed to broadcast orbits (or precise orbits) the IGS orbits mainly rely on 
the phase observations gathered by a relatively dense global network of precision 
P-code receivers (Figure 2.20). The IGS Analysis Centers produce daily orbit files 
containing rectangular geocentric satellite coordinates in the 1TRF (IERS 
Terrestrial Reference Frame) and, in some cases, GPS clock information every 15 
minutes for the entire satellite system tracked. The information is made available in 
the so-called SP3-Format [Remondi, 1989]. 

Since 1 November 1992, the start of the IGS Pilot Service, the daily orbit series 
of first six, then seven IGS Analysis Centers were compared every week. This 
comparison was performed by the IGS Analysis coordinator [Goad, 1993]. The 
comparison consisted of seven parameter Helmert transformations between the 
coordinate files of all possible combinations of IGS Analysis Centers (with seven 
centers 7.6/2 = 21 combinations were possible). From the rms values (per satellite 
coordinate) after the transformations it was possible to extract an estimation for 
the orbit quality of individual analysis centers. Figure 2.21 (from Beufler et al. 
[1994a, b]) shows the development of the orbit quality for all centers since 
September 1992 till end of December 1993. 

Figure 2.21 demonstrates that already in the initial phase the consistency of 
estimates of different processing centers was below 50 cm. This led to the idea of 
producing a combined, official IGS orbit based on a weighted average of the 
individual orbit series. At the IGS Analysis Center Workshop in Ottawa [Kouba, 
1993] it was decided to produce the IGS combined orbit based on the paper 
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GPS TRACKING NETWORK OF THE INTERNATIONAL GPS SERVICE FOR GEODYNAMICS 
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Figure 2.20. The IGS network of tracking stations in Spring 1995. 
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Figure 2.21. Development of the orbit quality November 1992 - December 1993. 
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[Beutler et al., 1995b]; the original version of the paper may be found in the 
proceedings of the Ottawa workshop. 

Since the start of the official IGS on January 1, 1994, daily IGS orbit files are 
made available by the new IGS Analysis Center Coordinator in weekly packages. 
They are distributed through the IGS Central Bureau Information System (IGS 
CBIS) and through the Global and Regional IGS Data Centers. The IGS combined 
orbits are available about two weeks after the observations. They proved to be 
extremely reliable and they have an accuracy comparable with that of the best 
individual contributions. The statistical information associated with the IGS orbits 
is made available each week in the IGS Report Series, see, e.g., Kouba et aL 
[1995]. 

The quality of the individual contributions is monitored (a) through the rms of 
the individual centers with respect to the combined orbit and (b) through the rms 
of a long arc analysis performed separately with the weekly data of each analysis 
center (one week arc using an improved radiation pressure model [Beutler et al., 
1994c], see also Chapter 10, section 10.5). 

Figures 2.22a and 2.22b show for each IGS Analysis Center the development of 
the weekly mean values of the daily rms values produced by the IGS Analysis 
Center Coordinator (a) based on the weighted average of the daily orbit solutions 
(b) based on the long-arc analysis. These figures underline that the best individual 
contributions are of the order of 10 cm rms per satellite coordinate today, a value 
which all IGS Analysis Centers seem to reach asymptotically. This allows us to 
conclude that the combined IGS orbits today are of (sub-)decimeter accuracy. We 
also see a high degree of consistency of Figures 2.22a and 2.22b. 

2.4.3 Propagation of  Orbit Errors into Baselines and Networks 

Bauersima [1983, eqn. 84] states that errors dr  in the coordinates of a satellite 
orbit propagate into errors db in the coordinates of a baseline of length b 
according to the following role: 

IdM = Idrl (2.56a) 
b r 

where r is the mean distance between station and satellite. Zielinski [1988], using 
statistical methods, argues that this value is too pessimistic. He comes up with the 
following rule: 

IIdtd.a = Idrt,_w , 4 ( k ( 10 (2.56b) 
b k.r 

There is a slight difference in eqns. (2.56a,b), however. Whereas we are looking 
at errors db of the baseline length in eqn. (2.56b), we are looking at errors db in 
the components (latitude, longitude, height) of the baseline in eqn. (2.56a). In 
practice (2.56b) actually seems to be a fair rule for the propagation of orbit errors 
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Development of Orbit Quality since November 1993 
(weekly mean value of weighted rms with respect to the combined orbit) 
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into the baseline lengths, whereas eqn. (2.56a) seems to be adequate for the 
propagation of the orbit errors into the height component. We should mention, 
however, that the height determination is also contaminated by the necessity to 
estimate tropospheric scale parameters for all stations, a fact which is not taken 
into account by either of the above formulae. Additional work is required in this 
a r e a  

What kind of results are achieved in practice? Figures 2.23a and 2.23b give the 
residnal.~ of daily estimates of the baseline Onsala-Graz (length about 1000 kin) 
relative to the average coordinate solution over a time interval of about three 
months using broadcast orbits (Figure 2.23a) resp. IGS orbits (Figure 2.23b). 

The repeatabilities of the horizontal components are clearly of the order of a few 
minimetres rms only - which we would expect according to both of our rules 
presented above. We even might argue that the rms of the horizontal components 
is no longer driven by the orbits. The results are unfortunately not as good in 
height. Here the rms is of the order of 1 cm, which would let us expect an orbit 
accuracy of about 25 cm according to eqn. (2.56a), an orbit accuracy of about 1 m 
if we trust eqn. (2.56b). Because we have reason to believe that the IGS orbits 
actually are accurate to about 10 cm we conclude that in practice eqn. (2.56a) is 
quite useful as a rule of thumb for the propagation of orbit errors into the height 
component of the baseline. 

2.5 SUMMARY AND CONCLUSIONS 

Chapter 2 was devoted to the orbits of the GPS satellites. We first presented a few 
facts concerning the entire GPS system, which is fully operational today (section 
2.1). 

In section 2.2.1 we introduced the Keplerian elements and we developed the 
equations of motion for an artificial Earth satellite in rectangular geocentric 
coordinates in section 2.2.2 (eqn.(2.22)). We stated that there is a one-to-one 
correspondence between the osculating Keplerian elements at time t and the 
geocentric position- and velocity- vectors at the same time. This fact allowed us to 
derive the perturbation equations, first-order differential equations for the 
osculating elements (eqns. (2.30), section 2.2.3). We showed that there are simple 
approximate solutions of the perturbation equations giving us some insight into the 
structure of different perturbations. In section 2.2.4 we introduced the concept of 
mean elements. In section 2.2.5 we introduced the generalized orbit determination 
problem we have to solve when analysing GPS data. Section 2.2 was concluded 
with some remarks concerning numerical integration as an universal tool in orbit 
determination (section 2.2.6). We made the distinction between the solution of the 
equations of motion and the variational equations associated with them. 
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Daily repeatabilities of Latitude, Longitude, Height of the 
Baseline Onsala-Graz (from 8.9.94 - 8.12.94) using Broadcast Orbits 
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Figure 2A3a. Daily repeatabilifies of latitude, longitude, height of the baseline Onsala-Caaz 
(from 8 Sept 94 to 8 Dec 94) using broadcast orbits. 
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(from 8 Sept 94 to 8 Dec 94) using IGS orbits. 
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In section 2.3 we studied the perturbing accelerations actually acting on the GPS 
satellites. In particular we discussed the problem of modeling radiation pressure 
(section 2.3.2) and looked at the effects of the deep 2:1 resonance of the entire 
GPS with the Earth's rotation. The section was concluded with an overview of the 
development of the GPS between mid 1992 and the end of 1994. 

In section 2.4 we studied different orbit types available for the GPS. In particular 
we introduced the Broadcast Orbits, as the only information available in real time, 
and the IGS Orbits as orbits of highest accuracy, which are available to the 
scientific community about two weeks after the observations. Working with IGS 
orbits and including the observations of one or more permanent IGS tracking sites 
(using the coordinates and the site information made available through the IGS) is 
a guarantee that the results of a GPS survey automatically refer to the ITRF. 

We tried to present in this chapter the orbit information which is relevant for the 
user of the GPS. We conclude with the remark that, thanks to the existence of the 
IGS, it is no longer necessary that groups working in regional geodynamics 
produce their own orbits. It is much safer to rely on the IGS orbits. 

Acknowledgements 

The author wishes to express his gratitude to Dr. Robert Weber and Dipl.-Astr. 
Andreas Verdun for their invaluable assistance in editing and writing this chapter. 
Many of the examples presented are extracted from results acquired by the CODE 
processing center of the IGS. Let me cordially thank Dr. Markus Rothacher, who 
is the head of CODE, for making these results available and for many valuable 
suggestions. CODE stands for Center for Orbit Determination in Europe, a joint 
venture of four European institutions (Astronomical Institute University of Bern 
(Switzerland); Federal Office of Topogrpahy (Switzerland); Institute for Applied 
Geodesy (Germany); Institut Geographique National (France)); IGS stands for 
International GPS Service for Geodynamics. 

Section 2.3.3 dealing with resonance effects in GPS orbits is based on research 
work performed by Dipl.-Phys. Urs Hugentobler in the context of his Ph.D. thesis. 

l as t  but not least, I would like to thank Ms. Christine Gurtner for the actual 
typing of the manuscript. Her contribution was essential for the timely completion 
of the manuscript. 

References 

Bauersima, I. (1983). "Navstar/Global Positioning System (GPS) (1I)." Mitteilung No. 10 der 
SateUitenbeobachamgsstation Zimmerwald, Druckerei der Univeritat Bern. 

Beutler, G. (1990). "Numerische Integration gewOhnlicher Differentialgleichungssysteme: 
Prinzipien ond Algorithmen.', Mitteilung Nr. 23 der Satellitenbeobachamgsstation 
Zimmerwald. 

Beutler, G., A. Verdun (1992). "Himmelsmechanik II: Der erdnahe Raum." Mitteihmg No. 28 
der Satellitenbeobachtungsstation Zimmerwald, Druckerei der Universitat Bern. 



2. GPS Satellite Orbits 100 

Beutier, G., I.I. Mueller, R.E. Neilan, R. Weber (1994a). "IGS - Der Internationale GPS-Dienst 
fill" Geodynamikf Zeitschrift fiir Vermessmagswesen, I~utscher Verein flit 
Vermessmagswesen (DVW) Jahrgang: 119, Mai, Heft 5, S. 221-232. 

Beufler, G., I.I. Mueller, R.E. Neilan (1994b). "The International GPS Service for Geodynamics 
fIGS): Development and Start of Official Service on January 1, 1994." Bulletin G6od6sique, 
Vol. 68, 1, pp. 39-70. 

Beutler, G., E. Brockmann, W. Gurmer, U. Hugentobler, L. Mervart, M. Rothacher, A. Verdun 
(1994c). "Extended Orbit Modelling Techniques at the CODE Processing Center of the IGS: 
Theory and Initial Results.", Manuscripta Geodaetica, Vol. 19, pp. 367-386. 

Beatier, G., E. Brockmann, U. Hugentobler, L. Mervart, M. Rothacher, R. Weber (1995a). 
"Combining n Consecutive One-Day-Arcs into one n-Days-Arc.", Submitted for publication 
to Manuscripta Geodaetica, October 1994. 

Beutler, G. J. Kouba, T. Springer (1995b) "Combining the Orbits of the IGS Processing Centers." 
Bulletin G6od6sique (accepted for publication). 

Bronwer, D. (1937). "On the accumulation of errors in numerical integration." Astronomical 
Journal, Volume 46, No 1072, p. 149 ff. 

Danby, J.M.A. (1989). "Fundamentals of Celestial Mechanics", Willmama-Bell, INC., Richmond, 
Va., Second Edition, Second Printing, ISBN 0-943396-20-4. 

Euler, L. (1749). "Recherehes sur le mouvement des corps o61estes en g6n~ral". M~moires de 
l'acad6mie des sciences de Berlin [3] (1747), p. 93-143. 

Euler, L. (1768). "Institutio calculi integralis". Volumen primum, sectio secmada: De integratione 
acquatiorum differentialium per approximationem. Caput VII. Petropoli, Academiae 
Imperialis Seientiarum. 

Fehlberg, E. (1972). "Classical Eighth and Lower Order Rmage-Kutta-Nystrom Formulas with 
Stepsize Control for Special Second Order Differential Equations." NASA Technical Report 
TR-R-381, 1972. 

FliegeL H.F., T.E. Gallini, E.R. Swift (1992). "Global Positioning System Radiation Force Model 
for Geodetic Applications." Journal of Geophysical Research, Vol. 97, No. B 1, pp.559-568. 

Gauss, C.F. (1809). "Theoria motus corporum coelestium in sectionibus conicis solem 
ambientmn". Hamburgi, Perthes & Besser. 

Goad, C. (1993). "IGS Orbit Comparisons." Proceedings of 1993 IGS Workshop, pp. 218-225, 
Druckerei der Universitat Bern. 

Green, G.B., P.D. Massatt, N.W. Rh~us (1989). "The GPS 21 Primary Satellite Constellation," 
Navigation, Journal of the Institute of Navigation, Vol 36, No.l, pp. 9-24. 

Heiskanen, W.A., H. Moritz (1967). "Physical Geodesy.", W.H. Freeman and Company, San 
Francisco and London. 

Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins. (1994). "GPS Theory and Practice. r, Third 
revised edition, Springer-Verlag Wien, New York. 

Hugentobler, U., G. Beutler (1994). "Resonance Phenomena in the Global Positioning System." 
Hugmatobler, U. (1995). "Resonances for High Altitude Satellites". In preparation. 
Kaula, W.M. (1966). "Theory of Satellite Geodesy." Blalsdell Publication Cie., Waltham. 
Kepler, J. (1609). "Astronomia nova de motibus steUae Martis ex observationibus Tychonis 

Brahe", Pragae. 
Kepler, J. (1619). "Harmonices mmadi libri V", Lincii. 
Kouba, J. (1993). "Proceedings of the IGS Analysis Center Workshop, October 12-14, 1993. u, 

Geodetic Survey Division, Surveys, Mapping, and Remote Sensing Sector, NR Can, Ottawa, 
Canada. 

Konba, J., Y. Mireanlt, E Lahaye (1995). "Rapid Service IGS Orbit Combination - Week 0787. M 
IGS Report No 1578, IGS Central Bmean Information System. 

Landau, H. (1988). "Zur Nutzang des Global Positioning Systems in Geodasie mad Geodynanmik: 
Modellbildung, Software-Entwicldmag mad Analyse". Ph.D. Thesis, Studimagang 
Vermessungswesen, Universitat der Bundeswehr Mtinchen, Neubiberg. 

Lmadquist, C.A., G. Veis (1966). " Geodetic Parameters for a 1966 Smithsonian Institution 
Standard Earth." Volumes I-III, Smithsonian Astrophysical Observatory, Special Report 200. 



lol Gerhard Beutier 

McCarthy, D.D. (1992). "IERS Standards (1992).", IERS Technical Note No. 13, Observamire de 
Paris, 1992. 

Newton, I. (1687). "Philosophiae naturalis principia maflaematica", Joseph Sffeater, Londini. 
Remondi, B.W. (1989). "Extending the National Geodetic Survey Standard GPS Orbit Formats." 

NOAA Technical Report NOS 133 NGS 46, RockviUe, MD. 
Rothacher, M. (1992). "Orbits of Satellite Systems in Space Geodesy." Gecxititisch- 

gcophysikalische Arbeiten in der Schweiz, Vol 46, 253 pages, Schweize~sche Gecxlatische 
Kommission. 

Seeber, G. (1993). "Satellite Geodesy", Walter de Gruyter, Berlin / New York. 
Shampine, L.F., M.K. Gordon (1975). "Computer solution of ordinary differential equations, the 

Initial value problem.", Freedman & Cie. 
Van Dierendonck, A., S. Russell, E. Kopitzke, M. Birnbaum (1978). "The GPS Navigation 

Message.", Journal of the Institute of Navigation, Vol. 25, No. 2, pp. 147-165, Washington. 
Zielinski, J.B. (1988). "Covariances in 3D Network Resulting From Orbital Errors". Proceedings 

of the International GPS-Workshop in Darmstadt, April 10-13, published in Lecture Notes in 
Earth Sciences, GPS-Techniques Applied to Geodesy and Surveying, Springer Verlag, 
Berlin, pp. 504-514. 



3. PROPAGATION OF THE GPS SIGNALS 

Richard B. Langley 
Geodetic Research Laboratory, Department of Geodesy and Geomatics 
Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, N.B., 
Canada E3B 5A3 

3.1 I N T R O D U C T I O N  

The Global Positioning System is a one-way ranging system. The GPS satellites 
emit signals - -  complex modulated radio waves - -  which propagate through 
space to receivers on or near the earth's surface.l From the signals it intercepts, a 
receiver measures the ranges between its antenna and the satellites. In this 
chapter, we will examine the nature of the GPS signals. After a brief review of 
the fundamentals of electromagnetic radiation, we will describe the structure of  
the GPS signals. Since the signals, in propagating to a receiver, must travel 
through the ionosphere and the neutral atmosphere, we will examine the effect 
these media have on the signals. Finally, we will look at the propagation 
phenomena of multipath and scattering and the effects they have on the 
measurements made by a GPS receiver. 

3.2 E L E C T R O M A G N E T I C  WAVES 

The infinitely wide electromagnetic spectrum stretches from below the extremely 
low radio frequencies - -  30 Hz to 3 kHz with an equivalent wavelength of 10,000 
to 100 kilometres - -  used by the U.S. Navy in communications tests with 
submerged submarines to the frequencies characteristic of gamma rays: about 3 x 
1019 Hz and beyond with corresponding wavelengths shorter than 10 picometres 
(10-11 metres)! The radio part of  the spectrum extends to frequencies of  about 
300 GHz, but the distinction between millimetre radio waves and long infrared 
light waves is a little blurry (see Figure 3. I). 

An electromagnetic wave is a self-propagating wave with both electric and 
magnetic field components generated by the rapid oscillation of a charged 
particle. The characteristics of the wave, and in fact the possibiLity for the actual 
existence of electromagnetic waves, is given by Maxwelrs equations 2 (see, for 
example, Lorrain and Corson [1970] or Feynman et al. [1964]): 

1 GPS receivers can also be used on low-earth-orbiting spacecraft. 
2 The first of these equations has an indirect link to geodesy. It is the general form of Gauss' law 
- -  named after Johann Karl Friedrich Gauss, the eighteenth century polymath and father of 
modem geodesy. 



3. Propagation of the GPS Signals 104 

V . E =  O_E. 
E0 

V . B = O  

~ B  
V •  

Ot 

~ E  
V • B - eol.t o ~ = I.toJ m 

(3.1) 

where E is the electric field intensity, B is the magnetic induction (or magnetic 

flux density), Jm is the current density due to the flow of charges in matter, p is 

the total electric charge density, ~ is the permittivity of free space, and gO is the 

permeabili ty of  free space, e0 = 8.854 187 818 x 10"12 F m-  1 and gO = 
1.256 637 062 x 10 -6 H m -1 are fundamental constants that relate electric charge 
to the Coulomb or electrostatic force and current flow to the magnetic force 
respectively. 
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Figure 3.1. The radio and light portions of the electromagnetic spectrum. 

If  the charged particle generating the wave oscillates in a sinusoidal fashion, 

then in free space (p = 0, Jm = 0), Maxwelrs equations (in phasor form) reduce to 

V . E = 0  

V . H = 0  

V x E + iCogoH = 0 
(3.2) 

V x H - i o ~ 0 E =  0 
where H is the magnetic field (= B/go), i 2 = 1, and 00 is the angular frequency of 
oscillation of the particle. The solution of these equations (obtained by taking the 
curls of  the third and fourth equations) yields the following pair of  differential 
equations: 
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V2E + E0l.t0to2E = 0 

V2I-I + EogotO2I-I = 0. 
(3.3) 

These equations are those of an unattenuated wave propagating with a speed 

1 
c = ~/eor--g ~ (3.4) 

which is the speed of light - -  2.997 924 58 x 108 metres per second. It can be 
shown that in free space, or in any homogeneous, isotropic, linear, and stationary 
medium, the electric and magnetic fields are transverse to the direction of 
propagation and the fields are mutually perpendicular. 

For a plane wave propagating in the direction of the positive z-axis (equation 
(3.3) also can yield spherical waves), the E vector of the wave can be written as 
(the H vector can be similarly expressed) 

E = E0e (3.5) 

where EO gives the amplitude and the direction of polarisation of the wave. E0 
can be decomposed into two orthogonal vectors: E0,x, parallel to the positive x- 
axis and Eo,y, parallel to the positive y-axis. If E0,x and Eo,y have the same phase 

(or an integer multiple of ~), the wave is linearly polarised (E is always directed 
along a line). If E0,x and E0,y differ in phase, their sum describes an ellipse about 
the z-axis. This is an elliptically polarised wave. If E0,x and E0,y have the same 
amplitude but are re/2 (or an odd multiple of rd2) out of phase, the ellipse becomes 
a circle and the wave is said to be circularly polarised. If E and H rotate 
clockwise (counterclockwise) for an observer looking towards the source of the 
wave, the polarisation is right-handed (left-handed). For a good description and 
conceptual illustration of linear, eliptical, and circular polarisation, see Kraus 
(1950). 

Using the relationship 

f L = o ~ k  co 2r~ co 
. . . . . .  c (3.6) 

2g 2~ k k 

where f is the frequency of the wave in cycles per second, ~, is the wavelength, 
and where k is called the propagation wave number, equation (3.5) may be written 
as 

E = E0 e i (~-kz) .  (3.7) 
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More generally, for a wave travelling in direction k (the magnitude of  k is the 
wave number), the field at some point defined by vector r is 

E = Eoe i(~ (3.8) 

At a fLxed point in space, the electric field intensity may be written as 

E = Eo ei(~-~) (3.9) 

where (c0t-~) is the phase or phase angle of E and ~ is a phase bias or constant. 
The concept of  a plane electromagnetic wave is somewhat artificial. A plane 

wave is one that travels in some particular direction and whose intensity and 
phase are constant over any plane normal to the direction of propagation. Such 
plane electromagnetic waves do not actually exist in nature. Far f rom a 
transmitter of electromagnetic waves, the surface of constant phase is a sphere. 
So the electromagnetic waves typically encountered in practice are spherical 
rather than plane. However, at a sufficiently large distance from the transmitter, 
a portion of  the surface of the sphere may be approximated by a plane, and 
therefore far from the transmitter, a spherical wave behaves very much like a 
plane wave. 

An electromagnetic wave may be generally characterised by four parameters: 
amplitude, frequency, phase, and polarisation. If one of these parameters is varied 
in some controlled fashion m or modulated - -  then an electromagnetic wave can 
convey information. Amplitude modulation (AM) is commonly used, for 
example, for long wave, medium wave, and short wave radio broadcasting, and 
for most aeronautical communications; frequency modulation (FM) is used for 
very high frequency high fidelity broadcasts; and phase modulation (PM) is 
typically used for data transmissions. The modulating signal may either be 
continuously varying (analogue) or have a fixed number of levels (digital) - -  two 
in the case of binary modulation. 

3.3 T H E  GPS SIGNALS 

The radio signals transmitted by the GPS satellites are amazingly complex. This 
complexity was designed into the system in order to give GPS its versatility. GPS 
is required to work with one-way measurements (receive only); serve an unlimited 
number of both military and civilian users; provide accurate, unambiguous, real- 
time range measurements; provide accurate Doppler-shift measurements; provide 
accurate carrier-phase measurements; provide a broadcast message; provide 
ionospheric delay correction; allow simultaneous measurements from many 
satellites; have interference protection; and have multipath tolerance. The GPS 
signals contain a number of components in order to meet these requirements. The 
official description of the GPS signals is contained in the Interface Control 
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Document, ICD-GPS-200 [ARINC, 1991]. Spilker [1978, 1980] is also a primary 
reference for details of GPS signal structure. The condensed description given 
here, much of which has been published previously [Langley, 1990], has been 
based, in large measure, on those documents. 

3.3.1 The Carriers 

Each GPS satellite transmits signals centred on two microwave radio frequencies, 
1575.42 MHz, referred to as Link 1 or simply L1, and 1227.60 MHz, referred to 
as L23. These channels lie in a band of frequencies known as the L band (1 to 2 
GHZ, see Fig. 3.1). Within the L band, the International Telecommunications 
Union, the radio regulation arm of the United Nations, has set aside special sub- 
bands for satellite-based positioning systems. The L I and L2 frequencies lie 
within these bands. 

Such high frequencies are used for several reasons. The signals, as we have 
said, consist of  a number of components. A bandwidth of about 20 MHz is 
required to transmit these components. This bandwidth is equal to the whole very 
high frequency (VHF) FM broadcast band! So a high, relatively uncluttered part 
of the radio spectrum is required for GPS-type signals. The GPS signals must 
provide a means for determining not only high accuracy positions in real-time, but 
also velocities. Velocities are determined by measuring the slight shift in the 
frequency of the received signals due to the Doppler effect - -  essentially the same 
phenomenon, albeit for sound waves, that gives rise to the change in pitch of a 
locomotive's whistle as a train passes in front of you at a level crossing. In order 
to achieve velocities with centimetre-per-second accuracies, centimetre 
wavelength (microwave) signals are required. 

A further reason for requiring such high frequencies is to reduce the effect of  the 
ionosphere. As we will see later in this chapter, the ionosphere affects the speed 
of propagation of radio signals. The range between a satellite and a receiver 
derived from measured signal travel times, assuming the vacuum speed of light, 
will therefore be in error. The size of this error gets smaller as higher frequencies 
are used. But at the L1 frequency it can still amount to 30 metres, or so, for a 
signal arriving from directly overhead. For some applications, an error of  this size 
is tolerable. However there are applications, such as geodetic positioning, that 
require much higher accuracies. This is why GPS satellites transmit on two 
frequencies. As we will see, if measurements made simultaneously on two well- 
spaced frequencies are combined, it is possible to remove almost all of  the 
ionosphere's effect. 

Although high frequencies are desirable for the reasons just given, it is 
important that they not be too high. For a given transmitter power, a received 

3 The GPS satellites also transmit an L3 signal at 1381.05 MHz associated with their dual role as a 
nuclear burst detection satellite as well as S-band telemetry signals. 
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satellite signal becomes weaker the higher the frequency used 4. The L band 
frequencies used by GPS are therefore a good compromise between this so-called 
space loss and the perturbing effect of the ionosphere. 

GPS signals, like most radio signals, start out in the satellites as pure sinusoidal 
waves or carriers. But pure sinusoids cannot be readily used to determine 
positions in real-time. Although the phase of a particular cycle of a carrier wave 
can be measured very accurately, each cycle in the wave looks like the next so it 
is difficult to know exactly how many cycles lie between the satellite and the 
receiver. 

In order for a user to obtain positions independently in real-time, the signals 
must be modulated; that is, the pure sinusoid must be altered in a fashion that time 
delay measurements can be made. This is achieved by modulating the carriers 
with pseudorandom noise ( PRN) codes. 

These PRN codes consist of sequences of binary values (zeros and ones) that at 
first sight appear to have been randomly chosen. But a truly random sequence can 
only arise from unpredictable causes which, of course, we would have no control 
over and could not duplicate. However, using a mathematical algorithm or 
special hardware devices called tapped feedback registers, we can generate 
sequences which do not repeat until after some chosen interval of time. Such 
sequences are termed pseudorandom. The apparent randomness of  these 
sequences makes them indistinguishable from certain kinds of noise such as the 
hiss heard when a radio is tuned between stations or the "snow" seen on the screen 
of a television when tuned to an unoccupied channel (some radios and televisions 
sense the lack of a signal and blank out the noise). Although noise in a 
communications device is generally unwanted, in this case the noise is very 
beneficial. 

Exactly the same code sequences are independently replicated in a GPS 
receiver. By aligning the replicated sequence with the received one and knowing 
the instant of time the signal was transmitted by the satellite, the travel time, and 
hence the range can be computed. Each satellite generates its own unique codes, 
so it is easy for a GPS receiver to identify which signal is coming from which 
satellite even when signals from several satellites arrive at its antenna 
simultaneously - -  a communications technique known as code division multiple 
access (CDMA). 

3.3.2 The Codes 

The C/A-code. Two different PRN codes are transmitted by each satellite: the 
C/A or coarse/acquisition code and the P or precision code. The  C/A-code is a 
sequence of 1,023 binary digits or chips which is repeated every millisecond. 
This means that the chips are generated at a rate of 1.023 million per second and 
that a chip has a duration of about 1 microsecond. Each chip, riding on the carder 

4Expressed in dB, the loss is given by 32.5 + 20 Ioglo p + 20 Ioglo f where p is the distance 
between the satellite and the receiving station in km and f is the operating frequency in MHz 
[Roddy and Coolen, 1984]. 
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wave, travels through space at the speed of light. We can therefore convert a time 
interval to a unit of distance by multiplying it by this speed. So one microsecond 
translates to approximately 300 metres. This is the wavelength of the C/A-code. 

Because the C/A-code is repeated every millisecond, a GPS receiver can quickly 
lock onto the signal and begin matching the received code with the one it 
generates. 

Each satellite is assigned a unique C/A-code. There are a total of 32 codes 
available for the satellites. An additional four unique C/A-codes are available for 
other uses such as ground transmitters. 

The P-code. The precision of a range measurement is determined in part by the 
wavelength of the chips in the PRN code. Higher precisions can be obtained with 
shorter wavelengths. To get higher precisions than are afforded by the C/A-code, 
GPS satellites also transmit the P-code. The wavelength of the P-code chips is 
only 30 metres, one-tenth the wavelength of the C/A-code chips; the rate at which 
the chips are generated is correspondingly 10 times as fast: 10.23 million per 
second. The P-code is an extremely long sequence. The pattern of chips does not 
repeat until after 266 days or about 2.35 x 1014 chips! Each satellite is assigned a 
unique one-week segment of this code which is re-initialised at Saturday/Sunday 
midnight each week. 

The Y-code. As part of a procedure known as Anti-spoofing (AS), the U.S. 
Department of Defense has encrypted the P-code by combining it with a secret W- 
code. AS was formally activated at 00:00 UTC on 31 January 1994 and now is in 
continuous operation on Block II satellites. 

Other  Properties.  The GPS PRN codes have additional useful properties. 
When a receiver is processing the signals from one satellite, it is important that 
the signals received simultaneously from other satellites not interfere. The GPS 
PRN codes have been specially chosen to be resistant to such mutual interference. 
Also the use of PRN codes results in a signal that has a certain degree of 
immunity to unintentional or deliberate jamming from other radio signals. 

At the present time, the C/A-code is modulated onto the L1 carrier whereas the 
encrypted P-code is transmitted on both L1 and L2. This means that users with 
dual frequency GPS receivers can correct the measured ranges for the effect of the 
ionosphere. Users of single frequency receivers must resort to models of the 
ionosphere which typically account for only a portion of the effect (see section 
3.5.2). It is access to the lower accuracy C/A-code which is provided in the GPS 
Standard Positioning Service (SPS), the level of service authorised for civilian 
users. The Precise Positioning Service (PPS) provides access to both the C/A- 
code and the encrypted P-code and is designed (primarily) for military users. The 
SPS incorporates a further intentional degradation of accuracy, called Selective 
Availability (SA). SA is effected through satellite clock dithering (the so-called 
"delta-process") and broadcast orbit ephemeris degradation (the "epsilon- 
process"). Reports indicate that currently SA primarily uses the delta-process. 
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The clock dithering affects all pseudorange and phase measurements. Different 
levels of SA are possible; the level that is presently used is one which yields the 
current SPS horizontal position accuracy of 100 m 2-d.r.m.s (twice the distance 
root mean square). As with AS, authorised users employ a cryptographic key to 
overcome SA. Almost all of  the effect of SA can also be removed by the use of  
differential techniques (see Chapter 5). SA had been enabled on Block II 
satellites during part of 1990. SA was turned off between about 10 August 1990 
and 1 July 1991 due to Gulf crisis. The standard level was re-implemented on 15 
November 1991. Since then, SA has been temporarily turned off for different 
purposes as has AS. There have been calls from the civilian community for the 
reducation and eventual removal of SA. Currently, two of the Block II satellites 
appear to have little or no SA imposed. The sole remaining operational Block I 
satellite is free of both SA and AS. 

3.3.3 The Broadcast  Message 

In order to convert the measured ranges between the receiver and the satellites to a 
position, the receiver must know where the satellites are. To do this easily in real- 
time requires that the satellites broadcast this information. Accordingly, there is a 
message superimposed on both the L1 and L2 carriers along with the PRN codes. 
Each satellite broadcasts its own message which consists of orbital information 
(the ephemeris) to be used in the position computation (see Chapter 2), the offset 
of its clock from GPS System Time (see section 3.3.5), and information on the 
health of the satellite and the expected accuracy of the range measurements. The 
message also contains almanac data for the other satellites in the GPS 
constellation as well as their health status and other information. The almanac 
data, a crude description of the satellite orbit, is used by the receiver to determine 
where every satellite is. It uses this information to quickly acquire the signals 
from satellites that are above the horizon but are not yet being tracked. So once 
one satellite is being tracked and its message is decoded, acquisition of the signals 
from other satellites is quite rapid. For further details of the structure and content 
of the message, see ARINC [1991] or Van Dierendonck et al. [1978, 1980]. 

The broadcast message (also referred to as the navigation message) contains 
another very important piece of information for receivers that track the P-code. 
As we mentioned, the P-code segment assigned to each satellite is 7 days long. A 
GPS receiver with an initially unsynchronised clock has to search through its 
generated P-code sequence to try to match the incoming signal. It would take 
many hours to search through just one second of the code, so the receiver needs 
some help. It gets this help from a special word in the message called the hand- 
over word (HOW) which tells it where in the P-code to start searching. 

The GPs broadcast message is sent at a relatively slow rate of 50 bits per 
second, taking 12.5 minutes for all the information in the message to be 
transmitted. To minimise the delay for a receiver to obtain an initial position, the 
ephemeris and satellite clock offset data are repeated every 30 seconds. 
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The C/A-code and encrypted P-code chip streams are separately combined with 
the message bits using modulo 2 addition 5. This is just the binary addition that 
computers and digital electronics do so well. If the code chip and the message bit 
have the same value (both 0 or both 1) the result is 0. If the chip and bit values 
are different, the result is 1. The carriers are then modulated by the code and 
message composite signal. This is readily done with the L2 channel as it only 
carries the encrypted P-code. But the L1 channel has to carry both the encrypted 
P-code and the C/A-code. This is achieved by a clever technique known as phase 
quadrature. The encrypted P-code signal is superimposed on the L1 carrier in 
the same way as for the L2 carrier. To get the C/A-code signal onto the L1 
carrier, the unmodulated carrier is tapped off and this tapped carrier is shifted in 
phase by 90 ~ . This quadrature carrier component is mixed with the C/A-code 
signal and then combined with the encrypted P-code modulated in-phase 
component before being transmitted by the spacecraft antenna. 

3.3.4 Binary Biphase Modulation 

As mentioned in section 3.2, carrier waves can be modulated in a number of ways. 
Phase modulation is the approach used for the GPS signals. Because the PRN 
codes and the message are binary streams, there must be two states of the phase 
modulation. These two states are the normal state, representing a binary 0, and 
the mirror image state, representing a binary 1. The normal state leaves the carrier 
unchanged. The mirror image state results in the unmodulated carrier being 
multiplied by - 1. Therefore a code transition from 0 to 1 (normal to mirror image) 
or from 1 to 0 (mirror image to normal) each involves a phase reversal or a phase 
shift of 180 ~ This technique is known as binary biphase modulation. An 
interesting property of binary biphase modulation was exploited by one of the first 
commercially available GPS receivers, the Macrometer TM. By electronically 
squaring the received signal, all of the modulation is removed leaving a pure 
carrier. The phase of the carrier could then be measured to give ambiguous range 
measurements (this is discussed further in Chapter 4). Of course, the broadcast 
message was lost in the process and so orbit data had to be obtained from an 
alternate source. 

3.3.5 The GPS Satellite Clocks and Time 

The timing and frequency for the carriers, the PRN codes, and the message are all 
coherently derived from an atomic oscillator on board the satellite running at 
10.23 MHz (and compensated for most of the relativistic frequency shift). The L1 
frequency, 1575.42 MHz = 154 x 10.23 MHz; the L2 frequency, 1227.6 MI-Iz = 
120 x 10.23 MHz..Each satellite carriers four oscillators (two cesiums and two 

5 Modulo 2 addition of the P-code and the encryption W-code is used to produce the Y-code 
[Ashjaee and Lorenz, 1992]. 
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rubidiums in the Block II satellites), any one of which may be commanded on by 
the GPS Master Control Station. 

The GPS signals are referenced to GPS (System) Time, which until June 1990 
was the time kept by a single atomic clock at one of the U.S. Air Force GPS 
monitor stations. However, GPS Time is now derived from a composite or 
"paper" clock consisting of all monitor stations and the operational satellite 
clocks. 

GPS Time is steered over the long run to keep it within about 1 microsecond of 
UTC, ignoring leap seconds. So unlike UTC, GPS Time has no leap second 
jumps. At the integer second level, GPS Time equalled UTC in 1980, but 
currently, due to the leap seconds that have been inserted into UTC, it is ahead of 
UTC by 10 seconds plus a fraction of a microsecond that varies day to day. 

A particular epoch is identified in GPS Time as the number of seconds that have 
elapsed since the previous Saturday/Sunday midnight. Such a time measure is, of 
course, ambiguous, so one must also indicate in which week the epoch is. GPS 
weeks start with week 0 on 6 January 1980, and are numbered consecutively. 

3.3.6 Polarisation 

The signals transmitted by the GPS satellites are right-hand circularly polarised 
(RHCP). Circular polarisation is commonly used for signals transmitted from 
spacecraft in order to combat the fading problem associated with Faraday rotation 
of the plane of polarisation due to the earth's magnetic field. For a RHCP signal 
to provide maximum signal strength to a receiver, a RHCP antenna must be used. 
This subject is discussed further in section 3.6 and in Chapter 4. 

3.3.7 Putting it all Together 

The composite GPS signal transmitted by a GPS satellite consists then of carriers 
modulated by the PRN C/A and encrypted P-codes and the broadcast message. 
The combining of these different components is illustrated in Figure 3.2. The 
composite signal is transmitted from the shaped-beam antenna array on the nadir- 
facing side of the satellite. The transmitted power levels are +23.8 dBW and 
+19.7 dBW for the encrypted P-code signal on L1 and L2 respectively and +28.8 
dBW for the L1 C/A-code signal [Nieuwejaar, 1988]. The array radiates near- 
uniform power to users on or near the earth's surface of at least -163 dBW and 
-166 dBW for the L1 andL2 encrypted P-code signals respectively and -160 dBW 
for the L1 C/A-code signal. Actual received signal levels may be larger than 
these values for a variety of reasons including satellite transmsitter power output 
variations. Maximum received signal levels are not expected to exceed -155.5 
and -158.0 dBW for the LI and L2 encrypted P-code signals respectively and 
-153.0 dBW for the L1 C/A-code signal. 

Forgetting for a moment that GPS is a ranging system, we could consider the 
satellites to be simply broadcasting a message in an encoded form. The bits o f  the 
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Figure 3.2. How the components of the GPS signal are combined. Note that the various 
waveforms are not to scale. 

message have been camouflaged by the PRN code chips. The effect of this 
camouflaging is to increase the bandwidth of the signal. Instead of occupying 
only a fraction of one kiloHertz, the signal has been spread out over 20 MHz. 
Inside a GPS receiver, the code matching operation de-spreads the signal allowing 
the message to be recovered. Clearly this can only b~ done if the receiver knows 
the correct codes. The de-spreading operation conversely spreads out any 
interfering signal considerably reducing its effect. This is a common technique, 
especially in military circles, for ensuring security and combating interference 
and is known as direct sequence spread spectrum communication. Spread 
spectrum signals have the additional property of limiting the interference from 
signals reflected off nearby objects (muln'path). 

The L1 signal transmitted by a GPS satellite can be represented in equation 
form as 

SLI i (t) = ApP i (t)W i (t)D i (t)cos(c01t + 0n,LI,i) 

+AeCi (t)Di (t)sin(~ + r 
(3.10) 

where 
Ap and Ac 

Pi(t) 
Wi(t) 

represent the amplitudes of the encrypted P and C/A-code 
components respectively. 
represents the P-code of satellite i. 
represents the encryption code. Yi(t) = Pi(t)Wi(t). 
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Ci(t) 
Di(t) 

o31 

~n,Ll,i 

represents the C/A-code of satellite i. 
represents the data transmitted by satellite i in the broadcast 
(navigation) message. 
is the LI frequency. 

represents a small phase noise and oscillator drift component. 

Similarly, the L2 signal transrrfitted by satellite i can be represented as 

SL2 i (t) = BpP i (t)W i (t)D i (t)cos(o32t + ~n,L2,i ) (3.11) 

where 
Bp represents the amplitude of the L2 signal. 

3.4 PROPAGATION OF SIGNALS IN REFRACTIVE MEDIA 

Of critical importance to any ranging system is the speed of propagation of the 
signals. It is this speed when multiplied by the measured propagation time 
interval that provides a measure of the range. If an electromagnetic signal 
propagates in a vacuum, then the speed of propagation is the vacuum speed of 
light - -  valid for all frequencies. However, in the case of the signals transmitted 
by the GPS satellites, the signals must pass through the earth's atmosphere on 
their way to receivers on or near the earth's surface. The signals interact with the 
constituent charged particles and neutral atoms and molecules of the atmosphere 
with the result that their speed and direction of propagation are changed - -  the 
signals are refracted. 

Before discussing the effects of the propagation media on the GPS signals, we 
will first define some basic characteristics of signals propagating in a refractive 
medium. 

3.4.1 Refractive Index 

The speed of propagation of an electromagnetic wave (a pure carrier) in a medium 
is given by an equation analogous to equation (3.4): 

1 
v - f ~ - ~  (3.12) 

where e is the permittivity of the medium and IX is its permeability. The ratio of 
the speed of propagation in a vacuum to the speed in the medium is known as the 
refractive index of the medium: 
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C 
n = - .  (3.13) 

V 

In a medium, the speed of propagation of a pure (unmodulated) wave, referred to 
as the phase velocity (we should really call it the phase speed as we are not 
specifying a direction of the motion but the term phase velocity is quite 

pervasive), is related to the angular frequency of the wave, co, and the wave 
number, k: 

CO 
v = - - .  (3.14) 

k 

A medium may be dispersive, in which case the phase velocity and wave number 
are functions of the frequency of the wave. A plot of frequency vs. wave number 
yields the dispersion curve of the medium. At any point on the dispersion curve, 
the slope of the line joining that point to the origin is the phase velocity. 

A signal, or modulated carrier wave, can be considered to result from the 
superposition of a group of waves of different frequencies centred on the carrier 
frequency. If the medium is dispersive, the modulation of the signal will 
propagate with a different speed from that of the carrier; this is called the group 
velocity. The group velocity is given by 

do) 
~ m  

Vg dk 

= v + k  dv 
dk 

(3.15) 

which is the local tangent slope at a point on the dispersion curve. Corresponding 
to the phase refractive index, n, we can define a group refractive index, ng: 

c 
ng = - -  

Vg 

= n + f  dn. 
df 

(3.16) 

In general, a medium will not be homogeneous, in which case, n and ng will be 
functions of position in the medium. 

At the interface between two media of different refractive indices (or within a 
medium of varying refractive index), bending of the signal's ray path (as given by 
vector k) will occur as described by SneU's law. Snell's law states that 

n I sin0 i = n 2 sin0 t (3.17) 
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where n I is the refractive index in the first media, 0i is the angle of incidence 
(between the direction of the incident signal and the normal to the surface 
between the media), n2 is the refractive index of the second medium, and 0t is the 
transmitted angle (between the direction of the transmitted signal and the normal 
to the surface). The path bending is a direct consequence of Fermat's principle (of 
least time) that states that out of all possible paths that it might take, light (and 
other electromagnetic waves) takes the path that requires the shortest time. It is, 
in fact, possible to derive Snell's law from Fermat's principle (left as an exercise 
for the student). 

3.4.2 Phase Delay and Group Delay 

Due to the fact that the speed of propagation of a carrier wave in a non-ionised 
medium is less than that in a vacuum, the arrival of a particular phase of  the 
carrier will be delayed in comparison to a wave travelling in a vacuum. This 
phase delay is given by 

S S' 

(3.18) 

where the integrations are carried out along the refracted path, S, and the non- 
refracted or rectilinear path S'. The delay may be expressed in units of distance as 

d$ =c~ 

S S' 

= ! ( n  - 1)dS" + [ ! n d S -  !ndS '  1 �9 

(3.19) 

The bracketed integrals account for the bending of the path followed by the wave. 
Typically, the bending contributes only a small amount to the delay. 

Similarly, the modulation of a signal is delayed by 

dg = f (ng - 1)dS' +I!ngdS- !ngdS']" s' (3.20) 
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3.5 ATMOSPHERIC REFRACTION 

When describing the effects of atmospheric refraction on radio waves, it is 
convenient to separate the effects of neutral atoms and molecules, the bulk of 
which are contained in the troposphere, from those of charged particles, primarily 
contained in the ionosphere. We will look at the effects of both of these media 
on GPS signals in turn. There is an extensive bibliography on the effects of the 
troposphere and ionosphere on space geodetic systems. A useful report on the 
state of the art (circa 1992) in understanding and modelling atmospheric effects on 
these systems is the Proceedings of the Symposium on Refraction of 
Transatmospheric Signals in Geodesy which was held in The Hague, The 
Netherlands, in May 1992 [de Munck and Spoelstra, 1992]. Brunner [1988] 
documented significant advances in several aspects of refraction effects on space 
measurements as of 1988 and subsequently to 1991 [Brurmer, 1991]. Brunner and 
Welsch [1993] have authored a tutorial on the effect of the troposphere on GPS 
measurements and Yunck [1993] has discussed the effects of both the ionosphere 
and troposphere on ground-level and satellite GPS positioning and how to cope 
with them. Continued interest in studying the effects of the troposphere is 
evidenced by the convening of a special session entitled "Applications of GPS 
Meteorology" at the American Geophysical Union Fall Meeting in December 
1994 [AGU, 1994]. A bibliography of the literature on tropospheric propagation 
delay, both recent and historical, has been put together by Langley et al. [1995]. 

Much of the following discussion was previously presented [Langley, 1992] but 
appears here for the first time in published form. 

3.5.1 Troposphere 

The troposphere is the lower part of the earth's atmosphere (see Figure 3.3) where 
temperature decreases with an increase in altitude. The thickness of the 
troposphere is not everywhere the same. It extends to a height of less than 9 km 
over the poles and in excess of 16 k.m over the equator [Lutgens and Tarbuck, 
1989]. Figure 3.4 illustrates the temperature structure of the atmosphere as given 
by example standard atmospheres. Shown are the temperature profiles of the U.S. 
Standard Atmosphere, 1976 (identical to the International Civil Aviation 
Organization Standard Atmosphere up to 32 kin) [NOAA/NASA/USAF, 1976] 
and the U.S. Standard Atmosphere Supplements, 1966 for the tropical and polar 
(summer and winter) regions [ESSA/NASA/USAF, 1966]. The slight kink in the 
profile for the tropical region between 2 and 3 km reflects the trade wind 
inversion over ocean areas. 

The presence of neutral atoms and molecules in the troposphere affects the 
propagation of electromagnetic signals. Atoms and molecules in the stratosphere 
also exist in sufficient numbers to affect the propagation of signals. However, 
since the bulk of the neutral atmosphere lies within the troposphere, the whole 
neutral atmosphere is often loosely referred to as the troposphere. 
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Figure 3.3. The structure of the earth's atmosphere. Note that the thermosphere ranges to a height 
of 500 km or so and the ionosphere to more than 1,000 km. 

Refractivity of Air. The refractivity (or refractive modulus) of a parcel of  air, 
N -- 106 (n - 1), is a function its temperature (T) and the partial pressures of  the 
dry gases (Pd) and the water vapour (e): 

N =  l~, T ) d L ~ , I ,  \12/_1 (3.21) 

where K1, K2, and K3 are empirically determined coefficients and Zd is the 
compressibility factor for dry air and Zw is the compressibility factor for water 
vapour. The compressibility factors are corrections to account for the departure of 
the air behaviour from that of a perfect gas (one for which P/'r = Rp where R is 

the appropriate gas constant and p is the density of the gas [Owens, 1967]). For 
typical conditions in the earth's atmosphere, 7<1 and Zw depart from unity by less 
than 1 part in 103. The first and second terms in equation (3.21) are due to 
ultraviolet electronic transitions of the induced dipole type for dry air molecules 
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and water vapour respectively, and the third term is due to the permanent dipole 
infrared rotational transitions of water vapour. 
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Figure 3.4. Temperature structure of the atmosphere as represented by example standard 
atmospheres. 
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The most commonly used sets of refractivity constants are those of Smith and 
Weintraub [1953] and Thayer [1974] (see Table 3.1). 

Table 3.1. Experimentally-determined values for the refractivity constants (K1 and K2 are in K 
mbar -1, K 3 is in K 2 mbar-1). 

Smith and Weintraub [1953] Thayer [1974] 

K1 77.61 :t: 0.01 77.60 + 0.014 

K2 72 • 9 64.8 + 0.08 

K3 (3.75 + 0.03) x 105 (3.776:1: 0.004) x 105 

For radio frequencies up to about 30 GHz, the troposphere is non-dispersive 
(except for the anomalous dispersion of the water vapour and oxygen spectral 
lines) and hence N is independent of frequency. 

In radio meteorology, the equation for refractivity of air is most often written in 
the form 
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e 
N = KI + K2*~-~ (3.22) 

where  

K2* = [ ( K 2 - K 1 ) T  +K3] .  

Equation (3.22) may be approximated as 

N = 77.6 + 3.73x105T2 

(3.23) 

(3.24) 

and is referred to as the Smith-Weintraub equation [Smith and Weintraub, 1953]. 
This equation is accurate to about 0.5% (roughly 1.5 N-units at the earth's surface 
under normal conditions) at frequencies below 30 GHz. However, the 
formulation of equation (3.21) when used with Thayer's values for the refractivity 
constants yields accuracies of from about 0.05 N-units for dry air to 0.2 N-units 
for extremely moist air. 

The first and second terms of equation (3.22) are commonly referred to as the 
dry and wet  components of refractivity. Alternatively, refractivity may be 
expressed as 

M P  M e e 
N = K1 ~,,xclK-US" ~ - (KI  x*xdK~"S" - K2) ~ + K3 ~ (3.25) 

1 ~- 

where 

M T 
Md - T' - (1 +0.3780e~)-1 (3.26) 

in which T' is virtual temperature, and M and Md denote the molar mass of moist 
and dry air respectively. The first term in equation (3.25) is referred to as the 
hydrostatic component of refractivity [Davis, 1986] as it is a function of the 
density of moist air which may be assumed to be in hydrostatic equilibrium: 

VP = pg (3.27) 

where P is the total pressure, p is the total density of moist air, and g is the 
acceleration of gravity. If we integrate equation (3.27) in the zenith direction, we 
get 

Z~ 

Ps = fp(z)g(z)dz 

Z 5 

(3.28) 
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where Ps is the total pressure at the base of the vertical column and where the 
integration is performed from the earth's surface (Zs) to the top of the neutral 
atmosphere (Za). 

Alternatively, equation (3.25) may be written as 

N = KiRdP + K~Rwp w + K3R w ~ -  (3.29) 

where Rd and Rw are the gas constants for dry air and water vapour respectively, 
Pw is the density of water vapour, and 

K2 = 2 - t (3.30) 

with Mw the molar mass of water vapour. 
The formulation of equations (3.25) and (3.30) is useful as the zenith delay (see 

below) based on the hydrostatic component is not influenced by water vapour 
content unlike the dry component formalism. 

Modelling the Delay. The range bias experienced by a signal propagating from 
a GPS satellite to the ground may be expressed in first approximation by the 
integral equation 

d~_op = ~[n(r)- l ]csc0(r)dr+ csc0(r)dr- csce(r)dr 
rs �9 r l  

(3.31) 

where n is the refractive index, r is the geocentric radius with rs the radius of the 
earth's surface and ra the radius of the top of the neutral atmosphere, and 0 and 8 
respectively denote the refracted (apparent) and non-refracted (geometric or true) 
satellite elevation angle. This equation holds for a spherically symmetric 
atmosphere for which n varies only as a function of geocentric radius. The first 
integral accounts for the difference in the electromagnetic and geometric lengths 
of the refracted transmission path. The bracketed integrals account for path 
curvature; i.e., the difference in the refracted and rectilinear path lengths. Note 
that in this chapter we use dtrop as the symbol for tropospheric propagation delay, 
rather than T as used in other chapters, since the latter symbol is used here for 
temperature. 

The integral equation can be evaluated given knowledge of the actual refractive 
index profde or it may be approximated by an analytical function. In applications 
in satellite ranging, the latter approach is most common with the use of a closed- 
form or truncated-series approximation based upon a simplified atmospheric 
model. In most cases, water vapour and the hydrostatic component are considered 
separately. Each component is usually written as the product of a zenith delay 
term, approximating the integral of the refractive index profile in the vertical 
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direction, and a mapping function which maps the increase in delay with 
decreasing elevation angle. In general form 

dtrop = d~mh(l~s) + dZwvmwv(Es) (3.32) 

where 
dZh 
dZwv 
mh 
m w v  

r 

is the zenith delay due to the hydrostatic component 
is the zenith delay due to water vapour 
is the hydrostatic mapping function 
is the water vapour mapping function 
is the non-refracted elevation angle at the ground station 

Zenith Delays. For a signal coming from the direction of the zenith, equation 
(3.31) becomes 

d;o p = ~[n(r)- 1]dr 

" (3.33) 
r a 

= 10 -6 ~N(r)dr. 

This is the (total) tropospheric zenith delay. Sea level values of the total 
tropospheric delay in the zenith direction are of the order of 2.3 to 2.6 metres. 
The zenith delay can be expressed as the sum of a hydrostatic and wet component 
using the formalism of equation (3.29): 

Z a Za 

Z s Z l  

(3.34) 

The hydrostatic term accounts for roughly accounts for 90% of the total delay and 
can be obtained from the total surface pressure with an accuracy of a few 
millimetres by assuming the atmosphere to be in a state of hydrostatic 
equilibrium. The frequently used Saastamoinen [1973] hydrostatic zenith delay 
model is given by 

d~try = 10-'6K1Rd P.._a.s (3.35) 
gm 

where gin, the magnitude of gravity at the centroid of the atmospheric column is 
given by 

gm= 9.784(1 - 0.0026cos2r - 0.00028H) (3.36) 
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where ~ is the (geocentric) latitude of the station and H is the station orthometric 
height in kilometres. 

The wet component is a function of the water vapour along the signal path. 
Unlike the hydrostatic delay, the wet delay is highly variable both spatially and 
temporally and a model prediction using surface meteorology yields an accuracy 
no better than 1 to 2 cm, depending on the atmospheric conditions. 

It should be noted that there is a very small propagation delay due to liquid 
water in the form of clouds and rain along the signal path. The size of this delay 
is typically well below one centimetre and is generally ignored. 

Mapping Functions. Over the past 20 years or so, geodesists and radio 
meteorologists have developed a variety of model profiles and mapping functions 
for the evaluation of the delay experienced by signals propagating through the 
troposphere at arbitrary elevation angles. 

The simplest mapping function is the cosecant of the elevation angle which 
assumes that spherical constant-height surfaces can be approximated as plane 
surfaces. This is a reasonably accurate approximation only for high elevation 
angles and with a small degree of bending. 

Marini [1972] showed that the elevation angle dependence of the tropospheric 
delay could be expressed as a continued fraction form in terms of the sine of the 
elevation angle: 

m(0) = a 
sin 0 + b 

sin 0 + 
c 

sin 0 4 
sinS+... (3.37) 

where the coefficients a, b, c ..... are constants or linear functions. Most of the 
mapping functions that have been developed are based on a truncation of the 
continued fraction form. Note that m(0=90 ~ ~ 1. Some mapping functions 
accordingly use a normalised form of equation (3.37). 

Among the large number of mapping functions that have been developed are 
those by Babyet al. [1988], Black [1978], Black and Eisner [1984], Chao [1972], 
Davis et al. [1985], Goad and Goodman [1974], Herring [1992], Hopfield [1969], 
Ifadis [1986], Lanyi [1984], Marini and Murray [1973], Moffett [1973], Niell 
[1993, 1995], Rahnemoon [1988], Saastamoinen [1973], Santerre [1987], and 
Yionoulis [1970]. The performance of these models has been assessed by Janes et 
al. [1989, 1991], Mendes and Langley [1994], and Estefan and Sovers [1994]. 

Janes et al. [1989, 1991] benchmarked delay predictions of the models and 
mapping functions against values obtained by ray-tracing the U.S. Standard 
Atmosphere, 1976 [NOAA/NASA/USAF, 1976] and the associated U.S. Standard 
Atmosphere Supplements, 1966 [ESSAfNASA/USAF, 1966] which, as noted 
earlier, incorporate latitudinal and seasonal departures from the Standard. The 
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authors concluded from their analysis that, of the models tested, the explicit form 
of the Saastamoinen zenith delay expressions [Saastamoinen, 1973] in 
combination with the Davis (also called CfA-2.2) hydrostatic [Davis, 1986] and 
Goad and Goodman water vapour mapping functions [Goad and Goodman, 1974] 
would provide superior performance to the other models under most conditions. 

Mendes and Langley [1994] assessed the accuracy of most of the available 
mapping functions using ray-tracing through an extensive radiosonde data set 
covering different climatic regions as "ground truth." Ray-tracing was performed 
for different elevation angles starting at 3 ~ . Virtually all of the tested mapping 
functions provided sub-centimetre accuracy for elevation angles above 15 ~ The 
precision of the Niell, Herring, and Ifadis mapping functions stood out from the 
rest even at high elevation angles. Their performance at low elevation angles (less 
than about 10 ~ was found to be quite remarkable. Lanyi's mapping function was 
also found to be a good performer although it does not appear to be quite as 
accurate as the other three and is not as efficient in terms of ease of 
implementation and computational speed. 

Estefan and Sovers [1994] contrasted the Lanyi, Davis et al., Ifadis, Herring, 
and Niell mapping functions against the seasonal Chao model which had been 
implemented through look-up tables in the Jet Propulsion Laboratory's operational 
Orbit Determination Program (ODP). They reported that all of the tested mapping 
functions demonstrated superior accuracies compared to the old Chao model. 
They concluded that "no one 'best' tropospheric mapping function exists for every 
application and all ranges of elevation angles; however, based on the comparative 
survey presented, the authors recommend that the Lanyi and Niell mapping 
functions be incorporated into the ODP ..." 

Other interesting observations on the performance of mapping functions are 
those by Herring [1992] who reported that the typical r.m.s, difference between 
ray-tracing at a 5 ~ elevation angle and his mapping functions is 30 mm for the 
hydrostatic delay and 10 mm for the wet delay. Davis et al. [1991] examined 
errors in the Davis mapping function using data from a series of special very long 
baseline interferometry (VLBI) experiments. They found that mapping function 
errors do not exhibit a coherent annual signature but rather appear to be random 

�9 over the long term. 

The Water  Vapour Problem. As previously mentioned, whereas the 
hydrostatic component of the vertical delay can generally be well modelled using 
accurate surface values of total pressure, the same is not true for the wet 
component. The water vapour in the troposphere is not well mixed and its 
distribution is therefore usually spatially and temporally inhomogeneous. The 
variability is highest in the atmospheric boundary layer, which extends from 
ground level up to a height of about 1.5 kilometres, and in the cloud layers that do 
not usually extend much beyond a height of about 4 kilometres. 

Water vapour radiometers (WVRs) have been developed in an effort to remotely 
sense the amount of water vapour along a ray path. A WVR measures 
atmospheric black body radiation which is affected by the presence of water 
vapour. Although the technology has evolved considerably (e.g., Elgered et al. 
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[1991]; Rocken et al. [1991]), the use of WVRs, at least in VLBI, is reported to 
provide only a marginal improvement in accuracy [Kuehn et al., 1991]. However, 
Tralli et al. [1988], based on the analysis of GPS data collected on baselines 
across the Gulf of California, suggest that the use of  WVR data for tropospheric 
path delay calibration in humid regions appears to be important for achieving 
highest possible baseline accuracies. Experiments to further reduce and evaluate 
WVR instrumental errors are continuing [Kuehn et al., 1993]. 

The Residual Delay. The residual tropospheric range bias remaining after the 
application of one of the zenith delay models and associated mapping function 
can, in most instances, be estimated using the range data itself. Such estimation 
can take the form of a single scale bias or residual zenith delay estimated for 
observations spanning many hours, hourly estimates, or stochastic estimation 
using the Kalman filter approach [Lindqwister et al., 1990]. Kalman filtering is 
an attractive alternative to water vapour radiometry both from the point of view of 
cost and accuracy. In fact, Tralli and Lichten [1990] have shown that stochastic 
estimation of total zenith path delays yields baseline repeatabilities of a few parts 
in 108 , results which are comparable to or better than those obtained after path 
delay calibration using WVR and or surface meteorological measurements. 

Tropospheric Error and Vertical Position. Very often an elevation cut-off 
angle of 15 ~ or 20 ~ is used in processing GPS data. Such a cut-off angle 
minimises problems with noisy data and cycle slips (see Chapter 4) and rninimises 
the effects of errors in mapping a fixed zenith delay to low elevation angles. 
However,  Yunck [1993] has pointed out that because the functions of 
tropospheric delay vs. elevation angle and change in signal propagation time due 
to a change in vertical position of the receiver's antenna vs. elevation angle are 
similar down to elevation angles of 20 ~ a fixed zenith delay error will cause an 
error in the estimated vertical position of the antenna which will increase as lower 
elevation data are included in the solution. An attempt to solve simultaneously 
for the zenith delay and the position of the antenna will be aided by the inclusion 
of low elevation angle data - -  provided that the mapping function is valid. 

Special Problems: Small Networks and Valleys. Most tropospheric delay 
models and mapping functions for predicting tropospheric delay assume a 
laterally homogeneous atmosphere. In the actual atmosphere, the decorrelation of 
signal paths for a network of stations is governed by lateral gradients in 
atmospheric pressure, temperature, and humidity, and by differences in station 
elevation. Beutler et al. [1988] have shown that the effect of the differential 
troposphere on local GPS networks leads to a relative height error that can be 
written in a first approximation as 

Ah e = Ad~,p sec ~ (3.38) 
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where A d ~  denotes the difference in zenith delay between co-observing stations 

and Xl/ma x is the maximum zenith angle observed. Neglect of the differential 
troposphere leads to approximately 3 to 5 mm of relative height error for every 
millimetre change in zenith delay between stations for ~/max = 70-80 ~ 

Janes et al. [1991] intimate that users of GPS data processing software that 
incorporates a tropospheric delay model driven by surface measurements of 
temperature, pressure, and relative humidity should be aware of potential pitfalls 
when processing data collected on baselines of local scale. They suggest that 
modelling of the differential troposphere between co-observing stations is only 
advisable when the meteorological gradients clearly exceed the accuracy to which 
surface meteorological parameters can be measured. Where horizontal gradients 
or station height differences are significant, careful measurement of surface 
meteorology is essential for proper modelling of the differential tropospheric 
delay. Temperature inversions, anomalous humidity profiles, and the use of 
inappropriate upper air profile lapse rate parameters can significantly reduce the 
accuracy of the delay model. Where gradients and height differences for a small 
network are slight, it may be more prudent to assume a laterally homogeneous 
atmosphere based either upon standard conditions (scaled to height) or upon 
averaged local meteorological measurements. Beutler et al. [1990] have also 
pointed out the difficulties associated with modelling the troposphere for small 
GPS networks. 

3.5.2 Ionosphere 

The ionosphere is that region of the earth's atmosphere in which ionising radiation 
(principally from solar ultraviolet and x-ray emissions) causes electrons to exist in 
sufficient quantities to affect the propagation of radio waves. This definition does 
not impose specific limits on the height of the ionosphere. Nevertheless, it is 
useful to delineate some sort of boundary to the region. The height at which the 
ionosphere starts to become sensible is about 50 kin and it stretches to heights of 
1,000 km or more. Indeed, some would argue for an upper limit of 2,000 km. 
The upper boundary depends on what particular plasma density one uses in the 
definition since the ionosphere can be interpreted as thinning into the 
interplanetary plasma. Although the interplanetary plasma affects the propagation 
of the signals from space probes and the quasar signals observed in VLBI, it may 
be considered to lie beyond the orbits of GPS satellites and therefore will be 
ignored here. 

The ionosphere is a dispersive medium for radio waves; that is, its refractive 
index is a function of the frequency. The refractive index is given by the 
Appleton-Hartree theory of electromagnetic wave propagation in an ionised 
medium in which there are an equal number of positive ions and free electrons. It 
is assumed that a uniform magnetic field is present and that the ions (being 
relatively massive) have negligible effect on radio waves. The complex refractive 
index, n, at angular frequency, o~, is given by (e.g., Bradley [1989]) 
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n 2 = (~ t - ix )  2 

X 
= 1  1 

 -iz- +( 
2(I - X - iZ) - [4(1 - X - iZ) 2 ) 

(3.39) 

where 

X = J  
Nee z eB L eB v v 

2, YL = , YT= , and Z = - - .  
EomeO meO) meo (o 

In equation (3.39), Ne is the electron density, e and me are the electron charge and 

mass respectively, 80 is the permittivity of free space, and v is the electron 
collision frequency. The subscripts T and L refer to the transverse and 
longitudinal components of the earth's magnetic field, B. The quantity 

f0 = c~176 = 1 Nee 2 (3.40) 
2~ 27~ ~0me 

is known as the electron plasma resonance frequency. Typically, f0 < 30 MHz. 
For frequencies f >> f0, such as those used by GPS, typical values for the 
components of the earth's magnetic field, and ignoring electron collisions, the 
refractive index of the ionosphere can be well approximated by 

X 
n = 1 (3.41) 

2 ( I + Y L ) "  

The refractive index may be further approximated by ignoring the effect of the 
longitudinal components of the earth's magnetic field. If this is done, to first 
order, the phase refractive index of the ionosphere, appropriate for carrier phase 
observations, is given by 

~ e  
n) = 1 f2 (3.42) 

where o~ is a constant. Since group refractive index is defined as (see also 
equation (3.16)) 

ng = n + f dn (3.43) 
df 
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we have for the ionospheric group refractive index, appropriate for pseudorange 
observations, 

np= 1-t f~ (3.44) 

If Ne has units of reciprocal metres cubed and f is given in Hz, then cx has the 
value 40.28. 

Ionospheric Phase Advance and Group Delay of GPS Signals. The 
integration of the expressions for n~ and np along the path followed by a radio 
signal yields the electromagnetic path lengths 

P , = ! ( 1 - c ~ N ' ~ d S = p - d ~ f :  f f  (3.45) 

and 

p~ = f I l +  cr2~ ~ S  = p + d~o. 
s-  f2 f f  

(3.46) 

where p is the true geometric range and dion is the ionospheric range error which 
(ignoring path bending) is given by 

~TEC (3.47) 
dion = f2 

with TEC (total electron content) being the integrated electron density along the 
signal path. Carrier phase measurements of the range between a satellite and the 
ground are reduced by the presence of the ionosphere (the phase is advanced) 
whereas pseudorange measurements are increased (the signal is delayed) - -  by 
the same amount. Note that in concert with our use of the symbol dtrop for the 
tropospheric propagation delay, we have used dion to represent the ionospheric 
propagation delay. This contrasts with the use of I to represent this delay in other 
chapters. 

TEC is highly variable both temporally and spatially. The dominant variability 
is diurnal. There are also solar-cycle and seasonal periodicities as well as short- 
term variations with commonly-noted periods of 20 to over 100 minutes. Typical 
daytime values of vertical TEC for mid-latitude sites are of the order of 1018 m -2 
with corresponding night-time values of the order of 1017 m -2. However, such 
typical day-time value can be exceeded by a factor of two or more, especially in 
near-equatorial regions. For a discussion of the variability of TEC values, see 
Jursa [1985]. 
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Values for dion at the GPS L1 frequency of 1575.42 MHz in the zenith direction 
can reach 30 metres or more and near the horizon this effect is amplified by a 
factor of about three. 

Corrections and Models. Dual frequency positioning systems take advantage 
of the dispersive nature of the ionosphere for correcting for its effect. In the case 
of GPS, for example, a linear combination of the L1 and L2 pseudorange 
measurements may be formed to estimate and subsequently remove the 
ionospheric bias from the LI measurements: 

d,o.., (3.48) 

where fl and f2 are the L1 and L2 carder frequencies respectively, PI and P2 are 
the L 1 and L2 pseudorange measurements, and e represents random measurement 
errors and unmodelled biases. A similar approach is used to correct carrier phase 
measurements with 

(3.49) 

where O1 and tI~ 2 a r e  the L1 and L2 carrier phase measurements (in units of 

length) respectively, LI and X2 are the L1 and L2 cartier wavelengths respectively, 

N1 and N2 are the LI and L2 integer cycle ambiguities respectively, and 
represents random measurement errors and unmodelled biases. In practice, N1 
and N2 cannot be determined but as long as the.phase measurements are 
continuous (no cycle slips - -  see Chapter 4) they remain constant. Hence the 
carrier phase measurements can be used to determine the variation in the 
ionospheric delay - -  the so-called differential delay - -  but not the absolute delay 
at any one epoch. The estimation of the differential delay is this way (having 
ignored third and higher order effects) is good to a few centimetres. Brunner and 
Gu [1991] have proposed an improved model which accounts for the higher order 
terms neglected in the first order approximation, the geomagnetic field effect, and 
ray path bending. Numerical simulations showed that the residual range errors 
associated with the new model are less than two millimetres. 

