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Chapter 1
Invariant Imbedding Theory for the Vector
Radiative Transfer Equation

Curtis D. Mobley

1.1 Introduction

This chapter develops invariant imbedding theory as needed to solve the time-
independent vector (polarized) radiative transfer equation (VRTE) for a plane-
parallelwater body bounded by awind-blown sea surface and a reflective bottom. The
scalar (unpolarized) version of invariant imbedding theory applied to the same geom-
etry is described in Light and Water (Mobley 1994) and is employed in the widely
used HydroLight software (www.hydrolight.info). The development here parallels
that work and extends the scalar equations to the vector level. However, there are
additional complications in the vector theory because of loss of certain symmetries
in going from the scalar to the vector theory.

The radiative transfer problem for this geometry requires solution of a linear
integro-differential equation (the VRTE) subject to boundary conditions at the sea
surface and bottom, which may be either finitely or infinitely deep. The VRTE con-
stitutes a local formulation of the radiative transfer problem, which means that the
equation involves spatial derivatives of the relevant variables (the radiance in the
present case) and that the properties of the medium (the absorption and scattering
properties) are described by their values at each point in space (Preisendorfer 1965).

The essence of invariant imbedding theory as applied to transport problems is
that it transforms this local, linear, two-point boundary value problem to a pair of
non-linear initial values problems in the form of ordinary differential equations for
diffuse reflectances and transmittances (Preisendorfer 1958; Bellman et al. 1960).
The solution in terms of reflectances and transmittances is a global formulation of
the problem, which considers the response of the medium (e.g., the reflectance and
transmittance of finitely thick layers of water or even of the ocean as a whole) to its
inputs (e.g., the radiance incident onto the sea surface).

C. D. Mobley (B)
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2 C. D. Mobley

The seminal idea of invariant imbedding theory in the geophysical setting traces
back to Ambartsumian (1943), who was interested in computing the reflectance
of light by planetary atmospheres. He realized that adding a layer of material to
an optically infinitely thick medium leaves the reflectance unchanged (invariant).
(Stokes (1862) used a similar idea to compute the reflectance of a stack of plates.)
From this idea, Ambartsumian was able to derive an equation that could be solved for
the reflectance of the entire atmospherewithout first having to compute the radiance at
each depthwithin the atmosphere. Thiswas a pioneering global solution of a radiative
transfer problem. Ambartsumian’s idea was further developed by many others, most
notably Chandrasekhar (1950), Sobolev (1956), Bellman and Kalaba (1956), and
Preisendorfer (1958). The formulation used here follows that of Preisendorfer as
presented for the scalar theory in hisHydrologic Optics treatise (Preisendorfer 1976).

The validity of radiative transfer theory rightly has been questioned
(e.g., Preisendorfer 1965; Mishchenko 2013a, 2014) because of its phenomeno-
logical nature and heuristic (and sometimes physically indefensible) assumptions
and derivations. R.W. Preisendorfer, a mathematician, worked to develop mathemat-
ically rigorous formulations of concepts such as radiance and invariance principles
(Preisendorfer 1965, 1976).More recently,M.I.Mishchenkohas expended enormous
effort over many years to develop a physically and mathematically rigorous connec-
tion between Maxwell’s equations and the VRTE, or as Preisendorfer (1965, p. 389)
worded it, to construct “an analytical bridge between the mainland of physics and the
island of radiative transfer theory.” That connection is now rigorous (Mishchenko
2008a, 2016). Fortunately, after all of the physical and mathematical dust has settled,
the VRTE still stands as a useful approximation to reality that gives results that are,
for a wide range of situations, sufficiently accurate for many problems (Mishchenko
2013b). The detail and rigor that are lost in circumventing Maxwell’s equations are
often repaid by computational efficiency. The present paper therefore begins with
a particular form of the VRTE and does not worry further about its foundations or
interpretation.

The initial section formulates the problem in terms of continuous variables for
depth, direction, and wavelength. The continuous variables are then discretized as
needed for numerical solution of the equations. Boundary conditions at the air-water
surface and ocean bottom are discussed in detail. Much of the material in these
sections is well-known but is repeated here both for completeness and to emphasize
certain points.

The subsequent sections comprise the core of the development: the formula-
tion of invariant imbedding theory to solve the VRTE within the water body. The
VRTE is first partitioned into separate sets of equations for upwelling and down-
welling radiance, which is a key step for the application of invariant imbedding
theory (Preisendorfer 1958; Bellman et al. 1960). These equations are then Fourier
decomposed in the azimuthal direction. This leads first to local interaction equations,
which govern how infinitesimally thin layers of water reflect and transmit light, and
then to global interaction equations, which govern how finitely thick layers of water
reflect and transmit light. Upward and downward sets of differential equations are
developed for the operators occurring in the global interaction equations. Given the
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absorbing and scattering properties of the water, solution of these equations gives a
“bare slab” or “boundaryless” solution of the VRTE within the water column. Imbed
and union rules are then developed, which enable the incorporation of the physical
boundary conditions into the bare-slab solution for the interior of the water body.
Those boundary conditions define specific environmental conditions such as the inci-
dent sun and sky radiance, surface wave state, and bottom reflectance. The solution at
any depth within the water body is then obtained from the radiance incident onto the
water body. Physical interpretation of the often complicated equations is emphasized
and aided by graphical illustration of the physical processes. An associated technical
report (Mobley 2014a) gives additional details and discusses issues such as Monte
Carlo computation of the reflection and transmission properties of a wind-blown sea
surface.

Dedication

Rudolph W. Preisendorfer (1927–1986) was one of the founding fathers of hydro-
logic optics. He was a pencil-and-paper mathematician whose driving interest was
to put radiative transfer theory on a solid mathematical and physical foundation. The
mathematics he developed for solving the scalar radiative transfer equation (SRTE)
is the core of the HydroLight software, which I began developing with him during
my postdoctoral and early career years (1977–1986). Invariant imbedding theory has
proved to be robust, accurate, and extremely fast compared to many other techniques
for solving the SRTE. Preisendorfer however said little about polarization and, to my
knowledge, neither he nor anyone else has extended invariant imbedding theory to
the VRTE in the way it is done here. If I have accomplished anything in the present
work, it is because he showed the way. I humbly dedicate this extension of his work
to his memory.

1.2 Formulation of the Vector Radiative Transfer Problem

This chapter assumes a basic knowledge of radiometry, optical oceanography, and
polarization as given inLight andWater (Mobley 1994),Kattawar andAdams (1989),
Kattawar (1994), and the introductory parts of Mishchenko et al. (2002). The math-
ematics developed here to solve the vector (or polarized) radiative transfer equation
(VRTE) parallels that for the scalar (unpolarized) radiative transfer equation (SRTE).
The development and solution of the SRTE as used in the unpolarized HydroLight
software are given in Light and Water, which guides the development of the corre-
sponding vector equations. Occasional reference will therefore be made to the scalar
equations in Light and Water, with those scalar equations being prefaced here by
an “L&W”, e.g. Eq. (L&W 8.74). The mathematical development in this chapter
is admittedly detailed and lengthy, but meticulous care is necessary to formulate a
complete solution algorithm suitable for implementation in a computer code.
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Invariant imbedding is mathematically complicated, but its computational effi-
ciency and accuracy have been well established for the SRTE by over two decades
of HydroLight usage. Invariant imbedding has several desirable features, the most
important of which are

1. Radiances are computed in all directions simultaneously.
2. All orders of multiple scattering are included in the calculations.
3. Computer run time is linearly proportional to the optical depth to which the VRTE

is solved.
4. The numerical calculations are in terms of initial value problems, which are well

suited to numerical solution.
5. Inhomogeneous media are easily treated with no extra computational expense.

As will been seen, the invariant imbedding algorithm involves several steps:

1. The VRTE and associated boundary conditions are directionally discretized by
integrating continuous functions of direction over finite solid angles. The numeri-
cally computed Stokes vectors are then exact values averaged over the finite solid
angles.

2. TheVRTE is rewritten as a pair of equations for upward and downward directions.
3. The VRTE is Fourier decomposed in azimuthal direction, which allows the solu-

tion in the interior of the water body to be computed as a sequence of independent
“small” problems (one for each Fourier mode), rather than as one “large” problem
(for all Fourier modes simultaneously).

4. These upward and downward equations are reformulated in terms of reflectance
and transmittance functions for finitely thick layers of water. Those reflectance
and transmittance functions depend only in the inherent optical properties of
the water body and can be computed independently of the particular boundary
conditions (i.e., incident lighting and bottom reflectance) applied to the water
body.

5. The surface and bottom boundary conditions are then applied to the generic
interior solution to obtain the solution of the VRTE for specific conditions of
incident lighting, bottom reflectance, and internal sources.

6. Finally, the physical Stokes vectors are then reconstituted from the Fourier
amplitudes.

1.2.1 Terminology and Notation

The state of polarization of a light field is specified by the four-component Stokes
vector, whose elements are related to the complex amplitudes of the electric field
vector E resolved into directions that are parallel (E‖) and perpendicular (E⊥) to a
conveniently chosen reference plane. In the present development, this reference plane
is the meridian plane, which is perpendicular to the mean sea surface. However, there
are twoversions of the Stokes vector seen in the literature, and these twoversions have
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Fig. 1.1 Coordinate systems. The left panel shows the x-y-z Cartesian system, which is fixed in
space and used to define the spherical (r, θ,φ) coordinate system. The right panel shows incident
radiance propagating in direction ξ′ whose Stokes vector is S′. The h′-v′-ξ′ system is a local system
(changing with θ′,φ′) for defining direction and resolving Stokes vectors with respect to directions
that are perpendicular and parallel to the incident meridian plane, part of which is shaded in blue.
In the oceanographic setting, this figure is turned “upside down” as seen in Fig. 1.5, with the x-y
plane being the mean sea surface, x pointing downwind, and z pointing downward into the water

different units and refer to different physical quantities. The coherent Stokes vector
describes a quasi-monochromatic plane wave propagating in one exact direction, and
the vector components have units of power per unit area (i.e., irradiance) on a surface
perpendicular to the direction of propagation. With the choice of the meridian plane
as the reference, E‖ = Eθ is the θ component of the electric field and E⊥ = Eφ

is the φ component, as seen in Fig. 1.1. The coherent Stokes vector is defined as
(Mishchenko et al. 2002)

S =

⎡
⎢⎢⎣
I
Q
U
V

⎤
⎥⎥⎦ = 1

2

√
εm

μm

⎡
⎢⎢⎣

EθE∗
θ + EφE∗

φ

EθE∗
θ − EφE∗

φ

−EθE∗
φ − EφE∗

θ

i(EφE∗
θ − EθE∗

φ

⎤
⎥⎥⎦ . (1.1)

Here εm is the electric permittivity of the medium (with units of Farad/m2 or SI units
of A2 s4 kg−1 m−3), and μm is the magnetic permeability of the medium (Henry/m
or kgm s−2 A−2). Electric fields have units of Newton/coulomb or kgm s−3 A−1.
Thus the elements of the coherent Stokes vector have units of kg s−3 or Watt/m2, i.e.
of irradiance. E∗ denotes complex conjugate, hence the components of the Stokes
vector are real numbers.

The diffuse Stokes vector is defined as in Eq. (1.1) but describes light propagating
in a small set of directions surrounding a particular direction and has units of power
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Table 1.1 Notation

Notation Examples Usage

Primed variables θ′,φ′, ξ′ Incident or unscattered directions

Unprimed variables θ,φ, ξ Final or scattered directions

Bold face p, ξ Points in space or unit vectors defining directions in
3D space

Underline S, P 4 × 1 Stokes vectors S or 4 × 4 matrices whose
elements are numbers

Double underline R, τ Composite matrices whose elements are themselves
matrices or vectors

Tilde M̃ , P̃i, j Matrices or their elements that have been “reduced”
by factoring out the (1,1) element of the
corresponding matrix, e.g. P , so that
P̃i, j = Pi, j/P1,1; hence P̃1,1 = 1

Caret or hat τ̂ , P̂i, j Fourier amplitudes of the respective (unhatted)
physical quantity

per unit area per unit solid angle (i.e., radiance). It is the diffuse Stokes vector
that appears in the radiative transfer equation as developed here. The differences in
coherent and diffuse Stokes vectors are rigorously presented in Mishchenko et al.
(2002).

Authors commonly omit the 1
2

√
ε/μm factor in Eq. (1.1) because they are inter-

ested only in relative values such as the degree of polarization, not absolute magni-
tudes, but this omission is both confusing and physically incorrect. Units and magni-
tudes matter! In particular, the different units of coherent and diffuse Stokes vectors,
and whether or not the 1

2

√
ε/μm factor is included in the definition of the Stokes vec-

tor, have subtle but very important consequences regarding how light propagation
across a dielectric interface such as the air-water surface is formulated, as will be
seen below.

SI units are used here for all quantities except wavelength, which is in nanome-
ters as is customary in optical oceanography. Thus spectral radiance has units of
Wm−2 sr−1 nm−1 and spectral irradiances have units of Wm−2 nm−1. The mathe-
matics needed to solve the VRTE using invariant imbedding theory becomes quite
complicated, e.g.,matriceswhose elements arematrices, all ofwhich eventuallymust
be turned into a computer program. Precise terminology and notation are required
to keep everything straight. Table1.1 shows the notation used.

1.2.2 Coordinate Systems

Figure1.1 shows the coordinate systems used to resolve Stokes vectors as needed for
scattering calculations. Depth and direction are defined in a three-dimensional (3D)
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Cartesian coordinate system with depth measured positive downward from 0 at the
mean sea surface. Polar angle θ is defined from0 in the+zor downwelling direction to
π in the−z upwelling direction.+x points in the downwind direction; thus±y is the
cross-wind direction. As will be seen in Sect. 1.6.1, using a wind-centered coordinate
system makes it easier to model a random sea surface with different along-wind and
cross-wind slope statistics. Azimuthal angle φ is measured counterclockwise from
+xwhen looking in the−z direction. The sun is placed at an azimuthal angle of φsun

relative+x. If the sun is placed in the+x azimuthal direction atφsun = 0, unscattered
light from the sun is then traveling in the −x direction at φ = 180◦.

The unit vectors in the directions of increasing (r, θ,φ) are

r = sin θ cosφ x + sin θ sin φ y + cos θ z ,

ϑ = cos θ cosφ x + cos θ sin φ y − sin θ z ,

ϕ = − sin φ x + cosφ y .

Let ξ denote a unit vector pointing in the direction of light propagation, as given by
angles (θ,φ). (In Fig. 1.1, ξ′ = r.) The components of ξ are given by

ξ = ξxx + ξyy + ξzz = (ξx , ξy, ξy) (1.2)

where
ξx = sin θ cosφ , ξy = sin θ sin φ , ξz = cos θ .

Direction (θ,φ) always refers to the direction of propagation. Thus light traveling
straight down is traveling in the+z or θ = 0 direction. To detect radiance in the (θ,φ)

direction, an instrument is pointed in the viewing direction (θv,φv) = (θ − π,φ +
π), which is sometimes more convenient for plotting. A prime generally denotes an
incident or unscattered direction, e.g., ξ′ or (θ′,φ′). Unprimed variables denote final
or scattereddirections, e.g.ξ or (θ,φ).However, in the development of the sea-surface
reflectance and transmittance equations in Sect. 1.4, it will be more convenient to use
subscripts i, r , and t for incident, reflected, and transmitted (refracted) directions,
respectively, e.g. ξi , ξr , and ξt .

There will be frequent need to define unit vectors in directions perpendicular
and parallel to a given plane (which can be a meridian plane, a scattering plane in
the water volume, or the plane of incident, reflected, and transmitted light for light
incident onto an air-water or bottom surface, all of which are defined below). The
following conventions define these unit vectors. Vector p denotes a vector parallel
to a plane, and s denotes a vector perpendicular to a plane. The perpendicular vector
s is chosen to be in the direction given by the vector cross product of the incident
direction crossed with the final direction. The parallel vector p is then defined as the
direction of propagation cross the perpendicular direction. Thus the perpendicular
cross parallel directions give the direction of light propagation: s × p = ξ, where ×
denotes the vector cross product.
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For an incident direction ξ′ and the associated Stokes vector S′ specified in the
incident meridian plane, the first vector is taken to be z and the second is the direction
of propagation. Thus h′ ≡ z × ξ′/|z × ξ′| as seen in the right panel of Fig. 1.1. In this
case |z × ξ′| = sin θ′, and h′ = ϕ′. Similarly, v′ ≡ ξ′ × h′ = −ϑ′, and h′ × v′ = ξ′.
Meridian planes are perpendicular to the mean sea surface. The h′ vector as just
defined is therefore parallel to the mean sea surface and therefore is often referred to
as the “horizontal” direction; v′ lies in a vertical plane and is correspondingly called
the “vertical” direction. For a final direction ξ and its Stokes vector S in the final
meridian plane, the first vector is the direction ξ and the second is z. This vector cross
product algorithm for specifying perpendicular and parallel directions is convenient
for sea surface reflectance and transmission calculations in which light can propagate
from one tilted wave facet to another without reference to meridian planes, except
for the incident and final directions when light enters or leaves the region of the sea
surface (see Mobley 2015).

The Q and U components of a Stokes vector describe linear polarization with
the plane of polarization specified relative to a particular coordinate system. The I
component is the total radiance, and V describes circular polarization; these quanti-
ties do not depend on the coordinate system and are invariant under a rotation of the
coordinate system. The blue arrows in the right panel of Fig. 1.1 represent the plane
of oscillation of the electric field vector E parallel to the meridian plane, i.e. for ver-
tical plane polarization. Thus Eθ 	= 0 and Eφ = 0. According to Eq. (1.1), the I and
Q components are non-zero and equal, and the U and V components are zero. The
components of S′ = [1, 1, 0, 0]T (superscript T denotes transpose) as shown thus
represent radiance of magnitude 1 Wm−2 sr−1 nm−1 that is 100% vertically plane
polarized. If the blue arrows of Fig. 1.1 are perpendicular to the meridian plane,
Eq. (1.1) gives the Stokes vector for horizontal polarization (parallel to the mean sea
surface) proportional to S′ = [1,−1, 0, 0]T .

For the development of invariant imbedding theory for the VRTE, it will be con-
venient to divide the entire water body into the sea surface, the water column, and the
bottom, as shown in Fig. 1.2. Depth z = a = 0 refers to a location in the air just above
the mean sea surface; depth z = w = 0 is in the water just below the mean sea sur-
face. The sea surface is thus a “layer” of zero thickness, which physically represents
a discontinuity in the index of refraction between the air above and the water below.
This layer will be denoted [a, w]. The water column extends from depth z = w = 0
to some maximum depth of interest at z = m. This depthm is the maximum depth to
which the VRTE will be solved. The water body can be divided into sublayers, e.g.,
[w, z] is the water from the surface to any depth z, and [z,m] is the water from depth
z to the maximum depth of interest. The absorption and scattering properties within
the water body are generally functions of depth; the water-column layer notation
[w, z] and [z,m] does not imply that the layers are homogeneous. A bottom bound-
ary condition is applied at depth m. This bottom boundary condition can describe
either an opaque reflecting bottom physically located at depth z = m = b, or it can
describe the reflectance properties of an infinitely deep, homogeneous, source-free



1 Invariant Imbedding Theory for the VRTE 9

Fig. 1.2 Partition of the entire water body into surface, water column, and bottom layers

water body below depth m, in which case b = ∞ and the bottom layer of water is
denoted [m,∞]. The entire water column is the union of these surface, water, and
bottom layers: [a, b] = [a, w] ∪ [w,m] ∪ [m, b].

1.2.3 The Vector Radiative Transfer Equation

The time-independent, source-free VRTE for particles in an absorbing medium has
the form (Mishchenko 2008a, Mishchenko 2008b)

ξ · ∇S(r, ξ) = [−2k ′′ − no〈K (ξ)〉] S(r, ξ)

+ no

∫
4π

〈Z(ξ′, ξ)〉 S(ξ′) dΩ(ξ′) . (1.3)

Here k ′′ is the complex part of the wavenumber of the host medium. 〈K 〉 and 〈Z〉
are, respectively, the 4 × 4 Stokes extinction and phase matrices, averaged over all
particle states. no is the particle density in units of particles per cubic meter. dΩ(ξ′)
denotes an element of solid angle centered on direction ξ′, and the integration is over
all 4π steradians of direction. Mishchenko (2007) gives K and Z as functions of the
amplitude scattering matrix of electromagnetic theory.

Invariant imbedding theory is applicable to one-dimensional (1D) geometries,
i.e. to physical situations for which the optical properties of the medium and the
radiance vary in only one spatial dimension. Consider, therefore, a plane-parallel
ocean inwhich the absorbing and scatteringproperties of thewater canvary arbitrarily
with depth but do not vary with horizontal position. These properties, collectively
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called the inherent optical properties (IOPs), also vary with wavelength λ. The same
holds true of the surface and bottom boundary conditions; they are the same for
all horizontal positions. The 3D VRTE of Eq. (1.3) is therefore restricted to depth
dependence only.

In addition, it is sufficient for the present purposes to consider the case of a dilute
mixture of randomly oriented, mirror-symmetric particles. (Here “dilute” means that
the individual particles are separated by many times the wavelength of the light,
so that each particle is in the scattering far field of the others.) For such particles,
the extinction matrix becomes diagonal and each of the diagonal elements K i,i is
identical. In addition, the phasematrix then depends on the included angleψ between
ξ′ and ξ and not on the directions themselves. Using Eq. (1.2) to express the incident
direction ξ′ and scattered direction ξ in terms of the incident and scattered polar and
azimuthal angles gives the scattering angle ψ:

cosψ = ξ′ · ξ = cos θ′ cos θ + sin θ′ sin θ cos(φ − φ′) , (1.4)

where the dot in ξ′ · ξ denotes the vector dot or inner product. Z also becomes block
diagonal for randomly oriented, mirror-symmetric particles.

To conform with the notation used in optical oceanography, the particle number
density no is combined with the effective extinction matrix to give the total beam
attenuation coefficient

c = 2k ′′ + no〈K 1,1〉

In Eq. (1.3), 〈K (ξ)〉 defines the average extinction cross section per particle and has
units of area. Multiplying by the particle number density no gives units of inverse
meters, as is customary for the beam attenuation coefficient. Similarly, the phase
matrix is reformulated as

P(ξ′ · ξ) = no〈Z(ξ′ · ξ)〉 .

The resulting VRTE then becomes

cos θ
dS(z, ξ,λ)

dz
= − c(z,λ)S(z, ξ,λ)

+
∫
4π

P(z, ξ′ · ξ,λ) S(z, ξ′,λ) dΩ(ξ′)

+ σ(z, ξ,λ) . (1.5)

For generality, an internal source term σ has been added to the VRTE. This term
represents radiance created per unit path length at wavelength λ; σ has units of radi-
ance per meter or Wm−3 sr−1 nm−1. If the source is bioluminescence, the radiant
energy is created from chemical energy. If the source represents Raman scatter or
fluorescence, the emitted energy at wavelength λ comes from inelastic scatter from
other wavelengths. The absorbing and scattering properties of the water body are
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Fig. 1.3 The scattering plane and the incident and final meridian planes showing the coordinate
systems and rotations used to specify scattering of polarized light. The scattering plane is partly
shaded in red

now specified by c and P , which are taken to be functions of depth z and wavelength
λ. These inherent optical properties (IOPs) fully specify the optical properties of the
water column. In practice, these quantities are often obtained as sums of the con-
tributions by pure water, particles (phytoplankton, minerals, detritus), and dissolved
substances for each particular water body. An example of the construction of these
IOPs can be seen in Chowdhary et al. (2006). Although the contributions of the var-
ious water-column constituents to the total IOPs are of interest in understanding the
ocean as an ecosystem, it is only the total IOPs that appear in the VRTE.

1.2.3.1 Scattering Geometry

The reduction of the directional dependence of P to ξ′ · ξ gives an additional impor-
tant simplification of the VRTE. The elements of input and output Stokes vectors are
defined relative to meridian planes, as described above. However, scattering from an
incident direction ξ′ to a final direction ξ is defined in terms of the included scattering
angle ψ and the scattering plane, as illustrated in Fig. 1.3.

Consider an incident beam of light propagating in direction ξ′ = r as in Fig. 1.1.
Direction ξ′ is specified by polar and azimuthal directions (θ′,φ′). The z axis and
the direction of light propagation ξ′ define the incident meridian plane, part of which
is shaded in blue in the right panel of Fig. 1.1. The 4 × 1 (diffuse) Stokes vector
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S′ = [I ′, Q′,U ′, V ′]T for this beam of light is described with reference to “horizon-
tal” and “vertical” directions, +h′ and +v′ respectively, which were defined above.
Note that the horizontal unit vector +h′ is perpendicular to the meridian plane, and
the vertical vector +v′ is parallel to the meridian plane.

To compute how an incident Stokes vector S′ is scattered to a final vector S, the
horizontal and vertical components of S′ in the incident meridian plane must first be
transformed (“rotated”) into components parallel and perpendicular to the scattering
plane. The coordinate system after rotation of v′ and h′ about the ξ′ axis is labeled p′
(parallel to the scattering plane) and s′ (perpendicular to the scattering plane). Note
that s′ × p′ still gives the direction of propagation ξ′. As shown in Fig. 1.3, rotation
angle α′ takes v′ into p′ (and h′ into s′). In this chapter, rotation angles are defined
as positive for counterclockwise rotations when looking “into the beam,” e.g. in the
−ξ′ direction. This is similar to rotations about the z axis of Fig. 1.1 having positive
angles φ for counterclockwise rotations when looking in the −z direction.

When computing single scattering with both ξ′ and ξ being expressed in their
respective meridian planes, the rotation angles can be obtained from spherical
trigonometry applied to the triangle defined by z, ξ′, and ξ, which is shown in the
inset in Fig. 1.3. Given θ′,φ′, θ,φ, spherical trigonometry gives the rotation angles
α′ and α as (e.g., van de Hulst 1980, Vol. 2, p. 499; or Mishchenko et al. 2002, p. 90)

cosα′ = (cos θ − cos θ′ cosψ)/(sinψ sin θ′) (1.6)

or

sinα′ = − sin θ sin(φ − φ′)/ sinψ . (1.7)

and

cosα = (cos θ′ − cos θ cosψ)/(sinψ sin θ) (1.8)

or

sinα = − sin θ′ sin(φ − φ′)/ sinψ (1.9)

for ψ 	= 0 or π and for 0 ≤ φ − φ′ ≤ π. If π < φ − φ′ < 2π, then α′ and α are given
by the negatives of these equations. The scattering angle ψ is given by Eq. (1.4).
The rotation and scattering angles depend only on the difference in azimuthal angles
via φ − φ′. Special cases are required when θ′, θ, or ψ are zero. For ψ = 0, set
α′ = α = 0 since φ′ = φ =⇒ sin(φ − φ′) = 0. For ψ = π, set α′ = α = 0 since
φ = φ′ + π =⇒ sin(φ − φ′) = 0. If sin θ′ = 0, replace Eqs. (1.6) and (1.8) with
(Hu et al. 2001)

cosα′ = − cos θ′ cos(φ − φ′) (1.10)

cosα = cos θ′ . (1.11)

If sin θ = 0, replace Eqs. (1.6) and (1.8) with
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cosα′ = cos θ (1.12)

cosα = − cos θ cos(φ − φ′) . (1.13)

When doing calculations of multiple scattering between sea surface wave facets, a
light ray can reflect from one wave facet to another several times before the incident
ray finally leaves the surface region and needs to be rotated into the final meridian
plane. In this case, it is more convenient to obtain the rotation angles from the
perpendicular (or parallel) axes as determined for the incident ray direction onto a
facet and the normal to the tilted wave facet. The details of these calculations are
given in Mobley (2014b, 2015) and will not be repeated here. However, it can be
seen from Fig. 1.3 that the rotation angles can be obtained from cos−1(v′ · p′) and
cos−1(p · v).

Once the incident Stokes vector is specified in the scattering plane, a scattering
matrixM(ψ) is applied to obtain thefinal Stokes vector,which is then expressed in the
s-p-ξ scattering plane coordinate system defined for the final direction: s × p = ξ.
Finally, the parallel and perpendicular components of the final Stokes vector must be
expressed as horizontal and vertical components in the final meridian plane as spec-
ified by the h-v-ξ system. As illustrated in Fig. 1.3, this requires a counterclockwise
rotation through an angle of α, where α is the “interior” angle of the spherical trian-
gle illustrated in the figure. If R(γ) represents a counterclockwise (positive) rotation
through angle γ and M(ψ) represents scattering through scattering angle ψ, then this
scattering process is symbolically represented by

S = R(α)M(ψ)R(α′)S′ . (1.14)

In other words, the phase matrix can be decomposed as

P(ζ; θ′,φ′,→ θ,φ;λ) = R(α) M(ψ) R(α′) . (1.15)

The phasematrix transforms S′ into S, with both vectors expressed in their respective
meridian planes. This corresponds to how Stokes vectors are measured in the field.
The scattering matrix corresponds to how scattering is measured as a function of
scattering angle in an instrument.

For the choice of a positive rotation being counterclockwise when looking into
the beam, the Stokes vector rotation matrix is (e.g., Mishchenko et al. 2002, p. 25)

R(γ) =

⎡
⎢⎢⎣
1 0 0 0
0 cos 2γ − sin 2γ 0
0 sin 2γ cos 2γ 0
0 0 0 1

⎤
⎥⎥⎦ . (1.16)

The choice of coordinate systems and rotation angles is not unique. Kattawar and
Adams (1989), Kattawar (1994), Zhai et al. (2012), and Mishchenko et al. (2002) all
choose the reference plane to the be meridian plane. (These authors use somewhat
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different notation; our h and v are Kattawar’s r and l, respectively. Mishchenko
et al. (2002, p. 16) on the other hand use the spherical coordinate system unit vectors
ϑ and ϕ to specify the vertical and horizontal directions.) Thus in the ocean setting
these authors all regard the “horizontal” direction (parallel to the mean sea surface)
as being the “perpendicular” direction (relative to the meridian plane), and “vertical”
to the mean sea surface as being the “parallel” direction. However, Bohren and
Huffman (1983) and Hecht (1989) choose their “parallel” direction to be parallel
to a horizontal plane, such as a laboratory bench top or the mean sea surface, and
their vertical direction is perpendicular to the bench top or mean sea surface. Thus
their Stokes vector for horizontal polarization (parallel to the mean sea surface) is
proportional to S = [1, 1, 0, 0]T . This different choice arises from the viewpoint
of describing polarization in a convenient way for a laboratory experiment with
reference to a table top, versus modeling light incident onto the sea surface with
reference to meridian planes.

Similar confusion is found in the choice of rotation angles. Kattawar (and his
students in their papers) and Bohren and Huffman (1983) define a positive rotation as
being clockwisewhen looking into the beam.Since a clockwise rotation through angle
γ is the same as a counterclockwise rotation through −γ, Kattawar’s rotation matrix
is the transpose of the one in Eq. (1.16). Thus Kattawar (e.g., in Kattawar and Adams
1989, Eq.10) writes Eq. (1.14) as S = R(−α)M(ψ)R(−α′)S′ (again, with minor
differences in notation; α′ here is Kattawar’s �, etc.). Others often write a rotation
as R(π − α) rather than R(−α); these are equivalent because Eq. (1.16) shows that
R(π − α) = R(−α). Chandrasekhar (1950) also defines a positive rotation as being
clockwise when looking into the beam. However, he uses a different definition for
the Stokes vector for which only the fourth component is independent of coordinate
system, so his rotation matrix is more complicated. Mishchenko defines a positive
rotation as being clockwise when looking in the direction of propagation. This is
equivalent to counterclockwise when looking into the beam as used here; thus his
rotation matrix is the same as that in Eq. (1.16). van de Hulst (1980) also uses the
same rotation convention as is used here. All of this is considered well known, so the
details are often omitted in publications, with confusing apparent differences among
papers being the price of brevity. Fortunately, the only real requirement for Stokes
vectors, coordinate systems, and rotations is consistency in usage once a choice has
been made.

With the simplification of Eq. (1.14), the water-column IOPs are fully specified
by the attenuation coefficient c(z,λ) and the 4 × 4 scattering matrix M(z,ψ,λ).
The (1,1) element of M is the volume scattering function (VSF) β, which describes
scattering of unpolarized radiance into unpolarized radiance. The units ofβ andM are
m−1 sr−1. (The term scatteringmatrix is commonly usedwhen the scattering is caused
by particles ormolecules, as in the ocean. In laboratory optics the transformation from
S′ to S is often caused by lenses, filters, mirrors, etc., and the term Mueller matrix is
commonly used. However, scattering matrix and Mueller matrix are synonymous in
that they both transform Stokes vectors in the scattering plane.)

The integral of the VSF over all scattering directions gives the scattering coeffi-
cient b(z,λ):
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b(z,λ) =
∫ 2π

φ=0

∫ π

θ=0
β(z, θ′,φ′ → θ,φ,λ))dΩ(θ,φ) for any (θ′,φ′)

= 2π
∫ π

0
β(z,ψ,λ) sinψdψ .

The second form holds for isotropic media, in which case scattering of unpolarized
light depends only on the polar scattering angle ψ and not on azimuthal scattering
angle. That is the situation assumed here. The scattering phase function is defined by
β̃(ψ) = β(ψ)/b. In general, the phase function gives the probability per unit solid
angle Ω centered on (θ,φ) that radiance traveling in any direction (μ′,φ′) will be
scattered into any other direction (μ,φ). The phase function therefore satisfies the
normalization condition

1 =
∫ 2π

φ=0

∫ π

θ=0
β̃(θ′,φ′ → θ,φ))dΩ(θ,φ) for any (θ′,φ′)

= 2π
∫ π

0
β̃(ψ) sinψdψ . (1.17)

That is, the probability is 1 that the radiance will be scattered into some direction.
As above, the second equation holds for isotropic media.

The attenuation coefficient c(z,λ) is the sum of the absorption and scattering
coefficients:

c(z,λ) = a(z,λ) + b(z,λ) .

Finally, the nondimensional albedo of single scattering is the ratio of the scattering
coefficient to the attenuation coefficient:

ωo(z,λ) = b(z,λ)

c(z,λ)
.

In the oceanographic setting, depth z is expressed in meters, positive downward
from the mean sea surface at z = 0. However, it is the non-dimensional optical depth
ζ that governs light propagation. The optical depth is defined by

dζ(λ) ≡ c(z,λ)dz . (1.18)

This equation can be integrated to convert geometric depth to optical depth, or vice
versa:

ζ(z,λ) =
∫ z

0
c(z′,λ)dz′ or z(ζ,λ) =

∫ ζ

0

dζ ′

c(ζ ′,λ)
.

Note that the optical depth corresponding to a given physical depth z depends on
wavelength via c(z,λ).

Furthermore, the scattering coefficient b(z,λ) can be factored out of the phase
matrix to obtain the normalized phase matrix P̃ ≡ P/b(ζ,λ). This is similar to



16 C. D. Mobley

factoring the scattering coefficient b(z,λ) out of the VSF to obtain the scattering
phase function. Both the phase function β̃ and the normalized phase matrix P̃ have
units of sr−1.

Dividing Eq. (1.5) by c and using Eq. (1.18) gives the VRTE in terms of optical
depth. It is common to use μ = cos θ as the polar angle variable. An element of
solid angle is then dΩ = sin θ dθ dφ = dμ dφ. Writing the phase matrix as P = bP̃
and taking b(z,λ) outside the integral over incident directions allows the IOPs to
be written in terms of the albedo of single scattering ωo = b/c. These steps allow
Eq. (1.5) to be rewritten as

μ
dS(ζ,μ, φ,λ)

dζ
= − S(ζ,μ, φ,λ)

+ ωo(ζ,λ)

∫ 2π

0

∫ π

0
P̃(ζ;μ′,φ′ → μ, φ;λ) S(ζ,μ′, φ′, λ)′dμ′dφ′

+ �(ζ,μ, φ, λ) . (1.19)

The 1/c factor multiplying the source function σ in Eq. (1.5) has for notational
convenience been incorporated into the definition of the vector source function � =
σ/c, which therefore has units of radiance. The IOPs are now defined via the albedo
of single scattering ωo(ζ,λ) and the normalized phase matrix P̃(ζ,ψ,λ); c(ζ,λ) is
needed only if there are internal sources.

This matrix equation represents 4 scalar equations for the 4 components of the
Stokes vector. The integral term connects these four components and shows how
scattering transforms various states of polarization (components of the Stokes vector)
for light traveling in all incident directions (μ′,φ′) into other states of polarization of
light traveling in the (μ,φ) direction of interest. In particular, the (i, j) element of P̃
shows how scattering converts incident light in polarization state j (the j th element
of S′) into polarization state i of the final Stokes vector S.

Equation (1.19) is the formof theVRTE thatwill be solvedby invariant imbedding.
Indeed, the remainder of this chapter can be viewed as a pure mathematics problem:
solve Eq. (1.19) subject to the boundary conditions specified in Sects. 1.2.5 and 1.2.6.

1.2.4 Phase Matrices

The terminology relating to phase matrices and related quantities is confusing, and
there is no uniformity of notation in the literature. Further comment is therefore
warranted. The phase matrix for randomly oriented, mirror-symmetric particles can
be written is several ways:
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P(ζ;μ′,φ′ → μ,φ;λ) = P(ζ;μ′,μ,φ − φ′;λ) = P(ζ;ψ;λ) (1.20)

= R(α) M(ψ) R(α′) (1.21)

= β(ψ) R(α) M̃(ψ) R(α′) (1.22)

= b(ζ,λ) β̃(ψ) R(α) M̃(ψ) R(α′) (1.23)

= b(ζ,λ) β̃(ψ)
˜̃P (1.24)

= b(ζ,λ) P̃ . (1.25)

The quantities seen in these equations are described as follows:

• The phase matrix P is a 4 × 4 matrix that transforms the incident or unscattered
Stokes vector S′ into the final or scattered vector S, with both vectors expressed
in meridian planes. The directional arguments seen in Eq. (1.20) highlight the
dependence on ψ as seen in Eq. (1.4).

• The scattering matrix M is a 4 × 4 matrix that transforms S′ into S, with both
vectors expressed in the scattering plane.

• R(α′) and R(α) are the rotation matrices that carry Stokes vectors into and out of
the scattering plane. The rotation matrices are non-dimensional; it is the scattering
matrix that carries the units of m−1 sr−1, and the phase matrix therefore has the
same units.

• The (1,1) element of the scattering matrix, M1,1, transforms the total incident
radiance, the I ′ element of S′, into total scattered radiance, the I element of S.
In different terminology, M1,1(ψ) is thus the volume scattering function β(ψ) as
used in scalar radiative transfer theory.

• The volume scattering function β(ψ) = M1,1(ψ) can be factored out of each ele-
ment of M to obtain a dimensionless reduced scattering matrix M̃ whose elements
are M̃i, j (ψ) = Mi, j (ψ)/M1,1(ψ).

• ˜̃P ≡ R(α) M̃(ψ) R(α′) is called the reduced phasematrix because it is constructed
from the reduced scattering matrix M̃ ; it is likewise dimensionless.

• P̃ as seen in in Eqs. (1.19) and (1.25) is called the normalized phase matrix. Note
that the (1,1) element of the normalized phase matrix P̃ is just the scattering phase
function β̃. P̃ therefore has units of sr−1.

As has been noted, for a random collection of mirror-symmetric particles, the
scattering matrix becomes block diagonal. The reduced scattering matrix then has
the form (Mishchenko et al. 2002)

M̃ =

⎡
⎢⎢⎣

1 M̃12(ψ) 0 0)
M̃12(ψ) M̃22(ψ) 0 0

0 0 M̃33(ψ) M̃34(ψ)

0 0) −M̃34(ψ) M̃44(ψ)

⎤
⎥⎥⎦ . (1.26)

The sixth independent element of the scattering matrix M is the volume scattering
function M1,1(ψ), which has been factored out in creating M̃ .
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The normalized phase matrix P̃ corresponding to a reduced scattering matrix of
the form (1.26), as used in Eq. (1.19), can be written in full as

P̃ = β̃ R(α) M̃(ψ) R(α′)

= β̃(ψ)

⎡
⎢⎢⎣
1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 M̃12(ψ) 0 0
M̃12(ψ) M̃22(ψ) 0 0

0 0 M̃33(ψ) M̃34(ψ)

0 0 −M̃34(ψ) M̃44(ψ)

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 0
0 cos 2α′ − sin 2α′ 0
0 sin 2α′ cos 2α′ 0
0 0 0 1

⎤
⎥⎥⎦ . (1.27)

Letting c = cos 2α, s ′ = sin 2α′, etc., and mi j = M̃i, j (ψ), the normalized phase
matrix becomes

P̃ = β̃(ψ)

⎡
⎢⎢⎣

1 c′ m12 −s ′ m12 0
c m12 c′c m22 − s ′s m33 −s ′c m22 − c′s m33) −s m34

s m12 c′s m22 + s ′c m33 −s ′s m22 + c′c m33) c m34

0 −s ′ m34 −c′ m34 m44

⎤
⎥⎥⎦ . (1.28)

Note that although the scattering matrix elements M̃i j (ψ) and M̃ ji (ψ) have the sym-
metries seen in Eq. (1.26), those symmetries are lost in the phase matrix because of
the rotations.

1.2.4.1 Dependence of the Phase Matrix on Azimuthal Angle

The phase function β̃(ψ) in the SRTE depends on the scattering angle ψ, computed
via Eq. (1.4). This equation shows that the phase function depends on the incident
and scattered azimuthal angles via cosine of the difference in the azimuthal angles.
Because β̃(μ′,φ′ → μ,φ) depends only on the difference φ − φ′, φ′ can be set to
0 without loss of generality; this choice merely anchors the difference φ − φ′ to
φ′ = 0 for computational purposes. The dependence on cos(φ − φ′) also means that
the phase function can be expanded as a Fourier cosine series in the azimuthal
angle φ.

Unfortunately this cos(φ − φ′) dependence is lost in the phase matrix because
of the rotation matrices (van de Hulst 1980). The phase matrix still depends on
φ − φ′, but some phase matrix elements depend on cos(φ − φ′) and some depend on
sin(φ − φ′). Figure1.4 illustrates this for the simple case of the normalized Rayleigh
phase matrix defined by Eq. (1.28) and the Rayleigh scattering matrix
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MRay = βRayM̃Ray = bRayβ̃RayM̃Ray

= bRay
3

16π
(1 + cos2 ψ)

⎡
⎢⎢⎢⎢⎣

1 − sin2 ψ
1+cos2 ψ

0 0

− sin2 ψ
1+cos2 ψ

1 0 0

0 0 2 cosψ
1+cos2 ψ

0

0 0 0 2 cosψ
1+cos2 ψ

⎤
⎥⎥⎥⎥⎦

. (1.29)

(Note that the Rayleigh phase function β̃Ray = 3
16π (1 + cos2 ψ) satisfies the normal-

ization Eq.1.17.)
The non-zero elements of the upper left and lower right 2 × 2 blocks of matrix

elements in Fig. 1.4 are non-zero atφ − φ′ = 0 and 180◦. These 8matrix elements can
be expanded as Fourier cosine series, just as for the scalar phase function. However,
the non-zero elements of the lower left and upper right 2 × 2 blocks of elements
are 0 at φ − φ′ = 0 and 180◦. These matrix elements therefore must be expanded
as Fourier sine series. This result holds true for any scattering matrix. This mixed
cosine and sine and dependence of the phase matrix elements on azimuthal angle
considerably complicates the solution of the VRTE compared to that of the SRTE,
as will be seen in Sect. 1.5.

The phase function for the SRTE can be written as a function of either cos(φ − φ′)
or cos(φ′ − φ). However, reversing the order of φ and φ′ in the phase matrix of the
VRTE introduces a sign change in the elements that depend on sin(φ − φ′). For
consistency, the development below always writes azimuthal angles in the order of
scattered direction minus incident direction, i.e. φ − φ′ (or φv − φs after discretiza-
tion).

Hovenier (1969) derived several symmetry relations that must be obeyed by phase
matrices. These symmetries result from considerations of time-reversal invariance of
the scattering process and from the geometric symmetries of the scattering particles.
These equations need not be repeated here, but they do provide important checks
on on the correctness of the discretized phase matrices, which will be computed as
described in Sect. 1.3.2.

1.2.5 Boundary Conditions at the Sea Surface

The VRTE in the previous section describes how light is absorbed and scattered
within the water. It is also necessary to determine how light enters and leaves the
water, and how it is reflected by the bottom if the water has a finite depth. Thus, in
order to solve the VRTE, boundary conditions for the Stokes vector must be specified
at the sea-surface and for an opaque but reflecting surface at the sea bottom.

Just as for “volume scattering”within thewater, the “surface scattering” processes
of reflection and refraction are described by 4 × 4 matrices. There are four of these
sea-surface radiance transfer functions. raw(θ′,φ′ → θ,φ) specifies how polarized
radiance incident onto the sea surface in downwelling direction (θ′,φ′) is reflected
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Fig. 1.4 The normalized phase matrix for Rayleigh scattering, P̃Ray, plotted as a function of
φ − φ′ for fixed polar angles θ′ = 20◦ and θ = 60◦. Note the block structure as regards expansion
of elements in either cosine or sine series

back upward into direction (θ,φ) by the water surface, per unit of solid angle. Sim-
ilarly, taw describes how air-incident light is transmitted through the surface into
the water, rwa reflects water-incident light back to the water, and twa transmits light
from the water into the air. These transfer functions have units of sr−1. The boundary
conditions at the sea surface for the VRTE are given by

S(a, θ,φ) =
∫∫

2πd

raw(θ′,φ′ → θ,φ) S(a, θ′,φ′) dΩ(θ′,φ′)

+
∫∫

2πu

twa(θ
′,φ′ → θ,φ) S(w, θ′,φ′) dΩ(θ′,φ′) for (θ,φ) ∈ 2πu

(1.30)
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and

S(w, θ,φ) =
∫∫

2πu

rwa(θ
′,φ′ → θ,φ) S(w, θ′,φ′) dΩ(θ′,φ′)

+
∫∫

2πd

taw(θ′,φ′ → θ,φ) S(a, θ′,φ′) dΩ(θ′,φ′) for (θ,φ) ∈ 2πd

(1.31)

The notation
∫∫

2πd
(
∫∫

2πu
) denotes integration over all θ′,φ′ in the downward

(upward) hemisphere of directions (2π steradians). Equation (1.30) thus shows that
the upwelling radiance in the air (depth argument a) just above the sea surface comes
from downwelling radiance in the air reflected back upward by the sea surface, and
from upwelling radiance incident onto the sea surface from below (depth w) and
transmitted through the surface. A similar interpretation holds for Eq. (1.31). When
solving the VRTE, the sky radiance S(a, θ′,φ′) incident onto the sea surface is con-
sidered known. Equations (1.30) and (1.31) are the vector equivalents of the scalar
equations seen in (L&W 4.3) and (L&W 4.4).

The four sea-surface transfer functions are conceptually like the phase matrix
seen in the VRTE of Eq. (1.19). That is, they describe reflection or transmission (i.e.,
scattering) from incident direction (θ′,φ′) to final direction (θ,φ), with incident and
final Stokes vectors expressed in their meridian planes. For a level sea surface, the
incident and final meridian planes are the same. For a wind-blown sea surface, the
reflected and transmitted light for a single incident ray will generally lie in a different
meridian plane than the incident light. Indeed, for a time- or space-averaged collection
of random sea surfaces, a given incident direction yields reflected and transmitted
light in all directions.

1.2.6 Bottom Boundary Conditions

For complete generality, the bottomboundary condition can be formulatedwith a pair
of equations like those at the sea surface. However, for problems of oceanographic
interest, it is sufficient to consider a bottom that reflects light but does not allow
light to enter the water from below the bottom. In that case, there is only radiance
incident onto the bottom being reflected back upward into the water column. There
is no radiance being transmitted upward through the bottom, nor are we interested in
radiance being transmitted downward below the bottom. Thus the bottom boundary
condition reduces to just

S(m, θ,φ) =
∫∫

2πd

rmb(θ
′,φ′ → θ,φ) S(m, θ′,φ′) dΩ(θ′,φ′) for (θ,φ) ∈ 2πu ,
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where depth argument m indicates the depth where the bottom boundary condition
is applied. Recall from Fig. 1.2 that this is the maximum depth to which the VRTE
is to be solved. Depth m can be either a finite depth with a physical bottom, or a
depth in the water column below which the water in infinitely deep, homogeneous,
and source-free. In either case, rmb is a 4 × 4 matrix that describes the reflectance
properties of the bottom layer [m, b]. It does not matter whether rmb describes a
finite-depth, opaque, physical bottom (i.e., a layer [m, b] = [m,m]) or an infinitely
deep water column (i.e., a layer [m, b] = [m,∞]), so long as rmb describes how
downwelling light at depthm is reflected back upward by whatever is at depthm and
below.

1.2.6.1 Finite-Depth Bottoms

In the case of an opaque bottom at depth z = m = b, the bottom boundary condition
is commonly written in terms of the vector bidirectional reflectance distribution
function (VBRDF):

S(m, θ,φ) =
∫∫

2πd

V BRDF(θ′,φ′ → θ,φ) cos θ′ S(m, θ′,φ′) dΩ(θ′,φ′) .

Each (i, j) element of the VBRDF has the functional form of a scalar BRDF that
reflects light from incident direction (θ′,φ′) into direction (θ,φ), and from polariza-
tion state j to i . The (1,1) element of the VBRDF is the scalar BRDF for unpolarized
radiance. In general, these matrix elements will depend on wavelength. The cos θ′
factor appears in this equation because the radiance reflectance function rmb as used
here is defined for surfaces normal to the directions of light propagation, whereas
V BRDF is defined for light incident onto a horizontal surface. Just as for the sea
surface, rmb and V BRDF have units of sr−1 and include the effects of rotations
between meridian planes and the reflection plane.

Although some models have been developed for the VBRDF of terrestrial vege-
tation and soils (e.g., Schott 1999), there are no such measurements or models for
typical ocean bottommaterials such as sand, mud, sea grass, or coral. Such materials
are typically highly scattering rough surfaces that diffusely reflect light into all direc-
tions. For most oceanographic applications, it will be sufficient to consider VBRDFs
that depend only on the difference in reflected and incident azimuthal angles, i.e.,

V BRDF(θ′,φ′ → θ,φ) = V BRDF(θ′, θ,φ − φ′) .

Such VBRDFs should describe most bottom materials, and the algorithm developed
here is constructed to handle any VBRDF of this form. However, such VBRDFs
would not describe a sandy bottom with a linear ripple structure, which would reflect
light differently for “along-ripple” vs “cross-ripple” directions. Such bottoms can
be modeled in the same way as the sea surface reflectance, with corresponding
modifications to the equations in Sect. 1.5.5.2 below.
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Multiple scattering tends to depolarize light. Many bottom materials have rough
surfaces that multiply scatter incident light in the process of eventually reflecting it
away from the surface. Therefore, pending actual measurements, it is expedient, and
perhaps even reasonable, to model sediments and aquatic vegetation as Lambertian,
depolarizing surfaces. rmb then has the simple form

rmb ≡ rLamb = R(λ) cos θ′

π

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (1.32)

Here R(λ) = Eu(λ)/Ed(λ) is the wavelength-dependent irradiance reflectance of
the bottom for unpolarized light; π carries the units of sr−1. Because only the (1,1)
matrix element is nonzero, the rotation matrices, which do not affect the (1,1) matrix
element, are not included in Eq. (1.32). Matrices of this form have been used by Zhai
et al. (2008) in studies of underwater imaging.

1.2.6.2 Infinitely Deep Water

The vector reflectance properties of an infinitely deep layer of homogeneous, source-
free water below depth z = m are muchmore complicated than for an opaque bottom
and have not yet beenworked out. The developmentwould presumably follow that for
the scalar case seen in Light and Water Sect. 9.5. Meanwhile, infinitely deep bottoms
can be simulated simply by placing an opaque bottom at finite depth m sufficiently
deep that the bottom reflectance does not significantly affect the radiance at the
greatest depth of interest. The only penalty for this is increased run time for solving
the VRTE to a great depth.

1.3 Discretization of the VRTE

The VRTE and its boundary conditions represent a continuum of depths, directions,
and wavelengths. In order to solve these equations on a computer, they must be
discretized to obtain a finite number of output variables, namely Stokes vectors for
a finite number of depths, directions, and wavelengths. There are various ways in
which to do this. For example, a function of direction can be expanded as an infinite
series and then truncated after a finite number of terms. The result would then be
an approximate Stokes vector for an exact direction. The directional discretization
used here (and in HydroLight for the SRTE), on the other hand, averages functions
of direction over finite solid angles. The resulting Stokes vectors are exact values
averaged over finite solid angles.
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Fig. 1.5 The partition of the
unit sphere of directions into
a finite number of solid
angles. The coordinate
system is drawn with +z
pointing downward, as in
HydroPol. The +x direction
is downwind. The
perspective view of this
figure can be thought of as
being in the water looking
obliquely upward

1.3.1 Discretization of Stokes Vectors

Figure1.5 shows (θ,φ) directional bins that are the same as those used in the standard
version of HydroLight. Let Ξ represent the set of all directions ξ = (θ,φ). In this
figure, Ξ is divided into rectangular regions, called quads, of size 10◦ in polar angle
by 15◦ in azimuthal angle, plus two polar caps of 5◦ half angle. The quad boundaries
are analogous to lines of constant latitude and longitude on the Earth. This unit
sphere of directions can be thought of as centered at each point of space in the x-y-z
coordinate system, which is shown in blue. The red line at the “equator” divides the
set of all directions into hemispheres of upward (Ξ− or Ξu) and downward (Ξ+ or
Ξd ) directions.

As will be seen in Sect. 1.5, invariant imbedding splits the VRTE into sets of
“upward” and “downward” equations. Polar angle θ is normally measured from 0 in
the +z direction to 90◦ at the equator. However, rather than continuing with the
measurement of θ to π or 180◦ in the −z direction, it will be convenient to think
of the upward and downward hemispheres as each having θ run from 0 at the pole
to 90◦ at the equator. The θ quad boundaries as drawn thus run from 5◦ for the
polar cap boundary, through 15, 25,…, 85, and 90◦, for a total of M = 10 Δθ or
Δμ bins in each hemisphere. These quads are numbered from u = 1 next to the
equator to u = M = 10 for the polar caps. Because of the partitioning into upward
and downward hemispheres, the equator must always be a quad boundary, hence
the row of quads next to the equator has Δθ = 5◦. The two 5◦ Δθ quads next to the
equator can, if desired, be combined during post-processing of the solution radiances
to obtain a horizontal quad of size Δθ = 10◦.

As previously noted, azimuthal angleφ ismeasured from0 in the+x direction, and
the firstφ quad is likewise centered on+x. For reasons that will be seen in Sect. 1.6.1,
the coordinate system is “wind centered,” with +x being in the downwind direction.
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Thus x is always downwind, z is downward into the water, and y = z × x is the
cross-wind direction. The sun can be placed at any azimuthal direction relative to
the wind.

The invariant imbedding solution algorithm uses a Fourier decomposition in the
azimuthal direction, which requires an even number of Δφ bins with each Δφ bin
being the same size. The total number of azimuthal quads is therefore written as 2N .
For 15 degΔφ quads, there are 2N = 24 φ quads, numbered v = 1 to v = 2N = 24,
with quad 1 being the one centered on+x. In addition, selecting the number of quads
to be a multiple of 4, as here, is convenient for calculation of radiances at azimuthal
directions of 0, 90, 180, and 270◦ because those directions are then at the centers of
quads.

The total number of quads and polar caps in Fig. 1.5 is thus 2(M − 1)2N + 2 =
434. The quad with θ band index u and φ band index v is denoted Q(u, v) or Quv , or
Q(M) or QM for a polar cap. With these conventions, it can be seen that the shaded
green quad in Fig. 1.5 corresponds to quad Q(u, v) = Q(5, 7) in the downward
hemisphere (recall that +z is downward as emphasized in Fig. 1.5, so the green quad
as drawn is in the Ξd or Ξ+ hemisphere). The (θ,φ) range of this quad is θ = 45
to 55◦ and φ = 82.5 to 97.5◦. This quad would contain radiance traveling downward
at a nominal angle (quad center) of 50◦ from the nadir direction and perpendicular
to the wind direction. Polar cap quads have no φ dependence and must always be
treated as a special case.

The solid angle of Q(u, v) is Ωuv = ΔμuΔφv , or ΩM = 2π[1 − cos(θ(M−1))] =
2π[1 − μ(M−1)] for a polar cap, where θ(M−1) is the boundary of the polar cap.

To convert the variables in the VRTE from continuous functions of depth, direc-
tion, and wavelength, to a finite number of values for discrete depths, directions,
and wavelengths, (1) integrate the VRTE over quads of finite solid angle Ωuv; (2)
integrate the VRTE over wavelength bands of finite bandwidth Δλ j , j = 1, ..., J ;
and (3) save the solution at only a finite number of depths zk, k = 1, ..., K . Thus the
computed Stokes vectors are

S(k, u, v, j) = 1

Δλ j

1

Ωuv

∫
Δλ j

∫
Δμu

∫
Δφv

S(zk,μ,φ,λ) dμ dφ dλ . (1.33)

These integrations are applied to each of the four [I, Q,U, V ]T Stokes components.
The wavelength bands Δλ j do not need to be equal in size. The interpretation of
S(k, u, v, j) is that it is the exact Stokes vector S(z,μ,φ,λ) averaged over direction
within quad Q(u, v) and over wavelength within band Δλ j , at a particular depth zk .

As will be seen, the depths where output is saved refer to exact depths in the water
column, not to finite-depth bins over which variables are depth averaged. Indeed, the
IOPs must be supplied as continuous functions of depth, and the solution algorithm
solves the VRTE with arbitrarily fine depth resolution, which is determined by the
accuracy parameters of the numerical differential equation solver. The solution is
simply saved at the finite set of user-requested output depths zk as the VRTE is
solved as a continuous function of depth.
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The chosen quad angular resolution is a balance between the conflicting needs
of having sufficiently high angular resolution in the radiance distribution and keep-
ing the run times acceptably small. Numerical studies with the scalar HydroLight
code show that a finer angular resolution than that seen in Fig. 1.5 does not change
computed quantities such as irradiances and reflectances by more than roughly one
percent, whereas accuracy starts to degrade for a coarser resolution. However, the run
time is proportional the number of quads squared because scattering must be com-
puted from every quad into every other quad. Thus finer angular resolution comes
at a high computational cost with almost no improvement in numerical accuracy for
the quantities of interest to most users.

The wavelength bands are usually chosen to be comparable to those of oceano-
graphic sensors, typically Δλ = 5 or 10nm. Run time is roughly proportional to
the number of wave bands. However, the optical depth is wavelength dependent, so
wavelengths greater than 700nm, where water absorption becomes very large, can
take much longer than shorter wavelengths.

In HydroLight, neither the number of depths K where output is requested nor their
spacing significantly affects run time. This is likely to remain true in the polarized
case. Requesting additional output depths does not change the values at the computed
depths, it only increase the size of the output files. The size of the output files is
directly proportional to the number of output depths, quads, and wavelength bands.

1.3.2 Quad Averaging

For a function of direction F(θ,φ) = F(μ,φ), the average over all directions in quad
Q(u, v), termed the quad average F(u, v), is defined as (L&W 4.52)

F(u, v) = 1

Ωuv

∫
Δθu

∫
Δφv

F(θ,φ) sin θ dθ dφ

= 1

Ωuv

∫
Δμu

∫
Δφv

F(μ,φ) dμ dφ . (1.34)

Note that F(u, v) has the same dimensions as F(θ,φ), e.g., units of radiance if F is
a Stokes vector.

Scattering involves bi-directional functions of incident (μ′,φ′) and scattered
(μ,φ) directions. The corresponding quad average of a bi-directional function
F(μ′,φ′ → μ,φ) is (L&W 4.63)

F(r, s → u, v) = 1

Ωuv

∫
Δμu

∫
Δφv

[∫
Δμr

∫
Δφs

F(μ′,φ′ → μ,φ) dμ′ dφ′
]
dμ dφ .

(1.35)
The bi-directional functions all describe scattering (either in the water column
or at a boundary surface) and have units of sr−1. Thus a phase matrix element



1 Invariant Imbedding Theory for the VRTE 27

Pi, j (ψ) = Pi, j (μ′,φ′ → μ,φ) tells how much radiance is scattered from direction
(μ′,φ′) to direction (μ,φ) and from polarization state j to i per unit solid angle in the
scattered direction. The corresponding quad-averaged function Pi, j (r, s → u, v) is
however non-dimensional. This is because Pi, j (r, s → u, v) tells howmuch radiance
is scattered in total (not per unit solid angle) from quad Q(r, s) into quad Q(u, v).

As seen inEq. (1.19), directional discretization of theVRTE involves quad average
integrals of the form

∫ 2π

0

∫ π

0
P̃(μ′,φ′ → μ,φ) S(μ′,φ′)dμ′dφ′ .

Quad averaging is applied to each matrix element or product of elements, e.g. Pi, j S j ,
in such quantities. Dropping the matrix and element notation for brevity, the quad
average of such an integral becomes

1

Ωuv

∫
Δμu

∫
Δφv

{∫ 2π

0

∫ π

0
P(μ′, φ′ → μ, φ)S(μ′, φ′) dμ′ dφ′

}
dμ dφ

= 1

Ωuv

∫
Δμu

∫
Δφv

{∑
r

∑
s

∫
Δμr

∫
Δφs

P(μ′, φ′ → μ, φ)S(μ′,φ′) dμ′ dφ′
}

dμ dφ

=
∑
r

∑
s

{
1

Ωuv

∫
Δμu

∫
Δφv

[∫
Δμr

∫
Δφs

P(μ′, φ′ → μ, φ)S(μ′, φ′) dμ′ dφ′
]
dμ dφ

}

=
∑
r

∑
s

P(r, s → u, v)S(r, s) .

In the second equation, the integral over all incident directions has been written
as a sum of integrals over all quads Q(r, s). The next equation interchanges the
order of integration over the scattered-direction quad Q(u, v) and the summation
over incident direction quads. The final equation uses the definition of Eq. (1.35).
Note that the quad average of the integrals reduces to sums over the quad-averaged
integrand. The solid angle factors resulting from the differentials dμ dφ are built
into the quad-averaged terms; there are thus no explicit ΔμuΔφv factors in the final
expression. For a given phase matrix, the integrations over the quads must be done
numerically. However, those are one-time calculations for a given scattering matrix
and quad partition. A library of discretized phase matrices therefore can be pre-
computed and stored for use in solution of the VRTE.

It should be noted that the discretization of the phase matrix integral via quad
averaging did not make any assumptions about the phase matrix other than isotropy
of the scattering medium. In particular, it was not necessary to expand the phase
matrix as an infinite series of Legendre polynomials, and then truncate that series
to a finite number of terms, as is required by the discrete ordinates solution method
(e.g., L&W Sect. 9.1). Such expansions can cause numerical difficulties for highly
peaked phase functions (e.g., L&W Fig. 9.1), which are typical of ocean waters. One
of the most important conceptual and numerical virtues of quad averaging is that it
can handle arbitrary phase functions.
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Discretization of the surface boundary conditions (1.30) and (1.31) follows in a
similar fashion to that for the path integral in the VRTE. Libraries of discretized
surface transfer functions likewise can be pre-computed for various wind speeds and
surface indices of refraction.

1.3.2.1 Summary of the Discretized Mathematical Problem

The end result of the quad-averaging process gives the discretized VRTE:

μu
dS(ζ, u, v, j)

dζ
= − S(ζ, u, v, j)

+ ωo(ζ, j)
������

∑
r

∑
s

P̃(ζ; r, s → u, v; j)
����������������

S(ζ, r, s, j)

+ �(ζ, u, v, j)
����������

. (1.36)

Symbolically, u = 1, ..., 2M and v = 1, ..., 2N to cover all directions. The polar cap
special cases will be considered below. The j index represents the j th wavelength
band.

The mathematical problem can be stated as follows: Solve the time-independent,
one-dimensional discretized VRTE (1.36) between the sea surface at depth ζ = 0
and the bottom at depth ζ = m, subject to the boundary conditions at the sea surface

S(a, u, v, j) =
∑
r

∑
s

r,s∈Ξd

raw(r, s → u, v; j)
���������������

S(a, r, s, j)
���������

+
∑
r

∑
s

r,s∈Ξu

twa(r, s → u, v; j)
���������������

S(w, r, s, j) for (u, v) ∈ �u (1.37)

and

S(w, u, v, j) =
∑
r

∑
s

r,s∈Ξu

rwa(r, s → u, v; j)
���������������

S(w, r, s, j)

+
∑
r

∑
s

r,s∈Ξd

taw(r, s → u, v; j)
���������������

S(a, r, s, j)
���������

for (u, v) ∈ �d , (1.38)

and at the bottom at depth ζ = m

S(m, u, v, j) =
∑
r

∑
s

r,s∈Ξd

rmb(r, s → u, v; j)
���������������

S(m, r, s, j) for (u, v) ∈ �u

. (1.39)
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The quantities with a wavy underline are assumed known. These are the the water
column IOPs, the internal source (if any), the sky radiance incident onto the air-side
of the sea surface, the air-water surface reflectance and transmittance properties,
and the bottom reflectance properties, all in discretized form. After solution of these
equations, the Stokes vector S(ζ, u, v, j) is known within (depths 0 ≤ ζ ≤ m) and
leaving (depth label ζ = a) the water.

Finally, note that polar caps are always a special case because they have no φ
dependence. Thus the sums represented symbolically by

∑
r

∑
s must explicitly

account for the polar caps r = M and s undefined. In computer code, the polar
cap values can be stored in array location (r, s) = (M, 1), with the array elements
(r = M, s = 2, ..., 2N ) being unused. Thus the path radiance term for scattering into
Q(u, v) can be evaluated in computer code as

∑
r

∑
s

P̃(ζ; r, s → u, v; j) S(ζ, r, s, j) =
M−1∑
r=1

2N∑
s=1

P̃(ζ; r, s → u, v; j) S(ζ, r, s, j) + P̃(ζ; M, 1 → u, v; j) S(ζ, M, 1, j) .

(1.40)

1.4 The Air-Water Surface

The air-water surface boundary conditions seen in Eqs. (1.37) and (1.38) are stated
in terms of four surface transfer functions, raw, taw, rwa , and twa , which are assumed
known. These functions are the inherent optical properties of the sea surface. They
depend on the surface wave state and water index of refraction, but not on the light
incident onto the surface from above or below. This section reviews the equations
needed to compute these air-water surface transfer functions.

1.4.1 Reflection and Transmission by a Level Sea Surface

Consider a level or flat air-water surface. This simplest of environmental conditions
is important for three reasons. First, a wind-blown sea surface can be modeled as a
collection of randomly tilted, but locally flat, wave facets. Each tilted facet reflects
and transmits light according to the laws for a flat surface. Thus a full understanding
of how a flat surface reflects and transmits light is the foundation of modeling wind-
blown surfaces. Second, the equations for a flat surface are analytically tractable and
provide an important check on the numerical computations in the limit of zero wind
speed. Third, level sea surfaces occasionally do occur in nature in the absence of
wind-generated waves or swell.
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Light can be incident onto this surface from the air, in which case part is reflected
back to the air by the surface and part is transmitted through the surface into the
water. Light can also be incident onto the underside of the sea surface, in which
case part (or all) is reflected back to the water and part can be transmitted through
the surface into the air. For either air- or water-incident light, Si denotes the Stokes
vector of the incident light, Sr is the reflected light, and St is the transmitted light.
Angles θi , θr , and θt are the incident, reflected, and transmitted directions of the light
propagation measured relative to the normal to the surface. Si , Sr , and St all lie in
the same plane.

Just as for scatteringwithin thewater, the surface scattering processes of reflection
and refraction are described by 4 × 4 scattering matrices. There are four of these
matrices: Raw describes how air-incident light is reflected by the water surface back
to the air, T aw describes how air-incident light is transmitted through the surface into
the water, Rwa reflects water-incident light back to the water, and Twa transmits light
from the water into the air. However, because Si , Sr , and St are coplanar, scattering
by the level surface does not involve rotation matrices as does scattering within the
water body. (That is to say, the incident and final meridian planes and the scattering
plane are all the same, the rotation angles α′ and α are thus both 0, and the rotation
matrices reduce to identity matrices.)

The reflection and (especially) transmission of polarized light by a dielectric sur-
face such as a level water surface are rather complicated processes, and the literature
contains a number of different (and, indeed, sometimes incorrect) mathematical for-
mulations of the equations. The formulas given in Garcia (2012) are appropriate
to the present needs. Note, however, that although the equations in Garcia (2012)
are correct, some of his derivations and interpretations are incorrect, as explained
by Zhai et al. (2012). Both papers must be used to understand the equations now
presented. The equations in Garcia (2012) will be referenced by (G21) and so on;
the corresponding equations in Zhai et al. (2012) will be referenced as (Z5), etc.

The reflectance and transmittance matrices have a general formulation for the
interface between any two dielectric media a and b. Let na be the index of refraction
of medium a and nb be that of medium b. In general na and nb are complex numbers,
but for the air-water surface real indices of refraction nair = 1 and nwater ≈ 1.34
can be used. For reflection, the reflected angle θr equals the incident angle θi . For
transmission from a to b, the transmitted angle is given by Snel’s law, na sin θa =
nb sin θb, or

θb = sin−1

(
na sin θi

nb

)
.

For water-incident light, na = nwater and nb = nair, in which case the transmitted
angle becomes undefined beyond the critical angle for total internal reflection, which
for water is θtir = sin−1(1/nwater) ≈ 48◦. For water-incident angles greater than θtir
the incident light is totally reflected back to the water and no light is transmitted to
the air.

Let Rab denote the reflectance matrix for radiant energy (or power) incident from
medium a and reflected back by medium b. Rab thus represents either Raw or Rwa .
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Likewise, let T ab denote the transmittance matrix for light incident from medium a
and transmitted through the surface into medium b. T ab thus represents either T aw

or Twa .
With these preliminaries, the reflectance matrix Rab is (G10)

Rab =

⎡
⎢⎢⎣

1
2 (R‖R∗

‖ + R⊥R∗
⊥) 1

2 (R‖R∗
‖ − R⊥R∗

⊥) 0 0
1
2 (R‖R∗

‖ − R⊥R∗
⊥) 1

2 (R‖R∗
‖ + R⊥R∗

⊥) 0 0
0 0 Re{R‖R∗

⊥} Im{R‖R∗
⊥}

0 0 −Im{R‖R∗
⊥} Re{R‖R∗

⊥}

⎤
⎥⎥⎦ .

(1.41)
Here Re{R‖R∗

⊥} denotes the real part of R‖R∗
⊥ and Im{R‖R∗

⊥} is the imaginary part.
The transmission matrix T ab is (G11 or Z3)

T ab = fT

⎡
⎢⎢⎣

1
2 (T‖T ∗

‖ + T⊥T ∗
⊥) 1

2 (T‖T ∗
‖ − T⊥T ∗

⊥) 0 0
1
2 (T‖T ∗

‖ − T⊥T ∗
⊥) 1

2 (T‖T ∗
‖ + T⊥T ∗

⊥) 0 0
0 0 Re{T‖T ∗

⊥} Im{T‖T ∗
⊥}

0 0 −Im{T‖T ∗
⊥} Re{T‖T ∗

⊥}

⎤
⎥⎥⎦ .

(1.42)
The components of these equations are given by (G7):

R‖ = nb cos θa − na cos θb

nb cos θa + na cos θb
(1.43)

R⊥ = na cos θa − nb cos θb

na cos θa + nb cos θb
(1.44)

T‖ = 2na cos θa

nb cos θa + na cos θb
(1.45)

T⊥ = 2na cos θa

na cos θa + nb cos θb
. (1.46)

In general, the indices of refraction are complex numbers and these equations must
be used. However, for real indices of refraction, as assumed here, the matrix elements
can be simplified at the expense of having a special case for water-incident angles
greater that the critical angle.

Define

nab = na
nb

and nba = nb
na

.

Then for the case of air-incident light, i.e., na ≤ nb, or water-incident light with the
incident angle less than the critical angle, i.e., na > nb and θa < θtir , the equations
yield the real forms (G14 and G15)
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R‖R∗
‖ =

(
cos θa − nab cos θb

cos θa + nab cos θb

)2

R⊥R∗
⊥ =

(
nab cos θa − cos θb

nab cos θa + cos θb

)2

Re{R‖R∗
⊥} =

(
cos θa − nab cos θb

cos θa + nab cos θb

)(
nab cos θa − cos θb

nab cos θa + cos θb

)

Im{R‖R∗
⊥} = 0

T‖T ∗
‖ =

(
2nab cos θa

cos θa + nab cos θb

)2

T⊥T ∗
⊥ =

(
2nab cos θa

nab cos θa + cos θb

)2

Re{T‖T ∗
⊥} = 4n2ab cos

2 θa

(cos θa + nab cos θb)(nab cos θa + cos θb)

Im{T‖T ∗
⊥} = 0 .

It should be noted that for the case of normal incidence, θi = 0, both R‖R∗
‖ and R⊥R∗

⊥
reduce to

R‖R∗
‖ = R⊥R∗

⊥ =
(
nb − na
nb + na

)2

.

This gives a reflectance of Rab(θi = 0) = 0.0209 for nwater = 1.338, for both air-
and water-incident light.

For the case of total internal reflection, i.e., na > nb and θa ≥ θtir , the following
equations are to be used (G22):

R‖R∗
‖ = 1

R⊥R∗
⊥ =1

Re{R‖R∗
⊥} = 2 sin4 θa

1 − (1 + n2ba) cos
2 θa

− 1

Im{R‖R∗
⊥} = −

2 cos θa sin2 θa

√
sin2 θa − n2ba

1 − (1 + n2ba) cos
2 θa

and all elements of the transmission matrix elements are 0:

T ab = Twa = 04×4 ,

where 04×4 is the 4 × 4 matrix of zeros.
Finally, the all-important transmission factor fT in Eq. (1.42) requires discussion.

The fT factor is derived from conservation of energy across the surface. However,
that conservation law can be expressed in terms of either radiance or irradiance. For
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coherent Stokes vectors with units of irradiance, fT is given by Zhai et al. (2012,
Eq.9), or Hecht (1989, Eq.4.59)

fT = nb cos θb

na cos θa
. (1.47)

The cosine factors result from the different cross-sectional areas of the incident and
transmitted beams due to the change in direction given by Snel’s law. The index-of-
refraction factors result from the different rates at which energy is transported toward
or away from the surface in the two media, i.e., from the differences in the speeds
of light in the two media. For diffuse Stokes vectors with units of radiance, as is the
case in the present discussion, fT is given by (Zhai et al. 2012, Eq.5)

fT = n2ba

(
nb cos θb

na cos θa

)
. (1.48)

The extra factor of n2ba in the radiance version results from the change in solid angle
when crossing the surface, i.e., for the n2 law for radiance. The fT value given in
Eq. (1.47) is the form to be used for Monte Carlo ray tracing of individual idealized
photons treated as point particles that carry energy but do not have an associated
solid angle. In that case, the n2 law for radiance is built in to the radiance reflectance
functions particle by particle as their directions change when crossing the interface
according to Snel’s law.

The preceding equations give everything needed to compute the reflection and
transmission of light by a sea surface, either by analytical formulas in the case of a
level surface, or by Monte Carlo simulation in the case of a wind-blown sea surface.
The non-zero matrix elements of course depend on incident angle as seen above, but
also depend weakly on the wavelength via the wavelength dependence of nwater.

As is usually the case, the literature contains a variety of notations, terminology,
and formulations. The R‖, R⊥, T‖, T⊥ terms seen above specify how electric field
amplitudes are reflected and transmitted for electric fields parallel and perpendicular
to the dielectric interface. Snel’s law can be used to obtain forms equivalent to
Eqs. (1.43)–(1.46) in which the indices of refraction do not appear explicitly (e.g.,
Born and Wolf 1975, Eqs. 20a, 21a):

R‖ = tan(θa − θb)

tan(θa + θb)

R⊥ = − sin(θa − θb)

sin(θa + θb)

T‖ = 2 sin θb cos θa

sin(θa + θb) cos(θa − θb)

T⊥ = 2 sin θb cos θa

sin(θa + θb)
.
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The fractions of reflected and transmitted energy are obtained from the square
of the electric field amplitudes. Hence these terms appear as products in Eqs. (1.41)
and (1.42). The (1,1) element of Rab gives the irradiance (energy) reflectance for
air-incident unpolarized light. Using the alternate forms just above gives the Fresnel
reflectance for unpolarized irradiance:

RF = 1

2
(R‖R∗

‖ + R⊥R∗
⊥) = 1

2

{[
sin(θa − θb)

sin(θa + θb)

]2
+
[
tan(θa − θb)

tan(θa + θb)

]2}
. (1.49)

The corresponding transmitted irradiance for unpolarized light is

TF = fT
1

2
(T‖T ∗‖ + T⊥T ∗⊥)

= nb cos θb
na cos θa

1

2

{[
2 sin θb cos θa

sin(θa + θb) cos(θa − θb)

]2
+
[
2 sin θb cos θa

sin(θa + θb)

]2}
= 1 − RF ,

(1.50)

where the fT of Eq. (1.47) is used for energy transfer.
The four Rab and T ab functions are plotted and discussed in further detail in

Mobley (2014a). It suffices here tomakeonly a few further comments. The reflectance
curve for Raw(1, 1) is the same as seen in any elementary physics text (e.g. Eq.1.49):
it starts at 0.0209 for normal incidence (for nwater = 1.338) and rises to 1 at grazing
incidence. When dealing with coherent Stokes vectors with units of irradiance, the
fT factor of Eq. (1.47) must be used. The transmittance for normal incidence then is
then

Taw(1, 1) = (4nb)/(1 + nb)
2 = 0.9791 ,

which with the reflectance sums to one (and also sums to one for all other incident
angles).

When working with diffuse Stokes vectors, the the fT factor of Eq. (1.48) must
be used. The transmission value for Taw(1, 1) for normal incidence is then

Taw(1, 1) = 4n3b
(1 + nb)2

= 1.7528 .

This value may look incorrect because it is greater than one. However, this value
is indeed correct and because it describes transmission for a diffuse Stokes vector
with units of radiance. When radiance travels from air to water, the solid angle in
air is reduced by a factor of 1/n2water (a consequence of Snel’s law), which increases
the radiance by a factor of n2water compared to the radiance for the same amount of
power propagating in air. This is termed the n-squared law for radiance. When going
from water to air, Rwa and Twa are used. For angles less than the critical angle, the
transmission is never more than about 0.54. This again shows the n-squared law for
radiance. In going from water to air, the in-water radiance is decreased by a factor
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of 1/n2water when crossing the surface because the solid angle in air is greater than
that in water by a factor of n2water. The transmission function Twa is zero beyond the
critical angle because there is no transmission and total reflection.

Brewster’s angle is given by θB = tan−1(nb), which is 53.23◦ for nb = 1.338. At
this angle, Raw(1, 2) = Raw(2, 1) = −Raw(1, 1), and Raw(3, 3) = Raw(4, 4) = 0.
With the choice of “parallel” and “perpendicular” referring to themeridian plane, this
Raw has the form of a horizontal polarizer. For nb = 1.338, Raw(1, 1) ≈ 0.04 at θB ,
and the reflection process Sr = Raw(θi = θB)Si for unpolarized incident radiance
(Si = [1, 0, 0, 0]T ) gives Sr = [0.04I,−0.04I, 0, 0]T , which represents light that is
totally linearly polarized in a direction parallel to themean sea surface (i.e., horizontal
polarization).

It should also be noted that the non-zero Taw(2, 1) means that unpolarized radi-
ance becomes partly linearly polarized upon transmission through the surface. Thus
transmission by the air-water surface induces a partially polarized underwater light
field, even if the sea surface is illuminated by unpolarized light.

The Raw etc. matrices are non-dimensional reflectances and transmittances. The
continuous-variable raw etc. seen in Eqs. 1.30 and 1.31 are radiance reflectances and
transmittances with units of sr−1. For a level surface, Dirac delta functions can be
added to the Raw etc. to indicate the the exact directions of the reflected and trans-
mitted light, which also gives sr−1 dimensions to the result. Thus raw = Raw δ(ξ −
ξraw

), where ξraw
is the direction of the air-incident light as reflected upward by the

surface. Similar equations hold for the other three transfer functions. The quad aver-
aged raw etc. are computed by numerical integration using these analytic function in
integrals of the form (1.35).

1.4.2 Reflection and Transmission by a Wind-Blown Sea
Surface

Wind-blown sea surfaces are vastly more complicated than level surfaces. The prop-
erties of the sea surface that determine its optical properties are the wave height and
wave slope. The slope is of primary importance because the slope, along with the
direction of an incident light ray, determines the angles of incidence and transmis-
sion seen in the Fresnel formulas. The wave height and slope in turn depend not just
on the wind speed, but also on how long the wind has been blowing (the duration)
and over what distance upwind from the point of interest (the fetch), on the direc-
tion of wave propagation relative to any current, on the possible presence of surface
contaminants, on the depth in shallow water, and to a lesser extent even on air-sea
temperature difference.

Techniques for generation of random sea surfaces and for polarized ray trac-
ing with such surfaces can be found elsewhere, e.g. in Mobley (2014a, 2015). The
four surface transfer functions raw, ..., taw needed here can be estimated by Monte
Carlo polarized ray tracing applied to numerous random realizations of the sea
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surface corresponding to a fixed set of environmental conditions such as wind speed.
Mobley (2015) shows examples of numerically computed transfer functions. How-
ever, these topics go beyond what is needed for the present development and need
not be discussed further.

1.5 Solution of the VRTE Within the Water

The stage is now set for the primary goal of this chapter: the solution of the VRTE
using invariant imbedding theory. TheVRTE and its boundary conditions constitute a
linear (in the radiances) two-point boundary value problem. That is, the linear VRTE
must be solved subject to boundary conditions at both the sea surface and bottom.
The essence of invariant imbedding is that it converts a linear two-point boundary
value problem into a pair of non-linear initial value problems. In the present case,
one of these initial value problems is solved starting with a boundary value at the sea
surface and integrating downward, and the other is solved starting with a boundary
value at the sea bottom and integrating upward.

Invariant imbedding is mathematically complicated and consequently tedious to
program, but the payoff is that it is bothmuch faster (at least for the SRTE) in run time
than the mathematically simpler (and therefore widely used) Monte Carlo technique
and more general in the allowed inputs (such as allowing arbitrary depth dependence
of the IOPs) than some other techniques. In particular, the run time for invariant
imbedding is linearly proportional to the optical depth, whereas run times increase
exponentially with optical depth for Monte Carlo solutions. Invariant imbedding
allows for arbitrary depth dependence of the IOPs, whereas some other techniques
(e.g., discrete ordinates and adding-doubling methods) build up the water column as
a stack of homogeneous layers, and run time is proportional to the number of layers
used.

1.5.1 Physical Space Versus Fourier Space

Invariant imbedding theory can be used to solve directly for the discretized Stokes
vectors S(k, u, v, j). There is an argument for doing this, namely that the mathemat-
ical development below is much easier and the quantities involved all have simple
interpretations, e.g., as physical reflectances and transmittances that are bounded by
0 and 1. However, as will be seen in Sect. 1.5.5.4, a physical-space solution algo-
rithm requires the simultaneous solution of a set of nonlinear ordinary differential
equations (ODEs) of approximate size 128M2N (ignoring internal source terms and
special cases for the polar caps). For a nominal 10 × 15◦ quad partitioning with
M = 10, N = 12, this gives a system of 153,600 equations. That is a formidable
numerical problem.
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A discrete function f (v) of azimuthal angleφv, v = 1, ..., 2N , can be represented
as sines and cosines via

f (v) =
N∑

�=0

[
f̂1(�) cos(�φv) + f̂2(�) sin(�φv)

]
.

This results in N + 1 generally non-zero cosine amplitudes f̂1(�) and N − 1 sine
amplitudes f̂2(�). When applied to the VRTE, Fourier analysis leads to the solution
of N + 1 sets of ODEs of size 64M2 equations for cosine amplitudes, and N − 1
sets of 64M2 equations for sine amplitudes, for the same total of 128M2N equations
solved as for the physical-space formulation. However, with Fourier analysis the
ODE solutions are made as a sequence of N + 1 independent “small” problems,
rather than as one “large” problem.

Therefore this development uses aFourier analysis of theVRTE in azimuthal angle
to minimize computer run times. (The same is done in HydroLight for the SRTE.)
The penalty paid for this increase in numerical efficiency is a corresponding increase
in the complexity of the mathematical development and computer programming.

1.5.2 Recasting the VRTE as Upward and Downward
Equations

Invariant imbedding requires that the VRTE be written as a pair of equations, one
for upward directions and one for downward directions. In addition, the sea surface
boundary conditions are formulated in terms of transmission and reflection operators
that transfer radiance back and forth across the sea surface. As was shown in Fig. 1.2,
the sea surface is described mathematically as a nonabsorbing layer of zero physi-
cal thickness that represents a discontinuity in the index of refraction and therefore
causes scattering (reflection and refraction) of light incident onto the surface from
above or below. A depth value of ζ = a denotes a location in the air just above the
mean sea surface, and a depth value of ζ = w denotes a location at depth 0, but in
the water just below the mean sea surface. The bottom at depth ζ = m is defined
by its reflectance properties. Figure1.6 shows a redrawn version of Fig. 1.2. As in
Figs. 1.2 and 1.5, depth is measured positive downward from 0 at the mean sea sur-
face. Because direction +ζ is downward, a superscript + will denote downwelling
radiances (energy propagating downward); superscript−will denote upwelling radi-
ances (energy heading upward). Thus in the figure, the downward arrow labeled
S+(a) represents downwelling radiance incident onto the sea surface from above,
and S−(a) represents upwelling radiance just above the surface, i.e., water-leaving
radiance. S+(w) represents radiance that has been transmitted through the surface
and is incident onto the water below. The sphere of directions at depth ζ highlights
a quad containing an upwelling radiance S−(ζ) (red quad and red arrow). The blue
quad and blue arrow indicate downwelling direction and radiance.
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Fig. 1.6 The depth coordinate system used for invariant imbedding. Upwelling and downwelling
directions are indicated, along with a few representative Stokes vectors

Recall also thatμu = cos θu in Eq. (1.36) ranges from−1when θ = 180 (radiance
heading straight up) to +1 when θ = 0 (radiance heading straight down). It will
be convenient to redefine μu as a positive number and incorporate the negative μ
values for upwelling radiance via an explicit minus sign in the VRTE. With these
conventions, and dropping the wavelength argument j for simplicity of notation, the
VRTE (1.36) can be written as a pair of equations:

∓μu
dS∓(ζ, u, v)

dζ
= − S∓(ζ, u, v)

+ ωo(ζ)
∑
r

∑
s

P̃
±
(ζ; r, s → u, v) S−(ζ, r, s)

+ ωo(ζ)
∑
r

∑
s

P̃
∓
(ζ; r, s → u, v) S+(ζ, r, s)

+ �∓(ζ, u, v) . (1.51)

Now u = 1, ..., M in each hemisphere of directions (quad M is the polar cap),
v = 1, ..., 2N , and μu > 0. Note that now there are two radiances with the same
(u, v) quad indices, but one is in the upper hemisphere (− superscript) and one is in
the lower (+ superscript). The+ superscript on the phase matrix P̃

+
(ζ; r, s → u, v)

denotes scattering between quads Q(r, s) and Q(u, v) that lie in the same hemi-
sphere. The − superscript on P̃

−
(ζ; r, s → u, v) denotes scattering between quads

in opposite hemispheres. This is illustrated in Fig. 1.7. Scattering from the green
quad Q(r, s) to the red quad Q(u, v) is described by P̃

+
(ζ; r, s → u, v); scattering

from the green to the blue quad has a different scattering angle ψ and is described by
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Fig. 1.7 Illustration of
scattering within and
between hemispheres of
directions. Scattering within
a hemisphere, e.g. from the
green quad Q(r, s) to the red
quad Q(u, v), is described
by P̃+(r, s, u, v). Scattering
between hemispheres, e.g.
from the green quad Q(r, s)
to the blue quad Q(u, v), is
described by P̃−(r, s, u, v)

P̃
−
(ζ; r, s → u, v). Taking the top sign in Eq. (1.51) gives the VRTE for upwelling

radiances S−(ζ, u, v), and the bottom sign gives the equation for downwelling radi-
ances S+(ζ, u, v).

1.5.3 Fourier Decomposition of the Upward and Downward
Equations

The next step is to Fourier decompose the upward and downward pair of VRTE of
equations.AppendixA contains for reference the formulas for Fourier decomposition
of discrete functions of one or two azimuthal angles, as required here.

