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Preface

Low Reynolds number aerodynamics is important to a number of natural
and manmade flyers. Birds, bats, and insects have been of interest to biologists for
years, and active study in the aerospace engineering community has been increasing
rapidly. Part of the reason is the advent of micro air vehicles (MAVs). With a maximal
dimension of 15 cm and nominal flight speeds of around 10 m/s, MAVs are capable of
performing missions such as environmental monitoring, survelliance, and assessment
in hostile environments. In contrast to civilian transport and many military flight vehi-
cles, these small flyers operate in the low Reynolds number regime of 10° or lower. It
is well established that the aerodynamic characteristics, such as the lift-to-drag ratio
of a flight vehicle, change considerably between the low and high Reynolds number
regimes. In particular, flow separation and laminar—turbulent transition can result in
substantial change in effective airfoil shape and reduce aecrodynamic performance.
Because these flyers are lightweight and operate at low speeds, they are sensitive to
wind gusts. Furthermore, their wing structures are flexible and tend to deform during
flight. Consequently, the aero/fluid and structural dynamics of these flyers are closely
linked to each other, making the entire flight vehicle difficult to analyze.

The primary focus of this book is on the aerodynamics associated with fixed and
flapping wings. Chapter 1 offers a general introduction to low Reynolds number
flight vehicles, considering both biological flyers and MAVs, followed by a summary
of the scaling laws, which relate the aerodynamics and flight characteristics to a
flyer’s size on the basis of simple geometric and dynamics analyses. In Chapter 2,
we discuss the aerodynamics of fixed, rigid wings. Both two- and three-dimensional
airfoils with typically low-aspect-ratio wings are considered. Chapter 3 examines
structural flexibility within the context of fixed-wing aerodynamics. The implications
of laminar—turbulent transition, multiple time scales, airfoil shapes, angles of attack,
stall margin, and the structural flexibility and time-dependent fluid and structural
dynamics are highlighted.

Unsteady flapping-wing aerodynamics is presented in Chapter 4, in particular,
the interplay between flapping kinematics and key dimensionless parameters such
as the Reynolds number, Strouhal number, and reduced frequency. The various
unsteady lift-enhancement mechanisms are also addressed, including leading-edge
vortex, rapid pitch-up, wake capture, and clap-and-fling.

The materials presented in this book are based on our own research, existing lit-
erature, and communications with colleagues. At different stages, we have benefited
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from collaborations and interactions with Peter Ifju, David Jenkins, Rick Lind,
Raphael Haftka, Richard Fearn, Roberto Albertani, and Bruce Carroll of the Univer-
sity of Florida; Luis Bernal, Carlos Cesnik, and Peretz Friedmann of the University
of Michigan; Michael Ol, Miguel Visbal, and Gregg Abate, and Johnny Evers of
the Air Force Research Laboratory; Ismet Gursul of the University of Bath; Charles
Ellington of Cambridge University; Keiji Kawachi of the University of Tokyo; Hikaru
Aono of Chiba University; Max Platzer of Naval Postgraduate School; and Mao Sun
of the Beijing University of Aeronautics and Astronautics. In particular, we have fol-
lowed the flight vehicle development efforts of Peter Ifju and his group and enjoyed
the synergy between us.

MAVs and biological flight is now an active and well-integrated research area,
attracting participation from a wide range of talents. The complementary perspec-
tives of researchers with different training and background enable us to develop
new biological insight, mathematical models, physical interpretation, experimental
techniques, and design concepts.

Thinking back to the time we started our own endeavor a little more than 10 years
ago, we see that substantial progress has taken place, and there is every expectation
that significantly more will advance in the foreseeable future. We look forward to it!

Wei Shyy, Yongsheng Lian, Jian Tang, Dragos Viieru
Ann Arbor, Michigan, U.S.A.

Hao Liu
Chiba, Japan

December 31, 2006



CHAPTER ONE

Introduction

Bird, bat, and insect flight has fascinated humans for many centuries. As enthu-
siastically observed by Dial (1994), most species of animals fly. There are nearly a
million species of flying insects, and of the living 13,000 warm-blooded vertebrate
species (i.e., birds and mammals), 10,000 (9000 birds and 1000 bats) have taken to the
skies. With respect to maneuvering a body efficiently through space, birds represent
one of nature’s finest locomotion experiments. Although aeronautical technology
has advanced rapidly over the past 100 years, nature’s flying machines, which have
evolved over 150 million years, are still impressive. Considering that humans move
at top speeds of 3—4 body lengths per second, a race horse runs approximately 7 body
lengths per second, a cheetah accomplishes 18 body lengths per second (Norberg,
1990), a supersonic aircraft such as the SR-71, “Blackbird,” traveling near Mach 3
(~2000 mph) covers about 32 body lengths per second, it is amazing that a common
pigeon (Columba livia) frequently attains speeds of 50 mph, which converts to 75
body lengths per second. A European starling (Sturnus vulgaris) is capable of flying at
120 body lengths per second, and various species of swifts are even more impressive,
over 140 body lengths per second. The roll rate of highly acrobatic aircraft (e.g., the
A-4 Skyhawk) is approximately 720°/s, and a Barn Swallow (Hirundo rustics) has a
roll rate in excess of 5000°/s. The maximum positive G-forces permitted in most gen-
eral aviation aircraft is 4-5 G and select military aircraft withstand 8-10 G. However,
many birds routinely experience positive G-forces in excess of 10 G and up to 14 G.
The primary reasons for such superior maneuvering and flight characteristics include
the “scaling laws” with respect to a vehicle’s size, as well as intuitive but highly devel-
oped sensing, navigation, and control capabilities. As McMasters and Henderson put
it, humans fly commercially or recreationally, but animals fly professionally (McMas-
ters and Henderson, 1980). Figure 1.1 illustrates several maneuvering characteristics
of biological flyers; these capabilities are difficult to mimic by manmade machines.
Combining flapping patterns, body contour, and tail adjustment, natural flyers can
track target precisely and instantaneously. Figure 1.2 shows hummingbirds conduct-
ing highly difficult and precise flight control. To take off, natural flyers synchronize
wings, body, legs, and tail. As shown in Figure 1.3, they can take off on water, from
land, and off a tree, exhibiting varied and sophisticated patterns. While gliding, as
shown in Figure 1.4, they flex their wings to control their speed as well as the direction.
On landing, as depicted in Figure 1.5, birds fold their wings to reduce lift, and flap to
accommodate wind gusts and to adjust for the location of the available landing area.

1



2 Introduction

@ ® -

Figure 1.1. Mancuvering capabilities of natural flyers: (a) Canadian geese’s response
to wind gust; (b) speed control and target tracking of a seagull; (c) precision touchdown
of a finch; (d) a hummingbird defending itself against a bee. (See Plate 1.)

Figure 1.2. Natural flyers can track target precisely and instantaneously. Shown here
are hummingbirds using flapping wings, contoured body, and tail adjustment to conduct
flight control. (See Plate I1.)
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Figure 1.3. Natural flyers synchronize wings, body, legs, and tail to take off (top) on
water, (middle) from land, and (bottom) off a tree. (See Plate I11.)

Since the late 1990s, the so-called micro air vehicles (MAVs) have attracted sub-
stantial and growing interest in the engineering and science communities. The MAV
was originally defined as a vehicle with a maximal dimension of 15 cm or less, which
is comparable to the size of small birds or bats, and a flight speed of 10-20 m/s
(McMichael and Francis, 1997). Equipped with a video camera or a sensor, these

Figure 1.4. Birds such as seagulls glide while flexing their wings to adjust their speed
as well as to control their direction. (See Plate I'V.)
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Figure 1.5. On landing, birds fold their wings to reduce lift, and flap to accommodate
wind gusts and to adjust for their available landing area. (See Plate V.)

vehicles can perform surveillance and reconnaissance, targeting, and biochemical
sensing at remote or otherwise hazardous locations. With the rapid progress made in
structural and material technologies, miniaturization of power plants, communica-
tion, visualization, and control devices, numerous groups have developed successful
MAVs. Overall, alternative MAV concepts, based on fixed wing, rotary wing, and flap-
ping wing, have been investigated. Figure 1.6(a) shows a 15-cm M AV designed by Ifju
et al. (2002), which uses a fixed, flexible-wing concept. Figure 1.6(b) shows a rotary-
wing MAV with 8.5-cm rotary diameter designed by Muren (http://www.proxflyer.
com). Figure 1.6(c) shows a biplane MAV designed by Jones and Platzer (2006),
which uses a hybrid flapping—fixed-wing-design, with the flapping wing generating
thrust and the fixed wing producing necessary lift. Figure 1.6(d) shows a recent devel-
opment by Kawamura et al. (2006) that relies on flapping wing to generate both lift
and thrust and possesses some flight control capabilities.

Figure 1.7 highlights more detailed vehicle characteristics of flexible-wing
MAVs designed by Ifju and coworkers. The annual International Micro Air Vehicle
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Figure 1.6. Representative MAVs: (a) flexible fixed wing (Ifju et al., 2002); (b) rotary
wing (http://www.proxflyer.com); (c) hybrid flapping—fixed wing, with the fixed wing
used for lift and the flapping wing for thrust (Jones and Platzer, 2006); and (d) flapping
wing for both lift and thrust (Kawamura et al., 2006). (See Plate VI.)

Competition has offered a substantial forum, encouraging the development of MAVs.
For example, one of the competition categories is to fly 600 m, capture an image of
a 1.5 m x 1.5 m target, and transmit the image with telemetry. The smallest vehi-
cle capable of successfully completing the mission is declared the winner. Since the
first competition, the winning vehicle’s size has drastically decreased, and now the
maximum dimension is just barely over 10 cm.

The MAVs operate in the low Reynolds number regime (originally envi-
sioned to be 10*~10°, now even lower), which, compared with large, manned flight

(@) (b)

Figure 1.7. The flexible-wing MAVs (a) can benefit from passive shape adaptation
in accordance with instantaneous aerodynamic loading, and (b) can be packed very
easily based on need (courtesy Peter Ifju).
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vehicles, have unfavorable aerodynamic characteristics, such as low lift-to-drag ratio
(Lissaman, 1983). On the other hand, the MAVs’ small geometric dimensions result
in favorable scaling characteristics, such as reduced stall speed and better structural
survivability.

There is great potential for collaborative research between biologists and engi-
neers because MAVs and biological flyers share similar dimensions, weight, flight
speeds, and flight environment. Substantial literature exists, especially in the bio-
logical community. General references offering broad accounts of biological flight,
including geometric scaling laws, power, and morphology, as well as simplified mod-
eling, can be found in Alexander (2002), Azuma (1983), Biewener (2003), Brodsky
(1994), Dudley (2000), Grodnitsky (1999), Norberg (1990), Tennekes (1996), Videler
et al. (2004), Vogel (1996), and Ward-Smith (1984). The symposia volumes edited
by Wu et al. (1975), Pedley (1977), and Maddock et al. (1994) offer multiple angles
related to flight as well as to swimming. Lighthill (1969, 1977), Wu (1971), Childress
(1981), and Maxworthy (1979) discuss swimming and flying primarily from analytical
viewpoints. Finally, the standard texts by Anderson (1989), Katz and Plotkin (2002),
and Shevell (1983) present basic knowledge related to the aerodynamics of airplane
flight. Our effort in this book is aimed at the aerodynamics relevant to both biological
flyers and manmade MAVs.

In this chapter, we first introduce the flapping flight in nature, including the kine-
matics of flapping-wing vehicles and the lift- and thrust-generation mechanisms. Sec-
ond, we present the scaling laws related to the mechanics and energetics of avian
flight. Then we discuss drag and power related to avian flight. These two quantities
are intimately connected. The different power components are presented separately
and later summed together, giving the total power required for hovering and forward
flight. A comparison between the power components for a fixed- and a flapping-wing
vehicle is also presented. The results of these different power calculations are sum-
marized in the form of power curves.

1.1  Flapping Flight in Nature

Flapping flight is more complicated than flight with fixed wings because of the
structural movement and the resulting unsteady fluid dynamics. Conventional air-
planes with fixed wings are, in comparison, very simple. The forward motion relative
to the air causes the wings to produce lift. However, in biological flight the wings not
only move forward relative to the air, they also flap up and down, plunge, and sweep
(Dial, 1994; Goslow et al., 1990; Norberg, 1990; Shipman, 1998; Tobalske and Dial,
1996). Early photographs and some general observations are given by Aymar (1935)
and Storer (1948).

While flapping, birds systematically twist their wings to produce aerodynamic
effects in ways that the ailerons on the wings of conventional airplanes operate.
Specifically, one wing is twisted downward (pronated), thus reducing the angle
of attack (AoA) and corresponding lift, while the other wing is twisted upward
(supinated) to increase lift. With different degrees of twisting between wings, a bird
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Figure 1.8. Schematics of (a), (b) a bird wing, (c) a bat wing, and (d) a human arm.
For birds, the upper arm, the “humerus,” is proportionately shorter, the “wrist” and
“palm” bones are fused together for greater strength in supporting the primary flight
feathers. For bats, the bone—-membrane combination creates a leading-edge flap and
allows passive camber adaptation in the membrane area. (a), (b), and (d) are modified
from Dhawan (1991); (c) is adopted from Anders (2000).

is able to roll (Dial, 1994). For a bird to be able to deform and twist its wings, an
adaptation in the skeletal and muscular systems is required. The key features that
seem desirable are modification of camber and flexing of the wing planform between
upstroke and downstroke, twisting, area expansion and contraction, and transverse
bending. To perform these functions, birds have a bone structure in their wings simi-
lar to the one in a human arm. However, birds have more stringent muscle and bone
movement during flight. Figure 1.8 shows a schematic of a bird wing compared with
a human arm and hand. Figure 1.9 compares the cross-sectional shapes of a pigeon
wing and a conventional transport airplane wing. The pigeon wing exhibits noticeably
more variations in camber and thickness along the spanwise direction.

1.1.1 Unpowered Flight: Gliding and Soaring

Flying animals usually flap their wings to generate both lift and thrust. But if
they stop flapping and keep their wings stretched out, their wings actively produce
only lift, not thrust. Thrust can be produced by gravity force while the animal is
descending. When this happens, we call them gliders. In addition to bats and larger
birds, gliders can also be found among fish, amphibians, reptiles, and mammals.

To maintain level flight, a flying animal must produce both lift and thrust
to balance the gravity force in the vertical direction and drag in the horizontal
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Figure 1.9. Comparison of cross-sectional shapes of a pigeon wing and a conventional
transport airplane wing. The pigeon wing exhibits noticeably more variations in camber
and thickness along the spanwise direction.

direction, respectively. Because gliding occurs with no active thrust production, an
animal always resorts to the gravity force to overcome the drag. In gliding, the ani-
mal tilts its direction of motion slightly downward relative to the air that it moves
through. When the animal tilts downward, the resulting angle between the motion
direction and the air becomes the gliding angle. The gliding angle directly controls
the lift-to-drag ratio. The higher this ratio, the shallower the glide becomes. Recall
from basic fluid dynamics that the lift-to-drag ratio increases with the Reynolds num-
ber, a parameter proportional to animal size and flight speed. Large flying animals
fly at high Reynolds numbers and have a large lift-to-drag ratio. For example, a wan-
dering albatross, with a wing span of over 3 m, has a reported lift-to-drag ratio of
19 whereas the fruit fly, which has a span of 6 mm, has aratio of 1.8 (Alexander, 2002).
If the animal has a low lift-to-drag ratio, it must glide (if it can) with a considerably
large glide angle. For example, a lizard in the Southeast Asian genus Draco has a
lift-to-drag ratio of 1.7 and it glides at an angle of 30°; a North American flying squir-
rel has a glide angle of about 18°- 26° with a lift-to-drag ratio of 2 or 3 (Alexander,
2002).

While gliding animals take a downward tilt to have the gravity-powered flight,
many birds can ascend without flapping their wings, and this is called soaring. Instead
of using gravity, soaring uses energy in the atmosphere, such as rising air currents
(Alexander, 2002).

1.1.2 Powered Flight: Flapping

An alternative method to gliding used by many biological flyers to produce
lift is flapping-wing flight. The similarities between the aerodynamics of a flapping
wing and that of a rotorcraft, although limited, can illustrate a few key ideas. Take
for example the rotors of a helicopter, which rotate about the central shaft contin-
uously. The relative flow around the rotors produces lift. Likewise, a flapping wing
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Figure 1.10. Wingtip paths relative to the body for a variety of flyers, as indicated
by the arrows: (a) albatross, fast gait; (b) pigeon, slow gait; (c) horseshoe bat, fast
flight; (d) horseshoe bat, slow gait; (e) blowfly; (f) locust; (g) June beetle; (h) fruit fly.
Adopted from Alexander (2002).

rotates, swings in an arc around its shoulder joint, and reverses direction every half-
stroke. Helicopters and biological flyers use similar techniques to accelerate from
hovering to forward flight as well. Helicopters tilt the rotational plane of rotors
from horizontal to forward. The steeper the tilt of the rotor, the faster the heli-
copters accelerate. Biological flyers also tilt their flapping stroke plane: down and
forward on the downstroke, and up and backward on the upstroke. To fly faster,
biological flyers make the stroke more vertical by increasing the up-and-down amp-
titude of the movements. When biological flyers decrease their speed, they tend
to flap their wings more horizontally, similar to the way helicopters change their
rotors.

Birds, bats, and insects apply a variety of different flapping patterns in hovering
and forward flight to generate lift and thrust. Larger birds have relatively simple
wingtip paths. For example, an oval tip path is often associated with albatrosses (see
Figure 1.10). Smaller flyers exhibit more complicated flapping patterns. Figure 1.10
illustrates the highly curved tip paths of a locust and a fruit fly, the figure-eight pattern
of a pigeon, and the more complicated paths of June beetles and blowflies.

1.1.3 Hovering

Whether a flying animal can hover or not depends on its size, moment of inertia
of the wings, degrees of freedom in the movement of the wings, and the wing shape.
As a result of these limitations, hovering is mainly performed by smaller birds and
insects. Larger birds can hover only briefly. Although some larger birds like kestrels
seem to hover more regularly, in fact, they use the incoming wind to generate enough
lift. There are two kinds of hovering, symmetric hovering and asymmetric hovering,
as described by Weis-Fogh (1973) and Norberg (1990).
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Figure 1.11. Selected seagull wing configurations during flapping, which show various
stages of strokes. Note that the wings are often flexed with their primaries rotated.

For larger birds, which cannot rotate their wings between forward and backward
strokes, the wings are extended to provide more lift during downstroke, whereas
during the upstroke the wings are flexed backward to reduce drag. In general the flex
is more pronounced in the slow forward flight than in fast forward flight. This type of
asymmetric hovering is usually called “avian stroke” (Azuma, 1992) and is illustrated
in Figure 1.11. As shown in the figure, to avoid large drag forces and negative lift
forces, these birds flex their wings during the upstroke by rotating the primaries (tip
feathers) to let air through.

Symmetric hovering, also called normal or true hovering, or “insect stroke,” is
performed by hummingbirds or insects that hover with fully extended wings during
the entire wing-beat cycle. Lift is produced during the entire wing stroke, except
at the reversal points. The wings are rotated and twisted during the backstroke so
that the leading edge of the wing remains the same throughout the cycle, but the upper
surface of the wing during the forward stroke becomes the lower surface during the
backward stroke. The wing movements during downstroke and upstroke can be seen
in Figure 1.12. Note that, during hovering, the body axis is inclined at a desirable
angle and the wing movements describe a figure of a lying eight in the vertical plane.

1.1.4 Forward Flight

When a natural flyer’s aerodynamic performance is analyzed, an important
parameter is the ratio between the forward velocity and the flapping velocity, which
is expressed in terms of the reduced frequency:

wc
2Uses’
where o, ¢, and U,.; are, respectively, the angular velocity of a flapping wing, the
wing’s reference chord, and the reference velocity, in this case the flyer’s forward-
flight velocity. The unsteady effects increase with increasing reduced frequency, and

k= (L.1)
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Figure 1.12. Illustration of biological flapping-wing patterns: forward and back strokes,
and flexible- and asymmetric-wing motions (photos by the authors), and figure-eight
pattern (Azuma 1992). (See Plate VII.)

therefore, depending on the forward velocity, different techniques have been devised
to calculate the forces acting on a specific species.

In slow forward flight, both reduced frequency and wing-beat amplitude tend to
be high, resulting in highly unsteady flow structures. In accordance with the Lifting
Line Theory (Jones, 1990), the lift on a wing is related to the strength of the bound
vortex. The trailing vortices (the tip vortices) are of the same circulation magnitude as
the bound vortex. At the beginning/end of the downstroke, when the flapping veloc-
ity changes direction, a transverse vortex (starting/stopping vortex) is produced at
the trailing edge, and, according to Kelvin’s circulation theorem, these two trans-
verse vortices connect the two tip vortices and result in the shedding of a vortex
ring. Some flyers (for example, doves) make use of the clap-and-fling mechanism to
generate the starting vortex and reduce the delay in building up maximum lift during
the first part of the downstroke.

In fast forward flight, the reduced frequency and the wing-beat amplitude tend
to be low, and the wake consists of a pair of continuous undulating vortex tubes or
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Figure 1.13. Mass versus reduced frequency for birds and insects.

line vortices approximately behind the wingtips. In such cases, it is not unusual that
the outer part of the wing is folded to align with the free-stream direction (to reduce
drag), and only the arm-wing contributes to aerodynamic lift during the upstroke.

When flying animals’ lift and thrust are evaluated, depending on the magnitude
of the reduced frequency, either unsteady or quasi-steady methods can be used.
Early work by Ellington (1984a) has shown that quasi-steady analysis substantially
underpredicts the aerodynamic force needed to sustain the insect weight. As will be
discussed in Chapter 4, much of recent flapping-wing research has focused on the
understanding of unsteady aerodynamic mechanisms resulting from wing movement.
Figure 1.13 shows the correlation between a flyer’s mass and the reduced frequency.
The data are based on those reported by Azuma (1992) and Pennycuick (1989),
aided by the cruising-velocity estimate documented by Tennekes (1996). Overall,
the reduced frequency decreases as the size and mass grow, indicating that small
flyers use more unsteadiness in their flight than large flyers. Although this figure
does not explain how the unsteadiness is used, it does disclose that unsteadiness
plays a critical role in small flyers’ movement.

To quantify the lift and thrust generated by the flapping motion requires more
sophisticated tools. However, we can understand the role of the unsteady effects by
examining the relationship between the forward velocity and the flapping velocity
in terms of the reduced frequency. It is also noted that different sections of wing
function differently in force generation. We can better understand this concept by
introducing the relative flow velocity U,, defined in vector notation as,

U =U+Uys+w,. (1.2)

Here, U is the forward velocity of the flyer, Uy is the flapping velocity, and w; is
the downwash (induced) velocity. The relative velocity determines the aerodynamic
forces on the wing. For fast forward flight the downwash velocity is small and can
be largely neglected. With a larger wing span, Uy increases and changes its direction,
which affects the magnitude and direction of U,. Because U, determines the resulting
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Figure 1.14. Velocity-force vector diagram at different flapping wingspan locations for
fast forward flight. Here, the lift and drag are defined based on the effective velocity
combining forward and local flapping velocities. For the entire vehicle, the lift is defined
to be normal to the forward velocity (U), i.e., in the vertical direction, and drag/thrust
in the horizontal direction. According to the resulting force vector F illustrated here,
drag of the vehicle is generated by the inner wing, and thrust of the vehicle is generated
by the outer wing.

aerodynamic force F acting on each wing section along the span, F will also change
in magnitude and direction. The changes can be seen in Figure 1.14.

It is commonly held that during the downstroke the inner part of the wing pro-
duces lift and drag, whereas the outer part produces lift and thrust. The net aero-
dynamic force produced by the wings during a downstroke is directed upward and
forward, providing both lift and thrust. To obtain this favorable force distribution, the
wings have to be twisted. When the wings are twisted, an optimal relative velocity can
be obtained at each wing section, throughout the wing stroke. Because the relative
velocity determines the direction of the resultant aerodynamic force, this force will
be directed backward at the wing root and gradually turned forward when moving
along the wingspan. At the wingtip region the resultant aerodynamic force points
toward the forward direction, giving both lift and thrust. However, such a picture is
imprecise and needs to be examined carefully on a case by case basis.

Flying animals use different mechanisms for various missions such as take-off,
landing, or gliding. Even for forward flight, they change their wing and body move-
ments while flying through a range of speeds. Tobalske and Dial (1996) analyzed
videotapes of black-billed magpies (Pica pica) flying at speeds of 4-14 m/s and
pigeons (Columbia livia) flying at 620 m/s in a wind tunnel. Pigeons have higher
wing loading and higher aspect ratio wings compared with magpies. Both species
alternate phases of steady-speed flight with phases of acceleration and decelera-
tion, particularly at intermediate flight speeds. The birds modulate their wingbeat
kinematics among these phases and frequently exhibit nonflapping phases while
decelerating. They find that, during steady-speed flight, wing-beat frequency does
not change appreciably with horizontal flight speed. Instead, the body angle rel-
ative to the horizontal decreases with increasing flight speed, thereby illustrating
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that the dominant function of wing flapping changes from weight support at slow
speeds to positive thrust at fast speeds. Pigeons progressively flex their wings during
glides as flight speed increases but never perform bounding. Wingspan during glides
in magpies does not vary with flight speed, but the percentage of bounding among
nonflapping intervals increases with speed from 10 to 14 m/s. The use of nonflapping
wing postures seems to be related to the gaits used during flapping and to the AR of
the wings.

1.2 Scaling

When studying natural flyers, it is insightful to assess the effects of different
parameters, such as wing area and wingspan, on the flight characteristics, based on
dimensional analysis (Lighthill, 1977; Norberg, 1990; Pennycuick, 1992; Schmidt-
Nielsen, 1984). Tennekes (1996) presents very interesting correlations to summarize
the various scaling laws ranging from birds and insects to aircraft. He considered the
relations among cruising speed, weight, and wing loading, and established The Great
Flight Diagram. The diagram is shown in Figure 1.15.

With technical advancement, the MAV dimensions, wing loading, and speed will
continue to decrease, moving toward the lower left-hand corner in Figure 1.15. From
Figure 1.15 one can compare and correlate relations between species with a pro-
nounced difference in size. For example, the small fruit fly Drosophila melanogaster
can be compared to the Boeing 747, which weighs about 500 billion times more. By
using scaling analysis, one can predict how a parameter such as wingspan varies with
another parameter such as the body mass for natural flyers in general or specific
animal groups.

As an illustration, consider the balance between lift and weight during steady-
state flight,

L=W=1/2pU*SC;. (1.3)

From Eq. (1.3) it is possible to get an understanding of how wing area, airspeed,
density, and wing loading are connected.

Wing area (S): The wing area for a flight vehicle is often defined as the area
projected when the wing is seen from above and usually the area includes the
contribution from the “wing area” inside the fuselage.

Air speed (U): The air speed is defined as the forward velocity for the flight
vehicle. Given a particular AoA, a twofold increase in speed will result in a
fourfold increase in lift.

Density (p): For cases of interest to bird flight, the density of the air is basi-
cally unchanged because birds fly within a narrow altitude near sea level. In
general, a decrease of density thatis due to an increase in altitude will decrease
the lift.



1.2 Scaling

15

wing loadingW/S (newtons per meter squared)

1 10 102 10° 10*
I I I I Boeing 747 |
c-
Concorde _ ®,
Boeing 767 /®
Boeing 757 / ®
108 Boeing 727 / @
Boeing 737 / ®
Fokker F-28 /@ ®F-14
Fokker F-27 ® Mig-23
® F-16
105 [~ Beech Airliner /® @ | earjet 31
Beech king Air
Beech Bonanza e /@ Beech Baron
104 — Piper warrior ®
Schlelcher ASW22B @
Schlelcher ASK23 @
Ultralight @
1 03 — human-powered airplane  ® ® Sky surfer
—_ pleranodon @ mute swan @
g 102 I wandering albatross @
[} whitw pelican @ ® Canada goose
=
golden eagle ®
% brown pelican ® /gannet
osprey ®
£ 1 snowy!)wlp o 7/ ® pheasant
§ 10' [~ herring gull ® ® razorbill
goshewk @
e \ittwake | ® / ® ruffed grouse
-g.‘ Franklin's gull @ .' p:_rtndge
= pigeon hawk pufiin
< 0 common tern ® Wilson's snipe
2 10 American robin @ B slarling
purple martin @ ¢/sptted sandpiper
hermitthrush @ /|
tree swallow @ %/ English sparrow
bank swallow @ Chimney swift
10 American redstart ® housle wren
golden-crowned kinglet = ® ® ruby-throated hummingbird
European goldcrest @
Privet hawk ® ® | slag beetle
blue underwing  ® ® cock chafer
1 0_2 — yellow-banded dragonfly @, ® dung beetle
eyed hawk @ @ little stag beetle
®common swallowtall ~® summer chafer
green dragonfly e ® humblebee
3 @®cabbage white ® hornest
107 [~ ant lion ® ® honeybee
°
® green-veined white meat fly
scorpion fly ® crane fly
" _damsel fly ® ®house fly
1 O ® gnat
® hover fly
® midge
1075 | I | [ N
é fruit fly
1 2 4°5 7 10 20 30 50 70 100 200

cruising speed V (meters per second)

Figure 1.15. The Great Flight

Diagram gives a relation among wing loading, weight,

and cruising speed. Adopted from Tennekes (1996).

Wing loading (W/S): From Eq. (1.3),itis clear that the cruising speed depends

on the wing loading:

w

S

U2
5Cu

(1.4)

Equation (1.4) shows that, the greater a flyer’s wing loading, the faster it has to
fly. Some of the relations among body mass and parameters connected to birds are
shown in Table 1.1. Figure 1.15 offers a correlation between sizes and speeds, and
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Table 1.1. Power functions of wing dimensions and flight parameters against body mass m. Originally
compiled by Greenewalt (1975), Norberg (1990), and Rayner (1979b, 1988).

Correlation All birds All birds except

(based on (basedon ~ hummingbirds Hummingbirds
geometrical empirical (based on (based on
Animal groups Dimensions similarities) data) empirical data) empirical data)
Wing span m mO33 - 1.17m°%3° 2.24m">3
Wing area m? m0o7 - 0.16m%7 0.69m!04
Wing loading N/m? m033 - 62.2m"8 17.3m =004
Aspect ratio - 0 - 8.56m"% 7.28m"?
Minimum power m/s m®7 5.70m016 - -
speed Unp
Minimum power W m%7 10.9m%1° - -
Prp
Minimum cost of - 0 021m=%97  — -
transport Cpin
Wing-beat Hz m~03 3.87m 033 3.98m 027 1.32m 060
frequency f,,

Table 1.1 summarizes expanded correlations. More details will be discussed in the
following sections.

1.2.1 Geometric Similarity

The concept of geometric similarity can help relate different physical quan-
tities by means of the dimensional argument. Under the assumption of geometric
similarity, Figure 1.16 correlates wing loading with the weight of a vehicle. For exam-
ple, the wing loading is proportional to one-third power of the weight, if the aero-
dynamic parameters remain unchanged (which is not true, as will be discussed in
detail). If flyers are assumed to be geometrically similar, the weight W, lift L., and
mass m for unaccelerated level flight, can be expressed with respect to a characteristic
length [ as

W= L=mg. (1.5)
The wing area S and bird weight are expressed as
S~ W~P. (1.6)

Then the wing loading can also be expressed as

w

— =g W3, (1.7)
S

where k; is a constant to be determined empirically. Liu (2006) shows that a suitable

value of k; is 53 and 30.6 for aircraft and birds, respectively. The correlation is shown

in Figure 1.16.
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Figure 1.16. The relationship between weight and wing loading. Adopted from Liu
(2006).

1.2.2 Wingspan

Often, when flapping animals are studied, parameters of interest are related
to the body mass m of the animal. Using the dimensional argument method, assum-
ing geometric similarity for the animals considered, one can determine a relation
between the wingspan and the mass. Collecting data from Tennekes (1996) for birds
ranging from a 0.026-N black-chinned hummingbird to a 116-N mute swan, and data
for propeller/turboprop aircraft and jet transports published by Jackson (2001) cov-
ering a broad spectrum of aircraft from a 1500-N ultralight to an 1800-kN Boeing
747-400, Liu (2000) suggests that, over a large range of the weight, birds and aircraft
basically follow the power law:

[ = 1.654m"3(aircraft); [ = 1.704m'>(birds). (1.8)

1.2.3 Wing Area

Norberg (1990) reports that the wing area between groups of animals shows
larger variations than the wingspan. The departure from the geometrical relation is
obvious, which is shown in Table 1.1. As for the wingspan, hummingbirds have the
largest deviation from the geometrical relation. Hummingbirds seem to have a larger
wing area for a given body mass compared with that of birds in general. From the
variation of the wing area for different groups of birds, Greenewalt (1975) subdivided
birds into different classes or “models.” His model offers the following correlations:

1. The Passeriform model, (herons, falcons, hawks, eagles, owls): S ~ m"78,

2. The Shorebird model, (doves, parrots, geese, swans, albatross): S ~ m®7!,
3. The Duck model, (grebes, loons, coots): § ~ n78,
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Table 1.2. Weight, wing area, wing loading, and airspeeds for various seabirds, which are
assumed to be geometrically similar. Data originally compiled by Tennekes (1990).

Weight Wing area Wing loading ﬂ
Seabird W (N) S (m?) wiS m/s mph
Common tern 1.15 0.05 23 7.8 18
Dovs prion 1.7 0.046 37 9.9 22
Black-headed gull 23 0.075 31 9 20
Black skimmer 3 0.088 34 9.4 21
Common gull 3.67 0.115 32 9.2 21
Kittiwake 39 0.101 39 10.1 23
Royal tern 4.7 0.108 44 10.7 24
Fulmar 8.2 0.124 66 132 30
Herring gull 9.4 0.181 52 11.7 26
Great skua 135 0.214 63 12.9 29
Great black-backed gull 19.2 0.272 71 13.6 31
Sooty albatross 28 0.34 82 14.7 33
Black-browed albatross 38 0.36 106 16.7 38
Wandering albatross 87 0.62 140 19.2 43

These relations are consistent with those presented in Table 1.1 for all birds other
than hummingbirds.