Note that in the dual-frequency correction approach, it is assumed that the L1 
and L2 signals follow the same path through the ionosphere. While this is not 
quite true (at an elevation angle of 15 ~ , for example, the maximum separation of 
the ray paths for a high TEC value of 1.38 x 1018 m -2 is about 35 metres [Brunner 
and Gu, 1991]), the error induced is generally negligible except under conditions 
of  severe ionospheric turbulence. 

If measurements are made at only one carder frequency, then an alternative 
procedure for correcting for ionospheric bias must be used. The simplest 
approach, of course, is to ignore the effect. This approach is often followed by 
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surveyors carrying out relative positioning using single frequency GPS receivers. 
Differencing between the observations made by simultaneously observing 
receivers removes that part of the ionospheric range error that is common to the 
measurements at both stations. The remaining residual ionospheric range error 
results from the fact that the signals received at the two stations have passed 
through the ionosphere at slightly different elevation angles. Therefore, the TEC 
along the two signal paths is slightly different, even if the vertical ionospheric 
profile is identical at the two stations. It has been shown [e.g. Georgiadou and 
Kleusberg, 1988] that the main result of this effect in differential positioning is a 
baseline shortening proportional to the TEC and proportional to the baseline 
length. Beutler et al. [1988] and Santerre [1989, 1991] have examined the effect 
of the GPS satellite sky distribution on the propagation of residual ionospheric 
errors into estimated receiver positions. Such errors can introduce significant 
scale and orientation biases in relative coordinates. For example, at a typical mid- 
latitude site using an elevation cut-off angle of 20 ~ a horizontal scale bias of 
-0.63 parts per million is incurred for each 1 x 1017 m -2 of TEC not accounted for 
[Santerre, 1991 ]. 

It is also possible to use an empirical model to correct for ionospheric bias. The 
GPS broadcast message, for example, includes the parameters of a simple 
prediction model [Klobuchar, 1986; ARINC, 1991]. Recent tests of this model 
against a limited set of dual-frequency GPS data showed that this broadcast model 
can perform very well. Newby and Langley [1992] showed that the model 
accounted for approximately 70 to 90% of the daytime ionospheric delay and 60 
to 70% of the night-time delay at a mid-latitude site during a time of high solar 
activity. These results indicate that the broadcast model can, at times, remove 
more than the 50 to 60% r.m.s, of the ionosphere's effect generally acknowledged 
as the performance level of the model [e.g., Klobuchar, 1986; Feess and Stephens, 
1986]. This same study showed that more sophisticated ionospheric models (the 
Bent Ionospheric Model [Bent and Llewellyn, 1973], the 1986 International 
Reference Ionosphere (IRI) [Rawer et al., 1981], and the Ionospheric 
Conductivity and Electron Density Profile (ICED) [Tascoine et al., 1988] - -  see 
also Bilitza [1990]) did not appear to perform significantly better, on average, 
than the broadcast model. In fact, the performance of the ICED model was 
markedly poorer. Brown et al. [1991] have also evaluated the usefulness of 
ionospheric models as predictors of TEC. They concluded that none of the six 
models tested do a very good job probably because the top part of the ionosphere 
is inaccurately represented. Leitinger and Putz [1988] have looked at the use of 
the Bent and IRI models in providing information for higher order corrections of 
the ionospheric range bias. 

Georgiadou and Kleusberg [1988] developed a model for the correction of 
carrier phase GPS observations from a network of single frequency receivers 
using estimated vertical ionospheric biases derived from the observations of  a 
dual frequency receiver in the vicinity of the network. Webster and Kleusberg 
[1992] have recently extended this technique to correct the observations from an 
airborne single frequency receiver moving in the vicinity of three ground-based 
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dual frequency receivers. A similar approach has been followed by Wild et al. 
[1989] and Wild [1994]. 

Ionospheric Scintillation and Magnetic Storms. If the number of electrons 
along a signal path from a satellite to a receiver changes rapidly, the resulting 
rapid change in the phase of the carder may present difficulties for the carrier 
tracking loop in the receiver (see Chapter 4). For a GPS receiver tracking the LI 
signal, a change of only 1 radian of phase (corresponding to 0.19 x 1016 m -2 
change in TEC, or only 0.2% of a typical 1018 m -2 TEC) in a time interval equal 
to the inverse of the receiver bandwidth is enough to cause problems for the 
receiver's tracking loop. If the receiver bandwidth is only I Hz (which is just 
wide enough to accommodate the geometric Doppler shift) then when the second 
derivative of the phase exceeds 1 Hz per second, loss of lock will result. During 
such occurrences, the amplitude of the signal is generally fading also. These 
short-term (1 to 15 seconds) variations in the amplitude and phase of signals are 
known as ionospheric scintillations. 

The loss of lock results in a phase discontinuity or cycle slip. A cycle slip must 
be repaired before the data following the slip can be used. Large variations in 
ionospheric range bias over short intervals of time can make the determination of 
the correct integer number of cycles associated with these phase discontinuities 
difficult. If the variations of the ionospheric range bias exceed one half of a 
carrier cycle, they may be wrongly interpreted in the data processing as a cycle 
slip. 

There are two regions where irregularities in the earth's ionosphere often occur 
causing short term signal fading which can severely test the tracking capabilities 
of a GPS receiver: the region extending _+30 ~ either side of the geomagnetic 
equator and the auroral and polar cap regions (see, e.g,, H6roux and Kleusberg 
[1989] and Wanninger [1993]). The fading can he so severe that the signal level 
drops completely below the signal lock threshold of the receiver. When this 
occurs, data is lost until the receiver reacquires the signal. The process of loss and 
re-acquisition of signals may go on for several hours. 

Such signal fading is also associated with geomagnetic storms. Magnetic 
storms (and the associated ionospheric storms) occur when high-energy charged 
particles from solar flares, eruptive prominences, or coronal holes arrive at the 
earth causing perturbations in the earth's magnetic field. The charged particles 
interact with the earth's neutral atmosphere producing excited ions and additional 
electrons. The strong electric fields that are generated cause significant changes 
to the morphology of the ionosphere, greatly changing the propagation delay of 
GPS pseudoranges and the advance in the carrier phases within time intervals as 
short as one minute. Such changes in the polar and auroral ionospheres can last 
for several hours. 

Occasionally magnetic storm effects extend to the mid-latitudes. During the 
magnetic storm that occurred in March 1989, range-rate changes produced by 
rapid variations in TEC exceeded 1 Hz in one second [Klobuchar, 1991]. As a 
result, GPS receivers with a narrow 1 Hz bandwidth were continuously losing 
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lock during the worst part of the storm because of their inability to follow the 
changes. 

GPS as a Tool for Studying the Atmosphere. Ionospheric scientists have 
used the satellites of the U.S. Navy Navigation Satellite System (Transit) as 
satellites of opportunity for studying the ionosphere for more than 30 years (e.g. 
de Mendonca [1963]; Leitinger et al. [1975; 1984]). By recording the Doppler 
shift on the two Transit frequencies, the change in TEC during a satellite pass may 
be determined. If data from a satellite pass can be acquired at several stations, it 
is possible to obtain a two-dimensional image of ionospheric electron density by 
applying the techniques of computerised tomography (e.g. Austen et al. [1987]). 
The signals from the constellation of GPS satellites are also being used to study 
the ionosphere (e.g. Lanyi and Roth [1988]; Clynch et al. [1989]; Melbourne 
[1989]; Coco [1991]). Monaldo [1991] used dual frequency GPS data to assess 
spatial variability of the ionosphere and estimate its potential impact on the 
monitoring of mesoscale ocean circulation using data from altimetric satellites. 
The troposphere is also being studied using GPS; see, for example, Kursinski 
[1994]. 

3.6 SIGNAL MULTIPATH AND SCATTERING 

The environment surrounding the antenna of a GPS receiver can, at times, 
significantly affect the propagation of GPS signals and, as a result, the measured 
values of pseudorange and carrier phase. The chief effects caused by the 
environment are multipath and scattering. 6 

3.6.1 Multipath 

Multipath is the phenomenon whereby a signal arrives at a receiver's antenna via 
two or more different paths. The difference in path lengths causes the signals to 
interfere at the antenna. This phenomenon was quite familiar to television 
viewers before cable became so pervasive. In dense urban areas, television 
signals could arrive from the transmitter by the direct, line-of-sight, route and 
possibly reflected off one or more nearby buildings. The reflected signal, usually 
weaker than the direct signal, produced a "ghost" image. For GPS, multipath is 
usually noted when operating near large reflecting obstacles such as buildings. In 
GPS usage, we consider multipath reflections to include all reflected signals from 
objects external to the antenna. A groundplane is considered to be an intrinsic 
part of the antenna and so reflection of signals from such a groundplane would not 
be treated as multipath. 

6 GPS signals are also susceptible to interference from certain kinds of signals emitted by nearby 
radio transmitters. 
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A related phenomenon, somewhat similar to multipath, is imaging, which also 
involves large nearby reflecting obstacles. The reflecting object produces an 
"image" of the antenna and the resulting amplitude and phase characteristics are 
no longer those of the isolated antenna but of the combination of the antenna and 
its image. Of particular concern is the effect this has on the phase characteristics 
of the antenna (see Chapter 4). 

When a circularly polarised wave is reflected from a surface such as a wall or 
the ground, the sense of polarisation is changed. An antenna designed for RHCP 
signals will, in theory, infinitely attenuate a LHCP signal although, in practice, 
attenuations greater than 30 dB are rare and may be much less. 

Multipath propagation affects both pseudorange and carrier phases 
measurements. According to work done for the GPS Joint Program Office by 
General Dynamics [General Dynamics, 1979] and reported by Bishop et al. 
[1985]: 
�9 Multipath can cause both increases and decreases in measured 

pseudoranges. 
�9 The theoretical maximum pseudorange error for P-code measurements is 

about 15 metres when the reflected/direct signal amplitude ratio is 1 (and 
by inference, 150 metres for C/A-code measurements). 

�9 Because of the coded pulse nature of the signal, GPS P-code receivers can 
discriminate against multipath signals delayed by more than 150 ns (45 
metres). 

�9 Typical pseudorange errors show sinusoidal oscillations of periods of 6 to 
10 minutes. 

Evans and Hermann [ 1990] reported measured multipath on P-code pseudoranges 
of between 1.3 metres in a benign environment and 4 to 5 metres in a highly 
reflective environment. Martin [1978, 1980] assumes an error budget allocation 
for multipath with an r.m.s, value of 1 to 3 metres for'P-code measurements and 
values an order of magnitude larger for C/A-code measurements. 

As described by Seeber [ 1993], multipath effects on carrier phase observations 
can amount to a maximum of about 5 cm. If the direct and reflected signals are 
represented by 

A D = ACOSr D 
(3.50) 

A R = aAcos(q~ D + ~)  

where 
At~ 
AR 

is the amplitude of the direct signal 
Is the amplitude of the reflected signal 
~s an attenuation factor (0 < a -< I) (0 = no reflection; 1 = reflected 
signal at same strength as direct signal) 
is the phase of the direct signal 

~s the phase shift of the reflected signal with respect to the direct 
signal. 

The superposition of both signals gives 
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A z = A D + A R = A c o s ~  D + ~ c o s ( ~  D + ~ )  = [~Acos(~t) + O) (3.51) 

With At~.r~ = A and AR.~ = r then the resultant multipath error in the carrier 
phase measurement is 

sin 
O = arctan(cx_ ~ + c o s ) .  (3.52) 

The amplitude of the signal is 

B = ~A = AX/I+ Ix 2 + 2r (3.53) 

The above equations indicate that for r = 1, the maximum value of O is O = 90 ~ 
Therefore the maximum error on an L1 carrier phase measurement is 0.25 x 19.05 
cm or about 5 cm. 

Multipath and imaging effects in a highly reflective environment are likely to be 
limiting factors for single epoch static pseudorange applications at the 10 m level, 
for static carrier applications at the few centimetre level, and for kinematic 
applications due to the higher noise level as well as to multipath induced loss of 
lock. 

Multipath effects, when averaged over a long enough time for the relative phase 
of the direct and reflected signals to have changed by at least one cycle, will be 
considerably reduced. This is true only for static applications, Imaging effects, 
on the other hand, cannot be averaged out and may leave biases in the 
measurements. Multipath and imaging effects are closely repeatable from day to 
day for the same satellite/antenna site pair, hence monitoring of changes of the 
antenna coordinates at the centimetre and sub-centimetre level (as required for 
geodetic applications) may well be possible even in the presence of significant 
multipath. 

The multipath and imaging errors in pseudorange and carrier phase 
measurements will map into computed receiver positions. It is therefore 
important to avoid these effects if at all possible. Possible mitigating measures 
are (see also Chapter 4) 
�9 Careful selection of antenna locations. 
�9 Carefully designed antennas (microstrip; choke ring); use of extended 

antenna ground planes. 
�9 Use of radio frequency absorbing material near the antenna. 
�9 Receiver design to discriminate against multipath (narrow correlators, 

multipath-estimating multiple-correlator channels). 

3.6.2 Scattering 

Another related phenomenon to multipath is signal scattering. E16segui et al. 
[1994] have reported that a GPS signal scattered from the surface of a pillar on 
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which a GPS antenna is mounted interferes with the direct  signal.  The  error  
depends on the elevation angle of  the satellite, varies s lowly with elevat ion angle 
and t ime, does not necessari ly cancel out for different antenna setups and/or long 
baselines,  and introduces systematic errors at the centimetre-level  in the est imates 
of  all parameters  including site coordinates and residual tropospheric propagat ion 
delays. 

3.7 S U M M A R Y  

In this chapter ,  we have examined the generation of  the GPS signals  and their 
propagat ion from the satellites to the antenna of  a GPS receiver. After  reviewing 
the fundamentals  of  electromagnetic wave propagation, we looked at the structure 
of  the GPS signals ,  and then looked in some detai l  at the effects  that the 
t roposphere  and the ionosphere  have on the signals.  F inal ly ,  we looked  at 
propagat ion effects in the immediate vicinity of  the GPS receiver 's  antenna with 
an examinat ion of  multipath and scattering. 
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4 . 1  I N T R O D U C T I O N  

We saw in Chapter 3 that at a sufficiently large distance from a transmitter, the 
electromagnetic waves that it emits can be considered to be spherical. We can 
represent the electric field intensity of a spherical electromagnetic wave of frequency 

to and wave number k at some distance r from the transmitter as 

E = E~ ei(~-kr). (4.1) 
r 

The signal from a GPS satellite when it arrives at a receiver can be taken to be such 

a wave and if we replace r by p, we can represent the signal in simplified form as 

y = Acos(tot - kp + 0') (4.2) 

where A is the signal amplitude, t is the elapsed time measured from the start of 

transmission from the satellite, p is the distance travelled from the satellite to the 

receiver, and 0" is a phase bias term which is the phase of the wave at the satellite at 

t = 0 .  
The distance travelled by the wave between the satellite and the receiver may be 

determined by one of two methods. At a fixed position in space, the phase of a 

received wave is tot plus some unchanging constant. Let us set the constant to zero. 
Now, if we could identify the beginning of a particular cycle in the wave and if we 
knew that it was transmitted by the satellite at a certain time t = 0, say, then when 

we receive that particular cycle, the phase of the wave will be toT, where T is the 
elapsed time between transmission of the particular cycle and its reception. The 
distance to the satellite could then be computed by multiplying the elapsed time by 
the speed of propagation. The beginning of a particular cycle could be identified by 
superimposing a modulation on the wave which we could then refer to as a carrier 
wave. Such modulated carrier waves are used in the technique of pseudoranging. 
Accurate timing information is required for this technique. 

An alternative approach would be to count the number of full and fractional cycles 
in the career wave between the satellite and the receiver at a given instant in time 
the carrier phase. This number equals the phase of the wave at the receiver 
assuming zero phase at the satellite. The distance to the satellite could then be 
determined by dividing the phase at the receiver by the propagation wave number. 
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Unfortunately, no way exists to count directly the number of cycles between a 
satellite and a receiver at a given instant in time. How this problem is resolved in 
practice will be explained shortly. 

We will describe these two basic GPS observables, the pseudorange and the 
carrier phase, in this chapter but before we do, we need to examine the instrument 
that provides us with measurements of these observables: the GPS receiver. 

4 .2  GPS RECEIVERS 

A GPS receiver consists of a number of basic building blocks (see Figure 4.1): an 
antenna and associated preamplifier, a radio frequency or RF front end section, a 
signal tracker block, a command entry and display unit, and a power supply. The 
overall operation of the receiver is controlled by a microprocessor which also 
computes the receiver's coordinates. Some receivers also include a data storage 
device and/or an output to interface the receiver to a computer. We'll examine each 
of these components in turn, starting with the antenna. This discussion o f  the 
basics of how GPS receivers work is based on Langley [1991]. Further details on 
the operation of GPS receivers can be found in Spilker [1978, 1980] and Van 
Dierendonck [1995]. 
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Figure 4.1. The major components of a generic one-channel GPS receiver. 
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4 . 2 . 1  The Building Blocks 

Antennas.  The job of the antenna is to convert the energy in the electromagnetic 
waves arriving from the satellites into an electric current which can be handled by 
the electronics in the receiver. The size and shape of the antenna are very important 
as these characteristics govern, in part, the ability of the antenna to pick up and pass 
on to the receiver the very weak GPS signals. The antenna may be required to 
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operate at just the L1 frequency or, more typically for receivers used for geodetic 
work, at both the L 1 and L2 frequencies. Also because the GPS signals are fight- 
hand circularly polarised (RHCP), all GPS antennas must be RHCP as well. 
Despite these restrictions, there are several different types of antennas that are 
presently available for GPS receivers. These include monopole or dipole 
configurations, quadrifilar helices (also known as volutes), spiral helices, and 
microstrips. 

Perhaps the most common antenna is the microstrip because of its ruggedness and 
relative ease of construction. It can be circular or rectangular in shape and is similar 
in appearance to a small piece of copper-clad printed circuit board. Made up of one 
or more patches of metal, microstrips are often referred to as patch antennas. They 
may have either single or dual frequency capability and their exceptionally low 
profile makes them ideal for airborne and some hand-held applications. 

Other important characteristics of a GPS antenna are its gain pattern which 
describes its sensitivity over some range of elevation and azimuth angles; its ability 
to discriminate against multipath signals, that is, signals arriving at the antenna after 
being reflected off nearby objects; and for antennas used in very precise positioning 
applications, the stability of its phase centre, the electrical centre of the antenna to 
which the position given by a GPS receiver actually refers. 

A GPS antenna is typically omnidirectional. Such an antenna has an essentially 
nondirectional pattern in azimuth and a directional pattern in elevation angle. At the 
zenith, the antenna typically has a few dB of gain with respect to a circularly 
polarised isotropic radiator (dBic), a hypothetical ideal reference antenna. The gain 
gradually drops down to a few dB below that of a circularly polarised isotropic 
radiator at an elevation angle of 5 ~ or so. 

Some antennas, such as the microstrip, require a ground plane to make them 
work properly. This is usually a fiat or shaped piece of metal on which the actual 
microstrip element sits. In geodetic surveying, the ground plane of the antenna is 
often extended with a metal plate or plates to enhance its performance in the 
presence of multipath. This is done through beam shaping (reducing the gain of the 
antenna at low elevation angles) and enhancing the attenuation of LHCP (reflected) 
signals. One form of ground plane is the choke ring [Tranquilla et al., 1989; 
Yunck et al., 1989]. A choke ring consists of several concentric hoops, or thin- 
walled hollow cylinders, of metal mounted on a circular base at the centre of which 
is placed a microstrip patch antenna. Choke rings are particularly effective in 
reducing the effects of multipath. 

Usually, GPS antennas are protected from possible damage by the elements or 
other means by the use of a plastic housing (radome) which is designed to 
minimally attenuate the signals. The signals are very weak; they have roughly the 
same strength as those from geostationary TV satellites (the strength of the received 
GPS signals is further discussed in section 4.4.1). The reason a GPS receiver does 
not need an antenna the size of those in some people's backyards has to do with the 
structure of the GPS signal and the ability of the GPS receiver to de-spread it (see 
Chapter 3). The power to extract a GPS signal out of the general background noise 
of the ether is concentrated in the receiver rather than the antenna. Nevertheless, a 
GPS antenna must generally be combined with a low noise preamplifier that boosts 
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the level of the signal before it is fed to the receiver itself. In systems where the 
antenna is a separate unit, the preamplifier is housed in the base of the antenna and 
receives power from the same coaxial cable along which the signal travels to the 
receiver. 

GPS signals suffer attenuation when they pass through most structures. Some 
antenna/receiver combinations are sensitive enough to work with signals received 
inside wooden frame houses and on the dashboards of automobiles and in the 
window recesses of aircraft, for example, but it is generally recommended that 
antennas be mounted with a clear view of the satellites. Even outdoors, dense 
foliage, particularly when it is wet, can attenuate the GPS signals sufficiently that 
many antenna/receiver combinations have difficulty tracking them. 

Two or more GPS receivers can share the same antenna if an antenna splitter is 
used. The splitter must block the preamplifier DC voltage supplied by all but one of 
the receivers. The splitter should provide a degree of isolation between the receiver 
ports so that there is no mutual interference between receivers. Unless the splitter 
contains an active preamplifier, there will be at least a 3 dB loss each time the signal 
from the antenna is split. 

Assessments of the performance of different antennas used with geodetic-quality 
GPS receivers have been presented by Schupler and Clark [1991] and Schupler et 
al. [1994]. Interest in modelling and improving the performance of GPS antennas 
was shown by the convening of a special session entitled "GPS Antennas" at the 
American Geophysical Union Fall Meeting in December, 1994 [AGU, 1994]. 

An excellent general reference on antennas, including microstrips, is the Antenna 
Engineering Handbook [Johnson, 1993]. 

Mixing Antennas. Ideally, the phase centre of a GPS antenna is independent of 
the direction of arrival of the signals. However, in practice, there may be small 
(sub-centimetre in the case of well-designed, geodetic-quality antennas) 
displacements of the phase centre with changing azimuth and elevation angle. 
Antennas of the same make and model will typically show similar variations so that 
their effects can be minimised by orienting antennas on regional baselines to the 
same direction, say magnetic north. For a well designed antenna, the average 
horizontal position of the phase centre is usually coincident with the physical centre 
of the antenna. The vertical position of the phase centre with respect to an 
accessible physical plane through the antenna has to be established by anechoic 
chamber measurements. Note that the L1 and L2 phase centres of dual frequency 
antennas may be different. Now, as long as one is using the same make and model 
of antenna at both ends of a baseline, the actual position of the phase centre is not 
usually important; only the vertical heights of a specific point on the exterior of the 
antennas (say on the base of the preamplifier housing) above the geodetic makers 
needs to be measured. However, if a mixture of antennas of different make and/or 
model is used on a baseline or in a network, then the data processing software must 
know the heights of the phase centres of the antennas with respect to the physical 
reference points on the antennas so that the appropriate corrections can be made. 

Bourassa [1994] carried out of study of the effects of the variation in phase centre 
position. He found that the observation site, length of observation session, use of 
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ground planes, choice of elevation cut-off angle, orientation of the antenna, and 
frequency all could have an effect on the estimated coordinates of the antenna. The 
maximum sizes of the effects ranged from a few miUimetres to over a centimetre. 

Some success has been reported recently in the application of azimuth and 
elevation angle-dependent phase centre corrections in processing GPS data using a 
mixture of antennas [Gurtner et al., 1994; Braun et al., 1994]. 

Transmission Lines. The signals received by the antenna are passed to the 
receiver along a coaxial transmission line. The signals are attenuated with the 
degree of attenuation, referred to as insertion loss, dependent on the type and length 
of coaxial cable used. RG-58C has an insertion loss of about 0.8 dB/m at a 
frequency of 1575 MHz. The thicker Belden 9913, on the other hand, has an 
insertion loss of only 0.2 dB/m. For long cable runs, low loss cable is required or 
an additional low noise preamplifier may be placed between the antenna and the 
cable. 

There is a small delay experienced by the signals travelling from the antenna to the 
receiver. However, this delay is the same for the signals simultaneously received 
from different satellites and so acts like a receiver clock offset. 

The  RF Section. The job of the RF section of a GPS receiver is to translate 
the frequency of  the signals arriving at the antenna to a lower one, called an 
intermediate frequency or IF which is more easily managed by the rest of the 
receiver. This is done by combining the incoming signal with a pure sinusoidal 
signal generated by a component in the receiver known as a local oscillator. Most 
GPS receivers use precision quartz crystal oscillators, enhanced versions of the 
regulators commonly found in wristwatches. Some geodetic quality receivers have 
the provision for supplying the local oscillator signal from an external source such 
as an atomic frequency standard (rubidium vapour, cesium beam, or hydrogen 
maser). The IF signal contains all of the modulation that is present in the 
transmitted signal; only the carrier has been shifted in frequency. The frequency of 
the shifted carrier is simply the difference between the original received carrier 
frequency and that of the local oscillator. It is often called a beat frequency in 
analogy to the beat note that is heard when two musical tones very close together 
are played simultaneously. Most receivers employ multiple IF stages, reducing the 
carrier frequency in steps. The final IF signal passes to the work horse of the 
receiver, the signal tracker. 

The  Signal Trackers .  The omnidirectional antenna of a GPS receiver 
simultaneously intercepts signals from all satellites above the antenna's horizon. 
The receiver must be able to isolate the signals from each particular satellite in order 
to measure the code pseudorange and the phase of the carrier. The isolation is 
achieved through the use of a number of signal channels in the receiver. The 
signals from different satellites may be easily discriminated by the unique C/A-code 
or portion of the P-code they transmit and are assigned to a particular channel. 

The channels in a GPS receiver may be implemented in one of two basic ways. A 
receiver may have dedicated channels with which particular satellites are 
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continuously tracked. A minimum of four such channels tracking the L 1 signals of 
four satellites would be required to determine three coordinates of position and the 
receiver clock offset. Additional channels permit tracking of more satellites or the 
L2 signals for ionospheric delay correction or both. 

The other channelisation concept uses one or more sequencing channels. A 
sequencing channel "listens" to a particular satellite for a period of time, making 
measurements on that satellite's signal and then switches to another satellite. A 
single channel receiver must sequence through four satellites to obtain a three- 
dimensional position "fix". Before a first fix can be obtained, however, the 
receiver has to dwell on each satellite's signal for at least 30 seconds to acquire 
sufficient data from the satellite's broadcast message. The time to first fix and the 
time between position updates can be reduced by having a pair of sequencing 
channels. 

A variation of the sequencing channel is the multiplexing channel. With a 
multiplexing channel, a receiver sequences through the satellites at a fast rate so that 
all of the broadcast messages from the individual satellites are acquired essentially 
simultaneously. For a multiplexing receiver, the time to first fix is 30 seconds or 
less, the same as for a receiver with dedicated multiple channels. 

Receivers with single channels are cheaper but because of their slowness are 
restricted to low speed applications. Receivers with dedicated channels have greater 
sensitivity because they can make measurements on the signals more often but they 
have inter-channel biases which must be carefully calibrated. This calibration is 
usually done by the receiver's microprocessor. Most geodetic-quality GPS 
receivers have 8 to 12 dedicated channels for each frequency and can track the 
signals from all satellites in view. 

The GPS receiver uses its tracking channels to make pseudorange measurements 
and to extract the broadcast message. This is done through the use of tracking 
loops. A tracking loop is a mechanism which permits a receiver to "tune into" or 
track a signal which is changing either in frequency or in time. It is a feedback 
device which basically compares an incoming (external) signal against a locally- 
produced (internal) signal, generates an error signal which is the difference between 
the two, and uses this signal to adjust the internal signal to match the external one in 
such a way that the error is reduced to zero or minimised. A GPS receiver contains 
two kinds of tracking loops: the delay lock, or code tracking, loop and the phase 
lock, or carrier tracking, loop. 

The delay lock loop is used to align a pseudorandom noise (PRN) code sequence 
(from either the C/A or P-code) that is present in the signal coming from a satellite 
with an identical one which is generated within the receiver using the same 
algorithm that is employed in the satellite. Alignment is achieved by appropriately 
shifting the receiver-generated code chips in time so that a particular chip in the 
sequence is generated at the same instant its twin arrives from the satellite. 

A correlation comparator in the delay lock loop continuously cross-correlates the 
two code streams. This device essentially performs a multiply and add process that 
produces a relatively large output only when the code streams are aligned. If  the 
output is low, an error signal is generated and the code generator adjusted. In this 
way, the replicated code sequence is locked to the sequence in the incoming signal. 



147 Richard B. Langley 

The signals from other GPS satellites will have essentially no effect on the tracking 
process because the PRN codes of all the satellites were chosen to be orthogonal to 
each other. This orthogonality property means that a very low output is always 
produced by the correlator whenever the code sequences used by two different 
satellites are compared. 

Because the P-code sequence is so long, a P-code tracking loop needs some help 
in setting its code generator close to the right spot for obtaining lock with the 
satellite signal. Its gets this help from information included in the HOW of the 
broadcast message which is available to the receiver by first tracking the C/A-code. 

The time shift required to align the code sequences is, in principle, the time 
required for a signal to propagate from the satellite to the receiver. Multiplying this 
time interval by the speed of light gives us the distance or range to the satellite. But 
because the clocks in a receiver and in a satellite are, in general, not synchronised 
and run at slightly different rates, the range measurements are biased. These biased 
ranges are called pseudoranges. Since the chips in the satellite code sequences are 
generated at precisely known instants of time, the alignment of the receiver and 
satellite code sequences also gives us a reading of the satellite clock at the time of 
signal generation. 

Once the code tracking loop is locked, the PRN code can be removed from the 
satellite signal by mixing it with the locally generated one and filtering the resultant 
signal. This procedure de-spreads the signal, shrinking its bandwidth down to 
about 100 Hz. It is through this process that the GPS receiver achieves the 
necessary signal to noise ratio to offset the gain limitation of a physically small 
antenna (see section 4.4.1). 

The de-spread IF signal then passes to the phase lock loop which demodulates or 
extracts the satellite message by aligning the phase of the receiver's local oscillator 
signal with the phase of the IF or beat frequency signal. If the phase of the 
oscillator signal is not correct, this is detected by the de/nodulator in the phase lock 
loop and a correction signal is then applied to the oscillator. Once the oscillator is 
locked to the satellite signal, it will continue to follow the variations in the phase of 
the carder as the range to the satellite changes. 

Most implementations of carrier tracking use the Costas Loop, a variation of the 
phase lock loop designed for binary biphase modulated signals such as those 
transmitted by the GPS satellites. 

The carder beat phase observable is obtained in principle simply by counting the 
elapsed cycles and by measuring the fractional phase of the locked local oscillator 
signal. The phase measurement when converted to units of distance is then an 
ambiguous measurement of the range to the satellite. It is ambiguous because a 
GPS receiver cannot distinguish one particular cycle of the carder from another and 
hence assumes an arbitrary number of full cycles of initial phase when it first locks 
onto a signal. This initial ambiguity must be solved for mathematically along with 
the coordinates of the receiver if phase observations are used for positioning. 
Because this ambiguity is constant as long as the receiver maintains lock on the 
received signal, the time rate of change of the carrier phase is freed from this 
ambiguity. This quantity is related to the Doppler shift of the satellite signal and is 
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used, for example, to determine the velocity of a moving GPS receiver such as that 
in an aircraft. 

After the carrier tracking loop locks onto a satellite signal, the bits in the broadcast 
message are subsequently decoded using standard techniques of bit synchronisation 
and a data detection f'dter. 

Codeless Phase Tracking. There are other ways to measure the carrier beat phase 
other than the standard code tracking / Costas Loop combination and one of these 
methods must be used to measure L2 carrier phases under AS. The simplest 
approach is the so-called signal squaring technique. The GPS signal is simply a 
constant carrier who's phase is shifted by exactly 180 ~ more than a million times 
each second as a result of modulation by the PRN codes and the broadcast 
message. These phase reversals can be considered as a change in the amplitude of 
the signal from +1 to -1 or from -1 to +1 and the instantaneous amplitude is 
therefore either plus or minus one. Electronically squaring the signal results in a 
signal with a constant amplitude of unity, although with a frequency equal to twice 
the original. However, the phase of this signal is easily related to the phase of the 
original carrier. Of course, in the squaring process both the codes and the 
broadcast message are lost so code-derived pseudorange measurements are not 
possible and the information describing the orbits of the satellites as well as their 
health and the other details in the message must come from another source. There 
is an inherent signal to noise loss of 30 dB or more in the squaring process 
compared to code tracking which may result in noisier phase measurements. The 
codeless squaring technique is illustrated in Figure 4.2 (a) (this and the following 
three figures are after Van Dierendonck [1995]). In the figure, A represents the 
amplitude of the incoming signal, D(t) represents the navigation message data, C(t) 
represents the P-code, and E(t) represents the encryption W-code. The original 
frequency is f0 and after squaring it is 2f0. 

One of the first commercially available GPS receivers, the Macrometer TM, used 
the squaring technique and a number of circa 1990 dual frequency receivers use this 
approach for measurements on the L2 frequency. A variation of this technique had 
been used in receivers which measured the phase of the code modulations without 
having to know the actual code sequences. 

A serious limitation of the codeless squaring technique is that we end up with a 
carrier at twice the frequency of the original modulated carrier. As a result, carrier- 
phase ambiguities can be resolved to only half of the original cartier wavelength 
which significantly increases the multidimensional search for the correct integer 
ambiguities. To circumvent this problem, the codeless cross-correlation technique 
was developed (see Figure 4.2 (b)). With this technique, the L1 signal (Sl(t)) is 
delayed and mixed with the L2 signal (S2(t)). In the mixed signal, with the 

appropriate delay, A, to compensate for the dispersive effect of the ionosphere (see 
Chapter 3), the codes and the message data will again cancel as in the squaring 
technique. The resulting signal has a frequency equal to the difference of the L1 
and L2 frequencies. The corresponding wavelength of this frequency is about 86 
centimetres or 4.52 times that of the L1 frequency which is of considerable help in 
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Figure 4.2. (a) The codeless squaring technique; (b) codeless cross-correlation technique. 

resolving the ambiguities, Note also that the amplitude of the mixed signal is 
proportional to the autocorrelation function of the P-code evaluated at the delay A: 
R(A). By maximising the amplitude, an estimate of the ionospheric delay is 
obtained. 

Significant gains in signal to noise ratio are obtained for a technique that make use 
of the knowledge of the approximate chipping rate of the W-code. This allows the 
processing predetection filter bandwidth to be reduced from about 10 MHz to 500 
kHz - -  still not as narrow as in a true P-code correlating receiver, but a significant 
improvement nevertheless. The gain in signal to noise ratio is about 13 dB. There 
are two versions of the technique (termed semicodeless): one that uses squaring 
and one that uses cross-correlation. The semicodeless squaring technique (see 
Figure 4.3 (a)) removes the encryption code and doubles the carder frequency. The 
semicodeless cross-correlation technique (see Figure 4.3 (b)) removes the 
encryption code, detects the L1-L2 delay, and differences the carrier frequency. 

Microprocessor, Interfaces, and Power Supply.  In this section, we'll 
take a look at the role of the microprocessor embedded in a GPS receiver; the 
interfaces which allow us or an external device such as a computer to interact with 
the receiver; and the receiver's power requirements. 

The Microprocessor. Although the bulk of a GPS receiver could be built using 
analogue techniques, the trend in receiver development has been to make as much 
of the receiver as possible digital, resulting in smaller, cheaper units. In fact, it is 
possible for the IF signal to be digitised and to perform the code and carrier tracking 
with software inside the microprocessor. So in some respects, a GPS receiver may 
have more in common with your compact disc player than it does with your AM 
radio. Because it has to perform many different operations such as initially 
acquiring the satellite signals as quickly as possible once the receiver is turned on, 
tracking the codes and carriers of the signals, decoding the broadcast message, 
determining the user's coordinates, and keeping tabs on the other satellites in the 
constellation, a GPS receiver's operation (even an analogue one) is controlled by a 
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Figure 4.3. (a) Semicodeless squaring technique; (b) semicodetess cross-correlation technique. 

microprocessor. The microprocessor's software, that is the instructions for 
running the receiver, is imbedded in memory chips within the receiver. 

The microprocessor works with digital samples of pseudorange and carrier phase. 
These are acquired as a result of analogue to digital conversion at some point in the 
signal flow through the receiver. It is these data samples that the receiver uses to 
establish its position and which may be recorded for future processing. The 
microprocessor may run routines which do some filtering of this raw data to reduce 
the effect of noise or to get more reliable positions and velocities when the receiver 
is in motion. 

The microprocessor may also be required to carry out the computations for 
waypoint navigation or convert coordinates from the standard WGS 84 geodetic 
datum to a regional one. It also manages the input of commands from the user, the 
display of information, and the flow of data through its communication port if it has 
one. 

The Command Entry and Display Unit. The majority of self-contained GPS 
receivers have a keypad and display of some sort to interface with the user. The 
keypad can be used to enter commands for selecting different options for acquiring 
data, for monitoring what the receiver is doing, or for displaying the computed 
coordinates, time or other details. Auxiliary information such as that required for 
waypoint navigation or weather data and antenna height for geodetic surveying may 
also be entered. Most receivers have well-integrated command and display 
capabilities with menus, prompting instructions, and even "on line" help. It should 
be mentioned that some receivers have a basic default mode of operation which 
requires no user input and can be activated simply by turning the receiver on. 
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Some GPS receivers are designed as sensors to be integrated into navigation 
systems and therefore don't have their own keypads and displays; input and output 
is only via data ports. 

Data Storage and Output. In addition to a visual display, many GPS receivers 
including even some hand-held units provide a means of saving the carrier phase 
and/or pseudorange measurements and the broadcast messages. This feature is a 
necessity for receivers used for geodetic surveying and for differential navigation. 

In geodetic surveying applications, the pseudorange and phase observations must 
be stored for combination with like observations from other simultaneously 
observing receivers and subsequent analysis. Usually the data is stored internally 
in the receiver using semiconductor memory. Some receivers can store data directly 
to hard or floppy disk using an external microcomputer. 

Some receivers, including those which store their data internally for subsequent 
analysis and those used for real-time differential positioning, have an RS-232-C or 
some other kind of communications port for transferring data to and from a 
computer, modem or data radio. Some receivers can be remotely controlled 
through such a port. 

The Power Supply. Most GPS receivers have internal DC power supplies, 
usually in the form of rechargeable nickel-cadmium (NiCd) batteries. The latest 
receivers have been designed to draw as little current as possible to extend the 
operating time between battery charges. Most receivers also make a provision for 
external power in the form of a battery pack or AC to DC converter. 

4 . 3  GPS OBSERVABLES 

Let us now turn our attention to the GPS observables. This discussion draws, in 
large measure, on a previously published article [Langley, 1993]. 

The basic observables of the Global Positioning System - -  at least those which 
permit us to determine position, velocity, and time m are the pseudorange and the 
carrier phase. Additional observables that have certain advantages can be generated 
by combining the basic observables in various ways. 

4.3 .1  The Pseudorange 

Before discussing the pseudorange, let's quickly review the structure of the signals 
transmitted by the GPS satellites (see Chapter 3). Each GPS satellite transmits two 
signals for positioning purposes: the L1 signal, centred on a carrier frequency of 
1575.42 MHz, and the L2 signal, centred on 1227.60 MHz. Modulated onto the 
L1 carrier are two pseudorandom noise (PRN) ranging codes: the 1 millisecond- 
long C/A-code with a chipping rate of about 1 MHz and a week-long segment of the 
encrypted P-code with a chipping rate of about 10 MHz. Also superimposed on the 



4. GPS Receivers and the Observables 152 

carder is the navigation message, which among other items, includes the ephemeris 
data describing the position of the satellite and predicted satellite clock correction 
terms. The L2 carrier is modulated by the encrypted P-code and the navigation 
message m the C/A-code is not present. 

As we have seen, the PRN codes used by each GPS satellite are unique and have 
the property that the correlation between any pair of codes is very low. This 
characteristic allows all of the satellites to share the same carder frequencies. 

The PRN codes transmitted by a satellite are used to determine the pseudorange 
a measure of the range, or distance, between the satellite antenna and the antenna 

feeding a GPS receiver. The receiver makes this measurement by replicating the 
code being generated by the satellite and determining the time offset between .the 
arrival of a particular transition in the code and that same transition in the code 
replica. The time offset is simply the time the signal takes to propagate from the 
satellite to the receiver (see Figure 4.4). The pseudorange is this time offset 
multiplied by the speed of light. The reason the observable is called a pseudorange 
is that it is biased by the lack of time synchronisation between the clock in the GPS 
satellite governing the generation of the satellite signal and the clock in the GPS 
receiver governing the generation of the code replica. This synchronisation error is 
determined by the receiver along with its position coordinates from the pseudorange 
measurements. The pseudorange is also biased by several other effects including 
ionospheric and tropospheric delay, multipath, and receiver noise. As shown in 
Chapter 5 (note the use of a slightly different symbol notation in this section), we 
can write an equation for the pseudorange observable that relates the measurement 
and the various biases: 

P = p + c. (dt - d T )  +dio n + dtrop + e (4.3) 

where p is the measured pseudorange, 9 is the geometric range to the satellite, c is 
the speed of light, dt and dT are the offsets of the satellite and receiver clocks from 
GPS Time, dion and dtrop are the delays imparted by the ionosphere and 
troposphere respectively, and e represents the effect of multipath and receiver noise. 
The receiver coordinates are hidden in the geometric range along with the 
coordinates of the satellite. The objective in GPS positioning is to mathematically 
describe all of  the terms on the right-hand side of the equation - -  including the 
initially unknown receiver coordinates in the geometric range term - -  so that the 
sum of the terms equals the measurement value on the left-hand side. Any error in 
the description of the terms will result in errors in the derived receiver coordinates. 
For example, both the geometric range term and the satellite clock term may include 
the effects of SA which, if uncompensated, introduce errors into the computed 
position of the receiver. 

Figure 4.5 illustrates the variation in the pseudorange of a particular satellite as 
measured by a stationary GPS receiver. The large variation is of course dominated 
by the change in the geometric range due to the satellite's orbital motion and the 
rotation of the earth. 
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Figure 4.5. Typical variation in LI pseudorange measurements made over approximately a one- 
hour period. 

Pseudoranges can be measured using either the C/A-code or the P-code. Figure 
4.6 shows typical C/A-code pseudorange noise for circa 1990 geodetic-quality GPS 
receivers. This "noise record" was obtained by subtracting the geometric range, 
clock, and atmospheric contributions from the pseudorange measurements 
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illustrated in Figure 4.5. What remains is chiefly pseudorange multipath and 
receiver measurement noise. Because of its higher chipping rate, the P-code 
generally provides higher precision observations. However recent improvements in 
receiver technologies have resulted in higher precision C/A-code measurements than 
were previously achievable (see section 4.4.1). 
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Figure 4.6. The difference between the Lt pseudorange measurements shown in Figure 4.5 and 
the corresponding phase measurements. 

4 . 3 . 2  The Carrier Phase 

Even with the advances in code measurement technology, a far more precise 
observable than the pseudorange is the phase of the received carder with respect to 
the phase of a carrier generated by an oscillator in the GPS receiver. The carrier 
generated by the receiver has a nominally constant frequency whereas the received 
carder is changing in frequency due to the Doppler shift induced by the relative 
motion of the satellite and the receiver. The phase of the received carrier is related 
to the phase of the carder at the satellite through the time interval required for the 
signal to propagate from the satellite to the receiver. 

So, ideally, the carder phase observable would be the total number of full carrier 
cycles and fractional cycles between the antennas of a satellite and a receiver at any 
instant. As we have seen earlier, the problem is that a GPS receiver has no way of 
distinguishing one cycle of a carrier from another. The best it can do, therefore, is 
to measure the fractional phase and then keep track of changes to the phase; the 
initial phase is undetermined, or ambiguous, by an integer number of cycles. In 
order to use the carrier phase as an observable for positioning, this unknown 
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number of cycles or ambiguity, N, must be estimated along with the other 
unknowns m the coordinates of the receiver. 

If we convert the measured carrier phase in cycles to equivalent distance units by 
multiplying by the wavelength, A,, of the carder, we can express the carrier phase 
observation equation (see Chapter 5) as 

= p + c. ( d t -  dT)+ ~,- N -dio  n + dtrop + e (4.4) 

which is very similar to the observation equation for the pseudorange - -  the major 
difference being the presence of the ambiguity term. In fact, the carrier phase can 
be thought of as a biased range measurement just like the pseudorange. Note also 
that the sign of the ionospheric term in the carder phase equation is negative 
whereas in the pseudorange equation it is positive. As we have seen in Chapter 3, 
this comes about because the ionosphere, as a dispersive medium, slows down the 
speed of propagation of signal modulations (the PRN codes and the navigation 
message) to below the vacuum speed of light whereas the speed of propagation of 
the carrier is actually increased beyond the speed of light. Don't worry, Einstein's 
pronouncement on the sanctity of the speed of light has not been contradicted. The 
speed of light limit only applies to the transmission of information and a pure 
continuous carrier contains no information. 

Although all GPS receivers must lock onto and track the carrier of the signal in 
order to measure pseudoranges, they may not measure or record carrier phase 
observations for use in navigation or positioning. Some however, may internally 
use carrier phase measurements to smooth - -  reduce the high frequency noise - -  
the pseudorange measurements. 

Incidentally, in comparison with the carrier phase, pseudoranges when measured 
in units of the wavelengths of the codes (about 300 meters for the C/A-code and 30 
meters for the P-code) are sometimes referred to as code phase measurements. 

4 . 3 . 3  Data Recording 

The rate at which a GPS receiver collects and stores pseudorange and carrier phase 
measurements is usually user-selectable. Recording intervals of 15-30 seconds 
might be used for static surveys and up to 2 minutes for permanently operating 
GPS networks. In kinematic surveying, typical recording intervals are 0.5 to 5 
seconds. Generally, for kinematic positioning applications using carrier phase 
observations, the higher the data rate the better. A high data rate helps in the 
detection and correction of cycle slips. Sometimes there may be a trade-off between 
the desired data rate and the amount of memory available in the receiver for data 
storage. 

The data collected by a GPS receiver (time-tagged pseudorange and carder phase 
measurements on one or both carder frequencies and signal to noise ratios for all 
satellites simultaneously tracked referenced to a common epoch, the broadcast 
satellite ephemerides and clock coefficients, and (optionally) any meteorological 
data entered into the receiver) is usually stored in the receiver in proprietary binary- 
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formatted files. These files are downloaded to a computer for post-processing 
either using manufacturer-supplied software or, which is usually the case for 
geodetic surveys, one of  the software packages developed by university or 
government research groups. 

RINEX. The babel of proprietary data formats could have been a problem for 
geodesists and others doing postprocessed GPS surveying, especially when 
combining data from receivers made by different manufacturers. Luckily, a small 
group of such users had the foresight about 1989 to propose a receiver-independent 
format for GPS data w RINEX, the Receiver-independent Exchange format 
[Gurtner, 1994]. This format has been adopted as the lingua franca of GPS 
postprocessing software, and most receiver manufacturers now offer a facility for 
providing data in this format. It replaced several earlier formats that had been in 
limited use for data exchange: FICA (Floating Integer Character ASCII) developed 
by the Applied Research Laboratory of the University of Texas; ARGO (Automatic 
Reformatting (of) GPS Observations) developed by the U.S. National Geodetic 
Survey; and an ASCII exchange format developed at the Geodetic Survey of 
Canada for internal use. 

RINEX uses ASCII (plain text) files to ensure easy portability between different 
computer operating systems and easy readability by software and users alike. The 
current version of RINEX (Version 2) defines three file types: observation files, 
broadcast navigation message fdes, and meteorological data files. Each file consists 
of one or more header record sections describing the contents of the file and a 
section (or sections) containing the actual data. Each RINEX observation file 
usually contains the data collected by one receiver at one station during one session 
but can also contain all the data collected in sequence by a roving receiver during 
rapid static or kinematic surveys. 

4 .4  OBSERVATION MEASUREMENT ERRORS 

In this section, we will examine the errors in the measurement of  the GPS 
observables. In so doing, we will use an example of real data collected by a pair of 
Ashtech Z-12 geodetic-quality receivers. This data was collected in conjunction 
with receiver acceptance tests on behalf of Public Works and Government Services 
Canada [Wells et al., 1995]. 

In an effort to determine the C/A-code pseudorange noise of the Z-12 receivers, 
receiver-satellite pseudorange double differences (see Chapter 5) were formed using 
the data collected during a zero baseline test (an antenna splitter was used to supply 
the same antenna signal to two receivers). One hour of data was collected with a 
once per second recording rate. The Ashtech raw ASCII data was used to carry out 
our investigation because we had found that the RINEX data file generated by 
Ashtech's GPPS 5.1 software package contains smoothed pseudoranges instead of 
the original raw observations. 

In this section, one receiver is referred to as the "base" receiver, the other as the 
"rover" receiver. 
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The pseudorange measurements were corrected for exact one millisecond jumps 
due to the resetting of the clocks in the receivers. Two such jumps occurred in the 
base station data (about every 28 minutes) and five in the rover receiver (about 
every 12 minutes). The time tags of the pseudorange and carder phase data were 
not corrected for these jumps. 

The C/A-code pseudorange noise was examined by first forming an observable 
which only contains receiver noise and multipath effects. Such an observable can 
be created by differencing the raw pseudorange measurement with its ionospheric 
delay removed and the raw carrier phase measurement with its ionospheric delay 
removed. The C/A-code pseudorange measurement on L1, measured in distance 
units, can be represented by 

Pt = P + c(dt - d T )  + d~o., + d~o p + mpp, + noisep, (4.5) 

and the carrier phase measurement on L1 and L2, measured in distance units, by 

Ot = p + c(dt - dT) + XtN t - dio,, + d~o p + mp., + noise., (4.6) " 

and 

�9 2 = p + c(dt - d T )  + 7L2N 2 - dio.~ + d~w + mp.:  + noise.~ (4.7) 

respectively where p is the geometric distance between the satellite antenna and 
receiver antenna phase centres, c is the speed of light in a vacuum, dt is offset of the 
satellite clock from GPS time, dT is the offset of the receiver clock from GPS 
Time, dion is the ionospheric phase delay, dtrop is the tropospheric delay, and mp is 
the effect of multipath. The equations are essentially the same as equations (4.3) 
and (4.4) except that we have explicitly indicated the multipath components. 

Since to an excellent approximation (see Chapter 3) 

2 

di..2 = dio., f~ (4.8) 

the ionospheric delay on L1 (within an additive constant and with multipath and 
noise contributions) can be computed by forming the difference of the L1 and L2 
carrier phase measurements: 

�9 2 - O, = dio., - dio.~ + ~.2N2 - ~.tN, + mp.  2 - mp.,  + noise.2 - noise., (4.9) 

and rearranging: 

dion2 - dio., = O~ - �9 2 + L2N 2 - XtN t + mp.~ - mp.,  + noise.~ - noise., (4. I0) 

o r  
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2 

dio., f~- - d i o . ,  = �9 I - �9 2 + ~.2N2 - ~qN t + mp.~ - mp., + noise.~ - noise., .(4.1 I) 

Solving for dio n 1 gives 

dionl  = . ( 0 1  - 0 2 + ~,2N2 - ~,lNl + m P ~ 2  - mpo ~ + n o i s e ~ 2  
(4.12) 

-noise . t  ) 

o r  

dionl = 1.5457. (01 - �9 2) + 1.5457. (~,2N2 - ~1N1 + m p .  2 - mp.~ 

+noise,a2 - noise% ). 
(4.13) 

This measure of the L1 ionospheric delay could theoretically be used to correct the 
C/A-code pseudorange measurement as well as the L1 carrier phase measurement. 

Then differencing these corrected measurements would give 

( P l  - dionl  ) - (O1  + dionl  ) = P + c ( d t  - d T ) +  dtrop + m p p j  + n o i s e p ~  

-[19 + c(dt - dT) + 2qN l + dtrop + m p .  I + noise.i ](4.14) 

= mpp~ + noisep~ - ~,INI - mp% - noise.l .  

Actually, we cannot compute dionl exactly as we don't know the values of the 
integer carrier phase ambiguities (nor the carder phase multipath and noise). At 
best, we can compute a relative ionospheric delay which includes a (constant) 
contribution from the integer carrier phase ambiguities and the multipath and noise 
terms: 

* ---- . ( 0 1  - - 0 2 )  dionl 
(4.15) 

= 1.5457. (O 1 - 02). 

The relative ionospheric delay, d'ion1, computed from the PRN 1 carder phase 
observations recorded at the base receiver are shown in Figure 4.7 (PRN 1 was 
selected arbitrarily). Also shown in Figure 4.7 is the ionospheric delay obtained by 
scaling the difference of the synthetic (obtained from semicodeless cross-correlation 
of the Y-codes on L 1 and L2) P-code pseudoranges. This too is a relative measure 
of the ionospheric delay as satellite and receiver differential delays (between the LI 
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and L2 signals) are not taken into account. The noise and multipath on the 
pseudorange estimate of the ionospheric delay is clearly evident. 
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Figure 4.7. LI ionospheric delay computed from the PRN 1 pseudorange and carrier phase 
measurements of the base receiver. 

Although the estimate of the ionospheric delay from the carrier phase 
measurements is biased by the integer ambiguities, when we use it to correct both 
the L1 pseudorange and carrier phase observations and difference the results, we 
get 

_ ~ . ( r  f2 

= [P, - 1.5457-(r - r  [r + 1.5457-(r - r 

(4.16) 

or  

(f2 + f2 ] . r  + ( ~ / . r  2 
Pl -~,f12 _ f2 ) (4.17) 

= P1 -4"0914r +3-0914r 
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What effects remain in this linear combination? Using the basic equations for the 
pseudorange and carrier phase observations, we get 

PI - 4.091401 + 3.091402 

= p + c(dt - d T )  + diont + dtrop + mppt + noisep~ 

-4.0914[ 9 + c(dt - dT) + XtNl - dionl + dtrop + mp.~ + noise.~ ] 

+3.0914[ 9 + c(dt - dT) + ~,2N2 - dion2 + dtrop + mpa,2 + noise.2 ] 

(4.18) 

or  

Pl - 4.0914~1 + 3.0914~2 = mpp~ + noisept 

-4.0914(giN 1 + mp. t  + noise.t  ) 

+3.0914(~,2N 2 + mpo 2 + noiseo2 ). 

(4.19) 

In arriving at this result, we have assumed that the geometric distance, p, between 
the satellite antenna and receiver antenna phase centres; the receiver clock offset, 
dT; and the satellite clock offset, dt, are the same for L 1 and L2 carrier phase and 
pseudorange measurements. This assumption was implicit in our use of the same 
symbols for these parameters in the first three equations of this section. 

With the understanding that the multipath and noise in the carrier phase 
measurements is insignificant in comparison to C/A-code multipath and noise, this 
linear combination of the code and phase measurements essentially gives the C/A- 
code multipath and noise - -  offset by a constant DC-component due to the carrier 
phase ambiguities. The C/A-code multipath plus noise on the PRN 1 measurements 
recorded by the base receiver computed in this fashion are shown in Figure 4.8. 
The large offset due to the phase ambiguities has been removed by subtracting the 
computed value for the first epoch from all the data values. Figure 4.9 shows the 
similar results obtained using the data from the rover receiver. Figures 4.10 and 
4.11 show the results for PRN 25 using the data from the base and rover receivers 
respectively. These plots are dominated by multipath which, since the two 
receivers shared the same antenna, should be identical. The plots bear this out with 
very similar variations noted for both receivers. The peak-to-peak variation for 
PRN 1 is about 4.5 metres and for PRN 25 about 3 metres. 

To examine the noise component of the data series in Figures 4.8 to 4.11, we 
differenced the data between receivers (between receiver single differences m see 
Chapter 5). The time spans over which data was collected by the two receivers are 
slightly offset from each other. After matching time tags, we ended up with 3,549 
differences. Figure 4.12 shows the C/A-code noise for PRN 1 computed in this 
fashion. Figure 4.12 has the same scale as the previous four figures and the change 
in the nature of the plots is quite apparent. Figure 4.13 is the same series plotted 
using an enlarged scale. Figures 4.14 and 4.15 show the results for PRN 25. 
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Figure 4.8. C/A-code multipath plus noise from base receiver.measurements on PRN 1. 
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Figure 4.13. C/A-code noise from differing rover and base receiver measurements on PRN 1 
(enlarged scale). 
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Figure 4.14. C/A-code noise from differing rover and base receiver measurements on PRN 25. 

0.1 

-0.1 

3 -0.2 

-0.3 

! 
~ -tl.4 

-0.5 

-0.6 

r 
' 

-o.7 I I I I I I I I 
408500 4 0 g G O 0  409500 410000 410500 411000 411500 412000 412500 

(OPS ~ m n d s )  

Figure 4.15. C/A-code noise from differing rover and base receiver measurements on PRN 25 
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The peak-to-peak variations in the plots for both PRN 1 and PRN 25 are about 60 
to 70 centimetres and are dominated by a slow drift in the computed values. This 
drift - -  which appears to be quadratic - -  is more or less the same for both satellites 
and so seems to be receiver related. In fact, such a drift can be seen in the C/A- 
code multipath plus noise plots of Figures 4.8 to 4.13 with the base receiver 
showing slightly more drift than the rover receiver. This phenomenon may be due 
to the difference in the way the pseudorange and carrier phase measurements are 
made inside the receiver. Remember, we had assumed the same receiver clock 
effect on pseudorange and carrier phase, dT, when we differenced the pseudorange 
and carrier phase measurements in order to isolate the C/A-code multipath and 
noise. If, in fact, the clock behaviour in the two observables is slightly different, 
then this difference would show up in the plots. The fact that the effect appears to 
level off with time may indicate a temperature-related cause - -  possibly heating 
effects on frequency synthesiser components in the receiver. Another possible 
explanation isthat the clock effects in the L1 and L2 carrier phase observations are 
different. Once again, such a difference would be present in the computed C/A- 
code pseudorange multipath plus noise observable. Campbell [1993] noted a 
similar phenomenon when computing between receiver differences of L1 minus L2 
carrier phase observations for various receiver combinations on a 50 metre baseline. 

To remove the drifts and any other non-noise receiver-related effects, we 
differenced the computed between-receiver data between satellites (double 
differences - -  see Chapter 5). The resulting values are shown in Figure 4.16. The 
arithmetic mean of the values has been subtracted from the data. The peak-to-peak 
variation of the values is 69.5 centimetres with the spike around 411900 seconds 
making a significant contribution. The r.m.s, of the values is only 7.8 cm. Since 
this value represents the noise coming from double-difference observations - -  two 
receivers and two satellites - -  we should divide it by 2 to get an estimate of the 
noise associated with C/A-code observations by a single receiver. For this value 
we get 3.9 centimetres. Although our analysis was performed for only one satellite 
pair, we have no reason to expect a significantly different value for the receiver 
C/A-code noise level. 

In principle, we could have performed our analyses using the pseudorange data 
alone and simply performed satellite-receiver double differencing without invoking 
the carrier phase data for the ionospheric correction (the effect of the ionosphere is 
identical for the two receivers on a zero baseline). However, associated with the 
receiver 1-millisecond clock jumps are changes in the time tags of the pseudorange 
and carrier phase measurements equal to the accumulated clock jumps. Since the 
jumps occur at different times in the two receivers, this leads to slightly mismatched 
time tags for the data collected by two receivers. If such slight offsets are ignored 
and the time tags simply rounded off  to the nearest second, one is left with 
anomalous jumps and drifts in the double-difference data which mask the receiver 
noise one is trying to assess. 

Although we estimated the C/A-code pseudorange noise in this example to be at 
about the 4 centimetre level, this noise will be heavily dominated by the effects of 
multipath in most practical situations. 
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Figure 4.16. Zero-baseline C/A-code pseudorange double difference noise. 

4 . 4 . 1  Thermal Noise 

GPS receivers are not perfect devices: the measurement of  the GPS observables 
cannot be made with infinite precision. There is always some level of  noise 
contaminating the observations as we have seen from the case study in the previous 
section of this chapter. The most basic kind of noise is that produced by the 
movement of electrons in any substance (including electronic components such as 
resistors and semiconductors) that has a temperature above absolute zero (0 K). 
The electrical current generated by the random motion of the electrons is known as 
thermal noise (also called thermal agitation noise, resistor noise, or Johnson noise 
after J.B. Johnson who analysed the effect in 1928). The noise occupies a broad 
frequency spectrum with the power in a given passband independent of  the 
passband's centre frequency. The noise power is also proportional to the absolute 
temperature of  the device in which the noise current flows. We can express these 
relationships as 

p = kTB (4.20) 

where p is the thermal noise power, k is Boltzmann's constant (1.380 662 x 10 -23 
J K-l), T is the temperature in kelvins, and B is the bandwidth in hertz. 

In the absence of any GPS signal, the receiver and its associated antenna and 
preamplifier will detect a certain noise power, N. The ratio of the power o f  a 
received signal, S, and the noise power, N, measured at the same time and place in 
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a circuit is used as a measure of signal strength. Obviously, the larger the S/N 
value, the stronger the signal. 

Signal-to-noise measurements are usually made on signals at baseband (the band 
occupied by a signal after demodulation). At RF and IF, it is common to describe 
the signal level with respect to the noise level using the career-to-noise-power- 
density ratio, C/N0. This is the ratio of the power level of the signal carder to the 
noise power in a I Hz bandwidth. It is a key parameter in the analysis of GPS 
receiver performance and has a direct bearing on the precision of the receiver's 
pseudorange and carrier phase observations. 

In Chapter 3, we saw that the expected minimum received C/A-code signal level 
is -160 dBW. This is the signal level referenced to a 0 dBic gain antenna. An 
actual GPS receiver omnidirectional antenna may have a few dB of gain near the 
zenith and negative gain at very low elevation angles. Also, there will be 1 or 2 dB 
of cable and circuit losses. So we may take -160 dBW as a strawman minimum 
carrier power level. To determine the noise power density, we need to determine 
the effective noise temperature of the receiving system. This is not simply the 
ambient temperature. The noise temperature of the system, or simply the system 
temperature, is a figure of merit of the whole receiving system. It is composed of 
the antenna temperature, a correction for losses in the antenna cable, and the 
equivalent noise temperature of the receiver itself. All of the temperatures are 
referred to the receiver input. 

The antenna temperature is the equivalent noise temperature of the antenna. If the 
antenna is replaced with a resistance equal to the impedance of the antenna and 
heated up until the thermal noise it produces is the same as that with the antenna 
connected, then the temperature of the resistance is the noise temperature of the 
antenna. So the antenna temperature, Ta, is a measure of the noise power produced 
by the antenna; it is not the actual physical temperature of the antenna material. The 
noise in the antenna output includes the contributions from anything the antenna 
"sees" including radiation from the ground, the atmosphere, and the cosmos. Ta 
must be corrected for the contribution by the cable between the antenna and the 
receiver input. The cable is a "lossy" device: a signal travelling through it is 
attenuated (see section 4.2.1). But not only does a lossy component reduce the 
signal level, it also adds to the noise. It can be shown [Stelzried, 1968], that if L is 
the total loss in the cable (power in divided by power out; L>I), then the total 
antenna temperature is given by 

T~t = T---a-~ + L - 1 T  0 (4.21) 
L L 

where To is the ambient temperature of the cable. Alternatively, we may write this 
as 

T~., = o~T a + (1 - r  o (4.22) 
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where a ,  the fractional attenuation (0-I), is just the inverse of L. This equation is 
of the same form as the equation of radiative transfer found in physics. In fact, the 
physics of emission and absorption of electromagnetic radiation by a cloud of  
matter is similar to the emission and absorption taking place in an antenna cable. 

The noise temperature of a receiver, Tr, is the noise temperature of a noise source 
at the input of  an ideal noiseless receiver which would produce the same level of 
receiver output noise as the internal noise of the actual receiver. A typical home 
radio or television receiver might have a noise temperature of 1500 K whereas a 
receiver used in radio astronomy might have a noise temperature of less than 10 K. 
Instead of specifying the noise temperature of the receiver, it is common to use the 
noise factor, F, where 

F =  N~176 (4.23) 
GkToB 

and where Nout is the output noise power of the receiver, G its gain, and B its 
effective bandwidth. If a noise source connected to the input of a receiver has a 
noise temperature of TO, the noise power at the output is given by 

No~ , = GkToB + GkT,B = Gk(T 0 + T,)B. (4.24) 

So that 

F = 1 + - - .  Tr (4.25) 
To 

Typically, To is taken to be the standard reference temperature of 290 K. If Tr is 
also 290 K, for example, then F = 2. It is convenient to express the noise factor in 
dB. It is then correctly referred to as a noise figure. For our example, the noise 
figure is 3.01 dB. Note that the term "noise figure" is often used arbitrarily for 
both the noise factor and its logarithm. 

Since Tr = (F - 1)T0, we have then for the system temperature: 

Ts" = T,  + L L 1 To + (F - 1)T o. 
L 

(4.26) 

A typical value for Tsys of a GPS receiving system is 630 K [Spilker, 1978; 1980]. 
The corresponding noise power density is 8.7 x 10 -21 watts per hertz. Or, in 
logarithmic measure, -200.6 dBW-Hz. Using the value of -160 dBW for the 
received C/A-code carrier power and ignoring signal gains and losses in the 
antenna, cable, and receiver, we have a value for the carrier-to-noise-density ratio 
of about 40 dBW-Hz. Actually, C/N0 values experienced in practice will vary a bit 
from this value depending on the actual power output of the satellite transmitter and 
variations in the space loss with changing distance between satellite and receiver, 
variations in antenna gain with elevation angle and azimuth of arriving signals, and 
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signal losses in the preamplifier, antenna cable, and receiver. Ward [1994] gives a 
value of 38.4 dB-Hz for a minimum L1 C/A-code C/N 0 value assuming a unit gain 
antenna and taking into account typical losses. It turns out that all GPS satellites 
launched thus far have transmitted at levels where the received power levels have 
exceeded the minimum specified levels by 5 to 6 dB [Nagle et al., 1992]. Nominal 
C/N 0 values are therefore usually above 45 dB-Hz [Van Dierendonck et al., 1992] 
and values of 50 dB-Hz are typically experienced in modem high-performance GPS 
receivers [Nagle et al., 1992]. 

Note that even a strong C/A-code signal with a level of -150 dBW is buried in the 
ambient noise which, in the approximately 0.9 MHz C/A-code 3 dB bandwidth, has 
a power of -141 dBW, some 9 dB stronger than the signal. Of course, the signal is 
raised out of the noise through the code correlation process. The process or 
spreading gain of a GPS receiver is the ratio of the bandwidth of the transmitted 
signal to the navigation message data rate [Dixon, 1984]. For the C/A-code signal, 
using the 3 dB bandwidth, this works out to be about 43 dB. So, after 
despreading, the S/N for a strong signal is about 34 dB. 

The C/N 0 value determines, in part, how well the tracking loops in the receiver 
can track the signals and hence the precision of the pseudorange and carrier phase 
observations. In the following discussion, we will only consider the effect of noise 
on code and carrier tracking loops in a standard code-correlating receiver. S/N 
losses experienced with codeless techniques have been discussed in section 4.2.1. 

Code Tracking Loop. The code tracking loop - -  or delay lock loop, DLL 
jitter, for an early/late one-chip-spacing correlator is given by [Spilker, 1977; Ward, 
1994] 

t~DLL ~C/nO L (4.27) 

where a is the dimensionless DLL discriminator correlator factor (1 for a time- 
shared tau-dither early/late correlator, 0.5 for dedicated early and late correlators); 
BE is the equivalent code loop noise bandwidth (Hz); c/n0 is the carrier-to-noise 
density expressed as a ratio (=10(C/N0)/10 for C/N0 expressed in dB-Hz); T is the 
predetection integration time (in seconds; T is the inverse of the predetection 
bandwidth or, in older receivers, the post-correlator IF bandwidth); and ~,c is the 
wavelength of the PRN code (29.305 m for the P-code; 293.05 m for the C/A- 
code). The second term in the brackets in equation (4.27) represents the so-called 
squaring loss. 

Typical values for BL for modem receivers range from less than 1 Hz to several 
Hz. If  the code loop operates independently of the carder tracking loop, then the 
code loop bandwidth needs to be wide enough to accommodate the dynamics of the 
receiver. However, if the code loop is aided through the use of an estimate of the 
dynamics from the carrier tracking loop, then the code loop can maintain lock 
without the need for a wide bandwidth. The code loop bandwidth need only be 
wide enough to track the ionospheric divergence between pseudorange and carrier 
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phase so that it is not uncommon for carrier-aided receivers to have a code loop 
bandwidth on the order of 0.1 Hz [Braasch, 1994]. Note that BL in equation 
(4.27) is not necessarily the code loop bandwidth. If post-measurement smoothing 
(or filtering) of the pseudoranges using the much lower noise carrier phase 
observations is performed, then 

1 
B L = -  (4.28) 

2T s 

where Ts is the smoothing interval [RTCM, 1994]. 
The predetection integration time, T, is typically 0.02 seconds (the navigation 

message data bit length). Increasing T reduces the squaring loss and this can be 
advantageous in weak signal situations. 

