

SpringerBriefs in Electrical and
Computer Engineering

For further volumes:
http://www.springer.com/series/10059

http://www.springer.com/series/10059

Jesse M. Lingeman • Dennis Shasha

Network Inference in
Molecular Biology

A Hands-on Framework

123

Jesse M. Lingeman
New York University
4 Washington Place
New York, NY 10003
USA

Dennis Shasha
New York University
251 Mercer Street
New York, NY 10012
USA

ISSN 2191-8112 ISSN 2191-8120 (electronic)
ISBN 978-1-4614-3112-1 ISBN 978-1-4614-3113-8 (eBook)
DOI 10.1007/978-1-4614-3113-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012939634

� The Author(s) 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Acknowledgements

We would like to thank Alex Greenfield, Rich Bonneau, and Alex Rubinsteyn for
their comments both technical and stylistic. We would also like to thank Juliana
Freire for her help with workflow concepts and the Vistrails software.

This work has been partly supported by the US National Institutes of Health
grant 2R01GM032877-25A1 and the US National Science Foundation grants MCB-
0929339, IOS-0922738, and IIS - 1050388. That support is greatly appreciated.

v

Contents

1 Overview of Network Inference . 1
1.1 Inferring Causality . 1

1.1.1 Basics of Genomics . 2
1.1.2 Observation, Intervention, and Inference 3
1.1.3 The Data . 4
1.1.4 Data Sources . 4
1.1.5 Basic Data Metrics . 5
1.1.6 How to Read This Book . 8
1.1.7 How to Use the Software . 8

2 Step 1: Clustering Data . 11
2.1 Introduction . 11

2.1.1 Clustering . 11
2.1.2 Biclustering . 12

2.2 cMonkey . 12
2.2.1 What it Does . 12
2.2.2 The Data . 12
2.2.3 The Strategy . 12
2.2.4 Walkthrough Example on Toy Data . 16

2.3 Factor Analysis for Bicluster Acquisition (FABIA) 18
2.3.1 What it Does . 18
2.3.2 The Data . 19
2.3.3 The Strategy . 19
2.3.4 Walkthrough Example on Toy Data . 21

3 Step 2: Use Steady State Data for Network Inference 23
3.1 Introduction . 23
3.2 Median-Corrected Z-Scores (MCZ) . 23

3.2.1 What it Does . 23
3.2.2 The Data . 24
3.2.3 The Strategy . 24

vii

viii Contents

3.2.4 Performance on Examples . 25
3.3 Network Identification by Multiple Regression (NIR) 28

3.3.1 What it Does . 28
3.3.2 The Data . 28
3.3.3 The Strategy . 29
3.3.4 Performance on Examples . 30

3.4 Gene Network Inference with Ensemble of trees (GENIE3) 34
3.4.1 What it Does . 34
3.4.2 The Data . 34
3.4.3 The Strategy . 34
3.4.4 Performance on Examples . 37

3.5 Context Likelihood of Relatedness (CLR) . 41
3.5.1 What it Does . 41
3.5.2 The Data . 41
3.5.3 The Strategy . 41
3.5.4 Performance on Examples . 42

3.6 Semidefinite Programming . 46
3.6.1 What it does . 46
3.6.2 The Data . 46
3.6.3 The Strategy . 46
3.6.4 Performance on Examples . 48

4 Step 3: Using Time-Series Data . 51
4.1 Introduction . 51
4.2 Time-Delay ARACNE . 51

4.2.1 What It Does . 51
4.2.2 The Data . 52
4.2.3 The Strategy . 52
4.2.4 Performance on Examples . 54

4.3 Time-Lagged Context Likelihood of Relatedness (tlCLR) 56
4.3.1 What it Does . 56
4.3.2 The Data . 56
4.3.3 The Strategy . 56
4.3.4 Performance on Examples . 58

4.4 Inferelator . 62
4.4.1 What it Does . 62
4.4.2 The Data . 62
4.4.3 The Strategy . 62
4.4.4 Performance on examples . 64

4.5 Dynamic Factor Graphs (DFG) . 65
4.5.1 What it does . 65
4.5.2 The Data . 65
4.5.3 The Strategy . 65
4.5.4 Performance on examples . 67

4.6 Bayesian Network Inference with Java Objects (BANJO) 72

Contents ix

4.6.1 What it does . 72
4.6.2 The Data . 72
4.6.3 The Strategy . 73
4.6.4 Performance on Examples . 74

5 Step 4: Pipelines . 77
5.1 Consensus Step: Combining Results of Different Approaches 77
5.2 Creating Pipelines and Ensemble Networks . 77
5.3 Pipeline 1: Steady State algorithm + Dynamic Factor Graphs 78

5.3.1 What it does . 78
5.3.2 The Strategy . 78
5.3.3 Performance on examples . 78

5.4 Pipeline 2: Inferelator 2.0 . 82
5.4.1 What it does . 82
5.4.2 The Strategy . 82
5.4.3 Performance on examples . 83

5.5 Ensemble 1: Voting . 86
5.5.1 What it does . 86
5.5.2 The Strategy . 86
5.5.3 Performance on examples . 87

5.6 Ensemble 2: Simulated Annealing . 90
5.6.1 What it does . 90
5.6.2 The Data . 90
5.6.3 The Strategy . 90
5.6.4 Performance on examples . 91

5.7 Conclusions . 95
References . 97

Index . 99

Chapter 1
Overview of Network Inference

1.1 Inferring Causality

Inferring a causal link is useful in many applications, from medicine to economics
to engineering. If some A can cause some B to take on a high value (where A
could be a gene in our context, a market intervention in economics, or a design
element in engineering), then preventing B from taking such a value can be done by
removing some B, by removing some A or by interfering with the link from A to B.
Conversely, making B achieve a higher value can be done by adding more B, adding
more A, or enhancing the efficiency of the link from A to B.

Approaches to finding such causal links may entail performing:

• experiments under multiple different conditions to detect associations between A
and other elements. Such associations are bi-directional but may acquire direc-
tionality if it is known that, for example, A is an element that can change other
elements (in the genomic context A could be a “transcription factor”) and B is
not.

• experiments that increase the quantity of some A to see which other elements are
either enhanced (quantity increases) or repressed (quantity decreases).

• experiments that decrease the quantity of A or even knock it out (A goes to 0)
may also reveal something about the influence of A.

• experiments over a closely spaced time course to enable inferences of the form
“the state of A at time t may influence B at time t+1.”

This book is about inference of causality in genomics and more generally molec-
ular biology, but its techniques apply to any setting in which elements may singly
or collectively affect others. The set of genomic algorithms provides a variety of
analytic methods for each experimental setup described above. If you come from
another field, you may find some of the concepts strange, so we review them here.
Don’t worry. There aren’t many.

1J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_1, � The Author(s) 2012

2 1 Overview of Network Inference

1.1.1 Basics of Genomics

In general, genomics is focussed on all the genetic material (i.e. all the DNA) in
a species. Genetic material concerns both genes and the DNA between genes. The
main question we will address in this book is “which genes influence which other
genes and by how much?” Here is the main biological terminology we will use.

Nucleotide (also known as base) One of four molecules, labeled as A, C, T, or G.
This is the smallest distinguishable element of DNA.

Gene A sequence of DNA which can form RNA. A gene is preceded by a pro-
moter which is also DNA. DNA has a directionality, so the notion of preceding
is well-defined.

Transcription If appropriate proteins (called transcription factors) bind to the pro-
moter, then a copy of the DNA is made into RNA. (This copy is really a close
copy because RNA nucleotides are slightly different from DNA ones, but mathe-
matically this is just a copy, because they correspond 1 to 1.) This is done without
destroying the DNA. The copying of DNA into RNA is called transcription.

Expression of a gene g The amount of RNA of gene g present in a solution.
Translation The process by which RNA is made into a protein. Not all RNA is

made into a protein, so knowing the levels of RNA does not imply knowledge
of the associated protein. As of this writing, most quantitative information is a
measure of RNA expression. The algorithms wouldn’t change if we had knowl-
edge of the proteins (especially the transcription factors), but the results would
be better.

Genome The genes and their associated promoters.
Causality One gene A can influence another gene B “transcriptionally” as fol-

lows: if gene A is transcribed to RNA and then translated to a protein, then the
resulting protein may bind to the promoter of B and either help cause B to tran-
scribe or inhibit it from transcribing. Because there are tens of thousand of genes
in many organisms, the possible causal relationships are in the hundreds of mil-
lions. Fortunately, many genes are tightly correlated to one another and are often
partly redundant. That fact allows our analytical programs to group genes into
clusters that can be treated one as one unit.

Gene
Transcribed to

RNA
Translated to

Protein

Fig. 1.1 Proteins are born in a two step process. Genes are “transcribed” to RNA which is “trans-
lated” to proteins. Experimental techniques currently permit the measurement of the expression
levels of most of the RNA for a species. The measurement of protein levels should make the anal-
ysis better.

1.1 Inferring Causality 3

DNA

Promoter

 Region

Transcription Factor

(Protein)

B
in
ds

 to

Causes transcription to begin

Fig. 1.2 Certain proteins called transcription factors bind to promoters. Each transcription factor
can either induce or repress transcription. If a good combination of transcription factors bind to the
promoter of a gene, then that gene may be transcribed to RNA.

1.1.2 Observation, Intervention, and Inference

Behind every causal conclusion, there must lie some causal assumption. [25] [18]
In our case, one causal assumption is that the state of the system at one time point
determines the state of the system at the next time point if the time points are close
enough (within a few minutes). Another causal assumption is that when a system
is in a steady state and then an external intervention (e.g. a gene knockout) either
increases or decreases the RNA of a gene, then any changes from steady state are
due to that intervention.

In very special circumstances, one can infer that some set of genes Y will take
on some values Vy (say, of expression) based on forcing the expressions of genes
X to Vx. The circumstances are that one observes Y to take on Vy when X takes
on Vx (but without forcing X to do so) AND whatever influences Y consists of X
and elements that are independent of the values of the X genes. Without an external
intervention, this assumption nearly never holds, because biological systems are full
of feedback loops, so anything that influences Y will also likely influence X. That is
why the most informative experiments incorporate an intervention, whereas purely
observational experiments (e.g. experiments based on steady conditions) are never
conclusive. In this book, we use observational experiments to assign higher initial
weights to some edges than to others, but then the iterational learning methods we
discuss may change those weights based on evidence with known causal directions
(such as time series or knockouts).

4 1 Overview of Network Inference

1.1.3 The Data

A basic gene expression dataset is a matrix where columns represent different con-
ditions (or experiments) and rows represent different genes. The value of each cell
in the matrix is the expression value of a given gene in a given condition. A value
of 0 means that there is no detectable gene expression. A higher value represents a
higher gene expression. Whether a value is “high” or “low” is relative to the other
values in that dataset. The absolute values of these numbers are determined by the
physical device and preprocessing methods used to gather the data. What is impor-
tant are the relative values. Typically, the values are normalized by column to be
between 0 and 1.

There are four different basic types of data: steady-state, time-series, multifacto-
rial, and wildtype. Data are considered steady-state if the values are not changing
or changing very slowly. A perturbation can be a chemical (e.g., as adding a nu-
trient, like nitrogen, to a plant) or genetic (e.g., removing or repressing a specific
gene) in nature. Steady-state values as used in this experiment are often the differ-
ence between the steady state values after a perturbation and the difference of some
reference condition prior to the perturbation.

Time-series data are similar to steady-state data in that a genetic or chemical per-
turbation is applied to a set of genes, but then readings are taken while the expression
values of each gene are still changing. This gives us extra information about how the
expression values of the genes actually get from one steady-state value to another.

Multifactorial data are simply steady-state datasets where more than one pertur-
bation has occurred. For example, two genes could be knocked out of the dataset
instead of just one, or there could be both a genetic and chemical perturbation.
Wild-type data are expression values from the most common phenotype of a given
organism.

1.1.4 Data Sources

To generate data for the algorithms, we use a data simulator called GeneNetWeaver
[22] [27] as well as real data. GeneNetWeaver was developed in order to generate
simulated datasets for the Dialogue for Reverse Engineering Assessments and Meth-
ods (DREAM) competition, and has been released as free software. Given a network
graph, GeneNetWeaver builds a dynamical model, generates expression values for
each gene, and then adds noise similar to what is found in experimental data. We
have used simulated rather than real data to be able to test the algorithms against a
known ground truth (in the form of a known causality network).

Real experimental data can be found in many public online databases, such as
Arabidopsis.org or GenExpDB.

Because we are testing these algorithms against simulated data, the conclusions
about the quality of the algorithms should be taken with a certain skepticism. If you
can build your own benchmark to reflect the kind of data your application produces,

http://arabidopsis.org
http://genexpdb.ou.edu/main/

1.1 Inferring Causality 5

then you can easily retry these algorithms to see which one will likely work best for
you. 1

1.1.5 Basic Data Metrics

In order to compare performance of algorithms and pipelines we use some simple
statistics. All of these are calculated by comparing each edge of an inferred network
to a gold standard (in our case, usually the underlying “true” network generated by
the DREAM simulator).

True Positive (TP) The existence of an edge between two genes is predicted and
that is correct based on the gold standard.

False Positive (FP) The existence of an edge between two genes is predicted but
that is incorrect based on the gold standard.

True Negative (TN) The non-existence of an edge between two genes is predicted
and that is correct, i.e. there is no edge between those genes in the gold standard
network.

False Negative (FN) The non-existence of an edge between two genes is predicted
but that is incorrect, i.e. there is an edge between those genes in the gold standard
network.

Precision The ratio of true positives to the number of true positives plus the num-
ber of false positives. Indicates how often a positive prediction was correct out of
the total number of positive predictions. Sometimes called the positive predictive
value (PPV).

precision =
true positives

true positives+ false positives
(1.1)

Accuracy How many positive or negatives inferences were correct out of all pos-
itive and negative predictions.

accuracy =
true positives+ true negatives

true positives+ false positives+ true negatives+ false negatives
(1.2)

Recall The ratio of true positives to all positives, i.e., the number of correctly
inferred positive edges vs. the number of positive edges in the gold standard
network.

recall =
true positives

true positives+ false negatives
(1.3)

Precision-Recall Curve The precision-recall curve is a way of visualizing the ra-
tio of correct to incorrect positive guesses vs. the ratio of correct positive edges to

1 DREAM is a yearly competition that aims to challenge researchers to develop better algorithms.
Each year a more difficult dataset is released, and the challenge is to develop and algorithm that
tries to reconstruct a gene regulatory network from the given data. The algorithms are then sent to
the DREAM organizers and the output of each algorithm is evaluated and ranked.

6 1 Overview of Network Inference

the total number of positive edges in the gold standard. To do this, a ranked list of
edges is needed. Edges are ranked in descending order of the inferred likelihood
that they are positive, and then they are plotted based on that order. Specifically,
the precision and the recall of the first k edges in descending order is the kth point
in the precision-recall curve. This gives a picture of what happens as we move
from the most likely edges to the least.
The precision-recall curve tells us at what point the algorithm becomes unreli-
able. For example, in Figure 1.3, we can see that the first several inferred edges
are correct (precision is staying at 1.0 as the recall goes up), and then drops it once
some of the inferred edges turn out to be false positive. For some algorithms, we
may see that the highest ranked edges are very accurate, but the quality of the
algorithmic guesses drops off rapidly. A precision-recall graph would show this
clearly, where a ROC curve (the next definition) may not show this behavior at
all.
In practice, there will be a threshold in the ranking that will determine which
edges to keep. That threshold can be determined by looking at the ROC curve
on similar data for which the answers are known. Most model species have at
least some such gold standard data. At other times, experimentalists may simply
decide to do tests in the order of the ranking of the edges, thus creating their own
gold standard data.

Fig. 1.3 An example precision-recall curve. The first few inferred edges are correctly inferred, so
precision stays at 1. After a few edges, the precision starts to drop, slightly increasing with each
correctly inferred edge and slightly decreasing with incorrect edges.

Receiver-Operating Characteristic (ROC) Curve The ROC curve is a way of vi-
sualizing overall performance by comparing the true positive rate vs. the false

1.1 Inferring Causality 7

positive rate (Figure 1.4). The true positive rate is the same as recall. The false
positive rate is equal to the number of false positives over the sum of false posi-
tives and true negatives. To plot the curve, edges are ranked in descending order
of the inferred likelihood that they are positive and then plotted. The higher the
“arc” of the curve (the more convex upwards), the better the performance, as
ideally the true positive rate rises quickly while the false positive rate stays at
or near 0. The area under the receiver-operating characteristic curve (AUROC)
will be used as a single number measure for the performance of an algorithm.
An AUROC of 0.5 means that the algorithm has a 0.5 chance of being correct
with each positive guess, in which case the curve will fall along the 45 degree
diagonal of the graph.

Fig. 1.4 An example ROC curve. This graph has a very high “arc”: the true positive rate is rising
very quickly compared to the false positive rate.

p-value If an inference method yields some result (e.g. 60% of the positively pre-
dicted edges are correct), an important question to ask is whether this could have
happened just by random chance. If so, then the inference method is not so use-
ful. If not, then the inference method may be very valuable. The p-value is the
probability that a result could have been obtained just by random chance. How
this is calculated depends on the application.

z-score A collection of values has a mean m and standard deviation s. The z-score
of a particular value v is the number of standard deviations above or below the
mean m, i.e. zscore(v) = (v−m)/s.

8 1 Overview of Network Inference

1.1.6 How to Read This Book

We have separated the chapters into three steps, followed by ways to wrap the steps
into one of several possible pipelines. Within each chapter describing a step, we
present alternative ways of performing that step and give an indication of what
works best under which circumstances.

* Chapter 1 gives different techniques for clustering genes and expressions. Clus-
tering effectively creates “supernodes” out of many genes, thus both simplifying the
network inference problem and the interpretation of the result.

* Chapter 2 talks about using steady state data resulting from knock-outs, knock-
downs, over-expressors, or just particular conditions. Such data can suggest causal
or at least correlative relationships among pairs of genes.

* Chapter 3 discusses the analysis of time course data. The assumption driving
that analysis is that events at a current time point depend only on the data in previous
time points.

* Chapter 4 describes various ways in which the algorithms of the first three
chapters can be combined into a full analytical pipeline.

Each algorithm includes an experimental evaluation on data from the simulated
biological world of DREAM. Some algorithms do better than others on those exam-
ples. We indicate the quality of each algorithm on the DREAM simulation data at
the beginning of each section. As we said above, an inference algorithm may work
better or worse on other data. This does not necessarily reflect their use on prob-
lems that you might care about, but to give you an idea of their performance, each
inference algorithm is ranked from Fair to Best.

1.1.7 How to Use the Software

We have included a software package to be downloaded with this text, available
at http://cs.nyu.edu/shasha/netinf. The software may be obtained in
the form of a virtual machine with all of the packages pre-installed, or a standalone
package that requires some installation. The virtual machine can be launched in the
free, open-source software VirtualBox (http://www.virtualbox.org).