The Stokes vectors are functions of a single azimuthal angle and are decomposed
as (Eq.1.191)

S±(ζ, u, v) =
N∑

�=0

[
Ŝ

±
1 (ζ, u|�) cos(�φv) + Ŝ

±
2 (ζ, u|�) sin(�φv)

]
, (1.52)

where v = 1, 2, ..., 2N . The vertical bar in the (ζ, u|�) argument list is used to
separate the physical variables from the Fourier mode variable �. The cosine and
sine amplitudes are computed via Eqs. (1.192) and (1.194), respectively. A similar
equation holds for the source term �. In all amplitude variables here and below,
subscript 1 denotes a cosine amplitude, and subscript 2 a sine amplitude.

As was noted in Sect. 1.2.4.1, the elements of the phase matrix depend on either
cos(φv − φs) or sin(φv − φs). Rather than keep track of which element has which
dependence, it is notationally convenient to expand each element of P±(ζ, r, s →
u, v) as
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P±(ζ, r, s → u, v) =
N∑

k=0

[
P̂

±
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

±
2 (ζ, r, u|k) sin[k(φv − φs)]

]
. (1.53)

However, when performing actual computations, either P̂±
1i, j or P̂

±
2i, j will be zero for

a particular P±
i, j element.

The non-zero amplitudes in Eq. (1.53) are computed by Eqs. (1.197) and (1.199).
However, polar caps must always be treated as special cases (L&W8.34(i)-8.34(iv)).
Recall also that s = 1 or φ′ = 0 was chosen as the reference point to anchor the
azimuthal dependence onφ − φ′. Then depending onwhich element of P±(ζ, r, s →
u, v) is being Fourier analyzed, either the cosine or sine formulas are used as follows
(with the other amplitude set to zero):

(i) Quad-to-quad scattering: u, r = 1, 2, ..., M − 1. Equations (1.197) and
(1.199) hold as written. Thus for given r, u values,

P̂
±
1 (r, u|k) = 1

εk

2N∑
v=1

P±(r, s = 1 → u, v) cos(kφv) for k = 0, ..., N

(1.54a)

P̂
±
2 (r, u|k) = 1

γk

2N∑
v=1

P±(r, s = 1 → u, v) sin(kφv) for k = 1, ..., N − 1

(1.54b)

P̂
±
2 (r, u|k) = 0 for k = 0 or N (1.54c)

where ε� and γ� are defined by Eqs. (1.193) and (1.195).
(ii) Polar cap-to-quad scattering: r = M; u = 1, 2, ..., M − 1.

P̂
±
1 (M, u|k) = P±(M, · → u, v) for k = 0 (1.54d)

P̂
±
1 (M, u|k) = 0 for k = 1, ..., N (1.54e)

P̂
±
2 (M, u|k) = 0 for k = 0, ..., N (1.54f)

(iii) Quad-to-Polar cap scattering: r = 1, 2, ..., M − 1; u = M .

P̂
±
1 (r, M |k) = P±(r, s = 1 → M, ·) for k = 0 (1.54g)

P̂
±
1 (r, M |k) = 0 for k = 1, ..., N (1.54h)

P̂
±
2 (r, M |k) = 0 for k = 0, ..., N (1.54i)

(iv) Polar cap-to-Polar cap scattering: r = u = M .
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P̂
±
1 (M, M |k) = P±(M, · → M, ·) for k = 0 (1.54j)

P̂
±
1 (M, M |k) = 0 for k = 1, ..., N (1.54k)

P̂
±
2 (M, M |k) = 0 for k = 0, ..., N (1.54l)

The dot argument for s or v for polar caps is a reminder that polar caps have no φ′
or φ dependence. In the computer code, the polar cap values can be stored in the
r = M, s = 1 or u = M, v = 1 array locations, with the remaining array elements
for r, u = M being unused and set to zero.

Inserting these Fourier decompositions into Eq.1.51 gives (L&W 8.35)

∓μu
d

dζ

N∑
�=0

[
Ŝ
∓
1 (ζ, u|�) cos(�φv) + Ŝ

∓
2 (ζ, u|�) sin(�φv)

]

= −
N∑

�=0

[
Ŝ
∓
1 (ζ, u|�) cos(�φv) + Ŝ

∓
2 (ζ, u|�) sin(�φv)

]

+ ωo(ζ)

M−1∑
r=1

2N∑
s=1

⎧⎨
⎩

N∑
k=0

[
P̂

±
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

±
2 (ζ, r, u|k) sin[k(φv − φs)]

]
⎫⎬
⎭

×
⎧⎨
⎩

N∑
�=0

[
Ŝ
−
1 (ζ, r |�) cos(�φs) + Ŝ

−
2 (ζ, r |�) sin(�φs)

]
⎫⎬
⎭

+ ωo(ζ)P̂
±
1 (ζ, M, u|0)Ŝ−

1 (ζ, M |0)

+ ωo(ζ)

M−1∑
r=1

2n∑
s=1

⎧⎨
⎩

N∑
k=0

[
P̂

∓
1 (ζ, r, u|k) cos[k(φv − φs)] + P̂

∓
2 (ζ, r, u|k) sin[k(φv − φs)]

]
⎫⎬
⎭

×
⎧⎨
⎩

N∑
�=0

[
Ŝ
+
1 (ζ, r |�) cos(�φs) + Ŝ

+
2 (ζ, r |�) sin(�φs)

]
⎫⎬
⎭

+ ωo(ζ)P̂
∓
1 (ζ, M, u|0)Ŝ+

1 (ζ, M |0)

+
N∑

�=0

[
�̂

∓
1 (ζ, u|�) cos(�φv) + �̂

∓
2 (ζ, u|�) sin(�φv)

]
. (1.55)

Here the generic sums over r and s have been written to explicitly separate out the
polar cap quads, r = M , which have no azimuthal dependence. For polar caps, the
Fourier cosine amplitude for k = 0 is just the value of the physical variable, the cosine
amplitudes are zero for k > 0, and the sine amplitudes are zero for all k values.

Equation (1.55) is more complicated than its scalar equivalent (L&W 8.35)

because it is now necessary to have both cosine (P̂
±
1 ) and sine (P̂

±
2 ) amplitudes

to represent P±, whereas the phase function β̃ in the SRTE needed only cosine
amplitudes β̂, so no subscript was needed on β̂ as seen in (L&W 8.35). The
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necessity of separating cosine and sign amplitudes carries through to the local and
global transmission and reflection operators, as will be seen below.

The path function terms in Eq. (1.55) have quantities of the form

N∑
l=0

N∑
k=0

f (k)g(�)

2N∑
s=1

⎧⎪⎪⎨
⎪⎪⎩

cos[k(φv − φs)] cos(�φs)

cos[k(φv − φs)] sin(�φs)

sin[k(φv − φs)] cos(�φs)

sin[k(φv − φs)] sin(�φs)

⎫⎪⎪⎬
⎪⎪⎭

,

where f (k) is a phase matrix element for a given ζ, r, u, and g(�) is a Stokes vector
element for a given ζ, r . These four combinations of cosine and sine terms are reduced
as in Eqs. (1.203) to (1.206) to obtain

N∑
l=0

f (�)g(�)

⎧⎪⎪⎨
⎪⎪⎩

ε� cos(�φv)

γ� sin(�φv)

ε� sin(�φv)

−γ� cos(�φv)

⎫⎪⎪⎬
⎪⎪⎭

,

where ε� and γ� are defined by Eqs. (1.193) and (1.195). (The minus sign in
−γ� cos(�φv) results from the reduction of the sin[k(φv − φs)] sin(�φs) term and
the minus sign in sin(a − b) = sin a cos b − cos a sin b, so there’s no escaping it. As
will be seen, this sign carries through the rest of the derivation and causes a certain
loss of symmetry in many equations, compared to the scalar equations in Light and
Water.)

Equation (1.55) therefore reduces to (L&W 8.36)

N∑
�=0

{
∓μu

d

dζ
Ŝ

∓
1 (ζ, u|�) cos(�φv) ∓ μu

d

dζ
Ŝ

∓
2 (ζ, u|�) sin(�φv)

}

= −
N∑

�=0

{
Ŝ

∓
1 (ζ, u|�) cos(�φv) + Ŝ

∓
2 (ζ, u|�) sin(�φv)

}

+ ωo(ζ)

N∑
�=0

{
M−1∑
r=1

ε� P̂
±
1 (ζ, r, u|�)Ŝ−

1 (ζ, r |�) + δ� P̂
±
1 (ζ, M, u|�)Ŝ−

1 (ζ, M |�)
}
cos(�φv)

− ωo(ζ)

N∑
�=0

{
M−1∑
r=1

γ� P̂
±
2 (ζ, r, u|�)Ŝ−

2 (ζ, r |�)
}
cos(�φv)

+ ωo(ζ)

N∑
�=0

{
M−1∑
r=1

γ� P̂
±
1 (ζ, r, u|�)Ŝ−

2 (ζ, r |�) +
M−1∑
r=1

ε� P̂
±
2 (ζ, r, u|�)Ŝ−

1 (ζ, r |�)
}
sin(�φv)

+ ωo(ζ)

N∑
�=0

{
M−1∑
r=1

ε� P̂
∓
1 (ζ, r, u|�)Ŝ+

1 (ζ, r |�) + δ� P̂
±
1 (ζ, M, u|�)Ŝ+

1 (ζ, M |�)
}
cos(�φv)

− ωo(ζ)

N∑
�=0

{
M−1∑
r=1

γ� P̂
∓
2 (ζ, r, u|�)Ŝ+

2 (ζ, r |�)
}
cos(�φv)
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+ ωo(ζ)

N∑
�=0

{
M−1∑
r=1

γ� P̂
∓
1 (ζ, r, u|�)Ŝ+

2 (ζ, r |�) +
M−1∑
r=1

ε� P̂
∓
2 (ζ, r, u|�)Ŝ+

1 (ζ, r |�)
}
sin(�φv)

+
N∑

�=0

{
�̂

∓
1 (ζ, u|�) cos(�φv) + �̂

∓
2 (ζ, u|�) sin(�φv)

}
.

The polar cap terms, which involve only � = 0 cosine amplitudes, have been
incorporated into the sums over � by use of a Kronecker δ� function, which is
given by Eq. (1.187). Note that the minus sign in resulting from the reduction of
the sums over sin[k(φv − φs)] sin(�φs) gives a minus sign in all terms involving

P̂
±
2 (ζ, r, u|�)Ŝ±

2 (ζ, r |�). This sign carries through the rest of the derivation and intro-
duces a sign asymmetry in the cosine and sine equations, which does not occur in

the corresponding scalar equations (because they do not require P̂
±
2 (ζ, r, u|�) terms

in the Fourier expansion of the phase function). The same sign appears, for exam-
ple, in Eq. (16) of Hovenier (1971) in a decomposition of the continuous-variable
(undiscretized) VRTE.

The linear independence of cos(�φv) and sin(�φv) for different � values means
that this last equation must separately hold true for each value of � = 0, ..., N for the
Ŝ1 amplitudes, and for � = 1, ..., N − 1 for the Ŝ2 amplitudes. Collecting together
the coefficients of cos(�φv) then gives

∓μu
d

dζ
Ŝ

∓
1 (ζ, u|�) = −Ŝ

∓
1 (ζ, u|�)

+
M−1∑
r=1

ωo(ζ) ε� P̂
±
1 (ζ, r, u|�)Ŝ−

1 (ζ, r |�) + ωo(ζ) δ� P̂
±
1 (ζ, M, u|�)Ŝ−

1 (ζ, M |�)

−
M−1∑
r=1

ωo(ζ) γ� P̂
±
2 (ζ, r, u|�)Ŝ−

2 (ζ, r |�)

+
M−1∑
r=1

ωo(ζ) ε� P̂
∓
1 (ζ, r, u|�)Ŝ+

1 (ζ, r |�) + ωo(ζ) δ� P̂
∓
1 (ζ, M, u|�)Ŝ+

1 (ζ, M |�)

−
M−1∑
r=1

ωo(ζ) γ� P̂
∓
2 (ζ, r, u|�)Ŝ+

2 (ζ, r |�)

+ �̂
∓
1 (ζ, u|�) . (1.56)

The equation obtained from the coefficients of the sin(�φv) terms is

∓μu
d

dζ
Ŝ

∓
2 (ζ, u|�) = −Ŝ

∓
2 (ζ, u|�)

+
M−1∑
r=1

ωo(ζ) γ� P̂
±
1 (ζ, r, u|�)Ŝ−

2 (ζ, r |�) +
M−1∑
r=1

ωo(ζ) ε� P̂
±
2 (ζ, r, u|�)Ŝ−

1 (ζ, r |�)
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+
M−1∑
r=1

ωo(ζ) γ� P̂
∓
1 (ζ, r, u|�)Ŝ+

2 (ζ, r |�) +
M−1∑
r=1

ωo(ζ) ε� P̂
∓
2 (ζ, r, u|�)Ŝ+

1 (ζ, r |�)

+�̂
∓
2 (ζ, u|�) . (1.57)

Since Ŝ2, P̂2, and �̂2 are all 0 when � = 0 or � = N , for notational convenience this
last equation can be regarded as holding for � = 0 and N as well. Thus Eqs. (1.56)
and (1.57) can both be regarded as holding for u = 1, ..., M − 1 and � = 0, ..., N .

Note in Eqs. (1.56) and (1.57) that P̂1 scatters Ŝ1 into Ŝ1 and Ŝ2 into Ŝ2, whereas
P̂2 scatters Ŝ1 into Ŝ2 and Ŝ2 into Ŝ1. That is, P̂2 converts Stokes vector cosine
amplitudes into sine amplitudes, and vice versa.

The equation for the polar cap u = M involves only the cosine term for � = 0
since there is no φ dependency. The vector equations are therefore have the same
form as the scalar (L&W 8.39):

∓μu
d

dζ
Ŝ

∓
1 (ζ, M |0) = −Ŝ

∓
1 (ζ, M |0)

+
M−1∑
r=1

ωo(ζ) ε0 P̂
±
1 (ζ, r, M |0)Ŝ−

1 (ζ, r |0) + ωo(ζ) P̂
±
1 (ζ, M, M |0)Ŝ−

1 (ζ, M |0)

+
M−1∑
r=1

ωo(ζ) ε0 P̂
∓
1 (ζ, r, M |0)Ŝ−

1 (ζ, r |0) + ωo(ζ) P̂
∓
1 (ζ, M, M |0)Ŝ+

1 (ζ, M |0)

+ �̂
∓
1 (ζ, M |0) . (1.58)

Taking the lower signs in Eq. (1.56) gives the equation for the downwelling radi-

ance cosine amplitudes. The “attenuation” term −Ŝ
+
1 (ζ, u|�) term can be incorpo-

rated into the sum over r by use of a Kronecker delta function. The result is (L&W
8.40)

d

dζ
Ŝ

+
1 (ζ, u|�) =

M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

−
1 (ζ, r, u|�)

]
Ŝ

−
1 (ζ, r |�)

+
[
ωo(ζ)δ�

μu
P̂

−
1 (ζ, M, u|�)

]
Ŝ

−
1 (ζ, M |�)

−
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

−
2 (ζ, r, u|�)

]
Ŝ

−
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

+
1 (ζ, r, u|�) − δr−u

μu
I 4×4

]
Ŝ

+
1 (ζ, r |�)

+
[
ωo(ζ)δ�

μu
P̂

+
1 (ζ, M, u|�)

]
Ŝ

+
1 (ζ, M |�)
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−
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

+
2 (ζ, r, u|�)

]
Ŝ

+
2 (ζ, r |�) + 1

μu
�̂

+
1 (ζ, u|�) .

(1.59)

where I 4×4 is the 4 × 4 identitymatrix. The corresponding equation for the upwelling
radiance cosine amplitudes is (L&W 8.41)

− d

dζ
Ŝ

−
1 (ζ, u|�) =

M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

+
1 (ζ, r, u|�) − δr−u

μu
I 4×4

]
Ŝ

−
1 (ζ, r |�)

+
[
ωo(ζ)δ�

μu
P̂

+
1 (ζ, M, u|�)

]
Ŝ

−
1 (ζ, M |�)

−
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

+
2 (ζ, r, u|�)

]
Ŝ

−
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

−
1 (ζ, r, u|�)

]
Ŝ

+
1 (ζ, r |�)

+
[
ωo(ζ)δ�

μu
P̂

−
1 (ζ, M, u|�)

]
Ŝ

+
1 (ζ, M |�)

−
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

−
2 (ζ, r, u|�)

]
Ŝ

+
2 (ζ, r |�) + 1

μu
�̂

−
1 (ζ, u|�) .

(1.60)

For these cosine amplitudes, u = 1, ..., M − 1 and � = 0, ..., N .
The corresponding equation for the downwelling sine amplitudes is

d

dζ
Ŝ

+
2 (ζ, u|�) =

M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

−
1 (ζ, r, u|�)

]
Ŝ

−
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

−
2 (ζ, r, u|�)

]
Ŝ

−
1 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

+
1 (ζ, r, u|�) − δr−u

μu
I 4×4

]
Ŝ

+
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

+
2 (ζ, r, u|�)

]
Ŝ

+
1 (ζ, r |�) + 1

μu
�̂

+
2 (ζ, u|�) ,

(1.61)
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and the equation for the upwelling sine amplitudes is

− d

dζ
Ŝ

−
2 (ζ, u|�) =

M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

+
1 (ζ, r, u|�) − δr−u

μu
I 4×4

]
Ŝ

−
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

+
2 (ζ, r, u|�)

]
Ŝ

−
1 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)γ�

μu
P̂

−
1 (ζ, r, u|�)

]
Ŝ

+
2 (ζ, r |�)

+
M−1∑
r=1

[
ωo(ζ)ε�

μu
P̂

−
2 (ζ, r, u|�)

]
Ŝ

+
1 (ζ, r |�) + 1

μu
�̂

−
2 (ζ, u|�) .

(1.62)

For the sine amplitude equations, u = 1, ..., M − 1 and � = 1, ..., N − 1. Because
ε� = γ� = N for � = 1, ..., N − 1, the sine equations can be written using ε�.

1.5.3.1 Local Reflectance and Transmittance Matrices

The quantities in brackets in Eqs. (1.59)–(1.62) are the local reflectance and local
transmittance functions for the radiance amplitudes. There are several things to note
about these quantities:

• These quantities depend only the IOPs at depth ζ (and wavelength λ) and on the
choice of quad partioning. They are thus “local” IOPs at a particular depth.

• The same quantities appear in both the downward and upward equations.
• The same quantities appear in both cosine and sine equations when � = 1, ..., N −
1, in which case ε� = γ�

• The terms involving P̂
+
1,2 “transmit” downwelling radiance into downwelling radi-

ance, and upwelling into upwelling.

• The terms involving P̂
−
1,2 “reflect” downwelling radiance into upwelling radiance,

and upwelling into downwelling.

It will prove convenient to cast the preceding equations into matrix form. Recall
that the phase matrix amplitudes are 4 × 4 for a given (r, u) value. Next define
M × M composite matrices ρ̂±

1,2 and τ̂±
1,2 whose (row, column) elements (u, r) are

obtained from the 4 × 4 P̂
±
1,2(ζ, r, u|�) matrices in the brackets. That is, ρ̂ and τ̂ are

M × M matrices, each of whose elements is a 4 × 4 matrix, so that the total size of
ρ̂ and τ̂ is 4M × 4M when written out in full as real numbers. The double underline

is a reminder that ρ̂ and τ̂ are matrices of matrices. The 4 × 4 elements of these

composite matrices are defined as follows:
Quad-to-quad case, r, u = 1, ..., M − 1:
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[ τ̂ 1(ζ|�)]u,r ≡ ωo(ζ)ε�

μu
P̂

+
1 (ζ, r, u|�) − δr−u

μu
I 4×4 for � = 0, ..., N (1.63a)

[ τ̂ 2(ζ|�)]u,r ≡ ωo(ζ)γ�

μu
P̂

+
2 (ζ, r, u|�) for � = 1, ..., N − 1 (1.63b)

[ τ̂ 2(ζ|�)]u,r ≡ 04×4 for � = 0 or N (1.63c)

[ ρ̂1(ζ|�)]u,r ≡ ωo(ζ)ε�

μu
P̂

−
1 (ζ, r, u|�) for � = 0, ..., N (1.63d)

[ ρ̂2(ζ|�)]u,r ≡ ωo(ζ)γ�

μu
P̂

−
2 (ζ, r, u|�) for � = 1, ..., N − 1 (1.63e)

[ ρ̂2(ζ|�)]u,r ≡ 04×4 for � = 0 or N (1.63f)

Polar cap-to-quad case, r = M, u = 1, ..., M − 1:

[ τ̂ 1(ζ|0)]u,M ≡ ωo(ζ)

μu
P̂

+
1 (ζ, M, u|0) for � = 0 (1.64a)

[ τ̂ 1(ζ|�)]u,M ≡ 04×4 for � = 1, ..., N (1.64b)

[ τ̂ 2(ζ|�)]u,M ≡ 04×4 for for � = 0, ..., N (1.64c)

[ ρ̂1(ζ|0)]u,M ≡ ωo(ζ)

μu
P̂

−
1 (ζ, M, u|0) for � = 0 (1.64d)

[ ρ̂1(ζ|�)]u,M ≡ 04×4 for � = 1, ..., N (1.64e)

[ ρ̂2(ζ|�)]u,M ≡ 04×4 for for � = 0, ..., N (1.64f)

Quad-to-polar cap case, r = 1, ..., M − 1, u = M :

[ τ̂ 1(ζ|0)]M,r ≡ ωo(ζ)ε0

μu
P̂

+
1 (ζ, r, M |0) (1.65a)

[ τ̂ 1(ζ|�)]M,r ≡ 04×4 for � = 1, ..., N (1.65b)

[ τ̂ 2(ζ|�)]M,r ≡ 04×4 for � = 0, ..., N (1.65c)

[ ρ̂1(ζ|0)]M,r ≡ ωo(ζ)ε0

μu
P̂

−
1 (ζ, r, M |0) (1.65d)
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[ ρ̂1(ζ|�)]M,r ≡ 04×4 for � = 1, ..., N (1.65e)

[ ρ̂2(ζ|�)]M,r ≡ 04×4 for � = 0, ..., N (1.65f)

Polar cap-to-polar cap case, r = M, u = M :

[ τ̂ 1(ζ|0)]M,M ≡ ωo(ζ)ε0

μu
P̂

+
1 (ζ, M, M |0) − 1

μM
I 4×4 (1.66a)

[ τ̂ 1(ζ|�)]M,M ≡ 04×4 for � = 1, ..., N (1.66b)

[ τ̂ 2(ζ|�)]M,M ≡ 04×4 for � = 0, ..., N (1.66c)

[ ρ̂1(ζ|0)]M,M ≡ ωo(ζ)ε0

μu
P̂

−
1 (ζ, M, M |0) (1.66d)

[ ρ̂1(ζ|�)]M,M ≡ 04×4 for � = 1, ..., N (1.66e)

[ ρ̂2(ζ|�)]M,M ≡ 04×4 for � = 0, ..., N (1.66f)

Note that the elements of the M th row and M th column of ρ̂1 and τ̂ 1 are 04×4 except

when � = 0; 04×4 is the 4 × 4 matrix of zeros.
With these definitions, Eqs. (1.59) and (1.60) can be written

d

dζ
Ŝ

+
1 (ζ, u|�) =

M∑
r=1

[ ρ̂1(ζ|�)]u,r Ŝ
−
1 (ζ, r |�) +

M∑
r=1

[ τ̂ 1(ζ|�)]u,r Ŝ
+
1 (ζ, r |�)

−
M∑
r=1

[ ρ̂2(ζ|�)]u,r Ŝ
−
2 (ζ, r |�) −

M∑
r=1

[ τ̂ 2(ζ|�)]u,r Ŝ
+
2 (ζ, r |�)

+ 1

μu
�̂

+
1 (ζ, u|�) , (1.67)

and

− d

dζ
Ŝ

−
1 (ζ, u|�) =

M∑
r=1

[ ρ̂1(ζ|�)]u,r Ŝ
+
1 (ζ, r |�) +

M∑
r=1

[ τ̂ 1(ζ|�)]u,r Ŝ
−
1 (ζ, r |�)

−
M∑
r=1

[ ρ̂2(ζ|�)]u,r Ŝ
+
2 (ζ, r |�) −

M∑
r=1

[ τ̂ 2(ζ|�)]u,r Ŝ
−
2 (ζ, r |�)

+ 1

μu
�̂

−
1 (ζ, u|�) . (1.68)
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These equations are valid for � = 0, ..., N and u = 1, ..., M − 1. The polar caps in
Eq. (1.58) result in a similar pair of equations involving ρ̂1(ζ, 0)M,r and τ̂ 1(ζ, 0)M,r .

The corresponding equations for the sine amplitudes are

d

dζ
Ŝ

+
2 (ζ, u|�) =

M∑
r=1

[ ρ̂1(ζ|�)]u,r Ŝ
−
2 (ζ, r |�) +

M∑
r=1

[ τ̂ 1(ζ|�)]u,r Ŝ
+
2 (ζ, r |�)

+
M∑
r=1

[ ρ̂2(ζ|�)]u,r Ŝ
−
1 (ζ, r |�) +

M∑
r=1

[ τ̂ 2(ζ|�)]u,r Ŝ
+
1 (ζ, r |�)

+ 1

μu
�̂

+
2 (ζ, u|�) , (1.69)

and

− d

dζ
Ŝ

−
2 (ζ, u|�) =

M∑
r=1

[ ρ̂1(ζ|�)]u,r Ŝ
+
2 (ζ, r |�) +

M∑
r=1

[ τ̂1(ζ|�)]u,r Ŝ
−
2 (ζ, r |�)

+
M∑
r=1

[ ρ̂2(ζ|�)]u,r Ŝ
+
1 (ζ, r |�)

+
M∑
r=1

[ τ̂2(ζ|�)]u,r Ŝ
−
1 (ζ, r |�)+ 1

μu
�̂

−
2 (ζ, u|�) . (1.70)

These equations are valid for � = 1, ..., N − 1 and u = 1, ..., M − 1. The sine ampli-
tudes are zero for the polar caps u = M .

It can now be seen that the (u, r) = (row, column) order in the definitions of
[ ρ̂1,2(ζ|�)]u,r and [ τ̂ 1,2(ζ|�)]u,r was chosen to facilitate converting the summations

over r in Eqs. (1.59) to (1.62) to matrix multiplications. Continuing in this direction,
now “stack up” the Stokes vectors to define 4M × 1 composite column vectors:

Ŝ
±
1,2(ζ|�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ŝ
±
1,2(ζ, 1|�)

Ŝ
±
1,2(ζ, 2|�)

...

Ŝ
±
1,2(ζ, M − 1|�)
Ŝ

±
1,2(ζ, M |�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.71)

Similarly, arrange the 4 × 4 elements [ ρ̂1,2(ζ|�)]u,r of the composite ρ̂1,2 matrices

into 4M × 4M matrices



50 C. D. Mobley

ρ̂1,2(ζ|�) =

⎡
⎢⎢⎢⎢⎣

[ ρ̂1,2(ζ|�)]1,1 [ ρ̂1,2(ζ|�)]1,2 . . . [ ρ̂1,2(ζ|�)]1,M
[ ρ̂1,2(ζ|�)]2,1 [ ρ̂1,2(ζ|�)]2,2 . . . [ ρ̂1,2(ζ|�)]2,M

...
...

. . .
...

[ ρ̂1,2(ζ|�)]M,1 [ ρ̂1,2(ζ|�)]M,2 . . . [ ρ̂1,2(ζ|�)]M,M

⎤
⎥⎥⎥⎥⎦

. (1.72)

with a similar equation for τ̂ 1,2(ζ|�).

1.5.3.2 Matrix Form of the Local Interaction Equations

Definitions (1.71) and (1.72) allow Eqs. (1.67)–(1.70) to be written as matrix equa-
tions (L&W 8.43 and 8.44):

d

dζ
Ŝ

+
1 (ζ|�) = ρ̂1(ζ|�)Ŝ−

1 (ζ|�) + τ̂ 1(ζ|�)Ŝ+
1 (ζ|�)

− ρ̂2(ζ|�)Ŝ−
2 (ζ|�) − τ̂ 2(ζ|�)Ŝ+

2 (ζ|�) + �̂
+
1 (ζ|�) (1.73)

− d

dζ
Ŝ

−
1 (ζ|�) = ρ̂1(ζ|�)Ŝ+

1 (ζ|�) + τ̂ 1(ζ|�)Ŝ−
1 (ζ|�)

− ρ̂2(ζ|�)Ŝ+
2 (ζ|�) − τ̂ 2(ζ|�)Ŝ−

2 (ζ|�) + �̂
−
1 (ζ|�) (1.74)

d

dζ
Ŝ

+
2 (ζ|�) = ρ̂1(ζ|�)Ŝ−

2 (ζ|�) + τ̂ 1(ζ|�)Ŝ+
2 (ζ|�)

+ ρ̂2(ζ|�)Ŝ−
1 (ζ|�) + τ̂ 2(ζ|�)Ŝ+

1 (ζ|�) + �̂
+
2 (ζ|�) (1.75)

− d

dζ
Ŝ

−
2 (ζ|�) = ρ̂1(ζ|�)Ŝ+

2 (ζ|�) + τ̂ 1(ζ|�)Ŝ−
2 (ζ|�)

+ ρ̂2(ζ|�)Ŝ+
1 (ζ|�) + τ̂ 2(ζ|�)Ŝ−

1 (ζ|�) + �̂
−
2 (ζ|�) (1.76)

These equations are the composite matrix form of the local interaction equations

for the radiance amplitudes. The minus signs on the ρ̂2 Ŝ
±
2 and τ̂ 2 Ŝ

±
2 terms in Eqs.

(1.73) and (1.74) trace back to the minus sign in Eq. (1.206) These equations hold
for each value of � = 0, 1, ..., N , although some terms may be zero for special cases,

e.g., sine terms are zero when � = 0 or N . Although the minus signs in the ρ̂2 Ŝ
±
2 and

τ̂ 2 Ŝ
±
2 terms in Eqs. (1.73) and (1.73) may at first seem some way philosophically

wrong because they destroy the symmetry between the d Ŝ
±
1 /dζ and the d Ŝ

±
2 /dζ

equations, and because it looks like there are “negative” contributions by reflectance
and transmission of the sine amplitudes. However, up to this point the derivation is
just straightforward algebra, and the signs are what they are. In any case, minus signs
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are physically allowed because these quantities are all Fourier amplitudes and there
is no requirement that a Fourier amplitude “reflectance” for a Fourier amplitude
Stokes vector be non-negative. Had the derivation stayed in physical space, there
would be no Fourier decomposition, hence no minus signs, and reflectances and
transmittances would be more easily interpreted non-negative physical quantities
(although the matrices would be much larger).

To summarize, the development so far has

1. Written the discretized VRTE as upward and downward sets of equations,
2. Fourier decomposed the upward and downward equations,
3. Written the resulting equations in matrix form.

The local interaction equations are therefore just a rewritten version of the VRTE.

1.5.4 Global Interaction Equations

The local interaction equations show how radiance is “reflected” and “transmitted”
(i.e., scattered) by an infinitesimally thin later of water at a particular depth ζ. Note
that “reflected” is not synonymous with “backscattered” because downwelling radi-
ance scattered back upward can result from either forward or backward scattering,
even for single scattering. Moreover, the “reflectance” described here includes all
orders of multiple scattering. Likewise, “transmitted” is not the same as “forward
scattered.”

The next step of developing the invariant imbedding solution of the VRTE is to
formulate global interaction equations, which show how light is reflected and trans-
mitted by finitely thick layers or slabs of water. In particular, the global interaction
equations show how the unknown response radiances (radiances leaving the slab) are
related to the known incident radiances falling onto the slab from above and below.

Recall the coordinate system of Fig. 1.6. The water column from just beneath the
sea surface at depth ζ = w = 0 to the bottom at depth ζ = m is conceptually divided
into an upper layer from the surface at ζ = w to an arbitrary depth ζ, and a lower
layer from ζ to the bottom at ζ = m. These layers generally have depth dependent
IOPs. The layer from the surface to depth ζ will be denoted as the slab [w, ζ], and
the layer from ζ to m is slab [ζ,m]. The entire water column is the union of these
two slabs: [w,m] = [w, ζ] ∪ [ζ,m].

The linear interaction principle of electromagnetic theory (Preisendorfer 1976)
states that the response radiances leaving a layer of water are linear functions of the
incident radiances impinging onto the layer from above and below. As shown in Light
and Water Sect. 8.6, it is possible to develop the global interaction equations begin-
ning with the local interaction equations and developing fundamental and transport
solutions for the radiance amplitudes. However, it is also possible to write down the
interaction equations by inspection, given the guidance of Eqs. (1.73)–(1.76) and the
corresponding form of the scalar theory seen in Light and Water.
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Consider first the upper layer or slab of water [w, ζ]. Let R(w, ζ|r, s, u, v) denote
the matrix that “reflects” or converts downwelling Stokes vectors incident onto the
upper surface of the slab at depth w, S+(w, r, s), into upwelling vectors S−(w, u, v)

that are leaving the upper surface of the slab. In physical space, the radiance (first
element of the Stokes vector) is non-negative, and the corresponding reflectance is a
non-negative quantity.

Now, however, the formulation is in terms of Fourier amplitudes, which can be
positive or negative even when the physical quantity is positive. Moreover, there are
different reflectance operators for cosine and sine amplitudes, as was seen in the
local interaction equations. Let R̂1(w, ζ|�) denote the matrix that converts down-

welling radiance amplitudes incident onto the upper side of the slab, Ŝ
+
1,2(w|�), into

the upwelling radiance amplitudes Ŝ
−
1,2(w|�) that are leaving the upper surface of the

slab, and which leaves radiance cosine (sine) amplitudes as cosine (sine) amplitudes.
Let T̂ 1(w, ζ|�) denote the matrix that transmits or converts downwelling radiance
amplitudes incident onto the upper surface of the slab at depth w into downwelling

radiance amplitudes Ŝ
+
1,2(ζ|�) that are leaving the lower surface of the slab at depth

ζ. Likewise, let R̂2(w, ζ|�) and T̂ 2(w, ζ|�) denote matrices that reflect and trans-
mit radiance amplitudes, but which convert cosine (sine) radiance amplitudes to
sine (cosine) amplitudes. Thus R̂1(w, ζ|�) functions like the local reflection matrix

ρ̂1(ζ|�), T̂ 2(w, ζ|�) functions like τ̂ 2(ζ|�), and so on, except that R̂1(w, ζ|�) etc.

describe the reflectance and transmittance properties of the entire slab ofwater [w, ζ].
Following this notation, R̂1(ζ, w|�) is the matrix the reflects upwelling radiance

amplitudes incident onto the slab from below at depth ζ, Ŝ
−
1,2(ζ|�), into downwelling

radiance amplitudes exiting the slab at ζ; T̂ 2(ζ, w|�) transmits upwelling radiance
amplitudes from depth ζ to w and interchanges cosine and sine amplitudes, etc.
These R̂1, R̂2, T̂ 1 and T̂ 2 matrices are called the (Fourier amplitude versions of the)
standard reflectance and standard transmittancematrices (or operators) for the slab.

Finally, let �̂
−t
1,2(ζ, w|�) be the contribution of internal sources to the upwelling

radiance amplitudes Ŝ
−
1,2(w|�) exiting the top of the slab. This radiance is built up

within the water column starting at depth ζ and increasing upward. The t in the super-
script indicates the transport solution, following the notation of Light and Water.

Similarly, �̂
+t
1,2(w, ζ|�) is the contribution of internal sources to the downwelling

radiance amplitudes Ŝ
+
1,2(ζ|�) exiting the bottom of the slab. That radiance is built

up within the water column starting at the surface w. Figure1.8 visually summarizes
all of the reflectance and transmittance operations that convert incident radiances into
response radiances for the slab [w, ζ]. The notation has been simplified for clarity
of the figure: R1(w, ζ) represents the matrix R̂1(w, ζ|�), etc.

Figure1.8 shows the various reflectance and transmittance operations. The math-
ematical statement of those operations must be written to conform to the structure
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Fig. 1.8 Global interaction principles for the slab [w, ζ]. The upper figure is for the cosine ampli-
tudes of the Stokes vector; the lower figure is for the sine amplitudes. Single-width arrows are
incident radiances; double arrows are response radiances. Dotted lines represent transmittances,
solid lines reflectances, and variable-width arrows internal sources. Colors code the different radi-
ances and the associated reflectance and transmittance operators

of the local interaction Eqs. (1.73)–(1.76). In particular, terms involving R̂2 Ŝ
±
2 and

T̂ 2 Ŝ
±
2 must be givenminus signs, as seen in Eqs. (1.73) and (1.74)With this guidance,

the global interaction equations for the cosine radiance amplitudes for slab [w, ζ]
(L&W 8.91, 8.92) are

Ŝ
−
1 (w|�) = R̂1(w, ζ|�)Ŝ+

1 (w|�) + T̂ 1(ζ, w|�)Ŝ−
1 (ζ|�)

− R̂2(w, ζ|�)Ŝ+
2 (w|�) − T̂ 2(ζ, w|�)Ŝ−

2 (ζ|�) + �̂
−t
1 (ζ, w|�) (1.77)

Ŝ
+
1 (ζ|�) = R̂1(ζ, w|�)Ŝ−

1 (ζ|�) + T̂ 1(w, ζ|�)Ŝ+
1 (w|�)

− R̂2(ζ, w|�)Ŝ−
2 (ζ|�) − T̂ 2(w, ζ|�)Ŝ+

2 (w|�) + �̂
+t
1 (w, ζ|�) (1.78)



54 C. D. Mobley

A similar pair of equations can be written for the sine amplitudes:

Ŝ
−
2 (w|�) = R̂1(w, ζ|�)Ŝ+

2 (w|�) + T̂ 1(ζ, w|�)Ŝ−
2 (ζ|�)

+ R̂2(w, ζ|�)Ŝ+
1 (w|�) + T̂ 2(ζ, w|�)Ŝ−

1 (ζ|�) + �̂
−t
2 (ζ, w|�) (1.79)

Ŝ
+
2 (ζ|�) = R̂1(ζ, w|�)Ŝ−

2 (ζ|�) + T̂ 1(w, ζ|�)Ŝ+
2 (w|�)

+ R̂2(ζ, w|�)Ŝ−
1 (ζ|�) + T̂ 2(w, ζ|�)Ŝ+

1 (w|�) + �̂
+t
2 (w, ζ|�) (1.80)

Note that these equations give the response radiances leaving the top and bottom
of the slab as functions of the incident radiances. Just as with ρ̂1,2 and τ̂ 1,2 in the

local interaction equations, the global interaction cosine and sine equations share a
common set of standard reflectance and transmittance matrices, but the same matrix
operates on difference radiance amplitudes in the cosine and sine pairs of equations.

A tally of the “information content” of the local and global interaction equations
is worthwhile. The local interaction Eqs. (1.73)–(1.76) involve 4 matrices of size
4M × 4M : ρ̂1,2(ζ|�) and τ̂ 1,2(ζ|�). However, the corresponding global interaction

Eqs. (1.77)–(1.80) involve 8 matrices of size 4M × 4M : R̂1(w, ζ|�),..., T̂ 2(ζ, w|�).
Thus it seems that the global equations some way contain twice as much information
as the local equations. This is indeed correct. The local equations contain information
about only one depth, ζ. The global equations on the other hand contain information
about two depths, w and ζ. Another way to view this is that an infinitesimally thin
layer of water reflects and transmits radiance the same for radiance incident from
either above or below. However, the IOPs generally depend on depth, in which case
finitely thick layers of water do not reflect downwelling radiance from above the
layer the same as upwelling radiance from below the layer (ditto for transmission
of downwelling vs upwelling radiance). Thus R̂1(w, ζ|�) 	= R̂1(ζ, w|�), and so on.
For finitely thick layers, reflectance and transmittance depend on the direction of
the incident light, and there are thus twice as many reflectance and transmittance
functions as for an infinitesimal layer.

In one viewpoint, Eqs. (1.77)–(1.80) can be regarded as definitions of the standard
operators, although they can be derived from the local interaction equations as is done
in Light and Water Sect. 8.6. In any case, the linear interaction principle guarantees
the existence of these quantities.

The lower slab [ζ,m] has a corresponding set of layer standard reflectances and
transmittances. These matrices convert radiances incident onto the slab from above
at depth ζ and below at depth m into radiances exiting the slab at ζ and m. These

operations are illustrated in Fig. 1.9. Note that Ŝ
+
1 (ζ|�) was a response radiance for

slab [w, ζ], but it is an incident radiance for slab [ζ,m], etc. The corresponding
global interaction equations are



1 Invariant Imbedding Theory for the VRTE 55

Fig. 1.9 Global interaction principles for the slab [ζ,m]

Ŝ
−
1 (ζ|�) = R̂1(ζ,m|�)Ŝ+

1 (ζ|�) + T̂ 1(m, ζ|�)Ŝ−
1 (m|�)

− R̂2(ζ,m|�)Ŝ+
2 (ζ|�) − T̂ 2(m, ζ|�)Ŝ−

2 (m|�) + �̂
−t
1 (m, ζ|�) (1.81)

Ŝ
+
1 (m|�) = R̂1(m, ζ|�)Ŝ−

1 (m|�) + T̂ 1(ζ,m|�)Ŝ+
1 (ζ|�)

− R̂2(m, ζ|�)Ŝ−
2 (m|�) − T̂ 2(ζ,m|�)Ŝ+

2 (ζ|�) + �̂
+t
1 (ζ,m|�) (1.82)

Ŝ
−
2 (ζ|�) = R̂1(ζ,m|�)Ŝ+

2 (ζ|�) + T̂ 1(m, ζ|�)Ŝ−
2 (m|�)

+ R̂2(ζ,m|�)Ŝ+
1 (ζ|�) + T̂ 2(m, ζ|�)Ŝ−

1 (m|�) + �̂
−t
2 (m, ζ|�) (1.83)

Ŝ
+
2 (m|�) = R̂1(m, ζ|�)Ŝ−

2 (m|�) + T̂ 1(ζ,m|�)Ŝ+
2 (ζ|�)

+ R̂2(m, ζ|�)Ŝ−
1 (m|�) + T̂ 2(ζ,m|�)Ŝ+

1 (ζ|�) + �̂
+t
2 (ζ,m|�) (1.84)
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1.5.5 Differential Equations for the Standard Matrices

The standardmatrices describe how radiance is reflected and transmitted by a layer of
water, which in turn is determined by the water absorption and scattering properties.
The standard matrices are therefore spatially integrated inherent optical properties.
The interaction principle guarantees the existence of the standard matrices. Unfor-
tunately, it does not specify how to compute these quantities. The next step in the
solution algorithm development is therefore to develop equations that can be solved
to obtain the standardmatrices, given thewater-column IOPs. This is done as follows:

1. The global interaction equations are differentiated with respect to depth.
2. The resulting depth derivatives of the radiance are replaced using the local inter-

action equations.
3. The global interaction equations are used to replace response radiances by incident

radiances.
4. The terms of the resulting equations are grouped into factors multiplying the

incident radiances, and a group of terms involving the internal sources.
5. The arbitrariness of the incident radiances and internal sources is used to obtain

sets of differential equations for the standard matrices.

1.5.5.1 Downward Sweep Equations

To illustrate this process, consider, for example, R̂1(ζ, w|�). In this development,
the Fourier mode index � is omitted for brevity. This matrix occurs in Eq. (1.78).
Differentiating that equation with respect to depth gives

d

dζ
Ŝ

+
1 (ζ) =

[
d

dζ
R̂1(ζ, w)

]
Ŝ

−
1 (ζ) + R̂1(ζ, w)

d

dζ
Ŝ

−
1 (ζ) +

[
d

dζ
T̂ 1(w, ζ)

]
Ŝ

+
1 (w)

−
[
d

dζ
R̂2(ζ, w)

]
Ŝ

−
2 (ζ) − R̂2(ζ, w)

d

dζ
Ŝ

−
2 (ζ) −

[
d

dζ
T̂ 2(w, ζ)

]
Ŝ

+
2 (w)

+ d

dζ
�̂

+t
1 (w, ζ) . (1.85)

Note that Ŝ
+
1,2(w) is the incident radiance at a fixed location w; it therefore does not

have a depth derivative. Quantities such as Ŝ
±
1,2(ζ), on the other hand, have depth

derivatives because the lower boundary depth of slab [w, ζ] is allowed to vary.
The local interaction Eqs. (1.73), (1.74), and (1.76) are next used to replace the

three depth derivatives of the radiances in the preceding equation. The result is
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ρ̂1 Ŝ
−
1 (ζ)+ τ̂ 1 Ŝ

+
1 (ζ) − ρ̂2 Ŝ

−
2 (ζ) − τ̂ 2 Ŝ

+
2 (ζ) + �̂

+
1 (ζ)

=
[
d

dζ
R̂1(ζ, w)

]
Ŝ

−
1 (ζ)

+ R̂1(ζ, w)
{
−ρ̂1 Ŝ

+
1 (ζ) − τ̂ 1 Ŝ

−
1 (ζ) + ρ̂2 Ŝ

+
2 (ζ) + τ̂ 2 Ŝ

−
2 (ζ) − �̂

−
1 (ζ)

}

+
[
d

dζ
T̂ 1(w, ζ)

]
Ŝ

+
1 (w) −

[
d

dζ
R̂2(ζ, w)

]
Ŝ

−
2 (ζ)

− R̂2(ζ, w)
{
−ρ̂1 Ŝ

+
2 (ζ) − τ̂ 1 Ŝ

−
2 (ζ) − ρ̂2 Ŝ

+
1 (ζ) − τ̂ 2 Ŝ

−
1 (ζ) − �̂

−
2 (ζ)

}

−
[
d

dζ
T̂ 2(w, ζ)

]
Ŝ

+
2 (w) + d

dζ
�̂

+t
1 (w, ζ) (1.86)

The common (ζ|�) arguments of the ρ̂1,2 and τ̂ 1,2 matrices seen in Eqs. (1.73)–(1.76)

have been omitted for brevity. However, the depth argument must be retained on the
radiances to identify which radiances are incident and which are responses.

The response radiances Ŝ
+
1,2(ζ) in this last equation are now replacedwith incident

radiances using the global interaction Eqs. (1.78) and (1.80). The terms are then

grouped into factors multiplying the incident radiances Ŝ
+
1,2(w) and Ŝ

−
1,2(ζ), plus the

remaining terms involving the internal sources. The resulting equation is

0 =
{
d

dζ
R̂1(ζ, w) − ρ̂1 − R̂1(ζ, w)τ̂ 1 + R̂2(ζ, w)τ̂ 2

−
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
R̂1(ζ, w)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
R̂2(ζ, w)

}
Ŝ

−
1 (ζ)

+
{

− d

dζ
R̂2(ζ, w) + ρ̂2 + R̂1(ζ, w)τ̂ 2 + R̂2(ζ, w)τ̂ 1

+
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
R̂2(ζ, w)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
R̂1(ζ, w)

}
Ŝ

−
2 (ζ)

{
d

dζ
T̂ 1(w, ζ) −

[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
T̂ 1(w, ζ)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
T̂ 2(w, ζ)

}
Ŝ

+
1 (w)

+
{

− d

dζ
T̂ 2(w, ζ) +

[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
T̂ 2(w, ζ)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
T̂ 1(w, ζ)

}
Ŝ

+
2 (w)
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+
{
d

dζ
�̂

+t
1 (w, ζ) − �̂

+
1 (ζ) − R̂1(ζ, w)�̂

−
1 (ζ) + R̂2(ζ, w)�̂

−
2 (ζ)

−
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
�̂

+t
1 (w, ζ)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
�̂

+t
2 (w, ζ)

}
(1.87)

The first four groups of terms in brackets multiply incident radiances. The last group
of terms contains the internal sources.

The four incident radiances and the internal sources have arbitrary values that
must be specified as known inputs to the radiative transfer problem. For example, all

of the input radiances except for Ŝ
+
1 (w) can be zero, and all of the internal sources

can be zero. In that case, the terms in brackets multiplying Ŝ
+
1 (w) must sum to zero.

Similarly, all of the incident radiances can be zero, but there can be internal sources
generating the light field within the water. In that case, the last group of bracketed
terms must sum to zero. Arguments of this type show that each group of terms in
brackets must be zero. Setting the individual groups of bracketed terms to zero then
gives a set of five coupled nonlinear ordinary differential equations (ODEs) (L&W
8.74, 8.75, and 8.78):

d

dζ
R̂1(ζ, w) = ρ̂1 + R̂1(ζ, w)τ̂ 1 − R̂2(ζ, w)τ̂ 2

+
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
R̂1(ζ, w)

−
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
R̂2(ζ, w) (1.88)

d

dζ
R̂2(ζ, w) = ρ̂2 + R̂1(ζ, w)τ̂ 2 + R̂2(ζ, w)τ̂ 1

+
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
R̂2(ζ, w)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
R̂1(ζ, w) (1.89)

d

dζ
T̂ 1(w, ζ) =

[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
T̂ 1(w, ζ)

−
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
T̂ 2(w, ζ) (1.90)

d

dζ
T̂ 2(w, ζ) =

[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
T̂ 2(w, ζ)

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
T̂ 1(w, ζ) (1.91)
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d

dζ
�̂

+t
1 (w, ζ) = �̂

+
1 (ζ) + R̂1(ζ, w)�̂

−
1 (ζ) − R̂2(ζ, w)�̂

−
2 (ζ)

+
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
�̂

+t
1 (w, ζ)

−
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
�̂

+t
2 (w, ζ) (1.92)

This self-contained set of ODEs can be solved given the IOPs ρ̂1,2(ζ), τ̂ 1,2(ζ),

and initial conditions. The initial conditions are deduced as follows. If ζ → w = 0,
there will be no reflectance by a slab [w,w] of zero thickness, and all of the radiance
will be transmitted. Likewise, there will be no contribution by internal sources in a
slab of zero thickness. Thus the initial conditions at ζ = w are simply

R̂1(w,w) = R̂2(w,w) = 04M×4M (1.93)

T̂ 1(w,w) = T̂ 2(w,w) = I 4M×4M (1.94)

�̂
+t
1 (w,w) = 04M×1 (1.95)

where 04M×4M is a 4M × 4M matrix of zeros, I 4M×4M is a 4M × 4M identitymatrix,
and 04M×1 is a 4M × 1 column vector of zeros.

Equations (1.88)–(1.92) can therefore be integrated in a “downward sweep” from
depthw = 0 to any depth ζ, starting with the initial conditions of Eqs. (1.93)–(1.95).

It should be noted that the reflectance and transmittance properties of the slab
[w, ζ] can be computedwithout explicit consideration of the air-water surface [a, w].
Slab [w, ζ] is therefore referred to as a “bare” slab, i.e., a water body without an air-
water surface. This is physically equivalent to a water body with the same index of
refraction as the air, which would not reflect or refract light passing though such a
surface. The effects of the actual air-sea surface will be incorporated into the solution
in the next section.

Differentiating global interaction Eq. (1.77) and repeating this process gives the
following set of equations (L&W 8.76, 8.77, 8.78):

d

dζ
R̂1(w, ζ) =

[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
T̂ 1(w, ζ)

−
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
T̂ 2(w, ζ) (1.96)

d

dζ
R̂2(w, ζ) =

[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
T̂ 2(w, ζ)

+
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
T̂ 1(w, ζ) (1.97)
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d

dζ
T̂ 1(ζ, w) = T̂ 1(ζ, w)τ̂ 1 − T̂ 2(ζ, w)τ̂ 2

+
[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
R̂1(ζ, w)

−
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
R̂2(ζ, w) (1.98)

d

dζ
T̂ 2(ζ, w) = T̂ 1(ζ, w)τ̂ 2 + T̂ 2(ζ, w)τ̂ 1

+
[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
R̂2(ζ, w)

+
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
R̂1(ζ, w) (1.99)

d

dζ
�̂

−t
1 (ζ, w) = T̂ 1(ζ, w)�̂

−
1 (ζ) − T̂ 2(ζ, w)�̂

−
2 (ζ))

+
[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
�̂

+t
1 (w, ζ)

−
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
�̂

+t
2 (w, ζ) (1.100)

Theprecedingdevelopment givesODEs for all of the reflectance and transmittance
matrices seen in Fig. 1.8, and for the cosine amplitudes of the internal source terms.
Equations for the remaining internal source sine amplitudes canbeobtained fromEqs.
(1.79) and (1.80). Differentiating Eq. (1.79) and repeating the above process gives the

equation for �̂
−t
2 (ζ, w); starting with Eq. (1.80) gives the ODE for �̂

+t
2 (ζ, w). Those

derivations also re-derive the equations for R1,2(ζ, w), T 1,2(w, ζ), R1,2(w, ζ) and
T 1,2(ζ, w), which serves as a check on those equations. The results for the remaining
source terms are

d

dζ
�̂

−t
2 (ζ, w) = T̂ 1(ζ, w)�̂

−
2 (ζ) + T̂ 2(ζ, w)�̂

−
1 (ζ)

+
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ, w)ρ̂1

]
�̂

+t
1 (w, ζ)

+
[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ, w)ρ̂2

]
�̂

+t
2 (w, ζ) (1.101)

d

dζ
�̂

+t
2 (ζ, w) = �̂

+
2 (ζ) + R̂1(ζ, w)�̂

−
2 (ζ) + R̂2(ζ, w)�̂

−
1 (ζ))

+
[
τ̂ 2 + R̂1(ζ, w)ρ̂2 + R̂2(ζ, w)ρ̂1

]
�̂

+t
1 (w, ζ)

+
[
τ̂ 1 + R̂1(ζ, w)ρ̂1 − R̂2(ζ, w)ρ̂2

]
�̂

+t
1 (w, ζ) (1.102)

These equations can be integrated from ζ = w downward, starting with the initial
conditions
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R̂1(w,w) = R̂2(w,w) = 04M×4M (1.103)

T̂ 1(w,w) = T̂ 2(w,w) = I 4M×4M (1.104)

�̂
−t
1 (w,w) = 04M×1 (1.105)

�̂
±t
2 (w,w) =04M×1 (1.106)

Note that the set of Eqs. (1.88)–(1.92) is self contained, whereas Eqs. (1.96)–
(1.100) contain terms from the first set. The set (1.88)–(1.92) is therefore called the
“major” set, and (1.96)–(1.100) the “minor” set. Equation (1.102) belongs to the
major set, and (1.101) to the minor set. In any case, these equations must be solved
simultaneously.

1.5.5.2 Upward Sweep Equations

The slab [ζ,m] illustrated in Fig. 1.9 has a corresponding set ofODEs for the standard
matrices shown in the figure. The derivations follow the same procedure as for slab
[w, ζ], so the details do not need to be presented. The resulting equations are as
follows:

The major set, obtained starting with Eq. (1.81) and (1.83):

− d

dζ
R̂1(ζ,m) = ρ̂1 + R̂1(ζ,m)τ̂ 1 − R̂2(ζ,m)τ̂ 2

+
[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
R̂1(ζ,m)

−
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
R̂2(ζ,m) (1.107)

− d

dζ
R̂2(ζ,m) = ρ̂2 + R̂1(ζ,m)τ̂ 2 + R̂2(ζ,m)τ̂ 1

+
[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
R̂2(ζ,m)

+
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
R̂1(ζ,m) (1.108)

− d

dζ
T̂ 1(m, ζ) =

[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
T̂ 1(m, ζ)

−
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
T̂ 2(m, ζ) (1.109)

− d

dζ
T̂ 2(m, ζ) =

[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
T̂ 2(m, ζ)

+
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
T̂ 1(m, ζ) (1.110)
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− d

dζ
�̂

−t
1 (m, ζ) = �̂

−
1 (ζ) + R̂1(ζ,m)�̂

+
1 (ζ) − R̂2(ζ,m)�̂

+
2 (ζ)

+
[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
�̂

−t
1 (m, ζ)

−
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
�̂

−t
2 (m, ζ) (1.111)

− d

dζ
�̂

−t
2 (m, ζ) = �̂

−
2 (ζ) + R̂1(ζ,m)�̂

+
2 (ζ) + R̂2(ζ,m)�̂

+
1 (ζ))

+
[
τ̂ 1 + R̂1(ζ,m)ρ̂1 − R̂2(ζ,m)ρ̂2

]
�̂

−t
2 (m, ζ)

+
[
τ̂ 2 + R̂1(ζ,m)ρ̂2 + R̂2(ζ,m)ρ̂1

]
�̂

−t
1 (m, ζ) (1.112)

The minor set, obtained starting with Eqs. (1.82) and (1.84):

− d

dζ
R̂1(m, ζ) =

[
T̂ 1(ζ,m)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
T̂ 1(m, ζ)

−
[
T̂ 1(ζ,m)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
T̂ 2(m, ζ) (1.113)

− d

dζ
R̂2(m, ζ) =

[
T̂ 1(ζ,m)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
T̂ 2(m, ζ)

+
[
T̂ 1(ζ,m)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
T̂ 1(m, ζ) (1.114)

− d

dζ
T̂ 1(ζ,m) = T̂ 1(ζ,m)τ̂ 1 − T̂ 2(ζ,m)τ̂ 2

+
[
T̂ 1(ζ,m)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
R̂1(ζ,m)

−
[
T̂ 1(ζ,m)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
R̂2(ζ,m) (1.115)

− d

dζ
T̂ 2(ζ,m) = T̂ 1(ζ,m)τ̂ 2 + T̂ 2(ζ,m)τ̂ 1

+
[
T̂ 1(ζ,m)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
R̂2(ζ,m)

+
[
T̂ 1(ζ,m)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
R̂1(ζ,m) (1.116)

− d

dζ
�̂

+t
1 (ζ,m) = T̂ 1(ζ,m)�̂

+
1 (ζ) − T̂ 2(ζ,m)�̂

+
2 (ζ))

+
[
T̂ 1(ζ,m)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
�̂

−t
1 (m, ζ)

−
[
T̂ 1(ζ,m)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
�̂

−t
2 (m, ζ) (1.117)
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− d

dζ
�̂

+t
2 (ζ,m) = T̂ 1(ζ,m)�̂

+
2 (ζ) + T̂ 2(ζ,m)�̂

+
1 (ζ))

+
[
T̂ 1(ζ, w)ρ̂2 + T̂ 2(ζ,m)ρ̂1

]
�̂

−t
2 (m, ζ)

+
[
T̂ 1(ζ, w)ρ̂1 − T̂ 2(ζ,m)ρ̂2

]
�̂

−t
1 (m, ζ) (1.118)

The initial conditions for the upward sweep are

R̂1(m,m) = R̂2(m,m) = 04M×4M (1.119)

T̂ 1(m,m) = T̂ 2(m,m) = I 4M×4M (1.120)

�̂
±t
1,2(m,m) = 04M×1 (1.121)

Just as for the bare slab surface boundary conditions of Eqs. (1.103)–(1.105), these
initial conditions are general for a bare or fully transparent bottom. However, unlike
for the surface boundary, Eqs. (1.119) and (1.120) will be revised in Sect. 1.6.2 to
incorporate the actual bottom reflectance and transmittance as the initial condition
for the upward integration sweep.

1.5.5.3 Checks on the ODEs

If the phasematrix is zero except for the (1,1) element, theVRTE reduces to theSRTE.
The Fourier expansion of the phase function then contains only cosine amplitudes,
which means that all of the ρ̂2, τ̂ 2, R̂2 and T̂ 2 terms are zero. In that case Eqs. (1.88)–

(1.117) all reduce to the corresponding Eqs. (8.74)–(8.85) seen in Light andWater for
the case of nopolarization. Those equations have proven to be correct andnumerically
efficient via their use in HydroLight. Unfortunately, this comparison does not help to
verify the correctness of the newly derived equations for the various sine amplitudes.
(Strictly speaking, the VRTEmatrix equations reduce to the transposes of the matrix
equations seen in Light and Water. This is because L&W started by writing the path
function as

∫
L β̃ dΩ , rather than as

∫
β̃ L dΩ corresponding to the vector version∫

P̃ S dΩ as seen in Eq. (1.19). This led to the scalar equivalent of Eq. (1.71) being
written as a row vector, and the scalar versions of ρ̂1 being the transpose of Eq. (1.72),

etc.)

1.5.5.4 Computational Issues

Recalling that the 8 standard matrices are each 4M × 4M in size, and the 4 internal
source vectors are 4M × 1, this gives a set of Neq = 8 × 4M × 4M + 4 × 4M =
128M2 + 16M = 12, 960 scalar ODEs for a quad discretization with M = 10. The
unpolarized case has no sine terms, which reduces the number of standard operators
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equations from 8 to 4, with 2 source-term equations, and each standard operator
matrix is M × M since there is only a phase function (or (1,1) element of the phase
matrix). The total number of scalar ODEs to be solved is then just Neq = 4 × M ×
M + 2 × M = 420. Thus there are roughly 30 times as many scalar ODEs to be
solved for the VRTE as for the SRTE, namely twice as many Fourier coefficients
and 4 × 4 phase matrices matrices rather than scalar phase functions. In both cases
these sets of ODEs must be solved for each Fourier mode, � = 0, ..., N .

In practice, many quantities can be pre-computed. In particular, it should be
remembered from Fig. 1.4 that the phase matrix elements have zero sine amplitudes
for the upper left and lower right 2 × 2 blocks, and zero cosine elements for the upper
right and lower left 2 × 2 blocks. These zeros carry through the evaluation of the
ρ̂1,2 and τ̂ 1,2 matrices, which reduces some of the computations needed to evaluate

the right hand sides of the ODEs for the standard operators. However, the ODEs for
R̂1 etc. involve both cosine and sine components of the ρ̂1,2 and τ̂ 1,2 matrices, so that

all elements of R̂1 etc. will in general be non-zero. If source terms are not included

in the run, then the equations for �̂
±t
1,2 can be omitted, resulting in a slightly smaller

set of ODEs to be solved.
Now that the laborious development of the ODEs for the Fourier amplitudes of

the standard matrices has been seen, it is worthwhile to consider the corresponding
development in physical space. The upward and downward pair of of Eqs. (1.51)
would be recast into local interaction equations of the form (ignoring internal sources)

d

dζ
S+ = τ S+ + ρ S−

− d

dζ
S− = ρ S+ + τ S−

Here S± are each 8MN × 1 composite vectors of 4 × 1 Stokes vectors S±(ζ, u, v)

for u = 1, ..., M and v = 1, ..., 2N . ρ and τ are consequently of size 8MN × 8MN .

However, recall that the phase matrix depends on φ − φ′, i.e. on φv − φs , so that
φ′ = 0 or s = 1 can be chosen. This reduces the number of unique elements of
the ρ and τ matrices by a factor of N . Thus the two ρ and τ matrices each have

an “information content” of 64M2N independent numbers. The local interaction
equations would lead to global interaction equations with four standard matri-
ces: R(w, ζ), R(ζ, w), T (w, ζ), and T (ζ, w), with a total information content of
128M2N . It would be necessary to solve for the elements of these standard matrices
via a coupled systemof 128M2N ODEs. For a quadpartioningwithM = 10, N = 12
(again ignoring the internal source terms), this is a system of 153,600 equations.
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Taking the Fourier-space route gave global interaction equations with 4 matri-
ces for Fourier amplitudes, R̂1(w, ζ|�), R̂1(ζ, w|�), T̂ 1(w, ζ|�), and T̂ 1(ζ, w|�),
with each matrix being 4M × 4M and � = 0, ..., N . The information content of
these cosine-amplitude equations is thus 64M2(N + 1). There are 4 matrices for
sine amplitudes, R̂2(w, ζ|�), R̂2(ζ, w|�), T̂ 2(w, ζ|�), and T̂ 2(ζ, w|�), with each
matrix being 4M × 4M and � = 1, ..., N − 1. The information content of these
sine-amplitude equations is thus 64M2(N − 1). The total number of unique matrix
elements being computed is then 128M2N , the same as for the physical-space formu-
lation. However, the Fourier approach allows this total to be obtained by a sequence
of solutions of much smaller sets of ODEs. Even with the Fourier decomposition,
the ODE sets for the VRTE are still about 13,000 equations vs 420 for the SRTE.
ODE solvers generally have run times proportional to the number of equations to be
solved, so a thirty-fold increase in run can be anticipated. Additional computational
issues such as array storage are given in Mobley (2014a).

1.6 Incorporation of the Boundary Conditions

Thematrices R̂1(w, zk |�) etc. computed from theODE solutions give the reflectances
and transmittances for subslabs [w, zk] and [zk,m] of the “bare-slab” water column
[w,m]. These will be used to compute the Stokes vectors at the user-defined output
depths zk . However, to obtain the Stokes vectors, it is necessary to incorporate the
surface and bottom boundary conditions for the particular incident lighting, surface
wave conditions, and bottom reflectance of interest. Thus the air-water surface [a, w]
must now be merged with the water body [w,m].

1.6.1 Fourier Decomposition of the Surface Boundary
Conditions

Recall the discretized surface boundary conditions of Eqs. (1.37) and(1.38). Using
the ± superscripts to denote downwelling and upwelling directions as in Eq. (1.51),
the surface boundary conditions can be written

S−(a, u, v) =
∑
r

∑
s

raw(r, s → u, v) S+(a, r, s)

+
∑
r

∑
s

twa(r, s → u, v) S−(w, r, s) (1.122)
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S+(w, u, v) =
∑
r

∑
s

rwa(r, s → u, v) S−(w, r, s)

+
∑
r

∑
s

taw(r, s → u, v) S+(a, r, s) (1.123)

where the wavelength index has been omitted for brevity. The superscripts on S±
indicate whether u, v and r, s are in the upward or downward hemispheres. The
4 × 4 matrices raw(r, s → u, v) etc. play the same role for surface scattering as
does the phase matrix for scattering in the interior of the water body. In particular,
raw(r, s → u, v) etc. include the effects of the rotation matrices.

Aswith theVRTE, the boundary conditions areFourier decomposed.However, the
surface transfer functions raw(r, s → u, v) etc. do not in general have the φ − φ′ =
φv − φs dependence on azimuthal angle that the phase matrix has. This is because
the wind-blown sea surface can have different wave-slope statistics in the along-
wind and cross-wind directions. The only assumption made here is that the surface
statistics have elliptical symmetry inφ; that is, there is no difference in the upwind and
downwind directions. If azimuthally averaged slope statistics are used, the problem
simplifies considerably. In particular, the Fourier modes then decouple. However, to
retain the desired generality in modeling the sea surface, it is necessary to do a full
Fourier decomposition in φs and φv as shown in Eq. (1.200). Thus, for given r and u
values, raw(r, s → u, v) becomes

raw(r, s → u, v) =
N∑

k=0

N∑
�=0

r̂11(a, w|r, u|k, �) cos(kφs) cos(�φv)

+
N∑

k=0

N∑
�=0

r̂12(a, w|r, u|k, �) cos(kφs) sin(�φv)

+
N∑

k=0

N∑
�=0

r̂21(a, w|r, u|k, �) sin(kφs) cos(�φv)

+
N∑

k=0

N∑
�=0

r̂22(a, w|r, u|k, �) sin(kφs) sin(�φv) . (1.124)

To find r̂11, multiply Eq. (1.124) by cos(k ′φs) cos(�′φv), sum over s and v, and
apply the orthogonality relations (1.188). The other three amplitudes are found in an
analogous manner. The results are as shown in Eq. (1.201):

r̂11(a, w|r, u|k, �) = 1

εkε�

2N∑
s=1

2N∑
v=1

raw(r, s → u, v) cos(kφs) cos(�φv) , (1.125a)

r̂12(a, w|r, u|k, �) = 1

εkγ�

2N∑
s=1

2N∑
v=1

raw(r, s → u, v) cos(kφs) sin(�φv) , (1.125b)
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r̂21(a, w|r, u|k, �) = 1

γkε�

2N∑
s=1

2N∑
v=1

raw(r, s → u, v) sin(kφs) cos(�φv) , (1.125c)

r̂22(a, w|r, u|k, �) = 1

γkγ�

2N∑
s=1

2N∑
v=1

raw(r, s → u, v) sin(kφs) sin(�φv) . (1.125d)

The sine amplitudes are zero for various special cases:

r̂12(a, w|r, u|k, 0) = r̂12(a, w|k, N ) = 0 for k = 0, ..., N ,

r̂21(a, w|r, u|0, �) = r̂21(a, w|N , �) = 0 for � = 0, ..., N ,

r̂22(a, w|r, u|0, 0) = r̂22(a, w|r, u|0, N )

= r̂22(a, w|r, u|N , 0) = r̂22(a, w|r, u|N , N ) = 0 . (1.126)

These special cases allow the exclusion of any k or � values in Eqs. (1.125b)–(1.125d)
that would result in division by zero resulting from the γk and γ� factors.

This expansion allows for themodeling of any sea surface. However, wave spectra
generally have symmetry about the upwind-downwind direction. That is, waves may
be propagating in all directions, but with equal probability to the left and right of
the wind direction. Such wave spectra generally have elliptical symmetry, with the
major axis of the ellipse in the along-wind direction, and the minor axis in the
cross-wind direction. Thus the surface transfer functions from, say, φ′ = φs = 30◦
to φ = φv = 110 would be the same as for φ′ = 330 to φ = 250, but not the same
as from φ′ = 70 to φ = 150.

If the coordinate system is chosen (as inHydroLight) so that an azimuthal direction
of zero is in the downwind direction, then the statistics of the sea surface waves
propagating in some direction φ are the same as for direction 2π − φ. In the quad
indexing scheme of Fig. 1.5, directionφw is symmetric about the downwind direction
with φ2N+2−w. Now consider r̂12(a, w|r, u|k, �), which with these symmetries can
be written

r̂12(a, w|r, u|k, �) =
1

εkγ�

2N∑
s=1

2N∑
v=1

raw(r, 2N + 2 − s → u, 2N + 2 − v) cos(kφs) sin(�φv) .

Changing the summation indices to s ′ = 2N + 2 − s and v′ = 2N + 2 − v gives

r̂12(a, w|r, u|k, �) =
1

εkγ�

2∑
s ′=2N+1

2∑
v′=2N+1

raw(r, s ′ → u, v′) cos(kφ2N+2−s ′) sin(�φ2N+2−v′) .
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Noting once again that φ2M+2−w = 2π − φw, using the evenness of the cosine and
oddness of the sine, remembering that quadw = 2N + 1 is the same as quadw = 1,
and reordering the sums gives

r̂12(a, w|r, u|k, �) = − 1

εkγ�

2N∑
s ′=1

2N∑
v′=1

raw(r, s ′ → u, v′) cos(kφs ′) sin(�φv′)

= − r̂12(a, w|r, u|k, �) .

It therefore follows that

r̂12(a, w|r, u|k, �) = 0 for r, u = 1, ..., M and k, � = 0, ..., N .

The same analysis gives r̂21(a, w|r, u|k, �) = 0, with the same result for the other
three surface transfer functions. Thus elliptical symmetry of the surface about the
wind direction eliminates two of the four terms in Eq. (1.124). This is the reason for
choosing a wind-centered azimuthal coordinate system.

A similar analysis based on the elliptical symmetry between φ and π − φ gives

r̂11(a, w|r, u|k, �) = (−1)k+� 1

εkε�

2N∑
s ′=1

2N∑
v′=1

raw(r, s ′ → u, v′) cos(kφs ′) sin(�φv′)

= (−1)k+� r̂11(a, w|k, �) .

Therefore it follows that

r̂11(a, w|r, u|k, �) = 0 if k + � is odd,

for r, u = 1, ..., M and k, � = 0, ..., N . Corresponding results are obtained for
r̂22(a, w|r, u|k, �) and the other three surface transfer functions.

We can therefor simplify the notation to one subscript for the r̂ and t̂ terms:

r̂1(a, w|r, u|k, �) = r̂11(a, w|r, u|k, �)
r̂2(a, w|r, u|k, �) = r̂22(a, w|r, u|k, �)

since the r̂12 and r̂21 terms are always zero. The surface transfer functions for ellip-
tically symmetric sea surfaces thus can be decomposed as

raw(r, s → u, v) =
N∑

k=0

N∑
�=0

(k+� even)

r̂1(a, w|r, u|k, �) cos(kφs) cos(�φv)
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+
N∑

k=0

N∑
�=0

(k+� even)

r̂2(a, w|r, u|k, �) sin(kφs) sin(�φv) . (1.127)

where

r̂1(a, w|r, u|k, �) =

⎧⎪⎨
⎪⎩

1
εkε�

∑2N
s=1

∑2N
v=1 raw(r, s → u, v) cos(kφs) cos(�φv)

for k, � = 0, ..., N and k + � even

04×4 if k + � is odd

and

r̂2(a, w|r, u|k, �) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
γkγ�

∑2N
s=1

∑2N
v=1 raw(r, s → u, v) cos(kφs) cos(�φv)

for k, � = 1, ..., N − 1 and k + � even

04×4 if k = 0 and � = 0, ..., N

04×4 if � = 0 and k = 0, ..., N

04×4 if k + � is odd

Equations (1.52) and (1.127) can now be used to Fourier decompose the surface
boundary conditions. The process is the same as before, using the orthogonality
relations (1.188)–(1.190) to reduce double sums to single, and noting the linear
independence of sines and cosines. The result for the cosine amplitudes of Eq. (1.122)
is

S−
1 (a, u|�)

=
N∑

k=0
(k+� even)

⎡
⎣
M−1∑
r=1

εk r̂1(a, w|r, u|k, �)S+
1 (a, r |k) + δk r̂1(a, w|M, u|k, �) S+

1 (a, M |k)
⎤
⎦

+
N∑

k=0
(k+� even)

⎡
⎣
M−1∑
r=1

εk t̂1(w, a|r, u|k, �) S−
1 (w, r |k) + δk t̂1(w, a|M, u|k, �) S−

1 (w, M |k)
⎤
⎦

(1.128)

which holds for u = 1, ..., M and � = 0, ..., N . As always, the polar cap r = M is
a special case with no φ dependence, so that only the k = 0 cosine amplitude is
nonzero. However, the polar cap terms can be incorporated into the sum over k by
use of a Kronecker δk factor, as shown here. The sine amplitudes are given by
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S−
2 (a, u|�) =

N∑
k=0

(k+� even)

[
M−1∑
r=1

γk r̂2(a, w|r, u|k, �) S+
2 (a, r |k)

]

+
N∑

k=0
(k+� even)

[
M−1∑
r=1

γk t̂2(w, a|r, u|k, �) S−
2 (w, r |k)

]
(1.129)

where now � = 1, ..., N . As always, sine amplitudes are zero for polar caps. A similar
result holds for Eq. (1.123).

It is important to note that the Fourier modes do not decouple for the surface
transfer functions. That is, the equations for S−

1,2(a, u|�) involve sums over k. This is
the reason that the surface boundary conditions were not used as the initial conditions
for mode-by-mode integration of the ODEs to obtain the standard reflection and
transmission matrices for the interior of the water body.

These equations can be placed in a more compact form by defining 4M × 4M
composite matrices r̂1,2 and t̂1,2 with (row, column) = u, r elements as follows:

[ r̂1(a, w|k, �)]u,r =
{

εk r̂1(a, w|r, u|k, �) for r = 1, ..., M − 1

δk r̂1(a, w|M, u|k, �) for r = M

which holds for u = 1, ..., M and k, � = 0, ..., N . The corresponding definition for
the sine term is

[ r̂2(a, w|k, �)]u,r =
{
γk r̂2(a, w|r, u|k, �) for r = 1, ..., M − 1 and � = 1, ..., N − 1

04×4 for r = M or � = 0 or N

which holds for which holds for u = 1, ..., M and k = 0, ..., N . The t̂1 and t̂2 func-
tions have corresponding definitions.

Recalling the composite matrix form (1.71) for Stokes vectors, Eqs. (1.128) and
(1.129) can now be combined and written as

Ŝ
−
p (a|�) =

N∑
k=0

(k+� even)

r̂ p(a, w|k, �) Ŝ+
p (a|�) +

N∑
k=0

(k+� even)

t̂ p(w, a|k, �) Ŝ−
p (w|�) .

(1.130)
Equation (1.123) similarly becomes

Ŝ
+
p (w|�) =

N∑
k=0

(k+� even)

r̂ p(w, a|k, �) Ŝ−
p (w|�) +

N∑
k=0

(k+� even)

t̂ p(a, w|k, �) Ŝ+
p (a|�) ,

(1.131)
where p = 1 or 2 and � = 0, ..., N .
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Equations (1.130) and (1.131) are the desired Fourier-amplitude forms of the
surface boundary conditions. These equations are at a notational level equivalent to
the local interaction equations (1.73)–(1.76).

Equations (1.130) and (1.131) can be notationally simplified still further by defin-
ing 4M(N + 1) × 4M(N + 1) composite matrices that contain all Fourier modes.
The 4M × 4M cosine amplitude matrices r̂1(a, w|k, �) for k, � = 0, 1, ..., N can be
combined into one matrix as follows (L&W 8.86):

r̂1(a, w) =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r̂1(a, w|0, 0) 0 r̂1(a, w|2, 0) 0 . . . r̂1(a, w|N , 0)

0 r̂1(a, w|1, 1) 0 r̂1(a, w|3, 1) . . . 0

r̂1(a, w|0, 2) 0 r̂1(a, w|2, 2) 0 . . . r̂1(a, w|N , 2)

...
...

...
...

. . .
...

0 r̂1(a, w|1, N − 1) 0 r̂1(a, w|3, N − 1) . . . 0

r̂1(a, w|0, N ) 0 r̂1(a, w|2, N ) 0 . . . r̂1(a, w|N , N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.132)

The checkerboard structure of this matrix incorporates the previous result that
r̂1(a, w|k, �) 	= 0 only when k + � is even. Recall than N is always even. The 0

submatrices are all 4M × 4M . Similarly, the sine amplitude matrices r̂2(a, w|k, �)
can be combined as

r̂2(a, w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
0 r̂2(a, w|1, 1) 0 r̂2(a, w|3, 1) . . . 0

0 0 r̂2(a, w|2, 2) 0 . . . 0
...

...
...

...
. . .

...

0 r̂2(a, w|1, N − 1) 0 r̂2(a, w|3, N − 1) . . . 0

0 0 0 0 . . . 0

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.133)
The 0 first and last row and column show that sine amplitudes are zero for k, � = 0 or

N . The t̂1,2 matrices have corresponding definitions. The Stokes vector amplitudes

Ŝ
±
1,2(ζ|�) are likewise combined into one 4M(N + 1) × 1 column vector containing

all Fourier modes (L&W 8.87):

Ŝ
±
1,2(ζ) =

⎡
⎢⎢⎢⎢⎢⎣

Ŝ
±
1,2(ζ|0)

Ŝ
±
1,2(ζ|1)

...

Ŝ
±
1,2(ζ|N )

⎤
⎥⎥⎥⎥⎥⎦

. (1.134)



72 C. D. Mobley

It is worth pausing to note that the Ŝ
±
1,2(ζ) are matrices whose elements Ŝ

±
1,2(ζ|�) are

by Eq. (1.71) 4M × 1 matrices, whose elements in turn are 4 × 1 Stokes vectors. In
other words, these equations involve matrices whose elements are matrices whose
elements are matrices.

Equations (1.132)–(1.134) allow the surface boundary conditions (1.130) and
(1.131) to be written as matrix equations:

Ŝ
−
p (a) = r̂ p(a, w)Ŝ

+
p (a) + t̂ p(w, a)Ŝ

−
p (w) (1.135)

and
Ŝ

+
p (w) = r̂ p(w, a)Ŝ

−
p (w) + t̂ p(a, w)Ŝ

+
p (a) . (1.136)

It should be noted that r̂1,2 and t̂1,2 are in effect the standard reflection and trans-
mission matrices for the air-water surface. Unlike the standard matrices for the inte-
rior of the water body [w, ζ], which must be found by depth integrations of the ODEs
derived in the preceding chapter, the surface [a, w] has no thickness and standard
matrices are determined from the reflection and transmission matrices for the sea
surface, as seen in Sect. 1.4.

Finally, the standard reflectance and transmittance matrices for the water body
[w, ζ], which were computed � mode by � mode when solving the ODE systems,
can be combined into matrices containing all Fourier modes, e.g.:

R̂1(ζ, w) =

⎡
⎢⎢⎢⎢⎢⎣

R̂1(ζ, w|0) 0 0 . . . 0

0 R̂1(ζ, w|1)) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . R̂1(ζ, w|N )

⎤
⎥⎥⎥⎥⎥⎦

with corresponding definitions for the other standard matrices.
These definitions allow the global interaction Eqs. (1.77)–(1.80) for slab [w, ζ] to

be written in a form that contains all Fourier modes:

Ŝ
−
1 (w) = R̂1(w, ζ)Ŝ

+
1 (w) + T̂ 1(ζ, w)Ŝ

−
1 (ζ)

− R̂2(w, ζ)Ŝ
+
2 (w) − T̂ 2(ζ, w)Ŝ

−
2 (ζ) + �̂

−t
1 (ζ, w) (1.137)

Ŝ
+
1 (ζ) = R̂1(ζ, w)Ŝ

−
1 (ζ) + T̂ 1(w, ζ)Ŝ

+
1 (w)

− R̂2(ζ, w)Ŝ
−
2 (ζ) − T̂ 2(w, ζ)Ŝ

+
2 (w) + �̂

+t
1 (w, ζ) (1.138)

Ŝ
−
2 (w) = R̂1(w, ζ)Ŝ

+
2 (w) + T̂ 1(ζ, w)Ŝ

−
2 (ζ)

+ R̂2(w, ζ)Ŝ
+
1 (w) + T̂ 2(ζ, w)Ŝ

−
1 (ζ) + �̂

−t
2 (ζ, w) (1.139)

Ŝ
+
2 (ζ) = R̂1(ζ, w)Ŝ

−
2 (ζ) + T̂ 1(w, ζ)Ŝ

+
2 (w)



1 Invariant Imbedding Theory for the VRTE 73

+ R̂2(ζ, w)Ŝ
−
1 (ζ) + T̂ 2(w, ζ)Ŝ

+
1 (w) + �̂

+t
2 (w, ζ) (1.140)

Here the internal source terms for each Fourier mode have been combined as in
Eq. (1.134).

1.6.2 Fourier Decomposition of the Bottom Boundary
Conditions

As noted in Sect. 1.2.6, the bottom boundary condition has the form (dropping the
wavelength dependence for brevity)

S(m, θ,φ) =
∫∫

2πd

V BRDF(θ′, θ,φ − φ′) cos θ′ S(m, θ′,φ′) dΩ(θ′,φ′)

=
∫∫

2πd

rmb(θ
′, θ,φ − φ′) S(m, θ′,φ′) dΩ(θ′,φ′) for (θ,φ) ∈ 2πu .

A V BRDF or rmb of this form can be expanded as Fourier cosine series. As was
seen in Eq. (1.39), the corresponding quad-averaged bottom boundary condition is

S(m, u, v) =
∑
r

∑
s

r,s∈Ξd

rmb(r, s → u, v) S(m, r, s) for (u, v) ∈ �u . (1.141)

The Fourier decomposition of the bottom boundary condition conceptually fol-
lows in parallel to the decomposition of the surface boundary condition, but the
equations are much simpler because of the φ − φ′ symmetry and the absence of
transmission terms as discussed in Sect. 1.2.6. The Stokes vectors are expanded as in
Eq. (1.52). rmb(r, s → u, v) = rmb(r, u, |v − s|) is expanded as a cosine series using
(1.196) (L&W 8.54):

rmb(r, u, |v − s|) =
N∑

k=0

r̂1(m, b|r, u|k) cos[k(φv − φs)] , (1.142)

where from (1.197) (L&W 8.55)

r̂1(m, b|r, u|k) = 1

εk cos(kφs)

2N∑
v=1

rmb(r, u, |v − s|) cos(kφv) .

We are again free to choose s = 1, or φs = 0, which gives
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r̂1(m, b|r, u|k) = 1

εk

2N∑
v=1

rmb(r, u, |v − 1|) cos(kφv) . (1.143)

Substituting these expansions into Eq. (1.141) gives

N∑
�=0

[
Ŝ

−
1 (m, u|�) cos(�φv) + Ŝ

−
2 (m, u|�) sin(�φv)

]

=
∑
r

∑
s

N∑
k=0

r̂1(m, b|r, u|k) cos[k(φv − φs)]

×
{

N∑
�=0

[
Ŝ

+
1 (m, r |�) cos(�φs) + Ŝ

+
2 (m, r |�) sin(�φs)

]}
(1.144)

Expanding cos[k(φv − φs)] and grouping terms gives

N∑
�=0

[
Ŝ

−
1 (m, u|�) cos(�φv) + Ŝ

−
2 (m, u|�) sin(�φv)

]

=
N∑

�=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) cos(kφv) Ŝ
+
1 (m, r |�)

∑
s

cos(kφs) cos(�φs)

=
N∑

�=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) cos(kφv) Ŝ
+
2 (m, r |�)

∑
s

cos(kφs) sin(�φs)

=
N∑

�=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) sin(kφv) Ŝ
+
1 (m, r |�)

∑
s

sin(kφs) cos(�φs)

=
N∑

�=0

∑
r

N∑
k=1

r̂1(m, b|r, u|k) sin(kφv) Ŝ
+
2 (m, r |�)

∑
s

sin(kφs) sin(�φs) (1.145)

Applying the orthogonality relations (1.188)–(1.190) to the sums over s and then
observing as before that k = � follows, this reduces to

N∑
�=0

[
Ŝ

−
1 (m, u|�) cos(�φv) + Ŝ

−
2 (m, u|�) sin(�φv)

]

=
N∑

�=0

∑
r

r̂1(m, b|r, u|k) Ŝ+
1 (m, r |�) ε� cos(�φv)

+
N∑

�=0

∑
r

r̂1(m, b|r, u|k) Ŝ+
2 (m, r |�) γ� sin(�φv) (1.146)
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where ε� and γ� are given by Eqs. (1.193) and (1.195), respectively. As always, the
polar caps u, r = M are special cases with no φ dependence.

Invoking the linear independence of sin(�φv) and cos(�φv) gives two separate

equations relating Ŝ
±
1 (m, u|�) and Ŝ

±
2 (m, u|�). These can be put into matrix form by

defining 4M × 4M composite matrices with 4 × 4 elements (L&W 8.57):

[ r̂1(m, b|�)]u,r =
{

ε� r̂1(m, b|r, u|�) if r = 1, ..., M − 1

δ� r̂1(m, b|r, u|�) if r = M

for u = 1, ..., M and � = 0, ..., N ; and

[ r̂2(m, b|�)]u,r =
{

γ� r̂2(m, b|r, u|�) if r = 1, ..., M − 1 and � = 1, ...N − 1

0 if r = M or � = 0 or � = N

Equation (1.146) thus becomes

Ŝ
−
1 (m, u|�) =

∑
r

[ r̂1(m, b|�)]u,r Ŝ
+
1 (m, r |�)

Ŝ
−
2 (m, u|�) =

∑
r

[ r̂2(m, b|�)]u,r Ŝ
+
2 (m, r |�)

In composite matrix form these equations are (L&W 8.56)

Ŝ
−
1 (m|�) = r̂1(m, b|�)Ŝ+

1 (m|�)
Ŝ

−
2 (m|�) = r̂2(m, b|�)Ŝ+

2 (m|�)

where Ŝ
±
1,2 are 4M × 1 composite column vectors defined in Eq. (1.71).

Note that, unlike for the surface boundary conditions, the �modes decouple for the
bottomboundary condition because of the restriction to a bottomVBRDFdependence
on cos(φ − φ′). This allows the initial condition (1.119) for the upward sweep of
ODEs to be revised to incorporate the bottom boundary reflectance as the initial
condition for integration of the upward set of equations. Thus Eq. (1.119),

R̂1(m,m) = R̂2(m,m) = 04M×4M ,

is replaced by (L&W 8.94)

R̂1(m,m) = r̂1(m, b|�)
R̂2(m,m) = r̂2(m, b|�)
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for each � value of the upward sweep integrations. Similarly, the bottom boundary
is assumed to be opaque, so that no light is transmitted upward through the bottom
boundary. The initial conditions for the upward sweep integration for a reflecting,
opaque, source-free lower boundary are then

R̂1(m, b) = r̂1(m, b|�) (1.147)

R̂2(m, b) = r̂2(m, b|�) (1.148)

T̂ 1(m, b) = T̂ 2(m, b) = 04M×4M (1.149)

�̂
±t
1,2(m, b) = 04M×1 (1.150)

Finally, recall from Eq. (1.32) that for a Lambertian depolarizing bottom only the
(1,1) element of rmb is nonzero, and that rmb(1, 1) = [R(λ) cos θ′]/π. This implies
that only the (1,1), � = 0 element of r̂1(m, b|�) is nonzero, and that r̂2(m, b|�) = 0
for all � values. In particular,

[ r̂1(m, b|0)]1,1 = R(λ)

π
μrΩr1 = rmb(r, 1 → u, v) .

1.6.3 Combining the Sea Surface with the Water Body

We now have the Fourier amplitude forms of the standard reflectance and trans-
mittance matrices for the air-water surface [a, w], r̂1(a, w), t̂1(a, w), etc., from

Sect. 1.6.1. The standard matrices R̂1(w, ζ), T̂ 1(w, ζ), etc. for the bare-slab water
body [w, ζ] are known from the solutions of the ODEs in Sect. 1.5.5. The next step
is to combine these two slabs to obtain matrices for the air-water surface plus the
water body. That is, the “real” sea surface must be added to the top of the bare-slab
water body.

