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Visual perception is a complex process requiring interaction between the recep-
tors in the eye that sense the stimulus and the neural system and the brain that 
are responsible for communicating and interpreting the sensed visual informa-
tion. This process involves several physical, neural, and cognitive phenomena 
whose understanding is essential to design effective and computationally 
efficient imaging solutions. Building on advances in computer vision, image and 
video processing, neuroscience, and information engineering, perceptual digital 
imaging greatly enhances the capabilities of traditional imaging methods.

Filling a gap in the literature, Perceptual Digital Imaging: Methods and Appli-
cations comprehensively covers the system design, implementation, and 
application aspects of this emerging specialized area. It gives readers a strong, 
fundamental understanding of theory and methods, providing a foundation on 
which solutions for many of the most interesting and challenging imaging 
problems can be built.

The book features contributions by renowned experts who present the state of 
the art and recent trends in image acquisition, processing, storage, display, and 
visual quality evaluation. They detail advances in the field and explore human 
visual system-driven approaches across a broad spectrum of applications. 
These include image quality and aesthetics assessment, digital camera 
imaging, white balancing and color enhancement, thumbnail generation, image 
restoration, super-resolution imaging, digital halftoning and dithering, color 
feature extraction, semantic multimedia analysis and processing, video shot 
characterization, image and video encryption, display quality enhancement,
and more.

This is a valuable resource for readers who want to design and implement more 
effective solutions for cutting-edge digital imaging, computer vision, and 
multimedia applications. Suitable as a graduate-level textbook or stand-alone 
reference for researchers and practitioners, it provides a unique overview of an 
important and rapidly developing research field.
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All our knowledge has its origins in our perceptions.

—Leonardo da Vinci (1452–1519)
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Preface

Visual perception is a complex process requiring interaction between the receptors in the
eye that sense the stimulus and the neural system and the brain that are responsible for com-
municating and interpreting the sensed visual information. This process involves several
physical, neural, and cognitive phenomena whose understanding is essential to design ef-
fective and computationally efficient imaging solutions. Building on the research advances
in computer vision, image and video processing, neuroscience, and information engineer-
ing, perceptual digital imaging has become an important and rapidly developing research
field. It greatly enhances the capabilities of traditional imaging methods, and numerous
commercial products capitalizing on its principles have already appeared in divergent mar-
ket applications, including emerging digital photography, visual communication, multime-
dia, and digital entertainment applications.

The purpose of this book is to fill the existing gap in the literature and comprehensively
cover the system design, implementation, and application aspects of perceptual digital
imaging. Because of the rapid developments in specialized imaging areas, the book is a
contributed volume where well-known experts are dealing with specific research and appli-
cation problems. It presents the state-of-the-art as well as the most recent trends in image
acquisition, processing, storage, display, and visual quality evaluation. The book serves the
needs of different readers at different levels; it can be used as textbook in support of gradu-
ate courses in computer vision, digital imaging, visual data processing, computer graphics,
and visual communication, or as stand-alone reference for graduate students, researchers,
and practitioners.

This book provides a strong, fundamental understanding of theory and methods, and a
foundation on which solutions for many of today’s most interesting and challenging imag-
ing problems can be built. It details recent advances in the field and explores human visual
system-driven approaches across a broad spectrum of applications, including image quality
and aesthetics assessment, digital camera imaging, white balancing and color enhancement,
thumbnail generation, image restoration, super-resolution imaging, digital halftoning and
dithering, color feature extraction, semantic image analysis and multimedia, video shot
characterization, image and video encryption, display quality enhancement, and more.

The book begins by focusing on human visual perception. The human visual system can
be subdivided into two major components, that is, the eyes, which capture light and convert
it into signals that can be understood by the nervous system, and the visual pathways in
the brain, along which these signals are transmitted and processed. Chapter 1 discusses
characteristics of human vision, focusing on the anatomy and physiology of the above
components as well as a number of phenomena of visual perception that are of particular
relevance to digital imaging.

xi



xii Perceptual Digital Imaging: Methods and Applications

As motion is ubiquitous in normal viewing conditions, it is essential to analyze the ef-
fects of various sources of movement on the retinotopic representation of the environment.
Chapter 2 deals with an analysis of human visual perception based on real-time constraints
of ecological vision, considering two inter-related problems of motion blur and moving
ghosts. A model of retino-cortical dynamics is described in order to provide a mathemati-
cal framework for dealing with motion blur in human vision.

Chapter 3 addresses important issues of perceptual image and video quality assessment.
Built on the knowledge on perception of images and videos by humans and refined com-
putational models of visual processing, a number of assessment methods capable of pro-
ducing the quality scores can be designed. Although human qualitative opinion represents
the palatability of visual signals, subjective quality assessment is usually time consuming
and impractical. Thus, a more efficient approach is to design the algorithms that can objec-
tively evaluate visual quality by automatically generating the quality scores that correlate
well with subjective opinion.

Chapter 4 focuses on visual aesthetic quality assessment of digital images. Computa-
tional aesthetics is concerned with exploring techniques to predict an emotional response
to a visual stimulus and with developing methods to create and enhance pleasing impres-
sions. Among various modules in the aesthetic algorithm design, such as data collection
and human study, feature extraction, and machine learning, constructing and extracting the
features using the knowledge and experience in visual psychology, photography, and art is
essential to overcome the gap between low-level image properties and high-level human
perception of aesthetics.

The human visual system characteristics are also widely considered in the digital imaging
technology design. As discussed in Chapter 5, digital camera designers largely rely on
perceptually based image processing to ensure that a captured image mimics the scene and
is visually pleasing. Perceptual considerations affect the decisions made by the automatic
camera control algorithms that adjust the exposure, focus, and white balance settings of the
camera. Various camera image processing steps, such as demosaicking, noise reduction,
color rendering, edge enhancement, and compression, are similarly influenced in order to
execute quickly without sacrificing perceptual quality.

Chapter 6 presents the framework that addresses the problem of joint white balancing
and color enhancement. The framework takes advantage of pixel-adaptive processing that
combines the local and global spectral characteristics of the captured visual data in order
to produce the image with the desired color appearance. Various example solutions can
be constructed within this framework by following simple but yet powerful spectral mod-
eling and combinatorial principles. The presented design methodology is efficient, highly
flexible, and leads to visually pleasing color images.

Taking advantage of their small size, thumbnails are commonly used in preview, organi-
zation, and retrieval of digital images. Perceptual thumbnail generation, explored in Chap-
ter 7, aims to provide a faithful impression about the image content and quality. Unlike the
conventional thumbnail, its perceptual counterpart displays both global composition and
important visual features, such as noise and blur, of the original image. This allows the
user to efficiently judge the image quality by viewing the low-resolution thumbnail instead
of inspecting the original full-resolution image.
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Chapter 8 reviews the principles of patch-based image models and explores their possible
scientific connections with human vision models. The evolution from first-generation patch
models, which relate to dictionary construction and learning, to second-generation patch
models, which include structural clustering and sparsity optimization, offers insights on
how locality and convexity have served in mathematical modeling of photographic images.
The potential of patch-based image models is demonstrated in various image processing
applications, such as denoising, compression artifact removal, and inverse halftoning.

Super-resolution imaging aims at producing a high-resolution image or a sequence of
high-resolution images from a set of low-resolution images. The process requires an image
acquisition model that relates a high-resolution image to multiple low-resolution images
and involves solving the resulting inverse problem. Chapter 9 surveys existing relevant
methods, with a focus on efficient perceptually driven super-resolution techniques. Such
techniques utilize various models of the human visual system and can automatically adapt
to local characteristics that are perceptually most relevant, thus producing the desired image
quality and simultaneously reducing the computational complexity of processing.

Digital halftoning refers to the process of converting a continuous-tone image or photo-
graph into a binary pattern of black and white pixels for display on binary devices, such
as ink-jet printers. Similar to dithering used in computer graphics, this process creates the
illusion of depth when outputting an image on a device with a limited palette. Chapter 10
discusses the methods of dither array construction employing models of visual perception,
including the extension of the stochastic dither arrays to nonzero screen angles and the
challenging problem of lenticular printing.

Color features are widely used in content analysis and retrieval. However, most of them
show severe limitations due to their poor connection to the color perception mechanism of
the human visual system and their inability to characterize all the properties of the color
composition in a visual scenery. To overcome these drawbacks, Chapter 11 focuses on
perceptual color descriptors that reflect all major properties of prominent colors. Extracted
global and spatial properties using these refined descriptors can be combined further to
form the final descriptor that is unbiased and robust to non-perceivable color elements in
both spatial and color domains.

Exploiting information in the sense of visual semantics, context, and implicit or explicit
knowledge not only allows for better scene understanding by bridging the semantic and
conceptual gap that exists between humans and computers but also enhances content-based
multimedia analysis and retrieval performance. To address this problem, Chapter 12 deals
with concept-based multimedia processing using semantic and contextual knowledge. Such
high-level concepts can be efficiently detected when an image is represented by a model
vector with the aid of a visual thesaurus and visual context, where the latter can be inter-
preted by utilizing an ontology-based fuzzy representation of knowledge.