To launch the virtual machine in VirtualBox, first unzip the zip file containing
the virtual machine. This will give you a folder called NetworkInference. Open
VirtualBox and select “Import Appliance” from the “File” menu, and choose the
NetworkInference.ovf file in the unzipped virtual machine directory. After
some loading, VirtualBox will import the virtual machine. Once the virtual machine
appears in VirtualBox’s library, click “Start”.

Once the virtual machine boots, you will see a Linux desktop. Open a terminal
and type cd NetworkInference to change to the network inference directory.
This is the directory from which all scripts should be run.

This software wraps around the original implementations of each algorithm by
the author, providing an easy to use interface with a common data format for all

http://cs.nyu.edu/shasha/netinf
http://www.virtualbox.org

1.1 Inferring Causality 9

algorithms presented in this text. A script for each experiment performed in the
book can be found in the folder “Examples”. To invoke a script, launch the script
from a command line with python. For example:

python Examples/MCZ/MCZ-dream4-10gene.py

In this case, MCZ is the algorithm name and the dataset is the 10 gene DREAM4
network. These scripts can serve as examples for creating new experiments. Please
see the README files included with the software for more documentation.

Chapter 2
Step 1: Clustering Data

2.1 Introduction

2.1.1 Clustering

Clustering reduces the size of the data by replacing individual genes with artifi-
cial super-genes that can be treated as single nodes for the purposes of network
inference. By clustering genes that work together as a preprocessing step, we can
improve the accuracy of the resulting network by reducing variance due to noise
on individual genes. The goal is to generate clusters while losing the minimum
amount of information in the dataset (and perhaps even make certain relationships
stronger!). For example, if there are two genes that both behave in exactly the same
way across the experimental conditions of interest, then little to no information is
lost if you treat them as though they were a single “gene”.

There are many different clustering algorithms available. The basic idea in all
clustering algorithms is to group data that are alike together based on some measure
of similarity. A classic example is the K-Means algorithm. K-Means takes a param-
eter k that specifies the number of clusters to generate. In the random start method,
K “centroids” are chosen at random (e.g. these may be the expression profiles of
k genes). Then (step 1) each expression profile is compared with all the centroids
and is assigned to the most similar one. The expression profiles corresponding to
a given centroid are called a cluster. Next (step 2), for each cluster a centroid that
better represents the expression profiles of that cluster is chosen. Steps 1 and 2 are
repeated until there is no further change in cluster membership. Then the whole pro-
cedure begins again with a new set of initial centroids. After trying something like
100 different sets of centroids, the algorithm starts with the best clustering found,
where best means that each centroid is closest on the average to all the members. 1

1 Other schemes such as kmeans++ have also been proposed [1], but we like the random starting
point approach for its sheer simplicity.

11J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_2, � The Author(s) 2012

12 2 Step 1: Clustering Data

2.1.2 Biclustering

Biclustering is a method of clustering across both rows and columns, i.e. across
gene expressions and conditions. Biclustering begins with a matrix where each col-
umn corresponds to an experiment and each row is a gene. Traditional clustering
attempts to shuffle the rows into groups based on their expression values. However,
this works poorly when grouping genes by expression values for different experi-
ments, because genes may behave quite differently across experimental conditions,
as we have mentioned above. Biclustering solves this by allowing the shuffling of
both genes and experiments. This allows clusters to be selected based on a subset
of experimental conditions rather than all of the experimental conditions in a given
gene’s row.

Genes may end up in more than one bicluster. Biologically, this makes sense, as
a single gene may interact with different sets of genes in different conditions. For
example, gene X may be part of cluster Y under condition A, but part of cluster Z
under condition B.

2.2 cMonkey

2.2.1 What it Does

Finding the best biclustering (according to virtually any reasonable criterion) is NP-
complete. cMonkey [26] combines biological intuition with heuristics to come to
high quality biclusters in all cases we have tested.

2.2.2 The Data

The data used can be broken up into three types: expression data, upstream DNA
sequence data, and (where available) experimentally verified network connections.
The expression data are steady-state data, though time-series data can be used as
well.

2.2.3 The Strategy

The algorithm starts by seeding biclusters with genes that are co-expressed across
most if not all conditions (this is the basic strategy, though there are variants). After
that, a gene or condition can be associated with a bicluster based on a score that is
formulated as a probability of association with the current members of that biclus-

2.2 cMonkey 13

ter. A gene can be associated with many biclusters depending on whether its score
exceeds a certain threshold (using several different criteria). As the membership of
biclusters changes, a particular gene may move in or out of a particular bicluster.

The criteria to determine whether a gene and/or experiment should belong with
a bicluster are expression similarity, promoter similarity, and known network con-
nections. We first show how to calculate the score that determines whether a gene
or experimental condition should be associated with a bicluster based on expression
(2.2.3.1). Second we describe the calculation of a score based on DNA motifs (small
binding portions of a promoter) to determine whether the promoter of a gene war-
rants that gene’s association with a bicluster (2.2.3.2). Third we describe how to use
known network edges (e.g. metabolic edges) to determine whether a gene should be
associated with a bicluster (2.2.3.3). Finally, we show how all these different criteria
can be combined using a heuristic technique called simulated annealing into a single
regression score (2.2.3.4 and Equation (2.4)).

The basic idea is that at each step of the algorithm, we calculate the probability
that each gene g and each experiment e belongs in bicluster k, given the genes and
experiments already in k. Based on that probability, the gene-experiment may be
added to the bicluster. Biclusters are initialized by randomly choosing one of several
methods (discussed in section 2.2.3.4). The probability of movement decreases over
time (in the spirit of simulated annealing). The algorithm converges to a set of stable
biclusters. The probability that a gene or condition should belong to a given bicluster
is calculated for each of the types of data used at each iteration. These probabilities
are then combined using a regression model, giving an overall probability that a
given gene belongs to each bicluster.

We present the details of the algorithm below as four discrete steps. First, we
calculate a likelihood score for each type of data separately. Then, we combine the
scores into one value. Finally, we go over cMonkey’s iterative procedure, putting
all of the previous steps together. The net result is the likelihood a gene or condi-
tion/experiment should belong to a given bicluster.

2.2.3.1 Using the Expression Data

Expression data are used to create a likelihood that a given gene or experiment “be-
longs” to a given bicluster. We calculate the likelihood that xi j, gene i’s expression
value in experiment j, is in a bicluster k with:

p(xi j) =
1√

2π

(
σ2

j + ε2
)exp

(
−1

2

(
xi j− x̄ jk

)2
+ ε2

σ2
j + ε2

)
, (2.1)

where σ2
j is the variance of experiment j, ε is an error term, representing unknown

error in the expression values, and x̄ jk is the mean expression level of experiment
j over the genes in bicluster k. The variance over all of j is used instead of the
variance of only the genes in bicluster k. This is done to help weed out experiments

14 2 Step 1: Clustering Data

where there is not much variation between genes, i.e., experiments where genes are
more likely to be correlated by random chance.

Once we have the likelihood that each measurement xi j belongs to each bicluster
k, we can calculate the likelihood that each gene and experiment belongs to a given
bicluster. To calculate the likelihood that a gene i belongs to a bicluster, we take the
product of the likelihoods that gene i is in bicluster k across all experiments j.

prob gene i belongs to bicluster k = ∏
j∈Jk

p(xi j). (2.2)

Similarly, we calculate the likelihood that an experiment j belongs to a bicluster by
taking the product of the likelihoods that experiment j is in bicluster k across all
genes i.

prob condition i belongs to bicluster k = ∏
i∈Ik

p(xi j). (2.3)

cMonkey then assigns a gene to a bicluster over the conditions of that bicluster if the
probability of that gene belonging to a bicluster is greater than a randomly generated
value between 0 and 1. Finally, we create a co-expression p-value for each gene i
with respect to each bicluster k and for each experiment j with respect to each
bicluster k, labeled rik and ri j, respectively. These values are created by integrating
over the normal distribution based on (2.1).

2.2.3.2 Using the Upstream DNA Sequence Data

Upstream DNA sequence data are used to identify whether or not a gene i shares
DNA motifs with other genes in a bicluster k. A DNA motif is a sequence of DNA
bases that are likely to be a target of transcription factors. So if two genes share the
same motifs then they may have similar biological functions. The MEME algorithm
[2] is used to identify these motifs, and the counterpart algorithm MAST [2] is used
to calculate the p-value that a given sequence matches motifs found by MEME.
MEME is used to create a set of the motifs found in the genes in each bicluster.
MAST is then used to calculate a p-value sik of how likely it is that a gene i contains
the motifs found in bicluster k. Intuitively, what we are checking is whether or not
a gene shares similar biological functions (based on their DNA) with the rest of the
genes in a given bicluster.

2.2.3.3 Using the Association Network Data

cMonkey also uses known association network data to help create biclusters. The
network data can be obtained from the KEGG [16], Predictome [23] and Prolinks [3]
databases. These datasets contain known network associations between genes. The
basic idea here is to add genes to a cluster based on how many network associations
that gene has in common with the genes in that cluster. The more associations a

2.2 cMonkey 15

gene has in common with a cluster, the more likely it is that the gene belongs in
that cluster. A p-value qn

ik is calculated for each gene/cluster/network set, where n is
each one of the different types of association networks (e.g., KEGG or Prolinks).

2.2.3.4 Putting it all together: The cMonkey Iterative Procedure

cMonkey starts by “seeding” each bicluster with an initial set of genes and experi-
ments. Five different methods are used for seeding the initial biclusters:

1: A single random gene
2: Using co-expressed genes from another clustering method
3: Using semi-co-expressed genes (by correlation of expression values)
4: Using highly connected genes (from the association network)
5: Using genes with a common motif (from the upstream DNA sequence)

Many seeding strategies are used in order to introduce variance into the initializa-
tion of the algorithm. This helps keep the algorithm from getting caught in a local
minimum early on.

cMonkey uses simulated annealing to select the biclusters. Simulated annealing
is a probabilistic global optimization algorithm where a temperature parameter starts
“hot” and “cools” over time. When the temperature is hot, genes and experiments
are allowed to move much more freely between biclusters. This allows many com-
binations to be formed early on. As the temperature cools, moves between clusters
become less and less likely, based on how “good” the move is. A gene that has a
high affinity with a bicluster, as then constituted, has a higher probably of moving
to it than one that doesn’t. As the temperature cools, the biclusters “harden”, until
only the genes that are extremely good matches for a bicluster have any chance of
actually moving to that bicluster. The maximum number of moves that can be made
at each iteration is set by a parameter to be a small value, by default 5. Establishing
a maximum is done to ensure that a bicluster cannot change too much in a single
iteration.

In addition to the temperature parameter used in simulated annealing, the weights
on the importance of each data type also change at each iteration. For example,
Reiss et al. state that early in the procedure, DNA motifs are not very useful, as
it is unlikely that any particular cluster has enough similar motifs to give a reliable
signal. However, some of the association network data can be extremely informative
early on. Thus, at the beginning of the algorithm, association network data are given
a higher weight than the motif data. As the annealing continues and clusters become
more and more numerous, using DNA motifs makes more sense, so the weight on
DNA motifs is increased over time.

A constrained logistic regression is used to combine each data type’s score into a
single joint likelihood. First, the scores are standardized to have mean 0 and standard
deviation 1, with log(z̃ik)= log(zik)−µk/σk (where z is a stand-in for the expression
(r), sequence (s), or association network qn p-value). This is done so that one type of
score doesn’t overpower the others simply because it tends to have better p-values

16 2 Step 1: Clustering Data

than the others. Then, we combine the scores into a single value, on which we will
perform the regression:

gik = r0log(r̃ik)+ s0log(s̃ik)+ ∑
n∈N

qn
0log(q̃n

ik), (2.4)

where r0, s0, and qn
0 are the weights that are specified by the current annealing

iteration for the expression, sequence, and network scores, respectively. The idea
here is to weight each type of p-value based on how important we think it is given
where in the annealing process we are.

The constrained logistic regression is then defined as:

πlk ≡ p(ylk = 1|Xk,Si,Mk,N) ∝ exp(β0 +β1glk), (2.5)

where l is used to define a gene or experiment (replacing i and j from before). πik
is then the likelihood that a given gene or experiment l belongs to bicluster k.

cMonkey puts all of these methods together into a single iterative procedure.
(i) Create random biclusters using a random initialization method for each bicluster,
and start at a high annealing temperature. (ii) Calculate the joint likelihood that each
gene/experiment belongs in each bicluster. (iii) For each gene / experiment add or
drop it from each bicluster according to the probabilities:

p(add|πlk) = e−πlk/T ;p(drop|πlk) = e−(1−πlk)/T , (2.6)

where T is the current annealing temperature or until the maximum number of
moves per iteration is achieved (the default value is 5) and πlk is the likelihood that
a given gene or experiment l belongs to bicluster k, as defined in Equation (2.5). (iv)
Lower the annealing temperature, then repeat steps (ii) - (iv) until the temperature
reaches 0 or its minimum value. By default, the annealing temperature begins at
0.15 and goes down in even steps to 0.05 over 100-150 iterations.

The result of this procedure yields biclusters of genes and experiments. These
data can be used to create “super genes” for use in a network inference algorithm.
By taking the list of genes in a bicluster, we can then average those values together
to create the expression values over experiments for this gene. The idea behind this
is that if these genes are part of the same pathway and behave like each other, then
we can reduce the amount of noise and variance in the expression measurements by
averaging their values together.

2.2.4 Walkthrough Example on Toy Data

We will now demonstrate cMonkey in action using a small toy example. Our ex-
ample will contain only 5 genes and 5 experiments. We begin by randomly select-
ing one of the five different methods for seeding a bicluster. Let’s assume that we
choose method 1: selecting a single random gene to start a bicluster and begin with

2.2 cMonkey 17

an annealing temperature of 0.15. Gene 3 is selected to begin the bicluster. We then
calculate the joint likelihood that each gene or condition belongs in this bicluster.
Table 2.1 represents the joint probability (the result of Equation (2.4)) that each
gene/experiment belongs in a bicluster containing only gene 3.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Gene 1 0.8 0.2 0.01 0.3 0.02
Gene 2 0.3 0.9 0.1 0.1 0.6
Gene 4 0.5 0.6 0.4 0.3 0.2
Gene 5 0.2 0.1 0.7 0.2 0.3

Table 2.1 Score of each gene/experiment with respect to gene 3.

We can see from Table 2.1 that there are some gene/experiment combinations
that have a good chance of actually belonging to this bicluster. Specifically, Gene
1/Experiment 1 and Gene 2/Experiment 2. Given the joint probabilities in Table 2.1,
we calculate the probability of each gene/experiment being added to the bicluster
using the left side of Equation (2.6). This takes into account the current annealing
temperature, which is set to 0.15 at the beginning. This gives us Table 2.2, which
shows 1− score.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Gene 1 0.99 0.73 0.07 0.86 0.12
Gene 2 0.86 0.99 0.49 0.49 0.98
Gene 4 0.97 0.98 0.93 0.865 0.74
Gene 5 0.74 0.49 0.99 0.73 0.86

Table 2.2 1−Score of each gene/experiment with respect to the new gene 3 bicluster. The numbers
are high because the annealing temperature is high. As the temperature cools, these scores will
decrease.

Gene/experiment values with high joint probabilities in Table 2.1 have corre-
spondingly high numbers in Table 2.2. To decide whether or not to add a particular
gene/experiment gx to the bicluster, we select a random number between 0 and 1. If
that random number is less than the value shown in Table 1.2 for gx, then we add gx.
Otherwise, don’t add gx to the bicluster. For example, suppose we select a random
number of 0.6 for the value of gene 1/experiment 1. Because the random number is
less than the listed value, we add gene 1/experiment 1 to the bicluster. By contrast,
if, for gene 1/experiment 2, we select a random number of 0.9. We do not add that
gene/experiment combination to the bicluster.

A similar process is then carried out to decide whether or not to drop gene/experiment
pairs from the bicluster, using the right side of Equation 2.6 instead of the left. Once
this process has been carried out for each bicluster (in this example, there is only
one), the annealing temperature is dropped. Dropping the annealing temperature af-

18 2 Step 1: Clustering Data

Bicluster built around

JHQH��·V�H[SUHVVLRQ�YDOXHV

1,1 1,2 2,22,52,3

1,3

1,4

2,1

1,5

4,1

3,1 3,3 3,53,43,2

Fig. 2.1 A figure showing an example bicluster that was seeded with the expression values of gene
3. The observations are labeled as boxes, with the numbers representing “gene number, experiment
number”. Dashed boxes are the 5 freshly added observations, and solid boxes indicate observations
that were already part of the bicluster. Shown outside of the bicluster are some other observations
that did not make the cut.

fects the results of Equation 2.6, making it less likely that a move is made. This pro-
cess continues until either the minimum annealing temperature is reached or until a
maximum number of moves (additions or deletions) is made for this turn, yielding
a collection of biclusters.

Parameter Name What it does Default Value

m Maximum number of moves per it-
eration

5

Tmax The starting annealing temperature 0.15
Tmin The ending annealing temperature 0.05
Tstep The number of steps between Tmax

and Tmin

100

2.3 Factor Analysis for Bicluster Acquisition (FABIA)

2.3.1 What it Does

Factor Analysis for Bicluster Acquisition (FABIA) [14] biclusters genes and exper-
iments using Factor Analysis. Factor Analysis takes a set of data (in our case, the
expression values of genes in experiments) and explains them in terms of an of-
ten smaller set of parameters called factors. In a non-genetic context, consider lung

2.3 Factor Analysis for Bicluster Acquisition (FABIA) 19

cancer data about people. Imagine that the data are rows of people with lung cancer
and columns are indirect data that are correlated with a direct cause of the cancer
(age, socio-economic status, location, etc.). What FABIA tries to do is explain the
underlying relationship between indirect data. For example, a direct cause of lung
cancer such as asbestos exposure (i.e., a “factor”) may be partially explained by a
combination of other features correlated with the direct cause, such as whether or
not a person lived in a time and area where asbestos exposure was common. FABIA
uses Expectation-Maximization [6] to generate the biclusters. Biclusters are then
ranked by mutual-information content, and weaker members of each bicluster are
optionally pruned with a threshold.

2.3.2 The Data

FABIA uses steady-state data. The experiments can be genetic or external pertur-
bations, and should be normalized to have mean 0 and standard deviation 1. Time-
series experiments may also be used, but they will be treated as individual steady-
state experiments.

2.3.3 The Strategy

FABIA tries to find a set of factors z that explain observed expression values in
X . To do this, we need to find a good set of weights called “factor loadings” that
connect a factor in z to the observation in X . Which genes are part of a given factor
zi is decided by the factor loadings in λ associated with zi. We also want to model
the measurement noise ε of each observation and then remove that noise in order to
calculate an “idealized” expression value (see Figure 2.2).