The goal is to obtain the response radiances at the sea surface, Ŝ
−
1,2(a), and at

depth ζ, Ŝ
+
1,2(ζ), in terms of the known incident radiance at the surface, Ŝ

+
1,2(a), and

at the bottom, Ŝ
−
1,2(ζ). This is a two-step process:

1. The first step is to obtain the internal radiances Ŝ
±
1,2(w) at depth w within the

combined slab [a, ζ] = [a, w] ∪ [w, ζ] as functions of the incident radiances at
a and ζ.

2. Those results will then be used to eliminate Ŝ
±
1,2(w) in the surface boundary

condition (1.135) and the global interaction Eqs. (1.138) and (1.140).

The possibility of internal sources within [a, w] is included to obtain a general result
for the union of any two slabs.When [a, w] is just a discontinuity in optical properties,



1 Invariant Imbedding Theory for the VRTE 77

as for an air-water surface, those sources are zero. However, the surface [a, w] also
could represent a very thin layer of oil, which can fluoresce. In that case, the surface
slab [a, w] would include an internal source.

Surface boundary condition (1.136) for [a, w] becomes, for p = 1, 2 and with
internal source terms added for complete generality,

Ŝ
+
1 (w) = r̂1(w, a)Ŝ

−
1 (w) + t̂1(a, w)Ŝ

+
1 (a) + σ̂+t

1 (a, w)

Ŝ
+
2 (w) = r̂2(w, a)Ŝ

−
2 (w) + t̂2(a, w)Ŝ

+
2 (a) + σ̂+t

2 (a, w) .

The global interaction Eqs. (1.137) and (1.139) for [w, ζ] are

Ŝ
−
1 (w) = R̂1(w, ζ)Ŝ

+
1 (w) + T̂ 1(ζ, w)Ŝ

−
1 (ζ)

− R̂2(w, ζ)Ŝ
+
2 (w) − T̂ 2(ζ, w)Ŝ

−
2 (ζ) + �̂

−t
1 (ζ, w)

Ŝ
−
2 (w) = R̂1(w, ζ)Ŝ

+
2 (w) + T̂ 1(ζ, w)Ŝ

−
2 (ζ)

+ R̂2(w, ζ)Ŝ
+
1 (w) + T̂ 2(ζ, w)Ŝ

−
1 (ζ) + �̂

−t
2 (ζ, w) .

These four equations can be solved for the four internal radiances Ŝ
±
1,2(w) in terms

of the four incident radiances Ŝ
+
1,2(a) and Ŝ

−
1,2(ζ) and the given internal sources. For

simplicity of notation in obtaining this solution, let rp = r̂ p(w, a), tp = t̂ p(a, w),

R1 = R̂1(w, ζ),..., T2 = T̂ 2(ζ, w), σp = σ̂+t
p (a, w) and �p = �̂

−t
p (ζ, w). Keep in

mind that r1 etc. are all 4M(N + 1) × 4M(N + 1) composite matrices, and that σp

and �p are 4M(N + 1) × 1. These equations then can be placed in matrix form as

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 r1 0
0 0 0 r2
R1 −R2 0 0
R2 R1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
t1 0 0 0
0 t2 0 0
0 0 T1 −T2
0 0 T2 T1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

σ1

σ2

�1

�2

⎤
⎥⎥⎦ .

The solution is then

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

I 0 −r1 0
0 I 0 −r2

−R1 R2 I 0
−R2 −R1 0 I

⎤
⎥⎥⎦

−1
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
t1 0 0 0
0 t2 0 0
0 0 T1 −T2
0 0 T2 T1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

σ1

σ2

�1

�2

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(1.151)
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The needed inverse matrix can be obtained using the block matrix inversion formula

[
A B
C D

]−1

=
[

(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

]
(1.152)

where

A = D =
[
I 0
0 I

]
, B =

[−r1 0
0 −r2

]
, and C =

[−R1 R2

−R2 −R1

]
.

The result is [
I B
C I

]−1

=
[

(I − BC)−1 −B(I − CB)−1

−C(I − BC)−1 (I − CB)−1

]
(1.153)

To return to the 4 × 4 form of Eq. (1.151), apply Eq. (1.152) to each of the blocks of
the inverse:

(I − BC)−1 =
[
I − r1R1 r1R2
−r2R2 I − r2R1

]−1

=
[ [I − r1R1 + r1R2(I − r2R1)

−1r2R2]−1

(I − r2R1)
−1r2R2[I − r1R1 + r1R2(I − r2R1)

−1r2R2]−1

−(I − r1R1)
−1r1R2[I − r2R1 + r2R2(I − r1R1)

−1r1R2]−1

[I − r2R1 + r2R2(I − r1R1)
−1r1R2]−1

]

≡
[
m11 m12
m21 m22

]
(1.154)

−C(I − BC)−1 =
[
R1 −R2
R2 R1

] [
m11 m12
m21 m22

]
=
[
R1m11 − R2m21 R1m12 − R2m22
R2m11 + R1m21 R2m12 + R1m22

]

(I − CB)−1 =
[
I − R1r1 R2r2
−R2r1 I − R1r2

]−1

=
[ [I − R1r1 + R2r2(I − R1r2)

−1R2r1]−1

(I − R1r2)
−1R2r1[I − R1r1 + R2r2(I − R1r2)

−1R2r1]−1

−(I − R1r1)
−1R2r2[I − R1r2 + R2r1(I − R1r1)

−1R2r2]−1

[I − R1r2 + R2r1(I − R1r1)
−1R2r2]−1

]

≡
[
m33 m34
m43 m44

]
(1.155)

and

−B(I − CB)−1 =
[
r1 0
0 r2

] [
m33 m34
m43 m44

]
=
[
r1m33 r1m34
r2m43 r2m44

]
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Equation (1.151) now becomes

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

m11t1 m12t2
m21t1 m22t2

(R1m11 − R2m21)t1 (R1m12 − R2m22)t2
(R2m11 + R1m21)t1 (R2m12 + R1m22)t2

r1m33T1 + r1m34T2 −r1m33T2 + r1m34T1
r2m43T1 + r2m44T2 −r2m43T2 + r2m44T1
m33T1 + m34T2 −m33T2 + m34T1
m43T1 + m44T2 −m43T2 + m44T1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

m11σ1 + m12σ2 + r1m33�1 + r1m34�2

m21σ1 + m22σ2 + r2m43�1 + r2m44�2

(R1m11 − R2m21)σ1 + (R1m12 − R2m22)σ2 + m33�1 + m34�2

(R2m11 + R1m21)σ1 + (R2m12 + R1m22)σ2 + m43�1 + m44�2

⎤
⎥⎥⎦

(1.156)

1.6.3.1 Invariant Imbedding Relations and Imbed Rules for the
Surface Plus the Water Body

Following the notation of Light and Water (L&W 7.65–7.72 and 8.95–8.97), the
matrix elements of the Eq. (1.156) are rewritten as (L&W 7.65–7.66)

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎣
T11(a, w, ζ) T12(a, w, ζ) R11(ζ, w, a) R12(ζ, w, a)

T21(a, w, ζ) T22(a, w, ζ) R21(ζ, w, a) R22(ζ, w, a)

R11(a, w, ζ) R12(a, w, ζ) T11(ζ, w, a) T12(ζ, w, a)

R21(a, w, ζ) R22(a, w, ζ) T21(ζ, w, a) T22(ζ, w, a)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
s1(a, w, ζ)

s2(a, w, ζ)

S1(ζ, w, a)

S2(ζ, w, a)

⎤
⎥⎥⎦ (1.157)

The equations contained in (1.157) are the invariant imbedding relations for [a, ζ].
These relations hold for any internal depth w, a ≤ w ≤ ζ. As a mnemonic aid, note
that depth w, which appears on the left side of the equation, in imbedded within (lies
between) the boundary depths a and ζ. Invariant imbedding relations show how to
compute the radiances at any internal depth, given the radiances incident onto a
slab from above and below.
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TheTi j (a, w, ζ) are known as the complete transmittances for downwelling radi-
ance for the combined slab [a, ζ].Note that thesematrices transmit downwelling radi-
ances from the surface at depth a to depthw, accounting for the infinite series of inter-
nal reflections within the combined slabs.Ri j (a, w, ζ) are the complete reflectances
for downwelling radiance incident onto the sea surface. Likewise, Ti j (ζ, w, a) are
the complete transmittances for upwelling radiance incident onto the bottom of the
combined slab, and Ri j (ζ, w, a) are the corresponding complete reflectances for
upwelling radiance. The s1,2(a, w, ζ) are the complete source-induced downwelling
radiances, and S1,2(ζ, w, a) are the complete source-induced upwelling radiances.
The order of (a, w, ζ) or (ζ, w, a) shows the direction of the incident or internal-
source radiance. The subscripts tell how cosine and sine amplitudes are transformed
as they are transmitted or reflected. Thus T11(a, w, ζ) transmits cosine amplitudes
from a tow,T12(a, w, ζ) transmits from a tow and turns sine amplitudes into cosine
amplitudes in the process, T21(ζ, w, a) transmits from ζ to w and converts cosine
amplitudes to sine amplitudes, and so on.

Writing out the complete reflectances, transmittances, and source matrices in
terms of the standard matrices gives (L&W 7.67–7.69)

T11(ζ, w, a) = [I − R1r1 + R2r2(I − R1r2)
−1R2r1]−1T1

−(I − R1r1)
−1R2r2[I − R1r2 + R2r1(I − R1r1)

−1R2r2]−1T2
(1.158a)

T12(ζ, w, a) = −[I − R1r1 + R2r2(I − R1r2)
−1R2r1]−1T2

−(I − R1r1)
−1R2r2[I − R1r2 + R2r1(I − R1r1)

−1R2r2]−1T1
(1.158b)

T21(ζ, w, a) = (I − R1r2)
−1R2r1[I − R1r1 + R2r2(I − R1r2)

−1R2r1]−1T1

+[I − R1r2 + R2r1(I − R1r1)
−1R2r2]−1T2 (1.158c)

T22(ζ, w, a) = −(I − R1r2)
−1R2r1[I − R1r1 + R2r2(I − R1r2)

−1R2r1]−1T2

+[I − R1r2 + R2r1(I − R1r1)
−1R2r2]−1T1 (1.158d)

R11(ζ, w, a) = r1T11(ζ, w, a) (1.158e)

R12(ζ, w, a) = r1T12(ζ, w, a) (1.158f)

R21(ζ, w, a) = r2T21(ζ, w, a) (1.158g)

R22(ζ, w, a) = r2T22(ζ, w, a) (1.158h)

S1(ζ, w, a) = (R1m11 − R2m21)σ1

+(R1m12 − R2m22)σ2 + m33�1 + m34�2 (1.158i)

S2(ζ, w, a) = (R2m11 + R1m21)σ1

+(R2m12 + R1m22)σ2 + m43�1 + m44�2 (1.158j)

and (L&W 7.70–7.72):
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T11(a, w, ζ) = [I − r1R1 + r1R2(I − r2R1)
−1r2R2]−1t1 (1.159a)

T12(a, w, ζ) = − (I − r1R1)
−1r1R2[I − r2R2 + r2R2(I − r1R1)

−1r1R2]−1t2
(1.159b)

T21(a, w, ζ) = [(I − r2R1)
−1r2R2[I − r1R1 + r1R2(I − r2R1)

−1r2R2]t1
(1.159c)

T22(a, w, ζ) = [I − r2R1 + r2R2(I − r1R1)
−1r1R2]−1t2 (1.159d)

R11(a, w, ζ) = R1T11(a, w, ζ) − R2T21(a, w, ζ) (1.159e)

R12(a, w, ζ) = R1T12(a, w, ζ) − R2T22(a, w, ζ) (1.159f)

R21(a, w, ζ) = R2T11(a, w, ζ) + R1T21(a, w, ζ) (1.159g)

R22(a, w, ζ) = R2T12(a, w, ζ) + R1T22(a, w, ζ) (1.159h)

s1(a, w, ζ) = m11σ1 + m12σ2 + r1m33�1 + r1m34�2 (1.159i)

s2(a, w, ζ) = m21σ1 + m22σ2 + r2m43�1 + r2m44�2 (1.159j)

The source terms are left in terms of themi j matrices simply because these equations
are too lengthy to write out in full.

These equations are the imbed rules for the combined slabs [a, w] and [w, ζ].
Imbed rules show how standard operators for two slabs are combined to generate
complete operators for the composite slab.

1.6.3.2 Interpretation of the Complete Operators

It is worthwhile to consider the physical interpretation of the complete opera-
tors defined in Eqs. (1.158) and (1.159). Consider, for example, T11(a, w, ζ),

which according to Eq. (1.157) converts Ŝ
+
1 (a) into Ŝ

+
1 (w). Grouping the terms of

Eq. (1.159a) as

T11(a, w, ζ) =
(
I − r1R1︸ ︷︷ ︸

A

+ r1R2(I − r2R1)
−1r2R2︸ ︷︷ ︸

B

)−1
t1 , (1.160)

this inverse can be expanded using the formula

(A + B)−1 = A−1 − A−1B(I + A−1B)−1A−1 .

for the inverse of the sum of two matrices. Applying this expansion to T11(a, w, ζ)

with A and B as identified in Eq. (1.160) gives

T11(a, w, ζ) = (I − r1R1)
−1t1

− (I − r1R1)
−1r1R2(I − r2R1)

−1r2R2

×
(
I + (I − r1R1)

−1r1R2(I − r2R1)
−1r2R2

)
(I − r1R1)

−1t1 .

(1.161)
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Now consider the first term on the right hand side of this equation. Expanding the
inverse of (I − r1R1) using the formula

(I − A)−1 = I + A + AA + AAA + · · ·

for the inverse of the identity minus a matrix, and reinserting the depth arguments,
gives

(
I−r1(a, w)R1(w, ζ)

)−1
t1(a, w)

= t1(a, w) + r1(a, w)R1(w, ζ)t1(a, w)

+ r1(a, w)R1(w, ζ)r1(a, w)R1(w, ζ)t1(a, w) + · · · (1.162)

The upper panel of Fig. 1.10 shows the meaning of these terms when T11(a, w, ζ)

operates on the incident radiance Ŝ
+
1 (a). (This figure is similar to L&W Fig.7.1,

which includes the bottomboundary.) The first termof the expansion, t1(a, w) simply

transmits Ŝ
+
1 (a) from above the sea surface at depth a to just below the surface at

depth w. The second term describes radiance that is transmitted through the surface
by t1(a, w), then reflected upward by the water between w and depth ζ by the

operation of R1(w, ζ). This upward reflection creates upwelling radiance Ŝ
−
1 (w) at

depth w. That radiance is then reflected back downward by the air-water surface via

the operation of r1(w, a). The end result is another contribution to Ŝ
+
1 (w). The next

term of the expansion represents another cycle of upward reflection by the water
body followed by downward reflection by the sea surface.

Now consider the expansion of the second term on the right hand side of
Eq. (1.161). Expanding the (I − ri R j )

−1 terms leads to the sequence of terms

rhs second term = −r1(w, a)R2(w, ζ)r2(w, a)R2(w, ζ)t1(a, w)

− r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)t1(a, w) + · · ·

The bottom panel of Fig. 1.10 shows the meaning of the first group of these terms.

First t1(a, w) transmits Ŝ
+
1 (a) through the sea surface as before. Then reflection by

R2(w, ζ) converts the downwelling cosine amplitude Ŝ
+
1 (w) into an upwelling sine

amplitude Ŝ
−
2 (w); recall that the standard operators for the water body R2 and T2

convert cosine amplitudes to sine amplitudes and vice versa. Ŝ
−
2 (w) is then reflected

back downward by the water surface by r2(w, a) to create Ŝ
+
2 (w). That downwelling

sine amplitude is then reflected back upward by the water body via R2(w, ζ), which

converts the sine back to a cosine amplitude Ŝ
−
1 (w),which is reflected backdownward

by r1(w, a). The end result is another contribution to Ŝ
+
1 (w). These terms do not

occur is the SRTE because R2 = 0, but in the VRTE these terms describe conversions
between various components of the Stokes vectors by the elements of the phasematrix.
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Fig. 1.10 Graphical interpretation of the leading terms in the expansion of T11(a, w, ζ)

As another example, consider R11(ζ, w, a), which according to Eq. (1.157) con-

verts Ŝ
−
1 (ζ) into Ŝ

+
1 (w). Performing a similar expansion of terms gives

R11(ζ, w, a) = r1[I − R1r1 + R2r2(I − R1r2)
−1R2r1]−1T1

= r1(w, a)T1(ζ, w) + r1(w, a)R1(w, ζ)r1(w, a)T1(ζ, w) + · · ·
− r1(w, a)R2(ζ, w)r2(w, a)T2(ζ, w)

− r1(w, a)R2(w, ζ)r2(w, a)R1(w, ζ)r2(w, a)T2(ζ, w) + · · ·

Thefirst series of terms is equivalent to the corresponding terms in theSRTE: T1(ζ, w)

transmits upwelling radiance Ŝ
−
1 (ζ) from ζ to the bottom of the sea surface, where

it is reflected back down by r1(w, a) to create Ŝ
+
1 (w), and so on. Figure1.11 shows

the effect of the second group of terms involving T2(ζ, w). Now T2(ζ, w) transmits
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Fig. 1.11 Graphical interpretation of one group of terms in the expansion of R11(ζ, w, a)

radiance from ζ to w, but converts cosine amplitudes to sine amplitudes. These are

then reflected back down by r2(w, a). R1(ζ, w) then reflects the downwelling Ŝ
+
2 (w)

back upward, leaving it as a sine amplitude. Another reflection by r2(w, a) gives a
downwelling sign amplitude, which is the reflected back upward by the water body
and converted back to a cosine amplitude in the process. A final reflection by the

sea surface gives another contribution to Ŝ
+
1 (w). This process does not occur in the

SRTE because T2 = 0.
The other complete operators have similar interpretations. These infinite series of

inter-reflections by the water body and the sea surface shows how invariant imbed-
ding theory automatically accounts for all orders ofmultiple scatteringwithin awater
body and between the water and the surface (or bottom) boundary. This result can be
contrasted with the successive-order-scattering solution method. That method solves
first for terms that represent unscattered radiance, then radiance scattered once, then
radiance scattered twice, and so on. The solution process is then terminated after
some number n of scatterings (often n is just 2 or 3). This gives an approximate
solution of the RTE that represents the radiance due to a finite number of scatterings.
That is, the successive-order-of-scattering solution approximates an infinite series of
scatterings by adding up the first n terms. Invariant imbedding, on the other hand,
solves directly for the analytical sum of the infinite series of scatterings. Thus during
computations, the matrix seen on the right hand side of Eq. (1.160) is inverted. The
expansion of (I − A)−1 as an infinite series is used here only as an aid to the physical
interpretation of these matrices; the inverse is not computed from a series expansion.
The same holds true for the other matrices on the right had sides of Eqs. (1.158) and
(1.159).

1.6.3.3 Global Interaction Equations and Union Rules for the Surface
Plus Water Body

We can now take the second step of the present derivation by using Eq. (1.157) to
replace the internal radiances in Eq. (1.135) with p = 1, 2, (1.138), and (1.140),
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which are (including for complete generality the possibility of internal sources in
[a, w])

Ŝ
−
1 (a) = r̂1(a, w)Ŝ

+
1 (a) + t̂1(w, a)Ŝ

−
1 (w) + σ̂−t

1 (w, a)

Ŝ
−
2 (a) = r̂2(a, w)Ŝ

+
2 (a) + t̂2(w, a)Ŝ

−
2 (w) + σ̂−t

2 (w, a)

Ŝ
+
1 (ζ) = R̂1(ζ, w)Ŝ

−
1 (ζ) + T̂ 1(w, ζ)Ŝ

+
1 (w)

− R̂2(ζ, w)Ŝ
−
2 (ζ) − T̂ 2(w, ζ)Ŝ

+
2 (w) + �̂

+t
1 (w, ζ)

Ŝ
+
2 (ζ) = R̂1(ζ, w)Ŝ

−
2 (ζ) + T̂ 1(w, ζ)Ŝ

+
2 (w)

+ R̂2(ζ, w)Ŝ
−
1 (ζ) + T̂ 2(w, ζ)Ŝ

+
1 (w) + �̂

+t
2 (w, ζ)

Placing these equations in matrix form (again omitting the full matrix amplitude
notation for brevity, so that t1(w, a) here represents t̂1(w, a), etc.) gives

⎡
⎢⎢⎢⎢⎣

Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 t1(w, a) 0
0 0 0 t2(w, a)

T1(w, ζ) −T2(w, ζ) 0 0
T2(w, ζ) T1(w, ζ) 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
r1(a, w) 0 0 0

0 r2(a, w) 0 0
0 0 R1(ζ, w) −R2(ζ, w)

0 0 R2(ζ, w) R1(ζ, w)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

σ̂−t
1 (w, a)

σ̂−t
2 (w, a)

�̂
+t
1 (w, ζ)

�̂
+t
2 (w, ζ)

⎤
⎥⎥⎥⎥⎦

The invariant imbedding Eq. (1.157) is now used to replace the column vector of
internal radiances at depthw in this equation. Carrying out thematrix multiplications
gives (L&W 7.73, 7.74)

⎡
⎢⎢⎢⎢⎢⎣

Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

t1(w, a)R11(a, w, ζ) + r1(a, w)

t2(w, a)R21(a, w, ζ)

T1(w, ζ)T11(a, w, ζ) − T2(w, ζ)T21(a, w, ζ)

T2(w, ζ)T11(a, w, ζ) + T1(w, ζ)T21(a, w, ζ)

t1(w, a)R12(a, w, ζ)

t2(w, a)R22(a, w, ζ) + r2(a, w)

T1(w, ζ)T12(a, w, ζ) − T2(w, ζ)T22(a, w, ζ)

T2(w, ζ)T12(a, w, ζ) + T1(w, ζ)T22(a, w, ζ)
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t1(w, a)T11(ζ, w, a)

t2(w, a)T21(ζ, w, a)

T1(w, ζ)R11(ζ, w, a) − T2(w, ζ)R21(ζ, w, a) + R1(ζ, w)

T2(w, ζ)R11(ζ, w, a) + T1(w, ζ)R21(ζ, w, a) + R2(ζ, w)

t1(w, a)T12(ζ, w, a)

t2(w, a)T22(ζ, w, a)

T1(w, ζ)R12(ζ, w, a) − T2(w, ζ)R22(ζ, w, a) − R2(ζ, w)

T2(w, ζ)R12(a, w, ζ) + T1(w, ζ)R22(a, w, ζ) + R1(ζ, w)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

t1(w, a)S1(ζ, w, a) + σ̂−t
1 (w, a)

t2(w, a)S2(ζ, w, a) + σ̂−t
2 (w, a)

T1(w, ζ)s1(a, w, ζ) − T2(w, ζ)s2(a, w, ζ) + �̂
+t
1 (w, ζ)

T2(w, ζ)s1(a, w, ζ) + T1(w, ζ)s2(a, w, ζ) + �̂
+t
2 (w, ζ)

⎤
⎥⎥⎥⎥⎥⎦

(1.163)

These equations show how the composite slab [a, ζ] responds to incident radi-
ances; they are therefore the global interaction equations for the composite slab.
Global interaction equations are written in terms of standard operators, e.g. as in
Eqs. (1.137)–(1.140). The last equation can therefore be rewritten as
⎡
⎢⎢⎢⎢⎢⎢⎣

Ŝ
−
1 (a)

Ŝ
−
2 (a)

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎣
R11(a, ζ) R12(a, ζ) T11(ζ, a) T12(ζ, a)

R21(a, ζ) R22(a, ζ) T21(ζ, a) T22(ζ, a)

T11(a, ζ) T12(a, ζ) R11(ζ, a) R12(ζ, a)

T21(a, ζ) T22(a, ζ) R21(ζ, a) R22(ζ, a)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

σ̂−t
1 (ζ, a)

σ̂−t
2 (ζ, a)

�̂
+t
1 (a, ζ)

�̂
+t
2 (a, ζ)

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.164)

The equations defining the standard operators for the combined slab are (L&W
7.75–7.77),

R11(a, ζ) = t1(w, a)R11(a, w, ζ) + r1(a, w) (1.165a)

R12(a, ζ) = t1(w, a)R12(a, w, ζ) (1.165b)

R21(a, ζ) = t2(w, a)R21(a, w, ζ) (1.165c)

R22(a, ζ) = t2(w, a)R22(a, w, ζ) + r2(a, w) (1.165d)

T11(ζ, a) = t1(w, a)T11(ζ, w, a) (1.165e)

T12(ζ, a) = t1(w, a)T12(ζ, w, a) (1.165f)

T21(ζ, a) = t2(w, a)T21(ζ, w, a) (1.165g)

T22(ζ, a) = t2(w, a)T22(ζ, w, a) (1.165h)

σ̂−t
1 (ζ, a) = t1(w, a)S1(ζ, w, a) + σ̂−t

1 (w, a) (1.165i)

σ̂−t
2 (ζ, a) = t2(w, a)S2(ζ, w, a) + σ̂−t

2 (w, a) (1.165j)
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and (L&W 7.78–7.80)

R11(ζ, a) = T1(w, ζ)R11(ζ, w, a) − T2(w, ζ)R21(ζ, w, a) + R1(ζ, w) (1.166a)

R12(ζ, a) = T1(w, ζ)R12(ζ, w, a) − T2(w, ζ)R22(ζ, w, a) − R2(ζ, w) (1.166b)

R21(ζ, a) = T2(w, ζ)R11(ζ, w, a) + T1(w, ζ)R21(ζ, w, a) + R2(ζ, w) (1.166c)

R22(ζ, a) = T2(w, ζ)R12(ζ, w, a) + T1(w, ζ)R22(ζ, w, a) + R1(ζ, w) (1.166d)

T11(a, ζ) = T1(w, ζ)T11(a, w, ζ) − T2(w, ζ)T21(a, w, ζ) (1.166e)

T12(a, ζ) = T1(w, ζ)T12(a, w, ζ) − T2(w, ζ)T22(a, w, ζ) (1.166f)

T21(a, ζ) = T2(w, ζ)T11(a, w, ζ) + T1(w, ζ)T21(a, w, ζ) (1.166g)

T22(a, ζ) = T2(w, ζ)T12(a, w, ζ) + T1(w, ζ)T22(a, w, ζ) (1.166h)

�̂
+t
1 (a, ζ) = T1(w, ζ)s1(a, w, ζ) − T2(w, ζ)s2(a, w, ζ) + �̂

+t
1 (w, ζ) (1.166i)

�̂
+t
2 (a, ζ) = T2(w, ζ)s1(a, w, ζ) + T1(w, ζ)s2(a, w, ζ) + �̂

+t
2 (w, ζ) (1.166j)

Recalling that the imbed rules (1.158) and (1.159) define the complete operators
in terms of standard operators, these equations show how the standard operators for
two slabs are combined to obtain the standard operators for a composite slab. One
can imagine holding a and w fixed and “constructing” the water body by letting ζ
increase downward starting at ζ = w. These relations are therefore known as the
downward union rules for the composite slab.

As always, the VRTE equations should reduce to their SRTE equivalents. Thus
T11(ζ, a) reduces to (the transpose of) (L&W 7.75), R11(a, ζ) is the equivalent
of (L&W 7.76), R12(a, ζ) = R21(a, ζ) = 0 and have no scalar equivalents, and
σ̂−t
1 (ζ, a) reduces to (L&W 7.77). Likewise, R11(ζ, a) reduces to (L&W 7.79),

T11(a, ζ) is equivalent to (L&W 7.78), and so on.
A review of the preceding developments is warranted.

• The transfer functions (standard operators) for the air-water surface, r1,2(a, w),
r1,2(w, a), t1,2(a, w), and t1,2(w, a), are known from the surface boundary condi-
tions.

• The standard operators for the bare slab [w, ζ], R1(w, ζ), etc. are known from
the downward sweep integrations of the ODEs (1.96–1.102) beginning with initial
conditions (1.103)–(1.106)

• These two sets of standard operators were combined via the imbed rules (1.157)
and (1.158)–(1.159). Those equations give the radiances at depth w, S±

1,2(w), in
terms of the incident radiances at depths a and ζ. However, the radiances at ζ are
not yet known.

• The global interaction Eqs. (1.163), (1.164) and union rules (1.165j), (1.166j) give
the standard operators R11(a, ζ) etc. for the combined slabs [a, w] ∪ [w, ζ].

• In general the above processwould be repeated to combine the bare slab [ζ,m]with
the lower boundary [m, b]. However, the lower boundary was assumed to be an
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azimuthally isotropic reflecting layer, in which case the Fourier modes decoupled
� value by � value. This allowed the standard operators R1,2(ζ, b) etc. for the
slab [ζ,m] ∪ [m, b] to be obtained by the upward sweep integrations of the ODEs
(1.107)–(1.118) with initial conditions (1.147)–(1.150) for each � value. Thus the
standard operators R1(ζ, b) etc. are known from the upward sweep ODE solutions
and the known bottom reflectance.

1.6.4 Computing the Radiances at Depth w

The next step is to combine slabs [a, ζ], and [ζ, b], both of whose properties are
now known and incorporate the surface and bottom boundary conditions. It will be
convenient first to let ζ = w so as to obtain the upward and downward radiances at
depthw. Those values and the standard operators for slabs [w, ζ] and [ζ, b]will then
be used to obtain the radiances at any depth ζ within the water body. It will then be
possible to obtain the water-leaving radiances. The final step of the solution is then
to compute the physical-space Stokes vectors from the Fourier amplitudes.

The invariant imbedding equation for the depth triplet (a, w, b) can be written
with the same form as Eq. (1.157):

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (w)

Ŝ
−
2 (w)

⎤
⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎣
T11(a, w, b) T12(a, w, b) R11(b, w, a) R12(b, w, a)

T21(a, w, b) T22(a, w, b) R21(b, w, a) R22(b, w, a)

R11(a, w, b) R12(a, w, b) T11(b, w, a) T12(b, w, a)

R21(a, w, b) R22(a, w, b) T21(b, w, a) T22(b, w, a)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (a)

Ŝ
+
2 (a)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
s1(a, w, b)
s2(a, w, b)
S1(b, w, a)

S2(b, w, a)

⎤
⎥⎥⎦ (1.167)

Now, however, the upwelling radiance at depth b is zero because no light enters

the water from below the bottom boundary. Thus Ŝ
−
1,2(b) = 0, and these equations

reduce to (L&W 8.95 and 8.99 with p = 1 and 2)

Ŝ
+
1 (w) =T11(a, w, b)Ŝ

+
1 (a) + T12(a, w, b)Ŝ

+
2 (a) + s1(a, w, b) (1.168)

Ŝ
+
2 (w) =T21(a, w, b)Ŝ

+
1 (a) + T22(a, w, b)Ŝ

+
2 (a) + s2(a, w, b) (1.169)

Ŝ
−
1 (w) =R11(a, w, b)Ŝ

+
1 (a) + R12(a, w, b)Ŝ

+
2 (a) + S1(b, w, a) (1.170)

Ŝ
−
2 (w) =R21(a, w, b)Ŝ

+
1 (a) + R22(a, w, b)Ŝ

+
2 (a) + S2(b, w, a) (1.171)
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The complete operators T11(a, w, b) etc. are given by equations of the same form as
Eqs. (1.154)–(1.156). Thus, in analogy to Eq. (1.159a),

T11(a, w, b) =
[
I − r1(w, a)R1(w, b)

+ r1(w, a)R2(w, b)(I − r2(w, a)R1(w, b))−1r2(w, a)R2(w, b)
]−1

t1(a, w)

(1.172)

and so on.
For the case of no polarization, R2(w, b) = 0 and Eq. (1.168) reduces to (L&W

8.95–8.97 for p = 1)

Ŝ
+
1 (w) = [I − r1(w, a)R1(w, b)]−1t1(a, w)Ŝ

+
1 (a)

+ [I − r1(w, a)R1(w, b)]−1σ(a, w) + r1(w, a)[I − R1(w, b)r1(w, a)]−1�(b, w)

Moreover, in this equation σ(a, w) = 0 because it is assumed that the air-water
surface itself is source free.

Equations (1.168)–(1.171) give the radiances at depth w, Ŝ
±
1,2(w), in terms of the

known incident radiances onto the sea surface, Ŝ
+
1,2(a), and the internal sources in

the water body, S1,2(b, w, a).

1.6.5 Computing the Radiances at Depth ζ

Now that the radiances at depthw are known, they can be used along with the known
standard operators for slab [w, ζ] and for slab [ζ, b] to write down global interaction
equations for the combined slab [w, ζ] ∪ [ζ, b]. These equations have the same form
as the global interaction equations seen before in Eqs. (1.78), (1.80), (1.81), and
(1.83), with the exception that depth m is replaced by b. The result is

Ŝ
+
1 (ζ|�) = R̂1(ζ, w|�)Ŝ−

1 (ζ|�) + T̂ 1(w, ζ|�)Ŝ+
1 (w|�)

− R̂2(ζ, w|�)Ŝ−
2 (ζ|�) − T̂ 2(w, ζ|�)Ŝ+

2 (w|�) + �̂
+t
1 (w, ζ|�) (1.173)

Ŝ
+
2 (ζ|�) = R̂1(ζ, w|�)Ŝ−

2 (ζ|�) + T̂ 1(w, ζ|�)Ŝ+
2 (w|�)

+ R̂2(ζ, w|�)Ŝ−
1 (ζ|�) + T̂ 2(w, ζ|�)Ŝ+

1 (w|�) + �̂
+t
2 (w, ζ|�) (1.174)

Ŝ
−
1 (ζ|�) = R̂1(ζ, b|�)Ŝ+

1 (ζ|�) + T̂ 1(b, ζ|�)Ŝ−
1 (b|�)

− R̂2(ζ, b|�)Ŝ+
2 (ζ|�) − T̂ 2(b, ζ|�)Ŝ−

2 (b|�) + �̂
−t
1 (b, ζ|�) (1.175)

Ŝ
−
2 (ζ|�) = R̂1(ζ,m|�)Ŝ+

2 (ζ|�) + T̂ 1(m, ζ|�)Ŝ−
2 (m|�)
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+ R̂2(ζ, b|�)Ŝ+
1 (ζ|�) + T̂ 2(b, ζ|�)Ŝ−

1 (b|�) + �̂
−t
2 (b, ζ|�) (1.176)

These four equations can be solved for each � value for the internal radiances
at any depth ζ in terms of the known incident radiances at depths w and b. For
this development, drop the � argument and simplify the notation as before, so that
R1(ζ, w) = R̂1(ζ, w|�), etc. Placing these equations in matrix form then gives the
solution, which is similar in form to Eq. (1.151):
⎡
⎢⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

I 0 −R1(ζ, w) R2(ζ, w)

0 I −R2(ζ, w) −R1(ζ, w)

−R1(ζ, b) R2(ζ, b) I 0
−R2(ζ, b) −R1(ζ, b) 0 I

⎤
⎥⎥⎦

−1

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
T1(w, ζ) −T2(w, ζ) 0 0
T2(w, ζ) T1(w, ζ) 0 0

0 0 T1(b, ζ) −T2(b, ζ)

0 0 T2(b, ζ) T1(b, ζ)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

�+t
1 (w, ζ)

�+t
2 (w, ζ)

�−t
1 (b, ζ)

�−t
2 (b, ζ)

⎤
⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.177)

Repeated application of the block matrix inversion formulas (1.152) and (1.153)
can again be used to obtain the inverse of the 4 × 4 block matrix. Letting B and C
be the upper right and lower left 2 × 2 blocks, respectively, gives

(I − BC)−1 =
[
I − R1(ζ, w)R1(ζ, b) + R2(ζ, w)R2(ζ, b)
−R2(ζ, w)R1(ζ, b) − R1(ζ, w)R2(ζ, b)

R1(ζ, w)R2(ζ, b) + R2(ζ, w)R1(ζ, b)
I + R2(ζ, w)R2(ζ, b) − R1(ζ, w)R1(ζ, b)

]−1

≡
[
α β
γ δ

]−1

=
[

(α − βδ−1γ)−1 −α−1β(δ − γα−1β)−1

δ−1γ(α − βδ−1γ)−1 (δ − γα−1β)−1

]
≡
[
n11 n12
n21 n22

]

(1.178)

− C(I − BC)−1 =
[−R1(ζ, b)n11 + R2(ζ, b)n21 −R1(ζ, b)n12 + R2(ζ, b)n22
−R2(ζ, b)n11 − R2(ζ, b)n21 −R2(ζ, b)n12 + R1(ζ, b)n22

]

(1.179)

(I − CB)−1 =
[
I − R1(ζ, b)R1(ζ, w) + R2(ζ, b)R2(ζ, w)

−R2(ζ, b)R1(ζ, w) − R1(ζ, b)R2(ζ, w)

R1(ζ, b)R2(ζ, w) + R2(ζ, b)R1(ζ, 2)
I + R2(ζ, b)R2(ζ, w) − R1(ζ, b)R1(ζ, w)

]−1

≡
[
a b
c d

]−1
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=
[

(a − bd−1c)−1 −a−1b(d − ca−1b)−1

d−1c(a − bd−1c)−1 (d − ca−1b)−1

]
≡
[
p11 p12
p21 p22

]

(1.180)

− B(I − CB)−1 =
[−R1(ζ, w)p11 + R2(ζ, w)p21 −R1(ζ, w)p12 + R2(ζ, w)p22
−R2(ζ, w)p11 − R2(ζ, w)p21 −R2(ζ, w)p12 + R1(ζ, w)p22

]

(1.181)

Equation (1.153) now gives the inverse in Eq. (1.177) as

⎡
⎢⎢⎣

I 0 −R1(ζ, w) R2(ζ, w)

0 I −R2(ζ, w) −R1(ζ, w)

−R1(ζ, b) R2(ζ, b) I 0
−R2(ζ, b) −R1(ζ, b) 0 I

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

n11 n12
n21 n22

−R1(ζ, b)n11 + R2(ζ, b)n21 −R1(ζ, b)n12 + R2(ζ, b)n22
−R2(ζ, b)n11 − R2(ζ, b)n21 −R2(ζ, b)n12 − R1(ζ, b)n22

−R1(ζ, w)p11 + R2(ζ, w)p21 −R1(ζ, w)p12 + R2(ζ, w)p22
−R2(ζ, w)p11 − R2(ζ, w)p21 −R2(ζ, w)p12 + R1(ζ, w)p22

p11 p12
p21 p22

⎤
⎥⎥⎦ (1.182)

Equation (1.177) now becomes

⎡
⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

n11T1(w, ζ) + n12T2(w, ζ)

n12T1(w, ζ) + n22T2(w, ζ)

[−R1(ζ, b)n11 + R2(ζ, b)n21]T1(w, ζ) + [−R1(ζ, b)n12 + R2(ζ, b)n22]T2(w, ζ)

[−R2(ζ, b)n11 − R1(ζ, b)n21]T1(w, ζ) + [−R2(ζ, b)n12 − R2(ζ, b)n22]T2(w, ζ)

n11T2(w, ζ) + n12T1(w, ζ)

−n12T2(w, ζ) + n22T1(w, ζ)

[−R1(ζ, b)n11 + R2(ζ, b)n21][−T2(w, ζ)] + [−R1(ζ, b)p12 + R2(ζ, b)p22]T2(w, ζ)

[−R2(ζ, b)n11 − R1(ζ, b)n21][−T2(w, ζ)] + [−R1(ζ, b)p12 + R2(ζ, b)p22]T2(w, ζ)

[−R1(ζ, w)p11 + R2(ζ, w)p21]T1(b, ζ) + [−R1(ζ, w)p12 + R2(ζ, w)p22]T2(b, ζ)

[−R2(ζ, w)p11 − R1(ζ, w)p21]T1(b, ζ) + ([−R2(ζ, w)p12 − R2(ζ, w)p22]T2(b, ζ)

p11T1(b, ζ) + p12T2(b, ζ)

p21T1(b, ζ) + p22T2(b, ζ)
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[−R1(ζ, w)p11 + R2(ζ, w)p21][−T2(b, ζ)] + [−R1(ζ, w)p12 + R2(ζ, w)p22]T1(b, ζ)

[−R2(ζ, w)p11 − R1(ζ, w)p21][−T2(b, ζ)] + [−R2(ζ, w)p12 − R2(ζ, w)p22]T1(b, ζ)

−p11T2(b, ζ) + p12T1(b, ζ)

−p21T2(b, ζ) + p22T1(b, ζ)

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

n11�
+t
1 (w, ζ) + n12�

+t
2 (w, ζ)

n12�
+t
1 (w, ζ) + n22�

+t
2 (w, ζ)

[−R1(ζ, b)n11 + R2(ζ, b)n21]�+t
1 (w, ζ) + [−R2(ζ, b)n11 − R1(ζ, b)n21]�+t

1 (w, ζ)

[−R2(ζ, b)n11 − R1(ζ, b)n21]�+t
1 (w, ζ) + [−R2(ζ, b)n12 − R1(ζ, b)n22]�+t

1 (w, ζ)

[−R1(ζ, w)p11 + R2(ζ, w)p21]�−t
1 (b, ζ) + [−R1(ζ, w)p12 + R2(ζ, w)p22]�−t

2 (b, ζ)

[−R2(ζ, w)p11 − R1(ζ, w)p21]�−t
1 (b, ζ) + [−R2(ζ, w)p12 − R1(ζ, w)p22]�−t

2 (b, ζ)

p11�
−t
1 (b, ζ) + p12�

−t
2 (b, ζ)

p21�
−t
1 (b, ζ) + p22�

−t
2 (b, ζ)

⎤
⎥⎥⎦

(1.183)

Writing this in terms of complete operators gives

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (ζ)

Ŝ
+
2 (ζ)

Ŝ
−
1 (ζ)

Ŝ
−
2 (ζ)

⎤
⎥⎥⎥⎥⎦

≡

⎡
⎢⎢⎣
T11(w, ζ, b) T12(w, ζ, b) R11(b, ζ, w) R12(b, ζ, w)

T21(w, ζ, b) T22(w, ζ, b) R21(b, ζ, w) R22(b, ζ, w)

R11(w, ζ, b) R12(w, ζ, b) T11(b, ζ, w) T12(b, ζ, w)

R21(w, ζ, b) R22(w, ζ, b) T21(b, ζ, w) T22(b, ζ, w)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ŝ
+
1 (w)

Ŝ
+
2 (w)

Ŝ
−
1 (b)

Ŝ
−
2 (b)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣
S1(w, ζ, b)
S2(w, ζ, b)
S1(b, ζ, w)

S2(b, ζ, w)

⎤
⎥⎥⎦ (1.184)

These equations are the invariant imbedding relationships for depths (w, ζ, b).
The incident radiances at depth w and b are now known, so these equations allow
the radiances at any depth ζ in the water body [w,m] to be computed, including
all effects of the air-water surface, the bottom reflectance, and the internal sources.
These equations are evaluated for each Fourier � mode. It should be noted that the
incident radiance at b is zero for an opaque reflecting bottom, so in practice only the
Ti j (w, ζ, b) and Ri j (w, ζ, b) terms need to be computed. In this case, for example,

Ŝ
+
1 (ζ) = T11(w, ζ, b)Ŝ

+
1 (w) + T12(w, ζ, b)Ŝ

+
1 (w) + S1(w, ζ, b) (1.185)

For the case of no polarization, T12(w, ζ, b) = 0, and this equation reduces to (the
transpose of) L&W (8.103) with p = 1.
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1.6.6 Computing the Water-Leaving Radiances

The only radiances still unknown are the water-leaving radiances Ŝ
−
1,2(a). Now that

the upwelling radiances at depth w are known, the water-leaving radiances can be
obtained from the surface boundary condition (1.135) (L&W 8.107):

Ŝ
−
p (a) = r̂ p(a, w)Ŝ

+
p (a) + t̂ p(w, a)Ŝ

−
p (w) (1.186)

with p = 1, 2. Because the surface-boundary Fourier modes do not decouple, this
equation must be evaluated simultaneously for all � modes via the 4M(N + 1) ×
4M(N + 1) compositematrices as seen in Eqs. (1.132) and (1.133), and the 4M(N +
1) × 1 vectors of Eq. (1.134).

1.6.7 Synthesis of the Physical-Space Stokes Vectors

We have now obtained the Fourier amplitudes of the Stokes vectors at all depths. The
final step of the solution of the VRTE is to reconstitute the quad-averaged Stokes

vectors in physical space. The 4M × 1 column vectors Ŝ
−±
1,2 are “unstacked” as in

Eq. (1.71) to obtain the 4 × 1 Stokes vector amplitudes Ŝ
±
1,2(ζ, u|�) for each u and

� value. The physical Stokes vectors are then obtained via Eq. (1.52) (L&W 8.108).
Evaluation of that equation at each depth a, w = ζ1, ζ2, ..., ζK = m, for each value of
u = 1, ..., M and v = 1, 2, ..., 2N , gives the desired quad-averaged Stokes vectors.

This completes the solution of the vector radiative transfer equation.

Acknowledgements This work was supported by NASAContract NNH12CD06C titled Radiative
Transfer Modeling for Improved Ocean Color Remote Sensing. I thank three anonymous reviewers
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A Fourier Analysis of Discrete Functions

The invariant imbedding solution algorithm for the directionally discretized VRTE
employs a Fourier decomposition of the equations in azimuthal direction. This
appendix collects for reference various results for the Fourier decomposition of dis-
crete functions of azimuthal angle, as needed in Sect. 1.5.

A.1 Functions of One Azimuthal Angle

Let fv ≡ f (φv) be any discrete function of the azimuthal angle φ, i.e., fv is defined
only at the discrete valuesφv = (v − 1)Δφ, for v = 1, 2, ..., 2N . HereΔφ = 2π/2N
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is the angular width of a quad as shown in Fig. 1.5; Δφ is the same for each quad.
Let δk be the Kronecker delta function defined by

δk ≡
{
1 if k = 0

0 if k 	= 0
or equivalently δk−� ≡

{
1 if k = �

0 if k 	= �
(1.187)

where k and � are integers.
The discrete orthogonality relations for sines and cosines can then be written

2N∑
s=1

cos(kφs) cos(�φs) =

⎧⎪⎨
⎪⎩

0 if k 	= �

N if k = � and � = 1, 2, ..., N − 1

2N if k = � and � = 0or� = N

= N (δk+� + δk−� + δk+�−2N ) (1.188)

2N∑
s=1

sin(kφs) sin(�φs) =

⎧⎪⎨
⎪⎩

0 if k 	= �

N if k = � and � = 1, 2, ..., N − 1

0 if k = � and � = 0 or� = N

= N (δk−� − δk+� − δk+�−2N ) (1.189)

and
2N∑
s=1

cos(kφs) sin(�φs) = 0 for all k and �. (1.190)

A discrete function of one azimuthal angle (e.g., a discretized Stokes vector
S(ζ, u, v, j) with the depth ζ, polar angle u, and wavelength j being held constant)
has the Fourier spectral decomposition

f (v) =
N∑

�=0

[
f̂1(�) cos(�φv) + f̂2(�) sin(�φv)

]
(1.191)

where v = 1, 2, ..., 2N . The notation f̂ denotes a Fourier amplitude of the corre-
sponding physical variable f ; subscript 1 denotes cosine amplitudes and subscript
2 denotes sine amplitudes. The cosine amplitudes f̂1(�) are obtained by multiplying
Eq. (1.191) by cos(kφv), summing over v, and applying the orthogonality relations
to get

f̂1(�) = 1

εl

2N∑
v=1

f (v) cos(�φv) for � = 0, 1, ..., N (1.192)
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where

ε� = N (1 + δ2� + δ2�−2N ) =
{
2N if � = 0 or � = N

N if � = 1, 2, ..., N − 1
(1.193)

Note that the f̂1(0) amplitude is just the average value of f (v). The sine amplitudes
f̂2(�) are obtained in a similar way by multiplying (1.191) by sin(kφv):

f̂2(�) = 1

γl

2N∑
v=1

f (v) cos(�φv) for � = 1, ..., N − 1 (1.194)

where

γ� = N (1 − δ2� − δ2�−2N ) =
{
0 if � = 0 or � = N

N if � = 1, 2, ..., N − 1
(1.195)

Note that values of γ0 = γN = 0 do not occur in Eq. (1.194) for the sine amplitudes.
If f (v) is a constant f then f̂1(0) = f and all other cosine and sine components are

zero. This is the case for a polar cap radiance, which has no azimuthal dependence. In
general, the 2N values of f (v) are determined exactly by the N + 1cosine amplitudes
and the N − 1 sine amplitudes; the information content of the physical and Fourier
representations is the same. In the Fourier decomposition of discrete functions all
terms must be included; there can be no truncation of these summations.

A.2 Functions of the Difference of Two Azimuthal Angles

Let gcos(v, s) = g[cos(φv − φs)] be a discrete cosine function of φv − φs , where φv

and φs are two azimuthal angles and v, s = 1, ..., 2N . Then gcos(v, s) has the Fourier
expansion (L&W 8.24)

gcos(v, s) =
N∑

k=0

ĝ1(k) cos[k(φv − φs)] . (1.196)

Multiplying this equation by cos(�φv), summing over v, expanding the cosine, and
using the orthogonality relations gives (L&W 8.25)

ĝ1(�) = 1

ε� cos(�φs)

2N∑
v=1

gcos(v, s) cos �φv) for � = 0, ..., N . (1.197)
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Similarly, let gsin(v, s) = g[sin(φv − φs)] be a discrete sine function of φv − φs .
Then gsin(v, s) has the Fourier expansion

gsin(v, s) =
N−1∑
k=1

ĝ2(k) sin[k(φv − φs)] . (1.198)

Multiplying this equation by sin(�φv), summing over v, expanding the sine, and
using the orthogonality relations gives

ĝ2(�) = 1

γ� cos(�φs)

2N∑
v=1

gsin(v, s) sin �φv) for � = 1, ..., N − 1 . (1.199)

These expansions will be used for the elements of the phase matrix, which depend
on either the cosine or the sine of φv − φs . Note that in Eqs. (1.197) and (1.199), the
choice φs = φ1 = 0 can be made without loss of generality. This merely anchors the
difference φv − φs to φ1 = 0. The computer code then needs to compute and store
phase function elements only for the range of v = 1, ..., N + 1, which generates
all discretized scattering angles ψ as φv = 0 to 180◦. The phase matrix element
P(r, s → u, v) is then obtained from the stored value of P(r, 1 → u, v − s + 1),
which can be stored as a three-index array P(r, u, v).

A.3 Functions of Two Azimuthal Angles

Finally, let h(s, v) = h(φs,φv) be an arbitrary function of two azimuthal angles.
Then h(s, v) can be represented as

h(s, v) =
N∑

k=0

N∑
�=0

ĥ11(k, �) cos(kφs) cos(�φv)

+
N∑

k=0

N∑
�=0

ĥ12(k, �) cos(kφs) sin(�φv)

+
N∑

k=0

N∑
�=0

ĥ21(k, �) sin(kφs) cos(�φv)

+
N∑

k=0

N∑
�=0

ĥ22(k, �) sin(kφs) sin(�φv) . (1.200)

To find ĥ11, multiply Eq. (1.200) by cos(k ′φs) cos(�′φv), sum over s and v, and apply
the orthogonality relations. The other three amplitudes are found in an analogous
manner. The results are
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ĥ11(k, �) = 1

εkε�

2N∑
s=1

2N∑
v=1

h(s, v) cos(kφs) cos(�φv) ,

ĥ12(k, �) = 1

εkγ�

2N∑
s=1

2N∑
v=1

h(s, v) cos(kφs) sin(�φv) ,

ĥ21(k, �) = 1

γkε�

2N∑
s=1

2N∑
v=1

h(s, v) sin(kφs) cos(�φv) ,

ĥ22(k, �) = 1

γkγ�

2N∑
s=1

2N∑
v=1

h(s, v) sin(kφs) sin(�φv) . (1.201)

The arbitrary zero sine amplitudes f̂2(0) and f̂2(N ) have their counterparts here:

ĥ12(k, 0) = ĥ12(k, N ) = 0 for k = 0, ..., N ,

ĥ21(0, �) = ĥ21(N , �) = 0 for � = 0, ..., N ,

ĥ22(0, 0) = ĥ22(0, N ) = ĥ22(N , 0) = ĥ22(N , N ) = 0 . (1.202)

These special cases allow the exclusion of any k or � values in Eq. (1.201) that would
result in division by zero resulting from the γk and γ� factors.

Equations (1.200)–(1.202) are applicable to the air-water surface transfer func-
tions. However, the symmetries of those functions result in considerable simpli-
fication. In particular, all ĥ12(k, �) and ĥ21(k, �) are zero for the surface transfer
functions.

The equations of Sect. 1.5.3 contain sums over k and � having the form

S1 =
N∑
l=0

N∑
k=0

f (k)g(�)

[
2N∑
s=1

cos[k(φv − φs)] cos(�φs)

]

where f (k) and g(�) are discrete functions of k and � for k, � = 0, ..., N . Application
of the the trigonometric formula for the cosine of the difference of two angles and
the previous equations reduces this to

S1 =
N∑
l=0

N∑
k=0

f (k)g(�)

{[ 2N∑
s=1

cos(kφs) cos(�φs)

]
cos(kφv)

+
[

2N∑
s=1

sin(kφs) cos(�φs)

]
sin(kφv)

}

=
N∑
l=0

N∑
k=0

f (k)g(�) N (δk+� + δk−� + δk+�−2N ) cos(kφv)
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=
N∑
l=0

f (�)g(�) N (1 + δ2� + δ2�−2N ) cos(�φv)

=
N∑
l=0

ε� f (�)g(�) cos(�φv) . (1.203)

The same process gives

S2 =
N∑
l=0

N∑
k=0

f (k)g(�)

[
2N∑
s=1

cos[k(φv − φs)] sin(�φs)

]

=
N∑
l=0

N∑
k=0

f (k)g(�) N (δk−� − δk+� − δk+�−2N ) sin(kφv)

=
N∑
l=0

f (�)g(�) N (1 − δ2� − δ2�−2N ) sin(�φv)

=
N∑
l=0

γ� f (�)g(�) sin(�φv) . (1.204)

Likewise

S3 =
N∑
l=0

N∑
k=0

f (k)g(�)

[
2N∑
s=1

sin[k(φv − φs)] cos(�φs)

]

=
N∑
l=0

ε� f (�)g(�) sin(�φv) , (1.205)

and

S4 =
N∑
l=0

N∑
k=0

f (k)g(�)

[
2N∑
s=1

sin[k(φv − φs)] sin(�φs)

]

= −
N∑
l=0

γ� f (�)g(�) cos(�φv) . (1.206)

Note the minus sign in the last equation.
These results for the Fourier decomposition of discrete functions of one or two

azimuthal angles provide all of the tools necessary for converting the discretized
physical-space VRTE into discretized equations in Fourier space.
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Chapter 2
Multiple Scattering of Light in Ordered
Particulate Media

Valery A. Loiko and Alexander A. Miskevich

2.1 Introduction

The particulate structures with short- and long-range order in spatial arrangement
of scatterers are distinguished among the huge amount of optically inhomogeneous
(scattering) media. In these structures strong coherent light scattering and interfer-
ence effects are implemented.

Snow, ice, foam, biological tissues, photographic layers, milk glasses, dispersion
filters, island films, luminescent screens, paper, etc. are examples of short-range
ordered media.

The crystal-like structures with periodic and near to periodic spatial particle loca-
tion relate to class of the long-range ordered systems. There is great number of
photonic and optoelectronic objects and devices belonging to this class. For exam-
ple, some types of metamaterials, photonic crystals, antireflection coatings, light fil-
ters, reflectors, waveguides, resonators, light emitting diodes, solar cells, detectors,
lasers, communication systems, multiplexers, microantenna substrates, biological
objects, etc. are based on ordered particulate structures. Pronounced crystal-like
structure of spatially ordered particulate systems determines the choice of approaches
for their studying. Most complete theoretical description of their optical properties
yield quantum-mechanical methods and methods of the theory of multiple scatter-
ing of waves since they takes into account effects of multiple scattering, diffraction
and interference of waves. Quantum-mechanical methods are based on the extension
of the theory developed in quantum physics to analyze scattering (diffraction) of
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elementary particles in crystals to the case of photons. They are convenient to describe
scattering in the structures with perfect lattices.

Statistical methods of the theory of multiple scattering of waves (TMSW) are
generally used to determine the optical properties of ensembles with random and
partially ordered arrangement of particles. Under these methods the ensemble struc-
ture is described by many-particle distribution functions characterizing the proba-
bility of relative spatial position of particles. Knowledge of N -particle distribution
function allows one to obtain rigorous solution of scattering problem for ensemble
of N particles. However, its determination is a very difficult task, especially for large
N . Therefore, as a rule, within the TMSW one finds the approximate solution that
requires knowledge of only the s-particle (s << N ) function. To simulate densely
packed particulate media the two-particle distribution function is usually used. For
statistically homogeneous ensembles is used the radial distribution function. It char-
acterizes the probability of the location of any two particles in space at a certain
distance from each other.

Well-developed mathematical apparatus of the TMSW and methods for finding
the radial distribution functions to describe the particulate media with a short-range
order (partially ordered media) on the one hand and quantum-mechanical approach
for media with long-range order on the other hand led to the accumulation of vast the-
oretical data on scattering by ensembles with random, partially ordered, and perfect
(strictly regular) arrangement of particles.

Much less attention is paid to structures with imperfect lattices. The quantitative
account of imperfection is an important scientific and practical problem, because its
solution allows one to optimize optical characteristics of the ordered structures. Devi-
ations from the perfection are usually (except for specially created lattice defects)
have a random (statistical) nature. Therefore, to simulate the interaction of light with
such structures it is reasonable to use a statistical approach of the TMSW.

This chapter is mainly devoted to review of the works on light scattering by short-
and long-range ordered ensembles of particles. The described results can be used for
solution of a number of practical problems of optics, photonics and optoelectronics.

2.2 Basic Approaches to Describe Wave Propagation
and Scattering in Particulate Media

2.2.1 Interaction of Waves with Ensembles of Discrete
Scatterers

In this section we consider the most common methods to describe the interaction of
waves with ensembles (three-dimensional in the general case) of discrete scatterers.
There are two main approaches to solve the problem of multiple scattering of waves
in such ensembles: the radiative transfer theory and the rigorous analytic theory
(Ishimaru 1978a).
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The theory of the radiative transfer, describing the energy transfer in a particulate
medium, was developed in the late 19th - early 20th centuries by Lommel (1887),
Chwolson (1889), and Schuster (1905). This theory is based on the transport equa-
tion operating with the wave intensities and phenomenological characteristics of the
medium (coefficients of scattering, absorption, and extinction and the phase func-
tion (also known as the scattering indicatrix)). This theory assumes no correlation
in the particle positions. It is successfully used to solve the problems of the atmo-
sphere and ocean optics, analysis of the propagation of radiation in the atmospheres
of planets, stars and galaxies, and other random media (Ishimaru 1978a, b; Sobolev
1956b; Chandrasekhar 1960; Ivanov et al. 1988; Apresian and Kravtsov 1983; Zege
et al. 1991a; Mishchenko et al. 2006). The theory is valid when the distance between
particles are much larger than their size and the wavelength of the incident light.

A rigorous theory (also known as the wave theory) or the theory of multiple
scattering of waves (TMSW) is based on the solution of the fundamental equations
for fields of waves scattered by ensembles of particles. It takes into account effects
of multiple scattering, diffraction and interference. This theory is used to solve the
problem of wave scattering by particulate media, when the contribution of multiple
scattering in the resulting field has to be taken into account.

The problem is solved analytically only for simplest systems. In 1935, Trinks
solved it for two small spheres symmetrically arranged with respect to the direction
of illumination (Trinks 1935). Germogenova (1964) generalized this approach for
the case of spheres of different sizes and arbitrary direction of illumination. Twersky
(1962c) applied the “successive-scattering” procedure to describemultiple scattering
on two identical scatterers (in fact - point scatterers) at normal (to the line connecting
the centers of the particles) illumination by a plane wave. Liang and Lo (1967) and
Bruning and Lo (1971a, b) solved the problem of multiple scattering of electromag-
netic (EM) waves on two spheres with arbitrary sizes and refractive indices. Fuller
and Kattawar (1988a, b) proposed technique to calculate scattering characteristics
of two and more spheres. It is based on the expansion of the field of the scattered
wave in terms of orders of scattering. Cooray and Ciric (1989) solved the problem of
EMwave scattering by system of two perfectly conducting arbitrary oriented prolate
spheroids.

When themore complex systems are considered, e.g. ensembles consistingof large
number of arbitrary arranged particles with arbitrary size, shape, orientation, etc.,
commonly used approach is based on the self-consistency of equations describing the
field in the observation point. Self-consistency procedure is based on the assumption
that the wave emitted by each scatterer is determined by the effective field acting
on the scatterer. This field is the sum of field of incident wave and fields of waves
emitted by the other scatterers (the effective field includes all scattering orders).
Self-consistency procedure, also called as the self-consistent approach or the self-
consistent field method (see., e.g., Lax 1951; Vereshchagin et al. 1991; Ponyavina
and Silvanovich 1994; Bogomolov et al. 1997; Zamkovets et al. 2003b; Ponyavina
et al. 2004 where the method was used to find the field in the systems composed
of particulate monolayers), was suggested by Ewald to describe X-ray scattering by
crystals (Ewald 1916). Foldy applied it to solve the problem of multiple scattering
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of scalar waves by media with randomly distributed point scatterers (Foldy 1945).
Later the procedure became the basis for most studies within the TMSW.

Consider the equations of the TMSW and the procedure of their self-consistency
(Foldy 1945; Lax 1951) on the example of system of point scatterers in the scalar
field. Let there be a medium consisting of N >> 1 particles placed in the scalar
field ψ i of the incident wave satisfying the wave equation (Helmholtz equation):
∇2ψ + k2ψ = 0,where k is thewave number in themediumwithout of particles. The
particles are distributed in the volume V , their positions are specified by the radius-
vectors r1, r2, . . . , rN . Field ψr at some point r outside the particles is determined
by the sum of the filed ψ i

r of incident wave and the fields of waves scattered by all
the particles:

ψr = ψ i
r +

N∑

j=1

tr jψ
e
j , (2.2.1)

where the tr jψe
j quantity describes field scattered into the point r by j-th particle

acted by the effective fieldψe
j , tr j is the scattering operator. The effective field acting

on a particle (e.g., k-th) is the sum of the filedψ i
k of incident wave and fields of waves

scattered by other particles:

ψe
k = ψ i

k +
N∑

j=1, j �=k

tk jψ
e
j . (2.2.2)

Formulae (2.2.1) and (2.2.2) are the basic equations of the TMSW.
Field ψr, i.e. the solution of Eq. (2.2.1), can be found by the order-of-scattering

expansionoffields included in (2.2.1) and (2.2.2) (seeAppendix).However, for arrays
consisting of huge number (N → ∞) of arbitrary arranged particles this method is
impractical due to computational complexity.

It is convenient to express the unknown field ψr as the sum of coherent 〈ψr〉
(average field) and incoherent vr (fluctuating field) components: ψr = 〈ψr〉 + vr
and use statistical approach for these fields determination. The procedure of finding
the 〈ψr〉 and vr fields is described, for example, in the works of Lax (1951, 1952).

Let us consider derivation of the equations for the average field 〈ψr〉. Assume
that an ensemble consists of N → ∞ particles. Their positions and states (size,
orientation, optical constants, etc.) in general are arbitrary. The average field at the
point r can be obtained by averaging the fieldψr , found for all possible configurations
of the positions and states of particles. That is practically impossible-doing taskwhen
N → ∞. Therefore, the other approach, developed by Foldy (1945), is used. It is
based on averaging the total (ψr) and effective (ψe) fields in Eqs. (2.2.1) and (2.2.2)
and finding the solutions for average quantities.

Averaging is carried out by the integration over the volume V where the scatterers
are located using the multiparticle probability distribution functions describing the
distribution of particles over the spatial position and state. The quantity averaged in
such a manner is known as the configurational average (Foldy 1945). N -particle



2 Multiple Scattering of Light in Ordered Particulate Media 105

probability distribution function has the form: p(r1, r2, . . . , rN ; s1, s2, . . . , sN ),
where ri and si describe spatial position and state of i-th particle. The prob-
ability of finding the first particle in the elementary volume dr1 in the neigh-
borhood of r1 in the state ds1, the second particle in the elementary volume
dr2 in the neighborhood of r2 in the state ds2 etc. is defined as follows: dw =
p(r1, r2, . . . , rN ; s1, s2, . . . , sN )dr1dr2 . . . drNds1ds2 . . . dsN .

The probability distribution function is normalized:

∫

V

p(r1, r2, . . . , rN ; s1, s2, . . . , sN )dr1dr2 . . . drNds1ds2 . . . dsN = 1. (2.2.3)

Here and below is used a short notation for the integrals:

∫

V

f (r1, . . . , rN ; s1, . . . , sN )dr1 . . . drNds1 . . . dsN

≡
∫

V

dr1 . . .

∫

V

drN

∫

V

ds1 . . .

∫

V

dsN f (r1, . . . , rN ; s1, . . . , sN ).

The expression for the field, averaged over the ensemble, can be written as:

〈ψr〉 =
∫

V

ψr(r1, r2, . . . , rN ; s1, s2, . . . , sN )p(r1, r2, . . . , rN ; s1, s2, . . . , sN )

dr1dr2 . . . drNds1ds2 . . . dsN . (2.2.4)

If the position and state of, for example, the first particle is known (in other words,
if the particle is fixed in the point r1 and state s1), the field averaged over all other
particles can be written as (Lax 1951):

〈ψr〉1 =
∫

V

ψr(r1, r2, . . . , rN ; s1, s2, . . . , sN )p(r2, . . . , rN ; s2, . . . , sN |r1; s1)

dr2 . . . drNds2 . . . dsN , (2.2.5)

where the subscript “1” in 〈ψr〉1 denotes averaging over the positions and states
of all the particles but for the first one, the p(r2, . . . , rN ; s2, . . . , sN |r1; s1)dr2 . . .

drNds2 . . . dsN describes the conditional probability of finding all particles, except
for the first one, at the points r2, . . . , rN in the states s2, . . . , sN , with condition that
the first one is located at r1 in the state s1.
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If two particles are fixed at r1 and r2 points in s1 and s2 states, then

〈ψr〉1,2 =
∫

V

ψr(r1, r2, . . . , rN ; s1, s2, . . . , sN )p(r3, . . . , rN ; s3, . . . , sN |r1, r2; s1, s2)

dr3 . . . drN ds3 . . . dsN (2.2.6)

The probability distribution is associated with the distribution of particle concen-
tration (density) (Lax 1951):

ρ(r1; s1) = Np(r1; s1), (2.2.7)

ρ(r1, r2; s1, s2) = N 2 p(r1, r2; s1, s2). (2.2.8)

Here ρ(r1; s1) is the concentration (density) of particles in the state s1 in a neigh-
borhood of r1, ρ(r1, r2; s1, s2) is the concentration of particles in the state s1 in a
neighborhood of r1 and particles in the state s2 in a neighborhood of r2.

Using Eqs. (2.2.3)–(2.2.6) we can write the equation for the average field 〈ψr〉 at
some point r outside the particles. The expression (2.2.1) takes the form:

〈ψr〉 = ψ i
r +

N∑

j=1

∫

V

tr j
〈
ψe

j

〉
j
p(r j ; s j )dr jds j . (2.2.9)

The right side of Eq. (2.2.9) contains two averaging operations.One of themdescribes
the averaging the effective field acting on the j-th particle located at point r j in
state s j , over all possible positions and states of other particles: 〈ψe

j 〉 j . This field is
differed from the average field 〈ψr〉 by contribution from the j-th particle. Another
one describes the field scattered by the j-th particle into the point r, averaged over the

position and the state of the particle:
∫

V
tr j
〈
ψe

j

〉

j
p(r j ; s j )dr jds j . This integral gives

the contribution to the average field 〈ψr〉 from the particle averaged over all possible
locations and states in the volume V . From this it follows that for any j = [1 . . . N ]
(i.e. any “averaged” particle of the ensemble) the integral has the same value (at that
index j is the summation index over all particles rather than specific particle number,
and r j and s j are the dummy variables of integration). Accordingly, in Eq. (2.2.9) are

summed up N identical integrals: 〈ψr〉 = ψ i
r + N

∫

V
tr j
〈
ψe

j

〉

j
p(r j ; s j )dr jds j . Using

Eq. (2.2.7), we obtain:

〈ψr〉 = ψ i
r +

∫

V

tr j
〈
ψe

j

〉
j
ρ(r j ; s j )dr jds j . (2.2.10)
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If the states of particles do not depend on particle locations, then ρ(r j ; s j ) =
ρ(r j )ρ(s j ) and Eq. (2.2.10) takes the form: 〈ψr〉 = ψ i

r + ∫
V
tr j
〈
ψe

j

〉

j
ρ(r j )ρ(s j )dr j

ds j . If the states of all particles are the same, and particle concentration is constant
throughout the volumeunder consideration (ρ(r j ) = ρ0 = const), then 〈ψr〉 = ψ i

r +
ρ0
∫

V
tr j
〈
ψe

j

〉

j
dr j .

A rigorous solution of Eq. (2.2.10) can be obtained as follows. Averaging Eq.
(2.2.2) by analogy with Eq. (2.2.1) yields (Lax 1951, 1952):

〈
ψe

k

〉
k = ψ i

k +
∫

V

tk j
〈
ψe

j

〉
jk

ρ(r j ; s j |rk; sk)dr jds j . (2.2.11)

Thus, the effective field
〈
ψe

j

〉

j
with one fixed particle (Eq. (2.2.10)) is expressed in

terms of effective field
〈
ψe

j

〉

jk
with two fixed particles, which, in turn, is expressed

in terms of effective field
〈
ψe

j

〉

jkl
with three fixed particles:

〈
ψe

k

〉
kl = ψ i

k +
∫

V

tk j
〈
ψe

j

〉
jkl

ρ(r j ; s j |rk, rl; sk, sl)dr jds j . (2.2.12)

Expressing in this manner the effective field with n fixed particles through the effec-
tive field with n + 1 fixed particles one can obtain hierarchy of N equations for
finding the avarage field; Eqs. (2.2.10)–(2.2.12) are the first three of them. The solu-
tion of N equations of the hierarchy allows one to find the average field at a point r
outside the particles for an N -particle ensemble.

If all particles are located in the sites of perfect crystal lattice, then to obtain a
rigorous solution only two Eqs. (2.2.10) and (2.2.11) are needed. In this case, any
fixed particle and two-particle distribution function completely describe structure of
the ensemble. Fixation of one or two particles yields the same result for the effective

field:
〈
ψe

j

〉

j
=
〈
ψe

j

〉

jk
. That allows one to write the integral equation

〈
ψe

k

〉
k

= ψ i
k +

∫

V

tk j
〈
ψe

j

〉
j
ρ(r j ; s j |rk; sk)dr jds j . (2.2.13)

Its solution gives the effective field.
In general, the accuracy of the solution of Eq. (2.2.10) depends on the number

of Eqs. (2.2.10)–(2.2.12), etc. taken into account in calculation. In some cases, the
approximations yield a good accuracy when the number of equations much smaller
than N .
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The simplest in the framework of this “hierarchical” approach is the single scat-
tering approximation (SSA) in which the effective field (in Eq. (2.2.10)) is replaced

by the incident wave field
〈
ψe

j

〉

j
≈ ψ i

j :

〈ψr〉 = ψ i
r +

∫

V

tr jψ
i
jρ(r j ; s j )dr jds j . (2.2.14)

This replacement means that each particle is illuminated only by the incident wave:
contributions from the other particles are not taken into account. In this case only
interference of singly scattered waves at the observation point r is taken into account,
and the reillumination between particles is neglected. For thin layers and monolayers
of particles, this approximation can be successfully used at low concentrations, for
large (in comparison with the wavelength) sizes of particles and for particles with a
strongly elongated phase functions (Ivanov et al. 1988).

For ensemble of point scatterers Foldy suggested approximation, in which the

effective field is replaced by the average field (Foldy 1945):
〈
ψe

j

〉

j
≈ 〈ψ j

〉
. In this

case Eq. (2.2.10) takes the form:

〈ψr〉 = ψ i
r +

∫

V

tr j
〈
ψ j
〉
ρ(r j ; s j )dr jds j , (2.2.15)

where
〈
ψ j
〉
is the field at the point r j , averaged over the positions and states of all

the particles, except for the j-th particle (i.e., the average field, which would exist at
the point r j in the absence of the j-th particle, created by all other particles). In this
approximation it is neglected the contribution from the j-th particle in the effective
field at point r j . Since the effective field at this point is differed from the average
field by contribution from a single particle, the Foldy approximation, also known as
the effective field approximation (EFA) (Tsang and Kong 1980; Wang et al. 1994;
Siqueira and Sarabandi 1996; Guérin et al. 2006; Barrera et al. 2007) gives the more
accurate results, the larger number N of particles is considered. A number of studies
have shown that the Foldy approximation is valid for sparsemediawhen correlation in
spatial arrangement of particles is negligible (Wang et al. 1994;Waterman and Truell
1961; Brown 1980; Javanaud and Thomas 1988). Thus, according to the estimation
made in Javanaud and Thomas (1988), the range of its applicability is limited to the
volume filling factor (volume fraction of particles in the considered space region)
ηV ≈ 0.01.

The discrepancy of the results obtained in the Foldy approximationwith the exper-
imental data (see, for example, Wang et al. 1994, West et al. 1994) for the densely
packed media can also be interpreted from general physical considerations. Indeed,
with particle concentration increasing, main contribution to the effective field acting
on some particle, e.g. j-th one, is produced by its neighbors. This occurs because
the particle in question is “shielded” by a “shell” from neighboring particles, which
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diminish its interaction with the other (located outside the “shell”) ones. Thus, the
total field is mainly formed by a relatively small number of closely spaced particles.
It means that each of them contributes significantly to the formation of the average
field, and the effective field acting on j-th particle is significantly differed from the
average field produced by all these particles including j-th one. Correspondingly,
the replacement of the effective field by the average one leads to incorrect results.

At considering the densely packed particulate media (when finiteness of particle
sizes is the essential factor) the approximations of higher orders should be used.
To describe scattering in such media Lax suggested quasicrystalline approxima-
tion (QCA) (Lax 1952). In this approach it is assumed that the effective field at
one fixed particle approximately equals to the effective field at two fixed particles:〈
ψe

j

〉

j
≈
〈
ψe

j

〉

jk
. At this assumption hierarchy of Eqs. (2.2.10)–(2.2.12), etc. reduces

to two equations: (2.2.10) and (2.2.13). In the case of perfect crystals the QCA gives
the rigorous solution (see Eq. (2.2.13)), since fixation of one or two particles leads
to the same result for the effective field. In other words, the structure of ensem-
ble is completely described by a single fixed particle and two-particle distribution
function (fixation of the second particle does not give addition information about

the ensemble). Accordingly, for any two particles
〈
ψe

j

〉

j
=
〈
ψe

j

〉

jk
, and Eq. (2.2.11)

includes the effective fields of the same type (Lax 1952). In the case of partially
ordered ensembles the QCA gives an approximate solution which is the more accu-
rate the closer the structure of medium to the structure of perfect crystal. Therefore,
the approximation had been called as “quasicrystalline” (Lax 1952). The QCA is
widely used in study of the densely packed particulate media (Tsang and Kong 1980,
1982a, 1983, 1992b; West et al. 1994; Varadan et al. 1979, 1983, 1984, 1985a, b,
1987, 1989; Ma et al. 1988, 1990; Tsang and Ishimaru 1985b; Tsang et al. 1982,
1992, 2000, 2007; Ding and Tsang 1988; Varadan and Varadan 1980; Bringi et al.
1982; Davis and Schwartz 1985; Ao and Kong 2002; Tishkovets and Jockers 2006;
Tishkovets 2007, 2010; Tishkovets et al. 2011; Dick and Ivanov 1999; Maurel et al.
2010; Parnell and Abrahams 2010; Parnell and Martin 2011), because it provides a
good agreement with the experimental data (Ponyavina and Silvanovich 1994; West
et al. 1994; Varadan et al. 1983, 1985a, b, 1989; Tsang and Kong 1983, 1992b;
Dick and Ivanov 1999; Hong 1980; Ponyavina and Sil’vanovlch 1990). With regard
to the partially ordered monolayers of particles (including the study of multilayer
systems consisting of such monolayers), the QCA was used in Vereshchagin et al.
(1991), Ponyavina and Silvanovich (1994), Bogomolov et al. (1997), Zamkovets
et al. (2003b), Ponyavina et al. (2004), Hong (1980), Ponyavina and Sil’vanovlch
(1990), Vereshchagin et al. (1990), Loiko and Molochko (1995, 1996), Loiko et al.
(1998, 2000, 2005b), Ponyavina (1998), Kachan and Ponyavina (2002a, b), Kachan
et al. (2006), Kinnan et al. (2009), Loiko and Miskevich (2004, 2005a, b, 2013),
Miskevich and Loiko (2011a, b, 2013a, b, 2014b, c, 2015b).
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Further efforts in the TMSW development were directed to solve the problems
of scattering by ensembles of particles with an arbitrary size, shape, orientation,
etc.; to solve the problem of electromagnetic (vector) wave scttering; to obtain vari-
ous approximate solutions and determine their applicability domains; to create and
develope calculation methods and obtain theoretical results for particular scattering
media.

So,Waterman, Truell and Fikioris developed formalism of the TMSW to describe
scattering of scalar waves by ensembles of finite-sized spheres (Waterman and Truell
1961; Fikioris andWaterman 1964).Mathur andYeh developed the theory to describe
scattering of the EMwaves by ensembles of particles of arbitrary size. Their solution
is based on the multipole expansion of the vector fields (Mathur and Yeh 1964).
It should be noted that the work of Fikioris and Waterman (2013) devoted to the
generalization of TMSW to the case of EM waves scattering was prepared in 1964,
but it was published only in 2013 in a special issue of the “Journal of Quantitative
Spectroscopy & Radiative Transfer”, dedicated to scientific heritage of P. Waterman.

Twersky studied the various aspects of multiple scattering of waves by a rough
surface, ensembles of randomly and regularly arranged cylinders and other particles
(Twersky 1952a, b, c, 1962a, b, c, d, 1964, 1967, 1970a, b, 1975a, b, c, 1978). He
considered the media in which the particles are located far enough from each other,
that allowed him to simplify the solutions. In particular, expanding fields in terms
of the scattering orders (see Appendix) he used approximation (today known as
the Twersky approximation (Mishchenko et al. 2006; Mishchenko 2008a) which
takes into account only the “trajectories” of scattering in which the wave passes
each particle only once, i.e., the cyclic trajectories (including “forward-backward”
scattering) are neglected (see, for example, Twersky 1964):

ψr = ψ i
r +

N∑
j=1

tr jψ
i
j +

N∑
j=1

N∑

k = 1
k �= j

tr j t jkψ
i
k +

N∑
j=1

N∑

k = 1
k �= j

N∑

l = 1
l �= k, l �= j

tr j t jk tklψ
i
l

+
N∑
j=1

N∑

k = 1
k �= j

N∑

l = 1
l �= k, l �= j

N∑

m = 1
m �= l,m �= k,m �= j

tr j t jk tkl tlmψ i
m+ · · · . (2.2.16)

The expansion (2.2.16) for the average field at N → ∞ can be written as:

〈ψr〉 = ψ i
r +

∫

V

tr jψ
i
jρ(r j , s j )dr jds j +

∫

V

tr j t jkψ
i
kρ(r j , s j )ρ(rk , sk)dr jdrkds jdsk +

+
∫

V

tr j t jk tklψ
i
l ρ(r j , s j )ρ(rk , sk)ρ(rl , sl )dr jdrkdrlds jdskdsl + (2.2.17)

+
∫

V

tr j t jk tkl tlmψ i
mρ(r j , s j )ρ(rk , sk)ρ(rl , sl )ρ(rm , sm)dr jdrkdrldrmds jdskdsldsm + · · · .
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Twersky showed that the order-of-scattering expansion of the Foldy integral
Eq. (2.2.15) is equivalent to the expansion (2.2.17) (Twersky 1964). Indeed, from
the analysis of Eqs. (2.2.16) and (2.2.17) it follows that when the effective field
is formed in point r j the contribution of j-th particle is excluded. Thus Twersky
established physical interpretation of the Foldy integral equation: for ensembles of
finite-size particles the effective field can be approximated by the average field at
small concentration of particles when the cyclic trajectories can be neglected. More-
over, Brown showed (Brown 1980) that the domain of applicability of the Foldy
equation (2.2.15), also known as the Foldy–Twersky equation (Ishimaru 1978b), is
limited bymedia in which the contribution of multiple scattering to the coherent field
formation is negligible. In (Ishimaru 1978b;Mishchenko et al. 2006) the relationship
between Twersky approximation and the radiative transfer theory is considered.

The most common approach to solve the problems of multiple scattering of waves
by ensembles of finite-sized particles is the expansion of the incident and scattered
wave fields in terms of wave functions (modes, harmonics or multipoles), followed
by finding a relationships between them.

Waterman developed a method (Waterman 1969) which allows one to express
the expansion coefficients of the scattered wave via the expansion coefficients of the
incident wave with the help of the so-called T -matrix (transition matrix). He used
the T -matrix method for solving the problems of scattering of scalar (Waterman
1969) and vector (Waterman 1971) waves by an individual homogeneous particle.
Peterson and Ström generalized the method to the case of multilayer particles and
arbitrary clusters of non-spherical particles (Peterson and Ström 1973, 1974). The
main advantage of the method is that if the matrixT and expansion coefficients of the
incident wave are determined, then the scattered wave field can be found at any point
in space outside the sphere circumscribing the scattering object (which generally
may consist of a group of individual scatterers). Moreover, the matrix T depends
only on the properties of the object, and does not depend on propagation directions
and polarizations of the incident and scattered waves. Generally, this matrix has
infinite size, which must be truncated in the calculations. The T -matrix method is
typically used to calculate the scattering characteristics of small groups (clusters) of
the particles, including the non-spherical ones. Active use of the method began since
the 1990s with the development of computers and approaches to improve its stability
and convergence (Mishchenko et al. 2004, 2006, 2014).

Themultipole expansions of thefields contain an infinite number of terms (modes).
In the case of small (“Rayleigh”) particles (with size parameter x << 1; for spherical
particle with diameter D the size parameter is defined as: x = πD/λ, where λ is the
length of incident wave), it is enough to take into account only the first terms of the
expansions to provide closed form solution with good accuracy. In many studies the
formalism of solutions is developed in general, and the closed form solutions are
obtained for such special cases.

So, Varadan et al. developed a method to solve the problem of multiple scattering
of EM waves based on the use of T -matrix for coupling the expansion coefficients
of the scattered by particle and acting on it (effective) fields (Varadan et al. 1979).
To find the effective field the configurational averaging and the QCA were used. The
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analytical solutions and numerical results are obtained for the phase velocity and
attenuation coefficient in systems of spherical and oriented spheroidal particles at
x << 1. In (Varadan and Varadan 1980) the method was generalized to the case of
randomly oriented spheroids.

An important step in solving the problems of multiple scattering is to find the
correlation functions describing theprobability of themutual arrangement of particles
in space. For statistically uniform ensembles of particles is usually used the radial
distribution function (RDF) g(R) = V p(ri |r j )which characterizes the probability of
mutual location of i-th and j-th particles in the volume V at a distance R = |ri − r j |
between their centers (Ziman 1979; Percus and Yevick 1958; Loiko et al. 1985).
In most of the above considered works it was assumed that g(R) = 0 if R < 2a,
and g(R) = 1 otherwise (a is the radius of the sphere circumscribing the particle).
This RDF describes the so-called “hole correction”: equiprobable arrangement of
particles in space regardless of the distance (if it is greater or equal 2a) between their
centers. This function can be used only at low particle concentrations (in particular,
in Varadan and Varadan 1980, at volume filling factor ηV ≤ 0.05 calculated for the
spheres circumscribing the particles). For moderate and high concentrations it is
necessary to use more sophisticated distribution functions.

With regard to the development of the method described in Varadan et al. (1979),
Varadan and Varadan (1980) it was done for the ensembles of spheroids with random
and specifiedorientations inBringi et al. (1982),Varadan et al. (1984, 1987). InBringi
et al. (1982), Varadan et al. (1984) was used the pair correlation function (PCF)
calculated in the Percus–Yevick approximation (Percus and Yevick 1958) for hard
(mutually nonpenetrating) spheres. The method to calculate this function allowed
the authours to consider systems with volume filling factor ηV ≤ 0.26 (Bringi et al.
1982). The influence of “non-spherical statistics” on the coherent field in ensemble
of oriented spheroids was studied in Varadan et al. (1987). It was shown that the use
of spheres to simulate spheroids may lead to an underestimation or overestimation
of the attenuation of the coherent field as compare with the use of actual geometry
of particles. Approximation by spheres of the equivalent volume gives better results
than approximation by the circumscribing spheres. Experimental verification of the
method developed in Varadan et al. (1979), Varadan and Varadan (1980), Bringi et al.
(1982) showed good agreement of the results for x ≤ 10 and ηV ≤ 0.4 (Varadan et al.
1983). Furthermore, in Varadan et al. (1983) it was found that multiple scattering
effects must be taken into account if ηV ≥ ∼ 0.01. It was noted that the shape of the
PCF is very important when x ≤ 10. In Varadan et al. (1985b) the method based on
the formalism of Green’s functions was developed. A good agreement of calculation
and experimental results was obtained for the intensity and the effective propagation
constant for the considered volumefilling factors: ηV <∼ 0.48. Themethodwas also
developed to find the incoherent component of light (Ma et al. 1988), the absorption
of EM waves (Ma et al. 1990), and to describe the propagation of elastic waves
(Varadan et al. 1985a, 1989) in ensembles of randomly distributed scatterers.

A significant contribution to the development of the TMSW is made by Tsang
and co-authors (Tsang and Kong 1980, 1983, 1992a, b, 2001; Tsang and Ishimaru
1984, 1985a, b; Ding and Tsang 1988; Tsang et al. 1992, 2000; Ao and Kong 2002;
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Ishimaru and Tsang 1988; Wen et al. 1990; Tsang et al. 1992, 2000, 2001a, 2007).
They obtained the solution of the multiple scattering problem for ensembles of par-
ticles with sizes smaller than the wavelength (Tsang and Kong 1980), ensembles
of correlated polydisperse particles (Ding and Tsang 1988), ensembles of randomly
distributed oriented spheroids (Ao and Kong 2002). The formalismwas developed to
find the field of wave reflected from the semi-infinite particulate medium at oblique
illumination (Tsang and Kong 1983, 1992b). It was described (Tsang and Ishimaru
1984, 1985a; Ishimaru and Tsang 1988) the experimentally observed effect of the
backscattering enhancement (Kuga and Ishimaru 1984), also known as the effect of
weak localization (Albada and Lagendijk 1985; Wolf and Maret 1985). On the basis
of the strict TMSWwas developed the dense media radiative transfer theory (Tsang
and Ishimaru 1985b; Tsang et al. 1992, 2000, 2007; Tsang and Kong 1992a; Wen
et al. 1990). It allows one to describe attenuation of the coherent field and the angular
distribution of the intensity of wave scattered in the random particulate medium. The
theory was applied, in particular, for the solution of the inverse problems to charac-
terize the state of snow (Tsang et al. 1992, 2000, 2007) using the data of microwave
remote sensing. In 2000–2001 various aspects of TMSWand its practical application
were published in the three-volumemonograph of authors (Tsang et al. 2000, 2001a;
Tsang and Kong 2001).

It is important to define the applicability limits of the used approximations
(Siqueira and Sarabandi 1996; Guérin et al. 2006; Barrera et al. 2007; Davis and
Schwartz 1985; Dick and Ivanov 1999; Kelly and Wu 1993; Vries et al. 1998; Zac-
canti et al. 2003;Cassier andHazard 2013). Thus, inDavis andSchwartz (1985) itwas
found thatwhen x → 0 theQCAis equivalent to theMaxwell–Garnett approximation
(Maxwell Garnett 1904; Markel 2016) which does not take into account correlations
in the mutual arrangement of particles. It was concluded that in calculation of the
effective permittivity of the disordered systems the only available approach taking
into account the short-range orderwhen x → 0 is the effectivemediumapproximation
(EMA) (Roth 1974; Huisman et al. 1981; Schwartz and Plona 1984). The domains of
applicability of the QCA and the Foldy approximation were investigated in Siqueira
and Sarabandi (1996). In Cassier and Hazard (2013) it was given the mathematical
justification of some known asymptotic models, including the of Foldy–Lax one.

Since 1990s, the intensive development andwide spread occurrence of a computer
technology, and sufficiently well developed TMSW to that time made especially
urgent a creation of effective algorithms for the numerical solution of the multiple
scattering problem.

