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Introduction

It seems certain that, to truly understand the staggeringly complex phenom-
ena observed in contemporary biological experiments, both at molecular and
system levels, we need to seek inspiration from mathematics, physics, and com-
puter science. Equally, challenging problems for applied mathematics, physics,
and computer science come from real applications.

Let us first look at the nervous system as an example. A rat brain contains
about 107 nerve cells (neurons; the human brain contains about 1012 neurons),
each making up to 10,000 connections (synapses) with other neurons. This
wiring is not preprogrammed in detail; instead, the brain is the product of
“bootstrap” instructions for developmental assembly and neuronal differenti-
ation, and the precise wiring is the complex product of chance, experience-
driven assembly, and broad preprogrammed principles. The process of develop-
mental assembly is robust; for all the differences between your genes and mine
and your experience and mine, our brains work pretty much the same. The
final product is incredibly robust. Deletion of individual genes often has no
apparent phenotypic consequence; early damage to large areas of the brain is
often compatible with apparently normal function; and in the fully developed
adult brain, neurodegenerative diseases such as Parkinson’s or Alzheimer’s
are asymptomatic until neural loss in the affected areas is of the order of 70%
cell death.

Yet individual neurons and synapses are, in general, noisy and unreliable.
Neurons are certainly complex, and this is often (mis)taken for sophistication.
However, much complexity arises from the difficulties of creating a living cell
from proteins, and much apparent complexity may reflect imprecision of spec-
ification (so-called superfluous gene expression). There are only about 30,000
genomic domains in the human DNA, about one third of which appear to
be concerned purely with development. Many of them are homologous with
genes in simple organisms such as Drosophila, and many code for “housekeep-
ing” genes, concerned with basic cellular regulation. Strictly, a gene encodes
a protein (or in some cases many proteins), and includes rules that specify
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in what circumstances and in what amounts this protein is made. What that
protein does depends on the environment (networks) in which it is expressed;
expression of some proteins in a neuron will change the information process-
ing capability of that neuron by altering its electrophysiological phenotype
(for instance, by enabling it to discharge action potentials in a particular pat-
tern), by altering its secretory phenotype (by making it secrete excitatory or
inhibitory substances with a particular time-scale of action), by altering its
morphological or anatomical phenotype (by giving it a single long process
perhaps that goes from A to B, or many short processes), or by altering its
receptive phenotype (by specifying receptors for particular molecules). The
functional consequences of the expression of a particular protein depend on
which neurons (and which circumstances) that protein is expressed in. The
outcome of development is a brain that comprises many phenotypically dis-
tinct populations; in the rat hypothalamus, for example, we can estimate
that each consists of a few thousand neurons. Each of these populations is
variable—individual neurons of a population are not clones of each other but
have considerable heterogeneity—and these populations are massively (and
quasi-randomly) interconnected. Individual neurons are both unreliable and
apparently quite loosely specified. However, the emergent structure has re-
markable information storage capabilities and information processing capac-
ity, and these are robust and reproducible between individual organisms.

We may know in considerable detail how individual genes, proteins, and
neurons work, but how this relates to “higher level” behaviour is poorly un-
derstood. For example, in neuroscience, this is often referred to as the “prob-
lem of neural coding.” Many paradigms that underlie our current thinking
about neural function arose from analogies with computational systems where
classical approaches take the single neuron as the atomic element of parallel
computation so that complex processing is the result of the activity of large
assemblies of these elements. This paradigm sets a hard limit to the process-
ing power of the conventional machine learning approach, so perhaps it is
not surprising that they have not led us to understand how the brain can do
anything that conventional digital computers cannot do well.

An architecture with such self-evident information processing and storage
capacity, so robustly specified by so few encoded rules, that operates with high
reliability despite the fragility and imperfection of its individual components,
and is so robust against changing environment and experience and against
damage warrants close study, in particular, from the system level (interacting
networks) point of view. But if biology is to be the inspiration, we must look
at the biological facts themselves and not at interpretations of biology based
on preconceptions that are themselves based on a rather superficial under-
standing of existing, mathematical, physical, and computational principles.
This means that we need a dialogue between biologists and theoreticians, and
shared problems of deep interest and concern across this cultural divide.

Understanding the nature and limits of the strategies employed by neural
systems to represent, process, and transmit sensory information to higher-
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level areas that make behavioural decisions is fundamental to learning how
brains work, and to developing novel computation. In general, neurons re-
spond to sensory or synaptic inputs by generating a train of stereotypical
responses called action potentials or spikes. Deciphering the encoding process
that transforms continuous, analog signals (photon fluxes, acoustic vibrations,
chemical concentrations, etc.) or outputs from other neurons into spike trains
is essential to understanding neural information processing, since often the na-
ture of representation determines the nature of computation that is possible.
Researchers, however, remain divided on the issue of the neural code used to
represent information. Information as used by the brain is likely to be highly
distributed given the massively parallel network architecture, but our think-
ing, and especially that of biologists, is generally based on intuition about
serial and single-unit processing strategies. On the one hand, it is commonly
assumed that the mean firing rate of a neuron is the primary variable relating
to sensory experience, and there is a quantitative relationship between the
average firing rate of single cortical neurons and psychophysical judgements
made by animals trained to perform specific tasks. An animal’s behaviour in
a visual discrimination task can be predicted by counting spikes over a long
interval (typical one second or more) in a single neuron in the visual cortex.
The highly variable temporal structure of neural spike trains strengthens the
view that any statistic other than the averaged response is too random to con-
vey information. However, the fine structure of spike intervals can potentially
convey much more information than a firing rate code, and the precise relative
temporal relationship between the outputs of different neurons appears to be
relevant in certain cases. There may be no universal coding strategy; different
neural networks may use different codes, or a combination of several coding
strategies. It is clear nonetheless that the temporal precision of spike trains
is an important limiting factor. The brain is not a unitary organ; we must
start by selecting neural networks whose function is known and amenable to
further investigation, and identify major relevant and tractable problems.

The way forward may be to focus on networks that subserve a particu-
lar, defined biological function, and use computational/theoretical strategies
to build models that reproduce the reality of those networks, and then use
those models to derive predictions amenable to empirical testing. The reality
of the model networks must include frailty, imprecision, stochasticity, redun-
dancy, and robustness; the reality need not extend to all biological details,
but must follow a structured strategy aimed at including those elements of
the phenotype that are essential and dispensing with those that are not, to
evolve models that are computationally concise. To understand how neuronal
networks process information, we will have to combine modern theory of non-
linear and stochastic dynamics and modern control theory with modern theory
of neuroscience, and develop realistic models of highly complex systems to aid
the process of developing an intuitive understanding of network behaviour and
a neural network theory. Models should be inspired by biological systems, be
constrained by the known biological limitations, and ideally should also be



xx Introduction

constrained by inspiration from two key principles alluded to above: (1) real
neural networks are not preprogrammed but develop through application of a
discrete number of bootstrap rules, and (2) real neural networks have emerged
through an evolutionary design process. Using both abstract and biophysical
models, we would gain more insights into how neural networks processes in-
formation.

Although so far we have mainly confined ourselves to neuronal systems,
one of the most successful areas in systems biology approaches, all issues raised
about neuronal networks hold true for gene networks and protein networks.
How gene networks reliably control the development of a cell or a tissue, how
protein networks function properly in response to internal and external per-
turbations, and how neuronal networks store and process information remain
the grand challenges of biology. On the other hand, it is the basic paradigm of
physics that, on the basis of deep and fundamental mathematical structures,
general and universal laws can be formulated and experiments can then be
devised for unambiguously confirming or rejecting those laws. In contrast to
this, in modern biology we are usually confronted with large data sets in which
we need to discern some structure. These structures are not self-evident, nor
can they be deduced from general principles. Biological structures are aggre-
gate structures of physicochemical constituents, and their function emerges
from the interaction of many elements. Therefore, we need some guidance
about which structures to look for, and in understanding how the biological
functions are achieved.

Networks provide such a paradigm. They constitute an organizational prin-
ciple for biological data sets. We need to identify the basic elements in a given
framework. Depending on the biological context, these may be certain types of
molecules like specific proteins or RNAs, or whole cells, like neurons. We also
need to describe the interactions between them, forming bonds, catalyzing re-
actions, or exchanging spikes through synapses. On the one hand, we need to
find out which elements interact with which specific other ones. On the other
hand, we need to understand the dynamics of those interactions. The first
aspect leads us to the mathematical structure of a graph. The second aspect
brings in the theory of dynamical systems. A graph is a static structure and
therefore not appropriate for capturing the process-like nature of biological
systems. Therefore, we need to connect this static structure with a dynamical
perspective. A dynamical network thus is a graph whose elements dynami-
cally interact according to the structural pattern of the graph. From these
local interactions, a collective dynamical pattern emerges that describes the
system as a whole. Networks thus link structural and dynamical aspects. In
mathematics, often the richest and most interesting patterns emerge from new
connections between different theories. The present link between graph theory
and dynamical systems in our opinion confirms this and leads to challenging
research questions. Its ultimate aim is to contribute to the understanding of
the formation of structures in biological and other systems.
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Networks as such, however, are too general for reaching profound theories.
There are simply too many types of graphs and dynamical systems, and ar-
bitrary combinations of them seem of little use. Therefore, the theory needs
the concrete biological data to identify the structures and dynamical patterns
of interest and substance. In contrast to many areas of applied mathematics
that simply provide tool boxes for data analysis, like statistics packages or nu-
merical analysis software, here the theory itself is strongly driven by concrete
biological findings.

Thus, this book aims at the same time at displaying a mathematical frame-
work for organizing and understanding biological data, at providing a survey
of such biological data, and showing the fruitful synthesis, the application of
mathematical principles to those data, and the mathematical research stimu-
lated by those data. We hope that this book will be a useful introduction to
the theoretical aspects, as a survey of important biological networks (see, for
example, Chapter 9 by Prohaska, Mosig, and Stadler on regulatory networks
in eukaryotic cells), and as a sample of more concrete case studies of molecular
and neural networks.

Since biological systems are aggregate and composite ones, in each case,
we need to decide which aspects are relevant and crucial, and which can be
neglected and perhaps even should be neglected because they obstruct the
identification of the principles. In biological systems, as already discussed
above for the case of a neural system, often details at some lower level aver-
age out at some higher level. This then leads to the question of which details
should be included in a model and which ones omitted. While network theory
agrees that the models are based on interactions between discrete entities,
one then has to decide whether only discrete states are possible or whether
we should rather admit continuous state values. In the first case, naturally,
also the update is carried out at discrete time steps only. In the simplest
case, there then are only two possible state values, labeled by 0 (rest) and 1
(activity). We then have a so-called Boolean network. Often such a network,
even though it obviously represents a very simplified model, can still capture
crucial qualitative aspects. Also, in a situation of only sparse data, it is ad-
vantageous to have a very simple model with as few parameters as possible,
to avoid having to estimate such parameters without sufficient data. Some of
the contributions in this book show the advantages of this approach. In other
situations, one may know more about the temporal dynamics and can build a
corresponding model. A prime example are networks of spiking neurons that
have a much better correspondence with neurobiological reality than simple
spin systems like the Hopfield network. Also, continuous state dynamics even
with discrete temporal updating, like the so-called coupled map lattices, show
new features like synchronization that are not so meaningful in discrete state
systems.

A beautiful example where the question of which details to include in
a model can be analyzed is transmission delays in networks. In many for-
mal models they are, and can be, neglected because they do not affect the
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emerging collective dynamical patterns. In many cases, however, they can also
lead to new dynamical phenomena. Atay (Chapter 2) presents three pertinent
case studies, motivated by models in biology and neurobiology. In one of them,
it is found that, surprisingly, transmission delays can facilitate synchroniza-
tion of the individual dynamics in a global network of coupled oscillators. This
provides a direct link to synchronization as a proposed mechanism for feature
binding in neural systems. The idea, as originally proposed by von der Mals-
burg, is that a complex percept can be neurally represented by the coincident
firing of the neurons responding to its specific features. Since there does not
seem to exist a global temporal coordinator in neural systems, such a syn-
chronization must emerge from local interactions between neurons, and the
synchronization studies for dynamical systems provide novel insights. Never-
theless, synchronization is only the simplest type of collective dynamics, and
nonlinear dynamical systems can also find richer global patterns. This is ex-
plored from an experimentally driven perspective in Chapter 7 by Eckhorn
and his collaborators, who identify global dynamical patterns corresponding
to specific sensory inputs. The same issue is approached from a theoretical
perspective in the contribution of Ritter and his collaborators (Chapter 8),
who construct neural networks that develop global dynamical patterns in re-
sponse to their input from an interaction between neurons and a competition
between neuron layers. This work is then connected with the principles of
gestalt formation in cognitive psychology. This research reflects an important
approach for elucidating the relationship between neural processes and cogni-
tive phenomena.

It is a basic insight from the theory of networks, that such a dynamical
pattern formation also depends on underlying structural aspects, and Chapter
3 by Jost lays some foundations for the analysis of the interplay between struc-
ture and dynamics. A basic set of structural parameters of a graph is provided
by its Laplacian spectrum, which in turn characterizes the synchronizability of
so-called coupled map lattice dynamics. This is an important example of the
fact that one needs to be careful in isolating the correct parameters that deter-
mine the global dynamical features of the network supported by a graph. Since
there far too many different graphs even of moderate size to describe all them
exhaustively, we need to identify some graph classes that display fundamental
qualitative features as observed in real data. At the same time, we should
also be attentive to the specific features that distinguish graphs in some con-
crete biological domain from others. Huan Yu et al (Chapter 11) investigate
protein–protein interaction networks from that perspective and they found
that a hierarchical model captures the qualitative features of some species,
but not of others. Also in this regard, Li et al (Chapter 10) demonstrate that
real biological networks (their examples are the cell-cycle and life-cycle net-
works of protein–protein and protein–DNA interactions in budding yeast) can
have structural and dynamical properties that are profoundly different from
the ones of some general graph paradigms like random graphs studied in the
literature. In particular, their examples show a dynamical attractor with a
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large basin of attraction that is reliably attained on a specific pathway. This
secures the robust function of the network under perturbations, a crucial as-
pect for any biological system. While in the work of Li et al structural and
dynamical stability of the important cycles is shown, Zhang and Qian (Chap-
ter 13) study the same system from a stochastic point of view, and they show
that the system is also stable against random perturbations. Finally, Huan
Yu et al (Chapter 11) examine still another concept of stability, namely the
one against experimental errors, and they reach the fortunate conclusion that
protein–protein interaction networks are quite stable in that sense as well.

One specific class of graphs that has found important biological applica-
tions is trees. They are used for reconstructing and displaying evolutionary
histories on the basis of observed similarities between present species. They
are also used in other fields, such as linguistics for the reconstruction of histor-
ical divergences from common ancestral languages. Often the available data
do not allow for the unambiguous reconstruction of such an evolutionary tree,
however. Dress (Chapter 1) then argues that instead of forcibly suppressing
those unresolvable ambiguities in a data set X, we should rather work with
a class of graphs that is larger than the ones of X-trees. The endpoints of
such a tree are the representatives of the data set to be grouped, and the in-
ternal nodes are putative common ancestors. Thus, the edges of a tree reflect
unambiguous historical descendence relationships, and the lengths encode the
degrees of dissimilarity between adjacent nodes. Dress introduces the category
of X-nets, where the edges of a tree can get replaced by parallelograms that
reflect alternative descendence relationships, and the lengths of the sides then
describe again degrees of dissimilarity as contained in the data. More precisely,
an important feature of an X-net is that for any neighbouring nodes u, v in
the network and any other node x, one shortest connection from x to one of
them (which one depends, of course, on x) has to pass through the other one.
This theory constitutes a beautiful example of profound new mathematics
developed in response to concrete challenges from biological and other data
sets.

From a somewhat different perspective, certain ingredients in real dynami-
cal systems are relegated to the role of noise or random perturbations, and we
should then argue for the stability of the system against such perturbations.
It is an important insight, however, that noise can also play a constructive
role by providing energy that facilitates the distinction between weak signals.
This aspect is taken up further in the contributions of Feng and his collabo-
rations (Chapters 4 to 6) for networks of spiking neurons. They analyze the
trade-off between speed and accuracy in neural decision making. Input cor-
relations and inhibitory input improve the speed but increase the variability
of neuronal output and thereby affect reproducibility of output patterns and
thus accuracy of the decision. They develop a mathematical framework for
the analysis of higher order statistics in neural networks. Tuckwell and Feng
(Chapter 6) then investigate under which conditions such networks of spik-
ing neurons can sustain spontaneous background activity and determine the
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neuronal firing rates. As demonstrated in the contribution of Zhang and Qian
(Chapter 13), stochastic fluctuations may also play useful roles in intracellular
and other networks, by allowing for transitions between different metastable
states and optimizing the expected time spent in the deepest basin of attrac-
tion and following the most robust pathways for transitions between different
states.

Sometimes, in molecular biology, network data are not directly available,
and one only has sequence data instead. One then needs reliable methods
for reconstructing the network from those sequence data. Qian and her col-
laborators (Chapter 11) provide Bayesian schemes that can solve that task
successfully for protein–protein interaction networks. The basic ingredient to
their approach are motifs of polypeptide subsequences of four amino acids.
In another contribution from the group of Qian (Chapter 12), a new method
for the identification of transcription factor binding sites in DNA sequences
is introduced. Also, the complementary question for protein sequence motifs
that can bind at regulatory sites at DNA level can be addressed with their
methods.

As already mentioned, Prohaska, Mosig, and Stadler (Chapter 9) pro-
vide a comprehensive state-of-the-art survey of regulatory modes, modules,
and motifs in eukaryotic cells, including in particular recent findings about
regulation at RNA level as well as indications about deep phylogenies that
conserved regulatory sequences can yield. Luo and Jia (Chapter 14) discover
some surprising statistical correlations between RNA copy number or struc-
ture and protein structure. For example, the helices and strands in proteins
are preferably coded by messenger RNA (mRNA) stem regions, but the pro-
tein coils by messenger RNS (mRNA) loops. One should notice here that
RNA secondary structure can be reliably predicted by available algorithms,
while protein folding is still a computationally very difficult and theoretically
largely unsolved problem. This fact might provide a useful perspective for
the results of Luo and Jia. They also find that RNA structure data available
from different species show a significant preference for low folding energies
when compared to randomized sequences. Moreover, they detect a dichotomy
between intraspecific homogeneity and interspecific inhomogeneity of mRNA
folding energies. Presumably, such results are just the tip of the iceberg, and
many structural relationships in biology await discovery. We hope that the
theory of networks will provide a useful framework within which to formulate
hypotheses that can guide the conception of experiments and to organize and
understand diverse biological data.

All the chapters in this book reflect our efforts to aim to have a concise
mathematical theory of networks yet diverse applications in systems biology.
Whereas in this introduction we have emphasized the cross-links for arrang-
ing the material, it seems natural to divide the book into three parts. The
first part covers the mathematical theory. Although, as argued, much of the
theory is motivated and inspired by biological or neurobiological questions,
from the logical perspective it provides the foundation for the subsequent
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parts. Therefore, we naturally start with that. Next come applications in the
neurosciences. As discussed above, neural systems represent a coherent class
of intensively studied biological systems. We therefore choose them as our
first class of systems and address them in the second part of this book. The
third part is devoted to biological systems at the cell and molecular level and
their investigation with the tools of bioinformatics. Bioinformatics is the field
responding to the challenge of the huge data sets generated by modern tech-
niques in molecular biology. While it developed out of computer science and
utilizes predominantly mathematical techniques from the field of combina-
torics and discrete mathematics, it obviously leads to many formal questions
about networks and in turn benefits from the theoretical insights in that field.
In fact, inside a cell there are various networks, in particular gene regulation
and protein interaction networks. Here, we cover both of them.

The conference from which this book results was first conceived in October
2003 when one of us (J.J.) gave a public lecture, “Mathematical Perspectives
in Biology and Neurobiology ”, and got in contact with the other two organiz-
ers at the Sino-German Centre in Beijing, a cooperative research institution
of the DFG (German Research Foundation) and the NSFC (National Science
Foundation of China). We are grateful to Robert Paul Königs and his col-
leagues from the Sino-German Centre for arranging that initial lecture, for
supporting our scientific scheme, and for hosting our conference at the Sino-
German Centre. All the lecturers and participants of the conference enjoyed
the excellent facilities and the hospitality of the Center’s staff. The conference
stimulated both concrete cooperations between scientists from China and Ger-
many and long-ranging scientific perspectives on which we plan to build in
the future.

Jianfeng Feng
Jürgen Jost
Minping Qian
Warwick/Leipzig/Beijing
February 2006
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The Category of X-Nets

Andreas Dress

Summary. The concept of X-nets is introduced as a convenient tool for dealing
with taxonomic problems in terms of phylogenetic networks; in the same formal-
ized quantitative fashion the concept of X-trees is used as a tool for dealing with
taxonomic analysis in terms of phylogenetic trees. According to the definition pro-
posed here, a net is considered to be a finite metric space (rather than a graph)
that is a “bipartite L1-space,” that is, a metric space with point set M and metric
D : M ×M→R : (u, v) �→ uv that satisfies the following two rather technical condi-
tions: u, v, w, a, b, c ∈ M, uv + vb = ua+ ab = ub, ab + bv = au+uv = av, vw +wc =
vb+bc = vc, and bc+cw = bv+vw = bw always implies ua+ac = uw+wc = uc and
au+uw = ac+cw = aw, and u, v, w ∈ M, uw < uv+vw, and vw < vu+uw implies
{a ∈ M−{u, v} : ua+aw �= ∅}; and an X-net is a metric space as above whose point
set M contains X as well as “sufficiently many” shortest geodesic paths connecting
the points in M with points in X. Though rather technical, these conditions allow
us to develop a theory of X-nets that mimics all the results obtained in the theory
of X-trees as well as to define “the category of X-nets” so that a canonical one-
to-one correspondence between (1) the (isomorphism classes of) injective objects in
that category and (2) “weighted systems of X-splits” can be derived generalizing
the fundamental one-to-one correspondence between (1) the (isomorphism classes
of) X-trees and (2) “weighted systems of pairwise compatible X-splits.”

1.1 Introduction

Although in current discussions, networks are most often described in terms
of (more or less ornamented) graphs, in this chapter on recent work done
at the Center for Combinatorics at Nankai University, we prefer to describe
networks in terms of metric spaces. The reason for this is that the concepts
and results to be presented here using metric spaces as the basic notion are
of some use in the context of phylogenetic analysis where the length of edges
customarily used in pictorial representations of results not only are highly
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informative, as they indicate the presumed time span of evolutionary phases
under investigation, but also are already quite essential for deriving such re-
sults algorithmically by searching for results that provide edge lengths that
are “optimally” adapted to the given data.

More specifically, the category of X-nets described here in terms of metric
spaces can be used as a natural framework for taxonomic analysis in terms of
phylogenetic networks (cf. [2, 3, 4, 11, 14]) in analogy to the framework offered
by the theory of X-trees supporting taxonomic analysis in terms of (the much
more familiar) phylogenetic trees (cf. [5, 15]):

phylogenetic trees ��

��

X-trees

��
phylogenetic networks �� X-nets

In the next section, we will present some basic terminology. In section 1.3,
we collect some basic results (whose proofs need still to be written in publish-
able form, jointly with members of the Center for Combinatorics at Nankai
University). Section 1.4 discusses how X-nets are “classified” by R-valued split
systems. In the last section, some relevant examples are presented, extending
from phylogenetic trees and networks to nets related to (1) subjectively per-
ceived similarity of colours, (2) geographic data from a road atlas, and (3) the
structural relatedness of world languages.

1.2 Basic Terminology

We consider finite metric spaces M = (M,D), that is, pairs consisting of a
finite set M and a (proper) metric1 D : M ×M→R : (u, v) �→ uv defined on
M .
1 A metric or, more precisely, a proper metric defined on a set M is a bivariate map

D : M × M→R : (u, v) �→ uv such that uv = 0 ⇐⇒ u = v and uv + vw ≥
wu—and, therefore, also uv = vu ≥ 0—holds for all u, v, w ∈ M . According
to J. Isbell (cf. [13]), (1) the most appropriate way of defining the Category of
Metric Spaces denoted by MET is to define, for any two metric spaces M = (M, D)
and M′ = (M ′, D′), the set of morphisms from M into M′ to consist of the
set of all non-expansive maps from M into M ′, that is, all maps ϕ : M→M ′

with D′(ϕ(u), ϕ(v)) ≤ D(u, v) for all u, v ∈ M—with composition of morphisms
defined in the obvious way; (2) there is a canonical class of monomorphisms in
that category—including all isomorphisms—are the “isometric embeddings,” that
is, the maps ϕ : M→M ′ from a metric space M = (M, D) into a metric space
M′ = (M ′, D′) for which D′(ϕ(u), ϕ(v)) = D(u, v) holds for all u, v ∈ M ; and
that (3) two metric spaces are called isometric if they are isomorphic objects in
that category.
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Given any two points u, v in M , we define the interval [u, v] spanned by u
and v by

[u, v] = [u, v]D := {w ∈M : uv = uw + wv},
we write u ≤w v for some w ∈M whenever u ∈ [w, v] holds and note that the
binary relation “≤u” is a partial order of M for every u ∈ M , and we define
a binary relation “‖” on M2 by putting

uu′‖vv′ ⇐⇒def u′, v ∈ [u, v′] and u, v′ ∈ [u′, v]

for all pairs (u, u′), (v, v′) in M2.
Next, the L1-product of any two metric spaces M = (M,D) and M′ =

(M ′, D′), denoted by M × M′, is defined to be the metric space

M × M′ := (M ×M ′, D ⊕D′)

whose point set is the Cartesian product M ×M ′ of the point sets M and M ′

of the two given spaces, and whose metric D ⊕D′ is defined by putting

(D ⊕D′)
(
(u, u′), (v, v′)

)
:= D(u, v) +D′(u′, v′)

for all (u, u′), (v, v′) ∈ M × M ′—note that the k-dimensional standard L1-
space L1(k) := (Rk, L

(k)
1 ) whose metric L(k)

1 : Rk × Rk→R is given by

L
(k)
1 (x,y) := ‖x,y‖1 :=

k∑
i=1

|xi − yi|

for all x := (x1, . . . , xk),y := (y1, . . . , yk) ∈ Rk is nothing but the L1-product
of k copies of the space L1(1), that is, the real line (endowed with its standard
metric).

Further, given any metric space M = (M,D : V × V→R : (u, v) �→ uv),

(1) we define M to be an (abstract) L1-space if the relation “‖” is an equiva-
lence relation on M2—implying that the L1-product of any two abstract
L1-spaces and, therefore, also (as good sense would require) the standard
L1-spaces L1(k) are abstract L1-spaces (as the real line is easily seen to
be one; indeed, one has uu′‖vv′ for any two pairs (u, u′), (v, v′) of real
numbers relative to L

(1)
1 if and only if either #{u, u′} = #{v, v′} = 1 or

and (u, v) = (u′, v′) holds);

(2) we define two elements u, v ∈ M to be forming a primitive pair (in M) if
and only if #[u, v] = 2—or, equivalently, u 
= v and {u, v} = [u, v]—holds,
and we denote the set of all primitive pairs in M by Prim(M), that is, we
put

Prim(M) := {{u, v} ⊆M : #[u, v] = 2};
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(3) we define a sequence a0, a1, a2, . . . , ak of points in M to be

(i) a geodesic sequence (in M) if the identity a0ak =
∑k

i=1 ai−1ai holds
(in which case—even stronger—aiaj =

∑j
�=i+1 a�−1a� holds for all

i, j ∈ {0, 1, 2, . . . , k} with i < j),

(ii) a path (in M) if all pairs {ai−1, ai} (i = 1, 2, . . . , k) are primitive pairs
in M,

(iii) and, of course, a geodesic path (in M) if it is a shortest geodesic se-
quence that is, simultaneously, a path in M;

(4) we put

M(u < v) := {w ∈M : u ≤w v} (= {w ∈M : u ∈ [w, v]})

for all u, v ∈ M , we define two elements u, v ∈ M to be forming a bipar-
titioning pair (in M) if M = M(u < v)∪M(v < u) holds—implying that
a subset {u, v} ⊆ V is a bipartitioning pair if and only if u 
= v holds and
{u, v} is a gated subset of M (i.e., if and only if #{u, v} = 2 holds and
there exists, for every x ∈ M , some point y ∈ {u, v}—the gate of x in
{u, v}—with xw = xy + yw for each element w ∈ {u, v}), and that every
bipartitioning must also be a primitive pair;

(5) we define M to be bipartite if, conversely, every primitive pair in M is also
a bipartitioning pair;

(6) and we recall that M is said to be a median space if and only if one has
#([u, v] ∩ [v, w] ∩ [w, u]) = 1 for all u, v, w ∈ M , in which case the single
element in [u, v]∩[v, w]∩[w, u] is denoted by med(u, v, w) = medD(u, v, w)
and dubbed the median of u, v, and w—note that the L1-product of any
two median spaces and, therefore, also the standard L1-spaces L1(k) are
median spaces (as the real line L1(1) is a median space, the median
med(x, y, z) of any three real numbers x, y, z in L1(1) being given by
med(x, y, z) = x+ y + z − max(x, y, z) − min(x, y, z) ).

Remarks: (R1) Note that the primitive pairs in a finite metric space
correspond to the edges in a connected finite graph. More precisely, given any
finite metric space M = (M,D), we can associate to M the necessarily finite
and connected simple graph

GM := (M,Prim(M))
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with vertex set M and edge set Prim(M) ⊆ (M2 ) and, conversely, to any
finite and connected simple graph G = (V,E) with vertex set V and edge
set E ⊆ (V2), the finite metric space MG := (V,DG) with point set V whose
metric DG is the standard graph metric on V , that is, the (well-defined and
unique) largest metric D defined on V for which D(u, v) ≤ 1 holds for every
edge {u, v} in E.

This yields in particular a canonical one-to-one correspondence between

(1) the isometry classes of finite metric spaces M for which D(u, v) = 1 holds
for every primitive pair {u, v} in Prim(M) and

(2) the isomorphism classes of finite and connected simple graphs.

A subgraph G′ = (V ′, E′) of a finite and connected simple graph G =
(V,E) is called an isometric subgraph of G if it is connected and DG(u′, v′) =
D′

G′(u′, v′) holds for all u′, v′ ∈ V ′.
(R2) More generally, given a weighted finite and connected simple graph,

that is, a triple G = (V,E;L) consisting of a finite and connected simple graph
G = (V,E) together with an edge weighting L : E→R>0 := {ρ ∈ R : ρ > 0},
we may associate to L the unique largest metric D = DL defined on V for
which D(u, v) ≤ L({u, v}) holds for every edge {u, v} in E, thus setting up
a canonical one-to-one correspondence between the isometry classes of finite
metric spaces M = (M,D) and the isomorphism classes of weighted finite and
connected simple graphs G = (V,E;L) for which

L({u, v}) <
k∑

i=1

L({ui−1, ui})

holds for every edge {u, v} in E and all sequences u0, u, . . . , uk of vertices in
V of length k > 1 with u0 = u, uk = v, and {ui−1, ui} ∈ E for all i = 1, . . . , k
(or, equivalently, for which DL(u, v) < DL(u,w) + DL(w, v) holds for every
edge {u, v} in E and every w ∈ V − {u, v} ). Indeed, if M = (M,D) is a
finite metric space, the edge weighting L = LM defined on the set Prim(M)
of edges of the associated graph GM by LM : Prim(M)→R : {u, v} �→ D(u, v)
satisfies the above condition and one has D = DLM

, while conversely, if an
edge weighting L defined on the set E of edges of a finite and connected
simple graph G = (V,E) satisfies this condition, one has G = G(ML) for the
associated finite metric space ML = M(G,L) := (V,DL) while L coincides
with the corresponding edge weighting L(ML).

(R3) Note that, given a finite and connected simple graph G = (V,E),
the above condition holds for every edge weighting L : E→R>0 if and only
if G is a tree. The resulting metrics DL will be called T-metrics, and the
resulting metric spaces ML will be called T-spaces. Consequently, a finite
metric space M = (M,D) is a T-space if and only if the associated graph
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GM = (M,Prim(M)) is a tree in which case the metric DL induced by the
edge weighting

L := LM : Prim(M)→R : {u, v} �→ D(u, v)

coincides with D.
(R4) Note also that a connected finite simple graph G is a bipartite or a

median graph if and only if the associated metric space MG is a bipartite or
a median metric space, respectively, and that every T-space is a bipartite as
well as a median metric space.

Finally, we’ll need the following definitions:

(7) A finite metric space H is called a hypercuboid if it is isometric to the
L1-product M1,M2, . . . ,Mk of a finite number of metric spaces all of
whose point sets have cardinality 2—implying that every hypercuboid is a
median L1-space (as any metric space of cardinality 2 is such a space), that
any hypercuboid derived from k factors can be embedded isometrically
into the k-dimensional standard L1-space L1(k), and that the graph GH

associated to a hypercuboid H is a hypercube, that is, it is isomorphic to
a graph of the form ({0, 1}k, E(k)) with E(k) defined by

E(k) := {{(x1, . . . , xk), (y1, . . . , yk)} ⊆ {0, 1}k :
k∑

i=1

|xi − yi| = 1},

that is, the graph associated to the subspace of the standard L1-space
L1(k) whose point set is {0, 1}k.

(8) Another, yet equivalent way to describe hypercuboids is to associate, to
any weighted set E, that is, to a pair E := (E,L) consisting of a finite set
E and a map L : E→R>0, the metric space ME := (P(E), DE) whose
point set is the power set P(E) of E while its metric DE is given by the
map

DE : P(E) × P(E)→R : (F, F ′) �→ L+(F�F ′)

(where, as usual, F�F ′ denotes the symmetric difference (F −F ′)∪(F ′−
F ) of the two subsets F and F ′ of E, and L+(F ) denotes, for a weighted
set E = (E,L) and a subset F of E, the sum L+(F ) :=

∑
e∈F L(e) ), and

then to define a finite metric space H to be a hypercuboid if it is isomet-
ric to a metric space of that form, that is, if a weighted set E as above
exists so that H is isometric to ME (as ME is apparently isometric to the
L1-product Πe∈E({0, 1}, De) where De : {0, 1} × {0, 1}→R is, of course,
defined by De(0, 1) = De(1, 0) := L(e) and De(0, 0) = De(1, 1) := 0).
So, ME = (P(E), DE) must, in particular, be a median space—and it is
indeed also easily verified directly that the median of any three subsets
F, F ′, F ′′ of E, considered as points in the point set P(E) of ME, always
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exists, and always coincides with the subset (F ∩F ′)∪(F ′∩F ′′)∪(F ′′∩F ),
independently of the choice of L.

(9) A net N is a metric space N = (N,D) with point set N and metric D
that can be embedded into a hypercuboid M so that any two points in N
can be connected by a geodesic path a0, a1, a2, . . . , ak in M all of whose
points are points in N.

(10) We define the category NET of nets to be the category whose objects are
the nets while the morphisms from one net N = (N,D) into another net
N′ = (N ′, D′) are defined to be exactly those morphisms from N into
another net N′ in the category MET (i.e., those non-expansive maps ϕ
from N into N ′) that are additive, that is, one has

D′(ϕ(u), ϕ(v)) +D′(ϕ(v), ϕ(w)) = D′(ϕ(u), ϕ(w))

for all u, v, w ∈ V with uv+vw = uw (or, equivalently, ϕ(w) ∈ [ϕ(u), ϕ(v)]
holds for all u, v, w ∈ N with w ∈ [u, v]), and for which

{ϕ(u), ϕ(v)} ∈ Prim(V ′, D′)

holds for every primitive pair {u, v} in Prim(V,D) with ϕ(u) 
= ϕ(v).
And any such morphism ϕ is called an isometric embedding if ϕ, con-
sidered as a morphism in MET, is an isometric embedding, that is, if
D′(ϕ(u), ϕ(v)) = D(u, v) holds for all u, v ∈ N .

(11) Given a finite set X, we define an X-net N to be a pair N := (N, ψ)
consisting of a net N = (N,D) together with a map ψ : X→N such that

ψ(X) ∩ N(u < v) ∩ N(u′ < v′) 
= ∅

holds for all primitive pairs {u, v}, {u′, v′} in N for which the intersection
N(u < v) ∩ N(u′ < v′) is non-empty.

(12) We define the category X−NET of X-nets to be the category whose objects
are the X-nets while the morphisms from one X-net N = (N, ψ) into
another X-net N ′ = (N′, ψ′) are those morphisms ϕ from N into N′ in
NET for which ψ′ = ϕ ◦ ψ holds. As above, any such morphism will also
be called an isometric embedding if it is one, considered as a morphism in
NET (or, equivalently, in MET).
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1.3 Some Basic Results

Clearly, the definition of a net given above is rather a “descriptive” or “con-
structive” than a structural or “intrinsic” definition. However, the other defin-
itions collected above allow us to present the following seven characterizations
of nets, two of which are “intrinsic”:

Theorem 1. Given a finite metric space M = (M,D), the following asser-
tions all are equivalent:

(i) M is a net;

(ii) M is a bipartite L1-space;

(iii) M is bipartite and the relation “‖” defined—by abuse of notation—on
Prim(M) by putting

{u, u′}‖{v, v′} ⇐⇒def uu′‖vv′ or uu′‖v′v

for all {u, u′}, {v, v′} ∈ Prim(M) is an equivalence relation on Prim(M);

(iv) the graph GM = (M,Prim(M)) is an isometric subgraph of a hypercube,
and uu′ = vv′ holds for all u, u′, v, v′ in M for which {u, u′}, {v, v′} are
parallel edges in that hypercube;

(v) there exists a pair (E,Δ) consisting of a weighted finite set E = (E,L)
and a map Δ : M2→P(E) with

Prim(M) = {{u, v} ⊆M : #Δ(u, v) = 1}

such that
Δ(u, v) = Δ(u,w) � Δ(w, v)

and
D(u, v) = L+(Δ(u, v))

holds for all u, v, w ∈M in which case

(a) the map
ψv : M→P(E) : u �→ Δ(u, v)

is an isometry from M into the metric space ME for given any point
v ∈M ,

(b) Δ(u, v) = Δ(v, u) and “Δ(u, v) = ∅ ⇐⇒ u = v” holds for all u, v in
M ,
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(c) and uu′‖vv′ holds for some u, u′, v, v′ in M if and only if

Δ(u, u′) = Δ(v, v′) and Δ(u, u′) ∩Δ(u′, v′) = ∅
and, hence, also

Δ(u, v) = Δ(u, v′)� Δ(v′, v) = Δ(v′, u)� Δ(u, u′) = Δ(u′, v′)

as well as

Δ(u, v′) = Δ(u, u′) ∪Δ(u′, v′) = Δ(u′, u) ∪Δ(u, v) = Δ(u′, v)

holds;

(vi) there exists some k ∈ N and an isometric embedding ϕ of M into the
standard k-dimensional L1-space L1(k) such that

medL1(k)(ϕ(u), ϕ(v), ϕ(w)) ∈ {ϕ(u), ϕ(v)}
holds for all u, v, w ∈M with {u, v} ∈ Prim(M);

(vii) there exists an isometric embedding ϕ of M into some median L1-space
M′ with such that medM′(ϕ(u), ϕ(v), ϕ(w)) ∈ {ϕ(u), ϕ(v)} holds for all
u, v, w ∈M with {u, v} in Prim(M).

To establish Theorem 1, the following more detailed results are required:

Theorem 2. A path a0, a1, . . . , ak in a finite bipartite metric space M is a
geodesic path if and only if {ai−1, ai}‖{aj−1, aj} implies i = j for all i, j =
1, . . . , k. Furthermore, if a0, a1, . . . , ak is a geodesic path in M, one has k′ ≥ k
for any other path a′0, a

′
1, . . . , a

′
k′ of points in M with a0 = a′0 and ak =

a′k′ while equality k = k′ holds if and only if the path a′0, a
′
1, . . . , a

′
k′ is also

a geodesic path in which case there exists a permutation π of the index set
{1, . . . , k} such that ai−1ai = a′π(i)−1a

′
π(i) holds for all i = 1, . . . , k.

Theorem 3. If M = (M,D) is a finite bipartite metric space for which the
binary relation “ ‖” defined above on Prim(M) is an equivalence relation on
Prim(M), one has {u, v}‖{u′, v′} for two primitive pairs {u, v}, {u′, v′} in
Prim(M) if and only if the two bipartitions {M(u < v),M(v < u)} and
{M(u′ < v′),M(v′ < u′)} of the point set M of M associated with {u, v} and
{u′, v′} coincide.

Thus, denoting the set of “‖”-equivalence classes in Prim(M) by E(M) and
associating to any path a0, a1, . . . , ak in M the set

Δ(a0, a1, . . . , ak) :={e ∈ E(M) : #{i ∈ {1, . . . , k} :{ai−1, ai} ∈ e}≡1 mod 2}
of “‖”-equivalence classes e in E(M) represented by an odd number of pairs
of the form {ai−1, ai} (i = 1, . . . , k), the following can be established:
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Theorem 4. If M is a finite bipartite metric space for which the binary re-
lation “ ‖” defined above on Prim(M) is an equivalence relation on Prim(M),
a path a0, a1, . . . , ak in M is a geodesic path in M if and only if the car-
dinality of set Δ(a0, a1, . . . , ak) coincides with k, in which case one has
Δ(a0, a1, . . . , ak) = Δ(a′0, a

′
1, . . . , a

′
k′) for any other path a′0, a

′
1, . . . , a

′
k′ in

M with a0 = a′0 if and only if ak = a′k′ holds—allowing us to (well-
)define the map Δ : V 2→P(E(M)) as described in Theorem 1 (v) by letting
Δ(u, v) denote the set Δ(a0, a1, . . . , ak) for one—or, as well, for all—paths
a0 := u, a1, . . . , ak; = v from u to v in M.

Together, these results can be used to establish

Theorem 5. (i) For any two X-nets N and N ′, there exists at most one
morphism in X−NET from N into N ′.
(ii) Whenever a (necessarily unique) morphism ϕ from an X-net N = (N, ψ)
into an X-net N ′ = (N′, ψ′) exists, this morphism is an isometric embedding
if and only if ψ and ψ′ induce the same metric on X, that is, if and only if

D(ψ(x), ψ(y)) = D′(ψ′(x), ψ′(y))

holds for all x, y ∈ X.
(iii) For every X-net N , there exists an X-net N ∗, also called the injective
hull of N , together with an isometric embedding ϕN from N into N ∗ such
that, for every isometric embedding ϕ of N into another X-net N ′, there
exists a (necessarily unique) isometric embedding ϕ′ from N ′ into N ∗ with
ϕN = ϕ′◦ϕ (implying, as usual, that both, N ∗ and ϕN are uniquely determined
up to canonical isomorphism by N , and that N ∗ is also the injective hull of
every X-net N ′ for which an isometric embedding from N into N ′ exists).
Moreover, any morphism ϕ in X−NET from an X-net N1 into an X-net N2

induces a morphism ϕ∗ in X−NET from the injective hull N ∗
1 of N1 into the

injective hull N ∗
2 of N2.

(iv) And, given an X-net N = (N, ψ), the underlying metric space N of
N is a median metric space if and only if every isometric embedding from
N into any other X-net N ′ is an isomorphism if and only if the morphism
ϕN : N→N ∗ is an isomorphism, that is, if and only if N is its own injective
hull (implying that the underlying metric space of the injective hull N ∗ of any
X-net N is a median metric space).

Corollary 1. Every T-space is a net while a pair (N, ψ) consisting of T-space
N = (N,D) and a map ψ : X→N from X into the point set N of N is an
X-net if and only if the tree GN together with the map ψ from X into its
vertex set N is an X-tree, that is, if and only if every vertex in the graph

GN = (N,Prim(N))

of degree less than 3 is contained in the image of ψ.
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1.4 X-Nets and Split Systems Over X

Now, recall that given any finite set X, one denotes

• by S(X) the collection

S(X) := {{A,B} : A,B ⊆ X,A ∪B = X,A ∩B = ∅}
of all X-splits,

• by S(x), for every X-split S = {A,B} ∈ S(X) and every element x ∈ X,
that subset, A or B, in S that contains x,

• by S∗(X) the collection

S∗(X) := {{A,B} : A,B ⊆ X,A ∪B = X,A ∩B = ∅ 
= A,B}
of all bipartitions of X, or proper X-splits,

• and by S∗(X|R) the R-vector space consisting of all maps μ from S(X)
into R with μ({X, ∅} = 0, that is, all maps μ from S(X) into R whose
support

supp(μ) := {S ∈ S(X) : μ(S) 
= 0}
is contained in S∗(X).

Any such map μ will also be called an (R-weighted) split system over X, and
it will be called an R≥0-weighted split system over X if μ(S) ≥ 0 holds for all
S ∈ S(X).

There is a close connection betweenX-nets and R≥0-weighted split systems
over X. To explicate this, note first that, given a finite set X and an X-net
N = (N, ψ), one can associate, to any primitive pair {u, v} ∈ Prim(N), the
corresponding X-split

Su,v = SN
u,v := {X(u < v), X(v < u)}

whose two parts X(u < v) and X(v < u) are the pre-images (relative to ψ) of
the two parts of the split {N(u < v),N(v < u)} associated to the pair {u, v}
in Prim(N), i.e., the two subsets

X(u < v) = XN (u < v) := {x ∈ X : ψ(x) ∈ N(u < v)}
and

X(v < u) = XN (v < u) := {x ∈ X : ψ(x) ∈ N(v < u)}
of X. The following is a simple corollary of the definitions and results collected
above:
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Corollary 2. Given a finite set X, an X-net N = (N, ψ), and two primitive
pairs {u, v}{u′, v′} ∈ Prim(N), one has {u, v}‖{u′, v′} if and only if Su,v =
Su′,v′ holds. In particular, one has uv = u′v′ for any two primitive pairs
{u, v}, {u′, v′} in Prim(N) with Su,v = Su′,v′ .

In consequence, one can associate, to any X-net N = (N, ψ), a corresponding
R≥0-weighted split system μ = μN over X that maps any split S ∈ S(X) of
the form S = Su,v for some primitive pair {u, v} ∈ Prim(N), onto the positive
real number uv, and all other splits S ∈ S(X) (including the split {X, ∅}) onto
0.

Conversely, given any R≥0-weighted split system μ over X, one can as-
sociate to μ the X-net N = Nμ = (Nμ, ψμ) = ((Nμ, Dμ), ψμ) for which
μ = μN holds that is defined as follows: One defines Nμ to consist of all maps
v : X→P(supp(μ)) with(

supp(μ)
2

)
=
⋃

x∈X

(
supp(μ) − v(x)

2

)
(1.1)

for which

v(x)� v(y) = Δμ(x, y) := {S ∈ supp(μ) : S(x) 
= S(y)} (1.2)

or, equivalently,
v(x) = v(y)� Δμ(x, y)

holds for all x, y ∈ X—condition (1.1) just requiring that there exists, for any
two splits S1, S2 ∈ supp(μ), some x ∈ X such that S1, S2 
∈ v(x) holds.

Next, one defines

Δμ(u, v) :=
⋃

x∈X

u(x)� v(x)

and
Dμ(u, v) := μ+(Δμ(u, v))

for all maps u, v : X→P(supp(μ)) and, noting that

u(x)� v(x) = (Δμ(x, y)�u(y))� (Δμ(x, y)� v(y)) = u(y)� v(y)

holds for all x, y ∈ X and u, v ∈ Nμ, one sees that

Δμ(u, v) := u(x)� v(x)

and
Dμ(u, v) := μ+(u(x)� v(x)) =

∑
S∈u(x)� v(x)

μ(S)

holds for every x ∈ X and any two maps v, u ∈ Nμ. And one defines ψμ :
X→Nμ by associating, to any x ∈ X, the map
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ψμ(x)(S) : X→ supp(μ) : y �→ Δμ(x, y).

Using these constructions, it can be shown that the R≥0-weighted split
systems over X “classify” the injective objects in X−NET, that is, the X-nets
N that “coincide” with their injective hull. More precisely, the following holds
for any finite set X:

Theorem 6. (i) Given any two R≥0-weighted split systems μ and μ′ over X,
there exists a morphism ϕ from Nμ into Nμ′ in X−NET if and only if μ′ ≤ μ
holds (i.e., if and only if μ′(S) ≤ μ(S) holds for every X-split S in S∗(X) );
in particular, two X-nets of the form Nμ and Nμ′ are isomorphic if and only
if μ = μ′ holds.

(ii) Given any X-net N , its injective hull N ∗ is canonically isomorphic to the
X-net Nμ for the R≥0-weighted split systems μ := μN ; in particular, N is
an injective object in X−NET if and only if it is isomorphic to an X-net of the
form Nμ for some R≥0-weighted split system μ over X in which case there is
only one such R≥0-weighted split system μ, viz., the R≥0-weighted split system
μN ; in particular,

(1) given any X-net N , its injective hull N ∗ is canonically isomorphic to the
X-net NμN ,

(2) two X-nets N and N ′ have isomorphic injective hulls if and only if μN =
μN ′ holds,

(3) there exists a morphism from an X-net N into the injective hull of an
X-net N ′ if and only if μN ≤ μN ′ holds.

(iii) Given any X-net N , its injective hull N ∗ is canonically isomorphic to
the X-net Nμ for the R≥0-weighted split systems μ := μN ; in particular, N is
an injective object in X−NET if and only if it is isomorphic to an X-net of the
form Nμ for some R≥0-weighted split system μ over X in which case there is
only one such R≥0-weighted split system μ, viz., the R≥0-weighted split system
μ := μN ; in particular,

(1) given any X-net N , its injective hull N ∗ is canonically isomorphic to the
X-net NμN ,

(2) two X-nets N and N ′ have isomorphic injective hulls if and only if μN =
μN′ holds,

(3) there exists a morphism from an X-net N into the injective hull of an
X-net N ′ if and only if μN ≤ μN′ holds.
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1.5 Examples

Here are some real-life examples of X-nets. The first two belong to the group
of altogether more than 10 phylogenetic trees that were ever published. They
were carefully drawn by Ernst Haeckel who published his work Generelle Mor-
phologie der Organismen in 1866 (just 7 years after Charles Darwin published
The Origin of Species), a book that Thomas Henry Huxley described in 1869
as “an attempt to put the Doctrine of Evolution, so far as it applies to the
living world, into a logical form; and to work out its practical applications
to their final results” (see also Preface and Table of Contents to Volume II,
Darwiniana, of Huxley’s Collected Essays).

Fig. 1.1. Two phylogenetic trees from Ernst Haeckel’s book Generelle Morphologie
der Organismen, 2 vols., Berlin, 1866.

Figures 1.2 and 1.3 present proper networks, constructed using the program
SplitsTrees based on data provided by Helms in his thesis on the perception
of colour similarity, Hamburg, 1980.

Also Figures 1.4 to 1.5 present networks that do not refer to a biological
context (even though manuscript copying has a number of interesting analo-
gies with sequence evolution).
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Fig. 1.2. An X-net constructed by applying the program SplitsTrees to data regard-
ing the perception of colour similarity (Helms, Hamburg, 1980). The set X consists
of 10 distinct colours.

Fig. 1.3. Using data from the same source, now regarding a colour-blind subject’s
perception of colour similarity (also from data published by Helms, Hamburg, 1980):
the X-net constructed by SplitsTrees now degenerates into an X-tree.
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Fig. 1.4. An X-net constructed by applying SplitsTrees to data from a German
Road Atlas. The set X consists of 10 distinct German cities.

Fig. 1.5. An X-net constructed by Mihai Albu by applying Neighbour Net to
data from The World Atlas of Language Structure depicting the overall structural
(dis)similarity of 20 world languages (cf. Haspelmath, Martin & Dryer, Matthew &
Gil, David & Comrie, Bernard (eds.) 2005. The World Atlas of Language Structures.
Oxford University Press).
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An X-net constructed by Peter Robinson et al by applying SplitsTrees to
data that he derived by comparing distinct handwritten copies of the Pro-
logue of Chaucer’s The Wife of Bath (cf. Nature, August 1998). The set X
consists of more than 40 such manuscripts. And the resulting X-net is, not
unexpectedly, rather “tree-ish.” Due to unresolved copyright questions, please
look up the figure in the original Nature publication.

Figures 1.6 to 1.9 deal with proper biological data. Figure 1.6 deals with
16S rRNA sequences from all three Kingdoms of Life, the Eucariots, the Pro-
cariots, and the Archeae. Figures 1.7 and 1.8 deal with data regarding various
variants of the AIDS virus, including HIV1, HIV2, and HIV sequences dis-
covered in other primates. The same data have been analysed in two distinct
ways, the first figure being based on (dis)similarity, taking into account the
first position, only, from each coding triple; the second one taking into account
all positions, yet registering only the difference between purins and purim-
idins, neglecting transitions between nucleotides. The resulting, rather tree-ish
structures are surprisingly similar, corroborating each other, and demonstrat-

Fig. 1.6. An X-net constructed by applying the program SplitsTrees to data regard-
ing the (dis)similarity of 16 distinct 16S rRNA sequences from Eucariots, Procariots,
and Archeae. A proper net, though almost a tree as the length of edges not fitting
in the “obvious” underlying tree structure is negligibly small. The underlying tree
structure clearly supports Karl Woese’s thesis claiming the existence of one common
ancestor for all currently existing forms of Archeae.
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Fig. 1.7. An X-net constructed by applying the program SplitsTrees to data re-
garding the (dis)similarity of HIV sequences, taking into account the first position,
only, from each coding triple.

Fig. 1.8. An X-net constructed by applying the program SplitsTrees to data regard-
ing the (dis)similarity of HIV sequences, taking into account the difference between
purins and purimidins, only, neglecting all transitions between nucleotides.
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Fig. 1.9. An X-net constructed by applying the program Neighbour-Net (cf. [12]) to
data from [16] regarding the (dis)similarity of Human mitochondrial DNA sequences.
The resulting X-net clearly supports Allan Wilson’s “Out of Africa” hypothesis as
African sequences can be found all over in that net while all other groups are clearly
localized.

ing that it is very unlikely that they both are just artefacts of the respective
methods of quantifying (dis)similarity applied for deriving these two X-nets.
Figure 1.9 deals with human mitochondrial DNA data, and the resulting X-
net clearly supports Allan Wilson’s “Out of Africa” hypothesis (as African
sequences can be found all over in that net while all other groups are clearly
localized).
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Networks with Delays

Fatihcan M. Atay

Summary. Information transmission over any spatial separation involves a time
delay. For dynamical systems extended over a network, the network topology and
temporal delays interact in a complicated way to shape the overall dynamical behav-
iour. We discuss the effects of delays on several prototypical systems, showing that
the introduction of delays into the models can lead to the emergence of completely
new behaviour that is not possible in the absence of delays.

2.1 Introduction

In any collection of interacting dynamical systems, the information flow be-
tween the individual units is constrained by the laws of nature. The infor-
mation may be transmitted by chemical agents in biological systems, by the
motion of electrons in electronic devices, and by light in optical equipment. In
all cases, it is never conveyed instantaneously, but only after some time delay,
across space. Indeed, it is a fundamental law of nature that the speed of light,
about 299,792,458 m/s in vacuum, is an upper bound for the speed of mass
and energy (and thus of information) flow in any system. Consequently, time
delays are a fundamental reality for physical systems.

The description of physical reality, however, cannot and does not (and per-
haps need not) include all the details. Mathematical models inevitably contain
simplifications in order to be amenable to solution methods. The treatment
of time delays is no exception, and it is usual that models of dynamical net-
works ignore the delays resulting from finite transmission speeds. This does
not necessarily mean that such models are not useful. The situation can be
compared to the role of Newtonian mechanics, which has been used to build
most of our existing technology, although the theory of relativity tells us it is
not the correct description of the universe. The important thing is to know
when relativistic effects need to be included in our formulas, at the expense
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of making them more complicated. In a similar fashion, it is important to
be aware of the possible effects of time delays so that a useful mathematical
model can be chosen for the description of dynamical behaviour in a particu-
lar application.

While the speed of light is an upper limit for information transmission
speed, many systems encountered in practice are considerably slower. In a
spectrum of applications ranging from biology to optics, the range of time de-
lays differ by orders of magnitude. The question then is, when to take delays
into consideration and when to ignore them. One may be tempted to assume
that delays might be more important for the slower biological systems, while
they can be safely ignored in faster systems such as lasers or electro-optical
devices. Upon more careful study it becomes apparent that the answer also
depends on the particular dynamics being studied. Indeed, one sees that de-
lays can only be neglected when they are of a smaller order of magnitude than
the characteristic time scales of the system.

Several examples should be convincing that information transmission even
near the speed of light may not be fast enough to ignore the effects of delays.
For instance, signals from the earth station reaches a satellite in low earth
orbit after about 0.2 s, which implies a round-trip feedback delay of 0.4 s [1].
This round-trip delay is about 3 s for spacecraft near the moon. It may be
argued that these are extreme examples because of the astronomical distances
involved. However, the effects can be significant also at the distance scales of
biological entities. Consider, for instance, a pair of coupled lasers placed 1
m apart. At the speed of light, the information from one laser reaches the
other in about 10−8 s. Is this a small delay? Considering that the period of
a typical laser operating in the nanometer range is on the order of 10−14 s,
the transmission delay between the lasers is about a million times larger, and
certainly significant! (See [2] for some effects of delays in coupled lasers.) In
biological systems delays are generally larger: The delays involved in neuro-
muscular action are typically on the order of 0.1 s, which can have important
consequences for the dynamics, for example in the pupil light reflex [3, 4].
Similarly, the relatively slow speed of neural signal propagation along axons
(0.1–10 m/s) gives rise to distance-dependent delays in the neural field, some
of whose consequences will be briefly mentioned in Section 2.4.

What is it, then, that might be missed by neglecting delays in network
models? Certainly there is a quantitative loss that manifests itself in decreased
numerical accuracy of the results, which may or may not be significant for the
particular application. More importantly, there is also the possibility of a
qualitative loss, in the sense that the delays may cause a completely differ-
ent type of behaviour that is absent in the undelayed model. The importance
of qualitative discrepancies between the data and the model can hardly be
overemphasized, as they bring into question the validity of experimental tech-
niques, data analysis methods, and the assumptions underlying the model. It
is thus important to know when the model can be reconciled with data by
taking the time delays into account.
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In the following sections we give an overview of the qualitatively different
dynamics that may emerge in networks as a result of time delays. We focus
on three prototypical examples of dynamical networks, each with a different
character, that are often used to model physical and biological systems. We
will see how delays enhance synchrony in coupled map lattices, suppress os-
cillations in coupled oscillators, and lead to traveling waves in coupled neural
field models.

2.2 Coupled Map Lattices

A map, or a function, f on a suitable space (here R) induces a discrete-time
dynamical system by the iteration rule

x(t+ 1) = f(x(t))

where the iteration step t ∈ Z plays the role of discrete time. A coupled map
lattice [5] is a collection of such systems that interact with each other in some
specified way. A model of such a network where the interaction has a diffusive
form is given by

xi(t+ 1) = f(xi(t)) + κ
1
di

∑
j

j∼i

(f(xj(t− τ)) − f(xi(t))) (2.1)

Here, i = 1, . . . , N indexes the units, κ ∈ R is the coupling strength, and
τ ∈ Z+ is the delay in information transmission. Thus the ith unit xi interacts
with its di neighbors, and the symbol ∼ denotes the neighborhood relation,
that is, i ∼ j means that the ith and jth units are neighbors of each other.
The neighborhood relation casts the system as one defined on a graph, and
the diffusive nature of interaction is reflected in the Laplacian operator

L = I −D−1A,

where A = [aij ] is the adjacency matrix

aij =
{

1 if i ∼ j
0 otherwise

and D = diag{d1, . . . , dN} is the diagonal matrix of vertex degrees, that is,
the number of neighbours of the units. The operator L encapsulates the in-
formation about the connection structure of the units.

A natural question is how the dynamics of (2.1) are related to the un-
derlying graph structure. A particularly interesting type of dynamics is syn-
chronization, whereby all units tend to behave identically regardless of initial
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Fig. 2.1. Synchronization of coupled maps. The gray scale codes the degree of
synchrony, black corresponding to complete synchronization. The upper graph cor-
responds to a small-world network obtained from a regular one by randomly recon-
necting a few edges, and the lower graph is a random network, both having the same
number of nodes and links.

conditions and external disturbances. Even chaotic units, which show sen-
sitive dependence on initial conditions, can exhibit synchronous behaviour
under appropriate conditions [6]. In the absence of delays (τ = 0), synchro-
nization is related to the network structure through the eigenvalues of the
Laplacian operator, which encapsulates the connection structure of the net-
work [7]. With nonzero delays, the relation between the two becomes more
complicated. Figure 2.1 shows the parameter regions where chaotic logistic
maps given by

f(x) = 4x(1 − x)

exhibit synchrony when coupled.
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It is apparent that delays and the network topology interact in a non-
trivial way to determine synchronization. Interestingly, it can be seen from
the figure that the delays can enhance synchronization. For instance, in the
random network, for the range of coupling strengths 0.6 < κ < 0.85 the sys-
tem synchronizes only when the delay τ is nonzero. The fact that the delayed
system can manage to act in unison at all is a bit surprising in view of the
fact that each unit is unaware of the present state of the others. Hence it is
all the more surprising when synchrony occurs only with delays. Furthermore,
it turns out that the synchronous behaviour itself can exhibit a wide range
of dynamics in the presence of delays, including periodic and quasi-periodic
oscilations, chaos with a different Lyapunov exponent than the original map,
and hyperchaos (two or more positive Lyapunov exponents) [8, 9]. Even more
possibilities arise if the delays in (2.1) are allowed to vary between pairs of
units. When the delays are chosen from a random distribution with a suffi-
ciently large variance, the coupled system can tend to a stable fixed point [10].
Thus, the delays can induce a very rich set of new behaviour into the network
(2.1).

2.3 Coupled Oscillators

The coupled map model of the previous section assumes that the units update
their states at the same instant, namely at integer values of time. In some cases
it is more realistic to consider a continuous update mechanism. Such systems
can be described by differential equations in continuous time, which may take
the form

ẋ(t) = f(x(t); ε) (2.2)

with x ∈ Rn and ε ∈ R is a parameter. A common example is the modeling
of limit cycle oscillators that arise in biology, population dynamics, electronic
circuits, etc. One way such stable oscillations can arise is through a super-
critical Hopf bifurcation, where the system has a stable fixed point for ε < 0,
which loses its stability when ε is increased as a pair of complex conjugate
eigenvalues of the linearized system crosses to the right half complex plane at
the bifurcation value ε = 0. It can then be shown that under quite general
conditions an attracting periodic solution exists for 0 < ε � 1. We assume
this to be the case so that (2.2) models an oscillator. Analogous to (2.1), a
coupled system of such oscillators may be represented by

ẋi(t) = f(xi(t); ε) + εκ
1
di

∑
j

j∼i

(xj(t− τ) − xi(t)) . (2.3)
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Fig. 2.2. Two coupled van der Pol oscillations. The upper graph shows the behav-
iour when there are no coupling delays (τ = 0), where the system synchronizes. In
the lower graph τ = 1, and the oscillations are quenched.

As before, synchrony is again a possible behaviour for the coupled system,
but we focus on another interesting behaviour that emerges in the presence
of delays—the so-called amplitude death or oscillator death. The term refers
to the quenching of oscillations as the system is attracted to the fixed point,
which was unstable for the isolated system (2.2). We illustrate this behaviour
for the familiar van der Pol oscillator, whose dynamics are described by

ÿ + ε(y2 − 1)ẏ + y = 0 (2.4)

For (2.4), the zero solution is stable for negative values of ε, and undergoes
a supercritical Hopf bifurcation at ε = 0 as a pair of complex conjugate
eigenvalues of the linearized equation migrate to the right half of the complex
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plane. For small positive values of ε, there is a stable limit cycle with amplitude
near 2, which attracts all initial conditions, except the unstable equilibrium
at zero. We couple a pair of such oscillators through their velocities, obtaining
the system

ÿ1 + ε(y2
1 − 1)ẏ1 + y1 = εκ(ẏ2(t− τ) − ẏ1(t))

ÿ2 + ε(y2
2 − 1)ẏ2 + y2 = εκ(ẏ1(t− τ) − ẏ2(t))

(2.5)

Figure 2.2 illustrates delay-induced death for (2.5). When there are no delays
in the coupling, the oscillators fall into step after starting from arbitrary initial
conditions. For positive coupling delay and an appropriate range of coupling
strengths, the oscilations are suppressed and replaced by an equilibrium solu-
tion.