1.2.4 Wing Loading

Regarding wing loading, although the overall correlation shown in Eq. (1.7)
seems reasonable, Greenewalt (1975) found that, in many cases, the relation between
wing loading and mass increases slower than indicated in Eq. (1.7). For example, the
three different families of birds, i.e., the Passeriforms, the Shorebirds, and Ducks,
do not follow the 1/3 law. As indicated in Table 1.1, for hummingbirds, the wing
loading is almost independent of body mass; hence different species can have the
same wing loading. Tennekes (1996) utilized the data collected by Greenewalt (1975)
and summarized the various scaling relations for seabirds, shown in Table 1.2. All
gulls and their relatives have long, slender wings and streamlined bodies, so it was
reasonable to assume geometric similarity. From Table 1.2 it is obvious that the wing
loading and cruising speed generally increase with weight.

1.2.5 Aspect Ratio

As for aircraft, the aspect ratio (AR) can give indications of the flight charac-
teristics for flapping animals. The AR is a relation between the wingspan b and the
wing area S:

b2

AR = <. (1.9)
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In general, the agility and ability to maneuver improves with a smaller AR. This is
one of the reasons why military fighter aircraft and aerobatic airplanes have relatively
short wingspans compared with those of conventional aircraft. The same relation is
found for animals. Another consideration is that the induced drag, which is caused by
the lift, tends to decrease with a higher AR. Obviously, the minimum induced drag
is obtained with an infinitely long wing. Similarly, with a large AR, the lift-to-drag
ratio /D, the so-called glide ratio, increases with an increasing AR. The largest AR
for birds is found among species that typically spend a substantial portion of their
time in soaring flight instead of flapping. A typical example is the wandering albatross
(Diomeda exulans), which has an AR of about 15. According to Tennekes (1996) the
glide ratio for the wandering albatross is around 20,compared to a modern sailplane
with a glide ratio of around 60. Some readers might think the difference is big when
comparing an albatross to a sailplane, but then it is worth noting that the sailplanes
of today are often precisely made, and hence sensitive to airflow disturbances over
the wing. Bugs attached to the wing surface might rapidly decrease the glide ratio
by 30%. One should also note that the large raptors have long wingspans, but wide
wings, and not particularly large AR.

1.2.6 Wing-Beat Frequency

The main function of wing bones is to transmit force to the external envi-
ronment during flight. This force can, however, not be too high when there is a risk
for bone or muscle failure. These limitations, along with the power available from
flight muscles, settle the upper and lower limits of wing-beat frequency for flapping
animals (Kirkpatrick, 1994; Pennycuick, 1989, 1996). Based on the insight into the
flapping frequency, it is possible to estimate the power output from a bird’s flight
muscles and achieve an estimation of the power required for flying. According to
Pennycuick (1975) it is possible to estimate the maximum flapping frequency fimax
for geometrically similar animals, as shown in the following discussion. Because the
force F,, exerted by a muscle is assumed to be proportional to the cross-sectional
area of its attachment, we get

Fp~ S~ (1.10)

Pennycuick (1975) assumes that the stresses in muscles and bones are constant
and that the torque acting about the center of rotation of the proximal end of the
limb, with length /, can be expressed as

Jr=F,l. (1.11)
The moment of inertia of the limb can now be determined as follows:
I\2
I=m (E) ~ D, (1.12)

The mass of the limb is denoted by m7;, and it is assumed that the limb has a
uniform density.
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The muscle in action has an angular acceleration, which can be characterized as

Jr P )
p=—~—-=1[". 1.13
O=—F"~7 (1.13)
From expression (1.13) itis easy to determine the stroke time scale 7', and because

the frequency fis proportional to f ~ T~! we get,
T=o"= fouo’ (1.14)

A relation between the body mass m and the maximum wing-beat frequency fiax,
can also be derived:

foax ~ T '~ ~m 1, (1.15)

With the assumption of geometric similarity, this is the upper limit of the flapping
frequency. For the lower-flapping-frequency limit, which is the case for most birds in
slow forward flight or hovering, the induced velocity w;, which is the airflow speed in
the wake right beneath the animal, dominates. Still, the weight W of the flyer must
be balanced by the lift L and, referring to Eq. (1.3), we obtain the following relation
for the induced velocity w;:

2SC 2
W:L:%:ﬂw: p’cﬂLgs' (1.16)

The angular velocity of the wings can be dimensionally expressed as

o~ wi/l, (1.17)

where /is a characteristic length, and with relations (1.5), (1.6) and (1.17), we obtain
the final expression for the lower flapping limit as

w; 1 |/ 2m 2m; & 172
Jmin ~ Omin = — = —\/ 8 \/ &~ (l_4> =712~ VS, (1.18)

l l pCLS - pCLl4

Because of these two physical limits, animal flight has an upper and a lower bound
for the flapping frequency.

1.3 Power Implication of a Flapping Wing

One of the first researchers to explore the consequences of the trend whereby
larger animals oscillate their limbs at lower frequencies than smaller ones of sim-
ilar type was Hill (1950). He concludes that the mechanical power produced by a
particular flight muscle is directly proportional to the contraction frequency. This
has made flapping frequency an important parameter when one is trying to describe
the theories behind flapping wings. Pennycuick (1990) conducted one of the most
thorough studies of the wing-beat frequency. He assumed that there is a natural fre-
quency imposed on the animal by physical characteristics of its limbs and the forces
that it must overcome. To be efficient, locomotion muscles have to be adapted to
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work at a particular frequency. For walking animals, Alexander (1976) showed that
the natural frequency is proportional to

~ &
f \/; (1.19)

where g is the acceleration of gravity and x; is the leg length.
Pennycuick (1990) identified several physical variables that affect the wing-beat
frequency:
b, wingspan (m),
S, wing area (m?),
I, wing moment of inertia (kg m?) ~ mb 2,
p, air density (kg/m?).
Allowing the preceding variables to vary independently and assuming that the

wing moment of inertia is proportional to mb?, Pennycuick (1990) deduced the fol-
lowing correlation for the wing-beat frequency by considering 32 different species:

f=1.08(m2g!2pts~ 1413, (1.20)

In an updated study Pennycuick (1996) added another 15 species and made a
more detailed analysis, leading to the following expression:

f — m3/8gl/2b—23/24s—1/3p3/8. (121)

Equation (1.21) can be used to predict the wing-beat frequency of species whose
mass, wingspan, and wing area are known. As mentioned earlier, the moment of
inertia [ for the wing is dependent on both the span b and the body mass m, and
hence a change in any of these variables will result in a change in moment of inertia.
This may not be appropriate, because a change in, for instance, body mass does not
necessarily affect 1. Therefore, if we intend to predict these effects on the wing-beat
frequency, it is more suitable to include / as an independent parameter (Pennycuick,
1996):

f= (mg)l/Z p17/24g-13 118,38 (1.22)

Another relation observed by Pennycuick et al. (1996) is the effect of air speed
on wing-beat frequency when body mass changes. The data for the frequency and
the airspeed U are fitted with a least-squares method:

f=ky+ k3 U+ k4 U?, (1.23)

where ky, k3 and k4 are proportional constants.

1.3.1 Upper and Lower Limits

Can scaling arguments provide any information about limits on the size of
flapping flyers capable of sustained flight? As mentioned before, large pterosaurs
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once flew long ago. Some of these species were much larger than birds of today and
there are discussions about whether they were able to flap or only to soar (Norberg,
1990). There are many parameters to consider when flapping flight is studied, but
limitations to this kind of flight mainly depend on the power available and structural
limits.

These limitations are intimately connected, as flapping frequency f affects both
power and structural limits. To generate the power required for flight, most birds and
other flapping animals have well-developed flight muscles. For birds these muscles
are the pectoral muscles, powering the downstroke of the wings, and the supraco-
racoideus muscles powering the upstroke. Much effort has been made to determine
power output and frequency levels, and to compare the masses of these muscles
with the mass of the whole specimen. According to Rayner (1988) relations between
body mass m and the mass of the pectoral and supracoracoideus muscles, 1, and
respectively, can be expressed as

m, = 0.15m>%, (1.24)
my = 0.016m™"", (1.25)

This means that the flight muscles constitute approximately 17% of the total
weight. The corresponding value for humans is 5%, according to Collins and Graham
(1994). The power output from bird and “fast” human muscles is about the same,
150 W/kg. Because the wings are often flexed during the upstroke and therefore not
exposed to the same aerodynamic force or moment of inertia as during the down-
stroke, the weight of the supracoracoideus muscle is generally low compared with the
weight of the pectoral muscle. Hummingbirds are different, having an aerodynami-
cally active upstroke (producing lift). In their case, the weight of the supracoracoideus
is higher; according to Norberg (1990), this muscle group can constitute up to 12%
of the body weight. The smallest supracoracoideus muscles are found among species
with big spans, in which the muscle mass is about 6% of the total mass. This value
is comparable to that of the human body, and hence these species have difficulties
taking off without a headwind, running start, or a slope start from a height. However,
species with long wings are usually able to soar, so the duration of the flapping-flight
mode can therefore be decreased.

Pennycuick (1969, 1975, 1986) defined the power margin as the ratio of the power
available from the flight muscles to that required for horizontal flight at the minimum
power speed. As already mentioned, the power available depends on the flapping
frequency that determines the upper and lower limits of the size of flying animals.
Pennycuick (1986) concluded that the upper limit for flapping flight, based on actual
sizes of the largest birds with powered flight, is a body mass of about 12-15 kg. Larger
birds do not have the possibility of beating their wings fast enough to generate lift
to sustain horizontal flight. Smaller birds have the advantage of being able to use
different flapping frequencies, but for animals with a weight of about 1 g, there is
another upper limitation. Their muscles need time to reset the contractile mechanism
after each contraction (Norberg, 1990). For insects with wing-beat frequencies up to
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400 Hz, this problem is solved with special fibrillar muscles capable of contracting
and resetting at very high frequencies. This limitation results in a minimum mass
for birds of 1.5 g and for bats, 1.9 g. The upper and lower wing-beat frequencies
are also restricted because of the structural limits. Bones, tendons, and muscles are
not capable of performing wing motions above a certain wing-beat frequency. Wing
bones that have to transmit forces to the external environment during flight must
be strong enough to not fail under the imposed loads. This means that the bones
have to be stiff and strong and at the same time not too heavy. Kirkpatrick (1994)
investigated the scaling relationships among body size and several morphological
variables of bird and bat wings in order to estimated the stress levels in their wings.
He also estimated the bending, shearing, and breaking stresses in the wing bones
during flight. He suggested that the breaking stress for a bat humerus bone is around
75 MPa and for birds 125 MPa. This structural limit helps explain why no bat weighs
more than 1.5 kg. Kirkpatrick (1994) found no relationship between either bending
or shearing stresses and wingspan during gliding flight or during the downstroke in
hovering. In general the safety factors are greater for birds than for bats. Hence
birds are more capable of withstanding higher wing loading. A final conclusion by
Kirkpatrick (1994) is that the stresses examined are scale independent.

1.3.2 Drag and Power

Like an aircraft, a natural flyer has to generate power to produce lift and to
overcome drag during flight. When soaring or gliding without flapping, the flyer pro-
duces much of the power required by converting potential energy to kinetic energy,
and vice versa. When flapping, the power is the rate at which work is produced by the
flight muscles. For basic aerodynamic concepts discussed in this subsection, please
refer to the standard textbooks such as those by Anderson (1989) and Shevell (1983).

The total aerodynamic drag (Do), acting on a flight vehicle, is a result of the
resistance to the motion through the air. This total aerodynamic drag can be divided
into different components. The two drag components acting on a wing in steady flight
are the induced drag (Djnq), which is the drag that is due to lift, and the profile drag
(Dpro), which is the drag associated with form and friction drag on the wing. The drag
on a finite wing (D,,) is the sum of these two components:

DW — Uind + Dpro~ (126)

The parasite drag (Dpar), which is defined as the drag on the body and only on
the body, also contributes to the total drag on the bird. This drag component is due
to the form and friction drag of the “nonlifting” body (it is true that, if the body is
tilted at an angle to the free stream, it will contribute to lift, but this contribution is
very small and is neglected). If the drags of the wing and body are summed, the total
aerodynamic drag of the bird can be expressed as

Daero = Uing + Dpro + Dpar~ (1'27)
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The different powers subsequently presented are defined as the powers needed
to overcome specific drags at a certain velocity. One obtains the total aerodynamic
power required for steady forward flight by multiplying the drag force with the
forward velocity (Uyet):

Paero = Daero Uref~ (128)

The main effort here is to describe the different methods used for determining the
total power required (Pyo) for flight. Depending on the forward velocity, the power
components are calculated in different ways. There exists a clear difference between
flight at zero velocity (hovering flight) and forward flight. Therefore we deal with
these two cases separately when calculating the power components.

In hovering flight, the resulting velocity is essentially the same as the induced
velocity (w;) because of negligible forward velocity. In this case, the lift is equal
to the thrust 7, namely, the mass times the acceleration of gravity, and the total
aerodynamic power required for hovering flight is

Paero = Tw;. (1.29)

For forward flight, there exist three different power components correspond-
ing to the three drag components in Eq. (1.27). The three components are the
induced power (Pina), Which is the rate of work required for generating a vortex
wake whose reaction generates lift and thrust, the profile power (Pp,), the rate of
work needed to overcome form and friction drag of the wings, and the parasite power
(Ppar), which is the rate of work needed to overcome form and friction drag of the
body. In the same way as for the drag components, the power components are added
together to produce the total aerodynamic power (Pyero ) required for horizontal flight:

Paero = Pina + Ppro + Ppars (130)

where Pj,q is the power needed for lift production during flight and decreases with
increasing flight velocity. In the theory developed by Rayner (1979¢), the upstroke
is assumed not to contribute to any useful aerodynamic forces and is therefore not
included. The wings are considered to move in only the stroke plane (i.e., no forward
or backward movement). The induced power is calculated from the kinetic-energy
increment in the wake from a single stroke. The shed vortex rings are elliptical and
inclined at an angle to the horizontal. The kinetic energy has two components, the
self-energy of the newly generated ring and the mutual energy of the new ring with
each of the existing rings in the wake. The mutual energy contribution decreases with
higher forward velocities and can be neglected for velocities above the minimum
power required velocity. With this method the induced power can be calculated as
a function of the forward velocity, from the total energy increment divided by the
stroke period.

Depending on the forward velocity, different methods are required for estimating
the power components in Eq. (1.30). If the forward velocity is high, the unsteady
effects are small and quasi-steady assumptions can give good approximations. For
slow forward velocities the vortex theory is more accurate, especially when one is
estimating the induced power.
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Figure 1.17. The two power components for a fixed-wing air vehicle, and the power
required, as a result of adding these two components together. The parasite power
curve represents the function P = f (U ?) and the induced power curve P = f(U ™).

Besides the components previously introduced, there is another component
called the inertial power (Piner), Which is the power needed to move the wings and
only the wings. The most important parameter when one is calculating this power is
the moment of inertia / of the wing. Two main ways exist to obtain a low moment of
inertia, namely, to keep the mass of the wing as low as possible and to concentrate
the mass as much as possible near the axis of rotation. The inertial power is typically
small under a medium to fast forward-flight condition and can be neglected (Norberg,
1976). However, for slow or hovering flight this power must be accounted for.

The total power (Py) required for flight is the sum of the total aerodynamic
power and the inertial power:

Ptot = Paero + Piner = Lind + Ppro + Ppar + Piner- (1-31)

This is only the power required for flight and is not the same as the power input
(Goldspink, 1977). Because the flight muscles are limited by their own mechanical
efficiency, and all living animals are regulated by their own metabolism, the power
input needed is higher than the total power required in Eq. (1.31).

The power required (Pyo) is strongly connected to the forward-flight speed. A
common way of describing this relationship is by means of a power curve. For a
fixed-wing air vehicle, the induced power is proportional to U~! and the profile and
parasite powers to U>, the power required is given by

P~ ksU™' + keU?, (1.32)

where ks and kg are constants.

When each power component is expressed as a function of velocity, P = f{U %)
and P = f(U™1), two curves can be plotted (see Figure 1.17). The solid curve in
Figure 1.17 represents the power required for steady flight.

The most common power—flight-speed curve is the U-shaped curve, as suggested
in Figure 1.17, which is further illustrated in Figure 1.18, in which there exists a
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Figure 1.18. The U-shaped power curve for a fixed-wing aircraft. U,,, is the velocity
for minimum power (P,,,) and Uy, is the velocity for maximum range.

particular speed Uy,,, where the power required has a minimum value. Also in Fig-
ure 1.181s astraight dashed line. This line starts at the origin and tangents the U-curve
at a certain point. The velocity at this point is the velocity for maximum range, Uy;-
When flyers migrate they need to cover a long distance for a given amount of energy,
and therefore tend to fly at this velocity.

For a fixed wing, as shown by Lighthill (1977), Uy, and Uy, are related by

Untr = 1.32 Upp. (1.33)

For birds, the power curve is not necessarily U-shaped. Different researchers in
the area of avian flight have come up with different shapes of the power curve
(Alexander, 1997). The differences could be explained by the different ways
approached by the researchers in, for example, the power components that have
been considered and the muscle efficiencies that have been used. Nevertheless, as
shown in Figure 1.19, the U-shaped power—flight-speed curve is indeed observed in
natural flyers.

14  Concluding Remarks

In this chapter, we have offered an overview of the various low Reynolds
number flyers, highlighting flight characteristics and scaling laws related to wingspan,
wing area, wing loading, and vehicle size and weight.

The scaling laws indicate that, as a flyer’s size reduces, it has to flap faster to stay
in air, experiences lower wing loading, is capable of cruising slower, has a lower stall
speed, and consequently can survive much better in a crash landing. In the meantime,
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Figure 1.19. Pectoralis power as a function of flight velocity. Comparative mass-specific
pectoralis power as a function of flight velocity in cockatiels, doves, and magpies. Bird
silhouettes are shown to scale, digitized from a video (Tobalske et al., 2003).

as a flyer becomes smaller, its weight shrinks at a much faster rate, meaning that it can
carry very little “fuel” and has to resupply frequently. Birds, bats, and insects apply
different flapping patterns in hovering and forward flight to generate lift and thrust.
Typically, in slow forward flight the reduced frequency and wing-beat amplitude
tend to be high, resulting in highly unsteady flow structures. In fast forward flight the
reduced frequency and the wing-beat amplitude tend to be low, and the wake often
consists of a pair of continuous undulating vortex tubes or line vortices. Larger birds
have relatively simple wingtip paths compared with those of smaller flyers. We have
also discussed the power requirement associated with flight, including the U-shaped
curve between specific power and flight speed.

As aflyer’s size reduces, its operating Reynolds number becomes lower; accord-
ingly, its wing in a steady stream produces a poorer lift-to-drag ratio. Coupling with
a slower flight speed, a small flyer is substantially more influenced by the flight envi-
ronment such as wind gust. To overcome these challenges, natural flyers flap their
wings to enhance lift and improve maneuverability. The aerodynamics of fixed and
flapping wings are discussed next.



CHAPTER TWO

Fixed, Rigid-Wing Aerodynamics

As already mentioned, there are several prominent features of MAV flight:
(i) low Reynolds numbers (10*-10°), resulting in degraded aerodynamic perfor-
mance, (ii) small physical dimensions, resulting in much reduced payload capabil-
ities, as well as some favorable scaling characteristics including structural strength,
reduced stall speed, and impact tolerance, (iii) low flight speed, resulting in an order
one effect of the flight environment such as wind gust, and intrinsically unsteady
flight characteristics. The preferred low Reynolds number airfoil shapes are differ-
ent from those typically used for manned aircraft in thickness, camber, and AR. In
this chapter, we discuss low Reynolds number aerodynamics and the implications
of airfoil shapes, laminar—turbulent transition, and an unsteady free stream on the
performance outcome.

Schmitz (1942) was among the first to investigate the aerodynamics for model
airplanes in Germany, and he published his research in 1942. His work is often con-
sidered to be the first reported low-speed wind-tunnel research. However, before him,
experimental investigations of low Reynolds number aerodynamics were conducted
by Brown (1939) and by Weiss (1939), in the first two (and only) issues of The Jour-
nal of International Aeromodeling. Brown’s experiments focused on curved-plate
airfoils, made by using two circle arcs meet at maximum camber point of 8%, at
varying locations. The wing test sections were all of 12.7 cm x 76.2 cm, giving an
aspect ratio of 6. In all cases, the tests were conducted at a free-stream velocity of 94
cm/s. The Reynolds number, although not mentioned in Brown’s study, is estimated
to be about 8000.

It is hard to judge the quality of the measurements reported in these early works
(see Figure 2.1). Nevertheless, their publications have clearly demonstrated the fact
that a model airplane offered and continues to offer enthusiastic inquiries of many
aspects related to the low Reynolds aerodynamics. Representative figures from
Brown’s experiments (Brown, 1939) are included here for us to gain a historical
perspective.

Many papers have been published to improve our understanding, experimental
database, and airfoil design guidance in the lower Reynolds number regime. For
example, valuable insight has been offered by Liebeck (1992), Selig et al. (1995, 1996a,
1996b), and Hsiao et al. (1989). Liebeck (1992) addressed the laminar separation and
airfoil design issues for Reynolds numbers Re between 2 x 10° and 2 x 10°, and Hsiao

28
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Figure 2.1. Low-speed aerodynamic tests reported by Brown for two airfoils (Brown,
1939). The chord was 12.7 cm and the free-stream velocity was 94 cm/sec.

et al. (1989) investigated the aerodynamic and flow structure of an airfoil, NACA
633-018, for Re between 3 x 10° and 7.74 x 10°. Selig et al. covered a wide variety of
airfoils to obtain basic acrodynamics data for Re between 6 x 10* and 3 x 10° (Selig
etal., 1995, 1996b) and for Re between 4 x 10* and 3 x 10° (Selig et al., 1996a). In the
following text, we discuss the various aerodynamics characteristics and fluid physics
for Re between 100 and 10°. Our main interest is on issues related to a Reynolds
number of 10° or lower.

2.1  Laminar Separation and Transition to Turbulence

Figure 2.2 illustrates the aerodynamic performances and shapes of several rep-
resentative airfoils under a steady-state free stream. A substantial reduction in the
lift-to-drag ratio is observed as the Reynolds number becomes lower. The observed
aerodynamic characteristics are associated with the laminar—turbulent transition pro-
cess. For conventional manned aircraft wings, whose Reynolds numbers exceed 10°,
the flows surrounding them are typically turbulent, with the near-wall fluid capable
of strengthening its momentum by means of energetic “mixing” with the free stream.
Consequently flow separation is not encountered until the AoA becomes high. For
low Reynolds number aerodynamics, the flow is initially laminar and is prone to sep-
arate even under a mild adverse pressure gradient. Under certain circumstances, as
discussed next, the separated flow reattaches and forms a laminar separation bubble
(LSB) while transitioning from a laminar to a turbulent state. Laminar separation can
modify the effective shape of an airfoil and consequently influence the aerodynamic
performance.
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Figure 2.2. Aerodynamic characteristics of representative airfoils. Figure plotted
based on data from Lissaman (1983).

The first documented experimental observation of a LSB was reported by Jones
(1938). In general, under an adverse pressure gradient of sufficient magnitude, the
laminar fluid flow tends to separate before becoming turbulent. After separation,
the flow structure becomes increasingly irregular, and, beyond a certain threshold,
it undergoes transition from laminar to turbulent. The turbulent mixing process
brings high-momentum fluid from the free stream to the near-wall region, which
can overcome the adverse pressure gradient, causing the flow to reattach.

The main features of a LSB are illustrated in Figure 2.3(a). After separation,
the laminar flow forms a free-shear layer, which is contained between outer edge
S”T” of the viscous region and the mean dividing streamline ST’. Downstream of
the transition point T, turbulence can entrain significant amount of high-momentum
fluid through diffusion (Roberts, 1980), which enables the separated flow to reattach
to the wall and form a turbulent free-shear layer. The turbulent free-shear layer is
contained between lines T"R” and T'R. The recirculation zone is bounded by the
ST'R and STR.

Just downstream of the separation point, there is a “dead-fluid” region, where
the recirculation velocity is significantly less than the free-stream velocity and the
flow can be considered almost stationary. Because the free-shear layer is laminar and
is less effective in mixing, the flow velocity between the separation and transition is
virtually constant (Roberts, 1980). This is also reflected in the pressure distribution
in Figure 2.3(b). The pressure “plateau” is a typical feature of the laminar part of the
separated flow.

The dynamics of a LSB depends on the value of the Reynolds number, the pres-
sure distribution, the geometry, the surface roughness, and the free-stream turbu-
lence. An empirical rule given by Carmichael (1981) says that the Reynolds number,
based on the free-stream velocity and the distance from the separation point to the
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Figure 2.3. (a) Schematic flow structures illustrating the laminar—turbulent transition
(Roberts, 1980) (copyright by ATAA). (b) Pressure distribution over an SD7003 airfoil,
as predicted by XFOIL (Drela, 1989).

reattachment point, is approximately 5 x 10%. It suggests that, if the Reynolds num-
ber is less than 5 x 10%, an airfoil will experience separation without reattachment;
on the other hand, a long separation bubble will occur if the Reynolds number is
slightly higher than 5 x 10*. This rule provides a general guide to predict the reat-
tachment and should be used with caution. As we discuss later, the transition and the
reattachment process is too complicated to be described by the Reynolds number
alone.

As the Reynolds number decreases, the viscous damping effect increases, and
it tends to suppress the transition process or delay reattachment. The flow will not
reattach if

1. the Reynolds number is sufficiently low for the flow to completely remain
laminar, or

2. the pressure gradient is too strong for the flow to reattach. Thus, without
reattachment, a bubble does not form and the flow is then fully separated.
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Based on its effect on pressure and velocity distribution, the LSB can be classified
as either a short or long bubble (Tani, 1964). A short bubble covers a small portion
of the airfoil and plays an insignificant rule in modifying the velocity and pressure
distributions over an airfoil. In such a case, the pressure distribution closely follows
its corresponding inviscid distribution except near the bubble location, where there
is a slight deviation from the inviscid distribution. On the other hand, a long bubble
covers a considerable portion of the airfoil and significantly modifies the inviscid
pressure distribution and velocity peak. The presence of a long bubble leads to a
decrease of lift and an increase of drag. Typically, a separation bubble has very steep
gradients in the edge velocity u, and momentum thickness 6 at the reattachment
point, resulting in jumps in Au. and A6 over a short distance. For incompressible
flow, the momentum thickness is defined as

0= fogw % (1 - %)dg, 2.1)

where u is the streamwise velocity and U is the free-stream velocity. For flow over a
flat plate, the momentum thickness is equal to drag force divided by p U?. If the skin
friction is omitted, the correlation between these jumps can be expressed as

AO Au,

5 =-C+H) o (22)

where H is the shape factor, defined as the ratio between the boundary-layer displace-
ment thickness 8* and the momentum thickness 6. The boundary-layer displacement
is defined as

5 = /jm (1 . %)d&. (2.3)

Because of the change in flow structures, the shape factor H increases rapidly
downstream of the separation point. Hence, according to correlation (2.2), the
momentum-thickness jump is sensitive to the location of transition point in the sepa-
ration bubble. Furthermore, because airfoil drag is directly affected by a momentum-
thickness jump, an accurate laminar—turbulent transition model is important for drag
prediction.

Figure 2.4 illustrates the behavior of an LSB in response to the Reynolds number.
The analyses are based on the XFOIL code (Drela, 1989), which uses the thin-layer
fluid flow model, assuming that the transverse length scale is much smaller than the
streamwise length scale. At a fixed AoA, four flow regimes can be identified as the
Reynolds number varies. Asindicated in Figure 2.4, at Re = 10°, on the upper surface
there exists a short LSB, which affects the velocity distribution only locally. At an
intermediate Reynolds number, e.g., Re = 4 x 10%, the short bubble bursts to form
a long bubble. The peak velocity is substantially lower than that of the inviscid flow.

As the Reynolds number decreases to, e.g., Re = 2 x 10, the velocity peak
and circulation decrease further, reducing the pressure gradient after the suction
peak. A weaker pressure gradient attenuates the amplification of disturbance in
the laminar boundary layer, which delays the transition and elongates the free-shear
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Figure 2.4. Streamwise velocity profiles over the upper surface of an SD7003 airfoil
with varying Reynolds numbers, at a fixed AoA of 4°. Inviscid as well as viscous flow
solutions are shown. At Re = 10°, a short bubble is observed; otherwise, the velocity
distribution largely matches that of the inviscid model. At a lower Reynolds number,
Re = 4 x 10%, a long bubble after bursting is observed, causing significant impact
on the velocity distribution. Finally, at Re = 2 x 10*, a complete separation with no
reattachment is noticed. Here u, is the velocity at the boundary-layer edge parallel
to the airfoil surface, and U, is the free-stream velocity. The results are based on
computations made with XFOIL (Drela, 1989).

layer. At this Reynolds number, the separated flow no longer reattaches to the airfoil
surface. The main structures are no longer sensitive to the exact value of the Reynolds

number.
For a fixed Reynolds number, varying the AoA changes the pressure gradient

aft of

the suction peak and therefore changes the LSB. In this aspect, varying the

Ao0A has the same effect on the LSB as changing the Reynolds number. Figure 2.5
illustrates that, at a fixed Reynolds number of 60,100, for the Eppler E374, a zigzag

pattern appears in the lift-drag polar:

1.

2.

Atalower AoA, for example 2.75°, there is along bubble on the airfoil surface,
which leads to a large drag.

When the AoA is increased (from 4.03° to 7.82°), the adverse pressure gra-
dient on the upper surface grows, which intensifies the Tollmien—Schlichting
(TS) wave, resulting in an expedited laminar—turbulent transition process. A
shorter LSB leads to more airfoil surface covered by the attached turbulent
boundary-layer flow, resulting in a lower drag. This corresponds to the lift—

drag polar’s left turn.
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Figure 2.5. Lift-to-drag polars of the Eppler E374 at different chord Reynolds num-
bers: (a) lift-to-drag polars at different Reynolds numbers; (b) pressure coefficient
distributions at different AoAs for Re = 60,100. Data are computed with XFOIL
(Drela, 1989); (c) E374 airfoil.

3. When the AoA is further increased (beyond 7.82°), the separated flow quickly
experiences transition; however, with a massive separation, the turbulent dif-
fusion can no longer make the flow reattach, and the drag increases substan-
tially with little changes in lift.



2.1 Laminar Separation and Transition to Turbulence 35

The previously described zigzag pattern of the lift-drag polar is a noticeable
feature of low Reynolds number aerodynamics. As illustrated in Figure 2.5, at a
sufficiently high Reynolds number, the polar exhibits the familiar C-shape.

Earlier experimental investigations on low Reynolds number aerodynamics were
reviewed by Young and Horton (1966). Carmichael (1981) further reviewed theoreti-
cal and experimental results of various airfoils with Reynolds numbers spanning from
10? to 10°. In particular, the near-surface flow and aerodynamic loads of a wing at
Reynolds numbers in the range 10*-10° were studied by many investigators. Crabtree
(1957) studied the formation of short and long LSBs on thin airfoils. Consistent with
the preceding discussion of the two types of separation bubbles, he suggested that
the long bubble directly influences aerodynamic characteristics whereas the short
one serves as an agent for initiating a turbulent boundary layer. Numerous further
investigations have been reported in the past two decades on the interplay between
near-wall flow structures and the aerodynamic performance. For example, Huang
et al. (1996) studied the aerodynamic performance versus the surface-flow mode at
different Reynolds numbers. Hillier and Cherry (1981) and Kiya and Sasaki (1983)
studied the influence of the free-stream turbulence on the separation bubble along
the side of a blunt plate with right-angled corners and found that the bubble length,
sizes of vortices in the separating region, and the level of the suction peak pressure
can all be well correlated with the turbulence outside the shear layer and near the
separation point.

2.1.1 Navier—Stokes Equation and the Transition Model

To perform practical laminar- and turbulent-flow computations in the Rey-
nolds number range typically used by the low Reynolds number flyers, the constant-
property Navier-Stokes equations adequately model the fluid physics:

Bui
— =0, 2.4
3%, (2.4)
au, 1 ap 9?
=P T, 25
g ) = 5 v ) @)

where u; are the mean flow velocities and v is the kinematic viscosity. For turbulent
flows, turbulent closures are needed if one is solving the ensemble-averaged form of
the Navier—Stokes equations. Numerous closure models have been proposed in the
literature (Wilcox, 2000). Here we present the two-equation k—w turbulence model
(Wilcox, 2000) as an example. For clarity, the turbulence model is written in Cartesian
coordinates as follows:
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where
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For the preceding equations, & is the turbulent kinetic energy, w is the dissipation
rate, vr is the turbulent kinematic eddy viscosity, Rer is the turbulent Reynolds
number, and ag, 8, Rg, Rk, and R,, are model constants. To solve for the transition from
laminar to turbulent flow, the incompressible Navier—Stokes equations are coupled
with a transition model.

The onset of laminar—turbulent transition is sensitive to a wide variety of distur-
bances, such as pressure gradient, wall roughness, free-stream turbulence, acoustic
noise, and thermal environment. A comprehensive transition model considering all
these factors currently does not exist. Even if we limit our focus on free-stream tur-
bulence, it is still a challenge to give an accurate mathematical description. Overall,
approaches of transition prediction can be categorized as (i) empirical methods and
methods based on linear stability analysis, such as the e¥ method (Drela, 1989), (ii)
linear or nonlinear parabolized stability equations (Herbert, 1997), and (iii) large-
eddy simulation (LES) (Lesieur and Metais, 1996) or direct numerical simulation
(DNS) methods (Moin and Mahesh, 1998).

Empirical methods have also been proposed to predict transition in a separation
bubble. For example, Roberts (1980), Davis et al. (1987), and Volino and Bohl (2004)
developed models based on local turbulence levels; Mayle (1991), Praisner and Clark
(2004), and Roberts and Yaras (2005) tested concepts by using the local Reynolds
number based on the momentum thickness. These models use only one or two local
parameters to predict the transition points and hence often oversimplify the down-
stream factors such as pressure gradient, surface geometry, and surface roughness.
For attached flow, Wazzan et al. (1979) proposed a model based on the shape factor
H.Their model gives a unified correlation between the transition point and Reynolds
number for a variety of problems. For separated flow, however, no similar models
exist, in part because of the difficulty in estimating the shape factor.