Formally, this can be modeled as:

X =
p

∑
i=1

λiz̃i + ε = Λ z̃+ ε, (2.7)

where ε is additive noise, p is the number of biclusters, λi is a sparse vector of factor
loadings, and z̃i is the ith value in a vector of z̃ factors. The approach to fitting this
model uses some advanced techniques.

For this model, we want to find the parameters Λ and Ψ that best explain the data.
Ψ = Cov(ε) is a matrix that represents the covariance of the noise of the expression
values in X . Λ (the factor loadings) represents the connections between factors in z
and observations in X . We find parameters to best explain X using the Expectation-
Maximization (EM) [6] algorithm.

Expectation-maximization (EM) is an iterative method for finding the maximum
likelihood of a set of parameters. FABIA uses a special kind of EM algorithm group

20 2 Step 1: Clustering Data

Observations (x)

1RLVH��Q�

/RDGLQJV��d�

Factors (z)

A B C

1 2

Q
1

Q
2

Q
3

Fig. 2.2 A figure showing the relationships between the different elements of FABIA. In this case,
the two factors (z) explain the three observations (x) through factor loadings (λ). Factor 1 connects
observations A and B. Factor 2 connects observations A and C. FABIA treats these factors as
biclusters, giving us 2 biclusters where bicluster 1 contains A and B, and bicluster 2 contains A
and C.

called “variational EM” [10] [24]. This implementation of the variational EM algo-
rithm places a Laplacian prior on the problem to enforce sparsity. This is similar to
the constraint that l1 optimization uses: non-zero values are implicitly penalized, so
“weak” connections will quickly drop to zero, yielding a more parsimonious result.
For variational EM, this is done by optimizing for the variational parameters ξ that
are part of the Lagrangian dual formulation of the problem. By optimizing the vari-
ational parameters, we obtain a lower bound on the likelihood of the model. The
goal is to find a maximum value for this lower bound. FABIA uses variational EM
to search for the combination of Λ and Ψ that fits the data the best. This works in
two steps. First, the expectation (E) step calculates the expected log-likelihood of
the current parameters, i.e., how likely it is that the current parameters fit the data
better than a null model. Next, the maximization (M) step computes a new set of
model parameters Λ and Ψ that maximize the expected log-likelihood from the pre-
vious E-step. These two steps are repeated until a maximum number of iterations is
reached or the model is changing too slowly.

Once we’ve obtained a good estimate of the parameters Λ and Ψ , we can rank
the resulting biclusters according to how much information each contains about the
data. We do this by calculating the mutual information between the data X and the
factors of each bicluster zT

i . The information content of a bicluster will grow with
the number of nonzero values (i.e., the size of the bicluster) in each λi, so in general,

2.3 Factor Analysis for Bicluster Acquisition (FABIA) 21

the larger the biclusters are then the more information about X they contain. Finally,
each bicluster may optionally be pruned by taking the absolute value of the factors
and factor loadings for each bicluster, and selecting only the values that are above a
certain threshold.

2.3.4 Walkthrough Example on Toy Data

FABIA works by iteratively adjusting the loading matrix Λ and the covariance ma-
trix of the noise Ψ . Imagine that we are working with a very small dataset of only 9
observations (3 genes, 3 experiments). We are looking to fit these 9 observations into
3 factors (biclusters). Λ is then a 3x9 matrix initialized randomly to values between
0 and 1. Ψ is initialized to be:

Ψ = diag(CoV(x)−ΛΛ
t). (2.8)

The variational parameters ξ are initialized to be 1.
Our initial guess, a randomly generated matrix, is a mess. It is likely that it is

fully connected, i.e., there is an edge from each observation to each bicluster. This
is obviously not a useful result, so we want to begin pruning the edges that don’t
belong. We then enter the E-step of the EM algorithm, where we calculate the log-
likelihood that the current parameters Λ and Ψ fit the data better than a null model.
The likelihood that each observation xi is a factor z j is calculated. Obviously, at this
point that, likelihood is going to be very low, as we have a random model right now.

Next, we use this likelihood in the M-step in order to find new matrices Λ and Ψ

that better explain the model. To update Λ , a convex quadratic problem is solved.
The basic idea though is that we use the likelihood from the E-step that each obser-
vation in X belongs to a given factor in z, given the rest of the observations currently
in that factor. The factor loading in Λ new is then updated to reflect the likelihood
that an observation xi is in factor z j. Small values of factor loadings are penalized
and forced to 0. Then, Ψ is updated using the updated Λ new. The basic idea behind
updating Ψ is to use the new information available from Λ new and from the likeli-
hoods calculated during the E-step to estimate the variance in the observations X . If
an observation strongly belongs into a bicluster, then maybe that gene really does
have a very high or very low value, and it isn’t simply a noisy observation. In this
case, the value in Ψ is reduced.

At the end of the M-step we have a slightly better guess as to which genes actually
belong to each bicluster. For our example, let’s say that Λ now looks like Table
2.3. We can see that observation 8 seems to strongly belong to factor 1, and that
observation 5 strongly belongs to factor 2. There are also several small values. These
are likely to drop to 0 in following iterations as their small values are penalized. As
more EM iterations are performed, these numbers will slowly change until either
the numbers converge to values and stop changing or we hit the maximum number

22 2 Step 1: Clustering Data

Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 Obs. 6 Obs. 7 Obs. 8 Obs. 9

Factor 1 0 0.5 0.3 0.1 0 0.2 0.9 0.4 0.2
Factor 2 0.1 0 0 0.9 0.5 0 0.2 0.1 0.6
Factor 3 0.2 0.1 0 0.4 0.3 0.1 0 0.5 0.3

Table 2.3 Example Λ matrix after 1 Expectation-Maximization step.

of iterations. The matrix Λ is then a map between our factors and observations, and
this map is used to create the biclusters.

Parameter Name What it does Default Value

p Maximum number of biclusters Depends on data
cyc Maximum number of iterations 500

Chapter 3
Step 2: Use Steady State Data for Network
Inference

3.1 Introduction

We say an organism is in steady state if the values of what we are measuring (e.g.
gene expression) won’t change unless we change its conditions in some way. For ex-
ample, the organism may be in one steady state in a low nutrient condition, another
in a high nutrient condition, and still another after some mutation has occurred and
we have waited until transient effects have died out. Steady-state data can arise from
experiments in which one or more genes have been knocked out, overexpressed, or
otherwise perturbed. If you know what happens to the network when a gene is miss-
ing or when it has been perturbed, it is easier to infer which genes it influences.

The following algorithms use steady-state expression data to infer networks.
Which algorithm to choose depends partly on the data that is available. We sug-
gest the “sweet spot” for each technique below.

3.2 Median-Corrected Z-Scores (MCZ)

3.2.1 What it Does

Median-Corrected Z-Scores (MCZ) [11] tied for first place in the DREAM4 net-
work topology inference challenge when mutation data but no time series data was
available. When both were available, then MCZ could be used as a one step in a
workflow as we explain in chapter 5. The basic idea is that if gene j influences i,
then knocking out j should change the value of i in a significant way. Whether or not
the knockout of gene j affects gene i is based on the number of standard deviations
the expression value of i is from its median value across all experiments. The further
away it is, the more likely that gene j has an effect on it.

23J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_3, � The Author(s) 2012

24 3 Step 2: Use Steady State Data for Network Inference

Rating: DREAM Best

3.2.2 The Data

For this challenge, two types of data were available for a 100 gene network: (i)
wild-type observations for each gene and (ii) a knockout dataset where there is one
experiment corresponding to each gene in which that gene is knocked out. The
DREAM4 in-silico challenge had a relatively small wild-type dataset with only 11
expression values for each gene. As explained in section 1, the DREAM datasets are
simulated datasets having similar noise statistics to real biological datasets but with
known correct answers that are hidden from the algorithm under test. The correct
answers are in the form of coefficients of positive or negative influence of one gene
on another.

3.2.3 The Strategy

In order to get a robust value for the median expression value of each gene, the algo-
rithm combines the wild type measurements of each gene with the gene’s expression
value in the knockout data set. The idea here is that the knockout of a gene g′ should
affect the expression values of only a few other genes, leaving the vast majority un-
perturbed. Hence, in the majority of the knockout experiments, a particular gene g
is unaffected by the knockout. The median of the combined dataset is used as an
estimate of the wild-type (non-knockout) population median. The median is used
because it is more robust to outliers than the mean. This value is represented by xwt .

In the DREAM4 data and in actual expression data, the noisiness of the data
is a function of the gene’s expression. Often, the higher the expression value, the
noisier the data. The z-score normalizes for this effect at least to some extent. If
we knock out a gene x j that had an edge to gene xi, we would expect to have the
value of xi change substantially in one direction or the other, moving us away from
the median. To calculate whether a gene xi is a target of a transcription factor (TF)
x j, we calculate the z-score with respect to the median of xi for the x j knockout
experiment

z(xi|xko
j) =

xko
i j − xwt

i

σi
, (3.1)

where xko
i j is the value of xi given that x j is knocked out, xwt

i is the median of the wild-
type and knockout datasets for xi (the population median), and σi is the standard
deviation of the wild-type and knockout datasets for xi. By calculating the MCZ
for each combination of gene i with gene j removed, we can obtain a ranking of
regulatory interactions that can be used to build a network topology. Thus, j ranks
higher than k in its influence on i if knocking out j yields a greater Z score for i than
the Z score for i when knocking out k.

3.2 Median-Corrected Z-Scores (MCZ) 25

3.2.4 Performance on Examples

The performance of MCZ was tested on the example small 10 gene network and
large 100 gene network from the DREAM4 In-Silico Challenge. The DREAM4
challenge provided a very complete dataset, including knock-out, knock-down,
time-series, and wild-type data. MCZ performs extremely well on the small 10 gene
network. The area under the receiver-operator characteristic curve (AUROC) is 0.90.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve - 10 Gene Network

MCZ

Fig. 3.1 MCZ’s ROC curve for the DREAM4 10 gene network. (AUROC = 0.90)

The ROC curve in Figure 3.1 is a good indicator that the edges with the highest
scores are in fact likely to be real edges. The precision-recall curve also shows good
performance with an area of 0.65. What this precision-recall curve tells us is that
the highest ranked edges from MCZ are very accurate, and then we start falling into
a “saw tooth” pattern, where a false guess is made, followed by a correct guess. In
fact, this graph tells us that roughly 20% of the true positives appear without a single
false positive (a guessed edge that is not a real edge). About 60% of MCZ’s guesses
are correct by the time it has recovered 60% of the true edges. This is extremely
good performance.

Not all real world datasets are as complete as this simulated DREAM4 dataset,
so what happens if we use less data? The results from table 3.1 are roughly the
same as long as we have knock-down and/or time-series data contributing to the
wild-type median. However, if we use only the provided wild-type data to estimate

26 3 Step 2: Use Steady State Data for Network Inference

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
Precision-Recall Curve - 10 Gene Network

MCZ

Fig. 3.2 MCZ’s Precision-Recall curve for the DREAM4 10 gene network. (AUPR = 0.65)

Fig. 3.3 MCZ’s inferred network for the DREAM4 10 gene network. The top 25% of the ranked
edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines
are incorrect guesses. In the top 25% of edges, MCZ misses some of the edges involving G3.

3.2 Median-Corrected Z-Scores (MCZ) 27

Full Data No KD No TS No KD & No TS

AUROC 0.90 0.89 0.90 0.77
AUPR 0.65 0.63 0.64 0.50

Table 3.1 Table of areas under the receiver-operator curve (AUROC) and the precision-recall
curve (AUPR) for MCZ for the entire small 10 gene dataset, when knock-down (KD) data are
removed, when time-series (TS) data are removed, and both knock-down and time-series data are
removed. All runs include the knock-out and wildtype datasets. The results are roughly the same
as long as either knock-down or time-series data are used. However, if neither is used, MCZ does
not perform as well.

the median, MCZ does not perform as well. The reason is that the wild-type data
provided are not an accurate estimate of the actual median expression value, and we
cannot obtain a good estimate without at least one of the other datasets.

MCZ works well on a small dataset, but how does it work on a larger dataset?
MCZ scales well to the 100 gene network from the DREAM4 challenge (Table 3.2).

Full Data No KD No TS No KD & No TS

AUROC 0.91 0.90 0.91 0.90
AUPR 0.45 0.49 0.45 0.48

Table 3.2 Table of areas under the receiver-operator curve (AUROC) and the precision-recall
curve (AUPR) for MCZ for the entire large 100 gene dataset, when knock-down (KD) data are
removed, when time-series (TS) data are removed, and both knock-down and time-series data are
removed. All datasets include knock-out and wild-type data. The extra data help less for the larger
dataset than for the smaller one.

For this dataset there was no substantial difference between using the full dataset
to estimate the median expression value of each gene or only part of it. This sug-
gests that the provided wild-type dataset provides a good estimation of each gene’s
median expression values, and that little was gained by adding more information.

On both of the test datasets, MCZ performs very well. It also scales well. The
running time of the algorithm on both the small and the large network is under 30
seconds. If you have both a full set of knock-out data and wild-type expression data,
MCZ should be used.

28 3 Step 2: Use Steady State Data for Network Inference

3.3 Network Identification by Multiple Regression (NIR)

3.3.1 What it Does

Network Identification by Multiple Regression (NIR) [9] uses multiple regression
to infer networks from steady state expression data resulting from a known initial
perturbation. The basic assumption is that a network of genes can be approximated
by a system of linear equations:

dX/dt = AX +U (3.2)

where X is an n by m matrix of steady-state expression data. In X , each column
represents an experiment and the rows represent genes. A is an n by n normally dis-
tributed matrix representing the network model. This matrix representation implies
that each gene’s expression is a linear sum of a row of coefficients from A and gene
values from X . U is an n by m matrix representing the degree to which the gene that
is the target of a perturbation is perturbed in each experiment (as a value between 0
and 1). For example, if the gene is fully knocked out, it may have a value of 1. A
gene that is knocked-down may have a value of 0.5. Genes that have not been ex-
perimentally perturbed have values of 0. dX/dt represents how much the expression
data are changing per unit of time. Since NIR is used with steady-state data (that is,
the data are assumed to change little over time), dX/dt is set to 0. Thus, the above
equation reduces to:

−U = AX (3.3)

Multiple regression is used to select a promising network model A.

Rating: DREAM Fair

3.3.2 The Data

NIR infers networks from steady-state data. Each gene is assumed to have been
perturbed in at least one experiment. These perturbations must be relatively “small”.
Gardner, et al. [9] define “small” as being an experiment that does not knock the
network out of its steady-state basin of attraction. Intuitively, this means that the
perturbation should be small enough such that the linear approximation works. In
practice, this means try NIR if you have perturbation data and hope for the best.

3.3 Network Identification by Multiple Regression (NIR) 29

3.3.3 The Strategy

The U matrix is an n by m matrix that marks which genes were perturbed in each
experiment. In the simplest case, U is a binary matrix, where a 1 at position i, j
indicates that gene i was perturbed in experiment j. The A matrix is an n by n matrix
that holds the network estimation. This is the matrix we are trying to find. X is the
n by m matrix of expression values, where there are n genes and m experiments. We
can think about the above equation more concretely by taking just one row ai from
A and one column x j from X , solving for ui j of U . We want to find a combination of
values in ai that, when multiplied by x j and added together, equals−ui j. Since there
are an extremely large number of possible solutions, we need some way to select
the best answer.

NIR picks the solution by creating a multiple linear regression model. A multi-
ple regression is a model that can account for more than one independent (predictor)
variable. For example, consider estimating the price of a house. Example indepen-
dent variables that a house price model might include are: number of bedrooms,
number of bathrooms, age of the house, and size. We can then build a multiple re-
gression model from housing data. Building this model gives an estimate of how
much each of these predictor variables influence the price. It also allows us to esti-
mate the price of a new home, given the predictor variables. NIR applies this to each
experiment. The independent variables are each possible set of k out of n genes. k is
a user-defined parameter that enforces sparsity in A limiting the maximum number
of dependencies each “target” gene can have on other genes. The dependent variable
is the negative perturbation (−ui j) value for the target gene/experiment. These steps
are repeated for each gene/experiment combination. The network matrix A is built
from the model weights that best predict each gene.

Specifically, NIR uses least squares regression. Least squares regression attempts
to minimize the sum of squares cost function:

SSEk
i =

M

∑
l=1

(yil− b̀T
i · zl)

2 (3.4)

where k represents the set of genes being examined, i is the target gene, l is the
current experiment, yil is the negative perturbation value for gene i in experiment l,
b̀ are the model weights for gene i, and zk

l are the expression values for the currently
selected set of k genes in experiment l. The basic idea is to choose the weights b̀
that minimize the sum of squared errors. Intuitively, the squared error measures the
difference between how much the target gene was perturbed and the perturbation
that the current model represents. For example, if the gene and the experiment that
are currently being analyzed have a perturbation value in U of 1, then ideally we’d
like to find a set of k weights b̀ (where at least one weight is non-zero) whose
dot product with the current experiment’s expression values is equal to -1 (since
yil = −uil), making the error 0. The source nodes of the edges having non-zero
weights correspond to the genes that regulate the target gene i.

30 3 Step 2: Use Steady State Data for Network Inference

For each gene, the model with the smallest sum of squared error is then tested
for significance using a F-Test:

F =
(SSE0−SSEk)/k

SSEk/(m− k)
(3.5)

where SSE0 is the sum of squared errors when the weights b̀ are set to 0. The F-test
is comparing the error in the inferred model to the error from the null hypothesis
(where the model is set to 0). If the F-Score is higher than a threshold F*, our
model fits the data significantly better than the null hypothesis. The F* threshold
is the value of an F-distribution with k and m− k degrees of freedom at a desired
confidence level. Finally, we can use the model weights to fill in the target gene’s
connections in the network matrix A, giving us our network.

A practical limitation of NIR is its runtime.
(n

k

)
nm multiple regressions must be

run to exhaustively cover all possible solutions. This severely limits the usefulness
of NIR for even relatively small networks. Recently, Gregoretti, et al. [12] imple-
mented a parallelized and optimized form of NIR to alleviate this problem. The
major speedup comes from running the multiple regressions in parallel with each
other across multiple processors. Since each regression can be run independently of
all of the others, the overall runtime of NIR can be cut in proportion to the number
of processors available to run it. The result is still exponential of course, but the
speedup increases the sizes of the networks that can be modeled.

Parameter Name What it does Default Value

k Maximum number of edges any
gene can have to others

5

3.3.4 Performance on Examples

NIR was tested using the 10-gene DREAM4 network and a DREAM4 100-gene
network. NIR’s main parameter is called k, which controls the maximum number of
connections each gene is allowed to have.

NIR only achieved rather poor performance on the small network. It has a some-
what low area under the ROC curve (0.66 at k = 5), and a low area under the
precision-recall curve (0.23 when k = 3).