Interestingly, in a network such as (2.3) where the oscillators are identical,
amplitude death is possible only in the presence of delays [11, 12], and for non-
identical oscillators, delays make amplitude death easier to occur [13]. This is
clearly an important phenomenon since oscillations form a crucial function of
many biological systems, such as cardiac cells, neurons, etc., which once again
underscores the importance of delays. For systems near Hopf bifurcation, the
role of the network topology can be expressed in terms of the largest eigen-
value of the Laplacian operator [14]. Hence, there is again an intimate relation
between the delays and the network structure in shaping the dynamics of the
system.

2.4 Neural Field Model

The coarse-grained activity of neural ensembles are often modeled by integro-
differential equations of the form [15]

L(∂/∂t)V (x, t) = κ

∫
Ω

K(|x−y|)S
(
V

(
y, t− |x− y|

v

))
dy +E(x, t). (2.6)

Here, V (x, t) denotes the mean postsynaptic potential at time t and location
x inside the spatial domain Ω (here R), L is a first- or second-order temporal
differential operator, κ ≥ 0 is the coupling strength, S is a nonlinear transfer
function, v is the axonal transmission speed, K is the connectivity kernel,
and E is the external input. At first sight, (2.6) has little resemblance to the
networks mentioned in the previous sections; but in fact it can be considered
as a dynamical network over a continuum of nodes, labeled by the coordinate
system in Ω. The propagation delay between two locations (or nodes) x and y
is given by |x− y|/v. Thus, the delays in the model (2.6) are distributed over
an interval, in contrast to the fixed delays of previous examples. Many studies
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K(z)

z
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Fig. 2.3. Typical connectivity kernels K for the neural field model. The graph on
the left corresponds to local inhibition-lateral excitation, and the one on the right
gives local excitation-lateral inhibition.

ignore these delays by taking v = ∞. The function K describes the connec-
tion structure and plays a role similar to the Laplacian operator of (2.1) and
(2.3). If K is a positive (respectively, negative) function, then the connections
are excitatory (respectively, inhibitory). On the other hand, a kernel K with
mixed signs allows the modeling of more general connectivity, such as local
inhibition and lateral excitation or vice versa, as depicted in Figure 2.3.

A systematic analysis of (2.6) can proceed by finding spatially uniform
equilibrium solutions for constant input level, and study their stability as
parameters are varied. By following the behaviour near bifurcation values,
one can discover such phenomena as spatial patterns (Turing patterns), os-
cillations, or traveling waves [16, 17]. The bifurcations can be classified as
temporally constant or oscillatory, which can further be relegated as spatially
constant or varying. Temporally constant bifurcations may lead to spatially
uniform equilibria or spatial patterns, while oscillatory bifurcations may yield
spatially uniform oscillations or traveling waves. Figure 2.4 summarizes the
four basic possibilities for bifurcations. For the system (2.6) it turns out that
oscillatory solutions can bifurcate from spatially homogeneous equilibria only
when delays are present. We make this statement precise by the following
theorem:

Theorem 1. Suppose L( ∂
∂t ) = η ∂2

∂t2 +γ ∂
∂t +ρ, where η = 0 or 1 and γ, ρ > 0.

If

κ

∫
Ω

|zK(z)| dz < |γ|v (2.7)

then there are no oscillatory bifurcations of spatially homogeneous equilibria.

Clearly, (2.7) is satisfied for instantaneous or very fast signal transmission,
so in these cases only stationary solutions can bifurcate from equilibria. Stated
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Fig. 2.4. Possible bifurcations from a spatially homogeneous equilibrium of the
neural field. In the upper row are the stationary bifurcations leading to a new spa-
tially constant equilibrium (left) or a Turing pattern (right). In the lower row are
the oscillatory bifurcations yielding uniform oscillations (left) and traveling waves
(right). In each graph, the vertical axis is the time and the horizontal axis is space.

differently, the two possibilities shown in the lower row of Figure 2.4 can only
occur in the presence of (sufficiently large) delays. This once again shows the
rich dynamics introduced by delayed interaction in the network.

2.5 Conclusion

We have looked at three examples of common networks arising from models of
biological and physical systems. Each network is a dynamical system with a
different character with respect to space and time, as summarized in Table 2.1.
Each one can display quite a rich spectrum of dynamics, depending on the
particular nonlinearities, system size, initial conditions, and the like. In each
case we have seen that the introduction of transmission delays into the network
enables the emergence of completely new behaviour, which is not possible in
the absence of delays.
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Table 2.1. Summary of example networks.

System Space Time

Coupled maps Discrete Discrete
Coupled differential equations Discrete Continuous
Field models Continuous Continuous

We have also noted that there is a nontrivial interaction between the delays
and the network topology, or connectivity, which turns out to be an important
factor in shaping the dynamical features of the system. In our examples of dis-
crete networks, the connectivity is described by the Laplacian operator (which
can be derived from the adjacency matrix), which supposes that the interac-
tion between the units is of diffusive type. Similarly, in the continuous neural
field (2.6), the connectivity given by the kernel K assumes a homogeneous
and isotropic field, since it depends only on the absolute value of the distance
betwen two locations. Of course, more general interaction types may arise in
different application areas. On the other hand, in many applications, such as
real neural networks, the precise form of the connectivity is not known. This
underlines the fact that it is essential to have a theoretical understanding of
the network dynamics for general connectivities, delays, and nonlinearities.

Realistic models of dynamical networks increasingly demand the inclusion
of transmission delays for proper analysis, design, and control of their dynam-
ics. As we have seen, novel dynamical behaviour can emerge as a result of
delays, even though the undelayed network may itself be sufficiently complex.
Note that we did not assume any particular form for the nonlinearities in the
models considered. Hence, the observations are quite general and applicable
to dynamical networks arising in diverse disciplines, showing that the effects
of delays are not peculiar to a particular system. A mathematical theory of
dynamical networks involving time delays is therefore important for under-
standing the general behaviour of a collection of interacting entities, be it
cells, neurons, proteins, infectious agents, lasers, or stock markets.

References

1. Kolmanovskii V, Myshkis A (1992) Applied Theory of Functional Differential
Equations. Kluwer Academic Publishers, Dordrecht.

2. Kuntsevich BF, Pisarchik AN (2001) Synchronization effects in a dual-
wavelength class-B laser with modulated losses. Phys Rev E 64:046221.

3. Longtin A, Milton J (1988) Complex oscillations in the human pupil light reflex
with “mixed” and delayed feedback. Math Biosci 90:183–199.

4. Atay FM, Mallet-Paret J (1998) Modeling reflex asymmetries with implicit
delay differential equations. Bull Math Biol 60:999–1015.



2 Networks with Delays 33

5. Kaneko K (ed) (1993) Theory and applications of coupled map lattices. Wiley,
New York.

6. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev
Lett 64:821–824.

7. Jost J, Joy MP (2002) Spectral properties and synchronization in coupled map
lattices. Phys Rev E 65:016201.

8. Atay FM, Jost J, Wende A (2004) Delays, connection topology, and synchro-
nization of coupled chaotic maps. Phys Rev Lett 92:144101.

9. Atay FM, Jost J (2004) On the emergence of complex systems on the basis of
the coordination of complex behaviors of their elements: synchronization and
complexity. Complexity 10:17–22.

10. Masoller C, Marti AC (2005) Random delays and the synchronization of chaotic
maps. Phys Rev Lett 94:134102.

11. Ramana Reddy DV, Sen A, Johnston GL (1998) Time delay induced death in
coupled limit cycle oscillators. Phys Rev Lett 80:5109–5112.

12. Atay FM (2003) Total and partial amplitude death in networks of diffusively
coupled oscillators. Physica D 183:1–18.

13. Atay FM (2003) Distributed delays facilitate amplitude death of coupled oscil-
lators. Phys Rev Lett 91:094101.

14. Atay FM (2006) Oscillator death in coupled functional differential equations
near Hopf bifurcation. J Differential Equations 221:190–209.

15. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys J 12:1–24.

16. Atay FM, Hutt A (2005) Stability and bifurcations in neural fields with finite
propagation speed and general connectivity. SIAM J Appl Math 65:644–666.

17. Hutt A, Atay FM (2005) Analysis of nonlocal neural fields for both general and
gamma-distributed connectivities. Physica D 203:30–54.



3

Dynamical Networks

Jürgen Jost

Summary. The theory of dynamical networks is concerned with systems of dynam-
ical units coupled according to an underlying graph structure. It therefore investi-
gates the interplay between dynamics and structure, between the temporal processes
going on at the individual units and the static spatial structure linking them.
In order to analyse that spatial structure, formalized as a graph, we discuss an es-
sentially complete system of graph invariants, the spectrum of the graph Laplacian,
and how it relates to various qualitative properties of the graph. We also describe
various stochastic construction schemes for graphs with certain qualitative features.
We then turn to dynamical aspects and discuss systems of oscillators with diffu-
sive coupling according to the graph Laplacian and analyse their synchronizability.
The analytical tool here are local expansions in terms of eigenmodes of the graph
Laplacian. This is viewed as a first step towards a general understanding of pattern
formation in systems of coupled oscillators.

3.1 Introduction

The theory of dynamical networks is a combination of graph theory and non-
linear dynamics. It is concerned with elements or agents whose states are
dynamical quantities, following some dynamical rule, and that dynamical rule
includes interactions with neighbouring elements. These elements are consid-
ered as the nodes or vertices of a graph, and the edges connecting them with
other vertices in the graph specify with which other elements they interact.
Thus, from the point of view of dynamical systems, we have a coupled system
of dynamical equations, and the emphasis is on the resulting global dynamics
of the system emerging from the interactions between the local dynamics of
the individual elements. Graph theory then analyses the coupling structure
and its influence on those emerging global patterns. Here, one thinks about
dynamical nodes, but with a fixed topology. In contrast to this, one may also
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consider how evolution rules shape the dynamics of a network, that is, admit-
ting a dynamical topology. In that scenario, the underlying graph is not fixed,
but changing, possibly in response to the dynamics supported by it.

Thus, the emphasis can be put either on the interplay between the local
and the global dynamics or on the dynamically evolving topology. Most in-
teresting is a combination of both. Typically, such a combination involves a
coupling between two different time scales: a fast one on which the individual
dynamic takes place, and a slow one on which the network responds to that
dynamic and evolves. In neural networks, for example, one has a fast activ-
ity dynamic of the nodes, called neurons in this context, and a slow learning
dynamic that changes the weights of the connections, called synapses, in re-
sponse to the activity correlations between neurons.

Although, as discussed, the interplay between dynamic and structure is of
ultimate interest, for the exposition we first need to describe the two aspects
separately. We start with the theory of the underlying structure, that is, with
graph theory, with a view toward dynamical patterns. In particular, we shall
introduce and analyse the graph Laplacian and its spectrum. This will also
provide a link with dynamical aspects. Namely, we shall consider dynamics
at the nodes of the graph that are coupled via the graph Laplacian, or some
generalizations thereof. We shall then conclude this survey by discussing the
question of synchronization, that is, when the coupling is strong enough to
make the dynamics at the nodes identical to each other.

3.2 Qualitative Properties of Graphs

As described in the introduction, we consider networks of interacting discrete
agents or elements. Usually, these interactions follow not only some dynamical
rule, but also some underlying structural pattern that encodes which elements
interacts with which other one. This is typically specific, in the sense that the
interaction partners of each element are specific, selected other elements. This
structure may itself evolve in time, but if it does, then it will do so rather
slowly in most situations.

This interaction pattern or structure is usually formalized as a graph. The
nodes or vertices of the graph are the original elements themselves, whereas
the edges or links encode the interaction pattern. In the simplest case, the
graph is symmetric and without weights, and there is a link between the el-
ements i and j when they interact. In a dynamical evolution, the influences
need not be symmetric, however. That is, the state of i may be an input for
the computation of the next state of j, but not conversely. In that case, we
should represent this by a directed edge from i to j. Thus, we shall construct
a directed graph. Also, the interaction or influence may occur with a certain
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strength wji, and we may also encode this by assigning the weight wji to the
edge from i to j. We thus obtain a weighted graph; it is symmetric if always
wji = wij .

Examples of unweighted, symmetric graphs are the ones that describe
reciprocal social relationships like acquaintance, friendship, scientific collabo-
ration, or the ones that describe infrastructures (roads, train or flight connec-
tions between cities, power lines, Internet connections between servers, etc).
Directed graphs occur for such diverse patterns as Web links, gene regulatory
networks, food webs, and flows of payments. Extreme cases are hierarchical
or dependency, descendence structures and the like where links can only go
in one direction. Weighted graphs occur, for example, as structures of neural
networks.

A graph can be represented by its adjacency matrix. That matrix carries
an entry 1 (or wji in the weighted case) at the intersection of the ith row and
the jth column if there is a link from i to j. When there is no link, the entry
will be 0.

We are interested in qualitative properties of the interaction graph and in
quantities whose values can encode the significant such properties. Let us try
to develop some of them. We consider the symmetric case without weights.
We assume that the graph Γ is connected and finite. We say that two vertices
are neighbours if they are connected by an edge. An extreme case is the com-
plete graph of N vertices where each vertex is connected to every other one.
Excluding self-connections, we thus have N(N−1)

2 links. That graph is said
to be fully connected. In particular when N is large, this becomes unwieldy.
Typically, large graphs are rather sparsely connected, that is, most entries in
the adjacency matrix will be 0.

Another prototype that is a natural starting point is a regular graph. We
consider some regular tessellation of Euclidean space, for example by unit
cubes or simplices. We take all the corner points of this tessellation, for ex-
ample all points in Euclidean space with integer coordinates in the case of a
unit cube tessellation. We then select a regular connectivity pattern, that is,
connect any such points with all the nearest other ones, and perhaps also with
the second, third,..., nearest ones. To obtain a finite graph, we can identify
points that are obtained from each other through a shift of some fixed size in
any of the coordinate directions. Such a regular graph then possesses a tran-
sitive1 symmetry group because the connectivity pattern of all the nodes is
the same. While such a graph may describe the structure of certain crystals,
in most other cases we do not encounter so much homogeneity, but rather
some diversity and differences between the connectivity patterns of the vari-
ous nodes. To provide a pattern that is opposite to the one of a regular graph,
Erdös and Rényi introduced random graphs. Here, one starts with, say, N
nodes and each pair of nodes gets a link with some fixed probability p. That
is, we start with a fully connected graph of N nodes and delete any individual
1 On the set of nodes.
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edge with probability 1− p, of course treating all edges independently of each
other. Since this is a stochastic constructions, it then makes sense to consider
the class of all such random graphs with fixed parameters N, p and derive
typical properties, that is, properties that hold almost surely as N tends to
∞, with respect to some obvious natural measure on the space of all such
random graphs.

For nodes i, j of a graph Γ , we let d(i, j) denote their distance, that is, the
smallest number of edges that establish a connection between them. In a reg-
ular graph, the distance between randomly drawn nodes grows like a power of
the total number N of nodes. In most graphs occurring in applications, how-
ever, the average or maximal distance between nodes is much smaller. This
has been called the small-world phenomenon, and Watts and Strogatz [31]
proposed a simple algorithm for converting a regular graph into a small-world
graph. Namely, given a regular graph and some p between 0 and 1, for any
node i, select with probability p a random partner j somewhere in the graph
and add a link from i to j. One variant of the construction then deletes one
of the original links from i so as to keep the total number of edges constant.
When p exceeds some critical threshold, the small-world phenomenon sets in,
that is, the average distance between two nodes jumps to a much smaller value
than for the original regular graph.

Another class of graphs that recently found much interest is the so-called
scale-free graph. Here, the number of nodes of degree k, that is, those that
possess k links, behaves like a power k−β . That is, the number of nodes of
degree k does not decay exponentially as a function of k, as many examples
of graphs might lead one to expect, but rather only polynomially. Graphs
modeling Web links, Internet connections between servers, airline connections
between cities, and also biological networks like gene regulatory networks seem
to exhibit this type of structure. Simon [29] and Barabasi and Albert [4] pro-
posed a construction scheme for such scale-free graphs. One starts with some
small graph and then adds new nodes successively. Any new node is allowed
to make k links while any node already established has a probability propor-
tional to the number of links it already possesses for becoming the recipient
of one of those k new links. As the network grows it exhibits this type of
scale-free behaviour. However, a scale-free structure can also be generated by
completely different mechanisms, with different qualitative properties with re-
gard to other aspects.

One such important network aspect is the clustering behaviour, both on
the local and on the global scale. We start with the local aspect. For an
Erdös-Rényi random graph, given a node i0 and two of its neighbours i1, i2,
the probability that they are connected, that is, that there exists an edge
between i1 and i2, is given by the fixed number p underlying the construction
and is not influenced at all by the fact that they possess a common neighbour,
namely i0. In many networks arising in applications, this is different, however.
Namely, two nodes with a common neighbour have a higher probability of be-
ing directly connected than two arbitrary ones. Of course, it may also happen
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that that probability is lower. For example, for the regular graph formed from
the points in Euclidean space with integer coordinates, connected when pre-
cisely one of these coordinates differs by 1 between them while the other ones
coincide, that probability is 0 as the neighbours of a vertex are never directly
connected. Likewise, two neighbours of a vertex are never connected for trees,
that is, for graphs without cycles (loops), in other words, for simply connected
graphs.

The average probability for two neighbours of some vertex to be directly
connected is given by the clustering coefficient C of the graph Γ , defined as 3
times the ratio between the number of triangles in the graph (that is triples
of vertices for which each is connected to the other two) and the number of
connected triples (that is triples where one is connected to the other two).
The factor 3 arises because each triangle contains three connected triples.

One can then also consider other graph motives that are larger than trian-
gles, for example complete subgraphs of k vertices, that is, subgraphs in which
any two vertices are connected by an edge, for some k > 3 (for k = 3, we have
the triangles just discussed). Two such complete k-subgraphs are called ad-
jacent when they share a complete (k − 1)-subgraph. One can then search
for clusters defined as maximal subgraphs consisting of uninterrupted chains
of adjacent complete k-subgraph (see [12]). That means that each vertex is
contained in a complete k-subgraph, and for any two vertices i, j inside such
a cluster, we find a sequence i1 = i, i2, ..., in = j of vertices inside the cluster
such that iν and iν+1 are always contained in adjacent complete k-subgraphs.

This was the local aspect of clustering. The global one is what is also called
community structure. Here, one looks for groups of vertices with many con-
nections within a group, but considerably fewer between groups. Perhaps this
aspect is best understood by describing methods for breaking a network up
into such subgroups, also called communities. We shall exhibit two methods
that are kind of dual to each other. The first one is based on a quantity that
is analogous to one introduced by Cheeger in Riemannian geometry. Letting
ni denote the degree of the node i (the number of its neighbours) and |E| the
number of edges contained in an edge set E, that quantity is

h(Γ ) := inf
{ |E0|

min
(∑

i∈V1
ni,
∑

i∈V2
ni

)} (3.1)

where removing E0 disconnects Γ into the components V1, V2. Thus, we try to
break up the graph into two large components by removing only few edges. We
may then repeat the process within those components to break them up fur-
ther until we are no longer able to realize a small value of h. The other method
was introduced by Girvan and Newman [14]. They define the “betweenness”
of an edge as the number of shortest paths between vertices that contain it,
that is, run through it. The underlying intuition is that severing an edge with
a high value of that betweenness cuts many shortest paths between vertices
on different sides and therefore is conducive to breaking up the graph. Their
algorithm for breaking up a graph efficiently into communities then consists in
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the iterative removal of the (or an) edge with the highest betweenness where
of course the value of that betweenness has to be recomputed after each re-
moval. Rather obvious network parameters are the maximal and the average
distance between nodes. As already mentioned, the values of those parameters
are high for regular graphs and small for small-world ones. Random graphs
also tend to have relatively small values.

So far, we have discussed qualitative features that can be simply described.
In the next section, we shall turn to a more a technical set of invariants, the
eigenvalues of the graph Laplacian. That will then enable us in subsequent
sections to discuss the former qualitative aspects in a more profound manner.

3.3 The Graph Laplacian and Its Spectrum

So far, we have considered quantities that can be directly evaluated from
an inspection of the graph. We now turn to constructions that depend on
the choice of additional data. These data are functions on the set of vertices
of the graph Γ . Of course, any such function can be extended to the edges
by linear interpolation, and we shall occasionally assume that interpolation
implicitly. For analysing such functions, it is in turn useful to have a basis
of that function space. For that purpose, we introduce the L2-product for
functions on Γ :

(u, v) :=
∑
i∈Γ

niu(i)v(i) (3.2)

where ni is the degree of the vertex i. For purposes of normalization, one
might wish to put an additional factor 1

|Γ | in front where |Γ | is the number
of elements of the graph, but we have decided to omit that factor in our
conventions. We may then choose an orthonormal base of that space L2(Γ ). To
find such a basis that is also well adapted to dynamical aspects, we introduce
the graph Laplacian

Δ : L2(Γ ) → L2(Γ )

Δv(i) :=
1
ni

∑
j,j∼i

v(j) − v(i) (3.3)

where j ∼ i means that j is a neighbour of i.2 The idea behind this operator
is the comparison of the value of a function v at a vertex i with the average
2 There are several different definitions of the graph Laplacian in the litera-

ture. Some of them are equivalent to ours inasmuch as the yield the same
spectrum, but others are not. In the monograph [8], the operator Lv(i) :=
v(i)−∑j,j∼i

1√
ni

√
nj

v(j) is employed. Apart from the minus sign, it has the same

eigenvalues as Δ: if Δv(i) = μv(i), then w(i) =
√

niv(i) satisfies Lw(i) = −μw(i).
While our operator Δ is symmetric w.r.t., the product (u, v) =

∑
i∈Γ niu(i)v(i),

L is symmetric w.r.t. 〈u, v〉 :=
∑

i∈Γ u(i)v(i). The operator Lv(i) := niv(i) −
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of the values at the neighbours of i. Thus, Δv detects local inhomogeneities
in the values of the function v. In particular, since we assume that our graph
is connected

•
Δv ≡ 0 iff v ≡ const. (3.4)

(If the graph is not connected, then Δv ≡ 0 when v is constant on each
component.)

Other important properties of Δ are the following ones:

• Δ is selfadjoint w.r.t. (., .):

(u,Δv) = (Δu, v) (3.5)

for all u, v ∈ L2(Γ ).3 This holds because the neighbourhood relation is
symmetric.

• Δ is nonpositive:
(Δu, u) ≤ 0 (3.6)

for all u. This follows from the Cauchy-Schwarz inequality.

The preceding properties have consequences for the eigenvalues of Δ:

• By (3.5), the eigenvalues are real.

• By (3.6), they are nonpositive. We write them as −λk so that the eigen-
value equation becomes

Δuk + λkuk = 0. (3.7)

• By (3.4), the smallest eigenvalue then is λ0 = 0. Since we assume that Γ
is connected, this eigenvalue is simple (see (3.4)), that is

λk > 0 (3.8)

for k > 0 where we order the eigenvalues as

λ0 < λ1 ≤ ... ≤ λK

(K = |Γ | − 1).∑
j,j∼i v(j) that is also often employed in the literature, however, has a spectrum

different from Δ for general graphs.
3 An operator A = (Aij) is symmetric w.r.t., a product 〈v, w〉 :=

∑
i biv(i)w(i),

that is, 〈Av, w〉 = 〈v, Aw〉 if biAij = bjAji for all indices i, j. The bi are often
called multipliers in the literature.
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We next consider, for neighbours i, j

Du(i, j) := u(i) − u(j) (3.9)

(Du can be considered as a function defined on the edges of Γ . Thus, D maps
functions on the vertices to functions on the edges.) We also introduce the
product

(Du,Dv) :=
(∑

j∼i

(
u(i) − u(j)

)(
v(i) − v(j)

))
(3.10)

where the sum is over edges4 (note that here, in contrast to (3.2), we do not
use any weights). We have

(Du,Dv) =
1
2

(∑
i

niu(i)v(i) +
∑

j

nju(j)v(j) − 2
∑
j∼i

u(i)v(j)
)

= −
∑

i

u(i)
∑
j∼i

(
v(j) − v(i)

)
= −(u,Δv). (3.11)

We may find an orthonormal basis of L2(Γ ) consisting of eigenfunctions of Δ,

uk, k = 1, ...,K.

This is achieved as follows. We iteratively define, with H0 := H := L2(Γ ) be-
ing the Hilbert space of all real-valued functions on Γ with the scalar product
(., .),

Hk := {v ∈ H : (v, ui) = 0 for i ≤ k − 1}, (3.12)

starting with a constant function u0 as the eigenfunction for the eigenvalue
λ0 = 0. Also

λk := inf
u∈Hk−{0}

(Du,Du)
(u, u)

, (3.13)

that is, we claim that the eigenvalues can be obtained as those infima. First,
since Hk ⊂ Hk−1, we have

λk ≥ λk−1. (3.14)

Second, since the expression in (3.13) remains unchanged when a function u
is multiplied by a nonzero constant, it suffices to consider those functions that
satisfy the normalization:

(u, u) = 1 (3.15)

whenever convenient. We may find a function uk that realizes the infimum in
(3.13), that is

λk =
(Duk, Duk)

(uk, uk)
. (3.16)

4 If we summed over pairs of vertices (i, j) with i ∼ j, then each edge would be
counted twice, and we would have to introduce a factor 1

2
in front of the sum.
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Since then for every ϕ ∈ Hk, t ∈ R(
D(uk + tϕ), D(uk + tϕ)

)
(uk + tϕ, uk + tϕ)

≥ λk, (3.17)

the derivative of that expression w.r.t. t vanishes at t = 0, and we obtain,
using (3.11)

0 = (Duk, Dϕ) − λk(uk, ϕ) = −(Δuk, ϕ) − λk(uk, ϕ) (3.18)

for all ϕ ∈ Hk; in fact, this even holds for all ϕ ∈ H, and not only for those
in the subspace Hk, since for i ≤ k − 1

(uk, ui) = 0 (3.19)

and

(Duk, Dui) = (Dui, Duk) = −(Δui, uk) = λi(ui, uk) = 0 (3.20)

since uk ∈ Hi. Thus, if we also recall (3.11),

(Δuk, ϕ) + λk(uk, ϕ) = 0 (3.21)

for all ϕ ∈ H whence
Δuk + λkuk = 0. (3.22)

Since, as noted in (3.15), we may require

(uk, uk) = 1 (3.23)

for k = 0, 1, ...,K and since the uk are mutually orthogonal by construction,
we have constructed an orthonormal basis of H consisting of eigenfunctions
of Δ. Thus we may expand any function f on Γ as

f(i) =
∑

k

(f, uk)uk(i). (3.24)

We then also have
(f, f) =

∑
k

(f, uk)2 (3.25)

since the uk satisfy
(uj , uk) = δjk, (3.26)

the condition for being an orthonormal basis. Finally, using (3.25) and (3.11),
we obtain

(Df,Df) =
∑

k

λk(f, uk)2. (3.27)

We next derive Courant’s minimax principle: Let P k be the collection
of all k-dimensional linear subspaces of H. We have
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λk = max
L∈P k

min
{

(Du,Du)
(u, u)

: u 
= 0, (u, v) = 0 for all v ∈ L

}
(3.28)

and dually

λk = min
L∈P k+1

max
{

(Du,Du)
(u, u)

: u ∈ L\{0}
}
. (3.29)

To verify these relations, we recall (3.13)

λk = min
{

(Du,Du)
(u, u)

: u 
= 0, (u, uj) = 0 for j = 1, ..., k − 1
}
. (3.30)

Dually, we have

λk = max
{

(Du,Du)
(u, u)

: u 
= 0 linear combination of uj with j ≤ k

}
. (3.31)

The latter maximum is realized when u is a multiple of the kth eigenfunction,
and so is the minimum in (3.30). If now L is any k+ 1-dimensional subspace,
we may find some v in L that satisfies the k conditions

(v, uj) = 0 for j = 0, ..., k − 1. (3.32)

From (3.25) and (3.27), we then obtain

(Dv,Dv)
(v, v)

=

∑
j≥k λj(v, uj)2∑

j≥k(v, uj)2
≥ λk. (3.33)

This implies

max
v∈L\{0}

(Dv,Dv)
(v, v)

≥ λk. (3.34)

We then obtain (3.29). (3.28) follows in a dual manner.
For linking the function theory on Γ with the underlying topological struc-

ture of Γ , it is important to understand how the eigenvalues of Δ depend on
the properties of Γ . Again, we start with some extreme cases that are easy to
analyse. For a fully connected graph, we have

λ1 = ... = λK =
|Γ |

|Γ | − 1
(3.35)

since
Δv = −v (3.36)

for any v that is orthogonal to the constants, that is

1
|Γ |
∑
i∈Γ

niv(i) = 0. (3.37)
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We also recall that since Γ is connected, the trivial eigenvalue λ0 = 0 is simple.
If Γ had two components, then the next eigenvalue λ1 would also become 0. A
corresponding eigenfunction would be equal to a constant on each component,
the two values chosen such that (3.37) is satisfied; in particular, one of the two
would be positive, the other one negative. We therefore expect that for graphs
with a pronounced community structure, that is, for ones that can be broken
up into two large components by deleting only a few edges as discussed above,
the eigenvalue λ1 should be close to 0. Formally, this is easily seen from the
variational characterization

λ1 = min
{∑

j∼i

(
v(i) − v(j)

)2∑
i niv(i)2

:
∑

i

niv(i) = 0
}
, (3.38)

[see (3.13) and observe that
∑

i niv(i) = 0 is equivalent to (v, u0) = 0 as the
eigenfunction u0 is constant]. Namely, if two large components of Γ are only
connected by few edges, then one can make v constant on either side, with
opposite signs so as to respect the normalization (3.37) with only a small
contribution from the numerator.

The strategy for obtaining an eigenfunction for the first eigenvalue λ1

is, according to (3.38), to do the same as one’s neighbours. Because of the
constraint

∑
i niv(i) = 0, this is not globally possible, however. The first

eigenfunction thus exhibits oscillations with the lowest possible frequency.
By way of contrast, according to (3.29), the highest eigenvalue is given by

λK = max
u�=0

(Du,Du)
(u, u)

. (3.39)

Thus, the strategy for obtaining an eigenfunction for the highest eigenvalue is
to do the opposite of what one’s neighbours are doing, for example to assume
the value 1 when the neighbours have the value −1. Thus, the correspond-
ing eigenfunction will exhibit oscillations with the highest possible frequency.
Here, the obstacle can be local. Namely, any triangle, that is, a triple of three
mutually connected nodes, presents such an obstacle. More generally, any cy-
cle of odd length makes an alternation of the values 1 and −1 impossible. The
optimal situation here is represented by a bipartite graph, that is, a graph
that consists of two sets Γ+, Γ− of nodes without any links between nodes
in the same such subset. Thus, one can put um = ±1 on Γ±. The highest
eigenvalue λK becomes smallest on a fully connected graph, namely

λK =
|Γ |

|Γ | − 1
(3.40)

according to (3.37). For graphs that are neither bipartite nor fully connected,
this eigenvalue lies strictly between those two extremal possibilities.

Perhaps the following caricature can summarize the preceding: For mini-
mizing λ1—the minimal value being 0—one needs two subsets that can inter-
nally be arbitrarily connected, but that do not admit any connection between
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each other. For maximizing λK—the maximal value being 2—one needs two
subsets without any internal connections, but allowing arbitrary connections
between them. In either situation, the worst case—that is the one of a maximal
value for λ1 and a minimal value for λK—is represented by a fully connected
graph. In fact, in that case, λ1 and λK coincide.

We also have the following version of Courant’s nodal domain theorem of
Gladwell-Davies-Leydold-Stadler [15]:

Lemma 1. Let uk be an eigenfunction for the eigenvalue λk, with our above
ordering, 0 = λ0 < λ1 ≤ λ2 ≤ .... ≤ λK . Delete from Γ all edges that connect
points on which the values of uk have opposite signs. This divides Γ into
connected components Γ1, ...., Γl. Then l ≤ k + 1, where we need to order the
eigenvalues appropriately when they are not simple.

Systematic questions:

• What is the relationship between global properties or quantities (diame-
ter, clustering coefficient, Cheeger constant, community structure,...), lo-
cal quantities (pointwise clustering, upper and lower bounds for vertex
degrees,...) and eigenvalues?

• How do operations on graphs affect eigenvalues, in particular (in the case
of a connected graph) λ1 as given in (3.38)? Let us consider some examples
for the latter question:

1. We add a new node, labeled j0, with a single edge to some existing node
i0 in the graph Γ . This does not increase λ1. This is seen as follows:
Let u = u1 be a first eigenfunction; thus, u realizes the infimum in
(3.38) and satisfies the constraint

∑
i niu(i) = 0. However, on the new

graph Γ ′ obtained by adding the node j0, this constraint is no longer
satisfied, even if we put u(j0) = 0, because the degree of i0 has been
increased by 1 by the new edge from j0 to i0. We therefore construct
a new function u′ by putting u′(i) = u(i) + η for all nodes i ∈ Γ and
u′(j0) = u′(i0), for some constant η to be determined by the constraint,
which now becomes

∑
j∈Γ ′ n′

ju
′(j) = 0 where n′

j of course denotes the
vertex degrees in Γ ′. This becomes∑

i∈Γ

ni

(
u(i) + η

)
+ 2
(
u(i0) + η

)
(3.41)

where the last term arises from the increase in ni0 by 1 and the pres-
ence of the additional node j0. This yields η = − 2u(i0)∑

ni+2 . Since we are
changing u by a global additive constant and since u′(i0) = u′(j0), the
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numerator in (3.38) is the same for u′ on Γ ′ as it was for u on Γ . We
now compute the denominator as∑

i∈Γ

ni

(
u(i) + η

)2 + 2
(
u(i0) + η

)2
>
∑
i∈Γ

niu(i)2

since
∑

i∈Γ niηu(i) = 0 by the constraint condition for u and the addi-
tional contributions are squares and therefore positive (unless u(i0) = 0
in which case they vanish).

2. We add an edge between existing nodes. Here, however, the effect on
λ1 depends on the structure of Γ and where the edge is added. If Γ
has two connected components, then λ1 = 0 as noted above, and if
we add an edge that connects those two components, then λ1 becomes
positive, and so, it increases. Also, we may find graphs that are almost
disconnected and have small λ1 and if we add more and more edges
the graph eventually approaches a fully connected graph for which all
eigenvalues except λ0 are =1. Thus, again, during this process of adding
edges, we expect λ1 to increase. However, in certain situations, adding
an edge may decrease λ1 instead. Namely, if there exist nodes i1, i2 that
are not linked, but for which the first eigenfunction satisfies u1(i1) =
u1(i2), then linking them decreases λ1 by the same computation as in
1. The same then of course also holds when u1(i1) and u1(i2) are not
quite equal, but their difference is sufficiently small.

3. We rewire the graph: We choose nodes i1, i2, j1, j2 with i1 ∼ i2 and
j1 ∼ j2, but with no further neighbouring relation, that is neither i1
nor i2 is a neighbour of j1 or j2. We then delete the two edges, that is,
the one between i1 and i2 and the one between j1 and j2 and insert new
edges between i1 and j1 and between i2 and j2. Obviously, since this is
a reversible process, in general this will not have a systematic effect on
λ1. However, we may try to find such pairs i1, i2 and j1, j2 to influence
certain characteristic properties of the graph like its clustering through
systematic such rewirings, and we may then study the influence on λ1

as well.

We now derive elementary estimates for λ1 from above and below in terms
of the constant h(Γ ) introduced in (3.1). Our reference here is [8] (that mono-
graph also contains many other spectral estimates for graphs, as well as the
original references). We start with the estimate from above and use the vari-
ational characterization (3.38). Let the edge set E divide the graph into the
two disjoint sets V1, V2 of nodes, and let V1 be the one with the smaller ver-
tex sum

∑
ni. We consider a function v that is =1 on all the nodes in V1

and = −α for some positive α on V2. α is chosen so that the normalization∑
Γ niv(i) = 0 holds, that is,

∑
i∈V1

ni−
∑

i∈V2
niα = 0. Since V2 is the subset

with the larger
∑
ni, we have α ≤ 1. Thus, for our choice of v, the quotient in
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(3.38) becomes ≤ (1+α)2|E|∑
i∈V1

ni+
∑

i∈V2
niα2 = (α+1)|E|∑

V1
ni

≤ 2 |E|∑
V1

ni
. Since this holds

for all such splittings of our graph Γ , we obtain from (3.1) and (3.38)

λ1 ≤ 2h(Γ ). (3.42)

The estimate from below is slightly more subtle. We consider the first
eigenfunction u1. Like all functions on our graph, we consider it to be defined
on the nodes. We then interpolate it linearly on the edges of Γ . Since u1 is
orthogonal to the constants (recall

∑
i niu(i) = 0), it has to change sign, and

the zero set of our extension then divides Γ into two parts Γ ′ and Γ ′′. With-
out loss of generality (W.l.o.g.), Γ ′ is the part with fewer nodes. The points
where (the extension of) u1 = 0 are called boundary points. We now consider
any function ϕ that is linear on the edges, 0 on the boundary, and positive
elsewhere on the nodes and edges of Γ ′. We also put h′(Γ ′) := inf{ |E|∑

i∈Ω ni
}

where removing the edges in E cuts out a subset Ω that is disjoint from the
boundary. We then have∑

i∼j

|ϕ(i) − ϕ(j)| =
∫

σ

�e(ϕ = σ)dσ

=
∫

σ

�e(ϕ = σ)∑
i:ϕ(i)≥σ ni

∑
i:ϕ(i)≥σ

ni dσ

≥ inf
σ

�e(ϕ = σ)∑
i:ϕ(i)≥σ ni

∫
s

∑
i:ϕ(i)≥s

ni ds

= inf
σ

�e(ϕ = σ)∑
i:ϕ(i)≥σ ni

∑
i

ni|ϕ(i)|

≥ h′(Γ ′)
∑

i

ni|ϕ(i)|

when the sets ϕ = σ and ϕ ≥ σ satisfy the conditions in the definition of h′(Γ );
that is, the infimum has to be taken over those σ < maxϕ. Here, �e(ϕ = σ)
denotes the number of edges on which ϕ attains the value σ. Applying this to
ϕ = v2 for some function v on Γ ′ that vanishes on the boundary, we obtain

h(Γ ′)
∑

i

ni|v(i)|2 ≤
∑
i∼j

|v(i)2 − v(j)2|

≤
∑
i∼j

(|v(i)| + |v(j)|)|v(i) − v(j)|

≤ 2
(∑

i

ni|v(i)|2
)1/2(∑

i∼j

|v(i) − v(j)|2
)1/2

from which
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1
4
h(Γ ′)2

∑
i

ni|v(i)|2 ≤
∑
i∼j

|v(i) − v(j)|2. (3.43)

We now apply this to v = u1, the first eigenfunction of our graph Γ . We have
h′(Γ ′) ≥ h(Γ ), since Γ ′ is the component with fewer nodes. We also have

λ1

∑
i∈Γ ′

niu1(i)2 =
1
2

∑
i∈Γ ′

∑
j∼i

(
u1(i) − u1(j)

)2
, 5 (3.44)

cf. (3.16) (this relation holds on both Γ ′ and Γ ′′ because u1 vanishes on their
common boundary).6 (3.43) and (3.44) yield the desired estimate

λ1 ≥ 1
2
h(Γ )2. (3.45)

From (3.42) and (3.45), we also observe the inequality

h(Γ ) ≤ 4 (3.46)

for any connected graph.

3.4 Other Graph Parameters

One set of useful parameters that encode important qualitative properties
comes from the metric on the graph generated by assigning every edge the
length 1, that is, letting neighbours in the graph have distance 1. The diam-
eter of the graph (assumed to be connected, as always) then is the maximal
distance between any two of its nodes. Most graphs of N nodes have a diame-
ter of order logN . More precisely, there exists a constant c with the property
that the fraction of all graphs with N nodes having diameter exceeding c logN
tends to 0 for N → ∞. Of course, a fully connected graph has diameter 1.
However, one can realize a small diameter already with much fewer edges;
namely, one selects one central node to which every other node is connected.
In that manner, one obtains a graph of N nodes with N − 1 edges and di-
ameter 2. Of course, the central node then has a very large degree, namely
N − 1. It is a big hub. Similarly, one can construct graphs with a few hubs, so
that none of them has to be quite that big, efficiently distributed so that the
5 We obtain the factor 1

2
because we are now summing over vertices so that each

edge gets counted twice.
6 To see this, one adds nodes at the points where the edges have been cut, and

extends functions by 0 on those nodes. These extended functions then satisfy the
analogue of (3.11) on either part, as one sees by looking at the derivation of that
relation and using the fact that the functions under consideration vanish at those
new “boundary” nodes.
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diameter is still rather small. Such graphs can be realized as so-called scale
free graphs to be discussed below. Another useful quantity is the average dis-
tance between nodes in the graph. The property of having a small diameter
or average distance has been called the small-world effect.

A rather different quantity that was already described in the introduction
is the clustering coefficient that measures how many connections there exist
between the neighbours of a node. Formally, it is defined as

C =
3 × number of triangles

number of connected triples of nodes
. (3.47)

The normalization is that C becomes one for a fully connected graph. It van-
ishes for trees and other bipartite graphs.

A triangle is a cycle of length 3. One may then also count the number
of cycles of length k, for integers > 3. A different generalization consists in
considering complete subgraphs of order k. For example, for k = 4, we would
have a subset of four nodes that are all mutually connected. One may then
associate a simplicial complex to our graph by assigning a k-simplex to every
such complete subgraph, with obvious incidence relations. This is the basis of
topological combinatorics, enabling one to apply tools from simplicial topol-
ogy to graph theory.

3.5 Generalized Random Graphs

A generalized random graph is characterized by its number N of nodes or
vertices and real numbers 0 ≤ pij ≤ 1 (with the symmetry pij = pji) that
assign to each pair i, j of nodes the probability for finding an edge between
them. Self-connections of the node i are excluded when pii = 0. The expected
degree of i then is

νi =
∑

j

pij . (3.48)

This construction generalizes the random graphs introduced by Erdös and
Rényi [13]; their important idea was not to specify a graph explicitly, but
rather only its generic type by selecting edges between nodes randomly. In
their construction, for any pair of nodes, there was a uniform probability p
for an edge between them. If the network has N nodes, then, if we do not
allow self-links, each node has N − 1 possible recipients for an edge, while if
self-links are permitted, there are N of them. Thus, the average degree of a
node is

z := (N − 1)p or Np, (3.49)

and this difference of course becomes insignificant for large N . Moreover, the
probability that a given node has degree k in an Erdös-Rényi graph is
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pk =
(
N − 1
k

)
pk(1 − p)N−1−k (3.50)

because the degree happens to be k when precisely p out of the N−1 possible
edges from the given node are chosen, and each of them is chosen with prob-
ability p and not chosen with probability 1− p. Thus, the degree distribution
is binomial, and for N � kz, this is approximated by the Poisson distribution

pk =
zke−z

k!
(3.51)

(and so z = 〈k〉 =
∑

k kpk).
For an Erdös-Rényi graph, one can also compute the distribution of the

number of second neighbours of a given node, that is, the number of neighbours
of its neighbours, discarding of course the original node itself as well as all its
direct neighbours that also happen to be connected with another neighbour.
However, since there is no tendency to clustering in the construction, the
probability that a second neighbour is also a first neighbour behaves like 1/N
and so becomes negligible for large N . Now, however, the degree distribution
of first-order neighbours of some node is different from the degree distribution
of all the nodes in the random graph, because the probability that an edge
leads to a particular node is proportional to that node’s degree so that a node
of degree k has a k-fold increased chance of receiving an edge. Therefore, the
probability distribution of our first neighbours is proportional to kpk, that is,
given by kpk∑

l lpl
, instead of pk, the one for all the nodes in the graph. Such

a first neighbour of degree k has k − 1 edges leading away from the original
node. Therefore, when we shift the index by 1, the distribution for having k
second neighbours via one particular neighbour is then given by

qk =
(k + 1)pk+1∑

l lpl
. (3.52)

Thus, to obtain the number of second neighbours, we need to sum over the
first neighbours, since, as argued, we can neglect clustering in this model.
So, the mean number of second neighbours is obtained by multiplying the
expected number of second neighbours via a particular first neighbour, that
is,
∑
kqk, by the expected number of first neighbours, z =

∑
kpk. So, we

obtain for that number∑
l

lpl

∑
k

kqk =
∞∑

k=0

k(k + 1)pk+1 =
∞∑

k=0

(k − 1)kpk = 〈k2〉 − 〈k〉. (3.53)

Following the exposition in [24], such probability distributions can be encoded
in probability generating functions. If we have a probability distribution pk

as above on the nonnegative integers, we have the generating function defined
as
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Gp(x) =
∞∑

k=0

pkx
k. (3.54)

Likewise, the above distribution for the number of second neighbours then is
encoded by

Gq(x) =
∞∑

k=0

qkx
k =
∑

k(k + 1)pk+1∑
l lpl

=
G′

p(x)
z

. (3.55)

When we insert the Poisson distribution (3.51), we obtain

Gp(x) = e−z
∞∑

k=0

zk

k!
xk = ez(x−1) (3.56)

and from (3.55) then also
Gq(x) = ez(x−1) (3.57)

Thus, for an Erdös-Rényi graph, the two generating functions agree. This is
quite useful for deriving analytical results.

To also include scale-free graphs, [5] introduced the following generaliza-
tion of this procedure. One starts with an N -tuple ν = (ν1, ..., νN ) of positive
numbers satisfying

max
i

ν2
i ≤
∑

j

νj ; (3.58)

when the νi are positive integers, this is necessary and sufficient for the ex-
istence of a graph with nodes i of degree νi, i = 1, ..., N . When putting
γ := 1∑

i νi
and pij := γνiνj , then 0 ≤ pij ≤ 1 for all i, j. We then insert an

edge between the nodes i and j with probability pij to construct the (gener-
alized) random graph Γ . By (3.48), the expected degree of node i in such a
graph is νi. When all the νi are equal, we obtain an Erdös-Rényi graph. For
other types, the number of nodes i with νi = k will decay as a function of
k, at least for large k, for example exponentially. When that number behaves
like a power k−β instead, we obtain a so-called scale free graph.

Scale-free graphs were apparently first considered by H. Simon [29]; they
have been popularized more recently by Barabasi and Albert [4]. Their con-
struction can be simply described: Prescribe some positive integer m ≥ 2 and
start with some (small) connected graph. Add each iteration step, add a new
node that can make connections to m nodes already existing in the network.
The probability for each of those nodes to be a recipient of a connection from
the new node is proportional to the number of connections it already has. By
this scheme, those nodes that already possess many connections are favoured
to become recipients of further connections, and in this manner, many hubs are
generated in the network, and in the final network the number of nodes with
degree k decays like a power of k, instead of exponentially as is the case for
random graphs. It should be pointed out that the construction just described
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is not the only one that can generate graphs with such a power law behaviour.
For example, Kleinberg et al [19] introduced a copying model that in contrast
to the preceding, but like the subsequently mentioned models needs only local
information for deciding the connections of new nodes. In [30] and [26], a lo-
cal exploration model is introduced. Jost and Joy [18] constructed graphs by
the make-friends-with-the-friends-of-your-friends principle. According to this
principle, new nodes added to the network that are again allowed to make
a specified number m of connections make their first connection at random
and then preferentially make connections with neighbours of those nodes they
are already connected with. Since the probability of a node i being a neigh-
bour of another node the new node is already connected to is proportional
to the degree of i, this principle again favours highly connected nodes and
leads to a power law degree sequence. With respect to important graph pa-
rameters, however, the graphs so constructed are rather different from the
ones produced by the Barabasi-Albert scheme. For example, their diameter
tends to be much larger, and their first eigenvalue significantly smaller than
the corresponding quantities for the latter. For a more systematic analysis of
the spectral properties, see [1]. See also the discussion below. More generally,
[18] discuss attachment rules where the preference for a node to become a
recipient of a new connection depends on the distance to the node forming
those connections.

One can also consider networks not only where new nodes are added, but
also where rewiring takes place. For example, Klemm and Egúıluz [20, 21]
consider a growing network model based on the scale-free paradigm, with the
distinctive feature that older nodes become inactive at the same rate that new
ones are introduced. This is interpreted as a finite memory effect, in the sense
that older contributions tend to be forgotten when they are not frequently
enough employed. This results in networks that are even more highly clus-
tered than regular ones. Davidsen et al [11] consider a network that rewires
itself through triangle formation. Nodes together with all their links are ran-
domly removed and replaced by new ones with one random link. The resulting
network again is highly clustered, has small average distance, and can be tuned
toward a scale-free behaviour.

In the construction of [10], the probability to find a connection between
i and j depends only on a property intrinsic to i and j, namely their ex-
pected degrees. In the more general construction we would like to propose
here, that probability rather encodes a relationship between i and j that may
well be special to them. This seems to capture the essential aspect underlying
most constructions of graphs in specific applications where they are supposed
to represent a particular structure of relations between individual elements.
Each element can form relations with selective other elements, and whether
another element is chosen need not only depend on a property intrinsic to the
latter, but also on some affinity, similarity, or dissimilarity to the former. In
this regard, see also the Cameo principle of Blanchard and Krüger [6].
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The appropriate approach to analysing properties of random graphs of
course is not to consider an individual such graph, but rather to derive prop-
erties that hold for all or almost all such graphs for a given collection pij or
class of such collections with specified properties, at least perhaps asymptot-
ically for N → ∞. This applies in particular to the eigenvalues of the graph
Laplacian. Such properties, in general, will not only depend on the N -tuple
ν above. Two graphs with the same ν can have rather different geometric
properties, as for example encoded by the clustering coefficient or the average
distance between nodes, and also their spectrum can be rather different. For
instance, we can apply the rewiring rule 3 from Section 3.3 to change some
of those quantities in a systematic manner without affecting the degrees of
nodes. In particular, since we can affect the constant h(Γ ) in that manner, for
instance making it arbitrarily small, we cannot expect nontrivial estimates for
the first eigenvalue λ1 that hold uniformly for all graphs with given ν. This is
systematically investigated in [1].

3.6 Interactions

Above, we have considered the graph Laplacian Δ. It can be considered as the
prototype of an interaction operator. We consider a function f representing
the dynamics of the individual elements. This means that an element i in
isolation obeys the dynamical rule

u(i, n+ 1) = f(u(i, n)); (3.59)

here, n ∈ N stands for the discrete time. u(i, n) is the state of element i at
time n. Prototypes of such reaction functions f are

f1(x) = ρx(1 − x) (3.60)

with 0 < ρ ≤ 4, which, for sufficiently large ρ generates chaotic dynamics, see
for example [16] for details (in our investigations, we have mostly considered
the value ρ = 4), and

f2(x) =
1

1 + e−κ(x−θ)
, with κ > 0, (3.61)

the so-called sigmoid function in neural networks, which in contrast to f1 is
monotonically increasing and leads to a regular, nonchaotic behaviour, and
which has one or three fixed points (depending on κ, θ).

When considering networks of interacting elements, we need to add an
interaction term to (3.59):

u(i, n+ 1) = f
(
u(i, n)

)
+ εμi

(∑
j

cjig
(
u(j, n)

)−∑
k

cikg
(
u(i, n)

))
(3.62)
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for a network with nodes i, with multipliers μi, coupling strengths cjk from
j to k, and global interaction strength ε, for some function g. For simplicity
of presentation, we restrict ourselves here to the case g = f , even though
the general case can be treated by the same type of analysis. Thus, we shall
consider

u(i, n+ 1) = f
(
u(i, n)

)
+ εμi

(∑
j

cjif
(
u(j, n)

)−∑
k

cikf
(
u(i, n)

))
. (3.63)

A question that we shall discuss is under which conditions the solution u
synchronizes, that is when limn→∞ |u(i, n)−u(j, n)| = 0 for all vertices i, j (in
computer simulations, when synchronization occurs, it can be seen already at
finite values of n, that is, u(i, n) = u(j, n) for all n larger than some N ∈ N).
The fundamental reference on this topic that we shall also use in the sequel
is [27].

When we put μi = 1
ni

and cjk = 1 when j and k are neighbours and 0
otherwise, the interaction operator becomes our graph Laplacian Δ studied
above. In fact, that operator serves as a prototype for the interaction, and we
now derive conditions that allows us to generalize the key features of Δ to
some larger class of interaction operators. There are three types of conditions
that we shall now discuss in turn:

1. A balancing condition ∑
j

cji =
∑

k

cik for all i. (3.64)

This condition states that what comes in at a node is balanced by what
is flowing out of that node.
For simplicity, we also assume

cii = 0 for all i. (3.65)

This condition is not essential for the formal analysis, but notationally
convenient in the sequel. It excludes a self-interaction term from the in-
teraction operator, and this is easily justified by declaring that any self-
interaction is already contained in the reaction term, the first term on the
right-hand side of (3.62).
The balancing condition can be rewritten as a zero-row-sum condition
when we define an operator L = (lxy) by putting

lik := μicki for i 
= k (3.66)

(note the reversal of the indices), and

lii := −μi

∑
j

cji = −μi

∑
k

cik. (3.67)
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The balancing condition (3.64) then is equivalent to∑
j

lij = 0 for all i. (3.68)

In terms of the operator L, our dynamics (3.63) becomes

u(i, n+ 1) = f
(
u(i, n)

)
+ ε
∑

j

lijf
(
u(j, n)

)
(3.69)

or, more abstractly,

u(., n+ 1) = f
(
u(., n)

)
+ εLf

(
u(., n)

)
. (3.70)

The important point of the balancing condition (3.64) or the equivalent
zero-row-sum condition (3.68) is that the synchronized solutions, that is,

u(i, n) = u(j, n) for all i, j, n, (3.71)

satisfying the individual equation (3.59) are also solutions of the collective
equation (3.63) (or, equivalently, (3.69), (3.70)).

2. Another useful condition is a nonnegativity condition: Let the coupling
matrix C = (cxy) have nonnegative entries, that is,

cij ≥ 0 for all i, j. (3.72)

We shall not assume this condition in most of the sequel, but we discuss
it here because it allows us to derive some kind of asymptotic stability
condition for the globally synchronized solution. We consider the adjoint
operator L∗ with coefficients

l∗ik =
μi

μk
lki (= μicik for i 
= k), (3.73)

assuming, of course, that the multipliers μi 
= 0. We then have, from
(3.68), ∑

k

l∗ik = 0. (3.74)

The crucial quantity that will be seen as a Lyapunov function then is

−
∑

i

1
μi
L∗u(i, n+ 1)u(i, n+ 1) (3.75)

= −
∑

i

1
μi
L∗((1 + εL)f

(
u(i, n)

))
(1 + εL)f

(
u(i, n)

)
.

We have
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−
∑

i

(∑
k

1
μi
l∗ik
(
(1 + εL)f

(
u(k, n)

)))
(1 + εL)f

(
u(i, n)

)
=

1
2

∑
i�=k

1
μi
l∗ik(1 + εL)

(
f
(
u(i, n)

)− f
(
u(k, n)

))
(1 + εL)

(
f
(
u(i, n)

)− f
(
u(k, n)

))
≤ − sup |f ′|2‖1 + εL‖2

∑
i

1
μi
L∗u(i, n)u(i, n) (3.76)

by (3.74) and since the nondiagonal entries of L are nonnegative. Here,
the norm of the operator 1 + εL is evaluated on those functions that are
orthogonal to the constants as the difference in the preceding formula van-
ishes on the constants. Therefore, when this norm is smaller than |f ′|−1,
that is, when we have the global stability condition,

sup |f ′|2‖1 + εL‖2 < 1, (3.77)

−
∑

i

1
μi
L∗u(i, n)u(i, n) (3.78)

is exponentially decreasing as a function of n under our dynamical it-
eration (3.63). Thus, for n → ∞, it goes to 0. Thus, the limit u(i) :=
limn→∞ u(i, n) (or, more precisely, the limit of any subsequence) satisfies∑

i

(∑
j

cjiu(j) −
∑

j

ciku(i)
)
u(i) = 0, (3.79)

which, by (3.72), (3.64), and the Schwarz inequality, implies that u(i)
is constant, that is, independent of i. This means that under dynamical
iteration (3.63) synchronizes as n → ∞.
In the symmetric case to be discussed below, such an estimate had been
derived in [17]. In the general case, similar conditions have been obtained
by Wu [32] and Lu and Chen [23]. For recent work in this direction, see
[22].

3. A symmetry condition on operator L will guarantee that its spectrum
is real, and then, when also the nonnegativity condition (3.72) will be
assumed, that it is nonnegative. To obtain such a condition, we need a
scalar product on the space of functions on Γ , to make it into an L2-space.
Such a product is given by

(u, v) :=
∑
i,j

aiju(i)v(j). (3.80)

Here, A := (aij) should be positive definite and symmetric:

aij = aji for all i, j. (3.81)
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L is symmetric with respect to this product if

(Lu, v) = (u, Lv) for all u, v, (3.82)

that is, if ∑
i,j,k

aij liku(k)v(j) =
∑
i,j,k

aiju(i)ljkv(k). (3.83)

This requires
aij lik = aiklij , (3.84)

using the symmetry (3.81). (3.84) is the condition yielding the symmetry
of L, that is, we can infer that L has a real spectrum when we can find a
symmetric matrix A := (aij) satisfying (3.84).
If we want to have a scalar product that is more intimately tied to the
graph structure, we should require that it admits an orthonormal basis of
functions of the form ui with ui(j) = 0 for j 
= i. In that case, the scalar
product has to be of the form already given in (3.2)

(u, v) =
∑

i

niu(i)v(i) (3.85)

where, however, the ni can be arbitrary positive numbers, not necessar-
ily the vertex degrees. In that situation, the symmetry condition for L
becomes

nilik = nklki for all i, k. (3.86)

When we have
ni =

1
μi

(3.87)

for the above multipliers μi, this simply becomes the symmetry of the
interaction matrix,

cik = cki for all i, k, (3.88)

see (3.66). In that case, that is, when L is self-adjoint with respect to the
product (3.85) with (3.87), it coincides with the operator L∗ defined in
(3.73), as the latter is the adjoint of L with respect to this product.

3.7 Local Stability of the Synchronized Solution

In the preceding section, we have derived a global stability condition, (3.77).
We now discuss the local stability of a synchronized solution with the help of
the eigenvalue expansion obtained in Section 3.3, following the presentation
in [17]. A similar analysis has been carried out and related to the Gershgorin
disk theorem in [7, 28]. We shall only consider the case of the graph Laplacian
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as our interaction operator, although the subsequent analysis readily extends
to other symmetric operators that are negative definite on the subspace or-
thogonal to the constant functions.

We consider a solution ū(n) of the uncoupled equation (3.59),

ū(n+ 1) = f
(
ū(n)
)
. (3.89)

u(i, n) = ū(n) then is a synchronized solution of the coupled equation

u(i, n+ 1) = f
(
u(i, n)

)
+

ε

ni

∑
j,j∼i

(
f
(
u(j, n)

)− f
(
u(i, n)

))
. (3.90)

The local stability question then is whether a perturbation

u(i, n) = ū(n) + δαk(n)uk(i) (3.91)

by an eigenmode uk for some k ≥ 1, and small enough δ, αk(n) goes to 0 for
n → ∞, if u(i, n) solves (3.90). We now perform a linear stability analysis.
We insert (3.3) into (3.2) and expand about δ = 0. This yields

αk(n+ 1) = (1 − ελk)f ′(ū(n)
)
αk(n). (3.92)

The sufficient local stability condition7

lim
N→∞

1
N

log
αk(N)
αk(0)

= lim
N→∞

1
N

log
N−1∏
n=0

αk(n+ 1)
αk(n)

< 0 (3.93)

therefore becomes

log |1 − ελk| + lim
N→∞

1
N

N−1∑
n=0

log
∣∣f ′(ū(n)

)∣∣ < 0. (3.94)

Here,

μ0 = lim
N→∞

1
N

N−1∑
n=0

log
∣∣f ′(ū(n)

)∣∣
is the Lyapunov exponent of f . Therefore, the stability condition (3.94) is

|eμ0(1 − ελK)| < 1. (3.95)

The fundamental observation is that we may find synchronization, that is,
may have (3.95) for all k ≥ 1, even in the presence of temporal instability,
that is,

μ0 > 0. (3.96)

In that case, the individual, and therefore also the synchronized global dy-
namics, may exhibit chaotic behaviour. Synchronization then means that the
7 Stability is understood here in the sense of Milnor. See [27] for a detailed analysis.
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chaotic dynamics of the individual nodes are identical. We shall now investi-
gate this issue further. By our ordering convention for the eigenvalues, (3.95)
holds for all k ≥ 1 if

1 − e−μ0

λ1
< ε <

1 + e−μ0

λK
. (3.97)

For that condition, we need

λK

λ1
<
eμ0 + 1
eμ0 − 1

. (3.98)

When (3.98) holds, from the local stability analysis, we expect the follow-
ing behaviour of the coupled system as ε increases. For very small values of ε,
the solution is not synchronized because the positive Lyapunov exponent of
the individual dynamics is not compensated by a sufficiently strong diffusive
interaction. As ε increases, first the highest modes become stabilized until at
some critical value of ε, all spatially inhomogeneous modes become stable di-
rections, and global synchronization sets in. When ε is further increased, first
the highest mode becomes unstable, and then others follow, and the solution
gets desynchronized again. The important point here is that a unidirectional
variation of the coupling strength parameter leads from a desynchronized to
a synchronized state and then back to a—different—desynchronized state.

We now describe this process in some more detail, following again [17]. For
very small values of ε > 0, as we assume (3.97)

eμ0(1 − ελk) > 1,

and so, all spatial modes uk, k ≥ 1, are unstable, and no synchronization
occurs. Unless we have a global all-to-all coupling (see Section 3.3) λ1 is
smaller than λK . Let εk be the solution of

eμ0(1 − εkλk) = 1.

The smallest among these values is εK , the largest ε1. If then, for k1 < k2,

εk2 < ε < εk1

the modes uk2 , uk2+1, ..., uK are stable, but the modes u1, u2, ..., uk1 are un-
stable. Recalling Lemma 1, we see that desynchronization can lead to at most
k2 + 1 subdomains on which the dynamics are either advanced or retarded.

In particular, if ε increases, first the highest modes, that is, the ones with
the most spatial oscillations, become stabilized, and the mode u1 becomes
stabilized the last. So if ε2 < ε < ε1, then any desynchronized state consists
of two subdomains.

We then let ε̄k be the solution of

eμ0(ε̄kλk − 1) = 1.
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Again,
ε̄k ≤ ε̄k−1.

Because of (3.97),
ε1 < ε̄K .

If
ε1 < ε < ε̄K ,

then all modes uk, k = 1, 2, ....,K, are stable, and the dynamics synchronizes.
If ε increases beyond ε̄K , then the highest frequency mode uK becomes

unstable and we predict spatial oscillations of high frequency of a solution
of the dynamics. If ε increases further, then more and more spatial modes
become destabilized.
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6. Blanchard P, Krüger T (2004) The “Cameo” principle and the origin of scale-
free graphs in social networks. J Stat Phys 114:1399–1416.

7. Chen YH, Rangarajan G, Ding MZ (2003) General stability analysis of syn-
chronized dynamics in coupled systems. Phys Rev E 67:26209–26212.

8. Chung F (1997) Spectral graph theory. Regional Conference Series in Mathe-
matics 92, Amer Math Soc, Providence.

9. Leader I (1991) Discrete isoperimetric inequalities. In: Bollobás B (ed) Proba-
bilistic Combinatorics and Its Applications. AMS.

10. Chung F, Lu L, Vu V (2003) Spectra of random graphs with given expected
degrees. PNAS 100 (11):6313–6318.

11. Davidsen J, Ebel H, Bornholdt S (2002) Emergence of a small world from local
interaction: modeling acquaintance networks. Phys Rev Lett 88:128701.
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Part II

Applications in Neuroscience



4

Neuronal Computation Using High-Order
Statistics

Jianfeng Feng

Summary. The neuron is a stochastic unit: it receives and sends out random spikes.
Usually the second-order statistic is thought of as noise: useless and harmful. Here we
first review some results in the literature and point out that in fact the second-order
statistic plays an important role in computation. Both positive and negative correla-
tions are observed in in vivo recorded data. Positive correlation (∼synchronization)
has been extensively discussed in the literature. We mainly focus on some func-
tional roles of negative correlations. Based on these results, a novel way of neuronal
computation of moment neuronal networks is proposed and some applications are
included.