So, Mackowski analyzed multiple scattering of waves by an arbitrary configura-
tion of spheres (Mackowski 1991). He rederived the addition theorems for vector
spherical wave functions (VSWF) and developed simple recurrence relations for the
addition coefficients, which allowed him to obtain an effective “order of scattering”
solution to the resultant field. The approach is especially effective for ensembles
(clusters), consisting of small the number of particles and ensembles of small parti-
cles. In Mackowski (1994) was developed a method to calculate and the numerical
values were obtained for the extinction, scattering and absorption cross sections of
clusters of spheres for both fixed and random orientations. It was noted that in the
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case of the conductive spheres of small size (x ≤ 0.1), the number Ns of expansion
coefficients given by the widely used formula Ns = x + 4x1/3 + 2 may be not suf-
ficient to obtain the proper solution for the extincion and absorption cross sections
of pair of the touching spheres.

Xu in a series of papers studied in details the multiple scattering of waves by
arbitrary clusters of spheres of an arbitrary size (Xu 1995, 1997, 1998a, b; Xu and
Wang 1998). In Xu (1995), he obtained the solution based on the generalization of
the Mie theory to the case of the illumination of particle by the EMwave of arbitrary
profile. The computational problems of themethod of the resulting field re-expansion
in terms of the VSWF used in Xu (1995) were discussed in Xu (1997). Instead of
such re-expansion, to find the far field was proposed to use the asymptotic expres-
sions. They allow one to avoid convergence problems and significantly accelerate the
calculations due to reducing the number of the expansion coefficients. He obtained
analytical expressions for the amplitude scattering matrix. Efficient algorithms for
calculating the VSWF-expansion coefficients were proposed in Xu (1998a). A good
agreement of the calculation results based on the theory of Xu (1997) with the mea-
sured data were obtained in Xu and Wang (1998). It was noted that the strongest
multiple scattering effects occur when the particles in the cluster are aligned along
the direction of the incident wave propagation. The analytical expressions for the
asymmetry parameter of the phase function (Bohren and Huffman 1983) and the
scattering cross section of an arbitrary cluster of spheres, sizes of which are com-
parable with the length of the incident wave, were found in Xu (1998b). The good
agreement between the results of calculation and experiment was demonstrated.

In Dufva et al. (2008) the addition theorems for scalar and vector spherical wave
functions were derived. The derivation is simpler than the one obtained previously
by other authors. As a result, the simpler expressions for the translation coefficients
were obtained.

InMishchenko et al. (2007),Okada andKokhanovsky (2009) scatteringby clusters
of particles with x = 4 for ηV ≤ 0.3 was investigated using the T -matrix method.
It was shown that multiple scattering can make a noticeable contribution to the
resulting field even at significant distances between particles (Mishchenko et al.
2007). Accounting the multiple scattering may increase extinction for systems of
optically soft particles, and always leads to decreasing absorption as compared with
the case of the independent scattering regime (Okada and Kokhanovsky 2009).

In recent decades, the TMSW was mainly extended to generalize the previously
developed approaches for the ever greater range of heterogeneous media. In addition,
the methods for solving the inverse problems were developed.

So, in Felbacq et al. (1994) the method of self-consistency was generalized to the
case of scattering by ensemble consisting of a finite number of randomly positioned
cylinders with arbitrary cross-sections. The method is especially suitable to study
the phenomenon of enhanced backscattering by a set of arbitrary-shaped random
rods. Generalization of the Foldy–Lax equations to describe multiple scattering of
waves by a cluster of particles arranged in an absorbing isotropic mediumwas imple-
mented in Mishchenko (2008a). Using these results, the transport equation for the
coherent field of the sparse ensemble of particles was obtained (Mishchenko 2008a).
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In Mishchenko (2008b) the full radiative transfer equation was derived. The Foldy–
Lax equations are generalized (Huang et al. 2010a) to the case of multiple scattering
of scalar waves by a two-dimensional system consisting of a large object (with the
wavelength and overwavelength size), surrounded by point scatterers, when all par-
ticles are in far-field zones of each other. In Huang and Li (2010b) this approach was
extended to the case of a three-dimensional system, and in Huang et al. (2013) to a
system containing several large objects. In Hu et al. (2014) were considered the direct
and inverse problems of scattering of scalar waves by a system consisting of point
scatterers surrounding the object the size of which is comparable to or larger than the
wavelength. In contrast to Huang et al. (2010a, 2013), Huang and Li (2010b), here
the solution of the algebraic rather than integral equations was used. In Liao and Ji
(2014) for ensembles of spheres with x << 1 the “extended” Foldy–Lax approxi-
mation taking into account the dipole effects and the effects of self-interaction was
proposed.

Direct and inverse problems of multiple scattering of EM waves by the three-
dimensional ensemble consisting of a finite number of point scatterers are discussed
in Challa et al. (2014). To solve the direct problem the Foldy model and the method
of regularization of the tensor Green’s function were used. The Born approxima-
tion (single-scattering approximation) and the “intermediate” between the Born and
Foldy approximations taking into account different number of scattering orders were
considered. They were obtained by the iteration metod with the initial Born approxi-
mation. In the limit of the infinite scattering order they describe the Foldymodel. The
solution of the inverse problem was applied to determine the locations of sctterers
and their scattering coefficients using data of the far-field measurements. The effect
of multiple scattering on finding these quantities is discussed.

The equations for the coherent (direct) and incoherent (diffuse) components of
light reflected from the plane-parrallel close-packed layer of finite thickness, con-
sisting of randomly arranged non-spherical particles were obtained in Tishkovets
(2007).

In Parnell et al. (2010) was found the dispersion integral equation for the effective
wave number keff in sparse media. In the long-wave limit the results coincide with
those obtained in the Foldy approximation. Multiple scattering of waves in a thin
perforated plate was examined in Parnell and Martin (2011). An expression for keff
was obtained. It was noted that the developed theory can be used for solving problems
of the non-destructive testing of composite plates and thickness of the sea ice.

The reviews dedicated to the theory of multiple scattering can be found in
Tishkovets et al. (2011), Lagendijk and van Tiggelen (1996). In Lagendijk and van
Tiggelen (1996) was made a comparison of the theories dealed with the resonant
multiple scattering of waves and electrons. In Tishkovets et al. (2011) was reviewed
the current state of the TMSW. Some approaches are described and the expressions
are given to solve the problems of scattering by particulate media. The cases of wave
interaction with a semi-infinite random particulate medium, a system of two spheres,
and closely packed clusters of particles are considered. The near-field and shadowing
(shielding) effects were investigated. The consideration was focused on remote sens-
ing problem, scattering by cosmic objects, etc. A comparison with the exact solution
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of Maxwell’s equations showed that the radiative transfer theory can be applied to
ensembles of non-absorbing and weakly absorbing particles at ηV ≤∼ 0.3. It was
noted that a quantitative theoretical interpretation of the measurement results for the
intensity of radiation reflected from the densely packed media remains problematic.
Therefore, for such media are commonly used approach is the numerical solution
of the Maxwell’s equations. However, its applicability is still limited by systems
although with large but finite number of scatterers.

2.2.2 Partially Ordered Monolayers and Systems of
Monolayers

Among ensembles of discrete scatterers one can distinguish the monolayers: the
structures in which the particle centers are located in the same plane. One of the first
solutions of multiple scattering problem for a densely packed monolayer of partially
ordered polydisperse spherical particles normally illuminated by the plane EMwave
was obtained by Hong (1980). His approach is based on the multipole expansion
of the fields and using the QCA to determine the coherent field. A good agreement
of calculation and experimental results for optical density of monolayers of small
selenium particles was demonstrated.

The developed in Hong (1980) formalism was used in a number of works to study
partially ordered particulate monolayers, i.e., monolayers with short-range order in
the spatial arrangement of particles (Ponyavina and Sil’vanovlch 1990; Vereshchagin
et al. 1990; Loiko and Molochko 1996; Loiko et al. 1998, 2000; Ponyavina 1998;
Kachan and Ponyavina 2002a; Kinnan et al. 2009; Loiko and Miskevich 2005a, b),
and layererd systems (multilayers, stacks) consisting of suchmonolayers (Vereshcha-
gin et al. 1991; Ponyavina and Silvanovich 1994; Bogomolov et al. 1997; Zamkovets
et al. 2003a, b; Ponyavina et al. 2004; Ponyavina 1998;Kachan and Ponyavina 2002b;
Kachan et al. 2006; Loiko andMiskevich 2004, 2013; Loiko et al. 2005b; Miskevich
and Loiko 2013a, b, 2014b).

So, in Vereshchagin et al. (1990) was studied the cooperative effects of the first
kind (interference of fields scattered by ensemble of particles in the far field zone)
and second kind (re-illumination of particles) on the formation of a coherent field of
a monolayer. The dependences of the direct transmission coefficient of the normally
illuminated monolayer (with a surface filling factor (the ratio of particle projections
on the layer plane to the area where they are distributed) η = 0.624) of monodisperse
spheres on their size parameter xwas investigated. Calculations were carried out with
(in the framework of the formalism of Hong 1980) and without (in the SSA) taking
into accountmultiple scattering. It was shown thatmultiple scattering should be taken
into account if x < 2 ÷ 3 and values of the relative refractive index of particles n ≥
1.4. Comparison of experimental and calculated direct transmittance Tc and specular
reflectance Rc spectra of monolayer of polydisperse Al2O3 particles in polyethylene
showed that the QCA gives better agreement with the measured data (Ponyavina and
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Sil’vanovlch 1990) than the SSA. In Kachan and Ponyavina (2002a) was studied
influence of concentration (η = 0.2 ÷ 0.6) of silver nanospheres (diameter D =
2 ÷ 10 nm) on Tc and Rc spectra of monolayer in the plasmon resonance region.
The size dependence of refractive index n of the nanosphere particles was taken into
account. It was found that size increasing results in Rc increasing and Tc decreasing
in the plasmon resonance region. Increasing the monolayer filling factor η and the
refractive index of the matrix where the particles are located leads to enhancement of
resonance and to the long-wave shift of the plasmon resonance frequency. In Kinnan
et al. (2009) the approach was used to find the optimal value of the refractive index of
the dielectric matrix in order to obtain a sharp increase in extinction due to plasmon
resonance.

Simple analytical expressions for Tc and Rc of the normally illuminated partially
ordered monolayer of “Rayleigh” particles were obtained in Loiko and Molochko
(1996) in the framework of dipole approximation. Comparison of the results with
those obtained in the QCA revealed that the values of Tc and Rc for monolayer
with η = 0.5 calculated with the simple formulas and with formulas of the QCA are
the same at x ≤ 0.4 for relative complex particle refractive index m = 1.6 + 0.001i
and at x ≤ 0.25 for m = 1.6 + 3i . It was found that the results of calculations in
the QCA and SSA are close for monolayers of large particles even at high particle
concentration. Amore detailed comparison of theQCAand the SSA ismade in Loiko
et al. (1998), where monolayers with x ≤ 10, η ≤ 0.6, and particle refractive indices
m ≤ 1.4 were considered. It was found that with x increasing and m decreasing the
differences of calculation results obtained in the QCA and the SSA are reduced. Thus
form = 1.1 the difference is less than a few tenths of a percent, form = 1.2 they are
less than 1%, and for m = 1.4 are less than 5% at η ≤ 0.4. In Loiko et al. (2000) the
influence of multiple scattering on the interference quenching effect (Ivanov et al.
1988) for the coherent transmission coefficient of monolayer was investigated. It
was shown that multiple scattering leads to the occurrence of the effect at larger
sizes and concentrations of particles. The results are in good agreement with the
experimental data for monolayers of latex particles in water. In Loiko and Molochko
(1995) formalism developed in Hong (1980) was generalized to the case of oblique
illumination of the monolayer. Amethod to estimate the applicability of the the QCA
was proposed.

Among other approaches developed in the framework of the TMSWwe single out
here the methods described in Linton and Martin (2005), García-Valenzuela et al.
(2012). In Linton and Martin (2005) the expression for the effective wave num-
ber in sparse random array of identical cylinders was derived using the quasicrys-
talline approximation. The expression is a “two-dimensional version” of Lloyd–
Berry formula for the three-dimensional systems (Lloyd and Berry 1967). In García-
Valenzuela et al. (2012), using the QCA, simple analytical expressions to calcu-
late coherent transmission and reflection coefficients of the monolayer of randomly
located spheres were derived. They can be used at any illumination and size of
the particles. The simplification was achieved by replacing the actual effective field
by the sum of two plane waves: incident and specularly reflected. The approach is
applicable at low concentrations of particles.
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In some cases it is convenient to consider a three-dimensional particulate medium
as set (multilayer, stack) of plane-parallel monolayers. For example, in Vereshcha-
gin et al. (1991) was developed an approach for finding the Tc and Rc coefficients of
dispersion filters. Such filters consist of a set of periodically arranged plane-parallel
monolayers of particles in a dielectric matrix. The calculation was conducted in
two stages. First, in the QCA (Hong 1980) the amplitude direct transmittance and
specular reflectance of an individualmonolayerwere calculated. Then, using the self-
consistency procedure, they were used to find the transmittance and reflectance of a
multilayer. In Ponyavina and Silvanovich (1994) the approach was applied to study
the layered systems consisting of monolayers of polydisperse Al2O3 particles. Com-
parison of the calculation and the experimental data showed good agreement on the
transmission coefficient of both single monolayer and the multilayer. In Bogomolov
et al. (1997), Ponyavina (1998) the approach (Vereshchagin et al. 1991) was applied
to calculate transmission and reflection spectra of three-dimensional photonic crys-
tal (3D PhC): opal-like structure from spherical SiO2 particles. In particular, it was
determined the dependence of the spectral position λPBG of the photonic band gap
(PBG) minimum on the refractive index nenv of environment in which the PhC was
located. A satisfactory agreement of the theoretical and experimental results was
observed (experimental and theoretical values of λPBG(nenv) are close for small nenv
and diverge with nenv growing, see Fig. 2.34c of Sect. 2.4.3.2). The discrepancy may
be caused by several factors, in particular: (i) difference between the simulated and
the actual structures of a singlemonolayer: actual monolayer had although imperfect,
but rather highly ordered triangular lattice, while in theory the model of the partially
ordered monolayer was used; (ii) mismatching the real and model filling factors of
an individual monolayer: calculations were made at η = 0.6, while the filling factor
of actual monolayer was close to the maximum (for monolayer with triangular lat-
tice from monodisperse spherical particles ηmax = π/(2

√
3) ≈ 0.9069); (iii) usage

of the model of “statistically independent” monolayers, in which it is assumed that
the adjacent monolayers are sufficiently far from each other, whereas in a real struc-
ture they are at a short (comparable with the wavelength) distance; (iv) usage of the
model of homogeneous monodisperse spherical particles while in experiment the
heterogeneity (porosity) of the structure of particles and their polydispersity take
place.

In Zamkovets et al. (2003b), Kachan and Ponyavina (2002b) the approach
described in Vereshchagin et al. (1991), Ponyavina and Silvanovich (1994), Bogo-
molov et al. (1997) was used to study the multilayers consisting of monolayers of
silver nanoparticles in a dielectric matrix, and in Ponyavina et al. (2004) it was used
to study the quasi-one-dimensional PhCs - the layered structures (multilayers) con-
sisting of partially ordered monolayers of spheres with sizes comparable with the
wavelength. In Kachan and Ponyavina (2002b) and Zamkovets et al. (2003b) it was
found that the 1Dorderingmay lead to appearance of a doublet structure of the extinc-
tion spectrum and narrowing the reflection peak in the plasmon resonance region. In
Ponyavina et al. (2004) it was shown that dependence of the PBG depth on the size,
the refractive index of particles, and the intermonolayer distance is non-monotonic.
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The method based on the QCA (Hong 1980) and the transfer-matrix method
(TMM) (Katsidis and Siapkas 2002) for finding Tc and Rc of the multilayer was
developed in Kachan et al. (2006). It was applied to study the light absorption by
the system of monolayers of silver nanoparticles in the dielectric. It was shown that
increase of absorption in a wide wavelength range can be achieved using the gradient
multilayers. It should be noted that the method is simpler than the self-consistency
method (Vereshchagin et al. 1991).

A model of addition (adding method) for coherent field was developed in Loiko
and Molochko (1998), Loiko and Miskevich (2004), Loiko et al. (2005b). The ana-
lytical expressions for Tc and Rc of a thick layer of randomly arranged and partially
ordered particles were derived. Under this model a layer is considered as a stack
of plane-parallel elementary sublayers (monolayers). The transmission and reflec-
tion coefficients of individual monolayers were obtained in the SSA (Loiko and
Molochko 1998) and the QCA (Loiko and Miskevich 2004; Loiko et al. 2005b).
Oscillating dependences of Tc and Rc on the layer thickness were obtained. Multiple
scattering leads to increasing the rate of oscillation decay with increasing the layer
thickness (Loiko and Miskevich 2004; Loiko et al. 2005b). The results of Loiko and
Molochko (1998) are in good agreement with the experimental data (Ishimaru and
Kuga 1982).

2.2.3 Crystal-Like Structures

Spatially ordered particulate layers are the objects of intensive investigations due to
their unique optical properties caused by the crystal-like structure of particle arrange-
ment. Active research of such layers consisting of particles with sizes comparable
with the wavelength of visible light began in the mid-20-th century with the study of
colloidal crystals composed of the latex particles. Probably, the first systematic study
of the optical properties of ordered systems was carried out in Alfrey et al. (1954).
The authors observed iridescence of structures from monodisperse polystyrene par-
ticles and the visible light diffraction patterns similar to X-ray diffraction patterns by
ordinary crystals. Authors of publications Krieger and O’Neill (1968) and Hiltner
and Krieger (1969) proposed to use the observed diffraction effects to determine the
particle sizes and lattice parameters of the colloidal crystals. Coloring of the samples
was explained by the authors as a result of the Bragg diffraction by the periodically
arranged monolayers of particles.

Crystal-like structure and, therefore, long-range order in the particle arrangement
in ordered particulate layers cause the choice of specific approaches to their study.
To date, for a rigorous theoretical description of the optical properties of such sys-
tems the most commonly used are methods based on the quantum-mechanical low-
energy electron diffraction (LEED) theory (Kambe 1967, 1968; Pendry 1974) and
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the Korringa–Kohn–Rostoker (KKR) method (Korringa 1947; Kohn and Rostoker
1954), generalized for photons. These methods take into account diffraction, inter-
ference and multiple scattering of waves. Let us consider the publications dedicated
to the development and use of these methods.

In 1979 Ohtaka developed the theory of photon diffraction by a regular three-
dimensional array of spheres (Ohtaka 1979). It is an extension of the LEED theory
and theKKRmethod to the case of the EMfields. He used self-consistency procedure
to take into accountmultiple scattering and the expansion of the fields and theGreen’s
functions in terms of the vector spherical wave functions (VSWF). The equations
for finding the fields and the photon energy bands were derived.

Lamb, Wood, and Ashcroft considered propagation of electromagnetic wave in
a periodic array of spheres whose size is much smaller than the wavelength (Lamb
et al. 1980). The theoretical description that takes into account multiple scattering
effects is based on a generalization of the KKR method to the case of the EM fields.
The domain of applicability of this approach was determined in Moroz (1994).

Stefanou and coauthors elaborated a method to calculate the transmittance,
reflectance and photonic band structure of the three-dimensional photonic crystal,
consisting of regularly arranged spheres (Stefanou et al. 1992). It is based on the
consideration of the PhC as a set of plane-parallel regularly packed monolayers of
particles, usage of the formalism developed by the authors earlier (Modinos 1987;
Stefanou and Modinos 1991a) to find the scattering matrix of a single monolayer
and the doubling method to calculate the scattering matrix of a multilayer. Calcula-
tions were made for the face-centered cubic (fcc) lattice of dielectric spheres. Later
the method was named as the layer-multiple-scattering (LMS) method (Sainidou
et al. 2005; Gantzounis and Stefanou 2006). The versions of the computer program
implementing the method one can find in Stefanou et al. (1998, 2000). Its experi-
mental verification is made in Yannopapas et al. (1997), Modinos et al. (2001a). In
Modinos et al. (2001b) a theory to describe propagation of electronic, electromag-
netic and elastic waves in three-dimensional periodic structures was presented. It is
based on the method of Stefanou et al. (1992). In Gantzounis and Stefanou (2006)
the method (Stefanou et al. 1992) was extended for layers with spheroidal particles,
and in Christofi and Stefanou (2014) for layers with gyrotropic spherical particles.
It was also developed and used in Yannopapas et al. (1999, 2002, 2003), Modinos
et al. (2000), Psarobas et al. (2000), Almpanis et al. (2012), Yannopapas (2014).

For example, in Modinos et al. (2000) was studied the effect of imperfection
of the finite-sized 3D PhC consisting of metal nanospheres on the PhC absorption
coefficient. The work is an extension of a previously developed method to describe
imperfection in the monolayer (Stefanou and Modinos 1993) for the case of layered
system of monolayers. To simulate the disorder the coherent potential approxima-
tion (CPA) (Soven 1966, 1967) was used. The authors noted that it gives good
results at least at a relatively low degree of disorder. The idea of the CPA is that the
imperfect monolayers of actual particles are replaced by perfectly-periodic mono-
layers of “effective scatterers”. The effective scatterers in different monolayers can
be different. The characteristics of these scatterers depend in a complicated manner
on the parameters of the monolayer. After their determination the calculations are
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carried out in the framework of the previously developed methods for regular struc-
tures (Ohtaka 1979; Stefanou et al. 1992; Modinos 1987). The results for arrays of
spheres (D = 10 nm) at different concentrations were given. The imperfection leads
to the absorption increasing in the spectral region of the resonance dip. Impact of
the disorder on absorption in thick PhC slab is less than in monolayer. In Almpanis
et al. (2012) was studied the interaction of electromagnetic waves with a system of
fractal structures from silver nanoparticles situated in a square lattice sites in the
glass. Particle centers were located on the axis perpendicular to the lattice plane.
Such structures can significantly enhance the local field near the boundaries of par-
ticles and thus be used as nanolenses. Their ordering into a regular lattice leads to a
further enhancement of the near and far fields in certain spectral ranges. Thus, it was
considered the possibility of using the hybrid nanostructures that have a combined
effect of the near-field interaction and interaction caused by the long-range order. In
Yannopapas (2014) was developed a “hybrid” method to model periodic structures,
consisting of the “general scatterers”. It is based on the discrete dipole approximation
(DDA) and the LMS method (Stefanou et al. 1992). At first in the DDA is calculated
the T -matrix of a single particle that is then used to find the characteristics of periodic
ensemble of such particles by the LMS method (Stefanou et al. 1992). The approach
was applied to study optical properties of the 2D and 3D lattices consisting of gold
nanocubes.

Among other publications dedicated to the development and use of the KKR
method, let us consider articles (Wang et al. 1993; Moroz 1995; Kafesaki and
Economou 1999; Baryshev et al. 2007; Dorado and Depine 2009).

In Wang et al. (1993) the formalism to describe multiple scattering of electro-
magnetic waves in a 3D photonic crystal was developed on the basis of the KKR
method for scalar waves. The photonic band structure of the “diamond” lattice of the
touching spherical air voids in dielectric was calculated. It was noted that the main
advantage of the theory of multiple scattering in comparison with other approaches
is the direct calculation of the Green’s function and the ability to consider defects
and disorder of the lattice. In Moroz (1995) was developed a general theory of multi-
ple scattering and KKR formalism for EMwaves interacting with three-dimensional
arrays of arbitrary shape particles. Its difference from the theory developed in Wang
et al. (1993) was discussed.

In Kafesaki and Economou (1999) was developed a method for finding the trans-
mission coefficients of regular and irregular clusters of particles (up to several hun-
dred) and the band structures of infinite periodic lattices. The solution is based on
the expansion of fields in terms of spherical wave functions. The method was used
(Kafesaki et al. 2000) for calculating the transmission of acoustic waves propagating
the particulate medium consisting of spherical air bubbles in water. It was shown
that the gaps (which are the analogues of the PBG in the spectra of PhC) in the
transmission spectra of such a medium are caused by multiple scattering and occur
even at large disorder.
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In Baryshev et al. (2007) were investigated “multicomponent” PhCs, consisting
of inhomogeneous spheres (with radially-dependent refractive index). Their trans-
mission spectrum and photonic band structure were calculated in frames of the KKR
and the plane wave methods, respectively. It was shown that the considered type
of the PhCs provides additional opportunities (as compared with the conventional
PhCs) to control light fluxes. By these PhCs it is possible to “turn on and off” one
stop band independently of the other ones. A good agreement between the results of
calculation and experiment for opals was demonstrated.

In Dorado and Depine (2009) were studied the effects of the density of vacancies
and the polydispersity of the particles on the transmission spectra of 3D photonic
crystal. Calculationsweremade in the framework ofKKRmethod using the averaged
T -matrix, which characterizes the scattering properties of the particle, averaged over
the size, position, shape, orientation, etc.At that instead of the actual lattice the perfect
lattice with “average” spherical scatterers was considered. A good agreement with
experimental data on the transmission and reflection of the colloidal photonic crystal
was obtained. It was shown that the disorder gives a little effect on the transmittance
and reflectance in the low-frequency and a strong one in the high-frequency spectral
ranges. Also were considered the methods to simulate the disorder by specifying
non-zero absorption index of particles and host medium. The methods yield close
results and are valid for weak disorder of the PhC.

In the framework of the TMSW the 3D ordered arrays of particles were studied
in works of Waterman and Pedersen (1986), Vereshchagin et al. (1991), Ponyav-
ina and Silvanovich (1994), Bogomolov et al. (1997), Zamkovets et al. (2003b),
Ponyavina et al. (2004), Kachan et al. (2006). In Vereshchagin et al. (1991), Ponyav-
ina and Silvanovich (1994), Bogomolov et al. (1997), Zamkovets et al. (2003b),
Ponyavina et al. (2004), Kachan et al. (2006) 3D particulate arrays were simulated
as a periodic sequence of partially ordered monolayers. In Waterman and Pedersen
(1986) scattering of electromagnetic waves by a semi-infinite periodic array of par-
ticles was considered using the T -matrix formalism. The analytical expressions for
effective dielectric εe f f and magnetic μe f f permeabilities at x << 1 were obtained.
The results of εe f f (x) and μe f f (x) calculations for different lattice geometries were
given. The behavior of the resonance peaks on these dependences was investigated.
The expression for the reflection coefficient was obtained.

To describe interaction of waves with ordered systems are also used the theory
of dynamical diffraction (Spry and Kosan 1986; Rundquist et al. 1989; Mittleman
et al. 1999; Fedotov and Sel’kin 2011), various modifications of the transfer matrix
method (Katsidis and Siapkas 2002; Pendry and MacKinnon 1992; Sigalas et al.
1996; Cassagne et al. 2000; Schilling et al. 2001; Rybin et al. 2009; Centurioni 2005;
Troparevsky et al. 2010), the coupled dipolemethod (Chaumet et al. 2003), the Bragg
diffraction theory (Kosobukin 2005), the scattering matrix method (Balestreri et al.
2006), and other methods (Nicorovici et al. 1995; Koenderink et al. 2005).

Since the late 1980s - early 1990s numerical methods to simulate the ordered
structures are intensively developed. The impulse to the development was given by
theworks of John (1987) andYablonovitch (1987), Yablonovitch andGmitter (1989),
Yablonovitch et al. (1991b, a).
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So, in Yablonovitch (1987) was introduced the concept of electromagnetic band
gaps (later these band gaps were called photonic band gaps (PBGs) (Yablonovitch
and Gmitter 1989) or stop gaps (John 1987)) - the wavelength range of radia-
tion, which cannot propagate in medium. Such band gaps arise in regular structures
because of the periodicmodulation of the refractive index. InYablonovitch andGmit-
ter (1989) was studied the interaction of electromagnetic waves (in the microwave
range) with dielectric fcc structures. The PBGs in the spectra of these structures
was experimentally demonstrated. The concept of photonic crystal - a structure in
spectrum of which there is a PBG - was introduced. It was found that a complete
PBG (independent on the lighting direction) in fcc lattices can be realized with a
relative refractive index of particles 3.5 and more. In Yablonovitch et al. (1991b) the
structure possessing the complete PBG was prepared and studied in a microwave
spectral range. It was a set of channels mechanically drilled and intersecting at a cer-
tain angle in the dielectric plate with refractive index n ≈ 3.6. The volume fraction
of voids was 78%. The calculations under the method of plane vector waves were
shown that such structures have complete PBG when n ≥ 2.1. In Yablonovitch et al.
(1991a) were considered the so-called “donor” and “acceptor” modes, representing
sharp peaks and dips in the region of the PBG when defects are introduced into the
PhC structure. The magnitude and position of the dips and peaks depend on the size
of the defects. These effects can be used in resonators and lasers with a low lasing
threshold.

Numerical methods to simulate the interaction of waves with PhCs are based on
Maxwell’s equations. For their solution the most frequently used is the plane-wave
expansion method (plane wave method) and its modifications (Satpathy et al. 1990;
Leung and Liu 1990a, b; Economou and Zdetsis 1989; Zhang and Satpathy 1990; Ho
et al. 1990; Sozuer et al. 1992;Meade et al. 1993; Busch and John 1998; vanDriel and
Vos 2000; Li and Zhang 2000; Galisteo-Lopez et al. 2003), the finite element method
(Pendry andMacKinnon 1992), and the finite difference time domain (FDTD)method
(Lavrinenko et al. 2009; Ivanov et al. 2010). The plane wave method on the one hand
and the finite element and FDTD methods on the other hand are usually used to
determine a photonic band structure and the transmission and reflection coefficients
of the PhC, respectively.

The first investigations devoted to numerical and theoretical description of the
photonic band structure of PhC were made for scalar waves (Satpathy et al. 1990;
Leung and Liu 1990a; Economou and Zdetsis 1989; John and Rangarajan 1988),
where was shown that fcc structure possesses the complete PBG when the relative
refractive index of spheres is greater than ∼31/2, that is inconsistent with the exper-
imental results (Yablonovitch and Gmitter 1989).

The generalization of the plane wave method to the case of EM waves was made
in Leung and Liu (1990b), Zhang and Satpathy (1990), Ho et al. (1990). In contrast
to the experimental data of Yablonovitch and Gmitter (1989), the calculation results
of these works show that it is impossible to obtain a complete PBG for the fcc lattice
of spheres. In Ho et al. (1990) it was found that a structure from spheres arranged in a
“diamond” lattice may possess such PBG. In Sozuer et al. (1992) the computational
aspects of this methodwere considered. It was shown that discontinuous nature of the
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dielectric function and the fields in a periodic array of dielectric spheres significantly
limits its accuracy. The impovements of the method were proposed in Meade et al.
(1993). They allow one to explore previously inaccessible to the theoretical analysis
systems (e.g., lattices with the artificially introduced defects). In Busch and John
(1998) under the plane wave method it was shown that the complete PBG can be
obtained in lattices of voids in silicon or germanium, and that inverse opal-like
structures possess such PBG if the refractive index contrast has a value of 2.8 or
higher.

The formalism allowing the calculation of band structure and transmission coef-
ficients of the ordered particulate medium is developed in Pendry and MacKinnon
(1992). It is based on the solution of Maxwell’s equations by the finite element
method. It is a generalization of the low-energy electron diffraction theory to the
case of the EM fields. Calculations are performed for a periodic array of dielectric
cylinders. A good agreement with experiment for the band structure and transmission
spectrum was obtained.

An overview of works on the theory of photon scattering by periodic structures
was published in Pendry (1996). Various approaches for numerical solution of the
problemofEMwavediffraction by such systemswere considered. Themain attention
was paid to methods of the photonic band structure calculations.

Using numerical methods it is possible to simulate both perfect and imperfect
PhCs. In the last case the most frequently used method is the supercell technique,
under which the disorder is initially defined in a certain PhC’s domain that is repeated
then periodically to simulate the crystal structure. Imperfect PhCs were investigated,
in particular in Li and Zhang (2000), Lavrinenko et al. (2009), Ivanov et al. (2010).
So, in Li and Zhang (2000) was shown under the planewavemethod that variations in
size of spherical particles and in their deviations from the lattice sites greatly reduce
the complete PBG in 3D PhC consisting of spherical voids in a dielectric matrix.
When the magnitude of disorder is less than 2% of the lattice constant this PBG
disappears even at high refractive index contrast (n = 4); PBG remains incomplete
in this frequency domain. PBG is more sensitive to variations in the sizes of spheres
than to their spatial deviations, since in the first case the filling factor varies as well.
Dispersion of sphere positions and sizes was modeled using an uniform distribution.
The PhC imperfection was simulated within the supercell technique. In Lavrinenko
et al. (2009) in the framework of the FDTD method was studied disorder impact
on photonic properties of the fcc lattice of voids in silicon. It was found that even
small variations of the voids size and their deviations from the sites of perfect lattice
lead to increasing the transmittance in PBG, i.e. degradation of photonic “isolating”
properties of PhC. In Ivanov et al. (2010) was investigated the influence of positional
disorder and polydispersity on the optical properties of 3D photonic crystal. Based
on the plane wave and the FDTDmethods it was shown that the disorder in the spatial
positions and sizes of particles (spherical particles with D = 200 nm, n = 1.6 and
2.0 in a medium with the refractive index of 1.33 (in water) are considered) have
little effect on the reflection spectrum in PBG.

In recent decades, active experimental studies of photonic crystals are carried
out (Bogomolov et al. 1997; van Driel and Vos 2000; Galisteo-Lopez et al. 2003;



2 Multiple Scattering of Light in Ordered Particulate Media 125

Rybin et al. 2008; Vasnetsov et al. 2014; Bertone et al. 1999; Koenderink et al. 2000;
Mazurenko et al. 2003; Baryshev et al. 2003, 2011; Rengarajan et al. 2005; Muskens
et al. 2011; Nair and Jagatap 2012).

In Bogomolov et al. (1997) was investigated the PBG transmission spectra of the
3Dopal-likePhCs consisting ofSiO2 particles.When suchPhCs are placed in diferent
media, the relative refractive index of particles changes and, therefore, the depth
and position of the PBG are changed as well. It was obtained a linear dependence
of the spectral position of the PBG minimum on the refractive index nenv of the
surrounding (host) medium when it changes from nenv < np to nenv > np, where np

is the particle refractive index. Similar experiments were carried out in Rybin et al.
(2008), Vasnetsov et al. (2014), where the nonlinear dependences were obtained. A
possible causes of the non-linearity are the heterogeneous (porous) structure of the
silica particles and, as indicated by authors, dispersion of the particle parameters.

The dependence of the PBG width and the optical density of the 3D PhC slab
consisting of the fcc lattice of submicron SiO2 particles and the lattice of voids in the
polymer matrix on the slab thickness was investigated in Bertone et al. (1999). The
authors observed a monotonic increase of the optical density peak (corresponding to
a minimum of the PBG) on the PhC thickness (the number of monolayers). The peak
width decreases with increasing the number of monolayers up to a certain “critical”
value, after which it practically does not change for the considered lattices.

Influence of thickness and imperfection of the PhC with the fcc lattice from
polystyrene spheres on its optical properties in the PBG was studied in Galisteo-
Lopez et al. (2003). It was shown that the intensity of the diffuse component of the
transmitted and reflected light increases with frequency and the sample thickness. In
the frequency range corresponding to the PBG edges the peaks of this intensity were
occurred. The dip between these peaks was observed.

Influence of the disorder on optical properties of colloidal PhCs composed of
SiO2 particles was considered in Rengarajan et al. (2005). The radial distribution
functions (RDFs) of particles in monolayers were found using the data on surface
images. These functions had the shape of a sequence of sharp peaks in the region close
to the coordinate origin associatedwith the particle center. The peaks are asymmetric:
they grow sharper than fall with increasing the distance from coordinate origin. With
the distance from the origin the peaks are blurred and the RDF becomes an oscillating
and converging to unity function. From the measurement results was determined the
threshold value δ = 6%of particle size dispersion (polydispersity) abovewhich there
is a sharp degradation of the zero order PBG. Below this threshold the polydispersity
has practically no effect on the optical properties of the photonic crystal. It was found
that themost sensitive to the disordering are themagnitude andwidth of the reflection
peak of PBG.

Influence of spatial disorder on transmittance and reflectance spectra of 3D PhC
consisting of monodisperse spheres was investigated in Nair and Jagatap (2012). It
was shown that with the disorder increasing the PBG disappears, and in a completely
random system diffuse scattering reaches 100%.
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2.2.4 Ordered Monolayers

Ohtaka in 1980 found one of the first solutions of the problem of EMwave diffraction
(scattering) by the two-dimensional ensemble (monolayer) of regularly arranged
homogeneous wavelength-sized particles (Ohtaka 1980). His approach is based on
the extension of the low-energy electron diffraction (LEED) theory (Kambe 1967,
1968; Pendry 1974) to the case of photons. The expressions that allow one to find the
transmission and reflection coefficients of the monolayer are proposed. Under this
approach have been calculated reflection spectra of regular arrays of monodisperse
isotropic dielectric spheres (Inoue et al. 1982). The authors identified three typical
features in the obtained spectra: a broad background, anomalies in the thresholds of
channels (i.e., on the edges of spectral ranges with the different number of diffraction
orders) and a group of distinct peaks. The first is due to scattering by a single particle,
and the other two are caused by the regularity in particle locations.

The experimental verification of the method (Ohtaka 1980) was done inMiyazaki
et al. (2000), Ohtaka et al. (2000), Kondo et al. (2002), Yano et al. (2002). In addi-
tion, in Ohtaka et al. (2000) a number of theoretical methods to study photonic bands
was proposed. Comparison of the calculation and experimental data on transmittance
showed generally good agreement. The discrepancy between the results was associ-
ated by the authors with the imperfectness of the actual lattice, the finite size of the
sample, influence of the substrate (Miyazaki et al. 2000; Ohtaka et al. 2000; Yano
et al. 2002), and absorption of particles (Kondo et al. 2002), which are not taken
into account in simulation. Later the method of Ohtaka (1980) was developed and
used in a number of investigations of periodic monolayers of spheres (Miyazaki and
Ohtaka 1998; Fujimura et al. 2000; Kurokawa et al. 2002, 2004a, b; Kondo et al.
2004; Ohtaka and Yamaguti 2004; Ohtaka et al. 2004). Furthermore, it was general-
ized to study regular arrays of parallel cylinders (Ohtaka et al. 1998). Let us consider
in more detail some of these works.

So, in Miyazaki and Ohtaka (1998) were investigated the characteristics of the
near field in the photonic bands of monolayer of periodically arranged spherical
particles. It was found that the resonance peaks in the reflection spectrum coincide
with the peaks of the near field, which are determined predominantly by the evanes-
cent waves from “closed channels”, i.e. from adjacent spectral regions that include
higher diffraction orders. The analytical solutions for the field were obtained in a
low-frequency regime (particle size parameter x << 1). The approach was used to
describe the experimental results of Fujimura et al. (2000) where were investigated
the photonic bands of monolayer of polystyrene particles by the scanning near-field
optical microscopy (SNOM). In these bands the sharp changes of SNOM images
were observed. A good agreement between the data of calculation and experiment
was obtained for distribution of near-field intensity spectra.

In Kurokawa et al. (2002, 2004a) the method for a single monolayer (Ohtaka
1980) was extended for the case of “a monolayer on a dielectric substrate” system.
It was shown that the semi-infinite substrate significantly broadens the dips in the
transmission spectra, while the finite (comparable with the diameter of the spheres
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and the wavelength) one leads to appearance of additional dips (Kurokawa et al.
2002). At the normal illumination the dips are shifted to lower frequencies due to
the interaction with the finite-thickness substrate. The near-field intensity nearby the
monolayer - substrate boundary is significantly larger than the intensity nearby the
monolayer without substrate (Kurokawa et al. 2004a).

In 1987Modinos developed amethod to calculate light scattering characteristics of
themonolayer of periodically arrangedmonodispersemetal spheres (Modinos 1987).
This method, as well as the one proposed by Ohtaka (1980), is the generalization
of the low-energy electron diffraction theory. However, as the author notes “the
development of the formalism is here more transparent and concise”. This paper
also provides a technique to take into account disorder and polydispersity. Further
development of the method was made in Stefanou and Modinos (1991a, b, 1993).
Thus, in Stefanou and Modinos (1991a) symmetry of matrix elements describing
multiple scattering by monolayer and the substrate effect were taken into account.
The results of the calculations and comparison with experiment for a monolayer
of gold nanospheres were demonstrated. In Stefanou and Modinos (1991b) was
calculated the absorption of light bymonolayers of metal spheres at different lighting
angles, studied the effect of the substrate, the particle concentration, and the disorder
in monolayers on the absorption. In Stefanou and Modinos (1993) was proposed a
method of accounting the imperfection ofmonolayers, which is based on the coherent
potencial approximation. It was applied for calculating the absorption coefficient of
a monolayer of silver nanospheres. Imperfection was simulated by random filling the
part of perfect lattice sites by identical particles, while the other part was remained
unoccupied. The main effect of the considered type of imperfection consists in the
spectral shift of the resonance peaks and their broadening.

In the framework of the TMSW the ordered monolayers was studied in the works
(Kachan and Ponyavina 2002; Zamkovets et al. 2003a). In Kachan and Ponyavina
(2002) was investigated influence of the type of spatial organization of monodisperse
silver nanospheres in a monolayer on its direct transmittance Tc at normal illumina-
tion. Calculations were made in the framework of QCA (Hong 1980). To simulate
the positional disorder the RDF was used which describes, by a set of step functions,
the uniform deviation of particles from the sites of the perfect lattice. Such RDF is
the sequence of rectangles situating at the distances (from coordinate origin) corre-
sponding to the coordination circle radii (Ziman 1979). In calculations were taken
into account the particles that are located within a distance of five lattice constants
a (specified correlation length lc = 5a). It was noted that the results for Tc, obtained
with such RDFs “are hardly dependent on the correlation length at lc ≥ 5a”. The
authors attribute this to the strong absorption and weak lateral scattering for the
considered silver particles (diameter D = 2 nm) near the frequency range of stud-
ied surface plasmon resonance. It was found that the Tc spectra of monolayers with
triangular and square lattice with the same filling factor (η = 0.6) practically coin-
cide in the considered wavelength range from 0.3 to 0.7μm. A comparison with the
calculation results for partially ordered monolayer and monolayer of “independent”
scatterers was made. It was shown the long-wave shift of the transmittance mini-
mum caused by surface plasmon resonance (SPR) at “transition” from monolayer
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of independent scatterers to “quasi-regularly” packed and partially ordered mono-
layers. Using the approach similar to developed in Kachan and Ponyavina (2002)
the authors described experimental data on transmittance of monolayers of silver
nanoparticles in KCl (D = 35 nm, η = 0.2) (Zamkovets et al. 2003a). The partially
ordered and quasiregular monolayers were considered. To describe the deviations of
particle centers from the lattice sites theGaussian distributionwas used. It was shown
that the Tc-values in the dip region caused by SPR are larger for the quasiregular
monolayer as compared to the partially ordered one. With the increase in the correla-
tion length (from lc = 2.74D to lc = 17.3D) the dip minimum is slightly shifted to
shorter waves and its depth is reduced. Based on this result it was concluded that the
main features in the transmittance spectra are determined by the “nearest ordering”
(i.e. nearest neighboring particles).

Among other publications devoted to theoretical and numerical investigations of
ordered monolayers of spherical (and nearly spherical) particles, we emphasize the
works (Skorobogatiy et al. 2005; Sun et al. 2007; Gadomskiĭ and Shalin 2007; Shalin
and Moiseev 2009; Shalin 2009, 2010).

In Skorobogatiy et al. (2005) were analyzed the statistical properties of 2D PhC
imperfection. A statistical model to describe PhC was developed. Authors found
that at least three sets of parameters are necessary to create a minimal statistical
model of 2D disorder in PhC lattices. The first set includes the size and ellipticity
of particles, the second set describes the roughness of the particle surface, the third
one describes the deviation of particle centers from the perfect lattice sites, which
was simulated by a Gaussian distribution. The model was used to analyse photonic
crystal images obtained by the scanning electron microscopy. The results showed
that for the considered PhCs (with different material combinations from which these
PhCs were made) there is a relatively narrow distribution of statistical parameters
characterizing disorder.

Angular structure of light scattered by normally illuminated monolayer of regu-
larly arranged dielectric spheres on a silicon substrate was calculated and analyzed
in Sun et al. (2007) under the FDTD method. It was found that the intensity maxima
of light transmitted through the monolayer into the substrate are focused along the
lines passing through the centers of the particles. This result can be used to solve the
problems of forming the nanoholes in a substrate using micrometer-sized particles.

The interaction of EM waves with a periodic monolayer of monodisperse
nanospheres on the substrate and with a layered system from such monolayers was
considered in the works (Gadomskiĭ and Shalin 2007; Shalin and Moiseev 2009;
Shalin 2009, 2010) using the dipole approximation (Gadomskiĭ and Shalin 2007).
The conditions were determined under which the reflectance of a structured interface
(monolayer of metallic nanoparticles periodically arranged on the semi-infinite sub-
strate) tends to zero in a wide wavelength range. Numerical results were obtained for
the gold nanoparticle monolayer on glass. In Shalin andMoiseev (2009) were studied
the systems with various refractive indices of particles and substrates. The compari-
sonwith the numerical calculation (by the finite-elementmethod) ofMaxwell’s equa-
tions showed good agreement of the results for the systems of particles with D = 10
nm. For the systemswith D = 40 nm the significant discrepancywas occurred which
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is caused by neglecting the higher-order multipole fields. In Shalin (2009) the con-
ditions were found at which for some wavelengths the transmission coefficient of
sparsemultilayer consisting of orderedmonolayers of nanoparticles is unity. In Shalin
(2010) the conditions of broadband antireflection were found for interface of glass
with monolayer of regularly arranged spherical nanovoids in the subsurface region.

Consider some works on experimental investigations of ordered monolayers of
spherical particles (Yamasaki and Tsutsui 1999; Rudhardt et al. 2003; Dushkina et al.
2005; Andueza and Sevilla 2007; Andueza et al. 2008, 2010, 2011, 2012).

The close-packed monolayer of SiO2 spheres with diameter of 550nmwas exam-
ined in Yamasaki and Tsutsui (1999). The high ordering degree of sample allowed
one to observe pronounced diffraction pattern at laser illumination and resonance
dips in spectral transmittance. In Rudhardt et al. (2003) was proposed a fabrica-
tion method for producing interference-based electrooptic phase gratings that can
be switched between diffracting and transparent states. The gratings consist of a
monolayer with triangular-close-packed array of monodisperse droplets of nematic
liquid crystal (LC) embedded in polymer matrix. The advantages of such gratings are
small switching times and controlling electric fields (0.1V/μm), since the changes
from the constructive interference to destructive one and vice versa requires a small
change in refractive index of the LC droplets.

The diffraction effciency (the ratio of diffracted to incident wave intensities) of
a monolayer with triangular lattice of micrometer-sized latex shperes on a glass
substrate was measured in Dushkina et al. (2005) in the planar geometry (PG) and
the geometry of total internal reflection (TIR). For the PG, the range of illumination
angles (50◦–55◦ relative to normal to manolayer plane) was found in which the
reflection coefficient of the monolayer for zero diffraction order tends to zero. The
angle at which the minimum reflectance in this range occurs is an analog of the
Brewster angle. By measurement of this angle one can find the refractive index of a
particulatemonolayer. For TIRgeometrywere observed strong changes of diffraction
efficiency for all orders near the critical TIR-angle (41◦20′).

Andueza and Sevilla investigated, in the centimeter wavelength range, influence
of packing density on the transmittance of a normally illuminated monolayer of
monodisperse glass spheres with refractive index n = 2.65 and diameter from 4 to
8mm, arranged in the triangular lattice (Andueza and Sevilla 2007). Analysis of the
measurement and simulation results has shown that in spite of the great n-value, for
which in spectra of the monolayer the resonance peaks are mainly determined by the
characteristics of an individual sphere (Kondo et al. 2002; Miyazaki et al. 2000), the
influence of the structure can not be neglected even at low particle concentration.
In Andueza et al. (2010) a map of resonant modes of the monolayer was obtained
versus particle concentration and comparison with Mie theory for single sphere and
Bragg diffraction for monolayer in the x << 1 limit was made. Although one can
expect the “convergence” of the resonances in the monolayer spectrum to the Mie
resonances with concentration decreasing, the experiment showed that the position
of practically all resosnances tends to the values determined by Bragg diffraction.
The authors supposed that such behaviour can be caused by large n. They also found
that at high packing density the positions of some resonances remain unchanged and
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match the values of the Mie resonances, while the position of others ones changes
smoothly with the distance between the particles (Andueza et al. 2008). Effect of the
lattice type (Andueza et al. 2010), the disorder (Andueza et al. 2011), the angle of
illumination (Andueza et al. 2012), and the particle permittivity (Morales et al. 2013)
on the transmission spectra of the monolayer were further investigated by authors. It
was found that for large and small packing densities the spectra of monolayers with
triangular and square lattices are clearly different, and at moderate ones the spectra
are almost the same (Andueza et al. 2010). The transmission spectrum of monolayer
of spheres with n = 2.65 is generally weakly sensitive to structural disorder. With
increasing the disorder degree the depth of resonance dips in the transmission spec-
trum is reduced and they becomemore blurred (Andueza et al. 2011).With a decrease
in the packing density the Mie resonances become dominant in the photonic band
structure of the monolayer. It was found that the photonic bands do not depend on the
illumination angle (Andueza et al. 2012). In the framework of the FDTDmethod was
found that the resonances in the monolayer spectra arise mainly due to the scattering
modes of a separate sphere at high particle concentrations and refractive indices and
due to the Bragg diffraction modes at small ones (Morales et al. 2013).

One of the key problems in theoretical consideration of optical properties of actual
ordered systems is taking into accoung their imperfection. Note that, besides the
described aboveworks devoted to solution of this problem formonolayers of spheres,
the arrays of cylinders are actively studied as well (Ryu et al. 1999; Kaliteevski et al.
2003; Chen et al. 2006; Meisels and Kuchar 2007; Prasad et al. 2007). In particular,
in Prasad et al. (2007) was examided experimentally and numerically under the
finite-element method the tansmittance of 2D PhC consisting of holes in silicon
slab at the normal to the slab plane illumination. The sharp resonant peaks and dips
were observed in the transmission spectra. The influence of disorder on the spectra
of these resonances was investigated. The 2D RDFs of the actual samples were
found for different PhC disorders. The peaks of RDF are broadened with disorder.
Moreover, they are asymmetric. It was found that resonances are weakly sensitive to
variations of hole sizes and roughness of boundaries, but very sensitive to deviations
from spatial periodicity of the hole centers. The results obtained show the importance
of accounting the spatial imperfection of crystals at theoretical description of their
optical properties.

In conclusion of this sectionwenote thatmany scientific groups pay great attention
to study the interaction of light with the ordered particulate structures. Particularly
intensively in recent decades are studied photonic crystals. This is due to the potentials
of their use in photonics, optics and optoelectronics. Accordingly, there is an actual
task to create the theoreticalmodels to describe the optical properties of such systems.
Most full description yield the models taking into account imperfection of actual
structures, effects of diffraction, interference and multiple scattering of waves.
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2.3 Theory of Multiple Scattering of Waves and Its
Approximations: Application to Particulate Monolayers

2.3.1 Quasicrystalline Approximation for Determination
of Direct Transmittance and Specular Reflectance

2.3.1.1 Basic Relations

Quasicrystalline approximation (QCA) of the statistical theory of multiple scattering
of waves was suggested by Lax (1952) to obtain the effective field in the systems
where finite size of scatterers is significant, i.e. in concentrated particulate media.
Hong (1980) (as it was indicated in Sect. 2.2.2) obtained the solution of the problem
of plane wave scattering by normally illuminated partially ordered monolayer of
polydisperse spherical scatterers. He used the QCA to derive the equations for the
direct transmission Tc and specular reflection Rc coefficients of the monolayer. In
a number of problems it is reasonable to refer them as coherent components of the
transmitted and reflected light. We write them as follows (Hong 1980; Loiko and
Miskevich 2005a, b; Miskevich and Loiko 2011a, b):

Tc = |tc|2 =
∣∣∣∣∣∣
1 − η

x2

Ns∑

j=1

(2 j + 1)
(
z j + y j

)
∣∣∣∣∣∣

2

, (2.3.1)

Rc = |rc|2 =
∣∣∣∣∣∣
− η

x2

Ns∑

j=1

(−1) j (2 j + 1)
(
z j − y j

)
∣∣∣∣∣∣

2

. (2.3.2)

Here tc and rc are the amplitude direct transmission and specular reflection coef-
ficients, respectively, η is the monolayer filling factor (the ratio of the projection
areas of all particles to the area, where they are located), x = πD/λ is the size
parameter of particle with diameter of D, λ is the wavelength of the incident light,
Ns = x + 4.05x1/3 + 2 is the number of used expansion coefficients z j and y j
(Babenko et al. 2003). The z j and y j coefficients are found from the solution of
the system of equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zl = bl + ρ0bl
Ns∑
j=1

(Al j z j + Bl j y j )

yl = al + ρ0al
Ns∑
j=1

(Al j y j + Bl j z j )
, (2.3.3)

where al and bl are the Mie coefficients, ρ0 is the averaged over the monolayer plane
numerical particle concentration inmonolayer. The Al j and Bl j coefficients are found
from the solution of equations:
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Al j = 2 j + 1

2
[l(l + 1) j ( j + 1)]−

1
2

Ns∑

p= 0,2,...

i−p(2p + 1) [l(l + 1) + j ( j + 1) − p(p + 1)] Pp(0)×,

×
(
l j p
0 0 0

)(
l j p
1 −1 0

)
Hp, (2.3.4)

Bl j = 2 j + 1

2
[l(l + 1) j ( j + 1)]−

1
2

Ns∑

p= 0,2,...

i−p(2p + 1)[(p + l − j)(p − l + j)(l + j + 1 + p)(l + j + 1 − p)]
1
2 Pp(0)×

×
(
l j p − 1
0 0 0

)(
l j p
1 −1 0

)
Hp,

(2.3.5)

Hp = 2π

∞∫

D

g(R)h(1)
p (kR)RdR. (2.3.6)

Here g(R) is the radial distribution function (Ziman 1979), h(1)
p (x) is the spherical

Hankel function of the first kind and p-th order, k = 2π/λ is the wavenumber,(
j1
m1

j2
m2

j3
m3

)
are the Wigner 3 j-symbols which are calculated using the relations

published in Varshalovich et al. (1975).
To calculate integral (2.3.6) it is convenient towrite it as follows:Hp = 2π(H1p +

H2p), where

H1p =
∞∫

D

h(1)
p (kR)RdR, (2.3.7)

H2p =
∞∫

D

(g(R) − 1) h(1)
p (kR)RdR. (2.3.8)

Using the recurrence relations for the spherical Bessel functions (Arfken et al. 2012),
we write integral (2.3.7) as follows:

H1p = k−2

⎧
⎨

⎩−kDh(1)
p+1(kD) +

p∑

q = 0,2,...

[2(p − q) + 1] p!!(p − q − 1)!!
(p − 1)!!(p − q)!!h

(1)
p−q (kD)

⎫
⎬

⎭ .

(2.3.9)

Integral (2.3.8) is computed numerically. Let us introduce dimensionless integra-
tion variable u = R/D designating the distance in the monolayer plane expressed in
particle diameters. Then
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H2p = D2

∞∫

1

(g(u) − 1) h(1)
p (2xu)udu. (2.3.10)

Integral (2.3.10) can be calculated numerically if integrand converges to zero at a
finite u-value. This is provided by convergence of g(u) to unity. The distance where
RDF becomes unity determines the correlation length lc (Ziman 1979; Loiko et al.
1986). Thus, in Eq. (2.3.15) upper limit of integration is replaced by lc:

H2p = D2

lc∫

1

(g(u) − 1) h(1)
p (2xu)udu. (2.3.11)

In theQCA the Tc and Rc coefficients are determined by the sumofwaves scattered
by the particles with taking into account their re-illumination and correlation in their
spatial locations. The correlation is described by the radial distribution function
(RDF), which characterizes the probability of any particle location in the space
relative to other one.

2.3.1.2 Radial Distribution Function

There are various numerical and approximate analytical methods to calculate the
RDF for partially ordered particulate monolayer (Ivanov et al. 1988; Percus and
Yevick 1958; Ornstein and Zernike 1914; Fisher 1964; Lado 1968; Skryshevskii
1980; Lock and Chiu 1994). One of the most used in the QCA is the iteration method
(Ivanov et al. 1988) of numerical solution of the Ornstein–Zernike integral equation
(Ornstein and Zernike 1914) for hard spheres in the Percus–Yevick approximation
(Percus and Yevick 1958).

The method to simulate the RDF of a near-to-regularly packed monolayer (which
can be referred as a planar crystal (PC) with imperfect lattice) of spherical particles
was proposed and developed in Miskevich and Loiko (2011a, b). Schematical view
of planar crystals with perfect triangular, square, and hexagonal lattices are shown
in Fig. 2.1.

To calculate the RDF of the PC with imperfect lattice, the center of any particle
is selected as the coordinate origin and radii of the coordination circles (Ziman
1979; Miskevich and Loiko 2011a, b) of the perfect crystal lattice and the number
of particle centers for each circle are computed. The distance dependence of the
number of particle centers in a perfect lattice is a set of the infinitely narrow peaks at
distances equal to the coordination circle radii (see Fig. 2.1). Accordingly, the RDF
of such a lattice has the nonzero values at these distances and zero otherwise. Actual
crystals typically have an imperfect lattice with coordination circles “blurred” into
the “rings” with the fuzzy edges. Consequently, the peaks of the RDF are blurred
as well. It was shown (Miskevich and Loiko 2011a, b) that the expression for the
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Fig. 2.1 Schematical view of perfect triangular (a), square (b), and hexagonal (c) lattices with
constants at , as , and ah and function N of the number of particle centers on the coordination circles
with radii ui versus dimensionless distance u = R/D, where R is dimension distance, D is particle
diameter

RDF g(u) of the near-to-regularly packed monolayer with an imperfect lattice can
be written as:

g(u) = ρ−1
0

∑

i

Ni

2πui

1√
2π σ(u)

exp

(
− (u − ui )

2

2σ2(u)

)
. (2.3.12)

Here σ(u) is a blurring function that characterizes the broadening of the peaks with
distance u. It is reasonable to use the linear blurring function:

σ(u) = σ0 (au + b) . (2.3.13)

In Eqs. (2.3.12) and (2.3.13), u = R/D is the dimensionless distance expressed
in particle diameters D (u ≥ 1), R is the distance in a monolayer plane relative to
the coordinate origin; ρ0 is the averaged numerical particle concentration in the
monolayer; Ni is the number of particle centers on the coordination circle with
radius Ri of a perfect crystal. The ordering degree and the scale of spatial order
of the simulated crystals can be specified by changing of σ0, a and b coefficients,
respectively. Function (2.3.12) satisfies the normalization condition:

1

πu22

u2→∞∫

u1=0

g(u)2πu du = 1. (2.3.14)

Equation (2.3.12) takes into account the asymmetry of the individual peaks of the
RDF, which are observed in experiment (Rengarajan et al. 2005). It allows one to
calculate the RDFs of the PCs in a wide range of their ordering degrees. The RDF
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Fig. 2.2 Radial distribution
functions for planar crystals
with triangular, square and
hexagonal imperfect lattices
(σ(u) = 0.01u) and partially
ordered monolayer, η = 0.5
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obtained with Eqs. (2.3.12) and (2.3.13) is well adapted to utilize in the QCA. The
calculation of such RDF and, consequently, transmission and reflection coefficients
of the PC in theQCA, is fast and requires low amount of the computational resources.

Figure2.2 shows the RDFs g(u) describing the PCs with imperfect triangular,
square and hexagonal lattices. They are calculated by Eqs. (2.3.12) and (2.3.13).
The type of ordering of such PCs allows one to say that they possess the imperfect
long-range order. Function g(u) for the partially ordered monolayer, (monolayer
with a short-range order) is shown as well. Thus, the data illustrate difference in
radial functions of monolayers with short- and imperfect long-range order.

The RDF of a highly ordered PC is a sequence of narrow peaks at small u = R/D
values (i.e. in the region near to the coordinate origin). With the u-value increasing
the peaks become wider, the function oscillates and converges to unity. Note that
at σ(u) = const, Eq. (7) transforms into the known expression, which describes the
Gaussian blurring of peaks (Skryshevskii 1980).

To obtain the RDF of the partially ordered monolayer of particles, the solution
of the Ornstein–Zernike integral equation (Ornstein and Zernike 1914) was used. It
was numerically calculated in the Percus–Yevick approximation (Percus and Yevick
1958) for a system of hard spheres by the iteration method (Ivanov et al. 1988). Note
that this function is deduced from the Poisson statistics with taking into account the
finite size of particles (Ivanov et al. 1988).

2.3.1.3 Direct Transmission and Specular Reflection Coefficients

Let us consider some results for direct transmission Tc and specular reflection Rc

coefficients of particulate monolayers. They are calculated by the equations written
in Sect. 2.3.1.1 using the RDFs shown in Fig. 2.2. The dependences of Tc and Rc

coefficients and Tc + Rc sum of planar crystals with triangular, square and hexagonal
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Fig. 2.3 Dependences of Tc (a), Rc (b), and the Tc + Rc sum (c) of planar crystals with triangular,
square, and hexagonal lattices (σ(u) = 0.01u) and partially ordered monolayer on the particle size
parameter x . Filling factor η = 0.5 for all monolayers, particle refractive index m = 1.4 + 5 ×
10−5i

lattices and partially ordered monolayer on the particle size parameter x are shown
in Fig. 2.3.

One can see that Tc and Rc dependences of the partially ordered monolayer are
smooth. The functions Tc(x) and Rc(x) of PC are more complicated. The sharp
resonance peaks occur when particle diameters are comparable with the wavelength
(see in Fig. 2.3 the range of∼1.5 < x < ∼2.5). For the triangular and square lattices
the peaks are more pronounced than for the hexagonal one and the fine structure is
observed.

The Tc + Rc sum of partially ordered monolayer equals to unity only for small
particles (x << 1). With x growing (up to the value of x ≈ 5.5) the sum monoton-
ically decreases. For PCs the sum is unity in much wider region of size parameters
than for the partially ordered monolayer. It increases with increasing the coordina-
tion number (the number of particle centers on the first coordination circle). Intervals
of size parameters where Tc + Rc = 1 and Tc + Rc < 1 are separated by the reso-
nances. If the sum Tc + Rc = 1 only zero diffraction order occurs. If Tc + Rc < 1 the
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higher orders are implemented along with the zero one. This causes sharp decrease
of Tc + Rc sum.

Thus, long-range order providesmuchmore interval of size parameterswhere only
forwardly transmitted and specularly reflected light exists than short-range order. In
this interval the absorption coefficient Aml of monolayer consisting of absorption
particles can be calculated by the simple equation: Aml = 1 − Tc − Rc.

The results described are used in the Sect. 2.5 to calculate the absorption spectra
of the layers of crystalline silicon (c-Si) particles with taking into account multiple
scattering of waves.

2.3.1.4 Comparison of Theoretical and Experimental Data

The results obtained for the direct trnsmittance and specular reflectance of the PC
were compared (Loiko and Miskevich 2013; Miskevich and Loiko 2014c, 2015b)
with the available theoretical (Inoue et al. 1982; Miyazaki and Ohtaka 1998) and
experimental (Yamasaki and Tsutsui 1999) data.

In Inoue et al. (1982), Miyazaki and Ohtaka (1998), the calculation results were
given for reflection coefficients of 2D arrays of spherical particles located in the sites
of perfect square and triangular lattices. They were obtained in the framework of
approach, based on LEED theory and KKR method, extended for photons (Ohtaka
1980).

Figure2.4 shows dependences of the specular reflection Rc coefficients of the
normally illuminated PC with the square lattice on Z = a/λ, where a is the lattice
constant and λ is the wavelength of the incident light. Solid curves show the data of
Inoue et al. (1982), and dashed curves represent results of calculation in the QCA.

Fig. 2.4 Dependences of the specular reflection coefficients of a planar crystal with a square lattice
formed frommonodisperse dielectric spheres with refractive indexm = 1.6 + 0.0i on quantity Z =
a/λ,wherea is the lattice constant andλ is thewavelength of the incidentwave.Normal illumination.
Solid curves are data of Inoue et al. (1982), and dashed curves are results of calculation in the QCA
(Loiko and Miskevich 2013). The RDF was calculated at σ(u) = 0.001u. Panel (a): D/(2a) =
0.35 (η = 0.49π/4); panel (b): (solid curve) D/(2a) = 0.5 (η = ηmax

s = π/4 ≈ 0.7854) (Inoue
et al. 1982), (dashed curve) η = 0.78
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Figure2.4a presents results for a monolayer with the ratio of the particle radius
to the lattice constant equal to 0.35 (see Fig. 2a in Inoue et al. 1982). The filling
factor of the monolayer with the perfect square lattice from monodisperse spherical
particles is η = πD2/(4a2). Correspondingly, in the QCA-calculation the value of
filling factor η = 0.49π/4 was used (see dashed curve in Fig. 2.4a). Figure2.4b
presents dependence Rc(Z) (solid curve) that was obtained in Inoue et al. (1982) for
a monolayer with the ratio of the particle radius to the lattice constant equal to 0.5
(see Fig. 2d in Inoue et al. 1982). This ratio corresponds to maximal filling factor
of a perfect square lattice η = ηmax

s = π/4 ≈ 0.7854. The statistical approach that
we use makes it possible to calculate the transmittance and reflectance of particulate
monolayers with an imperfect lattice. The filling factor of these monolayers is η <

ηmax (at η = ηmax, a perfect lattice is realized). Therefore, to calculate the RDF of a
monolayer with a lattice that is close to the perfect one a small σ0-value, σ0 = 0.001,
was specified (Fig. 2.4a and b), and to model a lattice with the filling factor close to
ηmax the value η = 0.78 was chosen (Fig. 2.4b).

A little spectral shift of reflectance peak positions in Fig. 2.4 can be caused by a
difference in the number of considered particles (Fig. 2.4a and b) and the value of
the filling factor of the monolayer (Fig. 2.4b).

In Fig. 2.5 the data of Miyazaki and Ohtaka (1998) obtained under the approach
(Ohtaka 1980), for total reflection coefficient R (see Fig. 2 of Miyazaki and Ohtaka
1998) of PC with triangular lattice having maximal filling factor η = ηmax

t =
π/(2

√
3) ≈ 0.9069 is displayed by solid line. The QCA-calculated specular reflec-

tion coefficient Rc of PCwith imperfect triangular lattice having filling factor η = 0.9
is shown by dashed line. The imperfection degree in this case is very low.

The data presented show that for the parameter (ω = √
3at/(2λ), where at is

triangular lattice constant, λ is the wavelength of incident light) lower than unity
the QCA-calculation results coincide with the ones of Miyazaki and Ohtaka (1998)
(except for magnitudes of resonant peaks) (Miskevich and Loiko 2014c, 2015b).
The coincidence is caused by existence of only directly transmitted and specularly
reflected light components in the ω < 1 region. In other words, here is realized only
zero diffraction order (Miyazaki and Ohtaka 1998). When ω > 1, along with zero
order, there are higher diffraction orders (Miyazaki and Ohtaka 1998), that results in
difference of R and Rc.

Thus, the comparison shows, as a whole, the good agreement of the results
obtained in the framework of developed approach with the results of Inoue et al.
(1982), Miyazaki and Ohtaka (1998). In the low-frequency relative to the resosnant
peaks region of Z (Fig. 2.4) and ω (Fig. 2.5) the results are identical.

Let us compare the results with experimental data. In Fig. 2.6a are shown the
experimental (Yamasaki and Tsutsui 1999) (Fig. 7a of Yamasaki and Tsutsui 1999)
and calculated spectral dependences of direct transmission coefficient of the system
consisting of monolayer of spherical SiO2 particles on the glass plate. The calcu-
lated spectrum of direct transmission coefficient of single monolayer is displayed as
well. In the experiment the monodisperse SiO2 spheres with diameter D = 0.55μm
formed highly ordered imperfect triangular lattice with near to maximal filling
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Fig. 2.5 Dependence of total reflection coefficient R (Miyazaki and Ohtaka 1998) and specu-
lar reflection coefficient Rc of planar crystal with triangular lattice from monodisperse spherical
particles with the refractive index m = 1.6 + 0.0i on parameter ω = √

3at/(2λ), where at is lat-
tice constant, λ is the wavelength of incident light. Solid line: calculation results from the paper
Miyazaki andOhtaka (1998), η = ηmax

t = π/(2
√
3) ≈ 0.9069; dashed line: calculation in theQCA,

η = 0.9, σ(u) = 0.001u

factor. The substrate (glass) thickness was 1.3mm. The transmitted-light intensity
was measured at the normal illumination (Yamasaki and Tsutsui 1999).

The calculations were fulfilled in the QCA for single monolayer and in the QCA
and transfer matrix method (TMM) for the system. First, in the QCA the amplitude
direct transmission and specular reflection coefficients of single monolayer were
found. Second, they were used in the TMM for finding the direct transmission coef-
ficient of the “monolayer-on-substrate” system (the description of TMM is given in
Sect. 2.4.2). The calculations were made at the parameters: D = 0.55μm, η = 0.8,
substrate thickness 1.3mm, wavelength step �λ = 1 nm. The η-value was selected
so that spectral position of resonant dip near the λ = 0.65μm coincides with exper-
imental one. The sample was modeled as a system consisting of three interfaces
(monolayer and two glass plate surfaces) and two layers (air between the monolayer
and plate, and glass between plate surfaces). It was also supposed that whole system
is surrounded by air. To simulate both spheres and plate were used the spectrum of
SiO2 refractive index (Palik 1985) shown in Fig. 2.6b. The air refractive index was
set as unity.

The results of Fig. 2.6a show that, as a whole the calculated dependence describes
well the measured one. The positions of transmittance maxima near λ = 0.58μm
and λ = 0.88μm and minima near λ = 0.65μm and λ = 1.3μm agree well. The
quantitative discrepancy can be caused by various factors among which the fol-
lows can be emphasized: (i) finite-sized receiver aperture leads to accounting not
only strictly-forward component of transmitted light (which is described by theory),
but the component of small-angle scattered light as well, that results in cosiderable
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Fig. 2.6 Experimental (Yamasaki and Tsutsui 1999) and calculated in the QCA and TMM spectral
dependences Tc(λ) of system consisting of monolayer with triangular lattice from monodisperse
SiO2 spheres on the glass substrate, calculated in the QCA Tc(λ) dependence of single monolayer
(a) and the refractive index nSiO2 spectrum of silica (SiO2) using the data of Palik (1985) (b).
D = 0.55μm, η = 0.8, σ(u) = σ0(2u − 1), σ0 = 0.001, lc = 400, substrate thickness 1.3μm

exceeding by the measured Tc-values the calculated ones in the wavelenght ranges
of λ < 0.5μm and λ > 0.7μm; (ii) at the re-reflections between the interfaces the
higher diffraction orders, which do not took into account in the computation, can
contribute in the directly transmitted component (in the short-wave, relative to reso-
nances, range, i.e. at λ < 0.5μm); (iii) the refractive index dependence of particles
and substrate used in the calculation can differ from experimental one; (iv) blurring
and broadening the experimentally obtained peaks and dips in the resonance region
(see wavelength range 0.5–0.7μm) may be due to lattice imperfection of actual
monolayer as well as substrate influence (Kurokawa et al. 2002).

It should be noted that transmittance (and reflectance) spectra of single monolayer
in air (dashed line in Fig. 2.6a) differ essentially from the ones of the “monolayer-
on-substrate” system. This is caused by optical interaction between the monolayer
and substrate which must be taken into account in the theoretical models. It can
conditionally be divided into two components: near- and far-field interaction. In the
approach described are used the methods allowing to take into account only far-field
interaction: multiple reflection between the interfaces of the system (monolayer and
substrate surfaces), that enables one to obtain acceptable agreement of theoretical
and experimental results. Remind that this approach is based on the Hong’s solution
(Hong 1980) which takes into account near and far fields at multiple scattering of
waves inside themonolayer and describes the average (coherent) field scattered in the
strictly forward and strictly backward directions (at normal illumination) in far-field
zone outside the monolayer. When the monolayer and substrate are in touching or on
little (comarable with the wavelength) distances from each other, the near field can
influence on the transmission and reflection spectra of the system (Fujimura et al.
2000; Kurokawa et al. 2002, 2004a).
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The results described in this subsection can be used to solve the problem of
monitoring the ordering degree of the two-dimensional lattices from analysis of the
transmission and reflection coefficients.

2.3.2 Structure Factor

The structure factor characterizes the interference pattern of angular distribution of
light, scattered by particulate medium, caused by spatial arrangement of particles.

The equation for structure factor S2 of monolayer of monodisperse spherical
particles can be written as follows (Ivanov et al. 1988):

S2 = 1 + 8η

∞∫

0

[
g(u) − 1

]
J0 (2xu sin θ) udu, (2.3.15)

where η and g(u) are the filling factor and the RDF of monolayer, J0(x) is the zero-
order cylindrical Bessel function, x = πD/λ is the size parameter of particle with
diameter D, λ is the length of incident wave, θ is the polar scattering angle. The
subscript “2” means that the 2D system is considered.

Figure2.7 shows the dependences of structure factors of partially ordered mono-
layer and planar crystals on the “generalized” parameter 2xsinθ (see Eq. (2.3.15)).
When S2 of partially ordered monolayer was calculated the iteration method
(Ivanov et al. 1988) of numerical solution of Ornstein–Zernike integral equation
for hard spheres in the Percus–Yevick approximation was used to compute the
RDF. Note that, for θ = 0 the structure factor takes the form: S2 = (1 − η)3/(1 + η)

(Ivanov et al. 1988; Twersky 1975c). ForRDFof planar crystals themethod described
in Sect. 2.3.1.2 was used.
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Fig. 2.7 Structure factor S2 of partially ordered monolayer with different filling factors (a) and
planar crystals with different lattices at η = 0.5 (b) versus parameter 2xsinθ . The RDFs of PCs
were calculated at parameters: σ(u) = 0.01u, lc = 100
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The maxima of S2 correspond to constructive interference while the minima to
destructive interference of scattered waves. The data obtained allows one to find
parameters of the layer to realize clearly indicated maxima in the angular distribution
of light. For planar crystals the number of peaks corresponds to the number of the
diffraction orders.

2.3.3 Single Scattering and Interference Approximations

There are conditions in which multiple scattering of waves can be neglected. They
occur, for example, in monolayers of large particles or sparse thin particulate lay-
ers. In these cases the single scattering approximation (SSA) and the interference
approximation (IA) (Ivanov et al. 1988) can be used. The SSA and IA are simplest
approximations in the hierarchical approach of the theory of multiple scattering of
waves and they are significantly simpler than the QCA. Both SSA and IA neglect the
multiple scattering of waves. Under the SSA the correlation in particle locations (i.e.
spatial structure of monolayer) is neglected. Under the IA the spatial arrangement
of particles is taken into account by the structure factor (see Sect. 2.3.2). The choice
of SSA or IA is caused by the problem to be solved. For example, to determine the
direct transittance and specular reflectance of normally illuminated monolayer the
SSA can be used, while to determine the angular distribution of scattered light the
IA is preferred.

Direct transmission coefficient Tc of a normally illuminatedmonolayer of particles
can be written as follows (Bohren and Huffman 1983; van de Hulst 1957; Dick et al.
1997b, 1985, 1987a):

Tc =
∣∣∣∣1 − 2η

x2
〈 f (0)〉

∣∣∣∣
2

, (2.3.16)

where η is the monolayer filling factor, x = πD/λ is the size parameter of particle
with diameter D, λ is the wavelength of incident light, and 〈 f (0)〉 is the config-
urationally averaged amplitude scattering function for zero polar scattering angle
(forward-scattering amplitude) of the monolayer. Generally this function depends
both on the particle parameters and the effective field acting on the particle (see
Sect. 2.2), i.e., on the number of particles in the layer and their spatial arrangement.

When multiple scattering in a monolayer of monodisperse particles can be
neglected (i.e. when single scattering occurs), 〈 f (0)〉 is equal to the forward scatter-
ing amplitude of an isolated particle: 〈 f (0)〉 = f (0), and for a spherical particle it
can be calculated by Mie formulas (Bohren and Huffman 1983). Then Eq. (2.3.16)
can be transformed into the form (Ivanov et al. 1988; Dick et al. 1987b):

Tc = 1 − Qextη + L

2
(Qextη)2. (2.3.17)



2 Multiple Scattering of Light in Ordered Particulate Media 143

Here

L = 8πp(0)

Qext x2
, (2.3.18)

Qext is the extinction efficiency factor,  is the single-scattering albedo (ratio of
the scattering to extinction efficiency factors) (Zege et al. 1991a; Mishchenko et al.
2006), p(0) is the particle phase function for the zero polar scattering angle: θ = 0◦.
It is normalized by the condition

2π

π∫

0

p(θ) sin θdθ = 1. (2.3.19)

Equation (2.3.17) can be easily generalized for a monolayer formed by polydisperse
particles (Ivanov et al. 1988; Dick et al. 1997b):

Tc = 1 − Q̄extη + L̄

2
(Q̄extη)

2
. (2.3.20)

Here

Q̄ext =

∞∫

0
x2Qext (x)c(x)dx

∞∫

0
x2c(x)dx

, (2.3.21)

L̄ = 8

∣∣∣∣
∞∫

0
f (0, x)c(x)dx

∣∣∣∣
2

(∞∫

0
x2Qext (x)c(x)dx

)
2
, (2.3.22)

η = ρ

∞∫

0
πr2c(r)dr

∞∫

0
c(r)dr

, (2.3.23)

c(r) is the particle size distribution function, Qext (x) and f (0, x) are, respectively,
the extinction efficiency factor and forward-scattering amplitude for the particle with
size parameter x, ρ = N/S is particle concentration (the ratio of the number N of
particles to the monolayer area S where they are distributed).

The experimental data were obtained and their comparisonwith theoretical results
for large latex and starch particles was made in Ivanov et al. (1988), Dick et al.
(1997b). Data for latex particles are presented in Fig. 2.8. Solid line corresponds to
calculation by Eq. (2.3.17). Dashed line corresponds to calculation by equation
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Fig. 2.8 Direct
transmittance Tc of the
monolayers of monodisperse
latex particles versus filling
factor η and the
corresponding rarefied slab:
experiment (dots) and
calculations by the
Eq. (2.3.17) (solid line), and
Eq. (2.3.24) (dashed line)
(Dick et al. 1997b). The
relative refractive index of
particles is n = 1.144,
wavelength λ = 0.65μm,
particle diameter
D = 3.75μm

Tc

η

Tc = exp(−Qextη), (2.3.24)

which describes direct transmittance by the rarefied system. The experimentally
observable dependences for monolayers are as a whole in good agreement with
the results of calculation, because of the particles are large, the phase function is
forward-elongated, and the role of multiple scattering is small.

We mainly consider in this chapter normal illumination of the layer. There are
cases when information on transmittance at the oblique illumination plays an impor-
tant or crucial role in studying the particulate system. The model to describe direct
transmittance at oblique illumination in the polymer dispersed liquid crystal films is
developed in Loiko and Dick (2003), Dick and Loiko (2001a, b). Transmittance at
different polarization of the incident light, different characteristics of the layer and
the liquid crystal droplets is close examined in these papers. The calculated results are
compared with the known experimental data. The spectral behavior of transmittance
of optically soft particles is studied in Dick and Loiko (2014).

Consider angular dependences of scattered light (Ivanov et al. 1988; Loiko et al.
1985; Dick et al. 1997a). At normal illumination the intensity (radiance) I (θ) of light
scattered by monolayer at angle θ can be written in the IA as:

I (θ) = F0Qextηp(θ)S2(θ). (2.3.25)

Here the structure factor S2 is defined by Eq. (2.3.15) (Sect. 2.3.2), F0 is the radiant
intensity of the incident flux, is single scattering albedo, Qext is particle extinction
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Fig. 2.9 Calculated angular
distributions of intensities
I (θ) of light scattered by
monolayers of partially
ordered nanabsorbing
particles (Ivanov et al. 1988;
Dick et al. 1987b). Filling
factor η = 0.1 (curve 1), 0.3
(curve 2), 0.5 (curve 3), 0.7
(curve 4). Size parameter
x = 1 (a) and 6 (b).
Refractive index of particles
m = 1.4 + 0i . The arrows
indicate forward and
backward directions of light
propagation

efficiency factor, η is the monolayer filling factor, p(θ) is the phase function of
individual particle.

The calculated byEq. (2.3.25) angular distributions for the partially orderedmono-
layer are shown in Fig. 2.9 (Ivanov et al. 1988; Dick et al. 1987b) for two particle size
parameters and a set of monolayer filling factors. For particles with size parameter
x = 1 the shape of angular distribution of scattered light intensity practically does
not depend on the filling factor. For x = 6 there are angles where intensity grows
monotonically, as well as the angles where it grows nonmonotonically with η.

In Fig. 2.10 are shown the measured and calculated in the IA I (θ) dependences
for monolayers with different filling factors (Dick et al. 1997a). One can see that for
small scattering angles θ < 6◦ the intensity of scattered light first increases and then
decreases with η increasing. For large θ , I (θ) dependence increases monotonically
with η. The most rapid increase is observed for θ close to 9◦. The different character
of change in the I (η) dependence at different θ leads to the formation of additional
maximum on the angular distribution of light scattered by monolayer at large η.

In Fig. 2.11 are shown measured and calculated in the SSA angular distributions
of intensity I of light scattered by the monolayer of monodisperse spherical par-
ticles of polyvinyltoluene latex in a wide range of scattering angles θ (Sarofim
et al. 1968). The differences on the dependences are caused by the redistribu-
tion of energy owing to the multiple scattering and interference of waves effects.
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I, a.u.

θ, deg. 

Fig. 2.10 Dependences of scattered light intensity I on polar scattering angle θ for monolayers of
latex particles inwater at variousmonolayer filling factors η (Dick et al. 1997a). Symbols correspond
to experimental data. Curves represent the calculation results

I

θ, deg

Fig. 2.11 Measured (solid line) and calculated in the SSA (dashed line) angular distributions of
intensity I of light scattered by monolayer of latex particles with diameter 3.49μm (Sarofim et al.
1968). Monolayer filling factor η = 0.86

2.3.3.1 Small-Angle Light Scattering and Direct Transmittance
of Polymer Dispersed Liquid Crystal Film

Polymer dispersed liquid crystal (PDLC) films are widely used in various optic and
optoelectronic devices (Zharkova and Sonin 1994; Simoni 1997; Blinov 2011;Drzaic
1988; Loiko 2013). Such a film consists of the thin polymer layer with embedded
droplets of liquid crystal (LC). The optical properties of the PDLC films can be
simply vary by applying the electric or magnetic fields, mechanical stretching, etc.,
i.e. due to externally-induced changing the properties of both individual LC droplets
and their ensemble.
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When the inhomogeneous anhcoring on the LC droplet – polymer surface is
created, the asymmetry in small-angle scattering pattern is observed (Loiko et al.
2011, 2012, 2016a, b). The effect strongly depends on the droplet concentration.

To describe angular structure of light scattered by monolayer of LC droplets the
interference approximation (Ivanov et al. 1988) was used. In this approximation for
components of the intensity Iof scattered light parallel (Ivv) and perpendicular (Ivh)
to the polarization plane (defined by the wave vector and polarization vector of the
incident wave) of the incident wave it is possible to write (Loiko et al. 2011, 2012):

Ivv(θs, ϕs) = C
η

σk2
| fvv(θs, ϕs)|2S(θs), (2.3.26)

Ivh(θs, ϕs) = C
η

σk2
| fvh(θs, ϕs)|2S(θs), (2.3.27)

Here C is the normalization constant, fvv(θs, ϕs) and fvh(θs, ϕs) are the vv- and vh-
components of the vector amplitude scattering function in the direction of the wave
vector ks = (k cos θs, k sin θs cos θs, k sin θs sin θs) of the scattered wave, S(θs) is the
structure factor of themonolayer, θs andϕs are the scattering angles. For a statistically
isotropic ensemble of spherical or oblate shperoidal droplets, it does not depend on
the ϕs angle.

Components of the amplitude scattering function in the expressions (2.3.26) and
(2.3.27) are defined in terms of the elements of the amplitude scattering matrix
Sj (j = 1, 2, 3, 4) (Loiko et al. 2012) as follows:

fvv(θs, ϕs) = S2(θs, ϕs)cos
2(α, ϕs) + S1(θs, ϕs)sin

2(α, ϕs)+
1

2
(S3(θs, ϕs) + S4(θs, ϕs)) sin 2(α, ϕs), (2.3.28)

fvh(θs, ϕs) = S3(θs, ϕs)sin
2(α, ϕs) + S4(θs, ϕs)cos

2(α, ϕs)+
1

2
(S2(θs, ϕs) + S1(θs, ϕs)) sin 2(α, ϕs), (2.3.29)

where α is the polarization angle (angle between the polarization vector of the inci-
dent wave and orientation direction of the droplet optical axes).

In Fig. 2.12 are shown the calculation results for the dependences of Ivv compo-
nent of the intensity of light transmitted the normally illuminated monolayer of LC
droplets with homogeneous surface anchoring on the scattering angle θs at orienta-
tion angle of the scattering plane ϕs = 0. They are obtained for the droplet radius a =
4μm and the refractive index of the polymer matrix np = 1.532. The normalization
constant C = 1. Scattering plane coincides with the principal plane (it is defined by
optical axis of droplet and the wave vector of the incident light) (Loiko et al. 2012).
For a layer of droplets with such anchoring, the values of Ivv(θs) are identical at the
same θs for different directions relative to the normal to the layer: Ivv(θs , ϕs = 0) =
Ivv(−θs , ϕs = 0).
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Fig. 2.12 Dependence of Ivv-component of the intensity of light scattered by a monolayer of
monodisperse spherical oriented LC droplets with homogeneous tangential (solid line) and normal
(dashed line) anchoring on the scattering angle θ s with value of the azimuthal scattering angle
ϕs = 0 (Loiko et al. 2012). No applied field. Droplet radius a = 4μm. λ = 0.633μm, ordinary no
and extraordinary ne refractive indices of LC: no = 1.531, ne = 1.717, refractive index of polymer
matrix n p = 1.532, η = 0.5, polarization angle α = 0

In Fig. 2.13 are shown patterns of the angular distributions of Ivv(θs, ϕs) and
Ivh(θ s , ϕs) components of the scattered light intensity in relative units in the angles
0 < θs ≤ 8◦, 0 < ϕs ≤ 360◦ for monolayer of polydisperse droplets with uniform
distribution of optical axes (directors) and homogeneous anchoring (Loiko et al.
2012).

The photograph of transmitted-light scattering pattern of PDLC film containing
bipolar nematic droplets under normal illumination by the linearly polarized light is
shown in Fig. 2.14.

Experimental results and theoretical model to describe angular distribution of
light scattered by monolayer of nematic droplets are given in Loiko et al. (2016b).
A method to simulate angular distribution of light used in this paper is based on
the anomalous diffraction and interference approximations. It takes into account the
director configuration within liquid crystal droplets, which is calculated using the
relaxation method of the free energy minimization (Ondris-Crawford et al. 1991).

Experimental and calculated data for the Ivv and Ivh components of intensity of
light scattered by the PDLC monolayer of spheroidal bipolar LC droplets versus the
polar scattering angle are shown in Fig. 2.15. They are in reasonable coincidence.