These results are interesting. The parameter k does not seem to have much effect
across different runs of NIR. The reason is that the component of NIR that is enforc-
ing sparsity quickly switches to Least Angle Regression rather than the parameter k.
While it is good news that NIR is not extremely sensitive to its parameter k (at least
in the large network), it does not perform very well. The area under the ROC curve
is only about 0.62 for each value of k, and the area under the precision-recall curve
is about 0.07.

3.3 Network Identification by Multiple Regression (NIR) 31

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 10 Gene Network

NIR K=3
NIR K=5

Fig. 3.4 NIR’s ROC curve for the DREAM4 10 gene network at different values of k, the parameter
that describes how many connections each gene can have. (Best AUROC = 0.66 at k = 5.)

There is a possible reason for this poor performance: not enough combinations
of edges were tried. This implementation of NIR uses a heuristic to try to select the
best combinations of edges iteratively, instead of exhaustively trying each possible
combination. It is simply not feasible to try every possible combination of genes on
a 100 gene network without severely limiting the number of edges each gene can
have. Even then, the number of regressions to perform grows too quickly to remain
feasible on larger networks.

32 3 Step 2: Use Steady State Data for Network Inference

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

Precision-Recall Curve - 10 Gene Network

NIR K=3
NIR K=5

Fig. 3.5 NIR’s precision-recall curve for the DREAM4 10 gene network at different values of k,
the parameter that describes how many connections each gene can have. (Best AUPR = 0.23 at
k = 3.)

Fig. 3.6 NIR’s inferred network for the DREAM4 10 gene network. The top 25% of the ranked
edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines
are incorrect guesses. NIR infers only six correct edges in the top 25%, and misses all of the edges
around G1 and G10.

3.3 Network Identification by Multiple Regression (NIR) 33

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 100 Gene Network

NIR K=10
NIR K=12
NIR K=15
NIR K=20

Fig. 3.7 NIR’s ROC curve for the DREAM4 100 gene network at different values of k, the pa-
rameter that describes how many connections each gene can have. (AUROC is about 0.62 for most
values of k.)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 100 Gene Network

NIR K=10
NIR K=12
NIR K=15
NIR K=20

Fig. 3.8 NIR’s precision-recall curve for the DREAM4 100 gene network at different values of k,
the parameter that describes how many connections each gene can have. (AUPR is about 0.07 for
most values of k.)

34 3 Step 2: Use Steady State Data for Network Inference

3.4 Gene Network Inference with Ensemble of trees (GENIE3)

3.4.1 What it Does

GENIE3 is an algorithm that uses an ensemble of regression trees to infer networks
from multifactorial data. Multifactorial data are created by perturbing some or all
of the genes in a dataset (e.g. by providing a nutrient) and then taking a measure-
ment after the organism has reached steady state. This is in contrast to the steady
state data we’ve used previously, where only one perturbation was applied at a time.
GENIE3 was the best performer in both the DREAM4 and DREAM5 In Silico Mul-
tifactorial Challenges. These challenges used only multifactorial data to create a
network, as opposed to the single gene knockout experiments used in many of the
other challenges.

Rating: DREAM Good

3.4.2 The Data

GENIE3 is the preferred method for multifactorial data, though it can also be used
with any other kind of steady-state data or time-series data (by treating the time-
series data as steady-state).

3.4.3 The Strategy

The GENIE3 algorithm operates on expression data where each gene’s expression
has been normalized to unit variance (i.e., variance of 1) and mean 0. The algorithm
works in three steps: First it creates an ensemble of regression trees for each gene in
the network. Next, possible regulators are ranked from each regression tree. Finally,
it ranks the inferred edges overall.

3.4.3.1 Step 1: Regression Trees

GENIE3 creates a regression tree to predict the behavior of each gene g in the
dataset. Regression trees work by recursively splitting the dataset into ever smaller
subsets. The nodes of the regression tree will split the dataset based on values of
genes other than g. To avoid ambiguity with the term node in the final result, we
will call the regression tree nodes decision points. Each decision point splits the
dataset into two sub-datasets such that each sub-dataset has a small variance in the
target gene’s expression values. The split is based on a single gene x other than g

3.4 Gene Network Inference with Ensemble of trees (GENIE3) 35

and a threshold value for x. The idea is that if gene x causes a split in the regression
tree for target g, then there is a potential causal gene from x to g. We then look at x’s
expression value in each experiment (where the experiment may be a perturbation
experiment on x or on any other gene or simply a treatment experiment on the whole
organism). If the expression value of x in the experiment is above the threshold, the
experiment goes into one group. If the expression value is below the threshold, the
expression goes into the other group. This process is continued recursively on the
sub-datasets until no more splits can be made (i.e., it is fully split).

As an example, consider the following table:

Experiments Genes

G1 G2 G3 Target

E1 0.4 0.8 0.4 0.5
E2 0.3 0.2 0.3 0.9
E3 0.5 0.3 0.7 0.8

Table 3.3 Example data for GENIE3. The idea behind the GENIE3 algorithm is to split this data
into two groups of experiments that have minimal variance on the target gene.

We want to split the experiments into two groups that minimize the variance of
the target gene’s expression values. We can see that the ideal split is to have experi-
ment E1 alone in one group, and E2 and E3 in the other group. For this purpose, G2
is the best candidate. Since G2’s value in E1 can be cleanly split from its value in E2
and E3, we can select 0.5 as a threshold (as it is between G2’s E1 and E3 values).
Any values above 0.5 go to group 1, and any values less than or equal to 0.5 go to
group 2.

Group Experiments Genes

G1 G2 G3 Target

Group 1 E1 0.4 0.8 0.4 0.5

Group 2 E2 0.3 0.2 0.3 0.9
E3 0.5 0.3 0.7 0.8

Table 3.4 Example data for GENIE3 from 3.4.3.1 with the split inserted as the thick line between
experiments. Splitting the dataset into groups 1 and 2 minimizes the variance of each of the groups.

When G2’s expression value is above 0.5, the target gene has low expression
values. When G2’s value is below 0.5, the target gene has high expression values.
Thus, we have identified a potentially casual edge (that G2 has a repressive effect
on the target gene).

36 3 Step 2: Use Steady State Data for Network Inference

Fig. 3.9 The tree after the first split. The top circle represents the entire dataset. The rectangle
represents the decision node, containing the criteria of the split. The child circles contain their
respective experiments after the split.

3.4.3.2 Step 2: Selecting the split using Random Forests

In order to find splits that are robust to slight changes in the data, Random Forests [4]
are used. Random Forests use bootstrapping and random feature selection to reduce
variance across the dataset by averaging predictions. For each tree in a Random
Forest, a bootstrap training set of about 2/3 the size of the original dataset is created
by random sampling of the set of experiments with replacement. The tree is then
built by taking K random splits for each decision node. From the Random Forest
literature, K is usually defined as K =

√
p−1 or K = p−1 where p is the number

of potential regulators (e.g. transcription factors) if known. The decision split is the
randomly chosen split that most reduces the variance of the target gene’s expression
values.

An importance score is then calculated for each decision point in the tree:

I(N) = #SVar(S)−#StVar(St)−#S fVar(S f) (3.6)

where N is the current decision point being evaluated, S is the subset of experiments
that are below decision point N in the tree, St and S f are the subsets of experiments
on the true and false branches of decision point N, respectively, Var(.) is the vari-
ance of the target gene in a subset, and # denotes the number of experiments in
its associated subset. This importance score is a measure of how much variance is
explained by splitting the dataset on the decision point’s gene and threshold. Intu-
itively, it can be read as “how much is the variance of the dataset at decision point
N reduced by subtracting out the variance of each of the subsets, weighted by the
number of experiments in each set?” If the score is high, than that means that the
variance is substantially reduced and this gene might regulate the target gene (as in

3.4 Gene Network Inference with Ensemble of trees (GENIE3) 37

the example shown above from step 1). If the score is low, then the split did not
reduce much variance, and this gene probably does not regulate the target gene.

3.4.3.3 Step 3: Ranking possible regulators from each tree

Once a tree for a gene g is created, we can rank the influence of every other gene
on g. A score for a potential regulator gene g′ is calculated by summing all of the
importance scores from the nodes where g′ was selected for splitting. Genes that
are never selected for splitting are given scores of 0. We can then rank the scores to
determine which genes g′ were most important for regulating gene g.

3.4.3.4 Step 4: Ranking the inferred edges

In [15], 1000 Random Forests are created. Importance scores are generated for each
tree in each forest, giving a list of potential regulators for each tree. The trees be-
longing to each target gene are then grouped together, and the importance scores for
potential regulators are then averaged together. These averaged scores can then be
used to rank potential regulators for each gene.

Parameter Name What it does Default Value

K Number of splits to
test per node

[15] uses
√

p−1
where p is the num-
ber of transcription
factors (if known),
otherwise N−1.

3.4.4 Performance on Examples

GENIE3 was tested using the 10-gene DREAM4 network and a DREAM4 100-
gene network. Here, we tested GENIE3’s results when using different amounts of
data. GENIE3 won the DREAM4 multifactorial challenge. This means that GENIE3
performed better than any other algorithm using only multifactorial (MF) data. We
tested GENIE3 by adding the different DREAM4 datasets one at a time.

GENIE3 performed very well on the small 10-gene network. Using only the mul-
tifactorial data, GENIE3 gave impressive results (AUROC = 0.71, AUPR = 0.30).
As expected, when the other data are added, GENIE3 performs much better (Max
AUROC = 0.86, Max AUPR = 0.43).

Performance on the ROC curve remains fairly strong in the 100 gene net-
work using all of the datasets (AUROC = 0.70), but the precision-recall curve is
weak (AUPR = 0.05). This means that, overall, the precision (proportion of cor-
rect guesses to total number of guesses made so far) is low compared to the recall

38 3 Step 2: Use Steady State Data for Network Inference

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 10 Gene Network

MF
MF KO
MF KO WT
MF KO WT KD

Fig. 3.10 GENIE3’s ROC curve for the DREAM4 10 gene network using multifactorial (MF),
knockout (KO), wildtype (WT), and knockdown (KD) datasets. Best performance (AUROC = 0.86)
was achieved with only multifactorial and knockout datasets.

(proportion of correct guesses to the total number of real edges), while the recall
compared to the false positive rate (proportion of false positives to total number of
edges) remains high. In short, GENIE3 is pretty good at guessing edges, but it can
make quite a few incorrect guesses for each correctly inferred edge. GENIE3 should
be used when inferring networks from multifactorial data.

3.4 Gene Network Inference with Ensemble of trees (GENIE3) 39

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

Precision-Recall Curve - 10 Gene Network

MF
MF KO
MF KO WT
MF KO WT KD

Fig. 3.11 GENIE3’s precision-recall curve for the DREAM4 10 gene network using multifactorial
(MF), knockout (KO), wildtype (WT), and knockdown (KD) datasets. Best performance (AUPR =
0.43) was achieved when using all datasets.

Fig. 3.12 GENIE3’s inferred network for the DREAM4 10 gene network. The top 25% of the
ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed
lines are incorrect guesses. In the top 25% of edges, GENIE3 is unable to correctly infer G1 and
G10’s relationships to other genes.

40 3 Step 2: Use Steady State Data for Network Inference

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 100 Gene Network

MF
MF KO
MF KO WT
MF KO WT KD

Fig. 3.13 GENIE3’s ROC curve for the DREAM4 100 gene network using multifactorial (MF),
knockout (KO), wildtype (WT), and knockdown (KD) datasets. Best performance (AUROC = 0.70)
was achieved using all of the datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 100 Gene Network

MF
MF KO
MF KO WT
MF KO WT KD

Fig. 3.14 GENIE3’s precision-recall curve for the DREAM4 100 gene network using multifac-
torial (MF), knockout (KO), wildtype (WT), and knockdown (KD) datasets. Best performance
(AUPR = 0.05) was achieved when using all datasets.

3.5 Context Likelihood of Relatedness (CLR) 41

3.5 Context Likelihood of Relatedness (CLR)

3.5.1 What it Does

The Context Likelihood of Relatedness (CLR) [8] algorithm uses mutual informa-
tion to infer networks from steady-state data. Mutual information is a measure of
dependence between two random variables. In this case, mutual information is used
as a metric of similarity between two gene expression profiles. The intuition is that
if genes g and g′ are connected by an edge, then the expression value of g gives us
some information about g′ (i.e. g’s expression value affects the expression value of
g′). If g and g′ have no edge, then knowing the expression value of g tells us noth-
ing about the expression of g′. The mutual information score indicates how much
information is shared between the genes. A score of 0 indicates that there is no
information shared between two genes.

The basic idea behind CLR is to form a matrix of mutual information scores by
calculating the mutual information between each pair of genes in the network. These
scores are then compared to a background distribution and a z-score is calculated. A
high z-score indicates a potential mutual information edge in the network between
the two genes, while a low z-score means that there probably isn’t an edge. CLR can
output only undirected edges due to the bidirectional nature of mutual information.
If transcription factors are known, then we can guess the directionality when exactly
one of the genes is a transcription factor.

Rating: DREAM Good

3.5.2 The Data

CLR uses either over-expression or knockout steady-state experiments to infer a
network. Recall that over-expression data can be obtained by mutating an organ-
ism so that certain genes have greater expressions than they would naturally. An
over-expression mutant for g can either produce excess amounts of g throughout its
lifetime or only when the experimentalist wishes. For the purpose of this descrip-
tion, we don’t distinguish the two possibilities.

3.5.3 The Strategy

First, the mutual information between each pair of genes is calculated:

I (X ;Y) = ∑
i

∑
j

p(xi,y j) log
p(xi,y j)

p(xi)p(y j)
(3.7)

42 3 Step 2: Use Steady State Data for Network Inference

where p(xi,y j) is the joint probability density function between Xi (the expression
profile of genei) and Yj (the expression profile of gene j). p(xi) and p(y j) are the
marginal probability density functions of Xi and Yj, respectively. Marginal proba-
bility density functions are the probability densities for a subset of the data (in this
case, looking at the expression profiles of each gene separately). The marginal prob-
ability density functions are a measure of how likely it is that an expression value
x is a member of the expression profile of its gene X . The probability of x being a
member of its expression profile X is low when x is greater or less than would be
expected by the rest of the values in X . A high value suggests that there is a potential
edge between genes X and Y .

Once a matrix of mutual information scores for each gene pair has been calcu-
lated, CLR estimates the likelihood of each pair of scores (a z-score) by comparing
them with a background mutual information distribution (MIi and MI j). MIi and MI j
are each just one row of all of the mutual information values for genei and gene j,
respectively. The idea here is to look at how far away a mutual information score is
from the rest of the mutual information scores from that gene. If the score is sub-
stantially higher than most of the other scores, there is a good chance that an edge
exists. The scores from each gene can be used as a background distribution, because
genes, as we have mentioned, tend to depend on only a small number of other genes.
Most of the mutual information scores will not be zero due to measurement noise or
indirect edges, so these scores can be used as a background noise distribution. Once
a z-score for each pair of genes has been calculated, the final step is to calculate the
CLR score. It is again calculated for each pair of genes:

f (Zi,Z j) =
√

Z2
i +Z2

j (3.8)

Zi and Z j are the z-scores calculated from the background distribution above.
f (Zi,Z j) is the joint likelihood measure. This step gives us a single score for ev-
ery pair of genes that we can compare to the score of each other pair of genes.
Finally, we can rank the CLR scores and use the top N scores to build a network.
The value of N must be chosen carefully, however, since if the gold standard is un-
known then we can’t be sure where in the ranking edges become invalid. In practice,
the computational analyst will provide this ranking and the experimentalist will test
the topmost ranked genes.

3.5.4 Performance on Examples

CLR was tested using the 10-gene DREAM4 network and a DREAM4 100-gene
network. Two parameters were tested: the number of bins (from five to 15) and the
type of CLR used (there are five types). Each type is a slight variation on the original
algorithm. Overall, the version used in [8] outperformed the rest. Due to the large
number of parameter combinations tested, only the top five results appear in each
graph.

3.5 Context Likelihood of Relatedness (CLR) 43

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 10 Gene Network

clr plos Bins-5
clr plos Bins-6
clr plos Bins-7
clr plos Bins-9

Fig. 3.15 CLR’s ROC curve for the DREAM4 10 gene network. (Best AUROC = 0.81 at 6 bins.)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 10 Gene Network

clr plos Bins-5
clr plos Bins-6
clr plos Bins-7
clr plos Bins-9

Fig. 3.16 CLR’s precision-recall curve for the DREAM4 10 gene network. (Best AUPR = 0.48 at
6 bins)

44 3 Step 2: Use Steady State Data for Network Inference

Fig. 3.17 CLR’s inferred network for the DREAM4 10 gene network. The top 25% of the ranked
edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines are
incorrect guesses. In the top 25% of edges, CLR does well, inferring 10 correct edges, but misses
G10’s connections.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve - 100 Gene Network

clr plos Bins-6
clr plos Bins-7
clr plos Bins-8
clr plos Bins-9

Fig. 3.18 CLR’s ROC curve for the DREAM4 10 gene network. (Best AUROC = 0.85 at 8 bins.)

CLR performs very well on the small 10 gene network, and the best performance
is achieved using six bins. The precision-recall curve shows that the highest ranked
genes from CLR are reliable. The area under the precision-recall curve and the area
under the ROC curve are both very high.

3.5 Context Likelihood of Relatedness (CLR) 45

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

Precision-Recall Curve - 100 Gene Network

clr plos Bins-6
clr plos Bins-7
clr plos Bins-8
clr plos Bins-9

Fig. 3.19 CLR’s precision-recall curve for the DREAM4 10 gene network. (Best AUPR = 0.17 at
8 bins)

Performance is also strong on the larger 100 gene network, with eight bins yield-
ing the best performance. Setting the number of bins appropriately is important for
CLR’s results. In our testing, we found that around 6-8 bins tends to perform the
best for networks like these. In practice, CLR was not very sensitive to the value
of this parameter on the 100 gene network. The precision-recall and ROC curves
look similar for any value of bins above four. CLR was much more sensitive to the
parameter on the smaller 10 gene network. In order to estimate the number of bins
to use on an unknown network, we ideally would find a known, but similar (in terms
of size and data features) network to optimize. If nothing is known, keeping the
value small, around five or six, seems to be a good strategy. The precision-recall
curve again shows that the highest ranked edges can be trusted to be correct, though
the precision falls much faster than in the smaller network. Overall, CLR does a
very good job at inferring the network, and provides reliable results across the two
datasets.

46 3 Step 2: Use Steady State Data for Network Inference

3.6 Semidefinite Programming

3.6.1 What it does

Convex optimization (or convex programming) is a broad class of optimization al-
gorithms that relies on the assumption that the function being minimized is a convex
function that exists in a convex set. A function is convex if a line can be drawn be-
tween any two points on the function, and the graph of the function lies below that
line. An upward-facing parabola is a simple example. Any line drawn across the
parabola has the cup of the parabola below it. Intuitively this method works when
the function has a single minimum on the set and there are no deceptive local min-
ima. In other words, the method works when greedy methods work.