4.1 Introduction

During the past 20 years, we have witnessed the development of the artificial
neural network (ANN) and its impact on neuroscience. In comparison with

used a continuous input-output relationship (sigmoidal function) to
describe the activity of a neuron. Using a simple sigmoidal function to
characterize the complex input-output activity of a neuron is oversimplified,
and suchanapproach never really brings us anywhere near a biological reality.

It is clear from the past few years of research that neuron activity will be
decided not only by its mean input activity (mean firing rate), but also by
its higher order statistics of inputs. For example, in the scenario of balanced
inhibitory and excitatory inputs, the mean input to a neuron is zero and in
the ANN approach the neuron will be simply silent (higher order statistics
are not taken into account). Can we develop a theory that will naturally in-
clude the mean (first-order statistics), the second-order statistics, and so on
to be computed? In other words, can we develop a theory of a moment neu-
ronal networks (MNNs)? The advantage of such an approach over the ANN is

the development of ANN in the 1950s where a neuron takes two states only,we
have
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obvious. For example, we know that synchronized neuronal activity might
play an important role in information processing in the nervous systems. In
the MNN, we can naturally include the synchronized firing case since it cor-
responds to the fully correlated activity, that is, with a correlation coefficient
being unity. There are other advantages of the MNN over the ANN. First,
since our theory is developed based on spiking neurons, we can relate all of
our parameters to biologically measurable quantities. We can always test our
theory in biological experiments. Second, from a purely theoretical point of
view, we know that in a stochastic system, any computation based on the
mean is somewhat similar to the law of large numbers in probability theory.
To have a complete description of a stochastic system, we need the central
limit theorem (second-order statistics calculations). The MNN is equivalent
to the development of the central limit theory in probability. Third, although
our theory is developed in terms of spiking neuronal networks, the learning
theory developed in ANN will be mostly applicable and hence MNN will serve
as a bridge between ANN theory and neurobiology.

This chapter develops a theory of moment computation. But first we
present a few examples to emphasize the importance of the second-order sta-
tistics. The examples include the input and output surfaces of a single neuron
(the integrate-and-fire model and the Hodgkin-Huxley model), optimal con-
trol models, discrimination with correlated inputs, noise reduction and storage
capacity with negative correlations.

Our general setup is as following. In section 4.2, the input-output sur-
faces of a single neuron are discussed. In section 4.3, we discuss an optimal
control model based on the second-order statistics. In section 4.4, we address
the issue of discrimination among mixed input signals. In section 4.5, the
importance of negative correlations is presented. In section 4.6, we develop
the moment neural networks. The exact relationship of input and output of
an integrate-and-fire neuron is known. The renewal theorem is applied to the
integrate-and-fire model, which enables us to have complete equations to de-
scribe the input and output relationship of spiking neuronal networks. The
similar idea to investigate the input-output relationship of spiking neuronal
networks has been widely investigated in the literature [2]; however, to the
best of our knowledge, our approach is novel. In fact, as pointed out in [69] at
page 435, final paragraph, all approaches before are based on two key assump-
tions: the output of the integrate-and-fire model is again a Poisson process,
which is only approximately true in very limited parameter regions; the input
is independent. Our general theory requires neither of the assumptions.

We confine ourselves here to neuronal computation with the first- and the
second-order statistics. The reason is that to completely describe a random
system the first- and the second-order statistics are enough in most cases.
We can, of course, tailor our approach to general cases: including the third-,
the fourth- etc. order statistics. Furthermore, we only consider feedforward
networks, and it is easy to generalize our results to recurrent networks.
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4.2 Single Neuron Activity: Variance

Let us consider a neuron activity. Traditionally, an F −I curve is used to fully
characterize its behaviour, where F means its output frequency and I is the
input current. The F −I curve usually takes the form of a sigmoidal function,
which serves as the basis of classical neural computation theory.

The simplest model of a spiking neuronal network, the leaky integrate-
and-fire model[69], is defined by

dVt = −Vt

γ
+ I

where Vt is the membrane potential (in mV), γ is the decay time (in msec),
and I is the external input. The firing time is then given by

T = γ log
(

1 − Vthre

Iγ

)
where Vthre is the threshold. The output frequency F (Hz) is

F =
1000

T + Tref

which shows a typical sigmoidal shape, where Tref is the refractory time.
If we agree that a neuron is a stochastic unit, then the output of a single

neuron could be totally different from the above scenario. Now the membrane
potential of a neuron takes the form

dVt = −Vt

γ
+ dSt

where St could be pulsed synaptic inputs, or its approximation taking the
form μdt+σdBt with μ, σ being constants and Bt the noise. In Figure 4.1, we
plot the output firing rate and CV (standard deviation/mean) of interspike
intervals for the integrate-and-fire neuron (upper panel) and the Hodgkin-
Huxley neuron (bottom panel). It is clearly seen, not surprisingly, that the
output firing rate depends on not only the input firing rate μ, but also the
input variance σ. In fact, with different neuron models, the surfaces are quite
different and we refer the reader to [23] for more details.

To further illustrate the importance of the second-order statistics, we turn
our attention to a high-level model: a model on movement control.

4.3 Control Tasks

The experimental study of movements in humans and other mammals has
shown that voluntary reaching movements obey two fundamental psychophys-
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Fig. 4.1. Top panel: the response surface of the integrate-and-fire model, left, con-
tour of the output firing rate; right, contour of the CV. Bottom panel: the response
surface of the Hodgkin-Huxley model: left, contour of the output firing rate; right,
contour of the CV. We refer the reader to [23] for details of simulations.

ical principles from the point of view of trajectory formation, and of the de-
pendence of movement time on relative accuracy, as reviewed in [70].

1. Trajectory formation: It is found that the trajectory of arm (hand)
movement from a starting point to an end point is almost a straight line
and the velocity profile is bell-shaped.

2. Fitts law [68]: The longer the time taken for a reaching movement, the
more accurate the hand is in arriving at the end point.
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These principles are of paramount importance and of great interest both
in theory and in applications. In theory, how our brain controls our daily
movements remains elusive, despite a century of intensive research in neuro-
science. In comparison with an open-loop approach, where we try to directly
understand how a brain works, a close-loop approach to connect sensory in-
puts with motor outputs (for example, voluntary movements) might be the
only way to make genuine progress in this area. In engineering applications,
if we can unravel the mechanisms underlying these principles, we could apply
them to the control of (humanoid) robots. For these reasons, there is consid-
erable interest in investigating these principles (see [69] for a recent review,
[71, 73]). However, as far as we are aware, no rigorous results are available in
the literature and many issues remain elusive.

In this section we present an analytical and rigorous approach to tackling
the problem. Within the framework of optimal stochastic control principles
and in three-dimensional space [72], it is shown that the straight line trajectory
is a natural consequence of optimal stochastic control principles, under the
condition that we have a nondegenerate optimal control signal. Numerically
we conclude that the bell-shaped velocity profile follows as well. Furthermore,
we also numerically demonstrate that the optimal variance is proportional to
the time interval in which the movements are performed, that is, Fitts’s law
is verified.

4.3.1 The Model

We consider a simple model of (arm) movements. Let X(t) = (x(t), y(t), z(t))′

be the position of the hand at time t. We then have

Ẍ = − 1
τ1τ2

X − τ1 + τ2
τ1τ2

Ẋ +
1

τ1τ2
[Λ(t)dt+ Λ(α, t)dB(t)] (4.1)

where τ1, τ2, α > 0 are parameters, Λ(t) = (λx(t), λy(t), λz(t))′ is the con-
trol signal, Λ(α, t) is a 3 × 3 diagonal matrix with diagonal elements as
λα

x(t), λα
y (t), λα

z (t), respectively, and Bt = (Bx(t), By(t), Bz(t))′ is the stan-
dard Brownian motion. In physics, we know that (4.1) is the well-known
Kramers’ equation. In neuroscience, it is observed in all in vivo experi-
ments that the noise strength is proportional to the signal strength Λ(t) and
hence the signals received by muscle take the form of (4.1) (see for example,
[57, 69, 67]).

For a point D = (dx, dy, dz)′ ∈ IR3 and two positive numbers T,R, we
intend to find a control signal Λ∗(t) that satisfies

〈X(t)〉 = D, for t ∈ [T, T +R] (4.2)

and
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I(Λ∗) = min
Λ∈L2α[0,T+R]

I(Λ) = min
Λ∈L2α[0,T+R]

∫ T+R

T

var(X(t))dt

= min
Λ∈L2α[0,T+R]

∫ T+R

T

[var(x(t)) + var(y(t)) + var(z(t))]dt (4.3)

where Λ ∈ L2α[0, T +R] means that each component of it is in L2α[0, T +R].
To stablize the hand, we further require that the hand will stay at D for a
while, that is, in time interval [T, T+R], which also naturally requires that the
velocity should be zero at the end of movement. The physical meaning of the
problem we considered here is clear: at time T the hand will reach the position
D ((4.2)), and as precisely as possible ((4.3)). Without loss of generality we
assume that dx > 0, dy > 0 and dz > 0.

4.3.2 Optimal Control

The optimal control problem posed in the previous section is a highly non-
linear problem, as we are going to show below.

Solving (4.1) we obtain

(x(t), ẋ(t))′ =
(∫ t

0

b12(t− s)
τ1τ2

λx(s)ds,
∫ t

0

b22(t− s)
τ1τ2

λx(s)ds
)′

+
(∫ t

0

b12(t− s)
τ1τ2

λα
x(s)dBx(s),

∫ t

0

b22(t− s)
τ1τ2

λα
x(s)dBx(s)

)′
(4.4)

where

b12(t) =
τ1τ2
τ2 − τ1

[
exp
(
− t

τ 2

)
− exp

(
− t

τ 1

)]
b22(t) =

τ1τ2
τ2 − τ1

[
1
τ1

exp
(
− t

τ 1

)
− 1
τ2

exp
(
− t

τ 2

)]
.

A similar equation holds true for y(t) and z(t).

Note that∫ T+R

T

var(x(t))dt = 〈
∫ T+R

T

[∫ t

0

b12(t− s)λx(s)αdBx(s)
]2
dt〉

=
∫ T+R

T

[∫ t

0

b212(t− s)|λx(s)|2αds

]
dt (4.5)
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The original control problem defined by (4.2) and (4.3) is reduced to the
following optimization problem:

Find Λ∗(s) ∈ L2α[0, T +R] that minimizes∫ T+R

T

[∫ t

0

b212(t− s)[|λx(s)|2α + |λy(s)|2α + |λz(s)|2α]ds
]
dt (4.6)

subject to the constraint∫ t

0

b12(t− s)Λ(s)ds = τ1τ2D, for t ∈ [T, T +R]. (4.7)

Since R > 0, by differentiating (4.7), we obtain

− 1
τ2

exp
(
− t

τ 2

)∫ t

0

exp
( s
τ 2

)
Λ(s)ds

+
1
τ1

exp
(
− t

τ 1

)∫ t

0

exp
( s
τ 1

)
Λ(s)ds = 0 (4.8)

for t ∈ (T, T +R). Solving (4.7) and (4.8) we see that⎧⎪⎪⎨⎪⎪⎩
∫ t

0

exp
( s
τ 2

)
Λ(s)ds = Dτ2 exp

(
t

τ2

)
∫ t

0

exp
( s
τ 1

)
Λ(s)ds = Dτ1 exp

(
t

τ1

) (4.9)

for t ∈ [T, T +R], which implies that Λ(t) = D and in particular⎧⎪⎪⎨⎪⎪⎩
∫ T

0

exp
( s
τ 2

)
Λ(s)ds = Dτ2 exp

(
T

τ2

)
∫ T

0

exp
( s
τ 1

)
Λ(s)ds = Dτ1 exp

(
T

τ1

)
.

(4.10)

Now let us find the optimal signal Λ∗(t) for t ∈ [0, T ].

It is easily seen that

I(Λ) = Ix(λx) + Iy(λy) + Iz(λz) (4.11)

=
∫ T

0

[∫ T+R

T

b212(t− s)dt

]
[|λx|2α(s) + |λy|2α(s) + |λz|2α(s)]ds

+
∫ T+R

T

[∫ s

T

b212(t− s)dt
]

[|λx|2α(s) + |λy|2α(s) + |λz|2α(s)]ds . (4.12)
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Since to minimize each term in (4.12) implies minimizing I(Λ), we apply
the calculus of variations to the first term in (4.12), as the second term is a
constant (for t ∈ [T, T +R] Λ(t) = D, see (4.10).) To this end, let us define{

λx,

∫ T

0

b12(T − s)λx(s)ds = τ1τ2dx, λx(t) = dx, t ∈ [T, T +R]

}
= UD.

For a small τ , consider λx + τφ ∈ UD, that is,

φ ∈ {φ,
∫ T

0

exp(s/τ1)φ(s)ds = 0,∫ T

0

exp(s/τ2)φ(s)ds = 0, φ(t) = 0, for t ∈ [T, T +R]} = U0
D.

The first two constraints in U0
D are from (4.10). We then have

dIx(λx + τφ)
dτ

|τ=0 = 0,

which gives∫ T

0

{[∫ T+R

T

b212(t− s)dt

]
|λx(s)|2α−1sgn(λx(s))φ(s)

}
ds = 0. (4.13)

Comparing (4.13) with the first two constraints in U0
D, we conclude that[∫ T+R

T

b212(t− s)dt

]
|λx(s)|2α−1sgn(λx(s)) = ξx exp

( s
τ 1

)
+ ηx exp

( s
τ 2

)
(4.14)

almost surely for s ∈ [0, T ] with two parameters ξx, ηx ∈ R. Hence the solution
of the original problem is

λ∗x(s)=

∣∣∣ξx exp
( s
τ 1

)
+ ηx exp

( s
τ 2

)∣∣∣1/(2α−1)

sgn
[
ξx exp

( s
τ 1

)
+ ηx exp

( s
τ 2

)]
(∫ T+R

T

b212(t− s)dt

)1/(2α−1)

(4.15)
with ξx, ηx being given by
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dxτ2 exp
(
T

τ 2

)
=
∫ T

0

exp
( s
τ 2

)
·

∣∣∣ξx exp
( s
τ 1

)
+ ηx exp

( s
τ 2

)∣∣∣1/(2α−1)

sgn
[
ξx exp

( s
τ 1

)
+ ηx exp

( s
τ 2

)]
(∫ T+R

T

b212(t− s)dt

)1/(2α−1)
ds

dxτ1 exp
(
T

τ 1

)
=
∫ T

0

exp
( s
τ 1

)
·

∣∣∣ξx exp
( s
τ 1

)
+ ηx exp

( s
τ 2

)∣∣∣1/(2α−1)

sgn
[
ξx exp

( s
τ 1

)
+ ηx exp

( s
τ 2

)]
(∫ T+R

T

b212(t− s)dt

)1/(2α−1)
ds.

(4.16)
A similar equation is true for λy and λz.

From the results above, we see that the optimal problem is in general
a highly nonlinear problem. However, we arrive at the following surprising
conclusions.

Theorem 1 Under the optimal control framework as we set up here and α >

control problem is degenerate, that is, the optimal control signal is a delta
function; (4.12) with Λ = Λ∗ gives us an exact relationship between time T
and variance.

Proof We only need to show that if, say, dx = kdy, we then have 〈x(t)〉 =
k〈y(t)〉 with a positive constant k. Let us assume that for α > 1/2, (ξx, ηx)
is the solution of (4.16). It is easily seen that k2α−1(ξx, ηx) is the solution
of (4.16) with dx being replaced by kdy. From (4.15), together with the fact
above, we have λy(s) = kλx(s). From (4.4), we finally conclude that 〈x(t)〉 =
k〈y(t)〉 holds true. The proof of the second part of Theorem 1 is easy and is
left to the reader.

For a deterministic problem similar to the optimal control problem defined
by (4.2) and (4.3), that is, α → 0, the optimal signal is a delta function. The
results in Theorem 1 tell us that when the noise is not strong enough, α ≤ 1/2,
and the optimal control signal is still degenerate. Nevertheless, when α > 1/2,
that is, the noise is strong enough, the solution of the optimal control problem
turns out to be nondegenerate. This is different from our usual intuition that
any tiny noise could smooth an action, that is, any tiny noise ensures that the
system is ergodic.

A straight-line trajectory indicates that the traveling distance between the
starting point and the end point is the shortest. In other words, the shortest

1/2, the optimal mean trajectory is a straight line. When α ≤ 1/2 the optimal
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distance principle is the consequence of the optimal control problem defined
by (4.2) and (4.3), provided that α > 1/2.

In Figure 4.2 1, we plot 〈y(t)〉, the optimal trajectory 〈x(t)〉, 〈y(t)〉, velocity
profile, and variance for fixed R = 0.2T , τ1 = 5, τ2 = 15, and various D and
T as shown in the figure for α = 0.75, 1, 1.5 2. As we proved in Theorem 1,
(〈x(t)〉, 〈y(t)〉) shows a straight line trajectory starting from (0,0) in Figure
4.2) and arriving at an end point (indicated by the arrow in Figure 4.2 upper
right trace). It is worthwhile pointing out that 〈x(t)〉 and 〈y(t)〉 (Figure 4.2
upper left) are highly nonlinear functions of time t. Figure 4.2 middle left
shows the velocity profiles vs. distance. The bell shape is obvious. In fact,
this might not be surprising in comparison with the trajectory formation,
which is a consequence of a highly nonlinear optimal control problem. The
optimal control problem we considered here requires that the velocity be zero
at the beginning and the end point of the movement, that is, (〈x(t)〉, 〈y(t)〉)
is a constant for t ∈ [T, T + R]. We would then expect that a bell-shaped
velocity profile will be the most natural outcome, provided that the velocity
is continuous. In Figure 4.2 middle right trace, we also depict the optimal
variance Ix(λ∗x) + Iy(λ∗y) vs. distance. We see that the optimal variance is an
increasing function of distance, as one would naturally expect. To compare
our results with Fitts’s law, we plot Ix(λ∗x) + Iy(λ∗y) vs. time T in Figure 4.2,
bottom right. It is easily seen that the longer the time is, the smaller the
variance. In fact, from our results, we could also assess the exact relationship
between the optimal variance and the time. Finally at the bottom left we show
the optimal control signals vs. t for various times T .

It is clear now that the second-order statistics play an important role in
neuronal computation, but we have not taken into account another important
second-order statistic here: the correlation between neuronal activities. In the
next few sections, we will concentrate on it.

4.4 Discrimination

In this section we present a study on the discrimination capacity of the sim-
plest neuron model: the integrate-and-fire model. Suppose that a neuron re-
ceives two sets of signal. Both of them are contaminated by noise, as shown
in Figure 4.3. After neuronal transformations, we want to know whether the
signals become more mixed or more separated. This is a typical scenario in
decision theory.
1 Due to the difficulty of plotting three-dimensional figures, we will simply consider

the two-dimensional case. However, it is readily seen that all conclusions below
are true for movements in three-dimensional space.

2 Note that we do not want to fit our results with experimental data (such a fitting
would be straightforward), but intend to present a general theory. All quantities
are unitless.



4 Neuronal Computation Using High-Order Statistics 75

0 2.5 7.5 10
−100

−50

0

50

100

〈y
(t

)〉

Time −100 −50 50 100
−100

−50

0

50

100

〈x(t)〉

〈y
(t

)〉

0 40 110 150
0

5

10

distances

v
e
lo

c
it
y

100 140
10

5

1010

distances

v
a
ri
a
n
c
e

α=0.75
α=1 
α=1.5

0 5 20 25

−2.5

0

Time

λ
x
* 

(x
1

0
3
)

T=10
T=15
T=20

10 12.5 17.5 20
10

4

10
5

10
7

10
8

Time

v
a
ri
a
n
c
e

α=0.75
α=1
α=1.5

Fig. 4.2. Upper left, 〈y(t)〉 vs. t with dy = 10 (green), 50 (red), and 100 (blue).
Upper right, (〈y(t)〉, 〈x(t)〉) for t ∈ [0, T ] with T = 10, α = 0.75. It is easily
seen that the trajectory is a straight line. Middle left, velocity (〈ẋ(t)〉〈x(t)〉 +
〈ẏ(t)〉〈y(t)〉)/√(〈x(t)〉)2 + (〈y(t)〉)2 vs. distance

√
(〈x(t)〉)2 + (〈y(t)〉)2 with α =

0.75, T = 20. Middle right the optimal variance Ix(λ∗
x) + Iy(λ∗

y) vs. distance with
T = 20. Bottom left, λ∗

x vs. time t for fixed dx = dy = 100 with α = 0.75. Bottom
right, the optimal variance Ix(λ∗

x) + Iy(λ∗
y) vs. time T with dx = dy = 10.
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We conclude that without correlation between signals, the output his-
tograms are separable if and only if the input histograms are separable. With
positively correlated input signals, the output histograms become more sepa-
rable than input histograms. With negatively correlated input signals, the out-
put histograms are more mixed than the input histograms. This is a clear-cut
and interesting result. In fact, in recent years, many publications explored the
functional role of correlated neuronal activity. For example, synchronization
is a special case of correlated neuronal activity[30, 35, 75]. Researchers have
extensively investigated the functional roles of correlations in neurons from
information theoretic approaches [8, 47, 48], from experimental approaches
[52, 53] and from modeling approaches [1, 15, 51, 54].

In the classical theory of neural networks, we only take into account the
excitatory inputs. However, in recent years, we have found many intriguing
functional roles of inhibitory inputs, ranging from linearizing input-output
relationship of a neuron [38], to synchronizing a group of neurons [58] and to
actually increasing neuron firing rates [19]. In particular, neuronal and neu-
ronal network models with an exactly balanced inhibitory and excitatory input
are intensively studied in the literature [55, 59]. For these two most interesting
cases, an independent input case and an exactly balanced input case, we are
able to find out the exact value of neuronal discrimination capacity. Roughly
speaking, here the discrimination capacity is the minimal number of synapses
carrying signals so that the output histograms of the neuron are separable,
provided that input signals are different (see Section 4.3 for the definition).
Interestingly, the obtained analytical discrimination capacity is universal for
the model. It is independent of the decay rate, the threshold, the magnitude of
the excitatory postsynaptic potential (EPSP) and the inhibitory postsynaptic
potential (IPSP), and the input signal distributions.

This section is organized as follows. In subsection 4.4.1, the model is ex-

Fig. 4.3. For two possibly mixed input signals, after neuronal transformation, will
they become more separated or mixed?
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actly defined. In subsection 4.4.2, we consider the worst case, and the exact
value of discrimination capacity is obtained. In subsection 4.4.3, we generalize
the results from subsection 4.4.2. In subsection 4.4.4, some numerical results
are included. We have presented numerical results for the integrate-and-fire
model and the IF-FHN model [19] in a meeting report[21]. In subsection 4.4.6,
we briefly discuss related issues. Detailed theoretical proofs are omitted and
can be found in [14].

4.4.1 The Models

The neuron model we use here is the classical integrate-and-fire model [10,
18, 28, 57]. When the membrane potential V (k)

t is below the threshold Vthre,
it is given by

dV
(k)
t = −L(V (k)

t − Vrest)dt+ dI(k)
syn(t) (4.17)

where L = 1/γ (section 4.2) is the decay coefficient and the synaptic input is

I(k)
syn(t) = a

p∑
i=1

E
(k)
i (t) − b

q∑
j=1

I
(k)
j (t)

with E
(k)
i (t), I(k)

i (t) as the Poisson processes with rates λ(k)
i,E and λ

(k)
i,I , respec-

tively, a > 0, b > 0 are the magnitudes of each EPSP and IPSP, p and q are the
total number of active excitatory and inhibitory synapses, k = 1, 2 represent
different input signals, and we aim at discriminating between them in terms
of an observation of efferent firing rates. Once V (k)

t crosses Vthre from below, a
spike is generated and V

(k)
t is reset to Vrest, the resting potential. This model

is termed the intergrate and fire (IF) model. The interspike interval of efferent
spikes is

T (k) = inf{t : V (k)
t ≥ Vthre}.

For simplicity of notation we assume that q = p and λ
(k)
i,I = rλ

(k)
i,E , where

0 ≤ r ≤ 1 is the ratio between inhibitory and excitatory inputs.
Furthermore, we suppose that pc out of p synapses carry the true signal

and the rest p−pc synapses are noise (or distorted signals). Synapses that code
true signals are correlated, but synapses that code noise are independent. For
simplicity of notation, we assume that the correlation coefficient between the
ith excitatory (inhibitory) synapse and the jth excitatory (inhibitory) synapse
is a constant c, where i, j = 1, · · · , pc. The correlation considered here reflects
the correlation of activity of different synapses, as discussed and explored in
[19, 76]. More specifically, synaptic inputs take the following form (p = q)
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I
(k)
syn(t) = a

p∑
i=1

E
(k)
i (t) − b

p∑
j=1

I
(k)
j (t)

= a

pc∑
i=1

E
(k)
i (t) + a

p∑
i=pc+1

E
(k)
i (t) − b

pc∑
i=1

I
(k)
i (t) − b

p∑
i=pc+1

I
(k)
i (t)

where E(k)
i (t), i = 1, · · · , pc are correlated Poisson processes with an identi-

cal rate λ(k) (signal), E(k)
i (t), i = pc + 1, · · · , p are Poisson processes with a

firing rate λi of independently and identically distributed random variables
from [0, λmax]Hz (noise), and I

(k)
i (t), i = 1, · · · , p have the same properties as

E
(k)
i (t), but with a firing rate of rλ(k) or rλi for r ∈ [0, 1], representing the

ratio between inhibitory and excitatory inputs. It was pointed out in [55] that
the ratio of inhibitory and excitatory synapses is around 15/85. Of course, in
general, inhibitory inputs are larger than excitatory inputs. All conclusions
below can be easily extended to the case of r > 1. On the other hand, for the
simplicity of notation, we have introduced a single parameter r to describe
the relationship between inhibitory and excitatory inputs. From the proofs
below, we can see that this assumption can be easily relaxed. Without loss of
generality we simply assume that λ(1), λ(2) ∈ [0, λmax]Hz.

Hence the neuron model receives two set of inputs: one is

a

pc∑
i=1

E
(1)
i (t) + a

p∑
i=pc+1

E
(1)
i (t) − b

pc∑
i=1

I
(1)
i (t) − b

p∑
i=pc+1

I
(1)
i (t)

where the signal term

a

pc∑
i=1

E
(1)
i (t) − b

pc∑
i=1

I
(1)
i (t)

is masked by the noise term

a

p∑
i=pc+1

E
(1)
i (t) − b

p∑
i=pc+1

I
(1)
i (t);

the other is

a

pc∑
i=1

E
(2)
i (t) + a

p∑
i=pc+1

E
(2)
i (t) − b

pc∑
i=1

I
(2)
i (t) − b

p∑
i=pc+1

I
(2)
i (t)

where the signal term

a

pc∑
i=1

E
(2)
i (t) − b

pc∑
i=1

I
(2)
i (t)

is masked by the noise term
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a

p∑
i=pc+1

E
(2)
i (t) − b

p∑
i=pc+1

I
(2)
i (t).

In the following, we further use diffusion approximations for synaptic in-
puts [57] and assume a = b:

i
(k)
syn(t) = apcλ

(k)t+ a

p∑
i=pc+1

λit− bpcrλ
(k)t− b

p∑
i=pc+1

rλit

+

√√√√(a2 + b2r)λ(k)pc(1 + c(pc − 1)) + (a2 + b2r)
p∑

i=pc+1

λi ·Bt

= a(1 − r)t

⎡⎣pcλ
(k) +

p∑
i=pc+1

λi

⎤⎦

+a

√√√√(1 + r)[λ(k)pc(1 + c(pc − 1)) +
p∑

i=pc+1

λi] ·Bt

(4.18)
where Bt is the standard Brownian motion.

Therefore, the term

a(1 − r)t

⎡⎣pcλ
(k) +

p∑
i=pc+1

λi

⎤⎦ , k = 1, 2 (4.19)

in (4.18) is the mean input signal to the cell. Without loss of generality, we
always assume that λ(1) < λ(2). Denote p(in)

k (λ) as the distribution density of
random variables [ignore the constants a(1 − r)t in (4.19)].

pcλ
(k) +

p∑
i=pc+1

λi. (4.20)

In summary, we consider the case that a neuron receives p synaptic inputs,
with pc out of p carrying the signals and p−pc being noise (distorted signals).
The setup here roughly corresponds to the experiments of Newsome and his
colleagues. We will explore this aspect in further publications [26].

4.4.2 Discrimination Capacity: The Worst Case

For a fixed λ(1) < λ(2) we have corresponding two histograms p(out)
1 (λ) and

p
(out)
2 (λ) of output firing rates as shown in Figure 4.4. Let
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R
(out)
min (λ(2)) = min{λ : p(out)

2 (λ) > 0}
and

R(out)
max (λ(1)) = max{λ : p(out)

1 (λ) > 0}
and denote

α(λ(1), λ(2), c, r) = {pc : R(out)
min (λ(2)) = R(out)

max (λ(1))}. (4.21)

Hence for fixed (λ(1), λ(2), c, r), α(λ(1), λ(2), c, r) gives us the critical value of
pc: when pc > α(λ(1), λ(2), c, r) and the input patterns are perfectly separa-
ble in the sense that the output firing rate histograms are not mixed; when
pc < α(λ(1), λ(2), c, r), the input patterns might not be separable. For fixed
(λ(1), λ(2), c, r), α is termed the (worst) discrimination capacity of the neuron.

For input signals let us introduce more notation. Define

R
(in)
min (λ(2)) = min{λ : p(in)

2 (λ) > 0}
and

R(in)
max(λ

(1)) = max{λ : p(in)
1 (λ) > 0}.

Therefore as soon as R
(in)
min (λ(2)) > R

(in)
max(λ(1)) the two masked inputs are

perfectly separable. Otherwise the two masked inputs are mixed. Hence the
relationship between R

(in)
min (λ(2)) − R

(in)
max(λ(1)) and R

(out)
min (λ(2)) − R

(out)
max (λ(1))

characterizes the input-output relationship of signals.

Behaviour of α(λ(1), λ(2), c, r)

First, we note that the output firing rate is given by [57]:
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Fig. 4.4. A schematic plot of two output histograms, R
(out)
min (λ2) and R

(out)
max (λ(1)).

As soon as R
(out)
min (λ2) − R

(out)
max (λ(1)) > 0, the two histograms are separable.
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〈T (k)〉 =
2
L

∫ A(Vthre,
∑p

j=pc+1 λj)

A(Vrest,
∑p

j=pc+1 λj)

g(x)dx, (4.22)

where

A(x, y) =
xL− a[pcλ

(k) + y](1 − r)

a
√

[λ(k)pc(1 + c(pc − 1)) + y](1 + r)

and

g(x) =
[
exp(x2)

∫ x

−∞
exp(−u2)du

]
.

Let us define

T̃ (k)(x) =
2
L

∫ A(Vthre,x)

A(Vrest,x)

g(u)du. (4.23)

We know that the output firing rate is calculated via

1000/(〈T (k)〉 + Tref )

where Tref is the refractory period. It is obvious to see that T̃ (x) is a
monotonic function of input x ≥ 0, that is the output firing rate of a neuron
is an increasing function of input. We conclude that α(λ(1), λ(2), c, r) is the
solution of the following equation about pc.∫ VthreL

0

g

(
y − a[pcλ

(1) + (p− pc)λmax](1 − r)

a
√

[λ(1)pc(1 + c(pc − 1)) + (p− pc)λmax](1 + r)

)
dy

=

√
[λ(1)pc(1 + c(pc − 1)) + (p− pc)λmax]√

[λ(2)pc(1 + c(pc − 1))]

·
∫ VthreL

0

g

(
y − a(pcλ

(2))(1 − r)

a
√

[λ(2)pc(1 + c(pc − 1))](1 + r)

)
dy.

(4.24)

The critical value α(λ(1), λ(2), c, r) can be found analytically in the two
most interesting cases: c = 0 and r = 1. Define

0 ≤ Λ =
λ(2) − λ(1)

λmax
≤ 1 .

We then have the following conclusions:

Theorem 2 We assume Λ > 0, 0 < r < 1,
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• When c > 0 we have

α(λ(1), λ(2), c, 1) < α(λ(1), λ(2), 0, r) (4.25)

and furthermore

α(λ(1), λ(2), c, 1) =

√
[Λ(1 − c) + 1]2 + 4pcΛ− (1 − c)Λ− 1

2cΛ
. (4.26)

• When c = 0 we have

α(λ(1), λ(2), 0, r) =
p

1 + Λ
(4.27)

independent of r.

• When c < 0 we have

α(λ(1), λ(2), c, 1) > α(λ(1), λ(2), 0, r). (4.28)

The proof of Theorem 2 is quite tricky and we refer the reader to [14]. In
fact, from all our numerical results (see Figure 4.6, bottom panel), we have
the following stronger conclusions than Theorem 2 [(4.25) and (4.28)].

• When c > 0 we have

α(λ(1), λ(2), c, r2) < α(λ(1), λ(2), c, r1) (4.29)

where 1 ≥ r2 > r1 > 0.

• When c < 0 we have

α(λ(1), λ(2), c, r2) > α(λ(1), λ(2), c, r1) (4.30)

where 1 ≥ r2 > r1 > 0.

However, we are not able to theoretically prove the stronger conclusions [(4.29)
and (4.30)].

It is very interesting to note that (4.27) and (4.26) are independent of
a, Vthre, and L, three essential parameters in the integrate-and-fire model. In
other words, the results of (4.27) and (4.26) of the integrate-and-fire model
are universal. In Figure 4.5 we plot α vs. Λ for c = 0 and c = 0.1 according to
(4.27) and (4.26). For a given Λ and c = 0.1, the solid line in Figure 4.5 gives
us the smallest number of coherently synaptic inputs for an integrate-and-
fire model to discriminate between input signals if we assume that r ∈ [0, 1].
Hence the solid line in Figure 4.5 is the smallest discrimination capacity of an
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Fig. 4.5. α vs. Λ for c = 0, r = 0 (dotted line, independent of r according to
Theorem 1) and c = 0.1, r = 1 (solid line).

integrate-and-fire model with c = 0.1. It is worth pointing out that the lowest
limit of α is about α = 23. Finally, we want to emphasize that our results
are independent of input distributions. No matter what the input distribution
is, as soon as pc is greater than 40, the input signal can be perfectly sepa-
rated from an observation of efferent spike trains provided that Λ = 0.5. The
improvement of discrimination capacity from r = 0 to r = 1 is remarkable,
almost halving in most cases.

A universal result as in (4.26) and (4.27) above is illuminating since it is
independent of model parameters and then widely applicable. However, the
downside of such a result is that neurons modify their connections to im-
prove their performance. Therefore, we would argue that learning plays no
role in improving its discrimination capacity, or discrimination tasks are not
a primary computational task for a neuronal system. However, we want to
point out that (4.26) is obtained for r = 1, the case with exactly balanced
inhibitory and excitatory inputs. In a biologically realistic situation, neuron
systems might operate in a region with r < 1. In the circumstances, α could
depend on various model parameters and so learning might be important
to improve the integrate-and-fire model discrimination capacity. Certainly to
find a learning rule to improve neuronal discrimination capacity would be an
interesting topic.

Input-Output Relationship

We first want to assess whether R(out)
min (λ(2)) − R

(out)
max (λ(1)) > 0 even when

R
(in)
min (λ(2)) − R

(in)
max(λ(1)) < 0, that is, the input signal is mixed, but the out-

put signal is separated. In Figure 4.6 we plot R(out)
min (λ(2)) − R

(out)
max (λ(1)) vs

R
(in)
min (λ(2)) − R

(in)
max(λ(1)). It is easily seen that after neuronal transforma-

tion, mixed signals are better separated when c > 0. For example, when
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Fig. 4.6. Upper panel, input difference R
(in)
min (λ(2)) − R

(in)
max(λ

(1)) and output differ-

ence R
(out)
min (λ(2)) − R

(out)
max (λ(1)) for c < 0 (left), c = 0 (middle) and c > 0 (right).

Output firing rates are equal to 1000/(〈T (k)〉 + Tref ) with Tref = 5 msec. Bottom
panel (left), numerical values are obtained by directly solving (4.24). Bottom panel
(right), the dependence of the discrimination capacity on a with r = 0.4, c = −0.01.

c = 0.1, r = 1 and R
(in)
min (λ(2)) − R

(in)
max(λ(1)) = −5000 Hz (mixed), but

R
(out)
min (λ(2)) − R

(out)
max (λ(1)) > 0 (separated). The conclusion is not true for

c = 0, but the separation is not worse after neuronal transformation. In
Figure 4.6, it is clearly seen that when r < 1 and c 
= 0, the discrimination
capacity depends on model parameters.

We can prove the following conclusions.

Theorem 3 For the integrate-and-fire model

• if c > 0 we have

R
(out)
min (λ(2)) −R(out)

max (λ(1)) > 0 when R
(in)
min (λ(2)) −R(in)

max(λ
(1)) = 0;

• if c = 0 we have
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R
(out)
min (λ(2)) −R(out)

max (λ(1)) = 0 when R
(in)
min (λ(2)) −R(in)

max(λ
(1)) = 0;

• if c < 0 we have

R
(out)
min (λ(2)) −R(out)

max (λ(1)) < 0 when R
(in)
min (λ(2)) −R(in)

max(λ
(1)) = 0.

troduction. When c > 0, the output histograms become more separated than
input histograms; when c < 0, the output histograms are more mixed than
input histograms. c = 0 is the critical case.

4.4.3 Discrimination Capacity: The Distribution Dependent Case

Consider the random variable (
∑p

i=pc+1 λi) in (4.20) and let us denote
(
∑p

i=pc+1 λi)j as its jth sampling. We see that after m times of sampling,
the smallest input signal would be

pcλ
(k) +

⎛⎝ p∑
i=pc+1

λi

⎞⎠
(m)

(4.31)

and the largest would be

pcλ
(k) +

⎛⎝ p∑
i=pc+1

λi

⎞⎠(m)

(4.32)

where (
∑p

i=pc+1 λi)(m) and (
∑p

i=pc+1 λi)(m) are the largest and smallest ex-
treme value of the random variable (

∑p
i=pc+1 λi). Note that in subsection

4.4.2, we consider the worst cases and use 0 as its smallest input signal and
(p− pc)λmax as its largest input signal.

We can carry out a rigorous analysis on the behaviour of the extreme val-
ues of the random variable (

∑p
i=pc+1 λi). However, the conclusion obtained

will then depend on the actual distribution of λi. To avoid this, we then as-
sume that p >> pc, λi, i = pc + 1, · · · , p are an identically and independently
distributed random sequence (only for a technical convenience) and we have⎛⎝ p∑

i=pc+1

λi − (p− pc)〈λp〉
⎞⎠ /(

√
p− pcσ(λp)) ∼ N(0, 1)

where σ(λp) =
√

〈λ2
p〉 − 〈λp〉2.

We need the following lemma [37]:

The conclusions above completely answer the question raised in the In-
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Lemma 1 For ξn being an identically and independently distributed normal
sequence of random variables, then

P (am((ξ)(m) − bm) ≤ x) → exp(− exp(−x)) (4.33)

where{
am = (2 logm)1/2

bm = (2 logm)1/2 − 1
2
(2 logm)−1/2(log logm+ log(4π)).

(4.34)

Basically Lemma 1 tells us that approximately (ξ)(m) diverges to positive
(negative) infinity at a speed of bm (−bm). We thus conclude that⎛⎝ p∑

i=pc+1

λi

⎞⎠(m)

∼ min
{
[(p− pc)〈λp〉 +

√
p− pcσ(λp)(bm)], (p− pc)λmax

}
(4.35)

and⎛⎝ p∑
i=pc+1

λi

⎞⎠
(m)

∼ max
{
[(p− pc)〈λp〉 −

√
p− pcσ(λp)(bm)], 0

}
. (4.36)

We see that when m→ ∞,
(∑p

i=pc+1 λi

)(m)

→ (p− pc)λmax and
(∑p

i=pc+1

λi

)
(m)

→ 0, which is the worst case we considered in the previous subsection.

For fixed λ(1) < λ(2) and m, as before, we have two corresponding emper-
ical histograms p(out)

1 (λ,m) and p
(out)
2 (λ,m) of output firing rates. Let

R
(out)
min (λ(2),m) = min{λ, p(out)

2 (λ,m) > 0}

and
R(out)

max (λ(1),m) = max{λ, p(out)
1 (λ,m) > 0}

and denote

β(λ(1), λ(2), c, r,m) = {pc : R(out)
min (λ(2),m) = R(out)

max (λ(1),m)}. (4.37)

Hence for fixed (λ(1), λ(2), c, r,m), β(λ(1), λ(2), c, r,m) gives us the critical
value of pc and we call it the discrimination capacity of the neuron (under m
samplings).
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Behaviour of β(λ(1), λ(2), c, r, m)

As in the previous subsection, we conclude that β(λ(1), λ(2), c, r,m) is the
solution of the following equation (pc).

∫ VthreL

0

g

⎛⎝ y − a[pcλ
(1) + (

∑p
i=pc+1 λi)(m)](1 − r)

a
√

[λ(1)pc(1 + c(pc − 1)) + (
∑p

i=pc+1 λi)(m)](1 + r)

⎞⎠ dy

=

√
[λ(1)pc(1 + c(pc − 1)) + (

∑p
i=pc+1 λi)(m)]√

[λ(2)pc(1 + c(pc − 1)) + (
∑p

i=pc+1 λi)(m)]

·
∫ VthreL

0

g

⎛⎝ y − a[pcλ
(2) + (

∑p
i=pc+1 λi)(m)](1 − r)

a
√

[λ(2)pc(1 + c(pc − 1)) + (
∑p

i=pc+1 λi)(m)](1 + r)

⎞⎠ dy.

(4.38)

The critical value β(λ(1), λ(2), c, r,m) can be analytically found in the two
most interesting cases: c = 0 and r = 1. Define

0 ≤ Θ =
λ(2) − λ(1)

σ(λp)
.

This corresponds to the parameter Λ defined in the previous subsection.

Theorem 4 For Θ > 0,

• when c > 0 we have

β(λ(1), λ(2), c, 1,m) < β(λ(1), λ(2), 0, r,m) (4.39)

and furthermore β = β(λ(1), λ(2), c, 1,m) is the solution of the following
equation:

Θβ(1 + c(β − 1)) = 2
√
p− βbm (4.40)

provided that the approximations (4.35) and (4.36) are used.

• When c = 0 we have

β(λ(1), λ(2), 0, r,m) =
2bm
[√

b2m + pΘ2 − bm

]
Θ2

(4.41)

independent of r, provided that the approximations (4.35) and (4.36) are
used.
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• When c < 0 we have

β(λ(1), λ(2), c, 1,m) > β(λ(1), λ(2), 0, r,m). (4.42)

Again from numerical simulations (see Figure 4.8 and Figure 4.9) we con-
clude:

• When c > 0 we have

β(λ(1), λ(2), c, r2,m) < β(λ(1), λ(2), c, r1,m) (4.43)

where 1 ≥ r2 > r1 > 0.

• When c < 0 we have

β(λ(1), λ(2), c, r2,m) > β(λ(1), λ(2), c, r1,m) (4.44)

where 1 ≥ r2 > r1 > 0

Again it is interesting to note that (4.41) and (4.40) are independent of
a, Vthre, and L, three essential parameters in the integrate-and-fire model. In
other words, the results of (4.41) and (4.40) of the integrate-and-fire model
are universal. In Figure 4.7 we plot β vs. Θ for c = 0 and c = 0.1 according to
(4.41) and (4.40). For a given Θ and c = 0.1, the solid line in Figure 4.7 gives
us the smallest number of coherently synaptic inputs for an integrate-and-fire
model to discriminate between input signals for r ∈ [0, 1]. Hence the solid line
in Figure 4.7 is the smallest discrimination capacity of an integrate-and-fire
model with c = 0.1 if we assume that r ∈ [0, 1]. It is worth pointing out that
the lowest limit of β is about β = 14.
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Fig. 4.7. β vs. Θ for c = 0, r = 0 (dotted line, independent of r according to
Theorem 3) and c = 0.1, r = 1 (solid line) with m = 100.
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Input-Output Relationship

As before, we can assess the relationship between input and output his-
tograms. We can prove the following conclusions:

Theorem 5 For the integrate-and-fire model,

• if c > 0 we have

R
(out)
min (λ(2),m) −R

(out)
max (λ(1),m) > 0

when R
(in)
min (λ(2),m) −R

(in)
max(λ(1),m) = 0;

• if c = 0 we have

R
(out)
min (λ(2),m) −R

(out)
max (λ(1),m) = 0

when R
(in)
min (λ(2),m) −R

(in)
max(λ(1),m) = 0;

• if c < 0 we have

R
(out)
min (λ(2),m) −R

(out)
max (λ(1),m) < 0

when R
(in)
min (λ(2),m) −R

(in)
max(λ(1),m) = 0.

4.4.4 Numerical Results

Let us now consider the minimum total probability of misclassification (TPM)
defined by

TPM =
1
2
P (misclassfied as λ(2)|input is λ(1))

+
1
2
P (misclassfied as λ(1) |input is λ(2)).

For example, in Figure 4.8, we see that TPM (in percentile) for the left upper
panel is about 13.5% and for the right upper panel is 5.5%. Therefore, adding
inhibitory inputs to the neuron considerably improves its discrimination ca-
pability, reducing TPM from 13.5% to 5.5%.

The parameters used in simulating the IF model are Vthre = 20mV ,
Vrest = 0mV,L = 1/20, a = b = 1mV, p = 100, λ(1) = 25 Hz, and λ(2) = 75
Hz. A refractory period of 5 msec is added for all numerical results of efferent
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Fig. 4.8. Upper and middle panel, histogram of firing rates (Hz) with c = 0.1 for the
IF model. Left, exclusively excitatory inputs r = 0. Right, r = 0.95. Upper panel:
pc = 15. The minimum TPM is calculated according to the thick vertical lines (the
optimal discrimination line). Middle panel: pc = 25. Bottom panel: histograms of
coefficient of variation (CV) for pc = 25 and left with r = 0, right with r = 0.95,
corresponding to the middle panel.

firing frequency. For each fixed set of parameters of the model, 100 spikes are
generated to calculate each mean, standard deviation, etc. The histograms are
obtained using 100 firing rates, that is, m = 100.

It is interesting to compare numerical results with theoretical results in
the previous subsections. From previous subsections we have

α(25, 75, 0.1, 1) = 32.5133

and

β(25, 75, 0.1, 1, 100) = 12.1251 β(0, 100, 0.1, 1, 100) = 7.8058.

From Figure 4.9 (right) we conclude that the discrimination capacity would
be between 15 and 20. The discrimination capacity from actual numerical
simulations for r = 1 closes to β(25, 75, 0.1, 1, 100).
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Numerical simulations have been extensively carried out for the integrate-
and-fire model and the IF-FHN model. All results are in agreement with our
theoretical results in the previous subsections and were reported in a meeting
[21].

4.4.5 Discussion

We have considered the problem of discriminating between input signals in
terms of an observation of efferent spike trains of a single integrate-and-fire
neuron. We have demonstrated, both theoretically and numerically, that two
key mechanisms to improve the discrimination capability of the model neuron
are to increase inhibitory inputs and increase correlation between coherent
inputs. Analytical results for the two most interesting cases, c = 0 and r = 1,
are obtained and the results are independent of model parameters.

Our results offer answers to a few issues that were extensively discussed
in the literature. We simply summarize two of them.

First increasing inhibitory inputs and increasing correlations between co-
herent inputs can enhance discrimination capacity of a neuron. However, on
the other hand we all know that increasing inhibitory inputs and correlations
between inputs increase its output variability of efferent spike trains, which
will simply broaden the efferent firing rate histograms and so reduce the dis-
crimination capacity of a neuron. It seems our results here simply contradict
this. Nevertheless, we must note that all theoretical results in sections 4.4.3
and 4.4.2 are obtained under the assumption that the efferent firing rates are
exactly obtained. Results in section 4.4.4 clearly demonstrate that theoretical
results in sections 4.4.3 and 4.4.2 are true even when the number of spikes
used to obtained the firing rates histogram is small (100 spikes). In general
our results reveal that a neuron system faces two opposite requirements: to
obtain the mean firing rates as exactly as possible by reducing the variability
of output spike trains (reducing inhibitory inputs and input correlations), and
to increase the discrimination capacity by increasing inhibitory inputs and in-
put correlations. To elucidate our points further, in Figure 4.10, we plot the
firing rate histograms, using the identical parameters as in Figure 4.8 (mid-
dle panel, right), but with 10 spikes to estimate the mean, rather than 100
spikes. It is clearly shown that the firing rate histograms in Figure 4.10 are
less widely separated than in Figure 4.8, middle panel (right), and it is im-
possible to perfectly distinguish between two inputs. A neuronal system must
find a compromise way to resolve the issue. How to find an optimal trade-off
between the two requirements is an interesting research topic.

Second, many publications argue that there is an optimal value of noise at
which a neuronal system can optimally extract information. Nevertheless, our
results indicate that the optimal point is simply the one at which the neuron’s
output is most variable. We thus conclude that the larger the noise, the better
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Fig. 4.9. TPM % vs. 〈σ〉=
√

a2(1+r)λ(1)pc(1+c(pc − 1)) + a2(1 + r)
∑p

i=pc+1〈λi〉
with 〈λi〉 = 50 Hz (left) and TPM vs. pc (right) for the IF model, r ∈ [0, 1], c =
0.1, λ(1) = 25 Hz. When pc = 15 (left), it is clearly shown that TPM attains its
optimal value at r = 1, that is, the larger the noise, the better the discrimination
( see the right figure as well). All other parameters are the same as in subsection
4.4.4.

for the neuron system (see the paragraph above and Figure 4.9) to separate
masked signals. This confirms the fact that noise is useful in a neural system,
but not via the form of stochastic resonance.

The only assumption we introduced in the model is that coherent sig-
nals are more correlated than random signals. This seems a quite natural
assumption given the structured cortical areas. Figure 4.11 illustrates the
point. Coherent signals are transmitted by neurons grouping together (cor-
tical columns) and neurons in the same column are bound to fire with a
correlation. In contrast, noisy (distorted) signals are less correlated.

The integrate-and-fire model is the simplest model in theoretical neuro-

Fig. 4.10. Histogram of firing rates (Hz) with c = 0.1 for the IF model, with
identical parameters as in Figure 4.8, bottom panel (right), but only 10 spikes are
used for estimating mean firing rates.
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Fig. 4.11. Correlations between coherent signals can be naturally introduced via
neuronal pathways.

science. One might easily argue that the model is too simple to be true for a
realistic biological neuron. Nevertheless, we have seen in the past few years
that the integrate-and-fire model fits well with many experimental data (see
for example, [3, 29, 38]) and still serves as a canonical model of neurons. On
the other hand, we have tested results here on other models as well ([21]. It
would be very interesting to investigate the impact of adaptation and dynam-
ical synapses [29] on discrimination tasks.

Currently we are also working on building a system that mimics experi-
ments carried out in [44, 56] with random dot stimuli and making judgements
on dot-moving directions [26].

4.5 Multineuron Activity: Correlation

In the past decade, we have witnessed the prevailing of the synchronization
theory in nervous systems. Certainly two (partially) synchronized spike trains
are positively correlated. Are two spike trains recorded in in vivo experiments
exclusively positively correlated? This is a question asked by many experi-
mentalists. Here we first present some of our recent data from in vivo multi-
electrode array recording in the rat olfactory bulb.

Noise observed in all in vivo experiments in the nervous system is one
of the main curbs to determining the computational principles employed by
the brain, despite a century of research. If the individual neuron behaves
unreliably, how we can recognise a face, react to a stimulus, and catch a ball
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in such an accurate way? One might argue that the noise in the nervous sys-
tem can be averaged out if a population coding strategy is implemented. In
fact, it is pointed out in the literature [76] that increasing the number of neu-
rons cannot enhance the signal-to-noise ratio without limitations, if neurons
are positively correlated. Of course, a pair of positively correlated spike trains
implies that they are synchronized in a certain degree, and the synchroniza-
tion assumption was very popular in the literature in past decades.

However, we have found evidence confirming the existence of a negative
correlation rather than positive correlations in in vivo experiments on the rat’s
olfactory bulb [60]. What is the functional meaning of our findings [17, 22]?
To answer the question, we run a few simulations here. Assume there are 100
neurons and the ith neuron sends out a spike train with an instantaneous rate

ξi =
√

sin(2πt) + 1.5ηi + sin(2πt) + 1.5

where ηi is noise (normally distributed random variable with mean 0 and vari-
ance 1). Note that the firing rate takes the form of Poisson processes: its noise
magnitude is proportional to the signal term [57]. In Figure 4.12 (left), we de-
pict the summation of all N = 65 neurons firing rates with various correlation
between ηi. The correlation between the ith and jth neuron is −cn (positive)
when i, j < Np, Np = 1, · · · , 65 and otherwise is negative as specified in the
figure. It is clearly seen that the noise level is significantly reduced when the
correlation becomes more negative, that is, Np decreases. When the correla-
tion between neurons is around cn = −0.015 and Np = 0, the obtained signal
is almost perfect.

The mechanism behind the observed phenomenon in Figure 4.12 is es-
sentially due to the central limit theorem. Suppose that we have N nor-
mally distributed random variables [(instantaneous) firing rate of N neurons]
ξi, i = 1, · · · , N with mean and covariance matrix

σij =
{

(sin(2πt) + 1.5)(δij − cn(1 − δij), i, j = 1, · · · , Np,
(sin(2πt) + 1.5)(δij + cn(1 − δij), i, j /∈ {1, , Np}

From the central limit theorem we know that

ξ1 + · · · ξN −N(sin(2πt) + 1.5)√
N

→ N

(
0,
∑
σij

N

)
where N(·, ·) is the normal distribution. Note that the variance term can be
decomposed into two terms: the first is i = 1, · · · , N, σii, which is always
positive, and the remaining term could be positive or negative depending on
the correlation between neuronal activity. With a positive correlation, the
variance will increase rather than reduce. In other words, the noise level is
increased. But with a negative correlation, the variance could be dramatically
reduced. In Figure 4.2, right, we plot the variance term withNp = 0, 1, · · · , 65.
When Np = 0, all neurons are negatively correlated. When Np = 65, all
neurons are positively correlated, Np is around 45, and the variances is 1,



4 Neuronal Computation Using High-Order Statistics 95

Fig. 4.12. Left, green lines are the true signals, and jagged lines are averaged
signals with various correlation levels as indicated in the figure. It is easily seen that
an almost perfect signal is obtained when the neuron is negatively correlated with a
correlation coefficient of −0.015. Right, theoretically calculated variance vs. number
of positively correlated neurons Np. Curves in the left figure correspond to marked
points of the red curve. For example, when Np = 0, it is the lowest point of the red
curve, Np = 45 is the point where two thick black lines meet. From our experimental
data, if we assume that 10 neurons are positively correlated (indicated by circles),
that is, there are 100 positive correlations, the improvement of the signal-to-noise
ratio is considerably significant.

that is, all neurons are independent. Corresponding to Figure 4.12 left, we
see that when Np = 0, the variance is almost zero with cn = −0.015. From
Figure 4.12 left, we see that the difference between Np = 30 and Np = 45
is not easy to visually detect. However, theoretical results (right) tell us that
there is a difference around 0.4.

Hence the negatively correlated terms contribute to reduce the variance,
while positively correlated terms result in an increase of the variance. Our
results above tell us that even a single neuron is very unreliable: it could
behave as a Poisson process (the noise magnitude is proportional to the signal
as we used here), and the obtained signal in terms of a group of neurons could
be almost perfect. In other words, an almost perfect signal can be extracted,
as long as the neuronal activity is negatively correlated, as reported in our
biological data [60].

In the literature, the redundancy reduction principle is widely regarded
as one of the operation principles in the brain [6]. However, recently it is
agreed that the principle has difficulty in explaining the experimental data,
such as why the number of cells in V1 is much larger than the number of cells
in LGN. In fact, the negatively correlated computation principle is a step
further than the redundancy reduction principle and is not in contradiction
with the known facts; the functional meaning is clear. In Figure 4.13, we
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plot 65 random numbers generated with mean zero and variance 16 with
correlation −0.015 and 0.8. With a negative correlation, the space is more
completely and symmetrically explored, resulting in a mean of −0.0080. With
a positive correlation, the situation is the worst, as only a portion of the
whole space is covered by the points and the mean is −0.72. The figure also
demonstrates another possible role of a negative correlated neuronal activity in
discrimination tasks. We all know that the further away the distance between
patterns to be discriminated, the easier the discrimination task is. Obviously
negative correlation is a mechanism to push each pattern to the corner of its
feature space and so make the discrimination task easier, in comparison with
the independent case, that is, the redundancy reduction principle.

It might not be surprising to observe the negatively correlated activity
in the nervous system. It is known that the interaction between neurons in
the olfactory bulb is lateral inhibitory, which is the natural cause of negative
correlation between neuronal activity.

In the previous sections, we have presented several examples to explain the
importance of the second-order statistics—both variances and correlations.
Can we develop a general theory to describe network activity including both
the first- and second-order statistics? In the next section, we develop such a
theory.

Fig. 4.13. Returning map of 65 random numbers, (ξi, ξi+1)i = 1, 2, · · · , 64. +, point
with a negative correlation of −0.015; * random number with a positive correlation
of 0.8.
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4.6 Moment Neural Networks

We confine ourselves to feedforward networks (Figure 4.14) only, although it
is readily seen that we can easily generalize our results below to feedback and
recurrent networks.

For two given quantities Vthre (threshold) > Vrest (resting potential) and
when v

(k+1)
i (t) < Vthre, the membrane potential of the ith neuron in the

(k + 1)th layer v(k+1)
i (t) satisfies the following dynamics:{

dv
(k+1)
i (t) = −L(v(k+1)

i (t) − Vrest)dt+ dI
(k+1)
i,syn (t)

v
(k+1)
i (0) = Vrest

(4.45)

where L is the decay rate, and I
(k+1)
i,syn (t) is the synaptic input given by

dI
(k+1)
i,syn (t) =

p(k)∑
j=1

w
E,(k)
ij dN

E,(k)
j (t) −

q(k)∑
j=1

w
I,(k)
ij dN

I,(k)
j (t) . (4.46)

Here w
E,(k)
ij is the magnitude of EPSPs, wI,(k)

ij is the magnitude of IPSPs,

N
E,(k)
i and N

I,(k)
j are renewal processes (EPSPs and IPSPs) arriving from

the ith and jth synapse with interspike intervals TE,(k)
im ,m = 1, 2, · · · , and

T
I,(k)
jm ,m = 1, 2, · · · , p(k) and q(k) are the total number of active excitatory

and inhibitory synapses in the kth layer. Once v(k+1)
i (t) is greater than Vthre,

Fig. 4.14. Schematic plot of a feedforward spiking network (left). Right, a single
neuron in the (k + 1) layer receives inputs from the ith layer with weights (EPSP

size) w
E,(k)
ij , i = 1, · · · , p(k), j = 1, · · · , p(k+1), k = 1, 2, · · · .
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it is reset to Vrest. The model defined by (4.45) is called the (leaky) integrate-
and-fire model [57]. In the sequel, we define T0 = 0 and

T
(k+1)
ij = inf{t : v(k+1)

i (t) ≥ Vthre, t > T
(k+1)
i(j−1)}, j = 1, 2, · · · (4.47)

as the firing time (interspike intervals), see Figure 4.14 right.
According to the renewal theorem, we have

dNE
i (t)
dt

→ N

(
1

〈TE,(k)
ij 〉

,
[〈(TE,(k)

ij )2〉 − 〈TE,(k)
ij 〉2]

〈TE,(k)
ij 〉3

)

where N(·, ·) is the normal distribution.
In fact, a more detailed calculation tells us that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

〈NE,(k)
i 〉 =

t

〈TE,(k)
ij 〉

+
var(TE,(k)

ij ) − (〈TE,(k)
ij 〉)2

2(〈TE,(k)
ij 〉)2

+ o(1)

var(TE,(k)
ij ) =

[〈(TE,(k)
ij )2〉 − 〈TE,(k)

ij 〉2]t
〈TE,(k)

ij 〉3
+ c

(4.48)

where c is a constant depending on the first-, second- and third-order statistics
of TE,(k)

ij . Hence NE
t is in general not a Markov process due to the constant

term independent of t in (4.48).
Let us introduce more notation here. Define

μ
E,(k)
ij =

1

〈TE,(k)
ij 〉 + Tref

, (σE,(k)
ij )2 =

[〈(TE,(k)
ij )2〉 − 〈TE,(k)

ij 〉2]
〈TE,(k)

ij 〉3

where Tref is the refractory period. For the ith neuron in the kth layer, we
have

dN
E,(k)
i (t) ∼ μ

E,(k)
i1 dt+ σ

E,(k)
i1 dB

E,(k)
i (t) (4.49)

where BE,(k)
i (t) is the standard Brownian motion with a correlation coefficient

ρ
(k)
ij , i, j = 1, · · · , N (k). Of course, (4.54) is an approximation: the so-called

usual approximation [57] to Poisson process is a special case3. The essen-
tial idea behind the approximation is the central limit theorem, that is, to
approximate the input pulses that are a summation of independent random
variables by their mean and variance. To the best of our knowledge, such an
approximation to the renewal process has not be introduced in the literature
and we expect our approach could be quite significant and open up many new
3 To have a more accurate approximation, we have to resort to the similar idea

employed in [20]. For the IF model, which is linear before resetting, the approxi-
mation developed above without the constant term is quite accurate already (not
shown here).
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problems to be further addressed. We also stress here that in the literature
there are many papers devoted to investigating the network activity of spik-
ing neurons. However, all of them are confined to the case of Poisson inputs,
which is of course not satisfactory since the output of an integrate-and-fire
model is no longer a Poisson process (hence the self-consistency issue has to
be checked) but is surely a renewal process. Summarizing the results above,
we obtain∑p(k)

j=1 w
E,(k)
ij dN

E,(k)
j (t) =

∑
j w

E,(k)
ij μ

E,(k)
j1 dt+

∑
j w

E,(k)
ij (t)σE,(k)

j1 dB
E,(k)
j (t) .

Let us further suppose that p(k) = q(k) and for the simplicity of notation

μ
E,(k)
j = μ

E,(k)
j1 , σ

E,(k)
j = σ

E,(k)
j1 ,

rμ
(k)
i = rμ

E,(k)
i = μ

I,(k)
i , w

(k)
ij = w

E,(k)
ij = w

I,(k)
ij

(4.50)

and
rσ

(k)
i = rσ

E,(k)
i = σ

I,(k)
i (4.51)

where i = 1, · · · , p(k+1), j = 1, · · · , p(k), and r is the ratio between inhibitory
inputs and excitatory inputs. In particular, when r = 0 the neuron exclusively
receives excitatory inputs; when r = 1 the inhibitory and excitatory input is
exactly balanced. Note that (4.51) is a quite strong assumption. Now we have

dI
(k+1)
i,syn =

∑
j

w
(k)
ij μ

(k)
j (1 − r)dt+

∑
j

w
(k)
ij (t)σ(k)

j

√
1 + rdB

(k)
j (t) (4.52)

where B(k)
i (t), i = 1, · · · , p(k) are correlated Brownian motion with correlation

coefficient ρ(k)
ij .

In terms of Siegert’s expression, we have the expression of all moments of
the output firing rate of the model. For the mean we have

〈T (k+1)
i 〉 =

2
L

∫ A
(k)
i (Vthre)

A
(k)
i (0))

g(x)dx, A
(k)
i (y) =

yL− μ̄
(k)
i

σ̄
(k)
i

√
L

(4.53)

where

μ̄
(k)
i =

∑
j

wijμ
(k)
j (1 − r), (σ̄(k)

i )2 =
∑
m,n

wimwinσ
(k)
m σ(k)

n ρ(k)
mn(1 + r)

(4.54)
and

g(x) =
[
exp(x2)

∫ x

−∞
exp(−u2)du

]
=

⎧⎪⎨⎪⎩
D−(x) + exp(x2)

√
π

2
if x ≥ 0

−D−(−x) + exp(x2)
√
π

2
otherwise
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with Dawson integral D−(x), x ≥ 0.

For the second-order moment variance, we know that

Var(T (k+1)
i ) =

4
L2

∫ A
(k)
i (Vthre)

A
(k)
i (0)

exp(x2) ·
{∫ x

−∞
exp(−u2)g2(u)du

}
dx.