Chapter 13 presents perceptually driven video shot characterization, employing an un-
supervised approach to identify meaningful components that influence the semantics of
the scene through their behavioral and perceptual attributes. This is done by using the
perceptual grouping and prominence principles. Namely, the former takes advantage of
an organizational model that encapsulates the grouping criteria based on spatiotemporal
consistency exhibited by emergent clusters of grouping primitives. The latter models the
cognitive saliency of the subjects based on attributes that commonly influence human judg-
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ment. The video shot is categorized based on the observations that direct visual attention
of a human observer across the visualization space.

With the proliferation of digital imaging devices, protecting sensitive visual information
from unauthorized access and misuse becomes crucial. Given the extensive size of visual
data, full encryption of digital images and videos may not be necessary or economical
in some applications. Chapter 14 discusses perceptual encryption of digital images and
videos that can be implemented by selectively encrypting part of the bitstream representing
the visual data. Of particular interest are attacks on perceptual encryption schemes for
popular image and video formats based on the discrete cosine transform.

Finally, Chapter 15 explores perceptual effects to exceed physical limitations of display
devices. By considering various characteristics of human visual perception, display quali-
ties can be significantly enhanced, for instance, in terms of perceived contrast and disparity,
brightness, motion smoothness, color, and resolution. Similar enhancement could often be
achieved only by improving physical parameters of displays, which might be impossible
without fundamental design changes in the existing display technology and clearly may
lead to overall higher display costs.

As the above overview suggests, this book is a unique up-to-date reference that should
be found useful in the design and implementation of various digital imaging-related tasks.
Moreover, each chapter offers a broad survey of the relevant literature, thus providing a
good basis for further exploration of the presented topics. The book includes numerous ex-
amples and illustrations of perceptual digital imaging results, as well as tables summarizing
the results of quantitative analysis studies. Complementary material for further reading is
available online at http://www.colorimageprocessing.org.

I would like to thank the contributors for their effort, valuable time, and motivation to
enhance the profession by providing material for a wide audience while still offering their
individual research insights and opinions. I am very grateful for their enthusiastic support,
timely response, and willingness to incorporate suggestions from me to improve the quality
of contributions. Finally, a word of appreciation for CRC Press / Taylor & Francis for giving
me the opportunity to edit a book on perceptual digital imaging. In particular, I would
like to thank Nora Konopka for supporting this project, Jessica Vakili for coordinating the
manuscript preparation, Jim McGovern for handling the final production, Andre Barnett
for proofreading the book, and John Gandour for designing the book cover.

Rastislav Lukac
Foveon, Inc. / Sigma Corp., San Jose, CA, USA

E-mail: lukacr@colorimageprocessing.com
Web: www.colorimageprocessing.com
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2 Perceptual Digital Imaging: Methods and Applications

1.1 Introduction

Vision is perhaps the most essential of human senses. A large part of human brain is de-
voted to vision, which explains the enormous complexity of the human visual system. The
human visual system can be subdivided into two major components: the eyes, which cap-
ture light and convert it into signals that can be understood by the nervous system, and the
visual pathways in the brain, along which these signals are transmitted and processed. This
chapter discusses the anatomy and physiology of these components as well as a number of
phenomena of visual perception that are of particular relevance to digital imaging.

The chapter is organized as follows. Section 1.2 presents the optics and mechanics of
the eye. Section 1.3 discusses the properties and the functionality of the receptors and neu-
rons in the retina. Section 1.4 explains the visual pathways in the brain and a number of
components along the way. Section 1.5 reviews human sensitivity to light and various re-
lated mathematical models. Section 1.6 discusses the processes of masking and adaptation.
Section 1.7 describes the representation of color in the visual system and other useful color
spaces. Section 1.8 briefly outlines the basics of depth perception. Section 1.9 provides
conclusions and pointers for further reading.

1.2 Eye
1.2.1 Physical Principles

From an optical point of view, the eye is the equivalent of a photographic camera. It
comprises a system of lenses and a variable aperture to focus images on the light-sensitive
retina. This section summarizes the optical principles of image formation.

The optics of the eye rely on the physical principles of refraction. Refraction is the
bending of light rays at the angulated interface of two transparent media with different
refractive indices. The refractive index n of a material is the ratio of the speed of light in
vacuum c0 to the speed of light in this material c, that is, n = c0/c. The degree of refraction
depends on the ratio of the refractive indices of the two media as well as the angle φ
between the incident light ray and the interface normal, resulting in n1 sinφ1 = n2 sinφ2.
This is known as Snell’s law.

Lenses exploit refraction to converge or diverge light, depending on their shape. Paral-
lel rays of light are bent outward when passing through a concave lens and inward when
passing through a convex lens. These focusing properties of a convex lens can be used for
image formation. Because of the nature of the projection, the image produced by the lens
is rotated 180◦ about the optical axis.

Objects at different distances from a convex lens are focused at different distances behind
the lens. In a first approximation, this is described by the Gaussian lens formula:

1
ds

+
1
di

=
1
f
, (1.1)
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where ds is the distance between the source and the lens, di is the distance between the
image and the lens, and f is the focal length of the lens. An infinitely distant object is
focused at focal length, resulting in di = f . The reciprocal of the focal length is a measure
of the optical power of a lens, that is, how strongly incoming rays are bent. The optical
power is defined as 1m/ f and is specified in diopters.

Most optical imaging systems comprise a variable aperture, which allows them to adapt
to different light levels. Apart from limiting the amount of light entering the system, the
aperture size also influences the depth of field, that is, the range of distances over which
objects will appear in focus on the imaging plane. A small aperture produces images with
a large depth of field and vice versa. Another side effect of an aperture is diffraction, which
is the scattering of light that occurs when the extent of a light wave is limited. The result
is a blurred image. The amount of blurring depends on the dimensions of the aperture in
relation to the wavelength of the light.

Distance-independent specifications are often used in optics. The visual angle α =
2arctan(s/2D) measures the extent covered by an image of size s at distance D from the
eye. Likewise, resolution or spatial frequency are measured in cycles per degree (cpd) of
visual angle.

1.2.2 Optics of the Eye

Attempts to make general statements about the eye’s optical characteristics are compli-
cated by the fact that there are considerable variations between individuals. Furthermore,
its components undergo continuous changes throughout life. Therefore, the figures given
in the following can only be approximations.

The optical system of the human eye is composed of the cornea, the aqueous humor, the
lens, and the vitreous humor, as illustrated in Figure 1.1. The refractive indices of these
four components are 1.38, 1.33, 1.40, and 1.34, respectively [1]. The total optical power
of the eye is approximately 60 diopters. Most of it is provided by the air-cornea transition,
where the largest difference in refractive indices occurs (the refractive index of air is close
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FIGURE 1.1

The human eye (transverse section of the left eye).



4 Perceptual Digital Imaging: Methods and Applications

to 1). The lens itself provides only a third of the total refractive power due to the optically
similar characteristics of the surrounding elements.

The lens is important because its curvature and thus its optical power can be voluntarily
increased by contracting muscles attached to it. This process is called accommodation.
Accommodation is essential to bringing objects at different distances into focus on the
retina. In young children, the optical power of the lens can extend from 20 to 34 diopters.
However, this accommodation ability decreases gradually with age until it is lost almost
completely, a condition known as presbyopia.

Just before entering the lens, the light passes the pupil, the eye’s aperture. The pupil is the
circular opening inside the iris, a set of muscles that control its size and thus the amount of
light entering the eye depending on the exterior light levels. Incidentally, the pigmentation
of the iris is also responsible for the color of the eyes. The diameter of the pupillary aperture
can be varied between 1.5 and 8 mm, corresponding to a thirtyfold change of the quantity
of light entering the eye. The pupil is thus one of the mechanisms of the human visual
system for light adaptation, which is discussed in Section 1.5.1.

1.2.3 Optical Quality

The physical principles described in Section 1.2.1 pertain to an ideal optical system,
whose resolution is only limited by diffraction. While the parameters of an individual
healthy eye are usually correlated in such a way that the eye can produce a sharp image
of a distant object on the retina, imperfections in the lens system can introduce additional
distortions that affect image quality. In general, the optical quality of the eye deteriorates
with increasing distance from the optical axis. This is not a severe problem, however,
because visual acuity also decreases there, as will be discussed in Section 1.3.

The blurring introduced by the eye’s optics can be measured [2] and quantified by the
point spread function (PSF) or line spread function of the eye, which represent the retinal
images of a point or thin line, respectively; their Fourier transform is the modulation trans-
fer function. A simple approximation of the foveal PSF of the human eye according to
Reference [3] is shown in Figure 1.2 for a pupil diameter of 4 mm. The amount of blurring
depends on the pupil size. Namely, for small pupil diameters up to 3 or 4 mm, the optical
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Point spread function of the human eye as a function of visual angle [3].
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Variation of the modulation transfer function of a human eye model with wavelength [5].

blurring is close to the diffraction limit; as the pupil diameter increases (for lower ambi-
ent light intensities), the width of the PSF increases as well, because the distortions due to
cornea and lens imperfections become large compared to diffraction effects [4]. The pupil
size also determines the depth of field.