For moderate to strong signals (C/N0 > 35 dB-Hz), equation (4.27) is well 

approximated by 

--. f-~BL ~.,:. 
GDLL ~ c/no (4.29) 

Using this approximation with t~ = 0.5, C/N 0 = 45 dB-Hz, and BL = 0.8 Hz, (YDLL 
for the C/A-code is 1.04 m. 

The most recently developed high-performance GPS receivers use narrow 
correlators in which the spacing between the early and late versions of the receiver- 
generated reference code is less than one chip [Van Dierendonck et al., 1992]. For 
such receivers, equation (4.29) for signals of nominal strength can be rewritten as 

~_~_ ~Ld  ~, 
ODLL=3~ c'~nO c (4.30) 

where d is the correlator spacing in chips. For a spacing of 0.1 chips, and with the 
same values for the other parameters as used for the evaluation of the one chip 
correlator, GDL L for the C/A-code is 0.39 cm. With post-measurement smoothing, 
this jitter can be made even smaller. 

Car r i e r  Tracking Loop. The analysis of the jitter in the carrier tracking loop 
of a GPS receiver, proceeds in a similar manner as that for the code tracking loop. 
In fact, the expression for the jitter in a Costas-type phase lock loop has the same 
form as that for the code tracking loop [Ward, 1994]: 

:/ Prl, 
OPEL ~c /noL  2 T c / n  o 2g 

(4.31 ) 
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where Bp is the carrier loop noise bandwidth (Hz), ~. is the wavelength of the 
carrier, and the other symbols are the same as before. Bp must be wide enough for 
the tracking loop to follow the dynamics of the receiver. For most geodetic 
applications, the receiver is stationary and so bandwidths of 2 Hz or less can be 
used. However, a tracking loop with such a narrow bandwidth might have 
problems follow rapid variations in phase caused by the ionosphere. Some 
receivers adjust the loop bandwidth dynamically or allow the operator to set the 
bandwidth manually. 

For signals of nominal strength, equation (4.3 I) is well approximated by 

I B p  ~. (4.32) 
~PLL ---- c '~n 0 2/I:" 

Using this approximation with C/N0 = 45 dB-Hz and Bp = 2 Hz, ~PLL for the L 1 
carrier phase is 0.2 mm. 

4 . 4 . 2  Other Measurement Errors 

Other errors affecting the receiver's measurement precision include local oscillator 
instability, crosstalk, inter-channel biases, drifts, and quantisation noise. 

Local oscillator instability can contribute errors to both pseudorange and carrier 
phase measurements. If a single local oscillator is used in the receiver and all 
measurements on all visible satellites are made at the same instant, the 
measurements will share the same oscillator instability which can be solved for or 
differenced out in the usual fashion. However, in a sequencing receiver where 
signals share channels, the measurements on different-satellites and perhaps on 
different frequencies for dual frequency receivers, are not simultaneous. Therefore, 
oscillator instability over the internal sampling period will contribute uncorrelated 
noise to the measurements. At sampling periods of 20 milliseconds (the navigation 
message bit length), the instability of a typical quartz oscillator is much better than 1 
part in 108 and so the contributed error is conservatively estimated to be on the 
order of a centimetre or less [Cohen ,1992]. 

Crosstalk is the interference between RF paths. Signal energy from one path is 
coupled into another. This phenomenon can be particularly troublesome in 
receivers where there is high gain on the paths. A high level of isolation between 
paths is required to keep crosstalk within acceptable levels. Careful attention in 
receiver design can keep the effect of crosstalk to a level of 0.5 millimetres or lower 
[Cohen, 1992]. 

As discussed earlier in this chapter, inter-channel bias is an error encountered in 
multiple channel receivers. The signal path lengths through the channels may be 
slightly different and therefore there will be an unequal error in measurements made 
on the signals in different channels a t the  same instant. However, in modem 
receivers, these biases can be calibrated out at the level of 0.1 millimetres or better 
[Hofmann-Wellenhof et al., 1994]. 
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In a similar fashion to inter-channel biases, drifts in effective path lengths shared 
by the channels in the receiver can contribute errors to the measurements. Such 
drifting is often associated with temperature changes inside the receiver. We  saw 
what was believed to be an example o f  such drifting earlier in this chapter. Since 
such drifts are the same for simultaneous observations, they are removed in the 
standard double-differencing data processing approach. 

Quantisation noise results from the imprecision in analogue to digital conversion 
in the receiver. Unlike the situation with analogue GPS receivers, however ,  
quantisation noise can usually be neglected in a digital receiver [Ward, 1981]. 

4 , 5  S U M M A R Y  

In this chapter, we have looked at the basic operation of  a GPS receiver, how the 
primary observables are measured, and the precision with which the measurements 
can be made. The discussion was purposely kept at a fairly introductory level. The 
reader interested in obtaining a deeper understanding of  the operation o f  a GPS 
receiver should consult the appropriate references listed below. 
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5.1 INTRODUCTION 

The purpose of this chapter is four-fold. First, it provides the connection between 

chapters 1 through 4 outlining the individual components of the Global Positioning 

System, and chapters 6 through 10 describing the models used in different 

geodetic applications of GPS. This connection is introduced through the 

observation equations for pscudorange and carrier phase measurements in section 

5.2 GPS Observables, relating the measured quantities described in chapter 4 to 

geometrical and physical parameters of interest in a geodetic context. Typically, 

these equations will be non-linear with respect to some of the parameters, most 
notably with respect to the coordinates of the satellite and the receiver. 

Second, the section 5.3 Linear Combinations explores the elimination and/or 

isolation of some of these geometrical and physical.,paxameters through linear 

combinations of carrier phases and pseudoranges measured simultaneously with 

a single receiver, through linear combinations over time of can'ier phases, and 

through linear combinations of the same type of observable measured 

simultaneously with different receivers and/or different satellite signals. 

Third, section 5.4 Single - Receiver Non-Positioning Models takes simplified 
versions of the non-linear observation equations and some of their linear 
combinations for an analysis of the estimability of parameters and linear 

combination of parameters. Also introduced in this section is the redundancy 

accumulating if time series of measurements are analyzed. 

Fourth, in sections 5.5 The Linearized Observation Equations for Positioning 

and 5.6 Relative Positioning Models, the simplified observation equations 

lineafized with respect to receiver and satellite coordinates are introduced to assess 

the simultaneous estimability of receiver coordinates and other parameters not 

related to positions. Again, the accumulation of redundancy both through 

more-than-required measurements and through repetition of measurements over 

time are investigated. The analysis is split into section 5.5 for the single receiver 
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case ("absolute positioning") and section 5.6 for the case of at least two 

simultaneously operating receivers ("relative positioning"). 

5.2 GPS OBSERVABLES 

In this section we derive the non linear observation equations for GPS 

measurements. The purpose of the section is to provide the connection between 

the output of a GPS receiver and some physically meaningful quantities, the 

parameters of the observation equations. 

We begin by relating the basic quantities time, frequency, and phase of a 
sinusoidal signal generated by an oscillator. The frequency f of a signal is the 

time derivative of the phase O of the signal, and conversely, the phase of the 

signal is the time integral of the signal frequency: 

f ( t ) -  dO(t) (5.1) 
dt 

t 

0(t) - Jf('c)da: + 0(t0) (5.2) 
to 

where 0(to) is the initial phase of the signal for zero time. The signal phase is 

measured in units of cycles, the frequency in units of Hertz (Hz). 

Alternatively, the phase of the signal can be represented in units of radians 

through multiplication by 2x. Then the frequency f(t) is simultaneously changed 

into angular frequency o~(t). 

The phase of a signal can be converted to time t i through subtraction of the 

initial phase 0(to) and subsequent division by the nominal oscillator frequency fo" 
We use subscript i in t i to indicate that it is different from time t. 

r  - r  o) 
ti(t) = 

fo (5.3) 

= O(t)-ti(to) 
Yo 

If the frequency of the oscillator is constant and equal to its nominal frequency, 

then equations (5.2) and (5.3) yield 

ti(t) = t -  ti(to) (5.4) 

i.e., the signal phase is a true measure of time, up to a constant term resulting 
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from non-zero initial phase. Otherwise we obtain 

l 

ti(t) = l ~( 'c)d'r.-t i( to).  (5.5) 
fog 

Separating the actual frequency into the nominal frequency and the frequency 

deviation or f r e q u e n c y  error 5 f  , we obtain 

I 

ti(t) = ~ o f f o + f f ( ' c ) } d z - t i ( t o ) .  (5.6) 

Further introducing the time deviation 5t~ as the integral of the relative frequency 

deviation 

8t,(t) = ' ~ f ( z )  d~ (5.7) 

we obtain the final relation between the time measured from the phase of an 

oscillator generated signal, and true t ime t. 

ti(t ) = t+ ~ti(t ) - ti(to) (5.8) 

The time displayed by an oscillator output is equal to the sum of true time, a 

term accounting for the deviation of the actual oscillator frequency from its 

nominal frequency, and the effect of non zero initial phase of the oscillator. Often, 

it is appropriate to lump together the last two terms on the right hand side of 

equation (5.8) into the clock error  dt~, leading to 

ti(t ) ~ t+dt i ( t  ) . (5.9) 

For the case of time displayed by oscillators in GPS satellites (referred to in the 

following as satellite time) and GPS receivers (referred to as receiver time), the 

time as maintained by the GPS control segment (referred to as GPS time) is a 

realization of the true time, t. 

5.2.1 The Pseudorange 

The pseudorange measurement, p k, is equal to the difference between receiver 

time t~ at signal reception and satellite time t k at signal transmission, scaled by 

the nominal speed of light in a vacuum, c. Pseudoranges are measured through 

P-code correlation (Y-code correlation) on signal frequencies f~ and f2, and/or 

through C/A-code  correlation on the signal frequency f t -  

Pik(t) ~ c[t~(t)- t k(t-x~)] + eik (5.10) 
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"~ is the signal travel time from the signal generator in the satellite to the signal 

correlator in the GPS receiver; e~ k is the pseudorange measurement error. Receiver 

time and satellite time are equal to GPS time plus the respective clock en'ors 

(offsets) as described by equation (5.9). 

t~(t) = t+dt~(t) (5.i1) 

t k(t-'C~) = t - ~ + d t  k(t-'c~). (5.12) 

Inserting equations (5.11) and (5.12) into (5.10) yields 

Pik(t) = cz~ + c[dti(t) - dt k(t- z~)] + ei k . (5.13) 

The signal travel time "c~ can be split into three separate terms: the signal delay d k 

occurring between the signal generation in the satellite and the transmission from 

the satellite antenna, the signal travel time 8z~ from the transmitting antenna to 

the receiver antenna, and the signal delay d i between the receiving antenna and 

the signal correlator in the receiver. 
k k k �9 ,~ = d +~T,i+d i (5.14) 

The signal travel time between the antennas is a function of the signal propagation 

speed v along the signal path. 

ds 
v = __  (5.15) 

dt 

The signal propagation speed is related to the propagation speed in a vacuum, c, 

through the refractive index of the medium, n, by 

C 
v = _ .  (5.16) 

n 

Combining these two equations tbr the signal propagation speed gives the 

differential relation between travel time and travelled distance 

c d t  = r ids  (5.17) 

and integration along the signal path finally yields 

= f n a s .  (5.18) 
path 

This integral is conveniently split into three separate terms according to 

cSz~ = f d s +  f ( n - 1 ) d s + {  f n d s -  f n d s } .  (5.19) 
geom geom path geom 

The first term is the line integral along a straight line geometric connection 

between the transmitting and receiving antennas. In an ideal environment, this 
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k k term is equal to the geometric distance Pi (t, t-~i) between the satellite antenna at 

signal transmission time, and the receiver antenna at signal reception time. 

However, if the straight line signal is interfering with other copies of the signal, 

which have propagated along different paths, the first term will be the sum of the 

geomen'ic distance p~ and the multipath error, dm~ k. Multipath can be caused by 

signal reflection at conducting surfaces of the satellite (satellite multipath) or in 
the vicinity of the receiver (receiver multipath). 

f d s  = (5.20) p~+dmi ~ 
geom 

The second and third terms in equation (5.19) describe the effect of atmospheric 

refraction, i.e., the effect resulting from the deviation from unity of the refractive 

index of the propagation medium. The second term describes the bulk of the delay 

introduced by the change of the signal propagation speed through atmospheric 

refraction. The third term describes the delay resulting from signal propagation 

along an actual signal path different from the straight line connection. This term 

is caused by ray bending through atmospheric refraction. It is much smaller than 
the second t e ~ ,  and often neglected. 

For reasons discussed in previous chapters, the effect of atmosphetic refraction 

is usually split into the i onospher i c  refi 'action e f fect  I resulting from non-unity of 
the ionospheric refraction index nz 

li k= f (n,-r)ds+t fn, ds- f n, ds, (5.21) 
geom path geom 

and the t r o p o s p h e r i c  re f rac t ion  e f fect  T resulting from non-unity of the 
tropospheric refraction index n r 

T, k =  f (,,T-1)as+t fnr,t - f nTas). (5.22) 
geom path geom 

We can now insert equations (5.14) and (5.18) through (5.22) into (5.13) to obtain 

a more familiar variation of the observation equation for GPS pseudorange 

measurements. 

Pi k(t) = p,*(t, t -  z,~) + I i k + Ti ~ + d m  i ~; + 
(5.23) 

c[dti(t)  - d t  ~(t - z~)] + c[di(t ) § d k(t - x~)] + ei ~ 

The final step in the derivation of the pseudorange observation equation is the 

introduction of the eccentricities between the centre of mass of the satellite and 

the satellite antenna, and between the receiver antenna and the point of interest 

(e.g., for positioning). 

Denoting the position vector of the centre of mass by r k, the position vector of 

the ten'estrial point of interest by r~, the eccentricity vector of the receiver antenna 
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by dry, and the eccentricity vector of the transmitting antenna by dr k, we obtain 

the following relation 

p~ - ll(rk+ dr ~) - (r~ +dr~)tt (5.24) 

with double bars indicating the length of a vector. Inserting equation (5.24) into 

(5.23) we obtain the final pseudorange observation equation: 

P,  k(t) - II ( r k ( t -  z~) + drk(t-'r - (r i(t) + dr,(t))II + 

I, k + T~ k + c[dt , ( t )  - d t  k(t- 'c~)] § (5.25) 

c[di ( t )  + d ~ ( t -  z~)] +dm, k + eik . 

The right hand side contains in sequence the geometric distance between the 

transmitting and receiving antennas expressed by the positions of the terrestrial 

reference point (survey marker or similar) and the centre of mass of the GPS 

satellite and the corresponding eccentricities, the ionospheric delay effect, the 

tropospheric delay effect, the ~ffect of satellite and receiver clock errors, the effect 
of satellite and receiver equipment delays, the effect of signal multipath, and the 

measurement error. 

The receiver and satellite positions and satellite clock errors as well as the 

tropospheric delay effect are independent of the signal frequency. All other terms. 

including the eccentricity vectors, will in general be different for different signal 

frequencies. 

5.2.2 The  Carr ier  Phase  

The carrier phase ~ is equal to the difference between the phase ~ of the 

receiver generated carrier signal at signal reception time. and the phase ~ of the 

satellite generated cartier signal at signal transmission time. Only the fractional 

carrier phase can be measured when a satellite signal is acquired, i.e.. an integer 

number N of full cycles is unknown. N is called the carrier phase ambiguity. 

*~(t) - 0,(t)- *k(t-'c~) +N, k+ e] (5.26) 

Applying equations (5.3), (5.8) and (5.9) to the phases on the right hand side 
according to 

, i ( t )  = Iot i ( t )  + d~i(/o) 

= f o ( t  + dry(t)) + ~i(to) (5.27) 

~(t- z~) - yo(t- z~ + dt k(t- ~)) �9 # ( t  o) (5.28) 
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we obtain for the cartier phase observation equation 

r = fo['C~ + dti(t) - dt  k ( t -  "c~)] + [(~i(to) - ~ l ( t0 )  ] + N~ k + e~. (5.29) 

In order to transform this equation into units of distance, it is multiplied by the 

nominal wave length of the calxier signal 

~. = c 

:o (5.30} 

to yield 

)vCJ~(t) = cz~ + c[dt,(t) - d t  ' ( t -  "~)1 + X[~,(to) - 0'(to)] + XN, k + ~ . (5.31) 

The first two terms on the right hand side represent the cartier signal travel time 

and the satellite/receiver clock errors similarly to the observation equation (5.13) 

for pseudoranges. The third term is constant and represents the non-zero initial 

phases of the satellite and receiver generated signals and the fourth term represents 

the integer carrier phase ambiguity. 

The carrier signal travel time can be expanded similarly to the derivations for 

the pseudorange in equations (5.14) through (5.22). This results in: 

~ , ~ ( t )  ~ ~ ~ ~ = Pi ( t , t -  ~,) - I i + T i § ~tn i + c[dti(t) - d t  k(t-'c~)] + 
(5.32) 

c[8,(t) + ~k(t - "~)] + ~.[~,(t 0) - ~k(to)] + ~,N,' + E~ 

We have replaced on the left hand side the product of the carrier phase 

measurement and nominal wavelength by @, the carrier phase measurement in 

units of distance. We have also omitted the wavelength in front of the 

measurement error. 

Comparing equation (5.32) to the corresponding pseudorange observation 

equation (5.23), we note: 

�9 both contain the geometric distance p~(t,t-'c~) 

�9 both contain the clock error terms c[d t~( t ) -d t  k(t-'c~)] 

�9 both contain the tropospheric refraction effect T~ k 

�9 the sign of ionospheric refraction effect Ii k is reversed (c.f. Chapter3) 

�9 the pseudorange multipath error dmi k has been replaced by the carrier phase 

multipath error 8m~ k 

�9 the pseudorange equipment delay terms c[d i ( t )+d  k(t-'c~)] have been replaced 

by the carrier phase equipment delay terms c[~ ( t )+  ~k(t -z~)]  

�9 the carrier phase observation equation contains the additional terms 

~,[~(to) - ~k(to)] resulting from the non-zero initial phases, and the carrier phase 

ambiguity term LNi k. 

In the last step, the geometric distance is expanded into satellite and receiver 

coordinates and the related eccentricities, as described for the pseudorange 
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observation in equation (5.24). Such expansion yields finally 

@~(t) - II ( r k ( t -  Z~) + 5rk ( t  - Z~)) -  (r i ( t )  + ~3r i(t))I1 + 

k 
_lik  + Ti k + 5 m  i + c[dt i( t )  _ d t  k ( t -  "c~)] + (5.33) 

c[~,(t) + ~k(t- Z~)] + ~,[~i(to) - ~k(to)] + ~,N, k + e~ . 

We have used fir k and 8r i to denote the eccentricities pertaining to the carrier 

phase measurements. In general, these will be different from the eccentricities 

pertaining to the pseudorange measurements, since the effective antenna centres 

are different. 

There is one additional and more hidden difference between the equations: The 

total signal travel time is slightly different for pseudorange and carrier phase 

measurements because of differences in the ionospheric effect and the equipment 

delays. As a result, the time argument for the evaluation of the satellite 

coordinates is also slightly different. 

5.3 LINEAR COMBINATIONS 

The purpose of this section is to derive the equations for certain linear 

combinations of GPS measurements. Such linear combinations are often used in 

the analysis of GPS observations, and some of the linear combinations are directly 

measurable with appropriately equipped GPS receivers. 

5.3.1 Single Receiver, Single Satellite, Single Epoch Linear Combinations 

In this sub-section we will examine two particular linear combinations of 

measurements. The first of these combines pseudoranges or carrier phases 

measured at different signal frequencies. The second one combines pseudoranges 

and carrier phases measured at the same signal frequency. 

Inter Frequency Linear Combination. Some GPS receivers provide 

simultaneous pseudorange and carrier phase measurements on both GPS 

frequencies f ,  and f2- We identify quantities affected by signal frequency by the 

subscripts 1 and 2. From equation (5.25) we obtain for the inter frequency 

difference of pseudoranges 
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k k Pi.z( t)-Pia(t)  {11 (rk(t-  ~2) + dr,k2(t-'~ik.2)) - (ri(t)) + dr~.z(t))II - 

II (rk( t-'C[l) + dr k~(t - '~l)) - (r ~( t) + dri.~ ( t) ) II } + 

k k + {li,2 - Ii,1} {c[dt~(t) - dt k(t - "l:[z)] - c[dti(t ) - d t  k(t - "~[l)]} + 

(c[,t,.2(/) + d2(t- "r - c[,~, ~(t) + ,/,~(t - .~ )1~ + 

k k + k k 
f d m i , -  dmi 1 } �9 �9 �9 .- , ( e ~ z - e  i~} 

(5.34) 

affects the The u'oposphefic refraction term has been omitted, since it 

pseudoranges on both frequencies identically, and therefore cancels in the 

difference. Some of the remaining terms are also very small and can be neglected 

for most purposes. 

The first term on the right is the difference in geometric ranges as measured on 

the two frequences. It is caused by slightly different signal travel times, resulting 

in slightly different time arguments lbr the satellite position vector. This time 

difference is usually less than 0.1 micro second, with corresponding negligible 

sub-millimetre satellite position differences. This term also contains the 

eccentricities which can be considerably different for the two GPS frequencies. 

The second term contains the difference of the ionospheric refraction effect at 

the two frequencies, a major constituent of this particular linear combination.  

The third term contains the clock errors. Since the measurements are taken 

simultaneously at the receiver, the receiver clock en'ors cancel completely.  The 

satellite clock error does not cancel exactly, as it is appearing with slightly 

different time arguments. This remaining difference, however, is negligibly small. 

The fourth term contains the differences in equipment delays for the two signal 

frequencies. This te~rn is significant and needs to be retained. The same is true for 

the difference in the multipath error. These considerations lead to the final 

representation for the difference between pseudorange measurements  at two 

frequencies: 

k k 
P i , 2 ( t )  - e i , l ( t )  {ll (rk(t -'c~,) + k = dr.2(t- ~i.2)) - (ri(t) + dri.z(t))II - 

II (rk( t -  "c[~) + dr k~(t- x~a)) - (r i( t) + dQ~(t))II}+ 
(5.35) 

c{[di~(t ) + d~(t-'c~)] - [d,,,(t) + d.~(t-  ~)]}+ 

{~k r k ~ + t l  k ~ k ~  k k 
i2 -- l i ,1I t a m i , 2  - a m i , l l +  ei,2 - ei, l 

We have used the 'approximately equal'  sign to indicate, that certain negligible 

small quantities have been removed from the equation. The right hand side 

contains in sequence the effect of inter frequency difference in excentficities, the 
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inter frequency difference of equipment delays, the inter frequency difference of 

ionospheric refraction effects, the inter frequency difference of multipath errors, 

and the measurement noise term. 

It should be noted, that this inter frequency difference of pseudoranges is a 

directly measurable quantity in some receivers. 

An equation similar to (5.35) can be derived for the inter frequency difference 

of cartier phase measurements as described by their observation equation (5.33). 

Using again subscripts to identify the frequency, we obtain with a similar level of 

approximation 

-- CIUCrk(,-  2)+ 

k k k II (r ( t -  xi.l) + 5r l( t-  x~x))- (r i ( t )  + fir/.l(t))11 }+ 

k k k k 
c[[Si.2(t) + 8 .2(t -~i ) ]  - [8~.,(t) + 8 ~ ( t -  "c~)])- 

(5.36) 
i i  k _  i k )+  k k {Smi, - 8mi l} + ~i,2 "i,l" ,~ , 

~LC[*i.2(t0) - O~(t0)] - [(~i, (to) - ~P~I (t0)]}- 

k k k _ , ~ k  ~.{N - N  ,l+e,~ i,2 i,A ",_ i,l �9 

Comparing equation (5.36) to the corresponding pseudorange difference 

observation equation (5.35), we note: 

�9 both are free of the tropospheric refraction effect and of clock error terms 

�9 both equations retain the respective term for inter frequency differences of the 

eccentricities, the equipment delays, and the multipath errors 

�9 the sign of the ionospheric refraction effect is reversed 

�9 the carrier phase related equation contains additional terms for the initial 

phases and the phase ambiguity terms. 

It should also be noted that the measurement noise was amplified when forming 

the linear combinations. Assuming equal noise level for both frequencies and 
t ' - ' -  

absence of correlation, this noise amplification factor is ~2. 

It is illustrating to look at equations (5.35) and (5.36) under some simplifying 

assumptions. If we assume, that 

�9 all eccentricities are properly calibrated and can be removed from the right 

hand side of the equations, and 

�9 all equipment delays are constant over time, and 

�9 there is no change over time in the carrier phase ambiguity, 

then the equations simplify according to 

k k k k k k + k k 
Pie(t) - Pia( t )  = Cp + {Ii,: - / / a } +  {d.mi, 2 - dmi.  1} ei. 2 - ei.1 (5.37) 

a n d  
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{ S m l .  2 - 8 t r t i .  1 } + . (5.38) ~i.:(t)-c~i.l(t) = C,+~. :  "~.1" ~i.z-Ei,1 

Both equations provide a measurement for the sum of a constant term, the inter 

frequency ionospheric delay difference, the inter frequency multipath error 

difference, and some measurement noise. 

Difference Between Pseudorange and Carrier Phase, Same Frequency. 
Another single station, single satellite linear combination can be formed by 

subtracting the pseudorange measurement from the simultaneously measured 

carrier phase. These measurements are represented by the observation equations 

(5.25) and (5.33). To the same degree of approximation as in equations (5.35) and 

(5.37), this difference can be expressed by: 

k k 
dPi( t ) -P i (t) -~ {1[ (r~(t- x~) + 8rk(t- z~)) - (r,(t) + 8r,(t))II - 

II (rk(t-  x~) + drk(t - ~:~)) - (r,(t) + dr,(t))II }§ 

_21i ~ + (8mik_ dm i k} + L[d~i( to ) _ ~)k(t0) ] + LN i k + 

c~[8,(t) + 8k ( t -  x~)] - [d,(t) + d ~(t- ' :~)]}  + Ic~ - e,k}. 

(5.39) 

The first term on the right hand side contains the effect of the differences between 

the eccentricities related to carrier phase measurements and those related to 

pseudorange measurements, i.e., differences between the effective antenna centres. 

The second term contains twice the ionospheric refraciion effect. 

The third term is the difference between the carrier phase multipath and the 

pseudorange multipath errors. In general, the pseudorange multipath error is 

dominant in this term. The fourth and fifth terms are related to the non-zero initial 

phases, and the carrier phase ambiguity. The sixth term results from differences 

in equipment delay experienced by pseudorange and carrier phase measurements. 

As in the previous sub-section, we again take a look at a more simplified 

version of this equation. The simplifying assumptions stated just before equation 

(5.37) lead to 

~ ( t ) - p ) ( t )  ~ ~ ~ ~ -= C,p-21i +ISml -dml ]+(ei -e i  }. ( 5 . 4 0 )  

This simplified equation shows that the difference between cartier phase and 

pseudorange measurements is equal to a constant term, a term representing twice 

the negative ionospheric refraction effect, the difference between the multipath 
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errors, and a receiver noise term. 
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5 .3 .2  P h a s e  D i f f e r e n c e  O v e r  T i m e  

Typically, a GPS receiver will provide measurements at regular pre-selected 

intervals of time, At. The difference between two subsequent phase measurements 

can be written (cf. equation (5.33)): 

dO~(t + A t ) - O ~ ( t )  -= I[ (rk(t  + At  - Z~) + dr  k(t + A t -  ~ ) )  - (r  i(t + At)  + dr  i (t + At)) II - 

II (rk(t  - Z~) + d r k ( t -  ~ ) ) -  (r  i(t) + dri(t))II + 

[Iik(t+ At)  - l ik(t)]  + [Tik(t + At) - T~(t)] + 

[$mik(t + At)  - Smik(t)] + 

c{[dt,(t + At) - dr k(t + A t -  "C~)] - [dt,(t) - dt  k(t-  "c~)]} + 

c{[$i(t + At) - 5k(t + At-'{~)] - [5i(t) - 8k(t-'~)]} + s . 

(5.4]) 

The terms related to initial phases and to phase ambiguity are constant over time, 

and accordingly have disappeared from the right hand side in the differencing 

process. It is again illustrating to look at this equation under some simplifying 

assumptions. In the present case, these assumptions are that the time interval is so 

short that changes in eccentricities, atmospheric refraction, multipath, and 

equipment delays can be neglected. 

Under these assumptions, equation (5.41) changes to 

o,*(t  + At)  - o ~ ( t )  II (rk( t + A t -  ~ )  + drk( t + At  - "r,~) ) - (r i( t + At)  + dr  i( t + At))II 

- il ( rk ( t -  "c~) + d r k ( t -  X~)) - (ri(t) + dri(t))II + 

k 
c{[ dti( t + At)  - d t  k( t + At  - "~)] - [ dti( t ) + dt  k( t -  "~)]} + s �9 

(5.42) 

that is, the change in carrier phase measurement is primarily related to changes 

in satellite and receiver position, and to changes in the satellite and receiver clock 

e r r o r s .  

If  further on the change in satellite and receiver position can be represented 

through a linear velocity term according to 
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II (rk( t + A t -  z~) + drk( t + A t -  z~) ) - (r i( t + At) + dr,(t + At))II 

- II ( r k ( t -  z~) + d r k ( t -  "c~)) - (ri(t) + dri(t))II 

= At  d [[ (r*(t-'r.~) + dr*( t -  "r.~)) - (ri(t) + dri(t))II 
dt  

(5.43) 

and the change in the clock errors can be represented through a linear frequency 

deviation term 

dt(t  + At) - dt( t)  = ~ y A t ,  (5.44) 

then equation (5.42) further simplifies to 

�9 ~(t + &t) - ~ ( t )  = d 11 (rk(t _ "r,~) + drk ( t -  z~)) - (r i(t) + dr,(t))[1 + ~Sf~ - ~Sf k + E~ . 
At  dt 

(5.45) 

This equation simply states, that the rate of change of the carrier phase is 

approximately equal to the rate of change of the satellite-to-receiver distance, plus 

the frequency deviations of the satellite and receiver oscillators. 

Some receivers provide a measurement of the left hand side of equation (5.45). 

This measurement is often labelled "Doppler frequency shift". 

5 . 3 . 3  M e a s u r e m e n t  D i f f e r e n c e  B e t w e e n  R e c e i v e r s  

The difference between the phase measurements of two receivers (subscriptsj  and 

i) of the same satellite signal (superscript k) can be written (c.f. equation (5.33)) 

- 

- II (rk( t i -  z~) + ~rk( t i -  z~)) - (ri(ti) + 5r,(t,))II 

- I /  + l, k+ T /  - r , '+  ~ m / -  Sm, '+ 
(5.46) 

c[dt~(t) - d t  k(tj - '~)]  - c[dti(t ) - d t  k(t i -  z~)] + 

c[~)(tj) + ~k(tj- ~)] - c[~,(t,) + ~*(t,-"c~)] + 

)~[r - ,*(to) l - ~ . [ , , ( t o ) - , ' ( tO ]  + X N / -  X3/,* + e~ - e~.  

Inspection of the right hand side of equation (5.46) reveals immediately, that the 

effect of the non-zero inital phase, r of the satellite's oscillator completely 

cancels. Several other terms cancel approximately, and the remaining difference 

can be neglected. 

Typical GPS receivers perform measurements at regularly spaced intervals, 
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timed with the individual receiver clock. This means that measurements can be 

performed in a truly simultaneous manner only, if the receiver clock errors are the 

same at both receivers. In general, this will not be the case, and this is reflected 

by the use of different time arguments on the left hand side of equation (5.46). 
In modem GPS receivers, however, the receiver clock is continuously updated, 

and the remaining clock errors are small. For such "simultaneous" measurements, 

a number of additional terms on the right hand side of equation (5.46) will cancel. 

The difference between the time arguments for the evaluation of the satellite's 

position r k, clock error dt 2, and equipment delay 6 k pertaining to the two 

original phase measurements is caused by the difference in receiver clock errors, 
k k @-dt~ ,  and by the difference between the signal travel times, "cj- z,. This travel 

time difference is always smaller than 0.05 seconds. For this time scale, the 

satellite clock error, and equipment delay can be considered approximately 

constant. 

dt '(tj - Z;) = d t  k(t~-'r,~) (5.47) 

5'(t/-,~) = 5'(t,-z~) (5.48) 

With these approximations we obtain from equation (5.46) 

- IJ (rk(ti- z~) + ~$rk(ti- z~)) - (ri(ti) + ~Y)ri(ti) ) l[ 

- ljk+ lik+ 7"i k-  Tik+ cSm/-  ~mik+ 

c[dt/(t) - dt,(t)] + c[~(t) - 5,(t,)] + 

xt , j ( to) -  r + x a / +  - 

(5.49) 

A further substantial simplification of this equation can be achieved by omitting 

the explicit time variables, and by using the abbreviations 

(')j-(')i-  (')u' ( . y_ ( .y .  (.)0 (5.50) 

leading to 

~ = II(rk+$r ~)-(rj+&)ll  -II(rk+&k)-(r~+&)ll 
(5.51) 

- I , ;  + Ti; + ~ m :  + cdtu+ c~q+ ~.#?ij(to) + XNi; + r . 

When using equation (5.51) instead of (5.49), one should be aware that the 

satellite positions appearing in the first two terms on the right hand side of 

equation (5.51) are significantly different. 

Going through the same procedure for the pseudorange measurements yields the 
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following equation for the difference between receivers 

ei;  = [l(rk+drk)-(r~+dr~) [I-I}(rk+drk)-(ri+dr)ll 
(5.52) 

. k  k - -  k k 
+ Lj + t~j + a m  o + cdt  o + cdij + % . 

Obviously, the phase ambiguity and initial phase related terms do not appear in 

this equation, the ionospheric refraction term shows a reversed sign, and the phase 

related multipath and eccentricity terms have been replaced by their pseudorange 

related counterparts. 

5.3.4 Measurement Difference Between Satellites 

The difference between the simultaneous phase measurements of a receiver of the 
signals transmitted by two different satellites can be written 

�9 ~i(ti) - ~( t i )  = I[ (r ' ( t  i - zti) + 5r~(t i-  zt)) _ (ri(ti) + ~ri(ti) ) II 

- I1 (rk( t i -  "c~) + $rk ( t i -  ~ ) )  - (r/(ti) + ~ri(ti) ) II 

- L ~ +li ~- Ti t -  T~*+ 5m~ t -  $mi*+ 

c[ dti( ti) - dt  t( t i - zti)] - c[ dti( ti) - d t  k( t i - "r + 

c[~i(ti) + $t(t i -  zl) ] - c[~i(ti) + 8k( t i -  z~)] + 

~4~,i(to) - 0 % ) ]  - ~,[,i(to) - r  + x J v i ' -  x ~ v / +  el  - e,*.  

(5.53) 

We note through inspection of the right hand side of equation (5.53), that in 

addition to the effect of the non-zero inital phase Oi(t0) of the receiver's oscillator 

also the receiver clock and delay terms are exactly cancelled for simultaneous 

measurements. Using again the notation (5.50), and omitting the time arguments 

we obtain for the phase difference between satellites 

dO~i = ll(rt + $ r l ) - ( r  i+~ri)ll - II(rk + $ r k ) - ( r i  +Sr ) l l  
(5.54) 

- It ta + T y  + 8mi n + cdt  n + c~ja + ~ n ( t o )  + ~Vin  + eni. 

We note that this equation follows from the previous one without any 

approximations. Also, the receiver position vectors appearing in the first two terms 

on the right hand side are exactly the same, even if the receiver is in motion 

during the measurement. 

Going through the same procedure for the pseudorange measurements yields the 

following equation for the difference between satellites 
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p kl ---- Ii(rt+drt)_ (ri+dri)l l  _ ii(rk+drk)_ (ri+dri)ll 

kl kl Ird kl kl kl 
+Ii + T  i +din i +cdt  +cd  +ei , 

with differences compared to the corresponding 

explained at the end of section (5.3.3). 

(5.55) 

phase related equation as 

5.3.5 M e a s u r e m e n t  D i f f e r e n c e  B e t w e e n  Sate l l i tes  and  R e c e i v e r s  

The difference between the simultaneous phase measurements of a receiver of the 

signals transmitted by two different satellites, and the simultaneous measurements 

at the same nominal time of a second receiver of the same signals follows from 

equation (5.54) as: 

q~y- q~ = [I (r~+ ~r t) - (rj + 8rj)II - II (rk+ 8r k) - (rj + 8rj)II 

-II(rt+Srl)-(ri+&i)l[ + II(rk + ~ r k ) - ( r  i+ Sr  i)ll 
(5.56) 

- 6~ + l,n + Tjn - Ti~ + Srnjn - Smin + cdt  ~ -  cdt  ~ 

+ c a  ~ - c a  ~ + ~ , (~ ( to )  - X , U ( t o  ) + ~k2Vj ~ - ~ V i  ~ + e~' - I ~ t .  

Obviously, the satellite initial phase cancels, and within the approximations 

outlined in section 5.3.3 the satellite clock error and the satellite equipment delays 
will cancel as well, resulting with the notation (5.50) in 

4~ = II(r~+Sr)-(rj+$r~)ll-tl(rk+$rk)-(r~+&~)ll 

- I[(rt+ &~) - (ri + 8r)  II + It(rk + 8r k) - (r/+ &i) li (5.57) 

The equation contains in sequence the linear combination of the four geometric 

distances between the two receiver antennas and the two satellite antennas, the 

linear combinations of four ionospheric and tropospheric delay terms, the 
combined multipath error term, the integer phase ambiguity term, and the 

combined measurement noise term. The corresponding equation for pseudoranges 

can be derived from equation (5.55): 

Pi~ = ll(rt§ 

- II (r  ~ + dr  l) - (r i + dri)II + II (r k + dr  k) - (r i + dri)II (5.58) 

+10 + !ij +amiy +ef t  
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SINGLE-RECEIVER NONPOSlTIONING MODELS 

In this section we assume to have available one single GPS-receiver observing 

pseudoranges and/or carrier phases. The pseudoranges and cartier phases may be 

observed on L~ only or on both of the two frequencies L~ and L z. The purpose 

of this section is to discuss the possibilities one has for parameter estimation and 

quality control of the data, when single-channel time series of pseudoranges and/or 

carrier phases are available. Estimability and the possible presence of redundancy 

will therefore be emphasized. 

5.4.1 The Simplified Observation Equations 

As our point of departure we start from the pseudorange and carrier phase 

observation equations (5.25) and (5.33). For the sake of convenience they are 

repeated once again: 

pik = ii (rk + d r k ) _ ( r  i+ dr  i)l[ + c(dti_ dt k) + Tik + i  i ~ + c(di+ d k) + dmik +el 

~b~ = I I ( r k + ~ r k ) - ( r i + ~ ' i ) l l + c ( d t i - d t ~ ) +  k k k Ti -[i  +C(~i'b~k)+~D'li + 

)~ " k+ Sk 
+ k[~,(t o) - ~k(to)] + .-/Vi i 

In this section we will work with a simplified form of the above observation 

equations. For the purpose of this simplification, the following assumptions are 

made: 

(1) The difference in total signal travel time between pseudoranges and carrier 

phases will be neglected. Hence, the pseudorange clock terms will be 

assumed to be identical to the corresponding carder phase clock terms. 

(2) The differences between the frequency dependent pseudorange and carrier 

phase rece iver  eccentricities will be neglected. Similarly, the differences 

between the frequency dependent pseudorange and carder phase sate l l i te  

eccentricities will be neglected. Hence, the geometric range from receiver 

i to satellite k is assumed to be independent of the frequency used and the 

same for both pseudoranges and carder phases. This geometric range will 

be denoted as p~ . 

(3) It follows from the structure of the above observation equations and the fact 

that we only consider the single-channel case, that not all parameters on the 

fight-hand side of these equations are separably estimable. A number of 

these parameters will therefore be lumped together into one single 
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parameter. For each channel, the receiver-satellite range p~, the clock terms d t  i 

a n d  d t  k, and the tropospheric delay Tt k will be lumped together in one 

single parameter stk: 

k k k 
s, " Pi + c ( d t t - d t t ) +  Ti . 

For each channel, also the instrumental delays of both receiver and satellite, 

and the multipath delay will be lumped together. For the pseudoranges and 

carrier phases this gives: 

d, ~ = c ( d §  k and  5~ = c ( ~ i + ~ k ) + ~ m i  *.  

Finally, for the carrier phase observation equation the non-zero intial phases 

will be lumped together with the carrier phase ambiguity term: 

Mi* - O/(to)- O*(to) + N,*. 

With the above lumping of the parameters, the L~ and L 2 pseudorange and 

carrier phase observation equations become 

= Si li.l+aiA+eiA ; O i ,  l = St - / i , l + O t , l  i,I 

pi~2 k + v k + l k +  k �9 k k k k k k 
st tt. z a ~  e ~  , @t2 " s t - I i . 2 + S i 2 + X M i , 2  + ei.2 

Based on the first-order expression for the ionospheric range delay, I = 40.3 

TEC/f 2, the ionospheric range delay on L 2 will be expressed in terms of 

the ionospheric range delay on L, as 

2 '~ Irk2 = a li,kl with O~ " f t / f ;  . 

It will be assumed, unless stated otherwise, that during the observational 

time span, a continuous, uninterrupted tracking of the satellites takes place. 
Hence the carrier phase ambiguities M~.kl and Mtk2 are assumed to be 

constant during the entire observational time span. 

For the moment, the delays dt.kl, dik2, ~i~l and 8~2 are assumed to be either 

known or to be so small that they can be neglected. In case the delays are 

known, it is assumed that the pseudoranges and carrier phases are aIready 

corrected for them. 

All remaining parameters on the right-hand side of the above four 

equations, except the carrier phase ambiguities, are assumed to change with 

time. However, the functional dependency on time wiU be assumed 
unknown. 

The unmodelled errors e~.k~, e~k,, ~.l and ~k~.2 will be treated as noise. We 

will therefore in the following, when linear combinations are taken of the 

observation equations, refrain from carrying them through explicitly. The 

corresponding error propagation, needed to obtain variances and co- 
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variances of the derived observables, is left to the reader. 

(9) Since we will be restricting our attention to the single-channel case only, 

we will from now on, in order to simplify our notation, skip the lower 

index "i" denoting the receiver and the upper index "k" denoting the 

satellite. We will also use the abbreviation a~ = ~qM t and a s - ~,2M2 . 

Based on the above assumptions, the four observation equations for the 

pseudoranges and carrier phases may now be written in the more concise form 

P~ = s+ 1~ ; ~t  = s -  l~+a~ 

P2 = s+czI~ ; ~2 = s-czlt+a2 - 

In these equations we recognize three different types of unknown parameters: the 

parameter s, containing the geometric range, the clock tetras and the tropospheric 

delay; the parameter It, being the ionospheric delay for the L t frequency; and, 

a~ and a 2, which are the unknown carrier phase ambiquities on L~ and L z 

respectively. In the following we will consider different subsets of the above set 

of four observables and discuss the possibilities for the determination of the three 

type of parameters. 

5.4.2 On Single and Dual Frequency Pseudoranges and Carrier Phases 

In this section we will consider six diffeL~ent subsets of the set of tour type op 

GPS-observables. They are: 

1) P~ and @~ ; 2) Pt and Pz ; 3) @~ and @2 

4) P ~ , ~  and ~ ; 5) ~t ,Pt  and P2 ; 6) Pt,P2,~l and ~2"  

For each subset it will be shown how one can separate the parameters s and I~ by 

taking particular linear combinations of the observables. In the results so obtained, 

one will recognize three different classes of linear combinations. 

The ionosphere-free linear combinations: This first class of linear combinations 

consists of those linear combinations that are independent of the ionospheric delay 

I~. Since ionosphere-free linear combinations solely depend on s (and possibly on 

an additional time-invariant term), they are particularly useful for monitoring SA- 

effects. Remember that Selective Availability (SA) degrades the stability of the on- 

board atomic clocks and therefore affects s. 

The geometry-free linear combinations: The second class of linear combinations 

consists of those linear combinations that are independent of s. Since geometry- 

free linear combinations solely depend on 11 (and possibly on an additional time- 

invariant term), they are particularly useful for monitoring the ionosphere. 
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The time-invariant linear combinations: The third class of linear combinations 

consists of those linear combinations that are independent of both s and I t . They 

are constant in time and are therefore referred to as the time-invariant linear 

combinations. It is with these linear combinations that redundancy enters, thus 

allowing one to adjust (smooth) the data and/or to test for deviations from time- 

invariance. Such deviations may be caused by, e.g., outliers, cycleslips, or the 

presence of multipath. 

Pseudorange and Carr ie r  Phase on L~ In this first case we assume to have 

pseudoranges and can'ier phases available on frequency L~ only. Then 

Pl(ti) " s(ti)+ ll(ti) (5.59) 

~l(t l)  = s( t i ) -  It(t  ) + a I �9 

We have explicitly included the time argument "t i'' so as to emphasize that we are 

working with a discrete timeseries of pseudoranges and carrier phases. 

We can separate the two types of parameters s and I1, if we premultiply (5.59) 

with the one-to-one transformation matrix 

Note that a one-to-one transformation always preserves the information content of 

the system of equations. Application of the above transformation to (5.95) gives 

@[Pt(ti) + O t ( t i )  ] - s(ti) + ll_a~ t 

l[Pl(t i  ) -  O t ( t i )  ] - Ii(ti)- 12_.dl . 
(5.60) 

This system of equations is clearly underdetermined. We have two equations with 

three unknown parameters. The parameters are s(ti), l~(t) and a~. The system also 

remains underdetermined when the timeseries is considered as a whole. When the 

number of epochs equals k (i-1,...,k), there are 2k number of equations and 

2k+ 1 number of unknowns, leaving an underdeterminancy of one. Hence, the 

information content of the L t pseudoranges and L~ carrier phases is not sufficient 

to determine the three types of parameters s(t~), I~(t~) and a~ separately. Due to 

the constancy in time of a~, however, it is possible to determine the time 

increments of s(t) and It(t).  

If the delays d t and S t were to be included as unknown parameters, we would 

get instead of (5.60), the two equations 
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2i[Pl(ti) + Ot(ti)] - s(ti) ++[a I + d I + 8~] 
(5.61) 

- ~ [ P , ( t ) -  o , ( t ) ]  - 1, ( t , ) - .~[a,  + d , - ,5 , ]  . 

This shows that the time increments of s(t) and I~(t) can still be determined, 

provided that the delays are constant in time. 

Dual  F requency  Pseudorange .  In this case only dual-frequency pseudorange 

data are available. Then 

Pi(ti) = s(ti)+ l l ( t  i) 
(5.62) 

P2(ti) = s(ti) + oil( t i )  . 

We can separate the two types of parameters s and I~, if we premultiply (5.62) 

with the one-to-one transformation matrix 

l :/ -1  

c,~- 1~ 7gz'iZ} 

Using the notation P~z(ti) = P,_(t) - P~(ti) for the inter-frequency difference of  the 

pseudoranges, this gives 

Pl( t i ) -  P~2(t) / (o~-  1) = s( t )  (5.63) 

Pl,_(ti)/(C~- 1) = l l ( t  ) 

This shows that the intbrmation content of the dual-frequency pseudoranges is just 

enough to determine s ( t )  and ll(ti) uniquely. Hence, when compared to (5.60), 

we are now able to determine the absolute time behaviour of s(t) and l~(t) instead 

of just only their time increments. This result is spoiled, however, when the delays d~ 

and d z are included as unknown parameters. One can then again at the most 

determine the time increments of s(t) and l~(t), provided the delays are constant 

in time. 

Dual  F r e q u e n c y  C a r r i e r  Phase.  In this case only dual-frequency carrier phase 

data are available. Then 

dOl(ti) = s ( t l ) -  Ii(ti) +a I 

02(ti) = s ( t i ) -  aJl(ti) + a 2 . 
(5.64) 

We can separate the two types of  parameters s and I l, if we premultiply (5.64) 
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with the one-to-one transformation matrix 

- (ct~tl)_ - 

Using the notation Ox2(ti) - O2(ti)- Ox(ti) for the inter-frequency difference o f  the 

carrier phases, this gives 

�9 l ( t ) -  ~ t 2 ( t ) / ( c t -  1) - s ( t )  + b 
(5.65) 

- ~ t 2 ( t ) / ( ( Z -  1) - ll(ti)+C , 

with the time-invariant parameters b = [o~.a t - a 2 ] / ( O ~ -  1) and c - [a t - a2 ] / (o~-  1). 

This system of  equations is clearly underdetermined. We have two equations with 

four unknown parameters. The parameters are s(t~), l~(t~), b and c. The 

underdeterminancy of two also remains when the time series is considered as a 

whole. As with (5.59), the linear combinations of (5.65) can be used to determine 

the time increments of  s(t) and I~(t). This also holds true when the delays 8x and82 

are included, provided that the delays are constant in time. 

Pseudorange on L~ and Dual Frequency Carrier Phase. In this case the 

pseudoranges o n  L 1 and the carrier phases on both L~ and L 2 are assumed to be 

available. Then 

Pl(ti) - s(ti)+ Ii(ti) 

�9 l ( t i )-  ~12( t i ) / (~ -  1) ~ s ( t )  + b (5.66) 

-~12( t i ) / (o t -  1) - l l ( t i)+c 

where the last two equations follow from (5.65). We can separate the two types 

of  parameters s and I~, if we premultiply (5.66) with the one-to-one transformation 

matrix 

1 . 
0 

This gives 

Pl ( t i ) -  ~t(ti) + 20,2(ti) / (t~- 1) = - b -  c 

�9 t ( t , ) -~x2( t~) / (~-  1) = s ( t ) + b  . (5.67) 

-O t2 ( t~ ) l (a -  1) = I~( t )+c 

The first linear combination is time-invariant, the second is free of  the ionosphere,  

and the third is free of  the geometry. Because of the time-invariance of  the first 
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linear combination, the system of equations becomes redundant when the time 

series is considered as a whole. Since one of the parameters needs to be known 

before the other parameters can be estimated, however, the system of equations 

also has a rank defect of one. This implies that the parameters s(ti), It(t ) ,  b and 

c cannot be estimated independently. The redundancy of the system of equations 

equals (k-  1), with k being the number of epochs in the observational time span. 

The above conclusions are not affected when the delays dr, 51 and ~z are 

included, provided that the delays are constant in time. 

The redundancy in the above system of equations (5.67) stems from the time- 

invariance of the first linear combination. This time-invariance, therefore, can be 

used to adjust the data, and in particular to smooth the pseudorange data. When 

we apply the recursive least-squares algorithm to the first equation of (5.67) and 

approximate the statistics of the data by setting the variances of the carrier phases 

to zero, we obtain the carrier phase smoothed pseudorange algorithm as a result: 

+1 Pt.~k-1 = Pl.k-llk-t "7[P1.k-P1.k-Hk-E] for k > 1 

Pl,~k = Pl.~_l+~[(~,.k--Cbl.k_l--2(CblZ~--~lZ~_l)/(Ot--1)] for k > 1 

(5.68) 

The index k is used to denote the epoch. The first equation of (5.68) can be 

considered the 'predictor' and the second equation the 'filter'. The algorithm is 

initialized with Pt.0~o := Pl(q). 

Car r i e r  Phase on Lt and Dual Frequency Pseudorange. Complementary to 

the previous case, we now assume the carrier phases to be available on Lt only, 

but the pseudoranges on both frequencies. Then 

~l(ti) = S(ti)-ll(ti)+al 

P~(t i)- P~(t)/(C~- 1) = s(ti) (5.69) 

Plz(ti)/(Ot- 1) = II(ti) . 

where the last two equations follow from (5.64). If we premultiply (5.69) with the 

one-to-one transformation matrix 

/i o i/ 
we obtain 

~t(t~)-Pl(tl) +2P12(ti)l(o~- 1) = a~ 

Pl(ti)-P12(ti)/(~- 1) = s(t) . (5.70) 

Pl2(ti)/(ot- 1) = It(t ) 
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Compare this result with that of (5.67). Again redundancy is present due to the 

time-invariance of the first equation. The redundancy equals (k-1). 

Dual Frequency Pseudorange and Dual Frequency Carrier Phase. In this 

case we assume the pseudoranges and carder phases to be available on both 

frequencies L~ and ~ .  From (5.63) and (5.65) follows then 

Pl(ti)-Pl2(ti)/(ff.- 1) - s(ti) 

P~2(t,)/(~- I) - ll(t i) (5.71) 

~l(ti) - ~ 2 ( t )  / (t~- 1) - s(tj) + b 

-r 1) ffi ll(ti)+c . 

Premultiplication with the one-to-one transformation matrix 

t:: ~ 
gives then 

P,( t ) -P,2( t i ) l (a-  l) ffi s(t) 

P12(t)l(a- l) ffi Ii(t ) (5.72) 

�9 l(t~)- P l ( t ) -  [ ~ 2 ( t ) -  P l , ( t ) ] / (~ -  1) ffi b 

-[~l~(ti)+Pi2(ti)ll(o~- l) ffi c . 

This system of equations is uniquely solvable for one single epoch and it becomes 

redundant when more than one epoch is considered. The redundancy stems from 

the time-invariance of the last two equations. The first two equations are not 

redundant. For k number of epochs the redundancy of the system of equations 

equals 2(k- t). 

All the four types of parameters s, I~, b and c are estimable. Hence, this is for 

the first time where, through the estimation of b and c, also the L~ and L 2 carrier 

phase ambiguities a I and a 2 can be estimated. 

When one considers the structure of the four equations of (5.72), one may be 

inclined to conclude, since the carder phases do not appear in the first two 

equations, that they fail to contribute to the determination of both s and 11 . This, 

however, is not u'ue. It should be realized that the four derived observables of 

(5.72) are correlated. This implies, therefore, if a proper least-squares adjustment 

is carried out on the basis of the redundant equations, that one also obtains least- 

squares corrections for the first two observables of (5.72). And it is through these 

least-squares corrections that the carrier phases contribute to the determination of 

both s and 11. 
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When the delays d v d 2, ~ ,  52 are included in (5.72), the redundancy remains 

the same, provided that they are constant in time. But then only the time 

increments of s and I l are estimable. 

5.5 THE LINEARIZED OBSERVATION EQUATIONS FOR 
P O S I T I O N I N G  

In the previous section all observation equations were linear. The observation 

equations will become nonlinear, however, if they ale to be used for positioning. 

This is due to the tact that p~, the distance between receiver i and satellite k, is 

a nonlinear function of the receiver coordinates. Since it is assumed that one will 

be working with standard linear least-squares adjustment algorithms, one will need 

to linearize the nonlinear observation equations. 

In this section we will first discuss the linearization of the nonlinear observation 

equations. Then it is briefly discussed how these linearized observation equations 

can be used for both single-point positioning as well as for relative positioning. 

The advantages of relative positioning from a qualitative point of view over that 

of single-point positioning are highlighted. 

5.5.1 The Linearization 

Our discussion of the linearization will be kept as simple as possible. Although 

this compels us to ignore some important subtleties of the linearization process, 

the linear equations that we obtain will be satisfactory for our purposes. A more 

elaborate discussion of the linearization process will be given in the following 

chapters. It will also include a discussion on the computation of the approximate 

values and on the iteration process. 

Our linearization will be illustrated using the pseudorange observation equation 

for L 1 as an example. The linearization of the other observation equations goes 

along similar lines. The observation equation for the pseudorange on LI is given 

a s  

p,.k = p~+c[dti_d t k] k k k+ k . (5.73) +Ti +I~,l+di, l e~a 

In order to linearize we need approximate values for the parameters. They are 

denoted as 

(p~)O : the approximate distance between receiver and satellite, 
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(dr) ~ : the approximate 

(dr k)o : the approximate 

(T~k) ~ : the approximate 

(l~,kO ~ : the approximate 

(d~O~ : the approximate 

receiver time error, 

satellite time error, 

tropospheric range error, 

ionospheric range error, 

receiver/satellite equipment and multipath delays. 
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Based on the approximate values, an approximate pseudorange can be computed 

ko ko (p,k)o , (9~)o + c[(dti)o_ (dt k)o] + (Tk)O + (lia) + (d,a) . (5.74) 

The difference between the observed pseudorange P k i.l and computed pseudorange (Pikl) ~ 

follows from subtracting (5.74) from (5.73). Expressed in terms of the parameter 

increments, it reads 

ZSjgi,kl k k k k + 
= Api § c[Adt  i -  Adt  ~] (5.75) + ATi + Ali,1 + Adi, t ei.l , 

where the A-symbol is used as notation for both the "observed" minus "computed" 

pseudorange, as well as for the parameter increments. 

Note that so far, no actual linearization has been carried out. Equation (5.75) is 

simply the result of the difference of two equations. The purpose of taking the 

difference between the two equations (5.73) and (5.74) is, however, to obtain 

increments of a sufficiently small magnitude. This allows one then to replace the 

increments that are nonlinearly related to the parameters of interest, by their first 

order approximation. 

In this section, we will only consider the linearization of the increment Ap~. For 

some applications, however, it might be opportune to also apply a lineazization to 

some of the other increments appearing in (5.75). For instance, if a tropospheric 

model is available, one might use this model to linearize AT~ k with respect to 

some of the parameters that appear nonlinearly in the tropospheric model. 

In order to linearize Ap~, recall that p~ = II(ri+dr ) -  (rk+drk)ll. The receiver- 

and satellite eccentricities will be assumed known. Hence Ag~ will only be 

linearized with respect to r~ and r k. Linearization of Ap~ with respect to both the 

receiver coordinates as well as satellite coordinates gives therefore 

Ap~ - - (u  ~)rAr, + (u ~)rArk ,  (5.76) 

with u ~ the unit vector from receiver to satellite, Ar i the increment of the receiver 

position vector and Ark the increment of the satellite position vector. The unit 

vector u~ is computed from the approximate coordinates of the receiver and 

satellite. In the following it is therefore assumed known. 

The linearized L~-pseudomnge observation equation follows now from 

substituting (5.76) into (5.75). Since the linearization of the other three observation 

equations goes along the same lines, the linearized versions of the two 

pseudorange observation equations are given as 
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AP,.*, = - (u  ~)r~r, +cAdt, + (u ~)rAr * -cAdt* + AT,* + M,fi + Adi. ~, + e,.,* 
(5.77) 

+ - - .  k +  �9 ,k  * AP,.• = - (u  ~)rz~.i+ cAdti+ (u ~)rz~.a- cAdt ' + AT, a (y.Ali. , aa,a + e,.z 

and those of the two carrier phase observation equations are given as 

a E* A~,*, = -(u ~)rAr,+ cadt,+ (u ~)rAr*- cad t*  + at : -  aI,*, + aG + ~.,M,a + ,., 

Arb~ 2 _(u~)rAr +cAdt i+(u~)rAr ,_c~z l t ,  , , , k I~* 
= +ATi-(Y-A]i,l+A~i2+~'2/~i,2 + i .2 

(5.78) 
Note that we have neglected the eccentricity-driven differences in the unit vector 

for pseudoranges and carrier phases. 

In the following two subsections, it will be discussed how these observation 

equations can be used for positioning purposes. In section 5.5.2 the single-point 

positioning concept is briefly discussed and in section 5.5.3 the relative 

positioning concept. 
k In the following we will refrain from carrying the noise terms e~k~, e~, ei.~ and 

k e~,2 through explicitly. 

5.5.2 Single-Point Positioning 

In section 5.4 we restricted ourselves to the data of a single channel, observed by 

a single receiver. In this subsection we will continue to assume that we have only 

one single GPS-receiver available, observing pseudoranges or carrier phases. 

Conu'ary to the single-channel assumption, however, we will now consider the 

multi-channel situation. This allows us then to include the geometry of the 

receiver-satellite configuration and to explore the possibilities one has for 

determining the position of the single receiver i. 

When we consider the linearized observation equations for the pseudoranges, 

(5.77), three groups of parameters can be recognized. One group of parameters 

that depends on the satellite k being tracked. A second group that depends on the 

propagation medium between satellite k and receiver i. And a third group that 

depends on the receiver i. These parameters appear in the observation equation as 

APi* kT  -(U i ) A r  i + cAdt  i + cad  i 

+(u~)rAr k - cAd tk  + cad*  

+AT: + A/ :  + adrn:  

(receiver dependent)  

(satellite dependent)  

(atmosphere and  
multipath dependent)  . 

(5.79) 

For positioning purposes the primary parameter of interest is of course Ari,the 

unknown increment to the receiver's position. But it will be clear, considering the 
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above observation equation, that the information content of the observables will 

not be sufficient to determine the receiver's position if in addition to z~r~ also the 

other parameters are unknown. One could think of reducing the number of 

parameters by lumping some of them together. For instance, with the lumped 

parameters 

+ �9 r k A � 9  k 
Adt(  Adt i+Ad i and V~ = (u~)rArk-cAdtk+cAd~+ATi  k l-x* i txam i 

the pseudorange observation equation becomes 

APi k = - (u  ~)rAr i + cAdt(  + V~ . (5.80) 

Unfortunately, however, this lumping of the parameters does not solve our 

problem completely. With (5.80) we are still faced with the parameter V~, which 

introduces an unknown for each one of the observed pseudoranges. The only 

approach that therefore can be taken in the present context is to simply assume 

V~ to be zero. 

If the receiver tracks m satellites simultaneously (k = 1 , ,m)  and if V~ is 

assumed to be zero, the pseudorange observation equations can be written in the 

compact vector-matrix form as 

APi(ti) = (A(ti)l,.)lz~,i(fl) l. 
~cAati (ti) ) 

(5.81) 

1 2 ttt T I ~ ttt T 

- (o). aIo -(-. (,,)) 
l,, = ( I , I  ..... l) r. This system of observation equations consists of m equations in 

4 unknown parameters. This implies, assuming the satellite configuration at epoch 

t~ to be such that the design matrix (A(t)Jm) is of full rank, that the redundancy 

of the system of observation equations equals (m-4). Hence, a minimum of four 
satellites are needed to determine the parameters Ar(t i) and c3dt~ ( t )  uniquely. 

The above shows that single-point positioning is feasible when one is willing to 

neglect V~. The same can be shown to hold true when carrier phases are observed. 

In that case, however, one will need a minimum of two epochs of data, due to the 

presence of the unknown carrier phase ambiguities. But it will be clear that the 

quality of single-point positioning largely depends on the validity of V~ = 0. For 

some applications this assumption may be acceptable. Unfortunately, however, this 

assumption is not acceptable for those applications where high positioning 

precision is required. We will therefore refrain from a further elaboration on the 

single-point positioning concept. 
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5.5.3 Relat ive  Posit ioning 

Relative positioning involves the simultaneous observation of m satellites by a 

minimum of two GPS-receivers. The advantage of relative positioning over single- 

point positioning lies in the fact that in case of relative positioning, the parameters 
of interest are much less sensitive to interfering uncertainties such as ephemeris-, 

clock- and atmospheric effects. This will be shown using the pseudorange 

observable as an example. But the same reasoning applies equally well to the 

carrier phase observable. 

The principle advantage of relative positioning becomes apparent when we 

consider the so-called single-difference observables. Let P~ be the pseudorange 

observable of receiver i observing satellite k, and let P /  be the pseudorange 

observable of receiverj on the same t~equency as p k, observing the same satellite 

k at the same instant. The two corresponding linearized observation equations read 

then 

AP, k = -(u ~)rAr, + cAdt~ + (u ~)rArk- cAdt k + AT~ k + Al, k + Ad~ k 
(5.82) 

A P /  = - (u  ~)r Ar ) + cAd~ + (u ~)rArk- cAdt k+ AT/+ A/y'+ Ad/ . 

In the single-point positioning concept of the previous subsection we were forced 

to neglect the group of parameters that were dependent on the satellite being 

tracked. In the present context, however, these parameters now appear in two 
observation equations instead of in one. This gives us the opportunity, therefore, 
to either eliminate these parameters or to considerably reduce for their effect. 

If we take the difference of the two equations of (5.82) and introduce the 

notation as outlined in equation (5.50), we obtain 

AP, j  _(u~)rAr~ k r k = -(uq) Ar i + cAdt O 
+ (u~)rAr k 

k 
+AT~ + A/~y 

+ cAdo (receiverdependent) 

(satellitedependent) (5.83) 

+ Admi] (atmosphere and 
multipath dependent) . 

This observable is referred to as the single-difference pseudorange. We speak of 

relative positioning since the baseline vector r o is the primary quantity to be 

solved for. If we read the single-difference observation equation from right to left, 

the following remarks are in order. 

Atmospheric and multipath delays. For two receivers located close together, the 

atmospheric delays are (almost) the same because the radio signals travel through 

the same portion of the atmosphere and thus experience the same changes in 
k 

velocity and ray bending. Hence, the atmospheric delays, ATe/ and A/ij, almost 

cancel in the difference for small interstation distances. In the following the 
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multipath delay dm~ will be assumed absent. Hence it will be assumed that 

provisions are made (e.g., in the location of the receivers) that prevent multipath. 

Orbital uncertain~.. The position increment of satellite k, Ar k, appeaa's in the 

inner product (ui~)rAr k. The following upperbound can be given to this inner 

product: 

I(u~)~Ar~l _< Ilu,~ll IIAr~lr . 

Furthermore we have: Ilui~ll 2 211- k r k - (u~) (uj)] = 2(1-cosct), with ot being the 

angle between the two unit vectors u ~ and u~. We also have by means of the 
cosine-rule: }]r..}l 2 k~ k = IIr, ll-+llrjll--211r~ll IlrjkFlcosot = 2llr~ll2(1-cosot) since 

IIr~ll = IIr~ll. It follows, therefore, that Ilui~ll _=_ IIr~}l/llr~ll. Hence, the above 

inequality may be approximated as 

I(u:)rAr'l < ~ t t A r k l l  . (5.84) [ tr;ll j 
But this shows, when the baseline length lit,ill is small compared to the high 

altitude orbit of the GPS-satellite, IIr~ll, that the effect of the orbital uncertainty, 

Ark gets drastically reduced. 

Instrumental delays and clock errors. Note that both the instrumental delay of 

the satellite, d k, as well as the satellite clock error, dt k have been eliminated 

from the single-difference equation. The relative receiver clock error dt~j is the 

only clock error remaining. It will be lumped together with the relative 
t 

instrumental delay of the two receivers: dt o = dt~j+ dj. 
Receiver positioning error. In the single-difference equation (5.83), the position 

vectors of the two receivers have been parametrized into a baseline vector r q and 

a position vector of receiver i, r~. It will be clear that if ri is known and rij is 

solved for, that also rj is known. It will be assumed in the following that r~ is 

known. This allows us to set the increment Ari equal to zero. Note, however, that 

analogously to (5.84), we have 

I (u:)rArq < ~ l l A r ) '  �9 (5.85) [Hr; l/ 
This shows also that the effect of the uncertainty in the position of receiver i, Ar~, 

gets drastically reduced in the single-difference equation. 

It follows from the above discussion that we are now - in contrast to the 

situation of the previous subsection - in a much better position to neglect the 

satellite dependent parameters. The concept of relative positioning, therefore, will 

be further explored in the next section. 
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RELATIVE POSITIONING MODELS 

In this section we consider relative positioning based on pseudoranges and based 

on carrier phases. Both the single-frequency case as well as dual-frequency case 

will be considered. Particular attention will be given to the estimability of the 

parameters. First the pseudoranges will be considered. 

5.6.1 Relative Positioning Using Pseudoranges 

First we will consider the single-frequency case, then the dual-frequency case. In 

the single-frequency case the ionospheric delay will be assumed absent. In the 

dual-frequency case, however, the ionospheric delay will be included in the 

observation equations. 

The Single Frequency Case. It is assumed that two GPS-receivers, i and j, 

simultaneously observe the L~-pseudoranges to m satellites. Hence, at the time of 

observation the following pseudoranges become available: Pi~ and Pj~ for 

k = l ..... m. Instead of working with these two types of undifferenced pseudorange 

observables, p~.k and p jk  we may as well work with the single single-differenced 

pseudorange observable Pij~t. This data compression is permitted since - as we 

have seen earlier - the unknown satellite clock error dt k plus satellite delayd k 

gets eliminated when taking the difference. 

The m single-differenced linearized pseudorange observation equations read 

k t 
~ P / j , I ( ' i ) " - ( u ~ ( t i ) } T ~ i j ( t i ) + c ~ d t i j ( t i  ), k - 1 , . , m  . (5.86) 

Note that we have assumed the increments At,, Ar t, ~dm~, zXT~ and a / ;  to be 

zero. In vector-matrix form the above observation equations read 

If:::::; Ap,).,(ti) = (A(ti) l,,} ,) . 

Compare this result with that of (5.81) and note that the single receiver quantities 

have now been replaced by the single-differences Ap/j.l(t~), Arij(tl) and cAdt~j(tl). 
In the present context, one is thus solving for the baseline vector r# and the 

relative receiver clock error dt/j instead of the single position vector r~ and single 
receiver clock error dti'. And since the approximations involved in the relative 

positioning concept are less crude than those that were made in the single-point 

positioning concept, the accuracy with which rq and dt~; can be determined is 
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higher than the accuracy with which ri and dt~ can be determined in the single- 

point positioning concept. 