For a layer of droplets with inhomogeneous anchoring, such as “tangential-
normal”, there is an asymmetry of the angular structure of scattered light (Ivv(θs) �=
Ivv(−θs)). This effect is most pronounced at equal parts of the tangential and
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Fig. 2.13 Maps of the Ivv (left) and Ivh (right) components of intensity of light scattered in small
angles by monolayer of polydisperse LC droplets with homogeneous anchoring of liquid crystal
molecules at the droplet-polymer surface and uniform droplet’s director configuration in a strong
applied field (Loiko et al. 2012). Filling factor η = 0.3 (top), η = 0.7 (bottom). The average radius
of droplets 〈a〉 = 2.5μm. Variation coefficient of droplet radii is 0.2. λ = 0.589μm, ordinary no
and extraordinary ne refractive indices of liquid crystal are: no = 1.5183, ne = 1.7378, refractive
index of polymer n p = 1.524, polarization angle (angle between the polarization vector of the
incident wave and the average droplet director orientation) α = 0. Droplet optical axes (directors)
are distributed uniformly over the polar and azimuthal angles in the range twelve degrees. The
average director of droplets is in the plane of monolayer

normal surface anchoring. Figure2.16 shows influence of particle concentration
on the Ivv(θs) dependence. Angular structure for concentrated layer possesses pro-
nounced asymmetry determined by the shape of phase function of the individual
droplet and short-range ordering of droplets in a monolayer.
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Fig. 2.14 Photograph of transmitted-light scattering pattern of polymer dispersed liquid crystal film
containing bipolar nematic droplets with the average diameter 13.5μm, and small dispersion of the
droplet sizes (fraction of droplets in the range of 13.57±2.5μm is 73%) for geometry of crossed
polarizer and analyzer. Filling factor η = 0.23. Normal illumination by the linearly polarized light.
λ = 0.633μm. The laser beam passing straight forward is shaded (Loiko et al. 2016b)
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Fig. 2.15 Experimental and calculated data for the Ivv and Ivh intensities of light scattered by
the PDLC monolayer of spheroidal bipolar LC droplets versus the polar scattering angle θ s at
azimuthal scattering angle ϕs = 90◦. η = 0.23, ordinary no and extraordinary ne refractive indices
of liquid crystal are ne = 1.717, no = 1.531, refractive index of polymer is 1.522. Illumination by
the linearly polarized light. λ = 0.633μm (Loiko et al. 2016b)
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Fig. 2.16 Dependence of Ivv-component of the intensity of light scattered by a monolayer of
spherical monodisperse oriented LC droplets with inhomogeneous anchoring at different values of
filling factor η = 0.01, 0.02, 0.03 (a), η = 0.1, 0.2, 0.4 (b). No applied field. The parts with normal
and tangential anchoring on the droplet-polymer surface are equal. λ = 0.633μm, no = 1.531,
ne = 1.717, n p = 1.532, η = 0.5, a = 5μm, α = 0, ϕs = 0 (Loiko et al. 2012)

2.3.4 Direct Transmission Coefficient: Comparison of the
Results Calculated in the Single Scattering and the
Quasicrystalline Approximations

Comparison of the direct transmission coefficients Tc of monolayers with a short-
range ordering determined under the single scattering (SSA) and the quasicrystalline
(QCA) approximations is fulfilled in Loiko et al. (1998). The regions of monolayer
filling factor and particle size parameter are found where it is possible to use the
simple SSA instead of the more complicated QCA. The range of filling factors
(η < 0.6) is considered where the the Percus–Yevick model of the absolutely hard
disks is applicable (Ziman 1979; Percus and Yevick 1958). The values of the particle
size parameter x were limited by the region x < 10.0. For larger x , the differences
in transmittance calculated in the SSA and the QCA decreases with increasing size
parameter. Therefore the larger the value of x , the more justified is the use of the
SSA. This is also evident from experimental results (Ivanov et al. 1988; Percus and
Yevick 1958; Ornstein and Zernike 1914; Dick et al. 1997b, 1987a).

The data that enable one to see the differences in direct transmission coefficient
calculated in the SSA (TSSA) and theQCA (TQCA) are given in Figs. 2.17 and 2.18. For
relative particle refractive index n = 1.2 the differences are less than 1%. Generally
they increase with n. For n = 1.4 they do not exceed 5% at η < 0.4.

In Figs. 2.17 and 2.18 the regions of small x-values are shaded. These are the
regions of size parameter and filling factor where the value of the transmission
coefficient calculated in the SSA is greater than unity. The SSA is not valid in these
regions.

For monolayers of small (x << 1) scatterers it is sufficient to take into account
the dipole interactions between the particles. Simple QCA- and SSA-based equations
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Fig. 2.17 Isolines of the
(TQCA−TSSA)/TSSA ratio
for direct transmission
coefficients of monolayer
(solid lines): 0.0001 (1);
0.003 (2); 0.01 (3) and of the
direct transmission
coefficient TSSA (dashed
lines) of monolayer of
nonabsorbing particles:
TSSA = 1 (I); 0.9 (II); 0.8
(III); 0.5 (IV); and 0.3 (V).
n = 1.2 (Loiko et al. 1998)

Fig. 2.18 Isolines of the
(TQCA−TSSA)/TSSA ratio
for direct transmission
coefficients of monolayer
(solid lines), 0.01 (1); 0.05
(2); 0.3 (3) and of the direct
transmission coefficient
TSSA (dashed lines) of
monolayer of nonabsorbing
particles TSSA = 1 (I); 0.9
(II); 0.7 (III); 0.5 (IV).
n = 1.4 (Loiko et al. 1998)

10
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for direct transmission Tc and specular reflection Rc coefficients of such monolayers
are obtained in Loiko and Molochko (1996).

If the absorption index (imaginary part of complex refractive index) of particles
tends to zero, in the QCA (Loiko and Molochko 1996):

Tc = 1 − (αx)2 + O(x4), (2.3.30)

Rc = (αx)2 + O(x4). (2.3.31)

Here

α ≡ 2ν
1−νC(η)/2 , ν ≡ ηm2−1

m2+2 , C(η) ≡ 1 +
∞∫

1

g(t)−1
t2 dt, g is the radial distribution

function. For η < 0.7 the approximation for C(η) by polynomials of the forth power
of η is valid: C(η) = 1 + 0.17η + 2.9η2 − 8.4η3 + 8.6η4.

Formulae in the SSA give the following erroneous result (Loiko and Molochko
1996):

Tc = 1 + (νx)2 + O(x4), (2.3.32)

Rc = (2νx)2 + O(x4). (2.3.33)

As follows from Eq. (2.3.32) the single scattering approximation cannot be used to
describe optical properties of monolayers of small weakly absorbing scatterers. It
gives obviously wrong result: transmittance is more than unity.

2.3.5 Quenching of the Forwardly Transmitted Component
of Light

From Eq. (2.3.17) it follows that direct transmittance Tc is equal to zero, if:

L = 0.5 (2.3.34)

and

η = 2/Qext . (2.3.35)

It means that in these conditions the quenching effect for direct (coherent) transmit-
tance is implemented. This effect was considered in Ivanov et al. (1988), Loiko et al.
(2000), Dick et al. (1987a), Loiko and Konkolovich (2000, 2001a, b), Zyryanov et al.
(2001), Konkolovich et al. (2000).

Equations (2.3.34) and (2.3.35) determine the parameters of individual scatter-
ers and the filling factor of the layer, respectively, at which the quenching effect is
realized. It should be noted that Eq. (2.3.35) imposes certain limits on the scatter-
ing properties of the particles. Indeed, since the particulate monolayer always has
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η

x

Fig. 2.19 Isolines for L = 0.5 (vertical) and η = 2/Qext (tilted) calculated in the SSA (dashed
lines) and the QCA (solid lines). The intersection point of the dashed (solid) lines shows the values
of x0 and η0 calculated in the SSA (QCA) (Loiko et al. 2000)

maximal value of the filling factor ηmax, Eq. (2.3.35) holds only when Q ≥ 2/ηmax

(for monolayer of monodisperse spherical particles ηmax ≈ 0.907).
The physical meaning of Eqs. (2.3.34) and (2.3.35) is as follows. Direct trans-

mittance is determined by the field outgoing from the layer in the forward direction,
which is the sum of the field of incident wave and the fields of waves scattered in
direction of the wavevector of the incident wave. Therefore the condition Tc = 0
can be implemented if the forward-scattered field is equal in value and opposite in
phase to the field of the forwardly transmitted incident wave. Equations (2.3.34) and
(2.3.35) are the mathematical representations of these conditions.

Based onEqs. (2.3.34) and (2.3.35), it is possible to find the scatterers’ parameters:
the refractive indexm = n + iκ , the size parameter x0, and the values of η0 at which
the direct transmittance of the layer is zero (Ivanov et al. 1988; Loiko et al. 2000).
The parameters x = x0 and η = η0 calculated using Eqs. (2.3.34) and (2.3.35) in
the frames of the SSA (dashed lines) and QCA (solid lines) at which Tc = 0 are
shown in Fig. 2.19 for monolayer of monodisperse nonabsorbing (κ = 0) spherical
particles with n = 1.4. They are determined by the intersection point of the dashed
(SSA-calculation) and solid (QCA-calculation) lines: the vertical one corresponds
to the condition L = 0.5 and the tilted one corresponds to the condition η = 2/Qext .

Consider, using the SSA, typical behavior of the x0 and η0 for monolayer of
spherical monodisperse nonabsorbing particles.

In Fig. 2.20a is shown the coupling between the particle refractive indices n and
size parameters x = x0 at which the quenching effect is implemented. Note that all
curves except for the three lower ones have termination points determined from con-
dition Qext = 2/ηmax = 2.205. It is apparent that zero transmittance can be realized
at any refractive index n, but only for a few fixed values of x (we designated them
as x0). The number of x0-values depends on n and increases with n.

The curves in Fig. 2.20a are well approximated by the expressions x0(n − 1) = l,
where l = 52.2, 5.8, 8.5, 11.6, 14.6, and so on for the curves labeled by integers 1,
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Fig. 2.20 Values of n, x0, and η0 at which quenching effect for direct transmittance of monolayer of
monodisperse nanabsorbing spherical particles is implemented (Tc = 0) (Ivanov et al. 1988; Loiko
et al. 2000). Simulation under the SSA. Integers near the lines correspond to numbers of maxima
on dependence of the extinction efficiency factor on size parameter

2, 3, 4, 5, and so on. These integers are numbers of maxima on dependence of the
extinction efficiency factor on size parameter. To satisfy the condition Tc = 0, as
follows from the foregoing, the monolayer has to have a certain filling factor η. In
this case, for each pair of n and x0 there corresponds one filling factor η = 2/Qext

(designated as η0).
The values of η0 versus n are given in Fig. 2.20b. It should be noted that for each

η0 determined by curve 1, there corresponds the size parameter x0 determined by
curve 1 of Fig. 2.20a, and so on. From Fig. 2.20 it follows that as n increases, the
value of η0 decreases. The η0 changes in a similar manner with x0 decreasing.

The conditions for the quenching effect have been formulated using the equations
obtained in the single scattering approximation: each particle is illuminated only
by the incident wave and the reillumination of particles is negligibly small. The
reillumination, i.e. multiple scattering of waves, can be taken into account using the
QCA. Analysis shows that the direct transmittance in the QCA can be given in a
form analogous to Eq. (2.3.17), but the values of L and Qext parameters become the
functions of the filling factor. The intersection point of the solid lines in Fig. 2.19
shows the values of x0 and η0 at which quenching occurs at simulation in the QCA.
It is easy to see that taking into account multiply-scattered light results in increasing
the size parameter and the filling factor, but the quenching effect does not vanish.
Figure2.21 illustrates calculated in the QCA dependence of direct transmittance
quenching on the filing factor and size parameter, when the monolayer consists of
particles with refractive index n = 1.4.

The data demonstrating quenching effect experimentally are published in Loiko
et al. (2000), Konkolovich et al. (2000).
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Fig. 2.21 Direct
transmittance Tc as a
function of monolayer filling
factor η and particle size
parameter x calculated in the
QCA (Ivanov et al. 1988;
Loiko et al. 2000). Refractive
index of particles n = 1.4

2.3.5.1 Quenching Effect Description in the Amplitude-Phase Screen
Model

For the optically soft particles in the framework of the amplitude-phase screen model
the quenching effect was considered in Zege andKokhanovsky (1991), Kokhanovsky
(2001).

In the frame of this model conditions for zero transmittance of scattering medium
consisting of nonabsorbing particles can be written as

tan� = �, (2.3.36)

η =
(
1 + 2(1 − cos�)

�2
− 2 sin�

�

)−1

. (2.3.37)

Here� = kD(m2 − m1) is the phase shift on the particle with diameter D,m2 is the
refractive index of particles,m1is the refractive index of the host medium, k = 2π/λ

is the wave number, λ is the length of the incident wave.
Direct transmittance Tc is zero for a discrete phase shifts �l . At �l >> 1 they

are approximately described by relation:

�l ≈ π(2l + 1)/2. (2.3.38)

Here l is an integer. The values of filling factor at which Tc = 0 are determined by
formula:

ηl =
(
1 + 4

π(2l + 1)

)−1

, (2.3.39)

where l = 1, 3, 5, . . . .
The approach based on the amplitude-phase screen permits one to consider

in details conditions of Tc = 0 implementation for monolayers of nonspherical,
anisotropic, and structured particles.
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2.3.6 Spatial Optical Noise

At illumination of the particulate layer by a wide homogeneous beam of light the
intensity of light transmitted and reflected by small layer areas can depend on their
locations. These fine-scale intensity fluctuations are defined as noise (Frieser 1975;
Ivanov and Loiko 1983). Noise leads to loss of quality of the image recording and
mapping films (photo- and holographic emulsion layers, liquid-crystal (LC) com-
posites encapsulated in a polymer, films of image migration, and other systems of
the image transfer).

Among the basic factors determining the noise nature, the following ones can
be emphasized: fluctuations of the number of inhomogeneities within the limits of
a pixel, fluctuations of optical properties and geometric parameters of individual
inhomogeneities, statistical features of the material microstructure, and mechanisms
of the process of light scattering. The sizes of inhomogeneities can vary over wide
range: from tens of micrometers (for instance, large-grained emulsions) to micron
and submicron levels (holographic films, LC composites encapsulated in polymers,
and so on). The statistics of inhomogeneity distribution depends on technological
processes of material preparation and properties of the binder.

At a low particle concentration, single scattering occurs. In this case, to describe
the light scattering the statistical model of a “Poisson ensemble” of scattering centers
can be used.

Dispersion materials with a high particle concentration attract considerable prac-
tical and theoretical interest. Difficulties of the theoretical study of noise properties
are obvious in this case due to dense particle package inducing the short-range topo-
logical ordering and pronounced cooperative optical effects (Frieser 1975; Ivanov
and Loiko 1983). As a result, the rigorous solution of the problem of predicting
characteristics of the spatial optical noise should lean upon the theory of multiple
scattering of waves and statistical simulation, which is unlikely to provide the solu-
tion in the complete and especially in the analytical form. Thereby, finding and the
construction of adequate physically transparent approximate models is needed for
the elucidation of basic features in the variation of characteristics of optical noise as
functions of the concentration and optical properties of individual inhomogeneities
forming a disperse material.

To characterize noise properties of the films the power spectral density (Wiener
spectrum) is used (Bendat and Piersol 1971):

n(ν) = lim
A→∞

1

A

〈|T FA{t (x)}|2
〉
. (2.3.40)

Here ν is the spatial frequency (Frieser 1975) vector, A is the aperture (the surface
of averaging), and

T FA{t (x)} =
∫

A

t (x) exp(−i2πνx)dx (2.3.41)
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is the two-dimensional Fourier transformation of t (x). Angular brackets denote statis-
tical averaging over realizations. The function t (x) entering into (2.3.40) and (2.3.41)
can describe various physical quantities: local spatial fluctuations of transmission or
reflection coefficients and optical densities in transmission or reflection relative to
their mean values. Some numerical characteristics of noise are determined from this
spectrum (Frieser 1975; Ivanov and Loiko 1983).

2.3.6.1 Spatial Statistical Inhomogeneity: Fluctuation of Particle
Concentration

In Sect. 2.2.1 we considered the approach based on N -particle distribution functions
to statistical description of particulate media. In some practical problems, for exam-
ple image processing (Frieser 1975; Ivanov and Loiko 1983; Yu 1973; Loiko and
Dubovik 1989a, b, 1990; Loiko 1991; Loiko and Konkolovich 1994, 1998a, b) we
should know fluctuations of particle concentration (density) in the considered space
area.

Let us choose a small volume V in a particulate medium. Suppose that the density
of particles in this volume is a random function of its coordinates. This factor results
in fluctuation of the light flux outgoing the volume.

At low concentration of particles their spatial arrangement is described by Poisson
statistics: the probability distribution function PN to find N particles in a considered
volume V is:

PN = (N̄ )N exp(−N̄ )

N ! . (2.3.42)

Here N̄ is the average number of particles in a volume.
If particle concentration is not small the other equations for PN should be used.

The expressions for one-, two-, and three-dimensional systems with absolutely rigid
particles of finite size are written in Ivanov et al. (1988), Loiko and Dubovik (1986).

The normalized probability distribution for the 1D particulate system is (Ivanov
et al. 1988):

Pn
N
(L) =

N
1 (L−NL∗(1))N

N ! exp(−1(L − NL∗(1))
Nmax∑
k = 0

k
1(L−kL∗(1))k

k! exp(−1(L − kL∗(1))
. (2.3.43)

Here 1 = η1(1 − η1)
−1l−1, Nmax = [L/ l], L∗(1) = l = D, D is the particle size,

η1 is the filling factor of the 1D particulate system. L is the size (length) of the
system. The square brackets mean that the integer part is taken.

The normalized probability distribution for the 2D system is (Ivanov et al. 1988):



2 Multiple Scattering of Light in Ordered Particulate Media 159

n
NP

Fig. 2.22 Dependence of Pn
N as function of N . Dashed lines correspond to calculation by Eq.

(2.3.42). Solid lines correspond to calculation by Eq. (2.3.44) for 2D system. The aperture is 250
times larger than the cross section of particle. Filling factor η = 0.01 (curves 1), 0.05 (curves 2),
0.2 (curves 3), 0.6 (curves 4), 0.8 (curves 5) (Ivanov et al. 1988)

Pn
N
(S) =

N
2 (S−NS∗(1))N

N ! exp(−2(S − NS∗(1))
Nmax∑
k=0

k
2(S−kS∗(1))k

k! exp(−2(S − kS∗(1))
. (2.3.44)

Here 2 = η(1 + η)1/2(1 − η)−3/2s−1, Nmax =
[
Sη
(
1 − (1−η)3/2

(1+η)1/2

)−1
s−1

]
, S∗ =

(
1 − (1−η)3/2

(1+η)1/2

)
sη−1, s = πD2/4, D is the particle size, η is the filling factor of

the 2D particulate system. S is the aperture area. The square brackets mean that
the integer part of the number is taken. Expression for three-dimensional system is
similar to Eq. (2.3.44) (Ivanov et al. 1988).

The calculated by Eqs. (2.3.42) and (2.3.44) dependences of Pn
N versus N are

shown in Fig. 2.22. They indicate difference in statistics of points and circles.

2.3.6.2 Wiener Spectrum of Partially Ordered Monolayer

In Loiko and Konkolovich (1994, 1995, 1997, 1998a, b) the relations to describe
noise properties of a monolayer of polydisperse particles are derived. They are based
on the model of the stochastic amplitude-phase screen. The model of the random
substitution mixture (Ziman 1979) is used to describe short-range order of particles.

The Wiener transmittance spectrum of monolayer of polydisperse particles is
described by the equation (Loiko and Konkolovich 1998b)

n(ν)/ 〈σ 〉 = η{(1 + 1/α)2(Y 2(q
√
1 + 1/α) × Sν(q

√
1 + 1/α)+

+[(1 + 1/α)(1 + 2/α)(1 + 3/α) − (1 + 1/α)2] × Y 2(q
√

(1 + 1/α)(1 + 3/α))} .

(2.3.45)
Here Y (x)= 2J1(x)/x , J1(x) is the first order Bessel function, η = nπ〈R〉2 is the fill-
ing factor of the monolayer of polydisperse particles, q = αω/β = ω〈R〉, ω = 2πv,
v is the spatial frequency (Ivanov et al. 1988; Frieser 1975; Ivanov and Loiko 1983),
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Sν is the so-called spatial frequency structure factor (Loiko and Konkolovich
1998a, b), 〈σ 〉 = π〈R〉2, R is the particle radius, α and β are the parameters of
the particle size probability density function:

P(R) = βα

�(α)
Rα−1 exp(−βR), (2.3.46)

where �(α) is the gamma function.
The spectrum (2.3.45) is presented in Fig. 2.23 at various filling factors of the

monolayer.
Figure2.24 illustrates the dimensionless quantity G/

√〈σ 〉 as a function of filling
factor η for different variation coefficients DR/〈R〉 of the monolayer for transmitted
light. Here G = √

n(0) is the Selwyn granularity coefficient (Ivanov et al. 1988;
Frieser 1975; Ivanov and Loiko 1983).

Fig. 2.23 Dimensionless
Wiener transmittance
spectrum at η = 0.2 (1), 0.4
(2), and 0.5 (3) (Loiko and
Konkolovich 1998b).
Variation coefficient
DR/ 〈R〉 = 0.125.
Dimensionless frequency
v∗ = vπ〈D〉/50. Here the
dimensions of ν and 〈D〉 are
determind in mm−1 and μm,
respectively

v*

n(v)/〈σ 〉

Fig. 2.24 The dependence
of G/

√〈σ 〉 for the
transmission coefficient as a
function of the filling factor η

of the monolayer at different
variation coefficients
DR/〈R〉 = 0.125 (curve 1),
0.25 (curve 2), and 0.5
(curve 3) (Loiko and
Konkolovich 1998b)

σ/G
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In conclusion of this subsection note that, not only noise, but scattering in a par-
ticulate media also influences on the image quality. The peculiarities in the image
transfer of the partially ordrered system caused by particle concentration are exper-
imentally investigated in Ivanov et al. (1988), Dick et al. (1986) for layers with
optically soft particles. In these publications the data for the line spread function
(Ivanov et al. 1988; Zege et al. 1991a; Frieser 1975) are obtained and behavior of
the modulation transfer function is discussed.

2.4 Three-Dimensional Particulate Structures

2.4.1 Adding Method for Direct Transmittance and Specular
Reflectance Determination

One of the methods which allows one to obtain relatively simple solution of the
problem of light scattering by the 3D particulate layer is the adding method (Loiko
andMiskevich 2004; Loiko et al. 2005a, b; Loiko andMolochko 1998). It is based on
the consideration of thick particulate layer as a set of optically interacting sublayers
(monolayers) (see Fig. 2.25). Under this approach (Gurevich 1931) the analytical
solution for direct transmission T and specular reflection R coefficients of a thick
normally illuminated particulate layer was obtained in Loiko and Molochko (1998).
It takes into account multiple reflection between the sublayers.

The adding method was used to analyze the T and R coefficients of the particulate
layer and the phases of the transmitted and reflected waves (Loiko and Miskevich
2004; Loiko et al. 2005a, b; Loiko and Molochko 1998). The approach considered is
applicable to layers with small and high concentration of scatterers. The equations to
determine the reflection and transmission coefficients of an added layer are derived on
the basis of similar characteristics of particulate monolayers which can be calculated,
for example, in the SSAorQCA. The equations for amplitude coefficients of specular
reflection, R, and direct transmission, T , of the 3D particulate layer can be written
as follows (Loiko and Miskevich 2004; Loiko et al. 2005b; Loiko and Molochko
1998):

R(z, K1, K2) = R∞
1 − exp(−2Lz)

1 − R2∞ exp(−2Lz)
, (2.4.1)

T (z, K1, K2) = (1 − R2
∞)

exp(−(L + 2i)z)

1 − R2∞ exp(−2Lz)
, (2.4.2)

where z ≡ πy/λ, y is the dimensionless layer thickness, λ is the length of incident
wave,

L2 ≡ (K2 − 2i)2 − K 2
1 , R∞ ≡ (K2 − L − 2i)/K1, (2.4.3)
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Fig. 2.25 Scheme of light propagation through a layer of thickness y + �y normally illuminated
by a plane wave (Loiko and Miskevich 2004). The quantities T (y), R(y), T (�y), R(�y) are the
amplitude direct transmission and specular reflection coefficients of layers with thickness y and�y,
respectively. Each thin arrow in the figure represents the sum of all possible scattering events, which
result in the direct transmittance and specular reflectance of the whole layer. The formulas near the
arrows indicate the amplitude reflection and transmission coefficients due to the first, second, third,
etc. scattering events between layers. The dashed lines indicate the imaginary interfaces of the layer
with thickness y and sublayer with thickness �y. The gap between layers is only to indicate more
clearly themultiple scattering events between the layers and to getmore space towrite the equations.
The R(y + �y) and T (y + �y) are reflectance and transmittance of the layer of thickness y + �y

K1 = 3ηV

x3
f (π), K2 = 3ηV

x3
f (0) (2.4.4)

ηV = 2Dη/(3y) is the volume filling factor of the monolayer expressed via the
surfacefilling factorη of themonolayer, x = kD/2 is the size parameter of a scatterer;
k = 2π/λ, D is the particle diameter; f (θ) is the amplitude scattering function, θ
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ηV

Qeff /Qext

Fig. 2.26 Dependence of Qef f /Qext versus volume filling factor ηV for layer of latex particles
(Loiko and Molochko 1998). Qext is the extinction eficiency factor of single particle, Qef f is the
effective extinction efficiency factor of particle. The calculated under the adding method and the
SSA data are given by lines. Experimental data of Ishimaru and Kuga (1982) are given by symbols
at: x = 3.5,m = 1.19 (1); x = 13.7,m = 1.19 (2); x = 36.2,m = 1.19 (3); x = 82.8, m = 1.19 (4)

is the polar scattering angle. With growing the size of the scatterers, the thickness
dependence of transmittance, T , acquires a typical exponential form:

|T |2 = exp

(
−6ηV

x3
Re f (0)z

)
. (2.4.5)

The effective extinction efficiency factor Qef f of particle in the medium is deter-
mined as

Qef f = 4D

3ηV
Im kef f , (2.4.6)

where kef f is the effective wave number (Ishimaru 1978a, b).
The data for layers of monodisperse latex particles of submicron and micron sizes

dispersed in water calculated under the addingmethod andmeasured in Ishimaru and
Kuga (1982) are presented in Fig. 2.26. The model describes well the experimental
data (Ishimaru and Kuga 1982). They correlate with experimental results on the
spectral transmittance of layers of polyethylene powder in the infrared region (Zhukas
et al. 2014).

The results of the calculations (by Eq. (2.4.2)) of transmission coefficient |T |2
are presented in Fig. 2.27 by solid curves (Loiko and Molochko 1998). The T and
R of individual monolayers (sublayers) are calculated in the SSA. It is seen that the
transmission coefficient is an oscillating function of the layer thickness for small
scatterers. The tilt angle of the transmission curve decreases and the oscillation
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Fig. 2.27 Transmission coefficient |T |2 of a layer versus layer thickness z. SSA. Solid and dashed
lines were calculated from formulas (2.4.2) and (2.4.5), respectively (Loiko and Molochko 1998).
(1): K1 = 6.1 × 10−3 − 4.0 × 10−1i , K2 = 6.1 × 10−3 − 4.3 × 10−1i , (x = 0.4,m = 1.6, η =
0.4); (2): K1 = 2.1 × 10−2 − 3.8 × 10−1i , K2 = 2.1 × 10−2 − 4.5 × 10−1i , (x = 0.6, m =
1.6, η = 0.4); (3): K1 = −1.1 × 10−1 + 8.9 × 10−3i, K2 = 3.7 × 10−1 − 3.7 × 10−1i , (x =
2.0,m = 1.6, η = 0.4)

amplitude increases as the particle sizes decrease. The shape of the curve approaches
one calculated from Airy’s formulas for plane-parallel plates. As the size of the
scatterers grows, the magnitude of oscillations associated with interference of waves
reflected from the layer boundaries decreases and the dependence acquires a typical
exponential form. The calculation results obtained by Eq. (2.4.5) are shown for
comparison in Fig. 2.27 by dashed lines.

Figures2.28 and 2.29 show the dependences of |T |2 and |R|2 of layer on the
thickness z calculated using the QCA (solid lines) and the SSA (dashed lines) (Loiko
andMiskevich 2004; Loiko et al. 2005b). As follows from the data analysis, for small
particle sizes |T |2 and |R|2 are oscillating functions of z.

With growing the volume filling factor ηV the oscillation magnitude grows. Mul-
tiple scattering leads to an increase in the velocity of damping the transmittance and
reflectance oscillations with the thickness increasing. With particle sizes increasing
the oscillations disapear and T (z) dependence becomes exponential.

2.4.2 Transfer Matrix Method

Described in the previous subsection adding method can also be used to calculate
the transmission and reflection coefficients of three-dimensional ordered particulate
systems, such as photonic crystals. However, since such systems have a crystal-like
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Fig. 2.28 Transmission coefficient |T |2 versus z at different ηV , x andm. a QCA, ηV = 0.3 (curve
1), ηV = 0.4 (2), ηV = 0.5 (3), x = 0.1, m = 1.1; bQCA (solid curve), SSA (dashed curve), ηV =
0.4, x = 7, m = 1.6 (Loiko and Miskevich 2004)
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Fig. 2.29 Reflection coefficient |R|2 as a function of layer thickness z. Solid and dashed lines show
the results of calculation using the QCA and SSA, respectively. ηV = 0.4, x = 0.4,m = 1.6 (Loiko
and Miskevich 2004)

structure with well-defined crystalline planes (particulate monolayers), it is more
convenient to use the transfer matrix method (TMM) (Katsidis and Siapkas 2002;
Centurioni 2005; Troparevsky et al. 2010).

In the framework of this method the layered system (multilayer) is considered as
a sequence of interfaces and layers separated by these interfaces. Each inteface is
characterized by transmission and reflection coefficients, and each layer is defined by
thickness and complex refractive index. The TMM takes into account multiple reflec-
tion between the interfaces and interference of waves. Under this method one can
calculate the transmission and reflection coefficients of systems with different types
of interfaces, absorbing and nonabsorbing layers, and their arbitrary combinations
(Katsidis and Siapkas 2002).

When TMM is used to determine the transmission and reflection coefficients of
three-dimensional photonic crystal (3D PhC), the individual monolayers (crystal
planes) are considered as interfaces and spaces between them as layers. The trans-
mission and reflection coefficients of themonolayers can be determined, for example,
in the QCA or SSA.
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Fig. 2.30 Schematical presentation of particulatemultilayer – side view along themonolayer planes
designed by dashed lines. mi and si are the complex refractive index and thickness of i-th layer
Li ; Ifi are numbers of interfaces (monolayrs); ti, j and ri, j (t j,i and r j,i ) are amplitude transmission
and reflection coefficients for wave propagating in the illumination direction (opposite direction),
i < j ; Tc and Rc are transmission and reflection coefficients of multilayer

Let us consider the multilayer consisting of plane-parallel particulate monolayers
(Fig. 2.30).

Write the basic equations of TMM for direct transmission Tc and specular reflec-
tion Rc coefficients of such a multilayer (Katsidis and Siapkas 2002):

Tc = |t |2 = |1/T11|2 , (2.4.7)

Rc = |r |2 = |T21/T11|2 , (2.4.8)

where t and r are amplitude direct transmission and specular reflection coefficients of
layered system, Ti j are elements of transfer matrix T of multilayer. For N -interface
system (Fig. 2.30) the transfer matrix T0,N has a form:

T0,N =
[
T11 T12
T21 T22

]
= 1

t0,N

[
1 −rN ,0

r0,N t0,N tN ,0 − r0,NrN ,0

]
. (2.4.9)

Here t0,N and r0,N (tN ,0 and rN ,0) are amplitude transmission and reflection coef-
ficients of multilayer for the wave propagating in the direction of wave vector of
incident wave (in the opposite direction).

Transfermatrix ofwhole system is determinedbymultiplying the transfermatrices
T j of interfaces with propagation matrices P j of layers:

T0,N =
⎛

⎝
N−1∏

j=1

T jP j

⎞

⎠TN . (2.4.10)
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Here

T j = 1

t j−1, j

[
1 −r j, j−1

r j−1, j t j−1, j t j, j−1 − r j−1, j r j, j−1

]
(2.4.11)

is the transfer matrix of j-th interface,

P j =
[
exp(−ik j s j ) 0

0 exp(ik j s j )

]
(2.4.12)

is the propagation matrix of j-th layer, t j−1, j and r j−1, j (t j, j−1and r j, j−1) are ampli-
tude transmission and reflection coefficients of j-th interface for the wave propa-
gating in the direction of wave vector of incident wave (in the opposite direction);
wavenumber k j = 2πm j/λ; m j and s j are complex refractive index and thickness
(distance between the planes where centers of particles in adjacent monolayers are
located) of j-th layer, λ is the wavelength in the surrounding medium.

Using the Eqs. (2.4.7)–(2.4.12) one can calculate the Tc and Rc coefficients of sys-
tem consisting of dirreferent number of different monolayers in various surrounding
media.

2.4.3 Layered Particulate Structures from Spherical
Dielectric Particles: Direct Transmittance and Specular
Reflectance Spectra

In this section, we consider the results for transmittance and reflectance of layered
particulate structures from dielectric particles, such as 3D photonic crystals, colloidal
crystals, opals, etc. Theywere obtained in theQCA and TMM. First, in the quasicrys-
talline approximation (see Sect. 2.3.1) were calculated the direct transmission and
specular reflection coefficients of individual particulate monolayers. Second, these
coefficients were used in the transfer matrix method (see Sect. 2.4.2) to compute the
direct transmission Tc and specular reflection Rc coefficients of the layered system
(multilayer) from such monolayers. The influence of the spatial distribution of parti-
cles in individual monolayers on the Tc and Rc was studied and characteristic minima
in transmittance spectra of layers caused by the interference of waves were described
(Loiko and Miskevich 2013; Miskevich and Loiko 2013a, 2014b).

2.4.3.1 Systems with Alumina Particles

Spectral dependences of the direct transmission Tc and specular reflection Rc coeffi-
cients of normally illuminated planar crystal with a hexagonal lattice and a partially
ordered monolayer of monodisperse spherical alumina (Al2O3) particles are shown
in Fig. 2.31a and b (Loiko andMiskevich 2013). The dependence of the Tc + Rc sum
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is presented in Fig. 2.31c. The value of 1–(Tc + Rc) gives information on the amount
of light scattered at all directions exept of strictly forward and strictly backward. The
filling factor of monolayers is η = 0.5. Calculations were performed using data on
the spectral dependence of refractive index m of alumina published in Palik (1991).
In the wavelength range of 0.3–1.0μm, the refractive index monotonically decreases
from 1.815 to 1.756. Its imaginary part in the considered spectral range is zero.

The transmittance and reflectance of monolayers were calculated in the QCA. The
RDFof the planar crystalwas calculated using the blurring function (see Sect. 2.3.1.2)
in the form σ(u) = σ0u, where σ0 = 0.01. To model the RDF of partially ordered
monolayer, the numerical solution (Ivanov et al. 1988) of the Ornstein–Zernike inte-
gral equation in the Percus–Yevick approximation for a system of hard spheres is
used. The presented results illustrate how the spatial organization of particles affects
the direct transmittance and specular reflectance of the monolayer.

The spectra of partially ordered monolayers exhibit a minimum of transmission,
which is caused by interference between the incident wave and waves scattered by
particles. It occurs if the ratio of the wavelength to the particle size approximately
corresponds to one of the main maxima of the extinction efficiency factor (Loiko
et al. 2000). For a partially ordered monolayer of monodisperse spherical Al2O3

particles with filling factor η = 0.5 and particle diameter D = 0.3μm, this mini-
mum occurs at wavelength λ ≈ 0.357μm (minimum 1’ on the thick gray curve in
Fig. 2.31a). Its depth and position depend on the concentration of particles and their
optical properties. A similar minimum occurs in the transmittance spectra of a pla-
nar crystal. However, its position is shifted. For a PC with a hexagonal packing of
Al2O3 particles at a considered value of the filling factor (η = 0.5), it appears at
wavelength λ ≈ 0.339μm (minimum 1 on thick black curve in Fig. 2.31a). Unlike
the spectrum of the partially ordered monolayer, the transmittance spectrum of the
PC possesses an addition minimum (resonant dip) that is caused by the periodicity
of particle arrangement (see sharp minimum 2 on thick black curve in Fig. 2.31a). In
the considered case, this minimum has a fine structure. It is located in the wavelength
range of 0.52–0.53μm. This range also contains a sharp maximum of the specular
reflection coefficient (see thick black curve in Fig. 2.31b). A change in the concen-
tration of particles leads to changes in the depth and positions of minima 1 and 1’,
as well as in the depth, position, and fine structure of minimum 2.

In Fig. 2.31a and b, thin curves show the direct transmittance and specular
reflectance dependences of a multilayer. The calculation results show that, as the
number of monolayers increases, in the spectrum of the multilayer a photonic band
gap is formed which is caused by the periodicity of the structure in the direction of
the incident light. The thin black line in Fig. 2.31a shows the spectral dependence
of the Tc coefficient of a multilayer consisting of sixty hexagonally packed planar
crystals, while the thin gray line shows the corresponding dependence for a mul-
tilayer consisting of sixty partially ordered monolayers. All layers are located in
air. The spectral dependences of the Rc coefficients of these systems are shown in
Fig. 2.31b. These dependences are presented in the wavelength range from 0.6 to
1.0μm, in which the indirect components of scattered light is small. As can be seen
from the presented results, the spectra of the systems of partially ordered monolayers
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Fig. 2.31 Spectral dependences of (a) direct transmission Tc, (b) specular reflection Rc coeffi-
cients and (c) the Tc + Rc sum of individual monolayers of alumina particles: planar crystal with a
hexagonal lattice (thick black lines) and partially ordered monolayer (thick gray lines) (Loiko and
Miskevich 2013). Normal illumination. The filling factor of monolayers is η = 0.5. The RDF of the
PC was calculated at σ(u) = 0.01u. The diameter of particles is D = 0.3μm for all the layers. The
digits 1, 2, and 1’ designate the types of the minima in transmittance, which are characteristic for
the planar crystal and the partially ordered monolayer of particles, respectively (see text). Spectral
dependences of (a) direct transmission and (b) specular reflection coefficients of a layered system
(a multilayer) that consists of planar crystals with a hexagonal lattice (thin black lines) and partially
ordered monolayers (thin gray lines) of particles. The spacings between adjacent monolayers are
0.3μm. The number of monolayers is 60. The Tc(λ) and Rc(λ) dependences of the multilayer are
presented in the wavelength range from 0.6 to 1.0μm. The digit 3 indicates a transmittance dip
(photonic band gap) of the multilayer

and planar crystals have common and the different features. In particular, in both
cases, the photonic band gap is formed in the wavelength range 0.73–0.78μm. The
absolute values of the photonic band gap minima differ little. However, there are also
considerable differences which are caused by the spatial organization of particles in
monolayers. In a system of planar crystals, the photonic band gap is more symmetric
and its boundaries are sharper than for the band gap of a multilayer from partially
ordered monolayers. The values of reflectance maxima Rc,max in the photonic band
gap are also noticeably different. In a system of partially ordered monolayers, the
reflection maximum in the PBG is Rc,max ≈ 0.81, whereas in a multilayer from PCs,
the corresponding maximum is Rc,max ≈ 1 (Fig. 2.31b). This means, in particular,
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Fig. 2.32 Schematic representation of the multilayer system with monolayers of monodisperse
spherical Al2O3 particles on the top and bottom surfaces of the glass plate (Miskevich and Loiko
2014b). hi is the thickness of i-th layer Li ; Ifi are numbers of interfaces; Tc and Rc are transmission
and reflection coefficients of multilayer

that the use of systems based on PCs makes it possible to create selective reflectors
and bandpass filters of better quality.

The presented results show that particulate system of nonabsorbing particles is
characterized by transmittance minima of three types (Fig. 2.31). Transmission min-
imum 1 is determined by the concentration and optical properties of particles in the
individual monolayer. It occurs in the spectra both a partially ordered monolayer
(minimum 1’) and a planar crystal (minimum 1). Minimum 2 is the periodicity-
induced resonant dip occurred in the spectrum of a PC when sizes of particles and
spacings between them are comparable with the wavelength of the incident light.
In the spectrum of a short-range ordered (partially ordered) monolayer it is not
observed. Transmission minimum 3 is a photonic band gap that arises in the spec-
trum of a multilayer when the incident wave propagates along a periodic variation
of its structure.

Consider systems of ordered monolayers of Al2O3particles covering surfaces of a
glass plate. Such layers can be used as antireflection coatings (Miskevich and Loiko
2014b). The glass plate with double-side coating (of top and bottom surfaces, see
Fig. 2.32) shows better antireflection properties than single-side coated one (Miske-
vich and Loiko 2014b).

Spectra of systemwhenmonolayers of alumina particles have high and low order-
ing were simulated. Figure2.33 shows the spectral dependences of direct transmit-
tance and specular reflectancewhen the top and bottommonolayers ofAl2O3particles
are identical. Thin solid lines indicate the spectra of the system with the hexagonally
packed planar crystals, the dashed lines indicate the spectra of systems with partially
ordered monolayers of Al2O3 particles. At a double-side coating by identical mono-
layers of Al2O3 particles of diameter D = 0.1μm the calculated specular reflection
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Fig. 2.33 Spectra of Tc (a) and Rc (b) of the uncoated plane-parallel glass plate (thick line) and
system of identical partially ordered monolayers (dashed lines) and monolayers with hexagonal
lattice of Al2O3 particles (thin solid lines, σ(u) = 0.01u) on the top and bottom surfaces of the
glass plate at different particle sizes (Miskevich and Loiko 2014b). Thickness of the glass plate is
2mm. η = 0.5. Diameters (in micrometers) of particles are indicated near the lines

coefficient Rc < 0.025 in the visible spectral range with minimum less than 0.001.
If the size of Al2O3 particles significantly smaller than the incident light wavelength
the differences in transmittance and reflectance spectra of the systems coated with
PCs and partially ordered monolayers are negligible (see lines for D = 0.05μm and
D = 0.1μm in Fig. 2.33). The Tc and Rc coefficients of the systems at these parti-
cle sizes are virtually identical. Only in the short-wave region, when particle sizes
become comparable with thewavelength, the transmittance of the system coatedwith
PCs becomes slightly higher than the transmittance of system coated with partially
ordered monolayers (see lines for D = 0.1μm in Fig. 2.33). If the size of the Al2O3

particles is comparablewith the incident lightwavelength, the differences in the spec-
tra of systems with PCs and partially ordered monolayers become significant. They
are more pronounced in the region of resonant transmission dip and reflection peak
caused by ordering in a PC (see lines for D = 0.5μm at 0.83μm < λ < 0.95μm
in Fig. 2.33). Thus if the creation of antireflection coatings from the Al2O3 particles
does not required their high ordering, then for the construction of selective reflectors
and transmission filters the ordering of particles in monolayers plays a crucial role.

Note that coating the plate by different monolayers can give more uniform (less
selective) spectrum. This problem arises when one creates the spectrally nonselective
optical elements with small values of reflection, e.g. at optimization of the display
characteristics. At the considered in Miskevich and Loiko (2014b) conditions (par-
ticle diameters D = 0.1μm in top and D = 0.12μm in bottom monolayers with
η = 0.5) the specular reflection coefficient in the visible spectral range is less than
0.02 with the minimum value less than 0.003.
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2.4.3.2 Structures from Spherical Silica Particles: Comparison of
Theoretical and Experimental Results for Transmittance
Spectra of the 3D Photonic Crystal

In this subsection we compare the results obtained in the framework of the quasicrys-
talline approximation and the transfer matrix method (Miskevich and Loiko 2014b)
with the experimental data (Bogomolov et al. 1997) for the 3D PhC – close-packed
structure of spherical SiO2 particles (artificial opal) – placed in different media (air,
methanol, ethanol, cyclohexane, and toluene). The structures are considered as mul-
tilayers from planar crystals with triangular lattice. The PBGs in the spectra of these
multilayers are observed. Their spectral positions depend on the refractive index of
the surrounding (host) medium.

The calculated spectral dependences of direct transmittance of the layered close-
packed structure of spherical SiO2 particles in different host media, as well as the
calculated and experimental dependences of the spectral position of PBGminimumof
this structure on the refractive index nenv of the environment (surrounding medium),
are presented in Fig. 2.34. For clearer presentation, the number of monolayers is
chosen so that the values of PBG minima were approximately equal to the value of
PBG minimum for a structure consisting of Nml = 50 monolayers of SiO2 particles
in air (Fig. 2.34a, b). Note that the numbers Nml ofmonolayers required to achieve the
said transmission minimum differ significantly. This is due to the differences in the
relative refractive index of the particles in different surrounding media. In Fig. 2.34b,
the calculated values of the transmittance minimum spectral position as a function
of the refractive index of the surrounding medium are indicated by the circles, the
experimental values (Bogomolov et al. 1997) are indicated by the squares.

As follows fromFig. 2.34b, experimental and theoretical results are in good agree-
ment. It means that the approach works well and yields an opportunity to determine
the 3D PhC structure parameters by the PBG data. The experimental and theoretical
data of work (Bogomolov et al. 1997) are shown in Fig. 2.34c. In Bogomolov et al.
(1997), to simulate the individual monolayers the model of partially ordered mono-
layer was used. One can see that the calculation dependence possesses dramatically
less agreement with the experimental data than the one shown in Fig. 2.34b which
is based on the model of planar crystal with imperfect lattice. This means that the
model of the system of partially ordered monolayers cannot be used to obtain the
quantitative results for considered type of 3D photonic crystals.

2.4.4 Transmittance and Reflectance of Periodic,
Quasiperiodic, and Aperiodic Sequences of Particulate
Monolayers

Interest in study of the non-periodic structures is caused by the addition possibilities
of manipulating the characteristics of transmitted and reflected light as compared to
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Fig. 2.34 a Calculated spectra of the direct transmittance (in the PBG region) of the layered regular
structure consisting of monolayers with triangular lattice from spherical SiO2 particles in different
media (Miskevich and Loiko 2014b). (1) Refractive index of the environment nenv = 1.0 (air, the
number of monolayers Nml = 50), (2) nenv = 1.328 (methanol, Nml = 100), (3) nenv = 1.361
(ethanol, Nml = 135), (4) nenv = 1.426 (cyclohexane, Nml = 500), (5) nenv = 1.497 (toluene,
Nml = 250). b Spectral dependence of the PBG minima on the refractive index of the surrounding
medium: circles indicates calculation results (Miskevich and Loiko 2014b), squares indicate experi-
mental data (Bogomolov et al. 1997). Refractive index of SiO2 particles nSiO2 = 1.45. D = 0.2μm,
η = 0.9, σ(u) = σ0u, σ0 = 0.001, intermonolayer spacings s = 0.173μm. c Experimental and the-
oretical data of Bogomolov et al. (1997)

the periodic ones (Joannopoulos et al. 2008; Levine and Steinhardt 1984; Huang et al.
2010b;Mouldi andKanzari 2012; Rockstuhl et al. 2007; Boriskina et al. 2008).When
layered structures are studied, the sequences of different homogenous layers are
traditionally considered (Katsidis and Siapkas 2002; Centurioni 2005; Troparevsky
et al. 2010; Born and Wolf 2002).

Consider spectra of the direct transmission Tc and specular reflection Rc coef-
ficients of multilayers periodic, Fibonacci (quasiperiodic), and Thue-Morse (aperi-
odic) sequences of plane-parallel monolayers of monodisperse spherical dielectric
particles (Miskevich and Loiko 2013b).
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Fig. 2.35 Schematic representation of the layered structures (multilayers) consisting of the periodic,
Fibonacci (quasiperiodic), and Thue-Morse (aperiodic) sequences of particulate monolayers of A
and B types (side view). Normal illumination. Dashed lines depict the monolayer planes. Tc and
Rc are the direct transmission and specular reflection coefficients of multilayers, respectively. Ifi
are numbers of interfaces (monolayers); Li and mi are the numbers and refractive indices of the
layers (spaces between the monolayers), si are the spacings between the monolayers

The schematic representation of such structures is given in Fig. 2.35. The one-
dimensional (1D) Fibonacci sequence Ln of symbols A and B indicating sequence
constituents with different properties is built according to the inflation rule Ln =
Ln−1Ln−2 (for n ≥ 2, where n is the number of the sequence element), beginning
from L0 = A and L1 = AB: L0 = A, L1 = AB, L2 = ABA, L3 = ABAAB, L4 =
ABAABABA, . . .. The 1D Thue-Morse sequence Ln of symbols A and B is built
according to the rule Ln = Ln−1Ln−1 (for n ≥ 1, where Ln−1 element is “inverted”
Ln−1 element), beginning from L0 = A: L0 = A, L1 = AB, L2 = ABBA, L3 =
ABBABAAB, L4 = ABBABAABBAABABBA, etc.

To calculate the Tc and Rc coefficients of such multilayers, first, the amplitude
direct transmission and specular reflection coefficients of the individual monolayers
were computed in the QCA. Second, using these coefficients the direct transmittance
and specular reflectance of the multilayer was found under the TMM.

Figure2.36 depicts spectra of the direct transmission and specular reflection coef-
ficients of the periodic, Fibonacci, and Thue-Morse sequences of monolayers of alu-
mina (Al2O3) and silica (SiO2) particles which are widely used in the photonics and
optoelectronics. The refractive indices n(λ) (λ is the wavelength of the incident light)
of silica and alumina are taken from Palik (1985, 1991). The individual monolayers
have the imperfect triangular lattice of the monodisperse spherical Al2O3 and SiO2

particles with diameter D = 0.3μm and the monolayer filling factor η = 0.9. The
spacing s (see Fig. 2.35) between the adjacent monolayers is 0.3μm. These param-
eters correspond to the three-dimensional (3D) ordered particulate structure which
is similar to the structure of the colloidal crystal. The symbols A and B denote the
monolayer of Al2O3 and SiO2 particles, respectively.

As follows from the calculation results,with the number ofmonolayers increasing,
the photonic band gaps appear in spectra of all considered sequences. In the spectrum
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Fig. 2.36 Spectra of direct transmission Tc (a) and specular reflection Rc (b) coefficients of the
multilayer consisting of periodic, Fibonacci, and Thue-Morse sequences of monolayers with a
triangular lattice of monodisperse spherical Al2O3 (type A) and SiO2 (type B) particles. D =
0.3μm, η = 0.9, σ(u) = 0.001u. The number Nml of monolayers is shown in legend. s = 0.3μm

of the periodic sequence the one “main” and two “secondary” PBGs occur. They
are caused by the periodicity of the alternating monolayers of A and B types. The
“main” PBG is observed in the wavelength range from 0.76 to 0.86μm. The spectra
of multilayers with Fibonacci and Thue-Morse sequences are more complicated. The
“main” PBGs of their spectra occur practically in the same spectral range as for the
regular sequence, and the number of PBGs increases with the number of monolayers.
This provides additional opportunities to manipulate spectrum of the multilayer in
comparison with the regular one.

The PBG in the transmittance spectrum of the system consisting of two different
types (A and B) of monolayers is located in the wavelength range between the PBGs
of the system consisting of only A type and of the system consisting of only B type
monolayers. The PBGs of the particulate structures are shifted in the short-wave
range relative to those for the structures consisting of the homogeneous layers with
the equivalentmaterial volume. The PBGs observed in the spectra of sequences of the
homogeneous layers typically are wider and deeper than the ones for the particulate
systems. Increasing the particle concentration in the systems of monolayers and plate
thicknesses in the system of homogeneous layers leads to growing the depth, width,
and wavelength of the PBG minima (Miskevich and Loiko 2013b).

2.4.5 Inverse Problem Solution for 3D Photonic Crystal:
Retrieval of the Particle Refractive Index from the
Photonic Band Gap Data

The QCA- and TMM-based approach to find the direct transmission and specular
reflection coefficients of ordered 3Dparticulate structures (see previous sections)was
used to develope the method of determining (retrieving) the structure characteristics
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of three-dimensional photonic crystal using the data on the PBG in its transmission
spectrum (Miskevich and Loiko 2014c, 2015b).

Figure2.37 shows the calculated spectral dependences of direct transmission coef-
ficient Tc(λ) of a multilayer for various refractive indices np and diameters D of
particles, filling factors η and types of spatial particle arrangement of monolay-
ers, spacings s between adjacent monolayers, the number of monolayers Nml , and
degrees of their ordering (determined by parameters of the blurring function (2.3.13))
(Miskevich and Loiko 2015b).

As seen from the figure, all considered characteristics of system influence on the
PBG. But the effect is different. For example, changing in the number of monolayers
leads to changing in the PBG depth, although the PBG position is not practically
changed (see Fig. 2.37f). For the other considered cases are changed both the depth
and position of the PBG. The above features of transmittance spectra transforma-
tion underlie the developed method of retrieval of the ordered particulate system
characteristics.

The inverse problem solution was considered by an example of the particle refrac-
tive index retrieval. This problem arises, for example, when one creates colloidal
crystals, synthetic opals (Bogomolov et al. 1997; Vasnetsov et al. 2014; Rojas-Ochoa
et al. 2004; Galisteo-Lopez et al. 2011) and studies some biological objects (Pouya
et al. 2011; Deparis et al. 2006; Campos-Fernández et al. 2011). Let characteristics of
the ordered particulate structure, refractive index nenv of medium where the structure
is situated, wavelength λPBG of the PBGminimum are known, but the refractive index
of particles np is unknown. To find np we will change it in the range of expected
values and solve the direct problem for each of them.Wewill suppose some np,ret,λPBG

as a retrieved value, when at wavelength λPBG of the PBG minimum the calculated
PBGminimum occurs. We designate such a method of the refractive index finding as
a retrieval “by the spectral position of the PBG minimum” (way 1). If we know both
the spectral position λPBG and the value TPBG of the PBG minimum, then np,ret,TPBG
will be believed to be a retrieved value, if the calculated PBG minimum TPBG,ret and
the TPBG are maximally close to each other. Such a method was named as a retrieval
“by the value of the PBG minimum” (way 2). It provides more accurate retrieval
results (Miskevich and Loiko 2014c, 2015b). However, note that it is difficult to
measure the TPBG value with sufficient accuracy, when the transmittance is small.

The described techniques allow one to retrieve the refractive index of particles at
thewavelengthof thePBGminimum.Tofind refractive index at the otherwavelengths
we should change spectral position of the PBG. In general, this can be attained by
changing the structure parameters. For example, increasing the spacing between the
monolayers leads to increasing the number of PBGs.Therefore, a single transmittance
measurement can provide the “multi-PBG” spectrum. However, actual structures
are generally unable to change the geometrical parameters. Another technique is to
change the relative refractive index of particles by filling the interparticle voids by a
media with the known refractive index spectra. As a result, it is possible to obtain a
number of λPBG,i and TPBG,i (where i is number of the medium). Both the techniques
were considered in Miskevich and Loiko (2015b).
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Fig. 2.37 Spectral dependences of direct transmission coefficient Tc(λ) of multilayer at different
refractive indices n p (a) and diameters D (b) of particles; filling factors η (c) and types of spatial
arrangement (d) of individual monolayers; spacings sbetween adjacent monolayers (e); the number
of monolayers Nml (f); and the degree of ordering of monolayers with triangular (g) and hexagonal
(h) lattices (Miskevich and Loiko 2015b). a: n p = nSiO2 (dashed line), n p = nSiO2 − 0.02 (dotted
line), n p = nSiO2 + 0.02 (solid line); b–h: n p = nSiO2 . Blurring function σ(u) = 0.01u (a)–(f)
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Fig. 2.38 Spectra of direct transmission Tc coefficient of multilayer in air, methanol, ethanol,
cyclohexane, and toluene (Miskevich and Loiko 2015b). Individual monolayers have imperfect
triangular lattice from SiO2 particles with diameter D = 0.2μm and filling factor η = 0.5. Blur-
ring function σ(u) = 0.01u. The number of monolayers Nml = 200, spacing between adjacent
monolayers s = 0.2μm. Spectral position of the PBG minimum λPBG = 0.4613μm (in air);
λPBG = 0.547μm (in methanol); λPBG = 0.5546μm (in ethanol); λPBG = 0.5738μm (in cyclo-
hexane); λPBG = 0.5951μm (in toluene)

Figure2.38 shows the calculation results for direct transmission coefficient spectra
of a multilayer in air, methanol, ethanol, cyclohexane, and toluene. Refractive index
of air was taken to be unity. Refractive indices of other substances were taken from
Debenham and Dew (1981), Refractive Index (2017).

Using the λPBG and TPBG data (see Fig. 2.38), the refractive index of the particles
was retrieved at wavelengths of the PBG minima. Actual np and retrieved np,ret

values for SiO2 particles are shown in Fig. 2.39a. Figure2.39b illustrates the relative
error of the retrieval calculated by the equation

εrel = (np,ret − np)

np
× 100%, (2.4.13)

where np and np,ret are actual and retrieved refractive indices of particles, respec-
tively. As one can see the retrieved values of the refractive index obtained with using
the simulated PBG data are in good agreement with the actual ones (|εrel,λPBG | <

0.052%, |εrel,TPBG | < 0.004%). A better determination of the refractive index occurs
when one uses the retrieval by the value of the PBG minimum (way 2). Note that
this way is inapplicable, when one cannot provide a high enough precision of the
determination of the transmittance value at wavelength of the PBG minimum.
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Fig. 2.39 a Spectral dependences of the refractive index of silica (nSiO2 ) and values of the refractive
index of SiO2 particles n p,ret,λPBG and n p,ret,TPBG retrieved by the spectral position λPBG and by
value TPBG of the PBG minima, respectively. The system consists of 200 monolayers (Nml = 200)
with the imperfect triangular lattice, σ(u) = 0.01u, D = 0.2μm, η = 0.5, s = 0.2μm. Digits near
the symbols indicate number of the PBGminimum in air (1); methanol (2); ethanol (3); cyclohexane
(4); toluene (5). b Relative error of the retrieval (Miskevich and Loiko 2015b)

The method was applied (Miskevich and Loiko 2014c) to retrieve the refrac-
tive indices of the synthetic opal particles from experimental data (Vasnetsov et al.
2014) on the PBG in its transmittance spectrum. The sample was placed into various
environments (liquids) to change spectral position and value of the PBG minimum.
Figure2.40a presents the experimental (Vasnetsov et al. 2014) and calculated depen-
dences of the spectral position (λPBG) of the PBGminimum for a synthetic opal on the
refractive index nenv of the environment. Five calculated dependences λPBG(nenv) are
shown for different particle refractive indices np. The upper and lower dependences
in Fig. 2.40awere obtained at np = 1.4528 and 1.33, respectively. In addition to those
mentioned above, Fig. 2.40a presents twomore dependences λPBG(nenv) obtained for
structures of particles with the refractive indices np = 1.4 and 1.382 (Vasnetsov et al.
2014). The results were calculated for nenv from Vasnetsov et al. (2014). They are
designated by symbols in Fig. 2.40a. It can be seen that the λPBG(nenv) dependence is
linear at constant np. Accordingly, if the sample structure is assumed to be the same in
different experiments, then it should be concluded that the effective refractive index
of the particles is changed. Figure2.40b shows the retrieved values of the effective
refractive index of particles. They were obtained from the spectral positions of the
PBG minima in the experimental dependence λPBG(nenv) (Vasnetsov et al. 2014)
(Fig. 2.40a).

Figure2.40b shows also the refractive indices nenv of the liquids and the spectral
dependence of the SiO2 refractive index (Palik 1985). We see that all of the retrieved
values are less than nSiO2 . For experiments 1–4 and 6–8, the effective refractive
indices of the particles are larger and smaller than the refractive indices of the liquids,
respectively. In experiments 5 and 6, they are close to the refractive indices of the
liquids. These results are consistent with the estimation of the relative refractive
index of the particles made in Vasnetsov et al. (2014).
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s = 0.2395μm. The digits designate experiment numbers (Miskevich and Loiko 2014c)

As can be seen from the data in Fig. 2.40b, the effective refractive index of the
particles depends on the refractive index of the immersion liquid. This may be due
to porous structure of particles, that is consistent with the experimental data (Bogo-
molov et al. 1995, 1997). When the pores are partially filled with the liquid, the
effective refractive index of the particles changes. As can be seen from Fig. 2.40b,
it decreases with nenv increasing. This gives reason to conclude that the open and
closed pores are distributed nonuniformly over the particle volume. In the simplest
case, a particle of the synthetic opal under consideration can be represented as a two-
layered one (Babenko et al. 2003; Berdnik and Loiko 2011) consisting of a core with
closed pores and a shell containing open pores. When the open pores are filled with
the liquid, the effective refractive index of the shell changes. The effective refractive
index of the core does not change. The effective particle refractive index retrieved
within the model used is a characteristic that determines the position of the photonic
band gap for the structure.

2.4.6 Transmittance and Angular Distribution of Scattered
Light: Some Experimental Data

Consider the experimental results for thick (3D)partially ordered layers. The coherent
(directly transmitted and specularly reflected) and incoherent (scattered at all other
directions) fields as they are determined in Ishimaru (1978b), Ivanov et al. (1988) are
investigated in Loiko et al. (1999). The coherent part characterizes the directional
flux and, as a consequence, the extinction coefficient of the layer. The incoherent
part determines the angular structure of the scattered light.
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Fig. 2.41 Transmittance
versus the filling factor η for
the slab of latex particles
with diameter D = 3.75μm
in water at λ = 650nm for
several values of volume
filling factor ηV and FOV:
ηV < 0.006, FOV = 4.6◦
(open circles); ηV = 0.4,
FOV = 4.6◦ (filled circles);
ηV < 0.006, FOV = 35 arc
min (open triangles); and
ηV = 0.4, FOV = 35 arc min
(filled triangles) (Loiko et al.
1999)

η

At the measurements of forwardly transmitted light not only the coherent compo-
nent but also a portion of the incoherent one is registered. This is because of the finite
aperture of the receiver. For thin layers this contribution is small as compared with
the coherent component, but generally it is not so and we are to pay attention that the
instrumental transmittance T is measured at a given field of view (FOV). The results
of measurements for layers with various surface η and volume ηV filling factors are
shown in Fig. 2.41. Remind that surface filling factor η is the ratio of the projection
area of all particles to the area over which they are distributed. For monolayers (2D
systems) it is always no larger than unity. For thick (3D) layers the value of η can
be greater than unity. It shows how many times the particle projections cover the
surface.

As one can see from the figure, the dependences for the densely packed and
the rarefied media are changed in the similar manner. In particular, at small η, the
T (η) dependences for both cases (ηV = 0.4 and ηV < 0.006) are exponential. With
η increasing, the amount of scattered light increases, and the exponential depen-
dence is disturbed. At large filling factors, the slope of curves becomes constant and,
independently of the FOV, the so-called asymptotic regime is realized (Zege et al.
1991a).

The measured angular distributions of intensity of light scattered by the rarefied,
Ir (θ), and densely packed, Id(θ), layers of latex particles with different η are given
in Fig. 2.42. In this figure the value of a division of vertical axis corresponds to a
change in intensity by 1 order of magnitude. Note that a quantitative comparison of
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Fig. 2.42 Angular
distribution of intensity of
light scattered by the slab of
latex particles (D =
3.75μm) in water for various
values of η at λ = 650nm.
ηV = 0.4 (solid curves);
ηV < 0.006 (dashed curves)
(Loiko et al. 1999)

the curves of Ir (θ) and Id(θ) makes sense only at the same η. At different η, only a
qualitative comparison is valid.

It can see from Fig. 2.42 that, with η increasing the angular distribution of light
scattered by densely packed layers changes in the same manner as the one for the
rarefied layers. In particular, an increase in the contribution of multiply scattered
light with η increasing leads to the smoothing of Id(θ). For layers with η ≥ 10 the
angular structure becomes stable. Let us compare the Ir (θ) and Id(θ) dependences
at equal η to elucidate influence of the particle concentration on the angular distri-
bution of scattered light. From Fig. 2.42 it follows that the effect of a change in the
particle concentration on the angular distribution is the stronger, the smaller η. At
η = 1.5, increasing the particle concentration leads to decreasing the intensity of
light scattered in angles θ ≤ θ0 = 10◦ and to increasing for θ > θ0. The shapes of
the Ir (θ) and Id(θ) dependences practically coincide at θ > θ0.

The increase in the scattered light intensity for angles θ ≤ θ0 is due to the interfer-
ence. Therefore θ0 corresponds approximately to the minimum value of the angle at
which structure factor for the 3D system (Ivanov et al. 1988; Ziman 1979) S3(θ) = 1.
It can be determined by the expression: sin(θ0/2) ≈ 1.5/x .

An increase in η and, consequently, in the portion of multiply scattered light leads
to the smoothing the angular distributions of the densely packed and the rarefied
media. In the asymptotic regime (Zege et al. 1991a) the shapes of the angular distri-
butions for the dense and the rarefiedmedia are the same. For dense packing, however,
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Fig. 2.43 Measured angular distributions of scattered light intensity for layers of latex particles in
water at various values of filling factor η. The solid lines correspond to the monolayer, the dashed
lines correspond to the layer where the distance between particles is much more than their size.
Normal illumination. The incident light wavelength λ = 0.650μm. Particle diameter D = 3.75μm.
Absolute refractive index of the particles n = 1.580 at wavelength λ = 0.650μm. The scale factor
for the vertical axis corresponds to the change in intensity by one order of magnitude (Dick et al.
1997a)

the intensity of scattered light is higher. With increasing the number of particles the
changes in transmittance for the densely packed and the rarefied media are the same.

Figure2.43 shows experimental data on the angular distributions of scattered
light intensities for rarefied media (Ir (θ)) and monolayers (I (θ)) of latex particles
in water at various η (Dick et al. 1997a). At scattering angles θ < 10◦ the additional
(in comparison with the rarefied layer) maxima is appeared. This can be used to
determine size of the prticles (Loiko et al. 1984). Quantitative comparison of I (θ) and
Ir (θ) curves of Fig. 2.43 makes sense only at equal values of η. The value of vertical
axis division corresponds to the change in intensity by one order of magnitude. The
shift in position of curves corresponding to various η is used only for convenience
of presentation.
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Fig. 2.44 Dependence of direct transmittance on wavelength for layers of cubic AgBr particles
with the cube edge 0.49μm in gelatin; solid line corresponds to monolayer with mean interparticle
distance 0.61μm. Dashed line corresponds to multilayer with mean interparticle distance 1.18μm.
The surface concentrations in both cases is the same (filling factor η = 0.66) (Berry 1971)

In Fig. 2.44 are shown experimental data for layers of cubic AgBr particles with
the cube edge 0.49μm in gelatin (Berry 1971). It is obvious the difference in spectra
of the monolayer with mean interparticle distance 0.61μm and the 3D layer with the
same surface concentration and mean interparticle distance 1.18μm.

2.5 Light Absorption by the Particulate Crystalline Silicon:
Application to the Solar Cell Enhancement

The photovoltaic (solar) cells are the object of intensive theoretical and experimental
investigations. That is caused by increasing importance of “green”, renewable, and
non-fossil energy sources. However, relatively low efficiency of solar cells is one of
the restrictive factors for wide usage of such sources (Luque and Hegedus 2011; Sze
and Ng 2007).

The significant problem in enhancement of the solar cell (SC) performance is
optimization of its structure to trap more amount of the incident light. To attain this
end the plasmonic and diffractive nanostructures, down-converting particles, surface
texturing, nanohole patterning etc. are widely studied (Domínguez et al. 2012; Tsai
et al. 2011; Sheng et al. 2011; Kocher-Oberlehner et al. 2012; Schuster et al. 2015;
Abrams et al. 2011;Deinega et al. 2011;Wehrspohn andÜpping 2012; Ji andVaradan
2011; Tsakalakos 2008; Kayes et al. 2005; Vynck et al. 2012).

Currently the most-used material for solar cell production is silicon. Because it is
a nondirect gap semiconductor, the probability of an electron transition from valence
to conduction band due to photon absorption is small (Luque and Hegedus 2011;
Sze and Ng 2007). If we deal with a homogeneous active layer of SC, we need to
increase the layer thickness to increase light absorption.That can reduce the efficiency
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of solar cell due to the diffusion length of the minority carriers (Saritas and McKell
1988; Toušek et al. 2003; Sharma et al. 2012) limitation. Only carriers produced in
the space-charge (depletion) region and adjacent areas, that are determined by the
diffusion length of the minority carriers, are separated by the electric field of the p-n
junction and, thus, contribute in photoelectromotive force (photo-emf) generation
(Luque and Hegedus 2011; Gremenok et al. 2007).

The amount and efficiency of light absorption can be increased using the par-
ticulate structure of an active layer (Miskevich and Loiko 2014a, 2015a). Such a
layer consists of plane-parallel monolayers of silicon particles with diameter of the
diffusion length order. That enables one to decrease reflection and simultaneously
increase light absorption in comparison with the homogeneous plane-parallel sili-
con plate (Miskevich and Loiko 2014a, 2015a). Silicon particles of such sizes and
the layers of these particles can be fabricated by chemical (Shi et al. 2012, 2013),
lithographic (Staude et al. 2013) methods, plasma synthesis (Bapat et al. 2004), laser
ablation in air or liquids (Barcikowski et al. 2007; Li et al. 2013), laser induced
pyrolysis (Vladimirov et al. 2011) and the recently proposed method based on the
laser-induced transfer of molten droplets (Zywietz et al. 2014a, b).

In crystalline silicon (c-Si) the light absorption in the long-wave part of visible
and near infrared spectral regions is small while in the ultraviolet region and at the
short-wave part of visible spectrum it is large. An important problem for c-Si solar
cells is to enhance light absorption in the wavelength range of small imaginary part
κ (absorption index) of the complex refractive index m = n + iκ of semiconduc-
tor. Absorption by the particulate structure can be increased in conditions of the
pronounced multiple scattering of waves. Such conditions occur when the particle
sizes and distances between them are comparable with wavelengths of the incident
light. Therefore, as one can expect, the systems of submicron and micrometer-sized
particles should satisfy the mentioned conditions. Moreover, individual submicron
spherical silicon particles exhibit strong peaks of scattering efficiency in the spectral
range of interest due to optical resonances (also known as Mie resonances) (van de
Hulst 1957; Mie 1908; Rosasco and Bennett 1978; Conwell et al. 1984; Zender and
Talamantes 2006; Evlyukhin et al. 2010; Bachelard et al. 2012; Wang et al. 2015).
This can be an important factor of overall absorption enhancement.

2.5.1 Spectral and Integral Absorption Coefficients of the
Particulate Monolayer

To calculate absorption coefficient Aml of the monolayer, the following approach
is used. Initially the conditions wherein only directly transmitted and specularly
reflected light exist (i.e. Tc + Rc is unity) are found. To do that a monolayer of
“model” nonabsorbing particles, in our case with the refractive index of crys-
talline silicon n = nc-Si and absorption index κ = 0, is considered. Spectra of direct
transmission Tc and specular reflection Rc coefficients of the normally illuminated
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Fig. 2.45 Calculated spectra of direct transmission Tc, specular reflection Rc coefficients and
Tc + Rc sum of monolayer with triangular lattice (solid lines) and partially ordered monolayer
(dashed lines, (b)) of spherical particles at particle diameters D = 0.5μm (a) and D = 0.1μm (b)
(Miskevich and Loiko 2015a). The inset in b shows the large scale of Tc + Rc sums in the spectral
range from 0.6 to 1.12μm. Refractive index of particles is n = nc−Si , κ = 0. Monolayer filling
factor η = 0.5. Blurring function σ(u) = 0.01u, correlation length lc = 85

monolayer (planar crystal) with imperfect triangular lattice from such particles are
shown in Fig. 2.45 (Miskevich and Loiko 2015a). The Tc + Rc sum is also depicted
in this figure. The calculations were fulfilled in the QCA. The spectral range where
the value of Tc + Rc is unity expands to the shorter waves with the particle size
decreasing and the filling factor increasing.

Effect of particle ordering on the directly transmitted and specularly reflected
light is demonstrated in Fig. 2.45b. As one can see, the Tc + Rc sum of the pla-
nar crystal consisting of 0.1μm-diameter particles is practically unity over all
considered spectrum (0.28μm≤ λ ≤1.12μm). The Tc + Rc sum of the partially
ordered monolayer is less than unity in all considered spectral range. The range of
0.6μm≤ λ ≤ 1.12μm is presented in the inset to show the difference from unity
more clear. Thus the long-range ordering provides much wider wavelength range
where the Tc + Rc sum is unity than the short-range ordering.

Once the ranges of wavelengths, sizes, and filling factors where the Tc + Rc =
1 for monolayers of nonabsorbing particles (κ = 0) were found, it is possible go
to the second step. For these ranges the absorption coefficient Aml of monolayer of
particles with the actual complex refractive index of c-Si (κ > 0) is determined by
the equation:

Aml = 1 − Tc − Rc. (2.5.1)

It is reasonable to compare the absorption by the particulate monolayer and by
the ordinary used homogeneous plane-parallel plate under condition of the equality
of the silicon volume per unit surface area in the systems. The thickness h of such
“equivalent plate” is associatedwith the particle diameter D and themonolayer filling
factor η by the relationship:

h = 2

3
ηD, (2.5.2)
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Absorption coefficient Apl of the homogeneous plane-parallel plate is calculated
by equation:

Apl = 1 − Tpl − Rpl , (2.5.3)

where Tpl and Rpl are transmission and reflection coefficients of the plate. They are
determined with taking into account the multiple-beam interference:

Tpl = ∣∣tpl
∣∣2 =

∣∣∣∣
t01t12eikh

1 − r12r10e2ikh

∣∣∣∣
2

, (2.5.4)

Rpl = ∣∣rpl
∣∣2 =

∣∣∣∣r01 + t01t10t12e2ikh

1 − r12r10e2ikh

∣∣∣∣
2

. (2.5.5)

Here tpl and rpl are the amplitude transmission and reflection coefficients of the plate,
t01, t10 and r01, r10 are the amplitude transmission and reflection coefficients for a
wave incoming (subscript “01”) and outgoing (subscript “10”) the plate through the
top interface, t12 and r12 are the amplitude transmission and reflection coefficients
for a wave outgoing the plate (subscript “12”) through the bottom interface (they
are calculated by the Fresnel formulae (Born and Wolf 2002)), h is the plate thick-
ness, k = 2πm/λ, m is the complex refractive index of the plate material, λ is the
wavelength of the incident light.

The simulation results show that absorption coefficient Aml of monolayer of c-Si
particles with diameters significantly smaller than the wavelength is smaller than the
absorption coefficient Apl of equivalent plate. The Aml coefficient can increase or
decrease with filling factor increasing. It grows with particle size and becomes larger
than the Apl when particle diameters are comparable with thewavelength (Miskevich
and Loiko 2015a).

Figure2.46a displays the calculated in the SSA (the calculation method is
described in Miskevich and Loiko 2014a) and the QCA spectra of absorption coef-
ficients of monolayers of c-Si particles at different monolayer filling factors in the
wavelength range of small absorption index of material (0.8μm< λ <1.1μm). The
data for equivalent plates are shown as well.

The peak positions of Aml obtained in theSSAcoincidewith the ones of absorption
efficiensy factor Qabs of a single c-Si particle (Fig. 2.46b). The multiple scattering
results in the long wave shift of the peaks and in formation of the additional ones.
Thus, the absorption spectra of monolayers calculated with taking into account the
multiple scattering are more complicated than the ones obtained in the SSA. They
are influenced by resonances caused by individual silicon particles as well as by their
spatial arrangement. In Fig. 2.46b the spectrum of extinction efficiensy factor Qext

for model nonabsorbing particle (n = nc-Si, κ = 0) with D = 0.5μm is shown as
well. In this case Qext = Qsc. Comparison of the spectrum with the one of the real
c-Si particle shows that, decreasing the absorption index can result in increasing as
well as decreasing the amount of light scattered by individual particle. In considered
case the Qext -increasing occurs in the vicinity ofmaxima of the resonance peaks. It is
worth paying attention that, although the single particle scatters light in all directions
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Fig. 2.46 Spectral absorption coefficients Aml and Apl of monolayer with triangular lattice of c-Si
particles at different filling factors η and the equivalent plates with thicknesses h. D = 0.5μm.
The filling factors of monolayers to which the plates are equivalent are indicated in parentheses in
the legend. σ(u) = 0.001u, lc = 900 (a) (Miskevich and Loiko 2015a). Spectral dependences of
extinction Qext , scattering Qsc, and absorption Qabs efficiency factors of silicon spherical particle
and Qext of the “model” nonabsorbing particle with n = nc-Si, κ = 0 (b)

(0≤ θ ≤ π , θ is the polar scattering angle), the ordered monolayer of these particles
scatters only in strictly forward and strictly backward directions in the considered
spectral range (see Fig. 2.45a).

Calculated in the QCA spectral absorption coefficients of monolayers with filling
factor η = 0.5 at different particle sizes in the wavelength range of small absorption
index of silicon are presented in Fig. 2.47a (Miskevich and Loiko 2015a). The results
for equivalent plates are shown as well. As can be seen from the data the number of
peaks in the absorption spectra of monolayer increases with particle size. In spectral
ranges of peaks the absorption efficiency significantly increases. In Fig. 2.47b are
shown spectral dependences of the Aml /Apl ratio characterizing the difference of
absorption coefficients of the monolayers and the equivalent plates. In the peaks the
value of Aml can be more than 100 times greater than value of Apl . Therefore partic-
ulate monolayers can be used as effective light absorbers in the narrow wavelength
intervals in the vicinities of the peak maxima. It is worth noting that absorption gain
due to the peaks can be reduced when their spectral positions coincide with the ter-
restrial solar spectral irradiance dips caused by the absorption bands of atmospheric
water vapor, aerosols, etc.

The integral over the solar illumination spectrum absorption coefficient of the
particulate monolayer were examined as well (Miskevich and Loiko 2014a, 2015a).

The integral coefficient 〈A〉 is calculated by equation:

〈A〉 =
∫ λ2

λ1
A(λ)w(λ)dλ
∫ λ2

λ1
w(λ)dλ

, (2.5.6)
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Fig. 2.47 Spectral absorption coefficients Aml and Apl of monolayer with triangular lattice of c-
Si-particles with different diameters D and the equivalent plates with thicknesses h. The diameters
of particles in monolayers to which the plates are equivalent are indicated in parentheses after the
h-values (a) (Miskevich and Loiko 2015a). Dependences of the Aml /Apl ratio (b). σ(u) = 0.001u,
lc = 900. η = 0.5

where A(λ) is a spectral absorption coefficient of a system, λ is the wavelength of
incident light, w(λ) is the power of the illumination spectrum of the source, wave-
lengths λ1 and λ2 specifies the considered spectral range.

To compare absorption by different structures, the relative absorption coefficient
Arel is used:

Arel =
(〈

AL1

〉
〈
AL2

〉 − 1

)
× 100%, (2.5.7)

which characterizes difference in integral absorption coefficients of the layers under
consideration. Here indices L1 and L2 designate the particulate system and the equiv-
alent plane-parallel plate, respectively. The positive values of Arel correspond to an
increase, while the negative ones correspond to a decrease of light absorption by the
particulate system in comparison with absorption by the plate.

The dependences of integral absorption coefficients of monolayer, 〈Aml〉, equiv-
alent plate, 〈Apl〉, and Arel on the monolayer filling factor are shown in Fig. 2.48
(Miskevich and Loiko 2015a). The calculations are made for the terrestrial solar
spectral irradiance “Global tilt” ASTM G173-03 (Reference Solar Spectral Irradi-
ance 2017) in the wavelength range from λ1 = 0.28μm to λ2 = 1.12μm.

As follows from Fig. 2.48a 〈Aml〉 coefficient grows with the size of particles
and the monolayer filling factor. For monolayer of the 0.05μm-diameter particles
〈Aml〉 < 〈Apl〉. For other considered particle sizes 〈Aml〉 > 〈Apl〉. As can be seen
from Fig. 2.48b the relative absorption coefficient and, consequently, the efficiency
(in comparison with the equivalent plate) of light absorption by the monolayer
increase with the particle size. This result, and the other ones obtained in Miske-
vich and Loiko (2014a, 2015a) show that maximum of Arel occurs, as one might
expect, for monolayers of particles with sizes comparable with the wavelength.



190 V. A. Loiko and A. A. Miskevich

(a) (b)

Fig. 2.48 Integral absorption coefficient 〈Aml 〉 of monolayer, integral absorption coefficient 〈Apl 〉
of the equivalent plate (a), and relative absorption coefficient Arel (b) versus monolayer filling
factorη (Miskevich andLoiko 2015a).Monolayers have triangular lattice,σ(u) = 0.001u, lc = 900,
0.28μm≤ λ ≤ 1.12μm

2.5.2 Absorption by Systems of Monolayers. Gradient
Multilayers

The spectral ANml and integral 〈ANml 〉 absorption coefficients of layered systems
(multilayers) consisting of monolayers were also calculated and analyzed in Miske-
vich and Loiko (2014a, 2015a). The calculations were made under the SSA and
TMM for systems of large (Miskevich and Loiko 2014a) and QCA and TMM for
systems of small and wavelength-sized (Miskevich and Loiko 2015a) particles.

Figure2.49 shows spectral absorption coefficient of the system consisting of the
various number of identical monolayers of large silicon particles and the plane-
parallel silicon plate with a volume equal to the particles volume of ten monolayers
(Miskevich and Loiko 2014a). The absorption coefficient of a system increases with
the number of monolayers. The coefficient can exceed 0.8 for large and 0.9 for
moderate and small values of the absorption index of silicon. Absorption coefficient
is larger for the systems of larger particles in the range of moderate and small values
of the absorption index of c-Si.

Figure2.50a shows dependences of the integral absorption coefficient 〈ANml 〉 of
the systems of large c-Si particles with different diameters on the number Nml of
monolayers and the 〈Apl〉 of the equivalent plane-parallel plates (Miskevich and
Loiko 2014a). Dependence of Arel(Nml) is displayed in Fig. 2.50b. One can see that
integral absorption coefficient of three- and more-monolayer systems is larger than
the one of the equivalent plane-parallel plates for all considered particle sizes. The
values of Arel are larger for smaller particles. Maximum of the Arel(Nml) depen-
dence shifts to larger Nml with the particle size increasing (Fig. 2.50b). At particle
diameter D = 5μm the absorption by the system consisting of 6 and 7 monolayers is
about 1.45 times larger than the one for the equivalent plate. However, the values of
〈ANml 〉 are greater for systems of larger particles (Fig. 2.50a). Pay attention that light
absorption by the system increases with the particle size increasing, but gradient of
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Fig. 2.49 Spectral absorption coefficient ANml of single monolayer of silicon particles (Nml =
1), systems of Nml = 2, 3, 6, 10, and 20 identical monolayers (calculations under the SSA and
TMM (Miskevich and Loiko 2014a)) and Apl of silicon plane-parallel plate (Miskevich and Loiko
2014a). The numbers near the curves indicate the number Nml of monolayers. The filling factor
of monolayers η = 0.6. Particle diameter D = 5μm (a), D = 200μm (b). Dashed line: spectral
absorption coefficient Apl of the homogeneous plane-parallel plate with a volume equal to the
volume of particles in 10 monolayers (plate thickness h = 20μm (a), h = 800μm (b))
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Fig. 2.50 Dependences of integral absorption coefficient 〈ANml 〉 of multilayer on the number Nml
of monolayers, 〈Apl 〉 of the equivalent plane-parallel plates (a) and relative absorption coefficient
Arel (b) (Miskevich and Loiko 2014a). Particle diameters are indicated in the legends. Values of
〈ANml 〉, 〈Apl 〉, and Arel are calculated for Nml = 1, 2, . . ., 15. The results are indicated by symbols.
Filled and empty identical symbols for each Nml correspond to the same volume of material per
unit surface area for the multilayer and plate, respectively

〈ANml (D)〉 function decreases. Therefore for creating the solar cells based on the
layered particulate structure one should optimize size of the particles.

From the obtained results it follows that a layered particulate system consisting
of three or more monolayers of large spherical silicon particles absorbs more light
than the equivalent homogeneous plane-parallel silicon plate.

The systems of small and wavelength-sized particles were studied in Miskevich
and Loiko (2015a). In systems of wavelength-sized particles one can obtain signifi-
cant increasing the absorption efficiency (as compare to the equivalent plate) due to
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Fig. 2.51 Spectral absorption coefficient ANml of systems consisting of identical monolayers with
triangular lattice of c-Si particles at D = 0.1μm, η = 0.5, s = 0.1μm (a) (Miskevich and Loiko
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QCA, σ(u) = 0.001u, lc = 900. The number of monolayers Nml is indicated near the lines

pronounced resonance scattering on the individual particles and multiple scattering
in the particle arrays.

In Fig. 2.51 is shown spectral absorption coefficient of multilayers consisting of
monolayers of the 0.1 and 0.2 μm-diameter particles. Concentration increasing can
result in decreasing the absorption coefficient of the multilayer in the range of large
absorption index of silicon. In the range of small absorption index the absorption
coefficient of multilayer depends on particle concentration, size, and wavelength.
As a whole, ANml grows with particle size and concentration. In the wavelength
range of the photonic band gap (PBG) it sharply decreases (see Tc,Nml in the range
∼0.78μm≤λ≤∼0.84μm in Fig. 2.51b). However, near the bounds of the PBG the
absorption coefficient significantly grows up.

Figure2.52a depicts integral absorption coefficients 〈ANml 〉 of multilayers from
monolayers of the 0.1μm-diameter particles and integral absorption coefficients
〈Apl〉 of the equivalent plates. Figure2.53a shows data for structures with the 0.2μm-
diameter particles. Figures2.52b and 2.53b display the corresponding dependences
of Arel(Nml).

As one can see from Figs. 2.52 and 2.53 the integral absorption coefficient
increases with particle size. The multilayers of considered particles can absorb more
light than the equivalent plates. The particulate system absorbs light more efficiently
(in comparisonwith the equivalent plate) at lower particle concentrations and smaller
number of monolayers (see Figs. 2.52b and 2.53b). Maximum relative increasing in
absorption for the considered cases is about 145%.

The amount and efficiency of light absorption can be increased in gradient mul-
tilayers which were considered as well (Miskevich and Loiko 2015a). Such mul-
tilayers consist of monolayers with changing parameters in monolayer sequences.
Figure2.54a, b show calculated spectral and integral absorption coefficients of mul-
tilayers consisting of monolayers with different filling factors, respectively. The
results for non-gradient and gradient multilayers are presented. Figure2.54c shows
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(a) (b)

Fig. 2.52 Integral absorption coefficient 〈ANml 〉 of multilayer, 〈Apl 〉 of equivalent plate (a), and
relative absorption coefficient Arel (b) versus the number Nml of monolayers (Miskevich and Loiko
2015a). Individual monolayers have triangular lattice, D = 0.1μm, σ(u) = 0.001u, lc = 900. s =
0.1μm, 0.28μm≤λ≤1.12μm

(a) (b)

Fig. 2.53 Integral absorption coefficient 〈ANml 〉 of multilayer, 〈Apl 〉 of equivalent plate (a) and
relative absorption coefficient Arel (b) versus the number Nml of monolayers (Miskevich and Loiko
2015a). Individual monolayers have triangular lattice, D = 0.2μm, σ(u) = 0.001u, lc = 900. s =
0.2μm, 0.28 μm≤λ ≤1.12μm

the relative absorption coefficient Arel,grad,Nml describing the relative absorption by
gradient multilayer in comparison with the non-gradient one. It is calculated by Eq.
(2.5.7), where 〈AL1〉 = 〈Agrad,Nml 〉 is integral absorption coefficient of the gradi-
ent multilayer, 〈AL2〉 = 〈ANml 〉 is integral absorption coefficient of the non-gradient
multilayer consisting of identical monolayers (here calculations of 〈ANml 〉 are made
at filling factor η = 0.9).

As can be seen from Fig. 2.54a, spectral absorption coefficient of the η-gradient
multilayer is significantly larger than the one of the non-gradient multilayer (con-
sisting of identical monolayers with η = 0.9) in the range of large absorption index
of silicon. It results in significant increasing the integral absorption (see Fig. 2.54b).
The integral absorption coefficient of the seven-monolayer gradient system is∼20%
larger than the one of the non-gradient system (Fig. 2.54c). Thus, the larger absorption
coefficient can be obtained at smaller volume of material.
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Fig. 2.54 a Spectral absorption coefficient of: (i) non-gradient multilayers consisting of seven
identical monolayers at η = 0.3, η = 0.5, η = 0.7, η = 0.9, D = 0.1μm, s = 0.1μm; (ii) gradient
multilayer consisting of seven monolayers with different filling factors: η1 = 0.3, η2 = 0.4, η3 =
0.5, η4 = 0.6, η5 = 0.7, η6 = 0.8, η7 = 0.9, D = 0.1μm, s = 0.1μm; and (iii) gradient multilayer
consisting of sevenmonolayers with different filling factors: η1 = 0.3, η2 = 0.4, η3 = 0.5, η4 = 0.6,
η5 = 0.7, η6 = 0.8, η7 = 0.9 and particle diameters D1 = 0.1, D2 = 0.11, D3 = 0.12, D4 = 0.14,
D5 = 0.16, D6 = 0.18, D7 = 0.2μm; s1 = 0.105, s2 = 0.115, s3 = 0.13, s4 = 0.15, s5 = 0.17, s6 =
0.19μm. The subscripts at η and D indicate the monolayer numbers; the subscripts at sindicate
number of intermonolayer spacing between i-th and i + 1-th monolayer. b integral absorption
coefficient of multilayer versus the number Nml of monolayers. c relative absorption coefficient
Arel,grad,Nml . Triangular lattice, σ(u) = 0.001u, lc = 900, 0.28μm≤λ ≤1.12μm (Miskevich and
Loiko 2015a)

More powerful gain can be obtained at simultaneous increase of the filling factor
and diameter of particles in the monolayer sequence. This case is demonstrated in
Fig. 2.54 by the dashed lines. The multilayer has following structure characteristics:
D1 = 0.1μm, η1 = 0.3 (1-st monolayer), D2 = 0.11μm, η2 = 0.4 (2-nd), D3 =
0.12μm, η3 = 0.5 (3-rd), D4 = 0.14μm, η4 = 0.6 (4-th), D5 = 0.16μm, η5 =
0.7 (5-th), D6 = 0.18μm, η6 = 0.8 (6-th), and D7 = 0.2μm, η7 = 0.9 (7-th). The
spacings between the monolayers were specified as the sum of particle radii in the
adjacent monolayers. As can be seen from the figure, the simultaneous η- and D-
growing results in more pronounced increasing the spectral and integral absorption
coefficients and the value of Arel,grad,Nml . The integral absorption coefficient of this
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system ismore than 40% larger than the one of the non-gradient systemofmonolayers
with η = 0.9 and D = 0.1μm (see Fig. 2.54c).