Because the cornea is not perfectly symmetric, the optical properties of the eye are ori-
entation dependent. Therefore, it is impossible to perfectly focus stimuli of all orientations
simultaneously, a condition known as astigmatism. This results in a point spread func-
tion that is not circularly symmetric. Astigmatism can be severe enough to interfere with
perception, in which case it has to be corrected by compensatory glasses.

The properties of the eye’s optics, most important the refractive indices of the optical
elements, also vary with wavelength. This means that it is impossible to focus all wave-
lengths simultaneously, an effect known as chromatic aberration. The point spread function
thus changes with wavelength. Chromatic aberration can be quantified by determining the
modulation transfer function of the human eye for different wavelengths. This is shown in
Figure 1.3 for a human eye model with a pupil diameter of 3 mm and in focus at 580 nm [5].
It is evident that the retinal image contains only poor spatial detail at wavelengths far from
the in-focus wavelength (note the sharp cutoff going down to a few cycles per degree at
short wavelengths). This tendency toward monochromacy becomes even more pronounced
with increasing pupil aperture.

1.2.4 Eye Movements

The eye is attached to the head by three pairs of muscles that provide for rotation around
its three axes. Several different types of eye movements can be distinguished [6]. Fixation
movements are perhaps the most important. The voluntary fixation mechanism allows to
direct the eyes toward an object of interest. This is achieved by means of saccades, high-
speed movements steering the eyes to the new position. Saccades occur at a rate of two
to three per second and are also used to keep scanning the entire scene by fixating on one
highlight after the other. One is unaware of these movements because the visual image
is suppressed during saccades. The involuntary fixation mechanism locks the eyes on the
object of interest once it has been found. It involves so-called micro-saccades that counter
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the tremor and slow drift of the eye muscles. The same mechanism also compensates for
head movements or vibrations.

Additionally, the eyes can track an object that is moving across the scene. These so-
called pursuit movements can adapt to object trajectories with great accuracy. Smooth
pursuit works well even for high velocities, but it is impeded by large accelerations and
unpredictable motion.

Understanding what drives the eye movements, or in other words, why people look at
certain areas in an image, has been an intriguing problem in vision research for a long time.
It is important for perceptual imaging applications since visual acuity of the human eye
is not uniform across the entire visual field. In general, visual acuity is highest only in
a relatively small cone around the optical axis (the direction of gaze) and decreases with
distance from the center. This is due to the deterioration of the optical quality of the eye
toward the periphery (see above) as well as the layout of the retina (see Section 1.3).

Experiments presented in Reference [7] demonstrated that the saccadic patterns depend
on the visual scene as well as the cognitive task to be performed. The direction of gaze is not
completely idiosyncratic to individual viewers; however, a significant number of viewers
will focus on the same regions of a scene [8], [9]. These experiments have given rise to var-
ious theories regarding the pattern of eye movements. Salient points attracting attention is
a popular hypothesis [10], which is appealing in passive viewing conditions, such as when
watching television. Salient locations of the image are based on local image characteristics,
such as color, intensity, contrast, orientation, motion, etc. However, because this hypothesis
is purely stimulus driven, it has limited applicability in real life, where semantic content
rather than visual saliency drives eye movements during visual search [11]. There are also
information-theoretic models that attempt to explain the pattern of eye movements [12].

1.3 Retina

The optics of the eye project images of the outside world onto the retina, the neural tissue
at the back of the eye. The functional components of the retina are illustrated in Figure 1.4.
Light entering the retina has to traverse several layers of neurons before it reaches the light-
sensitive layer of photoreceptors and is finally absorbed in the pigment layer. The anatomy
and physiology of the photoreceptors and the retinal neurons is discussed in more detail
below.

1.3.1 Photoreceptors

The photoreceptors are specialized neurons that make use of light-sensitive photochem-
icals to convert the incident light energy into signals that can be interpreted by the brain.
There are two different types of photoreceptors, namely, rods and cones. The names are
derived from the physical appearance of their light-sensitive outer segments (Figure 1.4).
Rods are responsible for scotopic vision at low light levels, while cones are responsible for
photopic vision at high light levels.
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Anatomy of the retina. © 1991 W.B. Saunders

Rods are very sensitive light detectors. With the help of the photochemical rhodopsin,
they can generate a photocurrent response from the absorption of only a single photon [13].
However, visual acuity under scotopic conditions is poor, even though rods sample the
retina very finely. This is because signals from many rods converge onto a single neuron,
which improves sensitivity but reduces resolution.

The opposite is true for the cones. Several neurons encode the signal from each cone,
which already suggests that cones are important components of visual processing. There
are three different types of cones, which can be classified according to the spectral sensi-
tivity of their photochemicals. These three types are referred to as L-, M-, and S-cones,
corresponding to their sensitivity to long, medium, and short wavelengths, respectively.
Therefore, sometimes cones are also referred to as red, green, and blue cones, respectively.
Estimates of the absorption spectra of the three cone types are shown in Figure 1.5 [14],
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Normalized absorption spectra of L-, M-, and S-cones [15], [16].
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The distribution of photoreceptors on the retina [17]. Cones are concentrated in the fovea at the center of the

retina, whereas rods dominate in the periphery. The gap around 15 degrees eccentricity represents the blind

spot around the optic disc, where no receptors are present.

[15], [16]. The peak sensitivities occur around 570 nm, 570 nm, and 440 nm, respectively.
As can be seen, the absorption spectra of the L- and M-cones are very similar, whereas
the S-cones exhibit a significantly different sensitivity curve. The cones form the basis of
color perception. The overlap of the spectra is essential to fine color discrimination (color
perception is discussed in more detail in Section 1.7).

There are approximately 5 million cones and 100 million rods in each eye. Their density
varies greatly across the retina, as is evident from Figure 1.6 [17]. There is also a large
variability between individuals. Cones are concentrated in the fovea, a small area near
the center of the retina, where they can reach a peak density of up to 300,000/mm2 [18].
Throughout the retina, L- and M-cones are in the majority; S-cones are much more sparse
and account for less than 10% of the total number of cones [19]. Rods dominate outside of
the fovea, which explains why it is easier to see very dim objects (for example, stars) when
they are in the peripheral field of vision than when looking straight at them. The central
fovea contains no rods at all. The highest rod densities (up to 200,000/mm2) are found
along an elliptical ring near the eccentricity of the optic disc. The blind spot around the
optic disc, where the optic nerve exits the eye, is completely void of photoreceptors.

The spatial sampling of the retina by the photoreceptors is illustrated in Figure 1.7. In the
fovea, the cones are tightly packed and form a hexagonal sampling array. In the periphery,
the sampling grid becomes more irregular; the separation between the cones grows, and
rods fill in the spaces. Also note the size differences: the cones in the fovea have a diameter
of 1 to 3 µm; in the periphery, their diameter increases to 5 to 10 µm. The diameter of the
rods varies between 1 and 5 µm.

The size and spacing of the photoreceptors determine the maximum spatial resolution of
the human visual system. Assuming an optical power of 60 diopters and thus a focal length
of approximately 17 mm for the eye, distances on the retina can be expressed in terms of
visual angle using simple trigonometry. The entire fovea covers approximately 2 degrees
of visual angle. The L- and M-cones in the fovea are spaced approximately 2.5 µm apart,
which corresponds to 30 arc seconds of visual angle. The maximum resolution of around
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FIGURE 1.7

The photoreceptor mosaic on the retina [17]. (a) In the fovea, the cones are densely packed on a hexagonal

sampling array. (b) In the periphery, their size and separation grows, and rods fill in the spaces. Each image

shows an area of 35×25 µm2. ©1990 John Wiley & Sons

60 cpd attained here is high enough to capture all of the spatial variation after the blurring
by the eye’s optics. S-cones are spaced approximately 50 µm or 10 minutes of arc apart on
average, resulting in a maximum resolution of only 3 cpd [19]. This is consistent with the
strong defocus of short-wavelength light due to the axial chromatic aberration of the eye’s
optics (see Figure 1.3). Thus, the properties of different components of the visual system fit
together nicely, as can be expected from an evolutionary system. The optics of the eye set
limits on the maximum visual acuity, and the arrangements of the mosaic of the S-cones as
well as the L- and M-cones can be understood as a consequence of the optical limitations
(and vice versa).

1.3.2 Retinal Neurons

The retinal neurons process the photoreceptor signals. The anatomical connections and
neural specializations within the retina combine to communicate different types of infor-
mation about the visual input to the brain. As shown in Figure 1.4, a variety of different
neurons can be distinguished in the retina:

• Horizontal cells connect the synaptic nodes of neighboring rods and cones. They
have an inhibitory effect on bipolar cells.

• Bipolar cells connect horizontal cells, rods, and cones with ganglion cells. Bipolar
cells can have either excitatory or inhibitory outputs.

• Amacrine cells transmit signals from bipolar cells to ganglion cells or laterally be-
tween different neurons. About 30 types of amacrine cells with different functions
have been identified.

• Ganglion cells collect information from bipolar and amacrine cells. There are about
1.6 million ganglion cells in the retina. Their axons form the optic nerve that leaves
the eye through the optic disc and carries the output signal of the retina to other
processing centers in the brain (see Section 1.4).
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Center-surround organization of the receptive field of retinal ganglion cells: (a) on-center, off-surround, and

(b) off-center, on-surround.