The Dual  Frequency  Case. We will now consider the dual frequency case and 

include the ionospheric delays in the observation equations. In the single- 

frequency case the two undifferenced pseudoranges, Pik~ and pjk, were replaced 

by one single single-differenced pseudorange Pij~. This reduction from two 
observables to one single observable was allowed, since the unknown satellite 
clock error got eliminated in the single-differenced observable. In the dual- 

frequency case, however, we are not allowed - if we want to retain the same level 

of redundancy - to simply replace the four undifferenced pseudorange observables, 

Pi.*t, P/,kl, p,.k_, and Pj.;, by the two single-differenced pseudoranges Po~I and Pij.k2. 
In that case the satellite clock error would be eliminated twice. Thus in order to 

preserve the information content, we should go from four undifferenced 

pseudoranges to three instead of two differenced pseudoranges. The three 

differenced pseudoranges that will be taken as our starting point, are 

p okl = k Pj, l - P i ,  l 

k k k = P j ~ - P i ~  Pij,2 . . . .  

P/2- P/2-P/. 
Note that the first two are between-receiver differences, one for each of the two 

frequencies, whereas the last one is a between-frequency difference. In order to 

deal with the ionospheric delays separately, we now transform - in analogy of 
section 5.4.2.2 - these differenced pseudoranges by pre-multiplication with 

I ~ l )  -1 0 / . - -  
( ( ( x -  l )  

i 0 /~ i7 (~-)) 

0 l 
(ct- ]) 

As a result this gives us the following observation equations 

z~,jk,(t,)- Z3~,j~,2(t)/(0.- 1) - -(u;(ti) ) rzM'ij(t,)+ cz3dt,;" (t) 

APq~,2(ti)/(a- 1) - 5arij~,(t,)+ cdo.t:/(a- 1) (5.88) 

It + APjkta(t,)/((~- 1) - A/j.,(t) c(dj.lz+d~2)/(o:- 1) 

with dt~' = dt~j+((xdoa-do.2)/(a-1). Note that the last two equations do not 

contribute to the solution of the baseline Argj. Hence, if one is only interested in 

positioning, the first of the above three observation equations can be used to 
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obtain in vector-matrix form the system 

, ( t%(t)  
Z~(t)-Z~o),,(ti)l(ot- 1) = (A(ti) Z,J!  . /. (5.89) 

�9 - I (,,)) 
Compare to (5.87). If we assume the instrumental delays to be known or absent, 

then the last two types of observation equations of (5.88) can be used for both 

absolute and relative ionospheric monitoring purposes. In vector-matrix form they 

read 

[~O q, t2(ti)/ ((X- l)  = aIij.l(ti) (5.90) 

~j.l~_i(a- L) = ~ , , ( t , ) .  

Note that this system of equations can be used either on its own for ionospheric 

monitoring purposes, or in combination with (5.89). Due to the existing correlation 

between the observables of (5.89) and (5.90), the best precision for the ionospheric 

delay estimates will be obtained with the latter approach. 

5.6.2 Relative Positioning Using Carrier Phases 

In this subsection we will restrict ourselves to the cartier phases. First we will 

consider the single frequency case, then the dual frequency case. In the dual 

frequency case, the ionospheric delay will be included again. 

The Single-Frequency Case. Instead of using the undifferenced carrier phases, ~ 1  

and ~k~, we will make use of the single-differenced carrier phase ~ a -  Since the 

structure of the carrier phase observation equation is, apart from the caJxier phase 

ambiguity, quite similar to that of the pseudorange observation equation, the 

system of L t carrier phase observation equations for observation epoch t i follows 

in analogy to (5.87) as 

f>' I 
A++zj(t) = (A(ti) l Ira} IcAdto(ti)], (5.91) 

ca+.' ) 
1 2 m T I 2 m T with A,,j.,(t,)=(Arb,i.t(t,),AdP,i.,(t,),...,aebq.,(t)} and ao.t=(~,Mu.,,3~,M,ia,...,~., M+j., ) . 

Note that (A(t+), 1,, I,,)(13, 0, -A(t+)r) r = 0 and (A(t+), l ,  Ira) (03, 1, _ l r ) r  = 0. 

This shows that the design matrix of (5.91) has a rank defect of 4 and that the 

linear dependent combinations of the column vectors of the design mauix are 

given by (/3,0, -A(ti)q r and (03,1,-/r} r. This shows that the rank defect is due to 

the presence of the unknown ambiguity vector ao, ~ . The conclusion reads therefore 
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that - in contrast to the pseudorange case - the relative position of the two 

receivers cannot be determined from carrier phase data of a single epoch only. 

Accordingly, we need a minimium of two epochs of cartier phase data. In that 

case the system of observation equations becomes 

~q( t )  

~,j,l(t,) ~) l,, 0 0 'SriJ(~) (5.92) 

~*iS, i(ty)J 0 A(tj)1,,  , 
cAclt s ( Q 

a~j,l 

Note that we have assumed an uninterrupted tracking of the satellites over the 

time span between t~ and tj. Hence, the ambiguity vector aij, l appears in both sets 

of observation equations, namely in those of epoch t~ and in those of epoch tj. 

Also note that we have assumed Arq(t j) ~ z~'o(ti). Hence, the position of at least 

one of the two receivers, i and j, is assumed to have changed between the epochst i 

and 

Considering the design matrix of the system (5.92) we observe a rank deficiency 

of 1. The linear dependent combination of the column vectors of the design matrix 

is given by (0,1,0,1,-l,r,) r. This shows that the information content of the canier 

phase data of the two epochs is not sufficient to separately determine the two 
/ 1 

receiver clock parameters cz~lt~(t) and cAdt~j(tj), and the full vector of 

ambiguities. One can eliminate this rank defect by lumping one of the two 

receiver clock parameters with the ambiguity vector. This gives 

dcij(t) 

(5.93) 
r l(~j) J : A(ts) l cAdtS(t,,tj) 

/ 

I i j ,  l + l ,, cAdtij ( t i) 
1 1 I 

with cAdtq (ti,tj) = cAdt o (tj)-cAdt~j (t). This shows that one can only determine 
/ 

the difference in time of the receiver clock parameters. Note thatcAdt~j(t~,tj) 
becomes independent of the instrumental receiver delays, if these delays are 

constant in time. Also note that the redundancy of the above system equals m-7. 

This shows that 7 satellites are minimally needed for a unique solution. 

The above system (5.93) can be reduced to a form that closely resembles that 

of the system of pseudorange observation equations (5.87). To see this, first note 

that the 2m observation equations of (5.93) can be reduced by m if one is only 

interested in determining the two position differences r~s(t ) and rq(w By taking 
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the difference in time of the carrier phases one eliminates m observation equations 

as well as m ambiguities. As a result one obtains from (5.93): 

Ar~j(t) 
Al~ij , l ( t i ,~)  = (A(t,,t) a(tj) l,,,) ~Tij(ti,tj) , ( 5 . 9 4 )  

Adti;(ti,tj) 

with A~is.l(t,,tj) = A~o.,(tj)-a,~j.~(t,). A(t,, 5) = A(w andAr~j(t,,tj) - Arij(tj)- 
Aria(t). 

So far the position of at least one of the two receivers was allowed to change 

in time. If we assume the two receivers to be stationary, however, we have 

Aro(t ) = Arq(tj) = zXrq, in which case (5.94) reduces to 

r",/ 
A*ij.l(ti,~) = (J(ti,~)l)Lcz~ldti;(ti,~)). (5.95) 

Hence, through the elimination of the ambiguity vector we obtained a system of 

carrier phase observation equations that resembles that of the system of 

pseudorange observation equations (5.87). Due to the additional condition that 

Arij(t ) ~ Ar~j(t) = Ar~j, the redundancy of (5.95) has increased by 3 when 

compared to the redundancy of (5.93). Hence, 4 satellites are now minimally 

needed for a unique soltion. 

In subsection 5.6.3 we will continue our discussion of the system of can'ier 

phase observation equations and in particular consider the complicating factor that 

in case of GPS, the receiver-satellite configurations oniy change slowly with time. 

First, however, we will consider the dual-frequency case. 

The Dual-Frequency Case. In analogy of the dual-frequency pseudorange case, 

we will take as our starting point the following three differenced carrier phases 

~T)~,I k k 

@~,z k k 
@~,: - @/,2 

Again, the first two are between-receiver differences, one for each of the two 

frequencies, whereas the last one is a between-frequency difference. In order to 

deal with the ionospheric delays separately, we now transform - in analogy of 

section 5.4.2.3 - these differenced calTier phases by 
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ti o] Ct 1) (eL- 1) 

-1 0 /~ ' ~  (c~- 1) 

0 -1 
/ ~ -  I) 

As a result this gives us the following observation equations 

k k AdOua(ti)-Adi)Ojz(t)l((Y.- 1) = 

-~x,t,~.l,.(t,)/(o:- 1) 

k T /1 k -(U j(ti) ) Arij(t i) + cAdt 0 (ti) + b,j 

a/Okl(t)- c~)~,lJ(O~- 1) § ci/ 

Alj.k,(t)- c(~jz+ ~)~lz)l(o~- 1) § cj k 

(5.96) 

�9 l /  k k k k ,t k 
with dt o = dt~+ (otfqt - 8u,)/(o~- 1), b 0 = [(~ao, 1- a/j,2]/(~- 1), c o = [aij.l- aij,2] 

'~ k '  k " 
/ ( c t -  1) and cj = [aj.,-aj,~]l((~- I). 

Compare  with (5.88). If we are only interested in positioning, the first of  the 

above three observation equations can be used to obtain in vector-matrix form the 

system 

/ 
ACJij.,(ti)-A(~q.12(t,)l(~-1) = (A(t) l m Ira} [cAdt 0 (ti) 

i b, 

(5�9 

Compare  with (5.91) and note the correspondence in structure of  the system of 

observation equations. Hence, the remarks made with respect to the system (5�9 

also apply to the above system of equations�9 

5.6.3 On the Slowly Changing Receiver-Satellite Geometry 

We will now continue our discussion of the system of carrier phase observation 

equations (5.93). We will only consider the single-frequency case. The dual- 

frequency case is left to the reader�9 For the purpose of  this subsection we extend 

the system (5.93) by including data from a third observational epoch t k. The 

con'esponding system of observation equations becomes then 
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IA~ij.~(t)l IA(ti) O 0 0 0 I m" 

.]A(~ij, t(~)[ = [ 0 A ( t j ) l m O  O l m 

~kd~ij, l(tk) ) I O 0 0 A(tk) l,, I m 

6to(t) 
zX,'o(~) 

cAdt~(t,,~) 

I 

cAdt O (ti,t ~) 
I 

Iq. l + lmCAdtij (t) 

(5.98) 

This system has been formulated tbr three epochs of data, t i, tj and t k. But it 

will be clear, that it can be easily extended to cover more epochs of data. When 

the number of epochs equals T, the redundancy of the system becomes 

(T-  1 ) ( m - 4 ) - 3 .  This shows that a minimum of 7 satellites needs to be tracked, 

when only two epochs of data are used. And when three epochs of data are used, 

the minimum of satellites to be tracked equals 6. The redundancy increases of 

course when two or more of the unknown baselines are identical. For instance, 

when both receivers are assumed to be stationary over the whole observational 

time span, then all the baselines are identical and the redundancy becomes 

(T-  1)(m- 1)- 3. In that case a minimum of 4 satellites needs to be tracked, when 

only two epochs of data are used. 

When we consider the design matrix of the above system, we note that it is still 

rank defect when the three matrices A(t), A(tj) and A(tk) are identical. The linear 

dependent combinations of the column vectors of the design matrix that define the 

rank defect are given by (13JvOJ3,0,-A(t~)r} r. We also note that this rank defect 

is absent when at least two out of the three matrices differ, i.e., when either 

A(ti) ~ A(tj), A(tj) ~ A(tk) or A(ti) =~ A(tk). 
In our discussion of the pseudorange case the above type of rank defect did not 

occur, simply because one single epoch of pseudorange data is in principle 

sufficient for solving Ar~. In the carrier phase case, however, we need - due to the 

presence of the unknown ambiguities - a minimum of two epochs of data. This is 

why in the carrier phase case, somewhat closer attention needs to be paid to the 

time dependency of the receiver-satellite geomeu'y. 

In this subsection four strategies will be discussed that can be used to overcome 

the above mentioned rank deficiency problem. These four strategies can either be 

used on a stand alone basis or in combination with one another. They can be 

characterized as follows: 

(i) use of long observational time spans 

(ii) using the antenna swap technique 
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(iii) starting from a known baseline 

(iv) using integer ambiguity fixing. 

212 

(i) The use of  long observational time spans. Strictly speaking we have, of 

course, A(t)  ~ A(t~), when t i ~: tj. But it will also be clear, although a strict rank 

defect is absent when A(t~) ~ A(tj) holds true, that near rank deficiencies will be 

present when A(t)  = A(~) = A(tk). And if this so happens to be the case, the 

parameters of (5.98) will be very poorly estimable indeed. One way to avoid near 

rank deficiencies of the above type, is to ensure that at least two out of the three 

receiver-satellite geometries, which are captured in the three matrices 

A(ti), A(t~), A(tk), are sufficiently different. Assuming that ti < tj < t k, this 

implies, since the receiver-satellite configuration changes only slowly with time 

due to the high altitude orbits of the GPS satellites, that the time span between the 

two epochs t i and t k should be sufficiently large. 

(ii) The use of  the 'antenna swap' technique. Instead of using a long 

observational time span so as to ensure that the receiver-satellite geometry has 

changed sufficiently, the 'antenna swap' technique solves the problem of near rank 

deficiency by the artifice of moving what is normally the stationary antenna i to 

the initial position of the moving antenna j while, at the same time, moving the 

mobile antenna from its initial position to the position of the stationary antenna. 

The implications of this 'antenna swap' technique are best explained by referring 

to the system of cartier phase observation equations (5.98). Betbre the 'antenna 

swap', the carrier phases of epoch t~ refer to the baseline ro(t ) and after the 

'antenna swap' the carrier phases of epoch w refer to the baseline r0(t/). The 

swapping of the two antennas implies now that these two baselines are identical 

apart from a change of sign. Hence, ro(t j) = -ru(ti). Note that the other parameters 

in the observation equations remain unchanged, since an uninterrupted tracking of 

the satellites is still assumed. Then with the 'antenna swap' technique 

corresponding system of observation equations follows therefore from substituting 

rij(~) = -rij(ti) into (5.98) as 

1 (a ti  o 0 0 lml 
0 O l  m 

A(t k) l,,, 1,, 

aro(t~) 
i 

cAdt O (ti,ty) 

two(tk) 
/ 

cAdt 0 (ti,t k) 
i 

r + "o.* l,,cz~lt o (t) 

(5.99) 

This system is now still of full rank even when A(t)  = A(tj) = A(tk). Note that 
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the system can be solved recursively if so desired. First, the first two sets of 
/ / 

used to solve for zXr~j(ti), c~ltlj(ti,ti) and - ,(a0a+l,cAdtij(ti) ]. One equations are 
I 

could call this the initialization step. Then, the estimate of(aij.~+lczSdto(t)) 
together with the cartier phase data of the following epoch, A~u.](tk), are used to 

solve for Ar~(tk) and cAdt~(t~,tk). In this way one can continue for the next and 

following epochs as well. The advantage of the 'antenna swap' technique over the 

first approach is thus clearly that it allows for a reduction in the total observation 

time. 

(iii) The use of  a "known baseline. Still another approach to deal with the near 

rank deficiency is to make use of a known baseline. This method therefore 

requires that in the vicinity of the survey area at least two stations with accurately 

known coordinates ale available. With the baseline r~j(ti) known, we have 

zXr0(t ) = 0, from which it follows that (5.98) reduces to 

%.1(Q]- ) t ,  o o / m 

ij.l(tk)) 0 A(t k) l,, I 

~,j(w 

cAdti; ( ti,t ) 

/ 

cAdt 0 (ti,t ,) 
/ 

10,1 + l,,cAdti) (t i) 

(5.100) 

This system is clearly of full rank even when A(ti) = A(tj) = A(tk). Also this 

system can be solved recursively. 

(iv) The use of  integer ambiguity fixing. As was mentioned earlier, the 

pseudorange case is not affected by the rank deficiencies caused by the slowly 

changing receiver-satellite geometry. This is simply due to the absence of the 

ambiguities in the pseudorange observation equations. The idea behind the present 

approach is therefore to find a way of removing the unknown ambiguities from 

the system of can'ier phase observation equations. This turns out to be possible if 

one makes use of the fact that the so-called double-difference ambiguities are 

integer-valued. 

lumped parameter vector + l,, cAdt o 
/ (5.98), The _(aiJ a (t~)]. in has entries which all 

are real-valued. It is possible, however, to reparametrize this m-vector such that 

a new vector is obtained of which only one entry is real-valued. The remaining 

(m-1)-number  of entries of this transformed parameter vector will then be 

integer-valued. The transformed parameter vector is defined as 
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N) (l,,, n)'(ao, ,+l,cAdt~(t))/~q (5.101) 

in which (l,,,D) is an m-by-m matrix of full rank and mau'ix D is of the order m- 

by- (m-  1) with the structure / 1 -1 ] 
D =  1 -1 

-1  1 " 

- I  1 

The scalar parameter a in (5.101) is real-valued, but all the entries of the (m-  1)- 

vector N are integer-valued. The integemess of the entries of N can be verified as 

follows. Since D'l,, = 0, it follows from (5.101) that N = D'ajj.l/~ q, which 

shows that the entries of N are simply differences of the integer single-difference 

ambiguities N,j~t. The entries of N are therefore referred to as double-difference 

ambiguities and they are integer-valued. 

The inverse of (5.101) reads 

aij.l + 1, cl~lti~ ( t i )  = Lll ma / m  + ~ . tD(D'D)-IN . (5 .102)  

If we substitute (5.101) into (5.98) we obtain 

]m(~ij.l(tj) ] - A(tj)  I m 0 0 I m ~ID(D*D) -1 

~Oq.,(tk)) 0 0 a(t~) 1 l 3qD(DtD) -' 

6to(t) 

:Adtq (ti,t)) 

] 
cMtij (ti,t k) 

(Xta/m) 

N 

(5.103) 

With this reparametrized system of carrier phase observation equations we are 

now in the position to make explicit use of the fact that all entries of N are 

integer-valued. It will be clear that this additional information strengthens the 

above system of observation equations in the sense that it puts additional 

constraints on the admissible solution space of the parameters. 

Very sophisticated and successful methods have been developed for determining 
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the integer-values of the double-difference ambiguities (the theory and concepts 

of integer ambiguity fixing is treated in Chapter 8). Once these integer ambiguities 

are fixed, the above system of can'ier phase observation equations becomes of full 

rank and reads 
g 

~0 ( t )  

*~j , t ( t ) - )~D(D~ ,) 0 0 0 0 l , "  c,Sdt~(t~,tj) 

IAqjo,,(tj)-)qD(D~ - tN = A( t )  l ,  0 0 l,, 

~i j . I ( t~)-~.~D(D'D)-~N 0 0 A( t  k) l m I m , 
cAdt~ ( ti,tk) 

(~ ,a /m I 

(5.104) 

For positioning purposes the primary parameters of interest are of course the 

baseline vectors Ar~j(t), Ar0(tj), Ar0(t~). It is possible to reduce the above system 

of observation equations to one in which as parameters only the baseline vectors 

appear. If we premultiply each of the three m-vectors of observables in (5.104) 

with the (m-1)-by-m matrix D ' ,  the above system reduces, because o f D ' l  = 0, 

to 

AD'~i j~( t ) -  ~'1 N 

zXO'%~(tj) - Z.~ - 

AD'O,j ~(t~) - )h 

O'A(t) 0 0 i~(ti) 

0 D'a( t j )  0 /[Ar/i(t/) ~ 
o o o'a(, ,))  

(5.105) 

In (5.104) the elements of ~i~ are referred to as single-differenced cm'rier phases, 

whereas in (5.105) the elements of D'00 are referred to as double-differenced 

carrier phases. When we compare (5.105) with (5.104) we note that the number 

of observables of (5.104) equals 3m, whereas the number of observables of (5.105) 

equals 3m-3. Hence, 3 observation equations have been eliminated in our 

transformation from (5.104) to (5.105). At the same time however, also 3 

unknown parameters have been eliminated. They are the two clock parameters 

Adtu( t  i, tj) and z~lt U (t i, tk), and the real-valued scalar ambiquity a. The two 

systems of observations equations, (5.104) and (5.105), are therefore equivalent 

in the sence that the redundancy has been retained under the transformation. Both 

systems will therefore give identical estimates for the unknown baseline vectors. 
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In this introductory chapter, the GPS observation equations were derived and a 

conceptual overview of their use for positioning was given. 

In section 5.2 the basic GPS observables, being the pseudorange observable and 

the cartier phase observable, were introduced. It was shown how these observables 

can be parametrized in geometrically and physically meaningful quantities. In this 

parametrization, leading to the nonlinear observation equations, it has been 
attempted to include 'all significant terms. 

Certain linear combinations of the GPS observables were studied in section 5.3. 

Some of these were single-receiver linear combinations, while others were dual- 

receiver linear combinations. The former are particularly useful for single-receiver 

nonpositioning GPS data analysis (cf. section 5.4), while the latter are used for 

relative positioning applications (cf. section 5.7). 

Based on different subsets of the GPS observables, estimability and redundancy 

aspects of the single-receiver linear combinations were discussed in section 5.4. 

Time series of these linear combinations, possibly expanded with an additional 

modelling for time dependency, usually form the basis for single-receiver (e.g., 

GPS reference station) quality control and integrity monitoring. 

In section 5.5, a linearization with respect to the relevant geometric unknown 

parameters of the nonlinear observation equations was carried out. Based on this 

linearization, both the single-point positioning and relative positioning concept was 

discussed. The advantages of relative positioning over the single-point positioning 

concept were shown. 

The relative positioning concept was further explored in section 5.6. Based on 
single- or dual-frequency, pseudoranges or carder phases, this final section 

presented a conceptual overview of the corresponding relative positioning models. 

In order to obtain a better understanding of the implications of the different 

structures of these models, particular attention was given to aspects of estimability, 

redundancy, and rank deficiency. 
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6.1 INTRODUCTION 

While the major use of GPS to most geodesists involves the use of two or more 
receivers in interferometric mode, it is very important to keep in mind the reason 
GPS was developed in the first place -- to determine at an instant the location of a 
soldier, ship, plane, helicopter, etc. without any equipment other than a single 
GPS receiver and antenna. This is often referred to as absolute positioning. 
Without satisfying this requirement, there would be no GPS. Thus it is important 
that some time and effort be spent in the study of single-site modeling. In this 
chapter, the processing techniques using the pseudorange measurement are 
discussed. Also the combination of pseudorange and carrier phase are introduced. 

6.2 PSEUDORANGE RELATION 

Much of the groundwork has already been done. From Chapter 5 we have been 
exposed to pseudoranges that were designed by the planners of the GPS system of 
satellites for recovery of single site coordinates. In particular, we review equation 
(5.25): 

P/k(t) = I(rk(t-- ~i )--drk(t-- ~i ) ) - ( r i ( t )+  dri(t))]]+ 

li k + Ti k +c[dt i ( t ) -d tk( t  - ~/)1+ (5.25) 

c[a,(t)+ dk(t- ~)l+am~ +e~ 

Here (5.25) will be rewritten dropping those terms that can be computed or 
estimated by others and thus removed from each measurement, i.e., the 
measurement can be "corrected." These include satellite center of mass offset, 
tropospheric refraction, ionospheric refraction. Also for simplicity, multipath will 
be ignored. Thus (5.25) can be simplified to 

P (t)=llr (t - ~)-r , ( t )N+c[dt , ( t ) -d t~( t  - ~ ) l +  e~ (6.1) 
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Here it is seen that (6.1) is nonlinear in satellite and receiver coordinates and 
linear in clock offsets. For single-site positioning, a model for the satellite clock 
offset is contained in the navigation message and looks as follows: 

d r ( t )  = a o + a l ( t - t o ~ ) + c h ( t - t o , )  2 (6.2) 

where a0, al, a2 are polynomial coefficients and toc is the reference time (time of 
clock) for the coefficients. Specifically ao is the offset at time too al is the drift 
rate at toc, and a2 is twice the clock acceleration at toc. The idea in providing (6.2) 
to users is that, while admittedly it is only a prediction of clock behavior, it should 
be fairly precise since high-quality oscillators (mostly cesium) are used in the 
GPS satellites. Activation of Selective Availability (SA) will intentionally 
degrade this modeling. Cesium oscillators should be good to 1043 (or equivalently 

one part in 1013). That is the standard deviation or cr(-~)= 10 -13. With these 

coefficients, the satellite clock offset can be computed and removed from (6.1) to 
yield the desired pseudorange model 

P f ( t ) = l ~ ' ( t -  ~ ) - r , ( t ) l ] + c  dt i ( t )+e ~ (6.3) 

The traditional way of solving (6.3) is to use a Newton-Raphson iteration. Using 
this technique, one must first obtain an initial guess of the receiver position and 
clock offset. The difference between an actual observation and what is calculated 
using the guessed values is a measure of the goodness of the guess. Assuming that 
the function behaves linearly (described by first derivatives), corrections can be 
computed assuming that sufficient measurements exist to solve for corrections to 
all unknowns (partial matrix has full column rank). However, before attempting to 
implement these techniques, one must first be able to compute the expected 
measurement value based on the current guess. Here the coordinate system used is 
very important. Normally one thinks of the vectors r k and r i as being inertial, but 
the navigation message provides parameters that allow one to compute 
coordinates in an Earth-centered, Earth-fLxed system. Since this set of coordinates 
is attached to the rotating Earth's frame, some corrections are required 
commonly called the "Earth rotation correction." 

6.2.1 Calculation of the Distance Term When Using ECF Coordinates 

First, the orientation of the Greenwich meridian must be defined. This has already 
been discussed in Chapter I. At any "thne t, we will refer to the Greenwich sidereal 

angle as Or. Generally speaking, 0t = 00 + cot where co is the mean earth spin rate 

and 00 is the value of 0t at t = 0. 
Now let's define the rotation matrix 
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[ cos0, sine, !] 
~(e,)=[-SoO, cos0,0 
R~ (0,) is defined such that 

rEc~(t)=R3(O,) rl(t) 

or equivalently 

rl(t)=R3r(o,) reck(t) (6.4) 

when rI  is a vector expressed in an inertial system, and rECF is the same vector 
but expressed in an earth-centered fixed system. 

From (6.3) the term between the vertical bars is the distance: 

p=llr*r ~),-,',(t),ll 
where p stands for distance, and subscript I denotes the choice of inertial 
coordinates. We can substitute for the inertial vectors using (6.4) to yield the 
following: 

Realizing that the first rotation can be expressed as two separate ones, we get 

p = IIR~T ( O, )~T (-OJ~ )"* ( t - #)~cF-R~T ( O, )ri( t)~r 

The common rotation P~r(o,) does not change the vector length, so the above is 

rewritten 

p = I1,~<~,),.*(,- "q,)~-r , ( t )~ u (6.5) 

where we also use P~r(-og~) = R3(o9~). So from (6.5) we see that when using 

coordinates in an ECF system, one must rotate the satellite position vector about 
the 3-axis an amount equal to the angular rotation of the earth in the time it takes 
the signal to travel from the satellite to the receiver. The height of a GPS satellite 
is about 20,000 kin, thus the signal transit time is about 66 ms. The earth rotates 
15 arcsec/s, so the angular displacement of the earth about its rotation axis during 
signal travel is roughly 1 arcsec. So if ECF coordinates are used and the 
correction is not applied, then the recovered station coordinate will be biased by 
about one arcsecond in longitude. So now (6.3) can be rewritten as 
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Plk(t) = p ( t , t -  • ) + c  dti(t)+e k (6.6) 

and one should substitute (6.5) for the distance term when using ECF coordinates. 
It is also important to notice that the ri(t)Ec v is a function of time. Here station 

motion due to gravitationally induced tides, loading, crustal mot ion,  
displacements due to earthquakes, etc. must be considered. 

6.2.2 Linearization 

The linearized form of (6.6) has already been derived in Section 5.4.2. Actually, it 
included terms we have already neglected here, but then we were advised to 
assume that their errors were zero. Actually, this is just a statement that we did the 
best job we could in preparing the data for the adjustment process. Repeating 
(5.80), we see the following: 

AP.*, = -(u~)r Ari + c z~lt; + V~ (5.80) 

Equation (5.80) represents the linearization of (6.6). The AP~=P/k (observed) - 

P~ (calculated). Each of these right-side entries represents a single real number. 

The "observed" value is delivered to us by the GPS receiver. It is the observed 
pseudorange measurement appropriately corrected for satellite clock error, 
tropospheric refraction, etc. The "calculated" term is the value we expect based on 
the best guess of  station coordinates, clock states, etc. I f  the guesses are good, 

then AP~ will be small. The reader is cautioned, however, that the u~ unit vector 

should use the components as dictated in (6.5). That is, the satellite coordinates 

must be rotated by P~(co~) prior to their use if ECF coordinates are used. 

If, however, the choice of coordinate system is inertial, then both satellites and 
stations exhibit continuous motion, and their locations must be computed for the 
respective transmit or receive time. More will be said about this in later chapters. 
Here we shall continue to concentrate on traditional positioning techniques as 
provided by the GPS broadcast message parameters. 

For all pseudorange measurements at an epoch or instant of time, we can 
"stack" them to form a system of equations as follows: 

---- + e,nx l A.x,  ,x, (6.7) 

where [AP] is the "stacked" vector of  observed-computed pseudorange values, A 

is a matrix with each row composed of (row) vectors , and e is a vector 

representing random errors present in the observed pseudoranges. The sizes of  the 
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matrices are given; the number of pseudoranges at an epoch is denoted by the 
letter "m." Thus (6.7) reminds us of the familiar notation 

y = Ax + e (6.8) 

with least-squares normal equations 

(Ar Z,-I A),~ = Ar Z-ly (6.9) 

where E(e)--O and 2; = E(eeT). Assuming the normal matrix (ArZ-IA) to be of full 
rank, one can get 

s = (ATZ-IA) -I ArZ-ly (6.10) 

Substituting from (6.7), we get 

JAr'] =(Ar~'-IA)-IArE-I[AP]Adt" (6.11) 

Normally the pseudoranges are assumed to have independent errors with e ~ (0, 

~2I) meaning the vector e has zero mean and variance matrix ~2I. If the 
assumption is true, then (6.11) simplifies to 

^ 
( ~l't;] = (ATA)-I AT [ / ~ k P ] / ~ d  (6.12) 

An interesting application that is used in GPS surveying quite often is to use all 
the pseudorange data from all epochs to estimate a single antenna location and 
clock offsets during the period of stationarity. Suppose that at each epoch i one 
has the following: 

[AP;] = A,[Ar I + biAdt i + e i (6.13) 

where Ai is the i-th epoch partial derivative matrix with respect to station 
coordinates, bi = [c c ... c], a vector composed of the constant speed of light, c. 

As before, we now "stack" epochs similar to the stacking of measurements 

P',l r,,, o o . . .  

L[zxJ,.]J LA.J Lo o o. . .  

olrd,,I,,l 
(6.14) 

The least-squares normal equation system becomes 
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0 .. .  o b, A, 

b;b  . . .  o b;A  
: : : : : [ dt:l F br[Ae'] 

/ (6.15) 

The position corrections can be found using Gaussian elimination: 

Back substitution can be used to calculate the least-squares estimate of  clock 
offsets if they are desired. Should the clock terms change "smoothly" from epoch 
to epoch, then one could consider modeling the clock drift by smooth functions 
such as polynomials, splines, etc. to simplify (6.13)-(6.16). However, the above 
approach is advised because manufacturers have been known to introduce clock 
jumps or change the rate of the clock in order to keep data sampling between any 
two receivers within a specified tolerance. Such jumps in clock state or one of  its 
derivatives will invalidate a model that expects smoothly changing values. 

Also apparent is that in the stationary mode, no longer is one required to collect 
four measurements per epoch. Any number of measurements could be used so 
long as the reduced normal matrix is regular. Clearly, two or more measurements 
per epoch are required for data during that epoch to provide information about 
position. If only one measurement is available, it would be used only to estimate 
the clock offset at that epoch. 

6.2.3 Equivalence of the Linear Gauss-Markov Models With and Without 
Nuisance Parameters 

The technique of bias or nuisance parameter elimination from the system of  the 
observation equations is widely used in the solution of numerous surveying and 
geodetic problems. One of them is the subsequent removal of the receiver and 
transmitter clock offsets or integer ambiguities by forming consecutive 
differences of the GPS observables. Another example is the elimination of  the 
orientation unknown in the problem of a terrestrial network adjustment. The 
elimination scheme, simple, fast and effective, requires non-trivial theoretical 
validation so that the estimates of the non-stochastic parameters, common to both 
systems, original and reduced, will coincide. As Schaffrin and Grafarend [1986] 

have proved, elimination of the nuisance parameter vector 11 from the partitioned 
linear Gauss-Markov model described as follows: 

E{Y} =A~+ BTI, D{Y} = p-1(~2, 
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leads to the system that provides the least-squares solution for ~ identical to the 
estimate obtained from the original system, under the condition that the 
covariance matrix for the reduced system is modeled properly. A and B are 
design matrices, such that rk(A)+ rk(B) = rk[A, B], thus column spaces for A and 
B are complimentary, so that separability of both groups of non-stochastic 

unknown vectors ~ and rl is assured. The reduced system is obtained by finding 

an n x (n-rk(B)) matrix R of maximum column rank such that: 

RTB = 0 and rk(R) + rk(B) = n ,  

where n is a number of rows in A and B, Thus the new, R-transformed Gauss- 
Markov model can now be characterized as follows: 

E{RTy} =RTA~ and D{RTy} =RTp-IRcy 2 , 

so the bias vector rl is not present in the reduced system; note that the dispersion 
matrix of the new model is also R-transformed according to the law of error 
propagation. 

6.2.4 Searching 

We can take advantage of the Schaffrin-Grafarend theorem in a search if no 
reasonable guess is available for use in (6.7). A search algorithm can be 
employed. Here some very important information is available. For example, if the 
minimum of four pseudorange measurements is available, then the transmit times 
are known and thus the latitude, longitude, and height of each satellite are known 
at these transmit times from evaluation of the ephemeris using broadcast 
parameters. Thus one could average the latitudes and the longitudes of the satellite 
positions to determine a hemisphere for consideration. These average values of 
latitude and longitude could be used to seed a search of receiver locations. But 
what about the clock values? Clearly one does not want to include clock offsets in 
the search algorithm since these values are not bounded. Let us look again at 
(6.6). This time, however, we will rewrite it in terms of all measurements. For 
discussion purposes, let us assume that the minimum of four pseudorange 
measurements is available. The following discussion is also clearly valid for any 
greater number of  available pseudoranges. Thus we group four pseudorange 
measurements according to (6.6) as follows: 

P~ (t) = p~ (t  - 121 , t)  + C dt  I ( t)  + e l 

P~(t)  = p~( t  - z~,t)  + c dt l ( t )  + e~ 

P~(t) = p ~ ( t -  "c~, t )+c d t , ( t )+e~  

P~(t) = p~( t  - z~,t)  + c dt, ( t)  + e~ 

(6.17) 
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Now the idea is to somehow eliminate the term c dtj(t). Since we are only 
interested in finding a reasonable guess of  position, then why try to find a 
reasonable value of dt~ (t) during the search process? One way to avoid a search 
that includes dt~ (t) is to generate another set of relations that eliminate this term 
analytically. Here differencing can be used. Probably the simplest is to subtract 
the first equation in (6.17) from the next three. Sequential differencing will also 
work. Doing so we get 

-el 
P3"'(t)=p3-pl +e -e I 

+e -el 
(6.18) 

where functional arguments have been dropped since what is needed to evaluate 
them is obvious, and a pair of  superscripts has been used to denote differencing 
between satellitesl For example, P~t'~(t)= P~(t)-P~(t).  Also shown in (6.18) is 
the equivalence between (6.17) and hyperbolic positioning. The solution to each 
equation is the locus of  all points in that plane whose difference in distance from 
the two satellites is a constant. This curve is a hyperbola, and thus the phrase 
hyperbolic positioning is used. The right side of (6.18) can be evaluated only 
knowing the station-sateUite geometry. Measurement errors will be ignored here. 

A search could proceed as follows: Using the averaged satellite latitude and 
longitude as a start point (the pole of a hemisphere), search the half sphere where 
the test points are at the center of a tesseral bounded by distance and azimuth 
boundaries. The search space would look as follows: 

geocentric distance 

The center is the averaged latitude and longitude, say, ~0, k0. Then a recursive 
scheme can be used to generate the latitudes and longitudes at the centers of  equi- 

angular blocks, say, every 10 ~ of geocentric distance and azimuth. There should 
be no need to search more than a hemisphere. Goodness of fit can be def'med as 
the sum of squares of residuals at each test point, for example. 

One test point should fit the data better than any other. Then this point is used to 
seed another test, but now at higher resolution, say, at 1 ~ This time a smaller area 
is searched. This solution then seeds a 0.I ~ search area. And so the search 
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continues until a desired resolution is achieved. And this search has used 
differenced measurements that eliminated the clock term as a consideration. 

Once the search has resolved the position to some level of acceptance, then 
probably an iterative Newton-Raphson procedure would be employed to find the 
final solution. One schooled in weighted least squares will note that this is not a 
"proper" weighting scheme. But here the idea was only to find a reasonable guess, 
so compromises in algorithms are allowed. This is an application of the Schaffrin- 
Grafarend [1986] theorem that states that under certain conditions a reduction in 
the number of measurements accompanied by a reduction in an equal number of 
unknown parameters does not alter the estimate of the other unknowns if the 
proper transformed measurement covariance matrix is utilized. Here we fail (on 
purpose to save time) to use the proper weighting of measurement residuals, but 
the idea behind the Schaffrin-Graffarend theorem is the same - -  reducing the 
number of measurements and an equal number of unknowns without altering the 
validity of the estimates obtained with this reduced data set. This technique is 
simple, effective, and robust. If used infrequently, then its use is justifiable. But 
because of  the time required, it probably should not be used more than once per 
data set. 

6.3 DIRECT SOLUTION OF POSITION AND RECEIVER CLO CK  
OFFSET - -  BANCROFT'S SOLUTION (NO A PRIORI INFORMATION 
REGARDING POSITION) 

Till now, solution of the single-station positioning problem has used traditional 
Taylor series expansion techniques associated with nonlinear solutions. For final 
solutions, a point of expansion must be provided so that all elements of the Taylor 
expansion can be computed. Just how to find such a priori values (guesses) for 
station position and clock offsets is not always so obvious. We have just seen that 
a global search that minimizes sequentially differenced pseudoranges, which 
removes receiver clock offsets from consideration, will lead to a good guess of 
station position. Substitution of the position guess into the original pseudorange 
equations will then allow one to solve for the clock offset. 

But though searching is a robust technique, it is also time consuming. So the 
quest for an analytical solution is worthwhile. Also, analytical solutions generally 
allow for more understanding of the overall geometrical aspects of the positioning 
problem. Fortunately for us, Bancroft [1985] has provided such a solution. 

Although Bancroft's solution is noniterative in itself, the recovery of position 
and clock offset does require at least one iteration. This iteration is required since 
if a position guess is not available, then corrections for at least tropospheric 
refraction cannot be made because the satellite's elevation angle is not known, 
and this information is required for calculation of the correction. 

In the first iteration such corrections can be ignored because they are small (but 
definitely not negligible). Using the first iteration's solution, the data can be 
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appropriately corrected to cast the mathematical relations into the form that 
Bancroft solved. As before, it is assumed that the satellite clock correction 
polynomial is adequate to remove this effect prior to data processing. The reader 
is also directed to other papers dealing with further discussion of Bancroft 's  
solution by Abel and Chaffee [1991a, 1991b, 1992] and Chaffee and Abel [1992]. 

6,3.1 The Solution 

The Lorentz inner product is defined as follows: 

( g , h  ) ~= g r  M h ,  (6.19) 

g , h  ~ R 4, 

We now look at a single pseudorange relation appropriately corrected as 
mentioned above, 

pi  = 4 ( X  i _ X)Z + ( y i  -- y)2 + (Z i _ Z)2 + c .  d t  (6.20) 

recognizing that c.dt is a scalar (c is the vacuum speed of light); let b = c-dt. 
Rewriting (6.20) as 

pi  _ b = ~/ ( x i - x )  z + (yi _ y)2 + ( z i _ z)2 , 

and squaring both sides, yields 

pi2 _ 2P~b + b 2 = ( x  i _ x)2 + (yi _ y)2 + (z  ~ _ z)2 
(6.21) 

i2 i 2 = xi2 _ 2 x i x  + x 2 + yi2 _ 2 y i y  + y2 + z - 2z  z + z . 

Grouping terms, one gets 

[x~2 + yi~ + z'2 - p ' 2 l -  2 [x l x  + y ' y  + z ~ z -  p ' b  ] 

= - [ x ~  + y2 + z 2 - b 2 ]  

or more compactly 

1 r i r i r i r 1 r r 
(6.22) 
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One copy of  equation (6.22) exists for each pseudorange measured. Assume 
there are four such pseudoranges that provide sufficient information to resolve 
receiver position and clock error. Let the matrix 

[gym l x 2 y2 z 2 p2 

B= x3 y3 Z 3 p3 

x 4 y4 z 4 p4 

where x i, yi, z i are the coordinates of  the i-th satellite at transmission time and pi 
is the measured  pseudorange  to satelli te i. Then the four  pseudorange  
relationships can be expressed as 

/ x -  

where 

~.= 1 ,  

and a is a 4x 1 vector with 

Solving (6.23) for b ' 

r I [b]=MB-(A'r+oO. (6.24) 

Substituting (6.24) into (6.23) (for both and A = ~ b ' b ), and realizing 

that (Mg, Mh ) = (g, h ), yields 

0. (6.25) 
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Since (6.25) is a quadratic equation in A,  its solution yields potentially two 

locations in space (substituting the solutions for A into (6.24)), one of  which is the 
desired solution. 

Equation (6.25) yields the solution to the case where exactly four pseudorange 
measurements  are available. But most of  the time, five or  more measurements  are 
available,  and one should use all the available measurements  if possible.  A 
modification of  (6.23) is possible to achieve this goal. 

When (6.23) contains more than four measurements,  then one could multiply by 
B T to reduce the number of  equations to four, 

(6.26) 

Following the same logic as given above, one gets the following: 

(( Br B)-' Br'c,( Br B) -' Br'r)A 2 + 2[((B rB)- '  Br~:,( Br B) -' B r ~ ) -  I]A 

-' 8 a,(8 8) - '  8 a) = 0 
(6.27) 

It is clear that this incorporates all measurements in a "least-squares" sense. That  
is, the coefficients of  the quadratic polynomial are now minimum L2 norm values, 
but the overall solution is not the usual least-squares solution. Equation (6.27) still 
requires the solution of  a quadratic, thus some decision about which root  to 
choose is also required. 

Should five or more pseudoranges be available, rather than use (6.27) one could 
consider using the redundancy to identify the correct value of A. Here, several sets 
o f  four measurements  are chosen. One then assumes that each set will yield the 
desired result as one of  its two solutions. Comparing the different solution pairs 
should allow one to determine the desired solution by choosing that which  is 
common among all solution pairs. 

For example,  pseudorange data were collected on March 8, 1994, at Columbus,  
Ohio. At one epoch, five pseudoranges were collected that al lowed for  f ive 
different solution combinations to be analyzed according to (6.25). The results are 
as follows: 

Combination x (m) y (m) z (m) 
1 A+ - 7 7 6 9 0 1 . 1 0  7 0 1 1 2 2 2 . 2 7  -6354587.74 

A. 595035.50 - 4 8 5 6 3 5 9 . 6 2  4078237.14 
2 A+ - 1303230.47 4 6 4 2 8 7 9 . 4 8  -5190159.12 

A_ 595037.19 - 4 8 5 6 3 5 4 . 1 3  4078234.98 
3 A+ 861372.66 6 7 2 7 3 0 9 . 2 9  -4550450.65 

A_ 595030.92 - -4856358.96 4078232.20 
4 A+ - 1061927.87 5 0 7 9 7 1 1 , 9 5  -2948006.26 

A_ 595036.73 - 4 8 5 6 3 5 6 . 8 7  4078229.49 
5 A+ - 1970270.71 I 1580605.17 -8385168.84 

A. 595038.09 - 4 8 5 6 3 6 7 . 6 5  4078239.22 
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Clearly the solution A_ is common in all combinations. 
Another unambiguous solution would be to use the pseudorange to the fifth 

satellite as the discriminator between the two solutions of equation (6.25). We 
choose the solution that best fits the fifth pseudorange. 

6.4 DILUTION OF PRECISION 

Returning now to (6.11), one is often concerned with the geometrical strength of 
the solution, which is represented by the matrix of partial derivatives with respect 
to Cartesian coordinates and clock offset, A. However, it is not intuitive nor all 
that instructive to examine the values in the matrix A. One excellent measure is 
the inverse of the least-squares normal matrix (ArZ-IA). Should the proper 

measurement covariance matrix Z have been chosen, then the inverse matrix 
would be the solution vector's covariance matrix. At each epoch this contains ten 
different linearly independent numbers, so it requires that one convey too many 
numbers to judge the geometric quality. And even if one used this information, a 

knowledge of ~ =(~2I must also be factored into the argument. That is, (Ar27-~A) 
represents not only the geometrical strength, but also a combination of geometry 
and measurement precision. 

Another consolidation (and also a reduction in information) might be to look at 
the trace of (Ar2~-~A) -I . This quantity is the same regardless of which coordinate 
orientation one chooses, but does not allow one to judge the shape of the variance 
ellipsoid. However, it does allow us to convey in only one number some 
information about geometry w the sum of all the four variances, 
cr~ + ~ + cr~ + o'~.  But still measurement precision is included. To eliminate 

measurement precision and to isolate a quantity that is a function of only 
geometry, the Geometric Dilution of Precision is defined as follows: 

GDOP = x]trace (ArE-IA)-I 

In case ~=~2I,  as is usually accepted, the above simplifies to 

GDOP = x/trace (ArA) -l (6.28) 

Desirable values of GDOP are in the neighborhood of [0, 5] (units are m/m!).l_f 
the analyst is interested only in position, and not the clock, then only the diagonal 
terms involving position need to be included in the summation. We define then 
the Position Dilution of Precision to be 
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PDOP= 4o-~ +0~- v +0"2 
17 

2 2 where o "2, cry, o-~ are the first three diagonal elements of (ArZ-~A) -I when the 

ordering of unknowns is x, y, z, cat.  We note that 0.2 + o-~ + o.2 _- t~ E + t ~  + o'2u; 

that is, if the covariance matrix is transformed from x, y, z to E, N, U (east, north, 
up), then the trace is unaffected. This transformation requires the usual law of 
variance propagation. Let Px.y.,.~a, = (Ar27-'A) -I, then 

where 

R= 

- s i n g  cos~. 0 ] 

-sin~cosA, -s in#sin~,  cos$ 

cosOcosA, cosr  s in# )  

and ~, ~, are geodetic latitude and longitude respectively. 
2 2 2 Now that o-E, O-N, O-U can be computed from Px.y.z.ca,, 

Horizontal Dilution of Precision as 

we can define the 

H D O P  = + 
o- 

and the Vertical Dilution of Precision as 

VDOP = ~ = o-._.~u. 
o- o- 

If one is interested in time, then TDOP = o-c~,/o-. So now we have GDOP 2 = 
PDOp2 + TDOp2 = HDOp2 + VDOP 2 + TDOP 2. Normally the cofactor matrix 

(ArA)  -' is used so that division by the measurement standard deviation, 6, is not 
required. 

The several DOPs can be computed based on either anticipated or actual 
satellite coverage. It is usually better to use the almanac rather than broadcast 
ephemeris for calculations of anticipated coverage. Using anticipated satellite 
measurements, one can "test the water" to see which part of the day will yield the 
best results. Clearly, some satellite configurations are better than others, and 
knowing the best coverage is important information to anyone using the GPS 
system. 

These DOP calculations are generally available in all survey planning software 
products. 
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6.5 COMBINING PHASE AND PSEUDORANGE FOR SINGLE-SITE 
DETERMINATIONS 

As already given in Chapter 5, phase and pseudorange measurements are similar. 
For convenience, the previously given relations are presented here. First, the 
pseudorange relation given in (5.23) is repeated: 

Pi~(t) =p~( t ,  t -  "c~)+ Ii k + T~ +dmki + 
(5.23) 

+c[dt,(t)  - dtk(t  - #)]  + c[di(t ) - d~(t - #)]  + e~ 

Now the phase relation (5.32) is repeated: 

dp~(t) = pki (t , t -  vki ) -  I ~ + T[ + (~m~ + c [ d t i ( t ) - d t k ( t  - "~/)]+ 
(5.32) 

+c[ 8 i (t) + •2 (t - ~ )] + Z[O i (t 0) - q)k (to)] + 2dV~ + t;/k 

The common and dissimilar terms are discussed in 5.1.2. Focussing on the task at 
hand, to incorporate phase with pseudoranges for more precise single-site 
modeling, let us disregard some of the terms. 

The terms to be ignored are multipath and delays. Thus now (5.23) and (5.32) 
are rewritten as (6.29) and (6.30) respectively: 

P ~ ( t ) =  p~(t,  t -  "r~)+ # + T~ 

+c[dti(t  ) - dt~(t - ~)]  + e~ (6.29) 

d ~ ( t )  = p~(t,  t -  # ) -  I~ + T~ + c [ d t i ( t ) - d : ( t -  # ) l +  

+X[0s(t0) - 0k(t0)]+ 3dV~ + e~ (6.30) 

Now the notation p* will be introduced to simplify the previous two relations. 

Define p*, N* as follows: 

p* =pki(t,  t -  "~i ) +  T~ + c [ d t i ( t ) - d t k ( t  - ~/)] 

N* = [0i (t0) - 0 k (to)] + N~ (6.31) 

Using (6.31) we can now substitute into (6.29) and (6.30) to obtain 

P~k (t) -- p * +I~ + e~ (6.32) 

~,~ (t)  = p * - t ,  ~ + ;tN * +e~  (6.33) 
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6.5.1 Single Frequency Smoothing 

Equations (6.32) and (6.33) can be used to smooth the noisy pseudoranges with 

the precise but biased phases. Clearly, however, the ionospheric terms, 17 , cause 

problems should only single frequency measurements be available. The problem 
is associated with a lack of information to recover the offset in the ionospheric 

terms. That is, (6.32) - (6.33) do allow for the change in p* and in 17 from one 

epoch to the next. Differencing (6.32) and (6.33) between two successive times 
yields the following: 

AP~ (t) = Ap * +&/~ + A# 
(6.34) 

Under the assumption that Ae~ and Ae~ are zero, then we have two equations in 

two unknowns - -  one measurement at the metre level, the other at the millimetre 

level. But what about 17 and A.N* at some epoch? Here there is no real reprieve. 

One could combine the 17 and p* at an epoch and also 17 and AN* so as to 

estimate these linear combinations. The data would then support the estimation of 
changes from epoch to epoch as shown in (6.34). Choosing the reference epoch at 
maximum elevation where the ionosphere's mapping function is a minimum is 
reasonable. Compromises must be made when only single frequency data are 
available. 

The real information then is in the second equation of (6.34) which gives a 

millimetre "constraint" on the behavior of p* and I*. One could either use (6.32) 
and (6.33) while estimating the needed offsets, or the Schaffrin-Grafarend 
theorem can be applied to temporal differences with the proper modeling of  the 
measurement covariance matrices that will not be diagonal if such differences are 
used.' 

6.5.2 Dual Frequency Smoothing 

Having dual frequency data changes the situation dramatically. Now writing the 
four available (dual-frequency) measurement relations, we have 

Pl~ (t) = p * + #  + e,~ 

Pz~ (t) = p * +(ft/.f'=)2 # + e2 ~ 

�9 ,~ (t) = p * - f f  + A,,N I * +e,~ 

~2~ (t) = p * - ( f , / f= )217 + A,2N = * +e2~ 

(6.35) 

The reader is cautioned here that p* is not distance and N* is not an integer! 
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It is seen that the right side of (6.35) contains only four nonstochastic 

parameters - -  p *, 17, NI*, N2*. For the sake of being easily recognized, we shall 

call p* the ideal pseudorange for it represents what the pseudoranges (6.32) would 
be if the ionospheric effect were zero. 

Now we rewrite (6.35) into a more usable form: 

Ii 1 0 01i , 1 P2 ( f , / f 2  )z 0 0 I e 2 

~l  = -1 3", 0 N 1. + e I " 

Iff~ 2 - - ( f J f 2 )  2 0 )~2JLN2 *J /62.] 

(6.36) 

where subscripts denoting station identifiers and superscripts denoting satellite 
identifiers have been omitted since here we are not combining data across stations 
or satellites. 

Now for a quick analysis of (6.36), it is seen that data from only one epoch are 
sufficient to recover all parameters on the right assuming that the errors are zeros 
and that the design matrix is regular (which it is). 

Here a sequential filter or batch least-squares algorithms can be constructed to 
take advantage of the unchanging character of NI* and N2*. Each new epoch adds 
four new measurements but only two new unknowns. The usual implementation is 
either a Bayes or Kalman filter. 

The key element here is to use the average of all pseudoranges to identify the 

N* values. Once these values are available, then the ideal pseudoranges, p* 
values, can be obtained from the millimetre level phases. 

Convergence of the N* standard deviations behaves like 1/x/-~ as shown in 
Figure 6.1, where n is the number of epochs. Euler and Goad [ 1991] showed that 
NI* - N2* is determined much better than either NI* or N2*. This will be used 
again later. 

6.5.3 Discussion 

Again it is worth reviewing what was assumed to obtain the benefits of combining 
phase and pseudorange. That is, that multipath was zero and the pseudorange and 
phase delays are either zero or have been accommodated through calibration. 

The delays can be determined, but the user cannot totally control multipath. 
Antenna characteristics can be a major contributor to multipath sensitivity. And, 
of course, the reflective environment is the source of the multipath signals 
reaching the GPS receiver antenna. 

Once the optimal estimate of p* has been obtained, then the job of  estimating 

position continues. That is, p* on a one-way basis must be combined with other 
one-way measures to recover position using the usual techniques. 
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Figure 6.1. Standard devmtlon of the esumates of the N 1 and N 1 - N 2" biases. 

By far the most troublesome event is a situation of loss of lock on the GPS 
signal by the receiver. This loss of lock can be caused by many different 
possibilities. Physical blockages clearly can cause a break in signal tracking. 
Other occurrences are electronic in nature where unexpected large signal 
variations fall outside some predetermined range (bandwidth). Large and sudden 
changes in the ionospheric effects have been known to cause receivers to lose 
lock. The occurrences usually happen at the peaks of the eleven-year solar cycles. 

Whatever the cause, one must verify that lock is or is not maintained. In the case 
of a loss, then once tracking is re-acquired, the implementation of (6.36) must 
react accordingly recognizing that new parameters NI*  and N2* are to be 
estimated. This can be quite problematic. For example, what happens if the 
residuals in phase are at the four-centimetre level? Did multipath cause it? Or did 
the receiver lose lock by exactly one cycle and the parameters adjust accordingly? 

Also, if a real-time result is required, no new tracking is available to be used in 
determining maintenance of lock or not. The reader is directed to Chapter 8 for an 
in-depth discussion of these topics. 

Actually the NI*, N2* parameters can be classified as nuisance parameters. That 

is, their presence is needed only to be able to use the �9 1 and ~ 2 measures. 
Another possibility is to use the Schaffrin-Grafarend theorem and eliminate the 
N* values through differencing over time (epochs). That is, the data processing 
begins using only PI, P2 at the initial epoch. At the next and all following epochs, 
in addition to PI and P2, one differences the previous phase measurements with 
those measured at the current epoch. Simple differencing then removes the two 
unknowns NI* and N2* and is accompanied by a reduction in an equal number of 
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measurements, so the identical estimation of p* and I values is guaranteed. 
(Actually it is not quite this straightforward, but the proper conditions discussed 
earlier are indeed satisfied.) Cycle slips are identified by large residuals in the 
differenced phase measurements between epochs. Such implementations must 
model the statistical correlation between the (differenced) measurements however. 
This complication leads most investigations to the more traditional modeling and 
thus the necessity of estimating NI* and N2*. 

However this discussion shows the information content in the measurement 
process. Highly precise phase change measures can then be very useful in 
smoothing the pseudoranges in single site determinations. 

6.6 SUMMARY 

In this chapter the various processing techniques involving pseudoranges or 
pseudoranges/carrier phases for single-site (absolute) determinations were 
introduced. Due to the nature of the broadcast and precise orbits, these ECF orbits 
require an earth rotation correction in the usual processing step. Once completed, 
then either linearized or analytical solutions are possible. If the standard linearized 
approach is used, then one can use Newton-Raphson iteration or a search 
technique. 

The differencing of pseudoranges at an epoch to eliminate the receiver clock 
term reveals the hyperbolic nature of the measurement process. 

A study of tracking geometry can be made using the least-squares cofactor 
matrix (ATA). Various DOPs can be computed based on the desired goals. 
Millimetre carrier phase measurements offer substantial improvement to the 
pseudorange processing. This improvement is much more complete in the case of 
dual-frequency tracking. 
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7.1 INTRODUCTION 

Early on [Bossier et al., 1980] it was recognized that receivers that measure the 
(reconstructed) carrier phase differences between the satellite and receiver 
precisely would allow for precise recovery of baselines. This observation can be 
made through the study of equation (5.33). The key ingredients, at least at the 
introductory stage, are geometry and clock states. It is hoped that other 
contributors such as troposphere, ionosphere, multipath, and noise are very small 
or can be removed through calibration and modeling. 

Both clocks and geometry remain either as systematically large in the case of 
geometry or capricious in the case of the clock states. While the effect of 
geometry is the desirable signal we want to exploit, one must, at the same time, 
eliminate the contribution of clock drift. This can be done either through modeling 
[Goad, 1985] or through the use of physical differencing [Goad and Remondi, 
1983]. While the elimination of the clock states requires two satellite 
measurements to remove the receiver clock offset, or two receivers to remove the 
satellite clock offset, we see that double differences then are the natural quantities 
that are sensitive to only geometry and not clocks. This has already been shown in 
section 5.2.5. However, here it should be emphasized that the differencing can be 
done in the modeling rather than using a difference of measurements. Most, but 
not all, investigations choose to difference. Here both single differences eq. (5.51) 
and double differences eq. (5.58) will be discussed in the context of estimating 
short baselines. So first we must address the concept of short. 

7.2 SHORT DISTANCE GPS MODELS 

Defining the concept of "short" baselines is not so easy however. Let us consider 
more carefully the ionosphere for example. The activity of the ionosphere is 
known to depend greatly on the eleven-year cycle of sunspot activity. So when 
the sunspot activity is low, then the ionosphere is not so active, and the effect on 
microwave signals from GPS satellites is similar over a wider area than when the 
sunspot activity is increased. In 1983 when the sunspot activity was low, newly 
introduced single frequency phase-measuring GPS receivers provided phase 
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measurements which allowed for integer identification up to distances of 60 km. 
At the maximum of  the most recent sunspot activity in 1990-1991, integers were 
difficult to identify, at times, over 10 km distances. 

The residual troposphere (i.e., what is left after a model has been applied) also 
starts to decorrelate at about 15 kin. So here we shall define a baseline to be short 
in the sense of normal surveying tasks. That is, most of the time surveyors will 
use GPS receivers to replace conventional angle and distance measuring chores 
where such is not very cost effective relative to the cost of using GPS. 

Most of the time, this will involve the use of GPS where visibility with 
theodolites and EDMs or total stations is not possible. This could be quite short at 
the level of hundreds of meters and longer. Theoretically, there is not an upper 
limit in distance, but practically speaking most surveyors' project areas will be 
limited to a few tens of kilometers unless such projects involve the mapping of 
roadways, aqueduct systems, etc. Thus it is clear that relative to the ionosphere, 
most surveying projects can ignore the contribution of the ionosphere. 

However, one should always be on guard to the potentially devastating 
contribution of "aggravated" ionospheric activity should techniques be in use 
which depend on a total cancellation of the ionosphere. 

One might conclude then that for local surveying projects the less expensive 
single-frequency receivers should be the receivers of choice. However, this is not 
necessarily the case. We shall see that dual frequency technology does indeed 
allow for some extensions in data processing. As a matter of fact, such has already 
been shown in section 6.4.2. 

7.2.1 Double Difference Schemes 

As mentioned earlier, most investigators choose to form double differences rather 
than process undifferenced measurements or even s ingle-differenced 
combinations. So now we must revisit equation (5.57). Here it is rewritten with 

the minor substitution of P in place of the magnitude notation: 

z )+pJ(t,t- {y)  

-Ii , + + + I + t 
(7.1) 

Additionally we shall assume that over short distances the li~ is zero, that the T~ t 

can be modeled, and that the multipath is small. With these additional 
considerations, (7.1) is now further reduced to 

d~ = p~ (t, t -  ~ ) -  p~(t, t -  { ) -  p~. (t, $- ~ )  + p~(t, t -  ~ )+  
kl -t-,TtNi~ + F.ij 

(7.2) 
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Equation (7.2) (or its counterpart in terms of cycles) is by far the most used 
formulation for short baseline reductions. Some additional corrections may also 
be needed since there is probably no possibility that both receivers collect 
measurements at exactly the same instant. This, however, does not cause too 
many problems. Similarly, the clock offsets need to be considered. After 
linearization as described in section 5.4.1, (7.2) is then rewritten in the form 

AO~ = [(u:) r -(uS) r ] Ar, + AANi~ + e~' (7.3) 

where the left side is the observed measurement minus that calculated based on 

the best guess of the position of the j-th station and the ambiguity Ni t. (It is 

assumed that the i-th station's location is known.) The u's are the usual direction 

cosines. Thus (7.3) is linear in Arj and AN~. Let us denote the vector 
b r k r u t r = [(uj ) - ( j )  ,A], so now (7.3) can be simplified to 

(7.4) 

[AO] = B 

Stacking all measurements from all epochs results in the following: 

At, ] 

(7.5) 

where now all the different, but linearly independent, ambiguities are listed as 
AN,, AN 2, etc. 

Normally the baseline (vector) and ambiguities are estimated using the 
technique of least squares. That is, the best guess of the ambiguities and baseline 
are those values which minimize the sum of squares of measurement 
discrepancies once the estimated quantities' contributions are removed. In such 
implementations, one generally treats the ambiguities as real-valued parameters. 
These estimates then take on a (real) value which makes the measurement residual 
sum of squares a minimum. To the extent that common mode contributions to the 
measurements cancel, then the real-valued estimates of the ambiguities tend 
toward integer values. The classic case for such easy identification of integer- 
valued ambiguity estimates is when the baseline is short. 

Not all possible difference combinations should be generated however. 
Theoretically, only those combinations of double differences which are linearly 
independent offer new information to a data reduction. A linearly dependent 
combination is one which can be obtained by linearly combining previously used 
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double differences. For example, consider the following possible double 
differences: 

(•118.20 9,12 

The last double difference can be obtained by a combination of the first two as 
follows: m~8.20 _ ~6,,s 6.2o 

T 9 , 1 2  ~ T 9 , 1 2  - -  ( ~ 9 . 1 2 "  

cb6"~s and m6.2o have been used, no new information is In other words, once T9.12 ~9.12 

contained in m~s'2~ Thus such linearly dependent data should not be considered. 
~ 9 . 1 2  " 

If n represents the number of receivers and s the number of satellites being tracked 
at a data sampling epoch, the maximum number of  linearly independent 
combinations is (n- l ) (s -1) .  For the simple case of just two receivers, then the 
generation of linearly independent data is not so difficult. But when the number of 
receivers is greater than two, the task of generating the maximum number of 
linearly independent measurements in order to gain the maximum amount of  
information possible is not so trivial. Goad and Mueller [1988] have addressed 
this problem in detail. 

Since there are usually several ways one can combine data to form independent 
observables, then perhaps there are advantages of some schemes over others. 
Distance between receivers is one such consideration. Let 's  consider the case of 
three ground receivers (A, B, C) as given in Figure 7. I below. 

B 

A 55 km 

Figure 7.1. Possible geographical distribution of satellite receivers. 

Here there are three possible baselines, only two of  them being linearly 
independent. Which two should be chosen? Now it is appropriate to discuss those 
contributions which were ignored in the generation of equation (11). These 
include such items as tropospheric and ionospheric refraction, multipathing, 
arrival time differences, orbit error, etc. Two of these unmodeled contributions are 
known to have errors that increase with increasing distance between receivers 
orbit error and ionospheric refraction. (Tropospheric refraction does also, but only 
to a limit of, say, 15-50 km). Now back to the figure above. Since we now realize 
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that a more complete cancellation of unmodeled errors occurs for the shorter 
baseline and thus the use of equation (7.2) is more justified, one should definitely 

choose the baseline BC as one of the two independent lines. Although not so 

drastically different, one might as well choose A~B as the other independent 

baseline since it is slightly shorter than the baseline AC. 
While 50 km approaches the limit of what we choose to call a short baseline 

length, it is not uncommon to collect data over such baseline lengths, especially if 
one must connect to an already established network location. What is emphasized 
here is to use the shortest baselines when possible. This argument assumes all 
things to be equal such as data collection interval, similar obstructions, etc. In the 
end, common sense should dictate which baselines to process. 

Some always choose to process every possible baseline in order to compare 
results. This is probably a good idea, but one should be cautioned regarding the 
repeated use of  the same data when the correlations between the solutions are 
ignored. Overly optimistic statistical confidences will result. 

7.2.2 Dynamic Ranges of Double Differences 

It is important to understand the impact of baseline length on double difference 
measurements. To do so, Figure 7.2 was generated using all available phases 
collected between Wettzel, Germany, and Graz, Austria, on January 15, 1995. The 
baseline length is 302 km. This length is definitely longer than what would 
qualify as being short. But the only ingredients that change in the measurements 
are the distance components, so the dynamic range should scale proportionally 
with distance. 

First we notice that the range is in the neighborhood of 106 cycles. Many double 
differences vary by only one-tenth this amount, but several overhead passes do 
show large changes. Next, we note that the noise on the phases is of the order of 
10 -2 cycles, or maybe even less. So for 300 km lengths, the signal-to-noise values 
are in the range of 106 : 10 -2 or one part in 108. This large range explains why 
integer ambiguities need not be determined for very long lines. But since we can 
scale these values to shorter lines, we can generate the following table: 

Line Lent~th (km) 
300 108 
30 107 
3 106 
0.3 lO 5 

S/N Ratio 

That is, as the baseline length decreases, noise plays an increasing role in the 
determination of location. Clearly, converting the system of measurements from 
biased ranges to unbiased ranges has a major beneficial impact on vector 
determination over short lines. Thus our goal for short baseline determination is to 
find the integer ambiguities. 
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Figure 7.2. Double differences measured on January 15, 1995, Wettzell - -  Graz (302 kin). 

7.2.3 Use of  P s e u d o r a n g e s  

Al l  that has been d iscussed  regarding the use of  phases can be ex t ended  to 
pseudoranges with the exception that all pseudorange ambiguit ies are zero. Thus 
(7.5) can be used to analyze pseudoranges as: 

lAP] = b; 

b r 
. n_ 

(7.6) 

which excludes any ambiguity considerations. The above can bc very useful when 
only meter-level precision is needed. Such applications normally go by the 
descriptor "differential positioning." Normally diffcrcntial positioning is needed 
for such applications as navigation, near-terminal guidance, GIS applications, etc. 
Both smoothing and real-time (filtering) applications use (7.6). 
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7.2.4 Dual-Frequency Solutions 

For a given set of two stations and two satellites contributing to double-difference 
measurements, one can consider the L1 and L2 measures if the receivers collect 
dual frequency measurements. Now (7.2) is rewritten as follows for each of the 
two frequencies, including the ionospheric contributions, and where the time 
arguments in the distance terms have been dropped: 

O~(I_~)= p~ -p[-p~. + p~ + 1~' + A,N;~(/-~) + s~(/-a) (7.7) 

k/ 1 k O0(~)=P~-P,-Pj  +O~ +(f,/f2)21,~ + Z2N,~(Lz)+e,k/(~) (7.8) 

These have already been discussed in Chapter 5, but here it is reviewed in the 
more traditional way. The inclusion of the ionospheric terms complicates the 
situation quite a bit. We can combine the two double-difference measurements to 

eliminate the 1~ ~ terms. The idea is the same as before with pseudoranges. The 

idea is to choose coefficients a l  and o~ 2 such that the following conditions are 
satisfied: 

O~ I q- O~ 2 = 1 
(7.9) 

Or, + ( f , / f z ) z  et~ = 0 

The first condition yields a combination which looks like the original LI relation, 
and the second condition ensures that the ionosphere is removed. The resulting 
solution is 

f 2  
ct, = ~'/~((f2 _ f 2 )  = 2.5457 

c~ 2 = _ f~) = 1.5457 

Using the above, we can then combine L 1 and L2 phase measures to yield 

O~(no ion) = c~,~(L,)  + a 2 ~ ( L  2) 

- p,, - + + + (7.10) 

From the above, one sees that the integer nature of the double-difference N 

values is destroyed and the errors are amplified. If r and cr 2 represent the 
standard deviations of the L1 and L2 errors respectively and the errors are 

uncorrelated, then the o'.oio . = ~J(a, 0-. )2 + (/z20.2)2. Thus if in fact one can justify 
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the fact that Ii~ does indeed equal zero, then generating the ion-free combination 

may actually amplify errors. Thus for short baselines where dual-frequency 
receivers are used, solutions using (7.10) can be used to judge whether the 
assumption of no double difference ionosphere is valid. However, once verified, 
the optimal solution could be one which processes the LI and L2 phases 
individually to minimize the propagation of error. However finding the integer 
values of the ambiguities is equivalent to isolating the baseline to within 1/4 
wavelength. The wavelengths of the LI and L2 frequencies is 19 cm and 24 cm 
respectively. More discussion of these techniques can be found in Chapter 8. 