2.5.3 Efficiency of Light Absorption by Layers Consisting
of Silicon Particles

Monolayer and multilayer consisting of silicon particles can be efficient light
absorbers (Miskevich and Loiko 2014a, 2015a).

When particle sizes are significantly smaller than the wavelength of incident light,
these systems absorb lesser than the equivalent silicon plates (Miskevich and Loiko
2015a).

Absorption coefficient of monolayer of large particles is smaller than the one of
the equivalent plate. Absorption by systems of three- and more- monolayers of such
particles is larger than the one of the equivalent plates. For six- and more monolayer
system it can exceed 0.8 in the spectral range of large absorption index of silicon and
0.9 in the spectral range of the moderate and small values of the absorption index of
silicon (Miskevich and Loiko 2014a).

Absorption by monolayer of the wavelength-sized particles can be significantly
larger than the one of the equivalent plate. It is caused by strong resonant scattering
by individual submicron silicon particles and strong multiple scattering in particle
arrays. Absolute absorption coefficient and relative absorption coefficient of layers
of such particles as a whole grow with particle size. Relative absorption coefficient
attains maximum when particle sizes and distances between them are comparable
with the wavelengths of incident light. In the narrow wavelength intervals (up to
10nm) of the resonant peaks the spectral absorption coefficient of monolayer can be
more than 100 times larger than the one of the equivalent plate. In the wavelength
range from 0.8μm to 1.12μm integral absorption coefficient of monolayer can be
more than 20 times higher than the one of the plate. There are spectral ranges where
this ratio can be essentially larger (Miskevich and Loiko 2015a).

In multilayers consisting of monolayers of wavelength-sized particles integral
absorption coefficient grows with the number of monolayers and increases in the
spectral ranges near the boundaries of PBG.To increase light absorption in particulate
structures the gradient multilayers can be used. The sketch of solar cell consisting of
particle size- and concentration-gradient multilayer is shown in Fig. 2.55 (Miskevich
and Loiko 2015a).

The solar cell consists of active layer, antireflection coating, transparent electrodes
1, transparent dielectric layers 2, and rear electrode 3. The active layer is the stack
of monolayers of particles (which generally can be of any shape) of semiconductor
(it can be silicon or other material). The circles sectioned by the dashed lines are the
particles with the p-n junctions designated by these lines. The transparent electrodes
connect the parts of particles with the same conduction type (p or n). The transparent
dielectric layers separate the transparent electrodes and zones of different conduc-
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Fig. 2.55 Sketch of the solar cell with gradient layered structure of active layer (side view) (Miske-
vich and Loiko 2015a). The circles with the dashed lines are particles of the semiconductor material.
1: transparent electrodes, 2: transparent dielectric layers, 3: rear electrode

tion types of particles. The rear electrode 3 provides the electrical conductivity and
reflection of light back into the active layer.

2.6 Light Scattering and Absorption by a Layer with High
Concentration of Optically Soft Particles: Treatment
Based on Radiative Transfer Theory

To describe light scattering in densely packed media, the theory of multiple scat-
tering of waves (Ishimaru 1978a, b; Apresian and Kravtsov 1983; Twersky 1962c;
Tsang et al. 2000, 2001a; Tsang and Kong 2001; Borovoi 2006) should be used (see
Sect. 2.2.1). Because of the complexity of the mathematical apparatus used in this
theory, complete solutions can be obtained only in a very limited number of situa-
tions. In some cases the phenomenological approach can be applied. It is simpler and
widely used at the present time. This approach is based on the solution of radiative
transfer equation operating with the radiation (light) intensity (radiance) (Sobolev
1956a, b; Chandrasekhar 1960; van de Hulst 1980; Barabanenkov and Finkelberg
1968; Barabanenkov 1976, 2003).

In this section we consider a model of radiation transport in a layer of particulate
medium with a high concentration of optically soft particles (Loiko and Berdnik
2003; Berdnik and Loiko 2004, 2006). It describes optical interaction of particles
with taking into account their spatial correlation and multiple light scattering. The
model is based on the radiative transfer equation and takes into account interference
effects to determine the parameters of the unit volume of a particulate media. It
can be used for modeling the biological tissues, composite liquid crystal materials,
polymer-dispersed liquid crystals, liquated glasses, porous glasses and structures,
etc.
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Fig. 2.56 Schematic
structure of a particulate
layer (Berdnik and Loiko
2006). The notations are in
the text

2.6.1 Model of Radiation Transport

Let an azimuthally symmetric wide radiation beam with intensity I (μ0) be incident
at an angle θ0 to the normal to a particulate layer (slab) with thickness determined
by the planes z = 0 and z = z0 (Fig. 2.56). The layer is a matrix with monodisperse
particles of radius Rp and a relative refractive index np. The refractive index nm of
the matrix is equal to the refractive index of the surrounding medium and hence there
are no Fresnel reflections from the boundaries. The radiation is scattered inside the
layer, partially absorbed, and emerges from it.

In order to describe the propagation of radiation in the layer (Berdnik and Loiko
2006), the radiative transfer equation (RTE) (Sobolev 1956b; Chandrasekhar 1960;
van de Hulst 1980; Minin 1988) was used which can be presented in the following
form for an azimuthally-averaged intensity of scattered radiation when the layer is
illuminated by a parallel radiation beam:

μ
∂ I (z,μ)

∂z + ε I (z, μ) = σ
∫ 1
−1 p(μ,μ′)I (z, μ′)dμ′ +

+ I+
1nσ p(μ,μ0)e

− εz
μ0 + I−

2nσ p(−μ,μ0)e
− ε(z0−z)

μ0

. (2.6.1)

Here I (z,μ) is the azimuth-averaged intensity of scattered radiation propagating
inwards the layer at a polar angle θ = arccosμ; σ and ε are the scattering and
extinction coefficients; μ0 = cosθ0; p(μ,μ′) is the azimuthally-averaged phase
function (also known as redistribution function); p(cosγ ) is the phase function
of unit volume, normalized by the condition

∫ 1
−1 p(cos γ )d cos γ = 1; cos γ =

μμ′ +√1 − μ2
√
1 − μ′2 cosϕ, γ is the scattering angle;μ = cosθ andμ′ = cosθ ’;

ϕ is the azimuthal scattering angle; I+
1n and I−

2n are the intensities of the light prop-
agating the layer in the direction of the wavevector of incident wave, at the upper
and lower boundaries, respectively. The RTE is solved with the following boundary
conditions:

I (z = 0, μ > 0) = I (z = 0, μ < 0),
I (z = z0, μ < 0) = I (z = z0, μ > 0).

(2.6.2)
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2.6.2 Unit Volume Parameters

The simulation of the optical parameters of densely packed media is beginning from
their calculation in the low-concentration limit. To calculate parameters of the unit
volume in this limit, the Mie theory is used (Bohren and Huffman 1983; Babenko
et al. 2003; Mie 1908). To calculate the extinction coefficient and the phase function
of a medium with a high particle concentration, one must solve the problem of light
diffraction (scattering) by a many body system. A rigorous solution of this prob-
lem has not been found so far, and hence various approximation methods are used.
For weakly scattering particles, the interference approximation is the most conve-
nient (Loiko and Berdnik 2006; Mishchenko 1994). According to this approach, the
expressions for differential scattering coefficient σh(γ ), scattering coeficient σh , and
the extinction coefficient εh of a medium consisting of identical spherical particles
have the form

σh(γ ) = wσ0l pl(γ )S3(γ,w), (2.6.3)

σh = wσ0lu, (2.6.4)

εh = w(ε0l − σ0l + σ0lu), (2.6.5)

where

u =
π∫

0

p1(γ )S3(γ,w) sin γ dγ . (2.6.6)

Here w ≡ ηV= Nv/V is the volume filling factor of a layer, N is the number of par-
ticles with volume v contained in volume V ; σ0l = Σs/v; ε0l = α0l + σ0l = Σe/v;
α0 = Σa/v; Σa , Σs and Σe are the absorption, scattering and extinction cross-
sections of an individual particle; and pl(γ ) is the normalized phase function of
an individual particle. Function S3(γ,w) is the structure factor of three-dimensional
particulate medium. The parameter u characterizes the degree of optical interaction
of particles. For independent (single) scattering u = 1. The stronger the correlation
in particle locations the larger the difference of the u-value from unity.

For the considered 3D layer with rigid spherical particles, the structure factor
is calculated in the Percus–Yevick approximation (Ivanov et al. 1988; Percus and
Yevick 1958; Berdnik and Loiko 2006, 2011):

S3(γ,w) =
(
1 − 24ω

∫ 1

0
c3(x,w)

sin yx

yx
x2dx

)−1

. (2.6.7)

Here x = r/2Rp; r is the distance between two particles, y = (8πRp/λ) sin(γ /2).
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Fig. 2.57 Dependence of u
on w and Rp/λ for particles
with n p = 1.05 (Berdnik and
Loiko 2006)
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c3(x,w) = −a − bx − cx3, (2.6.8)

a = (1 + 2w)2

(1 − w)4
, (2.6.9)

b = −6w
(1 + 0.5w)2

(1 − w)4
, (2.6.10)

c = 0.5w
(1 + 2w)2

(1 − w)4
. (2.6.11)

Figure2.57 illustrates influence of the radius and concentration of homogeneous
spherical particles with np = 1.05 on u. With increasing particle concentration, u
decreases monotonically. The dependence on the radius, however, is nonmonotonic.
Figure2.58 shows the dependence of u on the particle refractive index and radius for
w = 0.5. One can see that the peak of u-value increases with decreasing the refractive
index.

Figure2.59 illustrates the change of the phase function at a change in the concen-
tration and size of the particles. The intensity of forward-scattered radiation decreases
with the volumefilling factorw increasing and for quite high concentrations the phase
function acquires a characteristic maximum for a nonzero scattering angle. With w
increasing, the maximum is shifted towards large angles, while with Rp increasing
it is shifted towards small angles.

Note that for certain values of the particle radius and concentration, the asymme-
try parameter g = ∫ 1

−1 p(μ)μdμ of the phase function may be zero, or even attain
negative values (Fig. 2.60). The primarymaximum on the phase function is formed at
values of size parameter x ≥ 7/4 (Berdnik and Loiko 2004). At large volume filling
factor (w > 0.5) its position can be determined roughly by the expression
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Fig. 2.58 Dependence of u
on n p and Rp/λ for w = 0.5
(Berdnik and Loiko 2006)
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Fig. 2.59 Dependence of the phase function of a unit volume on the layer volume filling factor w
(a) and radius Rp of particles (b) (Berdnik and Loiko 2006)

γm = 2 arcsin
7

4x
. (2.6.12)

The optical thickness τ0 of the layer, the single scattering albedo , and phase
function p(γ ) of the unit volume are defined by the formulas

τ0 = τ01(1 − l(1 − u)), (2.6.13)

 = lu

1 − l(1 − u)
, (2.6.14)

p(γ ) = pl(γ )S3(γ )

u
, (2.6.15)

where τ0l andl are the optical thickness of the layer and the single scattering albedo
of the rarefied layer (calculated in the SSA).

In order to solve the transfer equation, we should calculate the redistribution
function
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Fig. 2.60 Dependence of
the asymmetry parameter g
on the layer volume filling
factor w and radius Rp of
particles with refractive
index n p = 1.1 (Berdnik and
Loiko 2006)
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1 − μ′2 cosϕ)dϕ. (2.6.16)

This function is usually calculated using the Legendre polynomial expansion (van
de Hulst 1980). For the phase functions having regions with sharp peaks, however,
several hundred expansion terms have to be taken into account, and the calculation of
the expansion coeficients pl becomes complicated. If the number of expansion terms
used in the calculation is small, the function p(μ,μ′) acquires “ripples” appearing
as a result of incorrectness of Fourier series summation with inaccurately determined
coefficients. In this case, the redistribution function may acquire negative values. In
order to avoid these issues, the p(μ,μ′) function is calculatedusing the spline approx-
imation method (Berdnik and Loiko 1999; Berdnik andMukhamedyarov 2001). The
use of splines helps in reducing the ripples.

2.6.3 Angular Structure of Scattered Light

A statistically uniform layer of a scattering particulate medium is characterized by
the brightness coefficients of backward, ρ(μ,μ′), and forward, σ(μ,μ′), diffusely
scattered radiation, which are determined by the relations

I−(z = 0, μ) =
∫ 1

0
2ρ(μ,μ′)μ′ I0(μ′)dμ′, (2.6.17)

I+(z = z0, μ) = e−τ0/μ I0(μ) +
∫ 1

0
2σ(μ,μ′)μ′ I0(μ′)dμ′. (2.6.18)
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Fig. 2.61 Phase functions of
a unit volume of the medium
formed by particles with
Rp = 0.3μm, n p = 1.1 (λ =
0.5μm). w = 0 (curve 1) and
w = 0.5 (curve 2) (Berdnik
and Loiko 2006)

-1 -0.5 0 0.5
0

2

4

6 1

2

p

Here I0(μ) is the intensity of radiation incident on the layer, I+(z, μ) = I (z, μ > 0)
and I−(z, μ) = I (z, μ <0) are the intensities of radiation outgoing the layer into
forward and backward semispheres.

To determine the ρ(μ,μ′) and σ(μ,μ′) coefficients a calculation approach based
on the layer doubling technique (van de Hulst 1980; Lenoble 1985; Plass et al.
1973; Wiscombe 1976; Hunt 1971) is used. In this method, the computations are
started by choosing a layer of a quite small optical thickness τs so that τ0 = τs2K ,
where K is an integer. For a layer with an optical thickness τs , the brightness coef-
ficients are determined approximately. The methods to specify approximate values
of ρ(μ,μ′) and σ(μ,μ′) for isotropic particulate media are developed in Tsang
and Kong (1980), where τs is calculated in the single scattering approximation. The
brightness coefficients for a layer of doubled thickness were found using the known
relations derived from the balance equations at the layer boundaries (Ishimaru and
Kuga 1982;Mishchenko 1994;Kuz’min et al. 2001). The initial optical thicknesswas
assumed to be equal to τs ∼ 10−6, which ensured a fairly high calculation accuracy.

Proceeding from expressions (2.6.17) and (2.6.18), we can write the expressions
for the reflection (R) and transmission (T ) coefficients of the particulate medium:

R(μ0) = 2
∫ 1

0
ρ(μ,μ0)μrmdμ, (2.6.19)

T (μ0) = e− τ0
μ0 + 2

∫ 1

0
σ(μ,μ0)μrmdμ. (2.6.20)

Figure2.61 shows the phase functions of the unit volume of a medium formed
by spherical particles with Rp = 0.3μm, np = 1.1 at λ = 0.5μm, when volume
filling factor w = 0.001 (curve 1: practically uncorrelated ensemble) and 0.5 (curve
2: correlated ensemble).

Figures2.62 and 2.63 show the angular dependences of the brightness coefficients
of normally illuminated plane-parallel particulate layers (slabs)with different surface
filling factors η. With η and, hence, the optical thickness of the layer increasing, the



2 Multiple Scattering of Light in Ordered Particulate Media 203

Fig. 2.62 Brightness
coefficients of a layer formed
by particles with Rp =
0.3μm, n p = 1.1 (λ =
0.5 μm) and w = 0.001 for
η = 0.49 [curve (1)], 0.98
[curve (2)], 3.91 [curve (3)],
15.63 [curve (4)], 62.5 [curve
(5)], and 500 [curve (6)];
u = 0.16161, τ0l = 131.26
(Berdnik and Loiko 2006)

Fig. 2.63 Brightness
coefficient of a layer formed
by particles with Rp =
0.3μm, n p = 1.1 (λ = 0.5
μm), w = 0.5, η = 3.91
[curve (1)], 7.81 [curve (2)],
15.63 [curve (3)], 31.25
[curve (4)], 62.5 [curve (5)],
125 [curve (6)], 250 [curve
(7)], and 500 [curve (8)];
u = 0.16161, τ0l = 21.5477
(Berdnik and Loiko 2006)
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multiple scattering leads to smooth the peaks of the phase function (the peak on
the angular structure observed for small η disappears), and the angular structure of
scattered light does not change for quite large values of τ0, that indicates transition
to the asymptotic regime.

One can see from Fig. 2.63 that with η increasing the angular dependence of
radiation scattered in forward semisphere shows a peak whose magnitude increases
to its maximum value, after which it disappears for large η when the asymptotic
regime is achieved. Such a behavior is a consequence of the characteristic peak in
the phase function of a densely packed medium. The intensity peak in the region of
small scattering angles is observed experimentally (Ivanov et al. 1988).

Angular dependences of the brightness coefficient σ(μ,μ′) are shown in Fig. 2.64
for various angles of illumination. With the incidence angle increasing (μ′ decreas-
ing), the characteristic peak in the angular dependence of scattered radiation is
blurred. Two peaks can be formed, the distance between them increases with μ′
decreasing. Note that, the peak can be formed in the strictly backward direction if
the phase function of the unit volume has a peak at an angle of 90◦ (Berdnik and
Loiko 2004, 2006).
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Fig. 2.64 Angular
dependences of the
brightness coefficient
σ(μ,μ′) of a layer formed
by particles with
Rp = 0.3μm, n p = 1.1
(λ = 0.5μm), w = 0.5 , for
μ′ = 1 [curve (1)], 0.99
[curve (2)], 0.96 [curve (3)],
and 0.91 [curve (4)];
u = 0.16161, τ0l = 131.26,
η = 0.488 (Berdnik and
Loiko 2006)
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2.6.4 Light Scattering by a Layer of Correlated Particles in
Liquating Glasses

Let us pay attention to the problem of the anomalous light scattering by liquating
glasses (Berdnik and Loiko 2011; Loiko andBerdnik 2006;Gurevich 1953;Kolyadin
1956; Kalmykov et al. 2000; Voishvillo 1957, 1962; Andreev et al. 1960; Shatilov
1962; Shepilov 2003). The phenomenon of anomalous forward scattering in sodium
borosilicate glasses consists in the following. The power of the exponential function
describing the wavelength dependence of the extinction coefficient of the glasses is
much higher than four while from the theory of light scattering it follows that this
power does not exceed four. Such a discrepancy is considered as an anomaly (Gure-
vich 1953; Kolyadin 1956; Kalmykov et al. 2000; Voishvillo 1957, 1962; Andreev
et al. 1960; Shatilov 1962; Shepilov 2003). The function of angular distribution of the
scattered light intensity also has an anomalous behavior. It is backward-elongated.
The angular distributions of light scattered by strongly scattering glasses have max-
ima, whose positions shift toward smaller angles with increasing turbidity.

Let us consider, following to Loiko and Berdnik (2006), a system of spherical
particles with the radius Rp and the refractive index np distributed in a medium with
the refractive index nm . The relative refractive index of the particles is n = np/nm .
The arrangement of the particles in space is shown schematically in Fig. 2.65. The
solid-line circles correspond to the particles of the radius Rp, and the dashed-line
ones show the radius of spatial interaction (the radius of the virtual “particles”) of the
particles. The distance between the particle centers cannot be smaller than 2Rc. It is
assumed that the spatial order of the particle arrangement in the system coincideswith
the order for a random arrangement of hard spheres of the radius Rc with spherical
particles of the radius Rp located at their centers. The scattering of light by such a
system is analyzed.

The starting point in the simulation of optical properties of densely packed media
is their calculation in the limit of low concentration, where collective effects in light
scattering are negligible. To calculate the characteristics of an elementary volume of
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Fig. 2.65 Arrangement of
scatterers (Loiko and
Berdnik 2006). The
notations are in the text

Fig. 2.66 Dependence of
u(xc, wc, e), calculated for
particles with n = 1.05,
nm = 1.5, λ = 0.5 μm at e =
0.25 and wc = 0.05 (curve
1), 0.2 (2), 0.4 (3), 0.5 (4)
(Loiko and Berdnik 2006)

xc

a medium with a low concentration of spherical scatterers, the Mie theory (Bohren
and Huffman 1983; Babenko et al. 2003) is used.

To calculate the extinction coefficient and the phase function of the densely packed
layers of soft particles the interference approximation (Dick and Loiko 2001a; Loiko
and Berdnik 2003) is used (see Sect. 2.6.2).

The structure factor S3(γ,wc) is determined as above (see Sect. 2.6.2), but instead
of radius Rp we should use radius Rc.

Figure2.66 illustrates changeof theu-parameter as functionof particle size param-
eter xc = 2πRc/λm (λm is length of incident wave) and the volume filling factor wc

of spheres with radius Rc, when parameter e = Rp/Rc <1. At low concentration,
the u(xc) dependence is monotonic, as well as for e = 1. With the concentration
increasing, a small peak arises in the dependence. It is more pronounced for larger
filling factors. This peak is observed for xc values from 1.5 to 2.

The spectral dependences of the extinction coefficient ε0h(λ) = εh(λ)/wp =
σ0h(λ)u(Rp,wc) and the phase function of the layer with nonabsorbing particles are
shown in Fig. 2.67. The dependences of ε0h(λ) at certain particle sizes (see curves 2,
3, and 4) have maximum. The phase functions are backward elongated (Fig. 2.67b).
With the radius Rc increasing, a peak on the phase function arises. It shifts toward
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Fig. 2.67 Dependences of ε0h(λ) (a) and p(γ ) (b). e = 0.5 (wp = 0.075); n = 1.05; nm = 1.5;
wc = 0.6, Rc (μm) = 0.09 (curve 1), 0.10 (2), 0.105 (3), 0.11 (4), 0.115 (5) (a); λ = 0.55μm. ε0h
(cm−1) = 0.41(1), 1.51(2), 4.17(3), 11.93(4), 15.94(5) (b) (Loiko and Berdnik 2006)

smaller angles as Rc increases. Simultaneously, the extinction coefficient increases.
It corresponds to the experimentally observed shift of the peak in the scattering phase
function towards smaller angles with increasing scattering coefficient (Andreev et al.
1960).

The spectral dependence of the extinction coefficient ε0h(λ) in liquating glasses
can be approximated as Shepilov (2003)

ε0h = Cλ−p (2.6.21)

where C is a constant and p is the power of the exponential. From Eq. (2.6.21) it
follows that

p = d(ln ε0h)

d(ln λ)
. (2.6.22)

The dependence of p on the size parameter xc and the volume filling factor wc at
e = 0.1 is shown in Fig. 2.68a. With wc increase, the ranges with abnormally high
values arise in the p(xc) dependence. The maxima in the p(xc) occur at the values
of the xc determined by the following equation:

xc = 2πRc

λm
= 0.917 + 1.506wc, (2.6.23)

which is valid for wc in the range from 0.4 to 0.63.
The dependences of p and asymmetry parameter g on wc in this volume filling

factor range at e = 0.5 are described by the equations:
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xc xc

(a) (b)

Fig. 2.68 Dependences of p (a) and g (b) on xc at e = 0.1; n = 1.05; and wc = 0 (curve 1), 0.3
(2), 0.5 (3), and 0.6 (4) (Loiko and Berdnik 2006)

p = −184.4 + 1243wc − 2727w2
c + 2072w3

c , (2.6.24)

g = 0.207 − 2.216wc + 0.863w2
c . (2.6.25)

The coefficients of dependences (2.6.23)–(2.6.25) were found by the least-squares
method.

As wc changes from 0.4 to 0.63, the p parameter changes from 9.1 to 34.4. The
extremum in the size dependence of the asymmetry parameter g decreases from
−0.54 to −0.86. Thus, the model presented, taking into account the correlation in
spatial distribution of particles at low volume filling factors, explains the abnormally
sharp change in the scattering coefficient, in particular, its abnormal behavior in
sodium borosilicate glasses with a small volume filling factor.

Figure2.68b shows the dependences of the parameter g on xc and wc at the same
values of the medium parameters as in Fig. 2.68a. There are ranges of parameters
where the backward-peaked phase functions are formed. The spectral positions of
these ranges roughly coincide with the ranges of the anomalously high values of
p. At some values of the medium parameters, the mean cosine of the scattering
angle can be smaller than −0.9. The volume filling factor of particles in the range of
abnormally high values of the p and g parameters is low, that is also in qualitative
agreement with the experimental data (Kalmykov et al. 2000). At the filling factor
wc = 0.6 the volume filling factor of particles is wp = 0.075 (wp = wce3).

The analysis has shown that, as the parameter e = Rp/Rc increases, the maximal
values of p and g decrease significantly, while the positions of these maxima change
only slightly. If the value of e is small, then the values of the p and g parameters
independ on the refractive index of the scattering particles and are determined by the
Rc and wc. However, at e >0.5, the relative refractive index n affects significantly
the p and g.

Themeasured anguar structures of intensities of light scattered by liquating glasses
are presented in Fig. 2.69 (Voishvillo 1962).

The p-value close to nine was observed in these experiments.
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Fig. 2.69 The measured intensities I of light (I in a.u.) scattered by different types of liquating
Na2B2O3SiO2 glasses versus polar scattering angle θ (Voishvillo 1962)

2.6.5 Light Absorption: Asymptotic Equations

Absorption coefficient of particulate layer can be determined by the data on the
outgoing light. In the conditions of low particle concentration, when random spatial
arrangement of particles is realized, the problem is reduced to the solution of the
integro-differential radiative transfer equation (RTE) written above. Its solution is
not a simple task and the set of approaches is used to overcome this difficulty.

At high optical thickness of the particulate layer an asymptotic regime is achieved.
In this regime the angular and spatial variables are separated. The field is azimuthally
independent and attenuates exponentially with the layer thickness increasing (Zege
et al. 1991a). In this case the asymptotic equations (Sobolev 1956b; Zege et al.
1991a, b; van de Hulst 1980) can be used to describe scattering characterististics,
and it is possible to find optical parameters of layer using a small number of alge-
braic equations. Such approach is much simpler than the solution of the RTE. In
Loiko and Ruban (2000, 2004) the results of the approach were used to find light
absorption by optically thick particulate layers with small weakly absorbing non-
spherical silver halide microcrystals by measurements of spectral total transmittance
T and reflectance R. The absorption coefficient A of a layer was determined from
the relation T + R + A = 1.

The experimental concentration dependence of absorption coefficient A = A(ηV )

(ηV is the volume filling factor) of the layers under study is shown in Fig. 2.70. First,
it increases with the volume filling factor, and then decreases starting from ηV ≈ 0.5.
The similar behavior of A(ηV ) of optically soft large-sized particles can be concluded
from the data of (Loewinger et al. 1964; Kokhanovsky and Korolevich 1998).
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ηV

Fig. 2.70 Concentration dependence of the absorption coefficient A for a photolayer with average
size of microcrystals d = 0.11μm for surface concentration (mass of silver per unit area): P =
20 (curve 1), 10 (curve 2), and 3g/m2 (curve 3); λ = 0.436μm (Loiko and Ruban 2004). The
measurement results are indicated by points with error bars

With the asymptotic formulas of Zege et al. (1991a), it is possible towrite equation
for absorption coefficient of the elementary volume (specific absorption):

k = (1/4)(1 − R∞) lg ((T1/T2)/(P1 − P2)) . (2.6.26)

Here R∞ is the total reflectance of a semi-infinite layer, and T1 and T2 are the
total transmittances determined in the asymptotic regime for two layers with surface
concentrations P1 and P2, respectively.

The results for k are presented in Fig. 2.71. One can see that it depends nonmono-
tonically on the volume filling factor and has a maximum in the vicinity of ηV =
0.5. Such a behaviour qualitatively agrees with the data of Nelson (1989) for the
absorption coefficient of fractal aggregates.

In Fig. 2.72 are shown the experimental dependences of reflection coefficient
R∞ (Blewin and Brown 1961; Dubova and Khairullina 1982; Loiko 1981) of the
semiinfinite layer on the volume filling factor for different particle materials.

The absorption and scattering of light by layers of closely-spaced black pigment
particles are studied using the phenomenological Kubelka–Munk theory with the
assumption of independent scattering (Gunde and Orel 2000). The absorption of
radiation by concentrated biological tissues is studied in Twersky (1970b), Ivanov
et al. (1987).
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ηV

Fig. 2.71 Concentration dependence of the specific absorption k of a photolayer with average
size of microcrystals d = 0.11 μm; λ = 0.436μm (Loiko and Ruban 2000). The data obtained by
measurement of T , R, R∞ and calculation by Eq. (2.6.26) are indicated by points with the error
bars

(a) (b)

λ, μmηV

Fig. 2.72 Dependences of reflection coefficient on volume filling factor ηV (a) and the wavelength
λ (b). a solid lines: MgO in air (Blewin and Brown 1961); dashed line: erythrocytes of human blood
(Dubova and Khairullina 1982): 1: λ = 0.6μm, 2: λ = 0.5μm, 3: λ = 0.4μm, 4: λ = 0.805μm.
b “red cadmium” pigment (Loiko 1981), 1: layer of free powder, 2: layer compressed in 1.3 times,
3: layer compressed in 1.4 times

2.7 Conclusions

The review of the investigations of wave interaction with random, partially ordered,
and highly ordered particulate media is made. The main attention is devoted to the
systems with short- and imperfect long-range positional order.

The recent progress in the theory of multiple scattering of waves to describe
wave propagation in ordered particulate monolayers (planar crystals) is considered
in details. The method to simulate spatial arrangement of particles forming the pla-
nar crystal (PC) with imperfect lattice is described. Its applicability to calculating
the transmission, reflection, and absorption coefficients of PC in the quasicrystalline
approximation of the theory of multiple scattering of waves is demonstrated. A num-
ber of practical applications of this method is considered. For example, it was used
to simulate the antireflecion coatings on the glass, selective reflectors, multispectral
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filters. It was applied also to solve the inverse scattering problem – retrieving the
refractive index of particles forming the 3D photonic crystal, and to develope solar
cells with effective light absorption.

A number of scattering problem solutions obtained for partially ordered particu-
late monolayers is described. In particular, angular distribution of light scattered by
monolayer and small-angle light scattering and transmission by polymer dispersed
liquid crystal film are outlined. The quenching effect for light directly transmitted the
monolayer and some results for the spatial optical noise of monolayer are discussed.

The adding method and transfer matrix method (TMM) are used to describe light
propagation in 3D particulate media. The last is used to study the 3D ordered struc-
tures (3D photonic crystals) from spherical alumina particles, systems of “particulate
monolayers on glass substrate”, periodic, quasiperiodic, and aperiodic sequences of
monolayers, to solve the inverse scattering problem for 3D photonic crystal, and to
calculate the absorption coefficient of system from monolayers of crystalline silicon
particles.

The results based on application of the radiative transfer theory to describe light
scattering and absorption by layers with high concentration of optically soft particles
are considered. The data on angular structure of scattered light are presented. Features
in scattering by correlated particles in liquating glasses are explained.

The review shows the significant progress made in the studying the EMwave scat-
tering and abrorption by ordered particulate media, but the theoretical description of
these phenomena is far from finishing. For example, in most of the theoretical works
the systems of homogeneous isotropic spherical, cylindrical (sometimes spheroidal),
or point scatterers are considered. This is caused by existing the well-developed
methods to describe scattering properties of such scatterers. Of course, practically
any particulate structure can be simulated numerically. But such an approach is often
inconvenient to use, for example, when random or partially-ordered systems with
huge quantity of particles are studied.

Below we emphasize some important, in our opinion, problems to be solved
theoretically:

1. Description of angular distribution of light scattered by concentrated particulate
layers with various types of ordering, including the case of oblique illumination;

2. Simulation of systems with nonspherical (noncylindrical, nonspheroidal),
anisotropic, and inhomogeneous scatterers;

3. Modeling the statistically inhomogeneous concentrated paticulate media;
4. Modeling the near-field interaction between the particulate layers in multilayer

and between particulate layer and homogeneous layer, for example in the “mono-
layer of particles on substrate” system;

5. Description of optical properties of ordered structures such as opals, colloidal
crystals, etc. possessing the lattice defects other than particle deviations from
lattice sites.
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Appendix. Expansion of Fields in Terms of Scattering Orders

Let uswrite themain equations of the theory ofmultiple scattering ofwaves (TMSW)
in the form:

ψr = ψ i
r +

N∑

j=1

tr jψ
e
j , (A.1)

ψe
j = ψ i

j +
N∑

k=1,k �= j

t jkψ
e
k , (A.2)

Field ψr, i.e. the solution of Eq. (A.1), can be found by putting the (A.2) into (A.1):

ψr = ψ i
r +

N∑

j=1

tr j

⎛

⎝ψ i
j +

N∑

k=1,k �= j

t jkψ
e
k

⎞

⎠ =

= ψ i
r +

N∑

j=1

tr jψ
i
j +

N∑

j=1

N∑

k=1
k �= j

tr j t jkψ
i
k+

N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k

tr j t jk tklψ
i
l (A.3)

+
N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k

N∑

m=1
m �=l

tr j t jk tkl tlmψ i
m + · · · .

The first term,ψ i
r , on the right side of (A.3) describes the field of incident wave in the

observation point r. The second and third terms represent the sumof N and N (N − 1)
contributions of singly tr jψ i

j and doubly tr j t jkψ
i
k scattered waves, respectively. The

fourth term describes the N (N − 1)2 contributions of triple scattering. It concludes
the terms with l = j . Thus, this sum can be divided into two ones which describe
three scattering events only by different particles, tr j t jk tklψ i

l (k �= j , l �= k, l �= j),
and three scattering events at double passing by wave the same particle, tr j t jk tk jψ i

j
(l = j �= k), i.e. “forward-backward” scattering:

N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k

tr j t jk tklψ
i
l =

N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k,l �= j

tr j t jk tklψ
i
l +

N∑

j=1

N∑

k=1
k �= j

tr j t jk tk jψ
i
j . (A.4)

The fifth term in (A.3) describes the sum of N (N − 1)3 events of fourfold scattering.
It can be divided into the sums describing scattering events only on different particles
and at passing by wave the particles more than one time:
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N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k

N∑

m=1
m �=l

tr j t jk tkl tlmψ i
m =

N∑

j=1

N∑

k=1
k �= j

N∑

l=1
l �=k,l �= j

N∑

m=1
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tr j t jk tkl tlmψ i
m +

N∑

j=1

N∑

k=1
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N∑
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i
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+
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l=1
l �=k,l �= j

tr j t jk tkl tl jψ
i
j +

N∑

j=1

N∑

k=1
k �= j

N∑

m=1
m �=k,m �= j

tr j t jk tk j t jmψ i
m +

N∑

j=1

N∑

k=1
k �= j

tr j t jk tk j t jkψ
i
k (A.5)

On the right side of (A.5) the first termdescribes N (N − 1)(N − 2)(N − 3) events of
fourfold scattering on different particles. The second, third, and fourth ones represent
the N (N − 1)(N − 2), and fifth one describes the N (N − 1) events of fourfold
scattering at passing by wave the particles more than one time.
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Chapter 3
Fast Stochastic Radiative Transfer Models
for Trace Gas and Cloud Property Retrievals
Under Cloudy Conditions

Dmitry S. Efremenko, Adrian Doicu, Diego Loyola
and Thomas Trautmann

3.1 Introduction

Farman et al. (1985) revealed the annual depletion of ozone above the Antarctic.
This finding stimulated intensive research on climatology and ozone photochemistry
(Smirnov 1975). Clouds are an important component of the global hydrological cycle
and play a major role in the Earth’s climate system through their strong impact on
radiation processes. The interplay of sunlight with clouds imposes major challenges
for satellite remote sensing, both in terms of the spatial complexity of real clouds and
the dominance of multiple scattering in radiation transport. The retrieval of trace gas
products from UV/VIS spectrometers is strongly affected by the presence of clouds
(see Fig. 3.1). The physics behind the influence of clouds on trace gas retrieval is
well understood, and in general, there are three different contributions:

1. the albedo effect associatedwith the enhancement of reflectivity for cloudy scenes
compared to cloud-free sky scenes;

2. the so-called shielding effect, for which that part of the trace gas column below
the cloud is hidden by the clouds themselves; and

3. the increase in absorption, related to multiple scattering inside clouds which leads
to enhancements of the optical path length.
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Fig. 3.1 Ozone profile
retrieval in the presence of
clouds

The albedo and in-cloud absorption effects increase the visibility of trace gases at
and above the cloud-top, while the shielding effect normally results in an underes-
timation of the trace gas column. Using radiative transfer modeling several papers
have quantified theoretically the influence of cloud parameters on the retrieval of
trace gas columns (e.g., see Ahmad 2004; Boersma 2004; Roozendael et al. 2006
and the references therein). These studies show that the cloud fraction, cloud optical
thickness (albedo), and cloud-top pressure (height) are the most important quantities
for cloud correction of satellite trace gas retrievals.

Real clouds are an inhomogeneous three-dimensional scattering medium. For the
new generation of satellite spectrometers with a relative high spatial resolution (such
as Sentinel 5 Precursor, Sentinel 4 and Sentinel 5 Ingmann et al. 2012), it is important
to account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect
on the radiances at the top of the atmosphere, and in particular, on the trace gas
and cloud retrieval results. This assessment has to be probabilistic since the detailed
structure of the clouds is unknown and only a small number of statistical properties
are given. In this regard, two computational strategies can be proposed for simulating
the radiance field and obtaining unknown statistical characteristics of the radiance
field. The first one is based on multidimensional deterministic models and consists
in the following steps:

1. simulation of sampling random realizations of an inhomogeneous cloudy field;
2. solution of radiative transfer equation for each realization, and
3. averaging of the obtained solutions over the ensemble of cloudiness realizations.

For each realization of a cloud field, a three-dimensional radiative transfer problem
has to be solved by using either the Monte-Carlo method (Marchuk et al. 1980)
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or multi-dimensional solvers such as SHDOM developed by Evans (1998). In both
cases 3D-modeling is very time-consuming. Due to its computational complexity,
this strategy is not used in operational retrieval algorithms.

In the second strategy, cloud fields are regarded as stochastic scattering media
due to their internal inhomogeneity and stochastic geometry. The radiative transfer
through these media is described by stochastic radiative transfer models (SRTM),
in which new transport equations, relating the statistical parameters of the clouds
to those of the radiance field, are derived. The goal of this approach is to obtain a
relatively simple relationship between the statistical parameters of clouds and radi-
ation that can be numerically evaluated in practice. Within the second strategy, the
computations of the radiance field can be organized as follows:

1. simulation of random realizations of an inhomogeneous cloudy field,
2. obtaining the relevant statistical structure information from a set of realizations

of a cloudy field, and
3. solution of the stochastic radiative transfer problem using as input the cloud

statistics parameters obtained at the previous step.

In this way, time-consuming three-dimensional computations are avoided, but the
SRTM is less accurate than 3D-models. However, the SRTM seems to be a good
compromise between accuracy and computational costs. Although several methods
for such statistical treatment were developed, stochastic models are not used in the
operational retrieval algorithms due to complicated mathematical problems and the
absence of reliable statistical data on cloud properties.

The majority of operational retrieval algorithms are based on the so-called exter-
nal mixing model, which is the simplest deterministic model. It is the foremost
application of the independent pixel approximation to homogeneous broken clouds.
The external mixing procedure to calculate the radiance in an atmosphere containing
partial cloudiness is to compute separately the radiances for completely cloudy and
clear skies (Icloud and Iclear, respectively), and then to express the partially cloudy
radiance as a weighted linear combination of the separate radiances, the weighting
provided by the effective cloud fraction f :

I = (1 − f )Iclear + f Icloud. (3.1)

Here f is assumed not to depend on the wavelength. The clouds within each pixel
are assumed to be plane-parallel and homogeneous in both horizontal and vertical
directions as shown in Fig. 3.2.

The main advantage of the external mixing model is its computational efficiency,
since it requires the solution of only two one-dimensional radiative transfer prob-
lems. In addition, its performance can be enhanced by reusing results from clear-sky
RTM calculations for the cloud-filled scenario. Two methods have been proposed
in Efremenko et al. (2014), which provide a speed-up factor of approximately 2
compared with two calls of RTM was obtained. The disadvantage of the external
mixing model is that for cloudy scenes of small horizontal extent, errors due to the
three-dimensional effects may be larger than 30% (Kokhanovsky 2003).
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Fig. 3.2 Illustration of the
external mixing model: h1 is
the cloud top height while
Δh is the cloud geometric
thickness

The topic addressed in this chapter is related to the ones discussed in Kassianov
et al. (2012) and incorporates besides stochastic radiative transfer for Markovian
cloud models also numerical aspects of efficient computations of radiance field and
trace gas retrievals. The goal of our analysis is to demonstrate how the SRTM which
takes into account the inhomogeneity of the scattering medium can be used in oper-
ational processors for cloud and ozone retrieval. The layout of this chapter is as
follows. Section3.2 contains a brief overview of previously developed SRTMs. In
Sect. 3.3 we describe a n-order SRTM for arbitrary cloud statistics. In Sect. 3.4 a
stochastic model for broken clouds is presented. Numerical aspects and the accuracy
of SRTM are analyzed in Sect. 3.5. Internal mixing models are derived on the basis
of stochastic models in Sect. 3.6. The impact of cloud inhomogeneities on trace gas
and cloud property retrieval is studied in Sect. 3.7. The final Sect. 3.8 contains a few
concluding remarks.

3.2 Overview of Stochastic Radiative Transfer Models

Techniques of computing themean outgoing radiation field from any type of stochas-
tic ensemble of cloud structure can be broadly categorized into two major groups.
The first group is based on the Monte Carlo algorithm for the scattered medium in
which some optical parameters are random functions. To minimize computational
costs, the random cloud field is modeled together with the photon trajectories. The
details can be found in Kargin (2000), Prigarin et al. (1998) and in references therein.
This technique proved to be very efficient for forward simulations, in particular, for
computing the radiance field in broken clouds. In this chapter we are focused on the
second group of methods in which the analytical procedure of statistical averaging
is applied directly to the radiative transfer equation. Here we are confronted with
a problem of statistical closure which was first formulated and solved by Vainikko
(1973a, b). A corresponding SRTM for analyzing the statistical structure of the radi-
ance field in media with random spatial fluctuations of the optical properties was
studied by Anisimov and Fukshansky (1992). It consists in a system (a hierarchy)
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of stochastic equations for the statistical moments of the radiance field and for the
covariances of the radiance field and the optical parameters. The technique for deriv-
ing the stochastic model is purely algebraic and applies to arbitrary statistics, while
the system of stochastic equations is solved by an iterative method. Due to the emer-
gence of the higher-order covariance terms in the stochastic equations, the problem
of closing the system of equations was addressed. This problem was solved for the
covariances of the radiance field and the optical parameters by assuming that the sta-
tistical fluctuations of the optical properties of the medium obey Gaussian statistics.

The radiative transfer in broken cloud layers has been cast as two coupled integro-
differential equations, the so-called Levermore–Pomraning equations (Levermore
et al. 1986), one for the mean radiance in the cloud, the other for the mean radiance in
the clear sky. The initial derivation of the Levermore–Pomraning equationswas based
on the theory of alternating renewal processes (Vanderhaegen 1986; Levermore et al.
1988; Pomraning 1989).Another derivation has been provided byAdams et al. (1989)
by determining a balance equation for the particles in eachmaterial, and by ensemble
averaging the resulting equation over all statistical realizations. The derivation in
Adams et al. (1989) is simple and applies to arbitrary binary statistical mixtures.
Additional derivations have been reported by assuming that the particle trajectories
are uncorrelated (Sahini 1989b) and by using nuclear reactor noise techniques (Sahini
1989a). In dealing with the Levermore–Pomraning equations we are confronted with
a problemof closure, since the balance equations for the “volumetric”mean radiances
involve the “interface” radiances between the cloudy and the clear skies. The standard
closure is to assume that these radiances are equal, in which case, the resulting model
is called the Levermore model. The Levermore model is exact for purely absorbing
media with Markovian statistics, and approximate for scattering media and/or non-
Markovian statistics. A more accurate model for treating non-Markovian statistics
including scattering has been derived by Levermore et al. (1988) in the framework
of the renewal theory. In practice, the Levermore–Pomraning equations are solved
under the assumption of horizontal invariance of the statistical characteristics of
the cloud field, in which case, we are faced with the solution of a system of two
one-dimensional integro-differential equations. Assuming isotropic scattering and
performing a Fourier cosine expansion of the ensemble-averaged radiances in the
azimuthal angle, the system of equations is solved for the zeroth-order cosine mode,
and so, the computed quantities are the mean radiances averaged over the azimuthal
angle. The solution method is the discrete ordinate method in conjunction with an
approximate iterative technique (Malvagi et al. 1993;Byrne et al. 1996).Note, that the
SRTM of Anisimov and Fukshansky, as well as the SRTM based on the Levermore–
Pomraning equations are formulated in terms of the total radiance, and the problem
of extracting the diffuse radiance for stochastic scattering media illuminated by solar
radiation was not addressed.

A Markovian cloud model involving two coupled integral equations was intro-
duced in the atmospheric science community by Titov (1990) and Zuev and Titov
(1995). The Titov integral model treats the clear sky as completely transparent, and
for the standard closure assumption, it is mathematically identical to the differential
Levermore model (Malvagi et al. 1993). An extension of the Titov integral model
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to the solar radiative transfer problem in multilayer broken clouds and for inhomo-
geneous Markovian statistics has been provided by Kassianov (2003). In this work,
the statistically inhomogeneous scattering medium has been represented as a set of
statistically homogeneous interrelated cloud layers, each homogeneous in the verti-
cal but inhomogeneous in the horizontal dimensions. The solution of the resulting
integral equations for the mean radiance is performed by using the Monte Carlo
method and the Markov chain simulation. To be used for trace gas retrieval, this
model should be supplemented with the reflection from the boundary surface, and
the scattering and absorption of the solar radiation by aerosols and atmospheric gases
(this extension has been made using theMonte Carlo method by Titov et al. 1997 and
Zhuravleva 2008). Note that Markovian statistics for a cloud appeared to be a very
useful assumption, since the system of SRTM equations can be closed and the input
parameters of the model (such as mean chord lengths of clouds) can be measured
(e.g., Lane et al. 2002).

3.3 An nth Order Stochastic Radiative Transfer Model

3.3.1 Problem Formulation for the Inhomogeneous
Atmosphere

Weconsider an atmosphere consisting of airmolecules and clouds, while aerosols are
not explicitly included. In the case of horizontally homogeneous aerosols, they can
be included by redefining coefficients corresponding to the molecular atmosphere.
The radiative transfer equation for the diffuse radiance I at the position r and in the
direction Ω is given by

Ω · ∇ I (r,Ω) = − [
σ0
ext (r) + σ1

ext (r)
]
I (r,Ω)

+ 1

4π

∫

4π

[
σ0
sct (r) P0

(
Ω,Ω ′) + σ1

sct (r) P1
(
Ω,Ω ′)] I

(
r,Ω ′) dΩ ′

+ F�
4π

[
σ0
sct (r) P0 (Ω,Ω�) + σ1

sct (r) P1 (Ω,Ω�)
]
e−τ�

ext(r),

(3.2)

where σ0,1
ext, σ0,1

sct and P0,1 are the extinction coefficient, the scattering coefficient
and the phase function corresponding to the clear sky (index 0) and to the cloud
(index 1), respectively, τ�

ext is the solar optical depth, Ω� = (π − θ�,ϕ�), with
μ� = cos θ� > 0, is the solar direction, and F� is the solar flux. In our analysis, we
assume for simplicity, that the phase functions are position independent, and that the
cloud single scattering albedo ω1, defined by ω1 = σ1

sct (r) /σ1
ext (r), is constant.

The cloud extinction field is expressed as
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σ1
ext (r) = σ1d

ext (r) f (r) , (3.3)

where σ1d
ext is a deterministic function and f is the random geometric function.

Consequently, the cloud scattering field is given by σ1
sct (r) = σ1d

sct (r) f (r), with
σ1d
sct = ω1σ

1d
ext. The random geometric function f reflects the statistics of the cloud

field; for broken clouds, described by binary statistical mixtures, we have f = f 2,
or more precisely, f (r) = 1 inside the cloud and f (r) = 0 inside the clear sky, but
in general, e.g., for a bounded cascade cloud model, we have f �= f 2. Note that for
broken clouds, f is known as the random indicator function. The ensemble average
of the cloud extinction field is σ1

ext = σ1d
ext f , where here and in the following, the

notation X means the ensemble average of X .
For a cloud embedded in a planar layer of infinite horizontal extent, the radiative

transfer Eq. (3.2) must be supplemented with boundary conditions at the top and the
bottom of the atmosphere. At the top of the atmosphere, we consider the standard
homogeneous boundary condition for the downwelling radiance, i.e.,

I (rt,Ω−) = 0,

while at the bottom of the atmosphere we assume a Lambertian reflecting surface
with surface albedo A, i.e.,

I (rs,Ω+) = A

π
F� |μ�| e−τ�

ext(rs) + A

π

∫

2π
|μ| I (rs,Ω−) dΩ. (3.4)

Here, rt and rs are boundary points at the top of the atmosphere and at the underlying
surface, respectively, while Ω+ and Ω− denote an upwelling and a downwelling
direction, respectively.

3.3.2 Statistical Averaging

As the cloud extinction coefficient σ1
ext (r) is a random function, the radiance

I (r,Ω) is also a random function. Representing f , I and e−τ�
ext as the sum of

their mean values f , I and e−τ�
ext , respectively, and of their random fluctuations f ′,

I ′ and (e−τ�
ext)′, respectively, that is,

f = f + f ′, I = I + I ′, e−τ�
ext = e−τ�

ext + (e−τ�
ext)′, (3.5)

and by applying the procedure of statistical averaging it is possible to derive an
infinite system of equations for the mean value of the radiance field and the covari-
ances of the fluctuations of the radiance field and the geometric field. This system of
equations must be truncated at a certain stage, and then closed by applying an inde-
pendent hypothesis on the higher-order covariance terms. Following Anisimov and
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Fukshansky (1992), inserting the Reynolds decompositions (3.5) into the radiative
transfer Eq. (3.2) gives

Ω · ∇ I + Ω · ∇ I ′

= −σ0
ext

(
I + I ′) − σ1d

ext

(
f I + f ′ I + f I ′ + f ′ I ′)

+ 1

4π

∫

4π

[
σ0
sctP0

(
I + I ′) + σ1d

sctP1
(
f I + f ′ I + f I ′ + f ′ I ′)] dΩ ′

+ F�
4π

{
σ0
sctP0

[
e−τ�

ext + (e−τ�
ext)′

]

+σ1d
sctP1

[
f e−τ�

ext + f ′ e−τ�
ext + f (e−τ�

ext)′ + f ′(e−τ�
ext)′

]}
. (3.6)

Taking the ensemble average of Eq. (3.6) gives

Ω · ∇ I = −σ0
ext I − σ1d

ext

(
f I + f ′ I ′)

+ 1

4π

∫

4π

[
σ0
sctP0 I + σ1d

sctP1
(
f I + f ′ I ′)] dΩ ′ (3.7)

+ F�
4π

{
σ0
sctP0e

−τ�
ext + σ1d

sctP1
[
f e−τ�

ext + f ′(e−τ�
ext)′

]}
.

A basic equation for computing the covariances f ′n I ′, n ≥ 1, can be derived by
taking the difference between Eqs. (3.6) and (3.7),

Ω · ∇ I ′ = −σ0
ext I

′ − σ1d
ext

(
f ′ I − f ′ I ′ + f I ′ + f ′ I ′)

+ 1

4π

∫

4π

[
σ0
sctP0 I

′ + σ1d
sctP1

(
f ′ I − f ′ I ′ + f I ′ + f ′ I ′)] dΩ ′

+ F�
4π

{
σ0
sctP0(e

−τ�
ext)′

+σ1d
sctP1

[
f ′ e−τ�

ext − f ′(e−τ�
ext)′ + f (e−τ�

ext)′ + f ′(e−τ�
ext)′

]}
. (3.8)

Multiplying Eq. (3.8) by f ′ and taking the average, yields

Ω · ∇ f ′ I ′ = (Ω · ∇ f ′) I ′ − σ0
ext f

′ I ′ − σ1d
ext

(
f ′2 I + f f ′ I ′ + f ′2 I ′

)

+ 1

4π

∫

4π

[
σ0
sctP0 f

′ I ′ + σ1d
sctP1

(
f ′2 I + f f ′ I ′ + f ′2 I ′

)]
dΩ ′

+ F�
4π

{
σ0
sctP0 f

′(e−τ�
ext)′

+σ1d
sctP1

[
f ′2 e−τ�

ext + f f ′(e−τ�
ext)′ + f ′2(e−τ�

ext)′
]}

, (3.9)

while multiplying Eq. (3.8) by f ′n , n ≥ 2, and taking the average, gives
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Ω · ∇ f ′n I ′

= (
Ω · ∇ f ′n) I ′ − σ0ext f ′n I ′ − σ1dext

(
f ′(n+1) I − f ′n f ′ I ′ + f f ′n I ′ + f ′(n+1) I ′

)

+ 1

4π

∫

4π

[
σ0sctP0 f

′n I ′ + σ1dsctP1
(
f ′(n+1) I − f ′n f ′ I ′ + f f ′n I ′ + f ′(n+1) I ′

)]
dΩ ′

+ F�
4π

{
σ0sctP0 f

′n(e−τ�
ext)′

+σ1dsctP1

[
f ′(n+1) e−τ�

ext − f ′n f ′(e−τ�
ext)′ + f f ′n(e−τ�

ext)′ + f ′(n+1)(e−τ�
ext)′

]}
.

(3.10)

Equation (3.10) for computing f ′n I ′, involves the terms I and f ′ I ′, as well as, the
higher-order covariances (Ω · ∇ f ′n)I ′ and f ′(n+1) I ′. Because of the dependency on
these higher-order covariance terms, we are led to an infinite system of equations
for I and f ′n I ′, n ≥ 1, consisting in Eqs. (3.7), (3.9), and (3.10) for n ≥ 2. In
practice, this system of equations must be truncated at some stage n, and then closed
by making some assumptions on (Ω · ∇ f ′n)I ′ and f ′(n+1) I ′.

The same technique can be used to derive the surface boundary conditions for I
and f ′n I ′, n ≥ 1. For a Lambertian reflecting surface with surface albedo A, these
are given by

I+ = A

π
F� |μ�| e−τ�

ext + A

π

∫

2π
|μ| I−dΩ, (3.11)

and

f ′n I ′+ = A

π
F� |μ�| f ′n(e−τ�

ext)′ + A

π

∫

2π
|μ| f ′n I ′−dΩ, (3.12)

where I+ = I (rs,Ω+), I− = I (rs,Ω−), f ′n I ′+ = f ′n I ′(rs,Ω+) and f ′n I ′− =
f ′n I ′(rs,Ω−).
For an nth-order stochastic model, it is convenient to define the (n + 1)-

dimensional radiance vector by

I =

⎡

⎢⎢⎢
⎣

I
f ′ I ′
...

f ′n I ′

⎤

⎥⎥⎥
⎦

,

and to express Eqs. (3.7), (3.9), and (3.10) in matrix form as
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Ω · ∇I (r, Ω) = I∇ (r, Ω) − Σ (r) I (r, Ω) − σ1dext (r) �I (r, Ω)

+ 1

4π

∫

4π

[
S
(
r, Ω, Ω ′) I

(
r, Ω ′) + σ1dsct (r) P1

(
Ω, Ω ′)�I

(
r, Ω ′)] dΩ ′

+ F�
4π

[
S (r, Ω, Ω�) I� (z) + σ1dsct (r) P1 (Ω,Ω�) �I� (r)

]
. (3.13)

Here, the vector I∇ involving the gradient fields ∇ f ′k , k = 1, . . . , n, and the solar
transmission vector I� are given by

I∇ =

⎡

⎢⎢
⎢
⎣

0
(Ω · ∇ f ′) I ′

...

(Ω · ∇ f ′n) I ′

⎤

⎥⎥
⎥
⎦

and I� =

⎡

⎢⎢⎢
⎢
⎣

e−τ�
ext

f ′(e−τ�
ext)′

...

f ′n(e−τ�
ext)′

⎤

⎥⎥⎥
⎥
⎦

,

respectively, while the pseudo-phase matrix S, depending on the product of the
scattering coefficient and the phase function, and the extinction matrix Σ are given
by

S =

⎡

⎢
⎢⎢
⎣

σ0
sctP0 + σ1d

sct f P1 σ1d
sctP1 0 . . . 0

σ1d
sct f

′2P1 σ0
sctP0 + σ1d

sct f P1 σ1d
sctP1 . . . 0

...
...

...
...

σ1d
sct f

′(n+1)P1 −σ1d
sct f

′n P1 0 . . . σ0
sctP0 + σ1d

sct f P1

⎤

⎥
⎥⎥
⎦

(3.14)

and

Σ =

⎡

⎢⎢
⎢
⎣

σ0
ext + σ1d

ext f σ1d
ext 0 . . . 0

σ1d
ext f

′2 σ0
ext + σ1d

ext f σ1d
ext . . . 0

...
...

...
...

σ1d
ext f

′(n+1) −σ1d
ext f

′n 0 . . . σ0
ext + σ1d

ext f

⎤

⎥⎥
⎥
⎦

, (3.15)

respectively. Finally, the higher-order covariance vectors �I and �I�, read as

�I =

⎡

⎢⎢⎢
⎣

0
0
...

f ′(n+1) I ′

⎤

⎥⎥⎥
⎦

and �I� =

⎡

⎢⎢⎢
⎣

0
0
...

f ′(n+1)(e−τ�
ext)′

⎤

⎥⎥⎥
⎦

,

respectively.
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3.3.3 Closure Relations for the SRTM

To solve the radiative transfer Eq. (3.13), we need to employ appropriate closure
relations for (Ω · ∇ f ′k)I ′, k = 1, . . . , n, and f ′(n+1) I ′. For the covariance f ′(n+1) I ′,
we have several options:

1. A standard closure procedure for an nth-order stochastic model is to assume
that f ′(n+1) I ′ is negligible compared to I , f ′ I ′, . . . , f ′n I ′. Thus, assuming that
f ′(n+1) I ′ = 0, we obtain �I = 0. Moreover, if

f ′(n+1) e−τ�
ext − f ′n f ′(e−τ�

ext)′ + f f ′n(e−τ�
ext)′ � f ′(n+1)(e−τ�

ext)′,

then �I� can be also neglected.
2. The closure procedure proposed in Anisimov and Fukshansky (1992), in con-

junction with a second-order stochastic model (n = 2), is based on the rela-
tion between the moments of different orders, or more precisely, on the relation
between the fourth-order correlation moments of any four Gaussian random vari-
ables and their second-order moments. If the statistical fluctuations of the optical
properties of the medium obey Gaussian statistics, this closure procedure gives
f ′3 I ′ = 3 f ′2 f ′ I ′. As a result, we deduce that I solves the stochastic equation
(3.13) with �I = 0, and in which, the (3, 2) entries of the matrices S and Σ

are given by [S]32 = 2σ1d
sctP1 f

′2 and [Σ]32 = 2σ1d
ext f

′2, respectively, while the
third entry of �I� is [�I�]3 = f ′3(e−τ�

ext)′ − 3 f ′2 f ′(e−τ�
ext)′. If moreover, this

closure procedure applies for the solar terms, i.e., f ′3(e−τ�
ext)′ = 3 f ′2 f ′(e−τ�

ext)′,
then �I� = 0.

3. Broken clouds (binary statistical mixtures) are characterized by f = f 2, and
a closure relation for f ′2 I ′ readily follows. Indeed, from f = f 2, we find that

f 2 I = f I and f = f
2 + f ′2. As a result, we infer that

f ′2 I ′ = (
1 − 2 f

)
f ′ I ′ (3.16)

and similarly, that

f ′2(e−τ�
ext)′ = (

1 − 2 f
)
f ′(e−τ�

ext)′. (3.17)

Regarding the higher-order covariances (Ω · ∇ f ′k)I ′, k = 1, . . . , n we make the
following remarks:

1. In the zeroth-order stochastic model (3.7), the covariance vector I∇ does not
appear, and what is required is only a closure relation for f ′ I ′. In Gabriel and
Evans (1996), f ′ I ′ is neglected, while in Stephens (1988), the closure relation
f ′ I ′ = C f I , with C = C(z,μ) = μC̃ (z) , is applied in the framework of a
two-stream model.

2. In the analysis conducted by Anisimov and Fukshansky (1992), the covariance
vector I∇ is disregarded and a second-order stochasticmodel is used to analyze the
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radiative transfer through overcast cloudy scenes. This model provides accurate
results if f ′2 and f ′3 do not exceed certain critical values.

3. For broken clouds, the covariance vector I∇ is the key point in proving the equiv-
alence with a stochastic model based on the Levermore–Pomraning equations.
Therefore, the derivation of a closure relation for (Ω · ∇ f ′)I ′ is an important
task.

3.4 A Stochastic Radiative Transfer Model for Broken
Clouds

As stated in Zuev and Titov (1996), Chap. 6 there are two types of cloud inhomo-
geneities. The first one is due to random internal structure of a cloud while the second
one is referred to macro-fluctuations and described roughly in terms of “cloud” and
“clear sky”. The impact of the first type of inhomogeneities on the cloud field is much
stronger than that due to micro-fluctuations. In this regard, for numerical analysis it
is beneficial to assume a random cloud field with deterministic optical parameters
inside the cloud. Below we consider stochastic radiative transfer in broken clouds.

3.4.1 A First-Order Stochastic Radiative Transfer Model

Using the closure relations (3.16) and (3.17), together with Eqs. (3.7) and (3.9) we
are led to a first-order stochastic model for the two-dimensional radiance vector
I = [ I , f ′ I ′ ]T , that is,

Ω · ∇I (r,Ω) = I∇ (r,Ω) − Σ (r) I (r,Ω) + 1

4π

∫

4π
S
(
r,Ω,Ω ′) I

(
r,Ω ′) dΩ ′

+ F�
4π

S (r,Ω,Ω�) I� (r) , (3.18)

where I∇ = [ 0, (Ω · ∇ f ′) I ′ ]T , I� = [ e−τ�
ext , f ′(e−τ�

ext)′ ]T ,

S =
[

σ0
sctP0 + σ1d

sct f P1 σ1d
sctP1

σ1d
sct f

′2P1 σ0
sctP0 + σ1d

sct

(
1 − f

)
P1

]
(3.19)

and

Σ =
[

σ0
ext + σ1d

ext f σ1d
ext

σ1d
ext f

′2 σ0
ext + σ1d

ext

(
1 − f

)
]

. (3.20)

For the first-order stochastic model (3.18), the boundary conditions (3.11) and (3.12)
translate into
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Fig. 3.3 Illustration of the
first-order stochastic model
for broken clouds. The
model is formulated for the
two-dimensional radiance
vector I = [ I , f ′ I ′ ]T

I (rt,Ω−) = 0, (3.21)

and

I (rs,Ω+) = A

π
F� |μ�| I� (rs) + A

π

∫

2π
|μ| I (rs,Ω−) dΩ. (3.22)

Figure3.3 shows a radiative transfer model corresponding to Eq. (3.18) accompa-
nied with Eqs. (3.19) and (3.20).

Note, that Eq. (3.18) is equivalent to the matrix form representation of the
Levermore–Pomraning equations, expressed in terms of the mean radiance in the
cloud

I1 = 1

f
f I , (3.23)

and the mean radiance in the clear sky

I0 = 1

1 − f
(1 − f ) I . (3.24)

Indeed, taking linear combinations of the two equations in (3.18) according to the
transformation rules f I1 = f I + f ′ I ′ and (1 − f )I0 = (1 − f )I − f ′ I ′, and
further, using f ′2 = f − f

2
and I ′∇ f ′ = I∇ f − I∇ f , we are led to a stochastic

equation as in (3.18) but for the radiance vector I = [ f I1,
(
1 − f

)
I0 ]T , with

I∇ = [ (Ω · ∇ f ) I , −(Ω · ∇ f ) I ]T , I� = [ f e−τ�
ext , (1 − f ) e−τ�

ext ]T ,

S =
[

σ0
sctP0 + σ1d

sctP1 0
0 σ0

sctP0

]
, and Σ =

[
σ0
ext + σ1d

ext 0
0 σ0

ext

]
. (3.25)

This equation is the matrix form representation of the Levermore–Pomraning equa-
tions for binary statistical mixtures illuminated by solar radiation, and with the
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Fig. 3.4 Scheme for
illustrating Eq. (3.27):
g (s) = 1 in clouds while
g (s) = 0 in cloud free
regions
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coupling terms encapsulated in the covariance vector I∇ . Thus, in the stochastic
model (3.18), the radiance vector comprises the mean radiance field and the covari-
ance of the radiance field and the indicator field, while in a stochastic model based
on the Levermore–Pomraning equations, the radiance vector involves the mean radi-
ances in each material.

3.4.2 Estimating a Covariance Vector

The main problem which need to be solved is to find an estimate of (Ω · ∇ f ′)I ′,
which enters in the expression of I∇ . Accounting of the representation

(Ω · ∇ f ′) I ′ = (Ω · ∇ f ) I − (
Ω · ∇ f

)
I , (3.26)

we will find an estimate for (Ω · ∇ f )I and postpone the problem for (Ω · ∇ f ′)I ′ to
the next section. The estimate for (Ω · ∇ f )I will be derived byusing the basic closure
assumption of the Levermore model, according to which, the interface radiances
between the cloud and the clear sky are equal to the volumetric mean radiances. Our
derivation should be regarded as an alternative to the standard derivation given by
Adams et al. (1989) and Pomraning (1991).

At point r, we trace a line along Ω , and denote by s be the spatial coordinate in
the direction Ω; thus, the point r+ sΩ is a point on this line, situated at a distance s
from r in the direction Ω . Considering a realization of the indicator function f , we
set

g (s) = f (r + sΩ) =
{
1, s0k ≤ s ≤ s1k
0, rest

, (3.27)

where the sik , with i = 0, 1 and k = 1, . . . , N , are the values of s at the boundary
points of the cloudy region k, and N is the number of cloudy regions (see Fig. 3.4).
The significance of the points r + sikΩ is given by the direction Ω . More precisely,
r+ sikΩ are the points at the interfaces i → j in directionΩ , because at the interface
point r+ sikΩ , when moving in the direction Ω , we pass from material i to material
j . Evidently, sik and N are random variables. The spatial derivative of f can be
expressed as

(Ω · ∇ f ) (r) = d f

ds
(r) = g′ (0) ,
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Fig. 3.5 The interface
between region i and region
j . The radiance at the
interface i → j is assumed
to be equal to the volumetric
mean radiances Ii (r,Ω)



r r + s

i j
Ii

where g′ is the derivative of g. Taking into account that

g′ (s) =
N∑

k=1

[
δ
(
s − s0k

) − δ
(
s − s1k

)]
, (3.28)

and using the limit representation of the Dirac delta function

δ
(
s − s∗) = lim�s→0+

h�s
(
s, s∗) =

{
1

�s , s ∈
[
s∗ − �s

2 , s∗ + �s
2

]

0, rest

we find that

g′ (s) = lim�s→0+

N∑

k=1

[
h�s

(
s, s0k

) − h�s
(
s, s1k

)]
. (3.29)

Thus, at a fixed point r+ sΩ , g′(s) is not zero, if for sufficiently small �s, the point
r+sΩ is an interface point; g′ (s) > 0 if r+sΩ is at the interface 0 → 1 in direction
Ω , and g′ (s) < 0 if r + sΩ is at the interface 1 → 0 in direction Ω . Therefore, for
s = 0, we may write

(Ω · ∇ f ) I = T0 − T1, (3.30)

where Ti is given by

Ti = lim�s→0+
I (r,Ω)

1

�s

i

, (3.31)

and the bar notation “— i” means that the average is taken over that realizations, for
which, the point r is at the interface i → j in direction Ω . For these realizations,
we approximate the radiances I (r,Ω) at the interfaces i → j , say Ii (r,Ω), by the
volumetric mean radiances Ii (r,Ω), as given by (3.24) and (3.23), i.e.,

Ii (r,Ω) = Ii (r,Ω). (3.32)

as shown in Fig. 3.5.
Then, to account for the ensemble average in (3.31) we have to multiply

Ii (r,Ω)/�s by the probability of occurrence of these events. Let us define the
events Ai = “point r is in material i” and Bj = “point r + �sΩ is in mate-
rial j”. For i �= j , the joint probability of the events Ai and Bj , given by
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P(Ai ∩ Bj ) = P(Bj | Ai )P(Ai ), represents the probability that “the point r is
in material i and the point r+ �sΩ is in material j”, or equivalently, that “the point
r is at the interface i → j in direction Ω”. Defining the transition length λi (r,Ω)

in material i in direction Ω in terms of the conditional probability that “the point
r + �sΩ is in material j given that the point r is in material i”, P(Bj | Ai ), by the
relation

P
(
Bj | Ai

) := �s

λi (r,Ω)
, (3.33)

and taking into account that P(A0) = 1 − f (r) and P(A1) = f (r), we obtain

(Ω · ∇ f ) I = 1 − f

λ0
I0 − f

λ1
I1. (3.34)

For Markovian cloud statistics, the λi (r,Ω) are the Markovian transition lengths;
they are prescribed by the cloud dynamics and completely define the binary statistical
mixture. For arbitrary cloud statistics, the λi (r,Ω) can be determined numerically
from P(Bj | Ai ), or more precisely, from P(Ai ∩ Bj ) and P(Ai ), for an ensemble of
realizations of the indicator function f . An equivalent derivation of (3.34), which is
more close to the proofs of Adams et al. (1989) and Pomraning (1991), can be given
by making use of a definition of the gradient operator that does not make reference
to any coordinate system, that is,

Ω · ∇ f = lim
V→0

1

V

∮

S
(Ω · n) f dS,

where S is the surface bounding a volume V , and n is the outward normal on S.
In order to derive an estimate of (Ω · ∇ f )I for two- and one-dimensional cloud

fields, we consider a general situation. Let eu and ev be two orthonormal vectors,
chosen such that the vectors Ω , eu and ev are coplanar, and that Ω · eu > 0. The
representation Ω = Ωueu + Ωvev, yields sΩ = ueu + vev, with Ωu = Ω · eu > 0,
Ωv = Ω · ev, u = Ωus, and v = Ωvs. Obviously, u and v are the spatial coordinates
in the directions eu and ev, respectively. Now, let us assume that f does not depend
on v. As a result, we see that f (r+sΩ) = f (r+ueu). Defining h (u) = f (r+ueu),
and recalling (3.27), i.e., g (s) = f (r + sΩ), we obtain g (s) = h (u) = h(u (s)),
giving g′ (s) = Ωuh′ (u). By straightforward calculations, we get

h(u) =
{
1, u0k ≤ u ≤ u1k
0, rest

,

and further,

g′ (s (u)) = Ωu

N∑

k=1

[
δ
(
u − u0k

) − δ
(
u − u1k

)]
.
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Here, we set uik = Ωusik , so that r + uikeu are the points at the interfaces i → j in
direction eu. Note that this result may follow directly from (3.28) and the scaling
property of the Dirac delta function δ (ax) = (1/ |a|)δ (x). Employing now the
previous arguments we end up with

(Ω · ∇ f ) I = Ωu

(
1 − f

λu0
I0 − f

λu1
I1

)

, (3.35)

where λui (r, eu) is the transition length in material i in direction eu. An alternative
proof of (3.35) can be given as follows: From f (r + sΩ) = f (r + ueu), we deduce
that “the probability that the point r + �sΩ is in material j given that the point r
is in material i” is equal to the probability that “the point r + �ueu is in material j
given that the point r is in material i”. Hence, we may write

P
(
Bj | Ai

) = �s

λi
= �u

λui
,

yielding λi = λui/Ωu. This result together with (3.34) gives (3.35). It should be
pointed out that the choice of the vector eu with the property Ω · eu > 0 can always
be done. In general, for positive or negative values of Ω · eu, (3.35) remains valid
with |Ωu| in place of Ωu, and with λui being the transition length in material i in
direction sign(Ωu)eu. The result established in (3.35) can be particularized to two-
and one-dimensional broken clouds as follows:

1. Two-dimensional cloud fields are homogeneous in altitude, and are characterized
by the choice f (r) = f (x, y). For the direction Ω = (θ,ϕ), we consider the
decomposition Ω = Ωρeρ + Ωzez, where eρ is the polar unit vector in the xy-
plane, ez is the Cartesian unit vector along the z-axis, Ωρ = Ω · eρ = sin θ, and
Ωz = Ω · ez = cos θ. As f does not depend on z, (3.35) holds with Ωu = Ωρ =
sin θ.

2. One-dimensional cloud fields are relevant when dealing with two-dimensional
media, and are described by the choice f (r) = f (x). For the direction Ω =
(θ,ϕ), we consider the decomposition Ω = Ωxex + Ωyzeyz, where ex is a unit
vector along the x-axis, chosen such that Ω · ex > 0, eyz is a unit vector in the
yz-plane,Ωx = Ω ·ex = sin θ |cosϕ|, andΩyz = Ω ·eyz. As f does not depend
on y and z, (3.35) holds with Ωu = Ωx = sin θ |cosϕ|.

3.4.3 A Stochastic Model for Homogeneous Three-, Two- and
One-Dimensional Broken Clouds

The solution of the boundary-value problem consisting in Eqs. (3.18), (3.21) and
(3.22) is not a trivial task. To simplify our analysis, we assume that the statistics of
f are independent of x and y (horizontal invariance of cloud statistics), yielding
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f = f (z) , f ′2 = f ′2 (z) , and λi = λi (z,μ) . (3.36)

In addition, we suppose that the deterministic optical properties of the cloud and of
the clear sky depend only on the altitude, i.e., σ1d

ext = σ1d
ext (z) and σ0

ext = σ0
ext (z).

A possible choice for σ1d
ext, which determines the distribution of the cloud in altitude,

is

σ1d
ext (z) =

{
σc, h1 ≤ z ≤ h2
0, rest

, (3.37)

where h1 and h2 are the cloud-base and the cloud-top heights, respectively. From
the above assumptions, we infer that Σ = Σ (z), S = S(z,Ω,Ω ′) and I� = I� (z).
Taking into account that the boundary conditions (3.21) and (3.22) are uniform, then
the mean radiative properties are independent of x and y, i.e., I = I (z,Ω), and the
streaming operator Ω · ∇ in (3.18) is transformed to μd/dz.

The horizontal invariance assumption (3.36) becomes stronger for homogeneous
cloud statistics, in which case,

∇ f = 0, ∇ f ′2 = 0, and λi = λi (μ) . (3.38)

For statistically homogeneous cloud fields, the λi have the physical interpretation of
the mean chord lengths in material i in direction Ω , and the cloud fraction f can be
expressed as

f = λ1 (μ)

λ0 (μ) + λ1 (μ)
. (3.39)

From (3.39), it is apparent that f is independent of μ, if λ0 (μ) and λ1 (μ) have the
same dependency on μ. An example of a stochastic cloud model fulfilling (3.38)
and parametrized by the cloud fraction f and the mean cloud aspect ratio γ =
l/h, where h and l are the characteristic vertical and horizontal dimensions of the
clouds, respectively, can be found in Malvagi et al. (1993). The correlation length
λc, associated with a homogeneous statistics is defined by

1

λc
= 1

λ0
+ 1

λ1
. (3.40)

Coming to the problem of estimating (Ω · ∇ f ′)I ′, we observe that for homogeneous
cloud statistics, we have (Ω · ∇ f ′)I ′ = (Ω · ∇ f )I , and so, from (3.34), (3.39) and
(3.40), we obtain

(Ω · ∇ f ′) I ′ = − 1

λc
f ′ I ′. (3.41)

Homogeneous and isotropic cloud statistics are characterized by

∇ f = 0, ∇ f ′2 = 0, and λi = constant., (3.42)
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and it is apparent that for two- and one-dimensional cloud fields, described by
f = f (x, y) and f = f (x), respectively, the horizontal invariance assumption
(3.36) implies the homogeneity and isotropy assumption (3.42). Therefore, for two-
dimensional cloud fields, (3.35) yields

(Ω · ∇ f ′) I ′ = − sin θ

λc
f ′ I ′, (3.43)

while for one-dimensional cloud fields, (3.35) gives

(Ω · ∇ f ′) I ′ = − sin θ |cosϕ|
λc

f ′ I ′. (3.44)

The estimates (3.41), (3.43) and (3.44) are based on the closure assumption (3.32)
of the Levermore model. The equivalence between the interface radiances and the
volumetric radiances is exact for Markovian cloud statistics in the absence of scatter-
ing. For non-Markovian cloud statistics, this equivalence is a severe approximation
(even in the absence of scattering), which can be improved by replacing the corre-
lation length λc in (3.41), (3.43) and (3.44) by an effective correlation length λeff

(Levermore et al. 1988). The effective correlation length is computed as λeff =
λc/q, where the correction factor q depends on the deterministic extinction coeffi-
cients in the cloud and in the clear sky, and the cloud statistics. In a compact notation,
(3.41), (3.43) and (3.44) can be written as

(Ω · ∇ f ′) I ′ = −F (Ω)
q

λc
f ′ I ′, (3.45)

where F is an angular factor depending on the direction Ω = (θ,ϕ). For three-
dimensional cloud fields, we have F (Ω) = 1 and λc = λc(μ), for two-dimensional
cloud fields we have F (Ω) = sin θ and λc = constant, and for one-dimensional
cloud fields we have F (Ω) = sin θ |cosϕ| and λc = constant.

The treatment of one-dimensional cloud fields is the most challenging task,
because F depends not only on the zenith angle θ but also on the azimuthal angle
ϕ. As a Fourier expansion of the function |cosϕ| involves sine and cosine modes,
a Fourier azimuthal expansion of the radiance vector I will also involves sine and
cosine modes. In order to simplify the solution method, we make a further assump-
tion, namely that |cosϕ| ≈ cos2 ϕ. This approximation, yielding an relative error of
about 0.2 in the L2-norm on [0, 2π], is quite acceptable. In this context, we express
(Ω · ∇ f ′)I ′ as

(Ω · ∇ f ′) I ′ = − sin θ
q

λc
f ′ I ′ + sin θ

(
1 − cos2 ϕ

) q

λc
f ′ I ′ (3.46)

and rewrite the stochastic equation (3.18) as
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μ
dI
dz

(z,Ω) = −Σq (μ, z) I (z,Ω) + 1

4π

∫

4π
S
(
z,Ω,Ω ′) I

(
r,Ω ′) dΩ ′

+ F�
4π

S (z,Ω,Ω�) I� (z) +
√
1 − μ2

(
1 − cos2 ϕ

) q

λc
I′ (z,Ω)

(3.47)

where the correction vector I′ is given by I′ = [ 0, f ′ I ′ ]T , and the new extinction
matrix Σq is given by

Σq (μ, z) =
[

σ0
ext(z) + σ1d

ext(z) f σ1d
ext(z)

σ1d
ext(z) f

′2 σ0
ext(z) + σ1d

ext(z)
(
1 − f

) + √
1 − μ2

q

λc

]

.

The stochastic equation (3.47) can be used to model various scenarios:

1. A stochastic model for homogeneous three-dimensional cloud statistics is char-
acterized by I′ = 0, Σq = Σq (μ = 0, z) and λc = λc(μ), while a stochastic
model for two-dimensional cloud fields is described by I′ = 0.

2. A stochastic model, in which we neglect the covariance vector I∇ depending
on the gradient of f ′, is characterized by I′ = 0 and Σq = Σq (μ = 1, z), or
equivalently, by q = 0.

3. Homogeneous scenes are described by setting q = 0, and by putting f ′2 = 0 in

the expressions of S and Σ0, as well as, f ′(e−τ�
ext)′ = 0 in the expression of I�.

Cloudy and clear scenes are specified by f = 1 and f = 0, respectively.

Equation (3.47) is an one-dimensional stochastic model, in which the stochastic
properties of the clouds are encapsulated in the bulk geometrical statistics f , f ′2

and λi , i = 0, 1, as well as, in the bulk statistics of the solar transmission e−τ�
ext

and f ′(e−τ�
ext)′. For any constructive stochastic cloud model, these statistics can be

obtained by a numerical averaging method for an ensemble of realizations of the
indicator function f .

For one-dimensional cloud fields, the stochastic radiative transfer Eq. (3.47) is
solved by an iterative method: Starting with a zero correction vector I′(0) = 0, the
radiance vector I(n) at the iteration step n, is computed for a correction vector I′(n−1)

at the previous iteration step. Two main features influence the convergence of the
iterative method:

1. As in general, f ′ I ′ � I , the correction vector I′ is small compared to the radiance
vector I. In this regard, it seems that the Levermore model, formulated in terms
of the radiance vector I = [ f I1,

(
1 − f

)
I0 ]T , does not exhibit this feature.

2. As a consequence of the representation (3.46), the radiance vector at the first
iteration step I(1) is the solution of a stochastic model for two-dimensional cloud
fields.

The solar transmission vector deserves a word of explanation.



3 Fast Stochastic Radiative Transfer Models for Trace Gas … 251

1. The stochastic model (3.47) is formulated in terms of the diffuse radiance
and relies on the assumption that the solar transmission vector I� =
[ e−τ�

ext , f ′(e−τ�
ext)′ ] is known. More precisely, we suppose that we have a con-

structive stochastic cloud model for computing I� by a numerical averaging
method.

2. The direct solar beamassociated to the stochastic radiative transfer equation (3.47)
is given by F�δ(μ + μ�)δ(ϕ − ϕ�)I�q (z) , where the solar transmission vector
I�q solves a boundary-value problem for a semi-infinite medium consisting in (I)
the stochastic transfer equation

μ�
dI�q

dz
(z) = −Σ�q (z) I�q (z) , (3.48)

with

Σ�q =
⎡

⎣
σ0
ext + σ1d

ext f σ1d
ext

σ1d
ext f

′2 σ0
ext + σ1d

ext

(
1 − f

) +
√
1 − μ2� |cosϕ�| q

λc

⎤

⎦ ,

and (II) the boundary condition at the top of the atmosphere I�q(zt) = [ 1, 0 ]T .
Note that for μ� = 0, we have Σ�q = Σq . For a stochastic model formulated in
terms of the total radiance, the diffuse radiance will solve Eq. (3.47) with I�q in
place of I�. Obviously, if q is not optimal, then the errors in I�q will affect the
accuracy of computing I.

Nevertheless, the q-dependent solution of the stochastic transfer Eq. (3.48) can be
used to define an optimal value of the correction factor q0 as

q0 = argmin
q

∥∥[I�
]
1 − [

I�q
]
1

∥∥
2z

, (3.49)

where ‖·‖2z is the L2-norm on the altitude interval of analysis, and the notation [I�]1
refers to the first component of I�. It is clear that q0 is a correction of the closure
assumption (3.32) for the direct solar radiance (in the absence of scattering) and not
for the diffuse radiance (in the presence of scattering). Thus, q0 is a remedy of the
closure assumption (3.32) for non-Markovian cloud statistics and not for scattering
media. If this value of the correction factor will guarantee the optimality of the
radiance vector will be checked by a numerical analysis.

For inhomogeneous cloud statistics, and in particular for vertical variations of
the statistical characteristics of the cloud field as in (3.36), it is preferable to use
the Levermore–Pomraning equations. Accounting of (3.34), we deduce that these
equation can be expressed in matrix form as in (3.47), where S is given by (3.25),
I′ = 0, and

Σq (μ, z) =
⎡

⎢
⎣

σ0
ext(z) + σ1d

ext(z) + q

λ1 (z,μ)
− q

λ0 (z,μ)

− q

λ1 (z,μ)
σ0
ext(z) + q

λ0 (z,μ)

⎤

⎥
⎦ .
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Thus, the stochastic equation (3.47) in its general form describes both homogeneous
and inhomogeneous cloud statistics, and from a computationally point of view, the
design of an efficient solution method for such kind of transfer equations is needed.

3.5 Numerical Evaluation of the Stochastic Radiative
Transfer Model

3.5.1 Discrete Ordinate Solution

Here the stochastic equation (3.47) is solved in the framework of the discrete ordinate
methodwithmatrix exponential (Doicu andTrautmann 2009a, b).Assumingϕ� = 0,
we express the radiance vector and the pseudo-phase matrix as Fourier cosine series
in the azimuthal angle ϕ,

I (z,Ω) =
∑

m≥0

Im (z,μ) cosmϕ

and
S
(
z,Ω,Ω ′) =

∑

m≥0

(2 − δm0)Sm
(
z,μ,μ′) cos

[
m
(
ϕ − ϕ′)] ,

respectively. The matrix Sm is given by

Sm
(
z,μ,μ′) =

∑

n≥m

Πn (z) Pm
n (μ) Pm

n

(
μ′) ,

where

Πn =
[

σ0
sctχ

0
n + σ1d

sct f χ
1
n σ1d

sctχ
1
n

σ1d
sct f

′2χ1
n σ0

sctχ
0
n + σ1d

sct

(
1 − f

)
χ1
n

]
,

while χ0
n and χ1

n are the expansion coefficients of the Rayleigh and the Mie phase
functions in terms of the normalized Legendre polynomials, respectively.

The stochastic equation for the mth azimuthal component reads as

μ
dIm
dz

(z,μ) = −Σq (μ, z) Im (z,μ) + 1

2

∫ 1

−1
Sm

(
z,μ,μ′) Im (z,μ) dΩ ′

+ F0

4π
(2 − δm0)Sm (z,μ,−μ�) I� (z)

+
√
1 − μ2

q

2λc

[
αmI′m (z,μ) − βmI′m−2 (z,μ) − γmI′m+2 (z,μ)

]
,

(3.50)
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where α1 = 1/2 and αm = 1 for m �= 1, β0 = β1 = 0, β2 = 1 and βm = 1/2 for
m ≥ 3, and γm = 1/2 for m ≥ 0. Let {μk, wk}k=1,Ndo

be the set of Gauss–Legendre
quadrature points and weights in the interval (0, 1), where Ndo is the number of
discrete ordinates per hemisphere. In terms of the 4Ndo-dimensional radiance vector
im (z) = [ i1m (z)T , i2m (z)T ]T , with

iim (z) =
[[
iim (z)

]T
1 , . . . ,

[
iim (z)

]T
Ndo

]T
, i = 1, 2, (3.51)

[i1m (z)]k = Im(z,μk) and [i2m (z)]k = Im(z,−μk) for all k = 1, . . . , Ndo, the stochas-
tic equation (3.50) can be written in the discrete ordinate space as

dim
dz

(z) = Am (z) im (z) + bm (z) + �bm (z) . (3.52)

The 4Ndo × 4Ndo matrix Am possesses the representation

Am (z) =
[
A11

m (z) A12
m (z)

A21
m (z) A22

m (z)

]

,

where the 2×2matrix components of the 2Ndo×2Ndo blockmatricesAi j
m , i, j = 1, 2,

are given by

[
A11

m (z)
]
kl = 1

2μk

[
wlSm (z,μk,μl) − 2Σq (μk, z) δkl

]
,

[
A12

m (z)
]
kl = 1

2μk
wlSm (z,μk,−μl) ,

[
A21

m (z)
]
kl = − 1

2μk
wlSm (z,−μk,μl) , (3.53)

[
A22

m (z)
]
kl = − 1

2μk

[
wlSm (z,−μk,−μl) − 2Σq (−μk, z) δkl

]

for all k, l = 1, . . . , Ndo. The 4Ndo-dimensional source vector bm reads as

bm (z) =
[
b1m (z)

b2m (z)

]

,

where as in (3.51), the two-dimensional vector components of the 2Ndo-dimensional
block vectors bim , i = 1, 2, are given by

[
b1m (z)

]
k

= 1

μk

F�
4π

(2 − δm0)Sm (z,μk,−μ�) I� (z) ,

[
b2m (z)

]
k = − 1

μk

F�
4π

(2 − δm0)Sm (z,−μk,−μ�) I� (z) , (3.54)
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for all k = 1, . . . , Ndo. Finally, the 4Ndo-dimensional correction vector �bm is
expressed as

�bm (z) =
[

�b1m (z)

�b2m (z)

]

,

where

[�b1m (z)
]
k = 1

μk

√
1 − μ2

k

q

2λc

[
αm i′1m (z) − βm i′1m−2 (z) − γm i′1m+2 (z)

]
,

[�b2m (z)
]
k = − 1

μk

√
1 − μ2

k

q

2λc

[
αm i′2m (z) − βm i′2m−2 (z) − γm i′2m+2 (z)

]
, (3.55)

and i′m (z) = [ i′1m (z)T , i′2m (z)T ]T , with [i′1m (z)]k = I′m(z,μk) and [i′2m (z)]k =
I′m(z,−μk) for all k = 1, . . . , Ndo.

In the discrete ordinate space, the surface boundary condition reads as

[
I2Ndo ,Rm

]
im (zs) = rm (zs)

where In is the n × n identity matrix, [Rm]kl = −2AwlμlI2δm0, k, l = 1, . . . , Ndo,
is the reflection matrix, and [rm]k = (A/π) F� |μ�| I� (zs) δm0, k = 1, . . . , Ndo, is
the reflection vector.