Convex optimization generally takes place in the context of constraints. Con-
straints are used to tell the optimizer what we know about the answer to the problem.
As an example, when inferring a gene network using optimization, we may know
that certain edges exist, so we can solve the problem with the constraint that those
edges are in the answer.

There are many strategies for solving convex optimization problems. The two
used here are linear programming and semidefinite programming. A linear program
consists of a linear cost function to be minimized, and a series of linear constraints
to be considered while optimizing. The space where all of the constraints hold true
is the feasible space. A point is chosen in the feasible space, and one of many opti-
mization methods are performed to iteratively move toward the optimal point: min-
imizing the cost function while meeting the constraints. Semidefinite programming
works in a similar way, except that the cost function and constraints are positive
semi-definite matrices. Essentially, this relaxes some of the simplifications a linear
program has to make, though it becomes slightly more difficult to solve.

Rating: DREAM Fair

3.6.2 The Data

Steady-state data are used to infer the networks using semidefinite programming.
Knockdown and overexpression data may be used. Knockout data may perturb the
network too much for this approach.

3.6.3 The Strategy

Zavlanos, et al. [31] use semidefinite programming to infer gene regulatory net-
works. To do this, a network of n genes is modeled as an n dimensional dynamical

3.6 Semidefinite Programming 47

system. The dynamical system of m steady state experiments can be written as

AX̃ +BU = 0, (3.9)

where X̃ is an n by m matrix of steady-state expression data, A is the n by n net-
work model, U is an p by m matrix of which genes were perturbed in which ex-
periment, and B is an n by p matrix that indicates which genes are affected by the
transcriptional perturbations. Generally, we don’t know U , so it is assumed that we
can perturb each individual gene, and U is chosen so that BU is a diagonal matrix.

The basic strategy is to first solve a linear programming problem to obtain a ma-
trix A. Then, if the matrix A is unstable, solve a semidefinite programming problem.
Continue solving these until A is stable. Stable means that all of the eigenvalues
have strictly negative real parts. When this is true, choosing any x for ẋ = Ax will
eventually converge to the same value, i.e., they are in a stable basin of attraction.
The linear program that generates the initial solution for A is

min t
n

∑
i, j=1

wi j|ai j|+(1− t)ε

s.t. ||AX +BU ||1 ≤ ε

ε > 0
A ∈ S,

(3.10)

where S is an n by n matrix of known connections, ||AX +BU ||1 denotes the l1 norm
of matrix AX +BU , and ε is the error of the fit between the model and the data in X .
The parameter t is a tradeoff parameter between the sparsity of A and the accuracy
of the model. The importance of sparsity is increased as t approaches 1, and the
importance of minimizing the error is increased as t approaches 0. The weights are
chosen by

wi j =
δ

δ + |ai j|
, for all i, j = 1, . . . ,n, (3.11)

for some sufficiently small δ > 0. The linear program in (4.14) and the weight up-
date function (3.11) are run until A converges.

Once a final matrix A is obtained from (4.14), a semidefinite program is run
iteratively as long as A remains unstable. The goal of this procedure is to find “small”
perturbations to A that render it stable while maintaining the necessary constraints.
Stability refers to the size of the perturbation required to knock a given matrix of a
dynamical system into a new solution. That is, for any starting point of expression
values that we choose that is close to the expression values we have, they will settle
into the same values over time. However, if the expression values at the starting
point are too far away, they will settle to different values. The more stable a matrix,
the larger the perturbation required to get it into a new basin of attraction. So, if A is
unstable, the idea is to find a nearby matrix A′ that is stable, and move to that. The
resulting matrix A is then used as our network.

48 3 Step 2: Use Steady State Data for Network Inference

3.6.4 Performance on Examples

Semidefinite programming was tested using the 10-gene DREAM4 network and a
larger 20-gene network. For networks larger than 25 genes, the memory require-
ments become far too large for some parameter combinations. Testing was done
over the parameter t at points between 0 and 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve - 10 Gene Network

ConvOpt T-0.0
ConvOpt T-0.005
ConvOpt T-0.01
ConvOpt T-0.03

Fig. 3.20 Semidefinite programming’s ROC curve for the DREAM4 10 gene network. (Best AU-
ROC = 0.70 at t = 0)

Semidefinite programming performs well on the small 10 gene network. Notice
that when t ≥ 0.06 the algorithm does no better than random. Thus, it is extremely
important to set the parameter t to a good value. In testing, we found that when t is
between 0 and 0.05, the algorithm works well. The precision-recall curve shows that
for good values of t, the highest ranked genes are reliable. The high area under the
precision-recall curve is due to very few guesses being made at t = 0.04. Only nine
guesses were made, and three of them were correct (leaving six false positives).

The algorithm also performs well on the larger 20 gene network. The high area
under the precision-recall curve results from the fact that the algorithm makes fewer
guesses at t = 0.07. Only 10 guesses were made, and three of them were correct.

One great feature of this algorithm is its ability to directly implement prior
knowledge as constraints in the optimization. This allows us to easily create a prior
network in another algorithm such as MCZ and prune it using this semidefinite pro-
gramming algorithm. We’ll see more of this later in the Pipelines chapter.

3.6 Semidefinite Programming 49

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
Precision-Recall Curve - 10 Gene Network

ConvOpt T-0.0
ConvOpt T-0.005
ConvOpt T-0.01
ConvOpt T-0.03

Fig. 3.21 Semidefinite programming’s precision-recall curve for the DREAM4 10 gene network.
(Best AUPR = 0.63 at t = 0.04)

Fig. 3.22 Semidefinite programming’s inferred network for the DREAM4 10 gene network. The
top 25% of the ranked edges were used. Solid lines are correct guesses, dotted lines are missed
edges, and dashed lines are incorrect guesses. In the top 25% of edges, Semidefinite Programming
misses some edges, mostly around G1 and G10.

50 3 Step 2: Use Steady State Data for Network Inference

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 20 Gene Network

ConvOpt T-0.005
ConvOpt T-0.02
ConvOpt T-0.04
ConvOpt T-0.07

Fig. 3.23 Semidefinite programming’s ROC curve for the 20 gene network. (Best AUROC = 0.64
at t = 0.04)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 20 Gene Network

ConvOpt T-0.005
ConvOpt T-0.02
ConvOpt T-0.04
ConvOpt T-0.07

Fig. 3.24 Semidefinite programming’s precision-recall curve for the 20 gene network. (Best AUPR
= 0.37 at t = 0.07)

Chapter 4
Step 3: Using Time-Series Data

4.1 Introduction

Time-series data gives information about the values of genes at a series of consec-
utive time points. This temporal information can be exploited to infer directionality
of edges, or help to infer causal relations between genes. However, adding temporal
information also creates a more complex dataset. It adds interdependencies between
experiments (time-points) that don’t exist in steady-state data, so more care has to
be taken in analysis. Three types of algorithms will be presented in this section: mu-
tual information, ordinary differential equations with l1 regularization, and dynamic
Bayesian Networks. Each of these approaches makes different assumptions about
the data.

4.2 Time-Delay ARACNE

4.2.1 What It Does

Time-Delay ARACNE is a mutual information based algorithm that works in three
steps. First, it detects the point at which each gene begins changing its expression
value. The algorithm uses the ratio of change in expression compared to the initial
time point to determine when a gene has been substantially induced or repressed.
Next, it calculates the mutual information value for each gene pair. If there is a
statistical dependency (nonzero mutual information value), then an edge is created
between those two nodes. Finally, edges are pruned based on a threshold statistic
called the Data Processing Inequality [5], which will be discussed below.

51J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_4, � The Author(s) 2012

52 4 Step 3: Using Time-Series Data

Rating: DREAM Fair

4.2.2 The Data

In the examples, Time-Delay ARACNE uses time-series data consisting of 20
closely spaced points.

4.2.3 The Strategy

4.2.3.1 Step 1: Detecting first change in each gene

Time-Delay ARACNE estimates the first time point at which each gene begins to
become induced or repressed. It tests whether a gene g is induced by comparing its
initial expression value at time 1 to its expression value at time t. The parameter τ

is used as a threshold for how much the expression value has to change before the
gene is considered induced or repressed. In [32], this value is set to 1.2.

If the ratio between the expression at t and the initial expression value is greater
than τ , then the gene is considered induced at time t, as in (4.1).

g+ if τ <
g(t)
g(1)

(4.1)

Conversely, if the ratio between the expression value at t and the initial expression
value is less than than 1/τ , then we can consider this gene repressed.

g− if
1
τ
>

g(t)
g(1)

(4.2)

If the expression values meets neither of these conditions, it is not considered ex-
pressed or repressed at that time point.

There are two benefits to estimating when a gene has begun induction or repres-
sion: First, it guides our inference of casual events in the time series. Gene g can
influence g′ only if g becomes induced or repressed before g′. Second, it allows us
to speed up computation by reducing the number of possible edges to examine in
steps two and three.

4.2.3.2 Step 2: Detect dependencies between genes at each time point and
build a network

Next, Time-Delay ARACNE builds a matrix of mutual information values. Mutual
information values are calculated for each pair of genes where gene g begins its
expression change at most k time steps before g′. If k = 3, for example, then the

4.2 Time-Delay ARACNE 53

algorithm calculates the mutual information of gene g at time x with g′ for times
x + 1, x + 2, and x + 3, for all time points x. For each possible delay value less
than or equal to k, there will be a different mutual information value. If the highest
such value is greater than a threshold, then an edge is drawn from g to g′. All pairs
of genes must have the same delay value. The time point with the highest mutual
information value represents the relationship between genes g and g′. If that value is
above a certain threshold, then a directed edge is drawn from g to g′. These directed
edges will form our network.

The threshold is calculated automatically using stationary block bootstrapping.
The data are separated into blocks of expression values, and then sampled with
replacement. The randomly chosen blocks are then concatenated to form a new time
series. Mutual information values are then calculated for the genes in this new time
series. Once this process is iterated a few thousand times, the mean and standard
deviation of the mutual information values are taken. The threshold parameter is
then defined as I0 = µ +α +σ , where µ is the mean of the mutual information
values, α is the statistical significance level (usually 0.05), and σ is the standard
deviation. The net effect is that the threshold is a mutual information value well
above one standard deviation from the mean mutual information value.

4.2.3.3 Step 3: Trim the network using the Data Processing Inequality (DPI)

Finally, the Data Processing Inequality (DPI) is applied to the network built from
step 2. The Data Processing Inequality is a measure that is used to break up three-
node cycles. For example, if there is a link going from gene ga to gb, from gb to gc,
and from gc to ga, then the link with the lowest mutual information value is removed.
However, three-node cycles are allowed to exist if the three mutual information
values are all within 15% of each other (this value is from [32]). The idea is to
eliminate weak edges that are an artifact of the correlation between the first and
third gene in a three-gene chain. For example, if gene ga has an edge to gb, and gb
to gc, then the mutual information value may pick up a weaker edge from gene ga
to gene gc by mistake. Larger cycles are rarely a problem because there is a lower
likelihood of spurious correlation.

Parameter Name What it does Default Value

τ How far a gene’s expression value
should move from its initial value
before it is considered active.

1.2

k Number of time points to look
ahead.

2

Number of bins The number of bins to use when dis-
cretizing the expression ratios.

9

54 4 Step 3: Using Time-Series Data

4.2.4 Performance on Examples

Time-Delay ARACNE was tested using the time-series data from the DREAM4
10 and 100 gene networks. Time-Delay ARACNE does not return scores for each
edge. Instead, a binary network is returned. Because of this, precision-recall and
ROC curves will not be used. Instead, the overall true positive rate (TPR), false
positive rate (FPR), and precision will be reported. We will compare the results of
using different numbers of bins to discretize the expression ratios.

Bins TPR FPR Precision

4 0.33 0.10 0.35
6 0.33 0.08 0.41
7 0.33 0.12 0.31
9 0.2 0.02 0.60

Table 4.1 Table of the true positive rate (TPR), false positive rate (FPR), and precision for Time-
Delay ARACNE with different numbers of bins on the 10 gene network. Best performance was
achieved with seven bins.

Fig. 4.1 Time-Delay ARACNE’s inferred network for the DREAM4 10 gene network. 25% of the
ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed
lines are incorrect guesses. In the 25% of edges selected, Time-Delay ARACNE is able to pick up
five edges.

4.2 Time-Delay ARACNE 55

On the small 10 gene network, Time-Delay ARACNE recovers only five of 15
edges, but with 11 false positives using seven bins. So while Time-Delay ARACNE
is unable to infer the entire network, the edges that it does infer seem to be fairly ac-
curate. It guessed some false positives, but it still did far better than random chance.

Bins TPR FPR Precision

4 0.13 0.059 0.038
6 0.13 0.059 0.038
7 0.13 0.059 0.038
9 0.13 0.059 0.038

Table 4.2 Table of the true positive rate (TPR), false positive rate (FPR), and precision for Time-
Delay ARACNE with different numbers of bins on the 10 gene network. Time-Delay ARACNE
converged to the same network regardless of the number of bins.

However, for the 100 gene network, the results are very different. The number of
bins does not seem to influence the result in this case, as each run of the algorithm
converged to the same network. Time-Delay ARACNE inferred only 23 true positive
edges with 580 false positive guesses. Time-Delay ARACNE performs badly on this
DREAM experiment but performs well on its original data set. One reason might be
that Time-Delay ARACNE was built for small networks. Another reason is that the
simulated data used here may have different characteristic (e.g., noise profile) than
the real-world data Time-Delay ARACNE was built for, and thus may not work well
with this data.

56 4 Step 3: Using Time-Series Data

4.3 Time-Lagged Context Likelihood of Relatedness (tlCLR)

4.3.1 What it Does

Time-Lagged Context Likelihood of Relatedness (tlCLR) [11] [20] is an extension
of the CLR algorithm (previously discussed in Section 3.5) used for inferring net-
works from time-series data. It is part of the Inferelator 2.0 pipeline that scored
well in the DREAM4 competition [11], along with its counterparts Inferelator and
Median-Corrected Z-Scores.

Rating: DREAM Good

4.3.2 The Data

tlCLR uses both steady-state and time-series data to infer networks. Time-series
data add the ability to infer the directionality of the edges and that is what we focus
on in this section.

4.3.3 The Strategy

tlCLR is a mutual information based inference algorithm that uses ordinary differ-
ential equations to model time-series data. The algorithm works in three steps: first,
the temporal changes in expression are modeled as an ordinary differential equation
(ODE). Second, the mutual information is calculated between each pair of genes.
Third, a background correction is applied to filter out less likely connections.

4.3.3.1 Step 1: Modeling time-series data with ordinary differential equations

In order to calculate the mutual information for time-series data, we have to create
a measure of the expression value that captures its change over time. To do that,
tlCLR assumes that the temporal changes in a gene’s expression can be modeled
with a linear ordinary differential equation (ODE). The ODE can be simplified using
finite difference approximations, and we can represent the time series as a set of
expression values and response variables:

yi(tk+m) = τi
xi(tk+m)− xi(tk)

tk+m− tk
+ xi(tk),m = 1,2 (4.3)

4.3 Time-Lagged Context Likelihood of Relatedness (tlCLR) 57

where yi(tk+m) is the “response variable” of gene i at time tk+m, where k is the
current time and m is the number of time points to look ahead. The response variable
is a measure of the expression value’s change between time t and time t +m. Since
the steady-state expression values are not changing over time, the response variable
for a steady-state experiment e is just set to its expression value (yi(l) = xi(l)). xi(tk)
is the expression value of gene i at time k, and t(k) is the kth time value. τi is the
inverse of the first order degradation rate for gene i. This value is related to the
half-life (in minutes) of the mRNA and must be obtained from literature for each
organism. In [20], the first order degradation rate τi is set to 10 minutes for all genes.
This value is within the range of measured half-life times for E.Coli.

After calculating response variables for the time-series data and steady-state data,
we end up with a vector of response variables yi and a vector of corresponding
explanatory variables (expression profiles) x j for each gene:

yi = (yi(t2), . . . ,yi(tk),yi(t3), . . . ,yi(tk),yi(e1), . . . ,yi(eM)), (4.4)

x j = (x j(t1), . . . ,x j(tk−1),x j(t1), . . . ,x j(tk−2),x j,(e1), . . . ,x j(eM)), (4.5)

where the first batch of time-series values are for when m = 1, and the second for
when m = 2. The remaining values are the steady-state values, denoted by e. It
should be noted that the predictor variables are time-lagged with respect to the re-
sponse variables, e.g., that predictor variables are lagging m steps behind the re-
sponse variables. There is no explicit regularization to reduce the number of inde-
pendent variables that could influence a response variable, but only the top-ranked
edges are retained.

tlCLR computes two different sets of mutual information values. The first is
called static mutual information, denoted by matrix Mstat . Each entry of the ma-
trix is the traditional mutual information value, calculated between the expression
profiles of each pair of genes I(xi,x j), the same way the mutual information is cal-
culated in ARACNE and CLR. In this case, time-series data are treated as if they
were a collection of independent steady-state expression, and the entire vector x j
is used as the expression profile. Note that because I(xi,x j) = I(x j,xi), the matrix
Mstat is symmetric. The second set of mutual information values, and tlCLR’s main
innovation, is dynamic mutual information, denoted as matrix Mdyn. This is the mu-
tual information between the response vector yi at a later time and expression profile
x j for each pair of genes, I(yi,x j). Since I(x j,yi) 6= I(xi,y j), Mdyn is an asymmetric
matrix, allowing us to infer directionality. What we’re looking at is whether gene j’s
expression value x j(t) gives us information about gene i’s response value yi(t +1).
As in CLR, a high mutual information value implies a likely edge whose target is
the response value.

4.3.3.2 Step 3: Ranking the edges

Similar to CLR, a background correction is applied by calculating z-scores for each
pair of genes. This allows us to capture information about the degree to which the

58 4 Step 3: Using Time-Series Data

regulator j determines changes in gene i. Two z-scores are calculated for each pair
of genes i and j, determining whether gene j regulates gene i. The first z-score uses
only the dynamic mutual information values, while the second uses both dynamic
and static mutual information values. The first z-score calculated with respect to the
ith row of Mdyn, is defined as:

z1(xi,x j) = max

0,
Mdyn

i j −
∑ j′M

dyn
i, j′

N

σ
dyn
i

 (4.6)

where σi is the standard deviation of the ith row of Mdyn. The z-score measures how
many standard deviations the dynamic mutual information value between genes i
and j is away from the mean of gene i’s dynamic mutual information values. The
more positive the z-score, the more likely it is that there is some interaction between
the two genes. Only positive z-scores are considered. Negative z-scores are set to 0,
because they represent absence of positive or negative causality.

Similarly, the second z-score is calculated using both the dynamic and static mu-
tual information values with respect to the jth column of Mstat :

z2(xi,x j) = max

0,
Mdyn

i j −
∑i′M

stat
i′, j

N

σ stat
j

 , (4.7)

where σ stat
j is the standard deviation of the jth row of Mstat . This z-score represents

the number of standard deviations the dynamic mutual information value is from the
mean of gene x j’s static mutual information values.