7.2.5 Other Combinations of Dual-Frequency Phases 

Other combinations can be considered. One class of combinations is 

it tt -F it 

where 8! and 82 are integers. Here, such linear combinations are guaranteed to 

produce new measurements with integer ambiguities. 
The classic cases are wide- and narrow-lane combinations. For the wide-lane 

combination, choose 81 = +I,/~2 = -1. So now the effective wavelength is given 
as 

I 1 1 1 

~w ~.~ A, 2 86cm 

Thus the wide-lane combination almost quadruples the separation of integer 

solutions in space. The narrow-lane combination, fll = +1, f12 = +1, has the 
opposite effect and is not used often. However, if one can confirm the value of the 
wide-lane combination (N l-N2), then the oddness or evenness is the same for the 
narrow-lane combination as for the wide-lane combination. Table 7.1 gives many 
of the possible combinations when integer coefficients have different signs. Other 
combinations appear to be useful, but the user is cautioned against the possibility 
of amplifying noise. 

7.2.6 Effect of the Ionosphere and Troposphere on Short Baselines 

The effect of the ionosphere on baselines most often appears to cause a shortening 
of the length [Georgiadou and Kleusberg, 1988]. This reduction amounts to 0.25 
ppm per one meter of vertical ionospheric delay. This is due to the impact of a 
layer of charged particles which, over short baselines, tends to be similar over the 
region of interest. Georgiadou and Kleusberg also showed that the data collected 
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at only one dual frequency GPS receiver in an area can be used to infer this 
systematic effect on nearby single-frequency receiver data. 

Table 7.1. Generated wavelengths (m) ~, = 
(a/Z,)-(b/Z2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

b 
1 2 3 4 5 6 7 8 9 10 

�9 86 - .34  - .14  - .09  - .07  - .05  - .04  - .04  - .03  - .03  
�9 16 .43 -.56 -.17 -.10 -.07 -.06 -.04 -.04 -.03 
�9 09 .13 .29 -1,63 -.21 -.11 -.08 -.06 -.05 -.04 
.06 .08 .11 .22 1.83 -.28 -.13 -.09 -.06 -.05 
.05 .06 .07 .I0 .17 .59 -.42 -.15 -.09 -.07 
.04 .04 .05 .07 .09 .14 .35 -.81 -.19 -.11 
�9 03 .03 .04 .05 .06 .08 .12 .25 -14,65 -.24 
�9 03 .03 .03 .04 .05 .06 .07 .11 .19 .92 
.02 .03 .03 .03 .04 .04 .05 .07 .I0 .16 
.02 .02 .02 .03 .03 .04 .04 .05 .06 .09 

Brunner and Welsch [1993] have commented on the effect of  the troposphere on 
height recovery. Heights are normally more problematic due to our inability to 

observe satellites in the hemisphere below us. Using a cutoff  of, say, 15 ~ as 
suggested by Brunner and Welsch, to combat the deleterious effect o f  multipath 
and also refraction amplifies the problem even more. 

Brenner and Welsch estimate that the differential height recovery uncertainty is 
of  the order of  three times the effect of  differential tropospheric delay. Thus a 
delay error of  only one centimeter results in a relative height error of  3 cm. Also, 
because of  the various possible profiles for a given pressure, temperature, and 
relat ive humidi ty  measurements  at the surface, "actual  meteoro log ica l  
observations at GPS sites together with conventional height profiles has often 
produced disappointing results" according to Brunner and Welsch. Davis [1986] 
showed that for VLBI analyses tropospheric mapping function errors seriously 
impact  the estimate of  the vertical component  of  position when the minimum 

elevation sampled drops below 15 ~ 

7.3 USE O F  B O T H  P S E U D O R A N G E S  AND P H A S E S  

It should now be obvious that for the most  precise surveying applications the 
recovery o f  the ambiguities is required. Using the approach discussed earlier, the 
separation of  the geometrical part (baselines) and the ambiguities requires some 
time to pass in order to utilize the accumulated Doppler. One major consequence 
of  this approach is that the integer ambiguities are more difficult to identify with 
increasing baseline length due to the decoupling of  unmodeled error sources such 
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as tropospheric refraction and orbital errors. The same is true for the ambiguity 
search. 

With the introduction of affordable receivers collecting both dual-frequency 
pseudoranges and phases, this laborious approach might be "laid to rest" if 
sufficient noise reduction can occur with the tracking of the precise pseudoranges. 
Techniques utilizing the P-code pseudoranges will now be discussed. 

For some time now, the ability to use readily the pseudoranges in addition to 
dual frequency phase measurements to recover widelane phase biases has been 
well known [Blewitt, 1989; Euler and Goad, 1991]. 

Here the simultaneous use of all four measurements (phases and pseudoranges 
from both L1 and L2 frequencies) will be visited. It will be shown that the four- 
measurement filter/smoother can be generated numerically from the average of 
two three-measurement filters/smoothers. Each of the three-measurement 
algorithms can be used to provide estimates of the widelane ambiguities provided 
that some preprocessing can be performed to reduce the magnitude of the L 1 and 
L2 ambiguities to within a few cycles of zero. However, such a restriction is not 
required for the four-measurement algorithm. 

7.3.1 A Review 

To aid in the understanding of these techniques, a review is presented using the 
notation of  Euler and Goad [t991]. First the set of measurements available to 
users of receivers tracking pseudoranges and phases on both the L 1 and L2 
frequency channels at an epoch is given mathematically as follows: 

Pj = p *  +l + eR, (7.11a) 

c~ = p * - I  + N~,~ + e,, (7. llb) 

P2 = P * +( f l / f2 )  2t + eR2 (7.11c) 

~2 = P * - ( f l / f 2 )21  + N2~, 2 + e,2 (7.11d) 

In equations (7.1 la - d), the 13" stands for the combination of all nondispersive 
clock-based terms, or in other words the ideal pseudorange; the dispersive 
ionospheric contribution at the L I frequency is I (theoretically a positive quantity) 
with group delays associated with pseudoranges and phase advances associated 
with the phases. The two phase (range) measurements include the well known 
integer ambiguity contribution when combined in double difference combinations. 
And finally all measurements have noise or error terms, e. 

The equations (7.11a - d) can be expressed in the more desirable matrix 
formulation as follows: 
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- ,  o / / ' / + f f , ,  / 
= o o/iN, / 

�9 2 - ( f , / f 2 )  2 0 Z2JLN=J LE,~j 

(7.12) 

Here in equation (7.12) it is readily apparent that in the absence of noise, one 
could solve the four equations in four unknowns to recover ideal pseudorange, 
instantaneous ionospheric perturbations, and the ambiguities. Even though the 
noise values on phase measurements are of the order of a millimeter or less, we 
know that the pseudorange noises vary greatly from receiver to receiver. L 1 C/A- 
code pseudoranges have the largest noise values, possibly as high as 2-3 m. This 
is due to the relatively slow chip rate of 1.023 MHz. P-code chip rates are ten 
times more frequent which suggest noises possibly as low as 10-30 cm. 
Obviously to determine ambiguities at the L1 and L2 carrier frequencies 
(L, _= 19cm,;t 2 _=_24cm), low pseudorange noise values play a critical role in the 

time required to isolate either N 1 or N2, or some linear combination of them. In a 
least-squares smoothing algorithm, Euler and Goad [1991] showed that the worst 
and best combinations of L1 and L2 ambiguities are the narrow lane (NI+N2) and 
widelane (N1-N2) combinations, respectively. With 20 cm pseudorange 
uncertainties, the widelane estimate uncertainty approaches 0.01 cycles while 
narrow lane uncertainties are at about 0.5 cycles. These should be considered as 
limiting values since certain contributions to equations (7.1 I) and (7.12) were not 
included such as multipath and higher-order ionosphere terms, with multipath by 
far being the more dominant of the two. 

The beauty of equation (7.12) lies in its simplicity and ease that one can 
implement a least-squares algorithm to obtain hopefully the widelane ambiguity 
values. Once the widelane bias is obtained, the usual ion-free combination of 
(7.1 lb) and (7.1 ld) yield biases which can be expressed as a linear combination 
of the unknown L1 ambiguity and the known widelane ambiguity. Knowing the 
values of the widelane ambiguity makes it much easier then to recover the L1 
ambiguity. However, not knowing either ambiguity, and even knowing the 
baseline exactly is a situation in which very possibly the analyst will be unable to 
recover the integer values for NI and N2. 

Other factors, in addition to multipath which have been mentioned, which could 
influence in a negative way the use of equation (7.11) would be the non- 
simultaneity of sampling of pseudorange and phase measurements within the 
receiver or a smoothing of the pseudoranges using the phase (or Doppler) 
information which attempts to drive down the pseudorange noise but then 
destroys the relations (7.1 l a d ) .  Notice that theoretically no large ionosphere 
variations or arbitrary motions of a receiver's antenna negate the use of equations 
(7.11) or (7.12). Thus after sufficient averaging, widelane integer ambiguities can 
be determined for a receiver/antenna, say, involved in aircraft tracking or the 
tracking of a buoy on the surface of the sea. For many terrestrial surveys, once 
sufficient data have been collected to recover the widelane ambiguity, no more 
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would be required except where total elimination of the ionosphere is required 
such as for orbit determination and very long baseline recoveries. For these 
situations, both L 1 and L2 integers are desired and geometry changes between 
satellite and ground receivers are required unless the baseline vectors are already 
known. The technique of using such short occupation times along with the four- 
measurement filter to recover widelane ambiguities is known as "Rapid Static 
Surveying." Again, one must be aware that unmodeled multipath can be very 
detrimental value when very short occupation times are utilized. 

An example of the use of equation (7.12) in a least-squares algorithm is 

illustrated in Figure 7.3. Here four measurements, P1, P2, OI, O2 were collected 
every 120 seconds at the Penticton, Canada, tracking station. Although the 
integer nature of the ambiguity can only be identified after double differencing, 
the one-way measurements (satellite-to-station) can be smoothed separately and 
the biases combined later to yield the double difference ambiguities. The figure 

shows the difference between the linear combination involving PI, P2, O1, O2 to 
yield the wide-lane ambiguity on an epoch-by-epoch basis with the estimated 
values. The reader will notice that individual epoch values deviate little from the 
mean or least-squares estimate; the rms. of these values is 0.06 cycles. The three- 
measurement combinations will be discussed in the next section. 

0.3 

L 4-meas 

[] 3-meas(P1) 

" 3-meas(P2) 

0 .0-  

-0.3 
0 710 140 

Figure 7.3. Deviations from mean values of the four- and three-measured combinations, Rogue 
receiver, Penticton, Canada, day 281, 1991, SVI4. 
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Table 7.2 shows the estimates of the double difference ambiguities formed from 
the combinat ion of one-way bias estimates between Canadian locations Penticton 
and Yellowknife which are 1500 km apart. The integer nature of the widelane 
values is clearly seen while the similar integer values of the LI and L2 bias values 
cannot  be identified. Clearly, in the processing steps, an integer close to the 
originally determined bias value has been subtracted from the corresponding 
phase measurements in an attempt to keep the double difference ambiguities close 
to zero. This was not a requirement of the four-measurement technique however. 

Table 7.2 Estimated values of the NI, N2, and wide-lane (NI-N2) double difference ambiguities. 

Sat Sat, N 1 ,N2 N l -N2 
2 3 -0.162 -1.177 1.105 
2 6 -0.284 - 1.250 0.966 
2 11 -0.002 - 1.044 1.042 
2 12 -0.539 - 1.497 0.957 
2 13 -0.450 - 1.396 0.947 
2 14 1.544 -0.542 2.086 
2 ! 5 - 1.492 -2.562 1.070 
2 t6 0.174 -0.877 1.051 
2 17 0.035 - 1.015 1.05 l 
2 18 -0.335 - 1.382 1.047 
2 19 0.905 -0. 119 1.024 
2 20 -0.214 - I. 197 0.983 
2 21 0.078 -0.984 1.063 
2 23 -0.253 - 1.316 1.063 
2 24 -0.787 -2.735 1.948 

7.3 .2  T h e  T h r e e - M e a s u r e m e n t  C o m b i n a t i o n s  

Here the derivations of the two three-measurement combinations are presented. 
First, one must  use the two phase measurements, (7.1 lb) and (7.1 ld). Next choose 
only one of  the two pseudorange measurements ,  P1 or P2- Let us choose to 
examine the selection of either by denoting the chosen measurement as Pi where i 
denotes either 1 or 2 for the L1 or L2 pseudorange respectively. To simplify the 
use of the required relations, the equations (7. I l a d )  are rewritten as follows: 

L,U,) 
(7.13a) 

O l = p * - I  + NIA I + er (7.13b) 

0 2 = p * - ( f , / f 2 )  z I +  N2;t 2 + e#, (7.13c) 
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The question to be answered is: What is the final combination of NI and N2 after 

eliminating the p* and I terms in eq. (7.13a-c)? The desired combinations can be 
expressed as follows: 

aP~ +b~, +c~  z =dN, +eN2 +aep, +be,, +ce.~ (7.14) 

where d = b~,l, e : c~,2. In order to assure the absence of the p* and I terms, the a, 
b and c coefficients must satisfy the following: 

a + b + c = 0  (7.15a) 

t f , )  
(7.15b) 

One free condition exists. Since it is desirable to compare the resulting linear 
combinations of  NI and N2 to widelane combination, we choose arbitrarily to 
enforce the following condition: 

d = b k l  = 1 (7.15c) 

Solving (17a-c)  with i = 1, 2 yields the two desired three-measurement  
combinations with noise terms omitted: 

-1.2844 Pl + 5.2550 @l - 3.9706 �9 2 = NI - 0.9697 N2, for i = 1 (7.16a) 

-1.0321 P2 + 5.2550 ~ l  - 4.2229 tD2 = N1 - 1.0313 N2, for i = 2 (7.16b) 

In practice, the coefficients in (7.16a) and (7.16b) should be evaluated to double 
precision. The errors in the above combinations are dominated by the 
pseudorange errors which depend on the receiver characteristics as discussed 
earlier. But when compared to even the most precise GPS pseudoranges, the 
phase uncertainties are orders of  magnitude smaller. Thus the error in the 
combination (7.16a) in cycles is equal to 1.28 times the uncertainty of  P1 (in 
meters). Similarly the combination (7.16b) is equal in cycles to 1.03 times the 
uncertainty in P2 (in meters). As with the four-measurement combination,  
averaging can be used to reduce the uncertainty of  the estimated combination. 
Also the two three-measurement combinations possess almost all the desirable 
characteristics as the four-measurement combination. The same restrictions also 
apply. For example, simultaneity of  code and phase is required; multipath is 
assumed not to exist; and filtering of the pseudoranges which destroys the validity 
of  (7.13a--c) is assumed not to be present. 

One situation does require some consideration - -  the magnitudes of N 1 and N2. 
That is, in the four-measurement combination the identification of the widelane 
ambiguity is not hindered by large magnitudes of either NI  or N2. However, if  
either of  the two three-measurement combinations differ from the widelane 
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integers by 3% of the N2 value, this difference could be very large if the 
magnitude of N2 is large. Thus some preprocessing is required. For static baseline 
recovery, this is probably possible by using the estimated biases from the 
individual widelane and ion-free phase solutions. Using these ambiguity 
estimates, the LI and L2 phase measurements can be modified by adding or 
subtracting an integer to all the one-way phases so that the new biases are close to 
zero. With near-zero L1 and L2 ambiguities, the magnitude of the 0.03 N2 
deviation from the widelane integer should be of no consequence in identifying 
the integer widelane value. 

Also it appears that the average of the two, three-measurement combinations is 
equal to the four-measurement combination. This is not the case identically, but 
again with small L1 and L2 ambiguities, it is true numerically. 

To illustrate the power in the three-measurement combinations, the data 
collected on the Penticton-Yellowknife baseline are used to estimate all three 
combinations. Table 7.3 shows the resulting estimates (the last column will be 
discussed later). It is clear that all three combinations round to the same integer 
values. Also apparent is that the numerical average of each of  the three- 
measurement estimates equals the four-measurement estimate. Again this is due 
to the preprocessing step to ensure that ambiguities are close to zero. The figure 
shows deviations of the one-way (satellite-station) means from the epoch-by- 
epoch values. The noise levels appear to be small for all the combinations. Large 
scatter is noted at lower elevation angles when the satellite rises (low epoch 
numbers) and sets (large epoch numbers). A cutoff elevation angle of 20 ~ was 
used in the generation of the figure. Also as seen by Euler and Goad [1991], an 
increase in deviations with the model can be seen at the lower elevation angles. 
The obvious question is whether this is due to multipath. 

Table 7.3. Four-measurement and two three-measurement double difference ambiguity estimates 
over the Penticton-Yellowknife'baseline. 

Sat Sat NI-N 2 NI-1.03N 2 N1--0.97N 2 NI-I.283N 2 
2 3 1.105 1.052 0.980 1.350 
2 6 0.966 1.009 0.933 1.324 
2 11 1.042 1.074 1.011 1.337 
2 12 0.957 1.003 0.912 1.380 
2 13 0.947 0.996 0.909 1.348 
2 14 2.086 2.106 2.069 2.261 
2 15 1.070 1.149 0.992 1.796 
2 16 1.051 1.078 1.025 1.300 
2 17 1.051 1.082 1.020 1.338 
2 18 1.047 1.090 1.005 1.438 
2 19 1.024 1.030 1.015 1.094 
2 20 0.983 1.020 0.947 1.321 
2 21 1.063 1.086 1.033 1.303 
2 23 1.063 1.105 1.023 1.520 
2 24 1.948 2,033 1.865 2.723 
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Clearly if one has all four measurement types, the four-measurement 
combinations would be used. However, at very little extra effort, all three 
combinations can be computed possibly helping to identify potential problems in 
either the P 1 or P2 measurements. 

7.3.3 Anti-Spoofing? 

Under certain assumptions about Y-code structure (anti-spoofing turned on), a 
receiver can compare the two Y-codes and obtain an estimate of the difference 
between the two precise pseudoranges (P1 -P2) .  For this tracking scenario 
equation (7.13a) is replaced with 

p,_, = 2 1 1 - ( i , / I . ) ' ] +  (7.17) 

Imposing the same restrictions as before on the coefficients a, b, and c, the 
following is obtained where again the error terms are ignored: 

Pm 2 ~, 02 
- § = N ~ - l . 2 8 3 3 N  2 (7.18) 

The recovery of NI-1 .283N2 using differences in pseudoranges from the 
Penticton-Yellowknife baseline are given in the last column of Table 7.3. Here, 
assuming the magnitude of N2 to be less than or equal to 3, the values of N 1 and 
N2 appear to be identifiable in some cases. Using an orbit to recover the ion-free 
double difference biases can also be of major importance for those cases where 
the integer values still remain unknown to within one cycle. In any event, some 

concern is warranted when one is required to use these measurements. Since 1/~,1 
= 5.25, an amplification of the pseudorange difference uncertainty over the 

individual pseudorange uncertainty of ~f2 x 5.25 = 7.42 is present assuming that 

the pseudorange difference uncertainty is only 42 larger than either the LI or L2 
individual pseudorange uncertainties. This is far from the expected situation, so 
clearly some noisy, but unbiased, C/A-code pseudorange data are highly 
desirable. The usefulness of these data types when AS is operating is an open 
question and no definitive conclusions can be obtained until some actual 
pseudorange differences and C/A-code pseudoranges are available for testing. 

7.3.4 Ambiguity Search 

With the rapid improvement of personal (low cost) computers, a technique 
introduced by Counselman and Gourevitch [1981] is now being pursued by some 
investigators. In essence, it is a search technique which requires baseline 
solutions to have integer ambiguities. Two techniques have evolved - -  one which 
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searches arbitrarily many locations in a volume and one that restricts the search 
points to those locations associated with integer ambiguities. Or to put it another 
way, one "loops" over all locations in a volume, or one loops over  possible 
integer ambiguity values which yield solutions within a given volume. The 
explanation of this technique requires only the use of eq. (7.2). A sample location 

in space is chosen (arbitrarily). It then can be used to calculate the distances (19 
terms) in eq. (7.2) and if it is the actual location of the antenna, then that which is 

left after removing the p terms should be an integer. All measurements to all 
satellites at all epochs will exhibit this behavior. Locations which do not satisfy 
this requirement then cannot be legitimate baselines. The beauty of this search 
technique is that cycle slips (losses of lock) are not a consideration. That is even if 
the ambiguity changes its integer value, such an occurrence has no impact on the 
measure of deviation from an integer. 

The volume search technique is the easiest to envision and the most robust. A 
suitable search cube, say one meter on a side, is chosen and each location in a grid 
is tested. Initial search step sizes of 2-3 cm are reasonable. Once the best search 
point is found, a finer search can be performed to isolate the best fitting baseline 
to, say, the mm level. Although the most robust, this volume search can be quite 
time consuming. An alternative is to choose the four satellites with the best 
PDOP, and test only those locations which are found from assuming that their 
ambiguities are integers. That is, one "loops" on a range of ambiguities rather than 
all locations in the test cube. Such a scheme is much faster, but can suffer if the 
implied test locations are in error due to unmodeled contributions to the 
measurements used to seed the search. Effects which can cause such errors are 
multipathing, ionosphere, etc. 

In either case the key to minimizing computer time is to restrict the search 
volume. One such way is to use differential pseudorange solutions if the 
pseudoranges are of sufficient quality. Here P-code receiver measurements are 
usually superior to those which track only the C/A codes. However,  some 
manufacturers are now claiming to have C/A code receivers with pseudorange 
precision approaching 10 cm. Of course, success can only be obtained if the initial 
search volume contains the location of the antenna within it. So one now has to 
contend with competing factors: the search volume needs to be as large as 
possible to increase the probability that the true location can be found, but then 
the search volume must be small enough to obtain the estimate in a reasonable 
amount of time. Clearly, the better the available pseudoranges and the greater the 
number of satellites being tracked, the better such a search algorithm will work. 

These search techniques can also be used even when the antenna is moving. But 
in this case one needs to assume that no loss of lock occurs for a brief time so that 
the search can be performed on ambiguities. This then allows for the different 
epochs to be linked through a common ambiguity value since there is no common 
location between epochs of a moving antenna (unless the change in position is 
known which could be the case if inertial platforms are used). 

As computers  become even more powerful and if receivers can track 
pseudoranges with sufficient precision and orbits are known well enough, even 
baselines over rather long distances can be determined using these techniques. 
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In the end, due to the required computer time, one probably would not use these 
search techniques to determine the entire path of an airplane or other moving 
structure, but they could be very useful in providing estimates of  integer 
ambiguities in startup or loss of lock situations. 

7.3.5 Nonstatic / Quasi-Static Situation 

Such techniques as kinematic, rapid static, stop-and-go, and pseudo-kinematic / 
pseudo-static have received much attention for several years now. All techniques 
try to optimize the recovery of ambiguities and recognize that the integer 
ambiguities are applicable regardless of whether the antenna is moving or not. 
Here an attempt to clarify the types is given. 

(a) 

(b) 

(c) 

(d) 

Pseudo-Static / Pseudo-Kinematic. Here one realizes that the recovery of 
ambiguities over unknown baselines requires station/satellite geometry to 
change. While one waits for new geometries, the antenna can be taken to 
nearby locations and the data can be analyzed later. Thus returning to the 
original baseline and collecting more data for a short period, one then 
attempts to recover the integer bias. If successful, then the same integers 
can be used to obtain positions of intermediate locations visited, possibly, 
only once. 
Stop-and-Go. Stop-and-go applications are simply based on two items. 
The first is to know the ambiguity and the second is to occupy the desired 
mark for a short while to take advantage of averaging. Lock is maintained 
between occupations to be able to use the already known ambiguity. 
Rapid Static. In rapid static mode, the four-measurement filter is used to 
recover quickly the ambiguities during, say, a visit the order of  five 
minutes or so when geometry is favorable. The receiver is turned off  
during travel to conserve batteries. 
Kinematic. Here one needs to know location of the antenna while moving. 
To take full advantage of the data one should either determine integers 
before moving, or track a sufficient number of satellites to enable integer 
identification eventually even though in motion. 

7.3.6 Fast Ambiguity Resolution 

We have already discussed using pseudoranges to enable fast recovery of  
ambiguities. When precise pseudoranges are not present, but dual frequency 
phases are tracked, then search techniques can be utilized. 

For very local surveys, such as airports, construction sites, etc., one can use 
antenna swap techniques already discussed in section 5.5.3. Here the swap data 
can be used with the original data to recover ambiguities almost immediately. 
Also, known baselines can be occupied to allow for almost instantaneous integer 
ambiguity recovery. 
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7.4 DISADVANTAGES OF DOUBLE DIFFERENCES 

Double difference data types have some major advantages. Of course the most 
prominent is the fact that the bias is theoretically an integer. Other advantages are 
simplicity of  the model, cancellation of time varying biases between L1 phase, L2 
phase, and pseudorange measurements, etc. 

But along with these pluses come some minuses. One major consideration is 
how to define the solution biases. They are necessarily associated with particular 
satellites for a given baseline. For example, suppose one starts tracking and the 
common satellites observed by two stations are satellites 9, 11, 12, 18, and 23. 
From these measurements one could define the following sets of biases: 

Set I Set 2 Set 3 
9-11 9-11 9-11 
9-11 11-12 12-18 
9-18 12-18 11-23 
9-23 18-23 18-23 

Obviously Sets 1 and 2 have some easily recognizable algorithm in their 
generation, while Set 3 does not. But Set 3 is just as legitimate as Sets 1 and 2. So 
some algorithm should play a role. Now if one chooses Set 1, what happens when 
an epoch of data is encountered and there is no data from satellite 9? Clearly we 
have a potential problem. The approach most program designers choose is to 
assign a bias to each satellite and then to constrain one of the satellites to have a 
bias of exactly zero. So with this design, any order of satellites can be handled. 

While such implementations can handle missing epochs, eventually the satellite 
with defined zero bias will set, and then that satellite can no longer be used as a 
reference. So now a changing reference should be accommodated. For any data 
processing scheme that can handle long arcs (more than a day?), some emphasis 
on how to define ambiguities is needed. 

Another consideration is that the least-squares algorithm requires a proper 
covariance matrix to be utilized. If  there is common tracking of three or more 
satellites at an epoch, then two or more double differences can be generated, and 
thus the covariance matrix will not be diagonal (uncorrelated). Thus one must 
compute this covariance matrix and then accumulate properly the normal matrix 
and absolute column (fight side) in which case a matrix inversion is needed, or 
one must decorrelate (whiten) the set of measurements using a technique like 
Gram-Schmidt orthogonalization. Scaling the measurement vector by the inverse 
of  the Cholesky factor of the covariance matrix accomplishes this task also. 
Properly processing data from several baselines simultaneously complicates 
matters to an even greater extent. 
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7.4.1 Single Differences 

Processing single, rather than double, differences is an alternative, especially if 
one limits the processing to only one baseline at a time. In this case all 
measurements have diagonal covariance matrices, which is a major advantage. 
But other issues now must be accommodated. 

For example, if only phase data are processed, then at least one of the satellite 
biases cannot be separated from the clock drift which now must be estimated also. 
Adding pseudoranges can help in this regard, but with the addition of 
pseudoranges one must make sure that there is no bias between the pseudorange 
tracking channels and the phase tracking channels. If  a bias exists, then it must be 
accommodated. 

This is a major concern because designers of GPS geodetic quality receivers try 
to ensure that all is stable when generating double differences. Small time varying 
biases which are common to all L1 phase, and common to all L2 phase channels 
have no effect on double differences. This is considered acceptable since double 
differences are unaffected by their presence. But should one choose to process 
single differences instead; accommodating these biases is an important  
consideration. 

7.5 S E Q U E N T I A L  VERSUS BATCH PROCESSING 

Regardless of  which measurement modeling is chosen, there could be major 
advantages to choosing a sequential processing algorithm (Bayes or Kalman) over 
the traditional batch least-squares algorithm. This advantage deals with the ease 
with which one can add or delete parameters. For example, if a parameter is to be 
redefined, such as clock drift in case of single difference processing, the variance 
can be reset to a large number during the prediction of the next state to 
accommodate a redefinition of parameters. While the clock states are obvious for 
these actions, such could be useful when cycle slips occur and biases must be 
redefined. Such redefinition of unknowns happens quite frequently. Adding new 
unknowns to a batch algorithm is not a very practical thing to do since the least- 
squares normal matrix increases as the square of the number of unknowns. 

Also, in case of  a Kalman implementation, the covariance matrix is carded 
along rather than its inverse (the normal matrix), so identification of integer biases 
could be aided since the covariance matrix is needed to judge the quality of  the 
recovery. 

I f  loss of  lock occurs, then in a sequential implementation one must decide 
about whether a bias is integer or not. I f  successful, a constraint can be imposed 
before a new bias is estimated in the place occupied by the old bias. More about 
these concepts and ways to discover integer biases is given in Chapter 8. 
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7.6 N E T W O R K  A D J U S T M E N T - - -  T H E  F I N A L  S T E P  

After  the individual baseline vectors have been estimated using least-squares 
techniques, then these should form the pieces o f  a puzzle that must  be  fitted 
together to form a network. For the person responsible for the final product, this is 
the point where the true test of  the surveying efforts is measured. If  the vectors do 
not fit, no product can be delivered. 

So it is very important that network adjustment programs provide the analyst  
with the proper tools to find and fix problems. The importance of  this step cannot 
be overemphasized.  For with almost  every project there will be problems.  For  
example,  even though the GPS data are reduced without problems, if the wrong 
station name is used, then the software cannot properly connect  the vectors  
together. Another  potential problem is for the field operator to enter the wrong 
height of  antenna above the ground marker,  the "h.i." Here again the GPS data 
can process without problems, but then the vector will not connect  to the other 
vectors.  How is one led to the identification of the problem without the user 
having to go to extreme measures  h imsel f  to discover  them. Many  s imple  
procedures and choices can be part of  any network adjustment software to enable 
the detective work to proceed easily. For example,  look at Table 7.4, which is 
generated from a reduction of a very small network of GPS baseline vectors in the 
State of  New Jersey. 

Tahle 7.4. Output of measurements and residuals in projection coordinates from a network 
adjustment. 

Measurements (State Plane Vectors, Ellipsoidal Heights) Iteration Number 3 
State Plane Zone: New Jersey (NY East) (1983) 

Vector Northing (m) (vn, v'n) Easting (m) (ve, v'e) dh (m) (vdh, v'dh) 
No. (m) (m) (m) 
1 -358.922 (+.001, 1.2) -394.266 (+.002, 1.7) -.968 (+.000, .1) 
2 -358.924 (-.001, 1.7) -394.269 (-.1301, 1.8) -.967 (+.0130, .2) 
3 5023.305 (+.010, .7) 10664.560 (-.006, 1.0) -12.853 (+.020, .7) 
4 5023.292 (-.004, .4) 10664.568 (+.002, .2) -12.881 (-.007, 3) 
5 -5382.221 (-.002, .2) - I  1058.830 (+.004, .6) 11.884 (-.022, .7) 
6 -5382.219 (-,001, .1) -11058.838 (-.004, .3) 11.917 (+.011, .5) 
7 --6197.064 (-.030, 2.0) -12392.559 (+.000, .0) 1 .202 (+.008, .3) 
8 -11220.307 (+.022, 1.1) -23057.113 (+.012, .4) 14.100 (+.034, .7) 
9 -11579.228 (+.023, 1.1) -23451.381 (+.012, .4) 13.138 (+.039, .8) 
10 -11579.244 (+.008, .4) -23451.399 (-.006, .4) 13.035 (-.064, .9) 
11 13102.875 (-.010, .6) -22807.412 (+.030, 1.1) 236.069 (-.033, .7) 
12 12743.953 (-.009, .5) -23201.678 (+.033, 1.2) 235.104 (-.031, .7) 
13 12743.965 (+.003, .1) -23201.706 (+.004, .2) 235.067 (-.068, .8) 
14 7720.662 (-.005, 2.) -33866.270 (+.006, .2) 248.001 (-.006, .1) 
15 7720 .668  (+.001, .0) -33866.399 (-.122, 3.5) 248.188 (+.180, 1.3)* 
16 1523.628  (-.005, .1) --46258.777 (+.058, 1.1) 249.228 (+.028, .3) 

v= residual, v'= normalized residual, * = automatically edited, dh = ellipsoidal height differences 
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This little example shows how the user can be helped by displaying information 
in an organized way. First of all, one notices that the observed baseline vectors are 
displayed in projection coordinates, not Cartesian. Thus one can immediately spot 
potential heighting problems as being distinct from horizontal positioning 
problems. Here one would normally be given the choice of which projection 
system to use. For example, in most countries there are adopted standards such as 
Gauss Krueger, Mercator, Lambert, Stereographic, UTM, etc. Other countries 
such as Denmark have very nonstandard systems. So then it is incumbent on the 
designers of the network software to incorporate these projections that are really 
very useful. 

Another interesting characteristic seen in Table 7.4 is that the baseline vectors 
have been sorted by length Obviously one will generally not have control of the 
way the computer "reads in" baseline solution files. This is especially true if wild 
card names, such as *.SOL, can be used. Thus even though inputs may be 
random, outputs can be organized in ways to aid the analyst. 

Another very important tool is the use of a (statistical) edit function. One should 
not be required to remove manually those measurements that do not connect 
within their statistical confidence region. For example, in Table 7.4, the "*" 
character denotes that baseline 15 has residuals (the first number of the pair inside 
parentheses) that are large compared to its estimated uncertainty. The second 
number, the normalized residual, is the so-called tan statistic, which is expressed 
in units of standard deviations. Here a cutoff of 3.0 standard deviations causes this 
baseline to be rejected. An automatic rejection option is considered a necessity 
when processing even a moderate number of baseline vectors. 

Many other options and outputs can be considered when designing a network 
adjustment program. The following is a list of possible questions one can ask 
when considering buying or designing such a program: 
1. Are vector correlations used? 
2. Will the program handle correlated (multiple) baselines? 
3. Can one choose the units such as feet, meters, degrees, gons, etc.? 
4. Is there an upper limit on the number of baselines or number of  

unknowns? 
5. When the number of unknowns is large, how much time does the program 

require? 
6. Does the program provide plots of baselines, error ellipses, histograms, 

etc.? 
7. Does the program identify "no check" baselines? 
8. Does the program detect and accommodate multiple networks? (This 

happens quite often!) 
9. Does the program accommodate geoid models so that mean sea-level 

heights can be used with GPS baseline vectors? 
10. For projection coordinates, does the program provide scale and 

convergence values? 
11. Can one input as a priori coordinates, location in projection coordinates? 
12. What happens in the case of singularities? Will the program terminate 

abnormally? 
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The above is just a sampling of what to ask. When considering such programs, 
checking with those experienced in network adjustments is highly suggested. 
Leick [1995] gives an extensive discussion of adjustment issues in his Chapters 4 
and 5. Another excellent text on parameter estimation is Koch [1988]. 

7.7 SUMMARY 

By far the most precise results using GPS receivers is in interferometric mode 
where the millimeter-level carrier phases are available. In the short distance mode, 
cancellations are quite complete when generating differences of measurements 
that offers the user certain opportunities. 

The most used differencing scheme is one that differences between receiver and 
satellite - -  double differencing. Such schemes eliminate explicitly both receiver 
and satellite clock offsets. Over short distances, the Doppler difference is so small 
that resolution of the double difference integer ambiguity is very much desired to 
extract the maximum information from the unbiased (double differenced) phase 
ranges. Pseudoranges can play a major role in identifying these integers if the 
noise is not too large. Various schemes that utilize available dual-frequency data 
were discussed. 

Because there are no observations to satellites in the hemisphere below the 
horizon, degradation by a factor of three in vertical recoveries compared to 
horizontal components are usual. Using cutoff angles to combat refraction that is 
especially difficult to model at low elevation angles tends to amplify this problem. 

The filtering/smoothing of both dual frequency phases and pseudoranges, 
especially when the noise or the pseudoranges is low, can be quite beneficial in 
resolving the integer ambiguities so needed in resolving short baselines. These 
same techniques can be quite useful in studying the characteristics of different 
manufacturers' tracking performance and also multipathing. 

The final step to any surveying project using GPS is the network adjustment. 
Here is where all hidden problems tend to be discovered. Having a network 
adjustment computer program that anticipates such problems and thus presents the 
results in ways that lead to identification of these problems can be of tremendous 
value to the analyst. 
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8.1 INTRODUCTION 

High precision relative GPS positioning is based on the very precise career phase 

measurements. A prerequisite for obtaining high precision relative positioning 

results, is that the double-differenced carrier phase ambiguities become sufficiently 

separable from the baseline coordinates. Different approaches are in use and have 

been proposed to ensure a sufficient separability between these two groups of 

parameters. In particular, the approaches that explicitly aim at resolving the 

integer-values of the double-differenced ambiguities have been very successful. 
Once the integer ambiguities are successfully fixed, the carrier phase 

measurements will start to act as if they were high-precision pseudorange 

measurements, thus allowing for a baseline solution with a comparable high 

precision. The fixing of the ambiguities on integer values is however a non-trivial 

problem, in particular if one aims at numerical efficiency. This topic has therefore 

been a rich source of GPS-research over the last decade or so. Starting from rather 

simple but timeconsuming integer rounding schemes, the methods have evolved 

into complex and effective algorithms. 
Among the different approaches that have been proposed for cartier phase 

ambiguity fixing are those documented in Counselman and Gourevitch [1981], 

Remondi [1984;1986;1991], Hatch [1986; 1989; 1991], Hofmann-WeUenhof and 

Remondi [1988], Seeber and Wtibbena [1989], Blewitt [1989], Abott et al. [1989], 

Frei and Beutler [1990], Euler and Goad [1990], Kleusberg [1990], Frei [1991], 

Wiibbena [1991], Euler and Landau [1992], Erickson [1992], Goad [1992], 

Teunissen [1993a; 1994a, b], Hatch and Euler [1994], Mervart et al. [1994], De 

Jonge and Tiberius [1994], Goad and Yang [1994]. 

The purpose of the present lecture notes is to present the theoretical concepts of 

the GPS ambiguity fixing problem, to formulate procedures of solving it and to 

outline some of the intricacies involved. Several examples are included in the 
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lecture notes for both quantitative as well as qualitative purposes. To gain a firm 

footing with the GPS ambiguity fixing problem, it is cast in the familiar 

framework of least-squares adjustment and testing theory. Starting from the 

double-differenced carrier phase observation equations, the section 8.2 Integer 
Least-Squares Adjustment and Testing presents an overview of both the ambiguity 

estimation part as well as the ambiguity validation part of the GPS ambiguity 

fixing problem. It shows how the fixed solution can be arrived at via the float 

solution and it shows how both these solutions can be validated. 

In section 8.3 Search for the Integer Least-Squares Ambiguities two concepts for 

numerically solving the integer least-squares problem, are discussed. The first 

concept is based on using the ellipsoidal planes of support and the other is based 

on using a sequential conditional least-squares adjustment of the ambiguities. In 

case of short observational time span based carrier phase data, both concepts - 

when applied to the traditional double-differenced ambiguities - suffer from the 

fact that the least-squares ambiguities are highly correlated. In order to corroborate 

this, quantitative indications are given of the elongation of the ambiguity search 

space, the precision and correlation of the least-squares ambiguities and of the 

signature of the spectrum of conditional variances. The poor performance of the 

search is also exemplified by means of both an analytical example as well as an 

illustrative numerical example. 

In section 8.4 The Invertible Ambiguity Transformations the concept of integer 

ambiguity reparametrization is introduced. Starting from the nonuniqueness of the 

double-differenced ambiguities and the idea of considering linear combinations 

of the double-differenced carrier phase observables, the class of invertible single- 

channel ambiguity transformations is identified and then generalized to the multi- 

channel case. The importance of this class is that it provides significant leeway 

to influence the dependence of the double-differenced ambiguity variance- 

covariance matrix on the design matrix containing the receiver-satellite geometry. 

Members from this class allow one to replace the original integer least-squares 

problem with an equivalent formulation that is much easier and hence much faster 

to solve. 

In section 8.5 The LSQ Ambiguity Decorrelation Adjustment it is shown how the 

original integer least-squares problem can be reparametrized so as to obtain a 

formulation which is easier to solve. The basic idea that lies at the root of the 

method - both in the construction of the ambiguity transformation as in the 

formulation of the search bounds - is that integer least-squares ambiguity 

estimation becomes trivial once all least-squares ambiguities are fully 

decorrelated. Although the integer nature of the ambiguities generally prohibits 

a full decorrelation of the ambiguities, the presence of the discontinuity in the 
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spectrum of conditional variances still enables one to decorrelate the ambiguities 
to a large extent. It is shown how the decorrelation can be achieved by means of 

using integer approximations of the fully decorrelating conditional least-squares 

transformations. Results of the decorrelation are shown in terms of the elongation 

of the transformed ambiguity search space, the precision and correlation of the 

transformed least-squares ambiguities, and the flattened and lowered spectrum of 

transformed conditional variances. The section is concluded with both a qualitative 

and quantitative based discussion on the characteristics of the GPS spectrum. 

8.2 INTEGER LEAST-SQUARES ADJUSTMENT AND TESTING 

In this section we will give an overview of the least-squares based concepts of 

GPS ambiguity fixing. The GPS ambiguity fixing problem consists of two distinct 

parts: 

1. The ambiguity estimation problem, and 
2. The ambiguity validation problem. 

Given a model of observation equations, the estimation part addresses the 

problem of finding optimal estimators for the unknown parameters. Since 

optimality will be based on the principle of least-squares, the task is to find the 

least-squares solution for the unknown integer ambiguities. The second part of the 

GPS ambiguity fixing problem is concerned with the validation of the estimated 

integer ambiguities. The validation part is of importance in its own right and quite 

distinct from the estimation part. One will namely always be able to compute an 
integer least-squares solution, whether it is of poor quality or not. The question 

addressed by the validation part is therefore, whether the quality of the computed 

integer least-squares solution is such that one is also willing to accept this 

solution. 

8.2.1 The Double-Differenced Carrier Phase Observation Equations 

The GPS observables are code-derived pseudorange measurements and carrier 

phase measurements. The GPS observables relate the measured quantities 

described in chapter 4 to geometrical and physical parameters of interest in a 

geodetic context. As we have seen in section 5.2, linear combinations of the GPS 



8. GPS Carrier Phase Ambiguity Fixing Concepts 2c~ 

observables can be taken so as to eliminate and/or isolate these geometrical and 

physical parameters. In this section we will start from the so-called double- 

differenced (DD) carder phase observables. They follow from phase measurement 

differences between satellites and receivers (cf. section 5.2.5). 

The non-linear observation equation for the difference between the simultaneous 

phase measurements of a receiver j of the signals transmitted by two different 

satellites, k and l, and the simultaneous measurements at the same nominal time 

t of a second receiver i of the same signals, reads (cf. equation (5.57)). 

k/ 
This linear combination Oi) will be referred to as the double differenced (DD) 

phase measurement. If we assume the positions of the satellites k and l, and of 

receiver i to be known, the unknown parameters in equation (8.1) are: (i) the 

linear combination of the four geometric distances between the two receivers, i 

and j,  and the two satellites, k and l; it depends in a nonlinearly way on the 

unknown position of receiver j; (ii) the two linear combinations, li~ and Ti~, of 

four ionospheric and tropospheric delay terms;(iii) the combined multipath term 
8rnfl ; and (iv) the DD phase ambiguity Ni~. 

An interesting feature of the above observation equation is that not all 

parameters are real-valued. We know a priori, that the DD phase ambiguityN~ 

can only take on integer values. Within the context of classical (least-squares) 

adjustment theory this is a rather unusual situation. Classical adjustment theory has 

been developed on the basis of the premises that all parameters are real-valued. 

This implies that the well-known methods of classical adjustment theory are not 

really applicable here. Of course, we could still try to apply classical adjustment 

theory. The space of integers is namely a subset of the space of reals. Hence, one 
could decide to disregard the integer nature of the DD ambiguities and simply 

treat them as reals. The consequence of such a decision is however that not all 

information is taken into account, information which in principle can have a very 

beneficial impact on the estimability of the unknown parameters. The goal of this 

chapter is therefore to show how one can incorporate the integerness of the DD 

ambiguities in the parameter estimation process and to give an outline of how to 

proceed when one wants to compute estimates of these parameters. 

In order to keep things as simple as possible, we will simplify the above 
observation equation by stripping it from its atmospheric and multipath delay 

terms, Ii~, Ti~ and 8mi~. Whether this is allowed and under what circumstances 

it is allowed, will not be of our concern in this chapter (refer to the chapters on 

short, medium and global distances). It is remarked however, that this 
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simplification is not a prerequisite for the theory that will be developed in this 

chapter. The stripped version of equation (8.1) reads 

k/ (8.2) 

The parameters that remain are therefore the unknown real-valued baseline 

components of receiver j with respect to receiver i and the unknown, but integer- 

valued DD ambiguity N~. 

In the following it will be assumed that both receivers, i and j,  are stationary, 

and that at each observational time epoch t a sufficient number of satellites, say 

(re+l), are simultaneously tracked. This implies, if satellite k is taken as reference 

satellite, that we have the following DD cartier phase measurements at our 
k l  k2 k ( k -  1) k(k+ k,'n . 

disposal at time t: ~q (t),~q (t) ..... ~ j  (t),~0 1)(0 ..... ~q (t). This implies, if the 

total number of observational time epochs equals T, that the total number of DD 

carrier phase measurements equals mT. The con'esponding total number of 

unknown parameters equals (m+3). There are 3 unknown baseline components and 

m unknown DD ambiguities. The tracking of the satellites is assumed to be 

uninterrupted during the observational time span. Hence, cycle slips are assumed 

to be absent. 
With the above m T  DD carrier phases we can form a system of observation 

equations, which after linearization with respect to the unknown parameters, gives 

the linear system of equations 

y = A a + B b + e ,  (8.3) 

where y is the vector of m T  observed minus computed DD carrier phases, a is the 

unknown vector of m DD ambiguities, b is the unknown vector of 3 baseline 

components, A and B are the corresponding design matrices for the ambiguities 

and baseline components, and e is the vector that contains the m T  measurement 

noise terms. 

The above system (8.3) will be taken as our point of departure for computing 

estimates of the unknown parameters a and b. The system (8.3) has been 

constructed from carrier phases on a single frequency only. It will be clear 

however, when dual frequency data are available, that the carrier phases on the 

second frequency can be incorporated in the system in a similar way as it has 

been done for the cartier phases on the first frequency. Also pseudorange data, 

when available, can be incorporated in the system. When forming the system 

(8.3), it was also assumed that only two receivers, i and j, were tracking the 

satellites. It will be clear however, that a similar system of linear equations can 

be constructed when more than two receivers track the same satellites 
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simultaneously. For instance, if 3 stationary receivers h, i and j are tracking, the 
vector b will consist of 6 baseline components, e.g. the baseline components of 

receivers h and j with respect to receiver i. 

Our estimation criterion for solving the above system (8.3) will be based on the 

principle of least-squares. From a statistical viewpoint this choice is motivated by 

the fact that in the absence of modelling errors, properly weighted linear least~ 

squares estimators are identical to unbiased minimum variance estimators. 

Furthermore, these estimators are also maximum likelihood estimators if the 

assumption of normality holds for the GPS observables. 

8.2.2 The Float and Fixed Least-Squares Solution 

The least-squares criterion for solving the linear system of observation equations 

(8.3) reads 

min Ily-Aa-Bb [1~, (8.4) 
a,b 

where t[.ll~, - (.)TQ;~(.) and Qy is the variance-covariance matrix of the DD 

observables. The minimization problem (8.4) would be an ordinary unconstrained 

least-squares problem if all the parameters were allowed to range through the 

space of reals, i.e. if 

aeR m and b~R 3, (8.5) 

would hold. In our case however, we do have the additional information that all 

the DD ambiguities are integer-valued. Instead of (8.5), we therefore have 

a~ Z m and be R 3, (8.6) 

with 2v being the m-dimensional space of integers. The minimization problem 

(8.4) together with (8.6) will be referred to as an integer least-squares problem. 

It is a constrained least-squares problem due to the integer-constraint a~ Z m. The 

solution of the integer least-squares problem will be denoted as d and/~, and the 

solution of the corresponding unconstrained least-squares problem will be denoted 

as t1 and /~. The estimates d and/~will be referred to as theft.red least-squares 
solution and the estimates ~ and /~ as the float least-squares solution. 

It is of interest to consider the relationship that exists between the float and 

fixed solution. For that purpose, we decompose the quadratic objective function 

of (8.4) into the following sum of three squares 
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I ly-Aa-Bbl[~,  = 11~11~ + I[/~(a)-bll~ + Ilfi-a[l~,, (8.7) 

where ~ is the unconstrained least-squares residual vector; ~(a) is the least- 

squares estimate of b, but conditioned on a; Q~=) is the variance-covariance matrix 

of /~(a); and Q~ is the variance-covariance matrix of ~i. The geometry of the 

above orthogonal decomposition is shown in Figure 8.1. 

// 

Ilfl-all~ ~-----------~R(A ) 

Figure 8.1. Orthogonal decomposition of Ily-Aa-BbII2Q. 

From the above decomposition follows, that the last two squares on the right- 
hand side of (8.7) vanish identically if the objective function would be minimized 

as function of ae R " and be R 3. Hence, the minimizers would then be given by 

fie R " and /~E R 3 and the minimum of the objective function would be given by 

the squared norm of the least-squares residual vector ~, 

l l y - A a -  Bbll~, = 11~11~. (8.8) 

In our case, the objective function needs to be minimized as function ofae  Z " 
and b~R 3. In that case, only the second square on the right-hand side of (8.7) 

vanishes identically and the minimizers are given as cieR " and /~ = /~(a'3ER a. 

The corresponding minimum of the objective function reads then, 

l ly -Aa-Bbl l~ ,  = I1~11~, = tlg[l~ + II~-dll~. (8.9) 

The minimum (8.9) is clearly larger than, or at the most, equally large as the 
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floated value of the objective function (8.8). This difference is of course due to 

the fact that (8.9) is based on the additional constraint of restricting the ambiguity 

vector a to the space of integers. 

The above shows that we may follow a two-step procedure for solving the 

integer least-squares problem. The first step consists then of solving the 
unconstrained least-squares problem. As a result of this first step, real-valued 
estimates for both the ambiguities and baseline components are obtained, together 

with their corresponding variance-covariance matrices: 

/ : 3 '  / Q': Q~/" (8.10) 

This result forms then the input for the second step. In the second step one first 

solves for the vector of integer least-squares estimates of the ambiguities, r It 
follows from solving 

^ 2 

min Ila-allo, with a ~ Z ' .  (8.11) 
a 

Once the solution 6 has been obtained, the residual (fi-a') is used to adjust the 

float solution /~ of the first step, to get /~ = /~(6). As a result, the final fixed 
baseline solution is obtained as 

(8.12) 

This equation shows the relation that exists between the fixed and float solution,/~ 

and/~. It shows how the difference of these two baseline estimates depends on the 

difference between the real-valued least-squares ambiguity estimate a and integer 

least-squares ambiguity estimate ~i. 

If we apply the error propagation law to (8.12) and assume the integer estimate6 

to be nonstochastic, the variance-covariance matrix of/~ follows as 

Qi,- Qb-QbaQ~lQni, �9 (8.13) 

This result shows that Qt<Qt. Hence, the fixed baseline solution is of a better 

precision than the corresponding float solution. This is of course understandable 

if we think of the additional information which has been used in computing /~. It 

can be shown, when short observational time spans are used, that we in fact have 

Q~ < < Qb- This can be explained as follows. Since GPS satellites are in very high 

altitude orbits, their relative positions with respect to the receivers change slowly, 

which implies in case of short observational time spans, that the ambiguities - 
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when treated as being real-valued - become very poorly separable from the 

baseline coordinates. As a result, the precision with which the baseline can be 

estimated will be rather poor. However, when one explicitly aims at resolving for 

the integer-values of the ambiguities, the high precision carrier phase observables 

will start to act as if they were high precision pseudorange observables. As a 

result, the baseline coordinates become estimable with a comparable high precision 

and Qt; << Qb holds true. The sole purpose of ambiguity-fixing is thus, to be able, 

via the inclusion of the integer-constraint aE Z m, to obtain a drastic improvement 

in the precision of the baseline solution. When successful, ambiguity fixing is thus 

a way to avoid long observational time spans, which otherwise would have been 

needed if the ambiguities were treated as being real-valued. 

8 .2 .3  V a l i d a t i n g  the  F l o a t  and F ixed  So lu t ion  

In the previous section it was shown how the integer least-squares estimation 

problem can be solved in two steps. The first step provides the float solution and 

in the second step, after the integer least-squares ambiguities have been found, the 

fixed solution is obtained. It is of importance to realize however, that computing 

integer least-squares estimates is one thing, validating them is quite another. That 

is, one will always be able to compute an integer least-squares solution, whether 

it is of poor quality or not. We therefore still need to consider the question, 

whether we are willing to accept the computed integer least-squares solution. In 

this section the means for validating both the float and fixed solution will be 

discussed. For that purpose use will be made of concepts from the standard theory 

of statistical hypothesis testing, see, e.g., Baarda [1968], Koch [1987], Teunissen 

[1994c]. At the end of this section also some theoretical shortcomings of the 

cun'ent approaches of integer ambiguity validation will be discussed. 

We start defining three classes of hypotheses. They are 

Hi: y = Aa+Bb+e ,  Qy 

1-12:y ~ R k , Qy 

/-/3: y = A t + B b + e ,  Q:, 

- o~Gy, a e  R m, b e  R ", e~  R k 

- ~ G y  

- o~Gy, b e  R ", ea  R k 

(8.14) 

The first hypothesis, H 1 , considers the model of observation equations without the 

consu'aint that the ambiguities are to be integer-valued. Hence, the least-squares 

solution under H~ will give the float solution, i.e. ~, /~ and ~. Under the third 
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hypothesis, H 3, we assume to know a priori what the correct integer values of  the 

ambiguities are. In practice, the value 6 in H 3 is chosen to be equal to the integer 

least-squares solution for the ambiguities. Hence, the least-squares solution underH 3 

will give the fixed solution, i.e. d, b, 3. Note that the first hypothesis H~ is more 

relaxed than the third hypothesis H 3 and that H3c/-/t . The second hypothesis, H 2, 

is the most relaxed hypothesis. That is, under H 2 no restrictions at all are placed 

on ye  R k. In terms of subsets, the three hypotheses can therefore be ordered as: 

n3 cn, cI-12. 
In the following we will assume that the k-vector of observables y is normally 

distributed with a zero-mean residual vector e. The variance-covariance matrix Qy 

has been factored as Qy = ~Gy,  with the variance-factor of unit weight ~2 and 

the cofactor matrix Gy. Both the cases where 0 a is assumed known and where it 

is assumed unknown, will be considered. The unbiased estimates of the variance- 

factor of  unit weight 0 a under respectively H~ and H 3 are given as 

^ t  - 1 ^  " t  - 1 ~  

Hz: 02 = ~e G r e and H3: ~.~2 = e Gy e 
k -m-n  k-n (8.15) 

In the denominators of these two expressions, we recognize the redundancy under 

Hp k -m-n ,  and the redundancy under H 3, k-n. 

The first question we would like to answer is whether the model on the basis 

of which the float solution is computed, H~, can be considered valid or not. This 

is an important question in its own right, since the data can still be contaminated 

with undetected errors (e.g. outliers or cycle slips) and/or the chosen system of 

observation equations can still fail to capture some geometrical and physical 

effects (e.g. atmospheric delays or multipath). The test statistic which allows us 

to test H a against the most relaxed altemative hypothesis, i.e. which testsH~ 

against H 2, is given by the ratio 6~/o ~. This test statistic is distributed under 

H a as 1 ~(k-m-n) times the ~2-distribution, ~Z(k-m-n), or, as the F-distribution, 

F(k-m-n,~) .  Its mean and variance under H~ are equal to respectively 1 and 2~(k- 

m-n). The decision to accept H~ is made, when the value of the test statistic is 

less than the critical value F(k-m-n,oo), with ~z being the chosen level of 

significance. Thus H t is accepted when 

Oalo a < F~(k-m-n,~,). (8.16) 

I f  the value of the test statistic fails to pass this test, it is likely that either the data 

are still contaminated with errors and/or that the observation equations fail to 

capture all relevant geometrical and physical effects. As a consequence, the 
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corresponding float solution is contaminated with these unmodelled effects as well. 

When the above test fails, one will therefore have to try to identify the cause for 

the failure. This can be done by applying in succession, tests for the identification 

of these model errors (e.g. datasnooping for outliers, cycle slip testing, etc.), see 

, e.g., Baarda [1968], Van der Marel [1990], Teunissen [1994c]. In case the 

processing in based on recursive least-squares algorithms like the Kalman filter, 

then the detection, identification and adaptation procedure of Teunissen [1990a] 

can be used, see also, e.g., Teunissen and Salzmann [1989], De Jong [1994]. 

The question as to whether the model under H 3 can be considered valid or not, 

can be handled along similar lines as discussed above. That is, the appropriate test 

statistic for testing H 3 against the most relaxed alternative H 2, is given by the 

ratio ~.~/~2. This test statistic is distributed under H 3 as F(k-n,o~). Its mean and 

vatqance under H 3 are equal to respectively 1 and 21(k-n). The decision to accept 

H3is made, when the value of the test statistic is less than the critical value 

F~(k- n,oo), with ~ the chosen level of significance. Thus n 3 is accepted when 

~2/o~ < F (k-n,oo) .  (8.17) 

Note, that this test tests H 3 against the most relaxed alternative hypothesis H 2. An 

alternative test for the validation of H 3 and one which is more powerful, can be 

constructed if we are willing to accept that the first hypothesis HI is true. In that 

case we can test H 3 against H~, instead of against H 2. This test is therefore 

focussed on answering the question whether the fixing of the ambiguity vectora 

on the value 6 is valid or not. The appropriate test statistic for testing H 3 againstH~ 

is given as (~-(t)rGf~(Ct-6)/mc 2, with Ga being the cofactor of Qa. It is 

distributed under H 3 as F(m,~o). Its mean and variance under H 3 a r e  equal to 

respectively 1 and 2/m. The decision to consider the value 6 valid, is then made 

when 

(:t-aDrG~'(fi-&/mo a < F~(m,~,). (8.18) 

This shows not surprisingly, that this test is based on the distance - as measured 

in the metric defined by Qa " between the integer ambiguity vector 6 and the 

centre a of the ambiguity search space. If the value of the test statistic fails to 

pass the test (8.18), the conclusion reads that the value 6 for a is rejected. In that 

case, the confidence in the value 6 is low, implying that one should refrain from 

using the fixed solution. Instead, one should then either base the results on the 

hypothesis H 1 and thus be content with the float solution, or alternatively, gather 

more data (e.g. make use of longer observational time spans, or, include dual 

frequency data if applicable, or, include pseudorange data if applicable) and then 
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repeat the whole estimation and validation process. 

Instead of using the expression of (8.18) for the test statistic, we may also use 

an expression in which both of the test statistics of (8.16) and (8.17) occur. This 

follows from the identity 

(:~_d)rGal(~_~/mty2. k-n(t32/t~2 ) _ k-m-n(~2/~2), (8.19) 
m m 

which is easily verified when using (8.9). Hence, the test statistic of (8.18) is a 

weighted difference of the two test statistics of (8.16) and (8.17). 

In case the value of the test statistic passes the test (8.18), the conclusion reads 

that there is no evidence to reject the value 6 for a. Still however, one should be 

careful to conclude from this that one can safely fix the ambiguities and provide 

the fixed solution to the user. The fact that there is no evidence to reject the value 

d, does not mean that 6 is the one and only integer ambiguity vector for which 

such an.evidence is lacking. There still could exist integer ambiguity vectors other 

than 6, that pass the test (8.18). In that case, the likelihood that 6 is the correct 

integer ambiguity vector would not differ too much from the likelihood that some 

other integer vector, say 6 ' ,  would be the correct ambiguity vector. Fixing the 

ambiguities on 6 should therefore be avoided in this case, because of the existing 

high likelihood of fixing the ambiguities to a wrong value. And fixing the 

ambiguity vector to a wrong value, can have dramatic consequences for the fixed 

baseline solution. 

To summarize: (i) we know by definition, if ti is chosen as the integer least- 

squares ambiguity vector, that 6 is the most likely integer candidate for a; (ii) we 

also know, when the test (8.18) passes, that the most likely candidate 6 is indeed 

a likely candidate; but, (iii) we do not know yet, how the likelyhood of the 

candidate 6 compares to the likelihood of other integer vectors. We therefore need 

an additional test, in order to be able to compare the likelihoods Of integer 

candidates, see, e.g., Abbot et.al. [1989], Wiibbena [1991], Frei [1991], Euler and 

Schaffrin [1991], Erickson [1992], Rothacher [1993], Betti et al. [1993]. Next to 

the most likely candidate ~, we will therefore also make use of the second most 

likely integer candidate, which will be denoted as t i ' .  The idea is now, that we 

should try to find a test statistic which in some way measures the likelihood o f d '  

relative to the likelihood of 6. An intuitively appealing test statistic for that 

purpose is given by the ratio ~'2/6"2. By the clef'tuition of ti and 6 '  this ratio is 

always larger than one. The second most likeIy value 6 '  is then considered to be 

far less likely than the most likely value 6, if the ratio 6"2/6 "2 is significantly 

larger than one. Thus if 6 passes the test (8.18) and 
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6"2/~ 2 > c ,  (8.20) 

in which c > 1 is a to be chosen critical value, the decision reads that the most 

likely value d is not only likely enough, but also far more likely than the second 

most  likely value d ' .  Hence, in that case one can safely decide to make use of  

the fixed solution. 

Within the context of  GPS ambiguity fixing, the acceptance test (8.20), or 

variations thereof, has been in use for quite some time now and it appears to work 

satisfactorily. There is however one pitfall that should be avoided. In the GPS- 

literature it is sometimes claimed that the test statistic of  (8.20) has an F- 

distribution. Unfortunately, this is not true. The two quadratic forms in the 

nominator  and denominator of  the test statistic are namely not independent. This 

implies for instance, that once a value for c is chosen, one is not aloud to make 

use of  the F-distribution for the computation of the corresponding level of 

significance. 

As an alternative to test (8.20), one may also consider to make use of  a test 

similar to that of  (8. t8). That is, one may decide to make use of  the fixed solution 

if both the test (8.18) and the test 

(gt-a')rG2'(gt-a')lmG "2 > F,(m,o~) > F (m,,,o) (8.21) 

are passed. The rationale behind using the combined test is, when (8.18) and 

(8.21) are satisfied, that the value 6 may be considered validated and the valuea' 
invalidated. In order to make sure that 6 '  is sufficiently less likely than 6, one 

will have to choose F~,(m,~,,) sufficiently larger than F=(m,~,). The acceptance 

region for the combined test, (8.18) and (8.21), is shown in Figure 8.2. A 

theoretical advantage of this combined test over (8.20) is, that it is based on test 

statistics which have well-known distributions. 

Up to this point, the variance-factor of unit weight o a was assumed known, l t ' c  z 

is unknown however,  both the tests (8.16) and (8.17) cannot be executed. That  is, 

when o a is unknown a priori, one will not be able to test the hypotheses H 1 a n d H  3 

against their most relaxed alternative H 2. In this case it will however  still be 

possible to test H 3 against H~. The appropriate test statistic for testing H 3 against 

H~, when o a is unknown, follows when we replace ~= in expression (8.18) by 

6 "2. The resulting test statistic will then have the distribution F(m,k-m-n) under 

H 3. Hence,  instead of (8.18) the test becomes then 

( - a )  Ga (a-a)/m~- < F~,(m,k-m-n) (8.22) 
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Figure 8.2. The moon-shaped acceptance region of the combined test (8.18) and (8.21) 

The means of the test statistics of (8.16), (8.17) and (8.18) were all equal to 1. 

The mean of the test statistic of (8.22) under H 3 is however not equal to 1. It 

equals (k-m-n)l(k-m-n-2). Hence, it is larger than 1, but very close to it when 

(k-m-n) is large. In fact the distribution of the test statistic of (8.22) tends to that 

of (8.18) when (k-m-n) increases. As it was the case with the test statistic of 

(8.18), also the test statistic of (8.22) can be expressed in terms of the two test 

statistics of (8.16) and (8.17). Instead of a weighted difference however, it now 

becomes dependent on the ratio of the two test statistics of (8.16) and (8.17). This 

follows from the identity 

[(a-a')rGf~'(a-a'D/mtY- l ]  - k-n [ ~ / t Y -  1 ] .  
m 

(8.23) 

Above, we have discussed the validation of both the float and the timed solution 

using standard concepts from the theory of statistical hypothesis testing. This is 

also the customary approach which is cun'ently in use in the GPS-literature. 
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Although these concepts appear to work satisfactorily in practice, it is not without 

importance to point out that there are some theoretical shortcomings associated 

with these concepts. These shortcomings are not related to the way the validation 

of the float solution is handled. The validation of the float solution as it has been 

discussed above is theoretically sound, of course provided that the underlying 

assumptions are valid. The theoretical shortcomings, as the author sees it, are 

directed towards the way the validation of the fixed solution is handled. It already 

starts with the formulation of the third hypothesis H 3 of (8.14). In the formulation 

of this hypothesis, the integer ambiguity vector ~i is treated as a deterministic 

vector of which the values of its entries are independently set. This however is not 

true. First of all, the entries of 6 are not independently chosen. Instead, they 

depend on the same vector of observables y as it is used in the formulation of the 

hypothesis. Hence, when the values of the entries of y change, also the integer 

values of the entries of 6 might change. Secondly, since the vector of observables 

y is assumed to be a random vector, also the integer least-squares ambiguity vector6 

is stochastic and not deterministic. The conclusion reads therefore, that instead ofH 3 

of (8.14), the correct hypothesis should read 

H3: y - A a §  Qy = o2Gy, a ~ Z " ,  b ~ R  ".  (8.24) 

That is, H 3 should read as H~ with the additional integer constraint a~ Z " and 

not read as H~ with the additional constraint of a = 4. The consequence of 

formulation (8.24), as opposed to the formulation of H 3 in (8.14) is, that in order 

to test H 3 of (8.24) against H t, one will have to take the stochasticity of the 

integer estimator of the ambiguity vector into account. This is a nontrivial 

problem, since the probability density function of ~ is of the discrete type. For a 

discussion see Blewitt [1989], Teunissen [1990b], Betti et al. [1993]. 

Fortunately, the practical relevance of the above pitfall may be minor, in 

particular when it can be assured that 6 is the only integer candidate of sufficient 

likelihood. One of the features of a proper validation procedure should namely be 

to verify, through tests like (8.20), whether or not sufficient probability mass is 

located at a single grid point of Z ". And when this can be assured to a sufficient 

degree, the influence of the stochasticity of 6 may be negligible. Nevertheless, in 

order to obtain a theoretically sound and consistent validation procedure, the above 

identified pitfall should still be understood. 
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8.3 SEARCH FOR THE INTEGER LEAST-SQUARES AMBIGUITIES 

In this section it will be shown how the integer least-squares problem (8.11) can 

be solved numerically. The solution will be found by means of a search process. 

Two different concepts will be discussed, one which is based on the idea of using 
planes of support and one which is based on the idea of using a sequential 

conditional least-squares adjustment of the ambiguities. The concept which is 

based on using the ellipsoidal planes of support parallels the use of simultaneous 

confidence intervals in statistics for multiple comparisons Scheff6 [1956]. Within 

the context of GPS ambiguity fixing the method of Frei and Beutler [1990, 1991] 

is based on it. The method of Teunissen [1993a, 1994a] is based on the second 

concept. When interpreted algebraically instead of statistically, it parallels the use 

of a triangular decomposition. Within the context of GPS ambiguity fixing, 

alternative approaches that make use of a triangular decomposition are proposed 
in Blewitt [1989], Wtibbena [1991], Euler and Landau [1992]. In this section, we 

will also discuss the dependency of the search performance on the statistical 

characteristics of the least-squares ambiguities. In particular, it will be explained 

why the search for the integer least-squares ambiguities performs so poorly, when 

only short observational time span carrier phase data is used. 

8.3.1 The Ambiguity Search Space and its Planes of Support 

Up to this point we did not show how the integer least-squares problem (8.11) can 

actually be solved. As it turns out, the computation of the integer minimizer of 

(8.11) is a far from trivial problem. There are namely in general no standard 

techniques available for solving (8.1 I) as they are available for solving ordinary 

least-squares problems. It is therefore that with the minimization problem (8.11), 

rain (~-a)rQ~(~-a), with a e Z  ~', (8.25) 
a 

the intricacy of the integer ambiguity estimation problem manifests itself. To solve 

it we will resort to methods that in one way or another make use of a discrete 

search strategy. The idea is to replace the space of all integers, Z m, with a smaller 

subset that can be enumerated and that still contains the integer least-squares 

solution. This smaller subset will be chosen as a region bounded by an hyper- 

ellipsoid, where the hyper-ellipsoid is based on the objective function of (8.25). 