The atmosphere is discretized in homogeneous layers, and on each layer the
discrete equation (3.52) is solved by using the matrix exponential formalism. The
solution of the vector radiative transfer equation in the framework of the discrete
ordinatemethodwithmatrix exponential has been described inDoicu and Trautmann
(2009b). For the present application, the solution method is similar and has the
following peculiarities:

1. The bulk geometrical statistics f , f ′2 andλi , i = 0, 1, are calculated togetherwith

the bulk statistics of the solar transmission e−τ�
ext and f ′(e−τ�

ext)′ by a numerical
averaging method involving ensemble and spatial averagings.

2. The discrete equation (3.52) is solved by an iterative method. The algorithm of
the iterative method involves the following steps: (I) Set �b(0)

m = 0. (II) For
n = 1, 2, . . ., compute the radiance vector i(n)

m for a correction vector �b(n−1)
m

depending on i′(n−1)
m , i′(n−1)

m−2 and i′(n−1)
m+2 . (III) Stop the iteration if i(n)

m converges.
3. The symmetry of the associated Legendre functions

Pm
n (−μk) = (−1)n−m Pm

n (μk) ,

yields Sm(z,−μk,−μl) = Sm(z,μk,μl) and Sm(z,−μk,μl) = Sm(z,μk,−μl).
This result together with Σq(−μk, z) = Σq(μk, z) givesA22

m (z) = −A11
m (z) and

A21
m (z) = −A12

m (z), and the matrix eigenvalue problem is solved by exploiting
the symmetric structure of the matrix A.

4. The handling of complex eigenvalues is based on fundamental results of the theory
of matrix-exponential functions as in Doicu and Trautmann (2009b).
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5. Themean radiance in an arbitrary viewing direction is computed by integrating the
zeroth-order stochastic equation (3.7) in the post-processing step of the algorithm.
To simplify the computational process, the value of f ′ I ′ in the viewing direction
is obtained from the discrete-ordinate values of f ′ I ′ by cubic spline interpolation.

6. For highly anisotropic phase functions, the delta-M method (Wiscombe 1977) or
the delta-fit method (Hu et al. 2000) can be applied.

3.5.2 Accuracy of the Stochastic Radiative Transfer Model

To analyze the accuracy of the stochastic model, a base line clear-sky planetary
boundary-layer atmosphere with ozone trace gas absorption and Rayleigh scattering
in the UV range 325–335 nm has been considered by Doicu et al. (2014b). The
numerical analysis has been restricted to one-dimensional broken clouds with top
height h = 2 km. The cloud was a liquid water-droplet “polluted-cumulus” type,
with a modified Gamma size distribution

p (a) ∝ aα exp

[
−α

γ

(
a

amod

)γ]
, (3.56)

and a droplet size range between 0.02 and 50.0µm. The cloud droplet scattering has
been computed with Mie theory at a wavelength of 330nm. The parameters of the
size distribution were amod = 3.53µm, α = 8 and γ = 2.15, while the total numbers
of expansion coefficients of the phase functions were 341. The deterministic cloud
extinction field has been given by (3.37), with σc = 8 km−1, h1 = 0.5 km and
h2 = 1.5 km; thus, the cloud has been placed between 0.5 and 1.5 km, and had an
optical thickness of 8 (in the vertical direction). The simulations were performed
for unit solar flux and a surface albedo of 0.2. We consider the one-dimensional
cellular statistical model of broken clouds developed by Alexandrov et al. (2010).
In this model, the atmosphere is represented by a finite lattice with N cells, that are
occupied by a cloud with probability p. The continuous extension of this discrete-
cell model assumes that each cell is divided in M subcells of size �x , and allows for
continuous distributions of the chord lengths and the cloud fraction (Plank 1969).
The theoretical cloud fraction is independent of the sample size, and is given by

f th = ln (1 − p)

ln p + ln (1 − p)
. (3.57)

The cloud model parameters were N = 4, M = 64 (256 subcells in total) and
�x = 0.025km. The length of the sample was l = Nx�x = 6.4km, where Nx =
NM is the total number of subcells. The cloud model which is parametrized by the
occupation probability p, is visualized in Fig. 3.6 for p = 0.4 and p = 0.8. Note, that
this model provides the exponential cloud chord distribution, what is in agreement
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Fig. 3.6 Indicator function fi = f (i�x), i = 1, . . . , 256, for the occupation probabilities p = 0.4
and p = 0.8 for 20 sample realizations: white zones correspond to the clouds while black zones
correspond to the clear sky

Fig. 3.7 Illustration of
SHDOM model

with several studies (e.g., see Zuev and Titov 1996 and Berg and Kassianov 2008
and references therein for more information).

To estimate the accuracy of the stochastic model, the Spherical Harmonics Dis-
crete Ordinate Method (SHDOM) developed by Evans (1998) has been chosen as a
reference numerical averaging approach (see Fig. 3.7). SHDOM has been run for a
two-dimensional geometry and an adaptive grid with a splitting accuracy of 10−4.
The spatial resolutions of the base grid were �x = �z = 0.025 km, the number
of discrete ordinates was (Nμ = 32) × (Nϕ = 64), and the solution accuracy was
10−4. The simulations were performed for periodic boundary conditions. The mean
radiance at the top of the atmosphere I (h, θ) has been computed by ensemble aver-
aging over 200 realizations of the random function f , and then, by spatial averaging
over the x-axis. The scattering zenith angle varied over the range −70◦ < θ < 70◦,
where the positive values of θ correspond to the azimuthal angle ϕ = 0◦, while the
negative values correspond to the azimuthal angle ϕ = 180◦. The angular resolution
of the scattering zenith angle was �θ = 1◦. In the numerical analysis the following
models have been considered:



3 Fast Stochastic Radiative Transfer Models for Trace Gas … 257

0.6 0.8
p

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
E

rr
or

 in
 I

SRTM
EMM

0.2 0.4 0.2 0.4 0.6 0.8
p

0.2 0.4 0.6 0.8
p

(a) (b) (c)

Fig. 3.8 The relative error in the mean radiances at the top of the atmosphere, averaged over the
scattering zenith angle θ, as a function of the occupation probability p. The results correspond the
following values of the solar zenith angle: a θ� = 0◦, b θ� = 30◦, and c θ� = 60◦

1. a SRTM using the first iteration solution, i.e., a stochastic model based on the
radiative transfer Eq. (3.47) with I′ = 0, and

2. an external mixing model (EMM), in which the mean radiance at the top of the
atmosphere is computed as I (h, θ) = f I1 (h, θ) + (1 − f )I0 (h, θ), where I1 is
the top radiance of a homogeneous cloudy sky, and I0 is the top radiance of the
clear sky.

Obviously, SRTM accounts for horizontal inhomogeneities in cloud optical proper-
ties and illumination of cloud sides–neither of these effects are accounted for with
EMM.The relative errors in themean radiances at the top of the atmosphere, averaged
over the scattering zenith angle,

εSTM/EMM = ||I STM/EMM (h, θ) − I SHDOM (h, θ) ||2θ/||I SHDOM (h, θ) ||2θ,

are illustrated in Fig. 3.8. The results evidence the superiority of SRTM over EMM;
the relative errors of SRTM are smaller than 6.5%, while the relative errors of EMM
can reach 15%. Thus, the accuracy of the stochastic model is at least twice that of
an external mixing model. More detailed numerical analysis can be found in Doicu
et al. (2014b). However, the computational efficiency of the SRTM is lower, because
a two-dimensional problem instead of two independent one-dimensional problems
has to be solved. Further we consider several robust models derived from the SRTM.
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3.6 Internal Mixing Models

3.6.1 Overview of Internal Mixing Models

The operational atmospheric retrieval algorithms are usually based on the indepen-
dent column approximation, also known as the independent pixel approximation. To
summarize the mathematical fundamentals of the models based on the independent
column approximation, we consider a cloudy domain D and express the domain-
average radiance at the top of the atmosphere 〈I 〉 as

〈I 〉 = 1

A

∫

S
I (x, y) dS, (3.58)

where I is the radiance computed by a three-dimensional radiative transfer model
and A is the area of the surface S bounding the domain D at the top of the atmosphere.
Considering a discretization of the domain D in N discrete columns D = ∪N

k=1Dk ,
yields 〈I 〉 = ∑N

k=1 νk 〈Ik〉, with νk = Ak/A and 〈Ik〉 = (1/Ak)
∫
Sk
I (x, y)dS.

1. In the independent column approximation (Cahalan et al. 1994a, b), the hor-
izontal interaction between the columns is neglected, and the radiances 〈Ik〉
are approximated by the plane-parallel radiances Ik , that is, 〈Ik〉 ≈ Ik , giving
〈I 〉 ≈ (1/N )

∑N
k=1 Ik , for a uniform column division with ν1k = 1/N for all k.

2. In the independent column approximation with modified source, developed by
Gabriel and Evans (1996), the direct solar beam is computed in a full three-
dimensional atmosphere, and thenused in an independent columndiffuse radiative
transfer model.

3. Other models based on the independent column approximation rely on the rep-
resentation 〈I 〉 ≈ (1/N )

∑N
k=1 I(τk), where τk is the optical thickness of the

column Dk . Assuming that τk are the realizations of a random variable τ , the
sample mean representation of 〈I 〉 translates into the integral representation

〈I 〉 ≈
∫ ∞

0
I(τ )p(τ )dτ , (3.59)

where p(τ ) is a probability density function describing the variation of the optical
thickness in D. In the gamma-weighted independent column approximation (e.g.,
Barker 1996; Barker et al. 1996; Kokhanovsky 2003), τ is assumed to follow a
Gamma distribution. Otherwise, p(τ ) can be approximated by a beta distribution
or a lognormal distribution (Barker and Davis 2005).

4. Proceeding with (3.59), the choice p(τ ) = δ(τ − τ ), with τ being the mean opti-
cal thickness in D, gives 〈I 〉 ≈ I(τ ). Several models, based on simple rescaling
of the mean optical thickness τ , have attempted to improve this approximation.
In the effective thickness approximation (Cahalan et al. 1994a), the representa-
tion 〈I 〉 ≈ I(ητ ) has been used for marine stratocumulus layers, while in the
co-packing exponent model (Gabriel et al. 1990; Davis et al. 1990), the choice
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〈I 〉 ≈ I(τα) has been proposed for more strongly variable media. Specifically,
Cahalan et al. (1994a) used self-affine fractal functions to describe the internal
variability of geometrically plane-parallel clouds, while Gabriel et al. (1990) and
Davis et al. (1990) used self-similar fractal sets to describe the extreme geomet-
rical variability of their media. Moreover, in the equivalent homogeneous cloud
approximation (Szczap et al. 2000a, b), the effective thickness approximation has
been generalized to account for averaging-scale and solar zenith-angle effects.
Computationally speaking, these methods capture in a statistical sense the unre-
solved spatial variability effects by performing a single one-dimensional radiative
transfer computation with effective optical parameters. Similar approaches, also
known as “homogenization” approaches, are the closure scheme for the fluctua-
tions of the radiance field proposed by Stephens (1988), and the renormalization
theory elaborated by Cairns et al. (2000).

5. For broken clouds described by binary statistical mixture, the probability density
function in (3.59) is chosen as p(τ ) = f δ(τ − τ1) + (1− f )δ(τ − τ0), where τ1
and τ0 are the optical thicknesses in the cloud and in the clear sky, respectively.
In this case, we are led to the external mixing model

〈I 〉 ≈ f I(τ1) + (1 − f )I(τ0), (3.60)

which represents the major simplification of the independent column approxi-
mation. For an exhaustive analysis of approximate models in atmospheric three-
dimensional radiative transfer we refer to Barker and Davis (2005); Davis and
Marshak (2010).

Another class of fast homogenization approaches, the so-called internal mixingmod-
els have been analyzed in Doicu et al. (2014a) by considering zeroth-order stochastic
models and by imposing appropriate closure relations on the first-order covariance
terms.

3.6.2 Zeroth-Order Stochastic Radiative Transfer Models

The first order stochastic model based on Eq. (3.18) can be particularized to the
zeroth-order stochastic models for the total radiance It and the diffuse radiance I .
They read as

μ
dIt
dz

= − (
σ0
ext + f σ1d

ext

)
It − σ1d

ext f
′ I ′
t

+ 1

4π

∫

4π

[(
σ0
sctP0 + f σ1d

sctP1
)
It + σ1d

sctP1 f
′ I ′
t

]
dΩ ′ (3.61)

It− = F0δ (Ω − Ω�) , z = zt,

It+ = A

π

∫

2π
|μ| It−dΩ, z = zs,



260 D. S. Efremenko et al.

and

μ
dI

dz
= − (

σ0
ext + f σ1d

ext

)
I − σ1d

ext f
′ I ′

+ 1

4π

∫

4π

[(
σ0
sctP0 + f σ1d

sctP1
)
I + σ1d

sctP1 f
′ I ′] dΩ ′ + J� (T�) (3.62)

I− = 0, z = zt,

I+ = A

π
F�μ�T� + A

π

∫

2π
|μ| I−dΩ, z = zs,

respectively. Here, J� is the solar source term expressed in terms of the radiance
field I and the solar transmission T� = exp(−τ�

ext) by

J� (r,Ω; T�) = F�
4π

[
σ0
sct (r) P0 (Ω,Ω�) + f (r) σ1d

sct (r) P1 (Ω,Ω�)
]
T�(r).

(3.63)
The radiative transfer Eqs. (3.61) and (3.62) can be solved if some closure relations
for the covariance terms f ′ I ′

t and f ′ I ′, respectively, are imposed. We have two
options:

1. The internal mixing model for the total radiance (IMMT) corresponds to the
assumption

f ′ I ′
t = −(1 − η) f It (3.64)

in (3.61). The coefficient −(1 − η) is given by the product of the correlation
coefficient r f I between f and It, and the coefficients of variation c f and cI ,

where, for example, c f =
√

f ′2/ f . Therefore, the coefficient −(1 − η) can be
regarded as a measure of the correlation between f and It. In this case, the
resulting mean diffuse radiance I solves a radiative transfer equation with the
extinction coefficient σ0

ext + η f σ1d
ext, the scattering kernel σ

0
sctP0 + η f σ1d

sctP1,
and the solar source term

JIT
� = F�

4π
(σ0

sctP0 + η f σ1d
sctP1)e

−τ�
ext , τ�

ext = 1

μ�

∫ zt

z
(σ0

ext + η f σ1d
ext)dz

′.

(3.65)
2. The internal mixing model for the diffuse radiance (IMMD) corresponds to the

assumption
f ′ I ′ = − (1 − η) f I , (3.66)

in (3.62). Here, the mean diffuse radiance solves a radiative transfer equation
with the extinction coefficient σ0

ext + η f σ1d
ext, the scattering kernel σ0

sctP0 +
η f σ1d

sctP1, and the solar source term
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Fig. 3.9 Illustration of
internal mixing models

JID
� = J� = F�

4π
(σ0

sctP0 + f σ1d
sctP1)T� + F�

4π
σ1d
sctP1 f

′T ′�, (3.67)

which is computed in a full three-dimensional atmosphere.

From (3.64) and (3.66), and for 0 ≤ η ≤ 1, it is apparent that the internal mixing
model assumes a negative and constant correlation. The assumption that the corre-
lation does not depend on the altitude z and the direction Ω is a strong assumption,
which can not be theoretically justified, although empirically it seems to be accept-
able. Bothmixingmodels require the solution of a one-dimensional radiative transfer
equation with a mean extinction coefficient expressed as a linear combination of the
extinction coefficients corresponding to the clear sky and to the cloud, i.e.,

σext = (1 − f )σ0
ext + f (σ0

ext + ησ1d
ext) = σ0

ext + η f σ1d
ext, (3.68)

as shown in Fig. 3.9. The difference between the two models consists in the way in
which the solar source term is treated.

In the framework of a two-stream model, Stephens (1988) assumed that the cor-
relation between f and It depends on the viewing zenith angle, that is,

f ′ I ′
t = (1 − η)μ f It. (3.69)

According to (3.69), the correlation is positive for upwelling radiation and negative
for downwelling radiation. For a multi-stream model based on the discrete ordinate
solution, this assumption leads to an increase of the computational time because the
symmetry of the layer matrix is lost, and the order of the corresponding algebraic
eigenvalue problem cannot be reduced by a factor of 2. Another angular-dependent
correlation, which guarantees the symmetry of the layer matrix and which will be
analyzed in the following is
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f ′ I ′
t = −(1 − η) |μ| f It. (3.70)

The main problem which needs to be solved is to estimate the closure coefficient
η. In general, if the radiative transfer problem depends on a set of deterministic model
parameters encapsulated in a vector b, then the optimal value of η can be calculated
as

ηopt( f ,b) = argmin
η

∥
∥I (η f , zt,Ω,b) − I ref( f , zt,Ω,b)

∥
∥ , (3.71)

where I ref is themean radiance at the top of the atmosphere computed by a reference
model, e.g., the first order stochastic model described in Sect. 3.4, I is the radiance
at the top of the atmosphere computed by an internal mixing model, and ‖·‖ is the
L2-norm on the interval of variation of the viewing angle in the upper hemisphere.
This approach is similar to the approach used in the equivalent homogeneous cloud
approximation (Szczap et al. 2000a, b). The vector b may comprise the horizontal
averaging scale, the solar zenith angle, the cloud parameters (optical and geometrical
thicknesses, cloud-top height), the optical thickness of air molecules, the surface
albedo, etc. To reduce the computational effort we may compute ηopt( f ,b0) for a
reference state b0, and then use the internal mixing models with η = ηopt( f ,b0)
for b �= b0. In view of (3.71), the internal mixing models can be regarded as a
parametrization of the chosen reference model.

3.6.3 Accuracy of Internal Mixing Models

To analyze the accuracy of internal mixing models, a clear-sky planetary boundary-
layer atmosphere with ozone trace gas absorption and Rayleigh scattering at a wave-
length of 330nm has been considered. The height of the atmospheric boundary layer
was zt = 10 km, while the ozone profile has been taken from themodel ofMcLinden
et al. (2002). The deterministic cloud extinction field was given by (3.37), the cloud
geometrical thickness was �h = h2 −h1 = 1 km, the cloud single scattering albedo
was ω1 = 0.9, and a Henyey–Greenstein phase function with the asymmetry param-
eter g1 = 0.85 has been used. The simulations were performed for a unit solar flux,
and the cellular stochastic model of broken clouds from Alexandrov et al. (2010) has
been used.

In Figs. 3.10 and 3.11 the relative error,

ε (b) = ||I (zt, θ,b) − I SHDOM(zt, θ,b)||/||I SHDOM(zt, θ,b)||, (3.72)

for different state vectors b is shown. Here, the state vector b = [
θ�, h2, τ1, A

]

encapsulates the solar zenith angle θ�, the cloud-top height h2, the cloud optical
thickness τ1 = σc�h, and the surface albedo A. The following general conclusions
can be drawn:
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1. The first-order stochastic model is in general superior to all mixing models. The
reason is that for broken clouds represented by binary statistical mixtures, the
closure relation f ′2 I ′ = (1 − 2 f ) f ′ I ′ holds.

2. The internal mixing models are superior to the external mixing model, because
they are parameterizations of an accurate reference model (cf. (3.71)).

In particular, we have εSTM ≤ 5%, εIMMD ≤ 9%, εIMMT ≤ 10%, and εEMM ≤ 21%.
Regarding the computational time the following remarks are obvious:

1. The externalmixingmodel is slower than the internalmixingmodels, because they
require the solution of two independent plane-parallel problems. However, the
performance of the external mixing model can be enhanced by using techniques
described in Efremenko et al. (2014). Then the computational times of bothmodes
are almost the same.

2. The mixing models for the diffuse radiance are slower than the mixing mod-
els for the total radiance, because they require an additional computational step
consisting in the calculation of the solar transmission terms T� and f ′T ′� in a
three-dimensional atmosphere by ensemble and spatial averaging.

Thus, the most accurate mixing model is internal mixing model for the diffuse radi-
ance, and the fastest mixingmodel is the internal mixingmodel for the total radiance.
In this regard, it seems promising to obtain an efficient stochastic radiative transfer
model based on the method proposed by Budak et al. (2015) in which the small-
angle part (Budak et al. 2010) is computed analytically while the rest (regular) part
of the radiance is computed by using the two-stream approximation. As shown in
Budak and Korkin (2008), this approach can be generalized for 3D computations.
In the corresponding stochastic radiative transfer model, the small-angle part would
be computed for each realization of the cloud field in a full three-dimensional atmo-
sphere.

In the rest part of the chapter we analyze these models in the context of ozone
retrieval problems.

3.7 Retrieval of Cloud Parameters and Ozone

3.7.1 Methodology

The retrieval of cloud parameters uses the radiance model

ln Rmeas (λ) ≈ ln Rsim (λ, x) (3.73)

where λ is the wavelength, and R is the mean radiance spectrum I normalized with
respect to the solar spectrum I0, i.e.,

R (λ) = I (λ)

I0 (λ)
. (3.74)
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For the sake of simplicity, the spectral corrections, also referenced as pseudo-
absorbers, have been omitted in (3.73). The spectral corrections are auxiliary func-
tions containing spectral featureswhich are not attributed to the retrieved atmospheric
species. The retrieval of trace gas columns uses the differential radiance model

ln R̄meas (λ) ≈ ln R̄sim (λ, x) , (3.75)

with
ln R̄sim (λ, x) = ln Rsim (λ, x) − Psim(λ,psim (x)) (3.76)

and
ln R̄meas (λ) = ln Rmeas (λ) − Pmeas(λ,pmeas). (3.77)

Here, Psim and Pmeas are polynomials of low order with coefficients psim and pmeas,
respectively. For a state vector x, the coefficients of the smoothing polynomials Psim
and Pmeas are computed as

psim (x) = argmin
p

‖log Rsim (·, x) − Psim(·,p)‖2 ,

and
pmeas = argmin

p
‖log Rmeas (·) − Pmeas(·,p)‖2 , (3.78)

respectively. In general, a smoothing polynomial is assumed to account for the low-
order frequency structure due to scattering mechanisms (clouds, aerosols, and sur-
face reflectance), so that ln R̄ will mainly reflect the absorption process due to gas
molecules (Platt and Stutz 2008). Note, that the polynomial subtraction is somewhat
similar to the background removal procedure (Seah et al. 2000; Lubenchenko et al.
2018) used in electron spectroscopy. This procedure could be avoided if we were
able to take into account all factors which have impact on the spectrum (Afanas’ev
et al. 2015, 2016, 2017).

As Eqs. (3.73) and (3.75) are ill-posed, some sort of regularization is required to
obtain a solution with physical meaning. In the framework of Tikhonov regulariza-
tion, the regularized solution x� is a minimizer of the objective function

F (x) = 1

2

[∥∥yδ − F (x)
∥∥2 + α

∥∥L(x − xa)
∥∥2], (3.79)

whereyδ = [ln Rmeas(λi )]i=1,m is the noisy data vector,F (x) = [ln Rsim(λi , x)]i=1,n

is the forward model, L is the regularization matrix, and α is the regularization
parameter. The minimization of the Tikhonov function can be formulated as the least
squares problem

min
x

F (x) = 1

2

∥∥f (x)
∥∥2, (3.80)
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where the augmented vector f is given by

f (x) =
[

F (x) − yδ√
αL(x − xa)

]
. (3.81)

Problem (3.80) can be solved by means of Newton-type methods. Newton-type
methods (NTM) are iterative methods, which employ the quadratic model

Mk(p) = F(xk) + g(xk)Tp + 1

2
pTG(xk)p (3.82)

as a reasonable approximation to the objective function in the neighborhood of the
current iterate xk (Doicu et al. 2010). In (3.82), k is the iteration step, while g and G
are the gradient and the Hessian of F , that is,

g (x) = Kf (x)T f (x) (3.83)

and
G (x) = Kf (x)T Kf (x) + Q (x) , (3.84)

respectively, where

Kf (x) =
[
K (x)√

αL

]
(3.85)

is the Jacobian matrix of f (x), Q (x) = ∑m
i=1[f (x)]iGi (x) is the second-order

derivative term, and Gi is the Hessian of [f]i .
The objective function (3.79) can be minimized bymeans of step-length methods.

A step-length method requires the computation of a vector pk called the search
direction, and the calculation of a positive scalar τk , the step length, for which it holds
that F(xk+1) < F(xk), where xk+1 = xk + τkpk . In the Gauss–Newton method, it
is assumed that the first-order term KT

fKf in the expression of the Hessian (3.84)
dominates the second-order termQ. For small residual problems, the search direction
solves the equation

Kf(xk)TKf(xk)p = −Kf(xk)T f(xk). (3.86)

3.7.2 Cloud Parameters Retrieval

In this section we analyze the accuracy of the independent pixel approximation in
retrieving cloud optical thickness and design the cloud retrieval algorithm. The for-
ward model is the radiance model (3.73). If not stated otherwise, the parameters of
the simulations are: θ� = 60◦, θ = 30◦, A = 0.2, and f = 0.5. The measurement
spectra, referred to as synthetic spectra, are the forward-model radiances correspond-
ing to the true state and being perturbed by a measurement noise. The measurement
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spectral region A contains information about the cloud top height, while the spectral region B
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noise is Gaussian, and the signal-to-noise ratio is SN R = 1000. The regularization
parameter is of the form α = σ p, where p is a free parameter to be optimized,

σ =
∥∥I (λ)

∥∥
√
mSN R

≈ 2.4 · 10−6

is the noise standard deviation, and m = 62 is the number of spectral points.
In a first step we take the radiance model for stochastic clouds as a reference and

estimate the relative errors in the radiances computed with the independent pixel
approximation. The results are illustrated in Fig. 3.12. The plots in the left panel
show that the relative error in the radiance (averaged over the spectral interval)
increases with the cloud optical thickness τc and the cloud top height H , and attains
a maximum level of about 0.05. The plots in the right panel show that the deviations
between the radiance curves aremore pronounced in the spectral regionB (containing
information about τc) than in the spectral region A (containing information about
H ). These errors in the data space are forward model errors due to stochastic clouds
(simply called stochastic clouds errors here), and in view of Fig. 3.12, mainly affects
the retrieval of cloud optical thickness.
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As a next step we analyze the accuracy of the independent pixel approximation in
retrieving the cloud optical thickness. The synthetic spectra are computed with the
stochastic cloud model, and the retrieval is performed by using the independent pixel
approximation and the Gauss–Newtonmethod. In Fig. 3.13we plot the relative errors
in the retrieved cloud optical thickness. The cloud top height is kept constant and is
chosen as H = 4 km. The true cloud optical thickness are τc = 4.0 and τc = 8.0,
and for each τc, two initial guesses τ0 (smaller and larger than τc) are considered.
For τc = 4, the error curves have a global minimum, and the best retrieval results
are characterized by a relative error of about 0.06. For τc = 8 and τc0 < τc, it is
possible to attain an error of about 2 · 10−3 provided that the optimal regularization
parameter αopt is appropriately chosen. For τc0 > τc, the relative errors decrease
but not beyond 0.2. Also note the result αopt(τc = 4.0) < αopt(τc = 8.0), which
is agreement with the relative errors plotted in Fig. 3.12. Thus, the retrieval based on
the independent pixel approximation is considerably influenced by stochastic clouds
errors: the retrieval errors are either too large, or the retrieval is influenced by the
choice of the initial guess. Because of this inaccuracy, the cloud retrieval algorithm
will rely on the stochastic cloud model.

The cloud retrieval algorithm uses the lookup table for the mean radiances of
stochastic clouds. The retrieved parameters are the cloud optical thickness and the
cloud-top height. The cloud fraction is assumed to be retrieved by an independent
algorithm such as OCRA (Loyola et al. 2007, and is considered as an input parameter
of the code.
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First, we perform the inversion by using the Gauss–Newton method, and generate
synthetic spectra with the stochastic cloud model. The retrieval results of the cloud
optical thickness and cloud-top height are shown in Fig. 3.14. The true cloud optical
thickness τc ranges between 4 and 20 in steps of 2, and the true cloud-top height
H ranges between 2 and 10km in steps of 2km. Because the forward model errors
consist only of interpolation errors (associated to the lookup table for the stochastic
clouds radiances) and the noise errors are small, a low value of the regularization
parameter is chosen, namelyα = 10−6(p ≈ 0.9). For τc ≥ 6 and H ≥ 6, the relative
errors in τc are smaller than of about 0.03, while the relative errors in H are below
0.02. The solution domain

S0 = {(τc, H)| 2 ≤ τc ≤ 6, 2 ≤ H ≤ 6 (km)}

is characterized by large retrieval errors. To understand the source of these errors
we plot in Fig. 3.15 the Tikhonov function (3.79) in the cases (τc = 6, H = 6 km)
and (τc = 4, H = 4 km). The results show that the objective function has only one
minimum in the first case and several minima in the second case. The conclusion
which can be reached is that the Gauss–Newton method, as a local optimization
algorithm, is not able to find the global minimum in the solution domain S0. In this
case global optimization algorithms rather than the Gauss–Newton method should
be used. Analysis of global optimization methods for cloud parameter retrieval is
given in Efremenko et al. (2016).
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3.7.3 Ozone Retrievals

In this section we consider the retrieval of atmospheric ozone from UV measure-
ments. Before proceeding we estimate the forward model errors due to stochastic
clouds for the radiance model (3.73) and the differential radiance model (3.75). The
results in Fig. 3.16 show that the deviations between the radiance curves correspond-
ing to the differential radiance model are much smaller than those corresponding
to the radiance model; they are localized in the peaks of the curves as indicated by
the ellipses in Fig. 3.16. In this respect, the goal of our simulations is to analyze the
capability of the differential radiance model equipped with the independent pixel
approximation to eliminate the stochastic cloud errors. Thus, the retrieval algorithm
is based on the differential radiancemodel with the independent pixel approximation,
whereas the inversion algorithm is the Gauss–Newton method. The total and partial
columns are retrieved in the spectral interval between 315 and 335nm. It is well
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Fig. 3.16 Radiances computed with the stochastic radiative transfer model (SRTM) and the inde-
pendent pixel approximation (IPA) in the framework of a radiance model (left) and a differential
radiance model (right)

known that for a nadir viewing geometry, the errors in the retrieved total column are
small, but the errors in the retrieved partial columns are large (the problem is severely
ill-posed).

The relative errors in ozone total column and partial columns (averaged over the
altitude) are shown in Fig. 3.17. The synthetic spectra are computed with: (1) the
independent pixel approximation and τc = 6.0, (2) the stochastic cloud model and
τc = 6.0, and (3) the cloud stochastic model and τc = 4.0. The cloud-top height is
assumed to be known, and is taken as H = 4 km. The retrievals are performed with
τc = 6.0. In this regard, case (1) considers only the noise error, case (2) includes
both the noise error and the forward model error due to stochastic clouds, while case
(3) includes in addition to case (2) uncertainties in the cloud optical thickness. The
last scenario corresponds to an incorrect retrieval of the cloud optical thickness, for
example, by a radiance model with the independent pixel approximation. The results
can be summarized as follows:

1. For the total column retrieval, the smallest relative errors are 0.007 in case (1),
0.010 in case (2), and 0.016 in case (3). The interval of variation of the exponent
p corresponding to the optimal value of the regularization parameter αopt = σ p

is large (0.2 ≤ p ≤ 2.0), and is the same in all cases.



272 D. S. Efremenko et al.

p

0

0.04

0.08

0.12

R
el

at
iv

e 
E

rr
or

 in
 O

3 T
ot

al
 C

ol
um

n

IPA,      τ
c
 = 6

SRTM, τ
c
= 6

SRTM, τ
c
 = 4

1e-02 1e-01 1e+00 1e+01 1e+02 1e-01 1e+00 1e+01 1e+02
p

0

0.1

0.2

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 in
 O

3 P
ro

fi
le

IPA,     τ
c
 = 6

SRTM, τ
c
 = 6

SRTM, τ
c
 = 4
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2. For the partial columns retrieval, the smallest relative errors are 0.033 in case (1),
0.051 in case (2), and 0.060 in case (3). The optimal value of α corresponds to
p = 1.8 in case (1), and to p = 1.2 in cases (2) and (3). Thus, αopt increases
with the error level (αopt(case (1)) < αopt(case (2))), and it must be precisely
calculated.

These results show that the differential radiance model with the independent pixel
approximation can only partially eliminate the stochastic cloud errors in trace gas
retrievals. The retrieval errors in ozone total column remain small, whereas the rela-
tive errors in ozone partial columns are amplified and may become significant. The
retrieval of partial columns by using a linearized forward model for stochastic clouds
may reduce the relative errors from 0.051 to 0.033, while an accurate knowledge of
the cloud optical thickness may reduce the relative errors by 0.01.

Themost important conclusion of our numerical analysis is related to the selection
of the optimal value of the regularization parameter. In the framework of Tikhonov
regularization, the selection of αopt by an a priori parameter choice method relies
on the analysis of the relative errors curves. The question which arises here is which
cloud model should be used for generating the synthetic spectra. For total column
retrievals, the optimal regularization parameter may vary in a large interval, and
does not depend on the choice of the cloud model. For partial columns retrieval,
the situation is different. If the independent pixel approximation is used to generate
the synthetic spectra, the regularization parameter is not optimal and the relative
errors are, for example, of about 0.237 in the case p = 1.8, and 0.139 in the case
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Fig. 3.18 Retrieved profiles corresponding to an optimal (p = 1.2) and a suboptimal (p = 1.6)
value of the regularization parameter. The optimal value is predicted by the stochastic cloud model,
while the suboptimal value is predicted by the independent pixel approximation

p = 1.6 (the vertical line in Fig. 3.17). If the stochastic cloud model is used to
generate the synthetic spectra, the regularization parameter is optimal (p = 1.2) and
the relative errors are of about 0.051. Essentially, the use of the independent pixel
approximation for regularization parameter selection leads to an underestimation
of the regularization parameter and so, to an underregularized profile as shown in
Fig. 3.18.

3.8 Conclusions

In this chapter, we have reviewed the stochastic radiative transfer models based on
the analytical procedure of statistical averaging of the radiative transfer equation. By
representing the radiance and the geometric fields as the sum of their mean values
and their random fluctuations, we derived an nth-order stochastic model for the
solar radiation problem and arbitrary statistics. The stochastic model is expressed in
matrix form, and is equipped with appropriate closure relations for the higher-order
covariance terms. For broken clouds, the nth-order stochastic model reduces to the
first-order stochastic model for a two-dimensional radiance vector, whose entries are
the mean radiance field and the covariance of the radiance and the indicator fields.
Using the Spherical Harmonics Discrete Ordinate Method (SHDOM) (Evans 1998)
as a reference, we found that the stochastic cloudmodel is superior to the independent
pixel approximation; the relative errors in the domain-averaged radiance are below
2% for the stochastic cloud model, and of about 10% for the independent pixel
approximation.
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The internal mixing models have been introduced by considering zeroth-order
stochastic models and by imposing closure relations for the covariance of the fluc-
tuations of the radiance field and the indicator field. The closure relations involve
constant and angular-dependent correlations with a correlation coefficient which
minimizes the discrepancy between the radiance fields computed by an internal mix-
ing model and a reference model. For this reason, the internal mixing models can
be regarded as parameterizations of the reference model. An important aspect of our
analysis is the efficient computation of the correlation coefficient for the internal
mixing models by taking the first-order stochastic model as reference. This approach
is robust and provides the means to compute lookup tables for the correlation coef-
ficient under realistic conditions.

An algorithm for accurate retrieving ozone and clouds parameters has been
designed. Because the independent pixel approximation fails to predict accurate
radiances, the retrieval algorithm uses a stochastic radiative transfer model. The
retrieved parameters are the cloud optical thickness and the cloud-top height. The
retrieval accuracy is of about 1%. The use of a lookup table for stochastic clouds
radiances in conjunction with multi-linear interpolation is robust and does not intro-
duce performance bottlenecks in the retrieval algorithm. For ozone retrievals we have
shown that the stochastic cloud errors can only be partially eliminated by a differen-
tial radiance model based on the independent pixel approximation. The errors in the
retrieved ozone total column are not significant, but the errors in the retrieved ozone
partial columns may become large. The recommendation is to compute the optimal
value of the regularization parameter in the framework of Tikhonov regularization
by means of a stochastic cloud model. The SRTM and retrieval algorithms presented
in this chapter will allow the accurate retrieval of cloud and trace gas properties from
the next generation of Copernicus atmospheric composition Sentinel missions.
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Chapter 4
Neural Networks and Support Vector
Machines and Their Application to Aerosol
and Cloud Remote Sensing: A Review

Antonio Di Noia and Otto P. Hasekamp

4.1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) fifth Assess-
ment Report (Boucher et al. 2013), aerosols and clouds are among the least known
components of the climate system. Satellite remote sensing can be of great help in
improving our knowledge of aerosol and cloud properties at global scale. In the last
decades, several types of satellite instruments have been launched that provide use-
ful information on aerosols and clouds. Multispectral imagers such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) are a standard source of informa-
tion regarding global cloud cover and aerosol optical thickness. Passive multiangle
instruments such as theMulti-angle Imaging Spectroradiometer (MISR) onboard the
NASA satellite Terra, the Polarization and Directionality of the Earth’s Reflectances
(POLDER) onboard the satellites ADEOS and PARASOL, and in the future the
Multi-channelMulti-viewing andMulti-polarization Imager (3MI) onboard the ESA
Sentinel-5 satellite, provide useful information for the determination of the micro-
physical properties of aerosol and cloud particles. Active instruments such as the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provide information
on the vertical variability of aerosols and clouds.

The retrieval of aerosol and cloud microphysical properties from satellite mea-
surements is a complex task, that often requires running computationally expensive
forward models. This, in some cases, makes it difficult to process the enormous
amount of data provided by the most recent satellite instruments in order to provide
daily global estimates of aerosol and cloud properties. A well known approach to
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reduce the computational complexity of retrieval algorithms is represented by look-
up tables (LUTs). The use of LUTs allows to bypass the need for on-line radiative
transfer computations by storing the results of such computations for a number of
combinations of the parameters to be retrieved, after which a retrieval is performed
by choosing the set of retrieved parameters corresponding to a stored simulation that
is “closest” to a satellite measurement according to some predefinedmetric. An alter-
native to the LUT-based approach is represented by machine learning algorithms,
such as artificial neural networks and support vector machines. Machine learning
algorithms perform tasks of classification, function approximation and regression,
and therefore can be used in the processing chain of a remote sensing product when-
ever one of these tasks must be performed. The main advantage of machine learning
algorithms is their speed. While they require a preliminary training phase that can be
time-consuming, their application once the training phase is complete is essentially
instantaneous. For this reason, their use can be attractive in situations where a large
amount of data must be processed in a limited amount of time, such as, for example,
the generation of a daily, global remote sensing product. In the context of aerosol and
cloud remote sensing, tasks that can be carried out using machine learning methods
are:

• approximation of forward model calculations,
• detection and classification of clouds and aerosols in satellite imagery,
• retrieval of aerosol and cloud properties through statistical regressions from radio-
metric measurements.

As will be clear later, maching learning algorithms can not only be used as stand-
alone algorithms, alternative to those based on LUTs or on full radiative transfer
computations, but can be also used in combination with these. For example, if a
machine learning method is used to approximate a forward model, this can be then
inverted using one of the traditional iterative retrieval schemes. If, instead, a machine
learning algorithm is used as an inverse method itself, its result can be further refined
by using it as a first guess in an iterative scheme based on radiative transfer calcula-
tions.

The goal of this paper is to describe the theoretical justification behind the use of
machine learning algorithms in the aforementioned tasks and to present a selection
of situations in which these have been applied to cloud and aerosol remote sensing.
This paper is structured as follows. In Sect. 4.2 we present the problem of extracting
information from remote sensing data as a statistical estimation problem. Since, in
the following, we will both discuss classification problems and retrieval problems,
we tried to treat these in a unified way, in order to emphasize that, while a classifi-
cation problem seems completely different from a retrieval problem at a first glance,
the ultimate goal is the same, i.e. to associate to a set of satellite observations a
“decision” about a set of parameters describing the atmospheric state. In Sect. 4.3
we give a theoretical description of artificial neural networks, making a distinction
between supervised and unsupervised neural networks. Furthermore, we discuss two
important properties of supervised neural networks: (1) their capability of approx-
imating any continuous function to an arbitrary accuracy, and (2) their capability
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of approximating the posterior expectation of their output variable given their input
variables. Furthermore, we discuss the concept of generalization, i.e. the conditions
under which neural networks can be used on observations outside the training set.
In Sect. 4.4 we discuss the concept of support vector machine, which is another
machine learning method based on a different learning paradigm with respect to
neural networks. In Sect. 4.5 we review a broad set of literature papers describing
applications of neural networks and support vector machines to various aerosol and
cloud remote sensing problems, such as approximation of radiative transfer models,
cloud detection and classification and retrieval of aerosol and cloud properties from
remote sensing data.

4.2 Extraction of Information from Remote Sensing Data

The goal of a remote sensing system is to use a set of measurements to make infer-
ences about the observed system. Such inferences may take the form of quantitative
estimates of one or multiple physical quantities (e.g., the temperature of the ocean
surface, the total amount of ozone that is present in an atmospheric region) or they
may consist of “qualitative” statements (e.g., whether a certain pixel is free from
clouds or not, whether it is covered by vegetation, snow, bare soil etc.). In the latter
case it is customary to speak about a “classification” problem, whereas in the for-
mer case the term “inversion” or “retrieval” is usually adopted in the remote sensing
community. Although these two classes of problems may seem different, they can be
treated in a unified way as statistical decision problems. A remote sensing instrument
measures a set of quantities m ∈ R

m , that are related to an unknown “state” s ∈ R
n

through some functional relationship F. In the case of retrieval problems s can take
continuous values, whereas in classification problems it can only take values in a
finite, countable subset of Rn . The goal of a remote sensing system is to find an
estimate for s.

The problem of estimating s from m is ill-posed if m does not contain sufficient
information to determine s with useful accuracy. This may happen because F may
be poorly invertible and because the presence of measurement errors may make it
impossible to find an exact solution for the problem even if F is invertible. Neverthe-
less, several methods exist to build approximate solutions. In formal terms, in order
to construct an estimator of s from m, a decision rule d that maps the measurement
vector m into an estimate ŝ of the state vector is sought. Let D be the space of all
the possible decision rules. Methods for choosing d ∈ D can be developed once D
is equipped with an order relationship, with respect to which two decision func-
tions can be compared (Robert 2007). The order relationship essentially specifies a
“quality criterion” that allows us to decide which estimate d = d(m) is the “best”
estimate of s, thereby providing us with some “objectivity” in the choice of the esti-
mate. The choice of the estimate ŝ takes thus the form of an optimization problem.
It is important to emphasize, though, that the objectivity in the chosen estimate only
holds for a given quality criterion, but the choice of the quality criterion itself is
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always subjective. With respect to this latter point several possibilities exist, and in
this section we will review some of them.

4.2.1 Constrained Least Squares Methods

Let us suppose that we know the relationship F that relatesm to s. Under the hypoth-
esis of additive noise we can write:

m = F(s) + ν (4.1)

where ν is a random variable describing the measurement noise. In the following,
we will assume that the noise can be described as a Gaussian random variable with
zero mean and covariance matrix Sν . Constrained least-squares methods search for
an estimate of the state s by minimizing a cost function of the following form

C(s) = ‖m − F(s)‖2ν +
N∑

i=1

γi ci (s) (4.2)

where ‖m − F(s)‖2ν = [m − F(s)]S−1
ν [m − F(s)], the ci (m) are a number of con-

straints on s, that depend on the problem at hand, and the γi are real numbers that
specify the strengths of the constraints. Thus, the cost function written in Eq. (4.2) is
the sum of two terms. The first term assigns a penalty to solutions that do not fit the
measurement vectormwithin themeasurement accuracy,whereas the constraints that
compose the second term assign a penalty to solutions that violate certain, problem-
dependent, “regularity” conditions. For example, if the variable s is an atmospheric
profile, we may require that the profile be “smooth” with respect to a vertical coordi-
nate. In this case a penalty term on s will be given by the value of its first derivative
with respect to that vertical coordinate. Same applies, for example, if s is a spectrally
dependent quantity (e.g., surface albedo, aerosol refractive index) and we want to
ensure that its estimate is smooth with respect to wavelength. In other cases, we
may want to penalize solutions that differ from a prior value sa , in which case the
constraint may take the form ‖s − sa‖2, and so on. The approach we just described
is known as Phillips–Tikhonov regularization (Phillips 1962; Tikhonov and Arsenin
1977). As discussed in Tikhonov and Arsenin (1977) and – in a context more specif-
ical to remote sensing problems – in Dubovik and King (2000), the regularization
parameters γi are trade-off parameters between the relative weights given to the
two terms in the cost function (4.2). Examples of the application of the Phillips–
Tikhonov approach to satellite aerosol retrievals are shown in Dubovik et al. (2011)
and Hasekamp et al. (2011). From the above discussion, it is probably clear that the
Phillips–Tikhonov approach is more relevant in the context of retrieval problems
than it is for classification problems, as it is inherently targeted at selecting suit-
able solutions among a continuum of possible solutions of an estimation problem.
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Such an issue is not present in classification problems, where the set of possible
solutions is, in itself, discrete and finite. In any case, the unconstrained least-squares
approach can be applied, in principle, also to classification problems, by creating a
look-up table (LUT) of values of F(s) associated to each possible value of s and by
choosing as estimate of s the value of s for which the first term in (4.2) is minimum.

4.2.2 Statistical Methods

The existence of random errors in the measurement warrants that the relationship
between m and s is not completely deterministic, and therefore it is legitimate to
express such relationship in terms of a probability density fM |S(m|s), that is, the
conditional probability density of the measurement vectorm for a given value of the
state vector s. This fact is exploited in the statistical approaches to the estimation of
the state vector. These approaches can be broadly divided in two classes:

1. Frequentist approaches
2. Bayesian approaches

The main difference between these two classes of statistical methods arises from the
way they interpret the state vector s. In the frequentist view, s is an unknown, deter-
ministic parameter, and the only source of randomness in the estimation problem is
due to the measurement process. In the Bayesian view, instead the state vector s is
not just seen as an unknown deterministic quantity, but is seen as a random variable
in itself, with its own probability density function, called the a priori probability
density fS(s), which quantifies our prior beliefs about s before performing the mea-
surement m, and an a posteriori probability density fS|M(s|m), which represents
our uncertainty about s after the measurement has been performed. The a posteriori
probability density is related to the a priori density and to fM |S(m|s) through the
Bayes rule:

fS|M(s|m) = fM |S(m|s) fS(s)
fM(m)

(4.3)

where fM(m) is the marginal probability density of the measurement vector, i.e. the
joint probability fMS(m, s) integrated over all the possible values of s.

One of the most famous frequentist approaches to the estimation of s from the
measurement m is the maximum likelihood (ML) approach, described in Fisher
(1922) and other works by the same author. In this approach, the optimal estimate of
s is the estimate that maximizes the likelihood function

L(s|m) = fM |S(m|s) (4.4)

The meaning of maximizing this function is, according to Fisher (1922) and other
works by the same author, that of estimating the state that ismost likely to have caused
a given set of observations. If the observations that constitute m are statistically
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independent and identically distributed (i.e. they follow the same probability dis-
tribution with the same parameters), then ML estimates possess some important
properties:

1. Consistency. The ML estimator ŝm built out of m independent and identically
distributed observations, converges in probability to the true value of s for m →
∞, where m is the dimension of the measurement vector.

2. Asymptotic normality and unbiasedness. The probability distribution of ŝm con-
verges for m → ∞ to a Gaussian distribution with mean value equal to the true
value of s and covariance matrix equal to the inverse of the Fisher information
matrix I, defined by

Ii j (s) = cov

[
∂ fM |S(m|s)

∂si

∂ fM |S(m|s)
∂s j

]
(4.5)

3. Efficiency. For m → ∞, the variance of a ML estimator is equal to the Cramér-
Rao lower bound (CRLB), that is, the minimum possible variance for a statistical
estimator. The CRLB for the variance of an estimator is equal to the reciprocal
of the Fisher information for that estimator.

It is easy to see that, in the assumption of Gaussianmeasurement noise, fM |S(m|s)
is a Gaussian density with expectation equal to F(s) and covariance matrix equal to
a Sν , and that the application of the ML principle leads to the unconstrained least-
squares solution.

It must be recognized that, in satellite remote sensing using passive instruments, a
measurement vector made of a large number of independent, identically distributed
measurements, is almost never available. A typical measurement vectorm is usually
made of a single observation of different quantities (e.g. radiances at several wave-
lengths or viewing angles) which are usually statistically dependent, rather than of
multiple observations of the same quantity (or set of quantities) under identical mea-
surement conditions. As a consequence, themaximum likelihood approach is usually
not adopted, at least not in its “asymptotic regime”.

As said above, the Bayesian approach treats the state vector itself as a random
variable. Finding an optimal estimate in the Bayesian framework involves defining
a loss function L(s,d), that quantifies the penalty we associate with estimating the
true state s with a generic guess d, and an a posteriori conditional expected loss as

CL(d|m) = Es [L(s, d(m))|m] (4.6)

where the operatorEs is the expectedvalue over s conditioned to the observedm.Once
L and CL are defined, the optimal decision function d is the function that minimizes
CL given m. In general, different choices for L give rise to different decision rules.
We will now show the consequences deriving from the two simplest choices for the
loss function: the 0/1 loss function and the quadratic error loss function.
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• 0/1 loss function.

The 0/1 loss function is defined differently depending on whether s has discrete
or continuous values. In the discrete case (classification), the 0/1 loss function is
defined as

L(s,d) =
{
0 if d = s
1 if d �= s

(4.7)

That is, no penalty is associated to a correct decision and a unitary penalty is
associated to an incorrect decision. Let us now suppose that s can take values in
a set of n possibilities, that we enumerate as {s1, . . . , sn}, and let P(si |m) the a
posteriori probability that the correct decision is si , i = 1, . . . , n. The conditional
expected loss associated with the decision d is then

CL(d|m) =
n∑

i=1

L(si ,d)P(si |m) (4.8)

Given that L is 1 if d is incorrect and 0 otherwise, it is easy to see that

CL(d|m) =
n∑

i=1

P(si |m) − P(d|m) = 1 − P(d|m) (4.9)

Thus, the problem of minimizing CL(d|m) with respect to d is equivalent to that
of maximizing P(d|m). In other words, the choice of the 0/1 loss function leads
to the maximum a posteriori (MAP) classifier as the optimum classifier.

The same reasoning can be extended to a retrieval problem, for which s is a
continuous variable. For this case, the 0/1 loss function is defined as

L(s,d) =
{
0 if ‖d − s‖ < ε

1 if ‖d − s‖ ≥ ε
(4.10)

That is, no penalty is associated to a solution that differs from the true one for less
than a threshold ε and a unitary penalty is associated to a solution that exceeds
such threshold. Let S ⊆ R

n be the domain of variation of s, and let fS|M(s|m) be
the a posteriori probability density of the state s given the measurementsm. Now
the expected loss CL becomes an integral:

CL(d|m) =
∫

S
L(s,d|m) fS|M(s|m)ds (4.11)

Let us now denote by Bε(d) the hypersphere with radius ε centred in d. Given that
L is 0 in Bε(d) and 1 elsewhere, and that fS|M is a probability density, we can
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write

CL(d|m) =
∫

S
fS|M(s|m)ds −

∫

Bε(d)

fS|M(s|m)ds = 1 −
∫

Bε(d)

fS|M(s|m)ds

(4.12)
Therefore, the decision rule that minimizes CL is

ŝ = argmax
d

∫

Bε(d)

fS|M(s|m)ds (4.13)

It is worth noting that

lim
ε→0

∫

Bε(d)

fS|M(s|m)ds = fS|M(d|m) (4.14)

Therefore, in the limit for ε → 0 the maximization problem yields once again
the usual MAP retrieval (Rodgers 2000) as the optimal one. In literature the MAP
retrieval is often derived by directlymaximizing the a posteriori probability density
of the state vector. It should be kept in mind, though, that the point value of
the probability density for a continuous random variable does not represent a
probability, and care must be exercised when saying that its maximum represents
the “most probable value” of the random variable at hand, as this carries the risk
of overinterpreting the concept of optimality of a MAP estimate. The procedure
we have just presented maximizes the probability that the true state vector lies
in a hypersphere of radius ε around the estimate, and obtains the MAP estimate
in the limit for ε → 0. In other words, in the MAP method the “mode” of the a
posteriori density is taken as estimate for s. In the case of a multimodal density,
this procedure leads to selecting the highest mode.

• Squared error loss function.

The squared error loss function is defined, for both the discrete and the continuous
case, as

L(s,d) = k‖s − d‖2 (4.15)

with k > 0. In this case, the conditional expected loss is

CL(d|m) = ES
[
k‖s − d‖2∣∣m] (4.16)

By using the linearity of the expectation operator, we have that

CL(d|m) = kES
[‖s‖2|m] + k‖ŝ‖2 − kdTES [s|m] (4.17)

This expression is minimized if ŝ = ES [s|m] is chosen as estimate of s. Therefore,
minimizing the expected loss in the case of the squared error loss function leads
to the choice of the posterior mean (PM) as estimate of s. It can be shown that, if
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the a posteriori distribution is Gaussian, the PM estimate is the same as the MAP
estimate.

Once the problem of estimating the state vector s from the measurements m has
been set up according, e.g. to one of the methods described above, the forward model
F is used to compute explicitly the cost function that has to beminimizedwith respect
to s. Methods for carrying out the minimization are described in Rodgers (2000).

4.3 Artificial Neural Networks

Scientific research on artificial neural networks – the beginning of which approx-
imately dates back to the 1940s – has been originally motivated by an attempt to
develop machines capable of imitating the computational structure of the brain of
vertebrates. Such attempts were based on the observation of the fact that the brain
can be seen as a computer based on an alternative architecture with respect to the
traditional von Neumann paradigm, which forms the basis of most of the modern
computers (Hertz et al. 1991). While a von Neumann machine is essentially a serial
machine, capable of executing a sequence of elementary instructions provided by the
user, the brain is a massively parallel processor, composed by a large number of ele-
mentary units (neurons), which exchange information through connection channels
(synapses). The brain is thus a network of neurons. The interest in the computational
structure of the brain was motivated by its ability to perform certain complex opera-
tions (e.g. object recognition, motor control) at speeds that – at the time – exceeded
enormously those that could be achieved using a traditional computer (Haykin 1999).

The first mathematical model of an artificial neuron derives from a work by
McCulloch and Pitts (1943). Their original model was only addressing Boolean
computations. In particular, the McCulloch-Pitts neuron consists of n excitatory
inputs and m inhibitory inputs. The output of the neuron is 1 if no inhibitory inputs
are 1 and at least one excitatory input is 1, and zero otherwise. The McCulloch-Pitts
neuron owes its importance to the fact that any Boolean function can be realized
through combinations of such neurons. However it must be noted that these neurons
have no free parameters. An extension of the McCulloch-Pitts model was proposed
by Rosenblatt (1958), who introduced the following differences: (i) no inhibitory
inputs are used, (ii) the excitatory inputs are multiplied by real-valued weights,
(iii) the weights can be updated by means of a learning rule. Rosenblatt’s neuron
model, called the perceptron, is closer to the artificial neuronal model that is used in
most applications today, the only difference being that the output of a Rosenblatt’s
perceptron is still discrete, whereas the models used today also allow for continuous
outputs.

The mathematical model of a neuron that is still used in most of today’s artificial
neural network models consists of three elements:

1. A set of synaptic weights {wi } that are multiplied by input signals {xi } of the
neuron.
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2. A linear combiner, that computes a sum of the input signals weighted by the
respective synaptic connections. The result of this sum is usually called action
potential of the neuron.

3. An activation function ϕ, that is applied to the action potential to give the actual
output y of the neuron.

Thus, the mathematical equation of a neuron based on this model can be written as

y = ϕ

(
n∑

i=1

wi xi + b

)
(4.18)

where b is a bias term that is usually included in order not to constrain the action
potential to be zero if all the inputs to the neuron are zero. The activation function ϕ

can take several forms. Some of the most common choices are:

• The threshold function: ϕ(v) = 1 if v ≥ 0 and 0 otherwise.
• The logistic function: ϕ(v) = 1/(1 + exp(−v))
• The hyperbolic tangent function: ϕ(v) = tanh(v).

It may be noted that the bias can be also interpreted as an additional synaptic weight
w0 multiplying an input x0 that is always clamped at value 1.

It is worthwhile to remark that themathematicalmodel of Eq. (4.18) is not the only
possiblemodel for a neuron. Later in this paperwewillmention neural network types,
such asRadial Basis Functions (RBF) and SelfOrganizingMaps (SOM), inwhich the
mathematical processing applied by a neuron is different from Eq. (4.18). In general,
however, a neuron applies a quite simple mathematical transformation to the data it
receives as inputs, and such transformation contains some free parameters, such as
theweightswi and the bias b in themodel of Eq. (4.18). The process of adjusting these
parameters according to the inputs coming from the external environment is what
we call training, and is the essential ingredient through which we induce the neural
network to acquire the behaviour we desire. Several classes of training methods exist
(Haykin 1999), but we will only discuss the two principal ones:

1. Supervised training
2. Unsupervised training

In supervised training, the neural network is provided with a set of realizations of
the input vector x and of a target vector t, that represents the response we would like
to obtain from the neural network when the input x is applied. The free parameters of
the neuron are updated by trying to minimize the misfit between the desired response
t and the actual response y = g(x,w), where g is the function computed by the neural
network and w is a vector containing all the free parameters of the network.

In unsupervised training, the neural network is not provided with a target vector t,
but the goal is to partition the input space into subregions of “similar” input vectors, in
such away that similar input vectors produce similar responses in the neural network,
while dissimilar input vector produce dissimilar responses. This is achieved through
a so-called “competitive” learning process, an example of which will be illustrated
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in Sect. 4.3.4. In this process the neurons compete among each other to achieve the
maximum output in response to a given input and, as the training proceeds, the
“winning neuron” corresponding to a certain input x becomes more and more likely
to be the winning neuron also for inputs that are close to x in the signal space. To
summarize, what matters in unsupervised networks is not the particular value of the
network response to a certain input, but the differences between the responses to
different inputs.

4.3.1 Multilayer Perceptron

Themultilayer perceptron (Werbos 1974) is probably themost popular type of super-
vised neural network. Neurons in this network are arranged in layers:

• An input layer, where the input signal is applied.
• One ormore hidden layers of neurons obeying Eq. (4.18), with nonlinear activation
function ϕ.

• An output layer of neurons still obeying Eq. (4.18), whose activation function can
be either linear or nonlinear. These neurons compute the final output of the neural
network (e.g., the vector of retrieved quantities, in one of the applications of our
interest).

The layers are connected in a feed-forward way, that means that the output of the i th
layer forms the input for the i + 1th layer and there are no feedback connections,
neither from layer to layer nor at neuron level.

Since the neurons in a multilayer perceptron follow the model given in Eq. (4.18),
the output of the neuron k in the layer l of a multilayer perceptron can be written as

y(l)
k = ϕl

⎛

⎝
Nl−1∑

j=0

w(l)
jk y

(l−1)
j

⎞

⎠ (4.19)

where Nl is the number of neurons in layer l, we have made the (reasonable) assump-
tion that all the neurons in a layer l have the same activation function ϕl , and we have
used the convention of including the bias b(l)

k in the weights, so that w(l)
0k = b(l)

k and
y(l−1)
0 = 1 for all l. For l = 1, Nl−1 is the dimension of the input vector, and y(l−1)

j
is simply the input x j .

A property that may be of interest is that, as long as the derivatives of ϕl can be
computed analytically, the derivatives of the output of a neuron with respect to any of
its inputs can be computed analytically as well. For example, for the first derivative
we have

∂ y(l)
k

∂ y(l−1)
j

= w(l)
jkϕ

′
l

⎛

⎝
Nl−1∑

j=0

w(l)
jk y

(l−1)
j

⎞

⎠ (4.20)
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The implication of this property is that, if a multilayer perceptron is used as approx-
imate forward model, the approximate Jacobi matrix of the forward model can
be obtained through a simple analytical computation, namely by implementing
Eq. (4.20). If, instead, the neural network is used as retrieval algorithm, the gainmatrix
of the retrieval can be computed similarly. It should be noted that the activation func-
tions used in practice usually do have analytically computable derivatives. For exam-
ple, ifϕ(v) = tanh(v) thenϕ′(v) = (1 − ϕ2(v)), whereas ifϕ(v) = (1 + exp(−v))−1

then ϕ′(v) = ϕ(v)(1 − ϕ(v)).
The most popular training algorithm for the multilayer perceptron is the “error

backpropagation”. In its simplest version, due to Rumelhart et al. (1986), for each
input-target pair (xn, tn) in the training set, the following error function is defined

En = 1

2
‖g(xn,w) − tn‖2 (4.21)

and is iteratively minimized with respect to w by using a steepest-descent approach.
Thismeans that theweight vector is initialized at a randomvaluew0, and is iteratively
updated according to the equation

wn+1 = wn − η
∂En

∂w

∣∣∣
w=wn

(4.22)

where η is a user-defined parameter called “learning rate”. The process is continued
until a user-defined convergence criterion is met. The learning rate must be chosen
based on a trade-off between the speed and the stability of the learning process.
Lower learning rates ensure higher stability (i.e. a steady decrease of the training
error) at the cost of a slower learning, whereas higher learning rates accelerate the
learning process but increase the risk of divergence of the learning process. Bös and
Amari (1999) show that decreasing the learning rate during the training speeds up
the descent of the algorithm towards better minima of the error hypersurface. This
technique is called “learning rate annealing”.

The error backpropagation algorithm can be also applied in “batch mode”, that is,
by defining and minimizing a cost function that encompasses all the training cases,
such as

E = 1

2N

N∑

n=1

‖g(xn,w) − tn‖2 (4.23)

where N is the number of training cases. The update of the weight vector is still
carried out using a steepest-descent scheme, as in Eq. (4.22) but replacing Ek with E
and by updating the network weights after the presentation of the entire training set
and not after each case. The role of the learning rate is similar as with the standard
(or online) backpropagation; namely, it serves as a step size for the update of the
weight vector. However, the optimal value of the learning rate in a batch learning
algorithm does not necessarily decrease while the training proceeds, but depends
on the curvature of the error hypersurface around the current weight vector wi .
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Sophisticated speed-up methods, such as Levenberg-Marquardt training (Hagan and
Menhaj 1994) and scaled conjugate gradient (Møller 1993), try to infer the optimal
step size by estimating second order information over E(w), so that the learning
rate is not specified by the user. Other, more empirical, speed-up techniques, keep
the concept of learning rate, but make an elaborate decision of whether to increase
it or decrease it based on conditions on the change in sign in the derivative of the
error surface. Some of these techniques employ different learning rates for different
weights. An overview of these methods can be found in Riedmiller (1994).

4.3.1.1 Universal Approximation Theorems

The use of the multilayer perceptron as a tool for function approximation is justified
by its universal approximation property, that has been demonstrated independently
by Cybenko (1989), Funahashi (1989), and Hornik et al. (1989). While the three
works mentioned above state the universal approximation theorem in slightly dif-
ferent forms, the essence of the theorem may be described as follows. The family
of functions F generated by Eq. (4.19) with a single hidden hidden layer is dense
in the space C(X ) of continuous functions over X – where X is any compact sub-
set of Rn – provided that the ϕl of the neurons in the hidden layer are sigmoidal,
where a sigmoidal function is roughly defined as a function ϕ(v) that is infinitely
differentiable, strictly monotonic and has horizontal asymptotes for v → ±∞. The
validity of the universal approximation theorems, originally stated for single-output
functions, can be simply extended to multiple-output functions (Hornik et al. 1989).
Hornik et al. (1990) extended the universal approximation property of a multilayer
perceptronwith sigmoidal activation functions to the derivatives of the function being
approximated.

We recall that by saying thatF is dense in C(X )we mean that for any F ∈ C(X )

and for every ε > 0, a Φ ∈ F exists such that the distance between Φ and F is less
than ε. In the context of the universal approximation theorems, the distance between
two functions in C(X ) is defined as supx∈X |Φ(x) − F(x)|. It is straightforward to
realize that the logistic function and the hyperbolic tangent are examples of sigmoidal
functions, which explains why they are commonly used as activation functions for
multilayer perceptrons.

The requirement that the activation functions ϕl be sigmoidal has been relaxed in
later formulations of the universal approximation theorems. Hornik (1991) showed
that F is dense on C(X ) and on L p(Rn) (space of functions f such that | f (x)|p is
integrable onRn) just provided that the ϕl are continuous, bounded and nonconstant.
Leshno et al. (1993) proved that the only requirement on the ϕl for the universal
approximation property to hold is that they be nonpolynomial, thereby removing the
requirement for continuity, the necessity of which had been previously considered
by Hornik (1991) as an “open problem”.

To summarize, universal approximation theorems state that any continuous func-
tion on a compact subset of Rn can in principle be approximated to an arbitrary
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accuracy by a function such as those computed by a multilayer perceptron. Hornik
et al. (1989) make this point particularly clear by writing (verbatim):

Any lack of success in applicationsmust arise from inadequate learning, insufficient numbers
of hidden units or the lack of a deterministic relationship between input and target.

The following points are remarkable about the universal approximation theorems:

• The basis for their validity does not derive from neural network theory. They are
just a consequence of the mathematical properties of the functions realized by
multilayer perceptrons, regardless of the fact that these functions are used to build
neural networks. The consequence of this will become clearer later in this paper,
when support vector machines are discussed.

• They state that a multilayer perceptron with a single hidden layer can in principle
approximate any continuous function on a compact set, but they do not indicate
how to build such a function, i.e. they aremerely existence theorems. This explains
why, in real applications of the multilayer perceptron, more than a hidden layer is
often used to achieve good approximation properties, despite the results of these
theorems.

4.3.2 Radial Basis Function Networks

Radial basis function (RBF) networks are a supervised neural network architecture
that is alternative to multilayer perceptrons. Architecturally, a RBF network differs
from that of a multilayer perceptron in the following aspects:

1. Usually there is only one hidden layer.
2. Neurons in the hidden layer have a localized activation function, i.e. a function that

is significantly nonzero on a bounded subset of the input space (e.g., a Gaussian).
3. The free parameters of the network are: (i) the weights of the synaptic connection

from the hidden to the output layer; (ii) the positions of the centres of the activation
functions; and (iii) parameters specifying the extension of the area of the input
space where the activation functions are nonzero.

The activation function of a hidden neuron in a RBF network has the form

y = ϕ(−‖x − c‖2, σ ) (4.24)

where x is the vector of input signals, c is the center associated to the neuron and σ is
a parameter that controls the width of the function. Examples of activation functions
include the Gaussian function

ϕ(−‖x − c‖2, σ ) = exp

(
−‖x − c‖2

2σ 2

)
(4.25)

and the inverse multiquadric function
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ϕ(−‖x − c‖2, σ ) = (‖x − c‖2 + σ 2
)−1/2

(4.26)

Considering that RBF networks usually have a hidden layer only, the output of the
whole network in response to an input signal x can be written as

yk =
Nh∑

j=0

wjkϕ j (x) (4.27)

In this expression, yk is the response of the kth output neuron, Nh is the number of
hidden neurons, ϕ0 ≡ 1 and φ j (x) = ϕ(−‖x − c j‖2, σ j ) for j = 1, . . . , Nh , c j and
σ j being the center and the width parameter of the j th hidden neuron respectively.

Universal approximation theorems for RBF networks, similar to those we have
seen for multilayer perceptrons, have been proved by Park and Sandberg (1991,
1993). Training a RBF network involves determining the values of the weights {wjk}
as well as of the centers c j and the widths σ j . In principle, these parameters can
be chosen through the usual least-squares procedure. This, however, often makes
the training process computationally demanding. For this reason, alternative training
methods exist where first the centers and the widths of the RBFs are chosen either
randomly or through someunsupervised clustering technique, and then theweights of
the output layer are determined from the training set through a simple pseudo-inverse
multiplication (details in Haykin 1999).

4.3.3 Statistical Interpretation of Supervised Neural
Networks

A fundamental result is derived by Bishop (1995a) from the asymptotic properties of
the sum-of-squares error function for large training sets. Let us consider a training set
made of N input-target vector pairs (xn, tn), and the sum-of-squares error function

E = 1

2N

N∑

n=1

‖g(xn,w) − tn‖2 (4.28)

where g is the vector-valued function realized by the neural network and w is the
vector of neural network parameters. The main argument made by Bishop (1995a) is
that, as the number of training cases increases, the sum written in Eq. (4.28) – that is
essentially an arithmetical average – approaches the expectation of 1

2‖g(x,w) − t‖2.
More formally

1

2N

N∑

n=1

‖g(xn,w) − tn‖2 P→ 1

2

∫∫
‖g(x,w) − t‖2 fx,t (x, t)dtdx (4.29)
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where
P→ denotes convergence in probability, fx,t is the joint probability density

function of x and t. At this point, if the conditional expectation of t given x is
denoted by 〈t|x〉, and the following manipulation is performed

g(x,w) − t = {g(x,w) − 〈t|x〉} + {〈t|x〉 − t} (4.30)

then, by substituting (4.30) back into (4.29) and after a number of algebraic manip-
ulations, it can be shown that minimizing with respect to w the error function E in
the limit for N → ∞ is equivalent to minimizing

E∞ = 1

2

∫
‖g(x,w) − 〈t|x〉‖2 fx (x)dx (4.31)

where fx is the marginal probability density function for x. Given that the function
being integrated is nonnegative, the value of w that minimizes the integral is the
value that makes the integral zero, i.e. the wo such that

g(x,wo) = 〈t|x〉 (4.32)

In other words, a neural network trained in such a way to optimize the error function
of Eq. (4.28) tends to return – in the limit for large training sets – an approximation
of the conditional expectation of the target vector t given the input vector x, i.e. the
regression of t on x.

It is worthwhile to mention that the generality of the result stated above goes
beyond multilayer perceptrons and even beyond neural networks at all. All that
is required for it to hold is that a regression algorithm is trained using the error
function (4.28). Supervised neural networks are just a practically interesting subset
of mathematical models satisfying this property.

The result mentioned above is extremely important for our purposes, as it eluci-
dates – perhaps better than the universal approximation theorems – the reasons why
neural networks can be used for solving inverse problems. In fact, as discussed in
Sect. 4.2, an inverse problem is not simply the problem of finding the inverse of a
given function, but is instead a statistical decision problem, where an estimate of an
unknown state smust be constructed out of a vector of observationsm. The property
(4.32) indicates that a neural network trained to retrieve s fromm so as to minimize
the error function (4.28) will tend to approximate the posterior-mean estimator of the
state vector s given the observation vector m. As noted by Bishop (1995a), in order
to achieve a good approximation it is important to have large training sets as well as
a large number of free parameters, so that the family of functions g(x,w) is more
likely to contain members that make the right-hand of Eq. (4.31) small enough.
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4.3.4 Self-organizing Maps

The self-organizing map (SOM), introduced by Kohonen (1982), is probably the
most popular type of unsupervised neural network. It consists of a lattice of neurons.
The j th neuron in the network is characterized by:

1. A weight vector w j

2. A neighbourhood function h jk , where k is the index of another neuron.

The neighbourhood function is a decreasing function of a topological distance d jk

between two neurons j and k. For example, if the lattice is one-dimensional, d jk

can be simply defined as | j − k|, whereas for a multidimensional lattice one can
simply set d jk = ‖r j − rk‖, where r j and rk are the vectors of the indices defining
the neurons j and k in the lattice dimensions. A commonly used neighbourhood
function is

h jk = exp

(
− d2

jk

2σ 2

)
(4.33)

where σ is, as usual, a parameter controlling the width of the function.
Prior to the training, the weights of the SOM are initialized to random values. The

neural network is then trained as follows (Haykin 1999). For each input vector x in
the training set:

1. The distance between x and each weight vector w j is computed, and the neuron
i(x) with the smallest distance is chosen as the “winner”:

i(x) = argmin
j

‖x − w j‖ (4.34)

This is called the “competitive phase” of the learning process.
2. Each weight vector w j is updated according to

w j ← w j + ηh ji(x)(x − w j ) (4.35)

where η is a small positive number. This is called the “cooperative phase”.
3. Thewidth of the neighbourhood function around thewinning neuron is decreased.

Equations (4.34) and (4.35) are crucial for understanding the meaning of unsu-
pervised training. Each time an input signal x is presented to the neural network, the
weight vector of the neuron i(x) that is closest (i.e. most similar) to x is brought even
closer to the input signal. The weights of the other neurons, instead, are updated in a
way that depends on how close they are to the winning neuron i(x) topologically, i.e.
in terms of their relative positions within the lattice. The closer a neuron is to i(x)
the higher the value of the neighbourhood function, and thus the higher the update.
On the contrary, for neurons that are very far from the winner the neighbourhood
function will have a very small value, and thus a very small update (virtually, no
update at all) will take place. It should be clear, at this point, what the asymptotic
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effect of this process is: namely, that each neuron, or group of neurons, will focus
on a different subregion of the input space, and therefore inputs that are “similar”
in the signal space will produce similar activation patterns in the neural network
response, whereas inputs that are very dissimilar in the signal space will tend to
activate different regions of the neural network lattice.

The behaviour described above makes SOMs useful tools for data classification
and clustering, and the applicability of this neural network model to remote sensing
problems is clear. It is important to recognize that the output of a SOM is not a
classification, but only a clustering of the input space. The actual classification –
that is, in remote sensing, the final decision about the “state” of the observed scene
(cloud, land, vegetation, ocean etc.) must be performed at a later stage. Several ways
exist to do this, and the most suitable one depends on the problem at hand. Some
examples are discussed in Sects. 4.5.5 and 4.5.6. For the time being we note that from
Eq. (4.35) it is probably clear that, as the training proceeds, the weight vector of a
neuron that specializes on a given subregion of the input space gets closer and closer
to a “representative” input for that subregion. For example, if the input space we
are clustering is a space of multispectral reflectances, the weight vector of a neuron
specializing on recognizing vegetation will tend to resemble a typical vegetation
reflectance spectrum, that is, a “code word” for the subset of vegetation spectra.
This can be useful in the process of mapping SOM clusters to physically meaningful
classes.

4.3.5 Learning and Generalization

Aswehave seen in the previous sections, the parameters of an artificial neural network
are tuned by optimizing some kind of cost function on a training set. It is important
to realize, though, that minimizing a cost function on the training set is not the final
goal of the design of a neural network. The final goal is to achieve a correct behaviour
on observations that are not in the training set (what we call “generalization”), while
the use of a training set in order to specify the neural network model is just a means
for achieving this goal. In light of this, it is clear that designing a neural network
in order to perform a certain task only makes sense if the available training set can
be seen as a statistically representative sample of an underlying process following a
certain probabilistic law. To be more precise, let us suppose that we train our neural
network by minimizing the cost function

EN (w) = 1

2N

N∑

i=1

‖g(xn,w) − tn‖2 (4.36)

over a training set of pairs (xi , ti ) with i = 1, . . . , N . What we would really want
from our neural network is not just an optimal behaviour over this particular set of
data, but a reasonably good behaviour over whatever data pair (x, t) from the joint
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probability distribution of x and t. In other words, we would like to minimize the
following, theoretical cost function

E∞(w) =
∫∫

‖g(x,w) − t‖2 fxt (x, t)dxdt (4.37)

which is unknown to us. However, as long as E(w) can be seen as a “good” estimate
of E∞(w), using a training set in order to optimize the cost function (4.37) is theo-
retically justifiable. As we have seen in Sect. 4.3.3, EN (w) converges to E∞(w) for
N → ∞ as long as the training data are independent and identically distributed with
probability density fx,t (x, t). The principle of empirical risk minimization states that,
as long as EN (w) converges to E∞(w) in probability, also the set of parameters w
that minimizes EN converges in probability to the w that minimizes E∞ (Haykin
1999).

Another issue connected to generalization is that of architecture selection, that is,
of selecting the number of neurons and layers in a neural network. It is intuitively
clear that network architectures with many layers and neurons have a higher “repre-
sentation power” than networks with few layers and neurons, i.e. they span “larger”
function spaces, and as such, they are capable of approximating more complex func-
tions. However, they also have more potential for “overfitting” the training data, i.e.
to fit such data with non-smooth functions, in such a way that very small errors are
achieved in the training set but much larger errors are observed when processing
unseen data. Limiting the complexity of the architecture can be seen as a regulariza-
tion procedure, because it tends to reduce the space of possible fitting functions to
a class of “smooth” functions. Vapnik (1998) derived explicit upper bounds for the
generalization error of a learning algorithm, and showed that such bounds increase
with a function of the network complexity called the Vapnik-Chervonenkis (VC)
dimension, which we will not discuss in detail here. The idea of limiting the risk of
overfitting by limiting the network complexity is called structural risk minimization
principle. It must be kept in mind, though, that this is not the only possible way to
design networks that possess good generalization ability. Other regularization meth-
ods include the limitation of the amplitude of the network weights (Bartlett 1997)
and adding noise to the input data during the training process, which, as shown by
Bishop (1995b), has the same effect as applying a Tikhonov regularization to the
training cost function.

4.4 Support Vector Machines

The support vector machine (SVM) is a supervised learning model alternative to
neural networks. It has been originally proposed in an context of binary classification
and single-output regression, but it can be extended to multi-class classification and
multiple-output regression, although the theoretical details of how this can be done
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will not be discussed in this paper. The interested reader can refer to Lee et al. (2004a),
Tuia et al. (2011), and references therein.

4.4.1 Classification SVM

The basic idea behind the design of SVMs for classification is that of a binary linear
classifier, designed so as to maximize a so-called “classification margin”. In order
to define the concept of classification margin, let us start by recalling that a binary
classifier can be seen as a decision rule that maps an observation vector x into a
decision y ∈ {−1, 1} after applying a linear operator on x. An example of decision
rule is

y = sign(wT x + b) =
{
1 if wT x + b ≥ 0,

0 if wT x + b < 0
(4.38)

This decision rule partitions the input space in two regions, separated by the hyper-
plane with equation wT x + b = 0. This hyperplane is called a “decision surface”:
any x located above this hyperplane will be classified as 1, any vector located below
this hyperplane will be classified as−1. If we have a training set {(xk, yk)}Nk=1, where
N is the number of examples, and we indicate with x+ and x− the vectors belonging
to the class 1 and −1 that are closest to the separation hyperplane, we call “classifi-
cation margin” the projection of the difference vector x+ − x− on the normal to the
separation hyperplane. Mathematically, the margin is thus defined as

M = wT (x+ − x−)

‖w‖ (4.39)

Intuitively, maximizing the classification margin means maximizing the distance
between the data points that are most difficult to classify. It can be proved (see, e.g.,
Kecman 2001; Schölkopf and Smola 2002, for details) that the problem of finding
w and b to maximize M is equivalent to the following constrained optimization
problem:

minimize
w,b

1

2
wTw

subject to yi [wT xi + b] ≥ 1 i = 1, . . . , N
(4.40)

This is a quadratic optimization problem. An important property of this class of
problems is that the function being optimized is convex, and therefore there are no
local minima. The Lagrangian function for this problem is:

L(w, b,α) = 1

2
wTw −

N∑

i=1

αi {yi [wT xi + b] − 1} (4.41)
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where α = [α1, . . . , αN ]T is a vector of Lagrange multipliers and where wTw has
been multiplied by 1/2 for notational convenience. For w and b to be a solution of
the problem (4.40), the first-order Karush-Kuhn-Tucker (KKT) conditions must be
imposed (Nocedal and Wright 1999):

∂L/∂w = 0 (4.42)

∂L/∂b = 0 (4.43)

αi {yi [wT xi + b] − 1} = 0 i = 1, . . . , N (4.44)

These are necessary conditions, but the convexity of the cost function makes them
also sufficient. Conditions (4.42) and (4.43) imply

w =
N∑

i=1

αixi (4.45)

N∑

i=1

αi yi = 0 (4.46)

which, substituted back into the problem (4.40), allow to formulate the dual problem

maximize
α

N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

yi y jαiα jxTi x j

subject to:
N∑

i=1

αi yi = 0

N∑

i=1

αi = 0

αi ≥ 0 i = 1, . . . , N

(4.47)

The only unknowns in the dual problem are the Lagrange multipliers αi . Once the
problem is solved, using any of the available techniques for quadratic optimization,
theweights of the optimal separatinghyperplane canbe recoveredbyusingEq. (4.45).

It is important to note that, in the optimal solution of problem (4.47), the only
nonzero Lagrange multipliers will be those relative to the active constraints, i.e. the
constraints that are satisfied with strict equality. In practice, these are the constraints
relative to the data points xi whose distance from the optimal separating hyperplane
isminimum. Such points are called “support vectors”. As a consequence, the summa-
tions needed to recover the optimal hyperplane weights are not really to be performed
over the entire training set, but only over the support vectors.

Once the weightsw have been determined, the bias b of the separating hyperplane
can be computed as
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b = 1

Nsv

[
Nsv∑

s=1

(
1

ys
− wT xs

)]
(4.48)

where Nsv is the number of support vectors and the summation runs over the support
vectors only.

The algorithm described above needs to be modified when a nonlinear problem
is dealt with. In a nonlinear problem, the classes cannot be perfectly separated by a
hyperplane, i.e. a hyperplane is guaranteed to misclassify some of the data points.
In the framework of SVMs, the strategy followed to address nonlinear problems
consists of two elements, that will be now explained:

1. Mapping vectors from the input space to a higher-dimensional feature space
through a nonlinear function.

2. Relaxing the constraints in Problem (4.40) to allow for misclassification of some
data points.

Mapping input vectors to a higher-dimensional space is justified by a result known
as Cover’s theorem on separability of patterns (Cover 1965). Such theorem can be
summarized by saying that a classification problem is more likely to become linearly
separable when nonlinearly cast into a higher-dimensional space than in a lower-
dimensional space (Haykin 1999). While this may seem counterintuitive at first
sight, it is not difficult to formulate simple examples in which this line of reasoning
works. If, for example, the true separating hypersurface of a nonlinear problem
has equation (2x1 + x2)2 = 0, it is evident that the separating surface becomes a
hyperplane if the problem is cast in terms of three transformed variables z1 = x21 ,
z2 = x22 and z3 = x1x2. The example we have just shown is, of course, an ad hoc
construction, but the reader may think of many other situations where the same line
of reasoning applies. Thus, in formal terms, in a SVM for nonlinear classification
the problems (4.40) or (4.47) are not formulated in terms of the original variables
xi ∈ R

n but in terms of transformed variables zi = Φ(xi ) ∈ R
m with m > n, where

Φ is a nonlinear mapping from the original input space to a higher dimensional
feature space.

Since the mapping to a higher-dimensional space may still be not enough to make
the problem completely linear, the constraint that all the vectors in a given class lie
“above” or “below” the separating hyperplane is relaxed in the following way:

1. N so-called “slack variables” ξi are defined, and the constraints in the prob-
lem (4.40) are changed to

yi [wT xi + b] ≥ 1 − ξi i = 1, . . . , N

2. The cost function in the problem 4.47 is updated as

1

2
wTw + C

(
N∑

i=1

ξi

)k
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with k ∈ Z, k > 0, and C ∈ R, C ≥ 0 a trade-off parameter chosen by the user.
Choosing large values of C drives the algorithm towards large-margin separating
hyperplanes, at the cost of more misclassified training points. Small values of
C , instead, push towards hyperplanes that misclassify as few training points as
possible, at the cost of a lower margin between the classes.

To summarize, the problem solved by a SVM classifier becomes (for k = 1):

minimize
w,b

1

2
wTw + C

N∑

i=1

ξi

subject to yi [wTΦ(xi ) + b] ≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N

(4.49)

and it can be shown that the corresponding dual problem is (Kecman 2001):

maximize
α

N∑

i=1

αi − 1

2

N∑

i=1

N∑

j=1

yi y jαiα jΦ
T (xi )Φ(x j )

subject to:
N∑

i=1

αi yi = 0

N∑

i=1

αi = 0

0 ≤ αi ≤ C i = 1, . . . , N

(4.50)

After solving the dual problem (4.50), the parameters of the separating hyperplane
can be recovered as

w =
Nsv∑

s=1

αs ysΦ(xs) (4.51)

b = 1

Nsv

[
Nsv∑

s=1

(
1

ys
− wTΦ(xs)

)]
(4.52)

where we have emphasized that the Lagrange multipliers αi are only nonzero for the
support vectors, and thus the sums can be computed by just considering such vectors
instead of the entire training set.

The equation of the separating hyperplane in the transformed space is wTΦ(x) +
b = 0, where w and b are given by Eqs. (4.51) and (4.52). Substituting Eq. (4.51) in
the expression we see that the separating hypersurface has the following equation:
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Nsv∑

i=1

yiαiΦ
T (xi )Φ(x) + b = 0 (4.53)

This equation is important because it introduces us to the last central concept in
SVM theory: that of kernel. A kernel function is a function of x defined by

K (xi , x j ) = ΦT (xi )Φ(x j ) (4.54)

for some vector-valued function Φ. Only functions that can be written as inner
products such as in Eq. (4.54) are admissible as kernels for a SVM. The conditions
for a function K (xi , x j ) to be an admissible kernel are stated in a theorem due to
Mercer (1909),whichwewill not discuss. Someof themost commonkernel functions
are the polynomial function

K (xi , x j ) = (1 + xTi x j )
d (4.55)

with d chosen by the user; the Gaussian function

K (xi , x j ) = exp

(
−1

2
(xi − x j )

T�−1(xi − x j )

)
(4.56)

and the hyperbolic tangent

K (xi , x j ) = tanh(xTi x j + b) (4.57)

for some values of b.
The importance of the kernel concept lies in the fact that its introduction allows

to compute the inner products ΦT (xi )Φ(x j ) in the input space rather than in the
transformed space, which has a higher dimension. It can be also noted that a Gaussian
kernel gives rise to an input-output function that is exactly analogous to that of a RBF
neural network, whereas a hyperbolic tangent kernel gives rise to the input-output
function of amultilayer perceptron. Therefore, all the results concerning the universal
approximation properties of neural networks are also inherited by SVMswith kernels
chosen accordingly. Finally, we note that SVMs with Gaussian or hyperbolic tangent
kernels can be seen as neural networks trained with a different method, in which the
number of hidden layers is always fixed to 1 and the number of hidden neurons is
not chosen by the user but is determined by the algorithm based on the number of
support vectors found in the training set (we remind that the support vectors are those
training data that correspond to nonzero Lagrange multipliers in the optimization
procedure). This feature is often appreciated by developers who consider it as a less
subjective approach to the design ofmachine learning algorithms. However, it should
be remembered that the number of support vectors is influenced by the choice of the
parameter C in solving the problem (4.49), which is just as subjective as the choice
of the number of hidden neurons in a neural network. Another attractive feature of
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SVM training is that the optimization problem (4.49) is convex, and therefore no
local minima exist in the problem of determining the weights of a SVM for a given
C . However, this does not guarantee that the global minimum found by training of a
SVM will be better (i.e. lead to a more accurate classifier) than any local minimum
found by training a neural network as the cost functions being optimized are different
(see, e.g., Taravat et al. 2015, for a practical example).

4.4.2 Regression SVM

In regression problems the output variable y is not binary, but can be any real number.
It has been seen that a SVM essentially computes an input-output function having
the form

f (x,w) = wTΦ(x) + b (4.58)

that is, it applies a linear operation to a vector of nonlinear functions of the input x.
The goal of SVM regression is to simultaneously minimize an error function and the
squared norm ‖w‖2. Minimizing the error function means maximizing the quality
of the fit between the regression function and the training data, whereas minimizing
‖w‖2 is useful in order to avoid overfitting of the training data.Whilemany regression
algorithm minimize the squared error, in SVM regression a different type of error
function is often preferred, proposed by Vapnik (1995) in his seminal work on SVM
and called ε-insensitive error function:

|y − f (x,w)| =
{
0 if |y − f (x,w)| ≤ ε,

|y − f (x,w)| − ε otherwise.
(4.59)

The user-defined parameter ε defines a tolerance region, often called “ε-tube”, within
which the misfit between the regression function and the data is counted as zero.

Reasoning in a similar way to what has been done for classification, it can be
shown that the problem of training a SVM for regression is (Kecman 2001)

minimize
w,ξ ,ξ∗

1

2
wTw + C

(
N∑

i=1

ξi +
N∑

i=1

ξ ∗
i

)

subject to yi − wTΦ(xi ) − b ≤ ε + ξi i = 1, . . . , N

yi − wTΦ(xi ) − b ≤ ε + ξ ∗
i i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N

ξ ∗
i ≥ 0 i = 1, . . . , N

(4.60)
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where ξ and ξ ∗ are vectors of slack variables. After writing down the Lagrangian
function for this problem and applying the KKT conditions, the dual problem can be
formulated as

maximize
α,α∗ − ε

N∑

i=1

(α∗
i + αi ) +

N∑

i=1

(α∗
i − αi )yi − 1

2

N∑

i=1

N∑

j=1

(α∗
i − αi )(α

∗
j − α j )K (xi , x j )

subject to
N∑

i=1

α∗
i =

N∑

i=1

αi

0 ≤ α∗
i ≤ C i = 1, . . . , N

0 ≤ αi ≤ C i = 1, . . . , N
(4.61)

where α and α∗ are vectors of Lagrange multipliers. Please note that we have used
the kernel notation K (xi , x j ) = ΦT (xi )Φ(x j ).