The interconnections between these cells give rise to an important concept in visual per-
ception, the receptive field. The visual receptive field of a neuron is defined as the retinal
area in which light influences the neuron’s response. It is not limited to cells in the retina;
many neurons in later stages of the visual pathways can also be described by means of their
receptive fields (see Sections 1.4.1 and 1.4.2).

The ganglion cells in the retina have a characteristic center-surround receptive field,
which is nearly circularly symmetric as shown in Figure 1.8. Light falling directly on
the center of a ganglion cell’s receptive field may either excite or inhibit the cell. In the
surrounding region, light has the opposite effect. Between center and surround, there is a
small area with a mixed response. About half of the retinal ganglion cells have an on-center,
off-surround receptive field; that is, they are excited by light on their center. The other half
have an off-center, on-surround receptive field with the opposite reaction. This receptive
field organization is mainly due to lateral inhibition from horizontal cells. The consequence
is that excitatory and inhibitory signals basically neutralize each other when the stimulus is
uniform. However, for example, when edges or corners come to lie over such a cell’s recep-
tive field, its response is amplified. In other words, retinal neurons implement a mechanism
of contrast computation (see also Section 1.5.4).

Ganglion cells can be further classified in two main groups:

• P-cells constitute the large majority (nearly 90%) of ganglion cells. They have very
small receptive fields; that is, they receive inputs only from a small area of the retina
(only a single cone in the fovea) and can thus encode fine image details. Further-
more, P-cells encode most of the chromatic information as different P-cells respond
to different colors.

• M-cells constitute only 5 to 10% of ganglion cells. At any given eccentricity, their
receptive fields are several times larger than those of P-cells. They also have thicker
axons, which means that their output signals travel at higher speeds. M-cells respond
to motion or small differences in light level but are insensitive to color. They are
responsible for rapidly alerting the visual system to changes in the image.

These two types of ganglion cells represent the origin of two separate visual streams in the
brain, the so-called magnocellular and parvocellular pathways (see Section 1.4.1).
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Visual pathways in the human brain. ©1991 W.B. Saunders

As becomes evident from this intricate arrangement of neurons, the retina is much more
than a device to convert light to neural signals; the visual information is thoroughly pre-
processed here before it is passed on to other parts of the brain.

1.4 Visual Pathways

The optic nerve leaves the eye to carry the visual information from the ganglion cells of
the retina to various processing centers in the brain. These visual pathways are illustrated
in Figure 1.9. The optic nerves from the two eyes meet at the optic chiasm, where the fibers
are rearranged. All the fibers from the nasal halves of each retina cross to the opposite side,
where they join the fibers from the temporal halves of the opposite retinas to form the optic
tracts. Since the retinal images are reversed by the optics, the left visual field is processed
in the right hemisphere, and the right visual field is processed in the left hemisphere.

Most of the fibers from each optic tract synapse in the lateral geniculate nucleus (see
Section 1.4.1). From there fibers pass by way of the optic radiation to the visual cortex
(see Section 1.4.2). Throughout these visual pathways, the neighborhood relations of the
retina are preserved; that is, the input from a certain small part of the retina is processed
in a particular area of the lateral geniculate nucleus and of the primary visual cortex. This
property is known as retinotopic mapping.

There are a number of additional destinations for visual information in the brain apart
from the major visual pathways listed above. These brain areas are responsible mainly for
behavioral or reflex responses. One example is the superior colliculus, which seems to be
involved in controlling eye movements in response to certain stimuli in the periphery.

1.4.1 Lateral Geniculate Nucleus

The lateral geniculate nucleus comprises around one million neurons in six layers. The
two inner layers, the magnocellular layers, receive input almost exclusively from M-type
ganglion cells. The four outer layers, the parvocellular layers, receive input mainly from P-
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type ganglion cells. As mentioned in Section 1.3.2, the M- and P-cells respond to different
types of stimuli, namely, motion and spatial detail, respectively. This functional special-
ization continues in the lateral geniculate nucleus and the visual cortex, which suggests the
existence of separate magnocellular and parvocellular pathways in the visual system.

The specialization of cells in the lateral geniculate nucleus is similar to the ganglion
cells in the retina. The cells in the magnocellular layers are effectively color-blind and
have larger receptive fields. They respond vigorously to moving contours. The cells in
the parvocellular layers have rather small receptive fields and are differentially sensitive
to color. They are excited if a particular color illuminates the center of their receptive
field and inhibited if another color illuminates the surround. Only two color pairings are
found, namely, red-green and blue-yellow. These opponent colors form the basis of color
perception in the human visual system and will be discussed in more detail in Section 1.7.2.

The lateral geniculate nucleus not only serves as a relay station for signals from the retina
to the visual cortex but also controls how much of the information is allowed to pass. This
gating operation is controlled by extensive feedback signals from the primary visual cortex
as well as input from the reticular activating system in the brain stem, which governs a
general level of arousal.

1.4.2 Visual Cortex

The visual cortex is located at the back of the cerebral hemispheres (see Figure 1.9).
It is responsible for all higher-level aspects of vision. The signals from the lateral genic-
ulate nucleus arrive at an area called the primary visual cortex (also known as area V1,
Brodmann area 17, or striate cortex), which makes up the largest part of the human visual
system. In addition to the primary visual cortex, more than 20 other cortical areas receiving
strong visual input have been discovered. Little is known about their exact functionalities,
however.

There is an enormous variety of cells in the visual cortex. Neurons in the first stage of
the primary visual cortex have center-surround receptive fields similar to cells in the retina
and in the lateral geniculate nucleus (see above). A recurring property of many cells in the
subsequent stages of the visual cortex is their selective sensitivity to certain types of in-
formation. A particular cell may respond strongly to patterns of a certain orientation or to
motion in a certain direction. Similarly, there are cells tuned to particular frequencies, col-
ors, velocities, etc. This neuronal selectivity is thought to be at the heart of the multichannel
organization of human vision, which is discussed in Section 1.4.3.

The foundations of knowledge about cortical receptive fields were laid in References [20]
and [21]. Based on physiological studies of cells in the primary visual cortex, several
classes of neurons with different specializations were identified.

Simple cells behave in an approximately linear fashion; that is, their responses to com-
plicated shapes can be predicted from their responses to small-spot stimuli. They have
receptive fields composed of several parallel elongated excitatory and inhibitory regions,
as illustrated in Figure 1.10. In fact, their receptive fields resemble Gabor patterns [22].
Hence, simple cells can be characterized by a particular spatial frequency, orientation, and
phase. Serving as an oriented bandpass filter, a simple cell thus responds to a certain,
limited range of spatial frequencies and orientations.
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FIGURE 1.10

Idealized receptive field of a simple cell in the primary visual cortex.

Complex cells are the most common cells in the primary visual cortex. Like simple cells,
they are also orientation-selective, but their receptive field does not exhibit the on- and off-
regions of a simple cell; instead, they respond to a properly oriented stimulus anywhere in
their receptive field.

A small percentage of complex cells respond well only when a stimulus (still with the
proper orientation) moves across their receptive field in a certain direction. These direction-
selective cells receive input mainly from the magnocellular pathway and probably play
an important role in motion perception. Some cells respond only to oriented stimuli of
a certain size. They are referred to as end-stopped cells. They are sensitive to corners,
curvature, or sudden breaks in lines. Both simple and complex cells can also be end-
stopped. Furthermore, the primary visual cortex is the first stage in the visual pathways
where individual neurons have binocular receptive fields; that is, they receive inputs from
both eyes, thereby forming the basis for stereopsis and depth perception.

1.4.3 Multichannel Organization

As mentioned above, many neurons in the visual system are tuned to certain types of
visual information, such as color, frequency, and orientation. Data from experiments on
pattern discrimination, masking, and adaptation (see Section 1.6) yield further evidence
that these stimulus characteristics are processed in different channels in the human visual
system. This empirical evidence motivated the multichannel theory of human vision, which
provides an important framework for understanding and modeling pattern sensitivity.

A large number of neurons in the primary visual cortex have receptive fields that resem-
ble Gabor patterns (Figure 1.10). Hence, they can be characterized by a particular spatial
frequency and orientation, and essentially represent oriented bandpass filters. There is still
a lot of discussion about the exact tuning shape and bandwidth, and different experiments
have led to different results. For the achromatic visual pathways, most studies give esti-
mates of approximately one to two octaves for the spatial frequency bandwidth and 20 to
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60 degrees for the orientation bandwidth, varying with spatial frequency [23]. These results
are confirmed by psychophysical evidence from studies of discrimination and interaction
phenomena. Interestingly, these cell properties can also be related with and even derived
from the statistics of natural images [24], [25].

Fewer empirical data are available for the chromatic pathways. They probably have
similar spatial frequency bandwidths [26], [27], whereas their orientation bandwidths have
been found to be significantly larger, ranging from 60 to 130 degrees [28].

Many different transforms and filters have been proposed as approximations to the mul-
tichannel representation of visual information in the human visual system. These include
Gabor filters (Figure 1.10), the Cortex transform [29], a variety of wavelets, and the steer-
able pyramid [30]. While the specific filter shapes and designs are very different, they all
decompose an image into a number of spatial frequency and orientation bands. With a
sufficient number of appropriately tuned filters, all stimulus orientations and frequencies in
the sensitivity range of the visual system can be covered.