Among the approaches using linear stability analysis, the ¢ method is widely
adopted (Smith and Gamberoni, 1956; Van Ingen, 1956). It solves the Orr—
Sommerfeld equation to evaluate the local growth rate of unstable waves based
on velocity and temperature profiles over a solid surface. Its successful application
is exemplified in the popularity of airfoil analysis software such as XFOIL (Drela,
1989). XFOIL uses the steady Euler equations to represent the inviscid flows, a two-
equation integral formulation based on dissipation closure to represent boundary
layers and wakes and the ¢V method to tackle transition. The concept of coupling a
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Reynolds-averaged Navier-Stokes (RANS) solver with ¢V method to predict transi-
tion has been practiced by Radespiel et al. (1991), Stock and Haase (1999), and He
et al. (2000). A recent application of this approach for low Reynolds number appli-
cations can be found in the work of Yuan et al. (2005) and Lian and Shyy (2006).

The eV method is based on the following assumptions: (i) the velocity and tem-
perature profiles are essentially two dimensional (2D) and steadys; (ii) the initial dis-
turbance is infinitesimal; and (iii) the boundary layer is thin. Even though in practice
the eV method has been extended to study the three-dimensional (3D) flow, strictly
speaking, such flows do not meet the preceding conditions. Furthermore, even in 2D
flow, not all these assumptions can be satisfied (Zheng et al., 1998). Nevertheless, the
eV method remains a practically useful approach for engineering applications.

The advancement in turbulence modeling has offered alternative approaches
for transition prediction. For example, Wilcox devised a low Reynolds number k—o
turbulence model to predict transition (Wilcox, 1994). One of his objectives is to
match the minimum critical Reynolds number beyond which the TS wave begins
forming in the Blasius boundary-layer context. However, this model fails if the
separation-induced transition occurs before the minimum Reynolds number, as fre-
quently occurs in a separation-induced transition. Holloway et al. used unsteady
RANS equations to study the flow separation over a blunt body for the Reynolds
number range 10*~107 (Holloway et al., 2004). It is observed that the predicted tran-
sition point can be too early even for a flat plate flow case, as illustrated by Dick and
Steelant (1997). In addition, Dick and Steelant (1996) and Suzen and Huang (2000)
incorporated the concept of an intermittency factor to model the transitional flows.
One can achieve this either by using conditional-averaged Navier—Stokes equations
or by multiplying the eddy viscosity by the intermittency factor. In either approach,
the intermittency factor is solved based on a transport equation, aided by empirical
correlations. Mary and Sagaut (2002) studied the near-stall phenomena around an
airfoil by using LES, and Yuan et al. (2005) studied transition over a low Reynolds
number airfoil by using LES. The major challenge for the computations of transi-
tional flow by use of LES is the artificial triggering of transition by a pointwise input
of turbulent kinetic energy.

2.1.2 The eN Method

In the following discussion, we offer a more detailed presentation of the eV
method because it forms the basis for low Reynolds number aerodynamics predic-
tions and has proven to be useful for engineering applications. As already mentioned,
the ¢ method is based on linear stability analysis, which states that transition occurs
when the most unstable TS wave in the boundary layer has been amplified by certain
factors. Given a velocity profile, one can determine the local disturbance growth rate
by solving the Orr—Sommerfeld eigenvalue equations. Then, one calculates the ampli-
fication factor by integrating the growth rate, usually the spatial growth rate, starting
from the point of neutral stability. The Transition Analysis Program System (TAPS)
by Wazzan and coworkers (Wazzan et al., 1968) and the COSAL program by Malik
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(1982) can be used to compute the growth rate for a given velocity profile. Schrauf
also has developed a program called Coast3 (Schrauf, 1998). However, it is very time
consuming to solve the eigenvalue equations. An alternative approach has been pro-
posed by Gleyzes et al. (1985) who found that the integrated amplification factor 7
can be approximated by an empirical formula as follows:
dn
dRee

n=

(H)[Rey — Rey, (H)], (2.12)

where, as previously defined, 6 is the boundary-layer momentum thickness, Rey is the
momentum-thickness Reynolds number, Rey, is the critical Reynolds number that we
will define later, and H is the shape factor previously discussed. With this approach,
one can approximate the amplification factor with a reasonably good accuracy with-
out solving the eigenvalue equations. For similar flows, the amplification factor 7 is
determined by the following empirical formula:
dn
dRey

= 0.01{[2.4H — 3.7+ 2.5 tanh (1.5 H — 4.65)]> + 0.25}'*. (2.13)

For nonsimilar flows, i.e., those that cannot be treated by similarity variables by use of
the Falkner-Skan profile family (White, 1991), the amplification factor with respect
to the spatial coordinate £ is expressed as

7 nol e 021
dn _ dn 1 (€ duc ) pucd”1 (2.14)
dé¢  dRey2 \u, d§ u.. 0
An explicit expression for the integrated amplification factor then becomes
dn
i(E) = —dE, 2.15
o) = [ e (2.15)

where &g is the point where Rey = Rey,, and the critical Reynolds number is expressed
by the following empirical formula:

1.415 20 3.295
1 Regy = —— —0.489 ) tanh | —— — 12.9 —— +0.44. 2.16
810 K€t (H—l )an (H—l >+H—1+ (2.16)
Once the integrated growth rate reaches the threshold N, flow becomes turbulent.
To incorporate the free-stream turbulence level effect, Mack (1977) proposed the

following correlation between the free-stream intensity 7; and the threshold N:
N=-843—-24In(T;), 0.0007 < T; <0.0298. (2.17)

Care should be taken in using such a correlation. The free-stream turbulence level
itself is not sufficient to describe the disturbance because other information, such as
the distribution across the frequency spectrum, should also be considered. The so-
called “receptivity,” i.e., how the initial disturbances within the boundary layer are
related to the outside disturbances, is a critically important issue. Actually, we can
determine the N factor only if we know the “effective 7;,” which can be defined only
through a comparison of the measured transition position with calculated amplifica-
tion ratios (Van Ingen, 1995).
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A typical procedure to predict transition point with coupled RANS equations
and the ¢V method is as follows: The Navier-Stokes equations together with a tur-
bulence model are first solved without invoking the turbulent production terms, for
which the flow is essentially laminar; the amplification factor 7 is integrated based
on Eq. (2.12) along the streamwise direction; once the value reaches the threshold
N, the production terms are activated for the post-transition computations. After the
transition point, flow does not immediately become fully turbulent; instead, the pro-
cess toward full turbulence is a gradual process. This process can be described with
an intermittency function, allowing the flow to be represented by a combination of
laminar and turbulent structures. With the intermittency function, an effective eddy
viscosity is used in the turbulence model, and it can be expressed as follows:

Ve = YVT, (2.18)

where vy is the intermittency function, vy, is the effective eddy viscosity, and vr is the
eddy viscosity.

In the literature a variety of intermittency distribution functions is proposed.
For example, Cebeci (1988) has presented such a function by improving on a model
previously proposed by Chen and Thyson (1971) for the Reynolds number range of
2.4 x 10° to 2 x 10° with an LSB. However, no model is available when the Reynolds
number is lower than 10°. Lian and Shyy (2006) suggested that, for separation-
induced transition at such a low Reynolds number regime, the intermittency dis-
tribution is largely determined by the distance from the separation point to the
transition point, and the shorter the distance, the quicker flow becomes turbulent.
Also, previous work suggests that the flow property at the transition point will also be
important. From the available experimental data and our simulation, they proposed
the following model (Lian and Shyy, 2006):

2
0 (x < x7)

where x7 is the transition onset position, xg is the separation position, Hr is the
shape factor at the transition point, and Reyr is the Reynolds number based on the
momentum thickness at the transition point.

2.1.3 Case Study: SD7003

Lian and Shyy (2006) studied the Reynolds number effect with a Navier—
Stokes equation solver augmented with the ¢ method. The lift and drag coefficients
of the SD7003 airfoil versus AoA are plotted in Figure 2.6. The good agreement
between the numerical results (Lian and Shyy, 2006) and the experimental mea-
surements by Ol et al. (2005) and Selig et al. (1995) can be seen vividly. Both the
simulation and the measurement by Ol et al. (2005) predict that the maximum lift
coefficient happens at 11°. Close to the stall AoA, the simulations overpredict the
lift coefficients.
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Figure 2.6. (a) Lift and (b) drag coefficients vs. the AoA for the SD7003 airfoil at
Re = 6 x 10* (Lian & Shyy, 2006). CFD, computational fluid dynamics.

As the Ao0A increases, as illustrated in Figure 2.7, the adverse pressure gradi-
ent downstream of the point of the suction peak becomes stronger and the sepa-
ration point moves toward the leading edge. The strong pressure gradient ampli-
fies the disturbance in the separation zone and prompts transition. As the turbu-
lence develops, the increased entrainment causes reattachment. At an AoA of 2°,
the separation position is at around 37% of the chord length and transition occurs
at 75% of the chord length. A long LSB forms. The plateau of the pressure dis-
tribution shown in Figure 2.7(a) is characteristic of such a long LSB. It is also
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Figure 2.7. (a) Pressure coefficients vs. AoA, (b) separation and transition position

versus the AoA for the SD7003 airfoil at Re = 6 x 10* (Lian and Shyy, 2006).

noticed from Figure 2.7(b) that the bubble length decreases with an increase in

the AoOA.

Lian and Shyy (2006) compared the computed shear stress with the experimental
measurement by Radespiel et al. (2000), utilizing a low-turbulence wind tunnel and
a water tunnel because of the low-turbulence nature. Radespiel et al. (2006) suggest
that large values of the critical N factor should be appropriate. As shown in Fig-
ure 2.8, the simulation by Lian and Shyy (2006) with N = 8 shows good agreement
with measurement in terms of transition position, reattachment position, and vortex
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Figure 2.8. Streamlines and turbulent shear stress for « = 4°: (a) experimental mea-
surement by Radespiel et al. (2006), (b) numerical simulation with N = 8 by Lian and
Shyy (2006).

core position. It should be noted that, in the experiment, the transition location is
defined as the point where the normalized Reynolds shear stress reaches 0.1% and
demonstrates a clearly visible rise. The transition point in the simulation is defined
as the point where the most unstable TS wave has amplified over a factor of eV.
This definition discrepancy may cause some problems when we compare the tran-
sition position. In any event, overall, simulations typically predict noticeably lower
shear-stress magnitude than the experimental measurement.

As the AoA increases, both the separation and the transition positions move
upstream, and the bubble shrinks. The measurements at « = 8° and 11° are per-
formed in the water tunnel with a measured free-stream turbulence intensity of
0.8%. At o = 8° the simulation by Lian and Shyy (2006) predicts that the flow goes
though transition at 15% of the chord, which is close to the experiment measure-
ment of 14%. The bubble covers approximately 8% of the airfoil upper surface. The
computational and experimental results for the AoA of a« = 8° are shown in Fig-
ure 2.9. With an AoA of a = 11°, the airfoil is close to stall. The separated flow
requires a greater pressure recovery in the laminar bubble for reattachment. Lian
and Shyy (20006) predict that flow separates at 5% of the chord, and the separated flow
quickly reattaches after it experiences transition at 7.5% chord position whereas the
experiment showed transition occurred at 8.3%. This quick reattachment generally
represents the transition-forcing mechanism. Comparison shows that the computed
Reynolds shear stress matches the experiment measurement well (Figure 2.10).

For low Reynolds number airfoils, the chord Reynolds number is a key parameter
used to characterize the overall aerodynamics. Between the separation position
and the transition position, as shown in Figure 2.11(a), the shape factor H and the
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Figure 2.9. Streamlines and turbulent shear stress for a = 8°: (a) experimental mea-
surement by Radespiel et al. (2006), (b) numerical simulation with N = 3 by Lian and
Shyy (2006).
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Figure 2.10. Streamlines and turbulent shear stress for « = 11°: (a) experimental mea-
surement by Radespiel et al. (2006), (b) numerical simulation with N = 3 by Lian and
Shyy (2006).
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Figure2.11. Reynoldsnumber effect on the LSB profile and aerodynamic performance
a = 4° for the SD7003 airfoil (Lian and Shyy, 2006): (a) shape factor and momentum-
thickness-based Reynolds number, (b) effective airfoil shape, (c) lift-to-drag ratio,
(d) drag coefficient.

momentum-thickness-based Reynolds number increase with the chord Reynolds
number. As shown in Figure 2.11(b) the effective airfoil shape, which is the superim-
position of the airfoil and the boundary-layer displacement thickness, at Re = 4 x 10*
has the largest camber. This helps explain why the largest lift coefficient is obtained at
Re = 4 x 10* (Figure 2.11(c)). The camber decreases significantly when the Reynolds
number increases from 4 x 10* to 6 x 10* but does not show considerable change
when the Reynolds number increases further. Therefore one does not observe much
increase in the lift coefficient even though the LSB length is shorter at higher
Reynolds numbers. One can conclude from Figure 2.11(d) that the enhancement
of lift-to-drag ratio is mainly due to the reduction of friction drag at high Reynolds
numbers. As the Reynolds number increases, the form drag does not vary as much
as the friction drag.

2.2 Factors Influencing Low Reynolds Number Aerodynamics

With the influence of flow separation and laminar—turbulent transition, the
preferred airfoil shapes in the low Reynolds number regime are different from those
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in the high Reynolds number regime. Furthermore, in addition to the Reynolds
number, the airfoil camber, thickness, surface smoothness, freestream unsteadiness,
and the AR all play important roles in determining the aerodynamic performance
of a low Reynolds number flyer. These factors will be discussed in the following.

221 Re = 10° - 10*

Okamoto et al. (1996) experimentally studied the effects of wing camber on
wing performance with Reynolds numbers as low as 103-10%. In their experiment,
rectangular wings with an AR of 6, constructed from aluminum foil or balsa wood, are
used. Figure 2.12 illustrates the effects of camber on the aerodynamic characteristics.
As the camber increases, the lift coefficient slope and the maximum lift coefficient
increase as well. The increase in camber pushes both the maximum lift coefficient and
the maximum lift-to-drag ratio to a higher AoA. More interesting, the 3% camber
airfoil shows stall-resisting tendency, with the lift just leveling off above an AoA
of 10°. Apart from the disadvantage of a high drag coefficient, the low-camber airfoil
does have the advantage in that it is less sensitive to the AoA and therefore does not
require sophisticated steering.

Sunada et al. (2002) compared wing characteristics at a Reynolds number of
4 x 10°. They fabricated rectangular wings with an AR of 7.25. Representative wings
are shown in Figure 2.13. Among the 20 wings tested, they concluded that the wing
performance can be improved with a modest camber of around 5%. Figure 2.14 shows
the lift and drag coefficients versus the AoA. In their work, at Re = 4 x 103, the effect
of camber on aerodynamics is similar to that reported by Okamoto et al. (1996). In
either experiment, the lift curve slope increases with the camber; a higher-camber
wing has a higher-stall AoA, and generally a larger drag coefficient than a lower-
camber wing at the same AoA. If we further compare wings of comparable cambers,
we notice that they have almost the same stall angle. Sunada et al. (2002) further
investigated the impact of the maximum-camber location, shown in Figure 2.15. They
found that both lift and drag coefficients increase as the position of the maximum
camber approaches the trailing edge. In terms of lift-to-drag ratio, the maximum
value is obtained when the maximum camber is positioned at 25% chord.

Okamoto et al. (1996) also studied the effects of airfoil thickness. They found
that the wing aerodynamic characteristics deteriorate as the wing thickness increases
(Figure 2.16).

In contrast to conventional airfoils, which are smooth and streamlined, insect air-
foils exhibit rough surfaces such as the cross-sectional corrugations of dragonfly wings
(shown in Figure 2.17) or scales on the wing surface (butterfly and moth). Evidence
has shown that the corrugated wing configuration bears both structural and aerody-
namic benefits to the dragonflies. First, it is of critical importance to the stability of its
ultralight construction. Second, in visualizing experiments using corrugated wings,
Newman et al. (1977) and Buckholz (1986) showed that this geometry helps improve
aerodynamic performance. The reason, as suggested by Kesel, is that vortices fill the
profile valleys formed by these bends and therefore smooth the profile geometry
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Figure 2.12. Effects of circular camber on the aerodynamic characteristics of a rect-
angular model wing made from aluminum foil, with a thickness of 0.3 mm and a chord
length of 30 mm. Each symbol refers to a different camber, as shown in the panel on
the right-hand side of the figure. (a) C; and Cp vs. AoA, (b) polar curve. Adopted
from Okamoto et al. (1996).

(Kesel, 1998). Kesel (2000) compared the aerodynamic characteristics of dragonfly
wing sections with conventionally designed airfoils and flat plates at Reynolds num-
bers of 7.88 x 10° and 10*. She concluded that corrugated airfoils, such as those seen
in dragonflies (Figure 2.17), have very low drag coefficients closely resembling those
of flat plates, whereas the lift coefficients are much higher than those of flat plates.
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Figure 2.13. Airfoil shapes tested by Sunada et al. (2002). (Redrawn from the original
reference with permission.)

She also investigated the performance of the airfoil by simply filling the valleys with
solid materials (as illustrated in Figure 2.18). Figure 2.19 highlights the key features
of the lift and drag values versus AoAs, between the three natural and filled airfoil
profiles. Figure 2.20 shows the corresponding lift-drag polar. These plots, taken from
Kesel (2000), show less favorable aerodynamic performances of the filled airfoils.
Therefore it is clear that the performance of such a corrugated airfoil is influenced
by its “effective” shape, characterized by the viscous effects, as previously discussed.
In particular, the viscosity and associated vortical structures result in an airfoil with
cambered geometry (Kesel, 2000).

222 Re = 10*-10°

Shyy et al. (1999b) evaluated the aerodynamics between the chord Reynolds
numbers of 7.5 x 10* and 2 x 10° by using the XFOIL code (Drela, 1989) for two
conventional airfoils, NACA 0012 and CLARK-Y, and two low Reynolds number
airfoils, S1223 (Selig and Maughmer, 1992) and an airfoil modified from S1223, which
is called UF (Figure 2.21). Figures 2.22 and 2.23 show the power index, C; *?/Cp, and
lift-to-drag ratio, C;/Cp, plots at three Reynolds numbers, 7.5 x 10%, 3 x 10°, and
2 x 10°. It is noted that, for steady-state flight, the power required for maintaining a

fixed-wing vehicle in air is
_ 3\ (2 W
= W(CD/CL ) S (2:20)
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Figure 2.14. Effect of maximum-camber location on the aerodynamic characteristics
at Re = 4 x 10°. Redrawn from Sunada et al. (2002) with permission.

where P and W are the required power and vehicle weight, respectively. For all air-
foils, the C1./Cp ratio exhibits a clear Reynolds number dependency. For Re varying
between 7.5 x 10* and 2.0 x 10°, C1./Cp changes by a factor of 2-3 for the airfoils
tested. Except for the UF airfoil, which is very thin, the range of AoA within which
aerodynamics is satisfactory becomes narrower as the Reynolds number decreases.
Clearly, the camber is important. NACA 0012, with 0% camber, and CLARK-Y, with
3.5% camber, yield a less satisfactory performance under all three Reynolds num-
bers. S1223 and UF, both with 8.89% camber, perform better. Finally, NACA 0012,
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Figure 2.15. Effect of maximum-camber location on the aerodynamic characteristics
at Re = 4 x 10°. Redrawn from Sunada et al. (2002) with permission.

CLARK-Y, and S1223 all have a maximum thickness of about 0.12¢. The UF airfoil,
on the other hand, is considerably thinner, with a maximum thickness of 0.06¢. It is
interesting to compare the Reynolds number effect. At Re = 2.0 x 10°,S1223 and UF
have comparable peak performances in terms of Ci/ 2/ Cpand C;/Cp;however, S1223
exhibits a wider range of acceptable AoAs. At Re = 7.5 x 10%, the situation is quite
different. UF, the thinner airfoil with identical camber, exhibits a substantially better
aerodynamicperformance while maintainingacomparable range of acceptable AoAs.
This is consistent with the findings of Okamoto et al. (1996), discussed previously.
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Figure 2.16. Effects of thickness on the aerodynamic characteristics of a curved-section
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All dimensions are given in millimeters. (a) C,, and Cp vs. the AoA, (b) polar curve.
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2.2.3 Effect of Free-Stream Turbulence

When both the AoA and chord Reynolds number are fixed, increasing the
free-stream turbulence level prompts earlier transition. The aerodynamic charac-
teristics under different turbulence intensities were investigated by Lian and Shyy
(2006). The lift and drag coefficients from their research are shown in Figure 2.24. At
a = 4°, thereisno noticeable difference in the lift and drag coefficients among the five
tested turbulence levels. This seemingly contradicts the pressure coefficient plot in
Figure 2.25 because the integrated area between C, = 0 and C, distribution at 7; =
0.85% is smaller than that between C, = 0 and the pressure coefficient distribution
at T; = 0.07%. However, the integrated area is not linearly proportional to the lift
because of the airfoil curvatures.

At o = 8°, there is a drastic decrease in the lift coefficient and an increase in the
drag coefficient when T; decreases to 0.07%. Analysis of the flow structure reveals
that, at such a low-turbulence level, the flow fails to reattach after its initial separa-
tion. This separation bubble causes the lift coefficient to drop by 10% and the drag
coefficient to increase by more than 150%. Similar conclusions can also be drawn for
the case of a = 11°.

In general, with the increase of the free-stream turbulence level, the LSB becomes
thinner and shorter. This is clearly shown in Figure 2.26. From the same figure it can
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Figure 2.17. Dragonfly wings exhibit both flexibility and anisotropic, corrugated struc-
tures. In the lower picture, shown on the left-hand side is the hindwing and on the
right-hand side is the forewing. (See Plate VIII.)

also be seen that the shear stress decreases with the turbulence level. Because of
the viscous effect, the boundary layer and the LSB change the effective shape of the
airfoil. As shown in Figure 2.27, the free stream with a higher turbulence level results
in a relatively thinner effective airfoil than that with a lower turbulence level.
O’Meara and Mueller (1987) experimentally studied the effects of free-stream
turbulence on the separation bubble characteristics of the NACA 663-018 airfoil.
They reported that, as the disturbance level is increased, the bubble is reduced in both
length and thickness, which is consistent with the observations from Figures 2.26 and
2.27. As we will discuss later, the effects of increasing the disturbance level resemble
the effects of increasing the chord Reynolds number. O’Meara and Mueller (1987)
also reported that the suction peak grows in absolute magnitude with the disturbance
level. However, as shown in Figure 2.25, the pressure peak over the SD7003 airfoil
is not sensitive to the disturbance level. These two conclusions are drawn based
on different test cases, in which the bubble size and Reynolds number are quite
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Figure 2.18. Geometry of wing profiles used in the study of Kesel (2000). Profiles 1,
2, and 3 are constructed with measurements taken from a dragonfly wing. Profiles 1A,
2A, and 3A are built by connection of the peaks of the respective cross sections.

Profile 3A

different. The results in Figure 2.28 are obtained at a chord Reynolds number of
1.4 x 10%; occupying around 7% of chord length, the bubble is short, and, as previously
discussed, only locally affects the pressure distribution. On the other hand, in the test
of Lian and Shyy (2006), the bubble covers more than 30% of the upper surface at the
Reynolds number of 6 x 10* and a = 4°, and the bubble falls into the long-bubble
category. This hypothesis is further confirmed by the fact that, at a Reynolds number
of 6 x 10* and « = 8°, wherein the bubble is 8% of the chord, the pressure peak
magnitude does increase with an increase in the disturbance level.

The effects of free-stream turbulence on lift and drag performances of a Lissaman
7769 airfoil are presented by Mueller et al. (Mueller et al., 1983). As shown in Fig-
ure 2.29, the hysteresis characteristics of the lift and the drag coefficients can be
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cients versus the AoAs, at Re = 10,000, for (a) three natural and (b) filled profiles.
Adopted from Kesel (2000).

observed for a free-stream disturbance intensity of around 0.10%. The hysteresis
loop, however, disappears as the free-stream turbulence intensity is increased to
0.30%. They suggested that the surface roughness can also produce the same result.
Furthermore, the disappearance of the hysteresis loop for aerodynamic lift and drag
coefficients at high free-stream turbulence intensity seems to be related to the change
in flow structure.
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2.2.4 Effect of Unsteady Free-Stream

The real operating condition for MAVs is quite different from the conven-
tional low-turbulence wind-/ water-tunnel setup. In real flight, MAVs often operate in
gusty environments. The effect of unsteady flow on transition was studied by Obrem-
ski and Fejer (1967). They experimented with a flat plate subject to a free-stream
velocity varying sinusoidally with a mean:

U = Uyt [1 + Nysin(ot)]., (2.21)

where N4 is the amplitude ratio, w is the frequency, and the reference velocity Uy.¢
is the mean free-stream velocity. They found that the transition Reynolds number
is affected by the free-stream oscillation when the so-called “nonsteady Reynolds
number,” Re,s = N, AUrzef /wv, is above a critical point of about 2.6 x 10*. Below the
critical value, the unsteady free-stream has little impact on the transition process.
Obremski and Morkovin (1969) observed that, in both high and low Reps ranges,
the initial turbulent bursts are preceded in space and time by a disturbance wave
packet. By applying a quasi-steady stability model, they concluded that in the high
Re,s range the wave packet is amplified rapidly and bursts into turbulence, whereas
in the low range the wave packet bursts into turbulence at a much higher Reynolds
number. Guided by their study, Lian and Shyy (2006) investigated the influence of
free-stream oscillations on the transition for separated flows. In their first test, they
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Figure 2.21. Four airfoils chosen for assessment (Shyy et al., 1999b).

set Ny = 0.33 and o = 0.3, resulting in a Strouhal number of 0.0318 and a nonsteady
Reynolds number of 9.9 x 10*. The frequency o is kept well below the range of the
expected unstable TS wave frequency, which is around 10 Hz.

Figure 2.30 shows the lift coefficient and the lift-to-drag ratio during one selected
cycle. Clearly, in a gust situation, the aerodynamic parameters display hysteresis.
For example, when flow accelerates (the Reynolds number increases from 6 x 10* to
8 x 10%), the lift coefficient does not immediately reach its corresponding steady-state
value. Instead, the steady-state value is reached in the decelerating stage. Compared
with a steady incoming flow, the gust leads to a higher lift coefficient at the low-
velocity end and a lower lift coefficient at the high-velocity end. The lift-to-drag
ratio variation during one cycle is substantial. For example, at a Reynolds number of
6 x 10%, the lift-to-drag ratio with a steady-state free-stream is around 26; for gust
flow, the instantaneous lift-to-drag ratio reduces to 20 when the flow accelerates, but
elevates to 38 when the flow decelerates.

Along with the variations in lift and drag, the transition position is also affected
by the gust. Asshown in Figure 2.31, the transition position moves toward the leading
edge when the flow is accelerating and moves toward the trailing edge when flow is



56 Fixed, Rigid-Wing Aerodynamics

Re=75 x 10¢ Re =3.0 % 105 Re = 2.0 x 106
200} 200
I1UF
281223
3 CLARK-Y
150 4 NACA 0012 150
CL',QICD
1004 100
()
50 50
@
@
L J
0 20 %o 10 20 %0 10 20
a a a

Figure 2.22. Cz/ ?/Cp plots at three different Reynolds numbers (Shyy et al., 1999b).

decelerating. During the accelerating stage, the instantaneous Reynolds number is
increasing. As the Reynolds number increases, flow experiences early transition. In
the simulation of Lian and Shyy (2006), the transition point is simply linked to the
computational grid point without further smoothing, resulting in the stair-stepped
plot in Figure 2.31.

Lian and Shyy (2006) also investigated a higher frequency of = 1.5, five times
higher than the previous case, resulting in a nonsteady Reynolds number of 1.98 x 104,
which is lower than the critical value. Their numerical result shows that the transition
position varies with the instantaneous Reynolds number (Figure 2.31). This seemingly
contradicts the observation of Obremski and Morkovin (1969). However, it should be
noted that Obremski and Morkovin drew the conclusion based on experiment over
a flat plate at a high Reynolds number (10°), in which the flow is the Blasius type
and experiences natural transition. In the test of Lian and Shyy, the separated flow
amplifies the unstable TS wave at such a great rate that it results in faster transition
to turbulence, typical of the bypass-transition process.

Comparison of the transition position at two different nonsteady Reynolds num-
bers reveals that flow experiences transition for the whole oscillation cycle at a higher
nonsteady Reynolds number, whereas at the lower value the flow becomes laminar
at the early accelerating state and remains such until the instant Reynolds number
reaches around 7 x 10 Itis possible that during the decelerating stage the transition
position moves toward the trailing edge because of the lowered Reynolds number.
At a higher nonsteady Reynolds number, i.e., lower frequency, the deceleration has
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Figure 2.23. C;/Cp vs. a plots for the four airfoils (Shyy et al., 1999b). —, Re = 7.5 x
10%; ----- ,Re = 3.0 x 10°; -----, Re = 2.0 x 10°.

less impact on the transition and the LSB can sustain itself; at a lower nonsteady
Reynolds number, i.e., higher frequency, the deceleration has more impact on the
transition and the LSB cannot adjust itself with the high rate change to maintain
the closed bubble and the LSB bursts. A closed LSB forms only when the Reynolds
number reaches 7 x 10*. To better appreciate this phenomenon, see the phase and
shape factor during one cycle plotted in Figure 2.32.

Another interesting observation at Re,s = 1.98 x 10%is the drag coefficient shown
in Figure 2.33. During the decelerating stage the gusty flow produces thrust. Analysis
shows that the thrust is due to the friction force.

2.3  Three-Dimensional Wing A erodynamics

Low Reynolds number flyers use low-AR wings, typically no larger than 5.
For the MAVs developed by Ifju et al. (2002) the AR is close to 1. Consequently, it is
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important to investigate the 3D flow structures around a low Reynolds number and
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Figure 2.24. Lift and drag coefficients vs. AoA at different turbulence levels for the
SD7003 airfoil at Re = 6 x 10*: (a) lift coefficient, (b) drag coefficient (Lian and Shyy,

2006).

low-AR wing.

and a wing area of 160 cm?.

Angle of attack (degree)

Lian and Shyy (2005) and Viieru et al. (2005) reported on flow structures around
alow-AR rigid wing. The geometry follows the design of Ifju et al., as discussed early
in Chapter 2. The wing has a span of 15 cm, a camber of 6%, a root chord of 13.3 cm,

To confirm the capabilities of the Navier-Stokes solver, the computational results
are first compared with wind-tunnel data measured for a MAYV rigid wing with a
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Figure 2.25. Pressure coefficient on the suction surface at o = 4° at different turbu-

lence levels for the SD7003 airfoil at Re = 6 x 10* (Lian and Shyy, 2006).

12.5-cm span, which has a smaller area than those used by Lian and Shyy (2005) and

Viieru et al. (2005). However, the overall shape and AR are similar.

The experiment is conducted in a horizontal, open-circuit low-speed wind tunnel.
It has a square entrance of the bell-mouth-inlet type, and it has several screens that
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Figure 2.26. Streamlines and normalized shear-stress contours at a = 4° for different

turbulence levels for the SD7003 airfoil at Re = 6 x 10* (Lian and Shyy, 2006).
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Figure 2.27. Effective airfoil shapes at different turbulence levels for the SD7003 airfoil
at Re = 6 x 10* (Lian and Shyy, 2006).

provide low turbulence levels, less than 0.1%, in the test section. The test section is
91.4 cm x 91.4 cm and has a length of 2 m. The model under test is attached to a
six-component strain-gauge sting balance used to measure the aerodynamic forces
and moments. The AoA is controlled by a computer and can be set in any sequence,
steady or variable, in time. The force balance is calibrated from 1 to 500 g, from
precisely defined loading points. For more detailed information of the experimental
measurement and uncertainty, we refer to Albertani et al. (2004).

The 12.5-cm wing configuration is tested at two different Reynolds numbers
(7.1 x 10* and 9.1 x 10*) based on the root chord length. The experimental data are
obtained by averaging of the values from multiple tests for each AoA and Reynolds
number. In Figure 2.34(a), the lift versus drag curves are plotted for the two Reynolds
numbers just mentioned. The figure demonstrates good agreement between compu-
tational and experimental data. As shown in Figure 2.34(b), within the considered
Reynolds number range, the lift-to-drag ratio does not vary much. Furthermore, both

4+
NACA 66,-018
Rc= 140,000
-3 a=12
Seee Uncorrected
o — 0 Flow Restrictors
-2 > — 1 Flow Restrictor

o — 2 Flow Restrictors

PRESSURE COEFFICIENT, Cp

Figure 2.28. Pressure coefficients under different free-stream turbulence levels
(O’Meara and Mueller, 1987).
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Figure 2.29. Lift and drag coefficients vs. AoA for a smooth Lissaman airfoil (Mueller
et al., 1983): (a) lift coefficient, (b) drag coefficient.

experiment and computation show that the best lift-to-drag ratio is reached for an

Ao0A between 4° and 9°.

2.3.1 Unsteady Phenomena at High Angles of Attack

Vortex shedding causes more than just unsteadiness in aerodynamic perfor-
mance. Cummings et al. (2003) reported that, at large AoAs, the unsteady compu-
tations predicted noticeably lower lift coefficients than do the steady computations.
The Reynolds number in their study is higher than that of the MAV regime. Lian
and Shyy (2003) performed Navier-Stokes flow computations around a low-AR wing
under MAYV flight conditions and found that the differences between the steady-state
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Figure 2.30. Aerodynamic coefficients of the SD7003 airfoil in a gusty environment
during one cycle for nonsteady Reynolds number Reys = 9.9 x 10* showing the
hysteresis phenomenon: (a) lift coefficient, (b) lift-to-drag ratio (Lian and Shyy, 2006).

and the time-averaged lifts are small even at large AoAs in which unsteady
phenomenon such as vortex shedding are prominent. Nevertheless, the instantaneous
flow structure varies substantially. Hence it can be misleading to simply examine the
time-averaged flow field to estimate the MAV aerodynamic characteristics.

Figure 2.35 compares the pressure coefficients of a MAV wing designed by Ifju
and coworkers (2002), which is based on time-averaged unsteady computations and
steady-state computations. In this design, the camber gradually decreases from the
root toward the tip of the wing. Hence the flow tends to separate first in the root
region. At a = 6° the time-averaged pressure coefficient closely matches the steady-
state result. The time-averaged value yields a smooth pressure distribution; the
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Figure 2.31. Transition position on the SD7003 airfoil during one cycle of the gust:
(a) nonsteady Reynolds number Re,s = 9.9 x 10%, (b) nonsteady Reynolds number
Reys = 1.98 x 10* (Lian and Shyy, 2006).

steady-state result indicates a small recirculation zone. As the AoA becomes higher,
there is little difference in the leading-edge region; on the contrary, clear differences
exist in the separated regions.