These two values for each pair of genes are then combined into a CLR-pseudo
z-score:

ztlCLR
i j =

√
z2

1 + z2
2, (4.8)

which is a score that should be proportional to the likelihood that gene j regulates
gene i. This ranking is then used to generate a list of the most likely edges, allowing
us to build our network from the top ranked edges.

4.3.4 Performance on Examples

tlCLR was tested on the DREAM4 10-gene network and DREAM4 100-gene net-
work datasets, using all steady-state (wildtype, knockout, and knockdown) and time-
series data, and then tested using all of the data except knock-down. Overall, it per-
forms well on both datasets. The ROC behavior is consistently better than random
behavior. For the ten gene network, the precision-recall curve tells us that the highest
ranked edges are likely to be true edges.

4.3 Time-Lagged Context Likelihood of Relatedness (tlCLR) 59

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 10 Gene Network

TLCLR All Data
TLCLR No KD

Fig. 4.2 tlCLR’s ROC curve for the DREAM4 10 gene network. (AUROC = 0.63 for all data)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 10 Gene Network

TLCLR All Data
TLCLR No KD

Fig. 4.3 tlCLR’s precision-recall curve for the DREAM4 10 gene network. tlCLR performs rea-
sonably well. (AUPR = 0.32 for all data)

60 4 Step 3: Using Time-Series Data

Fig. 4.4 tlCLR’s inferred network for the DREAM4 10 gene network. The top 25% of the ranked
edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines
are incorrect guesses. In the top 25% of edges tlCLR infers several incorrect edges going to and
coming from G2 and is able to recover the relationship between G1 and G5.

Interestingly, the knockdown data actually appears to negatively affect the out-
come. This could be because the knockdown data are too noisy.

tlCLR also performs well for the 100 gene network. The ROC curve shows good
performance, and the precision-recall curve shows again that the highest ranked
edges are accurate. However, this quickly drops off after the first ten or so edges. In
the case of the larger network, having extra steady-state experiments from knock-
down data improves the results.

Overall, tlCLR is a good algorithm for inferring gene regulatory networks from
a combination of time-series and knock-out data. The highest ranked edges are gen-
erally reliable. However, in contrast to some of the other algorithms that use time-
series data (such as Dynamic Factor Graphs or Inferelator), it does not infer any
new information about the dynamics of the network, so this output cannot be used
to predict a network’s response to new perturbations.

4.3 Time-Lagged Context Likelihood of Relatedness (tlCLR) 61

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 100 Gene Network

TLCLR All Data
TLCLR No KD

Fig. 4.5 tlCLR’s ROC curve for the DREAM4 10 gene network. (AUROC = 0.73 for all data)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall Curve - 100 Gene Network

TLCLR All Data
TLCLR No KD

Fig. 4.6 tlCLR’s precision-recall curve for the DREAM4 100 gene network. tlCLR again performs
reasonably well, with highly ranked edges being accurate. (AUPR = 0.05 for all data)

62 4 Step 3: Using Time-Series Data

4.4 Inferelator

4.4.1 What it Does

Inferelator is an inference algorithm based on ordinary differential equations that
learn a sparse dynamical model for each gene using data in a time series. The algo-
rithm is part of the DREAM4 Inferelator Pipeline [11] and the DREAM3 Inferelator
Pipeline [20].

Dynamical models learn how each gene is changing over time as a function of
how its potential regulators are changing. The space of possible potential regulators
may be all genes or just the subset of genes that pass some previous test such as
Median-Corrected Z-Scores or tlCLR.

Rating: DREAM Good

4.4.2 The Data

Inferelator builds a dynamical model from time-series and steady-state data. In
preparation, each experiment should be normalized to have mean 0 and standard
deviation 1. The mean of an experiment E is subtracted from each value in E, and
then divided by the standard deviation of E.

4.4.3 The Strategy

Inferelator assumes that the changes in a gene’s expression value over time are gov-
erned by an ordinary differential equation (ODE):

dxi(t)
dt

=−αixi +
pi

∑
j=1

Bi jx
ri
j (t), (4.9)

where αi is the first-order degradation rate of the mRNA of gene i, xi is the vector
of expression values across the time-series for gene i, xri is the list of potential reg-
ulators for gene i, and pi are the indexes of the pi potential regulators for gene i.
The list of potential regulators may be all other genes, or come from prior knowl-
edge about the dataset (from experimental data or the output of another algorithm).
The first-order degradation rate must be obtained from literature about the organism
being studied. In [11], where E. Coli was used, this value was set to 10 minutes.

The idea here is that we want to estimate how each gene’s expression value
changes between time points. It is assumed that each gene i’s expression value at

4.4 Inferelator 63

time t +1 changes as a function of its expression value at time t and the expression
values of its regulators at time t. Regression is used to estimate how much each other
gene affects gene i (represented by the B matrix). In order to enforce the sparsity of
the matrix, a Least Angle Regression (LARS) [7] is used. The basic idea behind
LARS is to force all but the strongest relationships between genes to 0. This yields
a parsimonious result: each gene ends up having relatively few regulators.

LARS works by minimizing the least-squares error for each gene:

E(B) =
N

∑
i=1

Ei(B) (4.10)

where

Ei(B) =
R

∑
r=1

∣∣∣∣∣yi(r)−
pi

∑
j=1

Bi jx
ri
j (r)

∣∣∣∣∣
2

, (4.11)

where yi(r) is the rth value of the response variable i. 1

The quantity Ei(B) in Equation (4.11) is the difference between the actual change
of gene i’s expression value between times t and t +1, and the estimated change of
the expression value of gene i at time t based on the expression values and weights
of gene i’s potential regulators pi as determined by the model.

By minimizing Equation (4.11) with no further penalties, we may over fit the
least squares error estimate, Bols. To combat this, LARS enforces an l1-norm regu-
larization penalty on the regression coefficients in Equation (4.11), resulting in:

pi

∑
j=1

∣∣Bi j
∣∣≤ si

pi

∑
j=1

∣∣∣Bols
i j

∣∣∣ , (4.13)

where si is a shrinkage coefficient (where s≤ 1) chosen by ten-fold cross validation.
The net effect is that there is a penalty for overly large coefficients on regulators.
That tends to give a sparse result, thus helping to avoid over-fitting. The problem
can be rewritten in the form:

1 This is the same response variable as defined in the Time-Lagged Context Likelihood of Relat-
edness algorithm:

yi(tk+m) = τi
xi(tk+m)− xi(tk)

tk+m− tk
+ xi(tk),m = 1,2 (4.12)

where τi is equal to the inverse of the first-order degradation rate α of gene i. xi(tk) is the expression
value of gene i at time tk, and m is a parameter for how many time points we will look ahead.
For steady-state data, the response value yi is set to the expression value of gene i. The value
calculated in Equation (4.12) is a measure of the change between time points tk and tk+m for gene
i’s expression value.

64 4 Step 3: Using Time-Series Data

min
R

∑
r=1

∣∣∣∣∣yi(r)−
pi

∑
j=1

Bi jx
ri
j (r)

∣∣∣∣∣
2

s.t.
pi

∑
j=1

∣∣Bi j
∣∣≤ si

pi

∑
j=1

∣∣∣Bols
i j

∣∣∣ , (4.14)

The resulting model in B can be used to build the network. Each row i of B is a
dynamical model of gene i, where non-zero weights represent connections to other
genes. Because it is a dynamical model, it can also be used to predict expression
values at future time points. Another interesting application of this is that the model
can be used to predict what happens to the network when new perturbations are
introduced. For instance, to simulate what happens when a gene is knocked out, we
can set that gene’s expression value to 0 and then check the response of the network
based on the already discovered B.

The dynamical model can also be turned into a list of ranked potential edges.
One naive way to do this is to just rank the edges by their value in B. However, this
does not necessarily map to a ranking because the weight in the model does not fully
represent the explanatory power of gene j as a regulator of i.

We measure the explanatory power of the model for each gene by summing
the relative error between each gene’s measured response vector and the model-
predicted response vector. The edges we keep are the ones having the smallest er-
rors.

4.4.4 Performance on examples

The Inferelator algorithm requires a ranked list of potential regulators that come
from another algorithm. Please see Section 5.4 for an example of Inferelator used as
part of a pipeline.

Parameter Name What it does Default Value

m Number of time points to look
ahead.

2

4.5 Dynamic Factor Graphs (DFG) 65

4.5 Dynamic Factor Graphs (DFG)

4.5.1 What it does

The Dynamic Factor Graphs (DFG) algorithm used here [19] is an ordinary differ-
ential equation based method that separates the problem of experimental noise from
network inference itself. The method models experimental noise as a fitted Gaus-
sian and then tries to infer networks based on an assumed underlying idealized gene
expression. Predictions about the noisy dataset are made assuming a fitted Gaussian
noise model. The procedure uses bootstrapping to calculate p-values for each weight
in the model, and only those weights with p-values below the cutoff value are used
in the final network.

Rating: DREAM Fair

4.5.2 The Data

Typically, biological experiments are repeated a few times (usually less than five
times) to compensate for both biological noise and instrument error. Many ap-
proaches use the mean values of such collections of replicates. DFG uses each repli-
cate independently.

4.5.3 The Strategy

DFG uses a graphical model to create a relationship between genes and time points,
and the algorithm works by iteratively performing inference and learning steps. The
algorithm attempts to model both the unknown idealized vector of Z values (one
entry per gene) and the family of functions f that models the relationship Z(t) =
f (Z(t−1)). The dynamical model f is represented by an n by m matrix F , where n
is equal to the number of genes, and m is equal to the number of transcription factors
That is, F models the dependency of each gene g at time t on a small set of genes
(possibly including g) at time t−1. The hope is to find an f that is time-independent.
There are two constraints on Z given a current guess f : the Z values must be close
to the mean of the observed Y values with some allowance for Gaussian noise while
also satisfying Z(t) = f (Z(t− 1)). The algorithm is iterative, adjusting both Z and
f as it goes.

The dynamical model is characterized by the following equation:

66 4 Step 3: Using Time-Series Data

τ

tk+1− tk
(zi(tk+1)− zi(tk))+ zi(tk) =

Ni

∑
j=1

Fi jz j(tk)+βi0 +ηi(tk) (4.15)

where τ is a parameter that determines the importance of the amount of time be-
tween two time points, β is a bias term, and η is a Gaussian error term with zero
mean and fixed covariance. The model weights and latent variables are initialized
randomly.

A second model, the observational model h, is used between Y (t) and Z(t). This
model is essentially an n by n identity matrix with a Gaussian error term.

The values observed at time t, denoted Y(t), are assumed to be the same as the
idealized values, denoted Z(t), plus a Gaussian error term.

yi(t) = zi(t)+ εi(t) (4.16)

4.5.3.1 Learning the Dynamical Model

Learning the dynamical model f (and associated matrix F) uses uses LARS (Least-
Angle Regression) [7] to minimize the quadratic error of only the dynamical model.
The idea behind LARS is to produce simple, parsimonious models by iteratively
selecting explanatory variables based on their relationship to the residual and other
selected explanatory variables. Other optimization methods such as conjugate gra-
dient or Elastic Nets could be used instead of LARS. An l1 regularization is imple-
mented by LASSO [29] to enforce sparsity of the model f . LASSO aggressively
shrinks the weights in F , forcing all but the strongest weights to 0.

4.5.3.2 Bootstrapping

The above iteration between modeling f and reducing the difference between ob-
served and hidden variables is run 100 times, but because it relies on a random
starting point for the weights and latent variables, slightly different answers may be
obtained from different runs. This issue is handled in two steps. First, the algorithm
is repeated 20 times, each returning a new model matrix F∗(k). A new model matrix
F∗ is created by averaging the 20 separate models. Next, a bootstrapping method
is used to obtain a p-value for each weight. Each of the 20 models are randomly
permuted, and then averaged again. The process is repeated 1,000 times in order to
generate a distribution we can use to calculate the statistical likelihood of a model
weight randomly occurring. We then calculate a p-value for each weight F∗i j , and if
the p-value is below 0.001, we accept it as a valid edge. Taking all of the edges with
p-values below this cutoff value yields the inferred network.

We can also obtain a ranking of the edges by giving each of them a z-score:

zi j =
Fi j

βi0 +∑
N
j=1 Fi j

(4.17)

4.5 Dynamic Factor Graphs (DFG) 67

where Fi j are weights in the model matrix F , and βi0 is the corresponding bias value.

Parameter Name What it does Default Value

τ Importance of time between time
points

3

Number of models How many models to build for av-
eraging/boot strapping

20

λw Importance of latent variables vs.
observed variables in the inference
step.

0.01

ηz Weight on the Gaussian error term 0.1

p-value cutoff The cutoff p-value where a weight
is considered significant

0.001

4.5.4 Performance on examples

4.5.4.1 The small network example

For this example we use the time-series data from the small 10-gene DREAM4
network. DFG is sensitive to its hyper-parameters, so a small grid search is done to
find a good set. The receiver-operator curve figure 4.7 and table 4.3 shows exactly
how sensitive it is to the hyperparameter selection, especially for small networks.

ηz λw τ AUROC AUPR

0.1 0.01 3.5 0.38 0.11
0.001 0.001 3 0.42 0.12
0.0001 0.001 1 0.60 0.18
0.0001 0.2 1 0.60 0.18
0.0001 0.001 3 0.48 0.14
0.0001 0.2 3 0.48 0.14
0.1 0.001 3 0.41 0.12
0.1 0.001 1 0.35 0.10
0.1 0.2 1 0.35 0.10
0.1 0.2 3 0.41 0.12

Table 4.3 Table of areas under the receiver-operator curve (AUROC) and the precision-recall
curve (AUPR) for Dynamic Factor Graphs for the small 10 gene dataset at different parameter
combinations found in a very coarse grid search. Different parameter combinations can greatly
affect the results.

68 4 Step 3: Using Time-Series Data

Fig. 4.7 DFG’s ROC curves for the DREAM4 10 gene network. The results where ηz and λw are
equal yielded the exact same network for the two values of τ , so their lines overlap perfectly. (Best
AUROC = 0.60)

Fig. 4.8 DFG’s PR curves for the DREAM4 10 gene network. DFG struggles to maintain good
precision, even with its highest ranked guesses. The results where ηz and λw are equal yielded the
exact same network for the two values of τ , so their lines overlap perfectly. (Best PR = 0.18)

We can see that on the small network, DFG performs best when ηz = 0.0001 and
τ = 1. It doesn’t seem to matter whether λw is set to 0.001 or 0.2 in this case. These
results underscore the importance of finding a good set of parameters.

4.5 Dynamic Factor Graphs (DFG) 69

Fig. 4.9 DFG’s inferred network for the DREAM4 10 gene network. The top 25% of the ranked
edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines
are incorrect guesses. In the top 25% of edges, DFG is able to infer the connections to G2, but
misses many of the edges going to G4.

4.5.4.2 The large network example

ηz λw τ AUROC AUPR

0.1 0.01 3.5 0.58 0.02
0.001 0.001 3 0.58 0.02
0.0001 0.001 1 0.60 0.03
0.0001 0.2 1 0.58 0.02
0.0001 0.001 3 0.60 0.03
0.0001 0.2 3 0.58 0.02
0.1 0.001 3 0.58 0.02
0.1 0.001 1 0.63 0.03
0.1 0.2 1 0.58 0.02
0.1 0.2 3 0.63 0.03

Table 4.4 Table of areas under the receiver-operator curve (AUROC) and the precision-recall
curve (AUPR) for Dynamic Factor Graphs for the large 100 gene dataset at different parameter
combinations. Different parameter combinations can greatly affect the results.

So what is happening here? The ROC curves are decent, but the Precision-Recall
curve is terrible. As recall increases, the precision is remains low. This means that
the algorithm is making a lot of wrong guesses for each correct guess. DFG does
not perform well on these datasets.

70 4 Step 3: Using Time-Series Data

Fig. 4.10 DFG’s ROC curves for the DREAM4 100 gene network. The results where ηz is equal
yielded the exact same network for the two values of λw and τ , so their lines overlap perfectly.
(Best AUROC = 0.63)

Fig. 4.11 DFG’s PR curves for the DREAM4 100 gene network. Even DFG’s highest ranked
guesses do not do well. The results where ηz is equal yielded the exact same network for the two
values of λw and τ , so their lines overlap perfectly. (Best PR = 0.03)

4.5 Dynamic Factor Graphs (DFG) 71

4.5.4.3 Overall Performance

While DFG did not perform very well on either the small or large network, it is
worth noting that it was using only the time-series data. This data does not have the
kind of rich information that a direct genetic perturbation like a knock-out can give.

One good practical feature of DFG is that it yields a sparse network instead of
a ranked list (though it can do that too). This may be beneficial in some situations
where one wouldn’t know how to select a cutoff value for a list of ranked edges.

It is extremely important to find a good combination of hyperparameters for
DFG. However, this can be difficult without a full or partial gold standard for com-
parison. One option for finding parameters for a network that does not have a partial
gold standard is to use the dynamics that DFG calculates to predict the last one or
two time points. Based on how well these predictions fit, we can have some confi-
dence that the parameters are good.

72 4 Step 3: Using Time-Series Data

4.6 Bayesian Network Inference with Java Objects (BANJO)

4.6.1 What it does

Bayesian Network Inference with Java Objects (BANJO) [30] infers edges networks
that can be modeled as a first-order Markov process. This means that each gene’s
expression can be predicted by some combination of the expression values of its par-
ents and itself at the previous time point. No assumptions are made about linearity
or non-linearity. The Markov processes work on discretized values, so the algorithm
is sensitive to the number of bins the expression values are discretized into.

The basic approach of BANJO is to search through all possible networks, look-
ing for the network with the best score. Of course, for any non-trivial dataset, we
can’t actually look at all possible network combinations, so various search strategies
are used: greedy, simulated annealing, and genetic algorithms. The scoring is done
using one of two metrics: Bayesian Dirichlet Equivalence (BDE) [13] or Bayesian
Information Criterion (BIC) [28]. The greedy search algorithm and the Bayesian
Dirichlet equivalence scoring method were found to work best for gene networks in
[30].

In [30], all three search algorithms found the best network for the test datasets
(which are different from DREAM), but the greedy algorithm found it substan-
tially faster than simulated annealing or genetic algorithms. Both Bayesian Dirichlet
Equivalence and Bayesian Information Criterion worked well as scoring measures
for large datasets (hundreds of genes and thousands of time points), but for small
datasets Bayesian Dirichlet equivalence was able to score the networks more accu-
rately than Bayesian Information Criterion. BANJO also uses an influence score to
guess the directionality of the edges.