1.5 Sensitivity to Light
1.5.1 Light Adaptation

The human visual system is capable of adapting to an enormous range of light intensities.
Light adaptation allows to better discriminate relative luminance variations at every light
level. Scotopic and photopic vision together cover twelve orders of luminance magnitude,
from the detection of a few photons to vision in bright sunlight. However, at any given
level of adaptation, humans only respond to an intensity range of two to three orders of
magnitude. Three mechanisms for light adaptation can be distinguished in the human visual
system:

• The mechanical variation of the pupillary aperture. As discussed in Section 1.2.2, it
is controlled by the iris. The pupil diameter can be varied between 1.5 and 8 mm,
which corresponds to a thirtyfold change of the quantity of light entering the eye.
This adaptation mechanism responds in a matter of seconds.

• The chemical processes in the photoreceptors. This adaptation mechanism exists
in both rods and cones. In bright light, the concentration of photochemicals in the
receptors decreases, thereby reducing their sensitivity. On the other hand, when the
light intensity is reduced, the production of photochemicals and thus the receptor
sensitivity is increased. While this chemical adaptation mechanism is very powerful
(it covers five to six orders of magnitude), it is rather slow; complete dark adaptation
in particular can take up to an hour.

• Adaptation at the neural level. This mechanism involves neurons in all layers of the
retina, which adapt to changing light intensities by increasing or decreasing their
signal output accordingly. Neural adaptation is less powerful, but faster than the
chemical adaptation in the photoreceptors.
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FIGURE 1.11

Illustration of the Weber-Fechner law. Using the basic stimulus shown in (a), threshold contrast is constant

over a wide range – shown as a solid line in (c). When the adapting luminance L′ is different from L as shown

in (b), this contrast constancy is lost – shown as dotted lines for various L′ in (c).

1.5.2 Contrast Sensitivity

The response of the human visual system depends much less on the absolute luminance
than on the relation of its local variations to the surrounding luminance. This property
is known as the Weber-Fechner law. Contrast is a measure of this relative variation of
luminance. Mathematically, Weber contrast can be expressed as

CW =
∆L
L

. (1.2)

This definition is most appropriate for patterns consisting of a single increment or decre-
ment ∆L to an otherwise uniform background luminance.

The threshold contrast, which is the minimum contrast necessary for an observer to de-
tect a change in intensity, is shown as a function of background luminance in Figure 1.11.
As can be seen, it remains nearly constant over an important range of intensities (from
faint lighting to daylight) due to the adaptation capabilities of the human visual system,
that is, the Weber-Fechner law holds in this range. This is indeed the luminance range
typically encountered in most image processing applications. Outside of this range, inten-
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Sinusoidal grating with Michelson contrast of CM = 0.6 and its luminance profile.

sity discrimination ability of the human eye deteriorates. Under optimal conditions, the
threshold contrast can be less than 1%. The exact figure depends greatly on the stimulus
characteristics, most important, its color and spatial frequency (see Section 1.5.3).

The Weber-Fechner law is only an approximation of the actual sensory perception. Most
important, it presumes that the visual system is adapted to the background luminance L.
This assumption is generally violated when looking at a natural image in print or on screen.
If the adapting luminance L′ is different, as depicted in Figure 1.11b, the required threshold
contrast can become much larger, depending on how far L and L′ are apart. Even this latter
scenario is a simplification of realistic image viewing situations, because the adaptation
state is determined not only by the environment, but also by the image content itself. Be-
sides, most images are composed of many more than just two colors, so the response of the
visual system becomes much more complex.

1.5.3 Contrast Sensitivity Functions

The dependencies of threshold contrast on stimulus characteristics can be quantified us-
ing contrast sensitivity functions (CSFs); contrast sensitivity is simply the inverse of the
contrast threshold. In these CSF measurements, the contrast of periodic (often sinusoidal)
stimuli with varying frequencies is defined as the Michelson contrast:

CM =
Lmax−Lmin

Lmax +Lmin
, (1.3)

where Lmin and Lmax are the luminance extrema of the pattern (see Figure 1.12).
CSF approximations to measurements from Reference [31] are shown in Figure 1.13.

Achromatic contrast sensitivity is generally higher than chromatic, especially at high spa-
tial frequencies. This is the justification for chroma subsampling in image compression
applications; for example, humans are relatively insensitive to a reduction of color de-
tail. Achromatic sensitivity has a distinct maximum around 2 to 8 cpd (again depending
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Approximations of achromatic and chromatic contrast sensitivity functions to data from Reference [31].

on stimulus characteristics) and decreases at low spatial frequencies,1 whereas chromatic
sensitivity does not. The chromatic CSFs for red-green and blue-yellow stimuli are very
similar in shape; the blue-yellow sensitivity is slightly lower overall, and its high-frequency
decline sets in a bit earlier.

Aside from the pattern and color of the stimulus, the exact shape of the contrast sensitivity
function depends on many other factors. Among them are the retinal illuminance [33],
which has a substantial effect on the location of the maximum, and the orientation of the
stimulus [34] (the sensitivity is highest for horizontal and vertical patterns, whereas it is
reduced for oblique stimuli).

Various CSF models have been proposed in the literature. A simple yet effective en-
gineering model that can fit both achromatic and chromatic sensitivity measurements in
different situations was suggested in Reference [35]:

CSF( f ) = (a0 +a1 f )ea2 f a3 , (1.4)

where ai are design parameters. More elaborate models have explicit luminance and orien-
tation parameters [36], [37].

1.5.4 Image Contrast

The two definitions of contrast in Equations 1.2 and 1.3 are not equivalent and do not even
share a common range of values: Michelson contrast can range from 0 to 1, whereas Weber
contrast can range from −1 to ∞. While they are good predictors of perceived contrast for
simple stimuli, they fail when stimuli become more complex and cover a wider frequency
range, for example, Gabor patches [38]. It is also evident that none of these simple global
definitions are appropriate for measuring contrast in natural images, since a few very bright
or very dark spots would determine the contrast of the whole image. Actual human contrast
perception on the other hand varies with the local average luminance.

1This apparent attenuation of sensitivity toward low frequencies may be attributed to implicit masking, that is,
masking by the spectrum of the window within which the test gratings are presented [32].



18 Perceptual Digital Imaging: Methods and Applications

In order to address these issues, Reference [39] proposed a local band-limited contrast
that measures incremental or decremental changes with respect to the local background:

CP
j [x,y] =

ψ j ∗L[x,y]
φ j ∗L[x,y]

, (1.5)

where L[x,y] is the luminance image, ψ j is a bandpass filter at level j of a filter bank, and φ j

is the corresponding lowpass filter. This definition is analogous to the symmetric (in-phase)
responses of vision mechanisms.

However, a complete description of contrast for complex stimuli has to include the anti-
symmetric (quadrature) responses as well [40]. Analytic filters represent an elegant way to
achieve this. The magnitude of the analytic filter response, which is the sum of the energy
responses of in-phase and quadrature components, exhibits the desired behavior in that it
gives a constant response to sinusoidal gratings.

While the implementation of analytic filters in the one-dimensional case is straightfor-
ward, the design of general two-dimensional analytic filters is less obvious because of the
difficulties involved when extending the Hilbert transform to two dimensions. Oriented
measures of contrast can still be computed, because the Hilbert transform is well defined
for filters whose angular support is smaller than π . Such contrast measures are useful for
many image processing tasks. They can implement a multichannel representation of low-
level vision in accordance with the orientation selectivity of the human visual system (Sec-
tion 1.4.3) and facilitate modeling aspects, such as contrast sensitivity and pattern masking.
They have been used in many vision models and their applications, for example, in per-
ceptual quality assessment of images and video [41]. Using analytic orientation-selective
filters ηk[x,y], this oriented contrast can be expressed as:

CO
jk[x,y] =

|ψ j ∗ηk ∗L[x,y]|
φ j ∗L[x,y]

. (1.6)

The design of an isotropic contrast measure is more difficult. As pointed out before,
the contrast definition from Equation 1.5 is not suitable because it lacks the quadrature
component, and isotropic two-dimensional analytic filters as such do not exist. In order
to circumvent this problem, a class of nonseparable filters can be used that generalize the
properties of analytic functions in two dimensions. These filters are directional wavelets
whose Fourier transform is strictly supported in a convex cone with the apex at the origin.
For these filters to have a flat response to sinusoidal stimuli, the angular width of the cone
must be strictly less than π . This means that at least three such filters are required to cover
all possible orientations uniformly. Using a technique described in Reference [42], such
filters can be designed in a very simple and straightforward way; it is even possible to obtain
dyadic-oriented decompositions that can be implemented using a filter bank algorithm.