2.3.2 Aspect Ratio and Tip Vortices

Tip vortices exist on a finite wing because of the pressure difference between
the upper and the lower wing surface. The tip vortex establishes a circulatory
motion over the wing surface and exerts great influence on the wing aerodynamics.
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Figure 2.32. Phase and shape factors during one gust cycle on an SD7003 airfoil at the
nonsteady Reynolds number Re,s = 1.98 x 10*: (a) phase, (b) shape factor (Lian and
Shyy, 2006).

Specifically, the tip vortex increases the drag force. The total drag coefficient for a
finite wing at subsonic speed can be written as (Anderson, 1989)

2

C
Cp=C C L 222
D pp+CpF—+ e AR’ ( )

where Cp p is the drag coefficient that is due to pressure, Cp r is the drag coefficient
that is due to skin friction, e is the span efficiency factor that is less than 1, AR
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Figure 2.33. Drag coefficient of the SD7003 airfoil in a gusty environment during one
cycle for a nonsteady Reynolds number, Re,, = 1.98 x 10* (Lian and Shyy, 2006).

is the aspect ratio, and WC/ZQR = Cp,; is the induced drag coefficient that is due to
the existence of tip vortices. Equation (2.22) demonstrates that the induced drag
varies as the square of the lift coefficient; at high AoAs, the induced drag can be a
substantial portion of the total drag. Furthermore, Eq. (2.22) illustrates that, as the
AR is decreased, the induced drag increases. The MAV wing presented by Ifju et al.
(2002) has a low AR of 1.4; therefore it is important to investigate tip vortex effects
on the wing aerodynamics. In general, tip vortex effects are twofold:

1. The tip vortex causes downwash that decreases the effective AoA and
increases the drag force (Anderson, 1989).

2. The tip vortex forms a low-pressure region on the top surface of the wing,
which provides additional lift force (Mueller and DeLaurier, 2003).

Figure 2.36 shows tip vortices around the wing surface together with the stream-
lines at an angle of attack of 39° (Lian et al., 2003b). The vortical flow is usually
associated with a low-pressure zone, as shown in Figure 2.37. The pressure drop fur-
ther strengthens the swirl by attracting more fluid toward the vortex core; meanwhile,
the pressure decreases correspondingly in the vortex core. The low-pressure region
created by the vortex generates additional lift. Toward the downstream direction,
the pressure recovers to its ambient value, the swirling weakens, the diameter of the
vortex core increases, and the vortex core loses its coherent structure.

In Figure 2.38 the evolution of the vortical structure with increasing AoA is
visualized. The pressure distribution on the upper surface is also presented in the
same figure. At o = 6°, tip vortices are clearly visible even though they cover a
small area and are of modest strength. The flow is attached to the upper surface and
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Figure 2.34. Numerical and experimental assessments of lift and drag over a MAV

wing for different Reynolds numbers and AoAs (Viieru et al., 2005): (a) polar curve;
(b) lift-to-drag ratio vs. the AoA.

follows the chord direction. A low-pressure region near the tip, caused by the vortical
structure there, is observed.

Even though the flow on the upper surface near the root tends to separate, the
flow remains attached in the outer portion of the wing, and hence the lift still increases
with the AoA until, of course, massive separation occurs on most of the upper surface.
For low-AR wings, tip vortices make considerable contributions to the lift. This case
is similar to that for delta wings. In his numerical study, Lian (2003) observed that
the low-AR wing suffered less from separation. The wing is not subjected to sudden
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Figure 2.35. Comparisons of ¢, on a rigid wing at the root for steady and unsteady
computations: (a) a« = 6° (b) a = 15°, adopted from Lian and Shyy (2003).

stall, but the lift coefficient levels off at very high AoAs. Torres and Mueller (2001),
in their experiments on low-AR wings observed similar findings. It should be noted
that neither fuselage nor propeller is included in the analysis by Lian (2003).

This pressure drop can be seen from Figure 2.39(a), where the spanwise pres-
sure coefficient on the upper-wing surface at x/c = 0.4 is plotted. At a = 6° the
spanwise pressure is almost uniform on the upper-wing surface, and the tip vortex
causes the pressure drop to occur at approximately 90% of the half-span from the
root. Figure 2.39 is illustrative in regard to pressure distributions versus the vortical
structures. They are not indicative of the total level of the pressure force.

Vortices strengthen with an increase in the AoA. At a = 27°, as shown
in Figure 2.38, tip vortices develop a strong swirl motion while entraining the
surrounding flow. The low-pressure area increases as the AoA becomes higher. In
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Figure 2.36. Streamlines and vortices for arigid wing at o« = 39°. The vortical structures
are shown on selected planes (Lian et al. 2003b). (See Plate IX.)

Figure 2.37. Pressure distribution around the rigid wing in the cross sections with
streamlines at an AoA of 39° (Lian et al. 2003b). (See Plate X.)
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Figure 2.38. Evolution of flow pattern for rigid wing vs. AoAs. From left to right, top
to bottom, 6°, 15°,27°, and 51°, from Lian and Shyy (2005). (See Plate XI.)

Figure 2.39(a), the pressure drop moves along the spanwise direction toward the root
and now occurs at 75% from the root.

Atlower AoAs, the vortex core position shows a linear relation with the incidence.
This relation disappears at higher AoAs when the flow is separated on the upper
surface. For example, at o = 45°, the flow is separated at the leading edge, and the
low-pressure zone covers more than 40% of the wing surface, which helps to maintain
the increase in lift force. At « = 51°, a considerable spanwise velocity component
is seen and the flow is separated from most of the upper surface (Figure 2.38). The
separation on the upper-wing surface decreases the lift, and stall occurs.

As observed before, the tip vortices have an important effect on the low-AR wing
aerodynamics. One major effect of the tip vortices is the increase in induced drag
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Figure 2.39. Spanwise pressure coefficient distributions at x/c = 0.4 for a rigid wing
at different AoAs: (a) pressure coefficient at upper surface, (b) pressure coefficient at
lower surface. Adopted from Lian and Shyy (2005).

for low-AR wings. Equation (2.22) shows that, the smaller the AR, the larger the
induced drag.

2.3.3 Wingtip Effect

The wing shape chosen here strives to maximize the wing area, and hence
the lift, for a given dimension. However, the tip vortices associated with the present
low-AR wing also substantially affect the aerodynamics. It is well established that
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Figure 2.40. Wing-shape geometry: (a) modified wing, (b) endplates’ location on the
modified wing (Viieru et al., 2005).

the tip vortex causes a downwash that modifies the pressure distribution on the wing
surface and increases the induced drag. Various methods to reduce the induced drag
by decreasing the tip vortex effects are described in the literature and confirmed by
actual applications to aircraft wing design (LaRoche and Palffy, 1996). Viieru et al.
(2005) reported the implication of placing endplates at the wingtip, which is simple
from the manufacturing point of view.

The effect of endplates on the MAV rigid-wing aerodynamics was previously
investigated by Viieru et al. (2003). In that study the endplate was simply added to the
existing MAV wing to probe its effect on the tip vortex and overall aerodynamics; the
wing shape was retained. It was observed that the endplate increases lift by reducing
the downwash and increases the effective AoA. However, drag increases along with
the curved endplate in part because the endplate behaves as a vertically placed airfoil,
and the additional form drag causes the overall lift-to-drag ratio to decrease.

To remedy the disadvantages of the endplates, Viieru et al. (2005) investigated
alternative configurations. Three wing geometries were studied: the original wing
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Figure 2.41. Pressure coefficient along the vortex core behind the wing at 6° AoA:
(a) x/c = 3;(b) x/c = 5 (Viieru et al., 2005).

discussed at the beginning of this chapter, a modified wing (Figure 2.40(a)) with
trimmed tip, and a modified wing with endplates (Figure 2.40(b)). Compared with
the original wing, the trimmed wing has a shorter span of 14 cm and a small wing
area of 155 cm?, whereas the root chord has the same length as the original wing.
The endplate attached to the modified wing, which is parallel to the flight direction,
has a length of 4.4 cm and a height of 3.4 cm.

One can observe the vortex intensity and the circulation by looking at the slices
perpendicular to the streamwise direction behind the wing. Behind the trailing edge,
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the flow can be approximated with a vortex core of constant rotation and a potential
motion outside the core. The relation between the pressure at the vortex center and
the circulation around a rigid rotating body is given by (Prandtl and Tietjens, 1957)

Fz = 4772712pcenter/p s (223)

where r; is the rigid-body radius, peenter 1S the pressure at the rigid-body center, and
p is the fluid density. Equation (2.23) shows that the vortex strength, measured by
its circulation, is proportional to the pressure drop in the vortex core and its radius.
In Figure 2.41, the pressure coefficient is plotted along the vortex core diameter at
x/c = 3 behind the wing and x/c = 5. The amount of pressure drop inside the vortex
core indicates that the endplates reduce the vortex strength. Also, the modified wing
without the endplates shows the strongest vortex.

From the pressure contours and horizontal velocity contours, one observes that
the endplate affects the flow field over the wing. The endplate slows down the flow
near the wingtip. This decrease in velocity reduces the pressure drop on the upper-
wing surface that corresponds to the vortex core (Figure 2.42(a)). On the other hand, a
lower velocity slightly below the wing increases the high-pressure area there because
more momentum is transferred to the wing as pressure instead of being shed as
vorticity at the wing tip. The increase in the high-pressure zone on the lower-wing
surface in the presence of the endplate can be clearly seen from the spanwise pressure
coefficient on the lower-wing surface plot (Figure 2.42(b)).

In Figure 2.43 the spanwise lift distribution obtained by integration of the pressure
of difference along the local chord at a specified spanwise location is plotted. It clearly
shows that, when the endplates are attached, the lift on each cross section is higher
compared with that of the wing without the endplate. With a smaller overall wing area,
the modified wing with the endplates produces almost the same lift as the original
wing. Furthermore, the modified wings (with and without endplate) experience lower

drag over almost 75% of the wingspan, starting from the root.
In Table 2.1 the overall aerodynamic performances parameters are presented

for a 6° AoA. The modified wing configuration with endplates has a better lift-to-
drag ratio than the baseline configuration (10% improvement). This improvement is
mainly due to the drag reduction by the modified wing shape because the total lift is
essentially the same. In Table 2.2 the same parameters are presented for an AoA of
15°. The modified wing with endplates shows an increase of 1.4% in the lift-to-drag
ratio compared with the baseline configuration.

2.3.4 Unsteady Tip Vortices

A wing with a low AR is susceptible to rolling instabilities (wobbling). This
concern is particularly important in view of the strong gust effect on MAVs. Tang
and Zhu (2004) investigated the aerodynamic characteristic of a low-AR wing. The
wing has an elliptic planform, using the E174 airfoil with an AR ratio of 1.33. Based
on the maximum chord length, the Reynolds number is 10,000. Through numerical
simulation and flow visualization in a water tunnel, they found that tip vortices are
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Figure 2.42. Pressure coefficient on the wing surface at x/c = 0.34 and 6° AoA:
(a) lower-wing surface; (b) upper-wing surface (Viieru et al., 2005).

unsteady in sizes and strengths when the AoA is larger than 11°. Figures 2.44(a)-
2.44(c), on the right-hand side, show positions of the tip vortices at an AoA of 25°
in the vertical plane (Trefftz plane) at three time instants. As time evolves, the left-
hand and right-hand tip vortices change their sizes and strengths. The asymmetric
flow causes unequal drag between the two sides of the wing, which produces a yawing
moment; the asymmetric flow also causes uneven lift, resulting in a rolling instability.

From the numerical results, they suggested that this unstable phenomenon is
caused by the interaction between the secondary vortical flows and the tip vortices.
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Table 2.1. Aerodynamic forces at a 6° AoA (Viieru et al., 2005)

Original MAV wing, Modified MAV wing, Modified MAV wing,
AoA = 6° no endplates no endplates with endplates
Lift (N) 0.49 0.44 0.49
Drag (N) 0.074 0.065 0.067
Lift / drag 6.64 6.85 7.39
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Figure 2.43. Spanwise lift and drag distribution at 6° AoA: (a) lift, (b) drag (Viieru
et al., 2005).
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Table 2.2. Aerodynamic forces at a 15° AoA (Viieru et al., 2005)

Original MAV wing, Modified MAV wing, Modified MAV wing,
AoA = 15° no endplates no endplates with endplates
Lift (N) 0.92 0.86 0.87
Drag (N) 0.22 0.21 0.21
Lift / drag 4.16 4.15 422

The separated vortical flows are on the upper surface of the wing. The schematic figure
on the left-hand side of Figure 2.44 shows that, as the wing incidence progressively
increases from 5°, substantial time dependency of the tip vortices is observed. At
a = 5°, the position of the separated vortical flow is around the trailing edge. As the
incidence increases, the separating flow moves toward the leading edge. When the
incidence reaches 15° or higher, the separating flows above the wing interact with
the tip vortices, causing the tip vortices to become substantially unsteady. To date,
the MAYV flight test has not reported such rolling instabilities as a major barrier. This
is apparently because the airfoil shapes used for MAYV flyers are much thinner and do
notinduce as many separating flows above the wing surface. Nevertheless, the issue of
unsteady tip vortices needs be investigated in the MAV design and flight test process.

2.4  Concluding Remarks

In this chapter we presented the fixed, rigid-wing aerodynamics at low
Reynolds number ranges, between 10° and 10°. The main points are summarized
as follows:

1. The maximum lift-to-drag ratio of an airfoil decreases substantially as the
Reynolds number drops from 10° to 10* or lower.

secondary vortices at
different incidences

@

tip vortices

(b)

(©)

Figure 2.44. Left: Schematic of the dynamics of tip vortices (viewed above the wing,
secondary vortices are above the upper surface of the wing); right: tip vortex stream-
lines in vertical planes (Trefftz plane) at about 0.5¢ behind the trailing edge at an AoA
of 25°, at three nondimensional times (based on the free-stream velocity and maximum
chord length): (a) t = 42, (b) t = 54, and (c) t = 62 (viewed from aft). Adopted from
Tang and Zhu (2004).
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. Overall, a thinner airfoil with modest camber is preferable for low Reynolds
number flyers because it generates better lift-to-drag ratio and better power
efficiency.

. The laminar-to-turbulent transition and LSB play important roles in deter-
mining the airfoil performance at a Reynolds number around 10*. In this flow
regime, the lift-to-drag polar exhibits zigzag characteristics that are due to
the formation and burst of the LSB. Because of the effect of transition, the
wing performance is expected to be sensitive to the free-stream turbulence
intensity and gust.

. In the Reynolds number range between 10° and 10, a corrugated wing can
provide a more favorable lift than a noncorrugated wing because the viscous
effect substantially modifies the effective airfoil shape.

. Wind gust is a prominent factor in low Reynolds number flyers. Low Reynolds
number aerodynamics often exhibits hysteresis in a gusty environment. The
transition position varies with the instant Reynolds number, and, it should be
noted that, depending on the flow parameters, either drag or thrust can be
generated from the unsteady aerodynamics.

. Tip vortex induces a downwash movement, which reduces the effective AoA
of a wing. For a low-AR, low Reynolds number wing, the induced drag by the
tip vortex substantially affects its aecrodynamic performance. They not only
affect lift and drag generation, but also potentially flight stability.



CHAPTER THREE

Flexible-Wing Aerodynamics

3.1 General Background of Flexible-Wing Flyers

In the development of MAVs, there are three main approaches, which are
based on flapping-wings, rotating wings, and fixed wings for generating lift. We focus
on the fixed, flexible-wing aerodynamics in this chapter. It is well known that flying
animals typically have flexible wings to adapt to the flow environment. Birds have
different layers of feathers, all flexible and often connected to each other. Hence,
they can adjust the wing planform for a particular flight mode. The flapping modes
of bats are more complicated than those of birds. Bats have more than two dozen
independently controlled joints in the wing (Swartz, 1997) and highly deforming
bones (Swartz et al., 1992) that enable them to fly at either a positive or a negative
Ao0A, to dynamically change wing camber, and to create a complex 3D wing topology
to achieve extraordinary flight performance. Bats have compliant thin-membrane
surfaces, and their flight is characterized by highly unsteady and 3D wing motions
(Figure 3.1). Measurements by Tian et al. (2006) have shown that bats exhibit highly
articulated motion, in complete contrast to the relatively simple flapping motion of
birds and insects. They have shown that bats can execute a 180° turn in a compact and
fast manner: flying in and turning back in the space of less than one half of its wing-
span and accomplishing the turn within three wing beats with turn rates exceeding
200°/s.

Birds and bats can also change the span (flexing their wings) to decrease the wing
area, increase the forward velocity, or reduce drag during an upstroke. In fast forward
flight, birds and bats reduce their wing area slightly during the upstroke relative to the
downstroke. At intermediate flight speeds, the flexion during the upstroke becomes
more pronounced. However, bats and birds flex their wings in different manners. The
wing-surface area of a bird’s wing consists mostly of feathers, which can slide over
each other as the wing is flexed and still maintain a smooth surface. Bat wings, in
contrast, are mostly thin membrane supported by the arm bones and the enormously
elongated finger bones. Given the stretchiness of the wing membrane, bats can flex
their wings a little, reducing the span by about 20%, but they cannot flex their wings
too much or the wing membrane will go slack. Slack membranes are inefficient,
because drag goes up, and the trailing edges are prone to flutter, making them more
difficult for fast flight (Alexander, 2002).

78
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Figure 3.1. A bat (Cynopterus brachyotis) in flight: (a) beginning of downstroke, head
forward, tail backward, the whole body is stretched and lined up in a straight line;
(b) middle of downstroke, the wing is highly cambered; (c) end of downstroke (also
beginning of upstroke), the wing is still cambered. A large part of the wing is in front
of the head and the wing is going to be withdrawn to its body; (d) middle of upstroke,
the wing is folded toward the body, from Tian et al. (2006). (See Plate XII.)

While making bending or twisting movements, biological flyers have natural
capabilities of adjusting the camber of their wings in accordance with what the flow
environment dictates, such as a wind gust, object avoidance, and target tracking. Bats
are known for being able to change the shape of the wing passively, depending on the
free-stream conditions. As shown in Figure 3.1, bats can change their wing shapes
during each flapping cycle. In manmade devices, sails and parachutes operate under
similar ideas. This passive control of the wing surface can prevent flow separation
and enhance lift-to-drag ratio. Birds adjust their wings based on different strategies.
For example, some species have coverts that act as self-activated flaps to prevent flow
separation. These features offer shape adaptation and help adjust the aerodynamic
control surfaces; they can be especially helpful during landing and in an unsteady
environment. In Figure 3.2 the coverts have popped up on a skua and the flexible
structure of the feathers is clearly shown.

Nature’s design of flexible-membrane wings can be put into practice for MAVs.
When a flexible-wing design is adopted (Figures 3.3 and 3.4), similar to that of bat
wings, the performance of the MAVs can be improved, especially at high AoAs, by
passive shape adaptation, which results in delayed stall (Shyy et al., 1999a; Waszak
etal., 2001).
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Figure 3.2. The flexible covert feathers acting as self-activated flaps on the upper-wing
surface of a skua. Photo from Bechert et al. (1997). (See Plate XIII.)

Figure 3.5, adopted from Waszak et al. (2001), compares the lift curves versus
AoAs for rigid and membrane wings. The three different flexible-wing arrangements
are depicted in Figure 3.4. The one-batten design has the most flexibility, character-
ized by large membrane stretch. The two-batten design is, by comparison, stiffer
and exhibits less membrane stretch under aerodynamic load. The six-batten wing is
covered with an inextensible plastic membrane that further increases the stiffness

Figure 3.3. 6-in. (15-cm) MAV with flexible wing (Ifju et al., 2002).
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Figure 3.4. Three versions of the flexible wing were tested in the wind tunnel; adopted
from Waszak et al. (2001): (a) one-batten flexible wing, (b) two-batten flexible wing,
(c) six-batten flexible wing covered with a plastic inextensible membrane.

of the wing and exhibits less membrane deformation and vibration. The nominally
rigid wing is constructed of a two-batten frame covered with a rigid graphite sheet.

Under modest AoAs, both rigid and membrane wings demonstrate similar lift
characteristics, with the stiffer wings having a slightly higher lift coefficient. However,
a membrane wing stalls at substantially higher AoAs than a rigid wing. This aspect
is a key element in enhancing the stability and agility of MAVs.

The membrane concept has been successfully incorporated in MAVs designed
by Ifju et al. (2002). To implement the flexible-wing concept on these small vehicles,
traditional materials such as balsa wood, foam, and monocoat are not appropriate.
In their design, illustrated in Figures 3.3 and 3.6, unidirectional carbon fiber and
cloth prepreg materials were used for the skeleton (leading-edge spar and chordwise
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Figure 3.5. Aerodynamic parameters vs. AoA for configurations with varying wing
stiffnesses: (a) lift coefficient vs. AoA, (b) lift-to-drag ratio vs. AoA. Adopted from
Waszak et al. (2001).
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Figure 3.6. Representative MAVs with membrane wing developed by Peter Ifju and
collaborators at the University of Florida. Left, the wing is framed along the entire
peripherals; right, the wing is flexible along the trailing edge while reinforced by
battens.

battens). These are the same materials used for structures that require fully elastic
behavior yet undergo large deflections. The fishing rod is a classic example of such a
structure. For the membrane, extensible material was chosen to allow deformation
even under very small loads, such as the case for lightly loaded wings. Latex rubber
sheet material was used in this case. The stiffness of the whole structure can be
controlled by the number of battens and membrane material.

As presented earlier, the experimental data for rigid and flexible wings (Figure
3.4), with configurations similar to those shown in Figure 3.6, show that a mem-
brane wing stalls at substantially higher AoAs than a rigid wing (Figure 3.5). Some
aspects of low-AR, low Reynolds number rigid-wing aerodynamics were presented
by Torres and Mueller (2001). The lift curve slope in Figure 3.5 is approximately
2.9 with the prop pinned. The lift curve slopes of similar rigid wings reported by
Torres and Mueller (2001) at comparable Reynolds number and AR (Re = 7x10%,
AR = 2) are approximately 2.9 as well. However, these wings have stall angles
between 12° and 15°. The stall angles of the flexible wings are between 30° and 45°
and are similar to those of much lower-AR rigid wings (AR = 0.5-1.0) (Mueller and
DeLaurier, 2003). However, low-AR rigid wings exhibit noticeably lower lift curve
slopes, typically between 1.3 and 1.7 (Mueller and DeLaurier, 2003). Hence flexi-
ble wings can effectively maintain the desirable lift characteristics with better stall
margins (Waszak et al., 2001). Figure 3.6 shows fixed, flexible-wing MAVs designed
by Ifju and coworkers of the University of Florida (Ifju et al., 2002). The general
specifications of the design are presented in Table 3.1.

From an engineering point of view, flexibility can be used for purposes other than
flight quality improvement. These include shape manipulation and reconfiguration
for both improved maneuvering and storage. Traditional control surfaces such as
rudders, elevators, and ailerons have been used almost exclusively for flight control.
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Table 3.1. General specifications for the UF MAV

Wing span 4.51n. (11.43 cm)

Fuselage length 4.5in. (11.43 cm)

Take-off weight 45¢g

Engine Maxon Rel0

Propeller U-80 (62 mm)

RC receiver PENTA with customized half-wave antenna
Maximum mission radius 0.9 miles

Video transmitter SDX-22 70 mw

Camera Complementary metal-oxide semiconductor

camera (350-line resolution)

When the wing is morphed or reshaped by distributed actuation such as piezoelec-
tric and shape-memory material, preferred wing shapes can be developed for specific
flight regimes. Such a reconfiguration, however, would require substantial authority
and power if the wings were nominally rigid. The flexible nature of the wing allows
for such distributed actuation with orders of magnitude less authority. For exam-
ple, the individual battens on the wing can be made from shape-memory alloys or
piezoelectric materials, or traditional actuators, such as servos, which can be used to
manipulate the shape and properties of the wing.

Figure 3.7 illustrates a model with morphing technology. It uses a thread connect-
ing the wingtips to a servo in the fuselage of the airplane. As the thread is tightened
on one side of the aircraft, it acts as an aileron and causes the AoA of the wing to
increase. The roll rate developed by such an actuation mechanism is considerably
higher than that from a rudder. Additionally, it produces nearly pure roll with little
yaw interaction. Detailed information of the related technical approaches was given
by Garcia et al. (2003).

In some applications, it is desirable to store MAVs in small containers before
releasing them. Flexible-wing MAVs can be easily reconfigured for storage purposes.

Figure 3.7. The flexible wing allows for wing warping to enhance vehicle agility (cour-
tesy Richard Lind http://128.227.42.147/rick/rick_pro/rick_mav.html).
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Figure 3.8. A foldable wing to enhance MAV portability and storage (courtesy Peter
Ifju).

Figure 3.8 illustrates a 28-cm (11-in.) wingspan foldable-wing MAV that can be stored
in a 7.6-cm- (3-in.-) diameter canister. The wing utilizes a curved-shell structural
element on the leading edge. This allows the wing to readily collapse downward for
storage yet maintain rigidity in the upward direction to react to the aerodynamic
loads. The effect is similar to that of a common tape measure, in which the curvature
in the metallic tape is used to retain the shape after it has unspooled from the casing
yet can be rolled back into the casing to accommodate the small-diameter spool. The
curvature ensures that the positive (straight) shape is developed after it is unwound
from the case and can actually be cantilevered for some distance. The curvature of
the leading edge of the wing acts as the curvature in the tape measure.

Compared with that of rigid-wing aerodynamics, research on flexible-wing aero-
dynamics is far less extensive. In this chapter, we first present the two flexible-wing
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Figure 3.9. Schematic of membrane wing of finite span operating in a free-stream
(Shyy and Smith, 1997).

models used; then we discuss the coupled fluid-structural interactions for fixed, flex-
ible wings. Flapping-wing aerodynamics is presented in the next chapter.

3.2  Flexible-Wing Models

In this section, we first review some salient features of membrane-wing dynam-
ics, including the scaling parameters, and one linear and one nonlinear structural
model. Then we offer a brief discussion of the computational efforts for the com-
bined fluid and structural dynamics.

3.2.1 Linear Membrane Model

As an illustration, consider the membrane wing of Figure 3.9, which is shown
operatingin a free-stream. A major interest is to probe the coupled dynamics between
the fluid flow and the flexible structure. The fluid flow creates pressure and viscous
stresses, which cause the membrane to deform. The membrane, in turn, affects the
fluid flow structure by means of the shape change, resulting in the so-called moving-
boundary problem (Shyy et al., 1996).

The analysis of membrane wings begins with the historical works of Voelz (1950),
Thwaites (1961), and Nielsen (1963). These works consider the steady, 2D, irrota-
tional flow over an inextensible membrane with slack. As a consequence of the
inextensible assumption and the additional assumptions of small camber and inci-
dence angle, the membrane-wing boundary-value problem is linearized and may be
expressed compactly in nondimensional integral equation form as

L(y/a)
L _Cr /2 i ap = e B1)
2 Jo 2mw(l —x) dx ’ ’

where y(x) defines the membrane profile as a function of the x coordinate, « is the
flow incidence angle, Cr is the tension coefficient, and { is the arc length along
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membrane free body

Figure 3.10. Leading-edge-constrained elastic membrane.

the membrane-wing surface. Equation (3.1) was referred to as the “Thwaites sail
equation” by Chambers (1966) and simply as the “sail equation” by Greenhalgh et al.
(1984) and Newman (1987). This equation, together with a dimensionless geometric
parameter , completely defines the linearized theory of an inextensible membrane
wing in a steady, inviscid flow field. Parameter specifies the excess length of an
initially flat and taut membrane and is defined as follows:

_Lo—c (32)

Cc

where Ly is the unstrained length of the membrane and c is the chord length.
The meaning of these aforementioned symbols can be better understood from
Figure 3.10.

Different analytical and numerical procedures have been applied to the basic
equation set in order to determine the membrane shape, aerodynamic properties,
and membrane tension in terms of the AoA and excess length. In particular, Thwaites
(1961) obtained eigensolutions of the sail equation that are associated with the wing
at an ideal angle of incidence. Nielsen (1963) obtained solutions to the same equa-
tion by using a Fourier series approach that is valid for wings at angles of inci-
dence other than the ideal angle. Other more recent but similar works are those by
Greenhalgh et al. (1984), Sugimoto and Sato (1988), and Vanden-Broeck and Keller
(1981).

Various extensions of the linear theory have appeared in the literature over the
years. Vanden-Broeck (1982) and Murai and Maruyama (1980) developed nonlinear
theories that are valid for large camber and incidence angle. The effect of elasticity
was included in the membrane-wing theories of Jackson (1983) and Sneyd (1984), and
the effects of membrane porosity were investigated by Murata and Tanaka (1989).
In a paper by de Matteis and de Socio (1986), experimentally determined separation
points were used to modify the lifting potential-flow problem in an attempt to model
flow separation near the trailing edge. A comprehensive review of the work pub-
lished before 1987 related to membrane-wing aerodynamics was given by Newman
(1987).
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The agreement between the various potential-flow-based membrane-wing
theories and experimental data has been reported by several authors including
Greenhalgh et al. (1984), Sugimoto and Sato (1988), and Newman and Low (1984). In
general, there has been considerable discrepancy between the measurements made
by different authors (Jackson, 1983), which have all been in the turbulent-flow regime
at Reynolds numbers between 10° and 10°. As a result of the discrepancies in the
reported data, which are primarily due to differences in Reynolds number and exper-
imental procedure, the agreement between the potential-based membrane theories
and the data is mixed. In particular, the measured lift is in fair agreement with the
predicted value when the excess length ratio is less than 0.01 and the AoA is less
than 5°. However, even for this restricted range of values, the measured tension is
significantly less than that predicted by theory. Furthermore, for larger excess lengths
and incidence angles the lift and tension are poorly predicted by the theory.

The main reason for the disagreement is the existence of the viscous effect, which
significantly affects the force distribution on the wing and therefore the effective
shape of the wing. To illustrate the flexible structural dynamics in response to aero-
dynamic forces, consider equilibrium equations for a 2D elastic membrane subjected
to both normal and shear stresses. As discussed in Shyy et al. (1996), the membrane
is considered to be massless, and the equilibrium conditions are stated in terms of
the instantaneous spatial Cartesian coordinates and the body-fitted curvilinear coor-
dinates. The basic formulation is essentially identical to many previously published
works such as those of de Matteis and de Socio (1986) and Sneyd (1984).

Figure 3.10 illustrates an elastic membrane restrained at the leading and trail-
ing edges and subjected to both normal and tangential surface tractions p and T,
respectively. Imposing equilibrium in the normal and tangential directions requires

that
d’y a7 ap
dx? |: + (dx) v (33)
dy
- _ 34
d% T’ ( )

where v is the membrane tension. Equation (3.3) is the Young-Laplace equation
cast in Cartesian coordinates. The net pressure and shear stress acting on a segment
of the membrane are given respectively by

Ap=p~ —p*, (3.5)
T=17 —1t, (3.6)

where the superscripts indicate the values at the upper and the lower surfaces of
the membrane, as shown in the figure. If the membrane material is assumed to be
linearly elastic, the nominal membrane tension ¥ may be written in terms of the
nominal membrane strain § as

v = (8" + Ed)h, (3.7)



88 Flexible-Wing Aerodynamics

where S° is the membrane prestress, E is the elastic modulus, and 4 is the membrane
thickness. The nominal membrane strain is given by

L—- 1L
l{) b

where L is the unstrained length of the membrane and L is the length of the mem-

brane after deformation, which may be expressed in terms of the spatial Cartesian

coordinates as
c dy 2
L= 1 — | dx, 3.9
[y () o G9)
where c is the chord length.

The aeroelastic boundary-value problem can be written in nondimensional form
after the following dimensionless variables are introduced:

5= (3.8)

x="1 (3.10)
C
y="2, (3.11)
C
PP
p=-Ft _ 7 (3.12)
pUsi oo
.y
S 1
Y=o (3.13)
or
A Y
- 3.14
Y= (3.14)

where either Eq. (3.13) or Eq. (3.14) is used to nondimensionalize the membrane
tension, depending on whether the tension is dominated by pretension or by elastic
strain. The resulting dimensionless equilibrium equation when membrane tension is
dominated by elastic strain is

a2y av\*]? 1\ AP
1 il == , 3.15
dx? [ +<dX> } (Hl) 8l G.15)
with IT; defined as
Eh
n =—. (3.16)
gooC

When membrane tension is dominated by pretension, Eq. (3.3) leads to the following
dimensionless equation:

2y av\?1" 1\ AP
m[“(ﬁ” - (m) 5 17
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with IT, defined as

S°h
M, =—. (3.18)
o€
If the two ends of a2D membrane are fixed, the boundary conditions in dimensionless

form are

Y=0at X=0,1 (3.19)

Regarding the physical significance of the aeroelastic parameters IT; and I,
we note that the dimensionless deformation of an initially flat elastic membrane is
inversely proportional to IT; in the absence of pretension. Alternatively, the dimen-
sionless deformation of a membrane is inversely proportional to I in the presence of
large initial pretension. Consequently, the steady-state, inviscid aeroelastic response
of an initially flat membrane wing at a specified AoA is controlled exclusively by Iy
in the limit of vanishing pretension and exclusively by I, in the limit of vanishing
material stiffness.

The preceding scaling analysis is based on a massless structure. If the airfoil mass
is considered, then the inertia scaling needs to be considered. Between the elastic
and inertia scaling, one can also deduce the structural natural frequency.

3.2.2 Hyperelastic Membrane Model

A rubberlike material can be used to cover the rigid skeleton of the MAV
design to obtain the wing’s flexibility (Figure 3.6). The large deformations observed
for this kind of material in the Reynolds number range of operation indicate that the
linear elasticity assumption may not be valid.

To address this issue, a hyperelastic model to describe the 3D membrane material
behavior is used (Lian et al., 2003a). The stress-strain curve of a hyperelastic material
is nonlinear, but follows the same path in loading and unloading (below the plastic
limit, which is significantly higher than in metals). Compared with the previously
discussed 2D linear model, a 3D membrane model introduces several complicated
factors. First, for 3D membranes, the tension is defined as a biaxial tension along
the lines of principal stress (Jackson and Christie, 1987). Second, the geometric and
material properties may vary along the spanwise direction and need to be described
in detail. A third factor is membrane compression, which leads to wrinkles when one
of the principal tensions vanishes. In addition, it is desirable to account for the mem-
brane mass when solving for the dynamic equations of the membrane movement.