This ellipsoidal region is given by 
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(a_a)rQ~'(gt_a) < Z2, (8.26) 

and it will be referred to as the ambiguity search space (see Figure 8.3). It is 

centred at the real-valued least-squares estimate 4, its shape is governed by the 

variance-covariance matrix Q~ and its size can be controlled through the selection 

of the positive constant ~r 

One way of finding the minimizer of (8.25) is to identify first the set of integer 

ambiguity vectors a that satisfy the inequality (8.26), i.e. to identify the set of 

gridpoints that lie within the ambiguity search space, and then to select from this 

set that gridpoint that gives the smallest value for the objective function of (8.25). 

The quadratic form of (8.26) however, can not be used as such to identify the set 

of candidate gridpoints. The first idea that comes in mind is therefore to replace 

inequality (8.26) with an equivalent description that is based on using the planes 
of support of the ellipsoid. This equivalence can be constructed as follows. Let d 

be an arbitrary vector of R " and let (4 -a )  be orthogonally projected onto d. The 

orthogonal projection of (g -a )  onto d, where orthogonality is measured with 

respect to the metric of Q,, is then given as d(d rQ~td)-~ d rQ~-~(a-a). The square 

of the length of this vector equals [d rQ~t(a-a)]21(d rQ~ld). Since the length of 

the orthogonal projection of a vector onto an arbitrary direction is always less than 

or equal to the length of the vector itself, we have 

(d - a)rQ~-' (a  - a )  = m a x  [d r Q - ' ( d _  a ) ] 2 / ( d  rQa-td).  
d~R" 

(8.27) 

iiil i ii :iiil !ii iiii !i! ilii./ 

Figure 8.3. The ambiguity search space and integer grid. 
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Hence, it follows from this equality that, when d is replaced by Qac, we obtain 

the equivalence 

(d-a)rQ;'(•-a) -< X 2 <=> [c r(~-a)]21(c rQac) < Z2)CcER m. (8.28) 

Both inequalities describe the ana biguity search space. In the second inequality we 

recognize c r(d_ a) = -+(c rQnc)~ x, which is the pair of parallel planes of support 

of the ambiguity search space having vector c as normal. The above equivalence 

therefore states that the ambiguity search space coincides with the region that 

follows from taking all intersections of the areas between each pair of planes of 

support. Hence, in order to find the set of candidate gridpoints that satisfy (8.26), 

we may as well make use of the planes of support (see Figure 8.4). That is, 

instead of working with the single quadratic inequality (8.26), we may work with 
the family of scalar inequalities 

[c r(fi-a)]2 < (c rQnc)z2, Vc~R m (8.29) 

Figure 8.4. Ambiguity search space and planes of support. 

When working with the above inequalities, there are however two restrictions 

that need to be appreciated. First of all, the above equivalence (8.28) only holds 

for the infinite set of planes of support. But for all practical purposes one can only 

work with a finite set. Working with a finite set implies however, that the region 

bounded by the planes of support will be larger in size than the original ambiguity 

search space. Of course, one could think of minimizing the increase in size by 
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choosing an appropriate set of normal vectors c. For instance, if the normal 

vectors c are chosen to lie in the direction of the major and minor axes of the 

ambiguity search space, then the resulting region will fit the ambiguity search 

space best. But here is where the second restriction comes into play. One simply 

has no complete freedom in choosing the planes of support. Their normals c 

should namely be chosen such that the resulting interval (8.29) can indeed be used 

for selecting candidate gridpoints. Hence, the normal vectors c cannot be chosen 

arbitrarily. 

The most rudimentary approach would be to circumscribe the ambiguity search 

space with an m-dimensional rectangular box of which the sides are perpendicular 

to the coordinate axes in R ". This is achieved when the norrnals c are chosen as 

c~ = (0 ..... 1,0,...0) r, with the 1 as the ith-coordinate. The region bounded by the 

corresponding planes of support is then described by the following finite set of m 

scalar inequalities: 

(~2 "~ ( a i - a )  2 < a)C-, for i = 1 ..... m (8.30) 

where o]  is the variance of the ith ambiguity. The intervals of (8.30) can now be 

used to select candidate ambiguity integers from which then the minimizer of 

(8.25) can be chosen. It will be clear that the m-dimensional rectangular box 

described by the inequalities of (8.30), fits the ambiguity search space best if this 

search space would be spheroidal or at least would have its principal axes parallel 

to the coordinate axes. The fit will be rather poor however, when the ambiguity 

search space is both elongated and rotated with respect to the coordinate axes. An 

improvement of the region circumscribing the ambiguity search space can be 

achieved by introducing additional planes of support. As an example, consider the 

case that one is working with dual-frequency carrier phase data instead of with 

single-frequency cartier phase data. With (8.2), the difference between the 

L 2 and L l DD carrier phases follows then as 

k/ k/ k/ 
O0,12 - ~'~V~, 2- ~'lNij, 1 + ~0,12.n 

This shows that the linear combination ~.zNiia - ~.,No, ~ can be estimated with a high 

precision. Thus, ff the ambiguity vector a is partitioned as a - (a v a2) r witha l 

having as its entries all L 1 DD ambiguities and a 2 all L 2 DD ambiguities, it 

follows with the choice 

c = (-~.1,0 ..... ~,2,0 ..... 0) r 

that c rQac will be very small indeed. Hence with this type of choice for the 
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normal c, the bound [c r(d- a)] ~- < c rQac~2 introduces in addition to (8.30) a tight 

constraint on the candidate L 1 and L 2 ambiguity integer pairs. 

8.3.2 Sequential Conditional Least-Squares Ambiguities 

In the previous section we have seen that the planes of support of the ambiguity 

search space allow us to formulate a set of scalar inequalities on the basis of 

which the search for the minimizer of the integer least-squares problem (8.25) can 

be performed. It was noted however, that the region bounded by the chosen finite 

set of planes of support may not necessarily follow the shape and orientation of 

the ambiguity search space. This observation suggests, since the shape and 

orientation of the ambiguity search space is governed by the ambiguity variance- 

covariance matrix Q~, that we consider in somewhat more detail the impact of the 
structure of the ambiguity variance-covariance matrix. 

To start, it helps if we ask ourselves the question what the structure of (8.25) 

must be in order to be able to apply the simplest of all integer estimation methods. 

Clearly, the simplest integer estimation method is "rounding to the nearest" 

integer. In general this approach will not give us the correct answer to the integer 

least-squares problem (8.25). However, it does give the correct answer, when the 

ambiguity variance-covariance matrix Qa is diagonal, i.e. when all least-squares 

ambiguities are fully decorrelated. A diagonal Qa implies namely that (8.25) 

reduces to a minimization of a sum of independent squares 

minimize ~ (ai-a)2/a2a, �9 (8.31) 
at , . . , acZ  i -  1 

�9 Hence, in that case we can work with m separate scalar integer least-squares 

problems, and the integer minimizers of each of these individual squares are then 

simply given by the integer nearest to (~. The conclusion reads therefore, that the 

ambiguity integer least-squares problem becomes trivial when all least-squares 

ambiguities are fully decorrelated. 

In reality, the least-squares ambiguities are usually highly correlated and the 
variance-covariance matrix Q~ is far from being diagonal. Still however, it is 

possible to recover a sum-of-squares structure of the objective function, similar 

to that of (8.31), if we diagonalize Q~. Not every diagonalization works however. 

What is needed in addition, is that the diagonalization realizes, like in (8.31), that 

the individual ambiguities can be assigned to the individual squares in the total 

sum-of-squares. This for instance, rules out a diagonalization based on the 
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eigenvalue decomposition of the ambiguity variance-covariance matrix. In the 

same spirit of decomposition (8.7), we will therefore apply a conditional least- 

squares decomposition to the ambiguities. And this will be done on an ambiguity- 

by-ambiguity basis. Hence, we will introduce the sequential conditional least- 

squares ambiguities a,lt, i - 1 ..... m, see, e.g., Teunissen [1993a]. The estimate~l t 

is the least-squares estimate of the ith ambiguity ai, conditioned on a fixing of the 

previous (i-1) ambiguities. The shorthand notation ~ stands therefore for 

a~o-~)...t" The sequential conditional least-squares ambiguities follow from the 

ordinary least-squares ambiguities as 

i - I  

a,I, = fi~- Z c~n G-a; (~, j-aj) .  (8.32) 
) - 1  , u  

In this expression can, ~ denotes the covariance between a~ and ~j~j. An important 

property of the ~,v is that they do not correlate. Hence their variance-covariance 

matrix is diagonal. It follows from (8.32) that the ambiguity difference(fi~-al) 

can be written in terms of the differences (fijll-aj),j  = I ..... i as 
e ^  ~ + x " ' i -  1 - '~  ^ ( d i -a )  = ta~ll-a ~) z_j.~ Ga,n,~ r Hence, when this is written out in 

vector-matrix form, using the notation d = (@ fizN ..... ~,,IM) r, and the error 

propagation law is applied, it follows, because of the fact that the conditional 

least-squares ambiguities ale mutually uncorl'elated, that 

([z-a) = L(~l-a) and Qa = LDL T, (8.33) 

where: D = diag( .... o'],,,...) and (L)~j = 0 forl  < i < j  < m and (L)ij = 1 for 

i = j and (L)ij - ~n,a~ C] 2 for 1 < j < i < m. The above matrix decomposition 

is well-known and is usually referred to as the LDLr-decomposition, see, e.g., 

Golub and Van Loan [1986]. With our "re-discovery" of the LDLr-decomposition, 

we now can give a clear statistical interpretation to each of the entries of the 

lower triangular matrix L and to each of the entries of the diagonal matrix D. This 

interpretation will also be of help, when we discuss ways of improving the search 

for the integer least-squares ambiguities (cf. section 8.5.3). 

Since the sequential conditional least-squares ambiguities are mutually 

uncorrelated, substitution of (8.32) into (8.25) gives the desired sum-of-squares 

structure and allows us to rewrite the integer least-squares problem as 

minimize ~ ~ z 2 (ail t -  ai) /Ga,. (8.34) 
a r . . . a , e  Z i - 1 

Note the similarity between (8.31) and (8.34). In fact, the minimization problem 
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(8.34) reduces to that of (8.31) when all least-squares ambiguities would be fully 

decon'elated. In that case the ordinary least-squares ambiguities become identical 

to their conditional counterparts. 

Based on the sum-of-squares structure of (8.34), we may now formulate a search 

for the integer least-squares ambiguities. Using the above sum-of-squares structure, 

the ambiguity search space can be described as 

( g tn l -a i )21~ , ,  < Z 2 ,  (8.35) 
i - I  

and the scalar bounds on the individual ambiguities become 

2 2 

(~/m-a2) 2 < ~ , , [Z2- (a , -a , )2 /~ , ]  

(8.36) 

m- I  
2 ^ ^ 2 2 (a , ,  4- ~)2 _< o~ ,  [Z 2- E (a~l- a)  / cr~]. 

) - t  

Note that the bounds of (8.36) are sharper than those of (8.30). 

In order to discuss our search based on (8.36), the two-dimensional case will be 

used as an illustrative example. In the two-dimensional case, the ambiguity search 

space is given by the inequality 

( gt - a~)21o.]a + ( g~2, l - a2)Z l o'2~, < X 2 . (8.37) 

This two-dimensional ambiguity search space is shown in Figure 8.5. In the figure 

we have also drawn the line passing through the centre of the ellipse, (t~ ,~z), 

having (1,#n,n,t~]~) as direction vector. This line intersects the ellipse at two points 

where the normal of the ellipse is directed along the a t -axis. Note that the point 

(at, t~m) moves along this line when at is varied. 

Also shown in the figure is the rectangular box that encloses the ellipse. It is 

described by the two scalar inequalities 

[ (dt-at)  2 < 4 , Z  2 (8.38) 

_ X 2 t (d2  -- a2 )2  < (~2a2 

Hence, these two inequalities are the two-dimensional counterparts of (8.30). But 
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instead of using these two inequalities, the sum-of-squares structure of  (8.36) 

allows us to formulate the following two bounds on the two ambiguities a~ and 

a 2 , 

(~x-a~) ~ < cr 2 X 2 

(~/~.-a2) z < c~  Ma , )X  2, 

(8.39) 

with ~.(a~) = 1-(ci~-a])2/cr~, X ~. These two intervals and their lenghts are also 

shown in Figure 8.5. 

J 

-1 

~:~!:::iz::::-;i~ iOti~ ~!ii 

I , 
I 

(a,  - a l ) ~ _  < o(,.,)X ~ 

,it) 2 

~t) a t i X2 

F i g u r e  8.5. Ambigu i ty  search space and  search bounds.  

Based on the two scalar inequalities of (8.39), our search for the integer least- 

squares ambiguities may now be described as follows. First one selects an integer 

ambiguity a x that satisfies the first bound of (8.39). Then based on this chosen 

integer ambiguity value ax, the conditional least-squares estimate d~l and scalar 

~L(a~) are computed. These values are then used to select an integer ambiguitya 2 

that satisfies the second bound of (8.39). Since we aim at finding the integer 

minimizer, it is natural to choose the integer candidates in such a way that the 

individual squares in the sum-of-squares (8.37) are made as small as possible. This 

implies that a 2 should always be chosen as the integer nearest to r~ m.  But 

remember that d2, depends on a I . If  one then fails to find an integer a 2 that 

satisfies the second bound, one restarts and chooses for a~ the second nearest 

integer to ~ ,  and so on. Note that in this way, one is roughly following the 
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direction of the line (a~, 421~), working with a~ along the a~-axis from the inside 

of the ellipse, in an alternating fashion, towards the bounds of the ellipse. This 

process is continued until an admissible integer-pair (a~, az) is found, i.e. until a 

gridpoint is found that lies inside the ambiguity search space. Then a shrinking of 

the ellipse is applied, by applying an appropriate downscaling of Z 2, after which 
one continues with the next and following nearest integers to d I . This process is 
continued until one fails to find an admissible integer for a~. The last found 

integer-pair is then the sought for integer least-squares solution. 

Example 1: 

This example illustrates the above described search procedure. The least-squares 

estimates of the two ambiguities and their variance-covariance matrix are given 
a s  

4 = /1-05/ . = / 53-40 38-40 l 

L130) Q~ L38.40 28.00) 
The Z2-value is given as X 2 - 1.5 and the corresponding ambiguity search space 

with integer grid is shown in Figure 8.6. 
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F i g u r e  8 . 6 .  T h e  2 D - a m b i g u i t y  s e a r c h  s p a c e  a n d  i n t e g e r  g r i d .  

The complete set of integer pairs (a~ ,a2) that lie inside the ambiguity search space 

is given in Table 8.1. This table also gives the corresponding values for the 

objective function F(a I , a 2 )  = ( 4 1  - a l ) 2 / G ~ ,  + (4211 - a 2 ) 2 / O r ~  . 

Let us now consider the actual results of the search based on the two sequential 

bounds of (8.39). See also Table 8.2. Since 41 - 1.05, we choose a~ as its nearest 
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integer, which is a 1 - 1.00. Based on this integer value for a t , the conditional 

least-squares estimate for the second ambiguity reads d2tl * 1.26. Since its nearest 

integer reads 1.00, we choose a 2 as a 2 - 1.00. Hence, we now have an integer 

pair (a t ,a2)  = (1.00, 1.00) which lies inside the ambiguity search space. 

Table 8.1. The set of integer candidates and their function values. 

No. a, a 2 F(a,,a2) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

NO. a I a 2 F(ava 2) 
-6 -4 1.0680 11 1 2 1.4014 

-5 -3 0.6921 12 2 2 0.0176 

-4 -2 0.7618 13 3 2 1.3471 

-3 -2 0.6959 14 3 3 0.3006 

-3 -1 1.2773 15 4 3 0.6223 

-2 -I 0.2037 16 4 4 1.0293 

-1 0 0.1572 17 5 4 0.3432 

0 0 0.7890 18 6 5 0.5099 

0 1 0.5564 19 7 6 1.1223 

1 1 0.1804 20 8 6 1.1339 

21 9 7 1.1843 

Table 8.2. The integer pairs that are encountered during the search. 

Z 2 -  1.5 

a I a 2 

1.00 1 .00 

X 2 - 0.1804 

o I a 2 

1.00 

2.00 2.00 

Z 2 = 0.0176 

a I ~l 2 

2.00 

Since the value of the objective function of this integer pair equals F(1.00, 1.00) 

= 0.1804, we may now shrink the ellipse and set the )C2-value at  Z 2 = 0.1804. It 

will be clear that the second nearest integer of am " 1.26, being 2.00, will give 

an integer pair (1.00, 2.00) that lies outside the ellipse. Hence, in order to continue 

we go back to the first ambiguity and consider the second nearest integer to 

tl I = 1.05, which is a 1 = 2.00. 

Based on this value for a 1 , the conditional least-squares estimate for the second 
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ambiguity reads fi,-t~ = 1.98. Since its nearest integer reads 2.00, we now choose 

a 2 as a 2 = 2.00. It follows that this new integer pair (a], a 2) = (2.00, 2.00) lies 

inside the schrunken ellipse and that the value of its objective function reads 

F(2.00, 2 .00)= 0.0176. We may now again shrink the ellipse and set 

X2 = 0.0176. It will be clear that the second nearest integer of fizz, = 1.98, being 

1.00, will give an integer pair (2.00, 1.00) that lies outside the shrunken ellipse. 

Hence, we again go back to the first ambiguity and now consider the third nearest 

integer to ci, = 1.05, which is 0.00. It follows however that this value for a, does 

not satisfy the first bound of (8.39) for Xz = 0.0176. As a result, the search stops 

and the last found integer pair is provided as the solution sought. That the integer 

pair (a~, a 2) = (2.00, 2.00) indeed equals the integer least-squares solution can 

be verified by means of Table 8.1. 

8.3.3 On the DD Ambiguity Precision and Correlation 

In the previous two sections we have introduced two concepts that can be used for 

solving the integer least-squares problem (8.25). First the use of the ellipsoidal 

planes of support was discussed. The search based on this concept is rather 

straighforward, but as it was pointed out, the bounds that follow from using the 

planes of support may be rather conservative, in particular when the ambiguity 

search space is elongated and rotated with respect to the grid axes. Moreover, 

these bounds are fixed from the outset. The second concept that we discussed 

made use of a sequential conditional least-squares adjustment of the ambiguities, 

thus achieving a sum-of-squares structure for the objective function that has to be 

minimized. As a consequence we obtained bounds for the individual ambiguities 

that are less conservative and that are also not fixed from the outset. These bounds 

adjust themselves depending on the stage of progress of the search process. 

So far, no quantitative indications were given of how well the search for the 

integer least-squares ambiguities will perform. We stressed though, that the 

elongation and orientation of the ambiguity search space is an important factor for 

the performance of the search. If the ambiguity search space turns out to be 

spheroidal or an hyper-ellipsoid with its principal axes parallel to the grid axes, 

then a simple rounding to the nearest integer will suffice. A slight difference 

between the direction of the principal axes and the grid axes however, may 

already render the approach of rounding to the nearest integer useless. The search 

based on the use of the ellipsoidal planes of support may suffice in its most 

rudimentary form, where use is made of the enclosing m-dimensional rectangular 

box, if the ambiguity search space, although rotated with respect to the grid axes, 
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is still quite close to a spheroid. The fit of the m-dimensional rectangular box will 

become poorer though, the more elongated the ambiguity search space gets. 

Overall, the search bounds that follow from the sequential conditional least- 

squares adjustment of the ambiguities, follow the shape of the ambiguity search 

space best. But then again, in order to get a better insight as to its performance, 

we still need to know more about the behaviour of these adjustable bounds. 

The above motivates us to have a somewhat closer look at the structure of the 

ambiguity variance-covariance matrix Qn. In this section we will therefore give 

some quantitative indications of the ambiguity search space. More elaborate 

examples of the numerical characteristics of the ambiguity search spaces can be 

found in Teunissen [1994a,d], De Jonge and Tiberius [1994], Teunissen and 

Tiberius [1994]. First however, we will consider an example of a synthetic 2x2 

ambiguity variance-covariance matrix. The structure of this matrix has been 

chosen such that it resembles the structure of the actual mxm ambiguity variance- 

covafiance matrices. The example will illustrate some of the main features of this 

variance-covariance matrix and show what the implications of the particular 

su'ucture of this matrix are for the integer ambiguity search. 

Example 2: 

Let the variance-covariance matrix of the two least-squares ambiguities c]~ and ~2 

be given as 

(8.4O) 

It will be assumed that 

~2 << 13-', 13~ ; [32 = 1322. (8.41) 

Note that the above 2x2 matrix is given as the sum of a scaled rank-2 matrix and 

a rank-1 matrix. And because of (8.41), the entries of the rank-2 matrix are very 

much smaller than the entries of the rank-1 matrix. In order to give some 

qualitative indications as to how the two-dimensional ambiguity search space and 

the statistics of the two ambiguities are affected by the particular structure of the 

variance-covariance matrix, we will consider the elongation of the ambiguity 

search space, the correlation coefficient of the two ambiguities and their 

conditional variances. 
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First we consider the elongation of the ambiguity search space. Elongation will 

be denoted by e and it is given as the ratio of the largest and smallest lengths of 

the principal axes of the ambiguity search space. It follows from (8.40) that the 

elongation squared is given as 

e + - 1 + ~ / c  2 + ~+/~2. (8.42) 

This shows that e = 1 when 13, - ~2 " 0. In that case, the ambiguity search space 

equals a perfect circle. In our case however, (8.41) holds true, which implies that 

1321/o "2 >> 1 and ~ / ~  >> 1. Hence, in our case the ambiguity search space is 

extremely elongated. 
In order to measure the statistical dependency between the two ambiguities, we 

first consider their correlation. It follows from (8.40) that the square of the 

correlation coefficient is given as 

p 2 - ((1 +oa/13+) (1 +0a11322)) -' (8.43) 

Together with (8.41) this shows that p 2 _= 1. Hence, the two ambiguities are very 

heavily correlated. As a consequence of this extreme correlation, one will observe 

a large discontinuity in the conditional variances. To show this, consider the 
2 variance cra, and the conditional variance ~2%. It follows from (8.40) that 

, : ( 8 . 4 4 )  

Together with (8.41) this shows that oJ~, << ~ .  Hence, there is a tremendous 

drop in value when one goes from the variance of the first ambiguity to the 

conditional variance of the second ambiguity. With 132~ sufficiently large, we 
approximately have ~ ,  = 1321 and ~ ,  = 2~ 2. The very important implication of 

this result for the search of the integer least-squares ambiguities is the following. 

When ~ ,  is large and r extremely small, the problem of search-halting will be 

significant. A large r implies namely, that the first bound of (8.39) will be 

rather loose. Quite a number of integers will therefore satisfy this first bound. This 

on its turn implies, when we go to the second bound of (8.39), which is very fight 

due to 0"24, < < 62, that we have a high likelyhood of not being able to find an 

integer that satisfies this second bound. The potential of halting is therefore very 

significant when one goes from the first to the second bound. As a consequence 
a large number of trials are required, before one is able to find a candidate 

integer-pair. 
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In order to corroborate the above given qualitative results, we will now consider 

an example based on actual GPS data. Quantitative results, which are thought 

tobe representative, are given for the elongation of the ambiguity search space and 

for the precision, correlation and spectrum of the DD ambiguities. Our example 

is based on a 8 satellite configuration, using dual frequency carder phase data 

only. Hence, pseudorange data has not been used. The results that will be shown 

are based on the mere use of two epochs of data separated by only one second. 

The reason for choosing for our example the short observational time span of one 

second using the minimum number of two epochs, is to illustrate the extreme 

values the statistics of the DD ambiguities can reach. The a priori standard 

deviation of both the L 1 and L 2 carrier phases was set at the value of ~ = 3 ram. 

Correlation in time and correlation between the channels were assumed to be 

nonexistent. Also atmospheric delays and multipath were assumed to be absent. 

Figure 8.7 shows the elongation of the ambiguity search space as function of the 

observational time span. Note the extremely large elongation for short 

observational time spans. The elongation improves when the spacing in time of 

the data increases, that is when the observational time span gets longer. 
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Figure 8.7. Elongation as function of the observational time span in minutes. 

Figure 8.8 shows the precision of the twelve DD ambiguities and Figure 8.9 

shows the histogram of the absolute values of the DD ambiguity correlation 

coefficients. Note that the precision of the least-squares DD ambiguities is 

extremely poor, since their standard deviations range from 60 cycles to 250 cycles. 

This is an indication that the size of the ambiguity search space will be rather 

large when compared to the unit grid spacing of one cycle. Hence, the 12- 

dimensional rectangular box enclosing the ambiguity search space is prone to have 
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a very large amount of candidate grid points. 
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Figure 8.8. The standard deviations of the 12 DD ambiguities in cycles. 
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Figure 8.9. Histogram of the absolute values of the 66 DD ambiguity correlation coefficients. 

Figure 8.9 clearly shows that the majority of the sixty-six correlation coefficients 

are larger than a half in absolute value. Quite a few are even very close to one in 

absolute value. This shows that the DD ambiguities are highly correlated indeed. 

Hence, the ambiguity variance-covariance matrix Q~ can be considered to be far 

from diagonal. The presence of high correlation is an indication that the 

unconditional standard deviations of the ambiguities are likely to differ 

significantly from their conditional counterparts. The bounds in (8.30) are 

determined by the unconditional standard deviations. It are the conditional 

standard deviations however, that play a decisive role in the bounds of (8.36). The 

spectrum of the twelve conditional standard deviations is shown in Figure 8.10. 
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Note the logarithmic scale along the vertical axis. 

Figure 8.10 clearly shows that quite a few of the conditional standard deviations 

are very small indeed. There are three large conditional standard deviations and 

nine extremely small ones. This shape of the spectrum is very typical for GPS 

single baseline positioning. A somewhat similar shape of the spectrum will be 

found in case one considers GPS multi baseline positioning, see Teunissen et al. 

[1994]. In that case however, the location of the discontinuity will be different. 
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Figure 8.10. The spectrunr of the conditional standard deviations of the DD ambiguities in cycles. 

The discontinuity is a consequence of the intrinsic structure of the carder phase 

model of observation equations and the chosen parametrization in terms of the DD 

ambiguities. Although it is possible to proof analytically that the spectrum of the 

DD ambiguities must have a large discontinuity of the size shown in Figure 8.10, 

it suffices for our purposes to give a more intuitive explanation for this 

discontinuity. The discontinuity in the spectrum is located when passing from the 

third to the fourth conditional standard devation. This location is completely 

determined by the dimension of the parameter b, which equals three in our single 

baseline case. The fourth and following conditional standard deviations have to be 

small for the following reason. If we assume that three or more of the ambiguities 

are fixed, the corresponding highly precise carder phases will allow us to 

determine the baseline with a comparable high precision. But with the baseline 

determined with such a high precision, the remaining carder phases allow us to 

determine their ambiguities also with such a high precision. Hence, it follows 

indeed that the conditional standard deviations of these ambiguities have to be 

very. small. 
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The shape of the spectrum shown in Figure 8.10 has an extremely important 

impact on the bounds of (8.36) and consequendy on the performance of the 

search. Since the first three conditional variances are rather large, the first three 

bounds (i=1,2,3) of (8.36) will be rather loose. Hence, quite a number of integer 

triples will satisfy these first three bounds. The remaining conditional variances 

however are very small. The corresponding bounds of (8.36) will therefore be very 

tight indeed. This implies, when we go from the third to the fourth ambiguity that 

we have a high likelihood of not being able to find an integer quartet that satisfies 

the first four bounds. Hence, the potential of halting is very significant when one 

goes from the third to the fourth ambiguity. As a consequence a large number of 

trials are required, before one is able to find an m-tuple that satisfies all m bounds. 

This is therefore the reason why in case of very short observational time spans 

based on cartier phase data only, the search for the integer least-squares DD 

ambiguities performs so poorly. 

IO g 

10 B 

107 

10 s 

10 ̀5 

104 

1000 

I00 

I0 

5 10 

Figure 8.11. The number of integer candidates per number of sequential bounds. 

The above discussed phenomenon of halting can also be illustrated by showing 

the number of integer ambiguity vectors (or number of integer candidates) that 

progressively satisfy the bounds of (8.36). In Figure 8.11 the number of integer 

candidates is shown as function of the. number of sequential bounds they satisfy. 

Note the logarithmic scaling of the vertical axis. Starting from the first bound 

(with about 1000 candidates), the figure shows that the number of integer 

candidates increases, that this number reaches its maximum for the three bounds 

(3-4.10 s number of candidate integer triples) and that from then on the number of 

integer candidates decreases again. Note that in this case the ambiguity search 
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space contained only one integer vector. The behaviour shown is completely in 

agreement with the shape of the spectrum shown in Figure 8.10. The sharp 

decrease which sets in after the maximum has been reached, stipulates that the 

number of integer candidates that satisfy the first j > 3 bounds of (8.36) is 

significantly much smaller than the number of integer candidates that satisfy the 

first three bounds of (8.36). 

8.4 THE INVERTIBLE AMBIGUITY TRANSFORMATIONS 

In the processing of GPS data a prominant role is played by certain linear 

combinations of the GPS observables. Depending on the application, derived 

observables can be formed with certain desirable properties, such as for instance 

geometry-free and ionosphere-free linear combinations (cf. chapter 5). Within the 

context of ambiguity fixing, the DD linear combinations of the carrier phase 

observables play a prominant role, because of the integer nature of their 

ambiguities. Also in case of dual frequency data, linear combinations of the DD 

observables have been studied and are in use, such as for instance the narrow-lane, 

the wide-lane and extra wide-lane linear combinations, see, e.g., Wtibbena [1989], 

Allison [1991], Goad [1992]. But also other wide-lane linear combinations have 

been studied Cocard and Geiger [1992]. It is the purpose of this section to 

introduce and discuss the class of linear combinations that can be of use in aiding 

the search for the integer least-squares ambiguities. As a result this will lead to 

the class of invertible ambiguity transformations as introduced by Teunissen 

[1993b]. 

8.4.1 The DD ambiguities are not Unique 

In the previous section 8.3.3, we have seen - in case short observational time 

spans are used based on carrier phase data only - that the search for the integer 

least-squares ambiguities suffers from the fact that the DD ambiguity search space 

is highly elongated, that the least-squares DD ambiguities are highly correlated 

and that the spectrum of the conditional standard deviations of the DD ambiguities 

contains a large discontinuity. All these characteristics are completely determined 

by the structure of the variance-covariance matrix Qa of the DD ambiguities. A 

change in the ambiguity variance-covariance matrix Qa will therefore change the 



8. GPS Carrier Phase Ambiguity Fixing Concepts 296 

shape of the ambiguity search space and hence, will have its effect on the 

performance of the search. This observation suggests that it may be worthwhile 

to consider ways of changing the variance-covariance matrix Qn, so as to improve 

the performance of the search. One approach would be to include more data into 

the model, for instance by including precise pseudorange data into the model. 

Another approach would be to prolong the observational time span. Alternatively 

however, one could also think of ways of changing the ambiguity variance- 

covariance matrix, while basing the results on the same type and amount of  data. 

That this is possible, can be made clear if we have a closer look at how the DD 

ambiguities are defined. 

Recall that the DD ambiguities are defined as 

N ~ -  t k =  N l  N t N*+Atk (8.45) N0-N0 ,,j - -  . i - , ' j  -.i , 

with Nil and Ni~ being the so-called single-differenced ambiguities and with N / ,  

Ni l, Nj k and Ni t being the so-called undifferenced ambiguities. Now let us 

assume that we have two receivers i and j available and that three satellites, 

numbered as 1, 2 and 3, are tracked. Then the number of undifferenced 

ambiguities equals 6, the number of independent single-differenced ambiguities 

equals 3 and the number of independent DD ambiguities equals 2. The fact that 

in this case only 2 independent DD ambiguities exist, does not imply however that 

this pair of DD ambiguities is unique. There are different ways of constructing an 

independent set of DD ambiguities. For instance, let us assume that k = 1 and l 

= 2, 3. The tyro corresponding independent DD ambiguities are then given as 

12 2 1 13 3 1 
N o ~ N U-Nij and N O = N 0 -Ni j .  (8.46) 

In this case satellite k = 1 is taken as the reference satellite in the formation of the 

DD ambiguities. But instead of taking the first satellite as reference satellite, one 

may also choose the second or third satellite as reference satellite. For instance, 

if the second satellite is taken as reference satellite, we have k = 2 and l = 1, 3. 

The two corresponding independent DD ambiguities are then given as 

Ni .' - Nj-N  and 3 Nij -Nii. (8.47) 

It will be clear that these DD ambiguities differ from those of (8.46). Since 

21 '12 23 , N 13 At '2 (8.48) 
N O ~ - N  O and Nij -.ij - " 0  , 

it follows that the two sets are related through the one-to-one transfolTnation 
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r",/. ' ~ 
~V;'J 1 IJLNij3J" 

(8.49) 

The above example was based on the situation of three satellites. It will be clear 

however, that the same can be said for any number of satellites being tracked. For 

instance, when 5 satellites are tracked, we have 4 independent DD ambiguities. 

Two sets of 4 independent DD ambiguities that can be defined are then: 
12 13 14 15 31 a'~ M 35 

N 0 .  N~i, Nq ,  N O and N o ,  Nii-, N i j ,  N~j . The first set has satellite 1 as 

reference and the second set has satellite 3 as reference. It is easily verified that 

these two sets are related through the one-to-one transformation 

IN,;'/_ 
I'<:/ 

- 1 1 0 0  

- 1 0 0 0  

- 1 0 1 0  

- 1 0 0 1  

e 

ui 'l 
Ui 21 

.',4 N. I 

l 

(8.50) 

The conclusion that we can draw from the above discussion is that the DD 

ambiguities are not unique. They depend on the choice made for the reference 

satellite. An important consequence of the nonuniqueness of the DD ambiguities 

is that we must conclude that their variance-covariance matrix is nonunique as 

well. That is, if we change our choice of reference satellite in the definition of the 

DD ambiguities, not only the DD ambiguities change, but their variance- 

covafiance matrix Q,~ changes as well. A change in the variance-covariance matrix 

however, will affect the ambiguity search space and thus the performance of the 

search. This shows that one set of independent DD ambiguities might have a 

somewhat ,better search-performance than another set of independent DD 

ambiguities. 

8.4.2 Linear Combinations of the L1 and L2 DD Carrier Phases 

We have seen in the previous section that DD ambiguities of a particular set can 

be generated by taking certain linear combinations of the DD ambiguities from 

another set. Up to now however, the only linear combinations considered are those 

that follow from a change of reference satellite. Furthermore, the linear 

combinations considered so far, are linear combinations of DD ambiguities 
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belonging to carrier phases of one and the same frequency. It is therefore of 

interest to investigate whether it is possible to generalize the idea of taking linear 

combinations of the DD ambiguities. In this section we will consider linear 

combinations of the L, and L 2 DD carrier phases. 

Let us assume that we have dual-frequency carrier phase data available. For each 

of the two frequencies, the stripped versions of the DD carrier phase obset'vadon 

equations read then (cf. equation (8.2)) 

f k/ k/ k/ k/ @ij.,(t) - p~ + ~.,No, , +.E q,, 

M kl+.~ . . l d  + td 

(8.51) 

In order to simplify the notation somewhat, we will omit in this section the four 

indices k, l, i and j,  and the time argument t. We will now consider linear 

combinations of the above two DD carrier phases, ~ ,  and (I)2- By defining the 

linear combination as 

~ = ~.~ 13x, 492,  ( 8 . 5 2 )  

where (x and [3 are two scalars, we obtain from (8.51) the derived carrier phase 

observation equation 

with: 

- +  N2) 

(8.53) 

: the wavelength of ~ , , ,  

: the ambiguity of ~ , , ,  and 

: the measurement noise of ~,~. 

Note, that the structure of (8.53) is similar to that of the observation equations 

in (8:51). Again we recognize a geometric term, P, an ambiguity multiplied with 

the wavelength, ~.~N,,, and a measurement noise term g ~ .  It will be clear, that 
in order for the ambiguity N~ to become integer-valued, both ct and [3 need to 

be chosen as integers. 

Two well-known examples of linear combinations of the L, and L 2 DD 

ambiguities are the so-called narrow-lane and wide-lane ambiguities, see, e.g., 

Wiibbena [ 1989], Allison [ 1991], Mervart et al. [ 1994]. The narrow-lane and wide- 

lane ambiguities are both integer-valued. The narrow-lane ambiguity is obtained 
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by setting c~ = 15 = 1. It is referred to as the 'narrow-lane', since the wavelength 

of the narrow-lane cm'rier phase is approximately 11 cm and therefore much 

smaller than the L, and L 2 wavelenghts. The wide-lane ambiguity is obtained by 

setting ~ = -13 = 1. The wavelength of the wide-lane carrier phase is 

approximately 86 cm. Apart from the narrow-lane and wide-lane phases, there are 

of course an infinitely many other linear combinations that one might consider. 

Above, o n e  single derived carrier phase observation equation (cf. equation 

(8.52)) was obtained from two DD carrier phase observation equations (cf. 

equation (8.51)). It will be clear that the single derived observation equation (8.53) 

contains less information than the two original DD observation equations. In order 

to retain the information content of the two original DD can'ier phase observation 

equations, we therefore need to work with two independent derived carrier phase 

observation equations instead of with one. If we define the two derived cartier 

phases as 

(8.54) 

their observation equations become 

= O+X# N~+~ 
(8.55) 

with the ambiguities 

[~ (8.56) 

A necessary and sufficient condition for transformation (8.54) to be one-to-one 

is that the determinant of the transformation matrix of (8.54) differs from zero. 

From this follows, that 

~ 8 - ' ~  ~ 0 (8.57) 

must hold true. Note that this condition is also necessary and sufficient for the 

ambiguity transformation (8.56) to be invertible. It will be clear that the derived 
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carder phases, O ~  and O.~, contain the same information as the original two DD 

carder phases, O~ and �9 2, when the condition (8.57) is satisfied. However, if the 

objective is to use the transformed phase observation equations (8.55) for 

ambiguity fixing, there are - apart from condition (8.57) - two additional 

conditions that need to be fulfilled. Firstly, in order for the transformed 

ambiguities, N~  and N~, to be integers, the four scalar entries of the ambiguity 

transformation matrix (8.56), t~, [3, y and 5, need to be integers as well. Secondly, 

the entries of the inverse of the ambiguity transformation matrix of (8.56) also 

need to be integers. The reason for including this second condition can be made 

clear as follows. If the scalars a, [3, 7 and 5 are integers, then so are the 

transformed ambiguities N~ and N~s, when the original DD ambiguities N~ andN z 

are integers. However, the converse of this statement is not necessarily true. That 

is, when the ambiguities N~a and N~ are integers, then the ambiguities N~ andN 2 

need not be integers, even when the scalars ct, 1~, q( and 8 are integers. But this 

situation is clearly not acceptable, since it could imply that an integer fixing of the 

transformed ambiguities, N~a and Nvs, corresponds to a fixing of the original 

ambiguities, N l and N 2, on noninteger values. We therefore need to ensure that 

integer values of N~ and N~ correspond to integer values of N~ and N 2. And 

this is only possible by enforcing the condition that the entries of the inverse of 

the ambiguity transformation matrix (8.56) are integers as well. The important 

conclusion that is reached, reads therefore that both the transformation matrix 

(8.56) and its inverse must have entries that are integer. 

With the above stated conditions, we are now in the position to inter which of 

the different integer ambiguities can be taken as pairs. This is illustrated in the 

following 4 examples. 

Example 3: 

The transformation from the L1 and L 2 DD ambiguities, N~ and N 2, to the 

narrow-lane and wide-lane ambiguities reads 

The integer entries of this matrix ensure that the ambiguities Nil and Nt._, are 

integer, whenever the ambiguities Nl and N 2 are integer. Note however, that with 

N 1 and N 2 being integer, the range of ~e  above transformation is not sufficient 

to cover all integer-pairs N,l and NL_ 1. For instance, the above two linearly 
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independent equations are inconsistent when N,~ ~ 1 and N~._, = 0. That  is, when 

N t l -  l and Nt,_ L - 0,  no integer values for N I and N 2 can be found as a 

solution to the above equations. And this also happens, for instance, when 

N H = 0 and Nt._l = 1, or when N H ~ 2 and N~._~ = 1. The reason for this 

situation becomes clear when we consider the inverse of the above transformation. 

The inverse is given as 

z ~ .1 /2- l '2 )~NL-t  )" 
This result clearly shows that the noninteger entries of  the inverse are causing the 

original two equations to be inconsistent for certain integer values of  N .  and 

Nt_ ~. The interesting conclusion is therefore reached, that one cannot pair the 

narrow-lane ambiguity to the wide-lane ambiguity. If one would namely use the 

narrow-lane phase together with the wide-lane phase, instead of the original DD 

phases @, and @,. for ambiguity fixing, the outcome could be that by integer- 

fixing Ntt and Nt._ ~, one in fact is fixing N~ and N z to noninteger values. 

Example 4: 

The previous example showed that the wide-lane ambiguity cannot be paired with 

the narrow-lane ambiguity. It is possible however, to pair the wide-lane ambiguity 

with one of the two original DD ambiguities. The ambiguity transformation from 

N t and N~ to N 1 and Nl_. t reads 

1.-I - I  2 

The inverse of this transformation is given as 

(8.60) 

I:/G  i/I: I 
This shows, that whenever N t and iV, are integer, so are N t and NI_ ~, and vice 

versa. Note that, apart from a change in sign, the matrix of (8.60) is identical to 

the matrix of  (8.49). This illustrates by means of an example, that ambiguity 

transformations that realize a change in reference satellite indeed retain the integer 

nature of  the ambiguities. 
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Example 5: 

The ambiguity transformation from N, and N 2 to Nit and N4_ 5 reads 

The inverse of this transformation is given as 

~/9 -119) tN4_5 ) 
This shows that it is not allowed to pair the narrow-lane ambiguity to N4._5. 

Example 6: 

The ambiguity transformation from N~ and N 2 to N 60,77 and N7,9 reads 

I17,6o~77)= IS 0 7971Ii/" (8.64) 
The inverse of this transformation is given as 

N[N2 / (~: 77/[?N6~ j 6 0  _ 

This shows that the pair of ambiguities N_6o,r r and N_7,9 are indeed admissible. 

8.4.3 Single-Channel Ambiguity Transformations 

In the previous section we have looked at the transformed carrier phase 
observation equations (8.55), having as ambiguities the integers N~ and N~. It 
is however not really necessary to work explicitly with the derived phase 
observables ~ and ~ .  Instead, one might as well work with the original DD 
carrier phases ~t and ~2 and then use the inverse of the ambiguity 
transformation 
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(8.66) 

so as to reparametrize the ambiguities from N~, N 2 to N~, N~. The inverse of 

(8.66) reads 

, 

(8.67) 

As we know from the previous section, the ambiguity transformation (8.66) is 

admissible if and only if the matrix entries of both (8.66) and (8.67) are integer 

valued. Instead of explicitly checking the integerness of the entries of both the 

transformation matrix and its inverse, we may also infer the admissibility of the 

ambiguity transformation from the entries of one of the two matrices. This can be 

seen as follows. We start from the assumption that the four scalars ~, 13, ~t and 8 

are all integer valued. From (8.67) follows then that the entries of the inverse are 

also integer, when o~8-TI3 = +-- 1 holds true. This condition is therefore in addition 

to the condition that the scalars (x, 13, T and 8 must be integers, a sufficient 

condition for the admissibility of the ambiguity transformation (8.66). The 

question is now, whether it is also a necessary condition. The answer to this 

question is in the affirmative, as the following shows. Let us denote the entries of 

the inverse as ~, -~, -y and 8 .  If the ambiguity transformation mauix and its 

inverse have integer entries, then both their determinants, o~8-13 T and ~8  - ~ ,  are 

integers as well and (o~8- [3y) (~8-~)  = 1. From this follows then that 

~ 8 -  ~T = _+I must hold. 

Hence, with this result we are now in the position to conclude that the condition 

that the entries of both the ambiguity transfo~xnation matrix and its inverse must 

be integers, can be replaced by the condition that the entries of the transformation 

matrix need to be integer and that its determinant needs to equal +_i. This shows 

that instead of considering the inverse explicitly, it suffices to check the value of 

the determinant of the ambiguity transformation. 

We may now use the inverse (8.67), knowing that (x8-13y = +_I, and replace the 

DD ambiguities N~ and N 2 in the original L~ and L 2 DD phase observation 

equations, 
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f r " 1 3 + ~ ' 1 N 1 + 8 1  

O 2 O +Z,2N2+ e 2 

(8.68) 

by the new ambiguities N~ and N~. As a result the repm'ametrized observation 

equations become 

[ o ,  - O+• 5 N~--,-~., [3 N ~ + e ,  

Oz 9 - -+~'~_ 7 No~ + ---~',. Ct N~ + 82" 

(8.69) 

The ambiguity transformation (8.66) is referred to as a single-channel 
transformation, since it operates on the DD ambiguities of one single channel. 

Hence, if the ambiguity transformation (8.66) is applied to all channels, the DD 

ambiguities are transformed on a channel-by-channel basis. 

If we base our least-squares adjustment on the observation equations (8.69), the 

variance-covariance matrix of the ambiguities becomes dependent on the scalars 

t~, [3, y and 8. Hence, we may now think of choosing 'suitable' values for these 

scalars, so as to improve the performance of the ambiguity search process. It is 

generally believed that for the purpose of ambiguity fixing, only those integer 

linear combinations are of value that produce a phase observable which has a 

relatively long wavelength, a relatively low noise behaviour and a reasonable 

small ionospheric delay. Indeed, these properties are beneficial to the integer 

ambiguity fixing process. One should recognize however, that a more complete 

picture is obtained once one knows how for a particular case, the combination of 

carrier phase noise and chosen functional model, propagates into the vm'iance- 

covariance matrix of the ambiguities. Hence, the choice for certain linear 

combinations should not so much be made on the basis of only phase noise and 

wavelength, but more on how the variance-covariance matrix is affected by the 

choice. As we have seen earlier, it is namely the ambiguity variance-covariance 

matrix that dictates the performance of the integer ambiguity search. 

In order to show how one can influence the spectrum of conditional variances 

through the use of (8.66), the following three single-channel ambiguity 

transformations were chosen as an example 

z T ! I:;/z3T / 
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It is easily verified that these transformations are indeed admissible. Based on our 

7 satellite configuration using two epochs of dual frequency carrier phase data 

with an observational time span of only one second, Figure 8.12 shows the 

original and the three transformed spectra of conditional standard deviations. 

I 0 0  ~ , t . . . .  , , 

~---4 

0 . 1  . . . . . . . . . . . . . . . . . . .  i 
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Figure 8.12. The original and the single-channel transformed spectra in cycles; the DD L~/L 2- 

spectrum = full curve, Z l -spectrum = dashed curve, Z 2-spectrum = dotted curve, Z 3-spectrum 

= dash-dotted curve. 

The figure clearly shows that all of the first three large conditional standard 

deviations in the transformed spectra are smaller than the ones of the original DD 

spectrum. This implies, when use is made of the sequential bounds (8.36), that the 

number of candidate integers of the transformed ambiguities satisfying the first 

three bounds, is smaller than the number of candidate integers of the original DD 

ambiguities satisfying these first three bounds. We also observe that the large 

discontinuity which is present in the original DD spectrum gets reduced in the 

transformed spectra. This has as consequence that the search for the transtbrmed 

integer least-squares ambiguities is less likely to halt between the third and fourth 

bound, than the search for the original DD ambiguities. We also observe from 

Figure 8.12, that the Zvspectrum is almost flat in the beginning, but that it drops 

when one passes the ninth conditional standard deviation. Hence, in this case one 

can expect that halting t ~ e s  place between the ninth and tenth bound. 

8.4.4 Multi-Channel Ambiguity Transformations. 

In the previous section we identified the class of single-channel ambiguity 
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transformations. It was shown how some of these a priori chosen ambiguity 

transformations affect  the spectrum of conditional variances. Although some 

improvement could be seen, it is clear that the usage of these single-channel 

ambiguity transformations is limited and that one cannot expect to obtain results 

that are overall satisfactorily. Moreover, the transformations used were obtained 

on quite an ad hoc basis. In this section it will therefore he discussed how these 

single-channel ambiguity transformations can be generalized. 

In the previous section the four entries of transformation (8.66) were assumed 

to be the same for all channels. This however, is not really necessary. One can in 

principle choose different sets of values for the different channels. In this way one 

can accommodate to the different entries in the variance-covariance matrix of the 

ambiguities. It also seemed in the previous section that the transformation was 

restricted to the dual frequency case. That is, N~ was assumed to be an L~ DD 

ambiguity and N 2 an L 2 DD ambiguity. But this is not necessary either. The 

transformation can namely also be used in case one is dealing with L~ data only. 

In that case N t and N 2 are simply DD ambiguities of two different channels. This 

observation also suggests a generalization to more than two channels. And indeed, 

there is no reason for restricting the order of the transformation to two. This then 

brings us to the multi-channel ambiguity transformations. 

Let a be our vector of m DD ambiguities. The entries of a may be ambiguities 

of the L~ -type only, of the L 2-type only or of both types. Since all the entries of 

a are integer valued, we have a~ Z ",  with Z " being the m-space of integers. LetZ 

be an m x m  matrix of full rank. Then, if we transform a with Z r we would like 

all the entries of the transformed ambiguity vector, z = Z ra,  to be integer as 

well. This implies, since the entries of a are integer valued, that all the entries of 

the matrix Z need to be integer as well. This condition however, is necessary but 

not yet sufficient. That is, we do not only want z = Z ra to be integer whenever 

a is integer, but also that a s (Z 7")- ~z is integer whenever z is integer. From this 

follows that matrix Z is an admissible ambiguity transformation matrix if and only 

if both Z and its inverse Z -~ have entries which are integer. Note that this is in 

agreement with the results of the previous section. The integerness of the entries 

of Z -~ is needed to avoid that one would be fixing the DD ambiguities on 

noninteger values. 

In order to give an illustration of admissible ambiguity transformation, some 

simple examples will be given. The identity-matrix is of course a trivial example. 

But also all permutation matrices belong to the class of admissible ambiguity 

transformations. The entries of permutation matrices and of their inverses are all 

integer valued. The permutation matrices are in fact implicitly used, when one 

reorders the entries of the ambiguity vector. Also all ambiguity transformations 
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that change the choice of reference satellite in the DD ambiguities, are admissible. 

The three examples considered so far, were all matrices that have entries equal to 

1 in absolute value. An example of an admissible ambiguity transformation matrix 

for which this does not necessarily hold is given by the integer triangular matrix 

having ones on its diagonal. It is easily verified that its inverse is again an integer 

triangular matrix with ones on its diagonal. It is also of importance to understand 

that once certain ambiguity transformations are identified, other ambiguity 

transformations can be derived from them by performing certain standard matrix 

operations, like: inversion, transposition and multiplication. For instance, whenZ~ 

and Z~ are two given ambiguity transformations, then so are Z~ ~, Z~ r and Z~Z 2. 

Now that the class of admissible multi-channel ambiguity transformations has 

been identified, we can generalize the idea of section 8.4.3 to reparametrize the 

DD can'ier phase observation equations (cf. equations (8.68) and (8.69)). The 

original system of DD cartier phase observation equations was given as (cf. 

equation (8.3)) 

y = A a + B b + e .  (8.71) 

Let Z T be an admissible ambiguity transformation and let z = Z ra be the vector 

of transformed ambiguities. Then a = Z-rz and the system of observation 

equations (8.71) can be reparametrized as 

y = A Z - r z + B b + e .  (8.72) 

We may now choose to base our least-squares adjustment either on the original 

system of observation equations, (8.71), or on the reparametrized system of 

observation equations, (8.72). The solution for the baseline vector will of course 

not be affected by the reparametrization. The least-squares estimates for the 

ambiguities will differ however. The DD and transformed ambiguity estimates and 

their vafiance-covariance matrices are related as 

= z rct and Qt = ZTQn Z" (8.73) 

Since Qt differs from Qn, also the performance of the search for the integer least- 

squares ambiguities is affected by the reparametrization. Hence, the 

reparametrization provides us now with the opportunity to consider ambiguity 

transformations that allow us to improve the performance of the integer ambiguity 

search. The question which of the ambiguity transformations suffices t'or that 

purpose, is taken up in the next section. 
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8.5 THE LSQ AMBIGUITY DECORRELATION ADJUSTMENT 

This section is devoted to the elimination of the potential problem of search 

halting. The original integer least-squares problem is reparametrized such that an 

equivalent formulation is obtained, but one that is much easier to solve. Since the 

poor performance of the integer ambiguity search was shown to be due to the high 

correlation, the aim will be to decorrelate the least-squares ambiguities. The 

ambiguity transformation that will be constructed, removes the discontinuity from 

the spectrum of ambiguity conditional variances and provides ambiguities that 

show a dramatic improvement in both precision and con'elation. As a result the 

search for the transformed ambiguities can be performed in a highly efficient 

manner. The method of the least-squaa'es ambiguity decorrelation adjustment was 

introduced in Teunissen [1993a] and examples of its performance can be found 

in, e.g., De Jonge and Tiberius [1994], Teunissen [1994a], Goad and Yang [1994]. 

8.5.1 The Reparametrized Integer Least-Squares Problem 

In the previous section 8.4.4 the class of admissible ambiguity transformations was 

identified. Members from this class can now be used to aid the ambiguity fixing 

process. Let Z r be an ambiguity transformation, which is used to transform the 

DD ambiguities as 

(8.74) 

would then transform 

z -  Zra ,  ~ = Z r d, Qt ~ ZrQnZ. 

The ambiguity integer least-squares problem (8.25) 

accordingly into the equivalent minimization problem 

rain (~-z)rQ~(~-z)  , with z ~ Z " .  (8.75) 
z 

Similarly, the original ambiguity search space (8.35) would transform into the new 

ambiguity search space 

~_ ^ , z _ Z-'- (8.76) (Zil ~ - z ) ' / c ,  < 
i -  | 

The shape and orientation of this ambiguity search space differs from that of the 

original ambiguity search space (8.35), except of course in c a~  Z = I,,. Despite 
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this difference however, the transformed ambiguity search space (8.76) has, as it 

should be, the same number of candidate gridpoints as the original ambiguity 

search space. 

Based on the transformed ambiguity search space (8.76), the sequential bounds 

of the transformed ambiguities become 

2 2 (~ - z~) z < o~, z 

2 2 2 
(~2.-z2) 2 < o~,, [Z2-(~-z~) /o . ,1  

(8.77) 

h i -  1 

(i,,,,M-z,.) 2 <_ o~..,~ [Z 2- E (ijp 1- z?"/o 2 "  ~.l 
] - 1  

These bounds can now be used in exactly the same way as it has been described 

earlier in section 8.3.2, for the computation of the integer least-squares solution. 

Once the integer least-squares solution ~ has been found, the integer minimizer 

of (8.25) can be recovered from invoking the inverse relation d = Z - ~ .  The fixed 

baseline solution follows then from (8.12). Alternatively, one could also use 

[~ = [~ - Q ~ t Q ~ ' ( ~ . -  z3 (8.78) 

to obtain the fixed baseline. 

In order to have any use for our ambiguity transformation Z, we should aim at 

finding a transformation that makes the transformed integer least-squares problem 

(8.75) easier to solve than the original problem (8.25). Note, that the ambiguity 

transformation has no effect - as it should be - on the validation part of the 

ambiguity fixing problem. The test statistics which are used for validation (cf. 

section 8.2.3), are invariant for the ambiguity transformation. With (8.74), we have 

the equality 

( a -  a)ra~-'(a - a) - (~- z3Ta.-'(~- z3. (8.79) 

Hence, the only purpose of the ambiguity transformation is to lighten the 

computational burden. Clearly the ideal situation would be, to have a 

transformation Z that allows for a full decorrelation of the ambiguities. In that 
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case, Qt is diagonal and (8.75) can simply be solved by rounding the entries of~ 

to their nearest integer. Unfortunately however, the restrictions on Z do generally 

not allow for a complete diagonalization of the ambiguity variance-covariance 

matrix. For instance, the choice where Z contains the eigenvectors of Qn is 

generally not allowed, since the entries of the eigenvecto1~ are usually noninteger. 

Also a diagonalization based on Z r ,  L- ' ,  with L being the triangular factor of 

Qn, is not admissible. Again, the non-zero off-diagonal entries of L will generally 

be noninteger. These two examples show that in terms of diagonality, one will 

have to be content with a somewhat less perfect result. Nevertheless a decrease 

in correlation, although not complete, will already be very helpful, since it would 

improve the performance of the integer ambiguity search process. In the next 

section, we will consider the decorrelation of the ambiguities in the two- 

dimensional case. 

8.5.2 A 2D-Decorrelating Ambiguity Transformation 

In order to answer the question as to how to construct our ambiguity 

transformation Z r we first consider the problem in two dimensions. Let the 

ambiguities and their variance-covariance matrix be given as 

i/ I 880  a -  and Q~ ~'~' 

2 a~a, (3-a~ J 

We know that the sequential conditional least-squares ambiguities are fully 

decolTelated. The idea is therefore to start from the conditional least-squares based 

transformation. When (8.32) is written in vector-matrix form, we obtain for the 

two-dimensional case, the transformation 

I'/" 
211 

, 0/f , 1 (8.81) 

Since we are studying the effect of transformations on Qa, we have for reasons 

of convenience skipped the elements a~ and a 2 in the above transformation. Note, 

that this transformation not only decon'elates, but in line with the correspondence 

between linear least-squares estimation and best linear unbiased estimation, also 
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returns ~2, as the element which has the best precision of all linear unbiased 
functions of ~/1 and c~ 2. Also note, that both the transformation matrix of (8.81) 

as well as its inverse would have integer entries if the scalar -rr~,~s]~ would be 

integer. Hence, the above transformation would be an admissible ambiguity 

transformation if the scalar o0,~ rs]~ would be integer. Unfortunately however, the 

scalar -rsaAc~ generally falls to be an integer. This shortcoming however, is 

easily repaired. We simply approximate the above transformation by replacing 

-rso~e ~s] ~ by [-rr arson], where [.] stands for 'rounding to the nearest integer'. This 

gives 

-I 'J 2J 
It is easily verified that this transformation is admissible. 

In the conditional least-squares transformation of (8.81), the choice was made 
. 

to keep fit unchanged and to replace & with c/2~ , . Instead of this choice however, 

we could also think of interchanging the role of the two ambiguities. In that case, 

we will get instead of the transformation (8.81), the conditional least-squaxes 
transformation 

",,:_ (8.83) 
~ 2 j  1 2 

Both transformations (8.81) and (8.83) fully decorrelate. Geometrically, these two 

transformations can be given the following useful interpretation (see Figure 8.13). 

Imagine the original two-dimensional ambiguity search space cenu'ed at 

~/ - (~/,, ~/2 )r. A full decorrelation between the two ambiguities can be realized, 

if we push the two horizontal tangents of the ellipse from the _-+-Xera~ level towards 

the --+grsa,, level, while at the same time keeping fixed the area of the ellipse and 

the location of the two vertical tangents (see Figure 8.13, left). This is precisely 

what transformation (8.81) does. Alternatively, one can also achieve a full 

decorrelation, if instead of the two horizontal tangents, the two vertical tangents 

are pushed from the - - ~ 1  level towards the _+Xrsa,,~ level (see Figure 8.13, righ0. 

This is precisely what transformation (8.83) does. 

The two transformations (8.81) and (8.83) fully decorrelate, but are unfortunately 

not admissible. Transformation (8.82) on the other hand is admissible, but will not 

achieve a full decorrelation. Still however it will achieve a decorrelation to some 
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extent. And the same holds true for the integer approximation of transformation 

(8.83). The idea is therefore, instead of using (8.81) and (8.83), to make use of 

their integer approximations. And this will be done in an alternating fashion so as 

to interchange the role of the two ambiguities. That is, the admissible 

11" 
�9 ^ e 

Figure 8.13. Decorrelating ambiguities by pushing tangents 

transformation (8.82) is applied first and then tbllowed by an integer 

approximation of the type (8.83). The second admissible ambiguity translbrmation 

reads therelbre 

The first transformation (8.82) thus pushes the two horizontal tangents of the 

ambiguity search space from the __-Xcra: level towards the _+Xcra: level, while at the 

same time keeping fixed the area of the search space and the location of the 

vertical tangents. The second transformation (8.84) then pushes the two vertical 

tangents from the ---Xcn, level towards the :t-Xcr~: level, while at the same time 

keeping fixed the area of the search space and the location of the horizontal 

tangent. And this process is continued until the next transformation reduces to the 

trivial identity transformation, implying that no further decorrelation is achievable 

anymore. The amount of decorrelation that can be achieved is discussed in 

Teunissen [1993a]. Note, since the area of the search space is kept constant at all 

times, whereas the area of the enclosing box is reduced in each step, that the 

ambiguity search space is forced to become more sphere-like (tbr a proof see 

Teunissen [1994a]) and that the transformed ambiguities are of a better precision 
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than the original DD ambiguities. 

Example 7: 

This example is a continuation of example 1. First we will consider the 
consta'uction of the decorrelating ambiguity transformation Z r and the transformed 
ambiguity search space. After that, we will consider the search based on the 
transformed ambiguities. 

The variance-covariance matrix of the two original ambiguities reads 

53.4 38.4] 

O~ = ~38.4 28.01" 
/ 

Starting with the less precise ambiguity, the ambiguity transformation of the type 
of (8.84) gives for our present example 

:/ 
Hence, after this first step the transformed variance-covariance matrix reads 

ZfQaZ,- (i t'6 10.4] 
0.4 28.0)" 

Now we will tackle the second ambiguity. Using the ambiguity transformation of 
the type of (8.82) gives then 

With this second step the transformed variance-covariance matrix becomes 

Z2rZ1rQaZI~" /41 "6.24.81"2/" 

In order to see wheter a next step is required, we again go back to the first 
ambiguity and again consider an ambiguity transformation of the type of (8.84). 
For our present example however, this results in the identity transformation which 

shows that no further steps are required. Our decorrelating ambiguity 

transformation reads therefore 
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The with the above steps corresponding original, intermediate and transformed 

ambiguity search spaces are shown in Figure 8.14. 

Diagnostics that give a quantitative indication of the performance of our 
decorrelating ambiguity transformation are given as 

~], - 53.4, ~2 2 ~,, = 0.387 , t~t, = 4.6, ~ ,  - 4.487 

and 

Pa " 0.993, p: = 0.255 ; e,~ = 17.861, e t = 1.300. 
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Figure 8.14. The original, the intermediate and the transformed ambiguity search spaces. 

First note that the discontinuity which is present in the spectrum of the conditional 

variances of the original ambiguities, has largely been eliminated. In 

correspondence with this, we also observe that the new ambiguities are far less 

correlated than the original ambiguities. And finally we note that the elongation 

of the ambiguity search space has indeed been pushed close to its minimum value 
of one. 

Let us now consider the search in term of our new ambiguities. With our 

decorrelating ambiguity transformation Z r, the least-squares estimates~ and z2 

follow as 

2. /-0.251 ~1 -110.05 / 

- ,.8oj ~ 
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The results of  the search are shown in Table 8.3. The steps that are followed are 

identical to the ones discussed in section 8.3.2. Since ~, = -0 .25 ,  we choosez I 

as its nearest integer, which is z, ~ 0.00. Based on this integer value for z~, the 

conditional least-squares estimate for the second ambiguity reads s = 1.87. 

Since its nearest integer reads 2.00, we choose z 2 as z 2 = 2.00. Hence,  we now 

have an integer pair (z~, z z) = (0.00, 2.00) which lies inside the transformed 

ambiguity search space. Since the value of the objective function F ( z  v z z) = 
o 2 ~ 2 2 (z 1 - z l ) ' / c ~ . +  (z211 -z2) /cry,, of this integer pair equals F(0.00, 2.00) = 0.0176, we 

may now shrink the ellipse and set the x Z - v a l u e  a t  X 2 = 0.0176. It will be clear 

that the second nearest integer of  z2~ = 1.87, being 1.00, will give an integer pair 

(0.00, 1.00) that lies outside the ellipse. Hence, in order to continue we go back 

to the first ambiguity and consider the second nearest integer to 

T a b l e  8.3. The integer pairs that are encountered during the search. 

~ z  = 1.5 X 2 = 0.0176 

Z l Z2 Zl Z2 

0.00 2.00 0.00 

zl = -0 .25 ,  which is -1.00. It follows however that this value does not satisfy its 

bound for X2 = 0.0176. As a result, the search stops and the integer least-squares 

solution is provided as (zv z~2) = (0.00, 2.00). In order to obtain the integer least- 

squares solution for the orginal ambiguities, we invoke 6 = z - r i  and get 

(:::)(: Ij Z.0Oj 

which is of  course identical to the solution found in example 1. With the present 

example we have illustrated that the performace of the search improves,  when use 

is made of  the less correlated and transformed ambiguities z I and z 2. In the 

present example,  the gain is of  course not spectacular. The gain will become 

spectacular however, when the original ambiguity search space is much more 

elongated (which is the case for short timespan carrier phase data) and when one 

treats the problem in higher dimensions (which is also the case with GPS). 
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8.5.3 The Decorrelated Least-Squares Ambiguities 

In the previous section it was shown how to decorrelate the two ambiguities, 
2 thereby removing the gap between t~a, and ~ , .  The two-dimensional ambiguity 

transformation was constructed from a sequence of transformations of the 

following two types: 

llo z: / (8.85) 

in which z21 and zt2 are appropriately chosen integers. To generalize this to the 

m-dimensional case, we first need to generalize these type of transformations 

accordingly. Although one can think of different generalizations, we will follow 

the simplest approach and use the two-dimensional ambiguity transformation for 

the m-dimensional case as well. 

Transformations of the type (8.85) are known as Gauss-transformations and they 

are considered to be the basic tools for zeroing entries in matrices Golub and Van 

Loan [1986]. In our case, due to the integer nature of z~2 and z21, they will be 
used to decrease the conditional correlations instead of zeroing them, thereby 

trying to flatten the spectrum of ambiguity conditional variances. As it was shown 

in section 8.3.3, it is the large discontinuity in the spectrum of conditional 

variances that forms a hindrance for the efficient search of the integer least - 

squares ambiguities. A flattened spectrum will therefore be very beneficial for our 

search. In case of a single baseline model, the discontinuity is located at the two 
2 2 ^ 

neighbouring conditional variances ca,, and 6a .... for i=3. Hence, if we let ai~ z and 
fi~.uz' for i=3, play the role of our two ambiguities ~l and d 2 of the previous 

section, we should be able to remove this discontinuity from the spectrum by 

using the decorrelating two-dimensional ambiguity transformation of the previous 

section. The variance-covariance matrix of the conditional least-squares 

ambiguities a,lt and t~i§ ~, which is needed to construct the two-dimensional 

transformation, is easily found from the LDLr-decomposition of Qa. With the 

diagonal matrix D partitioned as D = diag (Dtl, D22, D33 ), where the2x2 
2 diagonal matrix Dz~ contains the conditional variances o'2 and aa,,~, for i=3, and 

with the lower triangular matrix L partitioned accordingly, it follows that 
T T (L21Dll~l+L2zD22I.n2) is the variance-covariance matrix of the least-squares 

ambiguities ~ and dl.t and that L22D22L22 r is the variance-covaaiance matrix of the 

conditional least-squares ambiguities a~t~ and ~ . , r  It is this last matrix that is now 

used for the construction of the two-dimensional ambiguity transformation. As a 
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result of this transformation, we are able to close the large gap that exists between 

the third and fourth conditional variance in the spectrum. But of course, after this 

transformation has been applied, other, but smaller discontinuities emerge. They 

however, can also be removed by applying the two-dimensional uansformation. 

The idea is therefore to continue applying the transformation to pairs of 

neighbouring ambiguities until the complete spectrum of conditional variances is 

flattened. Once this has been completed, the m-dimensional ambiguity 

transformation Z r is known and the original least-squares ambiguity vector ~1 can 

be transformed as ~ - Z rd. 

The following example shows how the above least-squares ambiguity 

deco[Telation adjustment method, works when applied to a synthetic 3x3 variance- 

covariance matrix. 

Example 8: 

In this example we will consider a synthetic variance-covariance matrix which has 

been chosen such that its structure is similar to the actual variance-covariance 

matrix of the DD-ambiguities. The synthetic variance-covariance matrix is given 

as the sum of a scaled unit matrix and a rank-2 matrix 

Qa = ~ + (~31 ~3z)(~3~ ~32) r with ~i~ R 3, i = 1,2. 

It is furthermore assumed that the diagonal entries of the rank-2 matrix are all of 

the same order and significantly larger than the scale factor er z of the scaled unit 

matrix. For the present example the scale factor is chosen as cr 2 = 0.04 and the 

entries of the rank-2 matrix as 

(0 .218  / (2.490 / 

1-2228/. 1,,3  / 
t,-2.462) p.434)  

Based on these chosen values, the variances respectively the sequential conditional 

variances can be computed. They read 

i 1 2 3 

o'~, 6.288 6.292 6.290 
2 era,, 6.288 5.420 0.089 

From these results we see that there is a relative large drop in value when going 
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from the second to the third conditional variance. The location of this 

discontinuity is due to the fact that the second matrix in the sum of Qa is of  rank- 

2 and the size of  the discontinuity is due to the differences in size between the 

entries of  the two matrices in the sum. 

First we will consider the search based in the original ambiguities. The least- 

squares estimates of the ambiguities are given as &, = 2.97, tl 2 = 3.10 

and a3 = 5.45. The sequential bounds of (8.36) are used for the search, with m 

= 3. The constant X 2 is chosen to be equal to one. In Figure 8.15 the ellipsoid is 

depicted in which the search for the integer-triples is performed. 

a 3 

al  ~ ~-3  

S 

Figure 8.15. The 3D-ambiguity search space and its perpendicular projection onto the 1-2 plane. 