Essentially, this technique assumes K directional wavelets with Fourier transform Ψ̂(r,ϕ)
that satisfy the above requirements and

K−1

∑
k=0

|Ψ̂(r,ϕ−2πk/K)|2 = |ψ̂(r)|2, (1.7)

where ψ̂(r) is the Fourier transform of an isotropic dyadic wavelet. Using these oriented
filters, one can define an isotropic contrast measure CI

j as the square root of the energy sum
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FIGURE 1.14

Isotropic local contrast: (a) an example image and (b) its isotropic local contrast CI
j[x,y] as given by Equa-

tion 1.8.

of the filter responses, normalized as before by a lowpass band:

CI
j[x,y] =

√
2∑k |Ψ jk ∗L[x,y]|2

φ j ∗L[x,y]
, (1.8)

where L[x,y] is the input image, and Ψ jk denotes the wavelet dilated by 2− j and rotated by
2πk/K. The term CI

j denotes an orientation- and phase-independent quantity.
Being defined by means of analytic filters it behaves as prescribed with respect to sinu-

soidal gratings (that is, CI
j[x,y] ≡CM in this case). This combination of analytic-oriented

filters thus produces a meaningful phase-independent isotropic measure of contrast. The ex-
ample shown in Figure 1.14 demonstrates that it is a very natural measure of local contrast
in an image. Isotropy is particularly useful for applications where nondirectional signals in
an image are considered [43].

1.5.5 Lightness Perception

Weber’s law already indicates that human perception of brightness, or lightness, is not
linear. More precisely, it suggests a logarithmic relationship between luminance and light-
ness. However, Weber’s law is only based on threshold measurements, and it generally
overestimates the sensitivity for higher luminance values. More extensive experiments
with tone scales were carried out by Munsell to determine stimuli that are perceptually
equidistant in luminance (and also in color). These experiments revealed that a power-law
relationship with an exponent of 1/3 is closer to actual perception of lightness. This was
standardized by CIE as L∗ (see Section 1.7.3). A modified log characteristic that can be
tuned for various situations with the help of a parameter was proposed in Reference [44].
The different relationships are compared in Figure 1.15.
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Perceived lightness as a function of luminance.

1.6 Masking and Adaptation

Masking and adaptation are very important phenomena in vision in general and in dig-
ital imaging in particular as they describe interactions between stimuli. Masking occurs
when a stimulus that is visible by itself cannot be detected due to the presence of another.
As demonstrated in Figure 1.16, the same distortion can be disturbing in certain regions

(a) (b)

FIGURE 1.16

Demonstration of the masking effect. The same noise has been added to rectangular areas (a) at the top of the

image, where it is clearly visible in the sky, and (b) at the bottom of the image, where it is much harder to see

on the rocks and in the water due to masking by the heavily textured background.
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(a) (b) (c)

FIGURE 1.17

Typical contrast masking experiment: (a) a cosine masker, (b) a Gabor target, and (c) a superimposed result.

The visibility of the target is highly dependent on the contrast of the masker.

of an image while it is hardly noticeable elsewhere. Thus, within the framework of digi-
tal imaging it is helpful to think of features of the processed image being masked by the
original image. Results from masking and adaptation experiments were also the basis for
developing a multichannel theory of vision (see Section 1.4.3).

1.6.1 Contrast Masking

Spatial masking effects are usually quantified by measuring the detection threshold for
a target stimulus when it is superimposed on a masker with varying contrast. The stimuli
(both maskers and targets) used in contrast masking experiments are typically sinusoidal
gratings or Gabor patches, as shown in Figure 1.17.
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FIGURE 1.18

Illustration of typical masking curves. The detection threshold for the target is elevated by increasing the

contrast of the masker. For stimuli with different characteristics, masking is the dominant effect (case A).

Facilitation occurs for stimuli with similar characteristics (case B).
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Figure 1.18 shows an example of curves approximating the data typically resulting from
such experiments. The horizontal axis shows the log of the masker contrast CM, and the
vertical axis the log of the target contrast CT at detection threshold. The detection threshold
for the target stimulus without any masker is indicated by CT0 . For contrast values of the
masker larger than CM0 , the detection threshold grows exponentially with increasing masker
contrast. As can be seen in this figure, case A shows a gradual transition from the threshold
range to the masking range. This typically occurs when masker and target have different
characteristics. In case B, the detection threshold for the target actually decreases when the
masker contrast is close to CM0 , which implies that the target is easier to perceive due to the
presence of a (weak) masker in this contrast range. This effect is known as facilitation and
occurs mainly when target and masker have very similar properties.

The exact masking behavior depends greatly on the types of target and masker stimuli and
their relationship to each other (for example, relative frequency and orientation). Masking
is strongest when the interacting stimuli have similar characteristics, such as frequencies,
orientations, colors, etc. Masking also occurs between stimuli of different orientation [45],
between stimuli of different spatial frequency [46], and between chromatic and achromatic
stimuli [26], [47], [48], although it is generally weaker.

1.6.2 Pattern Masking

The stimuli (both maskers and targets) used in the experiments cited above are typically
sinusoidal gratings or Gabor patches. Compared to natural scene content, they are artificial
and quite simplistic. Therefore, masking models based on such experiments do not apply to
more complex cases of masking, such as a compression artifact or a watermark in a natural
image. Because the observer is not so familiar with the patterns, uncertainty effects become
more important, and masking can be much larger.

Not many studies investigate masking in natural images. Reference [49] studied signal
detection on complex backgrounds in the presence of noise for medical images and mea-
sured defect detectability as a function of signal contrast.

Reference [50] coined the term “entropy masking” to emphasize that the difference be-
tween contrast masking with regular structures, such as sinusoidal or Gabor masks on one
hand and noise masking (also referred to as texture masking) with unstructured noise-like
stimuli on the other, lies mainly in the familiarity of the observer with the stimuli. Natural
images are somewhere in between these two extremes.

Reference [51] compared a number of masking models for the visibility of wavelet com-
pression artifacts in natural images. This was one of the first comparative studies of mask-
ing in natural images, even if the experiments were quite specific to JPEG2000 encoding.
The best results were achieved by a model that considered exclusively the local image ac-
tivity instead of simple pointwise contrast masking.

Similarly, Reference [52] measured the RMS-based contrast of wavelet distortions at the
threshold of visibility in the presence of natural image maskers, which were selected from
a texture library. The results were used to parameterize a wavelet-based distortion metric,
which was then applied to an associated watermarking algorithm.

Most recently, Reference [53] investigated the visibility of various noise types in natural
images. The targets were Gaussian white noise and bandpass filtered noise of varying en-
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Simple model of masking given by Equation 1.9.

ergy. Psychophysical experiments were conducted to determine the detection threshold of
these noise targets on 30 different images with varying content. The achieved results were
consistent with data from other masking experiments in a number of ways; namely, detec-
tion ability was higher on a plain background, and a clear masking effect was observed. In
particular, noise thresholds increase significantly with image activity.

1.6.3 Masking Models

Numerous masking models of different complexity have been proposed [51], [54]. Be-
cause the facilitation effect is usually limited to a rather small and low range of masker
contrasts, and because in digital imaging applications, the masker (the image) and the tar-
get (the distortions) often have quite different characteristics, facilitation can usually be
neglected. The most important effect is clearly masking, that is, the significant increase
of the target’s visibility threshold with increasing masker contrast CM . Hence, a simple
masking model, shown in Figure 1.19, can be formulated as follows:

CT (CM) =
{

CT0 if CM < CM0 ,
CT0 (CM/CM0)

ε otherwise.
(1.9)

Other popular masking models in digital imaging are based on contrast gain control,
which can explain a wide range of empirical contrast masking data. These models were
inspired by analyses of the responses of single neurons in the visual cortex of the cat [55],
[56], where contrast gain control serves as a mechanism to keep neural responses within
the permissible dynamic range while at the same time retaining global pattern information.

Contrast gain control can be modeled by an excitatory nonlinearity that is inhibited divi-
sively by a pool of responses from other neurons. Masking occurs through the inhibitory
effect of the normalizing pool [45], [57]. A further generalization of these models [58]
facilitates the integration of channel interactions. Namely, let a = a[c, f ,ϕ,x,y] be a coef-
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ficient of the perceptual decomposition in color channel c, frequency band f , orientation
band ϕ , at location [x,y]. Then the corresponding sensor output s = s[c, f ,ϕ,x,y] is com-
puted as

s = α
ap

β 2 +h∗aq . (1.10)

The excitatory path in the numerator consists of a power-law nonlinearity with exponent
p. Its gain is controlled by the inhibitory path in the denominator, which comprises a
nonlinearity with exponent q and a saturation constant β to prevent division by zero. The
factor α is used to adjust the overall gain of the mechanism.

In the inhibitory path, filter responses are pooled over different channels by means of a
convolution with the pooling function h. In its most general form, h = h[c, f ,ϕ,x,y], the
pooling operation in the inhibitory path may combine coefficients from the dimensions of
color, spatial frequency, orientation, location, and phase.

1.6.4 Pattern Adaptation

Pattern adaptation adjusts the sensitivity of the visual system in response to the prevalent
stimulation patterns. For example, adaptation to patterns of a certain frequency can lead to
a noticeable decrease of contrast sensitivity around this frequency [59], [60], [61]. Similar
in effect to masking, adaptation is a significantly slower process.

An interesting study in this respect was reported in Reference [62]. Natural images of
outdoor scenes (both distant views and close-ups) were used as adapting stimuli. It was
found that exposure to such stimuli induces pronounced changes in contrast sensitivity.
The effects can be characterized by selective losses in sensitivity at lower to medium spatial
frequencies. This is consistent with the characteristic amplitude spectra of natural images,
which decrease with frequency approximately as 1/ f .