Rating: DREAM Fair

4.6.2 The Data

BANJO uses time-series data to infer networks. Since Bayesian approaches to gene
network inference typically suffer from lack of data, BANJO attempts to augment
the time-series dataset using linear interpolation. It was found in [30] that inter-
polating one time point between observed time points helped the scoring methods
BANJO uses. BANJO is capable (and in fact, seems to work best) when the dataset
is huge: hundreds of genes and thousands of time points.

4.6 Bayesian Network Inference with Java Objects (BANJO) 73

4.6.3 The Strategy

Based on previous uses of BANJO, we’ll use as a default: greedy search algorithm
with Bayesian Dirichlet Equivalence (BDE) scoring. The greedy search algorithm
works by first selecting a random network as its starting point. Call that its current
network. The algorithm then evaluates all neighbors to that network according to
its BDE score, where a neighbor is the current network with one edge added or
removed. The neighboring network with the best score is then declared current, the
BDE scores for all of its neighbors calculated, and the network with the highest
BDE is selected. This process continues until none of the neighbors have a BDE
score higher than the currently selected network. Because greedy algorithms tend to
get stuck in local maxima, random restarts are required. This means that the greedy
search starts all over again from a new random network. The authors, Yu, et al.
perform 100 random restarts. Once the highest ranking network has been selected,
an influence score is generated for each edge. This is done in order to predict the
sign of the network’s edges.

The data are discretized in to three bins prior to any calculations. This is to help
simplify the problem because of the relatively small amount of data available. Yu,
et al. [30] found through experiment that three bins seemed to be the optimal trade-
off between accuracy and the amount of data required. The configuration on our
website can be used to change the number of bins.

The BDE is calculated by solving for the log of the marginal likelihood P(D|G)
where D is the data and G is the network graph. To do this, we integrate over all
possible parameter assignments Θ :

logP(D|G) = log
∫

Θ

P(D|G,Θ)P(Θ |G)dΘ (4.18)

There are two intuitive reasons that make it attractive for scoring gene networks.
The first is that the scores are better when a parent is better at predicting a child. The
second is that this score penalizes complexity: the more parents that a child has, the
lower the score. [30]

The influence score proposed by [30] is based on comparing the expression val-
ues of a gene to that of its children. If it tends to be high when its children are high,
and low when its children are low, it is an activator. If it tends to be high when
its children are low, and low when its children are high, then it is a repressor. The
inferred network is built from these influence scores.

2

2 First, a table of cumulative density function (CDF) values is built from Θi jk where Θi jk is the
probability that gene Xi is in expression state k when its parents are in expression state configuration
j. The expression state configuration is the combination of discretized expression values for all of
the parents of some gene. For example, if gene g has three parents, and the expression values have
been discretized into k = 3 states, then a possible configuration j is when parent p1 is in state 0,
p2 is in state 1, and p3 is in 1. For three parents when k = 3, there are 27 possible combinations,
so j is a number between 0 and 26. The CDF value ci jk is the probability that a child node Xi jk is
in state k or lower when its parents are in configuration j.

74 4 Step 3: Using Time-Series Data

Parameter Name What it does Default Value

Search type Valid options are greedy, simulated annealing, and
genetic algorithm. This selects the algorithm to
use to move through the network search space.

greedy

Scoring measure Valid values are the Bayesian Dirichlet Equiva-
lence (BDE) or the Bayesian Information Crite-
rion (BIC). BDE seems to work best with gene
networks.

BDE

k The number of bins to split the data into. The al-
gorithm is very sensitive to this parameter.

3

w How many points should be interpolated between
observed data points?

1

4.6.4 Performance on Examples

BANJO was tested using the time-series data from the DREAM4 10 and 100 gene
networks. Because of the relatively small number of time points involved in these
datasets, BANJO was unable to calculate non-zero “influence scores” for each edge.
This made it impossible to rank edges in relation to each other: only a binary clas-
sification is available. Instead, the overall true positive rate (TPR) and false positive
rate (FPR) will be reported, as well as precision.

Different runs of BANJO were compared by manipulating the number of bins
used to discretize expression ratios (from two to nine bins). In general this is the
most important parameter to choose properly, though BANJO has many other pa-
rameters and options to experiment with.

ci jk =
k

∑
k′=0

Θi jk′ (4.19)

The intuition here is that if the parent is an activator, the CDF value should shift in the positive
direction as the value of the parent increases. The reason is that if the parent is an activator, then
the child gene’s expression value should rise and fall with the parent. However, if the parent is
a repressor, than the CDF value should shift in the negative direction as the value of the parent
increases.

To figure out the direction of an edge in the case of a child gene having multiple parents, a
voting system is used. For each parent gene p of some gene g, to determine whether p is active
or repressive, all other parents of g are held at fixed states. The effect on gene g is then recorded
as a vote. When this is complete, one of the frozen parents will have its state shifted by one, and
the algorithm recalculates how p affects the child g. This continues until all combinations of the
frozen parents genes have been tested, and the votes from each combination are tallied. If the votes
are all positive or positive and neutral, the gene is marked as an activator of the child. If the votes
are all negative or negative and neutral, the gene is marked a repressor of the child. If the votes are
a combination of positive and negative, then no inference on the directionality of the edge can be
made and the influence score is set to 0.

4.6 Bayesian Network Inference with Java Objects (BANJO) 75

Bins TPR FPR Precision

2 0.466 0.388 0.175
3 0.466 0.388 0.175
4 0.466 0.388 0.175
5 0.4 0.380 0.157
6 0.466 0.388 0.175
7 0.6 0.466 0.225
8 0.533 0.409 0.181
9 0.466 0.388 0.175

Table 4.5 Table of the true positive rate (TPR), false positive rate (FPR), and precision for BANJO
with different numbers of bins on the 10 gene network. Best performance was achieved with 7 bins.

BANJO performs best on the 10 gene network when using seven bins. The per-
formance is significantly affected by the number of bins. With seven bins, BANJO
was able to recover 9 of 15 edges, but guessed on 40 of those edges. This is not a
very good result.

Fig. 4.12 BANJO’s inferred network for the DREAM4 10 gene network. 25% of the edges were
used. Solid lines are correct guesses, dotted lines are missed edges, and dashed lines are incorrect
guesses. BANJO is able to infer only a few edges.

Unfortunately BANJO performs even worse on a larger network. Only a handful
of edges are correctly inferred with many false positives. This makes sense, as the

76 4 Step 3: Using Time-Series Data

Bins TPR FPR Precision

2 0.03 0.06 0.01
3 0.10 0.06 0.02
4 0.09 0.06 0.02
5 0.05 0.05 0.01
6 0.05 0.06 0.01
7 0.07 0.06 0.02
8 0.07 0.06 0.02
9 0.08 0.05 0.02

Table 4.6 Table of the true positive rate (TPR), false positive rate (FPR), and precision for BANJO
with different numbers of bins on the 100 gene network. Best performance was achieved with 3
bins.

number of time points to number of genes ratio falls sharply (it is now trying to infer
the relationships among 100 genes from 20 time points instead of the relationships
among 10 genes). Bayesian methods are most commonly used for datasets that have
many densely packed time points (e.g. neuronal data). In short, BANJO is not an
algorithm to be used for inferring gene regulatory networks with a small number of
time points. BANJO performs badly on this DREAM experiment but performs well
on its original data set. One reason might be that this data does not have enough
time points, or the time points are too far apart to work with BANJO.

Chapter 5
Step 4: Pipelines

5.1 Consensus Step: Combining Results of Different Approaches

Various techniques for gene network inference learn from different types of data,
have different theoretical approaches, and use different types of statistics. For exam-
ple, an algorithm using a Bayesian approach may be extracting different information
from the data than one using a regression approach. The idea behind the consensus
step is to combine the inferential abilities of different methods to arrive at a consen-
sus network. There are many different ways to combine the inferred networks. We
will illustrate these ideas in the example pipelines that follow.

5.2 Creating Pipelines and Ensemble Networks

Multiple algorithms can be strung together to combine their results in some way.
Interesting combinations can arise from the type of data used for inference (e.g.,
steady-state vs. time-series), or different theoretical approaches (e.g., mutual infor-
mation vs. regression).

A pipeline is a sequence of algorithms in which the output of one algorithm feeds
into the input of the next algorithm in the sequence. For example, we can use the
output of a perturbation algorithm to give a prior weighting of edges, thus giving
the next algorithm a good starting point. The first two pipelines in this section take
this form.

Ensemble networks are meta-algorithms for combining independent results from
different algorithms. For example, we can create an ensemble network from a
weighted sum of the networks by finding the weights that optimize the results on
data with a gold standard, then use those same weights to create an ensemble from
data without a gold standard. The second set of algorithms in this section are en-
sembles.

77J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_5, � The Author(s) 2012

78 5 Step 4: Pipelines

5.3 Pipeline 1: Steady State algorithm + Dynamic Factor Graphs

5.3.1 What it does

Steady-state algorithm such as Context Likelihood of Relatedness (CLR), Median
Corrected Z-Scores (MCZ), and GENIE3 all produce nicely ranked lists of edges
for an algorithm like Dynamic Factor Graphs (DFG) to use. DFG uses time-series
data to create a sparse network that best explains the given data. The idea behind
this pipeline is to use the top edges from the steady-state algorithm’s ranked output
as a prior for DFG, giving it both a better starting point than a random initialization
and restricting the list of possible edges it can choose from.

5.3.2 The Strategy

DFG can use this prior in three ways: 1) we can restrict the possible edges that
DFG is allowed to connect, 2) we can boost (or reduce) the initial weights of edges,
or 3) do both. Option 1 uses DFG as a pruning algorithm: given a list of ranked
edges which are likely to include all of the actual edges, remove the spurious edges.
Option 2 uses DFG in its normal form: given these starting weights and data, build
a network. Option 3 consists of initializing DFG with both boosted initial weights
and a restricted set of possible connections.

There are several sets of parameters to test in this case. The first are the parame-
ters for each of the algorithms. We’ll use the set of parameters that yielded the best
performance for each algorithm when it is used alone. Next, we have to decide how
many of the top ranked edges to use from the steady-state data. And finally, we have
to choose which of the three options for using the steady-state data give the best
results.

Rating: DREAM Good

5.3.3 Performance on examples

A combinatorial approach was used to test this pipeline. The top N% of edges were
taken from each steady state algorithm and combined with DFG, using the steady
state algorithm to both initialize weights and restrict possible connections (option
3). This method of combining the steady-state algorithms with DFG was chosen due
to consistently better performance than options 1 or 2 in testing. The percentage of
edges to use from the steady-state algorithm was done in increments of 10 from 0
to 100.

5.3 Pipeline 1: Steady State algorithm + Dynamic Factor Graphs 79

Data Processing and Setup Inference

Fig. 5.1 The basic workflow diagram for the MCZ-DFG pipeline algorithm. MCZ was chosen as
an example, but it could be replaced by any of the other steady-state algorithms.

Figure 5.2 shows the top 4 results on the small 10 gene network. Two of the top
4 results came from using the steady-state algorithms by themselves, and are shown
for comparison (top AUROC was from MCZ at 0.90). The other two top results are
MCZ+DFG, using the top 20% and 30% of edges with AUROC of 0.82 and 0.84,
respectively. Both of these performed better than DFG alone, which had an AUROC
of 0.58 (not shown).

Figure 5.4 shows the top 4 results on the larger 100 gene network. These results
are similar to the ones for the 10 gene network. Two of the top 4 results come from
using the steady-state algorithms by themselves (MCZ and CLR), and the other
three are pipeline results. When using 10% of the edges, the AUROC is 0.86, at
20% the AUROC is 0.84, and at 30% it is 0.82. DFG alone has an AUROC of 0.57
(not shown).

Overall, combining the steady-state data with DFG greatly improves the results
of the algorithm. The top 20-30% of the edges from the steady-state algorithm
should be used with DFG to maximize performance. These results are very promis-
ing. We lose some of the precision of the topology that the steady-state algorithms
give us, but we gain the dynamical information from DFG. We can use this dynam-
ical information to predict how the network will respond to new perturbations. The
reason is that DFG gives a quantitative prediction of the effect of one gene on other
genes in the form of a differential equation. The output of a steady state network
shows connections only – there is no quantitative prediction.

80 5 Step 4: Pipelines

Fig. 5.2 The top 4 results from testing pipeline 1 on the DREAM4 10 gene network. Two of the
top 4 results are the steady state algorithms used, and the other two use the top 20% and 30% of
the edges from MCZ to both initialize DFG’s weights and restrict possible connections. The top
AUROC was MCZ alone (0.90). The pipelines had AUROC scores of 0.82 (when using 20% of the
edges) and 0.84 (when using 30% of the edges). Combining the results of MCZ with DFG greatly
improves the results of DFG.

Fig. 5.3 Pipeline 1’s inferred network for the DREAM4 10 gene network. The top 25% of the
ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed
lines are incorrect guesses. In the top 25% of edges, Pipeline 1 is able to infer many of the edges,
including the edges from G1 that many other algorithms had missed.

5.3 Pipeline 1: Steady State algorithm + Dynamic Factor Graphs 81

Fig. 5.4 The top 4 results from testing pipeline 1 on the DREAM4 100 gene network. Two of the
steady-state algorithms did extremely well on this network (MCZ and CLR), as well as three of the
tested pipeline combinations. The top AUROC was MCZ alone (0.90). The pipeline did the best
when MCZ was used with DFG, using the top 10, 20, and 30% of edges from MCZ (AUROCs of
0.86, 0.84, and 0.82, respectively). As with the results from the small network, combining DFG
with MCZ greatly improved the results from DFG.

82 5 Step 4: Pipelines

5.4 Pipeline 2: Inferelator 2.0

5.4.1 What it does

The Inferelator 2.0 pipeline [11] was a top contender in the DREAM4 challenge.
Three algorithms previously discussed (Median-Corrected Z-Scores (MCZ), Time-
Lagged Context Likelihood of Relatedness (tlCLR), and Inferelator) are combined
using heuristic and resampling techniques. The idea is to create a pipeline that is
able to combine information from a simple statistical approach (MCZ) and mutual
information (tlCLR), and then use that information to help infer the dynamics of the
time-series (Inferelator).

Rating: DREAM Best

5.4.2 The Strategy

Three techniques are used to create a consensus network. (i) The results from tlCLR
are used as a feature selection step in the Inferelator algorithm. For each gene, the
top P regulators (as predicted by tlCLR) are used as potential regulators for those
genes in Inferelator. All other potential edges are set to false. (ii) All three algo-
rithms produce a Z-Score for each edge, and these scores can be combined. (iii) A
resampling approach is used to help reduce noise from the dataset.

Data Processing and Setup Inference

Fig. 5.5 The basic workflow diagram for the Inferelator 2.0 algorithm. Each inference algorithm
uses the output from the previous algorithm to help with inference.

5.4 Pipeline 2: Inferelator 2.0 83

Resampling is a technique that replaces each edge value by its non-parametric
average. A new dataset is built by randomly sampling from the existing dataset of
experiments with replacement, until a dataset of the same size is constructed. A
network inference algorithm is then run on the sampled dataset. This procedure is
repeated many times to ensure good coverage of the original data. The justification
for this approach is that sampling provides a way of looking at what happens when
certain experiments drop out of the dataset (does an unrelated edge disappear?), and
when certain experiments are duplicated (are some edges stronger?). By averaging
the generated networks across these datasets for a given algorithm, we hope to find a
network closer to one that we would have found after doing many more experiments.

MCZ is run independently of the rest of algorithms, and results in a matrix of
Z-Scores for each edge Zmcz. From the discussion of tlCLR and the Inferelator, re-
call the definitions of the X design matrix and Y response matrix, both of size N x
R. Resampling is done by choosing a random integer between 1 and R, taking the
corresponding column from X and Y , and placing it into the new matrices X∗ and
Y ∗, respectively. The tlCLR-Inferelator algorithm is run using X∗ and Y ∗, comput-
ing three matrices: z-scores from tlCLR (ZtlCLR), z-scores from Inferelator (ZIn f),
and the dynamical parameters from Inferelator (β). The z-scores of each of these
algorithms are then combined with:

zcombined
i, j =

√√
(zIn f

i, j)
2 +(ztlCLR

i, j)2 +(zmcz)2. (5.1)

This procedure is repeated B times, where B is set to 200 by default. Finally, the
z-scores for each edge i, j from the B samples are ordered and the median value is
calculated. The end result is a matrix Zmedian that contains the median z-score for
each edge across the resampling.

5.4.3 Performance on examples

The Inferelator 2.0 Pipeline was tested using the 10 gene and 100 gene networks
from the DREAM4 competition. On the 10 and 100 gene networks (Figures 5.6,
5.7), the Inferelator 2.0 Pipeline performs well, but not as well as either of its compo-
nent steady-state algorithms. Is it still worthwhile to use Inferelator? Like the DFG
algorithm in the previous pipeline, Inferelator enables us to discover the dynamics of
the network. By first uncovering the topology of the network with MCZ and tlCLR,
and then inferring the dynamics based on those topologies, we can make predictions
about future time points or future experiments. In short, we trade some accuracy of
the topology for new information about the dynamics between the genes.

84 5 Step 4: Pipelines

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve - 10 Gene Network

InferelatorPipeline

Fig. 5.6 Receiver operating characteristic curves (ROC) of the Inferelator 2.0 Pipeline for the
DREAM4 10 gene network. (AUROC = 0.74)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve - 100 Gene Network

InferelatorPipeline

Fig. 5.7 Receiver operating characteristic curves (ROC) of the Inferelator 2.0 Pipeline for the
DREAM4 100 gene network. (AUROC = 0.70)

5.4 Pipeline 2: Inferelator 2.0 85

Fig. 5.8 Pipeline 2’s inferred network for the DREAM4 10 gene network. The top 25% of the
ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed
lines are incorrect guesses. In the top 25% of edges, Pipeline 2 is able to infer the relationship
between G3, G4, and G7, but misses most of the rest of the network.

86 5 Step 4: Pipelines

5.5 Ensemble 1: Voting

5.5.1 What it does

After each network inference algorithm generates a ranked list of potential edges,
a combining technique will use the top ranked edges as “votes” for that edge. For
example, if in a 4 gene network 4 out of 6 algorithms of different types infer a
highly ranked edge between genes 1 and 3, that edge receives 4 votes. The edges
are then ranked by the number of votes, and the top n edges are selected. Using this
method, each algorithm gets an equal vote in the final network. The idea is that some
algorithms will miss some edges, but a plurality will pick up on the correct ones.

Rating: DREAM Best

5.5.2 The Strategy

There are many different ways to set up a voting system. One easy way to to have
the amount of the vote be a function of its rank in a list of edges. The highest ranked
edge will have vote of 1, and that continues along some function that approaches 0.

Data Processing and Setup Inference Consensus

Fig. 5.9 The basic workflow diagram for the voting algorithm described in Section 5.5. The infer-
ence algorithms listed could be any number and combination of algorithms that the available data
permit.