A finite-element analysis of the static equilibrium of an inflated membrane under-
going large deformations is presented by Oden and Sato (1967). A review of the
earlier work on the dynamic analysis of membranes can be found in Jenkins and
Leonard (1991). An update of the state-of-the-art models in membrane dynamics
is presented by Jenkins (1996). Verron et al. (2001) studied, both numerically and
experimentally, the dynamic inflation of a rubberlike membrane. Ding et al. (2003)
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numerically studied partially wrinkled membranes. In a recent effort, Stanford et al.
(2006) proposed a linear model for 3D membranes used in MAV design. Their experi-
mental measurements showed that the maximum strain value is quite small; therefore
a linear approximation of the stress-strain curve is constructed, centered about the
membrane wing’s prestrain value. The linear constitutive equation used for mem-
brane modeling is Poisson’s equation:

W N W p(x,y)

_ , 3.20
dx? 9y? S (3:20)

where W is the out-of-plane membrane displacement, p is the applied pressure (wind
loading, in this case), and S is the membrane tension per unit length. The aerodynamic
loads are computed on a rigid wing and fed into the structural model, assuming that
the change in shape of the membrane wing did not overtly redistribute the pressure
field. Good agreement is obtained between the experimental data and computations.

A 3D membrane model was developed by Lian et al. (2003a). The model gives
good results for membrane dynamics with large deformations but has a limited capa-
bility to handle the wrinkle phenomenon that occurs when the membrane is com-
pressed. The membrane material considered obeys the hyperelastic Mooney—Rivlin
model (Mooney, 1940). A brief review of their membrane model is given next.

The Mooney—Rivlin model is one of the most frequently used hyperelastic models
because of its mathematical simplicity and relatively good accuracy for reasonably
large strains (less than 150%) (Mooney, 1940). For an initially isotropic membrane,
a strain-energy function W can be defined as (Green and Adkins, 1960):

W=W(L, b, b), (3.21)

where Iy, I, and I5 are the first, second, and third invariants of the Green deformation
tensor C, respectively. For an incompressible material, when I3 = 1, the strain energy
is a function of /; and I, only, and a linear expression can be written for the membrane
strain energy:

W=c(h-3)+c(hL-3), (3.22)

where ¢; and ¢; are two material constants. A material that obeys Eq. (3.22) is known
as a Mooney-Rivlin material. For an initially isotropic membrane, the general stress-
strain relation is written as

ow

S=-pCl'+2—,
R Te

(3.23)

where S is the second Piola—Kirchhoff stress tensor and p is the hydrostatic pressure.
If the membrane is incompressible, the stress-strain relation can be simplified further:

S=—pC ' +2[(c1 + 1) - 1—,C], (3.24)

where Iis the 3 x 3 identity matrix. The membrane stress field is essentially assumed
to be 2D, and therefore the stress normal to the deformed membrane surface is
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negligible with respect to the stress in the tangent plane (Oden and Sato, 1967).
Under this assumption, the deformation matrix C(¢) and the stress matrix S(¢) can
be written as

Cu(r) Cp@) 0 Si() Swa() 0
C(t) = Clz(l) sz([) 0 ] S(t) = Slz(l) Szz(l) 01. (325)
0 0 C33(1) 0 0 0

The hydrostatic pressure is determined by the condition that S33 = 0, and the
formula is

p= 2 (C1 + o — Cz)\%) )\%, (326)
where A3 is defined by
h(t
N =/Gs(t) = —]E ) (3.27)
0

in which A(¢) and hg are the membrane thickness in the deformed and nondeformed
configurations, respectively.

More details about the model, validation, and numerical implementation can be
found in Lian and Shyy (2005), Lian et al. (2003b), and Verron et al. (2001).

3.2.3 Combined Fluid-Structural Dynamics Computation

Computational Fluid Dynamics (CFD) To analyze the flow field under
consideration, the Navier-Stokes equations represent the fluid dynamics aspect of
flexible-wing dynamics. The solution techniques for such a problem involving mov-
ing coordinates are given in Shyy et al. (1996). For moving-boundary problems in
which a solid boundary (e.g., wing) moves inside a computational domain based on
known kinematics (e.g., a flapping wing, which will be discussed in Chapter 4) or as
a response of the structure to the flow around it (e.g., a fixed, flexible wing), the grid
needs to be adjusted dynamically during computation. To facilitate this, as presented
by Shyy et al. (1996), either a moving-grid technique or a fixed grid can be used. A
fixed-grid technique (Dong et al., 2006; Singh et al., 2006; Ye et al., 2001) is attractive
because no regridding is needed. Furthermore, an adaptive, local grid-refinement
technique can be adopted (Singh and Shyy, 2006). For flow computations involving
transition but no merger or breakup of the multiple objects, which is the case for
MAYV aerodynamics, the disparity in length scales coupled with moving objects can
be better treated with a moving-grid technique.

In the moving-grid approach, the process of generating a grid can be a complicated
task by itself so an automatic and fast algorithm to upgrade the grid frequently is
essential. It is desirable to have an automatic remeshing algorithm to ensure that the
dynamically moving grid retains the quality of the initial grid and avoids problems
such as crossover of the grid lines, crossed cell faces, or negative volumes at block
interfaces in the case of multiblock grids. Several approaches have been developed
to treat grid redistributions for moving-grid computations (Lian et al., 2003b).
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Computational Structural Dynamics (CSD) In additition to the membrane
models just reviewed, as further discussed in Chapter 4, insect/bird wings are made of
a combinations of veins/bones and membranes/feathers. Using these basic construc-
tions as a starting point, the structural model needs to account for anisotropy and
large deformations and to be composed of multistructural components. To achieve
the modeling flexibility desirable and compatible with the CFD fidelity, the com-
bination of localized stiff members and thin unreinforced skin can be modeled as a
combination of beam, wires, plates, and membranes, along with their distributed iner-
tia. Each of these elements (and therefore their corresponding governing equations)
will be capable of orthotropic material properties and large motions. The membrane
and wiring elements should also be able to handle stress stiffening.

Coupling of CFD and CSD To model the flexible-wing performance, the
fluid dynamics and structural dynamics models need to be computed with coordi-
nation. Partitioned analyses have been very popular in the area of computational
fluid—structure interactions/computational aeroelasticity. A main motivating factor
in adopting this approach is that one can develop and use state-of-the-art fluid and
structure solvers and recombine them with minor modifications to allow for the cou-
pling of the individual solvers. The accuracy and stability of the resulting coupled
scheme will depend on the selection of the appropriate interface strategy, which
depends on the type of application. The key requirements for any dynamic coupling
scheme are (i) kinematic continuity of the fluid-structure boundary, which leads to
the mass conservation of the wetted surface; (ii) dynamic continuity of the fluid-
structure boundary, which accounts for the equilibrium of tractions on either side
of the boundary. This leads to the conservation of linear momentum of the wetted
surface. Energy conservation at the fluid—structure interface requires that both of
the preceding continuity conditions be satisfied simultaneously.

The subject of fluid and structural interactions is vast. Recent reviews by Fried-
mann (1999) and Livne (2003) offer substantial information and references of interest
to us.

3.3  Coupled Elastic Structures and A erodynamics

3.3.1 Flexible Airfoils

Shyy et al. (1997) first reported the relative performance between a low
Reynolds number membrane and a rigid airfoil in terms of the lift-to-drag ratio.
Both airfoils are of the same nominal camber at 6% in a fluctuating free stream. To
mimic the effect of wind gust, the fluctuations in the free stream can be modulated up
to 25% or more, and the varying free stream has a sinusoidal modulation frequency
set at 1.7 Hz. In addition, a hybrid airfoil was also investigated, which is a combina-
tion of rigid and membrane airfoils. The linear membrane model was used to account
for the airfoil’s flexibility. This airfoil was built with a curved-wire screen beneath the
membrane. By adjusting the hybrid airfoil, one achieves a camber of approximately
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Figure 3.11. Experimental L/D results for rigid, flexible, and hybrid wings at Re =
7.5 x 10* and an AoA of 7°. The latex membrane wing exhibits about 6% camber at
35.4 fps. The hybrid wing has a curved-wire screen camber stop. From Shyy et al.
(1997).

6% for this configuration as well. The hybrid airfoil can hence achieve a camber
greater than 6%, but not less because the wire construction prevents a decrease in
the camber. The size of the wing chords and the average wind-tunnel speed give a
Reynolds number of 7.5 x 10%.

The experiments for all three airfoils were conducted at an AoA of 7°, and the
results are shown in Figure 3.11. Detailed numerical simulations based on the Navier—
Stokes equations and two-equation turbulence closure, along with a moving-grid
technique to track the shape variations of the membrane and hybrid airfoils, are
conducted for various cases. At modest AoAs, the airflow over the rigid airfoil is
attached to the surface at all times and the lift-to-drag ratio follows the free-stream
fluctuations. When the AoA isincreased (a =7°) the flow separation can become very
substantial, causing a modification to the effective shape of the rigid airfoil. As the
AoA isincreased, the lift coefficient C; tends to increase as well, but the lift-to-drag
ratio decreases because of flow separation. The separation at higher AoAs makes the
airfoil less sensitive to an unsteady free stream. For both AoAs, the lift coefficients
between rigid and flexible airfoils are comparable, but the lift-to-drag ratio is higher
for the flexible airfoil. For the membrane airfoil, at o = 7° the flow separation is
confined to the leading edge, resulting in the better aerodynamic performance. There
are, however, some negative effects with a flexible membrane. When the free-stream
velocity reaches its lower value during a fluctuating cycle, the camber of the flexible
membrane tends to collapse and a massive separation over the whole surface occurs.
This phenomenon is due to the smaller pressure differences between the upper and
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Figure 3.12. Lift and drag coefficients over rectangular wings with different flexibili-
ties: RW02, a rigid steel-plate wing; EW006 and EQO1, thin and thick latex membranes;
EWO01s, a latex membrane with 6% slack (Galvao et al., 20006).

the lower surface of the membrane and hence a degraded performance is obvious.
The hybrid airfoil, which has a curved-wire screen stop to prevent the camber from
becoming too low, shows interesting results. For a lower AoA, the aerodynamic
characteristics are about the same as those for the flexible airfoil, with an attached
airflow. When the AoA is increased, the characteristics are considerably better for
the hybrid airfoil compared with the flexible profile. The separation zone is smaller
compared with that of the rigid airfoil, and the sensitivity to fluctuations in the free
stream is reduced when compared with that of the flexible configuration.

3.3.2 Membrane-Wing Aerodynamics

Galvao et al. (2006) measured the lift, drag, and deflection of a compliant
rectangular membrane wing at a Reynolds number range of 7 x 10* to 2 x 10° over
a range of AoAs (-5°-60°). The wing is composed of a compliant latex membrane
held between two stainless steel posts located at the leading and the trailing edges.
Four wing models are tested: a thin noncompliant wing composed of a steel shim
stock (denoted RW02), two compliant membrane wings with latex rubber sheets of
thicknesses of 0.25 and 0.15 mm (denoted EWO01 and EWO006, respectively), and a
latex membrane wing (0.25 mm thick) in which the membrane is given 6% slack
(denoted EWO0L1s).

Figure 3.12(a) depicts the lift coefficient for the test. The compliant wings have a
greater lift slope than the rigid wing. And the thinner compliant wing has a greater lift
slope than the thick compliant wing. Wing-deflection measurements show that this
is due to the increased camber for the compliant wing, which is consistent with the
numerical results (Lian and Shyy, 2003). The thinner compliant wing stretches to a
greater degree compared with the thicker membrane wing and therefore has a larger
camber at same AoA, resulting in a larger lift coefficient. Whereas Figure 3.5 shows
that membrane wings have a lift slope similar to that of the rigid wing, Figure 3.12(a)
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Figure 3.13. Measured power efficiency and lift-to-drag ratio over four wings with
different flexibilities: RW02, a rigid steel-plate wing; EW006 and EQO1, thin and thick
latex membranes; EWO01s, a latex membrane with 6% slack (Galvao et al., 2000).

indicates that flexible wings have a greater lift slope than rigid wings. The seemingly
contradicting conclusion is due to different experimental setups.

Figure 3.5 is based on the measurement of an MAV with a free trailing edge, which
can be tilted up under forces (Waszak et al., 2001). As pointed out by Lian and Shyy
(2005), this trailing-edge deflection reduces the effective AoA. The interplay among
the camber, effective AoA, and the lift can be rather complicated. Before stall, the
flexible structure in the experiment of Waszak et al. exhibits a smaller effective AoA;
because the trailing edge is not fixed, the effective camber is reduced accordingly. On
the other hand, in the experiment of Galvao et al. (2000), the trailing edge is fixed,
resulting in a fixed AoA but higher camber.

Galvao et al. reported that a compliant wing can delay stall by 2° to 8° of AoA,
which is qualitatively consistent with the observation of Waszak et al. (2001). After
stall, the lift coefficients for the compliant wings decrease in a more attenuated
manner compared with that of the rigid wing. Close to the stall, the camber of the
wing is observed to decrease. The decambering acts decrease the severity of the
separation, thus delaying the sharp drop in lift force. This behavior enables the wing
to sustain high lift at high AoAs. Furthermore, the compliant wings generate more
lift at AoAs from 5° to 55°.

The compliant wings are found to yield more drag (Figure 3.12) for two possi-
ble reasons. First, the enlarged camber increases the form drag. Second, the high-
frequency fluctuation and vibration heighten the drag. This becomes more noticeable
when the trailing edge is not fixed, possibly leading to flutter. As we explained before,
during slow forward flight, bats can flex their wings only slightly to avoid flutter.
The compliant wings also demonstrate their superiority in terms of power efficiency
(Ci/ 2/CD) over a wide range of AoAs [Figure 3.13(a)] (Galvao et al., 2006). This
becomes more evident at higher AoAs. However, in terms of flight range efficiency
(CL/Cp), compliant wings have a performance comparable with that of the rigid wing
[Figure 3.13(b)].
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Figure 3.14. Membrane airfoil shapes in a steady free stream at different time instants.
The vibration changes the effective wing camber, where T is the nondimensional time,
defined as ¢/ U (Lian and Shyy, 2006).

Lian and Shyy (2006) numerically investigated flexible-airfoil aerodynamics. In
their test, the upper surface of the airfoil is covered with a membrane that extends
from 33% to 52% of the chord. No pretension is applied to the membrane. The
membrane has a uniform thickness of 0.2 mm with a density of 1200 kg/m>. The two
parameters governing the membrane property, as shown in Eq. (3.22), take the values
of ¢; = 5.0 x 10° Pa and ¢; = 0.785¢;. The reference scales of their computations are
based on the free-stream velocity of 0.3 m/s, a density of 1000 kg/m?, and an airfoil
chord length of 20 cm. With these parameters, the time step for the CFD solver
here is set to 2 x 1073 s and the time step of the structural solver is 1 x 107> s. The
structural solver is very fast, and the majority of the CPU time is for the CFD solver.
The use of iteration between the CFD solver and structural solver during each time
step allows for synchronization of the fluid and structure coupling. By doing this the
errors introduced by a lagged fluid—structure coupling approach are regulated.

A computational test is performed at « = 4° and Re = 6 x 10*. It is observed that,
when flow passes the flexible surface, the surface experiences self-excited oscillation
and the airfoil displays varied shapes over time (Figure 3.14). Analysis shows that the
transverse velocity magnitude can reach as much as 10% of the free-stream speed.
During the vibration, energy is transferred from the wall to the flow and the sepa-
rated flow is energized. Compared with the corresponding rigid-airfoil simulation,
the surface vibration causes both the separation and transition positions to exhibit a
standard variation of 6% of the chord length.

In Figure 3.15 the time history of the lift coefficient is presented. Even though
the time-averaged lift coefficient (0.60) of a flexible wing is comparable with that of
the corresponding rigid wing, the lift coefficient displays a time-dependent variation
with maximum magnitude as much as 10% of its mean. The drag coefficient shows
a similar pattern but the time-averaged value closely matches that of the rigid wing.
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Figure 3.15. Time history of lift coefficient for membrane wing, showing both a high-
and a low-frequency oscillation (Lian and Shyy, 2006).

These observations are consistent with our previous efforts in 3D MAV wing sim-
ulations, without transitional flow models (Lian and Shyy, 2005). Furthermore, the
experimental evidence also supports the fact that, until the stall condition is reached,
the membrane and the rigid wings exhibit comparable aerodynamic performances.
The flexible wing, on the other hand, can delay the stall margin substantially (Galvao
et al., 2006; Waszak et al., 2001). By use of discrete Fourier transformation analysis,
the primary frequency of this flexible airfoil is found to be 167 Hz (Figure 3.16).
Given the airfoil chord (0.2 m) and free-stream speed (0.3 m/s), this high-frequency
vibration is unlikely to affect the vehicle stability. Figure 3.15 indicates that a low-
frequency cycle exists in the high-frequency behavior in the lift coefficient history.

3.5 v ' ' '

D] I e R — S 1

0 50 100 160 200 250
Frequency (Hz)

Figure 3.16. Power spectrum of the lift force. The dominated frequency is 167 Hz (Lian
and Shyy, 2000).
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Figure 3.17. Flow structure over the membrane wing and the associated vortex shed-
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This cycle, with a frequency of about 14 Hz, seems to be associated with vortex shed-
ding (Figure 3.17). In a different simulation with laminar flow over a 6-in. (15.24-cm)
membrane wing (i.e., the entire wing surface is flexible), Lian and Shyy observed a
self-excited structural vibration with a frequency of around 120 Hz (Lian and Shyy,
2005); the experimental measurement of similar wings records a primary frequency
of around 140 Hz (Waszak et al., 2001).

Lian et al. (2003b) compared the aerodynamics between membrane and rigid
wings for MAV applications. The flexible wing exhibits a slightly smaller lift coeffi-
cient than the rigid one at a = 6°. The difference in C;./Cp, is also small. At a higher
AoA of 15°, the membrane wing generates a lift coefficient about 2% smaller than
that of the rigid wing; however, its C;./Cp is slightly larger than that of the rigid wing.
This observation is consistent with the findings of Shyy et al. (1997).

The membrane wing changes its shape under external forces. This shape change
has two effects. On the one hand, it decreases the lift force by reducing the effective
AoA of the membrane wing; on the other hand, it increases the lift force by increasing
the camber. Both numerical findings of Lian and Shyy (2003) and experimental
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Figure 3.18. Averaged displacement of the membrane-wing trailing edge: (a) a = 6°,
(b) a = 15°. Adopted from Lian and Shyy (2003).

observations of Waszak et al. (2001) have shown that membrane and rigid wings
exhibit comparable aerodynamic performances before the stall limit.

Figure 3.18 shows the time-averaged vertical displacement of the trailing edge.
The displacement is normalized by the maximal camber of the wing. Because of
membrane deformation, the effective AoA of the membrane wing is less than that
of the rigid wing. The spanwise AoAs between rigid and membrane wings under the
same flow condition and with identical initial geometric configurations are shown in
Figure 3.19. In Figure 3.19(a), the rigid wing has an incidence of 6° at the root and
monotonically increases to 9.5° at the tip; the membrane wing shares the same AoAs
with the rigid wing at 36% of the inner wing; however, the effective AoA toward
the tip is less than that of the rigid wing. At the tip, the AoA of the membrane wing
lowers by about 0.8°. Figure 3.19(b) compares the AoA at o = 15°; it shows that the
effective AoA of the membrane wing is more than 1° less than that of the rigid wing
at the tip. The reduced effective AoA causes the decrease in the lift force.
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Figure 3.19. Time-averaged spanwise AoA for membrane wing: (a) a = 6°, (b) a =
15°. Adopted from Lian and Shyy (2003).
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3.4  Concluding Remarks

In this chapter, we discussed the interplay between structural flexibility and
aerodynamics. Representative modeling concepts were described, and the computa-
tional strategies for the coupled fluid—structural dynamics were highlighted:

1. Flexible wings are found to be beneficial for both natural and manmade flyers.
Birds can flex their wings during upstroke to minimize the drag and can still
maintain a smooth surface by slipping the features together. Bats, whose wings
consist of membrane and arm bones, can flex the wings only a bit to avoid
structure failure or flutter; however, they can enlarge the wing camber during
the downstroke; insects can bend the wing chordwise to generate camber
while preventing bending in the spanwise direction.

2. Fixed, flexible wings can facilitate steadier and better controlled flight. In a
gusty environment, a flexible wing can provide a more consistent lift-to-drag
ratio than a rigid wing by adaptively adjusting the camber in accordance with
the instantaneous flow field.

3. By responding to the aerodynamic loading variations, a membrane wing can
also adaptively conduct passive camber control to delay stall.

4. A membrane wing is found to exhibit flutter, whose frequency is about an
order of magnitude higher than that of the vortex-shedding frequency. The
flutter exists even under a steady-state free-stream condition. Such intrinsic
vibrations result from coupled aerodynamics and structural dynamics.



CHAPTER FOUR

Flapping-Wing Aerodynamics

Flying animals flap wings to create lift and thrust as well as to perform remark-
able maneuvers with rapid accelerations and decelerations. Insects, bats, and birds
provide illuminating examples of utilizing unsteady aerodynamics to design future
MAVs.

Pioneering work on flapping-wing aerodynamics was done by Lighthill (1969)
and Weis-Fogh (1973). Recent works, both in experiments and simulations, were
documented by Katz (1979), Ellington (1984a), DeLaurier (1993), Smith (1996),
Vest and Katz (1996), Liu and Kawachi (1998), Dickinson et al. (1999), Jones and
Platzer (1999, 2003), Wang (2000), and Chasman and Chakravarthy (2001). A review
of the characteristics of both flapping wings and fixed wings was given by Shyy et al.
(1999a). The spectrum of animal flight with flapping wing was presented by Templin
(2000). Ho et al. (2003) further reviewed the recent effort in developing flapping-
wing-based MAVs. Computational and experimental studies regarding rotating-wing
MAVs were made by Bohorquez et al. (2003).

Aerodynamic phenomena associated with biological flight prominently features
unsteady motions, characterized by large-scale vortex structures, complex flapping
kinematics, and flexible-wing structures. Furthermore, knowledge gained from study-
ing biological flight shows that the steady-state aerodynamic theory can be seriously
challenged to explain the lift needed for biological flyers (Brodsky, 1994; Ellington,
1984a; Ellington et al., 1996).

The quasi-steady theory is constructed based on the instantaneous velocity, wing
geometry, and AoA when the steady-state aerodynamic model is used. By neglecting
the wing motion and flow history, the quasi-steady approach greatly simplifies the
time-dependent problem by converting it to a sequence of independent, steady-state
problem: It has been frequently used in interpreting biological flight characteristics
(Azuma, 1983; Lighthill, 1973; Maxworthy, 1979; Norberg, 1990; Pennycuick, 1989;
Spedding, 1992; Weis-Fogh, 1972). For example, it has been used to the estimate
mechanical power requirements of hummingbirds (Chai and Dudley, 1996) and bum-
blebees (Dudley and Ellington, 1990b). Based on the theoretical analyses (Ellington,
1995) and experimental measurements of tethered insects (Cloupeau, 1979; Wilkin
and Williams, 1993), it has been found that the quasi-steady model is insufficient to
predict the lift needed to support insect body weight. On the other hand, while inves-
tigating a dynamically scaled, rigid-winged, flapping insect mounted in mineral oil
(Robofly), several authors (Sane and Dickinson, 2001; Wang et al., 2004) suggested
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that the quasi-steady 2D blade-element models can yield satisfactory agreement with
the experimental measurement of aerodynamic forces. We will visit this issue in later
sections. In any event, it is clear that the advancements in laser diagnostics and other
experimental techniques, robotics and control, and CFD and CSD have fostered a
fruitful collaboration in flapping-wing research (Combes and Daniel, 2003; Dickinson
et al., 1999; Ellington et al., 1996; Liu and Kawachi, 1998; Sunada et al., 2001; Wang,
2000).

In this chapter we present the various issues related to the aerodynamics of flap-
ping flight. We first discuss the scaling of flapping-wing flight in terms of reduced
frequency, Reynolds number, Strouhal number, and advance ratio. We next review
nonstationary airfoil aerodynamics including dynamic stall, a plunging and pitch-
ing airfoil, and thrust generation. Both analytical and computational models are
highlighted. Then we discuss the main lift-enhancement mechanisms associated
with flapping wings, including leading-edge vortex (LEV), fast pitch-up, wake
capture, and clap-and-fling mechanisms. The interplay among sizing (Reynolds
number), kinematics, and reduced frequency on aerodynamic characteristics is
addressed.

41  Scaling, Kinematics, and Governing Equations

Aerodynamics of insect and bird flapping flight can be modeled within the
framework of unsteady, Navier-Stokes equations. Nonlinear physics with multiple
variables (velocity, pressure) and time-varying geometries are among the aspects
of primary interest. The treatment of flapping kinematics is therefore central to a
comprehensive understanding of animal flight.

Scaling laws can help identify the physical flow regimes as well as offer guide-
lines to establish suitable models for predicting the aerodynamics of biological
flight. Three main dimensionless parameters in flapping-flight scaling are (i) the
Reynolds number, which represents a ratio of inertial and viscous forces, (ii) the
Strouhal number for forward flight, which describes the relative influence of for-
ward versus flapping speeds, and (iii) the reduced frequency, which describes the
rotational versus translational speeds during flapping movement. Together with geo-
metric and kinematic similarities, the Reynolds number, the Strouhal number, and
the reduced frequency are sufficient to define the aerodynamic similarity for a rigid
wing.

4.1.1 Flapping Motion

The kinematics of insect flapping flight, depicted in Figure 4.1, describes wing
and body movement. The body kinematics can be represented by the body angle x
(inclination of the body), which is relative to the horizontal plane, and the stroke-
plane angle B (indicated by the solid lines), which refers to a plane including the wing
base and the wingtips of the maximum and the minimum sweep positions. The
body angle and the stroke-plane angle vary in accordance with the flight speed. The
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(a) Z (vertical)

Stroke plane

v

X (horizontal) Y (sideslip)

x  (x,,z): local wing-base-fixed coordinate system
l (X, Y, Z): global space-fixed coordinate system

Downwash
Yaw D -
(b) z

Stroke plane

stroke plane

¢: positional angle

0: elevation angle

o angle of attack of the wing
P: stroke-plane angle

%: body angle

Figure 4.1. Schematic diagram of coordinate systems and wing kinematics: (a) the
local wing-base-fixed and the global space-fixed coordinate systems. The local wing-
base-fixed coordinate system (x, y, z) is fixed on the center of the stroke plane (origin
O’ at the wing base) with the x direction normal to the stroke plane, the y direction
vertical to the body axis, and the z direction parallel to the stroke plane; (b) definition
of the positional angle ¢, the feathering angle (AoA of wing) «, elevation angle 6 of
the flapping wing, body angle x, and stroke-plane angle 3.

wing-beat kinematics can be described by three positional angles within the stroke
plane: (i) flapping about the x axis in the wing-fixed coordinate system described by
the positional angle &, (ii) rotation of the wing about the z axis described by the ele-
vation angle 6, and (iii) rotation (feathering) of the wing about the y axis described
by the AoA «.

The AoA « is used to describe the orientation of a chordwise strip of a beating
wing relative to the stroke plane, which may change significantly in the spanwise
direction because of the wing torsion often observed in insect flapping flight.

For a general 3D case, definitions of the positional angle, the elevation angle, and
the AoA, all in radians, are

3

o(t) = Z [ben cos(2n ft) + &y, cos(2nmft)], n = integer, 4.1)

n=0



104  Flapping-Wing Aerodynamics

1.5 : : . : . : : :
: : — flapping ' i : : :
1 L I et elevation | | o ., I L
v U] === feathering [ T h -
O Tt SR RN
- A )
= . ! ! Y
-;:/ | 1 kY
T ! . ! N
. e H ' ' g
S O.._.._.‘L\..,‘_‘;.n... R bmm oo ,w:‘_.._“_
= ! e 4 [ 1
AN : : T - :
N ! ! ! !
05N R A A
ML e ! ! : ! !
i T - ' ' ' ' i i
-1 | | 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

time/T

Figure 4.2. Positional-, elevation-, and feathering-angle variations for one period for
a hovering hawkmoth.

3

0(t) = > [Ben cOS(2nm 1) + 6y, cos(2nm f1)], (4.2)
n=0

a(t) = 23: [aen cos(2n ft) + oy, cos(2n ft)]. (4.3)
n=0

Note that ¢ is time and f'is flapping frequency. The Fourier coefficients &, dgy, 0cn,
051, oen, and ay, are determined from the empirical kinematic data. Based on the
Fourier coefficients gathered by analysis of the kinematics of a hovering hawkmoth
(Willmott and Ellington, 1997b), the positional-, elevation-, and feathering-angle
variation for one period are plotted in Figure 4.2.

Even though 3D effects are important for predicting low Reynolds number
flapping-wing aerodynamics, 2D experiments and computations do provide impor-
tant insight into the unsteady fluid physics related to flapping wings. Two hover-
ing modes are discussed in this chapter, one is called the “water-treading” mode
(Freymuth, 1990) and the other is called the “normal-hovering” mode (Wang et al.,
2004). The plunging and pitching of the airfoil are described by symmetric, periodic
functions:

(1) = hy sin2m 1 + @), (4.4)

a(t) = ap + o, sin(2wft), (4.5)

where /1, is the plunging amplitude, fis the plunging frequency, oy is the initial rota-
tional angle, o, is the pitching amplitude, and ¢ is the phase difference between
plunging and pitching motion. The schematics of the two hovering modes are pre-
sented in Figure 4.3.
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Figure 4.3. Basic characteristics of the airfoil hovering modes considered in this study:
(a) schematic of water-treading mode; (b) schematic of the normal mode; (c) time
histories of airfoil stroke (solid curve, i(¢)) and pitch angle (dashed curve, «(f)) used
for both modes.

From the phase relationship between the wing’s translation and rotation, Dick-
inson et al. (1999) further categorized the wing motion into advanced, symmetric,
and delayed modes. The advanced mode (Figure 4.4) is the pattern in which the wing
rotates before it reverses direction at the end of each stroke. The symmetrical mode
(Figure 4.4) is the pattern in which the wing rotation synchronizes with its flapping
motion: Its AoA is 90° at the end of each stroke. The delayed mode (Figure 4.4) is
the pattern in which the wing rotates after it reverses direction at the end of each

stroke.
Advanced Symmetrical Delayed
-~—— Downstroke X
RN INCRRNNK NN
TIPS 1A XIS S SST

Upstroke —>

Figure 4.4. Schematics of the three wing-rotation patterns: advanced, symmetrical,
and delayed rotation. As shown in Dickinson et al. (1999), the timing of the wing
rotation has an important role in lift generation and consequently in maneuvering.
Blue designates the airfoil location, with the circle corresponding to the leading edge,
and red indicates the resultant aerodynamic force.
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4.1.2 Reynolds Number

Given a reference length L, and a reference velocity U, one normally
defines the Reynolds number Re as

Re — UrefLref’ (46)
v

where v is the kinematic viscosity. In biological flight, with consideration of the fact
that flapping wings produce the lift and thrust, the mean chord length ¢,, is used as the
reference length L.s, whereas the body length is typically used in swimming animals.
The reference velocity U, is also defined differently in hovering and forward flight:

1. In hovering, the mean wingtip velocity may be used as the reference velocity,
also written as Uy = wR, where R is the wing length (half wing span) and o
is the mean angular velocity of the wing (w = 2®f, where @ is the wing-beat
amplitude, measured in radians, and fis the flapping frequency). Therefore the
Reynolds number for a 3D flapping wing Re 3 in hovering flights can be cast as

Utet Lyet _ ZQfRCm _ (I)]CR2 4
a a AR/’

R€f3 = (47)

1% 14 v
where the aspect ratio AR as described in Chapter 1 is introduced in the form
AR = (2R)*/S, with the wing area being the product of the wing span (2R)
and the mean chord (¢,,). Note that the Reynolds number here is proportional
to the wing-beat amplitude ®, the flapping frequency f, a square of the wing
length R?, but inversely proportional to the AR of the wing. In insects flights,
the wing-beat amplitude and the AR of the wing do not vary significantly, but
the flapping frequency increases as the insect size is reduced, which, in general,
results in Re ranging from O(10') to O(10*) (see Figure 1.15). In addition,
given a geometrically similar wing model that undergoes flapping hovering
with the same wing-beat amplitude, the product of fR* can preserve the same
Reynolds number. This implies that a scaled-up but low-flapping-frequency
wing model can be built mechanically to mimic insect flapping flight based
on aerodynamic similarity. In fact, most recent robotic-model-based studies
(Dickinson et al., 1999; Ellington et al., 1996) are established on such a basis
provided that the second parameter, the Strouhal number, can be satisfied
simultaneously.

The definition of the Reynolds number can also be defined by use of an
alternative reference length and/or the reference velocity. For example, with
the wing length R as the reference length and the wing velocity Uyt = wrnR,
where r; is the radius of the second moment of wing area [approximately 0.52
for hawkmoth, Manduca sexta (Liu et al., 1998; Van den Berg and Ellington,
1997)], the Reynolds number Reys is proportional with ®fR?*/v and is not
dependent on the AR of the wing. Note that the reference velocity here is
almost half of that at the wingtip.
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For a 2D flapping wing (e.g., normal and water-treading hovering modes,
discussed later), the Reynolds number Re ; is defined by the maximum plung-
ing velocity:

Uset Lyet _ Zﬂfhac
> ,

Re =
12 »

(4.8)
where fis the flapping frequency, 4, is the plunging amplitude, and c is the
airfoil chord length.

2. In forward flight, for both 2D and 3D applications, the forward velocity U is
often used as the reference velocity U,.; Compared with the hovering-flight
Reynolds number, which is proportional to R?, the forward-flight Reynolds
number is proportional to R.