Once again, usually the dual problem (4.61) is solved, and then the SVM param-
eters are derived from the Lagrange multipliers as

w =
Nsv∑

i=1

(α∗
i − αi )Φ(xi ) (4.62)

b = 1

Nsv

[
Nsv∑

i=1

(yi − wTΦ(xi ))

]
(4.63)

and once again we stress that these summations only run over the support vectors.

4.5 Applications

4.5.1 Forward Modeling

The universal approximation properties of neural networks, discussed in Sect. 4.3.1.1
justifies – in principle – their use in building approximate forward models. Indeed,
a forward model can certainly be seen as a function that maps a set of atmospheric
and surface properties into a set of radiative quantities (e.g. top-of-atmosphere radi-
ance or full Stokes vector). It seems justified to assume that the function is smooth
enough that the assumptions underlying the universal approximation theorems for
neural networks are satisfied. Themain advantage of approximating a forward model
through a neural network lies in the computation speed of the approximate model.
This can be important when the model is used in an iterative retrieval algorithm, as it
has the potential of speeding up each iteration by a factor up to 106 (Chevallier et al.
1998).
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As an example of use of neural networks as approximate forward model, here we
show a very simple experiment, in which we approximate the I, Q and U elements of
the Stokes vector at the top the atmosphere formultiple scattering froma set of aerosol
parameters. Our input vector consists of the aerosol optical thickness at 550nm for
fine and coarse mode, the viewing zenith angle, the surface albedo (assumed constant
with wavelength) and the surface pressure, whereas our output vector consists of the
coefficients for the Fourier azimuthal expansion of the multiple scattering Stokes
vector at 440, 490 and 670 nm. We used 8 coefficients per wavelength for I and Q,
7 coefficients per wavelength for U. In this simple experiment we kept the aerosol
microphysical properties fixed. We trained a multilayer perceptron neural network
on about 5000 radiative transfer simulations and tested it on about 4000 independent
simulations, generated with data drawn from the same statistical population as the
training data. Figure4.1 shows plots of the neural network estimated versus forward
model simulated Fourier coefficients of the Stokes parameter for multiple scattering
at all wavelengths. An almost perfect correspondence between the forward model
and the neural network estimates can be observed.

Figure4.1 shows plots of neural network estimated Fourier coefficients of I, Q
and U versus the values simulated by the radiative transfer model. An almost perfect
agreement between the true and the estimated values can be shown. It is important,
though, to evaluate the effect of replacing the forward model Fourier coefficients
with the neural network estimates in the explicit computation of the actual Stokes
parameters through the formulae (de Haan et al. 1987)

I (ϕ) =
N−1∑

m=0

Im cos(mϕ) (4.64)

Q(ϕ) =
N−1∑

m=0

Qm cos(mϕ) (4.65)

U (ϕ) =
N−1∑

m=1

Um sin(mϕ) (4.66)

where Im , Qm and Um are the Fourier coefficients and ϕ is the relative azimuth
angle. In our experiment we chose N = 8. In fact the Stokes parameters – or, as an
alternative, intensity and degree of linear polarization – as a function of the scattering
angle are the quantity of ultimate interest in retrieval algorithms. In Fig. 4.2 scatter
plots are shown of the Stokes parameter I and Q estimated by the neural network
against those simulated by the radiative transfer model at 440, 490 and 670nm for
a relative azimuth angle of 0◦ (principal plane). U is not shown because it is zero
at this particular angle, as shown by Eq. (4.66). In Fig. 4.3 examples are shown of
estimated degrees and angles of linear polarization at 490nm for relative azimuth
angles of 60◦ and 150◦. The degree and angle of linear polarization δL and αL are
defined respectively as
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Fig. 4.1 Plots of neural network versus forward model coefficients of the azimuthal Fourier expan-
sion of the multiple scattering Stokes vector at 440, 490 and 670 nm
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Fig. 4.2 Plots of neural network versus forward model simulations of the Stokes parameters I (left)
and Q (right) at 440 (top), 490 (middle) and 670 nm (bottom) for a relative azimuth angle of 0◦

δL(ϕ) =
√
Q2(ϕ) +U 2(ϕ)

I (ϕ)
(4.67)

αL(ϕ) = 1

2
arctan

U (ϕ)

Q(ϕ)
(4.68)

The root-mean-square error in the estimated degree of linear polarization appears to
be in the order of 10−4.

What we have shown is a very simple example of use of neural networks to
perform approximated radiative transfer calculations. The approximation of a full
radiative transfer model is a much more complex task, as it involves accounting
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Fig. 4.3 Plots of neural network versus forward model simulations of the degree (left) and angle
(right) of linear polarization at 490nm for a relative angles of 60◦ (top) and 150◦ (bottom)

for the variability of a large number of parameters in the input vector of the neural
network. Such parameters involve, of course, the aerosol microphysical properties as
well as the surface properties. If atmospheric absorption must be taken into account,
also the profiles of the most important absorbing gases have to be varied. While this
fact has no conceptual consequences on the process of developing a neural network
for approximate radiative transfer calculations, it creates practical difficulties, as the
dimension of the training set needed to approximate a multivariate function to a
certain accuracy grows roughly exponentially with the number of the independent
variables that form the input space. This is one of the aspects of the so-called “curse
of dimensionality” problem (Bellman 1961), and is easy to understand intuitively.
For example, a set of 5000 randomly chosen points may constitute a sufficiently
dense sampling of a 6-dimensional space, but may be an extremely sparse sampling
of a 10-dimensional space. This forms an important practical limitation for the use of
neural networks in the approximation of forward models with many input variables,
as it leads to an increase in both computational demands and training times that is
difficult to cope with, unless very powerful computers are used.

Another example of application of neural networks to simple radiative transfer
problems is shown in Berdnik and Gallyamova (2012), where neural networks are
used to approximate the transmittance of a plane layer containing a disperse medium.
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The authors start from randomly chosen values of microphysical parameters (mean
radius, ratio between second and first moment of the particle size distribution, com-
plex refractive index and optical thickness), convert them into scattering phase func-
tion, single scattering albedo and asymmetry parameter using the Mie theory, and
then train a number of RBF neural networks to simulate the reflectance and the trans-
mittance of the layer at 12 incident radiation angles. In particular, a separate neural
network is trained for each incident angle and radiation parameter (transmittance or
reflectance).

Forwardmodels that are particularly affectedby speed issues are three-dimensional
(3D) radiative transfer models, which are important in order to simulate the effect of
inhomogeneous clouds on satellite measurements. While in one-dimensional, plane-
parallel models, clouds are treated as horizontally homogeneous layers, in 3Dmodels
horizontal inhomogeneity is taken into account, and the horizontal transport of elec-
tromagnetic radiation is modeled. 3D models solve the radiative transfer equation
using a Monte Carlo approach, where the electromagnetic radiation is represented as
a discrete collection of “photons” which travel in a cloudy atmosphere undergoing
random absorption and scattering processes (Marchuk et al. 1980). The computa-
tion of the radiation field in the atmosphere is stochastic, and the electromagnetic
trajectories of a large number of “photons” must be computed in order to achieve
good accuracies. Experiments aimed at approximating 3D radiative transfer compu-
tations using neural networks are described in Faure et al. (2001a, b). Faure et al.
(2001b) trained multilayer perceptron networks with single hidden layer in order
to model adjacency effects in inhomogeneous cloud scenes. Using a 3D radiative
transfer model, the authors generated synthetic inhomogeneous cloud scenes with
pixel sizes of 50 m. Then, they trained a number of neural networks to estimate the
radiative properties of each pixel (reflectance and transmittance, treated separately)
from those of a number of neighbouring pixels. In order to describe the effect of
neighbouring pixels in the input vector they tried three alternatives: (1) simply using
the reflectance (or the transmittance) of the adjacent pixels together with those of the
target pixel; (2) using the differences in the considered radiative property between the
target pixel and the neighbouring pixels; (3) using the difference between the target
pixel and the radiative property averaged on all the pixels located between the target
pixel and each neighbouring pixel. They report RMS errors smaller than 0.01 in the
estimated reflectances, and around 0.035 in the transmittances. Faure et al. (2001a)
described a similar experiment, but they tried to improve the performances of their
neural networks by using multiple hidden layers. They also tested the effect of the
assumed cloudmodel on the results of their neural networks by training them on syn-
thetic scenes generated using a bounded cascade inhomogeneous model and testing
them on scenes generated using two different models (white noise inhomogeneous,
bounded cascade with fractional cloud cover). On test scenes generated used the
same model as that used to generate the training set, their neural network approach
outperformed the Independent Pixel Approximation (IPA) and its nonlocal version
(NIPA,Marshak et al. 1998) in the approximation of the full 3D cloud radiative prop-
erties, whereas on scenes generated using the other two model a degradation in the
neural network performance was observed. The conclusion reached by the authors is
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that more complete training sets, encompassing multiple cloud generation models,
may be used to improve the generalization of the neural network scheme.

If an approximate forward model based on neural networks is meant to be used
in an iterative algorithm such as those discussed in Sect. 4.2, it is crucial that not
only the radiative quantity of interest is simulated with sufficient accuracy, but that
also its derivatives with respect to the quantities forming the state vector are. This is
indeed crucial in order to ensure that the updates of the state vector performed during
an iterative retrieval point in the right direction. While the universal approximation
theorems stated in Sect. 4.3.1.1 indicate that the space of functions computed by
neural networks can also approximate the derivatives of a continuous function to an
arbitrary accuracy, the design of neural networks that actually possess this property
may be difficult. This problem is discussed, for example, byAires et al. (1999), where
a strategy called “weight smoothing” is proposed in order to stabilize the Jacobi
matrix of the neural network. Such strategy consists of updating the cost function
for the neural network training with the introduction of a regularization matrix.
Application of this method to forward model simulations in the thermal infrared has
given encouraging results. Krasnopolsky (2007), instead, proposed a solution based
on neural network ensembles, i.e., in trainingmultiple neural networks and averaging
their outputs so to reduce random error, with a beneficial impact on the accuracy of
the neural network derivatives.

4.5.2 Inverse Scattering Problems

A first application of neural networks to inverse problems that are relevant to aerosol
and cloud studies is presented in Ishimaru et al. (1990), where the mean radius
and standard deviation of a log-normal size distribution are retrieved from simulated
backscattered intensity measurements at three wavelengths (0.56, 1.06 and 2.12µm)
using a multilayer perceptron neural network. The experiment simply consisted in
inverting the Fredholm integral equation that relates the particle size distribution to
the backscattered intensity in an optically thin medium. The reported retrieval errors
are smaller than 10% except for small values of the size distribution parameters. It
is not clear, though, whether such results were obtained on noisy or noise-free data.

Ulanowski et al. (1998) and Wang et al. (1999) addressed the retrieval of the
radius and refractive index of a single spherical particle from simulated intensities
at a single wavelength and multiple scattering angles, using a RBF neural network.
In both works a hierarchical approach is proposed. First, a neural network is trained
generating a training set that covers the whole parameter range of interest for the
experiment; then 10 networks are trained covering overlapping subsets of the radius
range. The output of the first network would determine which of the 10 secondary
networks would be used for the final retrieval. The performance of the algorithm was
seen to be dependent on the type of preprocessing applied to the intensities (scaling
and weighting by an angular factor). In the best case, which involved linear scaling
and weighting by the fourth power of the sine of the scattering angle, mean errors of
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the order of 10−5 and maximum errors of the order of 10−3 were reported for both
the radius and the refractive index of the sphere (Ulanowski et al. 1998).

A hierarchical approach similar to the one described above was also used by
Berdnik et al. (2004) in the retrieval of orientation and shape parameters of spheroidal
particles. Instead of usingRBF networks, the authors designed a three-level hierarchy
of multilayer perceptrons with linear activation functions. The retrieved quantities
are the radius of a sphere having the same volume as the considered spheroid (called
the “equivolume sphere radius”), the shape parameter (ratio between the difference
and the sum of the semiaxes) and an angle describing the orientation of the particle.
The reported standard errors are of 0.003 µm for the equivolume sphere radius,
0.02 for the shape parameter and 6◦ for the orientation angle. Berdnik and Loiko
(2009) performed an experiment similar to that carried out by Ulanowski et al.
(1998), namely, to retrieve radius and refractive index of a sphere from multiangular
intensity measurements at scattering angles between 10◦ and 60◦. In this work, the
authors did not use the hierarchical approach but solved the problem with a more
classical multilayer perceptron with two hidden layers. They validated their results
on noise-corrupted simulated data, reporting radius errors between 0.6 and 0.8%
and refractive index errors between 3.7 and 8.1% (depending on the noise level).
A similar experiment is presented in Berdnik and Loiko (2016), where, in addition,
the performances of different neural network schemes (multilayer perceptron, RBF
and two hierarchical approaches) are compared and their sensitivity to multiplicative
intensity noise is assessed.

4.5.3 Cloud Detection and Classification

The simplest task in cloud remote sensing that a neural network can perform is cloud
detection. In this task, we are simply interested in labeling pixels (or groups of pixels)
in an image as “clear” or “cloudy”.

A first example of application of neural networks to cloud detection in Advanced
Very High Resolution Radiometer (AVHRR) imagery over ocean is presented in
Yhann and Simpson (1995). They trained a number of multilayer perceptrons over
pixels selected randomly, using combinations TOA reflectances for the visible chan-
nels and brightness temperatures for the thermal channels as inputs. As for the output,
the authors tested two approaches. The first approach was to use one output unit tak-
ing values between 0 and 1, and to identify pixels with output higher than 0.5 as
cloudy. The second approach was to use two output units taking values between 0
and 1 – one identifying cloud pixels and the other identifying ocean pixels – and to
assign a pixel to the class whose corresponding output unit had the highest value.

Jang et al. (2006) developed a neural-network-based cloud detection scheme for
SPOT VEGETATION images. Their neural network – a classical multilayer percep-
tron – receives as input all the four bands of the instrument and yields a single-valued
output that is 0 for a cloud pixel, 1 for vegetation and 2 for water. The reported accu-
racies are between 97 and 98%.
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Cloud classification goes a step beyond cloud detection, in the sense that not only
a pixel or a region in an image is declared as clear or cloudy, but further inferences
are made about cloud properties (e.g. cloud phase, cloud height).

A simple example of use of neural network for cloud classification is presented
in Key et al. (1989). The authors of this study combined images from the AVHRR
instrument onboard the NOAA-7 satellite and from the Nimbus-7 Scanning Mul-
tichannel Microwave Radiometer (SMMR) over the Arctic, to classify clouds and
the surface underneath. They defined four surface classes (snow-free land, snow or
ice covered land, open water and sea ice) and three broad cloud classes (low, mid-
dle and high cloud). This led them to further specialize the cloud classification into
eight classes (low/high clouds over land/water/ice, middle clouds over water/ice).
They trained a multilayer perceptron with a single hidden layer over areas manually
selected over merged AVHRR/SMMR imagery. The inputs for the neural network
were measurements from the two instrument channels (reflectances for AVHRR,
brightness temperatures for SMMR), whereas the output was a vector of 12 units
(one per class), each of which had the meaning of a “class membership indicator”
between 0 and 1. In order to test the results, they compared the results of the neu-
ral network to a manually classified image. The reported correct classification rates
were of almost 100% for the class “water”, around 82% for the class “land”, 69% for
ice and 59.5% for snow. The correct classification accuracies for cloud classes were
highly variable (from around 32% for “low clouds over water”and “medium clouds
over ice” to 78% for ”high clouds over ice”). It should be recognized, though, that
the manual validation approach has clear limitations, especially on classes that are
difficult to separate visually in an image, such as clouds over snow and ice.

A different approach to cloud classification using neural networks is presented in
Lee et al. (1990). This approach is not based on radiometric quantities but on textural
information, that is, information about the spatial variability of the radiance (or simply
the digital number)within an image. Textural featureswithin an imagemaybedefined
in different ways (Haralick et al. 1973). In Lee et al. (1990) the textural information
content of an image is quantified by the Gray Level Difference Vector (GLDV),
which is essentially a vector of statistical quantities derived from the probability
distribution of the grey level differences between a certain pixel and a number of
neighbouring pixels. This approach has been applied to imagery from the Landsat
Multispectral Scanner (MSS). The GLDV was used as input vector for a multilayer
perceptronwith two hidden layers and a three-element output layer consisting of class
membership indicators for stratocumulus, cumulus and cirrus. Comparisons with
two traditional classification methods (nearest neighbour and discriminant analysis)
showed a superior performance of the neural network classifier, which reached an
overall accuracy of 93%, with 96% accuracy for cirrus, 92% for stratocumulus and
90% for cumulus. These results were obtained using single-channel visible imagery.

A neural network based cloud classification scheme combining radiometric and
textural information is presented in Miller and Emery (1997). The algorithm has
been named Cloud Automated Neural Network (CANN), and has been devel-
oped for AVHRR imagery. Prior to the cloud classification, a binary decision is
made to identify each pixel as clear or cloudy based on the Normalized Difference
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Vegetation Index (NDVI), on the channel 1 (0.63µm) reflectance and on the channel
4 (10.8 µm) brightness temperature. Specifically, a pixel is considered to be cloud
or water if it has NDVI less than zero and cloud or land if its NDVI is larger than
zero. A reflectance threshold of 0.16 in channel 1 is used to distinguish between
cloud and water, whereas a brightness temperature threshold of 295K in channel 4
is used to distinguish between cloud and land. For the pixels identified as cloudy, a
number of features (cloud fraction, cloud albedo, cloud top temperature and effective
droplet radius) are estimated from radiance and brightness temperatures in a number
of AVHRR channels, and are combined with six textural parameters (cloud connec-
tivity, contrast, homogeneity, low/middle/high etage fraction) estimated by dividing
AVHRR images into subregions. These features are used as inputs for the neural
classifier, that distinguishes between nine classes (no cloud, stratus, stratocumulus,
cumulus, cumulus congestus, altostratus/altocumulus/nimbostratus, cumulonimbus,
cirrostratus, cirrus). The neural network has been trained on 57 images and tested
on 5 independent images, with overall classification accuracies ranging from 73 to
87%.

Lee et al. (2004a, b) discuss the an extension of SVM classification to problems
with more than two classes and present an application of their method to cloud
detection in MODIS imagery. The classes they defined are cloud-free scenes, water
clouds and ice clouds. In order to carry out the classification the authors tried four
combinations of observables: (1) MODIS channel 2 radiance and the base-10 loga-
rithm of the ratio between channel 5 and channel 6 radiances; (2) like (1) plus ratio
between channel 1 and channel 2 radiances, brightness temperature in channel 31 and
brightness temperature differences between channels 32 and 29; (3) just radiances
in 12 channels (1–7, 27–29, 31 and 32); (4) logarithm of (3). The SVM were trained
with synthetic data generated for a number of realistic atmospheric temperature and
humidity profiles over ocean. A comparison with the MODIS algorithm over real
images showedmisclassification rates lower than 1% for the combinations of observ-
ables from (2) to (4), whereas the misclassification rate for combination (1), with
only two observables, was around 4%. Another application of SVM is described by
Mazzoni et al. (2007), who developed a method to classify MISR pixels into clouds,
aerosol, land, water and ice, trained on real data, which achieved correct classifi-
cation rates ranging from 70 to 80% depending on the considered class, but with
occasionally high misclassification rates between ice and clouds, perhaps due to the
intrinsic difficulty in distinguishing between these two surface types in the radiance
domain at the four MISR wavelengths.

4.5.4 Retrieval of Cloud Properties

In this section we will review some applications of neural networks aimed at pro-
viding quantitative estimates of cloud properties, such as the size of cloud particles,
cloud optical thickness (COT) and cloud albedo.
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The first application of neural networks to cloud property retrieval from satellite
data is, to our knowledge, due to Faure et al. (2001c). This study aimed at assessing the
potential of neural network for retrieving cloud optical properties from instruments
such as MODIS or the Global Imager (GLI) onboard ADEOS-2. The authors used a
Monte Carlo radiative transfer model to simulate top-of-the atmosphere reflectances
at visible and near-infrared wavelengths for realistic inhomogeneous cloud scenes.
Then theydesigned twoneural network schemes to retrieve themeanoptical thickness
at 0.64 µm, the particle effective radius, the fractional cloud cover and a parameter
describing the inhomogeneity in the cloud cover. The first neural network only used
the reflectance at four wavelengths (0.64, 1.6, 2.2 and 3.7 µm) averaged over a pixel
of 0.8 × 0.8 km as input vector, whereas a second neural network also used, for each
pixel, the reflectance spectra at the same wavelengths in 8 adjacent pixels. The errors
in the retrieved optical thickness and effective radius were generally around 3–4%
and 1–3% respectively, whereas the relative errors in the fractional cloud cover and
in the cloud heterogeneity were more variable, ranging between 2 and 20% for the
former and between 12 and 26% for the latter. According to the authors, including
ancillary information on adjacent pixels did not result in a clear improvement in
the performance of the neural network but gave mixed results. Cornet et al. (2004)
refined the method by Faure et al. (2001c) by considering 6 cloud parameters to be
retrieved (the cloud inhomogeneity parameter was split as COT and effective radius
inhomogeneity, and the cloud top temperature was included in the retrieved state
vector). Furthermore, while the neural networks presented by Faure et al. (2001c)
were designed to work at a limited set of solar and viewing angles, Cornet et al.
(2004) presented a way to process measurements at arbitrary solar and incidence
angles by interpolating them to the angles at which the neural networks were trained.
The interpolation was performed through a dedicated neural network mapping the
radiances at an arbitrary solar-viewing angle combination, together with the distance
between the considered combination and the nearest combination forwhich a network
was trained and the surface albedo to the radiance at the desired solar and viewing
angles. After this interpolation step, the neural-network-based retrieval was similar
to that described by Faure et al. (2001c). The retrieval method was tested on three
different types of clouds (flat-top bounded cascade, flat-top and non-flat-topGaussian
process cloud). Depending of the considered cloud type, the RMS retrieval errors
approximately ranged between 1 and 2 for COT (with true values distributed between
0 and 30), between 1.5 and 1.9 µm for effective radius (true values between almost
0 to 25 µm), between 0.95 and 2 for COT inhomogeneity (true values between 0 and
15), between 0.6 and 1.5 for effective radius inhomogeneity (true values between
and 15) and between 0.08 and 0.12 for fractional cloud cover. The RMS errors
for cloud top temperature were around 0.2K for flat-top clouds and 0.3K for non-
flat-top clouds. The approach we have just described has been applied by Cornet
et al. (2005) to MODIS data, with limited adaptations in the input vector due to the
unavailability of some of the required input variables in MODIS data. In order to test
the sensitivity of their retrieval scheme to the assumptions made in the generation of
the trainingdatasets, the authors trained three different neural networks, one assuming
a homogeneous cloud model, one assuming the bounded-cascade model and one
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assuming a Gaussian model. By comparing retrievals from these three networks to
the standard MODIS product the authors concluded that their retrieval scheme is not
very sensitive to the cloud model used to generate the training set. In absolute terms,
a good agreement between the retrieved COTs and those of theMODIS products was
found, whereas the differences between the effective radii were larger, but consistent
with previous studies about differences between homogeneous and inhomogeneous
cloud effects (the MODIS product is based on a homogeneous cloud assumption).

Faure et al. (2002) developed amethod similar to that described above for retrievals
from high spatial resolution instruments. According to the authors, cloud retrievals
from high-resolution imagers require a different approach with respect to retrievals
from moderate-resolution imagers, as the 3D radiative transfer effects at high spatial
resolution are different. The authors modified their retrieval method accordingly, by
redefining the input vector for the neural network.The choicemadeby the authorswas
to include, for each pixel, the reflectance of that pixel and the reflectance difference
between a number of pairs of contiguous pixels around that pixel. The retrieved
parameters in this newschemewere the cloudoptical thickness and the cloud effective
radius, and two wavelengths were used instead of four (all the combinations between
the four wavelengths listed before were tried). They tested their retrieval scheme
on two different cloud types: inhomogeneous clouds with uniform effective radius,
and inhomogeneous clouds with horizontally variable effective radius. The retrieved
COTs and effective radii generally showed a good agreement with the true values.

Loyola et al. (2007) proposed the application of neural networks to the estimation
of cloud properties from theGlobalOzoneMonitoring Experiment (GOME) onboard
the ESA ERS-1 satellite. Their retrieval scheme, named Retrieval of Cloud Informa-
tion using Neural Networks (ROCINN), uses high-spectral resolution reflectances in
the oxygen A-band (758–772 nm), plus the cloud fraction estimated from the Polar-
ization Measurement Devices (PMDs), to retrieve cloud-top height and cloud-top
albedo. It was trained on synthetic spectra simulated using the Linearized Discrete
Ordinate Radiative Transfer (LIDORT) forward model (Spurr et al. 2001) with line-
by-line calculations of the oxygen absorption in theA-band, and neglectingmolecular
scattering, aerosol scattering and absorption, diffuse surface reflection and oxygen
absorption within and below clouds. To validate their method, the authors com-
pared the neural network retrievals to co-located Spinning Enhanced Visible and
Infrared Imager (SEVIRI) retrievals for five months in 2004. The authors observed
a bias of −0.64 km and a standard deviation of 1.15 km of the ROCINN cloud-top
height versus SEVIRI. The comparison between the cloud-top albedos could only
be qualitative, because of the inherent differences between the two instruments, but
nevertheless revealed a good agreement, with a slight mean overestimation of 0.09
and a standard deviation of 0.1. Global comparisons between the cloud parameters
retrieved by ROCINN and data from the International Satellite Cloud Climatology
Project (ISCCP) are presented in Loyola et al. (2010). A negative bias in the cloud-
top height is reported, probably due to the absence of cirrus clouds in ROCINN
retrievals.

Another case of application of neural network to cloud retrievals from hyper-
spectral instruments is discussed in Saponaro et al. (2013), where a neural network



316 A. Di Noia and O. P. Hasekamp

algorithm for fractional cloud cover estimation from Ozone Monitoring Instrument
(OMI) data is presented. The input vector for the neural network proposed by the
authors OMI reflectance spectra in the 349–504 nm channel, compressed through
singular value decomposition (SVD), plus OMI small-pixel radiance at 388 nm (that
can be seen as an indicator of the scene heterogeneity), climatological surface albedo
and solar zenith angle. The cloud fraction is the only output of the neural network.
The authors generated a training set bymatching a number of OMI spectra with cloud
fractions estimated from coincident MODIS measurements, and trained their neural
network using the standard back-propagation and the Extreme Learning Machine
(ELM) algorithm (Huang et al. 2005), an alternative training method. The cloud
fractions retrieved by the neural network were in reasonable agreement withMODIS
retrievals over ocean, whereas over land an overestimation of the cloud fraction was
observed over bright surfaces.

An application of neural networks to the retrieval of the optical properties of cirrus
clouds from SEVIRI is presented by Kox et al. (2014). The goal of the authors was
to use SEVIRI data in order to retrieve cirrus optical thicknesses and top altitudes
from SEVIRI thermal channels during day and night. In order to accomplish this,
they generated a training set by matching retrievals of the cirrus properties from the
Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar with coinci-
dent SEVIRI observations, and trained a multilayer perceptron network to map the
SEVIRI observations to the CALIOP cirrus retrievals. The SEVIRI measurement
they used in the network input vector were the brightness temperatures at 7.3, 9.7,
12 and 13.4 µm, the brightness temperature differences between 6.2 and 7.4 µm,
8.7 and 12 µm and 10.8 and 12 µm. In addition the authors included latitude, view-
ing zenith angle and a land/sea mask as ancillary data. They trained the data on
a very large dataset, with 8 millions input-output pairs, and tested it on 1 million
independent CALIOP data and on a set of retrievals performed using an airborne
High Spectral Resolution Lidar (HSRL), reporting a standard error of 0.25 for cirrus
optical thickness and 750m for the top altitude.

4.5.5 Aerosol Classification

The impact aerosols exert on atmospheric radiation does not only depend on the
concentration of aerosol particles in the atmosphere, but also on their size and their
absorbing properties. Distinguishing between large and small particles or between
strongly-absorbing and little- or non-absorbing aerosols is an important task, not only
when the aerosol properties are the main object of study but also when aerosols are
seen as a nuisance, such as in the atmospheric correction of land or ocean imagery.
Also in cases where the available information is insufficient to determine all the
aerosol properties (or most of them), it may be still possible to make a qualitative
inference on whether the aerosols inside a scene are absorbing or not, or on whether
they mainly consist of small or large particles. The recognition of this fact has led,
over time, to the notion of “aerosol typing”, that is, to the custom of summarizing
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the salient radiative properties of aerosols by means of a “type”. A popular typing
scheme is, for instance, that by Shettle and Fenn (1979), where aerosols are classified
as “rural”, “marine”, “urban” and “tropospheric”, but also other subdivisions into
types have been proposed (e.g., Kahn et al. 2001; Holzer-Popp et al. 2008; Russell
et al. 2010, 2013).

An interesting application of neural networks to aerosol classification has been
proposed by Niang et al. (2003), and is based on self-organizing-maps. The authors
applied an extension of the SOM network seen in Sect. 4.3.4, called Probabilis-
tic SOM (PRSOM), to the clustering of unpolarized reflectances from ADEOS-
POLDER at five wavelengths (443, 490, 565, 670, 865 nm) and a single viewing
zenith angle over the Cape Verde region. Their algorithm defined a map of 20 × 20
neurons, thereby defining 400 different clusters. Each cluster is uniquely character-
ized by the weights of the corresponding neuron, that can be seen as a “representa-
tive reflectance spectrum” (called “reference vector” by the authors) for that cluster.
The 400 clusters were then mapped into four physically meaning classes (marine
aerosols, clouds and two types of dust aerosols) by introducing “expert knowledge”
established as follows. Thresholds on POLDER AOTs at 865nm were used to define
three aerosol classes and a cloud coverage test was used to define the “cloud” class.
Then, for each pixel of the POLDER image the reference vector of the winning SOM
neuron was compared to the result of the “expert classification”, and the reference
vectors that were always associated with the same class were mapped to that class,
whereas reference vectors associated to multiple classes were mapped to the class
with the largest number of correspondences. The results reported by Niang et al.
(2003) indicate that the SOM-based classifier was able to correctly identify almost
all the cloudy pixels identified by the “expert” classification and to correctly identify
marine aerosols and thick, homogeneous Sahara dust clouds in more than 90% of
cases.

4.5.6 Aerosol Retrievals

As opposed to aerosol classification, where the goal is to just make a qualitative
inference about the type of aerosol that is present in a certain scene, aerosol retrieval
schemes aim at a quantitative estimation of the aerosol load and, in some cases, of
the aerosol microphysical properties such as the particle dimension and shape and
their complex refractive index. The first example of application of neural networks to
aerosol retrievals is, to our awareness, due to Han et al. (2006), who investigated the
application ofmultilayer perceptron networks to retrieve the aerosol optical thickness
(AOT) from Multiangular Imaging Spectroradiometer (MISR) data. A number of
neural networks, one called “global” plus several others called “region-specific”,
were trained using MISR radiometric measurements and AOTs derived from such
measurements with another algorithm. The global neural networkwas trained on data
collected over the entire globe whereas the region-specific ones were trained over
single passes of MISR over certain regions. Validation over four 16-day cycles of
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MISRdata showed that the root-mean-square errors of the neural network schemes, as
well as those of other data-driven approaches, were similar to those of the operational
AOT product (approximately ranging from 0.065 to 0.1).

The concept devised by Han et al. (2006) for MISR was further developed by
Vucetic et al. (2008) for AOT retrievals from Moderate Resolution Imaging Spec-
troradiometer (MODIS) data. Rather than using a single neural network, the authors
of this study decided to train an ensemble of 10 neural networks using MODIS
radiances and radiometric uncertainties at 7 wavelengths, plus solar, viewing and
scattering angles and a number of surface type and cloud-contamination indicators,
as inputs, and producing the AOT as output. In general, the goal of using an ensemble
of networks is that of reducing the random errors arising a single network by aver-
aging the outputs of different networks. Based on a comparison with the MODIS
C005 product (Levy et al. 2007) on a set of AERONET test data, the neural network
retrievals proved more accurate than the C005 retrievals.

In a new neural network scheme for AOT retrievals from MODIS, Radosavljevic
et al. (2010) introduced a different way of constructing the ensemble of neural net-
works and amethod of combining the outputs of the ensemblemembers alternative to
simple averaging. Instead of training all the ensemble members on the same dataset,
the authors proposed to train a subset of the ensemble members on cases of “low”
AOTs and a subset on cases of “high” AOTs, following an approach that reminds
the hierarchical one we discussed in Sect. 4.5.2) in the context of inverse scattering
problems. Regarding the combination of the output of the ensemble members, the
authors tested the possibility of performing aweighted average between the ensemble
members with weights decided by another neural network. To this end, they explored
two alternatives: (i) a third neural network trained by using the outputs of the ensem-
ble members as inputs and providing the target AOT value as output; (ii) a “gating
network”, conceived as a classification network labeling the AOT of the scene as
“high” or “low” and distributed the weights between the high-AOT and to the low-
AOT ensemble networks according to this decision. These two new ensemble-based
schemes were compared to the classical single-network scheme and to the ensemble
scheme based on simple averaging, and an increase in the correlation coefficient
between the retrieved AOTs and those measured by AERONET was observed. The
results found by Vucetic et al. (2008) regarding the comparisons between neural net-
work retrievals and C005 retrievals were confirmed by Radosavljevic et al. (2010)
and by a later study by Ristovski et al. (2012), who also tried to assess the credibility
of the uncertainties calculated on test datasets through a bootstrap approach.

A completely different neural-network-based approach to aerosol retrieval is pro-
posed in Niang et al. (2006) and applied to Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) imagery over the Mediterranean basin. Such approach is based on unsu-
pervised neural networks, and is similar to the classification scheme by Niang et al.
(2003) discussed in Sect. 4.5.5, but with the difference that the expert knowledge used
to interpret the output consists of a set of synthetic reflectance spectra computed using
a radiative transfer model from different combinations of AOT at 865nm and aerosol
Ångström exponent. Comparisons between the retrieved AOTs and those measured
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by the Lampedusa AERONET station showed RMS errors around 0.035-0.04, com-
parable or smaller than those of the SeaWiFS official product.

A neural network algorithm proposed by Taylor et al. (2014) aims at using mul-
tispectral MODIS reflectances to estimate not only the AOT but also other aerosol
parameters such as complex refractive indices, single scattering albedo (SSA) and
size distribution. The approach the authors used to accomplish this task was not
to directly estimate these quantities from MODIS reflectances, but to use MODIS
AOTs at 470, 550 and 660nm as input vectors for their neural network scheme.
The authors also tested the use of coincident columnar water vapour retrieved by
MODIS and absorption AOT at 550nm fromOMI as additional inputs. They applied
their approach to the Saharan region. Their neural network scheme appears able to
capture main trends in the seasonal variabilities of the aerosol volume concentra-
tion, complex refractive index and SSA, although not their daily variability, possibly
because of the limited amount of information available in MODIS reflectances for
the simultaneous retrieval of a large number of aerosol parameters.

4.5.7 Volcanic ash Detection and Retrieval

A particular case of aerosol retrieval application is represented by the study of vol-
canic ash resulting from major eruptions. Near-real-time, operational monitoring
of volcanic ash is necessary, given the impact ash has on civil aviation (Alexander
2013), and several algorithms, mostly based on look-up-tables (LUTs), have been
developed in order to detect volcanic ash and retrieve its microphysical parameters
in satellite imagery (Prata 1989a, b; Prata and Grant 2001). They generally use the
brightness temperature difference between two thermal infrared bands (10–11 µm
and 11.5–12.5 µm) as a signature to distinguish volcanic ash plumes from ordi-
nary water clouds (the difference is negative for volcanic ash and positive for water
clouds). Picchiani et al. (2011) proposed a neural network approach to ash detection
and retrieval from MODIS data. The authors trained two separate neural networks,
one for ash detection and one for the retrieval of the ash mass on the pixels identi-
fied as containing ash by the first network. The ash detection neural network used as
inputs the brightness temperatures inMODIS channels 28, 31 and 32. The brightness
temperature in channel 28 (centered on 7.3 µm) was used as a proxy for the water
vapour column, thereby eliminating the need for an assumption on this parameter,
whereas the channels 31 and 32 correspond to the spectral bands involved in the
brightness temperature difference that identifies the presence of ash. The sign of the
brightness temperature difference provided the target value for the neural network.
The ash retrieval neural network uses the same channels as the ash detection network
as inputs, and provides an estimate of the ash mass in t/km2. Again, the LUT algo-
rithm was used to generate the target data for the training. The authors tested their
neural network scheme on MODIS images acquired during a number of eruptions of
Mt. Etna, in Italy. The percentage of correct detections varied between 75 and 98%,
the percentage of missed detections between 6 and 12%, and the percentage of false
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positives was varied between 12 and 64% depending on the considered image. The
RMS errors of ash the ash mass retrievals was reportedly around 0.3 t/km2.

An approach similar to that described above is discussed in Piscini et al. (2014).
More precisely, this latter study aims at using MODIS data to estimate, in addition
to the ash mass, the ash optical thickness at 11 µm, the ash effective radius and the
SO2 concentration in the ash plume. To this end, the authors extended the number
of MODIS channels used by the neural network. They performed a sensitivity study
to assess which channels – among the complete set of 36 MODIS channels – are the
most important for the retrieval of each of the considered ash parameters, which led to
a selection of 28 channels. As case study, the authors chose the famous eruption of the
Icelandic volcano Eyjafjallajökull in 2010. Comparing the neural network retrievals
to those performed using standard algorithms they found a reasonable consistency
in AOT, ash mass and effective radius (RMS errors around 0.3, 1.3–1.8 t/km2 and
0.8–0.9 µm with correlation coefficients around 0.90-0.95), whereas the retrieval
capability for SO2 was more limited.

A different neural-network-based scheme for the detection of volcanic ash in
MODIS images is described in Gray and Bennartz (2015). The input vector of this
neural network scheme includes the brightness temperature at 11 µm and the bright-
ness temperature differences 12–11 µm, 11–8.6 µm, and 11–7.3 µm. The output
quantity is a binary flag (ash/no ash). The training data are generated by match-
ing a number of MODIS granules with ash concentrations determined using the
Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein
et al. 2015). A second neural network is trained to detect SO2-rich ash. For this latter
neural network the authors report a correct identification of SO2-rich ash in 99.7%
or cases, with a false detection rate of 1.6% and a missed detection rate of 0.3%. For
the general ash detection network, a correct detection rate of 93.2% is reported, with
false detection rate of 12.3% and a missed detection rate of 6.8%.

4.5.8 Neuro-Variational Retrievals

As a last example of application of neural networks to aerosol retrievals we will
discuss the so-called “neuro-variational” retrieval schemes (Jamet et al. 2005). In
these retrieval schemes, neural networks are not used as stand-alone algorithms, but
they are used as part of a more general retrieval architecture. In some of the cases
we will review, the neural network is used to build an approximate forward model,
that is later minimized through conventional, iterative techniques. In other cases the
neural network provides a first guess for an iterative algorithm.

The idea of inverting a neural-network-based radiative transfer model through
iterative techniques has beenfirst proposed by Jamet et al. (2005) for the joint retrieval
of atmospheric and ocean parameters from SeaWiFS measurements. The authors
trained three multilayer perceptron neural networks:
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1. a neural network to estimate the aerosol contribution to the top-of-atmosphere
reflectance;

2. a network to estimate the diffuse transmittance of the atmosphere;
3. a network to estimate the water-leaving reflectance.

The aerosol properties were described by means of the AOT at 865 nm, the exponent
of a power-law size distribution and the complex refractive index, whereas the ocean
was described by means of the pigment concentration and a scattering parameter.
Solar and viewing zenith angles and relative azimuth angles were used as additional
inputs for the neural network. The results of the neural network simulations were
deemed by the authors compatible with their purpose. Anyhow, the task of estimat-
ing the aerosol contribution to the TOA reflectance proved more difficult then the
task of estimating the transmittance and the water-leaving reflectance. The results
of the three neural networks were combined to produce an estimate of the total
TOA reflectance minus the Rayleigh contribution. This was then used as forward
model in the inversion of real SeaWiFS data. The retrievals were compared to oper-
ational SeaWiFS retrievals, and spatial patterns in the retrieved parameters as those
produced by the operational algorithm were observed, but with a negative bias in
the chlorophyll-a concentration. However, validation against in-situ chlorophyll-a
measurements revealed that the chlorophyll concentrations retrieved by the neuro-
variational scheme were more realistic than those of the SeaWiFS algorithm. Amore
systematic validation of the method against in-situ measurements is presented in
Brajard et al. (2006b), where it is shown that the neuro-variational scheme gave
smaller retrieval errors than the operational method for water-leaving reflectances
at 443 and 490nm and chlorophyll-a concentrations, and larger error for AOT at
865 nm. An update to the approach presented above is described in Brajard et al.
(2006a), where broader variability ranges in some of the aerosol parameters are used
to create the training set, with the main goal of improving the retrieval capabilities in
cases of absorbing aerosols. The application of the updatedmethod toMediumReso-
lution Imaging Spectroradiometer (MERIS) data is presented in Brajard et al. (2012).
Diouf et al. (2013) further refined the method by performing the iterative retrieval
including a first-guess provided by amodification of the SOMmethod byNiang et al.
(2006) discussed in Sect. 4.5.6. The method – that the authors call SOM-NV (SOM-
Neuro-variational) – was applied to SeaWiFS images and the AOT retrievals were
validated against AERONET measurements at Dakar and Cape Verde, and a good
agreement was found over a range of AOTs between 0 and 0.8, that goes beyond the
maximum AOT at which the operational SeaWiFS product is defined (0.35). Similar
patterns between SOM-NV and the operational SeaWiFS algorithm are reported in
the retrieved chlorophyll-a.

An alternative type of neuro-variational algorithm is proposed in Di Noia et al.
(2015). In this method, a multilayer perceptron neural network is trained to retrieve
AOT at 550 nm, aerosol effective radius and complex refractive index (assumed
wavelength-independent) for a fine and a coarse mode of an assumed bimodal log-
normal size distribution, from ground-based measurements of skylight radiance and
degree of linear polarization at multiple wavelengths and viewing angles. The result
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Fig. 4.4 Histograms of the
number of iterations needed
for convergence (above) and
of the total retrieval time
(below) for a
Phillips–Tikhonov retrieval
algorithm initialized with a
LUT-based first guess (blue)
and the same algorithm
initialized using a neural
network retrieval as first
guess (red), obtained by a
test over 5000 synthetic data.
After Di Noia et al. (2015)

of the neural network retrieval is then used as first guess in an iterative algorithm
based on Phillips–Tikhonov regularization as described in Hasekamp et al. (2011).
The effect of using neural network retrievals as first guess in the iterative algorithm
was studied by comparing the retrievals obtained using the modified method to those
obtained using the original version of the iterative algorithm, in which the first guess
is provided by a LUT. The comparison was performed on synthetic data and on
real measurements produced by the groundSPEX spectropolarimeter (van Harten
et al. 2014). The main observed results were a remarkable increase in the number
of retrievals that passed the convergence criterion based on the goodness-of-fit χ2

of the final retrieval (a retrieval was considered successful if the final χ2 was below
2), as well as a decrease in the total retrieval time and in the number of iterations
required to converge (Fig. 4.4).

The retrievals performedby applying the algorithm togroundSPEXmeasurements
were compared to co-located AERONET measurements at Cabauw performed with



4 Neural Networks and Support Vector Machines … 323

high temporal resolution over three days in July 2013 and one day in September 2013.
The neuro-variational retrievals proved capable of following the daily cycles of most
of the aerosol parameters with satisfactory accuracy, and an improved agreement
with AERONET, compared to the original version of the algorithm, was observed
in particular for the imaginary part of the refractive index. An inspection of the
retrievals of this parameter produced by the neural network alone (that is, prior to
the application of the iterative algorithm) revealed that the accuracy of the final
retrievals was not substantially different from that of the neural network retrievals.
An improvement in the accuracy of the AOT was observed, instead, as a result of
applying the iterative retrieval after the neural network first guess. The extension
of this approach to satellite spectropolarimetric measurements is currently under
development.

4.6 Conclusions

In this paper we have discussed the application of machine learning algorithms, such
as neural networks and support vector machines, to aerosol and cloud remote sensing
problems. In the first part of the paper we have tried to summarize the theoretical
foundations of neural networks and support vector machines, and to explain the
conditions under which these can be applied to remote sensing problems. In the
second part of the paper we have reviewed a number of works published in literature,
that describe the application of machine learning methods to several remote sensing
problems.

The first class of applications we have considered is the use of supervised neural
networks to approximate radiative transfer calculations. Such an application is justi-
fied by the universal approximation properties of neural network, that is, their ability
to approximate any continuous function on a compact set to an arbitrary accuracy.We
have seen examples regarding the approximation of vector radiative transfer models,
radiative transfer calculations in disperse media and 3D radiative transfer calcula-
tions with inhomogeneous clouds. We have discussed two problems regarding the
approximation of forward models using neural networks: the difficulties with the
approximation of forward models requiring a very large number of input parameters
and the problem of approximating the derivative of a forward model with respect to
input parameters, which is very important if the forward model has to be used in a
retrieval algorithm.

After discussing the application of neural networks to forward modeling, we have
examined their application to classification and retrieval problems in the realm of
cloud and aerosol remote sensing. The applicationswe discussed include cloud detec-
tion in multispectral images, cloud type classification, retrieval of cloud properties,
as well as aerosol typing and retrieval of aerosol microphysical properties. Most of
the applications we have reviewed are based on multilayer perceptron networks, but
we have also discussed a number of methods based on radial basis function networks,
self-organizing maps and support vector machines. We have tried to emphasize that
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a large variety of ways exist to apply machine learning algorithms to cloud and
aerosol remote sensing. Some of the schemes we have reviewed derive information
on aerosols and clouds from the spectral (and/or angular) properties of remote sens-
ing signals, while other schemes make use of textural information, i.e. information
regarding the spatial variability of these signalswithin an image. Spectral and textural
information may be also combined in an integrated approach, and we have reviewed
an example in which this is done (Miller and Emery 1997). Several methods are as
well possible for generating training sets for machine learning algorithms. We have
seen schemes entirely trained using synthetic data and schemes where coincident
measurements of the input and target quantities of interest are used. In the final part
of the paper we have emphasized that machine learning methods can also be com-
binedwith “classical” retrieval schemes, in so-called “neuro-variational” approaches,
and we have reviewed a number of such approaches. In some cases, supervised neu-
ral networks are used as approximate forward models and inverted through iterative
retrieval schemes. In other cases, supervised or unsupervised neural networks are
used to generate a first guess for an iterative scheme employing a full radiative
transfer model.
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Chapter 5
Stereogrammetric Shapes of Mineral Dust
Particles

Olli Jokinen, Hannakaisa Lindqvist, Konrad Kandler,
Osku Kemppinen and Timo Nousiainen

5.1 Introduction

This chapter considers shape models which are retrieved from scanning electron
microscope (SEM) images of real dust particles. Thesemodels describe the real shape
of the particle as measured from the images with automated image processing tech-
niques. A general description of methods for retrieving the shape from SEM stereo
images is provided together with our own developments. The current implementa-
tion of our shape retrieval process starts with finding a sparse set of corresponding
points between one image and another imagewhich has been tiltedwith respect to the
first one. The sparse correspondences are used to refine the image orientations and
to estimate the 3-D object points in a bundle adjustment. The correspondences are
densified using least squares image matching techniques resulting in a dense surface
model. A volumetric model is obtained by adding the backside of the particle by
mirroring.
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From light scattering perspective, the use of model shapes derived directly from
those of real particles presents a paradigm change. For example, in Earth sciences,
where target particles would be readily accessible for detailed analysis, all climate
models and remote sensing applications employ simplistic model shapes such as
spheres, spheroids, ellipsoids or blocks of cubes for atmospheric dust particles in their
radiative treatments. More sophisticated shape models, such as deformed spheroids
(Gasteiger et al. 2011), agglomerates (Zubko et al. 2013), concave fractal polyhedra
(Liu et al. 2012), spatial Poisson-Voronoi tessellation (Ishimoto et al. 2010) or random
flakes (Nousiainen et al. 2009) have been considered in specificmodelling studies, but
these shape models are still descriptive: they aim at mimicking some morphological
features of real dust particles qualitatively, rather than being derived directly from the
real, observed shapes. The Gaussian random sphere (GRS) model byMuinonen et al.
(1996) is a notable exception, as its shape statistics can, and indeed have been derived
directly from observed silhouettes of real dust particles (e.g., Nousiainen et al. 2003;
Veihelmann et al. 2006; Muñoz et al. 2007). Even with GRS, however, the link to
real shapes is only statistical and does not necessarily result in realistically shaped
model particles. The GRSmodel is also limited to shapes that can be expressed using
a spherical harmonics expansion. All these modeling approaches have been recently
reviewed by Nousiainen and Kandler (2015).

The use of stereogrammetry to derive the real shapes of mineral dust particles
offers one route for assessing the performance of the presently used modeling
approaches. Indeed, several such comparisons are presented here. Further investi-
gations include effects of particle surface roughness on the scattering properties.
Obtaining the real shapes of dust particles is a key ingredient in computing the
single-scattering properties of real dust particles accurately and consistently. How-
ever, real dust particles also are inhomogeneous and may possess morphological
features that cannot be derived through stereogrammetry. Such features include, for
example, porous cavities and other internal structures that have been shown to be
present in real dust particles (Jeong and Nousiainen 2014). Derivation of the model
shapes directly from observed individual dust particles opens a new frontier with
great potential in the optical modeling, but its full exploitation requires much addi-
tional research. The chapter thus concludes with some ideas for further improvement
of the shape retrieval algorithms in view of the light scattering computations.

5.2 SEM Image Capturing

Stereogrammetric shape retrieval is based on imaging the particle from at least two
different viewpoints with an appropriate imaging system. Since atmospheric dust
particles are of the size of a fewmicrons and wewant to observe surface details of the
nanometer scale, the resolution of an optical microscope is not enough but a scanning
electron microscope needs to be applied. A suitable resolution, reaching 2nm at high
magnifications, and a large depth of field make the SEM advantageous for imaging
dust particles. An atomic force microscope could be a viable alternative and for that,
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the reader is referred to, e.g., Vijendran et al. (2007) and Woodward (2014). The
imaging principle of a SEM is based on focusing a beam of electrons to image the
particle and to obtain information about its structure and composition. To improve the
image quality, the particle samples can be sputter-coated with thin conductive layers
(e.g. gold, platinum, or carbon). For example, gold coating produces fine structures,
whichmay help thematching algorithms on homogeneous areas. Secondary (SE) and
backscatter (BSE) electron images are typically collected. The SE signal amplitude
is a function of local surface orientation with respect to the incident beam while
the BSE signal is mainly correlated with the local average atomic weight (Goldstein
et al. 2003). The acceleration voltage affects how deep the primary beam electrons
penetrate into the particle and it has also an influence on the visibility of surface
details in the images (Richards et al. 2000). Other factors affecting the image quality
include working distance, scan rate, spot size, magnification, and aperture (Goodhew
et al. 2001). The influence of these on the 3-D reconstruction is analyzed by Carli
et al. (2011).

For depth recovery, at least two SEM images must be captured. The stage is tilted
between the image acquisitions in order to obtain a disparity between corresponding
points which is different at different heights of the object surface. Moving the object
only on a plane would lead to a uniform disparity in a parallel projection imaging
geometry (Zolotukhin et al. 2013). The horizontal disparity is defined as a difference
between the horizontal image coordinate of a point in one image and the horizontal
image coordinate of its corresponding point in another tilted image. The vertical
disparity is defined respectively. In eucentric tilting, the intersection of the primary
electron beam with the specimen defines the center of tilting (Electron Microscopy
Sciences 2016). The tilting can be, however, performed around an arbitrary linewhich
is taken into account when the 3-D object is reconstructed from the corresponding
image observations. The tilt angles can be computed from the images in an auto-
calibration process (Danzl et al. 2007).

For magnifications larger than 1000×, the imaging geometry can be well approxi-
mated by a parallel projection, where the projection center is at infinity and the image
rays are parallel (Cornille et al. 2003). Accurate calibration of the SEM includes cor-
recting for image distortions with a non-parametric model (Cornille et al. 2003).
This model can be estimated from a pure translational image sequence followed by
a sequence of arbitrary motions of a planar calibration target textured with a random
speckle pattern. The depth coordinate can be calibrated with a multiple-step heights
artefact (Carli 2010). An external calibration with an atomic force microscope is also
possible.

5.3 Shape Retrieval

The geometrical representation of a stereogrammetric shape model is given by a set
of voxels filling the volume of the particle. The voxel representation is derived from
surface measurements consisting of a set of 3-D points on the object surface and
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Fig. 5.1 Diagram of our
shape retrieval process

triangulated into a mesh. For the determination of the 3-D points, the main effort is
to determine corresponding points between the two SEM images forming a stereo
pair. The denser the point set is, the more detailed is the retrieved shape model.
Dense image matching aims at establishing correspondences down to pixel level
resolution. Initial estimates for the dense correspondences are obtained from sparse
image matching, where the matching is performed only in sparsely located interest
points extracted from the images. These sparse correspondences are also used to
refine the relative orientation of the images, which is essential for subsequent dense
imagematching and accurate 3-D point computation. The different steps of our shape
retrieval algorithm are outlined in Fig. 5.1 and described in detail in the following
with a review of other alternative approaches.



5 Stereogrammetric Shapes of Mineral Dust Particles 335

5.3.1 Sparse Image Matching

The task in sparse imagematching is to find for a set of interest points in the first image
the corresponding points in the second image. The interest points may be divided into
two classes. The first one includes corner points such as detected by Harris detector
(Harris and Stephens 1988) or Förstner operator (Förstner and Gülch 1987). For a
corner point in the first image, the search for the corresponding corner point in the
second image is typically based on finding the point whichmaximizes the normalized
cross-correlation (NCC) computed between image windows centered at the corner
point in the first image and each nearby corner point in the second image (Kammerud
2005). The NCC can be improved with stretch correlation (Lacey et al. 1998), which
stretches and shears the second imagewindow and thus accounts for surface rotations
caused by changing views. The location of the corresponding point is refined to the
sub-pixel accuracy by least squares matching within the image windows.

The second class of interest points consists of detectors and descriptors, which are
invariant to various image transformations such as scale and rotation, and changes
in illumination or 3-D viewpoint (Lowe 2004). The detectors aim to locate points
with a local coordinate system which have high repeatability under the transforma-
tions while the descriptors should also be highly distinctive to describe the image
content in the local neighborhood. The descriptors may be computed, e.g., from
local image gradient orientations, magnitudes, and their histograms (Lowe 2004).
The performance of various detectors and descriptors is evaluated by Mikolajczyk
and Schmid (2005) and Mikolajczyk et al. (2005) including SIFT (Scale Invariant
Feature Transform) (Lowe 2004), Harris-Affine and Hessian-Affine (Mikolajczyk
and Schmid 2004),MSER (Maximally Stable Extremal Regions) (Matas et al. 2002),
EBR (Edge-Based Regions) and IBR (Intensity Extrema-Based Regions) (Tuytelaars
and Van Gool 2004), and salient regions (Kadir et al. 2004). There exists also a fast
version of SIFT called SURF (Speeded-Up Robust Features) (Bay et al. 2008) utiliz-
ing integral images. The matching of interest points between two images is based on
the descriptor vectors. The point with themost similar descriptor is the correct match.
In order to improve the matching, the images may be divided into sub-images and the
matching performed within corresponding sub-images. The positions of sub-images
in the second image should be shifted according to rough horizontal and vertical
disparities, which can be single values for the whole image visually estimated from
the images (Lindqvist et al. 2014). SIFT keypoints have been applied to SEM images
by Lindqvist et al. (2014) and Zolotukhin et al. (2013) and SURF keypoints by Roy
et al. (2012).
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5.3.2 Image Orientation and Sparse Reconstruction

In parallel projection geometry, the measured image coordinates (xnk, ynk) of point
k in image n in metric units are related to the 3-D object coordinates (Xk,Yk, Zk) by
(Hemmleb et al. 1996)

(
xnk
ynk

)
+ vnk = R12

n

⎛
⎝Xk − X0n

Yk − Y0n
Zk

⎞
⎠ (5.1)

where R12
n denotes the first two rows of a rotation matrix Rn , tn = [X0n Y0n]T is a

translation in the XY-plane, and vnk is a residual vector related to the image obser-
vations. The metric image coordinates are obtained from the measured pixel coor-
dinates (Ink, Jnk) according to xnk = s(Jnk − j0), ynk = s(i0 − Ink), where s is a
known scale provided with the SEM image and (i0, j0) is the center point of the
SEM image.

The exterior orientations of the SEM images given by Rn and tn and the 3-D
coordinates of the object points corresponding to the matched interest points are
solved in a bundle adjustment. The bundle adjustment requires initial estimates for
the unknown parameters. The rotation matrices are parametrized by three angles
describing rotations around the coordinate axes. Assuming that the tilting of the
specimen stage occurs around a line approximately parallel to the Y -axis, the tilt
angle of the SEM image provides an initial estimate for the rotation angle around this
axis and the other two angles are initialized with zeros. Since the image coordinates
have been centered to the middle of the image, where the rotation center is often
located nearby, the translation parameters are also given zero initial values. There
exist several methods to compute the 3-D coordinates from matched image points,
which have different assumptions on the imaging geometry such as eucentric tilting
(Piazzesi 1973; Burkhardt 1981) or that the tilting occurs around a line parallel to
one of the image coordinate axes (Themelis et al. 1990). The latter one is adopted
here to give initial estimates for the object points according to

X0
k = (−x1k sin φ2 + x2k sin φ1)/ sin(φ1 − φ2) (5.2)

Y 0
k = (y1k + y2k)/2 (5.3)

Z0
k = (−x1k cosφ2 + x2k cosφ1)/ sin(φ1 − φ2) (5.4)

where φ1 and φ2 are the tilt angles around the Y -axis of the specimen stage of the
first and second SEM image, respectively.

Let the components of the right hand side of (5.1) be denoted by x ′
nk and y′

nk . In
bundle adjustment, the merit function to be minimized with respect to the orientation
parameters and object coordinates is given by
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f1 =
K∑

k=1

2∑
n=1

wk[(xnk − x ′
nk)

2 + (ynk − y′
nk)

2] (5.5)

wherewk are weights used to discard incompatible corresponding points. The weight
wk equals one if all the four residuals related to point k in x and y directions in
both images are below an adaptive threshold getting tighter as the iteration pro-
ceeds according to a scheme based on the statistical distribution of all the residuals
below the current threshold similarly as in (Zhang 1994). Otherwise wk equals zero.
The nonlinear least squares minimization problem is solved using the Levenberg-
Marquardt algorithm. In order to cope with the datum deficiency, the orientation of
the first image is kept fixed so that the algorithm results in refined exterior orienta-
tion of the second image and sparse 3-D reconstruction of compatible corresponding
points.

5.3.3 Dense Image Matching

Early methods (Kammerud 2005; Lindqvist et al. 2014) for densifying the corre-
spondences between the SEM images relied on edge features typically extracted
with the Canny detector (Canny 1986). The edge areas usually contain enough tex-
ture to enable NCC or least squares based image matching. An initial estimate for
the corresponding point can be interpolated from the sparse correspondences at the
interest points (Lindqvist et al. 2014). A dense disparity map for the whole image
may be produced by fitting piecewise polynomials to the disparity values established
at the edge pixels (Lacey et al. 1998). The accuracy of such an interpolated disparity
map is however limited. Better results are obtained when the horizontal and verti-
cal disparities are determined at every pixel using image matching techniques. This
is called dense image matching, which is indeed possible in textured areas of the
images.

Methods for dense image matching include global and local ones. The global
methods typically minimize an energy function, which sums the pixel-wise matching
costs and contains a global smoothness term supporting piecewise smooth disparity
selection (Hirschmüller 2008). A multi-resolution approach with a pixel-wise dis-
parity search space facilitates and speeds up the matching (Rothermel et al. 2012).
The local methods are based on comparing the intensity values within local image
windows with possible constraints on the change of disparity from pixel to pixel. The
epipolar constraint reduces the search for the corresponding point to a 1-D problem.
The images may be also rectified to the normal case (Morgan et al. 2004) so that
the corresponding point in the second image is located on the same row or column
as the point in the first image. For recent state-of-the-art and comparison of several
dense image matching methods, the reader is referred to Cavegn et al. (2014), Haala
(2013), Remondino et al. (2014), and Remondino and Zhang (2006). Also, commer-
cial software exists for dense image matching of SEM images (Electron Microscopy



338 O. Jokinen et al.

Sciences 2016; Lucideon 2016; Zeiss 2016). In the following, a local method based
on expanding the correspondences is proposed as inspired by the work of Furukawa
and Ponce (2010), Kannala and Brandt (2007), and Ylimäki et al. (2012).

The main idea here is thus to gradually expand the correspondences from the
interest points, which were compatible in the bundle adjustment, to their neighbor-
hoods until the whole image has been filled up. Since a semi-dense disparity map
may be enough for the light scattering computations, the disparities are determined
in a grid with a spacing of m pixels, where m ≥ 1. The locations of the interest
points in the first image are rounded to the nearest grid points, which yield the first
seed points. The unique grid points in the 8-connected neighborhoods of all the
seed points where no disparity has been yet estimated are selected. For each grid
point (I1k, J1k) in the first image, an initial estimate for the corresponding point is
given by (I 02k, J

0
2k) = (I1k − d0

I , J1k − d0
J ), where d

0
I , d

0
J are initial estimates for the

vertical and horizontal disparities at (I1k, J1k), interpolated from the disparities at
the interest points. The interpolation is realized by triangulating the horizontal and
vertical disparities at the interest points into TIN (triangulated irregular network)
models and looking the values of the TIN surfaces at the grid point in question. The
position of the corresponding point is refined by affine least squares image matching
to be described below. The refined correspondence is accepted if both horizontal and
vertical disparities in the new point differ from their values in the seed point less
than a threshold Td . This controls that the disparities change smoothly. Moreover,
the distance of the corresponding point from the epipolar line is required to be lower
than another threshold Te. The epipolar line can be defined as a projection of the
image ray of the point in the first image onto the second image. It is computed by
selecting two 3-D points from the image ray of the point in the first image according
to the inverse of (5.1), projecting these points onto the second image using (5.1), and
computing a line through the two image points. Successfully matched correspon-
dences which satisfy the disparity and epipolar constraints define new seed points
in the first image. The process is then started again from expanding the seed points
to their neighborhoods. Finally, after all the grid points have been tested, the grid
points where the correspondence was rejected are reconsidered. These points are
often located in areas where the disparities do not change smoothly like near edges
and where the points that were started to be expanded from neighboring interest
points meet. For each point to be reconsidered, its neighboring points, which have
been originally expanded from other interest points than the point which is recon-
sidered, are selected as potential new seed points. The reconsidered correspondence
is accepted if it satisfies the disparity constraint with the disparity at one or more
of the new seed points and if it also satisfies the epipolar constraint. The remaining
points are reconsidered again with a new initial estimate for the corresponding point
given by the corresponding point of the neighboring seed point plus the difference
between the point in the first image and its seed point. The corresponding point is
thus initially estimated to have moved equally as the point in the first image. The
procedure thereafter is as before, including affine least squares image matching and
disparity and epipolar constraints. All the new seed points in the neighborhood are
tested until a valid solution is found, if any.
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The details of affine least squares image matching are as follows. Let (I1k, J1k)
be a grid point in the first image, the approximate corresponding point of which
is (I 02k, J

0
2k) in the second image. Let g1 be a template image centered at (I1k, J1k)

and denote the pixels of the template by lower case letters (i1, j1) ∈ Ω , where Ω

is the domain of the template of size p pixels squared in the first image. Note that
the template image is a patch of the original image despite of the grid spacing m.
The template image is matched against the second image g2 within a search window
centered at (I 02k, J

0
2k). An affine transformation which maps the coordinates of the

template image to the coordinates of the search image is defined as

(
i12
j12

)
=

(
a1 a2
a3 a4

) (
i1 − I1k + I 02k
j1 − J1k + J 0

2k

)
+

(
a5
a6

)
(5.6)

g12 = g1 + a7 (5.7)

where a = [a1 . . . a7]T are parameters to be estimated. The gray levels g2 are bilin-
early interpolated to the intermediate pixels (i12, j12) and denoted by g̃2. The merit
function to be minimized is given by

f (a) =
∑
Ω

[w(i1, j1)(g12(i1, j1) − g̃2(i12, j12))]2/
∑
Ω

(w(i1, j1))
2 (5.8)

where w(i1, j1) are weights used to discard incompatible pixels, where the gray lev-
els g12 and g̃2 differ more than an adaptive threshold getting tighter as the iteration
proceeds according to a scheme proposed by Zhang (1994). The nonlinear minimiza-
tion problem is solved using the Levenberg-Marquardt algorithm. Once the iteration
has converged, the refined corresponding point is obtained from

(
I2k
J2k

)
=

(
a1 a2
a3 a4

) (
I 02k
J 0
2k

)
+

(
a5
a6

)
(5.9)

5.3.4 Dense Reconstruction

A dense 3-D reconstruction is computed using forward intersection. For each pair
of corresponding points (I1k, J1k) and (I2k, J2k) resulting from dense image match-
ing, the image coordinates are first scaled to metric units (x1k, y1k) and (x2k, y2k).
Equation (5.1) is then written for both points with previously estimated exterior ori-
entations. The 3-D coordinates (Xk,Yk, Zk) are solved from these equations in the
least squares sense. The 3-D coordinates of the interest points, which were estimated
in sparse reconstruction, are added to the point set and the whole set is triangulated
into a dense TIN model, which describes the object surface visible in both images.
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5.3.5 Volumetric Model

The challenges in converting a triangulated surface into a closed volume are best
depicted by the example in Fig. 5.2, top row, where the retrieved TIN surface of a
dolomite particle is viewed from four sides. The network of points is dense at the top
of the particle but some points are also retrieved from the edges and even from the
plane where the particle is placed upon. The latter points are efficiently excluded by
setting aminimumheight h0 for the approved points. A suitable value for h0 is unique
for each shape and is recommended to be evaluated visually. The visible boundary in
BSE images can be used for additional reference. In Fig. 5.2, h0 = 1.0µm, and the
resulting shape after excluding the points below h0 is presented in the middle row.
The number of points below the stage level was only 0.02% of the total number but,
if not excluded, these points can have a large impact on the volumetric shape.

Fig. 5.2 An example of the construction of a volumetric model based on the stereogrammetrically
retrieved surface of the dolomite particle. The top row shows the TIN surface from the side (dec-
lination 0◦), from four azimuthal angles. The middle row shows the same TIN surfaces after the
removal of the points that were likely to be from the stage instead of the particle surface. In this
case, we excluded all points below the height of 1.0µm. Perspectives of the volumetric model are
collected in the bottom row. For dolomite, the volumetric model was made using a 1:1 mirroring
of the upper surface with respect to a horizontal plane. This 3-D shape consists of about 800 000
volume elements. The units in the top and middle rows are microns and in the bottom row indices
of the volume elements
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Since the stereogrammetric method was, thus far, only used to retrieve the upper
hemisphere of the particle surface, assumptions about the other hemisphere cannot be
avoided when constructing the volumetric model. Lindqvist et al. (2014) applied two
methods:mirroring and scaledmirroring.Bothmethods construct a lower hemisphere
that ismirror symmetric to the upper; the only difference is the height of themirroring
plane which determines the scaled height of the lower hemisphere, so that the aspect
ratio of the particle is conserved. After the removal of the stage level points, the
mirroring plane can be set to any desired level, and then mirror and scale the points
that are above the level. An example of 1:1 mirroring is shown in Fig. 5.2, bottom
row. It is important to set the mirroring plane in such a level that enough of the
retrieved surface points lie above that level; in the example of Fig. 5.2, only 4.8% of
the points are lost due to the choice of the mirroring level.

We note that the particle surface and its mirror give only an approximation of the
full 3-D particle as obviously only those parts of the upper surface are covered which
are visible to both SEM images. Also, the particle boundary areas are usually not
well covered and would require more images from oblique viewpoints to be fully
modeled.

However, with a well-defined surface on both hemispheres, it is next straightfor-
ward to discretize the space between the surfaces into small volume elements.Volume
discretization is obviously necessary only if the light scattering method employed
is a volume integration method such as the discrete-dipole approximation (DDA)
(e.g., Yurkin and Hoekstra 2011), or if the particle is internally inhomogeneous and
the volume fractions and locations of the inhomogeneities need to be transferred to
the light scattering method. The size of the individual volume elements defines the
resolution for surface details of the volumetric model, because the dense TIN sur-
face model has higher resolution for surface details than the maximum reasonable
resolution for the volumetric model, which is, in turn, largely dictated by the light
scattering method and the available computing resources.

In the generation of the volumetric model from the stereogrammetrically retrieved
surface, there are several phases which would benefit from a detailed study dedicated
to analyzing how the choices (e.g., stage level, mirroring) made in the shape genera-
tion propagate to the light scattering results. We performed a limited number of such
studies in the early stages of this work, using a calcite particle as the test subject.
First, we experimented with the selection height of the stage level, and found that
the degree of linear polarization −S21/S11 was the most sensitive to it. The angular
dependence of the element changed especially in the intermediate scattering angles,
when the stage level was set too high, so that points from the particle surface were
deleted in addition to the stage. For lower stage level choices where most or all of
the excluded points were from the stage, the difference in scattering was minor. Sec-
ond, we tested different levels of scaled mirroring so that the height of the particle
remained constant, and we set the mirroring plane at hmax/2, 2hmax/5, and hmax/4,
and also constructed an extreme case where the lower side was a flat, horizontal



342 O. Jokinen et al.

plane. In other words, we obtained the lower part using 1:1, 3:2, 3:1, and 1:0 mir-
roring, respectively. We found, not surprisingly, that the particle with the flat lower
hemisphere differed from the others both in the scattered intensity and polarization
properties. The mirrorings showed most differences at scattering angles θ > 90◦,
and more for the polarization elements than for intensity. Further studies have to be
performed on the artifacts introduced by scaled mirroring, because this study was
done using only one shape, and isolating the impact of the artifacts from that of a
changing particle volume is challenging.

5.3.6 Examples of Retrieved Shapes

In this section, the performance of the shape retrieval algorithm outlined in Fig. 5.1
is illustrated with four mineral dust particles, namely a calcite, a dolomite, a silicate,
and an aggregate particle. The particles were selected from a Saharan mineral dust
sample collected during the SAMUM campaign (Heintzenberg 2009; Scheuvens
et al. 2011) overMorocco in 2006. For electronmicroscopy, the particle sampleswere
sputter-coated with a thin gold layer. The single particles were imaged with an FEI
environmental scanning electron microscope (ESEM) Quanta 200, equipped with a
field emission gun, at two different angles by tilting the specimen stage at a working
distance of 10mm. Secondary and backscatter electron images were collected. An
acceleration voltage of 15 kV with a “spot size 3” was found optimal for image
quality, resulting in a nominal lateral resolution better than 3nm. One of the SEM
images for each particle is shown in Fig. 5.3.

As a preprocessing step for shape retrieval, the area covered by the particle was
manually segmented from one of the SEM images of each particle. SIFT keypoints
extracted within the whole image were applied in sparse matching and for solving
the image orientations in a bundle adjustment with sparse 3-D reconstruction. Dense
image matching was then performed based on expanding the sparse correspondences
to the whole segmented area with a grid spacing of m = 1 pixel, i.e., the dense
correspondences were established at every pixel. The thresholds in dense image

Fig. 5.3 SEM images (from left to right) of a calcite, a dolomite, a silicate, and an aggregate
particle. The particles are of the size of 5–20 microns
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Fig. 5.4 Dense TIN models (row-wise from left to right) of the calcite, dolomite, silicate, and
aggregate particle. The colour is proportional to the Z -coordinate value

matchingwere Td = 5 pixels and Te = 5 pixels and the size of the image templatewas
p = 61 pixels squared for all the particles (the whole image is of the size of 2048 ×
1887 pixels). The reconstructed dense surface models are illustrated in Fig. 5.4 and
the volumetric ones in Fig. 5.5.

It may be realized that the surface models are very detailed without any outliers
visible. No manual editing has been performed but the process is fully automated
excluding the segmentation step. The algorithms were implemented using matlab
software and the computations were performed in a PC with 3.30GHz processor.
The total computing times varied from 90min to five hours for the different particles
with most time spent in dense image matching. The number of matched points varies
from approximately half a million (silicate particle) and 800 000 (calcite particle) to
one million (dolomite and aggregate particles). The sparsely located points on the
stage result from matched SIFT keypoints. The volumetric models clearly show the
overall geometry of the particles.
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Fig. 5.5 Volumetric models (row-wise from left to right) of the calcite, dolomite, silicate, and
aggregate particle. The units of the coordinate axes are indices of the volume elements

5.4 Application to Light Scattering

For light scattering purposes, particle shape parameters have been analyzed directly
from images already in 1984, when Hill et al. (1984) measured the aspect ratios
of mineral dust particles. Although this was still far from stereogrammetry, the
approach was fundamentally similar to what we discuss here, as the starting point
was to take measurements of the real dust particles and use those as the basis for
the dust shape model. The fundamental difference, however, is that they derived
simple parameters to describe the shapes, while we derive the actual shapes. As the
computational methods for light scattering have become more powerful and ver-
satile, the selection of possible shape models, for example for mineral dust, has
expanded tremendously. Still, a mathematical shape model, such as a spheroid that
is described with its aspect ratio, is but an idealization of a real particle, and the light
scattering results obtained using such models are thus questionable. The stereogram-
metric shape retrieval method offers a novel possibility to acquire the shape model
directly from the imaged particle, with considerably more detail than the strongly
simplified ones used before. Stereogrammetric technique was pioneered in light
scattering applications by Lindqvist et al. (2014). They analyzed pairs of scanning
electron microscope images of four micrometer-sized mineral dust particles using
stereogrammetry, built the three-dimensional models directly based on the retrieved
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shapes, and computed their light scattering using the discrete-dipole approximation
(DDA). A central question of the entire application is: how different are these stere-
ogrammetric models compared to simplified mathematical shape models, from light
scattering perspective? We will address this question by comparing the stereogram-
metric models to spheres, spheroids, and Gaussian random spheres, which all are
widely used shape models for mineral dust particles.

5.4.1 Scattering by Stereogrammetrically Modeled Mineral
Dust

We present light scattering results for four stereogrammetrically retrieved particle
models that represent a calcite, a dolomite, a silicate, and an aggregate particle, all a
few micrometers in diameter. The particles are the same as in Fig. 5.3 but the shape
models are adopted from Lindqvist et al. (2014) where the dense mapping procedure
was not yet implemented. The shapes thus have the same overall geometries, but
lack in small-scale details. The particles have inhomogeneous compositions that
have been investigated using energy-dispersive spectroscopy and taken into account
in the volumetric models by manually setting the refractive indices for each volume
element (see Lindqvist et al. (2014), for details). As concluded by Lindqvist (2013)
and Lindqvist et al. (2014), the inhomogeneous compositions did not have as large an
impact to scattering than the different shapes in this case (likely because the refractive
indices of the different minerals were typically similar, except for hematite, but its
volume fraction was in all cases less than 2%), so we can attribute most of the
particle-to-particle differences in scattering to arise from differences in shapes.

Light scattering computations were made using the DDA code ADDA, version
1.1 (Yurkin and Hoekstra 2011). ADDA is a volume integral method for computing
the electromagnetic interaction of the incident radiation with a wavelength-scale
particle, and solves for the total scattered field. This interaction can be described
mathematically with a 4 × 4 scattering matrix S, where most of the information is
stored in the following six matrix elements: S11, which denotes the total scattered
intensity for incident unpolarized light; and different polarization elements S21, S22,
S33, S34, and S44. These elements are functions of the size parameter x = 2πaeq/λ,
where aeq is the radius of the particle (for nonspherical particles, the radius of an
equivalent-volume sphere is here used), and λ is the wavelength of light. The results
shown here are computed for a visible wavelength of λ = 550 nm and using particle
radii from 0.04 µm to 1.4 µm, corresponding to size parameters from x = 0.5 to
x = 16. The true sizes of the four particles were around the highest x considered, but
we expect the retrieved shape to be a realistic dust model even if scaled to smaller
or larger particle sizes.

Size parameter dependence of the scattering matrix elements is presented in
Figs. 5.6, 5.7, 5.8 and 5.9 for the calcite, dolomite, silicate, and aggregate parti-
cle, respectively. Overall, the overarching scientific finding that these results yield
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Fig. 5.6 Size parameter dependence of the six scattering matrix elements for the stereogrammetric
calcite particle

Fig. 5.7 As Fig. 5.6, but for the dolomite particle

is that the differences in scattering by micron-sized real dust particles are surpris-
ingly large in all of the scattering matrix elements. The size dependence of scattering
varies to some extent between particle shapes although has similarities aswell: for the
polarization elements, the results show shape dependence for size parameters x ≥ 3
in general, but the convergence at large x depends on the shape. While the very
thin and elongated silicate particle shows convergence in its polarization properties
already at x ≥ 5, the more equidimensional dolomite particle does not converge even
at the largest x considered. Scattered intensity S11 develops similarly as a function
of size in all cases: intensity increases with x throughout all scattering angles, and
shows a nonlinear increase near backscattering at larger size parameters regardless
of the shape. Notable in the S11 results is that only the calcite and aggregate particles
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Fig. 5.8 As Fig. 5.6, but for the silicate particle

Fig. 5.9 As Fig. 5.6, but for the aggregate particle

produce a typical mineral dust phase function with a featureless and flat side scat-
tering and a minor increase towards backscattering.

5.4.2 Comparison to Simplified Shape Models

Stereogrammetric shape retrieval is, despite its beauty, a highly elaborate method
for obtaining a model for a single particle. Therefore, we see its benefits first and
foremost in validation of simplified shape models that are more effective in both
modeling the shape and light scattering, but may have their inaccuracies and incon-
sistencies that are not necessarily well known (Nousiainen and Kandler 2015). Here,
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Fig. 5.10 Angular dependence of the scattering matrix elements for a lognormal size distribution
of stereogrammetric calcite particles (black line). For comparison, integration over a similar size
distribution of simplified shape models of a sphere (pink line), a spheroid (orange line), and a
Gaussian random sphere (blue line) are also shown

we demonstrate comparisons of stereogrammetric models to simplified models in
terms of light scattering. As stereogrammetric models we consider our four example
dust particles, while as simplified models we consider a sphere, a spheroid, and a
Gaussian random sphere, the last of which is a stochastic shape model for irregular
particles (Muinonen et al. 1996). To eliminate one dimension of variables and thus
facilitate comparisons, the scattering results are here integrated over a lognormal size
distribution with a cross-section-weighted average radius reff = 0.82µm (Lindqvist
et al. 2014; Mishchenko and Travis 1998). All the simplified model particles have
volumes equal to the stereogrammetric shapes (mass conservation). An aspect ratio
for each spheroidalmodelwas derived from the stereogrammetric images: the silicate
particle turned out to be the most elongated with an aspect ratio of 0.29, while the
dolomite was closest to an equidimensional shape with an aspect ratio of 0.91. The
shape parameters for the Gaussian random sphere model (σ and the correlation func-
tion, see Muinonen et al. (1996) for details) were retrieved from three orthogonal,
randomly chosen intersections of each stereogrammetric particle.

For the calcite particle, the comparisons are shown inFig. 5.10. The size-integrated
scattering properties of the stereogrammetric shape are smooth and quite typical for
mineral dust. The Gaussian random sphere geometry models scattering remarkably
successfully for all the elements, only biased somewhat high for S22/S11 and low
for −S12/S11. Spheroids of the same aspect ratio as the particle cannot mimic the
scatteringproperties, and fail in particular at intermediate to large scattering angles for
all elements considered. The distribution of spheres is not even comparable because
of the strong resonances characteristic to monodisperse spheres have not balanced
out after the size integration.
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Fig. 5.11 As Fig. 5.10, but for the dolomite particle and the simplified shape models based on that
particle

The dolomite particle scattering comparisons (Fig. 5.11) reveal that this particle is
much closer to a spherical particle, probably because of its aspect ratio close to unity.
Although the examples in Fig. 5.2 do not show a visual resemblance to a sphere, the
interferences in the monodisperse scattering in Fig. 5.7 are a clear indication that
the dolomite particle shape supports similar interference mechanisms that take place
inside a sphere or other regularly shaped particles (Muinonen et al. 2011). The size-
integrated results confirm this, in particular with the asymmetric phase function with
a distinct minimum, and an almost entirely negative −S12/S11. Then again, S22/S11
that deviates from unity is an unmistakable indication of nonsphericity. TheGaussian
random spheres are also almost spherical (σ = 0.084) for this particle but deviate
from a sphere enough so that the S22/S11 of the Gaussian random sphere geometry
closely matches the angular dependence of S22/S11 by the stereogrammetic shape.

The silicate particle is different from the other three dust particles in that it is
very elongated and thin. To begin with, the simplified shape models employed in this
study are not ideal for modeling the shapes of such particles. This is demonstrated
from light scattering perspective in Fig. 5.12, where the simplified models are clearly
unable to model the scattering matrix of the silicate particle. Due to the elongation
and the fact that we use volume equivalence for determining the particle size, the
silicate stereogrammetric particle has two of the three dimensions significantly larger
than the other model shapes, which is evident from the S11(θ = 0◦) that is almost an
order of magnitude higher for the silicate than for the spherical model.

The size-integrated scattering by the aggregate particle (Fig. 5.13) is, like cal-
cite,“traditional” mineral dust scattering. For the aggregate, the spherical and spher-
oidal particles cannot be sed as proxies in scattering computations, and even model
particles based on the Gaussian random sphere geometry scatter here notably
differently to the original shape, potentially due to the lack of an inhomogeneous
composition or a non-optimal shape parameter retrieval.
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Fig. 5.12 As Fig. 5.10, but for the silicate particle and the simplified shape models based on that
particle

Fig. 5.13 As Fig. 5.10, but for the aggregate particle and the simplified shape models based on that
particle

5.4.3 Impact of Surface Roughness on Scattering

The stereogrammetrically retrieved particle models are applied to investigate the
impact of surface roughness on the optical properties of real dust particles. The
results of introducing additional surface roughness, while conserving mass and over-
all shape, has been studied by Kemppinen et al. (2015). Their roughening algorithm
was based on Monte Carlo collision of rays with the surface elements of the targets
that created small mounds or craters at the collision points. Examples of various
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Fig. 5.14 Volume element representations of the various roughening stages of the stereogrammetric
particle models. For each particle, the unroughened stage is shown along with three stages of
increasing roughening: low, medium and high

stages of the roughened stereogrammetric particles are shown in Fig. 5.14. Each row
depicts the advancing stages of surface roughening for one of the particles. The over-
all shape is not affected significantly, but surface details are clearly distorted at the
later stages of roughening.
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Calcite Dolomite

Fig. 5.15 Scattering matrix elements S11,−S12/S11, and S22/S11 of different roughening stages for
the stereogrammetric models of the calcite and dolomite particles. Black is the scattering function
of the original particle, and cyan, magenta, and blue correspond to the low, medium, and high
roughening cases, respectively
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Silicate Aggregate

Fig. 5.16 As Fig. 5.15, but for the stereogrammetric models of the silicate and aggregate particles

The level of surface roughness seems to have a systematic impact for all the
scattering matrix elements, and the effect is seen in all the particles studied. The
results are summarized as follows: S11, S22/S11, and −S34/S11 are decreased, while
−S12/S11, S33/S11, and S44/S11 are increased. For the diagonal elements, the effects
are generally the most pronounced at the backscattering angles; whereas, for the off-
diagonal elements, the effects are greatest at the side-scattering angles. The impact
of roughening on scattering is illustrated in Figs. 5.15 and 5.16 for S11, −S12/S11,
and S22/S11. It is clearly seen that the level of roughening has a quantitative effect
on scattering. It is also seen that the effects are relatively modest. However, when
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considering lidar quantities, such as lidar ratio and linear depolarization ratio, the
effects can be significant (not shown). It is alsoworth noting that it seems that particles
of larger sizes are affected more strongly by the additional surface roughness.

5.5 Conclusions and Future Work

This chapter has presented methods for retrieving the real 3-D shapes of atmospheric
dust particles from SEM images. The methods were fully automated, excluding
a manual segmentation of the particle from its background and selection of the
mirroring plane in volumetric modeling. The experimental results showed that
highly detailed models can be recovered with the proposed dense image match-
ing techniques. The resulting models are fundamentally different from the simplistic
or descriptive shape models that have been exclusively employed in dust single-
scattering modeling until now. Most importantly, the stereogrammetric models are
directly based on real particles and can capture both their large-scale and smaller-
scale shape features that are unique to each particle.

Given that the stereogrammetrically modeled shapes are based on real particles,
light scattering studies made using these model particles are arguably among the best
available references for single scattering by individual, wavelength-scale particles.
The first such study concentrated on mineral dust particles, where light scattering
by the stereogrammetric model particles was simulated using the discrete-dipole
approximation. Simulations for four mineral dust particles of different types suggest
that the type can largely affect the optical properties. Themost significant differences
in the scattering properties between the dust particle types are seen in the side and
backscattering angular region—the scattering angles that are highly relevant for, e.g.,
lidar and satellite-based remote sensing. All scattering matrix elements have shown
differences to some degree: from the polarization elements, the most sensitive to
particle type are −S12/S11 and S22/S11, while the smallest differences are seen in
−S34/S11. Reference results like these are crucial when selecting a suitable single-
scattering model for an application. Because the retrieval of a stereogrammetric
model geometry and the light scattering computations are elaborate and resource-
consuming processes, a simplified (mathematical)modelmay bemore convenient for
practical applications. Particles such as spheres or spheroids would be particularly
desirable, but have been shown to bear little resemblance in their size-integrated
single-scattering properties with respect to the stereogrammetric dust particles.

In addition to providing very detailed reference material for light scattering
research, the stereogrammetric models can also be used as a realistic baseline for sen-
sitivity studies. One such study has been made concerning surface roughness. Added
small-scale surface roughness seems to have a systematic and consistent impact on
light scattering by irregular, realistically shaped particles. Largest effects are seen
at backscattering and side-scattering angles. Particularly large impacts are seen with
regards to lidar quantities and for large particles.
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Despite its obvious benefits in light scattering research, the stereogrammetric
method still has many limitations and future challenges to overcome before it can
retrieve truly real-like particle models. Currently, a major limitation is the lack of
a proper technique to image the backside of the particle. Thus, the surface of only
one hemisphere of the particle is retrieved. Even though it is possible to construct
the other hemisphere by assuming symmetries in the particle shape (e.g., mirror
symmetry), it is not an ideal approach and will not provide, e.g., the true particle
volume (or mass). To get the full 3-D shape imaged and retrieved, the particle should
be turned upside down and imaged also from multiple oblique viewpoints. Research
is then needed to register the models from all the viewpoints to the same coordinate
system and to merge them into a consistent 3-D representation of the particle.

Another drawback of the stereogrammetricmethod is the fundamental disability to
look into internal cavities and deep crevices. Only such features that are fully exposed
to both imaging directions can be mapped. This limits the selection of particles to
preferably compact particles with identifiable surface features. Aggregate particles
and particles with internal structure (e.g., porosity or other material inhomogeneity)
are particularly challenging. Internal structures can be revealed, e.g., by focused ion
beam milling, but including that information explicitly in the model is yet another
challenge.

In all its beauty, stereogrammetry is not a sufficient method to capture all the
physical characteristics of small particles. Light scattering can be very dependent on
the optical properties of the material, i.e., its complex refractive index. Even though
certain mineralogical compositions may be deduced based on their characteristic
shapes, identification of particle composition and structure requires supplemental
methods. For example, energy-dispersive X-ray spectroscopy can derive a localized
chemical composition (atomic composition map) of a particle. Electron diffraction
analysis can be used to determine the mineralogical composition in small selected
areas. Also, electron energy loss spectroscopy may yield information on bonding
state at spots of a particle. If these techniques are combined with a slicing of the
particle (e.g., by focused ion beammilling) or if abrasive techniques like (nano-scale)
secondary ion mass spectrometry are used, three-dimensional compositional and
structural information can be retrieved. In principle, all localized analytical methods
may add up to the compositional and structural picture of a single particle, but
probably no technique is currently able to describe all of the particle in detail. As a
result, interpretative steps are still necessary.

Overall, incorporating stereogrammetry into light scatteringmodelinghas renewed
the field and certainly brought it closer to capturing the actual variety of the shapes of
particles in nature. Despite its current limitations, the method is already applicable
to selected light scattering studies, where it helps us learn more about the complex
interaction of light and a particle. After future improvements to the method, the
stereogrammetric approach will ultimately allow us to connect the morphological
properties to optical ones more accurately and fundamentally than has previously
been possible.
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