The grid points in the projected ellipse in the 1-2 plane are the integer pairs 

( a l , a  2) that satisfy the first two bounds of (8.36). The with these integer pairs 

corresponding intervals for a 3 and the a3-integers within them are depicted as 

repectively the little bars, and the dots. The large values of  the conditionai 

variances of  a 1 and a 2 compared to the one for a 3 lead to intervals fora~ and a 2 

that are significantly larger than the intervals for a 3. Moreover,  since the intervals 

for a 3 are small compared to the grid spacing, there is a high probability that 

there will be no a : i n t e g e r  within them. 
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In Table  8.4 the results of  the search process are shown. In the search process 

the integers are kept as close as possible to their con'esponding condit ional  

est imates.  The results show that quite some trials are required to f ind an integer 

triple satisfying all three bounds. This is of course due to the fact that the first two 

bounds are rather loose whereas the third bound is tight. The integer triple found 

reads (4, 3, 5), and it allows us to shrink the ellipsoid by setting the )~2-value to 

~2 = 0.218. Continuation of the search in the same manner shows that no other 

integer triples lie inside the shrunken ellipsoid. Hence, the search stops and it is 

concluded that the integer triple (4, 3, 5) equals the sought for integer least- 

squares solution. 

Table 8.4. The integer triples that are encountered during the search. 

Z 2 = 1.0 X 2 = 0.218 

a I a 2 a 3 a t a 2 a 3 
3 3 

3 4 - 

3 2 - 

3 5 - 

3 1 - 

2 3 - 

2 2 - 

2 4 - 

2 1 - 

4 3 5 4 3 

4 4 

W e  will  now consider the search based on the transformed ambiguities.  From 

the original  variance-covariance mau'ix 
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(6.288 2.340 0.5441 

Q a -  12.340 6.292 5.978/, 
/0.544 5.978 6.290) 

the 3D-decorrelating ambiguity transformation Z r is constructed in four steps as 

Z r . t o/io/lo/f o i / o  1 OOllO31 o 11 33 !/ I 0 0 1 - - . 

0 1 0 1 0 1 -I -I 

The transfon-ned variance-covariance matrix reads therefore 

(1 .1460 .3340 .082]  

Qt = Z rQaZ = 10.334 4.476 0.230~ 

~).082 0.230 0.626) 

The variances respectively the sequential conditional variances of the transformed 

ambiguities read 

i 1 2 3 

or, z 1.146 4.476 0.626 
~t 
2 

ce,,, 1.146 4.376 0.610 

Note that the relatively large drop in value which was present in the original 

spectrum has now been diminished in size in the transformed spectrum. Also note 

that the new ambiguities are more precise that the original ones. The tranformed 

ambiguities are also less correlated and their search space is less elongated. The 

elongation has been pushed from its original value en ~ 17.965 to the smaller 

value of et - 2.734. In Figure 8.16 the transformation search space is depicted. 

It is centred at zl = 10.02, s = -4.57, z3 = 2.35 which follows from s = Z rfi. 

The smaller elongation of the transformed search space can be clearly seen; the 

intervals for the third ambiguitiy z 3 are now in general larger than the grid 

spacing, and we see that two intervals contain more than one integer. In Table 8.5 

the results for the search of the transformed ambiguities are shown. Comparing it 

with Table 8.4 learns us that the halting problem has indeed been eliminated. The 

integer least-squares solution found reads (zl, z2, z3)= (10, -5 ,  2). The 

corresponding solution values for the original ambiguities follow from 
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- (Z r)-~ as (6~, ~i2, ~i3) . (4, 3, 5), which is of course identical to the 

solution found earlier. 

7- 3 

I 
t 

Z 1 

\ 

Figure 8.16. The transformed search space and its perpendicular projection onto the 1-2 plane. 

Tab le  8.5. The integer triples that are encountered during the search in the transformed ellipsoid. 

Z 1 

X 2 =  1.0 

Z 2 Z 3 

10 -5 2 

~2 = 0.218 

Z t Z2 Z3 

10 -5 

10 -4 

In order to illustrate the least-squares ambiguity decorrelation adjustment method 

with actual GPS data, the same 7 satellite configuration using dual frequency 

carrier phase data of section 8.3.3 is used. Application of the method to the data 

of this example resulted in the following multi-channel ambiguity transformation 
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Z r . 

1 - 5 3 4 - 1 - 1 - 2 4 - 4 - 1 3 3  
- 2 - 4 1 0 1 5 5 4 - 1 2 - 2 - 8  
0 2 - 4 - 4 - 3 8 - 5 3 2 - 1 2 - 4  
5 1 1 1 - 1 - 7 - 2 1 0 - 6 - 2 3  
0 1 - 3 1 - 4 1 5 4 - 3 0 - 5 5  
2 0 0 1 2 - 4 - 1 3 - 3 - 2 - 7 8  
0 5 - 5 3 - 5 5 0 - 1 - 1 - 3 - 1 4  
1 2 0 2 - 3 1 0 4 - 4 - 8 - 3 2  
5 - 3 - 4 - 1 3 - 2 - 6 1 6 5 - 2 2  

- 5 2 - 2 1 0 1 2 - 4 5 - 3 5 - 2  
- 4 - 3 1 3 4 - 5 1 6 0 - 1 0 - 3 6  

1 - 1 - 2 6 0 3 - 1 - 1 - 1 1 - 1 3  

(8.86) 

Note that Z r is truly a multi-channel transformation. Every new ambiguity is 

formed as a linear combination of all original DD ambiguities, With (8.86), the 

original DD ambiguities can be transformed as z = Z ra. In order to recover a 

from z, the inverse of Z r is needed. It reads 

86 

-362 

- 2 1 3  

- 2 3 l  

5 

59 Z - T  . 

67 

- 2 8 2  
- 1 6 6  

- 1 8 0  
4 

46 

145 - 2 8 l  - 127  -276  -136  607 - 5 0  172 - 2 4 9  127 -435  

- 2 5 8  589 530 417 - 2 9 0  -598  -675  -566  - 3 0 8  281 865 

- 2 4 9  68 -36  195 -349  -335  113 -190  -54  127  308 

- 2 0 4  426 326 340 -104  - 5 8 0  -322  -367  - 5 9  95 643 

113 -9  1 3 6 - 1 3 1  -91 3 8 5 - 3 7 6  - 7 7 - 2 5 8  1 7 2 - 1 1 8  

54 - 2 9 9  -231  -199  -154  394 190 231 - 1 5 4  59 -367  
113 - 2 1 9  - 9 9  -215  -106  473 -39  134 - 1 9 4  99 - 3 3 9  

-201  459 413 325 -226  -466  - 5 2 6  - 4 4 l  - 2 4 0  219 674 

- 1 9 4  53 -28  152 -272  -261  88 -42  - 1 4 8  99 240 

- 1 5 9  332 254 265 -81 -452  -251 -286  - 4 6  74 501 

88 -7  106 -102  -71 300 -293  -60  -201  134 - 9 2  

42 - 2 3 3  - 1 8 0  -155  - 1 2 0  307 148 180 - 1 2 0  46 - 2 8 6  

(8.87) 

Note that all entries of the inverse are indeed integer. Also note that the first six 

rows of the inverse are to a good approximation scaled versions of the last six 

rows. The scale factor equals 77/60, which is the ratio of the L2-wavelength and 

the L l -wavelength. 

Using the ambiguity transformation (8.86), we obtain the new ambiguity 

variance-covariance matrix Q~ from the original DD ambiguity variance- 

covariance matrix Qn, as Q,- Z rQaZ. In order to illustrate the performance of 

transformation (8.86), we will compare the elongations of the original and 

transformed ambiguity search spaces and the correlation and precision of the 

original and transformed least-squashes ambiguities. 

Figure 8.17 shows the elongation of both the original and the transformed 

ambiguity search space as function of the observational time span. Note the 

dramatic decrease in elongation which is achieved. Even when the two observation 

epochs are separated by 10 minutes, an improvement by a factor of about ten is 

reached. 
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Figure 8.17. Elongation of both the original (dotted curve) mad the transformed (full curve) 

ambiguity search space as function of the observational time span in minutes. 

Figure 8.18 shows the two histograms of the absolute values of the correlation 

coefficients of the DD ambiguities 6 i and the u'ansformed ambiguities z~i. It 

follows upon comparing the two histograms that the ambiguity transforrnation 

(8.86) has indeed achieved a large decrease in correlation between the ambiguities. 

None of the con'elation coefficients p:,, is close to _1 and the largest is even 

smaller than half in absolute value. 
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Figure 8.18. Histograms of IP,,,) (left) and IPt) (fight). 

AS it was shown in section 8.3.3, the or iginal  spectrum conta ined  a large 

d i scon t inu i ty  when  passing from the third to the fourth condi t iona i  standard 
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deviation. The first three conditional standard deviations were rather large, 

whereas the remaining nine conditional standard deviations were very small 

indeed. And it was due to this large drop in value of the conditional standard 

deviations that the search for the integer least-squares ambiguities was hindered 

by a high likelihood of halting. Figure 8.19 shows both the original and 

transformed spectrum of conditional standard deviations. 
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Figure 8.19. Original (dotted curve) and transformed (full curve) spectrum of conditional standard 

deviations. 

that progressively satisfy the sequential bounds, is indeed dramatically much 

smaller than the number of original integer candidates that satisfy their sequential 

bounds. The dotted and full curve of Figure 8.20 of course meet when all twelve 

bounds are considered; the original and transformed ambiguity search space both 

contain the same number of integer vectors. 

The improvement in the spectrum is clearly visible from Figure 8.19. The 

discontinuity has disappeared and all conditional standard deviations are now of 

the same small order. Due to this low level of the flattened spectrum, the search 

for the transformed integer least-squares ambiguities - based on the sequential 

bounds of (8.77) - can be executed in a highly efficient manner. In line with this, 

we observe from Figure 8.20 that the number of transformed integer candidates 

To accentuate the fact that the transformed ambiguities are indeed of a very high 

precision, Table 8.6 gives an overview of the least-squares ambiguity estimates 

themselves, all expressed in cycles. Shown are the ordinary noninteger least- 

squares estimates and their precision of both the original DD ambiguities, fi ,  as 

well as of the transformed ambiguities, zi- Also shown are the con'esponding 

integer least-squares estimates, 6i and zS i, and the differences between the 
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noninteger and integer solution. The high precision of  the transformed ambigui t ies  

can clearly be seen from the table. In fact, for this particular case a s imple 
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Figure 8.20. The number of original (dotted curve) and transformed (full curve) integer candidates 

per number of sequential bounds. 

Table 8.6. The noninteger and integer least-squares estimates of the original and the transformed 

ambiguities. 

Eli ~a, ai ai - ai  z-i 

-587.29 61.72 -593 5.71 -3336478.09 

-8069.63 99.90 -8073 3 .37  -3338914.10 

2827.63 126.12 2842 - 1 4 . 3 7  -2526738.94 

7054.42 113.66 7066 -11.58 -841205.96 

-839102.6 189 .00  -839083 -19.96 -3334032.85 

-5384.42 102.93 -5393 8 .58  -2514838.94 

-753.67 79.21 -761 7 . 3 3  822591.25 

-10354.68 128.21 10359 4.32 -3361667.92 

3629.56 161.86 3648 -18.44 -827184.97 

9062.12 145.86 9077 -14.88 3344449.04 

-4055.60 242.55 -4030 -25.60 -5025486.06 

-6909.99 132.10 -6921 11.01 845106.07 

~, z'i zi - zi 
0.16 -333(=>478 -0.09 

0.18 -3338914 0.10 

0.21 -2526739 0.06 

0.22 -841206 0.04 

0.20 -3354033 0.15 

0.22 -2514839 0.06 

0 .21  822591 0.25 

0.22 -3361668 0.08 

0.22 -827185 0.03 

0.21 33"~AAA.9 0.04 

0.23 '502586 -0.06 

0 .21  845106 0.07 

' rounding to the nearest integer '  of the least-squares estimates of  the transformed 

ambigui t ies  already would suffice for finding the correct integer least-squares 
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solution. It should be remarked however, that a high precision of the ambiguities 

is generally no guarantee that the integer least-squares solution is found by means 

of a simple rounding to the nearest integer. Very precise ambiguities could namely 

still be highly correlated. Hence, even if the ambiguities are of a high precision, 

only a search as advocated in section 8.3.2 guarantees that the integer least- 

squares solution is found. Other examples of results obtained with the method of 

the least-squares ambiguity decorrelation adjustment can be found in, e.g., 

Teunissen [1994a], De Jonge and Tiberius [1994], Goad and Yang [1994]. 

8.5.4 On the GPS Spectra of Ambiguity Conditional Variances 

We have seen that for the single baseline case, the GPS spectrum of DD 

ambiguity conditional variances shows a distinct discontinuity when passing from 

the third to the fourth conditional variance. It is the presence of this discontinuity 

in the spectrum that prohibits an efficient search. We have also seen how this 

discontinuity can be removed from the spectrum. This is made possible through 

a decorrelation of the least-squares ambiguities. As a result a lowered and 

flattened spectrum is obtained, which allows for a very efficient search for the 

integer least-squares solution. Since the signature of the spectrum of ambiguity 

conditional variances is decisive for the pertbrmance of the search, it is of interest 

to consider the spectrum in somewhat closer detail. In this section we will 

therefore consider the spectrum in relation to the available observational data. A 

list of qualitative conclusions about the signature of the spectrum will conclude 

this section. 

The spectra that will be considered in this section are based on respectively: (i) 

L~ carder phase data only (c,, = 3mm); (ii) dual-frequency carrier phase data 

(or,, ~ c,,  = 3mm) using the wide-lane ambiguities; (iii) dual-frequency carrier 

phase data using the L~ and L 2 DD ambiguities; and (iv) dual-frequency carder 

phase data aided with pseudorange data (t~t, = 60 cm). Both the original and 

transformed spectra will be shown. The examples that will be shown, are again 

based on the same 7 satellite configuration which has been used earlier in section 

8.3.3. Also the same underlying model of observation equations (cf. section 8.2.1, 

equation (8.2)) has been used. 

In Figure 8.21 the single baseline spectra of both the original and the 

transformed spectra of conditional standard deviations are shown. The 

corresponding elongations and variances before and after the transformation are 

given in Table 8.7. 

Figure 8.21(a) shows the L~-spectrum of the original DD ambiguities and the 
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transformed ambiguities. The discontinuity in the original spectrum is clearly 

visible. Figure 8.21(b) shows the spectrum of the wide-lane ambiguities. Again we 
observe a discontinuity when passing from the third to the fourth conditional 
variance. The size however, of the discontinuity in the wide-lane spectrum is 
smaller than that of the L, spectrum (compare the dotted curves of Figures 8.21 (a) 
and 8.2 l(b)). That is, the three large conditional standard deviations of the wide- 
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Figure 8.21. The original (dotted curve) and the transformed (full line) spectra of conditional 

standard deviations in cycles. (a) L t -spectrum; (b) wide-lane ( L 5 ) spect rum;  (c) L~ / L 2-spec t rum;  

(d) code -a ided  L1/L. 2 spectrum. 

lane ambiguities are smaller than those of the L~ ambiguities, and the three small 
conditional standard deviations of the wide-lane ambiguities are larger than those 
of the L] ambiguities. In other words, the wide-lane spectrum is flatter than that 
of the L~ spectrum. This shows, with reference to our earlier discussion on the 
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search for the integer least-squares solution, that the search for the integer wide- 

lane ambiguities will be less hindered by the potential problem of halting than the 

search for the integer L~ DD ambiguities. Note however, that although the three 

large conditional standard deviations of the wide-lane ambiguities are very much 

smaller than those of the L~ DD ambiguities, the difference between the third and 

fourth conditional standard deviations of the wide-lane ambiguities is still 

significant. Hence, the search for the integer least-squares wide-lane ambiguities 

still exhibits the potential problem of halting. This will not be the case however, 

with the decorrelated wide-lane ambiguities. The transformed spectrum of the 

wide-lane ambiguities is rather fiat and its level is smaller than that of the 

transformed spectrum of the L~ DD ambiguities. This shows, that the search for 

the integer least-squares solution of the transformed wide-lane ambiguities will 

have in this case a somewhat better performance than the search for the integer 

least-squares solution of the transformed L~ DD ambiguities. 

Table 8.7. Elongation (e) and minimum and maximum standard deviations ( t~ (max), Cr (min)) 

of the original and transformed ambiguities. 

e a c a min. max. e t c.  min. max. 

L 1 29479.4 112.0 343.0 2.7 1.76 2.74 

L 5 3630.2 17.5 53.6 3.7 0.49 1.58 

L 1 and L z 33913.8 61.7 242.6 4.8 0.16 0.23 

L 1 and L 2 469.0 1.4 4.1 6.1 0.08 0.13 

+ code 

Wide-lane ambiguities can be consa'ucted once dual-frequency carrier phase data 

are available. Instead of working with the wide-lane ambiguities however, one 

may also work with the original L~ and I-'2 DD ambiguities. In fact, if one is 

willing to believe that the simple and stripped version of the observation equations 

(cf. section 8.2.1, equation (8.2)) holds true, then Figure 8.21(c) shows that the 

L t / L  2 ambiguities should be preferred over the wide-lane ambiguities. The level 

of the transformed L~lL2-spectrum is not only smaller than the level of the 

transformed L~-spectrum, but also than that of the transformed wide-lane 

spectrum. The reason for this lower level is due to the presence of a larger number 

of very small conditional standard deviations in the original LJL2-spectrum.  The  

number of small conditional standard deviations equals 3 in both the original L~- 

spectrum as in the original wide-lane spectrum. In the original L~/L2-spectrum 



329 Peter J.G. Teunissen 

however, this number equals 6. Since our decorrelating transformation leaves the 

volume of the ambiguity search space invariant, it also leaves the product of the 

conditional standard deviations invariant. This implies, if the number of small 

conditional standard devaitions in the original spectrum increases, that the 

flattening of the spectrum due to the decorrelating transformation, will result in 

a lower level for the transformed spectrum. Figure 8.21(d) shows the original and 

transformed code-aided L~/La-spectrum. When the original L~, L~/L 2 and code- 

aided L~/L 2 spectra are compared (the dotted curves in Figures 8.21(a), 8.21(c) 

and 8.21(d)), the following is observed. Inclusion of the L,_ carrier phases hardly 

affects the first three large conditional standard deviations. Instead, it results in an 

increase of the number of very small conditional standard deviations (compare 

dotted curves of Figures 8.21(a) and 8.21(c)). The inclusion of the pseudorange 

data however, hardly affects the small conditional standard deviations, but instead 

lowers the value of the first three large conditional standard deviations. As a 

result, the size of the discontinuity in the original code-aided L~/L 2-specu'um is 

smaller than that of the original L~/L 2-spectrum. This shows, as one might expect, 

that the performance of the search for the integer least-squares solution will be 

enhanced by including pseudorange data. 

Nevertheless, as Figure 8.21(d) shows, a further improvement is realized through 

the decon'elation of the ambiguities. 

Based on the above findings and also on that what has been discussed in earlier 

sections, the following qualitative conclusions can be drawn concerning the 

signature of the GPS spectra of ambiguity conditional variances (remark: it is 

possible to verify these conclusions by means of an analytical proof): 

(1) In case the single baseline model of observation equations is parametrized 

in no other unknown parameters than the 3 baseline coordinates and the m 

DD ambiguities, the spectrum of DD ambiguity conditional variances, when 

based on relatively short observational time spans, will always show a 

discontinuity when passing the third conditional variance. The location 

and/or size of the discontinuity will change, when the model of observation 

equations - apart from the m DD ambiguities - is based on more than 3 

remaining unknown parameters. In the multi baseline case for instance, the 

number of large conditional variances will equal three times the number of 

baselines. 

(2) When L 2 carrier phase data are included, the number of very small 

conditional variances increases by the number of additional DD ambiguities. 

The inclusion of the L~_ carrier phase data will not affect the location of the 

discontinuity and will also have no large effect on the size of the 

discontinuity. It is the increase in the number of small conditional 
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variances, which makes it possible to reach a lower level for the 

transformed spectrum. 

(3) The number of very small conditional variances also increases, in case more 

satellites are tracked. They will increase by the number of additional 

satellites in case of L t , and by twice that number in case of Lt/L 2. The 

inclusion of more satellites will not affect the location of the discontinuity 

and will also have no large effect on the size of the discontinuity. Again, 

it is the increase in the number of small conditional variances, which makes 

it possible to reach a lower level for the transformed spectrum. This 

conclusion and the previous one, make therefore quite clear what role is 

played by satellite redundancy and dual frequency data. 

(4) The inclusion of pseudorange data, will hardly affect the very small 

conditional variances. Instead, it lowers the value of the large conditional 

variances and the~efore achieves some flattening of the spectrum. As a 

result, the performance of the search for the integer least-squares DD 

ambiguities improves. Since the large conditional vaaiances decrease, 

whereas the very small conditional variances remain largely unchanged, the 

inclusion of pseudorange data also results in a lower level for the 

transformed spectrum. 

(5) A longer observational time span, i.e. a larger spacing between the 

observational epochs, has a similar effect on the spectrum as the inclusion 

of pseudorange data. In fact, it is possible in principle for a large enough 

observational time span, to obtain a completely flattened spectrum. 

(6) The level of the transformed spectrum can be predicted, once the spectrum 

of the original ambiguities is given. This follows from the fact that the 

transformed spectrum is almost flat and that the product of conditional 

variances remains invariant under the transformation. 

(7) The degree of success of our decorrelating transformation depends to a 

large extent on the presence of the discontinuity in the spectrum. In other 

words, a lessening of the correlation of the least-squares ambiguities is not 

possible, when their spectrum is flat already. 

8.6 SUMMARY 

In this contribution we presented the theoretical concepts of GPS carrier phase 

ambiguity fixing. The main purpose of ambiguity fixing is, to be able via the 
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inclusion of the integer constraint a~ Z ",  to obtain a drastic improvement in the 

precision of the baseline solution. When successful, ambiguity fixing is thus a way 

to avoid long observational time spans, which otherwise would have been needed 

if the ambiguities were treated as being real-valued. GPS-ambiguity fixing 
consists of the following two distinct problems: 

(1) The ambiguity est imation problem, and 

(2) The ambiguity validation problem. 

The ambiguity estimation problem can be formulated as the problem of finding 

the integer least-squares estimates of the carrier phase ambiguities. Although this 

problem is easily formulated mathematically, it is not so easy to solve. The integer 

least-squares estimates of the GPS can'ier phase ambiguities, are the solution to 

the minimization problem 

m i n ( ~ - a ) r Q ; t ( f - a )  , a ~ Z "  
a 

Due to the presence of the integer-constraint a~ Z " and the fact that the least- 

squares double-differenced ambiguities are usually highly correlated, the efficiency 

in computing the integer least-squares ambiguity vector d is seriously hampered. 

In order to efficiently solve the above integer least-squares problem, an ambiguity 

reparametrization is carried out so as to obtain new ambiguities that are largely 
decorrelated. This method of the least-squares ambiguity decorrelation adjustment 

has been introduced in Teunissen [1993a] and it is based on using integer 

approximations of the conditional least-squares transformations. By introducing the 

reparametrization 

z = Z r a  , ~  = z r ~ ,  Qz = Z r Q ~ Z ,  

in which Z is an admissible ambiguity transformation, we obtain the equivalent 

integer least-squares problem 

min (~, - z)rQ[l(~.- z) ZE Z " 
z 

The corresponding integer least-squares ambiguity vector ~ is obtained from a 

search which is based on bounds that follow from a sequential conditional least- 

squares ambiguity adjustment. These bounds are given as 
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( Z l - Z l ) "  <( (~ ,~"  

2 2 
(Z211--Z2 )2 ---~ cry, Z [1 - ( Z l - Z l ) 2 / ( ~ l ~  2] 

m - I  
- "  ~, -2/ 2 21 

(ZmIM -- Zm )2 r O~.,,Z2[ 1 -- E tZ,1 l - . j )  (~t~,Z I.  
j - I  

Since the decorrelating ambiguity transformation Z achieves a flattening and 

lowering of the spectrum of ambiguity conditional variances, the potential problem 

of search halting has been largely eliminated. As a result an efficient search 

performance for the transformed integer least-squares ambiguities, ~t, ~ ..... ~,,, 

is obtained. Once the integer least-squares ambiguity vector ~ has been 

computed, the corresponding integer least-squares ambiguity vector 6 can be 

recovered from invoking ti - Z-rL 

Apart from solving the estimation step in the GPS ambiguity fixing problem, 

also the validation step needs to be considered. In the validation step the question 

is answered, whether we are willing to accept the computed integer least-squares 

solution. This question consists of two parts: (i) is d likely enough so as to 

consider it a serious candidate for the true integer ambiguity vector a? and (ii) is6 
sufficiently more likely than the second most likely candidate, so as to consider 

it as the one and only candidate for the true integer ambiguity vector a? Only 

when both questions are answered in the affirmative, a computation of the 

corresponding fixed baseline solution/~ makes sense. The fixed baseline solution/~ 

follows then from the float solution /~ and the ambiguity residual ( 4 - 6 )  as 
[~ = [ ~ _ a ~ a f l ( ~ _ ~ .  
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9 .1  I N T R O D U C T I O N  

In this chapter we discuss GPS geodesy at medium distances which in some ways 
is the most challenging. As indicated is Chapter 1, GPS can be considered a global 
geodetic positioning system providing nearly instantaneous position with 1-2 cm 
precision with respect to a consistent terrestrial reference frame. Nevertheless, as 
we shall see in this chapter, the relation between intersite distance and geodetic 
precision is still important, particularly for integer-cycle phase ambiguity resolution 
and short observation spans. 

We generalize the discussion to derivatives of precise geodetic positioning. That 
is, once very precisely positioned ground stations have been established what other 
information can we garner about the Earth? This leads us to a discussion of 
continuous networks for monitoring crustal deformation and atmospheric water 
vapor. 

9 . 1 . 1  Definition of Medium Distance 

Distance enters into GPS measurements when one or more stations are to be 
positioned relative to a base station(s) whose coordinates are assumed to be known, 
or more generally when a geodetic network is to be positioned with respect to a set 
of global tracking stations. Phase and pseudorange observations are differenced 
between stations and satellites (i.e., doubly-differenced or an equivalent procedure) 
to cancel satellite and station clock errors. The degree that between-station 
differences eliminate common-mode errors due to ionospheric, tropospheric and 
orbital effects is a function of the baseline distance. 

It is not possible to define precisely a range of distances that can be called 
"medium." One can define, however, a lower limit as the shortest distance for any 
of the following to occur:. 
(1) residual ionospheric refraction effects between sites are greater than total site 

and receiver specific errors (i.e., receiver noise, multipath, antenna phase 
center errors) making dual-frequency GPS measurements necessary; 

(2) residual tropospheric refraction errors are greater than total site and receiver 
specific errors; 

(3) residual orbital errors are greater than total site and receiver specific errors. 
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Likewise, one can define an upper limit as the minimum distance at which one of 
the following occurs: 
(1) dual-frequency ambiguity resolution is no longer feasible; 
(2) reference frame errors are the dominant error source. 

Nevertheless if we were required to define medium distance by a range of 
distances we might use the following: 101 - 103 km. 

9 . 1 . 2  Unique  Aspects of Medium Distance Measurements  

The primary distinguishing element of medium distance GPS measurements is the 
relationship between dual-frequency ambiguity resolution and ionospheric 
refraction. Highest geodetic precision requires ambiguity resolution in static, 
kinematic and dynamic GPS applications. Ionospheric refraction is the limiting 
factor in dual-frequency phase ambiguity resolution (in the absence of precise dual 
frequency pseudorange; if available, the limiting factors are then multipath and 
receiver noise). Although ionospheric effects can be canceled by forming the 
ionosphere-free linear combination of phase, any source of noise which is 
dispersive will be amplified. Let us express the ionosphere-free combination of 
phase as: 

i •  1227.6 _ 60 
0c = (  _ ) (01-g%);g  = ~ - f f f f  (9.1) 

Assuming that measurement errors in both bands are equal and uncorrelated, 

r  = (7_~,)2(1-- + g2) 02 = 10.4 C 2 
t - ~  ~ -g  

(9.2) 

so that forming the ionosphere-free linear combination magnifies dispersive errors 
by a factor of 3.2. For short distances, residual ionospheric errors are negligible 
compared to instrumental error, particularly multipath. Therefore, it is preferable to 
analyze L1 and L2 (if available) as independent observations. Ambiguity resolution 
is then straightforward because the L1 and L2 ambiguities can be determined 
directly as integer values. 

At medium distances the ionosphere-free combination is necessary. Let us 
express a simplified model for this combination as 

~c : P +  1 - - ~ n l -  l _ ~ ( n 2 - n l ) : P  + 0 . 5 6 n i - 1 . 9 8  ( n z - n l )  (9.3) 

This observable has a non-integer ambiguity which is a linear combination of the 
integer-valued L1 and L2-LI ambiguities. The reason why we use the L2-L1 
('wide-lane') ambiguity, n2 - nl, is because of its longer wavelength (86 cm) 
compared to the ('narrow-lane') L1 ambiguity, nl (19 cm). If we are able to 
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resolve n2 - nl to its correct integer value then we collapse it into left-hand side of 
(9.3) 

~c=P +0.56 nt ;$c =~e+ 1-98 ( n 2 - n l )  (9.4) 

so that the remaining ambiguity is just nl scaled by 0.56 and thus with an ambiguity 
spacing of 10.7 cm. This observable is free of ionospheric refraction effects so that 
if the remaining errors can be kept within a fraction of 10.7 cm, then the narrow- 
lane ambiguities can be resolved as well. Once the narrow-lane ambiguities are 
resolved the (double difference) phase observable becomes a (double difference) 
range observable, 

= 9 ; ~ = ~ - 0 . 5 6  n 1 + 1.98 ( n z - n  l) (9.5) 

Resolving wide-lane phase ambiguities is primarily limited by ionospheric 
refraction which increases in proportion to baseline distance (as noted above in the 
absence of precise pseudorange; if available, the limiting factors are multipath and 
receiver noise). If the wide-lane ambiguities cannot be resolved, narrow-lane 
ambiguity resolution is futile. Once wide-lane ambiguity resolution is achieved, 
ionospheric effects can be eliminated as in (9.4). Narrow-lane ambiguity resolution 
is then limited by orbital and reference frame errors, multipath and receiver noise. 

9 .1 .3  Types of Medium Distance Measurements 

Medium distance surveys usually fall under one of the following classifications: 

�9 F ie ld  C a m p a i g n s - -  A geodetic network is surveyed over a limited period of time 
by a number of roving receivers according to a fixed deployment and observation 
schedule. The network may be observed periodically (e.g., once per year) to 
determine deformation, for example. These surveys may be static, kinematic and/or 
dynamic. In general, the number of stations occupied significantly exceeds the 
number of receivers used to occupy them. 

�9 C o n t i n u o u s  A r r a y s  n A network of GPS stations observes continuously for an 
extended period of time. On a global scale, the growing network of GPS tracking 
stations (section 1.7) provides access to a consistent terrestrial reference frame and 
data for the computation of precise satellite ephemerides and earth orientation 
parameters. On a regional scale, continuously monitoring GPS stations provide 
base measurements for field surveys and "absolute" ties to the global reference 
frame. This leads to another mode: 

�9 M u l t i m o d a l  S u r v e y s  - -  Continuous arrays have begun to drastically alter the 
way field GPS surveys are conducted. Under the multimodal occupation strategy 
[Bevis et al., 1995] field receivers are positioned with respect to a continuous array 
backbone which provides base data and a consistent reference frame. Compared to 
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campaign surveys, fewer receivers need be deployed (as few as one receiver) and 
there is more flexibility regarding observation scenarios and logistical requirements. 

The most straightforward application of medium distance GPS is geodetic control 
whether with non-active monumented geodetic stations, active control stations 
(continuous GPS), or a combination of both. Monitoring of geodetic positions 
over time brings us into the realm of geodynamics and crustal deformation, 
including such phenomena as tectonic plate motion, intraplate deformation, 
volcanism, post-glacial uplift, variations in sea-level, land subsidence, and land 
sliding. Active GPS stations provide important calibration and control for other 
types of instrumentation such as seismometers, synthetic aperture radar 
interferometers, altimeters, and aerial mappers (photogrammetry). 

Recently, precisely positioned continuous GPS networks at medium distances 
have been shown to be useful for mapping tropospheric water vapor, ionospheric 
total electron content, and ionospheric disturbances. These data can then be used to 
improve the positioning of new sites within these regions, for improving weather 
models, for global climate research, and other applications. 

Case studies of plate boundary deformation monitoring and tropospheric water 
vapor mapping are presented in section 9.5. 

9 .2  GPS MODELS AT MEDIUM DISTANCES 

In this section we present linearized observation equations for dual-frequency 
carrier phase measurements following the development of Bock et al. [1986], 
Schaffrin and Bock [1988], Dong and Bock [1989] and Feigl et al., [1993]. We 
construct an orthogonal complement to the ionosphere free phase observable which 
includes a weighted ionospheric constraint. This formulation provides a convenient 
framework for phase ambiguity resolution at medium distances. 

9.2.1 Mathematical and Stochastic Models 

Linearized Observation Equations with Ionospheric Constraints. The 
linearized double difference carrier phase observation equations in their simplest 
general form can be expressed as 

D! = DAx + v (9.6) 

where D is the double difference operator matrix which maps at each observation 
epoch the carrier phase measurements to an independent set of double differences 
[Bock et al., 1986]; 1 is the observation vector, A is the design matrix, x is the 
vector of parameters, and v is the double difference residual vector. We construct 
two orthogonal linear combinations of the I1 and 12 observation vectors 
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~ r  

lcl = 11 - ( T - ~ ) ( 1 2  -gl l) l - g  
(9.7) 

Ic2=11 + ~g(12-gl 1 ) - ( 1 2 ~  ) 11 (9.8) 

where lcl is the familiar ionosphere-free linear combination and It is a pseudo- 
observation (weighted constraint) of the ionosphere 

ILl = I l + vt, l (9.9) 

with stochastic model (expectation and dispersion, respectively) 

([Vll  f01 E v 2 = 0 
v/ 0 

(9.10) 

 IvI [.21DCIDT 0 0 
!1 v 2 = 0 0"22DC2 DT 0 

v/ 0 0 o21DCID T 
(9.11) 

Schaffrin and Bock [ 1988] demonstrated that a zero constraint on the ionosphere 
(i.e., assuming no ionosphere) reduces the model to the simple case of independent 
L1 and L2 observations (short distance GPS model). Likewise, an infinite 
constraint reduces the model to the ionosphere-free formulation (long distance GPS 
model). 

The observation equations for the two new observables are given by 

Dlcl] [DAc 1] +[vcl ] 
DIe2] =[DAc2] x [%2] 

(9.12) 

The parameter vector x is partitioned into xm which includes all non-ambiguity 
parameters, nb the narrow lane L1 ambiguity vector (19-cm wavelength), and n2- 
nl, the widelane L2-L1 ambiguity vector (86-cm wavelength). The observation 
equations can now be expressed as 

[ 1 
1 .D 

[Dle l ]  = D A !  1 + g  1 _g2 Xmnl + [veil[reel 
IDle2] D,~i 12g +g  D 2 ~ D  n 2 - n l  

(9.13) 
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where the coefficient matrix for the non-ambiguity parameters is distinguished by a 
tilde. The stochastic model is 

E f]'vel "~, =[0 0 ] (9.14) 
LtVal/ 

D JTve, ~ = 0 2  2)[dz' d'2] 
~[ Vc2 ] j (1 + (9.15) g [d21 d22] 

where 

-- ~ DC#D T (9.16) dll  (1 _g2)2 

_ l (DC~D T§ G](I  +g2) d22 - ~g2 t~2 g2 DCt DT) (9.17) 

dl2 = d21 = 0  (9.18) 

2 is the variance of unit weight. and G O 

Cofactor Matrices. Schaffrin and Bock [1988] constructed cofactor matrices 
C O and C t for the dual-frequency phase measurements and ionospheric 
constraints, respectively, so that the propagated double difference cofactor matrices 

DC~D T and DCtD T would reflect the nominal distance dependent nature of GPS 
measurement errors, i.e., 

02 = a 2 + b2s~ (9.19) 

(for stations i and j), and be at least positive semi-definite. 
For a single double difference observation the cofactor matrices take the general 

form 

0 o~132sech fi 0 ] 
132 0 oq32sech ~5 

8 o 13~ o 
tg132sech i~ 0 [32 

(9.20) 

where sech is the hyperbolic secant function I and 

IThe hyperbolic secant function is defined as sech(8) --- 2/[exp(-8) + exp(~)] 
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[~ = [3(a,b); a =  a(a,b); 5 = 5(s) (9.21) 

With the availability of very precise orbits it is possible to ignore the distance 
dependent measurement error term in medium distance analysis so that 

01 a 2 0 
= 0 a 20 

C~(a) [ 0 0 0 a 2  
(9.22) 

For a single double difference 

DCcD T = 4a 2 (9.23) 

We can ignore the constant term for the ionospheric constraints (a=0) so that 

c t  (13, 5) = 

132 0 132sech ~ 0 ] 

0 132 0 132sech 5 ] ; [3 = 13(b) 
32sech 5 0 [32 0 

0 ~2sech ~ 0 ]32 

(9.24) 

For a single double difference 

DCID T = 4112(1 - sech  5) (9.25) 

Note in (9.24) that when 8 = 0 (zero baseline) there is perfect correlation and as 
the baseline increases in length inter-site correlations decrease. Suitable values for 
(9.25) are 

[32 = 0.3[b x 104mini 2 (9.26) 

5 = 0.56 ~, (9.27) 

where b is expressed in parts per million and ~, is the baseline length in units of 
arc-length. 

Ambiguity Mapping. The normal equations can be expressed simply as 

NIl NI2] Ul (9.28) 

where 
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nl ] (9.29) 
n = n 2 _ n  I 

Explicit expressions for the elements of the normal equations, suitable for 
computer coding, can be found in Schaffrin and Bock [1988]. 

When transforming undifferenced carrier phase measurements into double 
differences, it is necessary to choose a linearly independent set of L 1 and L2 
ambiguities. Otherwise the normal equations (9.28) will be rank deficient. Below 
we apply a general mapping operator B which constructs an independent set of 
double difference ambiguity parameters such that 

[;nl :[:;] S'21 lq'22 j 
(9.30) 

where 

1~12 = NI2 BT=  ]~T I (9.31) 

1~22 = BN22 BT (9.32) 

o 2 = Bu 2 (9.33) 

11 = (BBT) - IB (9.34) 

The preferred mapping is to choose those baselines that yield real-valued 
ambiguities with lowest uncertainties and minimum correlation structure (see 
discussion on ambiguity decorrelation in Chapter 8). Other mappings that have 
been used order the ambiguities according to baselines with increasing length 
considering that the total GPS error budget increases with baseline length. Yet 
another is to choose base stations (and base satellites). In the latter two mappings, 
the elements of B include combinations of +1, -1 and 0; each row contains two 
+l 's  and two -l's, which map four phase ambiguities into one double difference 
ambiguity. 

Least  Squares  Solut ion .  The least squares solution is computed from (9.30) 

IX;m] (9.35) 

with 
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(9.36) 

where P is the inverse of the dispersion matrix (9.15). 

Sequential  Ambiguity Resolution. An efficient algorithm for sequential 
ambiguity resolution uses the following relations to update the solution vector and 
the sum of residuals squared (Dong and Bock [1989]) 

Xnew =R +Q12Q2 / (no fixed-no) (9.37) 

( v T p v ) n e w  = v T l ~  t -I- ( n  o fixed - !I0) T Q221 (no fixed - rio) (9.38) 

Qnew = Q l l  - QI2Q22 I Q2t (9.39) 

The parameter vector x contains all parameters except those few bias parameters 
ii o that are fixed during each step of sequential ambiguity resolution (wide-lane and 
then narrow-lane). 

Wide-Lane  Ambigui ty  Resolution. There are two main approaches to 
wide-lane ambiguity resolution. 

Ionospheric Constraint Formulation. The purpose of the ionospheric constraint 
formulation given above is to be able to resolve the 86-cm wavelength wide-lane 
ambiguities. We cannot do this directly using the ionosphere-free combination 
since the resulting ambiguities are no longer of integer values (see (9.3)). A 
reasonable constraint on the ionospheric "noise" ranging from b=l to 8 parts per 
million in (9.26) facilitates an integer search in the space of wide-lane ambiguities 
(see also Chapter 8). 

Precise Pseudorange Formulation. Wide-lane ambiguity resolution using the 
ionospheric constraint formulation is possible only when ionospheric effects on 
carder phase are a small fraction of the 86-cm wavelength ambiguity. This is a 
function primarily of baseline length, but also station latitudes, time of day, season, 
and the sunspot cycle. Blewitt [1989] describes the use of precise dual-frequency 
pseudoranges in combination with carder phase to resolve wide-lane ambiguities. 

The simplified observation equations for phase and pseudor~inge, given in units 
of cycles of phase, can be expressed as 

~b I =-cP-fl + I i +n l  +V)l (9.40) 

@2 = -cP-f2 + I2 + n2 + v~2 (9.41) 
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PI = - ~f l  - II + vpl (9.42) 

PI = - Pf l  - I2 + Vpl (9.43) 

The wide-lane ambiguity can be computed at each observation epoch from these 
four equations such that 

fl - f2 
n2 - nl = (~2 - 01 + ~ (PI + P2) + v(n 2-n0 (9.44) 

This combination is solely a function of the phase and pseudorange observations 
and their combined measurement errors, and is independent of GPS modeling 
errors (e.g., orbits, station position, atmosphere). Thus, not only is it powerful for 
wide-lane ambiguity resolution but also for fixing cycle-slips in undifferenced 
phase measurements [Blewitt, 1990]. However, the pseudoranges must be 
sufficiently precise to make this procedure successful, that is a small fraction of the 
86 cm wide-lane ambiguity wavelength. This is not always the case, particularly in 
the anti-spoofing (A/S) environment and for short observation spans. 

Na r r ow-Lane  Ambiguity Resolution. The sole purpose of the ionosphere 
constraint formulation is to resolve wide-lane ambiguities which is limited either by 
pseudorange measurement noise or ionospheric refraction, or both. Once (and only 
if) the wide-lane ambiguities are resolved then the ionosphere-free observable is 
formed and resolution of (now integer-valued) narrow-lane ambiguities can proceed 
(9.4). The limiting error sources are then orbital and reference frame errors (which 
are distance dependent), and multipath and receiver noise which are magnified in 
the ionosphere-free observable (9.2). 

F o u r - S t e p  Algor i thm.  Dong and Bock [1989] and Feigl et al. [1993] 
describe a 4-step procedure for sequential ambiguity resolution as follows2: 
(1) All parameters are estimated using the ionosphere-free linear combination of 

carder phase. Tight constraints are applied to the station coordinates to 
impose a reference frame. 

(2) With the geodetic parameters held fixed at their values from step I, wide-lane 
ambiguity resolution proceeds sequentially using either the ionospheric 
constraint formulation or precise pseudoranges (or both). 

2In practice an additional two solutions are generated during this procedure. These axe very loosely 
constrained solutions in which the terrestrial reference frame is undefined (essentially free 
adjustments). The solutions (parameter adjustments and full covaxiance matrices) are available for 
subsequent network adjustment. This will be described in more detail in section 9.4. 
The last two steps are: 
(5) Step 1 is repeated but with loose constraints on all the geodetic parameters, with the ambiguity 

parameters free to assume real values. 
(6) Step 4 is repeated with the ambiguities constrained to integer values but with loose constraints 

on all the geodetic parameters. 
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(3) 

(4) 
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With the wide-lane ambiguity parameters held fixed at the values obtained in 
step 2, the narrow-lane ambiguities and the other parameters are estimated 
using the ionosphere-free linear combination. Tight constraints are imposed 
on the station coordinates as before. Narrow-lane ambiguity resolution 
proceeds sequentially. 
With the wide-lane and narrow-lane ambiguities fixed to their integer values 
obtained in steps 2 and 3, the geodetic parameters are estimated from the 
ionosphere-free data. 

9 . 2 . 2  Estimated Parameters 

Geomet r i c  Pa ramete r s .  The geometric term of the GPS model can be 
expressed as 

r = ~[pk(t,t -- X~(t))l = -6"fo I rk(t _ X~(t)) -- ri(t) I (9.45) 

where r i is the geocentric station position vector with Cartesian elements 

[Xi(t)] 
ri(t) = / Yi(t) [ 

[Zi(t)] 
(9.46) 

and r k is the geocentric satellite position vector, both given in the same reference 
frame. 

The equations of motion of a satellite can be expressed by six first-order 
differential equations, three for position and three for velocity, 

d ( r  k) = i "k (9.47) 

.k d~(i'k) = - ' ~  rk + [~Perturbing (9.48) 

where G is the universal constant of attraction and M is the mass of the Earth. The 
first term on the right-hand side of (9.48) contains the spherical part of the Earth's 
gravitational field. The second term represents the perturbing accelerations acting 
on the satellite (e.g., non-spherical part of the Earth's gravity field, luni-solar 
effects and solar radiation pressure). In orbit determination or orbit relaxation (see 
section 9.3.2), the satellite parameters are the initial conditions of the equations of 
motion and coefficients of a model for non-gravitational accelerations. These 
parameters can be treated deterministicaUy or stochastically. The estimation of GPS 
satellite orbits are discussed in greater detail in Chapters 2 and 10. 
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Tropospheric Refraction Parameters. Estimation of tropospheric refraction 
parameters is an important element in modeling medium distance measurements, 
primarily for the estimation of the vertical component of station position. With 
continuous GPS networks with well coordinated positions, it is possible to 
precisely map tropospheric water vapor at each site. 

The physics of the atmospheric propagation delay have been discussed in Chapter 
3. Ionospheric refraction is dispersive while tropospheric refraction is neutral (at 
least at GPS frequencies). Tropospheric delay accumulated along a path through 
the atmosphere is smallest when the path is oriented in the zenith direction. For 
slanted paths the delay increases approximately as the secant of the zenith angle. It 
is typical to model the delay along a path of arbitrary direction as the product of the 
zenith delay and a dry and wet 'mapping function' which describes the dependence 
on path direction such that 

AL "- AL ~ Mh(Z) + ALOw Mw(z) (9.49) 

where AL ~ is the zenith hydrostatic (dry) delay (ZHD), AL~ is the zenith wet 
delay (ZWD) and Mh(Z ) and Mw(z) are the hydrostatic and wet mapping functions, 
respectively, and z is the zenith angle. The total zenith delay is denoted here by 
ZND (zenith neutral delay). Various mapping functions have been described in 
Chapter 3 which take into account the curvature of the earth, the scale height of the 
atmosphere, the curvature of the signal path, and additional factors. Usually it is 
assumed that the delay is azimuthally isotropic, in which case the mapping function 
depends on a single variable, the zenith angle. For this class of model, signal 
delays are totally specified by the (time-varying) zenith delay. This allows us to 
introduce zenith delay parameter estimates for each station in a network. The 
simplest approach for retrieving the zenith delay is to assume that it remains 
constant ( or piecewise linear) for one or more time intervals, and to estimate these 
values more or less independently. A more sophisticated approach utilizes the fact 
that the temporal variation of the zenith delay has exploitable statistical properties. 
The zenith delay is unlikely to change by a large amount over a short period of time 
(e.g. ten minutes). In fact the zenith delay can be viewed as a stochastic process, 
and the process parameters can be estimated using a Kalman filter (see section 
9.4.4). 

The ZHD has a typical magnitude of about 2.3 meters. Given surface pressure 
measurements accurate to 0.3 millibars or better, it is usually possible to predict the 
ZHD to better than 1 ram. The ZWD can vary from a few millimeters in very arid 
conditions to more than 350 mm in very humid conditions. It is not possible to 
predict the wet delay with any useful degree of accuracy from surface 
measurements of pressure, temperature and humidity. It is possible to estimate the 
wet delay using relatively expensive ground-based water vapor radiometers 
(WVRs). Alternate less-expensive approaches include estimation of ZND from the 
GPS observations, or measurement of ZHD, using barometers, and estimation of 
the remaining wet delay as part of the GPS adjustment process. One advantage of 
decomposing the ZND in this way is that it enables the delay models to incorporate 
separate hydrostatic and wet mapping functions, thereby taking better account of the 
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differing scale heights of the wet and hydrostatic components of  the neutral 
atmosphere. This approach is highly advantageous in the context of  VLBI, in 
which radio sources are tracked down to elevation angles as low as 5*. For GPS, it 
is typical to process only those observations collected from satellites with elevation 
angles greater than 15". In this case, the wet and dry mapping functions differ only 
very slightly, and it is reasonable to lump the wet and hydrostatic delays together 
and use a single mapping function, thereby parameterizing the problem solely in 
terms of the total zenith delay. Once the ZND parameters have been estimated 
during the geodetic inversion, it is possible to estimate the ZWD by subtracting the 
ZHD from the ZND, where the ZHD is derived from surface pressure readings. 

For GPS networks with interstation spacing of less than several hundred 
kilometers, the ZWD parameters inferred across the network contain large but 
highly correlated errors. In this case one may infer relative ZWD values across the 
network but not the absolute values. Rocken et al. [1995] solved this problem by 
recognizing that the ZWD solutions obtained at each epoch are correct except for an 
unknown bias which is common to all stations. This bias can be determined at one 
site by using a colocated WVR to provide an absolute estimate of ZWD, which is 
then removed from the ZWD estimates at every other station in the GPS network. 
This technique has become known as 'WVR-levering'. 

Another approach does not require WVR observations. Remote stations are 
included in the geodetic inversion, in which case the absolute values of the ZND 
parameters are readily estimated. Continuously operating GPS stations of  the 
global GPS tracking network can be used for this purpose. Since precise surface 
pressure measurements are not available for most global tracking sites it is not 
possible to determine the hydrostatic delays at these sites. The total zenith delay can 
be estimated from each site and the hydrostatic delays are subtracted for those sites 
that are equipped with precise barometers to determine the ZWD. For more details 
on this approach see Duan et al. [1995]. An example is given section 9.5.2. 

9 . 3  ANALYSIS MODES 

The expansion of the global GPS tracking network, the availability of highly 
precise satellite ephemerides, earth orientation and satellite clock parameters, 
improvements in the terrestrial reference frame, the proliferation of continuous GPS 
arrays (at mediurrgregional scales), and technological advances in GPS software 
and hardware are changing the way medium-distance surveys are performed and 
analyzed. The capability of positioning a single receiver anywhere in the world 
with respect to the ITRF with centimeter-level, three-dimensional accuracy and in 
nearly real-time is becoming a reality. 

In this section we describe several analysis modes that are suitable for medium 
distance GPS. The models described in section 9.2 are suitable for any of these 
modes. 
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9 . 3 . 1  Baseline Mode 

The analysis mode with the longest history is the baseline mode. The first GPS 
network at medium distance (in this case at 10-20 km station spacing) was surveyed 
in 1983 in the Eifel region of West Germany in the baseline mode, using fixed 
broadcast ephemerides and single-frequency receivers [Bock et. al., 1985]. In the 
simplest case, one GPS unit surveys at a well-coordinated base station and a second 
unit is deployed sequentially at stations with unknown coordinates. The baseline or 
the three-dimensional vector between the base station(s) to each unknown station is 
then estimated with post-processing software using standard double difference 
algorithms. This is the way that most commercial GPS software packages have 
worked for many years and still do today, A standard network adjustment program 
(see section 9.4) is then used to obtain consistent estimates for the coordinates of 
the unknown stations within the reference frame defined by the fixed coordinates of 
the base stations. 

All advanced GPS packages use the more rigorous session mode analysis 
described in the next section. However, with today's technology, the baseline 
mode has become an accurate and straightforward method for medium distance 
surveys. The IGS provides highly precise and reliable satellite ephemerides (with a 
lag of 7-10 days) in standard SP3 format that can be read by all major GPS 
software packages. (Other groups provide precise ephemerides with a time lag of 
less than 24 hours). The base station can either be a continuous GPS site, a 
monumented (non-permanent) geodetic station, or a temporary station, all of which 
can be coordinated with respect to ITRF with sufficient accuracy for relative 
positioning. Ambiguity resolution is usually successful for single baselines at 
distances up to several hundreds of kilometers, depending on the observation span. 

9 . 3 . 2  Session Mode 

Session mode describes a variety of analysis techniques with the common 
denominator that all data observed over a particular observation span (a session) are 
analyzed simultaneously. It was first introduced to treat inter-baseline correlations 
rigorously. Later, orbit estimation, in addition to station coordinate estimation, 
became part of session-mode processing at regional, continental and global scales. 
Orbit estimation is often referred to as orbit relaxation at regional scales [e.g., 
Shimada and Bock, 1992], j'utucial tracking at continental scales [e.g., Dong and 
Bock, 1989; Larson et al., 1991; Feigl et al., 1993], and orbit determination at 
global scales [e.g., Lichten and Border, 1987]. This different terminology is 
primarily a function of the type of constraints placed on the orbital parameters. 
Zenith delay estimation always accompanies orbit estimation. The simultaneous 
analysis of several sessions to improve ambiguity resolution and orbital estimation 
is referred to as multi-session mode. 

Session mode with orbital estimation allows for a bootstrapping approach to 
ambiguity resolution in which ambiguities are searched sequentially over baselines 
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of increasing length [Blewitt 1989; Counselman and Abbot, 1989; Dong and Bock, 
1989]. 

9 . 3 . 3  Distributed Session Mode 

The proliferation of permanent global and regional continuous GPS networks, and 
the change in the nature of campaign-type surveys makes the traditional session- 
mode analysis of regional, continental and global GPS data computationally 
prohibitive and unnecessary. In this section, we describe an implementation of a 
distributed processing scheme [Blewitt et al., 1993; Blewitt et al., 1994] that 
divides the data analysis into manageable segments of regional and global data 
without significant loss of precision compared to simultaneous session adjustment 
[Oral, 1994; Zhang et al., 1995]. As described in section 9.3.1 the traditional 
baseline mode of processing is a viable and efficient procedure for medium-distance 
GPS processing. However, distributed session processing is a more rigorous 
procedure which retains the covariance structure between geodetic parameters, is 
computationally efficient, does not significantly sacrifice geodetic accuracy, and 
allows for straightforward integration of various type geodetic networks with 
respect to ITRF. 

The simplest form of observation equation for GPS estimation was given by (9.6) 
with weighted least squares solution 

s = (ATWA)- l ATwi ; W = DT(DC,DT) - ID (9.50) 

and unscaled covariance matrix 

Q = (ATWA)- I (9.51) 

Suppose that data from (e.g., two regional networks) are analyzed simultaneously 
with global data, to estimate station coordinates of the global and regional sites. We 
normalize the diagonal elements of the covariance matrix to unity by computing the 
correlation matrix of the form 

I Cg Crl,g Cr2.g ] 
Cal I = Cg,r I Crl Cr2,rl 

[ Cg,r2 Crl,r2 Cr2 
(9.52) 

where Cg, Crl, and Cr2 are correlation matrices for the site coordinates of the 
global sites, region 1, and region 2, respectively, and Cg,rl, Cg,r2, Crl,r2 are cross- 
correlation matrices. 

The structure of the parameter covariance matrix resulting from a simultaneous 
analysis of regional-scale networks and the global IGS network has been studied by 
Zhang et al. [1995]. High correlations (> 0.8) are concentrated in the regional 
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coordinates. Cross-correlations are low (< 0.3) among regions and between each 
region and the more globally distributed stations. Furthermore, cross correlations 
between different components at a particular site are low regardless of  station 
distribution. Correlations among components are uniformly low between regions 
and global sites, in particular for the longitudinal and radial components. The radial 
components are weak (< 0.3) even within regional networks. The longitudinal 
components are more highly correlated (< 0.5), and the latitudinal components most 
correlated (<0.8). 

From these types of studies, it has been shown that the analysis of global and 
regional data can be distributed among several smaller manageable segments, 
without significant loss of geometric strength or precision. An example is given in 
section 9.5.1. The distributed processing scheme, then, neglects the weakly 
correlated cross covariances between regional and global coordinates, i.e., 

Qg 0 0 ]  

Qall = 0 Qr! 0 
0 0 Qr2 

(9.53) 

An important component of this scheme is a top-level analysis of one or more 
global segments of 30-40 global tracking (IGS) stations, a manageable number with 
today's technology. Any number of solutions of regional segments can then be 
combined with the global segment in a rigorous network adjustment of station 
positions (and velocities) with respect to a globally consistent reference frame (see 
section 9.4.1). The regional segments should contain at least 3 stations in common 
with the top-level global network. 

9 . 3 . 4  Point  Posi t ioning Mode 

An efficient point positioning mode has been proposed by investigators at the Jet 
Propulsion Laboratory (M. Heflin, electronic communication). It is similar to the 
baseline mode but uses satellite clock estimates (from global tracking data analysis) 
in place of between station differencing to eliminate satellite clock errors. Thus, 
one can point position a site with respect to ITRF using fixed IGS orbits, earth 
orientation parameters, and satellite clock estimates. Station position, zenith delays, 
station clock, and phase ambiguity parameters are estimated using the ionosphere- 
free linear combination. 

The advantages of this approach are: 
(1) It does not require fiducial (base station) data in the computation of position. 
(2) In principle, it provides consistent accuracy worldwide. This will be the case 

when the global tracking network is more uniformly distributed. 
(3) It is a very efficient procedure and requires minimum computer processing 

time. However, it is not significantly more efficient than performing baseline 
mode processing, and is essentially equivalent to baseline mode with a fixed 
base station and without ambiguity resolution. 
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There are several current limitations to this promising approach: 
(1) It does not allow for integer-cycle ambiguity resolution thus limiting 

horizontal precision to about 1 cm, compared to baseline mode with ambiguity 
resolution which is 2-3 times more precise, primarily in the east component. 
This is certainly a limiting factor for medium-distance measurements where 
ambiguity resolution is critical.; 

(2) It is more difficult to edit phase data in undifferenced phase measurements, 
particularly with AS turned on; 

(3) The analysis must be performed with the same processing software (i.e., 
models) as was used to compute the fixed orbits, earth orientation parameters 
and satellite clocks. 

9 .3 .5  Kinematic and Rapid Static Modes 

Kinematic and rapid static modes have been discussed extensively in Chapter 7. At 
medium distances ionospheric refraction and its effect on successful ambiguity 
resolution is, of course, more severe than in static mode since the GPS unit is in 
motion between station occupations and, hence, more susceptible to cycle-slips and 
losses of lock in the phase measurements. Furthermore, station occupations are 
shorter so that ambiguity resolution is even more difficult even in the absence of 
cycle slips, primarily because less time is available for averaging down multipath 
effects. 

Genrich and Bock [1992] applied kinematic/rapid static techniques to a 
continuous GPS baseline (network), and demonstrated it on a short baseline across 
the San Andreas fault in central California. The key to this approach is that once the 
phase ambiguities are resolved (in the same way as in the baseline/session mode), 
the baseline can be computed epoch by epoch. Cycle-slips and rising of new 
satellites can be accommodated by on-the-fly ambiguity resolution techniques. 
Multipath effects which repeat from day to day (with an offset of about 4 minutes) 
can be nearly totally eliminated by stacking the daily positions (see section 9.4.5). 
This technique has been applied successfully at medium distances for detecting 
coseismic displacements associated with the January 1994 Northridge Earthquake 
and the January 1995 Kobe Earthquake. The key to this method at medium 
distances is that once the dual-frequency integer cycle ambiguities are resolved, one 
can use the ionosphere-free doubly differenced range measurements to estimate 
positions epoch by epoch with fixed external (IGS or other) precise orbits. 

Multimodal surveys show great promise for regional kinematic and rapid static 
analysis. That is, regional continuous GPS networks will provide maps and 
profiles of atmospheric refraction. Ionospheric corrections should enhance 
ambiguity resolution at longer distances and hence horizontal precision. 
Tropospheric corrections (primarily for the wet component - see section 9.2.2) 
should enhance vertical precision. 
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9.3.6 Dynamic Mode 

Dynamic measurements at medium distances are a greater challenge since the 
platform (e.g., an aircraft) is always in motion complicating phase initialization and 
re-initialization. Mader [1992] applied an ambiguity function technique 
[Counselman and Gourevitch, 1981 ] that is applicable to kinematic and rapid static 
measurements at medium distances. The ambiguity function is given by 

k~ j~  __~ jkl d~jkl (x,y,z) ]} (9.54) A(x,y,z) = COS {2X[ d?oJbs (x0,Y0,Z0) - "~calc =1 =1 I 

jkl where ~oJbs (x0,Y0,Z0) is the doubly differenced observed phase whose correct 
A, jkl position is (x0,Y0,Z 0) and V~aic (x,y,z) is the calculated doubly differenced phase 

at the initial position (x,y,z). The subscripts j, k, and I refer to satellite, epoch and 
frequency (L1 and L2), respectively. The difference term is the a priori phase 
residual. Phase ambiguity terms are neglected since they would cause an integer 
number of rotations leaving the ambiguity function unchanged; hence it is immune 
to cycle slips between epochs included in its estimation. It is clear that, for a 
particular satellite, epoch and frequency the ambiguity function will have a 
maximum value of I when the phase residual is an integer or zero. This will occur 
when (x,y,z) = (x0,Y0,Z01, assuming that all other errors are negligible, and at all 
other positions where the difference in distance computed between this satellite and 
the reference satellite for double differencing is an integer number of wavelengths. 
The search algorithm must distinguish between these different optima. In order to 
find the correct position, the summation above is made over different satellites, 
epochs and frequencies which results in a combination of intersecting surfaces that 
will interfere constructively at the correct position and destructively at incorrect 
positions, with the correct position emerging as a recognizable peak as the 
ambiguity function is computed over a volume that includes its position. If there 
are a sufficient number of satellites present at a given epoch (>_.5), a unique solution 
may be obtainable from that one epoch. This is crucial in the dynamic mode. As 
described in the previous section, precise orbital information and corrections for 
ionospheric and tropospheric refraction, if available, could be of significant value in 
this aspect, although antenna multipath and unmodeled antenna phase center 
variations would still be a limiting factor. 

9 . 4  N E T W O R K  ADJUSTMENT 

9.4.1 Free-Network Quasi-Observation Approach 

The free-network quasi-observation approach is the standard and preferred 
approach to GPS network adjustment. It is probably the only practical approach to 
integrating GPS networks with other types of geodetic networks (see section 9.4.2) 
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and maintaining a consistent terrestrial reference frame. The quasi-observation 
approach uses baseline or session-adjusted GPS free-network (or very loosely 
constrained) solutions including full covariance-matrix information as observations 
to a standard weighted least squares adjustment. In the simplest and most 
straightforward case only the geodetic coordinate adjustments and their covariance 
matrices are included as quasi-observations. However, it is also possible and often 
preferable to include other GPS estimated parameters (e.g., orbits and earth 
orientation parameters) in the network adjustment process. In any case, the 
reference frame is imposed at the network adjustment stage by fixing (or tightly 
constraining) a subset of the station coordinates. 

Linear ized Observation Equations. We review this approach according to 
the development of Dong [ 1993] which follows the well known four-dimensional 
integrated geodesy approach (e.g., Collier et al. [1988]). We ignore the 
gravitational potential term for this discussion. 

The non-linear mathematical model for the geodetic measurement can be 
expressed familiarly as 

l(t) = F{X(a,t), h(t)} (9.55) 

where X(a,t) is the geocentric Cartesian position vector, whose time-dependence is 
described by the parameters a, and h(t) are additional baseline-mode or session- 
mode GPS parameters such as orbits, earth orientation, and reference frame 
(translations, rotations and scale). The linearized observation equations are 

ill(t) = A[AX o + (t - to) AX0] + BAX o + CAh 0 + v (9.56) 

where ~il(t) is the observed minus computed value of the observable based on the a 

priori model, AX 0 is the adjustment of the a priori position vector, AX 0 is the 
adjustment of the a priori station velocity vector, Ah 0 is the adjustment of the a 
priori additional parameter vector 

~F A = ~-~ (9.57) 

B ~F OAX 
= ~-X-"d-ff- (9.58) 

C 3F = ~ (9.59) 

and v is the error term such that 

E{v} = 0 ; B{v} = E{w T} = cr~ P-  1 (9.60) 

For the purposes of this discussion, we have assumed that station motion is linear 

in time, so that a in (9.55) includes only the site velocity X . 
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Observation Equations for Site Coordinates and Velocity. In a 
geocentric Cartesian reference frame, the observation equations for station 
coordinates and velocities are given by 

- [SX0] Ix0 co x L Xx 
xt  0j + xb ] (9.61) 

_ rsxol 1 nx =Lxl~xo ] + Lxto . l t~  (9.62) 

where 

Lx =[13 ~X~ + ~-~o (t - to) I3(t - to) 1 (9.63) 

[aXo ] 
LX = [ ~ o  13 ] (9.64) 

0 -z o Y._o ] 
P- o = z 0 0 

-Yo Xo 
(9.65) 

I3 is the (3x3) identity matrix, oa x is the rotation angle vector, cox is the rotation 
angle rate vector, x x is the translation vector, "c x is the translation rate vector, 
and (x o, Yo, Zo) are the a priori coordinates. 

Observation Equations for Baseline and Baseline Rate Vectors. 
Again, in a geocentric Cartesian reference frame, 

[ 5Xoj - 8Xo~] 
~(dxij) =Lx[~Xoj 8Xo,] (9.66) 

[ 5Xg - 5Xo~ 1 
~(clXij) = LX lSXoj 8Xoi ] (9.67) 

Observation Equations for Episodic Site Displacements. Unknown 
episodic site displacements at a subset of sites are modeled as step functions in site 
position (e.g., coseismic displacements, antenna offsets, eccentricities). The 
observation equations are given by 
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SXo ] 
fiX(t) = L x [ 8X ~ l + ~ [rk(t,tk)~,] (9.68) 

( i, t tk t0, / 
rk(t,tk) = 0 if (t > t k, tk< to or t < t k, tk > to) (9.69) 

1 if (t > t k> to) 

where tk is the occurrence epoch, of the k-th event, and ~ k  is the site 
displacement vector from the k-th event. 

T r a n s f o r m a t i o n  to Othe r  Coord ina te  Frames .  Although the geocentric 
Cartesian frame is conceptually simple, other frames are more intuitive for 
representation of position. 

Geodetic Coordinates (r X, h) .  For an ellipsoid with semi-major axis 'a' and 
eccentricity 'e' (see section 1.6.6) 

X(t) = [N + h(t)] cos r cos X(t) 
X(t) = [N + h(t)] cos r sin ~,(t) 
Z(t) = [N(I - e 2) + h(t)] sin r 

(9.70) 

where 

N(t) = a 
~/(1 - ea)sin 2 (O(t)) 

is the radius of curvature in the prime vertical. 

Local Topocentric Coordinate Frame. The local vector dxij(t) emanating from 

site i is transformed to the geocentric Cartesian frame by the rotation matrix R such 
that 

dxij(t ) = Ri(t ) dXij(t ) = Ri(t) [Xj(t) - Xi(t)] (9.71) 

[ - sinAi(t ) cos Ai(t) 0 ] 
Ri(t ) = J -  sin(I)i(t) cos Ai(t) - sin(b#) sin Ai(t) cos (l~(t) 1 [ cos (l~t(t) cosAi(t) cos (l)i(t) sinAi(t) sin (I)i(t) 

(9.72) 

(~t - 0 i  =~i  ; Ai - ~  = 11i 
COS 

where (~,  A) are astronomic coordinates (latitude and longitude), and (~, 11) are 
the north-south (positive south) and east-west (positive west) deflections of the 
vertical, respectively. For representing relative positions in terms of "north, east 
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and up" components, it is sufficient to substitute geodetic latitude and longitude for 
astronomic latitude and longitude, in (9.72). 

9.4 .2  Integration with Other Geodetic Measurements 

SLR and VLBI.  The observation equations for satellite laser ranging 
determinations of position and velocity are given by (9.61) and (9.62); very long 
baseline interferometry baseline and baseline rate determinations by (9.66) and 
(9.67). Similarity transformation parameters given in (9.61) and (9.62) can be 
estimated to correct for reference frame differences (see also section 1.6.7). 

Conventional Terrestrial Observations. In crustal deformation studies 
with GPS, there are often older measurements available from triangulation [e.g., 
Bibby, 1982], leveling, and trilateration (e.g., Lisowsld et al. [1991]). The 
linearized observation equations for azimuth ( ot ), vertical angle 13 and distance 
for local site i to site j are given by 

l, ooi 00,-  Oo0 to [ 4~T]~ l" [SX0j - ~X0iH 
' - '0"o~x/SX ~5~ II 

t ~ ~'~ 
(9.73) 

where 

COS if'0 

S O = -sin s o 
G 

-sin oto sin 13o sin o~ o cos 130 ] 
-cos s 0 sin 130 cos s o cos 130 1 cos 13o sin 130 

(9.74) 

R is given by (9.72) and the zero subscript indicates values calculated from a priori 
values. 