4.1.3 Strouhal Number and Reduced Frequency

In flapping wing studies, the Strouhal number (S7) is well known for char-
acterizing the vortex dynamics and shedding behavior. In some St ranges, the flap-
ping airfoil produces thrust, and the vortices in the wake are termed reverse von
Karman vortices. In general, for flapping flight, the dimensionless parameter St
describes the dynamic similarity between unsteady systems, and is normally defined
as

_ fLref_tha
B Uref B U '

St 4.9)

where fis the stroke (flapping) frequency in flapping flight, 4, is the stroke (flapping)
amplitude, and Uis the forward velocity. This definition describes a ratio between the
oscillating (flapping) speed (fh,) and the forward speed (U), which offers a measure
of propulsive efficiency in flying and swimming animals. In the study of natural flyers
and swimmers in cruising condition it is found that the Strouhal number, as defined
by Eq. (4.9), is often within a narrow region of 0.2 < St < 0.4 (Taylor et al., 2003;
Triantafyllou et al., 2000).

Another dimensionless parameter that characterizes the unsteady aerodynamics
of pitching and plunging airfoils is the reduced frequency, defined as

_ ZﬂfLref _ "‘chm

k= = . 4.10
2l]ref U ( )

In hovering flight, for which there is no forward speed, the reference speed Ut is
defined as the mean wingtip velocity 2®fR; the reduced frequency can be re-formed
as

T fCm T T

Uesg 20R _ ®AR’

k = (4.11)
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where the AR is introduced here again as in Eq. (4.7). For the special case of 2D
hovering airfoils, the reference velocity U, is the maximum flapping velocity (see
Eq. (4.8)), and the reduced frequency is defined as

TfCm Cm c
k= = = —, 4.12
Uref 2ha Zha ( )
which is simply related to the normalized stroke amplitude. Based on the definition
of the reference velocity and reduced frequency, airfoil kinematics Eqgs. (4.3) and

(4.5) can be rewritten as

h(t) = h, sin(2kt + o), (4.13)
a(t) = ag + o sin(2kt), (4.14)

where ¢is a dimensionless time, which is nondimensionalized by a reference time Tief
= Lref/Uref-

In the case of forward flight, another dimensionless parameter is the advance
ratio J. In a 2D framework, J is defined as

J = Ut/ fhy), (4.15)

which is related to St, specifically, J/ = 1/(wSf). In Eq. (4.15), the reference velocity
Uy 1s the forward-flying velocity U.

With the reduced frequency, the wing kinematics as illustrated in Egs. (4.1)-(4.3)
can be further re-formed as

o(t) = 23: [ben cos(knt) + &, sin(2knt)], (4.16)
n=0

0(r) = 23: [8cn cos(2knt) + 6, sin(2knt )], (4.17)
n=0

a(t) = 23: [oen cos(2knt) + oy, sin(2knt )], (4.18)
n=0

where ¢ is a dimensionless time, which is nondimensionalized by a reference time
Tiet = Lyet/Urer, resulting in a dimensionless period of w/k.

Finally, if we choose ¢, U,.t, and I/f as the length, velocity, and time scales, respec-
tively, for nondimensionalization, then the corresponding momentum equation for
a constant-density fluid yields

p 1 9°

7 )+ i) =~ 2 @), (+19)

ax, Re
where the overbar designates the dimensionless variable. In this form, the reduced
frequency and Reynolds number are separated and convenient for investigating their
effect.

Information about the fruit fly (Drosophila melanogaster), bumblebee (Bombus
terrestris), hawkmoth (Manduca sexta), and hummingbird (Lampornis clemenciae)
is shown in Table 4.1. For all these flyers, the flapping frequency is around 20-200 Hz,
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Table 4.1. Morphological and flight parameters for selected species
Hummingbird
(Lampornis
Bumblebee Hawkmoth clemenciae)
(Bombus (Manduca sexta)  (Chai and
Fruit fly terrestris) (Willmott and Millard, 1997,
(Drosophila (Dudley and Ellington, Greenewalt,
Parameters melanogaster) Ellington, 1990a)  1997a, 1997¢) 1975)
Morphological
Total mass (body) m (mg) 2.00 175 1579 8400
Wing mass (both wings) 9.6 x 1073 0.9 94 588
m,, (mg)
Wing length R (mm) 3 13 49 85
Wing area (both wings) S 2.9 106 1782 3524
(mm?)
Wing loading p (N/m?) 7 16 9 235
Wing aspect ratio AR 24 6.6 53 8.2
Kinematics
Flapping frequency 200 150 25 23
f(Hz)
Stroke amplitude 2.6 2.1 2.0 2.6
@ (rad)
Nominal forward-flight 2 4.5 5 8
speed U (m/s)
Reynolds number Re 130-210 1200-3000 4200-5300 11000
(based on wing
chord c)
Advance ratio J - 0.66 0.91 0.34

and the flight speed is about several meters per second, yielding a Reynolds number
from 107 to 10* based on the mean chord and the forward-flight speed. In this flight
regime, the unsteady effect, inertia, pressure, and viscous forces are all important.

4.2  Nonstationary Airfoil Aerodynamics

Nonstationary airfoil aerodynamics can be largely influenced by vortex
dynamics and their subsequent interactions with airfoils. The vortex growth and
shedding, if used properly, can provide increased lift generation compared with that
of a stationary airfoil. Thus understanding vortex dynamics and its impact on lift
generation is of substantial interest to flapping flight.

Hurley (1959) was the first to use vortex flows to enhance high lift at a high AoA.
His idea was to exploit, rather than suppress, the LEV. As the incoming flow tends to
separate around the leading edge, the boundary-layer control technology is devised
to keep the flow attached on the upper surface of a forward-facing flap. A conceptual
illustration is shown in Figure 4.5, where a blowing slot is placed at the leading
edge of the upper flap, preventing the boundary-layer separation from happening.
The LEV that forms above the lower flap enhances the lift, as has been proved in
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o X

Figure 4.5. Hurley’s free-streamline airfoil (Hurley, 1959). Adopted from Wu et al.
(1991).

wind-tunnel experiments. After appropriate blowing momentum is chosen, Hurley’s
airfoil could attain a C;, as high as 5-6 at up to 20°-30° AoA.

A 2D vortex has a tendency to develop spanwise instability and become 3D.
Westesson and Clareus (1974) designed an airfoil with special leading and trailing
flaps on the upper surface to create a strong axial flow along the spanwise direction
to stabilize the vortex pattern. A lift coefficient of C; ~ 4.5 was attained with no
blowing at a = 40° (Figure 4.6).

Inspired by the work of Westesson and Clareus (1974), Erickson and Campbell
conducted numerous flow-visualization experiments (Erickson and Campbell, 1975)
using the same model (see Figure 4.6). They found that a dual corotating vortex
system was generated and positioned by blowing, as sketched in Figure 4.6. When
the wing leading edge is swept to 45°, the required blowing rate can be significantly
reduced by about an order of magnitude. Similar studies have also been done by
other researchers, as reviewed by Wu et al. (1991)

Enhanced lift was also reported with the use of the Kasper wing (Cox, 1973;
Kasper, 1979). As shown in Figure 4.7, the Kasper wing makes use of large-scale
anchored vortical flows to create a favorable aerodynamic outcome. It is a successful
example of gaining high lift at a poststall AoA in real flight, attaining a lift coefficient
of 3.15.
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Figure 4.6. Lift enhancement attained by vortex capturing (Erickson and Campbell,
1975). Adopted from Wu et al. (1991).



4.2 Nonstationary Airfoil Aerodynamics 111

Figure 4.7. Detached vortex on the Kasper wing (Kasper, 1979). Adopted from Wu
etal. (1991).

However, wind-tunnel tests have not been successful in reproducing Kasper’s
flight result, unless external blowing is used (Kruppa, 1977). It is found that, although
alift-enhancing vortex does appear, a counterrotating vortex also accompanies it and
largely neutralizes the lift enhancement. It is speculated that, because the real glider
wing is not rigid, structurally induced vibration may help enhance the aerodynamics.
So far, there has been insufficient information available in the open literature to
assess this opinion.

Although biological flyers make use of various physical mechanisms to enhance
lift, they share the same characteristics as the previously mentioned design concepts,
namely, utilizing large-scale vortical flows for lift enhancement.

42.1 Dynamic Stall

When an airfoil is accelerated impulsively to constant velocity, the bound
vortex needs time to develop to its final, steady-state strength. Depending on the pace
of acceleration, it may take up to six chord lengths of travel for the circulation and
lift to reach 90% of the final values (Ellington, 1995). However, the fast acceleration
of the airfoil can result in lift enhancement that is due to the so-called Wagner effect,
which describes the unsteady aerodynamics associated with an accelerating airfoil.
Specifically, an impulsively started airfoil develops only a fraction of its steady-state
circulation immediately; the steady-state value can be attained only after the airfoil
moves through several chord lengths. On the other hand, if the airfoil is started
at an AoA above its stalling angle, then a large transient vortex forms above the
leading edge, which can dramatically increase the lift (Anders, 2000; Von Karman
and Burgers, 1935).

The undulating movements of insect wings make it unlikely that the steady-state
value can be reached. Thus, although the quasi-steady estimate of lift is often used
in literature, it risks being overly simplistic (Berger, 1999). However, as reported
by Dickinson et al. (1999), a lift peak is observed when a wing is accelerated at the
beginning of each stroke. Dynamic stall, or delayed stall, is often used to describe
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Figure 4.8. Dynamic-stall events of NACA 0012 airfoil. Adopted from McCroskey
and Fisher (1972).

the extra lift associated with a wing traveling at high AoAs for a brief period, with a
large LEV, before it stalls.

Since the 1950s and 1960s, investigators (Ham, 1968; Harper and Flanigan, 1950;
Harris and Pruyn, 1968) have found that the stall does not come instantly when a
wing is rapidly pitched beyond the static stall angle. Figure 4.8 depicts the evolution of
flow structures in dynamic stall for a rapidly pitching NACA 0012 airfoil (McCroskey
and Fisher, 1972). The reverse flow affects the pressure distribution [point (b)] after
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(©) )

Figure 4.9. Four typical unsteady motions in plunging and pitching motion: (a) com-
bined translational-rotational oscillations, (b) purely translational oscillations, (c)
purely rotational oscillations, and (d) advancing wave-type deformations. Adopted
from Rozhdestvensky and Ryzhov (2003).

the wing rapidly exceeds the static stall angle (point (a) in Figure 4.8). This reversal
progresses up on the airfoil upper surface and forms a vortex. This vortex initially
appears near the leading edge of the airfoil (point (e)), enlarges, and then moves
down the airfoil. The pitching moment reaches its negative peak and then both lift
and pitching momentum start to drop dramatically (points (h) and (i) in Figure 4.8),
producing the phenomenon known as dynamic stall. As the AoA decreases, the
vortex moves into the wake, and a fully separated flow develops on the airfoil. At the
time instant when the AoA reaches its minimum, lift has not reached its minimum
value, which indicates that the dynamic stall process forms a hysteresis loop. Figure 4.8
shows such characteristics for the development of lift and pitching momentum. The
amplitude and the shape of the hysteresis loop depend on the oscillation amplitude,
mean AoA, and reduced frequency.

Most of the research into the dynamic-stall phenomenon has been performed
on airfoils oscillating in pitch. This 2D motion has been useful in highlighting the
characteristics of dynamic stall on helicopter blades, fish swimming, and flapping
flight. The viscous effects play an important role in these cases. This has led to a more
careful investigation of the dynamic-stall process, including evaluation of the type of
motion (Rozhdestvensky and Ryzhov, 2003) involved (see Figure 4.9). McCroskey
et al. (1982) showed the sensitivity to history effects in dynamic stall. They observed
that the high-angle part of the oscillating airfoil in a dynamic-stall cycle depends
significantly on the rate of change of AoA « near the stall angle; the same lift- and
pitching-moment behavior can be attained by matching the rate of change of o at
stall limit with different amplitudes.
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Figure 4.10. Vortices structure behind a stationary NACA 0012 (Lai and Platzer, 1999).
(See Plate XIV.)

4.2.2 Thrust Generation of a Pitching/Plunging Airfoil

The first experimental work confirming the possibility of thrust generation
on the unsteadily moving wing was done by Katzmayr in 1922 (Katzmayr, 1922).
He investigated a fixed wing placed into an oscillating flow field. His studies vali-
dated the Knoller-Betz hypothesis (Betz, 1912; Knoller, 1909). Both Knoller and
Betz observed that the vertical motion of a flapping wing creates an effective AoA,
generating an aerodynamic force with both lift and thrust components. Polonskiy
(1948) and Bratt (1953) performed detailed visualizations of the large-scale vortex
structures shed from harmonically plunging foils in a uniform flow and observed
the characteristics of the vortex structures behind the wing. These experimental
observations confirmed the Karman-Burgers thrust-generation hypothesis, i.e., the
formation of a reverse Karman vortex street. Polonskiy (1950) and Jones et al. (
2001) showed the existence of different types of large-eddy structures generated
by oscillating wings in their experiments, and the vortex structures that are shed at
an angle to the free stream. Other researchers (Anderson et al., 1998; Freymuth,
1988; Koochesfahani, 1989) studied the 2D flow structure behind oscillating foils and
thrust generation, confirming that, depending on the parametric conditions, the wake
structure can change from simple sinusoidal perturbations to two or four large-scale
eddies. These typical flow structures were captured in visualization experiments by
Lai and Platzer (1999). Figure 4.10 shows the typical Karman vortex street behind
a stationary NACA 0012, in which clockwise rotating vortices (red) are shed from
the upper surface and counterclockwise rotating vortices (green) are shed from the
lower surface; Figure 4.11 shows two pairs of vortices shed from the trailing edge per
plunge cycle while Figures 4.11(b) and (c) show a single pair with reverse Karman
vortex street pattern.

Anderson et al. (1998) experimentally measured the time-averaged thrust coef-
ficient, input power coefficient, and propulsive efficiency of a NACA 0012 airfoil
undergoing a combined plunging and pitching motion. They found that the effi-
ciency peaks in the Strouhal number range 0.25 < St < 0.4, with an efficiency as
high as 87% depending on the exact flapping parameters. Satyanarayana and Davis
(1978) and Bass et al. (1982) observed the flow structure of an oscillating wing at
different Strouhal numbers: For Strouhal numbers [based on the airfoil chord rather
than on the plunging amplitude as in Eq. (4.9)] up to 1.0, the shedding of the vortex
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(a) h = 0.0125 (ki = 0.098)

(b) 1 = 0.025 (kh = 0.196)

(¢) h = 0.05 (kh = 0.393)

Figure 4.11. Vortex patterns for a NACA 0012 airfoil oscillated in plunge for a free-
stream velocity of about 0.2 m/s, a frequency of f = 2.5 Hz (k = 7.85), and various
amplitudes of oscillation (Lai and Platzer, 1999). (See Plate XV.)

street occurs from the sharp trailing edge of the wing; for larger Strouhal numbers,
the vortex-shedding location moves from the trailing edge to the lower or upper side
of the wing within the period of oscillation.

Another experimental observation discovered the delay of the leading-edge flow
separation in unsteady motion. Devnin et al. (1972) indicated that, for a rigid wing
with an AR of |-4 and a NACA 0012 section, no separation is observed up to the
instantaneous AoA of a = 45°; on the other hand, separation normally occurs at
a = 15° (Re = 10°) in the steady case. Taneda investigated the influence of traveling-
wave characteristics associated with a flexible plate (Taneda, 1976). He revealed that
the turbulence in the boundary layer is suppressed when the speed of propagation of
the traveling wave exceeds that of the uniform incoming flow. Researchers have long
noticed the interaction of large-scale eddies with oscillating wings (Rosen, 1959) in
observing that fish bodies generate large-scale eddies. Using digital particle image
velocimetry (DPIV), Mueller (2001) obtained flow patterns behind a swimming fish
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Figure 4.12. Nondimensional mean streamwise velocity profiles generated by (a) a
plunging airfoil, and (b) a plunging circular cylinder at f = 5 Hz (Lai and Platzer,
2001).

and confirmed that the active vortex control by the body and fin produces a reverse
Karman vortex street at maximum propulsive efficiency.

Gopalkrishnan et al. (1994) and Streitlien and Triantaffilou (1998) identified three
types of interactions of the harmonically oscillating wing with vortices in the wake:
(i) optimal interaction of the new vortices with the vortices shed by the wing, resulting
in the generation of more powerful vortices in the reverse Karman vortex street;
(ii) destructive interaction of new vortices with those shed by the wing, resulting
in the generation of weaker vortices in the reverse Karman street; (iii) interaction
of vortex pairs with opposite signs shed from the wing, leading to the generation
of a wide wake composed of vortex pairs that are shed at an angle to the free-
stream.

In summary, depending on the nature of the interactions between airfoil move-
ment and the associated flow structure, either thrust or drag can be observed. In
regard to fluid physics, the flow visualizations of Wolfgang et al. (1998) indicate that
the three-dimensionality of the flow is most pronounced near the edges of the body.
Furthermore, Triantafyllou et al. (2000) observed that the interaction between large-
scale vortex structures generated by the fish body and vortex structures of the fin
are important factors in determining the performance of swimming. In the “nor-
mal” case, the initial pair of large-scale vortices is generated by the body. Then the
body-generated vorticity is redirected by the fin and interacts with the fin-generated
vorticity to produce the vortex pair, which is “accurately controlled” by the fish. The
timing of vortex formation, propagation, and its instantaneous position are critical
for efficient maneuvering and acceleration. Thus the control of vortex generation
plays an important role in achieving high locomotion efficiency.

Lai and Platzer (2001) found that, when an airfoil is plunging at zero angle of
incidence with no incoming flow, as Figure 4.12(a) shows, a jet is produced by the
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flapping airfoil and the streamwise velocity downstream of the airfoil is greater than
the peak plunge velocity. The jet appears to be biased toward the half-plane above
the airfoil. This phenomenon was also observed by Jones et al. (2001). The reason
is that, as soon as kh, (where k is the reduced frequency and 4, is the plunging
amplitude normalized by the chord) exceeds approximately 0.8, the vortices shed
from the trailing edge are coming too close together and start to interact with each
other. Another experiment with a circular cylinder does not observe the jet flow (see
Figure 4.12(b)). Therefore it seems that the jet flow is caused by detailed geometry
such as curvature and asymmetry of the solid object.

4.3  Simplified Flapping-Wing Aerodynamics Model

A simplified analysis for flapping flight can be established based on the actu-
ator disk model. An actuator is an idealized surface that continuously pushes air
and imparts momentum downstream by maintaining a pressure difference across
itself, i.e., the lift is equal to the rate of change in fluid momentum. Assuming that
insect wings beat at high-enough frequencies so that their stroke planes approximate
an actuator disk, the wake downstream of a flapping wing can be modeled as a jet
with a uniform velocity distribution (Ellington, 1984a; Hoff, 1919). Although the
momentum theory accounts for both axial and rotational changes in the velocities
at the disk, it neglects time dependency in wing size, morphology, kinematics, and
associated unsteady-lift-producing mechanisms.

By using the Bernoulli equation for steady flow to calculate induced velocity at
the actuator disk and the jet velocity in the far wake downstream, i.e., the downwash,
Weis-Fogh (1972) derived the induced downwash velocity w; for a hovering insect at

the stroke plane as
[ W
P = , 4.20
Y 2mp R? ( )

where W is the insect weight, p is the air density, and R is the wing length. From
the experimental measurements of the beetle Melolontha vulgaris, Weis-Fogh (1972)
assumed that the downwash velocity in the far wake was twice that at the disk, i.e.,w =
2w;, even though he pointed out that w; varies through a half-stroke and that the
stroke-plane amplitude & is rarely 180°.

Instead of using a circular disk, Ellington (1984e) proposed a partial actuator disk
of area A= ® R? cos(B) that flapping wings cover on the stroke plane, as depicted in
Figure 4.13, and modified the expression for the induced power Ping, such that

/ w3 [1 (W
Pind= mZW $<Z>, (4.21)

where B is the stroke-plane angle and W/A is the disk loading that controls the
minimum power requirement. He also noted that, because of the time-varying nature
of flapping, a pulsed actuator disk seems more representative of hovering flight.
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(a) annulus W (b) stream tube

horizontal reference direction

(d)

Figure 4.13. The wake flow given by the axial momentum theory for (a) a hovering
propeller and (b) a hovering animal. Here w; is the induced velocity at the disk, w is
the vertical velocity attained in the “far” wake, and A is the disk area. (c) Definition
of the stroke plane and relative stroke plane. w; is the is the induced velocity by the
vorticity in the wake and B, is the relative stroke-plane angle. Adopted from Ellington
(1984e). (d) Stroke kinematics for a hovering insect; H = head, T = thorax, A =
abdomen. Dashed curves represent the upstroke; dotted curves are the downstroke.
Adopted from Zbikowski (2002).

He showed that the circulation of the vortex rings in the far wake downstream is
related to the jet velocity:

F=-—, (4.22)

where fis the shedding frequency.
Rayner (1979a, 1979b) proposed a method representing the wake of a hover-
ing insect by a chain of small-cored coaxial vortex rings (one produced for each
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half-stroke). Although the approach could determine the lift and drag coefficients, the
effects of stroke amplitude and stroke-plane angle were not accounted for. Sunada
and Ellington (2000) developed a method that models the shed vortex sheets in the
wake as a grid of small vortex rings with the shape of the grid modeled by wing
kinematics so that all forward speeds can be handled.

Overall, the relatively simple approaches just presented are of limited capabil-
ity because only stroke-plane angle and disk loading are included. The models do
not allow, for example, estimation of lift forces for given wing kinematics or wing
geometry.

In the quasi-steady approach, the lift and drag coefficients are computed based on
the steady-state theory while varying the geometry and speed in time. To account for
the variations in velocity and geometry from wing base to wingtip, the blade-element
approach has been followed to discretize the wing into chordwise, thin wing strips;
the total force is computed by summation of the forces associated with individual
strips along the spanwise direction (Ellington, 1984a; Osborne, 1951). Integrating
lift over the entire stroke cycle gives the total lift production of the flapping wings.
For example, considering such wing kinematics and wing geometry, Osborne (1951)
proposed a quasi-steady approach to model insect flight — the forces on the insect wing
at any point in time are assumed to be the steady-state values that would be achieved
by the wing at the same velocity and AoA. Later, in 1956, Weis-Fogh and Jensen
(1956) laid out the basis of momentum and blade-element theories as applicable to
insect flight and carried out quantitative analyses on wing motion and energetics
available at the time. Their results indicate that, in most cases, when forward flight is
considered, the quasi-steady approach appeared to hold for the reason that, as flight
velocity increased, unsteady effects diminished. In the mid-1980s, Ellington published
aseries of papers on insect flight (Ellington, 1984a, 1984b, 1984c, 1984d, 1984e, 1984f).
He presented theoretical models for insect flight by using actuator disks (Ellington,
1984e), vortex wake (Ellington, 1984¢), quasi-steady methods (Ellington, 1984a),
rotation-based mechanisms of clap, peel, and fling (Ellington, 1984¢), and insight
into unsteady aerodynamics (Ellington, 1984e, 1984f).

From the blade-element method, Ellington combined expressions for lift that
is due to translational and rotational phases. Using the thin airfoil theory and the
Kutta—-Joukowski theorem, he derived the bound circulation as

Iy = weUsina, (4.23)

where c is the chord length, U is the incident velocity, and « is the effective AoA
corrected for profile shape. Following Fung’s method (Fung, 1969), he also derived
an expression for circulation that is due to rotational motion by computing inci-
dent velocity at the 3/4 chord point while satisfying the Kutta—Joukowski condition,
giving

3
I, = wac? (Z — fco> , (4.24)
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where & is the rotational (pitching) angular velocity and %y is the distance from the
leading edge to the point about which rotation is being made (pitch axis), normalized
with respect to the chord c¢. Combining the preceding two expressions, Ellington
obtained the quasi-steady lift coefficient:

ac (3
Cp =2 |si —(=—%)]. 4.25
L w[s1no¢+ U <4 x())] (4.25)
Furthermore, to determine lift and power requirements for hovering flight, Elling-
ton (1984f) sought estimates for the mean lift coefficient through the flapping cycle
and derived a nondimensional-parameter-based expression:
- 8Lcos*(B,
Cp = cos (B )2 : (4.26)
p f2O2R73(S)(dd/dl)"S cos?(B)

where L is the mean lift through a half-stroke, p is the air density, f is the wing-
beat frequency, @ is the stroke angle, (dd/di)? is the mean-squared flapping angular
velocity, S is the wing area, {3 is the stroke-plane angle, B, is the relative stroke-plane
angle (see Figure 4.13(c)), and r; is the second moment of wing area.

Numerous versions of the quasi-steady approach can be found in the literature;
in general, the model predictions are not consistent with the physical measure-
ments, especially when the hovering flight of insects is considered. For example,
lift coefficients obtained under those conditions yield (i) 0.93-1.15 for a dragonfly,
Aeschna juncea (Newman et al., 1977; Wakeling and Ellington, 1997b), (ii) 0.7-0.78
for a fruit fly, Drosophila (Vogel, 1967; Zanker and Gotz, 1990), and (iii) 0.69 for a
bumblebee, Bombus terrestris (Dudley and Ellington, 1990b). However, lift coeffi-
cients estimated by direct force measurements in flying insects are significantly larger
than those predicted by the quasi-steady methods, ranging from 1.2 to 4 for various
insects including the hawkmoth, Manduca sexta, bumblebee, Bombus terrestris, par-
asitic wasp, Encarsia formosa, dragonfly, Aeschna juncea, and fruit fly, Drosophila
melanogaster (Ellington, 1984¢; Lehmann and Dickinson, 1998; Norberg, 1975; Weis-
Fogh, 1972).

As quasi-steady methods are unable to predict accurately flapping-wing aerody-
namics, empirical corrections have been introduced. Walker and Westneat (2000)
presented a semiempirical model for insectlike flapping flight, which includes, e.g.,
Wagner’s function (Fung, 1969), which is devised to account for the lift enhance-
ment caused by an impulsively starting airfoil. They used a blade-element method to
discretize the flapping wing and compute forces on the wing elements, in which the
forces comprise a circulation-based component and a noncirculatory apparent mass
contribution. Sane and Dickinson (2001) refined a quasi-steady model to describe
the forces measured in their earlier experiments on the Robofly (see Figure 4.14),
a mechanical, scaled-up model of the fruit fly, Drosophila melanogaster (Fry et al.,
2003). They decomposed the total force F into four components, namely

F=F +F + F, +F,, (4.27)
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Figure 4.14. Robofly experimental facilities developed by Lehmann, Dickinson, and
others (http://www.biofuture-wettbewerb.de/index.php?index = 18).

where the subscripts ¢ and r are for translational and rotational quasi-steady compo-
nents, respectively, a is for added mass (added mass arises because an accelerating or
decelerating body must move some volume of surrounding fluid as it moves through
it), and w is for wake capture. In the blade-element approach, a Robofly wing is
divided along the spanwise direction into chordwise strips, and the forces on each
strip are computed individually and integrated along the span. The translational
quasi-steady force F, is computed from empirically fitted equations. To determine
the rotational quasi-steady force F,, Sane and Dickinson (2001) set the forces that
are due to added mass and wake capture to zero, i.e., F, = F,, = 0, by removing any
accelerations and avoiding wake reentry, respectively. They measured the force F act-
ing on a wing undergoing a constant translation and rotation for one forward stroke
only and obtained the rotational force F, by subtracting the empirically predicted
translational force F, from the measured total force F. Furthermore, an analytical
method was developed to compute the added mass F,; and, knowing these three com-
ponents, they evaluated the wake-capture force F,, by subtracting the components
F,, F,, and F, from the total measured force F.

Recently a model for unsteady lift generation for insectlike flapping wings was
proposed by Pendersen and Zbikowski (2006). The model is modular, giving a better
insight into various effects on aerodynamic force generation, and includes added-
mass effects, the quasi-steady assumption, a LEV effect, and the wake effect. The
model’s predicted lift and drag forces were compared with the measurements of
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Dickinson et al. ( 1999), and, despite its simplifications, the model captures reasonably
well the lift evolution, but overpredicts the force peak values.

Although such semiempirical methods can be tuned to provide good agreement
with experimental measurements, their predictable capabilities are questionable
because they cannot adequately account for the relevant unsteady, vortical fluid
physics. In particular, the unsteady effects are important not only during the transla-
tional phases of the stroke (upstroke and downstroke) but also during the rotational
phase near the end of each stroke when the wings are quickly rotated around their
spanwise axes (Dickinson and Gotz, 1993; Liu et al., 1998; Wakeling and Ellington,
1997a, 1997b). Nevertheless, the quasi-steady model does provide some insight into
flapping flight in insects and birds and offers quick estimates of unsteady aerodynamic
coefficients.

Next, we review the major physical mechanisms responsible for lift enhancement
of flapping wings and a series of case studies aimed at elucidating these mechanisms.

4.4 Lift-Enhancement Mechanisms in Flapping Wings

Robotic models, illustrated in Figure 4.14, offer a valuable framework for
studying biological flight. As previously discussed, with geometric and kinematic
similarities, one can maintain the dynamic similarity by scaling up the wing dimen-
sion while appropriately lowering the flapping frequency, rendering the Reynolds
number or the reduced frequency unchanged. Ellington et al. (1996) used a robotic
model to investigate flow over the wings of a hovering hawkmoth and discovered
that the LEV spiraled out toward the wingtip. Their finding provided a qualitative
explanation of one particular high-lift mechanism. Dickinson et al. (1999) also used
a robotic model, representing a fruit fly, to directly measure forces and visualize
the flow patterns around a flapping wing. They demonstrated two force peaks at
the rotation phase, namely, the rotational mechanism associated with fast pitch-up,
and the wake-capture mechanism resulting from the airfoil and vortical flow interac-
tions. Although different explanations of the two force-generation mechanisms have
been offered, as described in the following subsection, it is clear that a robotic model
offers better control and improved experimental resolution in studying flapping-wing
flight.

Birch and Dickinson (2001) further observed substantially different flow patterns
around the same model, based on large moths and small flies, to investigate the
impact of the scaling parameters on the aerodynamic outcome. Further refining the
experimental techniques, Fry et al. (2003) recorded, with a 3D infrared high-speed
video, the wing and body kinematics of free-flying fruit flies performing rapid flight
maneuvers, and “replayed” them on their robotic model to measure the aerodynamic
forces produced by the wings. They reported that the fly generated sufficient torque
for rapid turn with subtle modifications in wing motion, and suggested that inertia,
not viscous force, dominates the flight dynamics of flies.

To date, these robotic-model investigations have focused on the flapping pattern
of rigid wings without accounting for structural flexibility. Combes and Daniel (2003)
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analyzed the bending and flexion of the wings of a hawkmoth’s flapping flight. They
reported that, compared with the inertial forces, the aerodynamic forces play a minor
role in determining wing deformation during flapping movement.

In addition to robotic models, high-speed measurements for real flyers were also
conducted. For example, Srygley and Thomas (2002) reported a study on the force-
generation mechanisms of free-flying butterflies by using high-speed, smoke-wire
flow visualizations to obtain qualitative images of the airflow around flapping wings.
They observed clear evidence of LEV structures. In comparison, in moth and fly
flight, the helical structure and the spanwise, axial flow patterns appear to be much
weaker. They suggest that free-flying butterflies use a variety of aerodynamic mecha-
nisms to generate force, including wake capture, LEVs, active and inactive upstrokes,
rapid rotation, and clap-and-fling; these different mechanisms are often used in suc-
cessive strokes as seen during take-off, maneuvering, maintaining steady flight, and
landing.

Warrick et al. (2005) used DPIV to observe the wake around hovering humming-
birds. They observed force asymmetry between the upstroke and the downstroke.
Specifically, 75% of the lift is generated during the downstroke and 25% during
the upstroke. They reported inversion of the cambered wings during the upstroke,
as well as evidence of LEVs, created during the downstroke. As suggested by the
Reynolds number, a hummingbird’s aerodynamics regime overlaps that of larger
insects.

Videler et al. (2004) recorded a water-tunnel experiment in which they used the
DPIV technique for flow around a single wing of a swift in fast gliding. Their results
show that gliding swifts can generate stable LEVs at small (5°~10°) AoAs. Whereas
the swept-back hand-wings generate lift with LEVs, the flow around the arm-wings
seems to remain attached.

Clearly, depending on the size and flow parameters of individual species, vari-
ous lift-enhancement mechanisms are observed. For example, the delayed-stall phe-
nomenon has been investigated from both dynamic-stall (Dickinson et al., 1999;
Lehmann et al., 2005) and upper-wing LEV (Ellington et al., 1996; Maxworthy, 1979)
viewpoints. The high-lift peak during wing pitch-up has been explained by use of the
Magnus effect (Lehmann et al., 2005) (the lift generated by a rotating object by means
of the induced velocity differential between upper and lower surfaces), as well as vor-
tical flow structures (Ellington et al., 1996). As already mentioned, a high-lift peak
after a wing reverses its direction can result from wake-capture and/or fast acceler-
ation processes. The wake capture produces aerodynamic lift by a transfer of fluid
momentum associated with large-scale vortical flow shed from the previous stroke
to the wing at the beginning of each half-stroke. The fast acceleration results in lift
enhancement and can be explained in part by the so-called Wagner effect discussed
in Subsection 4.2.1.

The preceding discussion offers a sample of the experimental and modeling
investigations. In the following subsection, we address flapping-wing aerodynam-
ics by focusing on specific unsteady-lift mechanisms, as well as related scal-
ing, geometric, and kinematic parameters. Overall, four major lift-enhancement
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mechanisms associated with flapping-wing aerodynamics have been reported in the
literature:

1. delayed stall that is due to LEV,

2. aerodynamic peak that is due to pitch-up rotation,

3. wake capture that is due to vortical flow and airfoil interactions,
4. Weis-Fogh’s clap-and-fling dynamics.

These mechanisms and their impact on aerodynamics are discussed in the following
subsections.

4.4.1 Leading-Edge Vortex

In addition to the aerodynamics literature reviewed earlier in this chapter,
other researchers have long recognized the potential benefit of trapped or wing-
attached vortices in flapping-wing lift enhancement (Bradley et al., 1974; Campbell,
1976; Dickinson and Gotz, 1993; Maxworthy, 1979; Sunada et al., 1993). In partic-
ular, the high-lift mechanism generated by the LEV in a flying insect has received
substantial attention, following the original discovered by Ellington et al. (1996).
It appears that the LEV can enhance lift by attaching the bounded vortex core to
the upper leading edge during wing translation (Ellington et al., 1996; Houghton
and Carpenter, 2003; Usherwood and Ellington, 2002; Van den Berg and Ellington,
1997). The LEVs generate a lower-pressure area, which results in a large suction on
the upper surface. It seems that the lift enhancement can sustain 3 or 4 chord lengths
of travel before vortex breakdown occurs.