(4.55)

Finally we have to consider the correlation relationships between neuronal
activity. In the literature, many publications investigated the functional role
of correlations. Unfortunately, it turns out that to find a rigorous relationship
between input correlation and output correlation is not an easy task. To this
end, we simulate two IF neurons with synaptic inputs

μ(1 − r) +
√
μ(1 + r)dB(i), i = 1, 2

where B(i) are correlated Brownian motion with a correlation coefficient ρin,
and μ is a constant. It is found from Figure 4.15 that the input correlation
ρin and output correlation ρout are almost identical, independent of r and μ.

Hence we have the following heuristic relationship between the input and
output correlation in the network:

ρ
(k+1)
ij =

∑
m,n w

(k)
imσ

(k)
m w

(k)
jn σ

(k)
n ρ

(k)
mn√∑

m,n w
(k)
imσ

(k)
m w

(k)
in σ

(k)
n ρ

(k)
mn ·
√∑

m,n w
(k)
jmσ

(k)
m w

(k)
jn σ

(k)
n ρ

(k)
mn

.

(4.56)
Note that the right-hand side of (4.56) is the input correlation to the ith and
the jth neuron in the (k+1)th layer.

Let us address the implications of (4.56). Assume that w(k)
im = w > 0,

σ
(k)
m = σ > 0 and ρmn(k) = ρ,m 
= n, then we have

ρ
(k+1)
ij =

p(k) + (p(k) − 1)2ρ
p(k) + (p(k) − 1)2ρ

= 1 .

In other words, the neuronal activity is correlated (synchronized). The syn-
chronized spike trains in a feedforward network as we discussed here have
been observed early in the literature for a feedforward spiking network. In the
general case where w(k)

ij , σ
(k)
m and ρ

(k)
ij are not homogeneous and the output

correlation is slightly higher or lower than the input correlation, ρ(k)
ij will not

be unity.
Another extreme case is that we have w(k)

i = {w(k)
im ,m = 1, · · · , p(k)} ⊥

w
(k)
j = {w(k)

jm,m = 1, · · · , p(k)} (orthogonal). Since we require that w(k)
im ≥ 0,

we conclude that
∑

m,n w
(k)
imσ

(k)
m w

(k)
jn σ

(k)
n ρ

(k)
mn = 0 and therefore ρ(k)

ij = 0. For

A,B ⊂ {1, · · · , p(k+1)}, A ∩ B = φ, and w
(k)
i ⊥ w

(k)
j for i ∈ A, j ∈ B, then
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Fig. 4.15. Left, the curve of ρout vs. ρin for r = 0 (+), r = 0.3 (o) and r = 0.6
(*) with 5000 interspike intervals. The relationship between the input correlation
coefficient and the output correlation coefficient is almost linear and independent of
r. Right, ρout vs. ρin ≤ 0. Each point is obtained with 5000 spikes.

the neuronal activity in A and B is independent; that is, patched neuronal
activity is observed in this case.

In summary, from (4.22), (4.55), and (4.56), we have the following rela-
tionship between inputs and outputs:

(μ(k+1),σ(k+1), ρ(k+1)) = M(μ(k),σ(k), ρ(k)) (4.57)

where μ(k) = {μ(k)
i , i = 1, · · · , p(k)},σ(k) = {σ(k)

i i = 1, · · · , p(k)} and M is the
mapping defined by (4.22), (4.55), and (4.56), (4.57) gives us the relationship
of the first- and second-order moments in a spiking neuronal network and is
called moment mapping, which is one of the central results in MNN.

4.6.1 Application: Spontaneous Activity

The first question we address here is: How can spontaneous activity be main-
tained in a feedforward network? In our simulation typical parameters used
are Vrest = 0mV,L = 1/20msec−1, and Vth = 20mV , in agreement with
most published results [39, 55]. The simulations are carried out with Matlab
[61].
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Clamped Correlation

We first consider an ideal case: all weights, afferent mean, and variance are
identical, that is, the network is homogeneous; (4.57) is now reduced to

(μ(k+1),σ(k+1), ρ(k+1)) = M(μ(k),σ(k), ρ(k)) (4.58)

with μ
(k)
1 = μ

(k)
j , σ

(k)
1 = σ

(k)
j , ρ

(k)
12 = ρ

(k)
mn,m 
= n. As we discussed before,

now the propagation of correlation becomes trivial: it will simply reach 1. To
prevent it from happening, we clamp the correlation coefficient in the current
subsection. From experimental data, we know that correlation coefficient has
a mean around 0.1. In all simulation below, we also fixed w = wi = 0.5.

In Figure 4.16, we plot simulation results for various μ(1) and σ(1) [C(k)
i =

σ
(k)
i /μ

(k)
i , the coefficient of variation (CV), is used] with p(k) = 100, ρ(k)

ij =
0, 0.1, i 
= j. For example, in the upper panel left, for the left branch, we
simulate the model with initial state as specified in the figure. From left to
right, the ratio r is 0.4, 0.3, 0.2, 0.1, 0.0. Each data point is (μ(k), σ(k)) and we
connect (μ(k), σ(k)) with (μ(k+1), σ(k+1)) by a straight line. From Figure 4.16,
upper panel and bottom left, ρ(k)

ij = 0, and we see that there are only two pos-
sibilities: either the cell becomes completely silent4 or fires with a relatively
high frequency. In all of our simulations, we have never found that values of
r between 0 and 1 lead to a system that is stable with a firing rate in accor-
dance with experimental observations, that is, with a firing rate below 10 Hz.
To confirm our conclusions, in Figure 4.16 bottom right, we carry out a more
detailed simulation with ρ

(k)
ij = 0.1, r = 0.25, 0.26, 0.27, 0.29, 0.3. It is easily

see that the network activity converges to either a highly firing frequency or
completely silent state.

Having observed this difficulty: the network becomes either too active
or completely silent, we then try to explore wider parameter regions. From
Figure 4.17, upper panel left, it is concluded that the ratio r must be signif-
icantly higher than for exactly balanced input to make the network become
stable. When r = 2.3, the network settles down to a state with a firing rate
below 10 Hz and a coefficient of variation around 1.2. This also validates our
approach since the output process is surely not a Poisson process, but a re-
newal process.

The reason why such a high inhibitory is needed in a network is clear.
The input-output firing rate relationship of a neuron takes the shape of a
sigmoidal function or a skew-bell shape function starting from the origin (see
Figure 8.13 at page 310, middle panel in [28]). Hence there are always three
or one fixed point when the output is sigmoidal. When there are three fixed
points, two of them are stable. When the initial input is high, the firing rate
4 We stop the simulation if the simulation time is exceedingly long, which implies

that the cell is silent. For example, in Figure 4.16 upper trace left, for the left
branch, with r = 0.3, the next point should have a firing rate of zero.
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Fig. 4.16. Upper panel and bottom (left) p(k) = 100, ρij = 0, with C
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√

2 and μ
(1)
1 = 100 Hz (solid lines), 50 Hz (dashed lines). When r ≥ 0.3,

the neuron becomes silent (simulations stop when 〈T 〉 is too large). Bottom panel

(right) with r = 0.25, 0.26, 0.27, 0.29, 0.3, ρ
(k)
ij = 0.1, and C

(1)
i = 1, μ

(1)
i = 50 Hz.

will become stable at a point with a positive firing rate. Otherwise, it becomes
silent. To make sure that the network operates at a low but positive firing rate
region, we need a strong excitatory input (see Figure 4.17 bottom panels). A
strong excitatory input implies a high frequency of stable point (see Figure
4.17, bottom panel left with r = 0 and r = 1). To get a low frequency of stable
firing, a significant inhibitory input is needed. In fact, from Figure 4.17, we
conclude that to obtain a stable, low firing rate the input-output relation-
ship should be a skewed bell shape, rather than the usual sigmoidal function.
When r = 1, we see that the output firing rate is an increasing function of
input firing rate and hence the input-output relationship is still sigmoidal. To
have a skewed bell shape input-output relationship requires r > 1 since the
output firing rate is no longer an increasing function of the input firing rate.
For a bell shape input-output function, we know that there might be two fixed
points and the positive fixed point could be stable. Of course, a bell-shaped
input-output relationship possibly leads to more complicated dynamics such
as a limit cycle or chaotic activity.

Furthermore, with a larger p(k) (for example, p(k) > 250 in Figure 4.17),
we can have a wider encoding and decoding region. When p(k) = 200, the out-
put firing rate is either greater than 40 Hz or silent, but when p(k) > 250, the
output firing rate is continuous. We have also tested our results for extreme
parameters, for example, Vthre = 10 [39] and with refractory periods. Our
conclusions all remain true (not shown).
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Fig. 4.17. Upper panel, left, (μ
(k)
i , C

(k)
i ) for k = 1, 2, · · · with μ

(1)
i = 5Hz, C

(i)
i = 1

and p(k) = 300, ρij = 0.1, r = 2., 2.1, 2.2, 2.3. Upper panel, right, output firing rate

(Hz) indicated by color bar with μ
(1)
i = 5 Hz and C

(1)
i = 1. Bottom panel, input-

output relationship for p(k) = 300 and p(k) = 100.

In the literature, the exactly balanced spiking neuronal network assump-
tion is widely accepted (see for example [39, 55, 59]). However, with biolog-
ically reasonable parameters [55], we found that a feedforward spiking neu-
ronal network cannot maintain a low-frequency spontaneous activity. Hence
a much strong inhibitory input is needed. It was recently estimated that the
magnitude of IPSP is around fives times larger than EPSP, that is, b/a = 5
(see also [28], page 239).

Finally, we have to emphasize here that all results are obtained for homo-
geneous networks.

Due to space limitations we will present our detailed results elsewhere [24].

4.7 Conclusion

We first presented some examples to show the importance of high-order statis-
tics in neuronal computations. The examples include simple input and output
surfaces, optimal control models, noise reduction, and storage capacity. Mo-
ment neuronal networks (first- and second-order statistics) are developed and
some simple applications are included.
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Our approach is reminiscent of the hydrodynamics limit in dealing with
fluid dynamics, where the Navier-Stokes equation is the ultimate description of
fluid dynamics. Of course, our development is more complex than the deriva-
tion of the Navier-Stokes equation where only the first-order statistics are
considered.
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Neuronal Model of Decision Making

Benoit Gaillard, Jianfeng Feng, and Hilary Buxton

Summary. We have built a neuronal model of decision making. Our model per-
forms a decision based on an imperfect discrimination between highly mixed stimuli,
and expresses it with a saccadic eye movement, like real living beings. We use pop-
ulations of integrate-and-fire neurons.

To take a decision that depends on imperfectly separated stimuli, we use a model
inspired by the principle of accumulation of evidence. More precisely, this accumu-
lation of evidence is performed by a competition between groups of neurons that
model a visual column in the lateral intra-parietal area (area LIP) of the brain. In
this column, we have groups of neurons that are sensitive to specific stimuli on which
the decision is based. They inhibit each other through groups of inhibitory neurons.
Simultaneously, they recursively excite themselves through recurrent synaptic ex-
citation, and all the neurons receive a steady low-level excitation from the rest of
the brain. The competition is generated by these recurrent inhibitory and excita-
tory loops. We study this structure within the framework of dynamical systems.
The variables we use are the activities of each group of neurons. This dynamical
system has several stable states: one of them occurs when all activities are weak,
and other ones when one local group of neurons has a higher activity and dominates
the others through lateral inhibition. The convergence to one of these stable states
models decision making, guided by sensory evidence. The group of neurons sensitive
to the specific stimulus has a comparative advantage on the others during the com-
petition. This structure is not a new idea, but we use it to test our hypothesis on
the way the brain controls the dynamics of decision making. Our hypothesis is that
the statistical signature of the low-level activity of the brain modifies the stability
of the attractors of our model, and thus changes the dynamics of the competition
that models decision making.

The criterion by which we judge that a decision is taken is more realistic than
just looking at the decisive neurons’ activities. We model a saccadic eye movement
directed by the activities of our LIP neurons, and we read the decision from the po-
sition of the eye. This experimental setup is comparable to biophysical experiments
in which living beings express their decisions by saccadic eye movements.

The neurons of the LIP column in which the decisions take place are modeled
as neurons in a real brain: besides the stimuli and the recurrent interactions, they
receive significant inputs from the rest of the brain. It is well known that neurons in
the brain are highly influenced by this activity, called low-level background activity.
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We study how the dynamics of the decision making change as a function of the
first-order statistics (mean) and second-order statistics (variance) of this global low-
level background activity or noise. By studying its influence on the reaction time
and error rate, we show that this background activity may be used to control the
dynamics of decision making. We compare the performance of such a model (error
rate as a function of reaction time) to the performance of living beings during psy-
chophysical experiments. By doing so, we assess the plausibility of the hypothesis
that decisions be controlled by the statistical signature of the low-level background
activity of the brain.

5.1 Introduction

The study of the reaction time (RT) and error rate (ER) of animals and hu-
mans performing a simple two-choice perceptual discrimination task has a
long history. One of the first approaches to model such decision processes was
developed by psychologists and is known as the accumulation of evidence mod-
els. Typically, these models consider two variables that measure the quantity
of evidence for each of the two decisions, and the first variable that reaches
a decision boundary determines the decision. Those models were introduced
by, for example Townsend and Ashby [17]. The diffusion model is often used
to explain relations among RT, accuracy, error trials, and clarity of the input.
Thanks to successful neural recording during decision making (for example,
Shadlen and Gold [14], Platt and Glimcher [12]), experimental evidence con-
firmed that the diffusion model can account for the accumulation of evidence,
but also inspired more precise models of the neural dynamics involved. In
particular, accumulation of evidence through neural competition has been
modeled by Wang [20] and by Brunel (Amit and Brunel [1]). Glimcher [9]
reviews stochastic decision making. According to Glimcher, who tested this
claim by experimenting on monkeys, the tendency to make a choice is im-
plemented in the firing rate (FR) of area LIP, and the uncertainty about
this decision could be implemented by what we call input noise in area LIP.
However, decision making is also controlled by our context, our motivations,
and our history. This idea has been addressed by Salinas [13]. He uses, as
well, background synaptic activity as a switch between dynamical states in a
networḱ. We propose a model in which sensory inputs do not automatically
trigger a decision. The decision making is dependent on the characteristics
of the low-level background neuronal activity of the brain. This background
activity does not only control if a decision is taken, but controls the trade-off
between speed and accuracy as well: in urgent situations, we tend to take less
accurate decisions.

We restrict ourselves to a very simple decision in the case of very simple
and well-studied sensory evidence setup. We use moving-dot kinematograms
as stimuli, and the model has to decide in which direction to move its eye,
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signifying if it thinks that the dots generally move downward or upward. This
experimental setup has been extensively studied on alive monkeys and on
humans by Newsome and colleagues [2, 15, 16, 21]. Our moving-dot kine-
matograms are composed of a hundred dots. A percentage of them move
coherently in one direction. This percentage is called coherence in this chap-
ter. The rest of them move randomly in any direction. In our experimental
setups, they don’t even have consistent directions. This setup is the same as in
previous studies [3, 5, 6], and as in many of Newsome’s experimental setups.

We currently treat these stimuli in a very crude way. We suppose that
the retina and the early parts of the visual system evaluate the direction of
each dot during successive short time steps. Authors have argued for such a
discretization of time in the visual system (VanRullen and Koch [19]). We
suppose that each dot moving in a given direction triggers the activity of spe-
cific motion detectors. There are more detailed models that support this idea:
It has been proved that in the visual system, we find columns of neurons that
detect specific directions of movement (Mountcastle [11] Hubel and Wiesel
[10]). So we suppose that the first detailed neurons of our model receive a
hundred different synaptic inputs, each of these inputs corresponding to the
direction of one dot. These neurons are detectors of the global direction of
the dots in the kinematogram: they react strongly to a given general direction
and weakly to its opposite direction. To implement this neural behaviour, we
set their synaptic input to be inversely proportional to the difference between
their preferred direction and the direction of the corresponding dot.

These global direction detectors and the rest of the model is described
more precisely in this chapter.

5.2 Model

5.2.1 Overview

Our model can be divided into three parts, illustrated in Figure 5.1. First we
have the global direction detectors. They are made of populations of integrate-
and-fire (IF) neurons whose firing rates (FRs) depend on the global direction
of the dots in the stimulus. They are a very simple generalisation of the
model we studied in earlier publications [6, 7]. Second; using the output of
the direction detectors, we have our LIP decisive column. Internal recursive
loops and global inputs from the brain determine the activities of the neurons
in the column. Specific patterns of activity of this column can generate an
eye movement. The generation of this eye movement is the third part of the
model.
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Fig. 5.1. The left panel represents the stimulus: Normally all those dots are moving,
most of them randomly. The middle panel is an illustration of the neuronal activ-
ities in the decision column of area LIP. In the middle panel, we see the low-level
background activity of the brain (represented by the green colour) that surrounds
the column. All the represented subpopulations of neurons are connected to them-
selves and to each other, but the arrows represent Hebbian learning-potentiated
connections. When the eye on the right has turned to one side, a decision has been
taken.

The neuron model used here is the classic leaky integrate-and-fire (IF)
model [4, 8, 18]. The dynamics of the membrane potential below threshold
are defined as follows:

dV = −1
τ

(V − Vrest)dt+ dIsyn(t) (5.1)

where τ is the time constant of the neuron and the synaptic input is

Isyn(t) =
Ns∑
i=1

aiEi(t) (5.2)

where Ei(t) is the instantaneous frequency of incoming spikes to the ith
synapse, ai is the positive or negative magnitudes of the excitatory post-
synaptic potential (EPSP) and the inhibitory postsynaptic potential (IPSP),
respectively, and Ns is the number of synapses. When the membrane potential
reaches Vθ, the threshold potential, the neuron emits a spike and the poten-
tial is reset to Vrest. Then, the neuron goes through a refractory period τref

during which its membrane potential remains close to Vrest. We assume that
large groups of incoming synapses receive the activity of large populations of
neurons that have a similar activity, and that this activity is small. In that
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case, as shown by Tuckwell [18], we can use the diffusion approximation. So
we can rewrite (5.2) as

Isyn(t) = J

Ng∑
i=1,wi>0

wiνi(t) − Jinh

Ng∑
i=1,wi<0

wiνi(t)

• Ng is the number of groups of similar incoming synapses to the neuron.

• wi is the normalized synaptic weight. It is negative for inhibitory synapses.

• νi is the rate of the Poisson process coming to the synapses of the group
i.

• J is the global excitatory synaptic strength.

• Jinh is the global inhibitory synaptic strength.

Then we reach the following expression for the output FR:

νout =

[
τref + τ

∫ Vθ−μ

σ

Vrest−μ
σ

φ(u)du

]−1

(5.3)

where
φ(u) =

√
πeu2

(1 + erf(u))

μ = J

Ng∑
i=1

wiνi

σ2 = J2

Ng∑
i=1

w2
i νi + J2

Ng∑
i,j=1,i �=j

ci,jwiwj
√
νiνj

• ci,j is the correlation coefficient between synapse group i and synapse
group j. We assume that the correlation coefficient between the inhibitory
and excitatory synapse is zero.

• The resting membrane potential: Vrest = 0 mV.

• The threshold membrane potential: Vθ = 20 mV.

• τref is the refractory period of the leaky integrate-and-fire neuron.

• τ is the time constant of the leaky integrate-and-fire neuron.
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5.2.2 Global Direction Detectors

The global direction detectors are constituted of populations of leaky integrate-
and-fire neurons described in the previous section. Each detector is made of
100 such neurons that are not laterally connected and that receive the same
input. The discrimination of such a population is quicker and more accurate,
as shown in previous publications (Gaillard et al. [6, 7]). We do not evaluate
statistically the output FR of the neuron, as in (5.3), but we simulate the pro-
duction of spikes. For one time window t, the population produces N spikes,
and the firing rate is N

100t .
The synaptic excitation is basically inversely proportional to the distance

between the preferred angle of the group and the stimulus angle. Keeping
the paradigm of one group of synapses for one dot, synaptic excitation for
the upward detector will be π for a dot moving upward, 0 for a dot moving
downward, and π

2 for a dot moving horizontally.

νi = k ‖(‖Angle−Directioni‖ + π)[2π] − pi‖

where νi is the incoming rate corresponding to ith dot number, angle is the
preferred direction of the detector, directioni is the moving dot’s direction,
and k is a normalizing parameter, so that the excitation stays in the range
of rates used in our experimental models. This equation is justified by the
idea that the direction detector has more synaptic connections to the motion
detector of its preferred direction. We assume as well that the incoming ac-
tivity corresponding to dots having a coherent direction is correlated. nc is
the number of dots moving coherently, and c is the correlation coefficient. For
simplicity, we assume that the detector’s synaptic characteristics are as fol-
lows: the magnitude (ai) of an EPSP is the exact opposite of the magnitude
of an IPSP, and has the same absolute value for all synapses: a. r is the ratio
between the number of excitatory and inhibitory synapses of the direction
detector. Thus, as shown by Tuckwell [18], we can simplify (5.1) into

dV = −1
τ

(V − V rest)dt+ μdt+ Nσ
√
dt

where

μ = a

p∑
j=1

(1 − r)νj ;
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σ2 = a2

⎡⎣ p∑
j=1

(1 + r)νj +
nc∑

i,j=1,i �=j

c(1 + r)
√
νiνj

⎤⎦ (5.4)

• r is the ratio between inhibitory synapses and excitatory synapses.

• p = 100 is the number of groups of synapses that receive inputs corre-
sponding to the direction of one dot.

• ν(j) is the incoming rate corresponding to the direction of the jth dot.

• The time constant of the neuron: τ = 20 ms.

• The time step for the integration: dt = 0.01 ms.

• The correlation coefficient between inputs from dots that have a coherent
motion: c = 0.1.

• The number of coherent inputs: nc ≤ p. Coherent inputs are dots that
move consistently in one direction.

• The resting membrane potential: Vrest = 0 mV.

• The threshold membrane potential: Vthreshold = 20 mV.

• N is a normally distributed random variable (mean 0, variance 1); in the
formal IF model, N√

dt is the standard Brownian motion.

Characteristics of This Model

We previously studied this model (Gaillard et al. [6, 7]). We showed that the
discrimination accuracy is better when the ratio r between excitatory and
inhibitory inputs is closer to r = 1. We showed that the population coding
reduces considerably the time needed to evaluate the firing rate, and increases
the discrimination accuracy. The FR decreases with r. However, to obtain a
reliable measure of the FR, we need to produce at least 100 spikes. Thus, in
our model, in order to take decisions faster, we use r = 0.

The output FR of the direction detector is used as the specific inputs of the
competing groups of neurons in area LIP. These competing groups of neurons
form the column that is described in the next subsection.

Figure 5.2 shows that the mean FR increases linearly with the coherence, as
assumed in Wang [20]. The output of our detectors actually fits his assumption
of a Gaussian distribution of rates very well. We used this approximation to
measure the TPM in Chapter 4.
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Fig. 5.2. The firing rate of a motion detector as a function of the coherence of the
stimulus. The global direction of the stimulus is the preferred one of the detector.
It is a linear relationship.

5.2.3 LIP Column: Where the Decision Is Made

Column Organisation

If we have p specific stimuli, then our column is described by 2p+ 2 subpop-
ulations of neurons:

• p subpopulations of excitatory neurons specifically sensitive to the specific
stimuli

• one subpopulation of nonspecific excitatory neurons

• one subpopulation of nonspecific inhibitory neurons

• p subpopulations of specific inhibitory neurons. They are specifically con-
nected to the specific excitatory neurons, and specifically inhibit popula-
tions of neurons.

The specific connections between neurons are modeled to have arisen
through Hebbian learning, η being the learning coefficient, or long-term poten-
tiation coefficient. The rest of the synapses are depressed, to keep a normalized
synaptic strength.
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This leads us to the following parameters:

• x(= 0.8): the fraction of local module synapses relatively to external input.

• J(= 11): synaptic excitatory unstructured strength to one neuron.

• C(= 1.01): inhibitory synaptic strength is slightly stronger than excita-
tory; this is a stability condition. (I have the formal proof of it in one
dimension. Amit and Brunel [1] showed it as well).

• η(= 9): learning coefficient.

• f(= 0.01): proportion of neurons specifically sensitive to a specific stimu-
lus.

• p(= 2): number of specific stimuli.

• fi(= 0.1/p): proportion of inhibitory neurons specifically sensitive to a
subpopulation of excitatory neurons.

• η− = max(0, 1−η×f
1−f ): synaptic depression.

• C− = max(0, C∗(1−η×fi)
1−fi

): synaptic depression of inhibitory synapses to
an excitatory neuron.

• ξ: standard deviation of the external background activity. This standard
deviation varies spatially and temporally.

• fb(= 2/3): relative strength of the background activity in comparison to
the whole external input.

• f1 = f2 = ...fp = 1−fb

p : relative strength of each specific input in compar-
ison to the whole external input.

The learning rule is expressed as follows: Since neurons that are more
sensitive to a specific stimulus will more often fire together, their connection
will be strengthened. We express it: J+ = η × J , where J is the average
unstructured synaptic strength. The rest of the synapses will be depressed,
so that the mean synaptic strength remains J . Thus, in our case, we have:
η− = max(0, 1−η×f

1−f ). We truncated the synaptic strength so that it cannot
be a negative strength, as seen in biology. We also suppose learning between
inhibitory neurons. Our assumption is that some inhibitory neurons will show
self-organisation properties, strengthen their incoming synapses from subpop-
ulations of excitatory neurons, and fire correlatively. This learning parameter
will be the same, η, and the synaptic depression will be similar.
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We can concisely represent the structure of the column with the following
matrix A. Each element Ai,j of the matrix represents the strength of the
influence of the neurons of group j on the neurons of group i. This is the
synaptic strength of each synapse, multiplied by the number of synapses.

A = (M,N)

Where
M =⎛⎜⎜⎜⎜⎜⎜⎝

xfη xfη− −xfiC
− −xfiηC −x(1 − pfi)C x(1 − pf)η−

xfη− xfη −xfiηC −xfiC
− −x(1 − pfi)C x(1 − pf)η−

xfη xfη− −xfiC −xfiC −x(1 − pfi)C x(1 − pf)η−

xfη− xfη −xfiC −xfiC −x(1 − pfi)C x(1 − pf)η−

xf xf −xfiC −xfiC −x(1 − pfi)C x(1 − pf)
xf xf −xfiC −xfiC −x(1 − pfi)C x(1 − pf)

⎞⎟⎟⎟⎟⎟⎟⎠

N =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 − x)fb(1 + ξN ) (1 − x)f1 0
(1 − x)fb(1 + ξN ) 0 (1 − x)f2

(1 − x)fb(1 + ξN ) 0 0
(1 − x)fb(1 + ξN ) 0 0
(1 − x)fb(1 + ξN ) 0 0
(1 − x)fb(1 + ξN ) 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

System Equations

We use a discrete formalism. At each time step, we reevaluate the variables
of the system (rates of the output Poisson processes), as a function of their
value at the previous time step, and of the value of the contextual variables.
The contextual variables are the external inputs: global activity of the brain,
and direction detector activity.

νint
n+1 = F (νint

n , νext
n ) (5.5)

where

F (νint
n , νext

n ) =

[
τref + τ

∫ Vθ−μ

σ

Vrest−μ
σ

φ(u)du

]−1

where

• φ(u) =
√
πeu2

(1 + erf(u)).

• μ = μ(νint
n , νext

n )is described in the next subsections.
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• σ = σ(νint
n , νext

n ) is described in the next subsections.

• νint is the vector representing the output rates of the neurons in the col-
umn.

νint =

⎛⎜⎜⎜⎜⎜⎜⎝
νup

νdown

νi,up

νi,down

νi

ν0

⎞⎟⎟⎟⎟⎟⎟⎠
• νext is the vector representing the output rates of the neurons in the brain

and the direction detectors.

νext =

⎛⎝ νglobal

νext,up

νext,down

⎞⎠
• τref = 0.0005 refractory period in seconds.

• τ = 0.05 neuronal time constant in seconds.

The Variable μ

In (5.2), the relation between μ and the incoming Poisson rate is linear. So
we can write this (2p+ 5) linear equation:

μ = J ×A× ν (5.6)

where μ is a vector of size (2p+2), representing the various subpopulations of
neurons in the LIP column. νn is a vector of size (2p+5), representing the rate
of the Poisson processes received from the various subpopulations of neurons.
ν is the combination of νext and νint. A is a matrix of size (2p+2)×(2p+5). If
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we take the example of p = 2, for the two choices of the dot direction decision

task (upward or downward), we have: μ =

⎛⎜⎜⎜⎜⎜⎜⎝
μup

μdown

μi,up

μi,down

μi

μ0

⎞⎟⎟⎟⎟⎟⎟⎠, ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

νup

νdown

νi,up

νi,down

νi

ν0

νglobal

νext,up

νext,down

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The Variable σ

Currently, we suppose that the correlation between neurons that belong to the
same group (for example, the group of excitatory neurons that is especially
sensitive to the upward direction detector) is c = 0.1. The correlation between
neurons of two different groups is c = 0.01. The correlation between inhibitory
and excitatory neurons is c = 0. So, in the particular case that we study here
(p = 2), we obtain the following correlation matrix:

c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0.01 0 0 0 0.01 0.01 0.01 0.01
0.01 0.1 0 0 0 0.01 0.01 0.01 0.01
0 0 0.1 0.01 0.01 0 0 0 0
0 0 0.01 0.1 0.01 0 0 0 0
0 0 0.01 0.01 0.1 0 0 0 0

0.01 0.01 0 0 0 0.1 0.01 0.01 0.01
0.01 0.01 0 0 0 0.01 0.1 0.01 0.01
0.01 0.01 0 0 0 0.01 0.01 0.1 0.01
0.01 0.01 0 0 0 0.01 0.01 0.01 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Consequently, for a neuron belonging to group n, we have

σ2
n =

1
2
J2

⎛⎝ Ng∑
i=1

A2
n,iνi +

Ng∑
i,j=1,i �=j

ci,jAn,iAn,j
√
νiνj

⎞⎠ (5.7)

Where

• Ng is the number of group of neurons.
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• A is the matrix seen before.

• ci,j is the correlation coefficient between the ith and the jth synapses.

5.2.4 Saccadic Eye Movement

To express the decision, we model a saccadic eye movement (SEM). This
is the paradigm that is used in Newsome’s lab to evaluate the decisions of
monkeys during the same task. In our model, the eye position is governed by
the following equation:

∂x

∂t
= k ×R− l × tan(x)

• x represents the angular position of the eye.

• k and l are parameters. In our recent experiments: k = l = 3.

• R is the input that comes from the LIP column. In the two-dimensional
case (p = 2), R = νup − νdown.

The term tan(x) models an elastic force that tends to bring the eye in
its central position if no specific command is sent, and that also prevents the
eye’s angular position from diverging. In fact, when x tends to pi

2 , the force
modeled by tan(x) tends to ∞, thus the moving span of the eye is limited.
The position of the eye gives us a natural criterion to measure ER and RT.
At the moment, we consider that a decision is made when x = 0.95π

2 .

5.3 Results/Predictions

5.3.1 Methods

We ran a set of experiments, covering the parameter space that follows: The
mean of the global background activity varied from 3 to 10 Hz, and the stan-
dard deviation varied from 0 to 5 Hz. We measured the reaction time and
error rate of the model. For each parameter combination, we averaged the
results over 10 repetitions. All simulations were conducted with stimuli that
had 5% coherence.
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Fig. 5.3. Illustration of decision making and working memory. The stimulus is
presented during the first 100 time steps. Then, the eye is reset to the middle position
and the stimulus disappears (100 to 150). However, we see that the decision is
maintained when we free the eye and the system expresses a delayed decision.

5.3.2 Time Course of Decision: Convergence to a Local Attractor

Figure 5.3 illustrates the time course of decision making. We can see the
competition that leads to the convergence to a local attractor, along with the
eye position over time. We see as well that the recurrent loops enable the model
to keep in mind the decision even when the stimulus disappears. We can argue
that we are implementing here a kind of working memory. In fact this decision
is not expressed by the model until the difference of activity between the two
populations has been consistent enough for the eye to have accomplished its
saccadic movement. We see in Figure 5.3 that the decision is kept in memory,
because we have artificially reset the eye in the middle position when the
stimulus stopped. However, the system stays in the attractor, and when the
eye is released it expresses the delayed decision.

5.3.3 Background Activity Controls Decision Making

Mean Intensity of the Background Activity

Reaction Time

We clearly see in Figure 5.4 that increasing the intensity of the background ac-
tivity reduces the reaction time. We can still see the “switch” effect described
by Salinas [13]: If the background activity tends to zero, then the reaction time
tends to infinity. This switch effect is part of a more global control exercised
by the external activity on the decision process.
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Fig. 5.4. Reaction time as a function of the mean intensity of the background
activity of the brain. The decision processes were stopped after 0.3 seconds, to
reduce computational time. In fact, if no decision is made, when the background
activity is too weak, RT tends to infinity.

Error Rate

The error rate increases with the intensity of the background activity following
a sigmoid function. In Figure 5.5, we can see a four parameter exponential
approximation of this increase.
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Fig. 5.5. Error rate as a function of the mean intensity of the background activity
of the brain. This is an average over all the values of the standard deviation, between
0 and 5.



124 Benoit Gaillard, Jianfeng Feng, and Hilary Buxton

Error Rate=F(Reaction Time)

Figure 5.6 shows the characteristic of ER as a function of RT, deducted from
the previous results. This was possible because RT is a monotonically increas-
ing function of background intensity. This result is important because it is
prediction of the model and gives us a tool to evaluate our hypothesis that
background activity controls the speed/accuracy trade-off in decision making:
If, during psychological experiments, humans show a similar dependency be-
tween ER and RT, then our model for the underlying process is likely to be
plausible.
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Fig. 5.6. ER as a function of the RT. Our method is basically a change of variables
from the mean background activity to the RT. This works because we have seen
previously that the RT is a monotonic function of the background intensity. Here, we
have taken the mean over all the values of the standard deviation of the background
activity.

Standard Deviation of the Background Activity

Reaction Time

Figure 5.7 shows that the real noise also speeds up decision making. In this
simulation, the mean of the low-level background activity is constant. Its
standard deviation is the only parameter that varies. This is a new result,
purely based on the second-order moment of the brain’s stochastic neural
activity.
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Fig. 5.7. Reaction time as a function of the standard deviation of the background
activity. In the first panel, the mean activity varies between 3 and 10 Hz. The
second panel is the mean function, averaged over the whole range of background
mean intensities (it is the average of the curves presented in the first panel).

Error Rate

Figure 5.8 shows a significant influence of noise on the error rate. For each
value of the standard deviation, we have measured the ER for the range of
mean background intensities, and then taken the mean over all these simula-
tions.
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Fig. 5.8. Error rate as a function of the standard deviation of the background
activity of the brain. There are three different behaviours for three different mean
intensities of the background activity.
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5.4 Discussion

5.4.1 Summary of the Results

We have implemented a model that performs decision making and expresses
it through a saccadic eye movement. This is a step forward from the models
in which the external observer has to watch a neural variable, because we
can use measures such as the reaction time and error rate of our model in
order to compare it to a living being’s performance. We have shown that the
low-level noisy background activity of the brain can be beneficial to decision
making, in the case of very ambiguous sensory evidence. We have reproduced
the results of Salinas that an increase in the mean of the low-level background
activity can trigger decision making. We went much further than this intuitive
result (if you add more energy in a competitive system, the convergence to
the outcome will be quicker). We explored quantitatively the influence of
the background intensity on the reaction time and on the error rate, and
deduced a relationship between error rate and reaction time. Furthermore,
we showed that an increase in the actual noisy property of the background
activity, without an increase of its mean, also speeds up decision making at
the cost of accuracy. This is a new result.

5.4.2 Limitations

The parameter space is huge. We only explored a small region. The results
are dependent on the SEM model, which is currently over simplistic and has
not been compared to biological evidence. We only have simulations.

5.4.3 Developments

Moment Mapping

The second-order statistics are fundamental to the results we presented here.
However, we have assumed that the spikes are emitted according to Poisson
processes. That means that the presynaptic noise is proportional to its mean,
and enables us to write (5.4) and gives us (5.5) as an equation for the propaga-
tion of the first moment of the interspike interval (ISI) distribution. However,
this assumption does not hold in the general case, and furthermore there is
little biological evidence for LIP neuronal activity to be Poissonian. So, we
have a more general expression than (5.5). In the general case:
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(ν1
n+1, ν

2
n+1) = G(ν1

n, ν
2
n) (5.8)

where ν1
n+1 and ν2

n+1 are the first and second moment of the ISI distribution
at time n + 1 or at the next neuron layer, and ν1

n+1 and ν2
n+1 are the first

and second moment of the ISI distribution at time n or at the current neuron
layer. We currently have an analytical expression for G that has been derived
from the IF equation, and we will apply it to our setup in subsequent work.

Formal Analysis

Our results are based on numerical simulations. We will try to develop an
analytical understanding of a simplified version of this model. We will charac-
terise the attractors of the system defined by (5.8), their domain of attraction,
their stability, and the speed of convergence to these attractors as a function
of various system parameters.

Hypothesis

We deduced a relation between error rate and reaction time. This relation
can be used to test the hypothesis that the background noise activity of the
brain controls the speed-accuracy trade-off of decision making. Comparing
our model characteristic of ER(RT) to the one of living beings, measured via
psychophysical experiments, could support or invalidate our hypothesis.

5.4.4 Conclusion

Our model is a step toward the construction of a bridge between detailed
neural models and real living behaviour such as sensory-based decision mak-
ing, or between neurology and psychology. Computing with noise is also a
new step toward less simplistic neural modeling, which takes into account
the second-order statistics of spike trains. This more refined approach should
give us insights into domains unreachable by the classic mean firing rate ap-
proaches.

References

1. Amit N Brunel DJ (1997) Model of global spontaneous activity and local struc-
tured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–
252.



128 Benoit Gaillard, Jianfeng Feng, and Hilary Buxton

2. Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of
visual motion : a comparison of neuronal and psychophysical performance. J
Neurosci 12:2331–2355.

3. Deng Y, Williams P, Liu F, Feng J (2003) Discriminating between different input
signals via single neuron activity. J Physics A: Math and Gen 36(50):12379–
12398.

4. Feng J (2001) Is the integrate-and-fire model good enough?—A review. Neural
Networks 14:955–975.

5. Feng J, Liu F (2002) A modeling study on discrimination tasks. Biosystems
67:67–73.

6. Gaillard B, Feng J (2005) Modelling a visual discrimination task. Neurocom-
puting 65-66:203–209.

7. Gaillard B, Feng J, Buxton H (2005) Population approach to a neural discrim-
ination task. Biol Cybernet 94(3):180–191.

8. Gerstner W, Kistler W (2002) Spiking Neuron Models, Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, Cambridge, UK.

9. Glimcher PW (2003) The neurobiology of visual-saccadic decision making. Annu
Rev Neurosci 26:133–179.

10. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. J Physiol (Lond) 148:574–591.

11. Mountcastle VB (1957) Modality and topographic properties of single neurons
of cat’s somatosensory cortex. J Neurophysiol 20:408–434.

12. Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal
cortex. Nature 400:233–238.

13. Salinas E (2003) Background synaptic activity as a switch between dynamical
states in a network. Neural Comput 15:1439–1475.

14. Shadlen MN, Gold JI (2004) The neurophysiology of decision making as a
window on cognition. In: Gazzaniga (ed), The Cognitive Neurosciences, 3rd ed.
MIT Press, Cambridge, MA.

15. Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the
parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol 86:1916–1935.

16. Shadlen MN, Newsome WT (1996) Motion perception : seeing and deciding.
Proc Nat Acad Sci 93:628–633.

17. Townsend JT, Ashby F (1983) The stochastic modeling of elementary psycho-
logical processes. Cambridge University Press, Cambridge, MA.

18. Tuckwell H (1988) Introduction to Theoretical Neurobiology, vol. 2. Cambridge
University Press, Cambridge, MA.

19. VanRullen R, Koch C (2003) Is perception discrete or continuous? Trends Cog
Sci 7(5):207–213.

20. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical
circuits. Neuron 36:955–968.

21. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge
rate and its implications for psychophysical performance. Nature 370:140–143.



6

Estimation of Spike Train Statistics in
Spontaneously Active Biological Neural
Networks

Henry C. Tuckwell and Jianfeng Feng

Summary. We consider the theoretical determination of firing rates in some biolog-
ical neural networks that consist of synaptically connected excitatory and inhibitory
elements. A self-consistent argument is employed to obtain equations satisfied by the
moments of the firing times of the various cells in the network. We first present re-
sults for networks composed of leaky integrate-and-fire model neurons in the case of
impulsive currents representing synaptic inputs and an imposed threshold for firing.
Solving a differential-difference equation with specified boundary conditions yields
an estimate of the mean interspike interval of neurons in the network. We gaphically
demonstrate that there may be a critical number of connections n = nc such that
for n < nc there is no nontrivial solution, whereas for n > nc there are three solu-
tions. Of these, one is at baseline activity, one is unstable, and one is asymptotically
stable. Simulation results are reported which demonstrate that sustained activity is
possible even without external afferent input and that the analytical method may
yield accurate estimates of the firing rate. We also consider a network of generalized
Hodgkin-Huxley model neurons. Assuming a voltage threshold, which is a useful
representation for slowly firing such nerve cells, a functional differential equation is
obtained whose solution affords an estimate of the mean network firing rate. Re-
lated equations enable one to estimate the second- and higher-order moments of the
interspike interval.

6.1 Introduction

Investigations and theories of information processing in the nervous system
have recently addressed the role of stochasticity in the activity of both single
neurons [1–4] and neural networks [5–8]. One source of variability that occurs
in cortical (and other) neurons is the “spontaneous” spiking activity in the
absence of deliberate or known external input. The role of such spontaneous
activity in relation to the processing of afferent input is not yet fully under-
stood. However, spontaneous activity is now not considered to be simply noisy
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background activity. According to [9], the spontaneous activity of many brain
neuronal networks determines the nature of the response of the brain to ex-
ternal stimulation and may contribute to the quality of perception. In visual
information processing, it has been found that spontaneous activity does in-
deed create extra variability in nervous system responses to visual stimuli [10].
Furthermore, some or all such spontaneous activity has been hypothesized to
play an important role in visual information processing as it tends to provide
a substrate for modulation by afferent input.

Spontaneous neural activity arises because the brain contains a large num-
ber of neurons with very dense patterns of connections between cells. Sporadic
or sustained random inputs from the thalamus may occur at various parts of
the cerebral cortex [9]. Small trains or bursts of activity in one region, possibly
due to spontaneous transmitter release at synaptic terminals, are propagated
to other regions and may circulate in recurrent loops. Some of the details of
brain connection patterns have recently been described in detail for neurons
of the mammalian neocortex [11]. However, in most studies, as for example in
[5–8], and the current chapter, the precise details of the connections are omit-
ted in favour of randomly assigned connections or fully connected networks.

In a sense, spontaneous neural activity represents the simplest electrophys-
iological state or ground state for populations of neurons in the living brain,
even though the underlying circuits are possibly as complex as for networks
involved with perception or cognition. It is clear that by virtue of the complex-
ity of the spatial and temporal aspects of the dynamics of individual neurons
as well as the enormous complexity of the underlying biochemical processes,
there are difficulties with analytical approaches to finding the quantitative
features of spiking or nonspiking activity in neural networks with any degree
of realism for the physiological properties of the composite single neurons.
However, they may be useful for networks of artificial neurons, which are not
usually endowed with a complex biochemical environment. Analytical results
concerning dynamical neuronal behaviour are few even for single neurons [2,
12–15] and very sparse for neural networks composed of nonlinear elements,
so that efficient simulation and other techniques have been developed for net-
works with stochastic dynamics [7, 16].

In many network models the neurons are considered to be weakly con-
nected so that they are treated as independent and a mean field approach
is adopted. It is then possible to use solutions of a single-neuron Fokker-
Planck (or Kolmogorov) equation for the neuronal depolarization [5, 12–15],
with suitable boundary conditions, to provide an estimate of the fraction of
cells in the network at various levels of excitation. Background noise, usually
represented by Poisson processes or white noise, has been found to play an
important role in the propagation of signals through model networks [6] and
in understanding the behaviour of cortical and subcortical neurons involved
in cognitive information processes such as working memory [17–21].

It is of interest to attempt to determine as far as possible with analytical
techniques the relationships between the microscopic physiological variables
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associated with single nerve cells, their patterns of connectivity, and global
spiking activity. Such relationships are expected to assist in casting light on
computational aspects of neuronal information processing and cognitive ac-
tivity. Here we describe a method for analytically estimating the firing rates
of neurons in stochastic networks of an arbitrary number of elements using
Markov process theory. We consider, in section 6.2, networks of generalized
integrate-and-fire neurons and present some exact results for networks of ex-
citatory neurons. In section 6.3 we state corresponding results for networks
composed of neurons with generalized Hodgkin-Huxley dynamics. In order
that the theoretical estimates are as accurate as possible, our attention is fo-
cused mainly on slowly firing networks whose spiking is in singlets. We explore
the relation among single neuron dynamics, network size, and the nature of
sustainable spontaneous activity.

6.2 Networks of Generalized Leaky Integrate-and-Fire
(LIF) Neurons

Let the electrical depolarization from rest for the kth cell in a network of
n neurons be Vk(t) at time t. In general, in the LIF scheme, the dynamical
equations for the network can be written

dVk = f(Vk)dt+
n∑

j=1

ajkdNj(λj ; t− djk) + εkdN
ext
k , k = 1, 2, . . . , n, (6.1)

where ajk (element of the matrix A) is the strength of the connection from
neuron j to neuron k, which determines the magnitude of the postsynaptic
potential elicited when this connection is activated (it is assumed that ajj = 0
for all j). The threshold for action potential generation in the kth cell is set
at θk, here assumed to be constant. Nj(λj ; t) is the number of spikes emitted
by neuron j in the time interval (0, t]; the parameter λj represents the mean
rate of spiking so that as usual as an approximation 1/λj can be interpreted
as the mean time between spikes from neuron j. The quantities djk are the
time delays between emission of a spike by cell j and the appearance of a
postsynaptic potential in cell k. The process Next

k is an external Poisson input
which produces synaptic potentials of magitude εk. According to (6.1), the
input currents are delta functions so that the detailed temporal structure of
postsynaptic potentials is here ignored in a first approximation. This structure
can easily be incorporated by adding subsidiary variables, but this would make
the theory much more complicated and so is omitted.
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6.2.1 A Network of Excitatory and Inhibitory Neurons

Suppose there are nE excitatory (type E) and nI inhibitory (type I) cells,
whose membrane potentials in the absence of synaptic activation satisfy
V̇E = fE(VE) and V̇I = fI(VI), respectively. The postsynaptic potential am-
plitudes are the nonnegative quantities aEE , aIE , aEI , and aII , where the first
subscript refers to the presynaptic cell type and the second to the postsynap-
tic cell type. The corresponding numbers of connections for individual cells
are nEE , nIE , nEI , and nII , respectively. Thus each E-cell receives a total of
nEE+nIE synaptic inputs and each I-cell receives nEI +nII such inputs. Since
each E-cell has effectively the same input, its membrane potential satisfies

dVE = fE(VE)dt+ aEEdNEE(nEEλE ; t) − aIEdN IE(nIEλI ; t), (6.2)

whereas for each I-cell,

dVI = fI(VI)dt+ aEIdNEI(nEIλE ; t) − aIIdNII(nIIλI ; t), (6.3)

whereNEE ,NIE are the pooled excitatory and inhibitory input point processes
for E-cells, and NEI , NII are the corresponding processes for the I-cells. Here
we do not include external afferent input (or background noise) which can be
taken into account as in subsection 2.2. Letting the thresholds of the two kinds
of cell be θE and θI , we then have the following result, where now refractory
periods are included. The proof of this follows by considering the total in-
put frequencies for the component neurons and their respective expected time
intervals for their membrane potentials to reach threshold.

Theorem

If 1
λE

+tR,E is the mean time interval between spikes in an E-cell and 1
λI

+tR,I

is the mean time interval between spikes in an I-cell of the network, then these
quantities may be estimated implicitly by solving the simultaneous differential-
difference equations

fE(v)
dFE

dv
+ nEEΛEFE(v + aEE) + nIEΛIFE(v − aIE)

−(nEEΛE + nIEΛI)FE(v) = −1, v < θE , (6.4)

fI(v)
dFI

dv
+ nEIΛEFI(v + aEI) + nIIΛIFE(v − aII)

−(nEIΛE + nIIΛI)FI(v) = −1, v < θI , (6.5)

with boundary conditions FE(v) = 0, v ≥ θE, FI(v) = 0, v ≥ θI , and FE(0) =
1

λE
, FI(0) = 1

λI
, provided such solutions exist.
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Here FE(v) and FI(v) are the mean times for the potentials VE and VI to
reach thresholds from initial values v, and we have put

ΛE =
(

1
λE

+ tR,E

)−1

ΛI =
(

1
λI

+ tR,I

)−1

where tR,E and tR,I are the refractory periods of the excitatory and inhibitory
cells, respectively. In general, in the search for such solutions, one may insist
that FE and FI vanish for v < vE < 0 and v < vI < 0, respectively, and then
let vE and vI → −∞ to ensure that the thresholds for action potentials are
attained.

Equations (6.4) and (6.5) are difficult to solve exactly but may be solved
numerically or approximately via simulation of the corresponding stochastic
differential equations. In the simpler situation of a uniform network where
each cell has the same membrane potential dynamics, including thresholds θ
for action potentials, and the same numbers of excitatory, nE , and inhibitory,
nI , inputs, with the same amplitudes aE and aI for the synaptic potentials,
the same refractory periods tR, and all cells fire at the same mean rate λ,
(6.4) and( 6.5) reduce to the single differential-difference equation

f(v)
dF

dv
+Λ[nEF (v+aE)+nIF (v−aI)]−(nE+nI)ΛF (v) = −1, v < θ, (6.6)

where Λ =
(
1/λ + tR)−1; (6.6) is solved with the constraints F (v) = 0, v ≥

θ and F (0) = 1
λ . Numerical solutions of (6.6) have been obtained in [28].

Diffusion approximations may be employed to obtain approximate estimates.

6.2.2 A Network of Only Excitatory Cells

Suppose that all connections are excitatory so that ajk ≥ 0 and each cell
receives the same number of inputs, nE . The network may or may not be fully
connected, as long as each neuron receives synaptic input from nE other cells.
The number of inputs is thus nE ≤ n− 1, with equality applying in the case
of a fully connected network. It is feasible that there may be neurons that are
not presynaptic to any other cells, although this is unlikely in the mammalian
central nervous system. To simplify, we ignore the transmission time intervals
djk and assume further that all nonzero ajk = aE , which quantities may in fact
be random but are here assumed to be deterministic or at their mean values.
We assume also that all cells have equal thresholds θj = θ, j = 1 . . . , n and
the same subthreshold dynamics described by the function f . The network is
then described by the stochastic equation

dVk = f(Vk)dt+ aE

n∑
j=1

dNj(λj ; t− djk) + εkdN
ext
k , k = 1, 2, . . . , n. (6.7)
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Now each cell receives excitatory postsynaptic potentials (EPSPs) according
to nE similar pooled point processes with the same mean rates, which we set
at λE , and their amplitudes are all aE so the generic depolarization V of each
neuron satisfies

dV = f(V )dt+ aEdN(nEλE ; t) + εdNext, V < θ, V (0) = v < θ. (6.8)

In general we have the following result whose proof is immediate from the
theory of mean exit times of Markov processes [27] and the requirement that
the network input frequency in a network of identical neurons each of which
receives nE inputs is nE times the output frequency of each cell. Here F (v)
is the mean exit time of V from (0, θ) for an initial value V (0) = v.

Theorem

If 1
λE

is the mean time interval between spikes in a neuron of the network de-
scribed by (6.7), then it may be estimated implicitly by solving the differential-
difference equation

f(v)
dF

dv
+nEλE [F (v+ aE)−F (v)] + λext[F (v+ ε)−F (v)] = −1, v ∈ (0, θ),

(6.9)
with boundary conditions F (v) = 0, v ≥ θ and F (0+) = 1

λE
, provided such a

solution exists.

However, with the above kind of single-neuron model, the time interval be-
tween spikes may have to take into account a refractory period, tR, on the
order of a few msec, which may be significant. In this case (6.9) becomes

f(v)
dF

dv
+

nE

λ−1
E + tR

[F (v+ aE)−F (v)] + λext[F (v+ ε)−F (v)] = −1, v < θ,

(6.10)
but the second boundary condition is still F (0+) = 1

λE
.

6.2.2.1 Graphical and Numerical Methods of Solution

We illustrate graphically that a nontrivial solution of (6.10) may fail to exist
or there may be three solutions, one of which may correspond at least approx-
imately to a stable connected network with nonzero firing rates. To do this we
consider a network of cells whose common frequency transfer characteristic,
including the effect of an external input and a refractory period, is known and
is as depicted by the blue curve in Figure 6.1. It is assumed that all postsy-
naptic potentials are the same size and that background activity, represented
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by the terms εkdNext
k , drives each cell to fire at rate fb, which may be zero.

For a cell to be a member of the given network, if each cell fires at rate fo,
the total input frequency to each cell must be nfo above background, where
n is the number of cells which connect to any given cell. Hence it is required
that the output frequency is related to input frequency above background fi

by fi = nfo or fo = fi/n. Such straight lines are drawn in Figure 6.1.
For the straight line with the largest slope and hence the smallest value of

n, labeled case A, there is no intersection with the frequency transfer function
of the neuron so that theoretically no sustainable firing above background
is possible in a network with this number of connections to each cell. For a
critical value nc of the number of connections, fo = 1

nc
fi, labeled B, the line

is tangent to the frequency transfer curve. For n > nc, as typified by the line
labeled C, there are three solutions, one being at fi = 0 (external input only)
and output frequency fb. Of the other two, P2 is unstable whereas the asymp-
totically stable point P1 corresponds to a possible stable network frequency.
Furthermore, if a network has an observed firing rate fs, the number of neu-
rons in the network or the number of connections to each neuron could be
estimated by ascertaining where fo = nfs intersects the transfer curve. The
latter could be obtained empirically. The reciprocal of the slope of the line
from the point (λext, fb) to the stable point of intersection gives an estimate
of n.

Exact analytical solutions have not been found for (6.9) for θ > 3, but
numerical methods are available [22]. However, the numerical methods are
not simple to implement so that simulations of network activity are useful
and have been performed for a large range of network sizes and for various
parameter values. A problem often encountered is that neurons tend to fire
synchronously in groups which makes the analytical methods described in this
chapter not applicable because of the underlying assumption of randomness.
It is has been found that it is unusual to find sustained network activity in the
absence of an external afferent drive, εdNext. One example is shown in Fig-
ure 6.2. In this simulation there were 1000 LIF neurons with on average 400
connections per cell. The internal excitatory synaptic potential amplitude was
0.04 mV and the external input to each cell had a rate λext = 500 per sec with
amplitude ε = 1 mV. The time step used was Δt = 0.00005 sec. The afferent
input was terminated at the 200th time step, and yet activity is seen after
a short decline, to rise spontaneously to an apparently steady state. Several
checks on the validity of the analytical method were performed. For exam-
ple, for a fully connected excitatory network of 50 neurons, with ε = 1mV,
λext = 500 per sec, aE = 0.2 mV, threshold 15mV, and time constant 20 msec,
the network individual neuronal frequency obtained by simulation was 7.0 per
sec whereas that predicted by the analytical method was 8.4 per sec.
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Fig. 6.1. Output frequency is plotted against input excitatory frequency. The fre-
quency transfer characteristic of cells in the network is indicated by the blue curve.
fo is the output frequency above fb, which corresponds to an external input fre-
quency of λext. fi is input frequency above λext. The straight lines A, B and C
represent cases where the output frequency is a given fraction of the network input
frequency for each cell, so fo = fi/n where n is the number of cells which connect
to each cell. In case B, fo = fi/nc. For more details, see the text.

6.2.3 Diffusion Approximations

An alternative approach is to use smoothed versions of the network voltage
processes called diffusion approximations. For such processes it is relatively
easy to find the transfer characteristic not only for neurons of purely excitatory
networks but also those including both excitation and inhibition. The validity
of such an approach depends on parameter values [23]. Further details of
such approximations, which have computational advantages, will be reported
elsewhere.
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Fig. 6.2. Simulated activity in a network of 1000 LIF model neurons. The number
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terminated at 200 Δt. Note the sustained activity in the absence of afferent input.
The parameter values are given in the text.

6.3 A Network of Neurons with Generalized
Hodgkin-Huxley Dynamics

As is well known, the original Hodgkin-Huxley model [24] describes subthresh-
old activity and action potential generation in squid axon and contains only
sodium, potassium, and leak currents. However, many types of ion channels
with distinct roles and dynamics [25, 26] have been found in, for example,
pyramidal cells, so it is useful to generalize the Hodgkin-Huxley system.

Towards such a generalization we consider M+1 neurons described by the
dynamical system

Ci
dUi

dt
= −

n∑
k=1

gki

(
Ui − Vki

) pk∏
j=1

γ
mkj

kji + Ii,

dγkji

dt
= αkj(Ui)(1 − γkji) − βkj(Ui)γkji,

where i = 1, ...,M + 1, Vki=Nernst potential for the kth ion species for the
ith neuron, the maximal conductances are gki, there are pk gating variables
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asociated with the kth ion species, and Ii is the total input current for the
ith neuron. (Note that n = 3 for the Hodgkin-Huxley system.)
In a network of connected such neurons we suppose that

Ci
dUi

dt
= −

n∑
k=1

gki

(
Ui − Vki

) pk∏
j=1

γ
mkj

kji + εidN
ext
i +

∑
l

alidNl(λl; t−Δli),

where i, l = 1, ...,M + 1, Nl is the output process describing the spikes of the
lth neuron, and where {ali, i, l = 1, ...,M + 1} is the connection matrix, Δli

is a time delay and εidN
ext
i is an external input to cell i.

6.3.1 Network Firing Rate

Now let N be an (approximating) Poisson process representing the input train
for each cell. Then for a generic cell, ignoring the time delays of transmission,
with each cell firing at rate λ, and assuming a fully connected network,

C
dU

dt
= −

n∑
k=1

gk

(
U−Vk

) pk∏
j=1

γ
mkj

kj + εdNext + adN(Mλ; t),

where all nonzero elements of the connection matrix are set at a > 0 so that
all synapses are excitatory.

Let the infinitesimal (Markov) operator associated with the neuron’s dy-
namics be Lneuron. For example, for the usual leaky integrate-and-fire model
with

dV

dt
= α(V ) + synaptic input

we have
Lneuronf(x) = α(x)

df

dx
.

Then let F (u,v) be the first exit time of U to suprathreshold values with an
initial value (u,v) where u is the initial voltage and v contains the initial val-
ues of all gating variables (m, n, and h for Hodgkin-Huxley). Then, assuming
that the spiking of each cell is not too rapid and occurs in distinct singlets,
and that the synaptic potentials are small relative to threshold such that syn-
chronization is not predominant, we have the following result, which states
that the network firing rate can then be estimated, using the single neuron op-
erator, Lneuron, as the solution of a (very complicated) differential-difference
equation with the stated boundary conditions. Similar equations hold for the
higher moments of the firing time.
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Theorem

The network firing rate λ can be estimated from the solution of the functional
differential equation

LneuronF (u,v)+Mλ[F (u+a,v)−F (u,v)]+λext[F (u+ε,v)−F (u,v)] = −1,

with the appropriate boundary conditions and the additional constraint

F (0,v0) =
1
λ
,

where v0 contains the chosen initial values of the subsidiary variables.

Proof

The theorem follows immediately from standard first exit-time theory for
discontinuous Markov processes [27], assuming that each neuron fires at rate
λ and receives excitation from other cells in the network at rate Mλ.

6.4 Discussion

We have outlined methods for determining the statistics of neuronal spiking
activity in networks of neurons with general physiological properties (sub-
threshold dynamics, threshold and refractory period) in cases where random
activity can be sustained. Solutions of functional differential equations yield
estimates of the firing rates and higher moments of the interspike interval.
These solutions can be found by graphical, numerical or simulation methods.
We have concentrated on networks whose neuronal spike trains are roughly
Poisson and given results for excitatory networks. We demonstrated graph-
ically that there may be three solutions where fo = fi/nE intersects the
frequency transfer curve of each neuronal element and that one of these was
stable and gave the frequency of spontaneous activity. With realistic parame-
ter values it is thus possible to estimate the average number of connections
to each cell. This approach may provide insight into the factors controlling
spontaneous activity of neurons in the mammalian and other nervous systems.
Networks with small excitatory postsynaptic potential amplitudes and those
with excitatory and inhibitory connections can sometimes be analysed more
easily with diffusion approximations. The theory is accurate only for networks
in which synchronization is unlikely as this tends to invalidate the assump-
tion of continued randomness in individual neuronal spike trains. This was
amply demonstrated in simulations of networks containing up to 100 neurons.
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Additional sources of randomness, especially those that can be considered to
be of a perturbative nature and tend to decrease the chance of synchroniza-
tion can easily be included in the analytical framework presented here. Such
perturbative noise has been included, and found to play an essential role in
maintaining network activity in studies of both a theoretical [6] and more
applied nature [17, 18].
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Physiology and Related Models of Associative
Visual Processing

Reinhard Eckhorn, Alexander Gail, Basim Al-Shaikhli, Andreas Bruns,
Andreas Gabriel, and Mirko Saam

Summary. This is a review of our work on multiple microelectrode recordings
from the visual cortex of monkeys and subdural recordings from humans, related
to the potential underlying neural mechanisms. The former hypothesis of object
representation by synchronization in visual cortex (or, more generally, of flexible
associative processing) has been supported by our recent experiments in monkeys,
which demonstrated local synchrony among rhythmic or stochastic γ-activities (30–
90 Hz) and perceptual modulation, according to the rules of figure-ground segrega-
tion. However, γ-synchrony in primary visual cortex is restricted to few millimeters,
challenging the synchronization hypothesis for larger cortical object representations.
We found that the spatial restriction is due to γ-waves, traveling in random direc-
tions across the object representations. It will be argued that phase continuity of
these waves can support the coding of object continuity. Based on models with
spiking neurons, potentially underlying neural mechanisms are proposed: (1) Fast
inhibitory feedback loops can generate locally synchronized γ-activities. (2) Hebbian
learning of lateral and feed forward connections with distance-dependent delays can
explain the stabilization of cortical retinotopy, the limited size of synchronization,
the occurrence of γ-waves, and the larger receptive fields at successive levels. (3)
Slow inhibitory feedback can support figure-ground segregation. In conclusion, it is
proposed that the hypothesis of flexible associative processing by γ-synchronization,
including coherent representations of visual objects, has to be extended to more
general forms of signal coupling.

7.1 Dynamic Associative Processing by Different Types
of Signal Coupling in the Visual Cortex

In the proposed view of the visual system, temporal coding is intimately linked
to the neural mechanisms of dynamic cortical cooperativity and flexible asso-
ciative processing, including the largely unknown mechanisms of perceptual
feature binding. How are local features flexibly grouped into actually perceived
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objects and events, and how do their current representations interact with vi-
sual memory and other higher-order processes? It has been proposed that
binding of spatially distributed features and inter-areal cooperation are sup-
ported by the temporal code of fast synchronization among neurons involved
in a common task, for example, the coding of a visual object [1, 2]. This hy-
pothesis attracted attention when synchronized γ-oscillations (30–90 Hz) were
found in the primary visual cortex (V1) of anesthetized cats [3, 4, 5] and awake
monkeys [6, 7]. Many subsequent experiments were supportive, some challeng-
ing with respect to binding of local features by γ-synchronization (reviewed
in [8, 9]). For example, synchronization of signals in the γ-range was found
to be restricted to few millimeters in primary visual cortex, even with large
coherent stimuli [5, 10]. According to a strict interpretation of the original
synchronization hypothesis, this should result in locally restricted perceptual
feature binding. But this is in contradiction to the capability of perceiving
local features of large objects as coherently bound. However, the capability
of long-range feature binding across the surface of a large visual object is
probably due to continuous binding among overlapping regions of locally re-
stricted feature binding (as demonstrated by the perceptual laws of Gestalt
psychology [11]). This view is supported by our observation of γ-waves that
propagate across the surface of the representation of visual objects in the pri-
mary visual cortex of awake monkeys. Accordingly, we suggest that the phase
continuity of such γ-waves (by which we mean a continuum of overlapping
near-synchronized patches as opposed to strict long-range synchrony), may
be a basis of spatial feature binding across entire objects. Such (locally syn-
chronous) long-range phase coupling has been found to cover larger cortical
areas than γ-synchrony as it is measured with spectral coherence [12], and we
will argue that it can fill the entire surface representation of visual objects in
primary visual cortex.