5.5 Ensemble 1: Voting 87

The reason for this approach is that the top ranked edges from each network are
generally the most accurate, so we want to give them a higher score. Most of the
time, rankings become inaccurate after only a small number of edges, so we want
the drop-off to be severe. To achieve this, the score of each edge e is calculated with:

score = log(i+1)+ log(n2) (5.2)

where i is the rank of edge e and n is the total number of genes. These scores are
calculated for each edge in each algorithm’s output network. Negative scores are
changed to 0. This function is used because it will give highly ranked edges a large
score, and quickly drop off. For larger networks, the drop off will be slower. The
scores of each edge are summed, and these sums are used as edge weights in the
final voting network.

5.5.3 Performance on examples

We tested the voting ensemble using several steady-state and time-series algorithms
on the five 10-gene and five 100-gene DREAM4 networks. Each of these datasets
contains knockout, knockdown, wildtype, time-series, and multifactorial data. The
algorithms used in the test were Dynamic Factor Graphs (DFG), Gene Network
Inference with Ensemble of trees (GENIE3), Median-Corrected Z-Scores (MCZ),
Time-Lagged Context Likelihood of Relatedness (tlCLR), Context Likelihood of
Relatedness (CLR), and Network Identification by Multiple Regression (NIR). Each
algorithm was given an equal vote. The MCZ algorithm was used as the baseline to
compare against, as it was consistently the best performing lone algorithm.

Voting performed roughly on par with MCZ on the 10-gene networks, losing
substantially to MCZ on network D but besting it in network E (Figure 5.10). This
is a surprising result, given that the algorithms are all given equal weight and most of
the algorithms did substantially worse than MCZ. The reason is that this approach
relies on heavily weighting the highest ranked edges from each algorithm. If the
top edges from each algorithm are correct, and each algorithm is ranking a slightly
different set of edges as high, then the overall highest ranked list of edges should
be accurate. However, voting is unable to best MCZ on these small networks. What
happens if we test this on the larger 100 gene networks?

On the 100 gene networks the results are similar (Figure 5.12). On 3 of the 5
networks, the results were more or less tied, with voting being roughly equal to
MCZ. However, on the two networks where MCZ did not do very well, C and E,
voting outperformed it. These results suggest that a consensus vote may not help
much when algorithms are already able to infer the network well, however, in situa-
tions where an algorithm that MCZ seems to falter, other algorithms can step in and
correct its mistakes.

88 5 Step 4: Pipelines

Receiver Operating Characteristic (ROC) Curve (10 Genes)

A

D

B

E

C

False Positive Rate False Positive Rate

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 5.10 Receiver operating characteristic curves (ROC) of the voting algorithm and median-
corrected z-scores (MCZ) for the DREAM4 10 gene networks A-E. Graphs A-C show roughly
equal performance between MCZ and Voting. Voting did not greatly outperform MCZ. Graph D
shows a case where MCZ outperforms voting (AUROC for MCZ = 0.90, voting = 0.77). Graph E
shows a case where voting outperforms MCZ (AUROC for MCZ = 0.71, voting = 0.79).

Fig. 5.11 Voting’s inferred network for the DREAM4 10 gene network A. The top 25% of the
ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges, and dashed
lines are incorrect guesses. In the top 25% of edges, Voting is able to infer some relationships
involving G1 and G10, which many algorithms had previously missed. It also infers a symmetric
relationship between many edges, even when that symmetry is incorrect.

5.5 Ensemble 1: Voting 89

Receiver Operating Characteristic (ROC) Curve (100 Genes)

A

D

B

E

C

False Positive Rate False Positive Rate

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 5.12 Receiver operating characteristic curves (ROC) of the voting algorithm and median-
corrected z-scores (MCZ) for the DREAM4 100 gene networks A-E. Voting was generally tied
with MCZ on networks A, B, and D. On networks C and E voting surpassed MCZ. (Network C
AUROC for MCZ = 0.82, voting = 0.88) (Network E AUROC for MCZ = 0.75, voting = 0.83)

90 5 Step 4: Pipelines

5.6 Ensemble 2: Simulated Annealing

5.6.1 What it does

Simulated annealing [17] is a heuristic optimization procedure that mimics the pro-
cess of annealing metal. The basic idea is that the algorithm relies on a “tempera-
ture” that is slowly reduced over time. When the temperature is high, the algorithm
can make large moves with some probability. Over time, the probability of making
large moves becomes smaller and smaller, and small moves become more and more
likely. By “cooling” the size of the moves in this way, we can avoid getting stuck in
local minima.

Rating: DREAM Good

5.6.2 The Data

The data are split up into training and test data. The training data consist of the
various data types that the algorithms being used in simulated annealing require,
along with gold standards that can be tested against. In our case, we will be testing
using the DREAM4 data, which include gold standards for each dataset. The test
data is the dataset from which we would like to infer a network. In practice, this
data does not have a gold standard. However, in order to evaluate this approach we
will use the gold standard for the test data, but we will not train on the test data nor
its gold standard.

5.6.3 The Strategy

The basic procedure is: (i) run each of our training datasets through a list of selected
algorithms that return ranked lists of edges, (ii) assign a weight to each algorithm’s
output and (iii) adjust the weights in order to maximize the AUROC for a consen-
sus network built by summing the weighted ranked lists of edges. The weights are
adjusted using simulated annealing.

The algorithm begins with a random set of weights. The “energy” of that
set of weights is calculated according to a cost function, which in our case is
1−AUROC(w), where AUROC(w) is the AUROC of the set of weights w.

At each iteration, the energy is calculated for both the current set of weights and
the neighbor. We decide whether or not to “move” to the neighbor based on an ac-
ceptance function. The acceptance function is based on the current temperature and
on the difference in energy between the neighbor and current weights. If the neigh-
bor has lower energy than the current weights (i.e., fits the data better), we move

5.6 Ensemble 2: Simulated Annealing 91

Data Processing and Setup Inference Consensus

Fig. 5.13 The basic workflow diagram for the simulated annealing consensus algorithm described
in Section 5.6. The inference algorithms listed could be any number and combination of algorithms
that the available data permit.

to it. However, if the current weights have lower energy than the neighbor, we will
move to the neighbor with some probability based on the temperature (higher tem-
perature means more likely to move) and the difference between the energies (we
are less likely to move when the neighbor is much worse than the current weights).

The idea behind sometimes moving to a worse set of weights is that we want to
avoid getting stuck in a local minimum early on. When the temperature is high, we
are likely to “jump out” of a local minimum. As the temperature cools, we settle
into a local minimum and stay there, trying to find the best set of weights in the
local area by searching immediately around the same point.

In our case, the weights correspond to coefficients on algorithms. If the weight is
large for an algorithm, then that algorithm’s edges receive more of a vote than for a
lower-weighted algorithm. The consensus network is a sum of weighted networks.
For example, suppose we run two algorithms on two training datasets. This results
in four ranked lists of edges (two from each algorithm). If we group the inferred
networks from each algorithm together, we have two groups N1 and N2. We then
want to build a consensus network C from a weighted of N1 and N2, so C = w1N1 +
w2N2. The weights can be thought of as an importance score for each algorithm.

5.6.4 Performance on examples

The DREAM4 10 and 100 gene in silico datasets were used to test simulated an-
nealing. Each of the DREAM4 datasets consists of 5 networks to infer, and each

92 5 Step 4: Pipelines

network has associated knockout, knockdown, time-series, multifactorial, and wild-
type data. Each network was tested by applying the weights obtained from training
the simulated annealing algorithm on the other 4 datasets. The algorithms used in
the test were Dynamic Factor Graphs (DFG), Gene Network Inference with Ensem-
ble of trees (GENIE3), Median-Corrected Z-Scores (MCZ), Time-Lagged Context
Likelihood of Relatedness (tlCLR), Context Likelihood of Relatedness (CLR), and
Network Identification by Multiple Regression (NIR). As mentioned in Section 3.2,
the idea behind choosing these algorithms was that MCZ scored the best in testing
above, so it would be a baseline good answer for the annealing algorithm. The rest,
being weaker learners than MCZ, would act as supplements to MCZ’s result that
take into account different theoretical approaches and use different types of data.

Simulated annealing was on par with MCZ for inferring the topology of the 10
gene network. As illustrated in figure 5.14, for networks A-C, the results were al-
most the same. Simulated annealing scored slightly higher in each case, but only by
a marginal amount. In network D, median-corrected z-scores outperformed sim-
ulated annealing, and in network E, simulated annealing outperformed median-
corrected z-scores. The simulated annealing algorithm performed marginally better
than median-corrected z-scores when averaged across all of the networks.

Receiver Operating Characteristic (ROC) Curve (10 Genes)

A

D

B

E

C

False Positive Rate False Positive Rate

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 5.14 Receiver operating characteristic curves (ROC) of simulated annealing and median-
corrected z-scores (MCZ) for the DREAM4 10 gene networks A-E. Graphs A-C show results
that are roughly equal, with simulated annealing performing slightly better than MCZ. Graph D
shows a case where MCZ outperforms simulated annealing (AUROC for MCZ = 0.90, simulated
annealing = 0.84). Graph E shows a case where simulated annealing outperforms MCZ (AUROC
for MCZ = 0.71, simulated annealing = 0.80).

5.6 Ensemble 2: Simulated Annealing 93

Fig. 5.15 Simulated annealing’s inferred network for the DREAM4 10 gene network A. The top
25% of the ranked edges were used. Solid lines are correct guesses, dotted lines are missed edges,
and dashed lines are incorrect guesses. In the top 25% of edges, Simulated annealing is able to
correctly infer relationships between many genes, missing only 3.

Simulated annealing consistently outperformed MCZ on each network in the 100
gene dataset (figure 5.16), but only by a little.. MCZ’s weight was the largest across
all of the experiments, with the other algorithms acting as supplements to MCZ’s
result. This is expected. Since MCZ is generally the strongest performer, we would
expect it to obtain the highest weight and use the other algorithms as supplements
to help fine-tune weights. These results show that weighting different algorithms to
build a consensus network amongst them works in practice, and that the “wisdom of
the crowds” ([21]) can outperform any single algorithm. These results suggest that a
consensus vote may be generally more reliable for larger networks, as also pointed
out in [21].

While simulated annealing generally has higher ROC scores than the simple vot-
ing procedure, the difference between their scores is small. So, if a gold standard is
available, simulated annealing is worthwhile. If not, then simple voting works well.

94 5 Step 4: Pipelines

Receiver Operating Characteristic (ROC) Curve (100 Genes)

A

D

B

E

C

False Positive Rate False Positive Rate

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Fig. 5.16 Receiver operating characteristic curves (ROC) of simulated annealing and median-
corrected z-scores (MCZ) for the DREAM4 100 gene networks A-E. Simulated annealing out-
performed MCZ on each network, especially on networks C and E. (Network C AUROC for MCZ
= 0.82, simulated annealing = 0.88) (Network E AUROC for MCZ = 0.75, simulated annealing =
0.83)

5.7 Conclusions 95

5.7 Conclusions

The pipeline experiments in this chapter show that combining steady state tech-
niques with dynamic ones improve the performance of the dynamic algorithms sub-
stantially. Of the methods we report, the Inferelator pipeline performs the best, but
there are many possibilities we did not test such as combining a Bayesian time-
series approach using a prior network from steady-state algorithm, or integrating
the topology from an ensemble algorithm with one that infers dynamics.

The ensemble experiments show that simple voting among decent algorithms
performs nearly as well as or better than any individual algorithm on most data.
Above all, voting reduces the likelihood of really bad networks. Voting with simu-
lated annealing works even better, but requires the presence of gold standard data.
Other techniques such as stochastic gradient descent might improve on simulated
annealing. That is an area for future research.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: The Advantages of Careful Seeding. Society for
Industrial and Applied Mathematics (2007)

2. Bailey, T.L., Elkan, C.: Fitting a mixture model by expectation maximization to discover mo-
tifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36 (1994)

3. Bowers, P.M., Pellegrini, M., Thompson, M.J., Fierro, J., Yeates, T.O., Eisenberg, D.: Prolinks:
a database of protein functional linkages derived from coevolution. Genome Biology 5(5), R35
(2004)

4. Breiman, L.: Random Forests. Machine Learning 45(1) (2001)
5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Cover/Elements of Information

Theory, Second Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA (2005)
6. Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM

Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38
(1977)

7. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Annals of Statistics
32(2), 407–451 (2004)

8. Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S.,
Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of Escherichia coli transcrip-
tional regulation from a compendium of expression profiles. PLoS biology 5(1), e8 (2007)

9. Gardner, T.S., Di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring Genetic Networks and Iden-
tifying Compound Mode of Action via Expression Profiling. Science 301(5629), 102–105
(2003)

10. Girolami, M.: A variational method for learning sparse and overcomplete representations.
Neural computation 13(11), 2517–2532 (2001)

11. Greenfield, A., Madar, A., Ostrer, H., Bonneau, R.: DREAM4: Combining Genetic and Dy-
namic Information to Identify Biological Networks and Dynamical Models. PloS one (2010)

12. Gregoretti, F., von Belcastro, Di Bernardo, D., Oliva, G.: PLoS ONE: A Parallel Implemen-
tation of the Network Identification by Multiple Regression (NIR) Algorithm to Reverse-
Engineer Regulatory Gene Networks. PloS one (2010)

13. Heckerman, D., Geiger, D.: Learning Bayesian Networks The Combination of Knowledge and
Statistical Data. Machine Learning (1995)

14. Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A., Mitterecker, A., Kasim, A., Khami-
akova, T., Van Sanden, S., Lin, D., Talloen, W., Bijnens, L., Gohlmann, H.W.H., Shkedy, Z.,
Clevert, D.A.: FABIA: factor analysis for bicluster acquisition. Bioinformatics 26(12), 1520–
1527 (2010)

15. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring Regulatory Networks from
Expression Data Using Tree-Based Methods. PloS one 5(9), e12,776 (2010)

16. Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Research 28(1), 27–30 (2000)

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

18. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press (2009)

19. Krouk, G., Mirowski, P., LeCun, Y., Shasha, D.E., Coruzzi, G.M.: Predictive network model-
ing of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology
11(12), R123 (2010)

20. Madar, A., Greenfield, A., Vanden-Eijnden, E., Bonneau, R.: DREAM3: network inference
using dynamic context likelihood of relatedness and the inferelator. PloS one 5(3), e9803
(2010)

21. Marbach, D., Costello, J., Kuffner, R., Prill, R., Camacho, D.M., Vega, N.M., Allison, K.R.,
Consortium, t.D., Kellis, M., Collins, J.J., Stolovitzky, G.: Wisdom of crowds for robust gene
network inference. (2012)

J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8, � The Author(s) 2012

97

98 5 Step 4: Pipelines

22. Marbach, D., Schaffter, T., Mattiussi, C.: Generating realistic in silico gene networks for per-
formance assessment of reverse engineering methods. Journal of Comp. Biology 16(2), 229–
239 (2009)

23. Mellor, J.C., Yanai, I., Clodfelter, K.H., Mintseris, J., DeLisi, C.: Predictome: a database of
putative functional links between proteins. Nucleic Acids Research 30(1), 306–309 (2002)

24. Palmer, J., Kreutz-Delgado, K., Wipf, D., Rao, B.D.: Variational EM algorithms for non-
Gaussian latent variable models. In: Advances in Neural Information Processing Systems
18, pp. 1059–1066 (2006)

25. Pearl, J.: Causal inference in statistics: An overview. Statistics Surveys 3, 96–146 (2009)
26. Reiss, D.J., Baliga, N.S., Bonneau, R.: Integrated biclustering of heterogeneous genome-wide

datasets for the inference of global regulatory networks. BMC Bioinformatics 7(1), 280 (2006)
27. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation

and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270
(2011)

28. Schwarz, G.: Estimating the Dimension of a Model. The annals of statistics 6(2), 461–464
(1978)

29. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 58(1), 267–288 (1996)

30. Yu, J.: Advances to Bayesian network inference for generating causal networks from observa-
tional biological data. Bioinformatics 20(18), 3594–3603 (2004)

31. Zavlanos, M.M., Julius, A.A., Boyd, S.P., Pappas, G.J.: Inferring Stable Genetic Networks
from Steady-State Data. Automatica 47, 1113–1122 (2011)

32. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: Reverse engineering of
gene networks from time-course data by an information theoretic approach. BMC Bioinfor-
matics (2010)

Index

A

Accuracy 5
Association network 14

B

Bayesian Dirichlet Equivalence (BDE) 72
Bayesian Information Criterion (BIC) 72
Bayesian Network Inference with Java Objects

(BANJO) 72
Biclustering 12
Bootstrapping 66

C

Causality 2
Clustering 11
cMonkey 12
Consensus Network 77
Constraints 46
Context Likelihood of Relatedness (CLR)

41, 78
Cumulative density function (CDF) 73

D

Data Processing Inequality (DPI) 53
Data sources 4
DREAM Competition 5
Dynamic Factor Graphs (DFG) 65, 78
Dynamical model 62, 65

E

Elastic Nets 66
Ensemble 77

Expectation-maximization (EM) 19

F

F-Test 30
Factor Analysis 18
Factor Analysis for Bicluster Acquisition

(FABIA) 18
False negative 5
False positive 5
First-order degradation rate 62

G

Gaussian error 66
Gene 2
Gene Expression 2
Gene Network Inference with Ensemble of

trees (GENIE3) 34, 78
Genome 2
Graphical model 65

I

Inferelator 62
Inferelator Pipeline 82
Inference 3

K

KEGG 14
knockout data 24

L

Least Angle Regression (LARS) 63, 66
Least squares regression 29
Linear programming 46
Logistic regression 15

99J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8, � The Author(s) 2012

100 Index

M

Marginal probability density function 42
Markov process 72
MAST 14
Median-Corrected Z-Scores (MCZ) 23, 78,

82
MEME 14
Motif 14
Multifactorial data 34
Multiple regression 28
Mutual information 41, 51

N

Network Identification by Multiple Regression
(NIR) 28

Nucleotide 2

O

Ordinary differential equation (ODE) 56

P

P-value 7
Pipeline 77
Pipeline 1 78
Precision 5
Precision-Recall Curve 5
Prolinks 15

R

Random forests 36

Recall 5
Receiver-Operating Characteristic (ROC) 6
Regression tree 34
Resampling 82, 83

S

Semidefinite Programming 46
Semidefinite programming 46
Simulated Annealing 90
Simulated annealing 15
Steady-state data 23

T

Time-Delay ARACNE 51
Time-Lagged Context Likelihood of

Relatedness (tlCLR) 56, 82
Time-series data 51
Transcription 2
Translation 2
True negative 5
True positive 5

V

Voting 86

W

wild-type data 24

Z

Z-score 7, 24, 57

	Network Inference in Molecular Biology
	Acknowledgements
	Contents
	1 Overview of Network Inference
	2 Step 1: Clustering Data
	3 Step 2: Use Steady State Data for Network Inference
	4 Step 3: Using Time-Series Data
	5 Step 4: Pipelines
	References
	Index