Ellington and coworkers designed a 10:1 scaled-up, robotic model previously
discussed to study the hawkmoth, Manduca sexta. To maintain both the Reynolds
number and the reduced frequency similarity in hovering, as introduced in Subsec-
tion 4.1.2, they preserve fR? between the real insect and the mechanical model, where
fis flapping frequency and R is wing length. The robotic model is approximately 10
times larger than the hawkmoth and accordingly flaps its wings in air at a frequency
of 0.3 Hz. Using geometrically similar hawkmoth wing models that undergo hovering
with the same flapping kinematics can therefore satisfy the aerodynamic similarity.
By using smoke streams to visualize the flow around a flapping wing, Ellington et al.
(1996) demonstrated the presence of a vortex close to the leading edge of the wing.
They observed a small but strong LEV that persists through each half-stroke (down-
stroke). From direct observation, they proposed that the LEV is responsible for the
augmented lift forces. The LEV has a high axial flow velocity in the core and is stable,
separating somewhat from the wing at approximately 75% of the wing length span-
wise and then connecting to a large, tangled tip vortex. The overall vortical structures
are qualitatively similar to those of low-AR delta wings (Ellington et al., 1996; Van
den Berg and Ellington, 1997) that stabilize the LEV by maintaining the spanwise
pressure gradient, increasing lift well above the critical AoA. They have further sug-
gested that the vortex stability in flapping wings is maintained by a spanwise axial
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Figure 4.15. Spatial flow structure of LEVs: le designates leading edge, te designates
trailing edge, dss designates dividing stream surface, SS vortex designates combined
starting/stopping vortex. Adopted from Van den Berg and Ellington (1997).

flow along the vortex core (see Figure 4.15), creating “delayed stall,” to enhance lift
during the translational phase.

Liu and Kawachi (1998) and Liu et al. (1998) conducted unsteady Navier-Stokes
simulations of the flow around a wing of a hawkmoth, Manduca sexta, to probe the
unsteady aerodynamics of hovering flight. They adopted a realistic geometric wing
model as well as flapping kinematics and presented the salient features of the LEV
and the spiral axial flow during translational motions. Their results are consistent
with those observed by Ellington et al. (1996). Figure 4.16 shows that (i) the LEV
created during previous translational motion and (ii) the vortical flows established
during the rotational motions of pronation and supination together form a complex
flow structure. They estimated that lift is produced mainly during the downstroke
and the latter half of the upstroke, with little force generated during pronation and
supination.

Dickinson and G6tz (1993) measured the aerodynamic forces of an airfoil impul-
sively started at high AoAs in the Reynolds number range of the fruit fly wing
(Re = 75-225). They observed that, at AoAs above 13.5°, impulsive movement
resulted in the production of a LEV that stayed attached to the wing for the first
two chord lengths of travel, resulting in an 80% increase in lift compared with the
performance measured five chord lengths later.

The LEV as a lift-enhancement mechanism has been questioned by Zbikowski
(Zbikowski, 2002) because a dynamic-stall vortex on an airfoil is found to break
away and convect elsewhere as soon as the wing translates (McCroskey et al., 1982).
Nevertheless, LEVs have been observed on the wings of insects, as well as on robotic
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Figure 4.16. Wing-surface pressure and streamlines revealing the vortical structures
for the 3D numerical simulation of a hovering hawkmoth (Liu et al., 1998): (a) posi-
tional angle ¢ = 30°; (b) d = 0°;(c) & = —36°. The Reynolds number is approximately
4000 and the reduced frequency k is 0.37. (See Plate XVI.)

models (Birch and Dickinson, 2001; Ellington et al., 1996; Liu et al., 1998; Van den
Berg and Ellington, 1997). Usherwood and Ellington (2002) showed that axial flow
is the predominant factor in LEV stabilization. Specifically, they found that the LEV
is generated as soon as the wing starts to revolve, resulting in maximum lift coef-
ficients well above the corresponding 2D steady-state values. Hence the LEV is
essentially anchored on a wing’s upper surface while it flaps. It should be noted
that, although helicopter blade models have been used to help explain flapping-wing
aerodynamics, spanwise axial flows are generally considered to play a minor role
in influencing helicopter aerodynamics (De Vries, 1983; McCroskey et al., 1976).
In particular, helicopter blades operate at a substantially higher Reynolds number
and a lower AoA. The much larger AR of a blade also makes the LEV harder to
anchor.
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Figure 4.17. The LEV still exists on the wing despite manipulations of the spanwise
flow by (a) forward-pointing fences; (b) backward-pointing fences; (c) wall. The wall
prevents the LEV from extending farther along the wing before detaching into a tip
vortex. Adopted from Birch and Dickinson (2001).

Birch and Dickinson (2001) investigated the LEV features of the flapping wings
of the fruit fly at a Reynolds number of 160. They reported that, in contrast to the
hawkmoth LEV, which detaches from the wing surface at approximately 75% of the
wing length with the presence of a strong axial flow in the core, the LEV of the fruit fly
exhibits a stable vortex structure without separation during most of the translational
phases. Furthermore, there is little axial flow in the vortex core, amounting to only
2% to 5% of the averaged tip velocity (Figure 4.17). However, strong spanwise
flow is observed at the rear two-thirds of the chord, at about 40% of the wingtip
velocity. For a fruit fly, the LEV is observed to be stably attached throughout the
half-stroke without breaking up. Observing the considerable difference exhibited
between fruit fly and hawkmoth models, Birch and Dickinson (2001) hypothesized
that the attenuating effect of the downwash induced by the tip vortex and wake
vorticity limits the growth of the LEV by lowering the effective AoA and prolonging
the attachment of the LEV.

Another recent study (Srygley and Thomas, 2002) on large red admiral butterflies,
Vanessa Atlanta, also questioned the existence of axial flow even at the level of the
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Reynolds numbers comparable with that of hawkmoths. They used smoke trails to
visualize the wake about free-flying butterflies in a wind tunnel and showed that
the LEV spreads from the wing surface to the body of the animal. In contrast to
the conical LEV observed in the hawkmoth, the butterfly LEV exhibits a more
cylindrical-shaped vortex with constant diameter and at the end connects with the
tip vortex. Because the helical structure of the LEV is much weaker on a butterfly
wing, the general role of axial flow for stabilizing the LEV is again questionable.

Thomas et al. (2004) showed, by qualitative free- and tethered-flight flow visu-
alization, that dragonflies attain lift by generating high-lift LEVs. Specifically, in
normal free flight, dragonflies use counterstroking kinematics, with an LEV on the
forewing downstroke, attached flow on the forewing upstroke, and attached flow on
the hindwing throughout. On the other hand, accelerating dragonflies switch to in-
phase wing beats with highly separated downstroke flows, with a single LEV attached
across both the forewings and hindwings. Also, the flow visualizations suggested that
spanwise flow is not a dominant feature of the flow field, as it has been observed that
spanwise flows sometimes run from wingtip to centerline, or vice versa, depending
on the degree of sideslip. LEV formation always coincides with rapid increases in the
Ao0A, and the smoke visualizations clearly show the formation of LEVs whenever a
rapid increase in the AoA occurs. Furthermore, they think that the flow fields pro-
duced by dragonflies differ qualitatively from those published for mechanical models
of dragonflies, fruit flies, and hawkmoths, which preclude natural wing interactions.
However, controlled parametric experiments show that, provided the Strouhal num-
beris appropriate and the natural interaction between left-hand and right-hand wings
can occur, even a simple plunging plate can reproduce the detailed features of the
flow seen in dragonflies. They suggest that stability of the LEV is achieved by a gen-
eral mechanism whereby flapping kinematics is configured so that an LEV would be
expected to form naturally over the wing and remain attached for the duration of
the stroke.

Using 3D Navier-Stokes computations, Viieru et al. (2006) and Shyy and Liu
(2007) investigated the Reynolds number effect on the LEV for hovering flight. It is
found that the LEV structures are strongly affected by the Reynolds number (defined
in Eq. (4.7)). Figure 4.18 shows the streamline patterns at three Reynolds numbers;
Figure 4.18(a) corresponds to a hawkmoth hovering at Rer3 = 6000, Figure 4.18(b)
corresponds to a fruit fly hovering at Rer3 = 120, and Figure 4.18(c) corresponds to a
thrips hovering at Rey3 = 10. At Reys = 6000, as observed experimentally (Ellington
et al., 1996), an intense, conical LEV core is observed on the paired wings with a
substantial spanwise flow at the vortex core, breaking down at approximately three-
quarters of the span toward the tip. At Regz = 120 [Figure 4.18(b)], the vortex no
longer breaks down and is connected to the tip vortex. The spanwise flow at the vor-
tex core becomes weaker as the Reynolds number is lowered, which is in qualitative
agreement with the findings of Birch and Dickinson (2001). When the Reynolds num-
ber is reduced further to Rer3 = 10, a vortex ring connecting the LEV, the tip vortex,
and the trailing vortex is observed (Figure 4.18(c)); the flow structure shows more of a
cylindrical than a conical form. Inspecting the momentum equation, one can see that
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Figure 4.18. Numerical results of leading-edge vortical structures at different Reynolds
numbers. (See Plate XVIL.)

the pressure gradient, the centrifugal force, and the Coriolis force together are likely
to be responsible for the LEV stability.

To identify the roles of the translational and rotational motions of a flapping
wing in the formation of the LEV, computed velocity-vector distributions on an end-
view plane, at 60% of wingspan for Rer; = 6000 (hawkmoth) are compared against
those for Rer3 = 134 (fruit fly) in Figures 4.19(a) and 4.19(b). The influence of wing
rotation on the LEV is more evident at the lower Reynolds number (134) than at
the higher one (6000). On the other hand, the higher Reynolds number (6000) yields
a much more pronounced axial flow at the core of the LEV, which together with
the LEV forms a helical flow structure near the leading edge. In contrast, only very
weak axial flow is detected for the lower Reynolds number (134). Figures 4.19(c)
and 4.19(d) illustrate the pressure-gradient contours on the wing of a fruit fly model
and a hawkmoth model, respectively. Compared with hawkmoths, fruit flies, at a
Reynolds number of 100-250, cannot create as steep pressure gradient at the vortex
core; nevertheless, they seem to be able to maintain a stable LEV during most of
the downstroke and upstroke. Whereas the LEV on a hovering hawkmoth’s wing
breaks down in the middle of the downstroke, the LEV on the hovering fruit fly’s
wing stays attached during the entire downstroke, eventually breaking down during
the subsequent supination.

Birch et al. (2004) conducted flow visualization around a robotic fruit fly model
wing, and also noticed that, although the LEV remains stable at both lower (Ref; =
120) and higher (Ref3 = 1400) Reynolds numbers, the flow changes from a relatively
simple pattern at a lower Reynolds number to spiral flow at a higher Reynolds
number. Vorticity measurements taken at midstroke, in a plane located at 0.65 of
the wing length R and perpendicular to the spanwise direction, show a stronger and
larger LEV for the higher Reynolds number [Figure 4.20(d)] associated with intense
axial (spanwise) velocity within the LEV core, with magnitudes significantly larger
then those of the tip velocity (Birch et al., 2004). At a lower Reynolds number (120),
no peak in axial flow has been observed in the area of the LEV core (Figure 4.20(c)),
likely because of the stronger viscous effect.
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Figure 4.19. Comparison of near-field flow fields between a fruit fly and a hawkmoth.
Wing-body computational model of (a) a hawkmoth (Res; = 6000, Uyes = 5.05 m/s,
¢n = 1.83 cm), and (b) a fruit fly model (Repz = 134, Ut = 2.54 m/s, ¢,, = 0.78
mm), with the LEVs visualized by instantaneous streamlines and the corresponding
velocity vectors in a plane cutting through the left wing at 60% of the wing length.
Pressure-gradient contours on the wing surface for (c) a fruit fly, and (d) a hawkmoth.
The pressure gradient indicates the direction of the spanwise flow. (See Plate XVIII.)

The LEV of a flapping wing plays a role similar to that of a fixed delta wing.
The delta wing owes much of the lift that it is able to generate to the fact that the
vortex flow initiates at the leading edge of the wing and rolls into a large vortex over
the leeward side, containing a substantial axial velocity component. This high-flow
velocity in the core of the vortex is a region of low pressure, which generates a suction,
i.e., lift. For a delta wing placed at high AoAs, vortex breakdown occurs, causing the
destruction of the tight and coherent vortex. The diameter of the core increases,
and the axial velocity component is no longer unidirectional. With the loss of axial
velocity the pressure increases, and consequently the wing loses lift. The literature
on the subject is immense, and for a more general presentation of the various aspects
of vortex breakdown, we refer the reader to several review articles (Escudier, 1988;
Hall, 1972; Leibovich, 1978). For a fixed wing, an important trend is that, at a fixed
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Figure 4.20. Vortical flow structures for pitch-up airfoils: (a), and (b) computational
results for flow over a 2D elliptic airfoil undergoing water-treading hovering at two
Reynolds numbers. The airfoil position corresponds to the midstroke, where the pitch
angle reaches the maximum value. (c), (d) Experimental vorticity field side views for
a fruit fly modeled wing at 0.65R at midstroke. The experimental information in (c)
and (d) is reprinted from Birch et al. (2004). (See Plate XIX.)

AoA, if the swirl is strengthened, then vortex breakdown occurs at lower Reynolds
numbers. On the other hand, a weaker swirling flow tends to break down at a higher
Reynolds number. Because the fruit fly exhibits a weaker LEV, from this viewpoint,
it tends to maintain the vortex stracture better than a hawkmoth, which creates a
stronger LEV. Of course, the link regarding vortex breakdown between a fixed and
a flapping wing, if any, is not established.

It is noted that 2D flow simulations can also yield features similar to those just
discussed. For example, for an elliptic airfoil following the water-treading hovering
mode (illustrated in Figure 4.3(a)), noticeable effects of the Reynolds number are
observed. Consider the case in which, at the midstroke, the airfoil reaches the maxi-
mum pitch-up angle and translational velocity. At a lower Reynolds number, Rey, =
100, the vortical flow in the leading-edge region is weaker and less capable of mak-
ing the turn to stay close to the solid surface (Figure 4.20(a)) than that of a higher
Reynolds number, Rey, = 1700, case (as seen in Figure 4.20(b)).

It seems that the leading-edge vortical flow structures are influenced by the inter-
play between the swirl strength and the Reynolds number, as well as the flapping
kinematics such as rotational rates. Further investigations are needed to better under-
stand the role of the wing shape in light of the unsteady, large scale vortical flow
structures associated with flapping wings.

4.4.2 Rapid Pitch-Up

The LEV-based lift-enhancement mechanism seems to be a main feature
during the translational motion of the stroke. On the other hand, the flapping wings
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Figure 4.21. Experimental and numerical lift coefficients for a fruit fly-modeled wing,
showing the two lift peaks at the end of the upstroke and the beginning of the down-
stroke. The first lift peak is associated with the rapid vorticity increase in which the
wing performs advanced rotation at the end of the stroke. The Reynolds number is
136. Adopted from Sun and Tang (2002a).

also experience rapid wing rotation at the ends of the downstroke and upstroke,
which can enhance the lift force in flying insects.

Kramer (1932) first demonstrated that a wing can experience lift coefficients
above the steady-stall value when the wing is rotating from low to high AoAs, which
is termed the Kramer effect. The unsteady aerodynamic characteristics associated
with the time-dependent AoA, including hysteresis, were illustrated in Figure 4.8.
Dickinson et al. (1999) used their Robofly (see Figure 4.14) along with varied rota-
tional patterns, illustrated in Figure 4.4, to investigate the interplay between kine-
matics and lift generation. They identified two aerodynamic force peaks at the end
and the beginning of each stroke (pronation and supination). The first force peak can
be explained based on the rotational circulation. The resulting force enhancement
is influenced by the timing of wing rotation while translating. They found that an
advanced rotation produces a mean lift coefficient of C; = 1.74, almost 1.7 times
higher than that of a delayed rotation (C; = 1.01); a symmetrical rotation can attain
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Figure 4.22. Vorticity plot at 75% wingspan. At the beginning of the upstroke the wing
accelerates with little changes in the AoA [from a = 46° at (a) to a = 40° at (c)].
The fast acceleration increases the rate of change of fluid momentum, and an increase
in lift is observed. From (c) to (e) the wing translates with constant speed at o ~ 40°.
The dynamic-stall vortex does not shed, and a large lift can be maintained. From (e)
to (f) the wing pitches-up rapidly while translating with constant speed, resulting in
a sharp increase of lift and drag (first peak in Figure 4.21). From (g) to (h) the wing
decelerates and the lift is decreasing quickly. The Reynolds number is 136. Adopted
from Sun and Tang (2002a).

a value of C; = 1.67. These peaks were confirmed by the numerical simulations of
Sun and Tang (2002a) and Ramamurti and Sandberg (2001). In addition, Sun and
Tang (2002b) further investigated three mechanisms responsible for lift enhancement
by means of unsteady aerodynamics, namely, (i) rapid acceleration of the wing at the
beginning of a stroke, (ii) delayed stall, and (iii) fast pitch-up rotation of the wing
near the end of the stroke.

As shown in Figure 4.21, the first peak, termed “rotational force” by Sane and
Dickinson (2002), appears near the end of each stroke. In advanced rotation, the wing
flips before reversing its translational direction, as illustrated in Figure 4.22, and the
leading edge rotates backward relative to the translation. From their computational
analysis, Sun and Tang (2002a) suggest that the first peak is due to a rapid vorticity
increase when the wing experiences fast pitch-up rotation. The pitch-up rotation
and the associated vorticity increase are plotted in Figures 4.22(f) and 4.22(g). Sane
and Dickinson (2002) attributed this first force peak to the additional circulation
generated to reestablish the Kutta condition during rotation. Overall, the findings
reported by Sun and Tang (2002a) and Sane and Dickinson (2002) are in agreement.
The second peak, termed wake capture, is related to the wing—wake interaction and
is discussed next. Together, these two peaks contribute to lift enhancement.

Because both pitch-up and wake capture are strongly influenced by flapping kine-
matics, more discussion is offered later to help elucidate the parametric variations of
these factors.
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Figure 4.23. Momentum transfer in a wake-capture interaction: (a) wing is steadily
translating; (b) trailing-edge vortex is generated as the wing rotates around a spanwise
axis; (c) LEVs generated when the wing is rotating at a very high flapping speed; (d)
wing reverses flapping direction and encounters the induced velocity field and a fluid
momentum is transferred to the wing that generates a peak in the aerodynamic force.

4.4.3 Wake Capture

As discussed by Dickinson et al. (1999), the wing-wake interaction can sig-
nificantly contribute to lift production in hovering insects. In Figure 4.21, the second
peak is generated at the beginning of each stroke of hovering flight when the wings
reverse the direction of moving while rotating about the spanwise direction. The
physical mechanism, termed wake capture, produces aerodynamic lift by a transfer
of fluid momentum to the wing at the beginning of each half-stroke. A wing meets the
wake created during the previous stroke after reversing its direction, thus increas-
ing the effective flow speed surrouding the airfoil, which generates the second force
peak. The schematic of the wake-capture mechanism is illustrated in Figure 4.23.

The effectiveness of wake capture is a function of wing kinematics and flow struc-
ture. It should be noted that this second force peak is apparently distinct from rota-
tional lift because its timing is independent of the phase of wing rotation. Dickinson
et al. (1999) showed that the second peak persists even by halting the wing after it
rotates, indicating that the wake produced by the wing motion in the previous half-
stroke serves as an energy source for lift production. This is illustrated in Figures 4.24,
4.22(a), and 4.22(b).

The wake-capture mechanism during hovering flight was also investigated by
Viieru et al. (2006) and Tang et al. (2007). They investigated flows over a hovering
2D elliptic airfoil with 15% thickness by using two kinematic patterns, one termed
the water-treading mode (Figure 4.3(a)) and the other the normal hovering mode
(Figure 4.3(b)). Both modes are characterized by the same sinusoidal variation with
a stroke amplitude of 4, = 1.4c (Eq. (4.4)) and a pitch angle amplitude of o, = 45°
(Eq. (4.5)); the only difference is the initial pitch angle. Given the stroke amplitude,
the reduced frequency, defined by Eq. (4.12),1is k = 0.357 and the Reynolds number
is Rep, = 100.

The sinusoidal motion along a horizontal stroke plane is similar to that given
by Wang et al. (2004), who conducted a 2D simulation of a hovering elliptic airfoil
with the stroke amplitude /, between 1.4¢ and 2.4c, leading to a reduced frequency
(Eq. (4.12)) k between 0.36 and 0.21. The Reynolds number considered is between
75 and 115.



4.4 Lift-Enhancement Mechanisms in Flapping Wings 135

Positive lift peak

lift after airfoil stops
z
3
advanced . 5
; 1-0.4
: 10.8
104 Z
[0
symmetrical 10 S
: . 4-0.4
] Negative lift peak
! after airfoil stops ] 0.8
j 104 £
(]
dalayed 1o s
. down . up i stop 04
(®) 0 cycles 1
0.20
015 7
To]
=
010 =
IS}
o
0.05 ©
>
(b) 0
advanced symmetric delayed —
8 .cm

Figure 4.24. Evidence of wake-capture mechanism and its effect on force generation
for a robotic fruit fly-modeled wing at Rer; = 136: (a) Lift and drag forces for a full
flapping cycle followed by a complete stop at the end of the upstroke for different
phases of wing rotation; (b) DPIV-generated flow images showing the flow around
the midchord of the wing. The fluid velocity orientation is indicated by the arrows and
the magnitude by the arrows’ length and background colors. The rotational circulation
generated and shed from the previous stroke transfers momentum to the wing even
after a complete stop. The flow patterns are similar between the different wing-rotation
phases; however, the fluid velocities are greater when the rotation is advanced. The
strong incoming flow for advanced rotation combined with the wing position generates
a positive lift peak after the wing is stopped. For symmetric rotation, there is no lift
generated because the flow is perpendicular to the wing, but a large peak in the drag
force is observed. In the case of delayed rotation, the incoming flow and the wing
position generate a negative lift peak. Adopted from Dickinson et al. (1999).

The computational results of Wang et al. (2004) and Tang et al. (2007) both
identify a secondary lift peak after the stroke reversal for the normal-hovering mode
(Figure 4.25). However, for the water-treading mode, the results of Tang et al. (2007)
show a continuous increase in lift as the airfoil pitch angle increases to its maximum
value without a noticeable second peak. The lift generations for both normal and
water-treading hovering modes are discussed in more detail in Subsection 4.5.1.

The interpretation of wake-capture force generation has been questioned recently
based on the viewpoint that the rotation-independent lift peak is due to a reaction
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Figure 4.25. Wake-capture mechanism for an elliptic airfoil. The primary lift peaks are
mostly generated by dynamic stall, whereas the secondary peaks for normal hovering
imply a wake-capture mechanism. For both cases, the Reynolds number is 100, the
reduced frequency is 0.357, the stroke amplitude is 1.4¢, and the pitch angle amplitude
is 45°.

of accelerating an added mass of fluid (Sunada and Ellington, 2000). In general,
the inertia of the flapping wing is increased by the mass of the accelerated fluid,
termed added mass (Katz and Plotkin, 2002), which can play a significant role in the
aerodynamics of insect flight (Osborne, 1951). The evaluation of the added mass,
and thus an estimation of inertial forces, is, however, not easy. Although the mass of
a wing itself may be tiny, the mass of the accelerated fluid need not be (Ellington,
1984a; Lehmann, 2004).

4.4.4 Clap-and-Fling Mechanism

One of the most complex kinematic maneuvers in flying animals is the wing—
wing interaction of the left and right wings during the dorsal stroke reversal, termed
the clap-and-fling mechanism. Weis-Fogh (1973), when studying the flight of the tiny
wasp Encarsia formosa, found that, at the end of upstroke and at the beginning
of the downstroke, the two wings clapped together (clap) and then peeled apart
(fling). This mechanism has been further observed by other researchers (Ellington,
1984c; Ennos, 1989; Wootton and Newman, 1979). A modified kinematics termed
“clap-and-peel” was found in tethered flying Drosophila (Gotz, 1987) and larger
insects such as butterflies (Brodsky, 1994), bush crickets, mantises (Brackenbury,
1990), and locusts (Cooter and Baker, 1977). It seems that the clap-and-fling is
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not used continuously during flight, and more often is observed in insects while
carrying loads during a maximum flying performance (Marden, 1987) or performing
power-demanding flight turns (Cooter and Baker, 1977). Marden’s experiments on
various insect species reported that insects with the clap-and-fling wing beat produce
about 25% more lift per unit flight muscle (79.2 N kg~! mean value) than insects
using conventional wing kinematics (such as flies, bugs, mantids, dragonflies, bees,
wasps, beetles, sphinx moths; 59.4 N kg~! mean value).

The clap-and-fling is a close apposition of two wings at the dorsal stroke reversal
preceding pronation that is thought to strengthen the circulation during the down-
stroke and hence to generate a considerably large lift on the wings. The fling phase
preceding the downstroke is thought to enhance circulation that is due to fluid inhala-
tion in the cleft formed by the moving wings, which cause a strong vortex generation
at the leading edge. A schematic, shown in Figure 4.26, demonstrates this mechanism.
Lighthill (Lighthill, 1973) has shown that a circulation proportional to the angular
velocity of the fling was generated. Maxworthy (1979), by a flow-visualization exper-
iment on a pair of wings, reported that, during the fling process, an LEV is generated
on each wing and its circulation is substantially larger than that calculated by Lighthill
(1973).

Lehmann et al. (2005) used a dynamically scaled mechanical model of the fruit fly,
Drosophila melanogaster, to investigate force enhancement that is due to contralat-
eral wing interactions during stroke reversal (clap-and-fling). Their results suggest
that lift enhancement during clap-and-fling requires an angular separation between
the two wings of no more than 10°-12°. Within the limitations of the robotic appara-
tus, the clap-and-fling augmented total lift production by up to 17%, but the actual
performance depended strongly on stroke kinematics. They measured two transient
peaks of both lift and drag enhancement during the fling phase: a prominent peak
during the initial phase of the fling motion, which accounts for most of the ben-
efit in lift production, and a smaller peak of force enhancement at the end fling
when the wings started to move apart. Their investigation indicates that the effect of
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Figure 4.27. Experiment of clap-and-fling by two wings (M-T) using clap-and-fling
wing-beat pattern in the robotic wing. Vorticity is plotted according to the pseudo-
color code and arrows indicate the magnitude of fluid velocity, with the longer arrows
signifying larger velocities, from Lehmann et al. (2005) with permission. (See Plate
XX.)

clap-and-fling is not restricted to the dorsal part of the stroke cycle but extends to
the beginning of upstroke, suggesting that the presence of the image wing distorts
the gross wake structure throughout the stroke cycle (Figure 4.27).

4.4.5 Wing Structural Flexibility

As discussed earlier in Chapter 3, wing flexibility improves the fixed-wing
MAV performance at a high AoA and allows a better adaptation to the unsteady
flight environment by use of passive camber control. The study of a flexible flap-
ping wing is rather complicated because of the kinematic variables, in addition to
geometrical and flow variables. Heathcote et al. (2004) experimentally investigated
the flexibility effect on thrust generation by a plunging airfoil in hovering condi-
tions (zero free-stream velocity). The airfoil used has a rigid part manufactured from
solid aluminum; the flexible part is a steel plate with uniform thickness (see Fig-
ure 4.28(c)). The stiffness of the airfoil is controlled by varying plate thicknesses,
including 0.05 mm (designated as “very flexible”), 0.1 mm (“flexible”), and 0.4 mm
(“rigid”). The airfoil plunging motion follows a sinusoidal law with an amplitude
of h, normalized by the chord. The Reynolds number is defined as Re = fc?/v and
varies between 7 x 10° and 2.5 x 10*. Here, fis the plunging frequency, c is the airfoil
chord, and v is the fluid kinematic viscosity. They observed that the wing flexibility
has an important effect on the thrust generation. For a given plunging amplitude,
the very flexible airfoil generates the greatest thrust at low Reynolds numbers and
then decreases rapidly as the Reynolds number increases. For Reynolds numbers
larger than 10%, the flexible airfoil generated the largest thrust [Figure 4.28 (a)].
The effect of plunging amplitude on thrust generation for a fixed Reynolds num-
ber is illustrated in Figure 4.28(b). Again, the flexible airfoil generated the largest
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Figure 4.28. Wing-flexibility effect on thrust generation for an airfoil plunging in zero
free-stream velocity: (a) thrust coefficient as a function of the Reynolds number for
a nondimensional plunging amplitude /,/c = 0.194; (b) variation of thrust coefficient
with the plunging amplitude for a Reynolds number of 1.62 x 10*; (c) airfoil cross
section. Adopted from Heathcote et al. (2004).

thrust, whereas the thrust production of the very flexible airfoil decreased with the
plunging amplitude increase. Heathcote et al. (2004) have not found any regime
in which the rigid airfoil performed best and suggested that there is an opti-
mum airfoil stiffness that maximizes the thrust for a given plunge amplitude and
frequency.

The numerical investigation of a flexible flapping wing needs to solve coupled
Navier-Stokes fluid and structural dynamics models with moving boundaries. So
far, most of the numerical work adopts simple aerodynamics models. For exam-
ple, Singh and Chopra (2006) performed numerical aeroelastic analysis for hover-
capable, biomimetic flapping wings. The wing dynamics is described with a finite-
element-based structural solver, and the unsteady aerodynamic load is based on the
assumption that the aerodynamic forces acting on a flapping—pitching wing can be
broken down into a number of segments that are accounted for separately and then
added to obtain the total force.

Barut et al. (2006) studied the structural behavior of a dragonfly wing, Aeschna
juncea, under controlled rigid-body motion. Their analysis invokes the corotational
form of the updated Lagrangian formulation and utilized the flat triangular shell
element. The aerodynamic force is assumed to be known a priori. The sequence
of motion and deformation with respect to the inertial frame at various time steps
is shown in Figure 4.29, and the deformed wing configurations with respect to the
body-fixed coordinate are elucidated in Figure 4.30.
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Figure 4.29. Typical deformed configurations of a highly flexible wing as observed
from the inertial frame during (a) the first downstroke and (b) upstroke. Adopted
from Barut et al. (2000).

Ho et al. (2003) reviewed flapping flight and the application of flow-control tech-
nologies. They also developed a coupling method, combining fluid dynamics with
the structural dynamics models, and analyzed the aeroelasticity of flapping wings
with an attempt to optimize the stiffness distribution for maximum lift and thrust.
In their study, two types of wings were tested. One wing had a rigid leading edge,
and the other, made of a titanium alloy, had a flexible leading edge. As shown in Fig-
ure 4.31, the spanwise stiffness along the leading edge plays an important part in lift
production for flapping flight. With wings of the same size, a rigid leading edge pro-
duces larger lift coefficients compared with those in which flexible leading edges are
used.

From the results of Ho et al. (2003), it seems clear that the stiffness distribution
plays an important role in thrust production. They tested two wings with identical
configurations. One wing had a paper membrane and the other a Mylar membrane.
The paper-membrane wing, which is less flexible than the Mylar wing, produced
significantly less thrust than the more flexible Mylar wing (Figure 4.32).

Tests based on different wing designs demonstrate that a stiffer membrane wing
does not produce thrust, whereas a more flexible membrane wing does. They suggest
that a wing with a rigid outboard frame and a flexible inboard material are desirable
for producing both lift and thrust.

The preceding discussion is based on the consideration of isotropic materials, i.e.,
the materials that exhibit uniform properties along all directions. In reality, biological

t-1T/2

(a) (b)

Figure 4.30. Typical deformed configurations of the wing as observed from the body-
fixed frame: (a) downstroke, (b) upstroke. Adopted from Barut et al. (2006).
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Figure 4.31. Stiffness distribution effect on lift performance. Here C,, is the lift coeffi-
cient, J is the advance ratio, U is the forward-flight velocity, ® is the stroke amplitude,
fis the flapping frequency, and R is the wing length. Adopted from Ho et al. (2003).

wings are anisotropic in their mechanical properties. Combes and Daniel (2003)
investigated wing flexibility by measuring the flexural stiffness EI (where Eis Young’s
modulus and 7 is the moment of inertia) of wings in both the spanwise and chordwise
directions in 16 insect species from six orders. The forewings from insects used in
the study are shown in Figure 4.33. Flexural stiffness is a composite measure of the
overall bending stiffness of a wing; it is the product of the material stiffness £ and
the second moment of the wing /. Their measurements have shown that the spanwise
stiffness scales with the cube of the wingspan, whereas the chordwise flexural stiffness
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Figure 4.32. Stiffness effect on thrust production. Here Cr is the thrust coefficient and
J is the advance ratio as defined in Figure 4.31. Adopted from Ho et al. (2003).
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Figure 4.33. Wing structures for various insects. Veins are drawn at actual thicknesses;

wings are not shown to scale. Genus and species are shown under each wing. Adopted
from Combes and Daniel (2003).

scales with the square of the chord length (see Figure 4.34). This anisotropy is due
to a common feature of insect wings: leading-edge veins.

In a recent effort, Raney and Slominski (2004) investigated mechanization and
control concepts with applications to a resonant flapping MAV, as many natural
flyers generate lift by using resonant excitation of their aeroelastic tailored struc-
tures. Their structural dynamic model of flapping-wing structures for MAVs requires
the judicious combination of several structural elements. The flapping-wing struc-
ture resembling the wing of a hummingbird, developed by Raney and Slominski, is
shown in Figure 4.35 and consists of the following structural elements: (i) composite
beams undergoing moderate deflection; (ii) composite plates undergoing deflection;
(iii) anisotropic flexible membranes undergoing large deformation; and (iv) wire-type
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Figure 4.34. Flexural stiffness versus span/chord length in 16 insect species. Axes are
on alogarithmic scale: (a) spanwise flexural stiffness E7 versus wingspan; (b) chordwise
flexural stiffness EI versus chord length. Adopted from Combes and Daniel (2003).

elements that connect the end of the beam at the trailing edge to preserve the shape
of the wing. In addition, to study a means of changing the flight modes and generating
maneuvers, Raney and Slominski investigated models that include the inertia loads
coming from the rigid-body dynamics of the MAV as well as the kinematic input pro-
vided at the root of the flapping wing at the hinge point. They used a vibratory system
that follows the basic arrangement of the skeletal and muscular systems that drive
a typical bird wing. By supplying appropriate amplitude, phasing, and time-varying

Figure 4.35. Biologically inspired structure for flexible flapping wings: (a) extended
hummingbird wing; (b) schematic of the artificial wing structure including beam, plates,
membrane, and wire elements. Adopted from Raney and Slominski (2004).
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Figure 4.36. Comparison of the wingtip trajectories produced by the vibratory flapping
system with those exhibited by hummingbirds in various flight modes. Adopted from
Raney and Slominski (2004). (See Plate XXI.)

forces similar to the inputs of the bird muscles, they obtained wingtip trajectories
similar to those observed in hummingbirds (see Figure 4.36). They observed that the
transitions between wing-beat patterns are fast, being accomplished in about four
flapping cycles. These results show that flight-mode changes required by an agile
flapping-wing MAV can be made by a biologically inspired mechanism that provides
sufficient control over the vibratory wingtip trajectories.