Such continuity may not be available between separate topographical maps
(different visual cortical areas). However, γ-synchronization has been found
between neural groups with overlapping receptive fields in adjacent visual
cortical areas V1 and V2 in cats [3, 5] and monkeys [7]. It is probable that
such synchrony is also present among other visual areas when feed-forward-
backward delays are short (e.g., as between V1 and the middle temporal area
(MT) [13]). In contrast, when cortical areas are far apart, long conduction de-
lays may cause cooperativity to be reflected in other forms of signal coupling
that are less sensitive to any spatiotemporal restriction of synchronization.
Taking into account the time-varying amplitude (amplitude envelope) of γ-
signals seems to be a particularly promising approach [14].

For our present work different types of neural signals have been recorded,
and different forms of temporal coding have been investigated by means of
various coupling measures. We will demonstrate dynamic coupling of cortical
signals in the form of local intra-areal phase synchrony, and medium-range
phase continuity of γ-waves. Our examples show that neural-signal measures
correlate with sensory events, and with perceptual and behavioural outputs
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in monkeys. In essence, we argue that the temporal coding hypothesis of
binding-by-synchronization, initially restricted to γ-synchrony of oscillatory
signals, has to be extended to more general forms of temporal coding, includ-
ing non-linear signal coupling across the entire frequency range of cortical
activity with phase- and amplitude-coupling among transient and stochastic
(non-rhythmic) signals. On the basis of neural models with locally coupled
spiking neurons we will discuss most of the physiological results and suggest
potential neural mechanisms underlying the presented types of flexible tem-
poral coding.

7.2 Experimental Evidence

7.2.1 γ-Activity in Monkey Primary Visual Cortex is
Phase-Coupled within Representations of Scene Segments and
Decoupled Across their Contours

The binding-by-synchronization hypothesis suggests coupling among γ-acti-
vities representing the same object, or more generally, the same scene segment.
Accordingly, neural groups representing different scene segments should de-
couple their γ-activities. Both predictions have been tested by investigating
the effect of a static figure-ground stimulus on local field potentials (LFPs) in
primary visual cortex (V1) of awake monkeys, recorded simultaneously from
inside and outside a figure’s representational area (Fig. 7.1A) [15]. Time-
resolved analysis of phase coupling by means of spectral coherence revealed:
(1) γ-coherence between neurons representing the same scene segment (figure
or ground) is higher than for a homogeneous gray background of the same
average luminance (Fig. 7.1B,D); (2) stimulus-specific γ-coherence is strongly
reduced across the representation of the figure-ground contour compared to a
spatially continuous stimulus (Fig. 7.1B,D); (3) decoupling across the contour
emerges with a latency of about 100 ms, and is absent in the earliest neuronal
response transients (Fig. 7.1D); (4) coherence of low-frequency components
does not show a difference between the figure-ground and the continuous con-
dition (not shown). We propose that the increased γ-coherence between neu-
rons representing the same scene segment and the decoupling of γ-activity at a
contour representation are crucial for figure-ground segregation, in agreement
with the initial binding-by-synchronization hypothesis.
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Fig. 7.1. Coherence of γ-activity is reduced across the representation of an object’s
contour. (A) Figure-ground stimulus and schematic positions of receptive fields.
Stimuli were arranged in such a way that some of the receptive fields from the si-
multaneously recorded sites were located on the “object” (only present in the left
condition), the others on the “background.” (B) A grating without object (right con-
dition in A) induced a substantial increase in γ-coherence among local field potentials
(LFPs) (light gray) compared to a blank screen condition (pre-stimulus: dashed line).
Introduction of the object (left condition in A) reduced LFP γ-coherence between
object and background representations almost to pre-stimulus level (dark gray) [15].
Coherence within each segment (object or background) remained high (data not
shown). (C) A network model (Fig. 7.10) shows equivalent results. (D,E) Time
courses of coherence in the no-object condition (light gray) and across the object-
background contour (dark) in the experiment and the model. Note that decoupling
across the contour emerges about 100 ms after stimulus-onset. Data in B are taken
from the time intervals with maximal decoupling for each monkey (modified from
[15, 16]).
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7.2.2 γ-Phase Coupling in Monkey Extrastriate Cortex Correlates
with Perceptual Grouping

Are such synchronization effects correlated with perceptual feature grouping
and figure-ground segregation? This was tested in a difficult figure-ground
task in which a monkey indicated whether he perceived a figure composed of
blobs among identical distractor blobs serving as background [17] (Fig. 7.2).
This task was sufficiently difficult such that about 25% of responses were in-
correct (failed figure detection). Pairs of local populations of figure-activated
neurons in visual area V2 showed increased synchronization within the γ-range
in correct compared to incorrect responses during a short period before the
monkey’s behavioural response (Fig. 7.2). Other signal measures were unre-
lated to perception. These were the first indications that γ-synchronization
in V2 not only may represent physical stimulus properties but also supports
perceptual grouping.

Fig. 7.2. A monkey’s correct perception of the orientation of a dual in-line row of
dots within a set of distractors (stimuli 1 and 2) caused a short increase in coherence
at about 80 Hz and 60 Hz in visual area V2, shortly before the monkey reported his
perception (time t = 0 ms). The time-frequency map indicates the significance of
increase in LFP coherence in trials with correct vs. failed detection of the figure.
Three figure-ground stimuli are shown above, with dot rows being left-tilted (left),
right-tilted (middle), or absent (right) (modified from [17]).
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7.2.3 Phase Continuity but not Synchrony of γ-Waves is Present
Across Medium Cortical Distances in Monkey Primary Visual
Cortex

Previous work demonstrated that the synchronization range of γ-activity in
primary visual cortex is limited to about 5 mm (e.g., [10, 18] and Fig. 7.4A).
Hence, objects with larger cortical representations cannot solely be coded
by γ-synchrony within their representational area. One explanation for the
limited synchronization range lies in the spatiotemporal characteristics of γ-
activity. In fact, wave-like phenomena defined by spatially continuous phase-
fronts (γ-waves) do extend farther than 5 mm, but phase differences between
any two sites change randomly already within 100 ms and also increase with
cortical distance (Fig. 7.3A) [15]. Conventional pairwise coupling measures
(cross-correlation, coherence) do not capture such nontrivial phase relation-
ships across medium-range cortical distances, which explains the findings of
restricted synchronization ranges. To quantify those waves a new method has
been developed in our group [12]. It revealed that γ-waves travel at variable
velocities and directions. Fig. 7.3C shows the velocity distribution measured
with a 4 × 4 microelectrode array in monkey primary visual cortex during
retinally static visual stimulation. Note that this distribution is rather sim-
ilar to the distribution of spike velocities of horizontal connections in this
area (V1) [13]. We suggest that continuity of γ-waves supports the coding of
object continuity, in which case their extent over object representations in
visual area V1 and the related visual fields should be much larger than that
covered by γ-synchronization. We have indeed found that the cortical span of
γ-wave fronts is much larger than the span of γ-synchronization (Fig. 7.4A,B)
and that y-waves are cut off (damped down) at the cortical representation of
object contours.

7.3 Potential Neural Mechanisms of Flexible Signal
Coupling

At present it is not possible to identify directly from experimental measure-
ments the neural mechanisms underlying the above mentioned experimental
observations of spatiotemporal processing in cortical sensory structures. We
therefore use largely reduced model networks with spike-coding neurons to
discuss potential mechanisms.
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Fig. 7.3. γ-waves occur with fast and random changes of spatial phase relations
in monkey primary visual cortex. (A) Time-space maps of simultaneously recorded
single-trial time courses of local field potentials (LFPs) from a linear array of seven
recording positions during sustained static visual stimulation. Gray scales give the
instantaneous electrical potentials at the electrodes (in arbitrary units). (B) Model-
LFPs during presentation of an equivalent stimulus. (Modified from [16]) (C) Veloc-
ity distribution of traveling waves of γ-activity measured with 4 × 4 microelectrode
arrays in monkey primary visual cortex

7.3.1 γ-Oscillations and Synchrony of Spike Densities in Local
Populations, Generated by Feedback Inhibition and Local Lateral
Coupling

How can the cortex generate γ-oscillations in local neural groups, as observed
in LFP and multiple unit activity (MUA)? We argue (see Fig. 7.5) that mem-
brane potentials of local populations of excitatory neurons are simultane-
ously modulated by inhibition exerted via a common feedback loop (physi-

can quickly
reduce transient activations, whereas sustained input will lead to repetitive
inhibition of the population in the γ-frequency range (Fig. 7.5). In both
modes—transient and rhythmic chopping—the common modulation of the
neurons’ membrane potentials causes their spike trains to become partially
synchronized, even if they fire at very different rates. The stronger a neuron

ology: [19 -21]; models: [22 26]; discussion in [27]). This loop-
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Fig. 7.4. The spatial range of γ-waves is larger than that of γ-coherence. (A) Co-
herence of local field potentials in monkey primary visual cortex is restricted to few
millimeters (half-height decline 2.2 mm). (B) The probability of occurrence of con-
tinuous γ-waves remains high across larger distances (estimated half-height decline:
9.5 mm). (C,D) The model shows equivalent dependencies (4.1 vs. 12.8 space units)
(modified from [16]).

is activated and depolarized, the earlier it will discharge its first spike during
the common repolarization phase, whereby such a population burst will be
dominated by the most strongly activated neurons. As local cortical popula-
tions generally project to common targets [28], synchronized spike densities
(population spike packages) will have stronger impact there than uncorrelated
spike densities of equal average amplitudes, because they (1) appear quasi-
simultaneously, and (2) mainly comprise spikes of strongly activated neurons,
which represent the stimulus at a better signal-to-noise ratio than the neu-
rons that were less activated by the same stimulus. In addition to partial local
synchronization by inhibitory feedback, the most relevant mechanism for ex-
plaining synchronization in our models are lateral, activity-dependent, facili-
tatory connections. Local (instead of global) lateral connections are critically
important for models of visual feature-binding by synchronization when pat-
tern segmentation (desynchronization) is an important task (e.g., [29, 30, 31]).
While Wang used lateral excitatory connections that were modulated in their
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Fig. 7.5. Basic model of common spike density modulation in a local population
of excitatory neurons by a common inhibitory feedback neuron. Note that first-
spike latencies in each modulation cycle at the outputs (right) are roughly inversely
proportional to the input spike densities (profiles at left), whereas the output spike
rates are proportional to it (details in text).

efficacy by scene properties (in some respect similar to the facilitatory con-
nections in our models [29]), others used lateral connections from excitatory
to inhibitory neurons for synchronization [25, 31]. It is likely that a mixture of
these local mechanisms is operative in the generation of rhythmic spiking ac-
tivities and their partial synchronization. Future experiments have to answer
this question.

We can apply the discussed schemes to the primary visual cortex, where
local neural clusters represent similar feature values (e.g., receptive field posi-
tion, contour orientation, etc.). According to the synchronization hypothesis,
partial synchronization of spike densities by a common inhibitory feedback
means that currently present local combinations of visual feature values are
systematically selected by their strength of activation and tagged as belonging
together, which is reflected in single or repetitive population discharges.

Other models of visual feature binding use local oscillators, consisting of
excitatory and inhibitory units with mutual feedback that generate local os-
cillations depending on a driving input (e.g., [30, 31, 32]). In these models,
the oscillatory signal of a local element stands for the spike density of a local
group of partially synchronized spike-coding neurons. Thus, local inhibition in
these models implicitly represents the synchrony of local populations of spike-
coding neurons with similar receptive field properties, as has been explicitly
modeled in our and other simulations (e.g., [23, 25]).
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7.3.2 Lateral Conduction Delays Can Limit γ-Synchrony to a Few
Millimeters in Cortex, Produce Wave-Like Phenomena, Stabilize
Cortical Topography, and Lead to Larger Receptive Fields at
Successive Levels of Processing

The synchronization effect of fast orientation-specific inhibitory neurons is
probably restricted to an area smaller than a single hypercolumn in primary
visual cortex [28]. The most relevant mechanism for explaining flexible syn-
chronization across several millimeters in the cortex in our [29] and Wang’s
[30] model are the activity-dependent facilitatory connections. They are also
highly useful for enabling fast desynchronization as is required for scene seg-
mentation. Their putative physiological substrate in the primary visual cortex
are the dense horizontal connections: they cannot directly excite their target
neurons, but modulate their activities evoked from their classical receptive
fields. The lateral connections project monosynaptically over a range of sev-
eral hypercolumns [19, 20, 33, 34], and models have shown that this type of
connectivity is capable of synchronizing neural populations across larger dis-
tances [29, 30]. Another type of local lateral connectivity enabling transient
synchronization over larger distances was proposed in the model of König and
Schillen [31]. They connected their oscillators by coupling the excitatory units
via delay lines to the neighbouring inhibitory units. However, it is difficult to
show experimentally which mechanisms are operative in the visual cortex for
synchronization across several hypercolumns.

In visual processing for example, one could suppose that neural popula-
tions representing the entire surface of a visual object might synchronize their
spike packages via horizontal connections. However, γ-synchrony is restricted
to about 5 mm of cortical distance in area V1 of awake monkeys (correspond-
ing to five hypercolumns), even if the cortical representation of a visual object
is much larger [5, 10]. Hence, feature binding based on γ-synchrony would also
be restricted to visual objects being not larger in their cortical representa-
tions. In the following we will develop a concept of how distance-dependent
spike conduction delays can explain this restricted range of γ-synchrony and
the occurrence of wave-like phenomena in a network of spiking neurons. In ad-
dition, we will show that Hebbian learning combined with distance-dependent
spike conduction delays leads to spatially restricted lateral connectivity within
the same layer and restricted feed-forward divergence between different layers.
Therefore, such a mechanism is also suitable to explain the emergence of larger
receptive fields at successive levels of processing while preserving a topograph-
ical mapping. Note that these conditions are also present in topographically
organized cortical areas of other sensory modalities, including auditory and
somatosensory.
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Fig. 7.6. One-dimensional sketch of the initial connectivity in the Hebbian learning
model with distance-dependent lateral conduction delays. For a given level-1 neuron
(dark), the scheme shows lateral modulatory (facilitatory) connections (scenario
A), and feed-forward connections with either distance-dependent (scenario B) or
constant (scenario C) conduction delays (modified from [35]).

7.3.2.1 Hebbian-Learning Model with Finite Conduction Velocities

The local generation of γ-oscillations and their spatial synchronization are two
separate mechanisms. For the sake of simplicity, the following model solely in-
vestigates synchronization effects, thereby neglecting any inhibition and the
generation of oscillations. The model [35] consists of spike-coding neurons (as
in Fig. 7.10B) at two successive, two-dimensional retinotopic visual process-
ing stages named level 1 (representing visual cortical area V1) and level 2
(V2) (Fig. 7.6). Learning of lateral weights and level-1 to level-2 weights is
implemented using a Hebbian spike correlation rule [36]. Feed-forward con-
nections are additive excitatory and determine the properties of the classical
receptive fields. Lateral connections are multiplicatory (with a positive offset
of one), which means they cannot directly evoke spikes in a target neuron
(as exitatory synapses can do), but require quasi-simultaneous feed-forward
input to that neuron (model: [29]; physiology: [37]). Spikes evoked by quasi-
simultaneous feeding input to neighbouring neurons can synchronize via their
mutual lateral facilitatory connections because these spikes will often occur
within the so-called capture range of the spike encoder’s dynamic threshold
[29, 38, 39]. The lateral connections have constant conduction velocities, that
is, conduction delays become proportionally larger with distance. This reduces
the probability of neurons becoming quasi-synchronized because constructive
superposition of locally evoked and laterally conducted activities gets less
probable for increasing delay. Hence, synchrony is laterally restricted to a
spatial range that is proportional to the conduction velocity of the lateral
connections.

7.3.2.2 Spatiotemporal Structuring of Lateral Connectivity with
Hebbian Learning

The relation between conduction velocity and synchronization range suggests
an influence of temporal neighborhood (defined by the distance-dependent de-
lays) on the ontogenetic, possibly prenatal formation of functionally relevant
structures from an initially unstructured system [40, 41, 42]). This effect can
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be simulated with our model. In the beginning, neurons are fully intercon-
nected within level 1 (Fig. 7.6, scenario A). Feed-forward input spike trains
have spatially homogeneous random patterns and are given a temporally con-
fined, weak co-modulation, mimicking activity before visual experience. This
type of spike pattern appears, slightly modified by the connections, at the out-
put of the level-1 neurons (Fig. 7.7) and hence, is used for Hebbian learning.
The only topography in the network is given by the distance-dependent time
delays of the lateral connections. During a first learning period, the homoge-
neous coupling within level 1 shrinks to a spatially limited coupling profile for
each neuron, with a steep decline of coupling strength with increasing distance
(Fig. 7.8). The diameter of the resulting coupling profile for each neuron is
near the lateral synchronization range, and hence directly proportional to the
lateral conduction velocity (Fig. 7.9A).
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Fig. 7.7. Spatiotemporal properties of level-1 output activity in the Hebbian learn-
ing model. (A) Two events of spatially homogeneous, transient spike-rate enhance-
ment (upper panel: total population spike density; lower panel: single spike traces).
(B) As in A, but with additional independent Gaussian white noise at the inputs.
Note that the activity is spatially homogeneous in the sense that any two spike
trains have the same weakly correlated temporal statistics (modified from [35]).

7.3.2.3 Spatiotemporal Structuring of Interlevel Connectivity

In a second learning period following the learning period within level 1, the
excitatory level-1 to level-2 connections are adapted, also starting from full
connectivity (Fig. 7.6, scenario B). Again, as a result of Hebbian correla-
tion learning [36], the feed-forward divergence retracts to a limited spatial
range that is given by the size of the level-1 synchronization fields, that is,
excitatory forward connections from neurons within a level-1 synchronization
field (sending near-synchronized spike packages) converge onto one level-2
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Fig. 7.8. Spatial coupling profile between a single level-1 neuron (center position)
and its neighbours. (A) Before learning weights are randomly initialized. (B) After
learning synaptic strength decays with increasing distance (modified from [35]).

Fig. 7.9. (A) As a result of Hebbian learning, the size of the synaptic weight pro-
file (coupling kernel) of lateral linking connections within level 1 becomes directly
proportional to the lateral conduction velocity. (B) The size of level-1 synchroniza-
tion fields determines the size of receptive fields of level-2 neurons. Synaptic weight
profiles of level-1-to-2 feeding connections evolve correspondingly to synaptic weight
profiles of level-1 lateral linking connections (modified from [35]).

neuron (Fig. 7.9B). This convergent projection pattern even emerges if the
feed-forward connections and the level-2 lateral connections are modeled with
distance-independent constant delays (Fig. 7.6, scenario C). The physiological
interpretation of this result is that the size of level-1 synchronization fields (in
visual area V1) can determine the size of level-2 receptive fields (in area V2).
Indeed, synchronization fields in V1 and classical receptive fields in V2 of the
monkey do have similar sizes. Since equivalent considerations should hold for
projections from the retina to V1, the model accounts for the emergence not
only of a spatially regular, but also of a retinotopically organized connectivity.
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7.3.2.4 Traveling γ-Waves with Altering Phase Relations

After the learning period, we wanted to investigate the network dynamics. To
compare the results with experimental data, we added local inhibitory feed-
back neurons and provided a sustained spatially homogeneous input to level-1
neurons. This inhibition did not invalidate the previous results, because its
dynamics rarely overlap with the learning process. This model reproduces the
phenomenon of waves with jittering phase relations, traveling in random di-
rections, just as it was observed in the primary visual cortex (Fig. 7.3) [12, 16].
Traveling waves of γ-activity, though concentrically expanding, have already
been described in different cortical areas of different animal species (e.g., [43]).
The varying phase relations in our model as well as the more rapid spatial
decline of γ-coherence (compared to γ-wave probability) are consistent with the
experimental data (Figs. 7.4A, B and 7.5). Formation of γ-waves in the model
results from the locally restricted inhibition, the lateral conduction velocity,
and the steep spatial decline of coupling strength [35]. It seems probable that
cortical γ-waves are also strongly depending on the lateral conduction veloci-
ties, because the distribution of γ-wave velocities (Fig. 7.3C) is similar to the
distribution of spike conduction velocities of lateral connections in primary
visual cortex. These velocities have been estimated in different preparations,
including rat slices and in vivo recordings from cats and monkeys, to range
between 0.1 and 1.0m · s−1 (review: [13]).

In conclusion, the lateral conduction velocities in primary visual cortex,
combined with Hebbian correlation learning, can explain the restricted spa-
tial range of γ-synchrony and the occurrence of traveling γ-waves with ran-
dom phase relations. They can also account for the larger receptive fields at
higher processing levels and for the emergence and stability of topographic
visual (and other sensory) representations without the need for visual (sen-
sory) experience. During visual experience, of course, similar influences on
synchronization-field and receptive-field size and on topographic stability are
probably operative at successive levels of processing, including other parts of
the visual system. As the traveling waves can cover the entire representation
of an object’s surface in the primary visual area, we propose that phase con-
tinuity of γ-waves may constitute a mechanism that supports the coding of
object continuity in visual cortex [12].

7.3.3 Model Explaining Figure-Ground Segregation and Induced
Modulations at Lower Frequencies by Slower and More Globally
Acting Feedback Circuit

In a further approach the above model of the visual cortex has been expanded
by using orientation-selective excitatory neurons and two types of inhibitory
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neurons with different spatiotemporal properties. However, the lateral connec-
tions among the excitatory neurons were modeled without delay and learning
has been excluded in order to keep the complexity of the network within lim-
its in order to understand its processing. Fig. 7.10A shows a simplified wiring
diagram of this model. The spiking neurons (Fig. 7.10B) have linearly and
nonlinearly acting synapses and are retinotopically arranged in two primary
layers with receptive fields at perpendicular orientation preferences. Addition-
ally to the fast inhibitory feedback loop, serving neurons with similar orien-
tation preference and generating local γ-rhythms (see above and Fig. 7.5), a
slow shunting inhibition is added in this model that forms a feedback circuit
among neurons with overlapping receptive fields and receive input from, as
well as feed output to, excitatory neurons of all orientation preferences.

7.3.3.1 Decoupling of γ-Signals Across Figure-Ground Contour

In the figure-ground experiment, representations of different scene segments in
primary visual cortex (area V1) were decoupled in their γ-activities (Fig. 7.1
B,D), while the same sites showed substantial γ-coupling when representing
one coherent scene segment. Analogous results are obtained with the model
(Fig. 7.1C,E). It explains the reduced γ-coherence as a blockade of lateral cou-
pling at the position of the contour representation due to several effects: First,
neurons responding preferentially to the horizontal grating are only weakly ac-
tivated by the vertical contour. Second, their activity is even more reduced
by the orientation-independent slow shunting inhibition that is evoked by the
strongly activated vertically tuned neurons at the contour. As a consequence,
neurons activated by the horizontal grating near both sides of the contour
cannot mutually interact, because the orientation-selective lateral coupling is
interrupted by the inhibited horizontally tuned neurons at the contour rep-
resentation. The resulting decoupling of inside and outside representations
is not present during the first neural response transient after stimulus onset
(Fig. 7.1D,E) since the sharp, simultaneous response onset common to both
orientation layers denotes a highly coherent broad-band signal that dominates
internal dynamics. Note that orientation-selectivity was implemented for the
sake of comparability with the experimental data. This does not limit the
general validity of this model, since any object border constitutes a discon-
tinuity in at least one visual feature dimension, and therefore an analogous
argumentation always holds for other local visual features.

7.3.4 Spatial and Temporal Aspects of Object Representations

We have seen that within an object’s representation in primary visual cor-
tex (V1), locally synchronized γ-activations emerge that overlap in space and
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Fig. 7.10. (A) Simplified model of primary visual cortex with two retinotopic layers
(left and right) of orthogonal orientation detectors. Each layer consists of an excita-
tory (simple cells at 0 and 90) and an inhibitory sublayer forming fast, local feedback
loops preferring the γ-frequency range (Fig. 7.7). The cones between layers indicate
direction and width of divergent projections of each single neuron. Modulatory (fa-
cilitatory) lateral coupling is confined to excitatory neurons of the same orientation
preference with coaxially aligned receptive fields. Both orientation maps share an
additional sublayer (middle) mediating slow, local shunting inhibition. To account
for stochastic input from brain regions excluded from the model, all neurons receive
independent broad-band noise. (B) The spike-coding model neuron with dynamic
threshold [27] is extended by inputs exerting shunting inhibition on the feeding path-
way. Synapses are modeled by leaky RC-filters, lateral modulatory input is offset by
a value of +1 and then coupled to the feeding pathway by multiplication.

time and thereby support the formation of γ-waves traveling across the ob-
ject’s surface representation with random phase relations. When waves of
γ-activity travel across V1, this is paralleled by quasi-synchronous activity
of those neurons in area V2 having corresponding receptive field positions
[3, 5, 7], that is, those receiving input from, and sending γ-feedback to, corre-
sponding V1 neurons. Thus, adjacent V2 neurons, driven simultaneously by
adjacent parts of a traveling wave, will also form a traveling wave of γ-activity
(with similar extent, velocity, and direction if projected to visual space). We
expect such an argumention to hold for subsequent stages of processing, pro-
vided that they are retinotopically arranged, are activated by bottom-up in-
put, and have fast inter-areal feedback (compared to a half-cycle of a γ-wave).
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Accordingly, quasi-synchrony should generally be present among neurons with
overlapping receptive field positions across cortical levels connected via fast
feed-forward-backward loops (e.g., as among V1-V2 and V1-MT [13, 44]). As
the traveling waves are γ-activities and we observed γ-decoupling across the
cortical representation of a figure-ground contour (explained in our model by
the slow inhibition of neurons at the contour), we assume that the waves do
not pass object contour representations with any figure-ground feature con-
trast. Object continuity across the entire surface may thus be coded by phase
continuity of traveling γ-waves.

7.4 Conclusion

We investigated neural mechanisms of associative processing by considering a
variety of flexible forms of signal coupling. In particular, we were interested
in associations of local visual features into perceptually coherent visual ob-
jects by transient synchronization. In our recent experiments in monkeys, we
have shown that local synchrony among γ-activities correlates with perceptual
modulation, which supports the hypothesis of object representation by syn-
chronization in the visual cortex. The synchronization hypothesis for larger
cortical object representations, however, has been challenged by our experi-
mental finding that γ-synchrony in primary visual cortex (V1) already drops
to noise levels across few (4–6) millimeters of cortex. We can explain this
restriction by the randomly changing phase relations among locally synchro-
nized patches, which, however, form continuous waves of γ-activity, traveling
across object representations. Extending the initial synchronization hypothe-
sis, we propose that phase continuity of these waves may support the coding
of object continuity across intermediate and longer ranges within V1.

We have discussed the different types and ranges of experimentally ob-
served signal coupling on the basis of visual cortex models with locally cou-
pled, spike-coding neurons. In these models, the lateral, activity-dependent
facilitatory connections with distance-dependent delays are the most impor-
tant feature for explaining synchronous activity. They can account for local
and medium-range γ-synchronization, the occurrence of γ-waves and the lim-
ited extent of γ-synchrony. Hebbian learning of these connections can explain
the stabilization of cortical retinotopy and the larger receptive fields at succes-
sive levels of visual cortical processing. Fast local feedback inhibition in our
models can generate local γ-oscillations and support local synchrony, while
slow shunting-inhibitory feedback supports figure-ground segregation by de-
coupling activities within neighbouring cortical representations of figure and
background. We propose that the hypothesis of associative processing by γ-
synchronization be extended to more general forms of signal coupling.



160 R. Eckhorn, A. Gail, B. Al-Shaikhli, A. Bruns, A. Gabriel, and M. Saam

References

1. Reitboeck HJ (1983) A multi-electrode matrix for studies of temporal signal
correlations within neural assemblies. In: Basar E et al, (eds). Synergetics of the
Brain Springer, Berlin 174–182.

2. von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol
Cybern 54:29–40.

3. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, et al (1988) Co-
herent oscillations: a mechanism of feature linking in the visual cortex? Multiple
electrode and correlation analyses in the cat. Biol Cybern 60:121–130.

4. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat vi-
sual cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature 338:334–337.

5. Eckhorn R (1994) Oscillatory and non-oscillatory synchronizations in the vi-
sual cortex of cat and monkey. In: Pantev C, Elbert T, Lütkenhöner B (eds).
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28. Braitenberg V, Schüz A (1991) Anatomy of the Cortex. Springer, Berlin.
29. Eckhorn R, Reiboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchro-

nization among distributed assemblies: simulations of results from cat visual
cortex. Neural Comput 2:293–307.

30. Wang DL (1995) Emergent synchrony in locally coupled neural oscillators. IEEE
Trans Neural Netw 6:941–948.

31. König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscilla-
tory responses: I. Synchronization. Neural Comput 3:155–166.

32. Li Z (1998) A neural model of contour integration in the primary visual cortex.
Neural Comput 10:903–940.

33. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity
and the arrangement of horizontal connections in tree shrew striate cortex. J
Neurosci 17:2112–2127.

34. Gilbert C (1993) Circuitry, architecture, and functional dynamics of visual cor-
tex. Cereb Cortex 3:373–386.

35. Saam M, Eckhorn R (2000) Lateral spike conduction velocity in visual cortex
affects spatial range of synchronization and receptive field size without visual
experience: a learning model with spiking neurons. Biol Cybern 83:L1–L9.

36. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking
neurons. Phys Rev E 59:4498–4514.

37. Fox K, Daw N (1992) A model of the action of NMDA conductances in the
visual cortex. Neural Comput 4:59–83.

38. Johnson JL (1993) Waves in pulse-coupled neural networks. In: Proceedings of
the World Congress on Neural Networks, vol. 4, 299–302.

39. Johnson JL (1994) Pulse-coupled neural networks. In: Proceedings of the SPIE
Critical Rev, 55:47–76.

40. Trachtenberg JT, Stryker MP (2001) Rapid anatomical plasticity of horizontal
connections in the developing visual cortex. J Neurosci 21:3476–3482.



162 R. Eckhorn, A. Gail, B. Al-Shaikhli, A. Bruns, A. Gabriel, and M. Saam

41. Ruthazer ES, Stryker MP (1996) The role of activity in the development of long-
range horizontal connections in area 17 of the ferret. J Neurosci 16:7253–7269.

42. Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the
development of columns in cat visual cortex. Science 279:566–570.

43. Freeman WJ, Barrie JM (2000) Analysis of spatial patterns of phase in neocor-
tical gamma EEGs in rabbit. J Neurophysiol 84:1266–1278.
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Gestalt Formation in a Competitive Layered
Neural Architecture

Helge Ritter, Sebastian Weng, Jörg Ontrup, and Jochen Steil

Summary: The dynamical organization or “binding” of elementary con-
stituents into larger structures forms an essential operation for most infor-
mation processing systems. Synchronization of temporal oscillations has been
proposed as a major mechanism to achieve such organization in neural net-
works. We present an alternative approach, based on the competitive dynamics
of tonic neurons in a layered network architecture. We discuss some proper-
ties of the resulting “Competitive Layer Model (CLM)” system and show that
the proposed dynamics can give rise to Gestalt-like grouping operations for
visual patterns and can model some characteristics of human visual percep-
tion. Finally, we report on an approach how the necessary, task-dependent
interactions can be formed by learning from labeled grouping examples and
sketch as an application of the system segmentation of biomedical images.

8.1 Introduction

Visual input is extremely high-dimensional: the brightness of each pixel in
an image represents one degree of freedom (actually, three degrees of free-
dom, when we allow for color), and a typical picture offers on the order of
several millions of them. Remarkably, our visual system has found highly effi-
cient ways to extract from this extremely high-dimensional input rapidly and
reliably a much smaller number of constituents that appear to us as conspicu-
ous “patterns” or “gestalts.” This amazing capability has already puzzled the
psychologists of the early 20th century, and the Gestaltists have attempted to
characterize good gestalts by a number of rules to explain general features to
which our perception is tuned when organizing its inputs into “meaningful”
constitutents [10].
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Some of these classical gestalt rules are shown schematically in Fig. 8.1,
where each row illustrates the gestalt rules of proximity, similarity, topologi-
cal features such as closure or good continuation, or symmetry properties. As
another major grouping principle the Gestaltists observed the visual system’s
tendency to organize many inputs into figure and ground (bottom row). Also
dynamical features, such as shared movement direction (“common fate”) can
induce the perception of a gestalt, for example, when we watch fireworks or
perceive a directed movement in a chain of merely alternatingly flashing light
bulbs.

These “laws” show that our perception is strongly biased: we prefer partic-
ular organizations of the visual input over other ones, which on purely logical
grounds would be defendable as well. However, the particular gestalt biases
of the visual system are well in line with the computational task of decom-
posing the visual input into constituents that have a high chance of “good
correspondence” with physical counterparts in our surroundings [12].

Fig. 8.1. Gestalt
laws: proximity,

closure, good

tion,
andfigure-ground.

Fig. 8.2. An ex-
ample where prior
knowledge is re-
quired.

However, not all of these biases are “hardwired” into our visual system.
There are many patterns whose recognition relies on higher-level world knowl-
edge that we only can have acquired by learning. Obvious examples are highly
trained patterns such as digits or letters. Another example is depicted in Fig.
8.2. Here, we first discern only irregular white patches on a black background.
Only when looking longer, we discern a pattern,1 which, once we see it, force-
fully masks the perception of the former patches as individual units (turning
the page by 180 degrees restores the perception of the patches, illustrating
that higher level grouping processes need not be rotationally invariant).

1 A hidden face of a man in three-quarter profile in the middle of the picture.

larity,
simi-

continua symme-
try
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8.2 Gestalt Grouping and Feature Binding

Forming a group or gestalt seems inevitably to require some operation of
binding to implement the property that the gestalt is more than the sum of
its parts (for instance, a suitable subset of the patches in Fig. 8.2 has to be
“bound” into the unity of the face, separating it from the background of the
remaining patches).

The need for such binding operations arises also in numerous other con-
texts that require the formation of units from simpler constituents, for exam-
ple, elementary features. Fig. 8.3 illustrates the issue for the simple example
of representing for two objects the conjunction of their shape and their color:
to represent the simultaneous presence of a red round ball and a green trian-
gle requires a binding within the four-element feature set {red, green, round,
triangular} such that “red” goes with “round” and “green” with “triangular”
and not vice versa.

green round

triangularred

Fig. 8.3. Binding between color and shape attributes.

The problem that such a binding cannot be represented by just the co-
presence of neural activity for the individual constituents was first emphasized
by Christoph von der Malsburg almost three decades ago [13], together with
an elegant proposal for a solution: to use neural synchrony as a means to
represent togetherness.

Subsequent research attempting to corroborate or refute this hypothesis
has a long and controversial history (for a recent discussion, see [20] and the
accompanying special issue of Neuron, as well as chapter 7 by Reinhard Eck-
horn et al in this volume). While there exist numerous experimental results
that have been interpreted in favor of the brain’s use of neural synchrony to
represent togetherness of visual stimuli [4, 23], opponents of this hypothesis
have pointed out that these results are largely indirect and not necessarily
conclusive [22].

In computer science, the binding problem usually is solved by the use of
pointers. In fact, pointers are a major means to construct the complex data
structures required in almost all computer vision or graphics programs.2

2 Since the use of pointers has proven to be very error-prone for human program-
mers, the development of modern programming languages, such as Java, has
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Therefore, considering neural computation as a serious alternative to con-
ventional programming confronts us with the question of how to implement
the functionality of pointers within these systems [7]. However, from a com-
putational perspective, we can explore different possibilities more freely than
in the context of careful biological modeling. This has motivated us to explore
a computational approach that is complementary in that it uses space instead
of time (such as, e.g., [21, 24, 25]) to express binding between features. This
is achieved by using a stack of competitively interacting neural layers, each
layer competing for a group (and, thereby, roughly playing the role of a “time
slice” in synchrony models [21, 24, 25] of binding). We have dubbed this the
competitive layer model (CLM) [19, 29].

8.3 The Competitive Layer Model (CLM)

An intuitive explanation of the idea underlying the CLM is most easily given
in the context of the simple grouping situation of Fig. 8.3. For each potential
group we have to introduce one layer, which has to implement a map of all
features that might be present in a group. So, for the present example, two
layers, each consisting of four feature units implementing a feature map for
the set {red, green, round, triangular}, would be sufficient (Fig. 8.4).

The structuring of a collection of active features into groups [such as (red,
round), (green, triangular)] is then expressed by a corresponding sharing of
layers by the associated feature cell activities (i.e., a “red” and “round” fea-
ture cell active in one layer, and a “green” and “triangular” feature cell active
in a second layer).

Of course, we wish this representation to emerge as the result of suitable
interaction dynamics among the units in the layers. To this end we split the
required interactions into a lateral (within-layer) and a vertical (inter-layer)
component. The within-layer component should be excitatory for features that
are compatible with a group (e.g., shape-color) and inhibitory between incom-
patible features (e.g., shape-shape or color-color).

The inter-layer component only connects corresponding locations in all
layers (e.g., runs perpendicularly through the layer stack). It is pairwise in-
hibitory in order to enforce for each feature a unique assignment to one layer
(i.e., one group). An additional, excitatory interaction to an additional input
layer (not shown in Fig. 8.4) imposes the constraint that the superposition of
all groups matches a prescribed, to-be-decomposed, input pattern, which is
represented by the joint activity of all feature cells of all groups.

invested great efforts to hide pointers from the programmer. Still, pointers are
“working under the hood” even in these languages.
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red

green round

triangular

+

+

− −+
+

red

green round

triangular

+

+

− −+
+

Layer 1

Layer 2

−

− − −

Fig. 8.4. CLM scheme for the simple toy problem of Fig. 8.3.

More formally, this model can be described as follows. The neurons are
organized in layers α = 1, . . . , L and columns r = 1, . . . , N3, where each
layer contains all neurons belonging to the same label α and each column
contains the neurons belonging to the same image location r. The neurons of
each column have access to a local feature vector mr, which may augment the
spatial position r by additional local image properties, such as color cr, texture
features tr, or orientation vectors or of a local edge: mr = (r, cr, tr,or, . . .)T .

The lateral interactions between neurons at locations r, r′ of a layer are
assumed to be symmetric functions f(mr,mr′) of the feature vectors of the
associated columns (we will use the shorthand notation frr′ in many places
below). To achieve the intended assignment of input features to layers, weights
frr will be excitatory (> 0), if features mr,mr′ are compatible in the same
group, inhibitory (< 0) otherwise. For instance, choosing frr′ as the simple
“on-center-off-surround” function

frr′ =
{

1 : ‖ r − r′ ‖< R
−1 : ‖ r − r′ ‖≥ R

, (8.1)

leads to a grouping according to spatial proximity, where R sets the spatial
scale. For more complex tasks, like texture or colour segmentation, the lat-
eral connections have to be specified by more complex functions as the later
application examples will demonstrate.

The unique assignment of each feature to a single layer is realized by a
columnar “winner-takes-all” (WTA) circuit, which uses mutually symmetric
inhibitory connections with absolute strength J > 0 between the neural activ-
ities xrα and xrβ that share a common column r. Due to the WTA coupling,
for a stable state of the CLM only a single neuron from one layer can be active
within each column [28].
3 To simplify notation, we “overload” symbol r by the (discrete) index ∈ {1 . . . N}

identifying a column and the two-dimensional coordinate vector indicating the
associated location in the image.
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Extraction
Feature

interaction
vertical

lateral
interaction

column 1

column N

column r

Layer 2 Layer L ...Input Image Layer 1

...

...

...

Feature Set
+ Intensities

Fig. 8.5. CLM architecture: Feature extraction from an input image (left) gives
rise to a set of local feature vectors mr with activities hr represented in an input
layer (second left). Subsequent layers arranged in a stack decompose each hr into
a sum of layer-wise responses xr,α as a result of lateral (within-layer) and vertical
(across-layer) interactions. After convergence, each location r elicits a nonzero ac-
tivity xr,α > 0 in maximally one layer α, defining a grouping of the features mr into
layers α(r) = arg maxα xr,α.

∀r : ∀β 
= α̂(r) : xrα̂(r) > 0, xrβ = 0, (8.2)

where α̂(r) is the index of the maximally supporting layer characterized by

∀r : ∀β 
= α̂(r) :
∑
r′
frr′xr′α̂(r) >

∑
r′
frr′xr′β . (8.3)

A binding between two feature, associated with the columns r and r′, is
expressed by simultaneous activities xα̂(r) and xα̂(r′), α̂(r) = α̂(r′) = α̂ that
share a common layer α̂. Each neuron receives a constant input Jhr, where
hr specifies the basic amount of activity that is available in each column r.
The activity of the single active neuron per column is given by

∀r : xrα̂(r) = hr +
1
J

∑
r′
frr′xr′α̂(r). (8.4)

Thus, it suffices to consider only the subset of columns for which hr > 0, that
is, where input is present.

The combination of afferent inputs and lateral and competitive interactions
can be formulated into the standard additive activity dynamics

ẋrα = −xrα + σ
(
J(hr −

∑
β

xrβ) +
∑
r′
frr′xr′α + xrα

)
. (8.5)

An essential role for the functionality of the CLM plays the threshold func-
tion σ(·), which is defined by a unsaturated linear threshold function σ(x) =
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max(0, x) that cuts off negative interactions. As a result, the CLM dynamics
corresponds to gradient descent in the energy function

E = −J
∑
rα

hrxrα +
1
2
J
∑

r

∑
αβ

xrαxrβ − 1
2

∑
α

∑
rr′

frr′xrαxr′α, (8.6)

under the constraint xrα > 0, since E is nonincreasing under the dynamics
(8.5) [28]. Dynamical systems of this type have recently attracted interest as
candidates for “cortex-inspired” analog silicon circuits [6].

8.4 Some Properties of the Binding Process

The special form of the linear threshold function makes it possible to formulate
concrete statements about the behaviour of the CLM dynamics. The main
statements can be summarized in two theorems about the convergence and
assignment properties of the CLM [29].

Convergence Theorem: If J > λmax{frr′}, where λmax{frr′} is the
largest eigenvalue of the lateral interaction matrix, or J > maxr(

∑
r′ max

(0, frr′)), then the CLM dynamics is bounded and convergent.

Assignment Theorem: If the lateral interaction is self-excitatory, frr >
0 for all r, then an attractor of the CLM has in each column r either
(i) at most one positive activity xrα̂(r) with

xrα̂(r) = hr +
1
J

∑
r′
frr′xr′α̂(r), xrβ = 0 for all β 
= α̂(r), (8.7)

where α̂(r) is the index of the maximally supporting layer characterized by∑
r′
frr′xr′α̂(r) >

∑
r′
frr′xr′β , for all r, β 
= α̂(r) (8.8)

or,
(ii) all activities xrα, α = 1, . . . , L in a column r vanish and

∑
r′ frr′xr′α ≤

−Jrhr for all α = 1, . . . , L.

The dynamics (8.5) have an energy function of the form

E = −J
∑
rα

hrxrα +
1
2
J
∑

r

∑
αβ

xrαxrβ − 1
2

∑
α

∑
rr′

frr′xrαxr′α. (8.9)

The energy is nonincreasing under the dynamics (8.5) [28] :

d/dt E = −
∑
rα

Erαẋrα = −
∑
rα

Erα(−xrα + σ(Erα + xrα)) ≤ 0, (8.10)
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xr2

xr1

xr1 xr2 rh+ =

x
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F

Fig. 8.6. Sketch of the AC and DC eigenmodes of the CLM dynamics for two neuron
activities in the same column. The AC modes occur in the hyperplane

∑
α xr,α =

hr = const, and the DC mode is responsible for enforcing this constraint.

where
Erα = −∂E/∂xrα = Jhr − J

∑
β

xrβ +
∑
r′
frr′xr′α. (8.11)

Thus the attractors of the dynamics (8.5) are the local minima of (8.9)
under constraints xrα ≥ 0. Additionally a kind of annealing process can be
included in the dynamics, by extending the energy function with

E′ = E + T
∑
rα

x2
rα, (8.12)

which adds a convex term that biases the local minima toward graded as-
signments and thus “softens” the WTA dynamics. Within the dynamics this
introduces a new self-inhibitory term

ẋrα = −xrα + σ
(
J(hr −

∑
β

xrβ) +
∑
r′
frr′xr′α + (1 − T )xrα

)
. (8.13)

Through gradually lowering the self-inhibition T , (8.12) becomes (8.9) and
(8.13) becomes (8.5).

A detailed analysis of the annealing process can be found in [28]. The re-
sult of this linear analysis is that the CLM-dynamics is driven by two kinds of
eigenmodes called the AC- and DC-eigenmodes (sketched in Fig. 8.6), whose
eigenvalues and eigenvectors mainly depend on the matrix F of lateral weights
frr′ . The DC-eigenmodes are driving the equilibration of the layer activities,
whereas the AC-eigenmodes are responsible for the winner-takes-all behav-
iour. The stability of both sets of modes can be controlled with the “temper-
ature” parameter T .
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8.5 Implementation Issues

The CLM dynamics can be simulated efficiently with a Gauß-Seidel approach
of solving iteratively the fixed point equations of (8.5) for a randomly chosen
activity xrα while all other activities are held constant [5, 28]. The algorithm
can be implemented in the following way:

1. Initialize all xrα with small random values around
xrα(t = 0) ∈ [hr/L− ε, hr/L+ ε].
Initialize T with greatest eigenvalue of matrix {frr′}.

2. Do N ·L times: choose (r, α) randomly and update xrα = max(0, ξ), where
ξ :=

J(hr−
∑

β �=α xrβ)+
∑

r′ �=r frr′xr′α
J−frr+T

3. Decrease T by T := ηT , with 0 < η < 1. Go to step 2 until convergence.

8.6 Image Preprocessing

Before we can apply the CLM to images, we require some preprocessing in
order to achieve a dimension reduction from the extremely high-dimensional
pixel input to a more manageable dimensionality. In our visual system, such
dimensionality reduction starts already in the retina, where the activity values
of the about 108 rods and cones are “compressed” into an activity pattern of
the about 1.5 million fibres of the optical nerve connecting each eye (via the
geniculate bodies, where further recoding occurs) to the visual cortex.

The response properties of many cells in the visual cortex have been found
to coarsely resemble local Gabor filters [8]. A Gabor filter can be represented
by a basis function parameterized by a position vector r ∈ R2, a wave vector
k ∈ R2 and a range σ:

gr,k,σ(x) = cos(k · (x− r)) exp(−(x− r)2/2σ2) (8.14)

The “overlap” or scalar product

cr,k,σ =
∑

x

gr,k,σ(x)I(x) (8.15)

of a Gabor filter with an image intensity function I(x) can be interpreted
as a measure of the contribution of a spatial frequency k to the local image
structure within a radius σ around location r. A neuron implementing a re-
sponse described by cr,k,σ thus represents spatial and frequency information
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for a local image patch simultaneously (and it can be shown that the choice
of Gabor profiles leads to a compromise for representing the two conflicting
observables location and spatial frequency that in a certain sense is optimal
[2]).

From the set of Gabor filter responses cr,k,σ one can reconstruct an ap-
proximation Î(x) of the original image as

Î(x) =
∑
r,k,σ

cr,k,σ g̃r,k,σ(x) (8.16)

where g̃r,k,σ(x) denotes the dual basis functions for the gr,kσ.
Data from psychophysical measurements have led to sampling grids (r, k, σ)

in position-frequency-scale space that permit rather accurate modeling of the
measured position-frequency-scale variation of our ability to discriminate local
contrast patterns [26].

1A

A CB
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2
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34
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5

43

2

CB

Fig. 8.7. Artificial “fovea” for image preprocessing.

For the following experiments, we have used a simplified filter arrangement,
consisting of an artificial fovea comprising three octaves of spatial frequency,
with five directions uniformly separated by 72 degrees. The range σ is chosen
proportional to the wave length of the associated wave number k (Fig. 8.7).

In addition to the sampling of r, k, σ the visual cortex also performs some
sort of pooling process where input stimuli from neighbouring points are
pooled together. Following a proposal by [15], we compute the following pair
of local feature coefficients:

Mk(r) = ck(r) ∗Gk(r) (8.17)

Sk(r) =
√

(ck(r) −Mk(r))2 +Gk(r) (8.18)

where ∗ denotes the convolution operation, ck(r) is the response in channel k
after a nonlinear scaling with a contrast transfer function, and Gk(r) is the
corresponding Gaussian filter kernel given by
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Gk(r) = e
− k2

2ρ2
k ,

where the parameter ρk is a critical choice reflecting the size of the pooling
area. A reliable description of the local feature statistics around r calls for
large sizes. On the other hand, an accurate localization of feature positions
demands smaller sizes. In our experiments we found a heuristical value of
three times the size of the Gabor range σ as a good compromise. As a result,
for each position r in the input image, we get a 30-dimensional feature vector
m(r) describing the local texture at that point:

mr = (M1(r), . . . ,M15(r), S1(r), . . . , S15(r))T (8.19)

This leads to a 30-dimensional feature vector at each image pixel r = (x, y). To
further reduce processing burden, we use subsampling on 8×8 pixel blocks and
project at each (subsampled) location the 30-dimensional feature distribution
on the four principal components of maximal variance. For more detail, see
[18].

8.7 Interaction Function

As already indicated, it is the interaction function frr′ that determines which
features are “compatible” (such as color and shape in the introductory toy ex-
ample) to be bound together as a group, and which features cannot be bound
for lack of compatibility. For the perceptual grouping experiments reported
below, a suitable interaction was chosen as

frr′ = exp
[
−d2

text(r, r
′)

R2
1

]
+ γ · exp

[
−d2

pos(r, r
′)

R2
2

]
− I (8.20)

Here, dpos(r, r′) is the position distance of locations r and r′, and dtext(r, r′)
is a measure of the difference of the local textures around r and r′. Interpreted
in Gestalt psychology terms, the first part can be identified with the Gestalt
law of similarity, which states that similar features are bound together; the
second part corresponds to the Gestalt law of spatial proximity, with the con-
stant γ controlling the weighting between these two principles. The parameter
I > 0 causes inhibition of features that are both dissimilar and far apart.

Although dpos is straightforward, our choice for dtext was motivated by a
proposal of Ma and Manjunath [14] and chosen as the L1 norm of the differ-
ence p̂r − p̂r′ between the (normalized4) vectors p̂r, where the unnormalized
4 Normalization consisted of dividing each component of pr by the standard devi-

ation of all its values over the input grid



174 Helge Ritter, Sebastian Weng, Jörg Ontrup, and Jochen Steil

pr is the feature vector m(r) of (8.19), projected into the eigenspace spanned
by the four leading principal components (for details, cf. [18]). Parameters
were chosen as γ = 0.6, I = 0.5, R1 = 6.6, R2 = 0.63 and all held constant
for the examples shown in the next section.

8.8 Perceptual Experiments

With the described preprocessing, we can perform artificial perceptual exper-
iments to compare the grouping behaviour of the CLM for various images
with that of human subjects. Fig. 8.8 shows examples of arrangements of dot
patterns (upper row) that exemplify the laws of proximity and similarity.

Fig. 8.8. Grouping of dot patterns. Top: input patterns. Bottom: CLM layer activ-
ities.

The lower row shows the superimposed responses of the CLM layers. Since
in the converged state each location r can at most have a single layer α(r)
with nonvanishing activity xr,α(r) > 0, it suffices to directly display the layer
indicator function α(r) (using colors to distinguish different layers and black
for the absence of activity in all layers).

As can be seen, in the case of equidistant dots (left), the system just per-
forms (except for edge effects) figure-ground separation. Closer proximity, for
example, along the horizontal direction (middle), causes in addition the acti-
vation of horizontal bars, indicating a grouping by proximity, without losing
the identity of the dots themselves. Returning to an equidistant arrangement,
but instead introducing different types of dots again creates a corresponding
grouping—this time according to similarity (right).
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Fig. 8.9. Top row: types of test images used for the benchmark. The rightmost
image is an example in which preattentive human perception misses the segregation
of the lower left square area, in line with the CLM result.

Figure 8.9 shows a different set of examples, this time with regions de-
marcated by similarity in local texture features. Remarkably, in the rightmost
column the CLM only “sees” three areas. However, if we take a closer (serial)
look, we can distinguish one further border, which is not perceived preatten-
tively. Thus, the model can mimic some effects that have been explained in
terms of interactions of elementary texture elements (“textons”) [9].

Finally, Fig. 8.11 depicts the last set of examples, demonstrating the group-
ing of line terminations into an apparent contour (left) and its disappear-
ance when the lines are getting too sparse (middle). The right column finally
presents an example for natural textures from the Brodatz [1] album.

To give a quantitative comparison of our model’s performance with hu-
man data, we have constructed a set of seven texture pairs according to [11]
(one example was already depicted in Figure 8.9 on the left). For each pair,
we created 10 texture images of 512 × 512 pixels with random orientation of
the elements plus an additional positional random jitter of 4 pixels. Table 8.1
shows that the rank order of human discriminability of these patterns accord-
ing to [11] is almost identical to the rank order of the classification rates of
the CLM, indicating a significant similarity of the CLM grouping to human
texture perception (for details, see [18]).
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Fig. 8.10. In the top left a pattern of broken lines is shown. Because the points
marked by the discontinuities lie on a smooth line, we perceive a wavelike illusory
contour. The grouping result obtained with the CLM also shows this wavelike con-
tour in the bottom row.

Table 8.1. Comparison of psychophysical data from [11] with CLM Model’s perfor-
mance. The rank order of the classification rate of the CLM matches the rank order
of the psychophysical data remarkably well.

Texture Pair Psychophysical Data CLM Model
(Discriminability) (Classification rate)

(a) 100 89.1
(b) 88.1 89.3
(c) 68.6 82.1
(d) 52.3 79.7
(e) 37.6 74.7
(f) 30.6 69.7
(g) 30.3 69.0

8.9 Learning the Interaction Function

While we have shown that the heuristic specification of the interaction func-
tions frr′ given in section 8.7 can also be adapted to other exacting applica-
tions, such as the identification of cell contours in microscope images [16, 17],
the required hand tuning can be cumbersome and certainly is undesirable for
a broader use of the CLM in practical computer vision tasks.

This has motivated the search for learning approaches that permit the
data-driven construction of a good interaction function from a set of example
images with specified groupings in the form of target labels α̂(r). These group-
ings are transferred into target states of the CLM y = (y11, . . . , yN1, . . . , yNL)T .
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Some useful guidance is given by the stability conditions that must be met
for any activity pattern in the converged state:

∀r : : ∀β 
= α̂(r) :
∑
r′
frr′yr′α̂(r) >

∑
r′
frr′yr′β . (8.21)

If we only require the stability of a single pattern, we can write the following
analytic solution from group contrasts [27]:

f̂rr′ =
∑
μν

(yμ − yν)(yν − yμ)T , (8.22)

where yν are the layer-wise subvectors yν = (y1ν , . . . , yNν) of the target state
y and

yν,r =
{

1 : α̂(r) = ν i.e., mr belongs to group ν
0 : α̂(r) 
= ν else (8.23)

However, this is only an expression in (r, r′) space and does not include
any spatial variation of the features mr. A straightforward way to generalize
this to arbitrary (mr,mr′) pairs can be implemented by the following steps:

1. Sample (mr,mr′) pairs from training inputs.

2. Use associated fr,r′ values from the above one-pattern-solution as target
values.

3. Apply a standard machine learning algorithm [e.g. SVM classifier or mul-
tilayer perceptron (MLP)] to create a mapping φ : (mr,mr′) → fr,r′ that
yields the desired interpolation in (mr,mr′)-space.

A major drawback of this approach is the need for one evaluation of the
trained network for each interaction pair in the CLM; this makes the method
very time-consuming and practically rules out the application of the SVM.
The MLP is considerably faster, but we found it rather difficult to achieve
good training results for the required interaction function: the MLP strongly
suffers from the danger of overfitting to the feature positions r if only one
pattern is presented for learning.

Therefore, in [27] we developed an alternative approach based on an ex-
pansion of frr′(mr,mr′)

frr′(mr,mr′) =
∑

k

ck · bkrr′(mr,mr′) (8.24)

into a suitable set of basis functions bk, thereby reducing the learning task
to the determination of the required expansion coefficients ck. Since in most
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grouping tasks the important information mainly lies in the similarity or dis-
similarity of the features (mr,mr′) it has proven beneficial to first transform
the (mr,mr′) space into a dissimilarity space so that “relevant” dissimilarities
can be made more explicit. A rather flexible way to achieve this is to choose a
number of (application specific) dissimilarity functions d1(·, ·), . . . , dP (·, ·) for
mapping each pair (mr,mr′) into a P -dimensional vector D(mr,mr′):

D(mr,mr′) = (a1d1(mr,mr′), . . . , aP dP (mr,mr′))T . (8.25)

Examples of dissimilarity functions are the local distance ‖ r−r′ ‖ or distances
in color ‖ cr − cr′ ‖ of texture space ‖ tr − tr′ ‖ as also component-wise dis-
tances in these feature vectors. The dissimilarity functions do not necessarily
need to fulfill properties of a distance metric, and choices such as, for example,
the scalar product or · oT

r′ of two orientation vectors or and or′ are admis-
sible as well. The only necessary condition is that the distance functions are
symmetric under feature exchange dp(mr,mr′) = dp(mr′ ,mr) to guarantee
the symmetry of the lateral interaction weights. The scaling factors ap permit
implementing a normalization of the different distance functions dp(·, ·) to the
same range of values.

Finally, we have to make a choice of a set of basis functions in the trans-
formed space. A computationally very attractive scheme results if we use as
basis functions the characteristic functions of a Voronoi tessellation generated
from a number of prototype vectors adjusted by means of a training data
set: this allows reducing the computation of the expansion coefficients ck to a
simple counting of hits in Voronoi cells. The necessary computations can be
compactly summarized in the following two steps:

1. Adaptive tessellation in the transformed space: using a suitable
vector quantization algorithm, position a number of prototype vectors

m r

r’m

21

D D

Dk

Fig. 8.11. Interaction quantization for learning: A transformation of feature pairs
from a training set (left) into a “dissimilarity space” (center) and a subsequent
Voronoi tessellation (generated by prototype vectors Dk) provides the basis to ap-
proximate the desired interaction function as a stepwise constant function on the
Voronoi cells (right).
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D1 . . .DK to define a Voronoi tessellation of the training data in the
transformed space. The main parameter to be chosen here is the number
K of prototype vectors to use.

2. Computing the interaction function: Using the characteristic func-
tions on the Voronoi cells Vk as basis functions, the interaction function
can be cast into form

f̂rr′(mr,mr′) = c+k − Λc−k , (8.26)

with
k = argmin

k
‖ D(mr,mr′) − Dk ‖, (8.27)

where Λ is a weighting parameter and the expansion coefficients ck can be
obtained by simple counting:

c+k = No. of within-group D(mr,mr′) samples in Vk

c−k = No. of across-group D(mr,mr′) samples in Vk
(8.28)

The choice of Λ allows controlling the degree of segmentation: small values
of Λ favour few and large groups, while large values of Λ favour many small
groups. For more details, the reader is referred to [27].

8.10 Experiments with Artificial Data

In this section, we illustrate how the above learning algorithm can generate
interaction fields for the grouping of line segments into contours. Here, the line
segments mr = (r,or) are represented by 2D position r and an undirected
orientation vector or of the lines, while the distance space between features is
given by the local distance and the inner angle between two lines segments.

Training data consisted always of a single image, containing several hun-
dred line segments forming the contours of five randomly positioned contours
of circles (Fig. 8.12 top left), squares (Fig. 8.12 top center) and triangles (Fig.
8.12 top right), respectively (since a single image usually already contains
a very large number of line segment pairs, a single image can usually offer
enough training data to estimate a good interaction function). The learned
interaction function is depicted in the corresponding diagrams below: each
figure depicts for a horizontally oriented “reference” line segment (positioned
at the center of the figure) the distribution of excitatorily connected line ori-
entations within a 11 × 11 neighbourhood around the reference line segment.
Longer line segments indicate stronger excitation, whereas only weakly exci-
tory connections are indicated with correspondingly shorter lines. From this
visualization it becomes apparent that the loci of excitatory connectivity are
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Fig. 8.12. Learning interaction functions for grouping of line segments. Top row:
groupings used for training. Bottom row: resulting interaction functions (for expla-
nation, see text).

distributed such as to favour the continuation of the reference line segment in
a way that follows the geometrical shape that was used during training.

The second set of pictures (Fig. 8.13) shows some grouping results ob-
tained with a CLM using the trained interaction functions. The first two
pictures show grouping results for almost “perfect” input shapes, while the
last two pictures illustrate the effect of the grouping in the presence of strong
positional or orientational jitter in the input arrangements.

8.11 Application Example: Cell Image Segmentation

In this section we illustrate the learning approach for a more complex domain
from medical image processing. The goal is to determine in microscope images
the number, positions, and shape of lymphocyte cells that have been stained
with a fluorescent dye. An automated system for this has been presented in
[17]. In the context of that work, we have found the CLM as a very suitable
method for an accurate determination of cell boundaries; however, good results
required a careful “hand tuning” of the underlying interaction function.

To apply the present learning method for an automated generation of the
interaction function, we use as features directed edge vectors mr = (r,or)
whose orientation is estimated from the responses of a pair of 3 × 3 Sobel
filter masks or = (Sx

r , S
y
r )T . The interaction function frr′(mr,mr′) can then

be parameterized by the local distance ‖ r − r′ ‖ and the two relative angles
between the connection vector (r− r′) and the orientation vectors of the two
edges or and or′ (for details, see [27]). Images consist of 45×45 pixel squares,
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Fig. 8.13. Grouping examples from learned interaction functions for noiseless
arrangements of line segments (left) and for noise in line segment parameters or
in background (right).

leading to a total number of 2025 input features. For the grouping, we use a
10-layer CLM.

For the interaction vector quantization, we use 100 prototype vectors
[leading to the same number of basis functions in the expansion (8.24)]. We
then use (8.26) to define interactions for three different values of Λ. With these
interactions, we obtain the segmentation results depicted in Fig. 8.14. While
the value of Λ = 1 yields the best segmentation, we also see that the system
is rather robust to the setting of this single main parameter and there is a
rather good segmentation also for the other values of Λ. For comparison, the
last line depicts the (much worse) segmentation results obtained with direct
k-means vector quantization when applied directly to the feature vectors mr

(using seven prototype vectors, expecting seven cells or less).

8.12 Discussion

Pattern recognition is frequently equated with the process of classification
and often mathematically idealized as a mapping from some feature space
into a (usually discrete) set of output values (“categories”). Although this
view has been very useful and led to the development of powerful classifiers,
such as feed-forward neural networks or support vector machines, it tends to
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Fig. 8.14. CLM cell image segmentation (from top row to bottom row): input
images, target regions, CLM segmentation results after learning for Λ = 1, Λ = 2
and Λ = 3, “naive” k-NN-segmentation results (adapted from [27]).

de-emphasize an aspect already brought to our attention by the early work
of the Gestaltists: in many cases, the desired result of a pattern recognition
system is not just an “opaque” category, but a richer structure that represents
the “pattern” in a more explicit and invariant way than the original data (e.g.,
the image pixels). Perceptual grouping appears to be one of the fundamental
operations that produce such representations by establishing “bindings” be-
tween suitable, simpler constituents, such as predefined features.

Mappings that can create such richer representations are much harder to
construct, motivating an approach that generates the required structures as
the response of a suitable dynamical system to constraints representing the
input. For the task of feature grouping or binding, we have presented the
competitive layer model (CLM), consisting of a “stack” of layers of feature-
selective units (“neurons”) coupled in such a way that an input pattern “pro-
jected” onto the stack as an activity constraint for the activity sums of its
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vertical columns can become partitioned into groups of constituents by divid-
ing the activity among the different layers.

A critical element of this system is the choice of interactions between cells
sharing a layer; together with the chosen basis features, they determine the
grouping characteristics of the resulting dynamics. We have shown that we can
choose the interactions in such a way that the resulting grouping dynamics
resemble human perceptual grouping for quite a wide range of input patterns.
In addition, we have described a learning procedure that can construct suit-
able interactions from a small set of training patterns specifying examples of
desired target groupings.