Likewise, Reference [63] examined how color sensitivity and appearance might be influ-
enced by adaptation to the color distributions of images. It was found that natural scenes
exhibit a limited range of chromatic distributions, so that the range of adaptation states is
normally limited as well. However, the variability is large enough so that different adapta-
tion effects may occur for individual scenes or for different viewing conditions.

1.7 Color Perception

In its most general form, light can be described by its spectral power distribution. The
human visual system (and most imaging devices for that matter) use a much more com-
pact representation of color, however. This representation and its implications for digital
imaging are discussed here.

1.7.1 Color Matching

Color perception can be studied by the color-matching experiment, which is the founda-
tion of color science. In this experiment, the observer views a bipartite field, half of which
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CIE XYZ color-matching functions.

is illuminated by a test light, the other half by an additive mixture of a certain number of
primary lights. The observer is asked to adjust the intensities of the primary lights to match
the appearance of the test light.

It is not a priori clear that it will be possible for the observer to make a match when
the number of primaries is small. In general, however, observers are able to establish a
match using only three primary lights. This is referred to as the trichromacy of human
color vision.2 Trichromacy implies that there exist lights with different spectral power
distributions that cannot be distinguished by a human observer. Such physically different
lights that produce identical color appearance are called metamers.

As was first established in Reference [64], photopic color matching satisfies homogeneity
and superposition and can thus be analyzed using linear systems theory. Assume the test
light is known by N samples of its spectral distribution x(λ ), expressed as vector x. The
color-matching experiment can then be described in matrix form:

t = Cx, (1.11)

where t is a three-dimensional vector whose coefficients are the intensities of the three
primary lights found by the observer to visually match x. They are also referred to as the
tristimulus coordinates of the test light. The rows of matrix C are made up of N samples of
the so-called color-matching functions Ck(λ ) of the three primaries.

The Commission Internationale de l’Eclairage (CIE) carried out such color-matching
experiments, on the basis of which a two-degree (foveal vision) “standard observer” was
defined in 1931. The result was a set of three primaries X , Y , and Z that can be used to
match all observable colors by mixing these primaries with positive weights. Y represents
the luminance, X and Z are idealized chromaticity primaries. The CIE XYZ color-matching
functions are shown in Figure 1.20.

2There are certain qualifications to this empirical generalization that three primaries are sufficient to match any
test light. The primary lights must be chosen so that they are visually independent, that is, no additive mixture
of any two of the primary lights should be a match to the third. Also, “negative” intensities of a primary must
be allowed, which is just a mathematical convention of saying that a primary can be added to the test light
instead of to the other primaries.
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Normalized spectral sensitivities of white-black (W-B), red-green (R-G), and blue-yellow (B-Y) components

of the opponent color space.

The mechanistic explanation of the color-matching experiment is that two lights match
if they produce the same absorption rates in the L-, M-, and S-cones. To relate these cone
absorption rates to the tristimulus coordinates of the test light, a color-matching experiment
is performed with primaries P, whose columns contain N samples of the spectral power
distributions of the three primaries Pk(λ ). It turns out that the cone absorption rates r are
related to the tristimulus coordinates t of the test light by a linear transformation:

r = Mt, (1.12)

where M = RP is a 3× 3 matrix. This also implies that the color-matching functions are
determined by the cone sensitivities up to a linear transformation, which was first verified
empirically in Reference [13]. The spectral sensitivities of the three cone types thus provide
a satisfactory explanation of the color-matching experiment.

1.7.2 Opponent Colors

Reference [65] was the first to point out that some pairs of hues can coexist in a single
color sensation (for example, a reddish yellow is perceived as orange), while others cannot
(a reddish green is never perceived, for instance). This led to the conclusion that the sensa-
tions of red and green as well as blue and yellow are encoded as color difference signals in
separate visual pathways, which is commonly referred to as the theory of opponent colors.

Empirical evidence in support of this theory came from a behavioral experiment designed
to quantify opponent colors, the so-called hue cancellation experiment [66]. In this exper-
iment, observers are able to cancel, for example, the reddish appearance of a test light by
adding certain amounts of green light. Thus, the red-green or blue-yellow appearance of
monochromatic lights can be measured.

Physiological experiments revealed the existence of opponent signals in the visual path-
ways [67]. It was demonstrated that cones may have an excitatory or an inhibitory effect
on ganglion cells in the retina and on cells in the lateral geniculate nucleus. Depending on
the cone types, certain excitation/inhibition pairings occur much more often than others:
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CIE xy chromaticity diagram. Monochromatic colors, indicated by their wavelengths, along the curve form the

border. The dot in the center denotes the location of standard white. The gray triangle represents the gamut of

a typical CRT monitor; the color gamut of printers is even smaller.

neurons excited by “red” L-cones are usually inhibited by “green” M-cones, and neurons
excited by “blue” S-cones are often inhibited by a combination of L- and M-cones. Hence,
the receptive fields of these neurons suggest a connection between neural signals and per-
ceptual opponent colors.

The reason for an opponent-signal representation of color information in the human vi-
sual system may be that the resulting decorrelation of cone signals improves the coding
efficiency of the visual pathways. In fact, this representation can also be traced back to
the properties of natural image spectra [68]. The spectral sensitivities of an opponent color
space derived in Reference [69] are shown in Figure 1.21 as an example. The principal com-
ponents are white-black (W-B), red-green (R-G), and blue-yellow (B-Y) differences. The
W-B channel, which encodes luminance information, is determined mainly by medium to
long wavelengths. The R-G channel discriminates between medium and long wavelengths,
while the B-Y channel discriminates between short and medium wavelengths.

1.7.3 Color Spaces and Conversions

CIE XYZ color space is very useful as the basis for color conversions because it is device
independent. To visualize this color space, chromaticity coordinates are used. The chro-
maticity coordinates of a color are defined by the normalized weights of the three primaries:

x =
X

X +Y +Z
, y =

Y
X +Y +Z

, z =
Z

X +Y +Z
(1.13)

Since by definition x + y + z = 1, the third chromaticity coordinate can now be derived
from the first two. All possible sets of tristimulus values can thus be represented in a two-
dimensional plot, the so-called chromaticity diagram (Figure 1.22). The monochromatic
colors form its border, the spectral locus.
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The chromaticity diagram is also used to define color gamuts, which are simply polygons
on this diagram. All colors that are additive mixtures of the vertices of a gamut are located
inside the gamut. As is evident from the shape of the chromaticity diagram, it is impossible
to choose three real primaries such that all possible colors can be matched with additive
mixtures of those primaries. The CIE XYZ primaries are actually imaginary. In any real
additive color reproductive system such as television, only a limited gamut of colors can be
displayed (see Figure 1.22).

An image is typically represented in nonlinear R′G′B′ space to compensate for the be-
havior of CRT displays (“gamma correction”). For conversion to linear RGB space, each
of the resulting three components has to undergo a power-law nonlinearity of the form xγ

with γ ≈ 2.5.
RGB space is device dependent, because it is determined by the particular spectral power

distribution of the light emitted from the display phosphors. Once the phosphor spectra of
the monitor of interest have been determined, the device-independent CIE XYZ tristimulus
values can be calculated. The primaries of contemporary monitors are closely approxi-
mated by the following transformation [70]:




X
Y
Z


 =




0.412 0.358 0.180
0.213 0.715 0.072
0.019 0.119 0.950







R
G
B


 . (1.14)

The responses of the L-, M-, and S-cones on the human retina (Section 1.3.1) can then
be computed according to Equation 1.12 [71]:




L
M
S


 =




0.240 0.854 −0.044
−0.389 1.160 0.085
−0.001 0.002 0.573







X
Y
Z


 . (1.15)

The LMS values can be converted to an opponent color space (Section 1.7.2). A variety
of opponent color spaces have been proposed, which use different ways to combine the
cone responses. The opponent color model from Reference [69] has been designed for
maximum pattern-color separability, which has the advantage that color perception and
pattern sensitivity can be decoupled. These components are computed from LMS values
via the following transformation [69]:




W−B
R−G
B−Y


 =




0.990 −0.106 −0.094
−0.669 0.742 −0.027
−0.212 −0.354 0.911







L
M
S


 . (1.16)

One shortcoming of all the above color spaces is their perceptual nonuniformity in terms
of color differences. To alleviate this problem, more uniform color spaces were proposed,
for example, CIE L∗a∗b∗. It includes a component of perceived lightness (Section 1.5.5)
and a color difference equation that is approximately uniform for large color patches. CIE
lightness L∗ is computed according to a power law:3

L∗ = 116(Y/Y0)
1/3−16. (1.17)

3Strictly speaking, the power law is only valid when the argument is greater than 0.008856. Below this value,
a linear approximation is used due to the singularity of the power function at zero.
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The two chromaticity coordinates a∗ and b∗ in CIE L∗a∗b∗ space are computed as follows:

a∗ = 500
[
(X/X0)1/3− (Y/Y0)1/3

]
,

b∗ = 200
[
(Y/Y0)1/3− (Z/Z0)1/3

]
,

(1.18)

where the 0-subscript refers to the XYZ values of the reference white being used. The
CIE L∗a∗b∗ color difference is given by

∆E∗ab =
√

(∆L∗)2 +(∆a∗)2 +(∆b∗)2. (1.19)

1.8 Depth Perception

There are a large number of depth cues that the human visual system uses when viewing
a three-dimensional scene [72]. These can be classified into oculomotor cues coming from
the eye muscles, and visual cues from the scene content itself. They can also be classified
into monocular and binocular cues.