4.5 Effects of Reynolds Number, Reduced Frequency, and Kinematics on
Hovering Aerodynamics

4.5.1 Hovering Kinematics

In this section, we present the interplay between hovering kinematics and
fluid physics to gain further insight into flapping-wing aerodynamics. Specifically, a
15% thickness elliptic airfoil undergoing two different hovering modes is studied.
The normal hovering mode, in which the wing moves in a horizontal plane, is a
mode popularly used by insects and small birds in hovering. Wang et al. (2004) and
Tang et al. (2007) used single-harmonic kinematics for both plunging and pitching
motions. The airfoil rotation is symmetric, i.e., the center of rotation is the center of
the elliptic airfoil. The water-treading mode (Freymuth, 1990) is also considered. For
both hovering modes, the flapping motion and the rotational motion are described
by Eqgs. (4.13) and (4.14), and a schematic of the airfoil movement is presented in
Figures 4.3(a) and 4.3(b).
First, experimental measurements and numerical predictions of the normal hov-
ering mode results for an initial AoA, ap = 90°, a pitch angle amplitude, o, = 45°,
a nondimensional stroke amplitude, h,/c = 1.4, a phase lag, & = 90°, a reduced
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Table 4.2. Kinematic parameters for water-treading and normal hovering modes (the
Reynolds number for both cases is 100)

Initial Pitch Stroke Reduced Phase
Hovering mode AoA oy  amplitude a, amplitude h,/c frequency k difference
Water treading 0° 45° 1.4 1/2.8 —m/2
Normal 90° 450 14 1/28 /2

frequency, k = 0.357 (as defined in Eq. (4.12)), and a Reynolds number of 75 are
compared with similar computational and experimental results. Figure 4.37 shows the
present computational results and those of Wang et al., together with experimental
results of Birch and Dickinson (Wang et al., 2004). The current results show good
overall agreement between the experiments and the computations.

Next, we compare the aerodynamic forces generated by the airfoil undergoing
the two hovering modes. To make the comparison possible, consistent kinematic
parameters are selected, as presented in Table 4.2. As defined earlier (Section 4.1),
the Reynolds number is based on the maximum plunging velocity and the airfoil’s
chord and is calculated to be 100.

Figure 4.38 shows the lift and drag coefficients during one complete cycle for
the water-treading and normal hovering modes. To illustrate the unsteady effects,
the quasi-steady value of the normal hovering mode (according to Eq. (16) in Wang
et al. (2004)) is also included. Clearly, even if one introduces correction factors to
adjust the quantitative values, the existence of multiple aerodynamic peaks and their
phase angles cannot be captured by the quasi-steady model.

In the case of the water-treading hovering mode, for the first half of the forward
stroke, the airfoil accelerates and pitches-up. During this interval, the lift increases
constantly (Figure 4.38(a), t1-t3), and the unsteady dynamics results in delayed flow
separation even at instantaneously high AoAs, as indicated by the vorticity contours

Time/T

Figure 4.37. Numerical and experimental results of the flapping motion of a fruit fly:
red, experimental results of Dickinson and Birch (Wang et al., 2004); Blue, numerical
solution of Wang et al. (2004); green, numerical solution of Tang et al. (2007). h,/c =
1.4, 0, = 45°, Rep, = 75,k = 0.357. (See Plate XXII.)
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Figure 4.38. One cycle force history for two hovering modes and quasi-steady value
of normal hovering mode. h,/c = 1.4, o, = 45°, k = 0.357, and Rey, = 100. (a) Lift
coefficient, (b) drag coefficient. The selected normalized time instants are t1 = 0.08,
t2 = 0.17,t3 = 0.25,t4 = 0.31,t5 = 0.45,t6 = 0.60,t7 = 0.80, t8 = 0.94. (See Plate
XXIIL)

plotted in Figure 4.39, t1-t3. The maximum lift is reached close to the middle of the
half-stroke around the instant when the pitch angle reaches the highest value (Fig-
ure 4.39, t3). However, as indicated in Figure 4.38, their correspondence is not exact.
This confirms the well-known point that flapping aerodynamics cannot be correctly
accounted for by steady-state aerodynamics theory. Beyond this stage, the airfoil
starts to decelerate and pitches-down. The flow separates and a large recirculation
bubble forms on the upper side of the airfoil (Figure 4.39, t4 and t5), leading to a
decrease in lift to the minimum value (Figure 4.38(a), at time t5). The same pattern
is repeated for the backward stroke.
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water treading  normal hovering water treading  normal hovering

Figure 4.39. Vorticity contours for two hovering modes. h,/c = 14, o, = 45°, k =
0.357,and Rep, = 100. Red, counterclockwise vortices; blue, clockwise vortices. The flow
snapshots (t1 to t8) correspond to the time instants defined in Figure 4.38. Adopted
from Tang et al. (2007). (See Plate XXIV.)

For the normal hovering mode, at the beginning of the forward stroke, the airfoil
accelerates and pitches-down. The rotation of the airfoil speeds up the flow around
the leading and trailing edges, creating a suction zone on the upper side of the airfoil,
and the high-pressure stagnation area on the lower side is increased because of the
fluid driven from the surroundings by the previously formed vortex (Figure 4.39, t1).
This combination of low- and high-pressure areas leads to an increase in lift at the
beginning of the stroke (Figure 4.38(a), at time t1). As the airfoil rotates downward
more and accelerates, the fluid is accelerated toward the trailing edge and the high-
pressure stagnation area decreases (Figure 4.39, t2) and so does the lift, reaching a
local minimum at time/T ~ 0.17 for the forward stroke and 0.57 for the backward
stroke, as shown in Figure 4.38(a). Around the middle of each half-stroke, the airfoil
travels at almost constant pitch angle. A recirculation bubble attached to the airfoil
forms on the upper surface (Figure 4.39, t3, t4, t5, around time/7T ~ 0.3 and 0.8)
and helps increase the lift and drag to their maximum values during one complete
stroke (Figures 4.38(a) and 4.38(b), at t4 and t7). After the maximum pitch angle and
translation velocity are reached (time/7'= 0.25 and 0.75) during one half-stroke, the
airfoil decelerates and pitches-up, leading to flow separation on the upper side of the
airfoil (Figure 4.39, t5 and t8). The detachment of the large vortical structure from
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the upper airfoil surface combined with rapid deceleration decreases the cir-
culation, and therefore the lift coefficient drops to its minimum value (Figure 4.38(a),
at times t5 and t8).

The force coefficient history for water-treading and normal hovering modes indi-
cates differences in the lift-generation mechanism. For both hovering modes, the lift
force reaches its maximum value when the airfoil moves near the maximum velocity
and moderate AoA. Similar lift peaks (Figure 4.38(a), at times t4 and t7) and flow
structures (Figure 4.39, t4 and t7) are observed in this time interval (midstroke),
suggesting the same lift-generation mechanism. The vorticity contours (Figure 4.39)
indicate that the delayed-stall mechanism is mainly responsible for generating most
of the lift force.

Although the delayed stall is the main lift-generation mechanism in the case of
the water-treading hovering mode, for the normal hovering mode, the local lift peaks
at the beginning of the half-strokes show that a wake-capture mechanism is also a
contributing factor (it gives about a 0.2 increase to the quasi-steady value of the
lift coefficient). The presence of the twin-peak characteristics of the lift and drag
time histories in the normal hovering mode again confirms that the fluid physics is
distinctly time dependent and cannot be adequately explained by the steady-state
theory. Furthermore, for the normal hovering mode, the drag pattern does not mimic
that of the lift, as evidenced by the relative magnitudes of the two peaks in lift and
drag histories. In contrast, the lift and drag patterns in the water-treading mode
show much stronger correspondence, further suggesting the role played by the wake-
capture mechanism in the normal hovering mode. Hence, depending on the detailed
kinematics, the lift-generation mechanisms at Rey, = 100 exhibit different physical
mechanisms.

The average lift coefficient for both cases is computed as the summation of the
lift coefficient over the last three periods divided by the total time. For the water-
treading hovering mode, an average lift coefficient of 0.77 is obtained; for the normal
hovering mode, the average lift coefficient is 0.56, suggesting that water-treading
mode performs better at Rer, = 100 for the given kinematics parameters. However,
other aspects, such as the Reynolds number, detailed geometry as well as the kine-
matic parameters, need to be considered before comprehensive comparsions of the
alternative flapping dynamics can be conducted.

4.5.2 Scaling Effect on Force Generation for Hovering Airfoils

As discussed in Chapter 1 and the first section of this chapter, the natural
flyers operate in regimes where both inertial and viscous forces are important. In the
following subsections, we present selected case studies to highlight the scaling effect
on aerodynamic force-production mechanisms.

2D Water-Treading Hovering Mode To investigate the Reynolds number
effect on aerodynamic forces and the flow structure, we computed the hovering
aerodynamics of the water-treading mode at Rer, = 100 and Rey, = 1700. Based on
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Table 4.3. Parameters for the water-treading hovering mode used for Reynolds number effect
study

Initial ~ Pitch angle  Stroke Reduced Phase Reynolds

AoA amplitude amplitude  frequency  difference = number
Hovering mode o Q ha/c k ® Rey,
Water treading 0° 45° 1.4 1/2.8 —m/2 100
Water treading 0° 45° 1.4 1/2.8 —m/2 1700

the same kinematics of the Rey, = 100 case, the aerodynamics of the water-treading
mode is assessed. The kinematics and flow parameters for these cases are summarized
in Table 4.3, and the airfoil motion schematic is presented in Figure 4.3.

The lift coefficients for water-treading hovering mode at Reynolds numbers of 100
and 1700 are plotted in Figure 4.40. The lift coefficient peaks are noticeably higher for
the Reynolds number of 1700 than that for the Reynolds number of 100. Although the
force patterns between the two Reynolds numbers are similar, the higher Reynolds
number case exhibits larger differences in the lift peak values between forward and
backward strokes.

The pressure distributions on the airfoil surface, plotted in Figure 4.41, show that,
near the maximum lift peaks, the high-pressure stagnation area on the lower side of
the airfoil is similar in both shape and magnitude for the two Reynolds number
studied. However, on the upper side of the airfoil, the mild variation of the pressure
gradient for the low Reynolds number case [Figure 4.41(a), times t1 and t3] suggests
that the flow is attached, whereas for the high Reynolds number [Figure 4.41(b),
times t1 and t3] the low-pressure area near the leading edge indicates a recirculation
zone corresponding to the LEV [Figure 4.42(b), and 4.42(d) at times t1 and t3]. This
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Figure 4.40. Lift coefficient for the water-treading mode. h,/c = 1.4, o, = 45°, k =
0.357, and Reynolds numbers of 100 and 1700. The selected normalized time instants
are tl = 6.25,12 = 648,13 = 6.77,t4 = 6.97. (See Plate XXV.)
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Figure 4.41. Pressure distribution on the airfoil surface for the water-treading mode.
hy/c = 1.4, a, = 45°, k = 1/2.8. (a) Reynolds number = 100, (b) Reynolds number
= 1700. The flow figures (t1, t3) correspond to the time instants defined in Figure 4.40.

low-pressure area is responsible for most of the high lift peak values seen in the case
of a Reynolds number of 1700.

At a Reynolds number of 1700, because of the smaller dissipation rate, the vor-
tices sustain the effects of the asymmetric starting condition (the wing motion starts
moving from one end). This phenomenon indicates the important role of viscous
stress in the low Reynolds number regime.

In summary, because of the asymmetric start condition, the aerodynamic force in
one stroke is a little smaller than the other stroke in the same cycle. The difference
between forward and backward strokes becomes more pronounced as the Reynolds
number increases from 100 to 1700. Nevertheless, there is no distinctive, qualitative
difference in the flow structure between the two strokes of each cycle.

2D Normal Flapping Mode For the aforementioned elliptical airfoil follow-
ing the normal hovering mode, three different Reynolds numbers (75, 300, and 500)
were studied by Tang et al. (2007). In the following discussion, the motion param-
eters are same as the cases in Table 4.2 except that the flapping amplitude £, and
the reduced frequency k are changed to match the designated Reynolds number. In
Figure 4.43, the lift coefficients at the three Reynolds numbers are shown. It is clear
that the aerodynamic forces during the forward and backward strokes are symmetric
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Figure 4.42. Vorticity contours for the water-treading mode. h,/c = 1.4, 0, = 45°,k =
0.357, Red, counterclockwise vortices; blue, clockwise vortices. (a), (¢) Reynolds num-
ber = 100; (b), (d) Reynolds number = 1700. The flow figures (t1-t4) correspond to
the time instants defined in Figure 4.40. (See Plate XXV1I.)

at Rer, = 75;at Rey, = 300 and 500 the lift coefficient variations become asymmetric
between the forward and backward strokes of each cycle. It should be emphasized
that the aerodynamic characteristics regarding the Reynolds number effect are highly
dependent on the kinematic parameters. For example, the qualitative force patterns
in the normal hovering mode are quite different from those in the water-treading
mode. For the water-treading hovering mode, although quantitative differences can
be observed as the Reynolds number increases from 100 to 1700, qualitatively, as
shown in Figure 4.40, similar force patterns are observed. For the normal hovering
mode, the aerodynamic force patterns between Rey, = 75 and 500 are qualitatively
different, suggesting that different physical mechanisms exist. In Figure 4.44, the
flow structures of the corresponding positions between the forward and backward
strokes at Rey, = 300 are plotted. The vortex pair below the airfoil in Figure 4.44(a)
is not found in Figure 4.44(c) (corresponding to the backward stroke at the same
position and AoA). Figure 4.45 shows that, under the normal mode, there is only
one pair of vortices around the airfoil at Rer, = 75 whereas there are two pairs of
vortices interacting at Rey, = 500. To quantify this asymmetric phenomenon caused
by the history effect, the difference of the average lift and drag coefficients of the
two forward and backward strokes in each cycle, for both normal and water-treading
modes, are listed in Table 4.4.

Table 4.4 suggests that, for the normal hovering mode, the differences in lift and
drag between forward and backward strokes increase with the Reynolds number.

4.6  Aerodynamics of a Hovering Hawkmoth

The 3D numerical simulations of flapping wings have become a common tool
in investigating flapping-wing aerodynamics. Isogai et al. (2004) studied the hovering
flight of the dragonfly, Anax parthenope julius, by using a 3D Navier—Stokes solver.
They found that varying the phase angle between the flapping of the forewing and
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Table 4.4. Differences in average lift and drag coefficients between
forward and backward strokes for the normal hovering mode at different
Reynolds numbers with a flapping amplitude of h,/c = 0.25

Aerodynamic

coefficient Rer, =75 Rep, = 300 Ref, = 500
AC,, 0.002 0.325 0.330

ACp 0.045 0.105 0.125

hindwing has little effect on the time-averaged force production. Liu and coworkers
(Aono et al., 2006; Liu, 2005) developed a biology-inspired dynamic flight simu-
lator by using realistic body—wing morphologies, flapping-wing kinematics, and a
fluid dynamics model. In the following subsections, we present results to highlight
the interaction of the vortical structures and the unsteady flow field for a hovering
hawkmoth.

4.6.1 Downstroke

Figure 4.46 shows isovorticity surfaces above the flapping wings and body over
one flapping cycle. During the early downstroke stage, a vortex structure around
the wing edge is created, accompanying the flapping-wing motion. When the wings

4k forward stroke backward stroke forward stroke backward stroke
G2 /
0K/
-2
(a) 5 5.5 6 6.5 7
time/T
4 forward stroke backward stroke forward stroke backward stroke
A /\/\/ /\/\//
oD
-2
(b) 5 5.5 6 6.5 7
time/T
4 F forward stroke backward stroke forward stroke backward stroke
< /\/\/ /\/\//
oM
2 55 6 6.5 7
(©) ' time/T '

Figure 4.43. Lift coefficients of an elliptic airfoil with the normal hovering mode at
different Reynolds numbers: (a) Rey, = 75;(b) Rey, = 300; (c) Res, = 500. In all cases,
the stroke amplitude is A,/c = 0.25.
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Figure 4.44. Vorticity contours at two corresponding positions during (a), (c) forward
and (b), (d) backward strokes. Stroke amplitude 4,/c = 0.25, pitch angle amplitude
a, = 45°,and Rey, = 300. (See Plate XX VII.)

accelerate, the vortex evolves into three entities, namely, the LEV, the trailing-edge
vortex (TEV), and the wingtip vortex (WTV). As illustrated in Figure 4.46(a), the
LEV with the maximum size on the upper surface of a wing is detected when the posi-
tional angle of the wing approaches zero in the middle of the downstroke. The LEV
is broken down at the location 70%-80% of the wing length distal from the wing
base. The TEV can detach from the wing along with the acceleration of the wing
during the downstroke, and then it connects to the WTV. The LEV, the WTV, and
the TEV connect with each other to form a continual vortex chain along the wing
edge. Such a vortex chain can facilitate the downward flow and thereby improve the
effectiveness of aerodynamic force generation.

4.6.2 Supination

When the positional angle of the wings changes from —36.7° to —46.4° while
the AoA of the wings changes from —17.2° to 60.2° [Figure 4.46(b)], the preceding

Figure 4.45. Vorticity contours at time /7" = 5.5 and three different Reynolds number
withastroke amplitude 4,/c = 0.25and o, = 45°:(a) Rep, = 75;(b) Rey> = 300;(c) Rep, =
500. (See Plate XXVIII.)
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(b) ¢ =—44.7

© ¢=—636 =0

Figure 4.46. Isovorticity surfaces (absolute vorticity strengths: 4 = green, 13 = blue)
around flapping wings and body of a hawkmoth during a flapping cycle. Shedding
WTV, STV; shedding TEV, STEV; new LEV, NLEV; stopping vortex, SPV; starting
vortex SV; and breakdown point, BP. (See Plate XXIX.)

LEV still stays attached and a new LEV is created, stretching from the wingtip to
the wing base. Meanwhile, the WTV detaches from the wing and stays in an area
immediately distal to the back side of the wing. The shedding TEV flows toward the
body hip along the body surface. Furthermore, a stopping vortex is created around
the trailing edge (Figure 4.46(b)). During the latter half of supination, when the
wing translates upward, rotates, and increases its AoA, a vortex is created around
the wing edge (Figure 4.46(c)), from the wingtip to the wing base. Furthermore,
the wake capture is observed, which, at supination, seems less influential on the
aerodynamic force generation (Figure 4.47).
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Figure 4.47. Time variation of vertical and horizontal forces during a flapping cycle of
a hovering hawkmoth. Right wing, green solid curve; left wing, red broken curve; and
body, black dashed-dotted curve.

4.6.3 Upstroke

Asillustrated in Figure 4.46 (d), the LEV with the maximum size appears again
when the positional angle of the wing is nearly zero during the upstroke. Although the
appearance of a large-scale LEV is similar to that during the downstroke, the size of
the LEV is evidently smaller here. Because the size of the LEV directly influences lift
generation, it is expected that the upstroke is less effective than the downstroke in lift
force generation. The large-scale WTV and the shedding of the TEV accompanying
the wing acceleration are also predicted. Moreover, the breakdown of the LEV does
not occur because of the difference in WTV shape and LEV size.

4.6.4 Pronation

As the positional angle of the wing ranges from 51.6° to 48.7° whereas the
Ao0A of the wing varies between 46.2° and —46.2°, the LEV and the WTV interact
with each other around 70%-80% of the wing length distal from the wing base.
This makes the LEV unstable, and subsequently the LEV begins to shed off. The
continuous WTV on the wing is observed up to the early pronation. In addition, a
stopping vortex is found around the wing edge (Figure 4.46(¢e)). In the later phase of
the pronation, a starting vortex is created around the wing edge and the WTV is shed
out and pushed toward the body hip. The presence of wake capture is not predicted
at the pronation (Figure 4.46(f)) and hence the aerodynamic forces are estimated to
be insignificant (Figure 4.47).

4.6.5 Evaluation of Aerodynamic Forces

Low-pressure regions on the wing surface are detected beneath the vortices,
which contribute substantially to lift generation. As discussed, the attached LEV can
enhance lift during downstroke and upstroke. The instantaneous vertical force (lift)
and horizontal force (drag) are estimated and plotted in Figure 4.47. The computed
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results show that a substantial portion of the lift of a hovering hawkmoth is produced
during the translational phase of wing motion, i.e., downstroke and upstroke. Specif-
ically, at both the mid-downstroke and the mid-upstroke the instantaneous vertical
force reaches the maximum value because of the large-scale LEVs (Figures 4.46(a)
and 4.46(d)). The reason that the peak vertical force generated during the upstroke
is lower than that generated during the downstroke is because a more intense LEV
is produced during the downstroke (Figures 4.46(a) and 4.46(d)).

The computed results demonstrate that the aerodynamic force production of the
hovering hawkmoth follows a general pattern in that the lift is produced largely
during the downstroke and partially during upstroke with delayed stall, and the
drag is produced also largely during downstroke. In contrast, the thrust is produced
largely during upstroke. This instantaneous force-generation pattern is similar to
that of a hummingbird (Warrick et al., 2005). Moreover at the midpronation and
midsupination, the aerodynamic forces are much smaller because there is no attached
LEV on the wing surface (Figures 4.46(b), 4.46(c), 4.46(e) and 4.46(f)). Based on the
3D flow simulations, the average lift force is estimated to be 17 mN over a flapping
cycle, which is comparable to the weight (14.7 mN) of a hawkmoth. Further research
is needed to further ascertain lift and thrust generation during a flapping cyle, as
functions of sizing, namely, the Reynolds number and reduced frequency (or, in
forward flight, the Strouhal number).

4.6.6 Aerodynamic and Inertial Powers of Flapping Wings

Based on the computed instantaneous aerodynamic forces and the wing veloc-
ities, the instantaneous inertial and aerodynamic powers are calculated over a cycle
of the flapping wings (Figure 4.48). The aerodynamic power P,;, reaches a maxi-
mum in the late phase of both the downstroke and the upstroke. During the transla-
tional phase of the wing motion, the insect generates substantial aerodynamic power
because of high aerodynamic force production. The mean aerodynamic power is esti-
mated to be 90 W/kg, which is approximately the same as that of the experimental
results.

The inertial power Py, is the power needed to accelerate the mass of the wing. It
is lower in magnitude compared with the aerodynamic power and shows a different
time-variation pattern. Pj,., increases as the wing accelerates and decreases as it
decelerates. Note that the negative sign of Pj,.; means that the direction of the forces
acting on the wing is opposite to that of the wing velocity. Pin.; exhibits a negative
value in the main part of the downstroke and the upstroke except for the wing-
acceleration phase. The computed mean inertial power required for accelerating the
wing amounts to 65 W/kg. Note that we assume that the wing deceleration accrues
with no cost and that there is no elastic storage.

Total muscle-mass-specific mechanical power Py, is the mechanical power
required for moving the wings. It is calculated by the summation of Piye; and Piyero.
Peaks of Py appear in the early phase of the downstroke and the upstroke. Piq
becomes negative in the late upstroke as the decelerating wings produce less power
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Figure 4.48. Time variation of the muscle-mass-specific flight powers during a flapping
cycle of a hovering hawkmoth. P, orange; Piner, green; Py, black dashed-dotted
curve.

than is required for overcoming the inertial forces. The computed time course of Py
is in qualitative agreement with the experimental results (Liu et al., 1998).

4.7

Concluding Remarks

In this chapter we described prominent issues on biological flapping flight.

Although simulation-based biological fluid dynamics has been fast in developing,
the scope covered is still quite limited. Similarly, there is substantial room for further
experimental investigations.

1.

2.

Various lift-enhancement mechanisms were discussed, including LEV, rapid
pitch-up, wake capture, and clap-and-fling.

It is known that, depending on the flapping-wing kinematics, stroke ampli-
tude, frequency, Reynolds number, and the free-stream environment, differ-
ent flow structures result, which can lead to either drag or thrust to be gener-
ated. Clearly, flapping kinematics has a strong influence on time-dependent
aerodynamics, resulting in a variety of patterns and characteristics. Distinctly
different aerodynamic performances are observed between the different kine-
matic modes at the same Reynolds number and with the same mode but
between different Reynolds numbers. To develop a suitable knowledge base
and design guidelines for flapping-wing MAVs, a thorough understanding of
the kinematics, large vortex structures, and Reynolds numbers is essential as
these processes directly influence the lift and thrust generation.

Although the flapping and associated fluid flows are intrinsically time depen-
dent, quasi-steady models were used to capture some basic physics for
certain flyers. The quasi-steady approach was also used to estimate the
mechanical power requirements of hummingbirds and bumblebees. However,
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high-fidelity computational aerodynamics models also indicate that history
effect and kinematics strongly influence the aerodynamics. Therefore there
is a clear need to establish a domain of applicability for the approximate
methods and to develop better models that take into account these effects for
prediction of performance and power requirements of flapping-wing MAVs.

. It appears that structural flexibility can delay stall and enhance aerodynamics

in fixed wings. Anisotropic wings, with a spanwise bending stiffness about 1 to
2 orders of magnitude larger than the chordwise bending one, are observed
in biological flyers. If torsion stiffness can be tailored over the plane of the
wing, what wing kinematics can yield optimum thrust generation?

. Wind gusts create intrinsic unsteadiness in the flight environment. Fundamen-

tally, the characteristic flapping time scale of insects and hummingbird (tens
to hundreds of hertz) is much shorter than the time scale of a typical wind
gust (around 1 Hz). Hence, from the flapping-wing time scale, many wind gust
effects can be treated in a quasi-steady manner. However, the vehicle control
system (as in the case of a biological flyer) operates at lower frequencies, and
its time scales are comparable with those of anticipated wind gusts. Therefore
there is a clear multiscale problem among unsteady aerodynamics, wind gust,
and vehicle control dynamics.

. Not only flapping wing acrodynamics but also the dynamics of inertia can play

an important role in animal locomotion.
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Plate I. Maneuvering capabilities of natural flyers. (a) Canada geese’s response to wind gust;
(b) speed control and target tracking of a seagull; (c) precision touch-down of a finch; (d) a
hummingbird defending itself against a bee.

Plate II. Natural flyers can track target precisely and instantaneously. Shown here are hum-
mingbirds using flapping wings, contoured body, and tail adjustment to conduct flight control.



Plate III. Natural flyers synchorize wings, body, legs, and tail to take off, on water (top), from
land (middle), and off tree (bottom).

Plate I'V. Birds such as seagulls glide while flexing their wings to adjust their speed as well as
to control their direction.



Plate V. On landing, birds fold their wings to reduce lift, and flap to accommodate wind gusts
and to adjust for their available landing areas.



Plate VI. Representative MAVs. (a) flexible fixed wing (Ifju et al., 2002); (b) rotary wing
(http://www.proxflyer.com); (c) hybrid flapping-fixed wing, using fixed wing for lift and flap-
ping wing for thrust (Jones and Platzer, 2006); and (d) flapping wing for both lift and thrust
(Kawamura et al., 2006).

Plate VII. Illustration of biological flapping-wing patterns: forward and back strokes, and
flexible- and asymmetric-wing motions.




Plate VIII. Dragonfly wings exbit both flexibility and anisotropic, corrugated structuures. In
the lower picture, shown on the left is the hind wing and the right is the fore wing.



Plate IX. Streamlines and vortices for rigid wing at « = 39°. The vortical structures are shown
on selected planes (Lian et al., 2003b).

Plate X. Pressure distribution around the rigid wing in the cross sections with streamlines at
angle of attack of 39° (Lian et al., 2003b).



Plate XI. Evolution of flow pattern for rigid wing versus angles of attack. (From left to right,
top to bottom, 6°, 15°, 27°, and 51°) (Lian and Shyy, 2005).



Plate XII. A bat (Cynopterus brachyotis) in flight. (a) beginning of downstroke, head forward,
tail backward, the whole body is stretched and lined up in a straight line; (b) middle of down-
stroke, the wing is highly cambered; (c) end of downstorke (also beginning of upstroke), the
wing is still cambered. A large part of the wing is in front of the head and the wing is going to
be withdrawn to its body; (d) Middle of upstroke, the wing is folded towards the body, from
Tian et al. (2006).

flap

Plate XIII. The flexible covert feathers acting like self-activated flaps on the upper wing
surface of a skua. Photo from Bechert et al. (1997).
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Plate XIV. Vortices structure behind a stationary NACA 0012 (Lai and Platzer, 1999).

(a) h = 0.0125 (kh = 0.098)

(b) h =0.025 (kh = 0.196)

(c) i =0.05 (kh =0.393)

Plate XV. Vortex patterns for a NACA 0012 airfoil oscillated in plunge for a freestream
velocity of about 0.2 m/s, a frequency of f = 2.5 Hz (k = 7.85), and various amplitudes of
oscillation (Lai and Platzer, 1999).



Top view Side view

During downstroke

Plate XVI. Wing surface pressure and streamlines revealing the vortical structures for the 3D
numerical simulation of a hovering hawkmoth (Liu et al., 1998). (a) Positional angle $=30°;
(b) $=0°; (c) db=-36°. Reynolds number is approx. 4000 and the reduced frequency k is 0.37.
Here LEV is the leading edge vortex.

(a) Ref3=6000 (b) Res3=120 (c) Rer=10

Plate XVII. Numerical results of leading edge vortical structures at different Reynolds
numbers.



(a) Re=6000 (Hawkmoth)

?

Spanwise flow

Spanwise flow

(d)

Plate XVIII. Comparison of near-field flow fields between a fruit fly and a hawkmoth. Wing-
body computational model of (a) a hawkmoth (Re 3 = 6000, U,.y = 5.05 m/s, ¢,, = 1.83 cm),
and (b) a fruitflymodel (Re ;3 = 134, U,y = 2.54m/s,c,, = 0.78 mm), with the LEVs visualized
by instantaneous streamlines and the corresponding velocity vectors in a plane cutting through
the left wing at 60% of the wing length; pressure gradient contours on the wing surface for (c) a
fruit fly, and (d) ahawkmoth. The pressure gradient indicates the direction of the spanwise flow.

(a)

Plate XIX. Vortical flow struc-
tures for pitch-up airfoils: (a)
and (b) computational results
for flow over a 2D elliptic air-
foil undergoing “water tread-
ing” hovering at two Reynolds
numbers. The airfoil position
corresponds to the mid-stroke,
where the pitch angle reaches
the maximum value; (c) and (d)
experimental vorticity field side
views for a fruit fly modeled
wing at 0.65R at mid-stroke. The
experimental information in (c)
and (d) is reprinted from Birch
et al. (2004).



Plate XX. Experiment of clap-and-fling by two wings (M-T) using clap-and-fling wing beat
pattern in the robotic wing. Vorticity is plotted according to the pseudo color code and arrows
indicate the magnitude of fluid velocity; longer arrows signifying larger velocities, from
Lehmann et al. (2005) with permission.
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Plate XXI. Comparison of the wingtip trajectories produced by the vibratory flapping system
with those exhibited by hummingbirds in various flight modes, from Raney and Slominski
(2004).
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Plate XXII. Numerical and experimental results of the flapping motion of a fruit fly: red,
experimental results of Dickinson and Birch (Wang et al., 2004); Blue, numerical solution
of Wang et al. (2004); green, numerical solution of Tang et al. (2007). h,/c = 1.4, o, = 45°,
Rep, =75,k =0.357.
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Plate XXIII. One cycle force history for two hovering modes and quasi-steady value of normal
hovering mode. h,/c = 1.4, o, = 45°, k = 0.357, and Rey, = 100. (a) Lift coefficient, (b) drag
coefficient. The selected normalized time instants are t1 = 0.08,t2 = 0.17, t3 = 0.25, t4 = 0.31,
t5 = 0.45, t6 = 0.60, t7 = 0.80, t8 = 0.94.
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Plate XXIV. Vorticity contours for two hovering modes. 4, /c = 1.4, o, = 45°, k = 0.357 and
Re s, = 100. Red: counter-clockwise vortices, Blue: clockwise vortices. The flow snapshots (t1
to t8) correspond to the time instants defined in Figure 4-38. Adopted from Tang et al. (2007).
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Plate XXYV. Lift coefficient for the water-treading mode. h,/c = 1.4, o, = 45°, k = 0.357, and
Reynolds numbers of 100 and 1700. The selected normalized time instants are t1 = 6.25, t2 =
6.48,13 =6.77,t4 = 6.97.




Plate XXVI. Vorticity contours for the “water treading” mode. h,/c =1.4,a, =45°, k =
0.357. Red = counter-clockwise vortices, Blue = clockwise vortices. (a), (¢) Reynolds number
=100; (b), (d) Reynolds number = 1,700. The flow snapshots (t1 to t4) correspond to the time
instants defined in Figure 4.40.

Plate XXVII. Vorticity contours at two corresponding positions during forward (a) and (c)
and backward (b) and (d) stroke. Stroke amplitude 4, /c = 0.25, pitch angle amplitude o, = 45°
and Re, = 300.

Plate XX VIII. Vorticity contours at time /7 = 5.5 and three different Reynolds number with
a stroke amplitude A,/c = 0.25 and o, = 45°: (a) Rep, = 75; (b) Rep, = 300; (c) Rep, = 500.
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Plate XXIX. Iso-vorticity surfaces (absolute vorticity strengths: 4=green, 13=blue) around
flapping wings and body of a hawkmoth during a flapping cycle. Shedding TV (STV) shedding
TEV (STEV), new LEV (NLEV), stopping-vortex (SPV), starting-vortex (SV), and break-
down point.
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