The emphasis of this work is toward the development of computational
systems that implement nontrivial computations in the form of distributed dy-
namical systems that can be constructed efficiently from data examples. While
there is a large number of approaches focusing on the learning of temporal
trajectories, for example, for sensorimotor control, we think that dynamical
systems for performing binding operations are another very important class
of building blocks for the following reason: real environments do not provide
“carefully formatted” input and output spaces with stable and obvious sets of
low-dimensional input and output variables that we then could correlate by
mappings constructable from a training data sets of realistic size. Currently, it
is largely the work of the engineer to prestructure the “binding” of its devices
to the relevant degrees of freedom in their environment, sacrificing in this way
a large part of their flexibility. Only when we succeed in treating the selection
of relevant degrees of freedom on the input (and output) side as an integral
part of the task that a perceptual (and actor) system has to solve, can we
approach the flexibility that we admire in living animals. We think that per-
ceptual grouping can provide us with an interesting starting point to tackle
this task, and that the next step will be an extension of perceptual grouping
to situations, where “good gestalts” have to be formed at the level of coordi-
nation patterns between an agent and its environment. We are confident that
the CLM can offer guidance for the design of systems with such capabilities,
which are closely related with the important issues of attention and dynamic
dimension reduction.
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Regulatory Signals in Genomic Sequences

Sonja J. Prohaska, Axel Mosig, and Peter F. Stadler

Summary. Gene expression is a complex multiple-step process involving mul-
tiple levels of regulation, from transcription, nuclear processing, export, post-
transcriptional modifications, translation, to degradation. Over evolutionary time-
scales, many of the interactions determining the fate of a gene have left traces in
the genomic DNA. Comparative genomics, therefore, promises a rich source of data
on the functional interplay of cellular mechanisms. In this chapter we review a few
aspects of such a research agenda.

9.1 Introduction

Gene expression is the process by which a gene’s information is converted into
a structural or functional gene product. This product is typically a protein,
but might also be an RNA molecule or a complex of RNA and protein. A spe-
cific spatial and temporal distribution of these units within a cell is crucial for
their function. The process of gene expression involves multiple steps, starting
with the DNA in a state that makes the information accessible, transcription
(DNA → RNA) and perhaps translation (RNA → protein), which is then fol-
lowed by protein folding, posttranslational modification, and targeting. Once
started, gene expression does not run through unaffected. Every step in the
process is under tight control and actively regulates, or at least modulates,
the flow through each checkpoint. Trapping intermediates at any step of the
process may halt or even abort gene expression. Together, all regulatory ef-
fects from the gene to the functional gene product determine whether a gene
product exceeds its threshold of expression to be effective. Therefore, the state
of expression is not simply on or off.

In recent years it has become apparent that gene expression is a complex
network comprising different, often-intertwined, regulatory layers. A few of
these mechanisms, such as the binding of transcription factors to the DNA,
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leave direct traces in the genomic sequences that can be detected and deci-
phered by comparative approaches. In other cases, gene regulation is afforded
by trans-acting RNAs, first and foremost micro-RNAs. In this situation, one
first has to identify the transacting regulator before it becomes possible to
search for the target that it regulates.

From a comparative genomics perspective, on the other hand, we can iden-
tify a plethora of evolutionary conserved DNA sequences that apparently do
not code for proteins. Among these signals are also sizable regions with very
high levels of sequence conservation and no reported function [29, 82, 127, 128].
The question that we at least begin to address in this chapter is how we can
identify evolutionary conserved DNA, and how we can determine the mecha-
nisms that they are involved in. While it is clear that comparative genomics
cannot by itself elucidate the complete complexity of cellular regulation, it
has also become clear in recent year that over evolutionary time scales, this
regulatory network has left trace evidence at the DNA level. This requires,
however, an understanding of the many distinct mechanisms.

Nucleic acid sequence motifs are, with a few examples such as self-splicing
introns and some noncoding RNAs (ncRNAs), not catalytically active. Addi-
tional proteins or (sometimes) ncRNAs are therefore involved that exert their
regulatory function by binding either to the DNA or to the transcribed RNA
at regulatory elements. Regulatory mechanisms that alter the components
binding directly or indirectly to the sequence motifs are beyond the scope of
this chapter. The generic mechanisms involving the motifs and their accessi-
bility are listed in Table 9.1.

Changes at the nucleotide sequence level occur either by recombina-
tion/repair processes or covalent modification of single bases. Direct DNA
modifications yield stable or even irreversible gene expression patterns in de-
scending cells. Genomic imprinting reduces gene expression to one parental
allele through DNA methylation. Once established, the methylation pattern
is rather constant and hardly reversible.

Eukaryotic DNA is packed into a compact structure, the chromatin. Every
150 base pairs (bp), the linear DNA molecule is wrapped around a protein
core in 1.65 turns, forming the nucleosome. Regulation at the epigenetic level
concerns modifications of the histone protein core. The pattern of acetyla-
tion, (mono-, di-, and tri-)methylation, phosphorylation, and other covalent
modifications at about 40 different amino acids of the five different histone
proteins (H4, H3, H2A, H2B, and H1) is also referred to as the histone code.
Histone modification patterns are able to recruit specific protein complexes
just like binding sites on the DNA, or set the chromatin state. Heterochro-
matin or condensed chromatin is in the “silent” state, while euchromatin or
open chromatin is “transcribable” mainly due to histone acetylation.

Insulators describe a phenotype rather than a single kind of element with
a fixed mechanism of action. They have the ability to protect genes they
surround from the influence either of outside enhancers or inactivating chro-
matin structures. An important part of the underlying mechanism might be
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the formation of insulator bodies. Insulator binding proteins form complexes
that divide the chromatin into looped domains that are functionally isolated
from one another. This could be a step toward regulation by discrete subnu-
clear compartment. For example, actively expressed genes migrate to nuclear
compartments enriched in RNAPol II, so-called transcription factories, while
inactive genes loop out. Such agglomerations may serve to raise the local con-
centration of associated components, favouring interactions that might not
otherwise occur.

The promoter is the assembly site for the basal transcription machinery
right next to the transcription start site. Transcription factors (TFs) bind-
ing to enhancers facilitate recruitment of RNA polymerase to the promoter
if physical contact can be established by cofactors. Silencers, on the other
hand, circumvent such an interaction and therefore initiation of transcription.
In general, binding sites for TFs are short (4–12 bp) and occur clustered up-
stream of the promoter sequence. While there are numerous examples where
the context (i.e., order, orientation, distance, presence of certain TFs) of TF
binding sites is functionally relevant, there is an equally large number of ex-
amples where the context is not relevant.

The following elongation of transcription and all regulatory steps at the
RNA level that take place in the nucleus are coupled to a large extent. For
example, nuclear export of RNAs is linked to the subnuclear compartment
of transcription, transcription elongation, mRNA processing (splicing), and
mRNA stability. Once the mRNA is exported to the cytoplasm, it is either
degraded or translated, but it might also be stored for later use.

Translation of mRNA is the final step in gene expression. It involves nucleic
acid sequence elements in control. Not only upstream regulatory elements like
secondary structures or upstream ORF may effect scanning of the small ribo-
somal subunit for the initiation codon. Close proximity of the 5′ and 3′ end
of the mRNA allows protein binding sites located in the 3′-UTR to control
translation initiation. In fact, most known regulatory sequences, and mRNA
binding sites are found within the 3′ UTR.

The regulatory mechanisms and phenomena described above leave more
or less visible traces in their genome sequences. For some regulatory elements,
the corresponding traces on DNA level are very well understood and have
been studied in much detail. This chapter reviews the known sequence char-
acteristics of regulatory elements. Whenever one is available, we will give an
overview over the corresponding computational methods for unveiling those
traces in genomic sequences.
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9.2 Gene Finding

The most conspicuous traces found in a genome sequence arise from protein
coding regions. Since proteins are key players in the gene regulatory network,
identifying the positions of the protein coding genes in whole genome se-
quences is an elementary step. Beside identifying the protein coding sequences,
genome annotations serve a second purpose, namely to obtain those regions
in the vicinity of the annotated genes that contain cis-regulatory elements,
such as transcription factor binding sites. Furthermore, gene annotations give
an estimate of the number of players involved in regulatory networks.

Once a complete genome sequence is available, a first step typically is to
identify protein coding genes in the sequence by computational means, a task
commonly referred to as gene prediction or gene finding. Due to statistically
noticeable features such as being grouped in coding triplets or protruding
traits such as start or stop codons, protein coding genes typically show com-
paratively strong signals in genome sequences. Consequently, a number of
well-established methods have contributed to detecting protein coding genes
in genomes. The first type of gene prediction methods, so-called ab initio
methods, are based on considering a single genome sequence in combination
with a probabilistic model involving multiple characteristic traits of transcrip-
tional, translational, or splicing sites that are typically visible on sequence
level. Approaches such as GENSCAN [13] or Genie [72] incorporate this infor-
mation into a hidden Markov model for unveiling genomic regions that have
a striking probability of being protein coding.

While the accuracy of ab initio gene prediction methods turned out to be
principally limited [43, 118], more reliable results can be obtained by compar-
ative gene prediction approaches, which incorporate pairwise alignments of
the underlying genomes produced by programs such as Blastx. Due to a very
specific selectional pressure on the coding triplets of protein coding regions,
predictions produced by programs such as Twinscan [67] or Procrustes [40]
yield much more reliable results than ab initio methods.

As has been demonstrated by several studies, incorporating issues such as
protein similarity or expressed sequence tags may enhance the reliability of
gene prediction methods [54, 113, 150]. For surveys on gene prediction meth-
ods, we refer to [12, 34, 39, 71]. Gene prediction methods yield estimates of
the number of (protein coding) genes, some of which are shown in Table 9.2.

Table 9.2. Estimated number of protein coding genes

Species Estimated No. of Genes Ref.

Homo sapiens 20,000–25,000 [132]
Drosophila melanogaster 12,000 [133]
Caenorhabditis elegans 19,000 [135]
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While detecting protein coding genes appears to be a largely resolved
problem, finding noncoding RNA genes is much more involved. For details on
RNA gene prediction, see section 9.4.

9.3 Identifying Cis-Regulatory Elements

Once the protein coding genes and noncoding RNAs (see section 9.4), as the
key players in the regulatory network and their coding regions, are known,
one is naturally interested in their cis-regulatory elements, that is, sequence
elements associated with the gene to be regulated that serve as sequence-based
“addresses” for their regulators. On the level of transcription regulation, the
most striking sequence signals of a gene are given by the basal promoter and
the proximal promoter. In mammals, 60% of all promoters colocalize with
regions of high C+G content, known as CpG islands. A feature that can also
be used to find unknown genes. In the immediate upstream region of the
basal an proximal promoter, auxiliary binding sites can be located for further
transcription factors, which are often observed to be organized in regulatory
modules.

9.3.1 Polymerases and Associated Promoters

Transcription of DNA into RNA is performed by the three different types of
RNA polymerases. For the modes of transcription associated with the differ-
ent RNA polymerases, see Table 9.3. Each of the polymerases requires certain
cis-acting elements in order to initiate transcription; due to its crucial rele-
vance in transcribing mRNA necessary for protein coding genes, much effort
has been spent on studying the polymerase II core promoter as the minimal
stretch of contiguous DNA sufficient for initiating transcription. In most (yet
not all) polymerase II transcribed genes, the core promoter contains the TATA
box, which is located 25 bases upstream of the transcription start site. The
TATA box is a usually 6-nucleotide-long sequence motif characterizing the
binding site for the tata-binding-protein (TBP). TBP usually interacts with
other transcription factors, whose binding sites are typically found within
40 nucleotides (nt) upstream to the transcription start site. For details on
the RNA polymerase II core promoter, we refer to the survey by Butler and
Kadonaga [14]. The action of the polymerase II promoter is often enhanced
by several distal promoters organized in cis-regulatory modules (see section
9.3.3).

Polymerase I transcripts are also regulated by a core promoter, which is
separated by about 70 bp from a second elementary promoter element, the
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Table 9.3. Major modes of transcription.

RNA
poly-
merase

Promoter Location rela-
tive to start
site

Transcript Function

Pol I Core element
UCE (up-
stream con-
trol element)

−45 to +20
−180 to −107

pre-rRNA
(28S, 18S,
5.8S)

Components of the ribo-
some; translation

Pol II TATA-Box
Initiator
CpG islands

−25 to −35

−100

mRNA Protein coding genes

snRNA (U1-4) Components of the spliceo-
some; mRNA splicing

no LINEs Retrotransposon

Pol III Type 1: A-
box, C-box

+50 to +80 5S rRNA Component of large riboso-
mal subunit

Type 2: A-
box, B-box

+10 to +60 tRNA translation

Type 3:
TATA-Box

−30 to −70 snRNA (U6) Components of the spliceo-
some; mRNA splicing

7SL RNA Component of the SRP
(signal recognition particle);
protein transport to ER (en-
doplasmatic reticulum)

Internal SINEs Retrotransposon

so-called upstream control element (UCE). In place of the TBF for polymerase
II, pol I requires two core transcription factors, namely UBF1 (upstream bind-
ing factor) binding to a GC-rich region and SL1 (selectivity factor).

Promoters for RNA polymerase III occur in several variants. First, they
may consist of bipartite sequences downstream of the start point, with pro-
moter element boxA separated from either of the promoter elements boxC or
boxB. Second, some U snRNA genes are regulated by upstream type promot-
ers involving an octamer binding site, a so-called proximal sequence element
and a TATA box.

9.3.2 Identification of Transcription Factor Binding Sites (TFBSs)

Transcription factors are known to bind to short, specific sequences of DNA.
Experimental evidence obtained by techniques such as DNase footprinting [36]
and gel-shift assays [37] suggests that protein-DNA binding of transcription
factors involves a relatively short, contiguous DNA segment, whose length
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Inr DPECpG island BRE TATA

boxCboxA

boxA boxB

PSE TATAOct

0−50−100−150−200−250 +50 +100

core promoterUCE

Pol III type 3

Pol III type 1

Pol I

Pol II

Pol III type 2

Fig. 9.1. Core motifs of the different promoter types. Motifs in dark gray are less
dispensable than motifs in light gray. Any specific promoter may contain just a
subset or, in the worst case, none of these motifs. UCE = upstream control element,
BRE = TFIIB recognition element, Inr = initiator element, DPE = downstream core
promoter element, Oct = octamer binding site, PSE = proximal sequence element.
The arrow indicates the transcription start site at +1.

usually ranges between 8 and 15 nucleotides. Repositories of known tran-
scription factors and their experimentally derived binding site motifs can be
found in databases such as TRANSFAC [45] or JASPAR [123]. However, ex-
perimental determination of binding sites and their relevance in vivo takes a
significant effort, so that numerous computational approaches have been pro-
posed for determining candidates for TFBSs in silico.

While the length of the binding sites corresponding to one specific TF is
observed to be essentially constant, the individual positions of the binding site
sequences may vary up to a certain degree. Hence, to derive a suitable model
of the sequences that a TF binds to, different notions of describing TFBS
sequence variability have been proposed. Such models are also important in
the context of computationally determining TFBSs based on comparative ge-
nomics approaches.

Different observed binding sites corresponding to a given transcription
typically show a high degree of sequence similarity; moreover, the observed
binding site motifs have the same length �. To capture the observed binding
sites in one unique structure, we define a binding site model of length � as a
mapping M : Σ� → R≥ 0 assigning a weight to each sequence of length � over
the DNA alphabet Σ. While M(s) ideally should be related to the physical
binding affinity of sequence s binding to the transcription factor modeled by
M , M(s) usually is obtained on the basis of the frequency of observed or
putative binding sites in a given set of genomic sequences.
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The concept of binding site models introduced above is too general in
many situations: first, there are usually not enough data to derive reasonable
weights for each DNA sequence of length �, and second, storing and retrieving
the complete mapping M would be too expensive. Hence, several simplified
models of TFBSs have been established. The most simple model of a binding
site model is to derive a consensus sequence. In this model, each of the � po-
sitions is associated with a subset of the DNA nucleotide alphabet. A given
sequence fragment s of length � is assigned score M(s) = 1 if at each position,
the nucleotide of the fragment is contained in the corresponding nucleotide
set of the model; otherwise, we have M(s) = 0. Alternatively, one can define
M(s) as the number of positions in s where the nucleotide in s is contained
in the corresponding set in M .

Consensus sequences disregard major information contained in the se-
quences used for deriving the consensus model; namely, they do not take
into account frequencies of occurrence. This is overcome in the most estab-
lished way of TFBS modeling, namely position weight matrices (PWMs). In
the PWM model (sometimes also referred to as a position specific weight ma-
trix ), each of the � positions of the binding site is assumed to be distributed
independently: for each position i, we are given a probability density function
pi : Σ → [0, 1] over the four nucleotides. Given s := s1 . . . s� ∈ Σ�, this allows
us to define

M(s) := p1(s1) + · · · + p�(s�).

PWMs can be derived canonically from a collection of sequences S1, . . . , SM ∈
Σ�: for x ∈ Σ and i ∈ {1, . . . , �}, let ν(x, i) denote the number of sequences in
which letter x occurs at position i. By setting pi(x) := ν(x, i)/M , we indeed
obtain a PWM model. In practice, the sequences S1, . . . , SM are typically
obtained either from a set of experimentally determined binding sites or from
motif discovery methods.

PWMs, however, disregard any information about the correlation between
sites that may be contained in the sequences that a matrix was derived from.
As a remedy, Pudimat et al [112] have developed a more sophisticated way
of modeling TFBSs based on parameter estimation in a Bayesian belief net-
work. As opposed to most other approaches of TFBS modeling, their approach
allows us to model correlations between the individual sequence positions. An-
other approach for modeling dependencies between positions in PWMs based
on χ2 statistics has been investigated in [33].

While obtaining models for TFBSs from experimental data is relatively
easy, deriving them computationally from genomic sequences is a complex
problem. Essentially all approaches are based on comparative genomics in
the sense that they seek for motifs contained in each, or at least most, of K
promoter regions belonging to K co-regulated (or orthologous) genes. The re-
turned motifs usually result from optimizing a scoring function that measures
how well a candidate motif statistically differs from global properties of the
promoter sequences.
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Among the earliest nontrivial approaches to extracting overrepresented
short motifs as potential TFBSs, Hertz and Stormo [48] proposed a greedy
algorithm. Their CONSENSUS approach starts with a position weight matrix
derived from a single sequence of a fixed length, which is extended to a pair-
wise alignment of the same width by considering a best-matching subsequence
of the second sequence. The algorithm proceeds by successively adding one
subsequence of each remaining input sequence to obtain the final PWM, along
with a p value that allows us to assess the statistical significance of the result.

A different approach based on the expectation maximization (EM) algo-
rithm is investigated in MEME [4], improving a previous approach by Lawrence
and Reilly [75]. The EM-based approach starts with an a priori guess for a
position weight matrix representing a binding site of fixed length �, which is
then improved according to the input sequences in each of the subsequent
iteration steps. A single iteration step works as follows: for each subsequence
� of the input sequences, the score of the current matrix is computed. After
normalization, the matrix entries are updated by summing up the individ-
ual position contributions of each of the length � subsequences, weighted by
its corresponding normalized probability computed before. The resulting new
matrix is then used as input for the next iteration step, until convergence of
the process is observed.

AlignACE developed by Roth and Hughes’s group [56, 119] is yet another
approach to obtain PWMs from genomic regulatory sequences. AlignACE is
based on Gibbs sampling, enhancing approaches previously used for locally
aligning motifs in protein sequences such as [74] in a way such that both
strands of the input sequences are considered. Furthermore, single motifs that
were found are masked iteratively to allow for the extraction of more than
one binding site motif.

9.3.3 Discovering Regulatory Modules

As numerous studies demonstrate, transcription factors exhibit their function
synergistically through complexes of several transcription factors activating or
deactivating gene expression by binding to their corresponding binding sites
[27, 152], which thus form the building blocks of regulatory modules. On the
genome level, regulatory modules are characterized by binding sites being lo-
cated close to each other, usually within a segment whose length does not
exceed a few hundred nucleotides.

In recent years, a number of approaches have been developed in the con-
text of discovering cis-regulatory modules. Kel-Margoulis et al [65] propose a
method based on identifying clusters with the property that pairwise distances
between occurrences of TFBSs range within certain bounds; sets of binding
sites that maximize a certain cluster score are searched by the means of a
genetic algorithm. Other methods are based on probabilistic methods [109] or
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require (only sparsely available) knowledge about interactions between tran-
scription factors such as the algorithm presented in [130].

Among the most established methods, Sharan et al proposed an approach
implemented in the program CREME [129], which is conceptually somewhat re-
lated to our approach. Given a set of candidate binding sites, CREME seeks to
identify motif clusters of limited length that occur more than once in a set
of regulatory sequences. However, the capabilities of the CREME approach is
limited to discovering repetitive occurrences of modules that contain precisely
the same set of binding sites. While biological data indeed indicate that func-
tionally related modules share a significant number of binding sites, modules
observed in a given regulatory region might as well contain occurrences of
known binding site motifs, which are not functional in the given context. If
this number of additional, nonshared binding sites is nonzero, the method un-
derlying CREME does not allow us to discover such functional modules reliably.

To overcome this shortcoming, the hypothesis underlying the bbq approach
[99] is that CRMs are characterized by sharing a significant number of com-
mon binding sites, but do not necessarily contain precisely the same set of
binding sites. More formally, we are given a set of candidate binding sites
s1, . . . , sm together with a set of genomic sequences T1, . . . , TK. The role of
the genomic sequences Tj is taken by the regulatory regions of genes that are
suspected to share a regulatory module (due to being orthologous or having a
similar expression scheme), while the binding site motifs can be derived from
databases such as TRANSFAC or JASPAR. Alternatively, these motifs can be
derived from T1, . . . , TK using the motif discovery approaches discussed in
section 9.3.2. Finally, an upper bound for the length L (specified as a number
of nucleotides) of the regulatory module is given as an input parameter.

The bbq approach starts with determining the occurrences of each motif si
in each Tj and associating a color i with binding site si. For each occurrence
of si, an interval of length (L — |si|) ending at the position of the occurrence
is introduced, so that one finally obtains K arrangements of colored intervals.
By “stabbing” into this arrangement, one obtains a cell in this arrangement.
Such a cell is associated with a set of colors, which corresponds to a set of bind-
ing sites occurring within a genomic subsequence whose length is at most L
nucleotides. Finally, attempting to stab a maximum number of common colors
in each of the K arrangements leads to the so-called best-barbecue problem.
This problem leads to a natural combinatorial and geometric optimization
problem that is NP-complete in general.

9.3.4 Phylogenetic Footprinting

Just as genomic regions that code for proteins or functional RNAs, regula-
tory elements are also subject to stabilizing selection. They evolve much more
slowly than adjacent nonfunctional DNA, so that one can observe conserved
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Fig. 9.2. Distribution of phylogenetic footprints in regulatory regions between the
horn shark HoxN sequence and the human HoxC and HoxD sequences obtained by
the tracker tool. Using this information for phylogenetic inference, this supports
the hypothesis that the shark HoxN sequence is orthologous to the mammalian
HoxD sequence [110]. Boxes indicate the location of the coding regions for the par-
alog groups 1 to 13, X denotes the evx gene. Lines conecting sequences represent
phylogenetic footprints shared with the shark HoxN sequence.

islands of regulatory regions within intergenic or intronic regions. These con-
served islands are commonly referred to as phylogenetic footprints, which can
be detected by comparison of the sequences surrounding orthologous genes in
different species. The loss of phylogenetic footprints as well as the acquisition
of conserved noncoding sequences in some lineages, but not others, can pro-
vide evidence for the evolutionary modification of cis-regulatory elements.

While the motifs detected by the discovery methods discussed in section
9.3.2 can be seen as one particular type of footprints, one can often observe
conserved islands that are much longer, up to several hundred nucleotides,
than individual binding sites. Therefore, phylogenetic footprinting tools are
usually based on pairwise or multiple local alignment algorithms such as
blastz [125] or Dialign [97]. The tools PipMaker and MultiPipMaker [125]
(among others) process these alignments in order to provide information on
significantly conserved regions. The Tracker tool [111] assembles individual
pairwise blastz alignments into cliques of overlapping alignments. This re-
sults in the possiblity of listing alternative multiple local alignments if the
pairwise matches are not consistent with one multiple alignment.

As demonstrated in [111], the analysis of sequence conservation of non-
protein-coding DNA can be used to unveil the evolutionary origin of phenom-
ena such as the duplication of Hox clusters in shark, human, and the dupli-
cated zebrafish and Takifugu (Fig. 9.2). In this context, information contained
in the regulatory regions yields insights that are not visible on the level of the
corresponding protein coding regions.
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9.4 Regulatory ncRNAs and RNA Motifs

9.4.1 Diversity of the RNA Inventory

Noncoding RNAs form a diverse group of transcripts with often poorly under-
stood function. In contrast to protein-coding mRNAs there is little that they
all have in common. One group, which itself is composed of a heterogeneous
set of RNA families including tRNAs, the U6 snoRNA, the RNA component
of the signal recognition particle, and a small number of less well known ncR-
NAs including 7SK RNA and Y RNAs, is transcribed by RNA polymerase-III.
Ribosomal RNAs, transcribed by pol-I, form a group by themselves. Almost
all of these ncRNAs are evolutionarily very well conserved, and most of them
are evolutionarily ancient.

In contrast, the majority of the known ncRNAs are transcribed by pol-II.
These can be subdivided into messenger-RNA–like transcripts, such as Xist,
which are typically spliced and polyadenylated, “structural ncRNAs” such
as spliceosomal RNAs (snRNAs) and many microRNAs, which are neither
spliced nor polyadenylated, and a class of functional RNAs that is processed
from introns (in particular snoRNAs). Informally, it is useful to distinguish
a restricted group of “classical” ncRNAs containing the rRNAs, the pol-III
transcripts listed above, spliceosomal RNAs, box-C/D and hox-H/ACA small
nucleolar RNAs (snoRNAs), microRNAs, as well as telomerase RNA. As far
as we know, these RNAs are evolutionarily old, they have distinctive RNA
secondary structure, and most of them are reasonably well conserved at se-
quence level.

Recently, a number of small, non-mRNA-like ncRNAs have been found,
for example in the nematode Caenorhabditis elegans, which does not appear
to belong to one of the classical families, although at least some of them share
the distinctive promoter features of tRNAs or pol-II transcribed snRNAs [28].
Bacterial genomes also contain a large and diverse set of small RNAs (sRNAs)
in addition to the classical ncRNAs. A recent survey discusses 55 known E.
coli sRNAs [47] and their conservation patterns within Enterobacteria. For a
review of functional aspects of various bacterial sRNAs see [42]. An additional
class of small anti-sense transcripts derived from UTRs is discussed in [64].
For a recent survey focusing on the regulatory effects of ncRNAs in eucary-
otes, see [25].

The function of almost all mRNA-like ncRNAs remains unknown. The few
well-studied examples, such as Xist or H19, have functions in imprinting [103].

Regulation by means of RNA can follow at least three distinct principles:
RNA switches sense changes in temperature or chemical environment and
react by conformational changes. Cis-acting RNA signals, often located in
untranslated regions of mRNAs, are bound by proteins. Trans-acting RNAs,
such as microRNAs, perform their function by binding to complementary nu-
cleic acid sequence motifs.
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9.4.2 RNA Secondary Structure Prediction and Comparison

From a theoretical perspective, computational RNomics draws much of its
appeal from the fact that most quantities of interest can be computed ex-
actly within the secondary structure model. In contrast to proteins, nucleic
structures are dominated by a single, very specific type of interaction: the for-
mation of Watson-Crick and wobble (G-U) base pairs. The resulting contact
structures, which are predominantly stabilized by the stacking interactions of
adjacent base pairs, are not only a convenient and routinely used represen-
tation [70, 104, 106, 124], they also quantitatively describe the energetics of
RNA structure formation, and they form intermediate steps in the folding
process itself.

Formally, a secondary structure is a set Ω of base pairs such that (1)
each nucleotide position i is paired with at most one other nucleotide (i.e.,
Ω is a matching), and (2) base pairs do not cross, i.e., (i, j), (k, l) ∈ Ω with
i < j, k < l implies j < k or l < j. The second condition ensures that two base
pairs are either separated along the sequence or nested within each other. A
secondary structure therefore can be seen as a circular matching. Drawing the
bases along a circle, the base pairs form chords that do not cross. It follows
that RNA secondary structures can be dealt with by means of exact dynamic
programming algorithms (Fig. 9.3).

A plethora of careful thermodynamic measurement confirmed that the
energetics of RNA structures can be understood in terms of additive contri-
butions of “loops” (Fig. 9.3) see [83, 84] and the references therein. Exact
dynamic programming algorithms can be used to compute, for example, the
minimum energy structure given any RNA sequence s [136, 153, 155]. The
most frequently used implementations of these algorithms are mfold [153, 155]
and the Vienna RNA Package [50, 53].

An RNA molecule, however, does not only form a single (ground state)
structure; rather, there is an ensemble Σ(s) of different structures Ψ that de-
pend on the sequence s, which are populated in proportion to their Boltzmann
factors F (Ψ)/RT . The partition function

Z =
∑

Ψ ∈ Σ(s) exp
(
−F (Ψ)

RT

)
, (9.1)

from which all thermodynamics quantities of interest can be readily derived,
can be computed by the same type of dynamic programming approach [87].

9.4.3 Suboptimal Structures and RNA Switches

Some RNA molecules exhibit two competing conformations, whose equilib-
rium can be shifted easily by molecular events such as the binding of another
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Fig. 9.3. RNA folding in a nutshell. Caption continued overleaf. . .
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molecule. This can be used to regulate of gene expression, when the two mutu-
ally exclusive alternatives correspond to an active and inactive conformation of
the transcript [46, 90]. While most riboswitches were found in bacteria, where
they regulate several key metabolic pathways [11, 101], metabolite-binding
RNA domains are also present in some eukaryotic genes [134]. An early com-
putational study concluded that RNA switches are readily accessible in evo-
lution and are therefore probably not exceptional instances of unusual RNA
behaviour [35]. These findings, and the fact that riboswitches bind their effec-
tors directly without the need of additional factors, suggest that riboswitches
represent one of the oldest regulatory systems [139].

9.4.4 Detection of Functional RNAs in Genomic DNA

Large-scale efforts to uncover the human and mouse transcriptomes, using
very different experimental techniques including tiling arrays [8, 21, 61, 63],
cDNA sequencing [58, 102], and unbiased mapping of transcription factor
binding sites [17], agree that a substantial fraction of these genomes is tran-
scribed and that the majority of these transcripts do not code for proteins. It
is still unclear at present, however, which fraction represents functional non-
coding RNAs (ncRNAs), and which constitutes “transcriptional noise” [57].

Genome-wide computational surveys of ncRNAs, on the other hand, have
been impossible until recently, because ncRNAs do not share common sig-
nals that could be detected at the sequence level. An exception are bacterial

Fig. 9.3, continued.
Top: The basic recursion for RNA folding is based on the observation that each
structure either terminates in an unpaired base or in a base pair that then separates
the structure into two independent parts: the one enclosed by the base pair, and the
one outside.
Box: The standard energy model distinguishes three types of loops: hairpin loops
with a single closing pair, interior loops (including bulges and the stabilizing stacking
pairs) that are delimited by two base pairs, and multiloops at which the structure
branches. For the latter the energy model assume additive contributions depending
on the number of branches #c and the number of unpaired bases #n in the loop.
Middle: Using the loop-based energy model complicated the recursion since one
now has to distinguish the different types of loops because of their distinct energy
contributions. Instead of a single array storing the optimal energies Fij for substruc-
ture on the subsequence x[i..j], one now need a few auxiliary arrays that correspond
to restricted classes of structures. For instance, Cij is the optimal energy subject to
the constraint that i and j form a base pair.
Bottom: We give the complete recursion for energy minimization in the loop-based
energy model. Replacing minima by sums, and sums by products leads leads to the
recursions for the partition function Z.
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genomes, where a purely sequence-based machine learning approach was fairly
successful [122].

Most of the “classical” ncRNAs mentioned above, however, have charac-
teristic (secondary) structures that are functional and hence are well con-
served over evolutionary time scales. The stabilizing selection acting on the
secondary structure causes characteristic substitution patterns in the under-
lying sequences: Consistent and compensatory mutations replace one type
of base pair by another one in the paired regions (helices) of the molecule.
In addition, loop regions are more variable than helices. These patterns not
only have a significant impact on phylogenetic inference based on ribosomal
RNA sequences (see, e.g., [62] and the references therein), but it also can
be exploited for ncRNA detection in comparative computational approaches.
Examples are the alidot [51] and qrna [116] programs. Related approaches
predict consensus secondary structures for a set of aligned sequences [52, 107].

A second effect of stabilizing selection for RNA secondary structure is even
easier to measure. It was first suggested by Maizel’s group that functional
RNA elements should have a more stable secondary structure than compara-
ble random sequences [19, 76].

As demonstrated in [137], selection for structure implies that in the long
run sequences evolve that are more robust against mutations, that is, for which
a larger fraction of mutations does not lead to a change in the ground state
structure. This effect can be detected, for example, in viral RNA structures
[140]. Mutational robustness, however, is in turn strongly correlated with the
thermodynamic stability of the ground state structure [2, 149]. Thus we expect
that the ground states of functional RNA structures should be thermodynam-
ically more stable than expected by chance, independently of whether there
is a direct selection pressure for thermodynamic stability or not. While this
effect can indeed be demonstrated [23], it is not statistically significant enough
for reliable ncRNA detection [115]. It can be quite large for specific classes of
ncRNAs, in particular microRNAs, however [10, 141].

Combinations of thermodynamic stability and information on gene struc-
ture such as positions of rho-independent terminators were quite successful
for ncRNA prediction in intergenic regions of prokaryotic genomes [16, 79].
Such methods cannot be employed in eukaryots because of their much larger
genome size and the much more complex gene structures.

Sufficient statistical power for ncRNA detection in eukaryotic genomes
can be obtained, however, by combining measures for both thermodynamics
stability and structural conservation. An implementation of such a combined
approach is the RNAz program [143]: A structure conservation index (SCI) is
computed by comparing the predicted minimum free energies of the sequences
in an alignment with a consensus energy, which is computed by incorporating
covariation terms into a free energy minimization computation [52]. Ther-
modynamic stability is quantified by means of a z-score that measures the
folding energy relative to shuffled sequences (a regression approach replaces
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time-consuming shuffling methods). A support vector machine then classifies
an alignment as “structured RNA” or “other” based on z-score and SCI. The
significance of the classification is quantified as “RNA-class probability” p.

Various computational screens [1, 16, 20, 79, 116, 122] predict several hun-
dred ncRNA candidates. These predictions, however, show relatively little mu-
tual overlap in general. Indeed, the majority of bacterial sRNAs was discovered
based on computational predictions and subsequent experimental verification.

A RNAz survey based on the most conserved parts of the vertebrate
genomes estimates that the ncRNA content of mammalian genomes is com-
parable to their protein-coding genes [142], and hence at least an order mag-
nitude larger than in nematodes. In contrast, only a few thousand structured
RNAs in the urochordate Ciona intestinalis [93] and in the nematode C.
elegans [28, 94]. Only a few hundred ncRNAs appear to be present in the
yeast Saccharomyzes cerevisiae [88]. This indicates that higher vertebrates
have dramatically expanded their ncRNA inventory relative to their comple-
ment of protein coding genes. This is consistent with the assumption that the
function of the ncRNAs is primarily regulatory [85, 86].

9.4.5 RNA-RNA Interaction

Algorithmically, the “co-folding” of two RNAs can be dealt with in the same
way as folding a single molecule by concatenating the two sequences and using
different energy parameters for the loop that contains the cut-point between
the two sequences. A corresponding RNAcofold program is described in [53];
the pairfold program [3] also computes suboptimal structures in the spirit of
RNAsubopt [149]. A restricted variant of this approach is implemented in the
program RNAhybrid [114] as well as RNAduplex from the Vienna RNA pack-
age, see also [30, 154]: here secondary structures within both monomers are
neglected so that only intermolecular base pairs are taken into account. The
program bindigo uses a variation of the Smith-Waterman sequence alignment
algorithm for the same purpose [49].

The most prominent application of RNA co-folding algorithms is the pre-
diction of microRNA target genes [9, 70, 95, 104, 124, 151]. The biological
activity of siRNAs and miRNAs is influenced by local structural characteris-
tics of the target mRNA. In particular, the binding site at the target sequence
must be accessible for hybridization in order to achieve efficient translational
repression. Recent contributions [106, 124] suggest two significant parameters:
the stability difference between the 5′ and 3′ end of the siRNA, which deter-
mines which strand is included into the RISC complex [66, 126] and the local
secondary structure of the target site [9, 70, 95, 104, 124, 151].

The energetics of RNA-RNA interactions can be understood in terms of
two contributions: the free energy of binding consists of the contribution ΔGu
that is necessary to expose the binding site in the appropriate conformation,
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and the contribution ΔGh that describes the energy gain due to hybridization
at the binding site. The first term can be computed from a partition function
computation as described above, and the second term is obtained through a
version of the co-folding algorithm. Comparison with the partition function of
the isolated systems and standard statistical thermodynamics can be used to
explicitly compute the concentration dependence of RNA-RNA binding [30].

9.4.6 RNA-Protein Interaction

In recent years an increasing number of functional features has been reported
in the untranslated regions of eukaryotic mRNA [60, 92, 108]. Well-known
motifs include internal ribosomal entry sites (IRESs) in viral as well as cellular
mRNAs [55, 108, 121], and the AU-rich elements (AREs) [5, 89]. In many
cases, secondary structure motifs are recognized by regulatory proteins with
only highly degenerate, or no sequence constraints at all [91, 138]. In such
cases, the thermodynamics of RNA folding can influence binding specificities.

Consider a (protein) ligand that can bind to certain set RNA∗ of structural
conformations a given RNA molecules:

Ligand + RNA∗ � Ligand · RNA

The law of mass action implies that the concentrations [RNA∗], [Ligand], and
[Ligand · RNA] of free accessible RNA, free protein, and complex are related
through the dissociation constant

Kd =
[RNA∗] [Ligand]
[Ligand · RNA]

(9.2)

Writing A(s) ⊆ Σ(s) for the accessible structures of our RNA molecule s we
obtain

[RNA∗] = p∗ [RNA] (9.3)

where p∗ is the fraction of accessible secondary structures, which can be com-
puted as a ratio of two partition functions

p∗ =
∑

Ψ ∈ A(s)p(Ψ) =
1
Z

∑
Ψ ∈ A(s) exp

(
−F (Ψ)

RT

)
=
Z∗
Z

. (9.4)

Z∗, the partition function of all RNAs with suitable structure can be computed
by dynamic programming [87, 100] or by means of stochastic backtracking and
sampling [31, 32].

Using conventional methods to measure RNA protein interactions, only
the total concentration of unbound RNA, [RNA], can be measured. Hence,
only the apparent dissociation constant Kdapp = Kd/p∗ can be determined
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Fig. 9.4. Left: Apparent dissociation constants for HuR-mRNA complexes at
23.5◦C for natural ARE and UTR sequences (◦), artificial molecules (�), and de-
signed mutants of the tumor necrosis factor-α (TNF-α) 3′UTR (♦) [44]. Right: Effect
of a complementary opener of length N0 = 20 on in vitro HuR/RNA affinities. The
apparent affinity of recombinant HuR to IL-2 3′UTR was determined in the pres-
ence and absence of the opener Op3 (black circles) and of the negative controls with
1D-FIDA detection. Data redrawn from [89].

experimentally. The theory therefore predicts structure dependence of the
measured values of Kdapp. Under the assumption that the true value of Kd
depends only on the ligand and the sequence-structure motif that binds the
ligand, we can predict sequence-dependent variations in RNA-ligand binding
affinity by means of a computational analysis of the ensemble of RNA struc-
tures. In [44, 89] it has been shown that the interaction of the HuR protein
with ARE-carrying mRNAs indeed follows this scheme.

An immediate consequence of this mechanism is the possibility of using
small RNA “modifiers” to modulate the binding affinities of RNAs and lig-
ands by binding to their target RNA in such a way that it alters the local
structure at the ligand binding site. The HuR-mRNA interaction again serves
as a well-studied in vitro example for such a technique [44, 89] (Fig. 9.4). The
regulation of HuR-ARE-mediated export and RNA stability in vivo, however,
remains enigmatic. There is only the single ubiquitously expressed protein
HuR (and a handful of tissue specific relatives such as the neuronal specific
homologue HuD) that upregulates the export and stability of potentially thou-
sands of ARE-carrying mRNAs. It is tempting to speculate that modifying
RNA “openers” could be involved in target gene–specific regulation of HuR
activity.
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9.5 Conclusion

In this chapter we have discussed at least some of the regulatory mechanism
that leave traces at the DNA level. A significant fraction of the non-repetitive
DNA of higher eukaryotes is subject to stabilizing selection. It has been esti-
mated, for example, that about 5% of the human genome is under stabilizing
selective pressure [24, 59], while less than 2% are protein-coding genes. It is a
major challenge for bioinformatics to elucidate the meaning of the remaining
conserved DNA.

The information about at least a large part of the regulatory circuitry of
a species is accessible by means of comparative genomics. Without a large
body of independent experiments, however, we have little chance to decode
this information. The first, and maybe crucial step, beyond identifying the
DNA footprints themselves is to discriminate between regulatory elements
that exert their function at the DNA level, cis-acting elements that function
at the mRNA level, and noncoding RNAs.

We have reviewed here some of the currently available computational ap-
proaches that can be used to detect and analyze such elements. Few general
tools are available. A subclass of noncoding RNAs and cis-acting mRNA el-
ements, for example, can be recognized because of its conserved secondary
structure. On the other hand, at present there is not even a way to distin-
guish protein binding sites on the genomic DNA from those on the mRNA,
unless specific knowledge about a particular sequence motifs is available from
experiments.
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10. Bonnet E, Wuyts J, Rouzé P et al (2004) Evidence that microRNA precursors,
unlike other non-coding RNAs, have lower folding free energies than random
sequences. Bioinformatics 20:2911–2917.

11. Brantl S (2004) Bacterial gene regulation: from transcription attenuation to
riboswitches and ribozymes. Trends Microbiol 12:473–475.
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Dynamic Properties of Cell-Cycle and
Life-Cycle Networks in Budding Yeast

Fangting Li, Ying Lu, Tao Long, Qi Ouyang, and Chao Tang

Summary. Dynamic behaviors of protein-protein and protein-DNA interactions
in living cells are investigated using the cell-cycle network and life-cycle network in
budding yeast as model systems. Our analysis reveals important dynamic properties
of the biological networks. In phase space, the resting states of the networks are
global attractors, almost all initial protein states evolve to these stationary states;
the biological pathways toward the stationary state are globally attracting trajecto-
ries. All initial states are through these well-defined sequences. The distributions of
attractor size and pathway thickness of biological network are distinct from that of
random networks. Perturbation analysis shows that these networks are dynamically
stable. These results suggest that protein networks are robustly designed for their
functions, and that the global dynamic properties of protein networks are intimately
coupled to their functions.

10.1 Introduction

Protein-protein and protein-DNA interactions in living cells constitute molec-
ular dynamic networks that govern various cellular functions. Recently, much
attention has been paid to the global or “system” properties of protein net-
works rather than isolated functions of proteins. Researchers in this field have
achieved significant results. For example, Jeong et al [1, 2] showed that bio-
logical networks have the same topological power-law scaling properties, and
the highly connected proteins with a central role in the networks’ architecture
are essential in the systems. Albert et al [3] demonstrated that networks with
power-law connection distributions are topologically stable; they are highly
tolerant against random failures. Milo et al [4] discussed the basic building
blocks of most networks. They suggest that different network motifs are used
to build different biological networks that perform different functions. How-
ever, despite these achievements, we are still in an early stage of understanding
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the global properties of the networks. Previous studies focused on the topo-
logical properties of the biological networks while few studies address their
dynamic behavior [5, 6]. Here we report our dynamic analysis of the cell-cycle
network and the life cycle network of the budding yeast. Our study reveals
important properties of the networks. In the cell-cycle network, almost all
(about 96%) initial protein states evolve to the stationary state G1, making
it a global attractor; the dynamic paths to G1 for these initial states are
through the cell-cycle sequence, making it a globally attracting trajectory.
Similar findings are obtained for the life-cycle network, where the cell-cycle
network is one of components. We also found that the distributions of the sizes
of attractors and trajectories in phase space are very different from that of
random networks, and both networks are dynamically stable against random
perturbations.

10.2 The Cell-Cycle and Life-Cycle Networks in
Budding Yeast

Budding yeast Saccharomyces cerevisiae is chosen as a model system in our
dynamic study of biological networks because a comprehensive protein-protein
interaction network of this single-cell eukaryotic model organism is emerging
[7–13]. Budding yeast has a relatively simple life cycle. Yeast cells can exist
in either diploid or haploid genetic state. Cells in both forms can prolifer-
ate by an ordinary cell-division process under rich nutrition conditions; the
process is called the cell cycle. Triggered by starvation, cells in diploid form
undergo meiosis to give rise to spores—haploid cells in a dormant state that
are resistant to harsh environmental conditions. Under appropriate conditions,
pheromone stimulates cells in haploid form to fuse to create a new diploid cell.
The whole process is called the life cycle. Figure 10.1 shows the protein inter-
action network governing the cell cycle and the life cycle processes in budding
yeast. The network is based on extensive literature studies, the Chen model
[14], and the database at http://mips.gsf.de/ and http://www.proteome.com.
Careful document checking and cross-verifying are conducted in order to cor-
rect errors in the published draft. The network shown in Fig. 10.1 can be
divided into three interacting functional modules: the sporulation and meio-
sis subnetwork (left), the pheromone and mating cascade (upper right), and
the cell-cycle subnetwork (lower right). Depending on the nutrient condition
and the genotype, different modules may be activated in response to different
signals. We first focus on the dynamic properties of the most comprehensive
subnetwork: the module governing the cell cycle process.

The simplified cell-cycle network is shown as the inset of Fig. 10.2. We
simplify the network by removing and reconnecting nodes in a way that
does not affect the network dynamics; for example, intermediate nodes on
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Fig. 10.1. The protein network governing the processes of mating, sporulation, and
cell cycle. Yellow nodes represent a single protein, a complex of proteins, or several
related proteins. Green nodes represent groups of proteins that are expressed in
a special time section. Blue nodes represent a physiological process or checkpoint.
Purple nodes represent a signal or corresponding condition. Green and red lines
represent positive and negative actions, respectively. Light green and purple lines
represent undetermined or indirect actions. All self-degradation actions, yellow lines
pointing to node selves, are omitted for clarity. Some of them are displayed in simpli-
fied cell-cycle and life-cycle networks inserted in Fig. 10.2 and Fig. 10.3, respectively.
The whole net can be divided into three modules: mating (upper right), sporulation
(left), and cell cycle (lower right).

a linear path are replaced by an arrow connecting the beginning and the end-
ing nodes. In the simplified network, there are 11 key nodes governing the cell
cycle process: Cln3/Cdc28 complex, MBF, SBF, Cln1 or Cln2/Cdc28 com-
plex, Clb5 or Clb6/Cdc28 complex, Sic1, Mcm1/SFF, Clb1 or Clb2/Cdc28
complex, Cdh1, Cdc20&Cdc14, and Swi5. Under rich nutrition conditions,
when a yeast cell in either diploid or haploid form grows large enough, the
protein Cln3/Cdc28 complex is activated, driving the cell into the excited G1
state. The cell then goes through a sequence of phases of the cell cycle. Ac-
tivated Cln3/Cdc28 complex activates MBF and SBF, which in turn activate
the Cln1 or Cln2 and Clb5 or Clb6, which control the late G1 genes. During
the synthesis, or S phase, the cell’s DNA is duplicated. After a G2 transition
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Fig. 10.2. The dynamic pathways of the simplified cell-cycle network in phase space.
There are 2048 nodes, representing all 211 = 2048 possible initial states of the system
(signal node cell size is not included in the calculation). An evolution from one state
to the next is represented by an arrow. One pathway is defined as an initial state
and a series of states that the evolution passes, as well as arrows between them. The
real biological pathway and the ground G1 state are colored blue. Thickness of each
arrow is in proportion to a logarithm of the number of pathways passing through
it, and so is the diameter of each node. The inset of the figure (lower right) is the
simplified cell-cycle network.

period, Clb1 or Clb2 is activated; the cell enters the mitotic, or M phase.
Mitosis partitions the genome equally to the opposite ends of the cell, and
the cell divides into two by budding out a daughter cell. Eventually the cell
undergoes the cell cycle arrest period, the ground G1 state, and waits for an-
other dividing signal. Thus, the cell cycle process starts with the excitation by
the protein complex Cln3/Cdc28 from the ground G1 state to the excited G1
state, and evolves back to the ground G1 state through a series of well-defined
phases.

10.3 Boolean Models and Simulation Results

We now study the dynamic behavior of the cell-cycle network. Because we
are only concerned with the overall global dynamic properties of the network
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consisting of key nodes, we choose to use a simple discrete dynamic model. In
the model, each node i has only two states, Si = 0 and Si = 1, representing,
respectively, the active and inactive state of the protein. The protein states in
the next time step are determined solely by the protein states in the present
time step via the following rule:

Si(t+ 1) =

⎧⎨⎩
1,

∑
j aijSj(t) > 0

0,
∑

j aijSj(t) < 0
Si(t),

∑
j aijSj(t) = 0

(10.1)

where aij is the interaction coefficient from protein j to protein i, which de-
pends on the color of the arrow from j to i (see inset of Fig. 10.2). Note
that the time steps here are logic steps that represent causality more than
actual times. The network dynamics defined by (10.1) is a Boolean network.
Boolean networks have been used to model a variety of biological networks
and cell states [6, 15, 16]. Referring to general gene expression rules, we take
to be 1 and (the minus infinity) for the positive interactions (green arrows)
and the negative interactions (red arrows), respectively. The self-degradation
(yellow arrows) are modeled as a time-delayed interaction: if a protein with a
self yellow arrow is activated at time t (Si(t) = 1) and it receives no further
positive or negative inputs from t + 1 to t = t + td, it will be degraded at
t = t + td (Si(t + td) = 0). We use td = 4 in our model.1 The presence of
time-delayed interactions in Boolean networks changes their global dynamic
properties significantly. The advantage of using such a discrete and simple
dynamic model is that it enables us to analyze a much larger phase space and
hence to study the global dynamic properties of the network.

Using the dynamic rules described above on the protein interaction net-
work, we study the evolution of the cell-cycle network as a function of time.
First, we set the initial state to the excited G1 state, and observe the system
evolve to the ground G1 state. The temporal evolution of protein states is
presented in Table 10.1, which follows the cell-cycle sequence—the protein
states in each cell-cycle phase are consistent with experimental observations
[17–20]. Next, we study the attractors of the network dynamics in phase space.
Starting from all possible 211 = 2048 initial states in the 11-protein network,
the system evolves into seven stationary states. No limit cycle is present in the
system. We find that 1973 of 2048 initial states (96%) evolve to the ground
G1 state—the biological stationary state of the cell—making it a super and
the only global attractor. The rest of stationary states attract only less than
4% of the initial state, so that the cell cycle network has no attractors of
medium size; only an unusually large global attractor exists. This design of
the network ensures the stability of the cell against external and internal noise
and perturbations.
1 For simplicity, we use the same lifetime td for all proteins with a self-loop. The

results are essentially the same for td > 2.
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Table 10.1. Temporal evolution of protein states from the excited G1 state. The
right column indicates the cell cycle phase. Note that the number of time steps
in each phase does not reflect its actual duration. Also note that while the on/off
of certain nodes sets the start or end of certain cell-cycle phases, for other nodes
the precise duration at which they are turned on or off does not have an absolute
meaning in this simple model.

Step Cln3 SBF MBF Cln1,2 Cdh1 Swi5 Cdc20 Clb5,6 Sic1 Clb1,2 Mcm1 Phase

1 1 0 0 0 1 0 0 0 1 0 0 Excited G1

2 1 1 1 0 1 0 0 0 1 0 0 G1

3 1 1 1 1 1 0 0 0 1 0 0 G1

4 1 1 1 1 0 0 0 0 0 0 0 G1

5 0 1 1 1 0 0 0 1 0 0 0 S

6 0 1 1 1 0 0 0 1 0 1 1 G2

7 0 0 0 1 0 0 1 1 0 1 1 M

8 0 0 0 1 0 0 1 0 0 1 1 M

9 0 0 0 0 0 0 1 0 0 1 1 M

10 0 0 0 0 1 0 1 0 0 1 1 M

11 0 0 0 0 1 0 1 0 0 0 1 M

12 0 0 0 0 1 1 1 0 1 0 1 M

13 0 0 0 0 1 1 1 0 1 0 0 M

14 0 0 0 0 1 1 0 0 1 0 0 M

15 0 0 0 0 1 0 0 0 1 0 0 Ground G1

Another interesting result of our investigation arose when we asked the
following question: How do the initial protein states evolve to their final
attractors? Figure 10.2 shows in phase space the temporal evolution from
all 2048 initial protein states. The biological path—the cell cycle sequence
(Table 10.1)—is labeled in blue. The thickness of each arrow between two
nodes is in proportion to a logarithm of the number of pathways passing
through it, and so is the diameter of each node. We see that the most proba-
ble trajectory from any initial state is the biological path: the system is first
attracted to the biological path and then follows the path to the final station-
ary state. This means not only that the ground G1 state is a globally stable
fixed point, but also that the cell cycle sequence is a globally stable dynamic
trajectory. This striking dynamic property of the yeast cell cycle network,
which is dictated by the network topology that in turn has been shaped by
many years of evolution, makes the cell cycle sequence an extremely robust
process. We find similar results in cell cycle networks of fission yeast and frog
egg, indicating a rather generic behavior.

We next analyse the dynamics of the entire network given by Fig. 10.1,
which consists of the cell cycle and the life cycle processes. Again we simplify
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Fig. 10.3. The dynamic pathways of a simplified life-cycle network in phase space.
Green and red nodes represent diploid states and haploid states, respectively. Two
biological pathways and biological attractors are colored blue. Thick arrows are
highlighted by red color. The thickness of arrows and diameter of nodes are applied
with the same demonstrating rules as in Fig 10.2. [In principle, there should be
214 = 16384 nodes (two purple sporulation and pheromone signals are not included
in the simulation, while the state of housekeeping is always 1), arrows with value
less than 3 are omitted as are corresponding nodes to make the graph clear.] The
inset of the figure (upper right) is the simplified life-cycle network.

the network by removing and reconnecting nodes in a way that does not af-
fect the network dynamics. The simplified network is shown as the inset of
Fig. 10.3. Note that according to the rules of simplification, a single node
(G1 cyclins) can represent the cell-cycle network. To keep certain nodes in
the normal cell state, we have introduced a housekeeping node in the simpli-
fied network; the state of this housekeeping node is always 1. The dynamic
rules are the same as described above, except that the node Ime1 can only
be activated with both an active Mat a1/alpha2 (diploid form) and an ac-
tive sporulation signal (only a diploid cell receiving a sporulation signal can
start sporulation). The other green arrows of “AND” logic have already been
deleted, so there is no need to interpret it; the simplification rule in the supple-
ment explains this. Starting from all 214 initial states, we trace their evolution
trajectories and calculate the number of attractors. There are seven stationary
states and no limit cycle. The ground G1 states of haploid and diploid form
are the only two global attractors, attracting, respectively, 34.7% and 58.7%
of all initial states in this bi-stable biosystem; the other five stationary states
only attract about 6.6% of initial states in phase space. The two biological
pathways—sporulation and mating—are both attracting trajectories. We cal-
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culate all 214 states and delete the arrows whose weight is less than 3 and the
corresponding nodes. The evolution trajectories are shown in Fig. 10.3. The
two biological paths are very pronounced.

The dynamics of bio-networks (cell cycle and life cycle) own two special
features distinct from random networks: they possess super and global attrac-
tors and thick biological pathways. Both of the attractors and the pathways
have well-defined biological meanings and functions. These features stand out
when we compare the dynamic behavior of the bio-networks with that of ran-
dom networks. Here, we defined random networks to have the same number of
nodes and red, green, and yellow lines with the cell-cycle network. As shown in
Fig. 10.4A, the attractor size distribution of random network follows a power
law, so that they have attractors of all sizes. In comparison, in the cell-cycle
network only a single global attractor exists; no medium size attractors are
observed. Less than 0.1% of random networks possess this special property. To
quantify the thick pathway property, a W value is defined for each pathway
to measure the average thickness of the path. Explicitly, for the nth pathway,
Wn =

∑Ln−1
i=1 ,Weighti,i+1/Ln, with Weighti,j being the number of path-

ways crossing the arrow from node i to node j, and Ln being the steps of the
pathway. A large average W and narrow distribution is the characteristic of
bio-networks as shown in Fig. 10.4B, while the W distribution for random net-
works is quite different, since they lack a main thick pathway corresponding
to a narrow W distribution.

10.4 Perturbations of the Cell-Cycle Network

Finally, we study the dynamic stability of the cell-cycle network against per-
turbations. In the simplified cell-cycle network (see the inset of Fig. 10.2),
there are 31 interactions, including 12 negative interactions, 14 positive in-
teractions, and five self-degradations. We give the system a perturbation by
deleting one interaction in the network, adding one positive (or negative) in-
teraction, or switching a negative interaction to positive or vice versa, then
calculating �S/S0 and �W/W 0. Where �S/S0 and �W/W 0 are, respec-
tively, the change of the biggest attractor size and the change of the average
W value after the perturbation, S0 and W 0 are, respectively, the size of the
biggest attractor and the average W value of the original network. We also
study the dynamic stability of 11-node randomly generated networks for com-
parison. Fig. 10.4C and Fig. 10.4D summarize the results of the perturbation
study. We observe that most perturbations have little effect on the size of the
biggest attractor and the attractive trajectory, so that the cell-cycle network
is dynamically stable. The stability of the cell-cycle network is similar to that
of random networks, except that the change of a few connections in the cell-
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Fig. 10.4. Cell-cycle dynamics in comparison with random networks. (A) Attractor
size distribution. The size of an attractor is defined as the number of states that
can evolve into it. According to the simulation, the cell cycle is characterized by
one ultra-big attractor and several small ones, in contrast with random nets whose
attractor size distribution demonstrates the power law. (B) W value distribution. (R:
random networks; C: cell-cycle network.) The W value is defined for each pathway
to characterize the average thickness of it. The thick-pathway property of the cell
cycle corresponds to a relatively narrow W distribution with a big average, while
random nets have a much smaller average W value and a quite different distribution.
(C) �S/S0 distribution. �S/S0 is the relative change of the attractive basin of
the original biggest fixed state. (D) �W/W 0 distribution. �W/W 0 is the relative
change of the average W value. The stability of a network is studied with �S/S0 and
�W/W 0. The perturbations consist of deleting, adding, or reversing one interaction
line in the network. (Ten thousand random nets have been tested.)

cycle network causes a large change in S0 and W 0, which hints that these
connections play the key roles in the biological functions in the network.

10.5 Conclusion

Our results suggest that besides their topological properties [1–4] biological
networks have distinct and robust dynamic properties that are very different
from random networks. These properties are intimately related to the un-
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derlying biological functions [21]. The study shows that simple and discrete
dynamic models can play a complementary role in differential equations in
network modeling [22] and can be very useful in analyzing large-scale global
properties of the network.
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Understanding Protein-Protein Interactions:
From Domain Level to Motif Level

Huan Yu, Minping Qian, and Minghua Deng

Summary. Understanding protein functional interactions is an important research
focus in the post-genomic era. The identification of interacting motif pairs is es-
sential for exploring the mechanism of protein interactions. We describe a word-
counting approach for discovering motif pairs from known interactions and pairs of
proteins that are putatively not to interact. Our interacting motif pairs are validated
by multiple-chain PDB structures and motif pairs extracted from PDB structures.
The motif pairs are used to predict interactions between proteins by three differ-
ent methods. For all the methods used, our predicted protein-protein interactions
significantly overlap with the experimental physical interactions. Furthermore, the
mean correlation coefficients of the gene expression profiles for our predicted protein
pairs are significantly higher than that for random pairs. Supplementary materials
are available online at http://ctb.pku.edu.cn/˜yuhuan.

11.1 Introduction

With the finishing of genome sequencing projects, functional annotation of
the entire genomes has been a major goal in the post-genomic era. Moreover,
the relationships between proteins play a more important role than the func-
tion of individual proteins since proteins interact and regulate each other in
most biological process. Many experimental and computational methods are
developed to identify protein-protein interactions (PPIs).

Traditional Methods

Traditionally, protein-protein interactions have been studied by genetic, bio-
chemical, or biophysical techniques such as protein-protein affinity chromatog-
raphy, immunoprecipitation, sedimentation, and gel filtration [42]. However,
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these methods are not suitable for genome-wide interaction detection. High-
throughput methods have being developed to identify protein-protein inter-
actions in parallel.

The Yeast Two-Hybrid System

The most widely used large-scale approach for detecting protein interactions
is the yeast two-hybrid system introduced by Fields and Song [12]. A eukary-
otic transcription factor is split into two distinct functional domains called
binding domain (BD) and activating domain (AD). If the bait protein fused
to the BD interacts with the prey protein fused to the AD, the transcription
machinery will be reconstructed and activate the transcription of the reporter
gene. If the two proteins do not interact, the transcription of the reporter gene
will not be activated.

Recently, the yeast two-hybrid system was used for high-throughput
protein-protein interaction detection from several organisms including Sac-
charomyces cerevisiae (yeast) [26, 49], Caenorhabditis elegans [4, 29, 50], He-
licobacter pylori [43], vaccinia virus [35], mouse [48], and fly [13, 16, 47].

Uetz et al [49] used two different approaches in their experiments. In the
first approach, 192 yeast bait proteins fused to the Gal4-DNA-binding domain
were screened against nearly 6000 yeast proteins fused to the Gal4-activation
domain as prey; 281 interactions were found among 87 proteins. In the sec-
ond experiment, an interaction sequence tag (IST) approach, 5341 yeast bait
proteins were screened against the yeast proteome (nearly 6000 preys) and
identified 692 interactions among 817 proteins. Ito et al [26] used IST ap-
proach and 4549 interactions among 3278 proteins were reported.

Although the yeast two-hybrid system is suitable for automated large-scale
protein-protein interaction screening, the false-positive and false-negative er-
rors are huge. Possible mutations during polymerase chain reaction (PCR)
amplification and stochastic activation of reporter gene may lead to the false
positives and the inability to detect interactions of membrane proteins or
posttranslational modification proteins, and weak interactions may lead to
the false negatives [8, 26, 38].

Affinity Purification of Protein Complexes

An alternative way to study protein-protein interactions on a large scale is
affinity purification of protein complexes. Tagged bait proteins and associated
proteins assemble as protein complexes. The complexes are purified and then
separated by gel electrophoresis. The components of complexes are identified
by mass spectrometry (MS). MS-based approaches provide protein compo-
nents in a complex but do not give the direct physical interaction. It is dif-
ferent from the yeast hybrid system, although a relationship does exist since
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proteins in the same complex are more likely to physically interact with one
another. Over 700 different complexes in yeast are identified in two studies
[14, 24]. So far the MS-based methods provide the largest protein complex
data.

The disadvantage of MS-based approaches is that the interactions may not
be detected due to a low-affinity, low-expression level or detection limits of
the MS facilities. Most interactions from MS-based methods are by indirect
interaction.

Protein Chips

Another direct approach to identify genome-wide protein-protein interactions
in parallel is the protein chip method. The purified proteins are printed onto
glass slides and then analyzed for binding or enzymatic activities.

MacBeath and Schreiber [32] used protein chips to detect antibody-antigen
interactions, protein kinase activities, and protein interactions with small
molecules. Zhu et al [55] developed protein chips to identify protein-protein
interactions. They identified 39 calmodulin-interactors by adding biotinylated
calmodulin to the yeast protein chips. Some of the identified interactions are
well-known interactions between calmodulin and calmodulin kinase, but were
missed in large-scale yeast two-hybrid and MS-based approaches.

Protein chips can be used to identify not only protein-protein interaction
but also protein-lipid, protein-nucleic acid, and protein-drug interactions. The
major limitation is the preparation of proteins to analyse, because not all pro-
teins can be purified easily and efficiently.