9.4 .3  Software Independent Exchange Format (SINEX) 

A software independent exchange format (SINEX) [Blewitt et al., 1994] has been 
developed by the IGS (see section 1.7) for all types of geodetic solutions. A 
SINEX file includes parameter adjustments, full covariance matrices, and necessary 
auxiliary information. The adoption of this format by the geodetic community (akin 
to the widespread use of the RINEX format) will facilitate the exchange of solutions 
and the rigorous integration of geodetic networks. 
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9 .4 .4  Estimation Procedures 

Inpu t  to Network Adjus tment .  The basic input to a geodetic network 
adjustment are the adjusted parameter vectors and corresponding full covariance 
matrices from a set of separate GPS (and other geodetic) solutions. Stochastic and 
mathematical models are chosen (section 9.4.1), as well as an estimation method. 
The basic output is a consistent set of geodetic coordinates (and velocities) referred 
to some epoch in time, and possibly other parameters of interest. 

Adjustment of Baseline Mode Solutions, Network adjustment of baseline-mode 
solutions is well known [e.g. Bock, 1985] and several software packages are 
available to perform this task. The observation equations are given in 9.4.1 and the 
only parameters estimated are station coordinates (and similarity transformation 
parameters, if necessary). The reference frame is defined by fixing (or tightly 
constraining) at least one set of station coordinates in the network to define the 
origin (preferably in the ITRF). In practice, since external satellite ephemerides and 
earth orientation parameters are fixed in the baseline analysis (e.g., to IGS and 
IERS values), scale and rotation are already defined, although these can be adjusted 
as well if mixing several types of geodetic solutions. 

Adjustment of Session Mode Solutions. GPS medium distance (regional) 
solutions are obtained after ambiguity resolution as described in section 9.2, and 
may contain a variety of geodetic parameters (the simplest case being baseline-mode 
solutions). Generally, network adjustment of tightly constrained solutions results 
in relatively poor long-term position repeatability because of global errors, primarily 
reference frame and orbital model deficiencies. In principle, one could use a free 
network adjustment (i.e., inner constraint adjustment - -  see below). From a 
computational point of view, we prefer to use a loosely constrained solution, loose 
enough not to bias the solution but tight enough to allow (Cayley) inversion of the 
normal equations. It is important, though, to iterate these solutions to convergence 
since GPS adjustments are highly non-linear (in the orbit and station coordinate 
parameters). In addition, loosely-constrained solutions allow flexibility in 
modifying the underlying terrestrial reference frame and combining GPS solutions 
with other geodetic solutions. 

Adjustment of Global and Regional Solutions. With the availability of a robust 
global tracking network (the IGS - -  section 1.7), it is feasible to produce regularly 
(e.g., daily or weekly) global geodetic solutions (adjustments and full covariance 
information), estimating tracking station coordinates, satellite orbital elements, and 
earth orientation parameters 3. Then, regional GPS solutions can be adjusted 
conveniently in (distributed) session mode, with each solution adjusted in common 

3Such a daily global solution with full covariance information has been produced in GLOBK h-file 
format [Herring, 1994] at the Scripps Orbit and Permanent Array Center, in La Joliet, California, 
since November, 1991. These files are available on Internet via anonymous ftp [toba.ucsd.edu 
(132.239.152.80); e-mail: pgga@pgga.ucsd.edu]. The IGS Associate Analysis Centers of Type II 
(Blewitt et al., 1994] will begin to produce global SINEX files [section 9.4.3) based on weekly 
global solutions. 
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with a continental-scale subset of the global stations (see example in section 9.5.1). 
Thus, regional coordinates can be estimated with respect to the global terrestrial 
reference frame from a network adjustment of regional and global solutions. 

Combinat ion of  Solutions. Each loosely constrained solution (global and 
regional) has a very weak underlying reference frame. At the network adjustment 
stage we impose a consistent reference frame by applying tight constraints on a 
subset of station coordinates and velocities. Here we discuss three estimation 
options for network adjustment. 

Inner Constraint Estimation. A convenient initial step is to perform the familiar 
inner constraint solution to assess the internal precision of the network. In 
baseline-mode GPS this has a straightforward formulation. The normal equations 
are augmented by the inner constraints 

CX = 0 (9.75) 

where 

C -- [ I I I --.I](3x3k) (9.76) 

I is the (3x3) identity matrix and k is the number of stations. The inner constraint 
(free) adjustment is then 

= (ATpA + cTc )  - ! ATpI (9.77) 

and covariance matrix 

YX = 620( ATPA + c T c ) -  ! - C(ccT)-  1 (ccT)-  I C] (9.78) 

where for this particular case 

C(ccT)-  l ( ccT) -  I C = b 
I "~ I 

I - - . I  
(9.79) 

The inner constraint solution preserves the centroid determined by the a priori 
input coordinates. In practice this type of solution has little physical justification. 
Other more physically plausible, geometrically constrained solutions (outer 
coordinate solution and model coordinate solution) are reviewed by Segall and 
Mathews [1988]. 

Bayesian Estimation. Bayesian estimation is well suited for imposing weighted 
constraints on a subset of the station coordinates. The estimation model can be 
expressed as (i, AX, Qv, X, Y~x) where ~[ and V are random variables such that 
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E{X} = x;  D{X} = X x = E{ (X-  X) (X-  x )  T} 

It{V} = 0; 0{V} =Qv = E{ vvT} = X, 

from which 

g{l} =AX; [1{!} = AZxAT+Zt 

We construct an estimate that is unbiased 

E{~:} = ( G A + G x ) X = X ; G x  = I  - GA 

and minimum variance such that 

tr{ GZIG r + (I - GA)Zx(I - GA) T} = min 

from which 

G = ZxA T (AZxA T + Ej)-1 

(9.80) 

(9.81) 

(9.82) 

(9.83) 

(9.84) 

(9.85) 

Assuming that Y x is positive definite and M = E x-  I then 

$i = X + ( A T p A + M )  - l  ATp(I -AX)  = (ATpA+M)- I (ATp!  +MX) (9.86) 

and 

Z~ = ~ (ATpA + M)- l (9.87) 

where ~ is the variance of unit weight. 

Kalman Filtering. The Kalman filter formulation is quite useful in combining 
many individual GPS solutions with respect to a consistent terrestrial reference 
frame. The Kalman filter is an extension of Bayesian estimation described in the 
previous section. Its advantages are that it can conveniently be applied in a 
sequential manner and that the parameters can be treated as stochastic processes. 
Sequential processing allows us to easily distinguish poor sessions and to diagnose 
problems. 

Let us start from the linearized Gauss-Markov model (i, AX, Qv)t generalized in 
time as 

I t = AtX t + V  t (9.88) 
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E{Vt} = 0; E{VtV u) = 0; D{Vt} = Ir{VtVt T} = Qv (9.89) 

where 'u' is any epoch other than 't'. The dynamics of the parameters are given by 
the state transition equation 

Xt+ 1 -- StX t + W  t (9.90) 

where the state transition matrix S t operates on the state of the system at epoch t to 
give the expected state at epoch t+l and 

E{Wt} = 0 ; E{WtWu) = O; O{Wt} = F{WtWt T} = Qx (9.91) 

and for the cross covariances at epochs t and u (to:u) 

lr{VtWu) = F{VtXu T} = E{XtWu T} = 0 (9.92) 

A deterministic (nonstochastic) parameter has by definition 

w t = 0 (9.93) 

The forward Kalman filter is performed sequentially and is given by 

xtt+ 1 =StX [ (9.94) 

Ctt +1 = StCtt ST + Wt (9.95) 

where C is the covariance matrix, and 

^ ~ t  "~t+lC~t+l = xtt+l + K(it+l _ At+lXt+l ) (9.96) 

Ct+t t t+l = Ct+ 1 - K A t +  lCtt+ 1 (9.97) 

where K is the Kalman gain 

K C[+ 1AT+ l(Vt + 1 +At+ IC[+ T -1 = IAt + l) (9.98) 

Compare matrix G in equation (9.85) to the Kalman gain matrix. 

After all the observations have been added, the resultant state yields the estimates 
of the nonstochastic parameters (if all the parameters are nonstochastic then the 
forward Kalman filter estimate reduces to the weighted least squares solution). The 
estimates of the stochastic parameters are determined sequentially by a backward or 
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smoothing filter which is just the forward filter run with time in reverse, and then 
taking the weighted mean of the forward and backward runs such that 

= X+ + B(X_ - X+) (9.99) 

C~ = C+ - B  C+ (9.100) 

B = C+(C_ + C+) -1 (9.101) 

where the positive subscript indicates that the estimates are from the forward filter 
and the negative subscripts indicates that the estimates are from the backward filter. 
The superscript 's' indicates the smoothed estimate. 

9 . 4 . 5  Common-Mode Analysis of Adjusted Positions 

Cancellation of common-mode errors by differencing of phase (and pseudorange) 
observables has always been an inherent part of GPS analysis whether performed 
explicitly (double differencing) or implicitly (epoch by epoch clock estimation). It 
is well known that between stations differencing eliminates common-mode satellite 
clock errors, and between satellites differencing eliminates common-mode station 
clock errors. The former also cancels common-mode atmospheric and orbital errors 
on short baselines. In this section we present the concept of cancellation of 
common-mode errors by differencing estimated positions (after network 
adjustment). There are two general classes of techniques that we discuss here: 
stacking in time and stacking in space. 

It is preferable, of course, to eliminate or reduce systematic errors at the 
instrumentation level or at the estimation stage. For example, one could attempt to 
design an antenna that minimizes multipath interference or model the complicated 
multipath signature site by site (e.g., Elosegui et al. [1995]). Stacking provides a 
powerful and simple alternative as we show below. 

Stacking in Time. The removal of daily multipath signatures by stacking in 
time has been described by Genrich and Bock [1992], and subsequently used by 
several investigators to enhance resolution of kinematically determined station 
positions just before and after major earthquakes [T. vanDam and H. Tsuji, 
personal communication]. The GPS satellites have semi-diurnal orbital periods so 
that the same satellite geometry essentially repeats over successive days, except for 
an approximately 3 m 56 s negative shift in time due to the difference between sidereal 
and universal time (see eqn. 1.22). Assuming that site characteristics have not 
changed, multipath signatures will be highly correlated from day to day and will be 
manifested as relatively low frequency noise superimposed on higher frequency 
measurement noise. The strong day to day correlation makes it possible to 
suppress this noise by subtracting the low-pass-filtered signature that is evident 
during the first observation session from the time series of subsequent days (shifted 
in time by 3 m 56s) �9 
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Stacking in Space. Continuous GPS networks and multimodal techniques 
allow us to take advantage of common-mode position estimate signatures in 
medium distance (regional) networks resulting from global systematic errors which 
we refer to as stacking in space. 

Based on experience with a continuous GPS network in southern California (see 
section 9.5.1), a technique has been developed to eliminate common-mode 
signatures in the time series of daily positions, computed by network adjustment 
with respect to ITRF [Bock, Wdowinski et al., 1995]. Stacking the time series of 
positions of sites within the network, we notice a similar daily signature that we 
attribute to global-scale errors, i.e., orbit, reference frame, and earth orientation 
parameter errors. These errors map similarly across a particular region, but will 
map differently between regions. Recall the high correlations in regional covariance 
matrices described in the context of distributed processing. 

The stacking algorithm isolates and removes the common systematic signatures in 
the position time series, component by component and can be summarized as 
follows: 
(1) calculate the best fitting line for each component of each site, by weighted 

least squares; 
(2) detrend each component time series with the rate computed in step 1; 
(3) stack (add) the detrended components from each regional site and compute the 

weighted means (outliers are isolated at this step and removed from the stack); 
(4) demean each component time series with the means computed in step 3; 
(5) restore the trend removed in step 2. 

Steps 3 and 4 are performed for each element in the time series (e.g., each 24- 
hour solution). The use of the algorithm is straightforward as long as the time 
series is continuous. In case of discontinuities in the time series, e.g., due to 
coseismic displacements, the algorithm is applied separately to each continuous 
segment of the time series (e.g., one before the earthquake and one after). If a 
particular filtered time series is seen to have non-linear trends, it is removed from 
the stack and steps 1-4 are repeated. The station velocities are determined at step 1. 
They are not affected by the stacking procedure. 

The stacking algorithm has been shown to be a powerful technique for isolating 
site specific signatures, whether due to "noise" (e.g., site instability or multipath), 
or "signal" (e.g., postseismic displacements or interseismic strain variations). The 
stacking signature can also be removed from roving receivers within the region, 
being careful to match total observation time with the continuous trackers. One 
could also apply a combination of time and space stacking for continuous GPS 
networks. 

9 .5  CASE STUDIES 

9.5 .1  Southern California Permanent GPS Geodetic Array 

Description. In the last few years there has been a growing interest in measuring 
crustal deformation at tectonic plate boundaries by remotely controlled, 
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continuously monitoring arrays (section 9.1.3) in which GPS units are deployed 
permanently and unattended over highly stable geodetic monuments [e.g., Shimada 
and Bock, 1992, Bock 1994; Kato, 1994]. Continuous GPS provides station 
velocity estimates in a fraction of the time required of campaign measurements. 
Furthermore, it provides temporally dense measurements of the various stages of 
the earthquake cycle, in particular coseismic and postseismic station displacements, 
and possible preseismic signals and interseismic strain variations. 

The Permanent GPS and Geodetic Array (PGGA) (Figure 9.1) was established in 
the spring of 1990 as a pilot project to demonstrate the feasibility and effectiveness 
of continuous GPS [Bock, 1991; Lindqwister et al., 1991]. Southern California is 
an ideal location because of the relatively high rate of deformation, the high 
probability of intense seismicity, the long history of conventional and GPS 
surveys, and the well developed infrastructure to support continuous 
measurements. The PGGA subsequently became the in'st continuous GPS network 
to "capture" major earthquakes, the 28 June 1992 Landers earthquake, and the 17 
January 1994 Northridge earthquake. Far-field coseismic and postseismic 
displacements were recorded for these earthquakes [Bock et al., 1993; Blewitt et 
al., 1993; Bock, 1994]. The PGGA also played an essential role as a base network 
for field GPS units which were deployed rapidly in multimodal surveys (section 
9.1.3) to measure coseismic and postseismic displacements for both of these events 
[Hudnut et al., 1993; Shen et al., 1993; Hudnut et al., 1995]. See Figure 9.2 for 
the PGGA time series that revealed interseismic and coseismic deformation 
associated with the Northridge earthquake. 

Distributed Analysis of IGS and PGGA data. The growing number of 
PGGA and global IGS stations (see section 1.7) led to the implementation of a 
distributed session analysis (section 9.3.3) of the data collected daily, to replace the 
increasingly cumbersome simultaneous session analysis of regional and global data 
(section 9.3.2). 

In a global solution, data from about 35 IGS stations (see Figure 1.1, Chapter 1) 
are adjusted in independent twenty-four hour (0-24h UTC) segments using the 
GAMIT software [King and Bock, 1994]. One of these stations is the IGS primary 
station at Goldstone, California which is also part of the PGGA. In a weighted 
least squares adjustment (section 9.2.1), coordinates are estimated for each station, 
initial conditions for each GPS satellite including 6 state vector elements, direct and 
y-bias solar radiation parameters, piecewise continuous zenith delay parameters 
every 2 hours at each site, and phase ambiguity parameters. Since station spacing 
is typically several thousand kilometers the ionosphere-free phase observable is 
used and there is no attempt to resolve phase ambiguities to integer values. This 
reduces significantly the computational burden. After filling the normal equations, 
two solutions are generated in the estimation process. In the first solution 
coordinates of the thirteen primary IGS stations are tightly constrained and the 
initial orbits obtained from the broadcast ephemerides or by extrapolation from the 
previous day's solution are iterated to convergence. In the second solution, all 
parameters are very loosely constrained and linearized about the values estimated in 
the previous solution. The adjusted station, earth orientation and satellite 
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Figure 9.2. Los Angeles Basin PGGA time series. Time series of daily baseline components 
determined on the 55 km line between sites at Palos Verdes and Jet Propulsion Laboratory (JPL) 

see Figure 9.1, spanning the Los Angeles Basin. Note the contraction of the basin at a rate of 
8.hL--0.9 mm/yr (lower plot) based on about 8 months of continuous GPS data and the horizontal 
(primarily north) coseismic offset on the day of the Northridge earthquake (17 January 1994 
denoted by vertical line) on the order of 10 mm (upper two plots and lower plot). 
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parameters and corresponding covariance matrix are output to a global solution f'tle 
in a SINEX-like format (section 9.4.3). This file contains the full geodetic 
information content for the global analysis. This step, including data editing, takes 
from 3-5 hours on a top of the line computer workstation and involves inversions 
of matrices with dimensions of about 2500. 

At the next stage, the PGGA data are analyzed with data from 5 North American 
IGS sites (including Goldstone). Goldstone provides the regional link to the global 
solution. The other four stations solidify the connection with the global solution 
and the ITRF since they are well distributed geographically but close enough to 
observe satellites simultaneously with the California stations. This GAMIT 
solution uses the same parameterization as the global solution but with dual- 
frequency ambiguity resolution as described in section 9.2.1. Again we fill the 
normal equations and generate constrained and unconstrained solutions but with the 
integer-cycle ambiguity parameters resolved. Ambiguity resolution is robust in the 
constrained solution since we are able to tightly constrain the GPS orbits generated 
in the global solution, as well as the coordinates of the IGS tie stations. Once 
ambiguities are resolved, the loosely constrained adjustment of station, earth 
orientation and satellite parameters and corresponding covariance matrix are output 
to a regional solution file. 

The global and regional solutions can then can be combined using one of the 
network adjustment approaches described in section 9.4. We use the Kalman filter 
formulation of section 9.4.4 which is the heart of the GLOBK software [Herring, 
1995]. We apply very tight constraints to the coordinates of the 13 IGS core 
stations (updated to the appropriate epoch by applying the fixed ITRF station 
velocities) so that the resulting station estimates are with respect to ITRF. This 
scheme can be generalized to a number of regional networks, generating parameter 
adjustments and covariance matrices for each network. Each regional network is 
analyzed independently and in parallel, including a subset of 3-5 IGS stations, and 
then combined with the global solution by network adjustment. 

Comparison of Distributed and Simultaneous Processing. Zhang et al. 
[1995] demonstrated that it is possible to obtain statistically equivalent results using 
a distributed processing approach compared to a simultaneous session approach. 
The PGGA collected data before and after the 28 June 1992 Landers earthquake 
which displaced the positions of all PGGA sites. Coseismic displacements were 
estimated from daily simultaneous adjustments of all GPS data over a 10 week 
period centered on the day of the earthquake. In a dally global solution, all IGS 
sites were analyzed including the Goldstone site. In daily regional solutions, the 
PGGA sites were analyzed with 5 North American IGS tie sites. Coseismic 
displacements were computed using GLOBK by combining the solutions of 70 
global and 70 regional solutions, with respect to 1TRF 93. 

Coseismic displacements of the PGGA sites estimated by simultaneous and 
distributed processing ate compared in Figure 9.3. As expected, the displacements 
are statistically equivalent. The Landers earthquake results demonstrate that we can 
detect sub-centimeter geophysical signals by a near real-time GPS network with 
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Figure 9.3. Comparison of simultaneous and distributed GPS processing. Coseismic 
displacements computed from I0 weeks of daily estimated ITRF93 positions for 4 PGGA stations, 
centered on the day of the Landers earthquake. The shaded ellipses indicate displacements estimated 
from distributed processing; unshaded ellipses, simultaneous processing. The contours of 
displacement magnitude and the calculated (theoretical) displacements are for an elastic halfspace 
(all units are millimeters). Indicated are the surface traces of the Landers (heavy line) and Big Bear 
(dashed line) ruptures. Error ellipses are 95% confidence levels. 
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respect to a terrestrial reference frame defined by the positions and velocities of a 
network of global tracking stations. 

9 . 5 . 2  GPS S T O R M  E x p e r i m e n t  for  Mapping  Atmosphe r i c  W a t e r  
Vapor  

Description. A 30-day field experiment called "GPS/STORM" was mounted in 
May 1993 in order to demonstrate the feasibility of retrieving PW from GPS 
observations [Bevis et al., 1992; Rocken et al., 1995; Duan et al., 1995]. Dual 
frequency GPS observations were collected for 22 hours each day at six stations in 
Oklahoma, Kansas and Colorado (Figure 9.4). At four of these sites the GPS 
receivers were colocated with water vapor radiometers. Precisely calibrated 
barometers were available at all six sites, in addition to radiosonde observations. 

Estimation of Precipitable Water.  Having estimated the ZWD history at a 
site (see section 9.2.2) it is possible to transform this time series into an estimate of 
the precipitable water (PW). PW is defined as the length of an equivalent column 
of liquid water and can be related to ZWD by 

PW = FI ZWD (9.102) 

where the constant of proportionality FI is given by 

l 'I= 106 (9.103) 

PRv[~-~ + k'2] 

where p is the density of liquid water, R v is the specific gas constant for water 
vapor, and T M is a weighted mean temperature of the atmosphere defined as 

f (PvA)dz 
T M = (9.104) 

k 2 = k 2 - mk I (9.105) 

Mw (9.106) 
m = M d  

where T is temperature, m is the ratio of the molar masses of water vapor and dry 
air, and the integrations occur along a vertical path through the atmosphere. The 
physical constants are from the formula for atmospheric refractivity 
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Figure 9.4. Station coverage for the GPS/STORM experiment. Upper map shows the 5 IGS 
stations that provided fiducial control for the regional data analysis. Lower map shows the 
location of 5 stations in Oklahoma, Kansas, and Colorado where precipitable water (PW) estimates 
were derived using the GPS technique. Open circles indicate that water vapor radiometers were also 
deployed at the sites for an independent determination of PW. 
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kP~ N =kiP --d + k2~ -v + 3"~'~ (9.107) 

where Pa and Pv are the partial pressures of dry air and water vapor, 
respectively. The time-varying parameter T M can be estimated using 
measurements of surface temperature or numerical weather models with such 
accuracy that very little noise is introduced during the transformation 9.102. That 
is, the uncertainty in the PW estimate derives almost entirely from the uncertainty in 
the earlier estimate ofZWD [Bevis et al., 1994]. 

The GAMIT software was used to analyze the GPS/STORM data. Four remote 
stations (Figure 9.4) were incorporated into the analysis to establish the link to 
ITRF 93. The 30 days of observations were analyzed one day at a time. Using the 
GLOBK software, the daily solutions were combined with dally solutions of  32 
globally distributed stations produced by the Scripps Orbit and Permanent Array 
Center. This step provided precise (sub-centimeter) geocentric positions for the six 
GPS/STORM stations. The daily GAMIT solutions were then repeated, tightly 
constraining the positions of all ten stations. ZND parameters were estimated under 
the assumption that they behave as a first-order Gauss-Markov process. The 
process correlation time was set to 100 hours, the process standard deviation was 
set to 2.5 ram, and the ZND was estimated every 30 minutes at each station. We 
used the CfA mapping function [Davis et al., 1985]. The ZND estimates produced 
by GAMIT were then used to estimate PW. The ZWD histories at the six 
GPS/STORM sites were recovered from the ZND estimates by subtracting the ZHD 
time series computed using surface pressure measurements. The ZWD estimates 
were then transformed into PW estimates using (9.102). 

The GPS-derived PW solutions thus obtained were compared with the WVR- 
derived PW solutions at the four stations with colocated WVRs and GPS receivers. 
A representative segment of the time series acquired at site Purcell is shown in 
Figure 9.5. A weighted root-mean-square deviation between the WVR and GPS 
time series was computed for each station, with the results falling in the range 1.15 
- 1 .45  mm of PW. 

These results illustrate a significant advantage of estimating PW from GPS 
observations. The measurements of PW provided by WVRs are virtually useless 
during brief but not rare episodes in which these instruments are wetted by rainfall 
or dew. Note that the GPS solutions do not suffer from this problem. Additionally 
GPS receivers are robust, all-weather devices requiring minimal levels of  
maintenance, and they are far cheaper than WVRs. 

9 . 6  S U M M A R Y  

We have reviewed in section 2 the GPS mathematical and stochastic models for 
medium distance measurements. We concentrated on the main parameters of 
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Figure 9.5. Precipitable water from GPS meteorology and water vapor radiometry. Plot of PW 
estimates over a two-week period at station Purcell during the GPS/STORM experiment. The 
open circles are estimates of PW every 30 minutes derived from water vapor radiometry (WVR). 
The crosses indicate radiosonde measurements. Note the extremely high (and erroneous) values 
from WVR during brief but not rare episodes in which these instruments are wetted by rainfall or 
dew. Note that the GPS solutions do not suffer from this problem. This experiment demonstrated 
that PW can be estimated with GPS at about 1.0 mm to 2.5 mm accuracy. 
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interest at medium distances: station coordinates and tropospheric zenith delay 
parameters. 

In section 3, we reviewed the various analysis modes used today for medium 
distance GPS. We stressed that distributed session mode processing was a 
convenient and efficient way to handle the growing number of global tracking 
stations and continuous GPS regional networks, particularly with the availability on 
the Interact of global solutions with full covariance information. 

In section 4, we described the free-network quasi-observation approach to 
network adjustment of session-mode solutions, exploiting the full covariance 
information available from distributed session analysis. We provided observation 
equations for site coordinates and velocity, baseline coordinates and velocities, and 
episodic site displacements. We indicated a scheme to integrate VLBI and SLR 
space geodetic solutions (with full covariance information), as well as classical 
terrestrial geodetic measurements. We reviewed several estimation algorithms for 
network adjustment including free adjustment, Bayesian estimation and Kalman 
filtering. We described common-mode algorithms to remove systematic effects 
from post network adjustment station position estimates, both temporally and 
spatially. We reviewed the physical models behind estimation of tropospheric 
water vapor by continuous GPS networks. 

In section 5, we presented two case studies using much of the material covered in 
Sections 2-4. The first example, used data from the Permanent GPS Geodetic 
Array in southern California to show the statistical equivalence of distributed 
session and simultaneous session analysis. The second example, showed how 
precisely positioned continuous GPS networks could be used to track atmospheric 
water vapor using the same procedures outlined in this chapter. 
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10.1 INTRODUCTION 

Until a few years ago it was believed that the GPS would never play an important 
role in Global Geodynamics. There was a general consensus that the Global 
Terrestrial Reference Frame and the Celestial Reference Frame would be uniquely 
defined by VLBI, that the geocenter and the Earth's potential would be defined 
essentially by Laser Observations. It was believed that GPS would play a decisive 
role in the densification of the Terrestrial Reference Frame, a role as an 
interpolation tool for the other more absolute space techniques so to speak. 

This view of affairs had to be modified considerably in consideration of the 
success of the International GPS Service for Geodynamics (IGS). The 
contributions of the IGS and its Analysis Centers to the establishment of 
�9 polar motion (x and y components), 
�9 length of day (or, alternatively the first time derivative of AUT), and 
�9 the IERS Terrestrial Reference Frame (ITRF) 
became more and more accurate and reliable with the duration of the IGS 
experiment (test campaign in summer 1992, IGS Pilot Service (1 November 1992 - 
31 December 1993), official service since January 1, 1994)). 

Today the IGS products play an essential role for the Rapid Service Subbureau 
of the IERS; the contribution is getting more and more weight also in the IERS 
Central Bureau's analyses. Temporal resolution and the timeliness of the IGS 
analyses are unprecedented, the consistency is comparable to that of the other 
space techniques. 

Unnecessary to say that GPS actually plays a decisive role for the densitication 
of the ITRF. As a matter of fact, the IGS at present organizes a densification of the 
ITRF through regional GPS networks (see proceedings of the 1994 IGS workshop 
in December 1994 in Pasadena [Zumberge, 1995a]). 

Should we thus conclude that GPS is on its way to take out VLBI and SLR as 
serious contributors to global geodynamics? The answer is a clear no! Let us 
remind ourselves of the limitations of the GPS: 
�9 GPS is not capable of providing absolute estimates of AUT. Length of day 

estimates from relatively short data spans may be summed up to give a 
AUT curve refering to a starting value taken from VLBI. SLR (Satellite 
Laser Ranging), as every technique in sateUite geodesy not including 
direction measurements with respect to the inertial reference frame suffers 
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from the same problems. GPS gives valuable contributions in the domain of 
periods between I and 40 days. 

* So far, GPS has given no noteworthy contributions to the establishment of 
the Celestial Reference Frame. Below, we will see that contributions of a 
kind comparable to the length of day are actually possible. 

* GPS, as a radio method, suffers from the limitations due to the wet 
component of tropospheric refraction. VLBI has the same problems, SLR 
is in a much better situation in this respect. Compared to either VLBI or 
GPS the SLR measurements are absolute in the sense that ground 
meteorological data are sufficient to reduce the tropospheric correction to 
a few millimeters for SLR established ranges. This fact gives SLR a key 
role for the calibration of troposphere estimates as they are routinely 
performed in GPS and VLBI analyses. The fact that some (at present two) 
GPS satellites have Laser reflectors clearly underlines this statement. 

�9 GPS is an interferometric method. Highest accuracy is achieved in the 
differences of measurements taken (quasi-) simultaneously at different 
points of the surface of the Earth. The issue of common biases when 
analysing data taken at sites which are separated by 500 - 2000 km only is 
not completely resolved. A combination of different space techniques (of 
SLR and GPS in this particular case) will help to understand and resolve 
the problems. This aspect does in particular affect the estimated station 
heights. 

* GPS makes extensive use of the gravity field of the Earth as it was 
established by SLR. If GPS receivers on low Earth orbiters become 
routinely available there will also be GPS contributions in this area. 
Modeling of non-gravitational forces for such satellites (which certainly 
will not be canon ball satellites) still will be problematic, however. 

These aspects should be sufficient to remind ourselves that space geodesy does 
not take place in a single spectral line. A combination of all methods is mandatory 
and will eventually give most of the answers we would like to have in 
geodynamics. 

10.2 THE PARTIAL DERIVATIVES OF THE GPS OBSERVABLE 
WITH RESPECT TO THE PARAMETERS OF GLOBAL 
GEODYNAMICS 

Let us remind ourselves of the transformation between the Earth f'txcd and the 
celestial coordinate systems (section 2.2.2 eqn. (2.21)) and apply it to the 

coordinates of a station on the surface of the Earth (R") and in space (R): 

R" = R2(-x ) �9 R1(-y ). R3(O~ N(t). P(t). a (10. la) 
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R = pr  (t). N r (t)" R3 ("'0 a )" Rl(y )" R2(x )' R" (10.1b) 

where 0 ,  is the Greenwich apparent siderial time: 

0 a = 0 m (UTC + AUT) + A~]. cos~ 
(10.2) 

where 0,, is the mean sidereal time in Greenwich at observation time 
eis the apparent obliquity of the ecliptic at observation time 
AW is the nutation in longitude at observation time 
AUT = UT1-UTC 

We refer to Chapter 2, eqn. (2.21) for the other symbols in eqn. (10.1). 
To the accuracy level required for the computation of  the partial derivatives of 

the GPS observable with respect to the parameters of interest, we may 
approximate the nutation matrix as a product of three infinitesimal rotations: 

N ( t ) =  Rt (-Ae)" R2(A v .sing). R3(-A v �9 cose) (10.3) 

Introducing this result into equation (10.1b) we obtain the following simplified 
transformation equation which will be used for the computation of  the partial 
derivatives only: 

R = p r  (t). RI(Ae )- R2(-A v .sin~). R3 (--0,,). Rt(y ). R2(x ) �9 R "  (10.4) 

The global geodynamic parameters accessible to the GPS are all contained in 
eqn. (10.4). It is our goal to derive expressions for the partial derivatives of the 
GPS observable with respect to these parameters. 

Neglecting refraction effects and leaving out range biases (ambiguities), we 
essentially observe the slant range d between the receiver position R" resp. R at 
observation time t and the GPS satellite position r" resp. r at time t-d/c (where c is 
the velocity of light). This slant range may be computed either in the Earth-fixed or 
in the celestial (inertial) coordinate system. Let us use the celestial reference frame 
subsequently: 

d 2 = ( r - R )  r . ( r - R )  (10.5) 

Let p stand for one of the parameters of interest (e.g., a polar wobble component 
x or y, (AUT) or one of the nutation parameters). From eqn. (10.5) we easily 
conclude that 

Od - e  r ~R (10.6) 
Op Op 

where e is the component matrix of the unit vector pointing from the receiver to 
the satellite: 
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e = ( r  - R)/d ( l O . 6 a )  

In eqn. (10.6) we assumed that the partial derivative of the satellite position r 
with respect to the parameter p is zero. In view of eqn. (2.22) this is not 
completely true - but the assumption is good enough for the computation of 
partial derivatives. 

Equations (10.6) and (10.4) allow it to compute the partial derivatives in a very 
simple way. Let us explain the principle in the case of the derivative with respect to 
Ae: 

DR 
= p r  (,)-~--~-(R, (Ae)). R2 (-A~t-sine). R3 (--0,)-R,(y).  R2(x )- R"  OAs 

where: ~A-~(R,(Ae)) = 0 

-1 

Retaining only terms of order zero in the small angles x, y, A V, Ae we may write 
for eqn. (10.6): 

-e~. R~ + e;-R~ = d "  (R~. r 3' - R r �9 r~') (10.7a) 

where the prime ..... denotes a coordinate in the system refering to the true 
equatorial system of observation time. In the same way we may compute the 
partial derivative with respect to the nutation correction in longitude and with 
respect to AUT: 

Od 1 
. . . .  sine-(R~, rl"- R~'. r3') (10.7b) 

OAV d 

d 1 

= - - - ~ .  ( R ; .  r~' - R 2 �9 r~') (10.7c) 
OAUT / /  

The partials with respect to the components x and y of the pole formally look 
similar as those with respect to the nutation terms. This time, however, the 
apropriate coordinate system is the Earth fixed system. 

O x = d . ( R ; ,  rl,,_ R~,. r3, ) (10.7d) 
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Od 1 
= 7 "  (R2'" r "  -- R3". r23 (10.7e) ~y  

We recognize on the right hand side of eqns. (10.7a-e) the components of the 
vectorial product of the geocentric station vector with the geocentric satellite 
vector. The components refer to different coordinate systems, however. 

In the above formulae we assumed that all the parameters are small quantities. 
This is not too far away from the truth. But, let us add, that we might have given 
more correct versions for the above equations by writing e.g. the nutation matrix 
as a product of the matrix due to the known a priori model and that due to the 
unknown small correction. The principle of the ana lys i s -  and the resulting 
formulae - are similar. The above equations are good enough for use in practice. 

Until now we assumed that the unknown parameters x, y, etc. directly show up 
in the above equations. It is of course possible to define refined empirical models, 
e.g., of the following kind: 

x:=  Xo +xl  . ( t - t0 )  (lO.8) 

Obviously the partial derivatives with respect to our new model parameters have 
to be computed as 

Od Od Ox Ox =I  Ox = ( t _ t o  ) (10.9) 
3x~ = Ox 'Ox i  ' Oxo ' ~ x t  

Models of type (10.8) are of particular interest for those parameters which are 
not directly accessible to the GPS (i.e., for AUT and nutation parameters). 

10.3 GEODYNAMICAL PARAMETERS NOT ACCESSIBLE TO T H E  
GPS 

As opposed to VLBI analyses we always have to solve for the orbital elements of 
all satellites in addition to the parameters of geodynamic interest in satellite 
geodesy. This circumstance would not really matter, if  we would observe the 
complete topocentric vector to the satellite and not only its length or even - as in 
GPS - its length biased by an unknown constant (initial phase ambiguity). 

Let us ftrst formally prove that it is not possible to extract AUT from GPS 
observations in practice. This is done by showing that the partial derivatives with 
respect to AUT and with respect to the right ascension of the ascending node are 
(almost) linearly dependent. Let us assume at present that the orbit is Keplerian 
(i.e., we neglect all perturbations). Let us furthermore assume that we refer our 
orbital elements to the true equatorial system at the initial time t of our satellite 
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arc. We may now write the component matrix r in this equatorial system (compare 
eqn. (2.8)) as 
r = R 3 ( - f ~ ) .  r * 

where r *  are the coordinates of the satellite in an equatorial system which has its 
first axis in the direction of the ascending node. 

The partial derivative of r with respect to the r.a. of the ascending node may be 
computed easily: 

=~ il I il ~ r  = sinfl  - c o s f l  . r * =  

3f~ 0 0 

The 3artial derivative of d with respect to the r.a. of the node is thus computed 
as (compare eqn. (10.6)) 

~ r  ~ r  
= d - (R ,  . r  2 - R  2 -r,) ~ e  T . (10.10) 

A comparison of eqn. (10.10) and (10.7c) clearly proves the linear dependence 
of the two equations. Of course one might argue that neither of equations (10.10) 
and (10.7c) are completely correct. For a refined discussion of this problem we 
would have to consider perturbations in eqn. (10.10) and we would have to take 
into account the partial derivative of the satellite vector with respect to AUT in 
eqn. (10.7c). We resist this temptation and just state that in practice it is not 
possible to estimate AUT using the usual GPS observables. 

One can easily verify on the other hand that it is possible without problems to 
solve for a drift in AUT by adopting a model of the type (10.9): 

AUT = dUT0 + (dUTo)0) �9 (t - t0) (10.11) 

Thanks to this time dependence, the parameters (dUT0) 0) and the r.a. of the 

node(s) are not correlated. This demonstrates that the length of day may very well 
be estimated with the GPS. This drift parameter would be correlated with a fast 
derivative of the node. But, because we assume that the force model is (more or 
less) known, there is no necessity to solve for a first derivative of the node. On the 
other hand, a good celestial mechanic would have no problems to introduce a force 

(periodic, in W-direction) which would perfectly correlate with (dUTo) 0) (?). 

What we just showed for AUT in essence is also true for the nutation terms: 
GPS has no chance whatsoever to extract these terms. It is very well possible on 
the other hand to extract the fast derivatives for these parameters. The formal 
proof follows the same pattern as in the case of AUT but it is somewhat more 
elaborate because two orbital parameters, r.a. of the ascending node and 
inclination, are involved. 
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Let us also point out one particular difficulty when going into the sub-diurnal 
domain with the estimation of the pole parameters x and y. A diurnal signal in polar 
wobble of the form 
x = cos(O 

y = It. sin(0 + ~) 

may as well be interpreted as a constant offset in nutation (depending only on ~b 
and It). This fact is well known; it is actually the justification to introduce the 
ephemeris pole and not the rotation pole for the def'mition of the pole on the 
surface of the Earth and in space [Seidelmann, 1992]. When using simple empirical 
models of type (10.8) in the subdiurnal domain in GPS analyses, we will run into 
difficulties even if we do not solve for nutation parameters because we have to 
solve for the orbit parameters (which in turn, as stated above, are correlated with 
the nutation parameters). It is thus no problem to generate any diurnal terms of the 
above type using GPS ! Sometimes these terms are even interpreted. 

Let us conclude this section with a positive remark: GPS is very well suited to 
determine the coordinates x and y of the pole - provided that the terrestrial system 
(realized by the coordinates of the tracking stations) is well defined. Within the 
IGS this is done by adopting the coordinates and the associated velocity field for a 
selected number of tracking sites from the IERS [Boucher et al., 1994]. 

10.4 ESTIMATING TROPOSPHERIC REFRACTION 

Tropospheric refraction is probably the ultimate accuracy limiting factor for GPS 
analyses (as it is for VLBI). The total effect is about 2.3 m in zenith direction, the 
simplest mapping function (not even taking into account the curvature of the 
Earth's surface) tells us that the correction dr(z) at zenith distance z is computed as 
dr(z) = dr/cos(z). 

This means that we are looking at an effect of about 7 m at z = 70 ~ a frightening 
order of magnitude if we remind ourselves that we are actually trying to model the 
GPS observable with millimeter accuracy. The situation is critical in particular in 
global analyses, because, in order to get a good coverage we have to allow for low 
elevations. 

It would be the best solution if the tropospheric zenith correction woud be 
provided by independent measurements. To an accuracy level of a few centimeters 
this is actually possible using surface meteorological data. Much better corrections 
(better than 1 cm?) are provided by water vapour radiometers. But even in this 
case the corrections available are not of sufficient quality to just apply and forget 
the effect in GPS analyses. The conclusion for global applications of the GPS is 
thus cleat, one has to solve for tropospheric refraction corrections for each site. 

Two methods are used today in global applications of the GPS 
(1) Estimation of site- and time- specific tropospheric zenith parameters. A 

priori constraints may be introduced for each parameter, constraints may 
also be applied for the differences between subsequent parameters. 
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(2) The tropospheric zenith correction is assumed to be a random walk in time 
with a power spectral density supplied by the user (see below). In this case 
the conventional least squares approach has to be replaced by a Kalman 
filter technique. 

Let us briefly remind ourselves of the principal difference between sequential 
least squares techniques and Kalman Filter techniques. Let us assume that the set 
of observation equations at time t~ reads as 

A / . x - y i  = v i (10.12) 

where A~ is the first design matrix, x is the parameter array, y/ is the array 
containing the terms observed-computed, and vi is the residuals array for epoch t,  

In the conventional least squares approach we just compute the contribution of 
the observations (10.12) to the complete system of normal equations. If we are 
interested in a solution at time ti using all observations available up to that time, we 
may use the algorithms developed in sequential adjustment calculus (the roots for 
such procedures go back to C.F. Gauss, the motivation was to save (human) 
computation time at that epoch). These algorithms allow us to compute the best 
estimate ~i+, and the associated covariance matrix ~.+, at time t/+, using all the 
observations up to time ti+, in a recursive way: 

i , + , = i , + K . ( y i + , - a , + , . i , )  

(10.13) 

where the gain matrix K is computed as 

K = Q , .  ~ r  . (cov(v,)+ A,+ 1 .Q,.  A,rl) -' (10.13a) 

Kalman estimation on the other hand allows for a stochastic behaviour of the 
parameter vector: 
Xi+ 1 = X i + W 

where w is the vector of random perturbations affecting the parameters in the time 
interval between subsequent observations. The optimal estimation using the same 
set of observations at time ti looks quite similar as in the conventional least 
squares case. The difference consists of the fact that the variance-covariance 
matrix has to be propagated from time ti to time t/+ 1 and that it contains an 
additional term: 

~, = ~ + W  (10.14) 

where W is the covariance matrix of the random perturbations vector w. 
We assume W to be a diagonal matrix with 

Wu = r " dt (10.14a) 
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where ~ is the power spectral density for the stochastic parameter no. i, dt is the 
time interval between the previous and the current observation epoch. 

From now onwards the Kalman solution follows the same pattern as the 
conventional sequential least squares solution: The Kalman  gain matr i x  K is 
computed in analogy to eqn. (10.13a): 

K = Qii+l �9 Air1. (cov(vi)+ A,.  t i .a:+,.<,)-' (10.14b) 

The best estimate of x using all observations up to time t~+~ and the covariance 
matrix associated with it read as 

= - K .  a , . ,  . 

(10.14c) 

Let us add that in both, the conventional least squares approach and in the 
Kalman Filter approach, it is possible to perform a parameter transformation - in 
principle after each observation epoch: 

xi+ l = S i .x i + w (10.15) 

where w would simply be a zero array in the least squares case. The only 
difference again consists of the computation of the propagated variance covariance 
matrix. Eqn. (10.14) has to be replaced by 

~+,  = Si "Q i" S r + W  (10.15a) 

More information about sequential adjustment vs. sequential filter estimates may 
be found in Beutler [1983]. Also, there are many good textbooks on Kalman 
filtering (see, e.g., Gelb [1974]). 

Both approaches, conventional least squares estimates and Kalman estimates 
have their advantages and disadvantages. Let us list a few characteristics: 
�9 The Kalman approach may be considered to be more general because 

sequential adjustment is contained in it (in the absence of stochastic 
parameters). 

�9 Least squares generally is more efficient (as far as computer time is 
concerned) because epoch specific solutions only have to be performed if 
they are actually required by the user. 

�9 Kalman techniques have the problem of the initialization phase: the matrix 
Qi has to be known initially. 

�9 If the values of the stochastic parameters at epoch ti are of interest we have 
to take into account that the Kalman estimates at time ti are not optimal 
because they do not take into account the measurement at times tk, k > i. 
This may be problematic for the stochastic parameters in particular. 
Theoretically optimal  smoothing would solve the problem. The technique 
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is time-consuming, on the other hand. In practice a backwards Kalman 
filter step may be added [Herring et al., 1990], a technique which is also 
quite elaborate. 

* A general Kalman scheme is very flexible. In principle stochastic properties 
may be assigned to each parameter type, many different error sources 
actually showing up in practice may be dealt with separately. The problem 
only consists of specifying appropriate variances for all these stochastic 
vaiations. 

�9 In conventional least squares algorithms there are no stochastic parameters. 
The effects which are described by one stochastic parameters in the case of 
a Kalman triter have to be described by many (certainly more than one) 
parameters (e.g., by one or more polynomials) in the conventional 
approach. If there is a high frequency component in the effect to be 
modeled (as it supposedly is the case for tropospheric refraction) this noise 
has to be interpreted as measurement noise, and the observations have to 
be weighted accordingly. 

�9 The effect of an increased number of parameters in the case of conventional 
least squares adjustment may be reduced considerably by making use of the 
fact that for one specific observation time there is only one parameter of 
this type active. 

This list of characteristics might be made considerably longer. It is a fact, 
however, that in practice the results of both methods are of comparable quality, 
provided the same statistical assumptions are made (to the extent possible) in both 
cases. It is our impression that in practice the differences between methods are 
philosophical in nature. 

Those IGS processing centers using approach (b) usually set up between 1 and 
12 troposphere parameters per station and day. The consequences for the other 
parameters (those of interest to geodynamics and geodesy) seem to be rather 
small. We refer to section 10.7.3 for examples. 

10.5 MISCELLANEOUS ORBIT MODELING 

As mentioned in Chapter 2 the attitude of GPS space vehicles is maintained by 
momentum wheels using the information from horizon finders (to let the antenna 
array point to the center of the Earth) and from Sun-sensors (to guarantee that the 
y-axis is perpendicular to the direction satellite --> Sun). Obviously during eclipse 
seasons attitude control is problematic because the Sun-sensors do not see the Sun 
if the satellite is in the Earth's shadow. Figure 10.1 illustrates the situation. 

According to Bar-Sever [1994], before 6 June, 1994 the rotation about the Z- 
axis was rather arbitrary during the time of the eclipse, after the exit from the 
Earth's shadow the satellite was rotated with maximum angular velocity around the 
Z-axis to get back to the theoretical position. The maximum angular velocity is 
about 0.12 ~ for GPS satellites. Depending on the actual position of the Y-axis at 
the end of the eclipse up to about 30 minutes were necessary to bring the Y-axis 



389 Gerhard Beutler 

back to the nominal position. After June 6, 1994 the rotation about the Z-axis 
during the eclipse phase is more predictable (for most Block 1I satellites): they 
rotate at maximum speed with known sense of rotation. The result at first sight is 
not much better, however: because the maximum rotation rate is not really the 
same for all satellites, again the Y-axis may be in an arbitrary position after the 
shadow exit. The advantage of the new attitude control resides in the fact that a 
determination of the motion during eclipse is more easily possible. 

orbital pla~ 

Figure 10.1. Satellite orbit as seen from the Sun. 

Two effects should be distinguished: (a) the geometrical effect caused by the 
rotation of the phase center of the antenna around the satellite's center of mass, 
and (b) a dynamical effect due to radiation pressure caused mainly by a (possible) 
serious misalignment of the space vehicle's Y-axis. In principle it is possible to 
determine the attitude during eclipse seasons using the geometric effect and to 
apply the dynamical effect afterwards. 

There is also a simpler standard corrective action, however:, one just removes 
the data covering the time interval of the eclipse plus the first 30 minutes after 
shadow exit (to get rid of the geometric effec0, and one allows for impulse 
changes in given directions (e.g., in R, S, and W directions, see eqn. (2.30)) at (or 
near) the shadow exit times. The resulting orbit is continuous, but there are jumps 
in the velocities at the times of the pulses. The partial derivatives of the orbit with 
respect to these pseudo-stochastic pulses may be easily computed using the 
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perturbation equations (2.30) to relate an impulse change at time t to 
corresponding changes in the osculating elements at any other time. More 
information about this technique may be found in Beutler et al. [1994] and the 
explicit formulae for the partial derivatives are given by Beutler et al. [1995]. 

The obvious alternative to the introduction of pseudo-stochastic pulses for 
Kalman-type estimators is to declare some of the orbit parameters as stochastic 
parameters (horribile dictu for a celestial mechanic!) with appropriate (very small) 
values for the corresponding power spectral densities; the technique is that 
outlined in the preceeding section. Again, both methods lead to comparable result. 
For a description of stochastic orbit modeling techniques we refer to Zumberge et 
al. [19931. 

There are more arguments for setting up pseudo-stochastic pulses in practice 
under special circumstances. So-called momentum dumps (deceleration of the 
momentum wheels) at times require small impulse changes performed by the thrust 
boosters, but there are also other abnormal satellite motions. In practice one just 
reports modeling problems for certain satellites for certain time spans. In the orbit 
combination performed by the IGS Analysis Center Coordinator impulse changes 
are set up, if all analysis centers have consistent modeling problems for particular 
satellites more or less at the same time. This, e.g., often is the case for PRN 23. 
For an example we refer to Kouba et al. [1995]. 

Beutler et al. [1994] showed that the Rock4/42 radiation pressure models are 
not sufficient for long arcs (of 1-4 weeks). An alternative model describing 
radiation pressure by nine parameters was developed and tested. The radiation 
pressure was decomposed into three directions, namely the z-direction (pointing 
from the Sun to the satellite), the y-direction (identical with the space vehicle solar 
panels axis, the Y-axis) and the x-direction (normal to the z- and y-directions). The 
parameters are defined as: 

x(t)= x0 + xo c o s ( u + , , )  

y( t )=  Yo + Yc-cos(u +t~,) (10.16) 

4 0  = Zo + zo cos(u 

where u is the argument of latitude of the satellite at time t. The conventional 
radiation pressure model just optimizes the parameters zo and Yo, whereas all nine 
parameters (xo, yo, zo, xo yc, zo d:, qb~ ~) are adjusted in the new approach. 

Figure 10.2a shows the radial- along track-, and out of plane residuals R, S, and 
W for PRN 19 of a seven days orbit fit using the Rock4/42 model (and adjusting 
the two conventional radiation pressure parameters); seven consecutive orbit files 
of the CODE processing center of the IGS were used as pseudo-observations. 
Figure 10.2b gives the residuals using the same data sets but the new radiation 
pressure model (10.15) instead of the Rock4/42 model. All nine parameters in 
eqns. (10.15) were adjusted. 



391 Gerhard Beufler 

~, 
tr" 

2~ 

CONVENTIONAL ORBIT MODEL 
PRN ==19 

1 

0 

49753 49754 49755 49756 49757  49758 49759 
Modified Julian Date 

I=-' '-R "--;-'S =coW [ 

49760 

Figure 10.2a. Residuals in radial (R), along track (3"), and out of plane (W) direction for PRN 19 
using the RPR Model in the IERS Standards. Week 787, 7 files of the CODE Analysis Center 
used. 
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Figure 10.2b. Residuals in radial (R), along track (S), and out of plane (W) direction for PRN 
19 using the RPR Model (10.15). Week 787, 7 files of the CODE Analysis Center used. 
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Figure 10.2c finally proves that actually PRN 23 had modeling problems in week 
787. The orbit is completely unsatisfactory without setting up pseudo-stochastic 
pulses somewhere in the middle of the arc [Kouba et al. 1995]. 
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Figure 10.2r Residuals in radial (R), along track (3), and out of plane (IV) direction for PRN 23 
using the RPR Model (10.15). Week 787, 7 files of the CODE Analysis Center used. 

10.6 SATELLITE- AND RECEIVER- CLOCK ESTIMATION 

Four of the seven IGS Analysis Centers, namely EMR, ESA, GFZ, and JPL 
produce satellite- and receiver- clock parameters in their analyses. These centers 
include satellite clock estimates in the precise orbit fries (i.e., one clock estimate is 
available every 15 minutes for each satellite). The CODE and the NGS Analysis 
Centers do not produce satellite clock estimates, but they include the Broadcast- 
clocks into their precise ephemerides files. No clocks are produced or reported by 
SIO. 

Why this inhomogeneous treatment of clocks by the IGS, where most of the 
other aspects seem to be so organized? The answer resides in the different 
processing philosophies: those centers producing clock information use so-called 
zero difference procedures, i.e. they essentially solve for one clock parameter for 
each station and each epoch, whereas the other centers analyse differences 
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between measurements. It was shown in previous chapters that the clocks need to 
be known only with a modest accuracy (microseconds instead of fractions of 
nanosecond) if double differences are analysed. 

Solving for clock parameters really makes sense in global analyses like those 
performed by the IGS: some of the receiver clocks in the network are of excellent 
quality (hydrogen masers are, e.g., driving the receivers at Algonquin, Fairbanks, 
Wettzell, etc). The service to the IGS user community by including clock estimates 
is considerable: The clocks in the ephemerides files may, e.g., be used to produce 
excellent single point solutions (decimeter accuracy) using code measurements in 
very remote areas. Also the implications for time transfer in the (sub-) nanosecond 
domain are obvious. 

It would in principle be easy to produce clock solutions for double difference 
processing schemes, too. The precise code Fries, possibly together with the phase 
ftles, might be re-processed under the assumption that all parameters (orbits, 
coordinates, troposphere) except satellite- and receiver-clocks are known from the 
double difference solution. Such clock solutions would be of a quality comparable 
to that of the centers using zero difference approaches. 

The clock solutions were the only IGS products seriously affected by the Anti- 
Spoofing AS (turned on permanently basis since end of January, 1994). The 
reported accuracies today are again of the order of few nanoseconds. The next 
generation of receivers will allow for even better clock estimates. 

10.7 PRODUCING ANNUAL SOLUTIONS 

The IGS Analysis Centers turn out one solution for every calendar day. Apart from 
the NGS all centers base their daily products on more than one day of 
observations. At CODE we use e.g. three flail days of observations. Consequently 
the satellite orbits made available by CODE through the IGS data centers 
correspond to the center portion (day) of overlapping three clays arcs. 

Satellite orbits clearly are day- or arc-specific. The same is true for ambiguity 
parameters, Earth rotation parameters, and troposphere parameters. Station 
coordinates, on the other hand, are general parameters in the sense that they show 
up in all the daily solutions. Each daily solution may be considered as an 
(independen0 estimate of one and the same set of three coordinates (for each 
station). This statement would be completely true if the Earth were a rigid body. 
On the accuracy level reached today we have to take into account the motion of 
the stations. Consequently we have to write each station position R"(t) at time t 

as a function of station position and velocity at time to: 

R~'=  ( t , ) = R o + ( t  , t 0 ) . V  o , i = 1 , 2  . . . . .  n (lo.17) 

Provided the part of the normal equation system corresponding to the 
coordinates R"(t)  of all stations is stored for each day i (let us assume that all the 

other parameters are pre-eliminated), eqn. (10.17) makes it easy to set up a new 
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normal equation system combining all the daily systems. The new normal equation 
system does not contain n different sets of coordinates but only one set of 
coordinates and velocities corresponding to time to as unknowns for each station. 

Such stacking procedures are standard in geodesy and need no further 
explanation. Equation (10.16) demonstrates that variable transformations are 
possible to a certain extent after the daily solutions. This is an important aspect, 
because an actual reprocessing starting from the observation equations is virtually 
impossible in GPS. In this respect SLR and VLBI are in a much better position. 

All IGS processing centers developed such stacking capabilities. Usually these 
procedures include also the daily parameters - it would thus theoretically be 
possible to generate, e.g., new sets of orbits refering to a new edition of the 1TRF. 
Nobody does that, because normally the differences are very small and barely 
noticeable in practice. The procedure usually is rigurously performed for the Earth 
rotation parameters. 

Beutler et al. [1995] showed that it is possible to generalize such techniques to 
produce a solution combining the normal equation systems from n consecutive 
days (not overlapping), where the n one-day-arcs are replaced by one n-day-arc for 
each satellite. The procedure is very flexible and much less time consuming than an 
actual re-processing. The technique is used in routine production since autumn 
1994 at CODE. 

10.8 RESULTS 

The results presented in this section stem from the CODE Analysis Center. Let us 
point out that other IGS Analysis Centers produce results of comparable quality. 
Many figures and the corresponding results are extracted from the CODE 
contribution to the 1994 IGS Annual Report (in preparation). 

10.8.1 Earth Rotation Parameters 

Figure 10.3 shows the motion of the ephemeris pole on the surface of the Earth in 
the Earth-fixed system. There is an obvious improvement in the accuracy of the 
estimates. Today the accuracy of our daily pole coordinates are believed to be of 
the order of about 0.2-0.3 mas. 

Figures 10.4a,b show the x and y estimates and the best fitting curves with 8 
parameters (offset, drift, periodic term with annual period and with Chandler 
period; each periodic term characterized by amplitude, phase angle, and period). 
We have to point out that the time period is still rather short for such analyses. 
Nevertheless the Chandler period was estimated with 445 days and the annual 
period with about 336 days. The rms of the fit is 6 mas in both cases. 

Figure 10.5a shows the length of day (LED) estimates before, Figure 10.5b after 
removal of the terms due to the fixed body tides. These LoD values show an 
excellent agreement with the values derived from VLBI. It is allowed to conclude 
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Figure 10.4a. Fit of the x component of the pole (CODE data, 8 parameters adjusted). 
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Figure lO.Sb. CODE LoD estimates after removal of zonal tides. 

that GPS will be an important contributor to the LoD series in future. We believe 
that the CODE LoD estimates are good to about 0.03 msec/day rms. 

The IERS is much more interested on the other hand to have directly AUT 
values available. We already pointed out in section 10.1 that the GPS - as every 
satellite method no t  including direction measurements - is not able to measure 
AUT directly. It is possible, on the other hand, to sum up the LoD estimates and to 
produce a AUT curve relative to a VLBI-def'med initial epoch. The question is 
simply after what time the GPS derived values start to deviate significantly from 
the VLBI-curve. 

Figure 10.6 shows the result of two such GPS reconstructions relative to the 
VLBI-curve. In the reconstruction (a) the AUT drifts were extracted from one day 
arcs, in case Co) from three-day-arcs. Obviously the arc length plays an essential 
role! From Figure 10.6 we also conclude that GPS might be used very well to 
interpolate AUT between - let us say - monthly values established by VLBI. 

The difference between the one day and the three day es~nates is remarkable. It 
seems that the change in the reference frame on January 1, 1994 resp. 1995 
(change of coordinates and associated velocities of the tracking stations to the 
ITRF 92 then to the ITRF 93) was of vital importance for the daily estimates (?!). 

As pointed out in the introduction to this chapter the GPS so far gave no 
contribution to the motion of the pole with respect to the celestial reference frame. 
In section 10.3 we pointed out that GPS is not able to measure nutation directly, 
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but we also found that, as in the case of AUT, it should be possible to extract the 
first derivative of the motion of the celestial pole using the GPS. 

1 

4 

l.Jul 1.Jan 1.Jul 1.Jan l.Jul 1.Jan l.Jul 
1992 1993 1993 1994 1994 1995 1995 

Day of Year 1994 

[ *~'= 3 days Solution ==:  1 day Solution [ 

Figure 10.6: AUT estimates from CODE one resp. three days solutions relative to VLBI solutions 
(from the IERS). 

At CODE we are routinely solving for drifts in Ae and in A~ since January 1, 
1994. The accuracy of these daily drifts corresponds to the AUT estimates, it is of 
the order of 0.3 mas/day. These rms values are of course relatively big compared 
to the expected signals, because we refer our estimates to the IAU model 1980 of 
nutation. Ideally we should (a) see essentially the same frequencies as VLBI in the 
spectrum of our estimated drifts and (b) get the same order of magnitude when 
estimating the relevant terms. We have to take into account that our time interval 
(approximately 1.2 years) still is very short compared to that available to the 
VLBI. Figures 10.7a and 10.7b show a frequency analysis of the drifts in Ae and in 
AV over the time interval of 1.2 years. The ae-spectrum shows the maxima 
roughly at the expected places. The corresponding curve for the nutation in 
longitude is somewhat less convincing - but again the growing time base will cure 
many problems. We are convinced that the GPS will give essential contributions in 
the frequency domain between 1 and 60 days in future. 
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Figure  lO.7a. Frequency analysis of  the drifts in AE as estimated by the CODE processing center. 
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Figure  10.7b. Frequency analysis of the drifts in Au as estimated by the CODE processing 
center. 
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10.8.2 Troposphere Parameters 

Troposphere parameters have to be estimated in GPS global analyses for each daily 
solution for each station. In the CODE solutions produced for the IGS we 
introduce one tropospheric zenith delay parameter for each time interval of six 
hours and for each station. In Figure 10.Sa we show the values estimated from 
GPS for the station of Zimmerwald and the tropospheric zenith corrections 
computed from surface meteorological data gathered at the Zimmerwald 
observatory (pressure, temperature, and humidity are measured and recorded every 
15 minutes). Figure 10.8b contains the corresponding information for the station of 
WettzeU (about 500 km away from Zimmerwald). It is encouraging to see that, 
statistically speaking, the GPS derived values and the values derived from the met- 
sensors are very highly correlated. The mean values of the differences GPS-Sensor 
agree to within 1.5 cm, the rms of the difference is about 2 cm in both cases. This 
agreement, on the other hand is clearly not sufficient to rely on surface met data in 
Global GPS analyses. 

The quality is of interest on the other hand for meteorologists. If precise 
temperature- and pressure- measurements are available at the stations, the wet 
component of tropospheric refraction may be reconstructed by subtracting the dry 
component using surface met from the GPS estimates of the total tropospheric 
refraction. The total precipitable water vapour content of the atmosphere may then 
be computed from the reconstructed wet tropospheric refraction. This in turn is a 
decisive quantity for weather forecasts! Figures 10.9a,b show such reconstructed 
wet tropospheric delays. 
According to Bevis et al. [1992] these tropospheric delays have to be divided by 
about a factor of six to obtain the precipitable water content of the atmosphere. 

This particular application of the GPS is still very young. We are convinced that 
this branch should be systematically explored and that the IGS should start 
collecting ground met data of excellent quality as soon as possible. 

10.8.3 Station Coordinates and Velocities 

Some of the stations have to be assumed as known (or their coordinates are closely 
constrained) in the daily solutions of the IGS Analysis Centers. The IGS makes 
sure that its Analysis Centers use essentially the same terrestrial frame. At present 
the ITRF93 [Boucher et al., 1994] is used within the IGS by adopting the 1TRF93 
coordinates and velocities floe. cit.) for the 13 stations listed in Table 10.1. 

When combining daily solutions the coordinates and velocities of Table 10.1 
have to be estimated in addition to the coordinates of all other stations used in the 
daily solutions. Such combined solutions usually are called free network solutions. 
This expression is not entirely correct because completely free solutions lead to 
singularities. It is the responsibility of the IERS to def'me the terrestrial reference 
frame when combining the final results of different analysis centers using different 
techniques. The analysis centers contributing to the 1TRF have to make sure that 
their contributions allow the adoption of the system conditions 
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Figure 10.Sa. Tropospheric zenith delay estimated in GPS processing and calculated from 
surface met data for the station Wettzell. 
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Figure 10.Sb. Tropospheric zenith delay estimated in GPS processing and calculated from 
surface met data for the station Zimmerwald. 
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Figure 10.9a. Reconstructed wet tropospheric path delay for Wettzell (Year 1994). 
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�9 no net rotation 
�9 no translation 
�9 no scale 
for any set of stations the IERS may wish to select in the combined IERS solution. 
Today essentially VLBI, SLR, GPS contribute to the definition of the ITRF. The 
French DORIS system is about to start contributing 

Table 10.1: Stations kept fixed in daily IGS analyses. 

Stations kept fixed in the ITRF93 
153 K O S G  13504M003 Europe 
154 M A D R  13407S012 Europe 
156 T R O M  10302M003 Europe 
157 WETT 14201M009 Europe 
351 H A R T  30302M002 Africa 
451 A L G O  40104M002 North America 
452 FAIR 40408M001 North America 
453 G O L D  40405S031 North America 
454 K O K B  40424M004 Hawaii 
458 Y E L L  40127M003 North America 
461 S A N T  41705M003 South America 
551 T I D B  50103M108 Australia 
552 Y A R 1  50107M004 Australia 

Until now, the free network solutions of IGS analysis centers were not compared 
with the same intensity as e.g. the orbits or the Earth rotation parameters. It was in 
fact the IERS which compared the annual solutions before producing a combined 
solution. At the IGS workshop in December 1994 it was decided that in future 
specialized Associate Analysis Centers will compare and combine these individual 
IGS solutions on a weekly basis (at least initially). The result might be a combined 
IGS coordinate and velocity set, which in turn might be considered as the 
GPS/IGS contribution to the definition of the ITRF. For more details we refer to 
Zumberge [ 1995a]. It should be pointed out, however, that the actual definition of 
the ITRF is a very delicate task asking for the contributions of all space techniques. 
The IERS clearly has the responsibility to implement this definition. 

GPS derived station coordinates and velocities at present are made available by 
some of the IGS processing centers (e.g., by JPL and SIO). 

Figure 10.10 gives the result of a combination of 23 months of data gained at the 
CODE processing center. It is a very loose solution indeed: The coordinates of the 
stations in Table 10.1 show no net translation and rotation with respect to the 
ITRF93, and the velocity of the station Wettzell was kept ftxed on the ITRF93 
values. In Figure 10.10 we can see the GPS derived velocities (arrows) and the 
official ITRF93 velocities. These velocities seem to be quite well established on the 
Northern hemisphere, theagreement is not so good in the South. The longer time 
base really favours the ITRF velocities which today are essentially established by 
VLBI and SLR. From Figure 10.10 we also conclude, on the other hand, that the 
GPS contribution starts to become significant in this domain, too. 
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10.8.4 The Impact of Ambiguity Resolution on Global GPS Analyses 

In regional and global applications ambiguity resolution becomes more and more 
difficult with the increasing size of the network. Mervart et al. [1994] and Mervart 
[1995] developed a technique to resolve the ambiguities in the baseline mode even 
on very long baselines using highly accurate orbits and coordinates of the IGS. A 
fair percentage of ambiguities may be safely resolved using this technique. What is 
the benefit? 

Ambiguity resolution plays a key role if only short data spans are available. In 
regional and global applications the effect of ambiguity resolution is less 
spectacular - jus t  because the ambiguities.free results are already excellent. 

This fact is underlined by Figure 10.11 which shows the rms of Helmert 
transformation of ambiguities ftxed resp. free solution with respect to the true 
coordinates of a European network consisting of 13 stations (BRUS, KOSG, 
MADR, ONSA, WETT, GRAZ, JOZE, ZIMM, MASP, METS, TROM, MATE, 
NYAL) using data spans of different lengths (1 hour to 24 hours). Obviously for 
such applications the coordinate quality becomes comparable after about 8 hours. 

Velocity estimation usinq 23 months of CPS observations 

1 1 cm/y r  Velocity 

Figure 10.10. Station velocities based on 23 months of CODE results. 
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Figure 10.11: rms of 7 parameter Hr transformations of ambiguities fixed resp. free 
solutions using short data spans in a European network of 13 stations with respect to a true 

solutions (combining 14 days of observations). Stations BRUS, KOSG, MADR, ONSA, WETT, 
GRAZ, JOZE, ZIMM, MASP, METS, TROM, MATE, NYAL involved (taken from Mervart 
[1995]) 

Do we have to conclude that ambiguity resolution is unimportant in big 
permanent tracking networks? Not quite. Whereas the impact is small for the 
north-south and for the height components the improvement is important in the 
east-west component. The east-west repeatability of 14 daily solutions was 
improved by about a factor of two (from about 4 - 8 mm in the ambiguities free to 
about 2 - 4 mm in the ambiguities fixed case). 

Mervart [1995] also reports that ambiguity resolution does significantly 
strengthen the orbital elements (the semimajor axis, inclination and r.a. of 
ascending node, and the radiation pressure parameters in particular), whereas only 
marginal changes could be seen in the troposphere parameters. 

An ambiguities resolved solution is being produced in parallel to the officially 
released solution since October 1994. It will be analysed in the near future. 

10.9 SUMMARY AND CONCLUSIONS 

In section 10.1 we compared the GPS contribution to that of the other space 
techniques (VLBI and SLR). We concluded that all techniques give a significant 
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contribution and that only from a combination of all techniques we may expect an 
answer to all relevant questions in the field of global geodynamics. 

In section 10.2 we derived simple expressions for the partial derivatives of the 
GPS observable with respect to the parameters of geodetic interest. In section 10.3 
we saw that it is possible to extract the x and y components of the pole using the 
GPS (problems only exist if we are moving towards the subdiumal domain). We 
showed on the other hand that only the time derivatives of AUT and of the 
nutation terms are accessible to the GPS observable. 

In section 10.4 we introduced two different ways of taking into account 
tropospheric refraction, namely Kalman falter techniques and the conventional 
technique (introducing time and stationspecific troposphere parameters). We 
pointed out that in practice both methods lead to results of comparable quality. 

In section 10.5 we briefly touched the possibility of (pseudo-) stochastic orbit 
modeling. Again we made the distinction between conventional and Kalman-type 
approaches. 

In section 10.6 we pointed out that a network like that of the IGS is also well 
suited to extract receiver and satellite clock information. We concluded that this 
information is beneficial to the user community and that IGS Analysis Centers 
using the double difference processing approach should start producing time 
information, too. 

In section 10.7 we gave some clues how the normal equation systems which are 
produced on a daily basis by the IGS processing centers may be rigurously 
combined to long-term (e.g., annual) solutions. The establishment of such 
techniques is of particular importance, because in GPS it is virtually impossible to 
actually reprocess long global time spans from scratch. 

The chapter was concluded with some results of a typical IGS processing center. 
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