Protein-Protein Interaction Databases

Since most of the protein interactions were reported in the literature where the
information is difficult to manage and compute upon, various protein-protein
interaction databases were built to gather the information for further data
mining such as MIPS [36] (http://mips.gsf.de), BIND [2] (http://www.bind.
ca), DIP [44] (http://dip.doe-mbi.ucla.edu), GRID [5] (http://biodata.mshri.
on.ca/grid/servlet/Index), MINT [54] (http://cbm.bio.uniroma2.it/mint), Int-
Act [23] (http://www.ebi.ac.uk/intact/index.jsp) and STRING [37] (http://
string.embl.de). Among these databases, we consider MIPS as the gold stan-
dard data since it is a collection of manually curated high-quality PPI data
collected from the scientific literature by expert curators.

Furthermore, the PDB database [9] (http://www.rcsb.org/pdb) contains
some protein complex structures that are direct evidence for protein-protein
interactions. The protein complex structures allows us to determine the pro-
tein contact interface by simply calculating the Euclidean distance of atoms.
The only problem is that the data size of PDB is too small.
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Computational Method for Predicting Protein-Protein Interactions

Although many experimental methods have been developed to identify
genome-wide interactions, the overlaps among different data sets are small,
suggesting that they contain only a very small fraction of the potential protein-
protein interactions [26]. Analysis by computational (in silico) methods is re-
quired to complete the protein interaction map.

With the completion of genome-sequencing projects, sequence homology
search tools such as BLAST [1] (http://www.ncbi.nlm.nih.gov/blast) have
been widely used to extend our knowledge of protein functions. However, se-
quence similarity analysis is applicable only when the function of matched
proteins is known and the sequence homology is significant. Several com-
putational methods for predicting genome-wide functional linkages between
proteins are developed. These methods can be classified into three categories:

1. Phylogenetic profiles [25, 41]: analysis of the co-presence or co-absence of
genes within entire genomes indicates the interactions between those gene
products

2. Gene fusion [10, 33]: two separate proteins in one organism are often found
as a fusion into a single protein in some other species, which indicates
physical interactions

3. Gene neighbourhood [6, 40]: two proteins that are neighbors on the chro-
mosome in several genomes tend to be functionally linked.

To understand protein function, elements of protein that are self-stabilizing
and often fold independently of the rest of the protein chain are defined as pro-
tein domains. Protein domains have distinct evolutionary origin and function.
As a unit of structures, each domain is responsible for a specific interaction
with another domain, so it serves as a unit for protein-protein interactions.
Several machine-learning approaches have been developed to predict protein
interactions on the basis of domain C domain interactions, including support
vector machine (SVM) [3], the association method [28, 39, 46], the interacting
domain profile [52], the Bayesian method [17, 18, 19], the EM-based MLE
method [7, 53], and the linear programming method [22].

Protein-protein interactions are also studied at the motif level. Motif is
a short amino acid sequence with a certain functional meaning. Motifs are
very important for drug and protein design, often referred to as protein con-
tact interfaces or binding sites. Wang et al [51] identified active motif pairs
from interacting protein pairs by an approximate EM algorithm with the mo-
tifs from the Prosite database [11]. Li et al [30, 31] discovered the significant
motif pairs based on the PDB structures [9] and known protein-protein inter-
actions.



11 Understanding Protein-Protein Interactions 233

We use a word-counting method to study the protein-protein interactions
in the motif level. Starting from protein sequences and protein complexes
only, the statistical significant motif pairs are identified as the signature of the
protein-protein interactions. By comparing them with PDB structure, we vali-
date our identifications. Furthermore, we predict genome-wide protein-protein
interactions from the identified motif pairs, and validate our prediction based
on the analysis of overlapping with the MIPS physical interaction and gene
expression profiles.

11.2 Data

In our study, yeast sequence data and protein complex data are used to find
the signature motif pairs. We use ORF names to identify yeast proteins, re-
sulting in 6294 proteins involved in our experiment; 265 MIPS complexes are
downloaded from MIPS to build the protein-protein interaction training data.

To estimate the reliability of our results, protein structures obtained from
PDB, MIPS physical interactions, and gene expression data from Spellman et
al [45] are used. The protein structures used in this study are a non-redundant
subset from PDB where the maximum pairwise sequence identify is 30%, con-
sisting of at least two chains in one entry with resolution 2.0 IRA or better.
The PDB data contains the three-dimension coordinates of amino acid atoms.
The data were obtained on April 8, 2004, containing 544 entries. For MIPS
physical interaction data, we exclude those interactions supported only by a
high-throughput experiment, resulting in 2579 interactions used in this study.
The expression data are obtained from the yeast cell cycle analysis project,
containing 6178 genes at 77 time points.

11.3 Methods

11.3.1 Overview of Our Method

We transform the MIPS complexes into pairwise interactions as the positive
protein-protein interaction training data. We also generate a negative inter-
acting data set described in the following paragraph. We count all 4-tuple
amino acid (AA) pairs occurring in positive and negative data and select sta-
tistically significant positive and negative 4-tuple pairs as the word dictionary
for further prediction. The identified 4-tuple positive pairs are verified by the
tuple pairs on protein complex structures, and are compared with motif pairs
discovered by Li et al [30, 31]. Finally, we use an iterative-dependent naive
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Bayesian classifier to predict protein-protein interactions based on the iden-
tified 4-tuple pairs. The reliability is estimated by comparing the predicted
interactions with MIPS physical interactions and gene expression profile cor-
relation coefficients.

11.3.2 Protein-Protein Interaction Training Data

We need both positive and negative protein-protein interaction training data
to learn the significant 4-tuple pairs. The positive interactions are extracted
from MIPS complexes. We transform the MIPS complexes into pairwise inter-
actions by connecting all possible protein pairs within the complex, resulting
in NP = 10198 protein pairs.

Several methods have been proposed to construct a negative interaction
data set. The two most popular approaches are as follows: In the first ap-
proach, proteins in separate subcellular compartments are considered as neg-
atives [34]. The shortcoming of this approach is that there is no information
showing whether proteins can bind with each other if they are being put to-
gether. Different subcellular locations only indicate that the proteins have no
chance to bind. The second approach assumes that two proteins do not in-
teract if there is no positive evidence of interaction [19]. The incomplete and
low-quality positive interaction data bring in more false negatives. We use a
different approach to generate negative data from positive data. To overcome
the shortcoming of the above two approaches, we define a negative PPI pair
to be a pair of proteins that have a chance to interact with each other but fail
to be observed in the interaction map. To be precise, we first build a protein
interaction graph with proteins as nodes and positive interactions as edges.
Then all pairs among nodes in a connected graph with the shortest path length
greater than a cutoff are treated as putative negative protein-protein inter-
actions. For example, when the cutoff = 6, we obtain NN = 26605 negative
protein-protein interactions.

11.3.3 Significant 4-Tuple Pairs

There are 208 possible 4-tuple pairs in the protein pairs. We count all the 4-
tuple pairs in the positive and negative protein-protein interaction data. If a
4-tuple pair occurs multiple times in a protein pair, we just count it once. For
each 4-tuple pair TP , we denote NTP+ and NTP− as the number of protein
pairs containing the 4-tuple pair TP in positive and negative protein pairs,
respectively.

We select the significant 4-tuple pairs as follows. For a 4-tuple pair TP
and the counts NTP+ and NTP−, we test whether the 4-tuple pair is over-
represented in the positive interacting protein pairs. The negative countNTP−
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is used to estimate the background distribution. The approximate background
distribution is a Poisson distribution with parameter λp = NTP− × NP

NN . The
p value for the hypothesis can be calculated as

Praw(X ≥ NTP+) =
∞∑

k=NT P+

λk
p

k!
e−λp .

For all N = 208 4-tuple pairs, a large number of statistical tests are per-
formed. To avoid the multiple testing problem, the p value praw is adjusted
to max(1, praw ×N) by the Bonferroni correction. The 4-tuple pairs with ad-
justed p values lower than .001 are selected as the significant positive 4-tuple
pair set Sp resulting in 968,882 4-tuple pairs. Let Sp be the set of these sig-
nificant positive 4-tuple pairs.

Similarly, the p value for the hypothesis that the 4-tuple pair is under-
represented in the putative negative interacting pairs can be calculated as

Praw(X ≥ NTP−) =
∞∑

k=NT P−

λk
n

k!
e−λn ,

in which λn = Np+ × NN
NP . Similarly, we select 2,529,775 4-tuple pairs as the

significant negative 4-tuple pairs and denote the set of them as Sn.
We call W = Sp

⋃
Sn the significant 4-tuple pair set.

11.3.4 Protein-Protein Interaction Prediction

In the following, we predict protein-protein interactions from the identified
significant 4-tuple pair set W . We propose three different prediction models
step by step.

Independent Model

We start the prediction from a simple independent classification system. Given
a pair of proteins (Pa, Pb), we denote all significant 4-tuple pairs that occur
in (Pa, Pb) as S = {(LTi, RTi, Lposi, Rposi), i = 1, 2, · · · ,M}, where LTi is
the 4-tuple that occurs in Pa and RTi occurs in Pb, (Lposi, Rposi) is the
occurrence position of (LTi, RTi), respectively, and M is the total number
of significant 4-tuples that occur in (Pa, Pb). We denote Iab the event that
(Pa, Pb) interacts. For 4-tuple pairs TPA and TPB in S, we make the following
conditional independence assumption:
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P (TPA, TPB |Iab) = P (TPA|Iab) × P (TPB|Iab). (11.1)

Following the Bayesian rule, we have

P (Iab|S) =
P (Iab, S)
P (S)

=
P (S|Iab) × P (Iab)

P (S|Iab) × P (Iab) + P (S|Iab) × P (Iab)

=
1

1 +
P (Iab)
P (Iab)

× P (S|Iab)
P (S|Iab)

=
1

1 +
P (Iab)
P (Iab)

×
∏

TP∈S

P (TP |Iab)
P (TP |Iab)

=
1

1 +
1 − P (Iab)
P (Iab)

× factor(S)
, (11.2)

where factor(S) =
∏

TP∈S

P (TP |Iab)
P (TP |Iab)

.

We estimate factor(S) as

f̂actor(S) =
∏

TP∈S

NTP−/NN
NTP+/NP

. (11.3)

We use an iterative algorithm to estimate the prior probability P (Iab).
It was estimated in Hazbun and Fields [21] that each protein interacts with
about five to 50 proteins. For 6294 yeast proteins and five interactions for
each protein, it gives a total of (6294 × 5)/2 = 15, 735 real interaction pairs.
Given the initial prior probability

P̂k(Iab) =
2 ∗ 15735

6293 × 6294
,

for step k = 0, we estimate P (Iab|S) as

P̂ (Iab|S) =
1

1 +
1 − P̂k(Iab)

P̂k(Iab)
×
∏

TP∈S

NTP−/NN
NTP+/NP

.

We give a positive interaction prediction of (Pa, Pb) if P (Iab|S) > 0.999. We
predict all yeast protein pairs and denote the number of positive predictions
as Kk. In the next step prior probability is updated by
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P̂k+1(Iab) =
2 ∗Kk

6293 × 6294
.

The algorithm is iterated until Kk+1 = Kk.
Since we obtain the 4-tuple pairs set S using sliding windows, the as-

sumption of independence (11.1) is not true if TPA and TPB overlap. The
converged prior probability in the independent algorithm described above is
significantly higher than the upper bound of empirical probability 50/6294.

To overcome the shortcoming of the independent model, we present two
dependent models to estimate factor(S) in (11.2).

Dominating Model

In contrast to the independent model, the dominating model assumes that
only the most significant 4-tuple pairs in S contribute to factor(S). The
most significant 4-tuple pairs dominate the interaction. We denote the most
significant positive and negative 4-tuple pair in S as PTP (S) and NTP (S).
In the dominating model, we modify factor(S) to

factordom(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (NTP (S)|Iab)
P (NTP (S)|Iab)

, no positive 4-tuple

pairs belong to S
P (PTP (S)|Iab)
P (PTP (S)|Iab)

, no negative 4-tuple

pairs belong to S
P (PTP (S)|Iab)
P (PTP (S)|Iab)

× P (NTP (S)|Iab)
P (NTP (S)|Iab)

(11.4)

factordom is estimated by

f̂actordom(S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

NNT P (S)−/NN

NNT P (S)+/NP , no positive 4-tuple

pairs belong to S
NP T P (S)−/NN

NP T P (S)+/NP , no negative 4-tuple

pairs belong to S
NNT P (S)−/NN

NNT P (S)+/NP × NP T P (S)−/NN

NP T P (S)+/NP

(11.5)

The dominating model runs from one extreme to the other. A majority of in-
formation in S is ignored. The prediction is unstable because of the inaccuracy
of the selected significant 4-tuple pairs.

Combined Model

The final model is a combination of the independent and the dominating
model. The 4-tuple pairs set S is partitioned into disjoint independent sets
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S1, S2, ..., Sm as following: S is used as nodes to construct a graph, and two 4-
tuple pairs (LTi, RTi, Lposi, Rposi) and (LTj , RTj , Lposj , Rposj) are assigned
an edge if |Lposi − Lposj | ≤ 4 ×M or |Rposi −Rposj | ≤ 4 ×M (M = 3 in
this study). Figure 11.1 shows a simple example of the partition. In Figure
11.1, each connected component is clustered as a subset Si.

The factor in the combined model is calculated as

factorcom(S) =
m∏

i=1

factordom(Si),

where factordom(Si) is calculated by (11.4) for each individual set
Si. factorcom(S) is estimated similarly as (11.5):

f̂actorcom(S) =
m∏

i=1

f̂actordom(Si).

Fig. 11.1. Partition example: motif pairs (A1, A2), (B1, B2) on protein 1 and
protein 2 are grouped. Since A1 and B1 are neighbourhood, the isolated motif pair
(C1, C2) builds up a group by itself.

11.4 Results

First we verify the overrepresented 4-tuple pair set Sp by comparing it with
PDB structure data. The significance of matching is evaluated by random re-
sampling. We then compare Sp with the significant motif pairs discovered by Li
et al [30]. Finally, we measure the significance of our predicted protein-protein
interactions by MIPS physical interactions and gene expression profiles.

Comparing with the PDB Structure

First we give some definitions related to protein structures:
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Definition 1. Atoms contact: Given two protein chains with three-dimen-
sional structural coordinates, AtomA from one protein chain and AtomB from
the other contact if dist(AtomA, AtomB) < ε, where dist(·, ·) is the Euclidean
distance, and ε is an empirical threshold 5IRA.

Definition 2. Tuple pairs contact: Given two protein chains with three-
dimensional structural coordinates and a tuple pair (TupleA, TupleB), TupleA

occurs in one protein chain and TupleB occurs in the other. (TupleA, TupleB)
contact if one atom from TupleA and one atom from TupleB contact.

Definition 3. Chains verifiable by a set of tuple pairs S: Given two protein
chains with three-dimensional structural coordinates, if there exist a tuple pair
in S that contact each other.

Definition 4. PDB structure verifiable by a set of tuple pairs S: Given a PDB
protein complex with three-dimensional structural coordinates, if at least one
pair of chains is verifiable by S.

For the identified overrepresented positive 4-tuple pairs in Sp, 169 of 544
PDB structures are verifiable. Figure 11.2 is an example of verifiable 4-tuple
pair. However, when we repeatedly draw the same number (968,882) of 4-
tuple pairs randomly as set R1, R2, · · · , R1000, and compare each set with
PDB structures, the average number of verifiable PDB structures is only 20.9.
We use binomial distribution B(544, pbinom) to approximate the background
distribution, in which pbinom = 20.5/544. The p value of the verifiable perfor-
mance of set Sp is

P (X ≥ 169) =
544∑

k=169

(
544
k

)
× pbinom × (1 − pbinom) = 1.47e− 144

which means a very significant match.

Comparing with Motif Pairs Extracted from PDB

Li et al [30, 31] discovered 930 motif pairs from PDB structures. Our sig-
nificant tuple pairs is derived from sequence data without any knowledge
of protein structures or protein domains. Comparing our identification with
their discovery, 496 of 930 motif pairs are confirmed by 4-tuple pairs in Sp and
the average match number of the random resampling set is only 22.8. Using
the similar background binomial distribution approximation B(930, pbinom∗),
where pbinom∗ = 22.8/930, the p value of the match performance of set Sp is
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Fig. 11.2. PDB verifying example: PDB1a8g (two molecular: HIV-1 protease) is
verified by 4-tuple pair (LLDT LLDT).

P (X ≥ 496) =
930∑

k=496

(
930
k

)
× pbinom∗ × (1 − pbinom∗) < 1.00e− 460

which is also a very significant match.

Comparing with MIPS Physical Data

We use MIPS physical interactions to test our protein-protein interaction
predictions. There are 2579 MIPS physical interactions. Excluding those in-
teractions in the training set, a test data set of 1964 interactions is obtained.
To measure the statistical significance, we use the standard Z score

Z =
k0 − n× p√
n× p× (1 − p)

where p = K/L (L is the total number of protein pairs), K = 1964, n is the
number of predictions, and k0 is the number of matching protein pairs between



11 Understanding Protein-Protein Interactions 241

the 1964 interactions in the test data set and the n predicted interactions. Z
has an approximate standard normal distribution under the null hypothesis.

Another measure of the significance is Fold [7], the ratio of the fraction of
the predicted protein pairs in the test data set with those in all protein pairs
as follows:

Fold =
k0/K

n/L
.

Table 11.1 shows the overlapping numbers between the test set and our predic-
tions and the corresponding statistics. We can see that, although the overlap
is not quiet large, it’s statistically significant.

Table 11.1. Number of matched protein pairs between the predictions

Model Prediction Train MIPS MIPS1 Fold Z score p value

Independent model 4496949 10186 1328 718 1.61 14.72 2.3e-49
Dominating model 38302 10194 618 7 2.51 2.53 5.7e-3
Combined model 68927 10194 630 19 3.26 5.47 2.3e-8

Number of predicted PPIs (Prediction), number of matching PPIs with the training
set (Train), number of matching PPIs with the MIPS data (MIPS), and number of
matching PPIs with the MIPS excluding the training data (MIPS1), respectively.
The corresponding statistics (Fold, Z score, and p value) are also given.

Comparing with Gene Expression Profiles

It has been shown that genes with similar expression profiles are likely to en-
code interacting proteins [15, 20, 27]. We study the distribution of correlation
coefficients for protein pairs with predicted interaction probability. We use the
genome-wide cell cycle gene expression data. Figure 11.3 gives the distribu-
tions of the pairwise correlation coefficients for all gene pairs, our predicted
protein pairs by three models, and the MIPS interaction data.

The statistical significance for the difference between the mean expression
correlation coefficient of a putative interaction set and that of random pairs is
measured by the T score and the p value for the null hypothesis of no difference
between the sample mean and the mean of random gene pairs. The T scores
are calculated as the two sample T -test statistic with unequal variances:

Tf =
μ1 − μ2√
S2

1
n1

+ S2
2
n2

with the approximate freedom:
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Fig. 11.3. Distributions of the pairwise correlation coefficients for all gene pairs,
MIPS interaction data, training data, and our predicted protein pairs excluding the
training data.

f =

(
S2

1

n1
+
S2

2

n2

)2

(
S2

1

n1

)2

n1
+

(
S2

2

n2

)2

n2

where μ is the mean of samples, and

S2 =
1

n− 1

n∑
i=1

(xi − μ)2

is the variance of the samples [7].
Figure 11.3 and Table 11.2 show that the mean correlation coefficient for

predicted protein pairs is significantly higher than that for random pairs. Ex-
cept for the independent model, the mean correlation coefficients for protein
pairs are significantly higher than that for random pairs. It should be noted
that transforming from the MIPS complexes into pairwise interactions en-
larged the mean correlation coefficient of training data. For our predictions,
the overlap between training data and our predictions are not used in the
calculation of correlation coefficient.
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Table 11.2. Distribution of the pairwise correlation coefficients

Pairs Pairs Sample mean Sample variance T score p value

All ORFs 18474081 0.031 0.041 0 .5
Independent model 4271174 0.030 0.042 -7.37 1
Dominating model 25067 0.062 0.041 23.93 2.1e-125
Combined model 52079 0.053 0.040 25.33 1.5e-149
MIPS 2415 0.100 0.051 14.92 1.4e-48
Training data 8723 0.253 0.063 82.70 0

Summary statistics of distribution of the correlation coefficient between the gene
expression profiles of protein pairs (with gene expression profiles from MIPS), ran-
dom (all ORFs), training data, and our predictions of three models excluding the
training data).

11.5 Discussion

This work describes a general method for predicting protein-protein interac-
tions from sequences. Putative negative protein-protein interactions generated
by positive interactions enable us to choose the significant signature pairs by
word-counting. The signature pairs are compared with multiple-chain PDB
structures and motif pairs extracted from PDB structures. By resampling,
it shows that the quality of chosen pairs is significantly better than that of
the random 4-tuple pairs, thus validating the theory that protein folding is
a consequence of the primary structure, and the functional motifs are highly
conserved in the evolution.

At the protein level, protein-protein interactions are separated into attrac-
tive and repulsive forces associated with the signatures. We introduce three
ways to combine the signatures probabilities into a single protein-protein in-
teraction probability. The significance of our PPI prediction is measured in
two ways: (1) comparing the prediction with MIPS physical interactions de-
rived by methods other than the yeast two-hybrid system, and (2) comparing
the distribution of gene expression correlation coefficient for the predicted in-
teracting protein pairs with that for random protein pairs. The results show
our predictions are statistically significant.

The results also show that using the dependent models to predict protein-
protein interactions from the overrepresented and underrepresented 4-tuple
pairs indeed improves performance. Generally, the independent assumption is
introduced to simplify the computing; it may work if the dependence among
features is not too strong. However, because of the existence of long-range cor-
relation between the amino acids after protein folding, the independent model
does not fit the current case. In our combined model, the long-range correla-
tion has been taken into account by considering the overlapping between the
signatures on the protein pair, so that the predictions by the combined model
have a better performance than those by the other two models.
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Although our predictions are statistically significant, the overlaps between
our predictions and MIPS physical interactions are very small. A possible rea-
son is that the size of the protein interactions network is huge. It is known that
every experimental method is biased to certain kinds of proteins and interac-
tions. It is possible that some of our predictions are not suitable to be verified
by MIPS physical interaction identifying methods. Another explanation for
the small overlaps is that the way to transform the MIPS complexes into
pairwise interaction may amplify the data source noise. Moreover, the time
and space constraints among protein-protein interactions are ignored in our
study. Two proteins may not interact with each other at different expression
time or different subcellular location. Also, depending on the environmen-
tal conditions such as temperature and others, proteins may have different
interaction behaviour with others.
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36. Mewes HW, Frishman D, Güldener U et al (2002) MIPS: a database for genomes
and protein sequences. Nucleic Acids Res 30 (1):31–34.

37. von Mering C, Jensen LJ, Snel B et al (2005) STRING: known and predicted
protein-protein associations, integrated and transferred across organisms. Nu-
cleic Acids Res 33 (database issue):D433–D437.

38. Mrowka R, Patzak A, Herzel H (2001) Is There a Bias in Proteome Research?
Genome Res 11 (12):1971–1973.

39. Ng SK, Zhang Z, Tan SH (2003) Integrative approach for computationally
inferring protein domain interactions. Bioinformatics 19 (8):923–929.

40. Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of
gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96 (6):2896–
2901.

41. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) As-
signing protein functions by comparative genome analysis: Protein phylogenetic
profiles. Proc Natl Acad Sci USA 96 (8):4285–4288.

42. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detec-
tion and analysis. Microbiol Rev 59 (1):94–123.

43. Rain JC, Selig L, Reuse HD et al (2001) The protein-protein interaction map
of Helicobacter pylori. Nature 409 (6820):211–215.

44. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The
Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32 (database
issue):D449–D451.

45. Spellman PT, Sherlock G, Zhang MQ et al (1998) Comprehensive Identifica-
tion of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by
Microarray Hybridization. Mol Bio Cell 9 (12):3273–3297.

46. Sprinzak E, Margalit H (2001) Correlated Sequence-signatures as Markers of
Protein-Protein Interaction. J Mol Biol 311 (4):681–692.

47. Stanyon CA, Liu G, Mangiola BA et al (2004) A Drosophila protein-interaction
map centered on cell-cycle regulators. Genome Biol 5 (12):R96.



11 Understanding Protein-Protein Interactions 247

48. Suzuki H, Fukunishi Y, Kagawa I et al (2001) Protein-Protein Interaction Panel
Using Mouse Full-Length cDNAs. Genome Res 11 (10):1758–1765.

49. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-
protein interactions protein-protein interactions in Saccharomyces cerevisiae in
Saccharomyces. Nature 403 (6770):623–627.

50. Walhout AJ, Sordella R, Lu X et al (2000) Protein Interaction Mapping in C.
elegans Using Proteins Involved in Vulval Development. Science 287 (5450):116–
122.

51. Wang H, Segal E, Ben-Hur A, Koller D, Brutlag DL (2004) Identifying protein-
protein interaction sites on a genome-wide scale. In: Saul LK, Weiss Y, Bottou
L (eds) Advances in Neural Information Processing Systems 17. MIT Press,
Cambridge, MA.

52. Wojcik J, Schachter V (2001) Protein-protein interaction map inference using
interacting domain profile pairs. Bioinformatics 17 (Suppl 1):S296–S305.

53. Liu Y, Liu N, Zhao H (2005) Inferring protein-protein interactions through
high-throughput interaction data from diverse organisms. Bioinformatics 21
(15):3279–3285.

54. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M,
Cesareni G (2002) MINT: a Molecular INTeraction database. FEBS Lett 513
(1):135–140.

55. Zhu H, Bilgin M, Bangham R et al (2001) Global Analysis of Protein Activities
Using Proteome Chips. Science 293 (5537):2101–2105.



12

An Efficient Algorithm for Deciphering
Regulatory Motifs

Xiucheng Feng, Lin Wan, Minghua Deng, Fengzhu Sun, and Minping Qian

Summary. The identification of transcription factor binding sites (TFBS) by com-
putational methods is very important in understanding the gene regulatory network.
Although many methods have been developed to identifying TFBSs, they generally
have relatively low accuracy, especially when the positions of the TFBS are de-
pendent. Motivated by this challenge, an efficient algorithm, IBSS, is developed
for the identification of TFBSs. Our results indicate that IBSS outperforms other
approaches with a relatively high accuracy.

12.1 Introduction

To understand the gene regulatory networks on the genomic scale is one of the
great challenges in the post-genomic era. Deciphering the regulatory binding
sites (regulatory motifs) of a transcription factor (TF) on DNA sequences is
especially fundamental and important for understanding gene regulatory net-
works. Experimental identification of TF binding sites (TFBS) is slow and
laborious, while computational methods for the identification of TFBSs in
genomic scale are difficult because binding sites are typically short and de-
generate, and the binding mechanisms are not very clear. The availability of
high throughput data, such as gene expressions, complete genome sequences
of many species, and ChIP-chip (Chromatin Immunoprecipitation) data, has
facilitated bioinformatitians to develop new computational methods to iden-
tify TFBSs.

There are two basic paradigms of computational identification of TFBSs.
One is the weight matrix model (WMM). The basic assumption of the WMM
is that it is position specific in the TFBS, and mutations at different posi-
tions of the TFBS are independent. However, this is not true in many cases.
Short random sequences may be inserted in the TFBS such that the posi-
tion specificity may be destroyed. There are often significant dependencies
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between positions within a TFBS [28]. Thus, real TFBSs sometimes do not
fit the WMM well, and the results from this model may not be satisfactory.
First-order and higher-order Markov models have also been developed to con-
sider the position dependence, but they usually require large data to estimate
the exponentially increasing number of parameters in such models [28].

Another paradigm for the identification of TFBSs is based on consensus
pattern enumeration (word counting) methods. The main idea of word count-
ing methods is to ascertain the overrepresented words from a set of given
samples. The word counting methods do not need any assumptions of posi-
tion specificity and independence between positions in the TFBS. Because no
statistical models for TFBSs are assumed, word counting methods lack the
ability to describe the properties of TFs and discrimination on any given se-
quence to ascertain whether and where they contain TFs. Furthermore, word
counting methods sometimes fail to ascertain the TFBS if the TFBS has
large variation and the number of training sequences is small. In addition,
word counting methods require searching a large candidate consensus pattern
space, which can be time consuming.

We have developed an efficient algorithm, IBSS (Intelligent Binding Sites
System), for the identification of TFBSs. The procedures and ideas of IBSS
can be described as follows (Figure 12.1 gives the schematic view of IBSS):

1. Extracting the Short Conserved Sequences of the TFBS. Suppose that we
have a set of sample sequences, which a TF may bind to. Because TFBSs can
be degenerate, real TFBSs may not be found to be overrepresented through
word-counting methods. On the other hand, short subsequences of the TFBS
may be more conserved and be found to be overrepresented through word-
counting methods. The main purpose of this step is to extract all these short
conserved subsequences. A program, ICOPE (Intelligent Consensus Pattern
Enumeration), based on this idea has been developed.

2. Obtaining the TFBS Sample Set. From step 1, a collection of typical short
conserved subsequences of the TFBS can be gotten to obtain the TFBS sample
sequences for further statistical analysis. We then develop a technique.

3. Modeling the TFBS. In step 1, no statistical models are assumed. Therefore,
a proper statistical model is needed for the description and discrimination of
TFBSs. Our result indicates that the dependencies between positions in the
TFBS sometimes can be very important. Therefore, a model based on the
maximal dependence decomposition (MDD) [3] with insertions is developed
for the TFBS to model the dependencies between different positions in the
TFBS. We derive a statistical inference procedure for the discrimination of
TFBSs based on the MDD model.

4. System Evaluation. Cross validation is used to evaluate the performance
of our algorithm and the model.
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Fig. 12.1. Scheme of IBSS.

In section 12.2.2, we show that ICOPE, which is based on the first step of
IBSS, achieves higher accuracy than six well known motif-finding programs
based on large-scale ChIP-chip data of transcription factors with known DNA-
binding specificities documented in databases.

In section 12.4, we show that the nucleotide bases for the TFBS of TF-
YAP7 are highly dependent. We then use the MDD to model the TFBS. The
cross-validation results indicate that the MDD model significantly outper-
forms the weight matrix model (WMM).

12.2 ICOPE

To obtain the set of sample sequences for finding the motifs of the TFBS, usu-
ally gene expressions under different conditions or TF mutants are needed. For
gene expressions under different conditions, coexpressed genes are clustered.
Overrepresented motifs can then be discovered in the promoter regions of
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these coexpressed genes using motif-finding algorithms. The basic assumption
is that the binding sites of the same TFs are similar, and coexpressed genes
are likely to be regulated by the same TFs [7]. In the TF mutant microarray, a
TF is deleted or overexpressed, and then upregulated or downregulated genes
are selected out for motif finding. The basic assumption is that these genes are
more likely to be regulated by this TF. However, it is difficult to distinguish
the effects of direct or indirect regulation by the TF among these upregulated
and downregulated genes. Recently, a functional clustering method was de-
veloped to use mutant expression data for motif finding of TFBSs [6].

Motif-finding algorithms can also be used to identify the transcription fac-
tors’ DNA-binding specificities from ChIP-chip data [18], which provides a
way to reveal the genome-wide location of DNA-binding proteins and can be
used to construct a genome-wide map of in vivo protein-DNA interactions for
any given protein. ChIP-chip has produced a large amount of data [11, 14].
However, the resolution of typical yeast ChIP-chip experiments is only about
1 kb. As a result, computational methods are required to identify the tran-
scription factors’ exact DNA binding specificities.

Many computational methods have been developed in the past two decades
for discovering motif patterns and TF binding sites in a set of promoter se-
quences. Most of the motif finding programs can be classified into two groups.

The first group of methods for motif finding uses WMM as the motif
model, and usually combines with expectation maximization (EM) or Gibbs
sampling to iteratively refine the WMM. Stormo and Hartzell [21] used a
heuristic progressive alignment procedure to find motifs. Early WMM-based
methods using EM or Gibbs sampling include those by Lawrence and Reilly
[12], Lawrence et al. [13], and Bailey and Elkan [1]. By iteratively masking
out aligned sites, AlignACE [19] is more effective in finding multiple distinct
motifs. BioProspector [16] uses a third-order Markov chain to model the back-
ground sequences to improve the motif specificity.

The other group of programs for motif finding uses enumeration methods
to find the best consensus pattern; we refer to these methods as word counting
methods. Galas et al. [10] developed the earliest motif-finding program using
consensus enumeration. Brazma et al. [2] analysed the overrepresentation of
regular expression-type patterns. Recent word-counting methods are reported
by Wolfertstetter et al. [26], van Helden et al. [25], and Sinha and Tompa [22].
DWE [23] is a word-counting–based tool to discover tissue-specific transcrip-
tion factor binding sites.

Recently, MDScan [17] combined the two widely adopted motif search
strategies, word counting and WMM updating, and incorporated the ChIP-
chip ranking information to accelerate searches to enhance its success rates.

The program, ICOPE, was developed based on the first step of IBSS. We
searched the ensemble of all short sequences combined with a limited number
of degenerate letters and a range of spacers inserted in the set of sample se-
quences, and selected out all the overrepresented short sequences. These short
sequences cannot be too short so that they can contain sufficient information
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of the TFBS and can be overrepresented in the sample sequences rather than
in the background sequences, while they cannot be too long so that their oc-
currence probabilities will be big enough such that their occurrences can be
approximated by their occurrence frequencies. Usually 6 to 7 base pair (bp)
informative positions for DNA sequences should serve for practical uses.

It has been shown by several investigators that some TFs, when in low
concentration, show a significant preference for multiple occurrences of mo-
tifs, whereas in high concentration, they don’t have such a preference [4, 11].
ICOPE takes this fact into account. ICOPE uses two different word-counting
methods to deal with these two groups of TFs. Obviously, we don’t know
which group a TF belongs to in advance. So a simple mixture model to com-
bine the two methods is used. Both methods are examined and the method
that gives a lower p value will be accepted.

Another character of ICOPE over existing methods lies in the background
model. It has been shown that different background models can greatly in-
fluence the performance of motif-finding programs [16]. Most other programs
use a high-order Markov model as the background model, which is relatively
inaccurate. The background model of ICOPE is based directly on resampling
from the background sequences.

12.2.1 Systems and Methods

A consensus pattern that occurs significantly more often than chance expec-
tation is said to be overrepresented. Like other consensus enumeration meth-
ods, consensus patterns are evaluated based on their overrepresentation in
the input sequences. A statistical significance (p value) is given to objectively
measure the degree of overrepresentation.

Most conserved patterns of the TFBS are usually in the range of 6 to 10
bp long [22]. ICOPE searches against a very large consensus pattern space.
All strings of length 6 over the alphabet {A, C, G, T} and strings of length 7
over the alphabet {A, C, G, T, R, Y, S, W} with a limited number of degen-
erate letters {R, Y, S, W} are considered. In addition, all the above strings
with a spacer inserted are also incorporated. The spacer inserted is a string
of 1 to 12 consecutive N’s. The spacer can be inserted at any position in the
original string. For the search space, our method is found to be similar to the
motif method used in YMF [22], except that in YMF the spacer can only be
inserted in the center of the motif, while we allow the spacer to occur at any
position.

For each consensus pattern S in the search space, we calculate p value pM
S

assuming that the factor has a preference for multiple occurrences of motifs,
referred to as factor class I, and calculate p value pS

S assuming the factor has
no such a preference, referred to as factor class II. Then we find the best con-
sensus pattern SM that minimizes pM

S and SS that minimizes pS
S . If both pM

SM
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and pS
SS

are greater than .05, we think the result is not statistically significant
and ICOPE outputs nothing. If pM

SM
< pS

SS
and pM

SM
< .05, ICOPE assumes

the corresponding factor is of factor class I. If pS
SS

< pM
SM

and pS
SS

< .05,
ICOPE assumes the corresponding factor is of factor class II.

First, we discuss how pS
S is calculated. This p value is calculated by assum-

ing the factor has a preference of single motif occurrence. For the counting
word, only one occurrence of the motif in the promoter region is considered
even if a motif occurs several times in a sequence. We count the number of
sequences with the motif in the input sequence set. Let NS

S be the number of
sequences in the input sequence set in which pattern S occurs. A good mea-
sure of overrepresentation of the consensus pattern must take into account
both NS

S and the background genomic distribution. We merge all the yeast
intergenic sequences into one large sequence as the background. Then random
sequence sets with the same size as the input sequence set are drawn from the
background. The sequences in the resampled random sequence sets have the
same sequence length with the input sequence set. For the resampled sequence
sets, let nS

S be the average number of sequences on which the consensus pat-
tern S occurs. Let M be the size of the input sequence set. Then the p value is
approximately calculated by using the binominal distribution B(M,nS

S/M).
The pM

S can be similarly calculated. This p value is calculated by assuming
that the factor has a preference for multiple motif occurrences in the promoter
regions. For word counting, every occurrence of motif should be considered.
We count NM

S the number of occurrences of consensus pattern S in the input
sequence set. We set an upper limit for the number of occurrences in a single
sequence to avoid the interference of repetitive sequence. Currently we set this
upper limit to 5. Resampled random sequence sets with the same sequence
number and the same sequence length as the input sequence set are generated
by a similar method from background sequences and scanned to count the
number of occurrences of pattern S. For the resampled random sequence sets,
let nM

S be the average number of occurrences of pattern S. Then the p value
is approximately calculated by using the Poisson distribution P (nM

S ).
For every consensus pattern in the search space, we test the hypothesis

that the pattern is a binding motif based on pS
S for factor class I and pM

S

for factor class II. So millions of hypotheses are being tested simultaneously.
The p value calculated above by using the binominal distribution or Poisson
distribution of each class must be corrected for multiple tests. We use the
formula pc = 1− (1−p)N to adjust for multiple testing, where p is the p value
before correction and pc is the corrected p value. N is the number of tests
conducted, that is, the size of the searched consensus space. Both pS

S and pM
S

are corrected using this formula. For more advanced and technical discussion
of p-value choice in large-scale simultaneous hypothesis testing, see [9].

In practice, the most time-consuming part is the resampling process. This
process is done in advance and the result is stored in disk. For every possible
length l, let ηS

Sl be the probability that a sequence with length l has motif



12 An Efficient Algorithm for Deciphering Regulatory Motifs 255

S if the sequence is drawn randomly from background. Let ηM
Sl be the av-

erage number of occurrences of motif S if the sequence is drawn randomly
from background. nS

S is calculated by summing over ηS
Sl for every sequence

in the input sequence set. nM
S is calculated by summing over ηM

Sl for every
sequence in the input sequence set. In fact, we do not need and cannot afford
to do resampling for every possible length. Because most promoter regions
in yeast are less than 1500 bp, we only do this process for length l ∈ L,
L = {50, 100, 150 · · · 1450, 1500}. If l is not in L, we round it to the nearest
length in L.

12.2.2 Results

In Harbison et al. [11], a large set of transcription factors’ genome-wide loca-
tion analysis was conducted under several different conditions. Among those
factors, 81 factors have known DNA binding specificities documented in data-
bases (TRANSFAC, YPD, SCPD). Harbison et al. conducted 175 ChIP-chip
experiments for these 81 factors. We tested ICOPE on this set of 175 exper-
iments. For 76 of the 175 experiments and for 49 of the 81 factors, the most
significant consensus pattern reported by ICOPE match the corresponding
database record. Harbison et al. tested six other programs on their data. For
these factors with known binding specificities, the best program, MDScan, suc-
cessfully predicted 37 factors’ binding specificity in 59 of 175 experiments. In
addition, ICOPE made 135 predictions for those 175 experiments while MD-
Scan made 156 predictions. It is obvious that ICOPE has a higher accuracy.
The five other programs used by Harbison et al. can successfully predicted
only 20 to 33 of the factors’ binding pattern. Detailed information is given
in Table 12.1. A comprehensive result of ICOPE’s prediction on these 175
experiments and comparison with database record is given in Table 12.2.

We did a similar evaluation on a subset of the 81 transcription factors,
which contains 52 factors for which at least one program’s prediction matches
the known specificity. We dropped those that have only a database record but
have no program’s prediction matching the record for three reasons. First, the
database might have errors, although the chance is small. Second, the ChIP-
Chip experiment is rather noisy. Third, and the most important, transcription
factors may take effect only in certain specific condition. The condition under
which ChIP-Chip experiment is conducted might not be that exact condition.
So if none of the programs can predict the binding specificity, the condition
under which ChIP-Chip experiment is conducted might be incorrect. The re-
sult for this set of factors is given in Table 12.1 and summarized in Table
12.2.

As mentioned in section 12.2.1, ICOPE uses a very simple strategy to
combine the two p values. We find that such a strategy to combine those two
p values is much better than using one of the two p values alone. Using one p
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Table 12.1. Comparison of ICOPE with six other programs on a set of 52 factors
with database documented binding specificity.

FA KN I A C D K M N

Abf1 rTCAyTnnnnACGw + + + + + + +
Ace2 GCTGGT +
Aft2 AAAGTGCACCCATT + + + + + +
Azf1 TTTTTCTT +
Bas1 TGACTC + + + + +
Cad1 TTACTAA + + + + + +
Cbf1 rTCACrTGA + + + + + + +
Cin5 TTACrTAA + + + +
Fkh1 GGTAAACAA + + + + + + +
Fkh2 GGTAAACAA + + + + + + +
Gal4 CGGnnnnnnnnnnnCCG + + +
Gat1 GATAA + +
Gcn4 ArTGACTCw + + + + + + +
Gcr1 GGCTTCCwC + +
Gln3 GATAAGATAAG + + + +
Hap1 CGGnnnTAnCGG + + +
Hap3 CCAAT +
Hap4 YCNNCCAATNANM + + + + + +
Hsf1 TTCTAGAAnnTTCT + + + + + + +
Ino2 ATTTCACATC + + + + +
Ino4 CATGTGAAAT + + + + + + +
Leu3 yGCCGGTACCGGyk + + + + + +
Mac1 GAGCAAA + +
Mbp1 ACGCGT + + + + + + +
Mcm1 wTTCCyAAwnnGGTAA + + + + + +
Mot3 yAGGyA +
Msn2 mAGGGG + +
Nrg1 GGaCCCT + + + + + +
Pdr1 CCGCGG +
Pho4 cacgtkng + + + +
Put3 CGGnnnnnnnnnnCCG +
Rap1 wrmACCCATACAyy + + + + + +
Rcs1 AAmTGGGTGCAkT + + + + +
Reb1 TTACCCGG + + + + + + +
Rph1 CCCCTTAAGG +
Rpn4 GGTGGCAAA + + + + + + +
Sip4 yCGGAyrrAwGG + +
Skn7 ATTTGGCyGGsCC + + + + + +
Sko1 ACGTCA +
Stb5 CGGnstTAta + + +
Ste12 ATGAAAC + + + + + + +
Sum1 AGyGwCACAAAAk + + + + + +
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Sut1 CGCG + + + +
Swi4 CnCGAAA + + + + + + +
Swi6 CnCGAAA / ACGCGT + + + + + +
Tec1 CATTCy + +
Tye7 CAnnTG + + + + +
Ume6 wGCCGCCGw + + + + + + +
Xbp1 CTTCGAG +
Yap1 TTAsTmA + + + + +
Yap7 TTACTAA + + + + + +
Zap1 ACCCTAAAGGT + + +

FA = factor name, KN = known specificity, I = ICOPE, A = AlignACE, C =
CONVERGE, D = MDscan, K = Kellis et al., M = MEME, N = MEME c.

Table 12.2. Summary of Table 12.1

I A C D K M N

MA 49 30 31 37 20 33 31
Percent 1 60.5% 37.0% 38.3% 45.7% 24.7% 40.7% 38.3%
Percent 2 94.2% 57.7% 59.6% 71.2% 38.4% 63.5% 59.6%

MA = the number of factors for which each program’s prediction match the database
record. Percent 1 = MA/81, 81 is total number of factors with database documented
DNA binding specificity. Percent 2 = MA/52, 52 is number of factors with database
documented DNA binding specificity and with at least one program’s prediction
matching the database record.

value alone will miss some of the factors belonging to the other group. Figure
12.2 compares the results of considering different p values. As illustrated in
Figure 12.2, ICOPE M is the program that uses p value pM

S , and ICOPE S
is the program that uses p value pS

S . Both programs can correctly predict 36
factors’ DNA binding specificity. Seven factors (CAD1, GCR1, PUT3, RPH1,
STB5, XBP1, ZAP1) can be correctly predicted by ICOPE M and cannot be
correctly predicted by ICOPE S. Seven other factors (GAT1, HAP2, HAP3,
MSN2, SUM1, SUT1, TEC1) can be correctly predicted by ICOPE S and
cannot be correctly predicted by ICOPE M. ICOPE can correctly predict
DNA binding specificity for 49 factors whose DNA binding specificity can be
correctly predicted by either ICOPE M or ICOPE S. There is only one excep-
tion, HAP2. For this factor, both ICOPE M and ICOPE S make predictions.
ICOPE M gives a lower p value, but its prediction is incorrect, whereas the
prediction of ICOPE S is correct. So ICOPE takes the result of ICOPE M
and makes a mistake.

We sorted the ICOPE’s predictions on the 175 experiments based on the
p values given by ICOPE. The sorted results are given in Table 12.3. We
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Fig. 12.2. ICOPE has a significantly higher accuracy than both ICOPE M and
ICOPE S. In the rectangle are the 81 factors with known DNA binding specificity.
The black circle stands for the factors whose DNA binding specificity can be correctly
predicted by ICOPE M. The blue circle stands for the factors whose DNA binding
specificity can be correctly predicted by ICOPE S. The red curve stands for the
factors whose DNA binding specificity can be correctly predicted by ICOPE.

can see that the p value is a good indicator of whether the prediction is
reliable. ICOPE makes 39 predictions with log 10 p values less than −14,
among which 37 (95%) predictions are correct. ICOPE makes 23 predictions
with log 10 p values between −14 and −7, among which 18 (78%) predictions
are correct. ICOPE makes 73 predictions with log 10 p values between −7 and
−1.3, among which 21 (29%) predictions are correct. If the p value is very low,
as low as 10−14, the prediction is highly reliable. As the p value goes higher,
the prediction becomes less reliable.

Table 12.3. The p value given by ICOPE indicates the reliability of its prediction

p-value range N NC P (%)

log10 p ≤ −14 39 37 95%
−14 ≤ log10 p ≤ −7 23 18 78%
−7 ≤ log10 p ≤ −1.3 73 21 29%

N = number of predictions, NC = number of correct predictions, P (%) = percentage
of correct predictions

We run ICOPE on the 135 ChIP-chip experiment for 101 factors without
known DNA binding specificity. The predictions is given in Table 12.4. The re-
sult sorted by p value is given in Table 12.5. The program made 87 predictions
for these 135 experiment. Six of the predictions have very low p value (less
then 10−14). Based on the prediction accuracy on factors with known DNA
binding specificity, we estimate that these predictions may be highly reliable
(95% accurate). Sixteen predictions have very low p value (between 10−14 and
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10−7). Based on the prediction accuracy on factors with known DNA binding
specificity, we estimate that these predictions might have an accuracy of 78%.
The predictions with p value less than 10−7 are given in Table 12.4.

Table 12.4. The predictions made by ICOPE on factors with unknown DNA bind-
ing specificity (only predictions with a p value lower than 10−7 are shown)

Experiment Prediction p value

FHL1 YPD TGTNNGGRT −54.0149
FHL1 RAPA TGTNNGGRT −53.7184
FHL1 SM TGTNNGGRT −49.6275
RDS1 H2O2Hi CGGCCG −15.7688
SFP1 SM AYCNNTACA −15.6778
GAT3 YPD GCTNAGCS −14.4517
DIG1 Alpha YGTTTCA −13.1135
YFL044C YPD TANNNATWTA −12.0532
PHD1 YPD AGGCAC −11.735
SNT2 YPD GGSGCTA −11.4775
STB1 YPD CGCSAAA −11.2591
HOG1 YPD ACNNNNNCRCAC −10.9645
DAT1 YPD GCTNAGCS −9.77751
RDS1 YPD CGGCCG −9.60608
MET4 YPD CACGTG −9.46732
SPT23 YPD TTAWTAA −9.42808
DIG1 BUT90 YGTTTCA −8.70506
MET4 SM CACGTG −8.61795
YDR026c YPD TASCCGG −8.54541
MGA1 H2O2Hi CGGCCG −8.50797
RGM1 YPD GCTNAGCS −7.38143
YDR520C YPD CCGSCGG −7.17487

Because we did the resampling process in advance for almost every possi-
ble length of input sequence and stored the result in disk, ICOPE runs pretty
fast. For an input sequence set with 10 sequences and average length of 500,
about 1.5 minutes is required. For an input sequence set with 100 sequences
and average length of 500, about 9 minutes is required.

ICOPE is implemented using C++ programming language and a Web
interface is implemented using PHP. The URL for the Web interface is at
http://ctb.pku.edu.cn/˜xcfeng/icope/.

Supplementary information, including data and omitted results are avail-
able at http://ctb.pku.edu.cn/˜xcfeng/icope/supp/.



260 Xiucheng Feng, Lin Wan, Minghua Deng, Fengzhu Sun, and Minping Qian

12.3 Obtaining the TFBS Sample Set

Although ICOPE’s prediction on transcription factors’ DNA binding speci-
ficity has a high accuracy, the sequences generated by ICOPE are typical
sequences of the TFBS. Real TFBS sample sequences should be obtained for
further statistical analysis by MDD. The technique to obtain the TFBS sam-
ple set is described as follows.

Let C be the collection of overrepresented short sequences generated from
ICOPE. Align each short sequence in C, to all the sample sequences men-
tioned in step A of IBSS, with a limited number of mismatches, and highlight
the aligned part. Then get all the connected segments that are highlighted,
and denote the set of all segments by DO. After multiple alignment on all
segments in DO, we choose the aligned consensus sequences as the TFBS
sample set, denote by D. Gaps are usually contained in sequences of D since
insertions are kept from multiple alignment.

12.4 Modeling the TFBS

Because no statistical models for TFBSs are assumed in ICOPE, it is not
possible to test whether there are some binding sites and where they are for
a given sequence.

The weight matrix model (WMM) introduced by Staden [20] is a more ac-
curate representation, but the weight matrix assumes independence between
different positions in the motif. For some transcription factors, it has been
shown that there are strong dependencies between different positions of their
binding motif [28]. So weight matrix is not a good choice to represent such
transcription factors’ DNA binding specificity, although they are good enough
for other transcription factors. The weight array model (WAM) [27], which was
applied by Zhang and Mar, could detect dependencies between adjacent posi-
tions by using first-order (nonstationary) Markov models. Higher-order WAMs
can be used to model higher-order dependencies in the TFBS sequences, but
there are often insufficient data available to estimate the exponentially in-
creasing number of parameters in such models [28].

Recently, some new methods have been developed to model such long
distant dependence. A maximal dependence decomposition (MDD) [3] based
model, with the insertion, denoted by O, added in as a symbol, is developed
for the TFBS. The MDD model has the advantage of capturing and modeling
the dependencies between different positions in the TFBS. The main idea of
MDD is that it splits up the training data to fit different WMMs to suit-
ably define subsets of the data based on most dependent positions, which are
measured by the χ2 test.
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12.4.1 Using χ2 Test to Measure Dependence Between Positions

For a given TFBS sample set D obtained from section 12.3, we use the χ2 test
to measure dependencies between positions of the sequences in D. Suppose
D contains N aligned sequences of length k. For any given position i and j
(1 ≤ i, j ≤ k, i 
= j), and for a given nucleotide b (b ∈{A,C,T,G,O}),1 we
use the χ2(Cib, Xj) test, to measure the dependency between the consensus
indicator variable, Cib (1 if the nucleotide b at position imatches the consensus
at i, 0 otherwise) and the nucleotide indicator Xj identifying the nucleotide
at position j.

For a given position i, nucleotide b, and position j, we have

Cib = 0 Cib = 1
Xj = A nA0 nA1 nA·
Xj = C nC0 nC1 nC·
Xj = G nG0 nG1 nG·
Xj = T nT0 nT1 nT ·
Xj = O nO0 nO1 nO·

n·0 n·1

where
nc· =

∑
t=0,1

nct, c ∈ {A,C,G, T,O},

n·t =
∑

c∈{A,C,G,T,O}
nct, t = 0, 1,

∑
c∈{A,C,G,T,O}

t=0,1

nct = N.

Define
p̂c =

nc·
N
, c ∈ {A,C,G, T,O},

q̂t =
n·t
N
, t = 0, 1.

We use the statistic

χ2(Cib, Xj) =
∑

c∈{A,C,G,T,O}
t=0,1

(nct −Np̂cq̂t)2

Np̂cq̂t
.

χ2(Cib, Xj) obeys the (2 − 1) × (5 − 1) = 4 d.f. χ2-distribution [5], and a
significant χ2 value should be great than 13.3 at the relatively level of p < .01,
indicating a significant dependent position in the TFBS.

Based on the χ2 test, we find that some cases of the transcription factors’
binding motif show strong dependencies between different positions.
1 O stands for one gap.
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12.4.2 Maximal Dependence Decomposition (MDD)

For a given TFBS sample sequence set D, the MDD model is to build a
conditional probability model, based on the significant dependence between
positions (both nonadjacent and adjacent dependencies are considered), in-
stead of the unconditional WMM probabilities model [3].

The algorithm of the MDD model is described as follows: For a given
sequence set D, assume that it contains N aligned sequences of length k.

1. Check whether there exist i, j, b that satisfy χ2(Cib, Xj) ≥ 13.3, that is,
whether there exist significant dependent positions. If yes, continue to the
next step; otherwise, stop.

2. For each position i and nucleotide b, calculate Sib =
∑

j �=i χ
2(Cib, Xj),

which measures the amount of dependencies between the variable Cib and
the nucleotides at the remaining positions. Choose i1 and b1 that maximize
Sib,

Si1b1 = max
i,b

Sib.

3. Divide D into two subsets based on whether or not position i1 has nu-
cleotide b1. Check whether each of the two subsets contains enough se-
quences to estimate WMM frequencies for further subdivision. If each of
the two subsets contains enough sequences to estimate WMM frequencies,
we divide set D into Di1b1 and Di1b1 . Di1b1 contains all the sequences that
has nucleotide b1 at position i1, and Di1b1 contains no nucleotide b1 at
position i1.

4. Repeat steps 1, 2, and 3 on the subsets Di1b1 and Di1b1 , and from then
on, position i1 will be not considered.

The MDD model splits the set D into subsets and constructs a binary tree
structure based on the above algorithm. We use the WMM model to describe
each leaf of subsets. Figure 12.3 shows the procedures for splitting data set D
of TF-YAP7.

To make the algorithm clearer, we give an example of YAP7. We use ChIP-
chip data from [11] of YAP7 under the condition H2O2Lo. ICOPE is used to
predict the binding sites of YAP7. ICOPE predicts 100 words with p ≤ 10−5.
We highlight the 123 ChIP-chip selected sequences that can be aligned, with
no mismatch, by the 100 words; 117 (95.12%) of the 123 ChIP-chip selected
sequences could be highlighted. We then obtain all the 598 sequence seg-
ments that have been highlighted. The 598 sequence segments are aligned by
ClustalW [24] with its default parameters, and the most consensus aligned
sequences of 10 bp length from 598 sequence segments are picked out as the
TFBS sample set D.
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Fig. 12.3. Tree result of YAP7. D, D1, D0, D01, D00 stand for the node names of
tree. The number in the parentheses behind the node name stands for the number of
sequences. The annotation on the edge represents how to split the set of the parent
node into two subset. For example, D splits into D1, and D0, based on position 5,
has or has no O. O stands for gap, ! stands for NOT.

Using χ2 test, we find significant dependencies between the positions of
the sequences in D. The TFBS sample set D is used to train the MDD model,
and the results are summarized in Figures 12.3 and 12.4. Figure 12.3 shows
the binary tree constructed by the MDD model. From it we learn that other
positions have significant dependencies on whether position 5 has a gap. Con-
ditional on position 5 having no gap, the other positions have significant de-
pendencies on whether position 10 has C. Figure 12.4 shows the sequence logo
[7] plots of the data set in each node of the binary tree in Figure 12.3. From
the sequence logo can be seen strong dependencies between the positions of
YAP7.

12.4.3 Statistical Model and Discrimination

The MDD model splits the training data set into subsets and constructs a
binary tree based on the most significant dependent positions. Any sequences
could find a corresponding unique leaf on the binary tree. For each leaf l, the
MDD model assigns a probability Pmdd(L = l) for reaching this leaf from the
root. Separate WMM models are estimated for each subset on the leaf of the
binary tree. For a given leaf l, it has weight matrix Wl, and W l

ib stands for
the frequency of nucleotide b in position i on leaf l.

Suppose that we have a sequence S = s1s2 . . . sk, and it is on leaf l from
the MDD model. Condition on leaf l, sequence S has the probability

P (S = s1s2 . . . sk|L = l) =
∏

i=1,2,...,k

W l
isi
.
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Fig. 12.4. Sequence logo plots for TFBS of YAP7. Each of the plots corresponds
to the node of the binary tree in Figure 12.3. The positions dependencies can been
seen from sequence logo plots.
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From the MDD model, the probability of obtaining such a sequence S is

Pmdd(S = s1s2 . . . sk) = Pmdd(L = l) · P (S = s1s2 . . . sk|L = l).

Next we give a discriminant method to identify whether or not a sequence,
S = s1s2 . . . sk, is a transcription factor’s binding sides. Let Ω = 1 indicate
that a given sequence is a TFBS, and Ω = 0 otherwise. Suppose that for any
sequence S with length k,

Pmdd(S|Ω = 1) ∼ N(μ1, σ1),

Pmdd(S|Ω = 0) ∼ N(μ2, σ2).

From [8], the threshold μ∗ is derived as

μ∗ =
μ1σ2 + μ2σ1

σ1 + σ2
.

The discriminant rule for S is{
S is TFBS, when Pmdd(S) > μ∗,

S is not TFBS, when Pmdd(S) ≤ μ∗.

We use the sequence set D generated from the procedures described in
section 12.3 as the positive sample, and randomly select the same number of
sequences with the same length from background sequences as our negative
sample, denoted as B. We use the positive sequences to train the MDD model,
and use both the positive and negative sequences to estimate the threshold
μ∗ for further discrimination.

To test the efficiency of the MDD model, we use the 598 TFBS sample
sequences of YAP7 described in section 12.4.2 as our positive sample, and
obtain the negative sample B from the background sequences. We use 10-fold
cross-validation to evaluate the MDD model. To compare with the WMM
model, we also use the same positive and negative sample to do the 10-fold
cross-validation on the WMM model. Figure 12.5 gives the receiver operating
characteristic (ROC) curve of the results, which shows their performances in
terms of TPr and FPr, where TPr is the sensitivity of a classifier measuring
the fraction of positive cases that are classified as positive, and FPr is the false
alarm measuring the fraction of incorrectly classified negative cases: TPr =

TP
TP+FN = TB

Pos , FPr = FP
TN+FP = FP

Neg .
From Figure 12.5, we learn that the MDD model outperforms the WMM

model because the MDD model can capture and model the dependencies
between positions while the WMM model cannot.
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Fig. 12.5. The ROC curve of the MDD model and the WMM model of YAP7.
The X-axis is FPr (false positive rate), and the Y -axis is TPr (true positive rate).

12.5 Discussion

The identification of transcription factor binding sites by computational meth-
ods is an essential step in understanding the gene regulatory network. Al-
though many methods have been developed to identifying TFBSs, they gen-
erally have relatively low accuracy especially when the positions of the TFBS
are dependent. Motivated by this challenge, an efficient algorithm, IBSS, is
developed for the identification of TFBSs. Our results indicate that IBSS out-
performs other approaches with a relatively high accuracy.

In this study, the background model of ICOPE is only based on resam-
pling. The binominal and Poisson distributions are only an approximation.
Further study on the background model may help to improve the accuracy of
ICOPE.
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Combinatorial regulation is an essential feature of transcriptional regula-
tion. Identification of TFBSs provides the materials for further understanding
the combinational regulation. TFs usually form a protein complex to regulate
the gene, so the distance between the TFBSs of the cooperative TFs should
be limited; sometimes the TFBSs of the cooperate TFs may even overlap.
This biological knowledge gives us a clue to find out the cooperative TFs by
the distances of TFBS pairs.

An inverse problem of TFBS finding is to detect the protein motif se-
quences that bind to the DNA sequences. A natural question is to ask whether
or not the protein motif sequences that bind to the common binding sites on
DNA sequences are conserved. With knowing the TFBSs of many TFs, the
protein sequences of the TFs that share common binding sites on the DNA
sequences may be used for further statistical analysis.

On the statistical model of TFBSs, the MDD-based model is used instead
of the traditional WMM-based model. The advantage of the MDD model is
that it considers the position dependencies of the TFBS. In the future, a more
accurate model of TFBSs should be developed.
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The Stochastic Model and Metastability of the
Gene Network

Yuping Zhang and Minping Qian

Summary. There are large numbers of molecules, including proteins, DNA, RNA
and so on, with complicated motions in the living cells. The interactions between
them constitute molecular networks that carry out various cellular functions. These
molecular networks should be dynamically stable against various fluctuations that
are inevitable in the living world. For such large complex systems, what is the mecha-
nism to regulate them functioning reliably and stably? Many works have contributed
to this problem, from the dynamic point of view or the probabilistic point of view. In
this chapter, we address this issue from the metastability point of view of a dynamic
system perturbed by noises.

We model the network regulating the cell cycle of the budding yeast by a system
of differential equations with noises, and explain how such a system can lead to a
discrete model, a finite stationary Markov chain, which well matches the observation
by biologists.

A continuous dynamic model of a system of ODEs can reasonably model the
basic average dynamic behaviour of the interacting system of particles. But a dis-
crete model on n particles of “on” and “off” type meets the biological observation
well. We explain how the dynamic system can lead to a discrete state Markov chain
on {0, 1}n, by metastability theory, with the behaviour well matching the biological
observation.

13.1 Introduction

Numerous molecules, including proteins, DNA, RNA, and small molecules,
have complex interactions in the cell. The emergence and development of many
high-throughput data-collection techniques, such as microarrays [62], protein
chips or yeast two-hybrid screens [84], automated reverse-transcriptase poly-
merase chain reaction (RT-PCR) and two-dimensional (2D) gel electrophoresis
help us to simultaneously obtain the expression profiles of a cell’s components
at any given time and find how and when these molecules interact with each
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other. It presents an opportunity to construct the real gene networks from
experimental observation. Gene network inference is a hot research field of
contemporary molecular biology.

Complex interactions between the cell’s numerous constituents determine
not only the structure of biological networks but also most other biological
characteristics, such as complexity, versatility, dynamics, and robustness [6–
10, 12, 41, 42]. Another major challenge of contemporary molecular biology
is to systematically investigate the complex molecular processes underlying
biological systems—how these molecules and their interactions determine the
functions of all kinds of complex living systems, as well as other system-scale
biological characteristics of cellular networks. Much research in network biol-
ogy indicates that cellular networks, such as an organism’s metabolic network
and genetic interaction network, are driven by self-organizing processes and
governed by universal laws [14–21].

13.1.1 From Experiment Data to Gene Network

Increment and accumulation of biological data, such as expression profiles
data, CHIP-chip data, and DNA sequences data, make it possible to infer
gene network and understand the functioning of organisms on the molecu-
lar level. One should select candidate genes that show significant expression
changes, because large amounts of data can be simultaneously routinely gener-
ated by large-scale gene screening technologies, such as mRNA hybridization
micro-arrays and RT-PCR. To identify these genes of interest, the simplest
methods are straightforward scoring methods, according to whether a signifi-
cant change exists at one or all conditions or whether the fluctuation pattern
shows high diversity according to Shannon entropy [63].

Besides selecting genes that show significant expression changes, we some-
times further need to find coexpression genes, assuming they are caused by
co-regulation. We can classify gene expression patterns to find coexpression
genes for exploring shared functions and regulations. Many clustering methods
can be used to accomplish classification. Before clustering the gene expression
data, we should choose the distance measure first, which is used to quantify the
difference in expression profiles between two genes, and may be as important
as the choice of clustering algorithm. Different distance measures emphasize
different regularities presented within the data. Distance measures can be di-
vided into at least three classes, according to different types of regularities in
the data [58]:

1. Similarity according to positive correlations, which may identify similar
or identical regulation
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2. Similarity according to positive and negative correlations, which may
also help identify control processes that antagonistically regulate downstream
pathways

3. Similarity according to mutual information, which may detect even more
complex relationships.

When the distance measure has been chosen, one can choose the prefer-
able clustering method. Many clustering algorithms have been proposed. As
a whole, clustering algorithms can be divided into hierarchical and nonhier-
archical methods. Hierarchical methods return a hierarchy of nested clusters,
where each cluster typically consists of the union of two or more smaller clus-
ters. Nonhierarchical methods typically cluster N objects into K groups in
an iterative process until certain goodness criteria are optimized [58], such as
the following:

1. The K-means algorithm [2] can be used to partition N genes into K
clusters, where K is predetermined by the user (see Tavazoie et al [64] for an
application to yeast gene expression).

2. The self-organized map (SOM) method is closely related to K-means
and has been applied to mRNA expression data of yeast cell cycles as well as
hematopoietic differentiation of four well-studied model cell lines [65].

3. The expectation-maximization (EM) algorithm [66] for fitting a mixture
of Gaussians (also known as fuzzy K-means; [3]) is very similar to K-means,
and has been used by Mjolsness et al [67] to cluster yeast data.

4. Autoclass is also related to EM, in that a mixed probability distribution
has been found. In addition, Bayesian methods have been used to derive the
maximum posterior probability classification, and the optimum number of
clusters [4].

Different clustering methods can work well in different applications. It’s
hard to say which clustering method is the best.

Clustering of gene expression data can only help elucidate the regulation
(or co-regulation) of individual genes, not what is regulating what. The even-
tual goal of gene network inference is to understand the integrated behaviour
of networks of regulatory interactions—construct a coarse-scale model of the
network of regulatory interactions between the genes. To deduce the unknown
underlying regulatory network from a large amount of data, one requires in-
ference of the causal relationships among genes, that is, reverse engineering
the network architecture from its activity profiles [58].

Reverse engineering is the process of elucidating the structure of a system
by reasoning backward from observations of its behaviour [59]. In reverse en-
gineering biological networks, a complex genetic network underlies a massive
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set of expression data, and the task is to infer the connectivity of the genetic
circuit. Many methods can be used, such as directed graph, Bayesian network,
and Boolean network and their generalizations; ordinary and partial differen-
tial equations; qualitative differential equations; stochastic equations; and so
on.

Complexity of the model used to infer a gene network determines the num-
ber of needed data points, such as the data requirement of a fully connected
Boolean network model, O(2N ), while a continuous fully connected model
with additive restrictions requires at least N + 1 data points [85, 86].

Different models can help us to analyse the biological systems at different
levels—from the very coarse and abstract to the very concrete. One can choose
models like Boolean networks to handle large-scale data in a global fashion
with examination of very large systems (thousands of genes), or choose fine-
grained quantitative stochastic models, such as full biochemical interaction
models with stochastic kinetics in Arkin et al [60], to analyse biological sys-
tems in the very concrete scale.

13.1.2 Topological Properties

Interactions between numerous molecules in cells produce various types of
molecular interaction networks including protein-protein interaction,
metabolic, signaling, and transcription-regulatory networks. Most of these net-
works are proved to have system-scale behaviour.

In 1960, Paul Erdös and Alfrëd Rënyi [24] initiated the study of the math-
ematical properties of random networks. The Erdös-Rënyi (ER) model of a
random network starts with N nodes and connects independently each pair
of nodes with probability p. The node degrees follow a Poisson distribution,
which indicates that most nodes have roughly the same number of links, ap-
proximately equal to the network’s average degree. The clustering coefficient
[CI = 2nI/k(k− 1), where nI is the number of links connecting the kI neigh-
bours of node I to each other ] is independent of a node’s degree. The mean
path length (< l >, which represents the average over the shortest paths
between all pairs of nodes and offers a measure of a network’s overall navi-
gability ) is proportional to the logarithm of the network size < l >∼ logN ,
which indicates that it is characterized by the small-world property. Recently,
a series finding indicates that many real networks share common architectural
features that deviated from the random network. The most striking property
is that, in contrast to the Poisson degree distribution, for many real networks,
from social networks to cellular networks [15–19, 21, 25–30], the number of
nodes with a given degree follows a power law. That is, the probability that
a chosen node has exactly k links follows P (k) ∼ kγ , where γ is the de-
gree exponent, with its value for most networks being between 2 and 3 [23].
Networks with a power degree distribution are called scale-free [23, 32, 33],
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and are highly nonuniform; most of the nodes have only a few links, and a
few nodes have a very large number of links. Scale-free networks with de-
gree exponents 2 < γ < 3, a range that is observed in most biological and
nonbiological networks, are ultrasmall [31, 33], with the average path length
following < l >∼ log logN , which is significantly shorter than logN , which
characterizes random small-world networks. Gene duplication is likely to be a
key mechanism for generating the scale-free topology [14, 34–40].

In contrast to the scale-free features of complex networks emphasizing the
organizing principles that determine the network’s large-scale structure, the
concept of modularity is introduced to characterize specific networks. It starts
from the bottom and looks for highly representative patterns of interactions.
Small regulatory interaction patterns, called subgraphs and motifs, occupy
distinct positions in and between organs, offering insights into their dynamic
role in information processing [48]. Milo et al [49] identified small subgraphs
(motifs) that appear more frequently in a real network than in its randomized
version. In general, modularity refers to a group of physically or functionally
linked molecules (nodes) working together to achieve a different function [6,
41–43]. Biological functions are carried by discrete functional modules. For
example, temporally co-regulated groups of molecules are known to govern
various stages of the cell cycle [44–46], or to convey extracellular signals in
bacteria or the yeast pathways. Natural selection aims to maintain function,
which, however, is rarely carried by single components, but rather by a net-
work of interacting subunits. Therefore, we should see a tendency toward the
evolutionary conservation of subnetworks that are capable of carrying biolog-
ical function. Motifs aggregate into motif clusters, which is likely a general
property of most real networks [47, 49]. However, modularity and scale-free
property seem to be contradictory. The definition of modules seems to indicate
the existence of some groups of nodes relatively isolated from the rest of the
system, whereas in a scale-free network hubs are in contact with a high frac-
tion of nodes, which makes the existence of relatively isolated modules unlikely
[14]. Because of the coexistence of clustering and hubs, topological modules
are not independent, but rather hierarchical [43, 51]. In fact, many real bio-
logical systems, including all examined metabolic [51] and protein interaction
networks, demonstrate that a hierarchical relationship among modules uni-
versally exists.

13.1.3 Robustness and Dynamics

Networks with power-law distributed degrees are robust to random perturba-
tions. Upon removal of randomly chosen nodes, the mean distance (network
diameter) between network nodes that can still be reached from each other in-
creases only very little, while in graphs with other degree distribution, network
diameter can increase substantially [52]. Cellular networks can be subject to
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random errors as a result of mutations or protein misfolding, as well as harsh
external conditions eliminating essential metabolites [53]. Many real complex
systems have a key feature of robustness, which refers to the system’s ability
to maintain relatively normal behaviour responding to changes in the exter-
nal conditions or internal organization [14]. Jeong et al found that metabolic
network graphs with power-law distributed degrees are robust against pertur-
bations [15]. A considerable amount of attention has been paid to the quanti-
tative modeling and understanding of the budding yeast cell cycle regulation
[21, 25, 68–77], and similar robust results have been obtained for the protein
network of yeast as well [21, 25].

On a molecular level, functions in time, that is, causality and dynamics,
are manifested in the behaviour of complex networks. The dynamics of these
networks resemble trajectories of state transitions, which correspond to tem-
poral gene expression. The concept of attractors is what really lends meaning
to these trajectories; that is, the attractors are the high-dimensional dynamic
molecular representations of stable phenotypic structures such as differenti-
ated cells and tissues, either healthy or diseased [1, 55]. In higher metazoa,
each gene or protein is estimated on average to interact with four to eight other
genes [56], and to be involved in ten biological functions [57]. The global gene
expression pattern is therefore the result of the collective behaviour of indi-
vidual regulatory pathways. In such highly interconnected cellular signaling
networks, gene function depends on its cellular context; thus understanding
the network as a whole is essential [58].

One available method to research the principles of network behaviour is to
radically simplify the individual molecular interactions, and focus on the col-
lective outcome. Kauffman [54] represented Boolean networks, in which each
gene is considered as a binary variable (either ON or OFF) and regulated by
other genes through logical or Boolean functions [61]. Even the construction of
Boolean network is very simple; the network behaviour is already extremely
rich [1]. Many useful concepts naturally emerge from such a simple math-
ematical model. Take, for example, the budding yeast cell cycle regulation
system. Li et al [70] introduced a deterministic Boolean network [54] model
and investigated its dynamic and structural properties. Their main result is
that the network is both dynamically and structurally stable. The biological
stationary state is a big attractor of the dynamics; the biological pathway is a
globally attracting dynamic trajectory. These properties are largely preserved
with respect to small structural perturbations to the network, for example,
adding or deleting links.

Boolean networks provide a useful conceptual tool for investigating the
principles of network organization and dynamics. We can study the role of
various constraints on global behaviour in terms of network complexity, sta-
bility, and evolvability. Investigations into abstract models will help us under-
stand the cybernetic significance of network features, and provide meaningful
questions for targeted experimental exploration.
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13.2 Discrete Stochastic Model

As referred to in section 13.1.3, Li et al [70] introduced a deterministic Boolean
network model and investigated its dynamic and structural properties. How-
ever, one crucial point left unaddressed in their study is the effect of stochas-
ticity or noise, which inevitably exists in a cell and may play important roles
[78]. We investigated the stochastic effect on the deterministic network model
of Li et al [79]. We found that both the biological stationary state and the
biological pathway are well preserved under a wide range of noise level. When
the noise is larger than a value of the order of the interaction strength, the
network dynamics quickly become noise dominating and lose their biological
meaning. In Li et al, six attractors without biological meanings are produced.
Our result indicates that six other attractors without biological meanings are
unstable under a real, noisy environment. All states converge to the most
stable state (stationary G1 state—the attractor with biological meaning in
[70]).

Cln3

SBF MBF

Clb5Cln2

Clb2Cdh1 Mcm1/SFF

Sic1

Swi5Cdc20/Cdc14

Cell S ize

Fig. 13.1. The cell-cycle network of the budding yeast. Each node represents a
protein or a protein complex. Arrows are positive regulation, “T”-lines are negative
regulation, dotted “T”-loops are degradation.

In our model, the 11 nodes in the network shown in Fig. 13.1, namely,
Cln3, MBF, SBF, Cln2, Cdh1, Swi5, Cdc20, Clb5, Sic1, Clb2, and Mcm1,
are represented by variables (s1, s2, ..., s11), respectively. Each node i has only
two values: si = 1 and si = 0, representing the active state and the inactive
state of the protein i, respectively. Mathematically we consider the network
evolving on the configuration space S = {0, 1}11; the 211 = 2048 “cell states”
are labeled by {n = 0, 1, ..., 2047}. The statistical behaviour of the cell state
at the next time step is determined by the cell state at the present time
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step. That is, the evolution of the network has the Markov property [5]. The
time steps here are logic steps that represent causality rather than actual
times. The stochastic process is assumed to be time homogeneous. Under
these assumptions and considerations, we define the transition probability of
the Markov chain as follows:

Pr(s1(t+ 1), ..., s11(t+ 1)|s1(t), ..., s11(t))

=
11∏

i=1

Pr(si(t+ 1)|s1(t), ..., s11(t)), (13.1)

where

Pr(si(t+ 1) = σi|s1(t), ..., s11(t)) =

exp(β(2σi − 1)
∑11

j=1 aijsj(t))

exp(β
∑11

j=1 aijsj(t)) + exp(−β∑11
j=1 aijsj(t))

,

if
∑11

j=1 aijsj(t) 
= 0, σi ∈ {0, 1}; and

Pr(si(t+ 1) = si(t)|s1(t), ..., s11(t)) =
1

1 + e−α
, (13.2)

if
∑11

j=1 aijsj(t) = 0. We define aij = 1 for a positive regulation of j to
i and aij = −1 for a negative regulation of j to i. If the protein i has a
self-degradation loop, aii = −0.1. The positive number β is a temperature-
like parameter characterizing the noise in the system [80]. To characterize the
stochasticity when the input to a node is zero, we have to introduce another
parameter α. This parameter controls the likeliness for a protein to maintain
its state when there is no input to it. Notice that when β, α → ∞, this model
recovers the deterministic model of Li et al [70]. In this case, they showed
that the G1 state (n = 68) is a big attractor, and the path 1092 → 836 →
964 → 896 → 904 → 907 → 155 → 51 → 55 → 53 → 116 → 100 → 68 is a
globally attracting trajectory. Our study focuses on the stochastic properties
of the system.

We first study the property of the biological stationary state G1 and define
an “order parameter” as the probability for the system to be in the G1 state,
πG1. Plotted in Fig. 13.2A is the value of the order parameter as a function
of the control parameter β. At large β (low “temperature” or small noise
level), the G1 state is the most probable state of the system and πG1 has a
significant value. (Note that for a finite α there are “leaks” from the G1 state
and the maximum πG1 is less than 1.) When β is lowered, one observes a
sharp transition at around βc ≈ 1.1 where πG1 drops to a very small value,
indicating a “high temperatures” phase in which the network dynamics cannot
converge to the biological steady state G1. The system, however, is rather
resistant to noise. The transition “temperature” is quite high—the value of
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A

B

Fig. 13.2. The probability of the stationary G1 state and the biological pathway.
(A) The order parameter πG1 as a function of β. (B) The sum of the probability for
the states on the bio-pathway with and without G1 being included.

βc ≈ 1.1 implies that the system will not be significantly affected by noise
until a fraction of e−1.1/(e1.1 + e−1.1) ≈ 0.1 of the updating rules is wrong.

We next study the statistical properties of the biological pathway of the
cell-cycle network. In Fig. 13.2B, we plot the probability for the system to be
in any of the biological states along the biological pathway, as a function of β.
We also plot the same probability with the G1 state excluded. One observes
a similar transition as before. The jump of the probability of the states along
the biological pathway in the low temperature phase is due to the fact that
in this phase the probability flux among different states in the systems is
predominantly the flow along the biological pathway. To visualize this, we
show in Fig. 13.3 an example of the probability flux among all 2048 states.
Each node in Fig. 13.3 represents one of the 2048 states. The size of a node
reflects the stationary distribution probability of the state. If the stationary
probability of a state is larger than a given threshold value, the size of the
node is in proportion to the logarithm of the probability. Otherwise, the node
is plotted with the same smallest size. The arrows reflect the pure probability
flux (only the largest flux from any node is shown). The probability flux is
divided into seven grades, which are expressed by seven colors: light-green,
canary, goldenrod, dandelion, apricot, peach and orange. The warmer the
color is, the wider the arrow is, and the larger the probability flux. The width
of an arrow is in proportion to the logarithm of the probability flux it carries.
The arrow representing the probability flux from the stationary G1 state to
the excited G1 state (the start of the cell-cycle) is shown in dashed lines. One
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Fig. 13.3. The probability flux. For a node, only the largest flux from it is shown.
The nodes on the biological pathway are denoted with different colors: purple, the
stationary G1 state; blue, the other G1 states; olive-green, S state; dandelion, G2
state; and red, M states. All other states are noted in normal green. The simulations
were done with α = 5 and β = 6.

observes that once the system is “excited” to the start of the cell cycle process
[ here by noise (α) and in reality mainly by signals like “cell size”, ] the system
will essentially go through the biological pathway and come back to the G1
state. Another feature of Fig. 13.3 is that the probability flux from any states
other than those on the biological pathway is convergent with the biological
pathway. Notice that this diagram is similar to the Fig. 2 of [70]. For β < βc,
this feature of a convergent high flux bio-pathway disappears.

We also define a “potential” function and study the change of the “poten-
tial landscape” as a function of β. Specifically, we define

Sn = − log πn = βEn, (13.3)

where En is the pseudo-energy defined by

En = − log πn

β
. (13.4)

Fig. 13.4 shows four examples of ΔSn = Sn − S0 distribution, where the
reference potential S0 in each plot is set as the highest potential point in the
system.

One observes that far from the transition point (β = 0.01, Fig. 13.4A),
the potential values are high (around −4), and the landscape is flat. Near
to but below the transition point (β = 0.6, Fig. 13.4B), some local minima
(blue points) become more pronounced, but the landscape still remains rather
flat. We notice that these minimum points do not correspond to the biological
pathway. Right after the transition point (β = 1.5, Fig. 13.4C), the system
quickly condenses into a landscape with deep valleys. The state with the lowest
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Fig. 13.4. The “potential” landscape of the system before and after the transition.
(A) β = 0.01, (B) β = 0.6, (C) β = 1.5, (D) β = 6.0, all for α = 5. The color code
gives the relative value of the potential function.

potential value corresponds to the stationary G1 state. A linear line of blue
dots from up-left to down-middle corresponds to the biological pathway, which
forms a deep valley. Some deep blue dots out of the biological pathway are
local attractors in [70]. Notice that although their potential values are low,
they attract only a few nearby initial states—all these points are more or less
isolated. After the transition point, the potential landscape does not change
qualitatively (β = 6, Fig. 13.4D). As β, α → ∞, the landscape becomes seven
deep holes, each corresponding to an attractor of the system [70].

13.3 Continuous Stochastic Model

We have introduced stochastic noises into the discrete model and have given
a microscopic statistical understanding of the system. The model is still an
“on-off” model, which do not match very well the real interaction between
genes and proteins. The Boolean approximation assumes highly cooperative
binding (very “sharp” activation response curves) or positive feedback loops
to make the variables saturate in ON or OFF positions. However, examining
real gene expression data, it seems clear that genes spend a lot of their time at
intermediate values; gene expression levels tend to be continuous rather than
binary. We need to introduce variables, characterizing the quantities of each
kind of gene and protein, which are crucial for the chance of binding.
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13.3.1 Interacting Particle System Model

Assume r kinds of proteins or genes in all. NM
i is the total number of the ith

kind of particle. Ni(t) (0 ≤ Ni(t) ≤ NM
i ) is the number of the ith kind of

particle that is active at time t. Given that there are currently N(t) particles
that are active in the system, as h→ 0, let

P (Ni(t+ h) −Ni(t) = k|N(t)) =

⎧⎨⎩
λi(N(t))h+ o(h) , if k = 1
μi(N(t))h+ o(h) , if k = −1

o(h) , if |k| > 1

which assumes only one increasing or decreasing event occurs in a very small
interval of time. While the probability is not exactly zero for more than one
event, it is negligible. The above conditions imply that

P (Ni(t+ h) −Ni(t) = 0|N(t)) = 1 − λi(N(t))h− μi(N(t))h+ o(h). (13.5)

We get a Markov chain to characterize the system. The transition probability
of the Markov process is

P (N(t+ h)|N(t)) =
r∏

i=1

P (Ni(t+ h)|N(t)). (13.6)

The biological observation can only indicate which kind of particles is
mostly active or inactive.

13.3.2 Approximate SDE for Particle Systems

Set Xi
t = Ni(t)

NM
i

, t ≥ 0. This system nests on [0, 1]r. Xt is the proportion of
all kinds of particles that are active or in a working situation at time t. Each
dimension Xi

t (i ∈ [1, r]) stands for the proportion of a kind of particles that
are active, which behaves like birth and death processes.

This can be approximated by a stochastic differential equation (SDE) tak-
ing the value [0, 1]r , where r is the number of kinds of particles.

dXi
t = ϕi(Xt)dt+ εΣn

i=1X
i
tdwt (13.7)

In our system, the attractors in the determinate model all are located at
the vertices of points (or sets).

The motion of the system moving from one to the other metastable state
can be approximated by the Markov chain on {0, 1}r, which is like the Markov
chain of the “on-off” model.

The biological path reported is the transition path between high-level at-
tractors, which can be reached in the real observation time scale.
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13.4 Metastability

Metastability was a phenomenon first reported in the physics literature.
Robert Schomann was the first to bring the subject to the attention of prob-
abilists, to discuss the metastable behaviour of the contact process and two-
dimensional Ising model. Chen, Feng, and Qian introduced the large deviation
method to solve this problem mathematically [80, 81].

Roughly speaking, metastability is a property of the system that persists
in its existing equilibrium when undisturbed (or only slightly disturbed) but
is able to pass to a more stable equilibrium when sufficiently disturbed.

13.4.1 Metastability of Markov Chain

Let the state space S = {ξ1, ..., ξN} be finite. Consider a family of Markov
chains on S with transition matrices {Pβ(ξ, η);β ∈ [0,∞]}, which satisfy

lim pβ(ξ, η) = p∞(ξ, η),∀ξ, η ∈ S (13.8)

as β → ∞ (the temperature → 0). Assume that the following limit exists:

lim
β→∞

− 1
β

log pβ(ξ, η) = Cξη, (13.9)

if p∞(ξη) = 0 (with convention that log 0 = −∞), then Cξη > 0. (13.10)

The family of Markov chains with transition probability matrices {Pβ(ξ, η);
β ∈ [0,∞]} is an exponential perturbation of the Markov chain with transition
probability matrix P∞. If {P∞(ξ, η)} is degenerate and irreducible, the sto-
chastic model becomes the deterministic dynamical system. In Qian et al [81],
the metastability of exponentially perturbed Markov chains is exploited by
the following theorems. Before describing the theorems, we first give some de-
finitions. For a subset K ⊂ S, the exit time of Markov chain {Xn} is denoted
by

τ(K) = inf{n;Xn /∈ K}, (13.11)

and the hitting time by

σ(K) = inf{n;Xn ∈ K}. (13.12)

Let {A1, ..., As} be the set of all recurrent classes of P∞. We assume that P∞
Ai

is aperiodic with every i ∈ {1, ..., s}, while P∞
Ai

is the transition probability
matrix restricted to recurrent class Ai. For each Ai, which corresponds to an
attractor of dynamical systems, define the attractive basin Bi to be

Bi = {ξ|P∞(σ(Ai) < ∞|X0 = ξ) > 0}). (13.13)
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Obviously ∪iBi = S. However, for the stochastic version we are considering
now, Bi∩Bj 
= ∅ is well possible. The behaviour of the Markov chain (such as
exit time, exit distribution, ergodicity, etc.) with very large β is determined
by Cξη. Define

T (Bi) = min{Σl
k=1Cξk−1ξk

|l ≥ 1, ξ0 ∈ Ai, ξ1, ξ2, ..., ξl−1 ∈ Bi, ξl /∈ Bi}
(13.14)

and for ξ ∈ Bi, η /∈ Bi, Tξη(Bi) can be similarly defined.

Theorem 1. Suppose that {Xn} is a Markov chain starting from ξ ∈ Bi.
i) Exit time

lim
β→∞

1
β

logEβ
ξ τ(Bi) = T (Bi). (13.15)

ii) Exit distribution: For η /∈ Bi,

lim
β→∞

−1
β

logP β(Xτ(Bi) = η|X0 = ξ) = −T (Bi) + Tξη(Bi), (13.16)

lim
β→∞

P β
ξ (Xτ(Bi) ∈ {η /∈ Bi : Tξη(Bi) = T (Bi)}) = 1. (13.17)

Theorem 2. If the initial state ξ ∈ Bi \ ∪j �=iBj, then τ(Bi)

Eβ
ξ τ(Bi)

converges in

distribution to the exponential random variable with mean 1, as β → ∞. In
particular, for δ > 0 small enough, we have

lim
β→∞

P β
ξ (e(T (Bi)−δ)β < τ(Bi) < e(T (Bi)+δ)β) = 1, (13.18)

lim
β→∞

−1
β

logP β
ξ (σ(ζ) > eδβ) ≥ δ,∀ζ ∈ Ai. (13.19)

Theorem 3. Suppose that {υi(ζ)} is the invariant measure of P∞
Ai

. For ζ ∈
Ai, ξ ∈ Bi \ ∪j �=iBj, 0 < δ < T (Bi), then

lim
β→∞

Eβ
ξ [

1
Nβ

Nβ∑
k=1

I{ζ}(Xk) − υi(ζ)]2 = 0, (13.20)

where I is the indicator function and Nβ is the integral part of e(T (Bi)−δ)β.

Demonstration of the above three theorems and more details can be found
in Qian et al [81]. The phenomena characterized by the theorems are collec-
tively called metastability. This kind of metastability can also be observed at
higher levels. In Qian et al the higher-level metastability is also described.
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The transition from one attractive basin to another attractive basin also ex-
hibits metastability. Some attractive basins constitute an attractive basin of
the second level. The Markov chain stays in a certain attractive basin of the
second level for an asymptotically exponential random time, and then enters
another attractive basin of the second level with a definite hitting probability.
Repeating this process, we can get attractive basins of the third level, and so
on.

Let us explain the metastability of the Markov chain with exponential
perturbation more distinctly. For β is infinite, the state space of the system
breaks down into several subspaces. Every state of each subspace never gets
to the other subspaces. In other words, every state can only evolute in its
own subspace. If β is large but finite, the system will be ergodic; the stable
states (or sets) become “metastable” states (or sets). Noise makes the at-
tractors stronger or weaker. How hard it is to leave one attractor and reach
another attractor is also affected by the noise level. The evolutional distance
between different states will become closer or further apart compared to the
situation when β is infinite. There is a hierarchical structure, like a pyramid,
between these metastability states. Considering a metastable state b, the time
that the system stays is in the order of eβT (b) (as β → ∞), where T (b) is a
constant. In the time less than the scale of eβT (b), the state b looks stable;
when the time scale is larger than eβT (b), b becomes unstable, and goes to a
metastable state of a higher level. That’s why we call b a metastable state.
As β → ∞, the system spends most of its time at the “most stable” (the
highest level of) metastable state(s), and spends less time in the next level
of metastable state(s). In a fixed short time scale, the system almost never
reaches the metastable states of low-enough levels [81]. Thus in biological ob-
servation these states never can be seen. When the system is going from a
metastable state to another metastable state, usually there is a most possible
path, with probability of almost 1 [81]. Therefore, in our observation we can
only see the system going on the most possible path.

In our example [79] (see Fig. 13.4), the states with cooler colors are
metastable states of higher levels. When β → ∞, the system almost stays at
the bluest state. Transition from one metastable state to another metastable
state goes along the transition path of Fig. 13.3 (arrows), with probability of
almost 1.

13.4.2 Metastability of SDE

We introduced the metastability theory of discrete Markov chains above. In
fact, a similar metastability theory of stochastic differential equations exists.
Suppose that we have a stochastic differential equation as follows:

dxt = b(xt)dt+ εdwt (13.21)
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where ε = γ/β and γ is independent of β. Then β → ∞ corresponds to
ε → 0. When ε → 0, the system become a deterministic dynamic system
with several attractors. These attractors can also move from one to the others
under random perturbation. Attractors (points) are not stable sets (points)
forever, but become metastable sets (states) at different levels. A hierarchical
structure like a pyramid between these metastability states also exists.

13.5 Conclusion

We introduced some stochastic models for the yeast cell cycle network. In a
discrete stochastic model, we have found that there exists a transition point
as the noise level is varied. With a lot of noise, the network behaves ran-
domly; it cannot carry out the ordered biological function. When the noise
level drops below a critical value, which is of the same order as the interac-
tion strength (βc ≈ 1.1), the system becomes ordered: the biological pathway
of the cell cycle process becomes the most probable pathway of the system
and the probability of deviating from this pathway is very small. So in ad-
dition to the dynamic and the structural stability [70], this network is also
stable against stochastic fluctuations. Metastability theory makes continuous
stochastic models connect with discrete stochastic models. By dint of metasta-
bility theory, we interpret why the simulation results of discrete models match
with real biological situations well. We used a pseudo-potential function to de-
scribe the dynamic landscape of the system. In this language, the biological
pathway can be viewed as a valley in the landscape [82, 83]. This analogy to
equilibrium systems may not be generalizable, but it would be interesting to
see if one can find more examples in other biological networks, which are very
special dynamic systems.
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Messenger RNA Information: Its Implication
in Protein Structure Determination and Others

Liaofu Luo and Mengwen Jia

Summary. Three problems on mRNA information in protein-coding regions are
discussed: first, how the mRNA sequence information (tRNA gene copy number) is
related to protein secondary structure; second, how the mRNA structure informa-
tion (stem/loop content) is related to protein secondary structure; third, how the
specific selection for mRNA folding energy is made among genomes. From statistical
analyses of protein sequences for humans and E. coli we have found that the m-codon
segments (for m = 2 to 6) with averagely high tRNA copy number (TCN) (larger
than 10.5 for humans or 1.95 for E. coli) preferably code for the alpha helix and that
with low TCN (smaller than 7.5 for humans or 1.7 for E. coli) preferably code for the
coil. Between them there is an intermediate region without structure preference. In
the meantime, we have demonstrated that the helices and strands on proteins tend
to be preferably “coded” by the mRNA stem region, while the coil on proteins tends
to be preferably “coded” by the mRNA loop region. The occurrence frequencies of
stems in helix and strand fragments have attained 6 standard deviations more than
the expected. The relation between mRNA stem/loop content and protein structure
can be seen from the point of mRNA folding energy. Both for E. coli and humans,
the mRNA folding energy in protein regular structure is statistically lower than
that in randomized sequence, but for irregular structure (coil) the Z scores are near
their control values. We also have studied the folding energy of native mRNA se-
quence in 28 genomes from a broad view. By use of the analysis of covariance, taking
the covariable G+C content or base correlation into account, we demonstrate that
the intraspecific difference of the mRNA folding free energy is much smaller than
the interspecific difference. The distinction between intraspecific homogeneity and
interspecific inhomogeneity is extremely significant (p < .0001). This means the se-
lection for local mRNA structure is specific among genomes. The high intraspecific
homogeneity of mRNA folding energy as compared with its large interspecific inho-
mogeneity can be explained by concerted evolution. The above result also holds for
the folding energy of native mRNA relative to randomized sequences. This means
the robustness of the distinction between intraspecific homogeneity and interspecific
inhomogeneity of mRNA folding under the perturbation of sequential and structural
variation.
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DNA, RNA, and protein are three basic elements of a life system. A Chi-
nese ancient philosopher named Laozhi said: “One generates two, two gener-
ates three, and three generates all things in the Universe.” So, three means
infinity. The interaction network of these three elements makes the genetic
language complex enough to represent life. Although the importance of DNA
and protein interaction is well known the role of RNA in the network has
not been analysed thoroughly. We shall discuss some aspects of mRNA infor-
mation in the determination of protein structure and in the specific selection
among genomes.

14.1 mRNA Sequence Information (tRNA Gene Copy
Number) Related to Protein Secondary Structure

There have been three generations in the empirical prediction of protein sec-
ondary structure. The first generation of the empirical prediction is based on
single-residue statistics. The second generation is based on segment statis-
tics (typically 11 to 21 adjacent residues were taken from a protein). In the
third generation of prediction the evolutionary information is used through
the method of multiple sequence alignment. A typical example is the par-
ticular neural network-based method PHD. Up to now the highest prediction
accuracy currently attained is about 76% by use of the support vector machine
method. So, “the dinosaurs of secondary structure prediction are still alive”
[1]. We feel that the relatively low accuracy of secondary structure predic-
tion has its deep origin in the formation of secondary structure. The problem
is twofold. The first is related to the importance of long-range information
and environmental information in determining the secondary structure. The
second is the possible role of mRNA sequence on the formation of protein
structure. The latter is more fundamental since it is a challenge to Anfinsen’s
[2] sequence-structure principle. The possible structural signals in mRNA se-
quence were analyzed by several authors [3–6]. Based on di-peptide frequencies
we have studied the influences of codon usage on protein secondary structure
[7]. It is demonstrated that for humans, the structural preferences of codons
in 45 (or 79) di-peptides are different from those of amino acids, and they
could not be explained by stochastic fluctuations at the 95% (or 90%) confi-
dence level, and for E. coli the number is 36 (or 60). So the codon usage may
influence protein secondary structure at the level of 10% or lower for different
species, from higher mammals to prokaryotes. Apart from the possible struc-
tural signal in mRNA sequence, the influence of messenger RNA on protein
secondary structure may occur through two other approaches, namely, the
codon tRNA abundance and the stem-loop structure of mRNA [8–10].
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Since the regular secondary structure (alpha helix and beta strand) occurs
in the very early epoch of protein folding, and the tRNA molecule is the
adaptor of the mRNA sequence to the amino acid sequence, we ask if the
tRNA molecule can exert some influence on the formation of protein secondary
structure? Consider m-codon segment, m = 2, 3, 4, 5, or 6 (hereafter called m-
mer). The average of tRNA gene copy number (TCN) values over codons in
an m-mer is denoted as v [9]. Consider a sliding window of width of m codons
shifted along the mRNA sequence by 1 codon each step and count the number
of m-codon segments corresponding to a definite protein secondary structure
α, β, or c (the m-mer that corresponds to two structures will not be taken into
account). The m-mer frequency in the kth interval of v that codes for protein
secondary structure α, β, or c is denoted as nj

k (j = α, β, or c). The total
number of m-mers in the kth interval is denoted by nk, nk =

∑
j

nj
k(obs). Set

qj =

∑
k

nj
k(obs)∑

kj

nj
k(obs)

(j = α, β, or c) . (14.1)

Theoretically, the distribution nj
k (j = α, β, or c) in three structures is a

stochastic variable, obeying multinomial distribution

nj
k(exp) = nk · qj (14.2)

and the corresponding deviation

σj
k =
√
nk · qj · (1 − qj) . (14.3)

Calculating the parameter of codon preference for protein secondary structure

F j
k =

nj
k(obs) − nj

k(exp)

σj
k

(14.4)

in each interval of v we obtain F j
k − v relations for three structures α, β, and

c.
We count the number of m-mers in a window of width v0, v0 = (vmax −

vmin)/20, and shift the window by steps of v0/10. The resulting F j
k (m) −

v relations for humans and E. coli are shown in scattered point diagrams,
Figure 14.1 and Figure 14.2. The data have been filtered by |F j

k | ≥ 3.

From Figures 14.1 and 14.2 we find the following:

1. The mRNA sequences consisting of m-codons (m = 2 to 6) with an aver-
agely high copy number of tRNA, namely v larger than around 10.5 for
humans or v larger than around 1.95 for E. coli, preferably code for α
helix but less commonly code for coil.
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2. The structural preference/avoidance turns out to be contrary to the
codons with low tRNA copy number. As the average TCN v smaller than
around 7.5 for humans or v smaller than around 1.7 for E. coli, the m-mers
preferably code for coil but less commonly code for α helix.

3. There exists a clear transition region between high v and low v regions
of different preferences. Detailed studies show that the location of the
intermediate region slightly shifts for different m.

4. For beta strand the preference/avoidance tendency is not obvious. In most
cases −2 < F β

k < 2.

Fig. 14.1. F j
k (m) - v relations for humans.

m = 2, . . . , 6. The interval number between vmax and vmin is supposed to be 20.

Fig. 14.2. F j
k (m) - v relations for E. coli.

m = 2, . . . , 6. The interval number between vmax and vmin is supposed to be 20.
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All strong preference/avoidance modes with F j
k (m) ≥ 3 and ≤ −3 in non-

overlapping TCN intervals are listed in Tables 14.1 and 14.2 for humans and
E. coli, respectively. These modes are arranged in a line following the order
of TCN. The mode notation, for example, kc,Nhe means in the kth interval
of average TCN the m-mer preferably codes for the random coil (denoted as
c) but less commonly code for α helix (denoted as h) and β strand (denoted
as e), etc.

The preference of TCN for protein secondary structure is essentially a
problem of the existence of mutual interaction between two factors. That is,
the stochastic variable nj

k, the number of m-mer in the kth TCN interval
coding for protein structure j (j = 1, . . . , a; k = 1, . . . , b), depends on two fac-
tors: factor A, protein secondary structure, and factor B, the interval of codon
TCN v. Define QA as A-induced deviation, and QB as B-induced deviation.
The total deviation Qtot can be calculated by

Qtot = QA +QB +QA×B (14.5)

where QA×B describes the mutual effect of two factors. Decompose QA×B into
two parts, QN (1 degree of freedom) and Qerror ((a− 1)(b− 1)− 1 degrees of
freedom). Define

QR =
QN

Qerror
((a− 1)(b− 1) − 1), (14.6)

QRs for humans and E. coli are calculated and listed in Table 14.3. Tukey [11]
proved that there exists mutual interaction between two factors—factor A and
B at significance level α if QR > F1−α(1, df) where F1−α(1, df) is 100(1−α)th
percentiles of the F distribution with numerator degree of freedom 1 and
denominator degree of freedom df = (a − 1)(b − 1) − 1. From Table 14.3
we find that QR is always much larger than F0.999 (1, df) for all m-mers
in humans and E. coli. Therefore, the mutual interaction between protein
secondary structural type and codon TCN is very marked.

Table 14.1. Strong structure-preference/avoidance modes of codon TCN (human)
(9 TCN intervals) (F (m) ≥ 3 or ≤ −3)

m-mers Low TCN region High TCN region

2mers 1c 2c,Nhe 3e,Nc 7h 8h
3mers 1c,Nh 2c,Nhe 3e 6h 7h
4mers 2c,Nhe 3Nh 5h 6h,Nc
5mers 2c,Nh 3c,Nh 5h,Nc 6h
6mers 2c,Nh 3c,Nh 5h,Nc 6h,Nc

Finally, to study the origin of structure preference we compare∣∣∣∣nα
k (obs)
nk

− qα

∣∣∣∣+
∣∣∣∣∣nβ

k(obs)
nk

− qβ)

∣∣∣∣∣+
∣∣∣∣nc

k(obs)
nk

− qc

∣∣∣∣ = Rk (14.7)
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Table 14.2. Strong structure-preference/avoidance modes of codon TCN (E. coli)
(19 TCN intervals) (F (m) ≥ 3 or ≤ −3)

m-mers Low TCN region High TCN region

2mers 1c 2Nh 3c,Nh 4c,Nh 5c 7Ne 8h 9h,Nc 10h,Nc 11h,Nc 12h,Nc 15Nc
3mers 2c,Nh 3ec,Nh 4c,Nh 5c,Nh 7h 8h,Nc 9h,Nc 10h,Nc 11h,Nc 12h,Nc 13h,Nc 15Nc
4mers 1c 2c,Nh 3c,Nh 4c,Nh 5c,Nh 7h,Nc 8h,Nc 9h,Nc 10h,Nc 11h,Nc 12h,Nc 13h
5mers 2c,Nh 3c,Nh 4c,Nh 5Nh 7h,Nc 8h,Nc 9h,Nc 10h,Nc 11h,Nc
6mers 1c 2c,Nh 3c,Nh 4c,Nh 5Nh 7h,Nc 8h,Nc 9h,Nc 10h,Nec 11h

with∣∣∣∣nα
k (stoch)
nk(stoch)

− qα

∣∣∣∣+
∣∣∣∣∣nβ

k(stoch)
nk(stoch)

− qβ)

∣∣∣∣∣+
∣∣∣∣nc

k(stoch)
nk(stoch)

− qc

∣∣∣∣ = Rstoch
k (14.8)

where stoch means the quantity calculated in a codon-randomized sequence. If
the structure preference results from an amino acid sequence, then one should
have Rk = Rstoch

k . However, by direct statistics we find(
1 − Rstoch

k

Rk

)
> 0.5 or < −0.5 (14.9)

for more than half TCN intervals. So the contribution to the structural pref-
erence does not come from the amino acid sequence alone. Accompanying the
amino acid sequence the nonuniform codon usage gives an important contri-
bution to the structural preference.

Table 14.3. Assessment of mutual interaction between protein secondary
structure and codon TCN

3-mers 4-mers 5-mers 6-mers

df 29 25 21 19
Humans QR 90.11 82.27 63.76 62.83

F0.999 13.39 13.88 14.59 15.08

df 23 19 17 15
E. coli QR 84.00 53.50 50.30 50.18

F0.999 14.19 15.08 15.72 16.59

The average TCN (v) of m-mer is divided into 21 intervals for humans and 19
intervals for E. coli. df = (a − 1)(b − 1) − 1 = 2b − 3 (a = 3, b = effective interval
number). F0.999(1,df) is the percentile of F distribution, which gives the threshold
of QR at significance level .001. QR is a measure of mutual interaction between two
factors—protein secondary structure and codon TCN, which is calculated from their
statistical deviations. It shows QR > F0.999(1,df) for all m-mers in humans and E.
coli. So, the mutual interaction between two factors does exist.
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14.2 mRNA Structure Information (Stem-Loop
Content) Related to Protein Secondary Structure

The mRNA secondary structure is deduced from nucleotide sequence by use of
RNA structure 3.6 [12]. We fold the mRNA sequence through base pairing by
use of RNA structure 3.6 in a window of 100 nucleotides, and shift the window
along the sequence. The unpairing part in the tail of the first 100 nucleotides
is put into the shifted window and participates in the next folding. Based on
the above model, we postulate the secondary structure of mRNA as a number
of hairpins or more complex units, constructed by loops and stems (pairing
bases). The nucleotide in the loop is denoted by 0 and that in the stem by 1.
So, the secondary structure of an mRNA is depicted by a sequence written
by two symbols, 0 and 1.

To study the relation between mRNA structure and protein secondary
structure, we align the amino acid sequence for a given secondary structure
(helix, denoted as H; extended strand, denoted as E; turn, denoted as T ; or
coil, denoted as C) [13] and the corresponding mRNA sequence written by 0
and 1. Set the observed base number of mRNA structure j occurring in the
kth protein secondary structure denoted by nj

k(obs). Define F j
k as in (14.4)

but with its meaning changed. It gives a measure of preference-avoidance of
protein secondary structure k for the mRNA structure j.

Based on the IADE database, which contains 2269 protein sequences [8],
we calculate the mRNA folding and study the relation between RNA stem-
loop frequencies and protein secondary structure. We find that the regular
secondary structures—helices and strands—on proteins are strongly related
to the stems of the corresponding mRNA structure. These regular structures
tend to be preferably “coded” by the mRNA stem region, while the coil on
proteins tend to be preferably “coded” by the mRNA loop region (Table 14.4).

Table 14.4. Preference of protein secondary structural types for the mRNA stems

k = H(helix) k = E(strand) k = T (turn) k = C(coil)

F 1
k 3.40 4.21 3.43 −9.25

σ1
k 186 136 104 169

(F 0
k = −F 1

k )

To obtain better statistics, we define a four-amino-acid-fragment that
shows pronounced secondary structural propensity as “structural word” (SW).
We study the following types of SW: H-type, the secondary structures cor-
responding to four-amino-acid-fragment are HHHH; E-type, the secondary
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structures corresponding to four-amino-acid-fragment are EEEE; T -type, the
secondary structures corresponding to four-amino-acid-fragment are TTTT;
and boundary type, the secondary structures corresponding to four-amino-
acid-fragment are T and other structures (H,E,C), for example, HHHT,
TTEE, TCCC, HHTC, etc. An i-type structural word means that the oc-
currence of the word in structure i is not at random with 95% confidence
level, and this word is a characteristic word of the structure i.

Based on SWs, we are able to manifest the relation between protein sec-
ondary structure and mRNA stem-loop structure more clearly. We calculate
the occurrence frequency of stem or loop in each kind of SW. In calculations,
the double count should be avoided. For successive SWs of the same type, the
overlapping part should be counted only once. We deduce the preference of
protein secondary structures for the mRNA stems/loops and find the tenden-
cies are more obvious if we observe the structural words. The preferences of
the H-type SWs (H) and E-type SWs (E) for the mRNA stem structure are
very marked. As seen from Table 14.5, the occurrence frequencies of stems
in H and E words have attained 6 standard deviations more than expected.
The result is understandable since H and E words are amino acid fragments
characteristic of helix and strand. Their preferences for stems more clearly
reflect the essential connections of helix and strand to the stem structure of
mRNA.

Table 14.5. Preference of protein structural words for the mRNA stems

H-type word E-type word T -type word T -related boundary word

F 1
k 5.73 6.83 −1.52 9.21

σ1
k 151 109 77 132

(F 0
k = −F 1

k )

The n-nucleotide fragment analyses (up to n = 6) further prove the above
conclusion. All n-mers solely composed of loops very scarcely occur in helices
and strands (H-type and E-type words) with a high confidence level, but
they tend to code for nonregular secondary structures. However, the strands
(E-type SWs) preferably tend to be coded by n-mers solely composed of
stems. The H-type words also preferably tend to be coded by n-mers mainly
composed of stems but the tendency is not so obvious as in E-type words
(Table 14.6).

Note: The secondary structures of protein are usually classified into three categories,

namely, helix, strand, and coil. The class of coil includes all structures not assigned

as helix or strand [13]. But we have found in coil that the turns and turn-related

boundaries are of special interest. They are preferably coded by stems, different from
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other coils. So, we have separated them as an independent class, different from the

other coils, in the stem-loop preference analysis.

The relation between mRNA stem/loop content and protein structure
can be seen from the point of mRNA folding energy. The folding energy is
calculated by use of the RNAfold program from the Vienna RNA package
[12, 14, 15]. The energy Z-score is defined by

Z =
Enative − 〈Erandom〉

STD
(14.10)

where 〈Erandom〉 means the energy of a codon-randomized sequence averaged
over a large number of samples (larger than 50) generated from the native
sequence, and STD means its standard deviation. Simultaneously, we define

Zreg — when the regular secondary structure segments are randomized

Zcoil — when the coil segments are randomized

Zreg
ctrl — when part codons are randomized with the same percentage as regular

structure in native sequence, which is served as a control of Zreg

Zcoil
ctrl — when part codons are randomized with the same percentage as coil

segments, which is served as a control of Zcoil

The above Z scores are free energy Z scores. If energy E is changed to the
percentage of nucleotides in stem, then the score calculated is called stem-loop
score ZSL. The energy Z score is oppositely correlated with stem content Z
score. Figure 14.3 gives an example.
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Fig. 14.3. The histograms of stem-loop and energy Z score distribution (E. coli).
The left figure gives the stem-loop Z score (ZSL) distribution for 107 E. coli genes,
and the right figure the energy Z score distribution for 107 E. coli genes.



300 Liaofu Luo and Mengwen Jia

Table 14.6. Preference of protein structural words (A) and structural types (B)
for the stem-loop structure in mRNA oligonucleotide fragments (n-mers with n ≤

6) (all modes with F j
k ≥ 3 or ≤ −3 are listed)

A

Strc 0 1 00 11 000 101 111 0000 1011 1111 00000

H.W. −5.7 5.7 −6.9 3.8 −7.7 3.2 — −8.6 3.1 — −9.5
E.W −6.8 6.8 −6.9 6.5 −6.6 — 7.7 −6.0 — 8.4 −5.0
B.W. −9.2 9.2 −10.3 7.6 −12.1 — 6.8 −13.2 — 5.7 −13.6
T.W. — — — — — — — — — — —

Strc 00111 10000 10111 11101 11111 000000 100000 100001 110000 111101 111111

H.W. — — 3.1 — — −10.1 — — — — —
E.W. — −3.1 — 3.1 8.9 −3.6 −3.4 — −3.7 3.9 8.5
B.W. 3.3 — — — 4.9 −13.9 — 3.3 — — 4.0
T.W. — — — — — — — — — — —

B

Strc 0 1 00 11 000 001 111 0000

helix −3.4 3.4 −4.2 — −4.9 — — −5.7
strand −4.2 4.2 −4.0 4.6 −3.6 — 6.0 −3.2
turn −3.4 3.4 — — −3.3 4.2 — —-
other 9.2 −9.2 8.8 −6.1 8.5 — −6.1 7.9

Strc 0011 1111 00000 00111 11111 000000 000110 111111

helix — — −6.0 — — −6.5 — —
strand — 6.3 — — 6.4 — — 6.5
turn 3.6 — — 4.2 — — 3.1 —
other — −4.5 7.0 — −3.0 6.8 — —

The Z scores for mRNA sequences in different protein secondary structures
are calculated and shown in Table 14.7. It gives the average energy Z scores of
107 E. coli genes and 125 human genes. From Table 14.7 we find for E. coli the
mean Z score of regular structure is −1.38 with control −1.01 (difference 0.37),
and for humans, the two values are −1.71 and −1.24, respectively (difference
0.47). So, both for E. coli and humans, the Z scores of regular structure
are explicitly lower than their control values. However, the case is different
for coil region. For E. coli, the average Z score of coil region is −0.93, very
near the control value −0.86 (difference 0.07), and for humans, the Z score
of coil is −1.03, even slight larger than its control −1.20 (difference −0.17).
So, we conclude the mRNA folding energy in protein regular structure (helix
and strand) is statistically lower than that in randomized sequence, but for
irregular structure (coil) no such conclusion can be deduced. The Z scores for
irregular structure are near their control values.
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The detailed difference between Z scores in regular and irregular structures
can be plotted in a diagram. We study the distributions of Zreg − Zreg

ctrl and
Zcoil−Zcoil

ctrl for 107 E. coli and 125 human genes. The results are shown in Fig-
ure 14.4. Evidently, both for E. coli and humans the maximum distributions
of Z score difference in regular structure are located at some values smaller
than zero, that is, the distributions shifted toward the left as compared with
those of irregular structure. Note that in spite of the maximum of Z score
difference for coil taking a value slightly larger than zero, its average value
(the average Zcoil minus its control) is near zero due to the bias-to-left of the
shape of the coil distribution curve. These results indicate obviously that the
mRNA sequence coding for protein regular structure has more negative free
energy (relative to randomized samples) than the sequence segment coding
for coil.

A more detailed comparison of Z scores for regular structure and irregu-
lar structure can be established through a statistical test. Consider 107 (125)
Zreg’s and Zreg

ctrl’s for E. coli (humans) as two sets of variables separately. By
use of the Aspin-Welch t test, we find the Z scores of regular structure, Zreg,
are significantly different from the control set both for E. coli and humans. So
the folding free energy of native mRNA sequence segment coding for protein
regular structure (relative to the energy of randomized sequence) is signifi-
cantly different from the control set (Table 14.8). But for irregular structure,
the difference between two Z scores, Zcoil and Zcoil

ctrl , is not significant.

Table 14.7. The dependence of energy Z-score on protein structure

Zreg Zreg
ctrl Zcoil Zcoil

ctrl

E. coli −1.38 −1.01 −0.93 −0.86
Humans −1.71 −1.24 −1.03 −1.20

We have indicated in previous paragraphs that stems tend to code for pro-
tein regular structure while loops tend to code for irregular structure. So, the
mRNA sequence coding for protein regular structure has more negative fold-
ing energy due to the hydrogen bonds that existed between stems and that
decrease the folding energy. The conclusion is consistent with the present en-
ergy Z score analysis. We studied the Z score in protein regular structure and
that in irregular structure separately. We have deduced that the Z score in
protein regular structure (Zreg) is more negative than that in coil (Zcoil).
This shows again the mRNA sequence coding for protein regular structure
has more negative folding energy.
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Table 14.8. Aspin-Welch t test and F test for the difference of Z scores

t test F test

Regular struc Irregular struc Regular struc Irregular struc

t-value df t-value df F -value df1, df2 F -value df1, df2

Human −2.0∗ 240 1.02 247 1.43+ 124 1.10 124
E. coli −2.04∗ 200 −0.44 193 1.66+ 106 1.91+ 106

∗ The calculated t-value (absolute value) > t0.975 and the difference of average Z
scores is very significant between Zreg and Zreg

ctrl. + means the calculated F -value
> F0.975 and the difference of deviations of Z scores is very significant between
Zreg and Zreg

ctrl (or Zcoil and Zcoil
ctrl ). df = degree of freedom. When F -value is large

enough, the Aspin-Welch t-test for average Z scores should be used (as shown in the
left panel).

Fig. 14.4. The histograms for the distribution of Zreg − Zreg
ctrl and Zcoil − Zcoil

ctrl

for E. coli and humans. The left figure gives the distribution of Zreg − Zreg
ctrl and

Zcoil − Zcoil
ctrl for 107 E. coli genes and the right figure gives the distribution of

Zreg − Zreg
ctrl and Zcoil − Zcoil

ctrl for 125 human genes.

Two Factors—tRNA Gene Copy Number and Stem/Loop Content—Are
Coupled

We have proposed a phenomenological model on the relation between structure-
preference and translational accuracy [9]. The model assumes the protein
structure preference of codons is dependent on translational accuracy. Then
the translational accuracy is assumed to be proportional to tRNA abundance
(tRNA copy number, TCN). Apart from TCN we introduce R to describe
other translational accuracy-related factors that influence structure prefer-
ence. R factor is a matrix that, on the one hand, depends on three protein
structural types, and on the other hand, depends on three TCN regions of
codons. We have established equations that should be satisfied by R matrix
elements, and demonstrated that the stem/loop content of mRNA is a possible
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solution for R factor. The result suggests that there may exist an adjusting
factor on translation accuracy that is expressed in three TCN regions and
correlates with stem/loop distribution. This factor plays a role of positive
regulation for helix but negative regulation for random coil. So, the interac-
tion between mRNA structure and tRNA abundance may play an important
role in an associated way in protein secondary structure formation.

14.3 mRNA Folding Energy—Specific Selection Among
Genomes

This subsection addresses the mRNA folding energy of genes in a wider range
of species (28 genomes including eight archaea, 14 eubacteria, and six eukary-
ota) from a broad view that will give us some new insights into the role of
mRNA local folding in the genome evolution. For each species about 120 genes
(coding regions) are chosen stochastically. Using the RNAfold program from
the Vienna RNA package [14, 15], we fold each mRNA sequence in a local
window pattern, namely, the sequence is folded in short regions of 50 bases
and shifted by 10 bases [16]. The averaged local folding energy Enative of the
jth native mRNA sequence in the ith genome is denoted by yij . We study
the statistical property of folding energies by use of the analysis of covariance.
Set yij = (Enative)ij (i=1, . . . , t treatments or classes and for each treatment
i, j=1, . . . , ni observations). In the general linear model one assumes yij

depending on another set of covariables xij , with these two sets of variables
obeying a regression equation in the form of

yij ≈ a+ bxij (14.11)

for each class. Set

xij = (G+ C)% (model GC)
= D1 +D2 (model D1 +D2) (14.12)

D1 and D2 are informational redundancies and D1+D2 describes the base
correlation in a DNA sequence [17]. Define the error sum of squares

SSe =
∑
ij

(yij − a− bxij)2

=
∑
ij

(yij − yi)
2 − b2

∑
ij

(xij − xi)2, (14.13)

b =

∑
ij

(yij − yi)(xij − xi)∑
ij

(xij − xi)2
,
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where yi(xi) is the average of yij(xij) in a given class i, and the mean error
sum of squares

MESS =
SSe

df(SSe)
=

SSe∑
i

ni − t− 1
. (14.14)

Define the class sum of squares

CLS =
∑
ij

((yij − y)2 − b′2(xij − x)2) −
∑
ij

((yij − yi)
2 − b2(xij − xi)2) ,

b
′
=

∑
ij

(yij − y)(xij − x)∑
ij

(xij − x)2
(14.15)

where y(x) is the overall average of yij(xij), and the mean class sum of squares

MCSS =
CLS

df(CLS)
=
CLS

t− 1
. (14.16)

The covariant F -test is defined by

F =
CLS/(t− 1)

SSe/(
∑

i

ni − t− 1)
(14.17)

which gives a criterion for examining the difference between classes. Evidently,
it includes the usual F -test as a special case when x variable vanishes. We
put 28 species into three classes. For class 1 (archaea) t = 8, for class 2 (eu-
bacteria) t = 14, and for class 3 (eukaryota) t = 6. Through the analysis
of covariance we obtain mean error sum of squares (MESS) and mean class
sum of squares (MCSS) of folding free energy of native mRNA. The for-
mer describes the square deviation of mRNA folding energy in a genome and
the latter describes the square deviation of this energy among genomes. By
comparing the calculated F value with F -distribution the significance level (p
value) is deduced. The results are summarized in Table 14.9.

The results in Table 14.9 are given in two regression models (model GC
and model D1 +D2). All results show MCSS much larger than MESS at the
significance level < .0001. So, the square deviation of mRNA folding energy
among genomes is definitely higher than that within a genome. Simultane-
ously, the results show that the linear relation between energy variable yij

and covariable xij (GC content or D1 +D2) existed.
To understand its meaning we study the energy difference between native

and randomized sequence. That is, we set

yij = (Enative − 〈Erandom〉)ij (14.18)
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Three types of random sequences are produced based on different random-
ization methods. The first procedure, called Codonrandom (CODRAN), pre-
serves the same encoded amino acid sequence of mRNA sequence under the
random codon choice. The second procedure, called Codonshuffle (CODSHU),
shuffles synonymous codon in given mRNA sequence and preserves the same
encoded amino acid sequence and codon usage (base composition) of mRNA
sequence. The third procedure called Dicodonshuffle (DICODSH) was de-
veloped by Katz and Burge [16]. This procedure preserves the dinucleotide
composition, codon usage, and encoded amino acid sequence of the mRNA
sequence.

Table 14.9. Square sum of folding energy of native mRNA sequence

MCSS (df1) MESS (df2) F p value |R|
Model GC

CLS 1 14.61 7 1.120 949 13.04 <.0001 0.959
CLS 2 16.66 13 0.602 1652 27.66 <.0001 0.940
CLS 3 19.75 5 0.883 705 22.37 <.0001 0.941

Model D1+D2

CLS 1 1295.1 7 3.336 949 388.2 <.0001 0.873
CLS 2 178.5 13 1.541 1652 115.8 <.0001 0.861
CLS 3 440.4 5 2.614 705 168.5 <.0001 0.814

MCSS = mean class sum of squares, MESS = mean error sum of squares, df =
degree of freedom, df1 = t − 1, df2 =

∑
ni − t − 1 (t, number of species; ni,

sequence number taken in this study for species i), F = MCSS/MESS, R =
correlation coefficient in linear regression, CLS1 including eight archaea—A. fulgidus
(sequence number 120), A. pernix (119), H. sp. (119), M. thermoautotropicum (120),
P. abyssi (120), S. solfataricus (120), S. tokodaii (120), and T. volcanium (120),
CLS2 including 14 eubacteria—A. aeolicus (120), B. burgdorferi (120), B. subtills
(120), C. acetobutylicum (120), E. coli (107), H. influenzae (120), H. pylori (120), M.
pneumoniae (120), R. prowazekii (120), S. pcc6803 (120), S. typhi (120), T. maritima
(120), T. pallidum (120), and V. cholerae (120), CLS3 including six eukaryota—A.
thaliana (120), C. elegans (114), D. melanogaster (120), Homo sapiens (125), S.
cerevisiae (120), and P. falciparum (113). The p value column gives the significance
level.

By use of the same method we find the extremely significant difference be-
tween MCSS and MESS also existed for folding energy of native sequence
relative to randomized sequence (Table 14.10). This is a universal law: whether
the folding energy of native sequence is lower or higher than the random-
ized sequence [16, 18, 19], whether the folding is energy-favorable or not, all
species exhibit the same trend—the energy deviation in different genomes is
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Table 14.10. Square sum of folding energy of native mRNA relative to
randomized sequence

MCSS (df1) MESS (df2) F p value |R|
CODRAN Model GC

CLS 1 14.27 7 0.981 949 14.55 <.0001 0.896
CLS 2 14.06 13 0.540 1652 26.05 <.0001 0.812
CLS 3 50.17 5 0.943 705 53.22 <.0001 0.803

CODRAN Model D1+D2

CLS 1 420.9 7 1.395 949 301.8 <.0001 0.849
CLS 2 64.20 13 0.860 1652 94.36 <.0001 0.755
CLS 3 192.4 5 1.187 705 162.1 <.0001 0.744

DICODSH Model GC

CLS 1 1.16 7 0.206 949 5.62 <.0001 0.268
CLS 2 1.76 13 0.160 1652 10.95 <.0001 0.291
CLS 3 0.79 5 0.130 705 6.09 <.0001 0.204

DICODSH Model D1+D2

CLS 1 1.866 7 0.208 949 8.96 <.0001 0.252
CLS 2 1.827 13 0.160 1652 11.40 <.0001 0.292
CLS 3 0.704 5 0.131 705 5.37 <.0001 0.192

See table legend given below Table 14.9.

always higher than that in a genome. Further, the above law is irrespective
of the kingdoms of species and irrespective of the randomization method that
has been adopted [16, 18, 19]. Another important result summarized in the
two tables is the approximate linear relation between energy variable yij and
covariable xij (GC content or D1+D2). The correlation coefficients |R| are
always large in the CODRAN randomization procedure both in model GC
and model D1+D2. But in the DICODSH randomization the linear relation
between energy variable and covariable (G+C)% or D1+D2 does not exist.

The above results show that the selection for mRNA folding is specific
among genomes. From the point of evolution the large interspecific difference
occurs due to the rapid accumulation of mutations. However, if we assume
that, by certain mechanisms of concerted evolution (coincidental evolution)
the mutation, and in turn, the change of mRNA folding energy can spread hor-
izontally to all gene members in the same genome, then the high intraspecific
homogeneity of mRNA folding energy as compared with its large interspecific
inhomogeneity can be explained naturally. Numerous examples of concerted
evolution of multigene families have been proposed. A large body of data ob-
tained by restriction enzyme analysis and DNA sequencing techniques has
attested to the generality of concerted evolution [20]. We suggest that the
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concept of concerted evolution of multigene families may be generalized to
mRNA folding of genes in the whole genome. Under this assumption the high
specific selection for mRNA folding among genomes compared with high in-
traspecific homogeneity is a result of concerted evolution. The deeper meaning
of gene interaction in a genome at RNA level and the evolutionary conserva-
tion of mRNA folding should be clarified in a future investigation.

The intraspecific homogeneity and interspecific inhomogeneity of mRNA
folding can be visualized as the clustering of folding free energy of genes in
energy space for each species. To study the relation between folding energy of
the native sequence (Enative) and the corresponding relative energy, we have
made linear regression analysis and find there exists a good linear relation be-
tween these two energies for each genome (in 27 genomes for CODRAN case
and 24 genomes for DICODSH case). Further, setting the folding free energy
averaged over genes of species i as

〈(Enative)ij〉j = Ei (14.19)

and the energy difference averaged over genes as

〈(Enative − 〈Erandom〉)ij〉j = Di (14.20)

we find Ei and Di linearly related to each other for 28 species with correlation
coefficient R = 0.963 in CODRAN and 0.386 in DICODSH randomization.
These R values explicitly exceed the critical correlation coefficient at signif-
icance .05 (R0.05 = 0.374). So the clustering of genes in energy space leads
to the clustering of genes in relative energy space. Therefore, the assumed
concerted evolution may lead to not only the homogeneity of mRNA fold-
ing energy among genes in a genome, but also the homogeneity of folding free
energy of native mRNA relative to randomized sequence. Since the randomiza-
tion can be regarded as a perturbation applied to the native mRNA sequence,
the above result shows that the homogeneity of folding energy among genes
in a genome should remain valid even under certain perturbation of mRNA
sequence and structure. This means the distinction between intraspecific ho-
mogeneity and interspecific inhomogeneity of mRNA folding free energy is
robust.
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Conclusion

After over a century of neurophysiological and many years of molecular bio-
logical research, we still do not understand the principle by which a stimulus
such as an odour, an image, or a sound is represented by distributed neural
ensembles within the brain, how the development is controlled by gene net-
works, or how a cell’s function is governed by spatially distributed protein
networks. While large numbers of studies have made detailed analyses of re-
sponse profiles of single cells, single genes, and single proteins in isolation,
such techniques cannot address holistic issues of how large ensembles of neu-
rons, genes, and proteins can integrate information and interact both spatially
and temporally. There is little doubt that much of the information-processing
power of the brain and the control of the development of a gene network or
a protein network resides in the activities of cooperating and competing net-
works of neurons, genes, and proteins, and that if we can unlock the principles
whereby information is encoded within these networks as a whole, rather than
within single neurons, genes, or proteins in isolation, we may actually be able
to understand how the brain, gene networks, and protein networks work.

While some progress toward understanding how this is achieved at a gross
structural level is being achieved, the only way to provide an understanding
at the level of multiple cell-cell, gene-gene, and protein-protein interactions
is to record from large numbers of cells, genes, and proteins within a defined
system simultaneously. The three main challenges for achieving this step have
been first to develop appropriate tools to record simultaneously the activity
of ensembles of neurons, genes, and proteins, second to be able to analyse the
huge amounts of multivariate, high frequency sampling data that would be
generated as a result, and third to use these data to mathematically model
the system and to then use these models to predict how different changes in
the system’s environment affect the system. To overcome these three difficul-
ties, the chapters in the this book were written by computational biologists,
neuroscientists, statisticians, mathematicians, computer scientists, engineers,
and physicists, to improve our ability to make sense of these high-throughput
measurements, and create, refine, and revalidate the models.



310 Conclusion

Network theory is fundamental for the development of systems biology.
We therefore expect this book to be of interest to biologists, neuroscientists,
computer scientists, mathematicians, statisticians, and physicists.
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