Oculomotor cues include accommodation and vergence. As discussed in Section 1.2.2,
accommodation refers to the variation of lens shape and thickness (and thus focal length),
which allows the eye to focus on an object at a certain distance. Vergence refers to the
muscular rotation of the eyeballs, which serves to converge both eyes on the same object.

The visual depth cues also consist of monocular and binocular cues. There are many
monocular depth cues, such as:

• relative size of objects (close objects usually appear bigger on the retina than the
same objects further away),

• size of familiar objects,

• occlusion (close objects cover parts of objects farther away),

• perspective,

• texture gradients (the density and perspective of patterns change with distance),

• atmospheric blur (objects in the distance appear less sharp because of scatter and
turbulence in the atmosphere),

• lighting, shading, and shadows, and

• motion parallax (when moving, nearby objects cover a larger distance in the field of
view than faraway objects).

The most important binocular depth cue is the retinal disparity between points of the
same object viewed from slightly different angles by the left and right eye. The result-
ing apparent displacement of an object viewed along two different lines of sight is called
parallax.
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Three-dimensional capture and display technology for the digital imaging of scenes with
depth rely on (re)producing two or more separate views for the two eyes. An overview of
the different technologies can be found in Reference [73]. The separation of the views for
processing and display may result in mismatches of various depth cues, which are the main
reason for the discomfort many people experience in stereoscopic viewing [74], [75].

1.9 Conclusion

Human vision has intrinsic limitations with respect to the visibility of stimuli, which
should be taken into account in digital imaging applications. However, comprehensive
modeling of vision processes is made difficult by the sheer complexity of the human vi-
sual system. While vision research has produced a large number of models, it has focused
mainly on the perception of simple stimuli, such as sinusoids and Gabor patches at thresh-
old; as a result, existing models and data cannot directly be extended to the perception of
natural images. This is still very much an active topic of research.

The discussions on human vision in this chapter are necessarily limited in scope; for
a more detailed overview, the reader is referred to the abundant literature, such as Refer-
ences [76], [77], and [78].

An exhaustive introduction to optics and vision can be found in Reference [79]. For more
details about color science and color perception, the reader is referred to References [80],
[81], and [82]. The more specific aspects of image and video quality are addressed in
References [41] and [83].
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2.1 Introduction

Motion is ubiquitous in normal, ecological, viewing conditions. Many objects in the
environment are in motion. The motion of objects is supplemented by the motion of the
observer’s body, head, and eyes. Therefore, ecological vision is highly dynamic and an
understanding of biological vision requires an analysis of the implications of these afore-
mentioned movements on the formation and processing of images. The dynamic nature of
ecological vision was the cornerstone of several theories of visual perception, in particular
the ecological perception theory [1]. This chapter will review some basic facts about eco-
logical vision and discuss a neural model that offers a computational basis for the analysis
of dynamic stimuli.

Image formation by the human eye can be characterized by using the laws of optics and
projective geometry. Essentially, the optics of the eye works like a camera and a two-
dimensional image of the environment is generated on each retina. The projections from
retina to early visual cortex preserve neighborhood relations so that two neighboring points
in space activate two neighboring photoreceptors in the retina. These neighboring recep-
tors, in turn, send their signals through retino-cortical projections to two neighboring neu-
rons in early visual areas. This is called a retinotopic map or a retinotopic representation.

37
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Given the importance of motion in ecological viewing, it is essential to analyze the effects
of various sources of movement on the retinotopic representation of the environment. Since
the retinotopic image is the result of the relative position of the imaging system, the eye,
with respect to the environment, sources of retinotopic motion can be broken down into
two broad classes:

• retinotopic motion resulting from endogenous sources, that is, caused by the motion
of the observer, and

• retinotopic motion resulting from exogenous sources, that is, caused by motion in
the environment.

The next two sections analyze these two cases and outline their implications. Section 2.4
highlights two interrelated problems arising from these dynamic constraints, the problems
of motion blur and moving ghosts. Section 2.5 explores further the motion blur problem
in human vision and suggests mechanisms that can contribute to its control. Section 2.6
introduces an exposition of a model of retino-cortical dynamics (RECOD) that provides a
mathematical framework for dealing with motion blur in human vision. Section 2.7 applies
this model to critical data on motion deblurring to illustrate its operation. Finally, this
chapter concludes with Section 2.8.

2.2 Endogenous Sources of Retinotopic Motion

First, each source of motion will be introduced and analyzed in isolation, assuming ev-
erything else being constant. Then, the combined operation of different types of motion
will be discussed.

Consider the movement of the body, such as walking, turning, and leaning; the eyes shift
their positions with respect to the environment. This is equivalent to moving a tripod on
which a camera is positioned. These movements alter the relative position of the camera
with respect to the environment and cause a global shift in the retinotopic image. In pho-
tography, it is well known that these types of camera movements result in a blurred image.
This is because, as the camera moves, a continuously shifting image impinges on the film,
and each point in space imprints its characteristics not on a single point in the image but
over an extended surface, resulting in blur. The same situation occurs when the head moves.

In normal viewing conditions, human eyes also undergo complex movement patterns that
can be decomposed into a combination of different types. A first general classification is
based on the relative motion of the two eyes. Namely, when the two eyes move in opposite
directions, the eye movements are called disjunctive movements. This occurs, for example,
when shifting the gaze from a point far in the scene to a point near in the scene. In this
case, to keep the point of interest in the central part of each retina (fovea), the two eyes need
to move toward each other; this movement is known as a convergence movement. When
the opposite occurs, the eyes move away from each other, creating a divergence movement.
When the two eyes move in the same direction — for example, when the gaze is shifted
from left to right — the eye movements are called conjunctive movements.
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Conjunctive eye movements can be further categorized into two main subtypes: smooth
pursuit and saccadic eye movements. Smooth pursuit is, as the name indicates, a smooth
tracking movement to keep a target of interest in central vision. On the other hand, saccades
are very fast ballistic movements to shift the gaze rapidly from one point in the scene to
another point of interest. All these movements also generate global shifts in the retinotopic
image. Depending on whether the eye movement is conjunctive or disjunctive, the global
shifts in the retinotopic image can have same or opposite directions. Depending on the
type of eye movement, the global shift can be relatively slow and smooth, or fast and
discontinuous. Therefore, a negative effect of all these movements is to create a global blur
on the retinotopic image.

The nervous system uses a multitude of mechanisms to compensate for the negative
effects of relative movement between the retina and the environment. When this relative
movement is caused by body or head movements, an obvious strategy is to move the eyes in
the opposite direction so as to keep the retinotopic image steady; this behavior is known as
motor compensation. In fact, when the body or the head moves, the vestibular system senses
these movements and generates compensatory signals to move the eyes in the opposite
direction so as to keep a steady gaze position. This is a reflexive system called the vestibulo-
ocular reflex (VOR). As a reflexive movement, vestibulo-ocular reflex has a very short
latency (approximately 10 ms) and an approximate unit gain resulting in a very effective
compensation for these movements [2].

On the other hand, when the eyes themselves move, mechanisms other than motor com-
pensation are needed. Here two sources of information are particularly relevant. The first
is proprioceptive signals from eye muscles that carry information about eye position and
movement. The second is the efference copy signal that provides a copy of the command
signals that are sent to eye muscles for the intended eye movements. In fact, these two
sources of information take part, in varying degrees, in neural mechanisms devoted to the
analysis of visual signals under normal viewing conditions.

It should be pointed out that endogenous motion also produces useful information for
visual processing. While endogenous motion generates a global shift in the retinotopic
image, this global shift is not uniform but instead depends on the distance of a point in the
scene with respect to the observer. The retinotopic motion of a near object will be larger
than the retinotopic motion of a far object. This distance-dependent differential motion
pattern, known as motion parallax, is a very important cue for the visual system to infer
depth from two-dimensional retinotopic images.

2.3 Exogenous Sources of Retinotopic Motion

The second source of retinotopic motion is exogenous in that it is due to motion whose
source is in the environment. Different objects in the scene can undergo different motion
patterns. Three fundamental differences can be established between endogenous and ex-
ogenous motion:
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• Endogenous motion generates global retinotopic motion, that is, covering the whole
field, while exogenous motion generates local retinotopic motion, that is, confined to
the area corresponding to the motion trajectory of the moving object.

• The retinotopic motion field generated by endogenous sources is correlated across
the visual field in that one common motion vector is applied to the entire stimulus to
generate depth-dependent retinotopic motion vectors. On the other hand, retinotopic
motion generated by exogenous sources can be both correlated and uncorrelated. As
an example, assume a jogger and a car passing nearby. The arms, legs, and the body
of the jogger share both a common and a differentiated motion, while the motion of
the car can be completely independent of that of the jogger.

• Because endogenous motion is generated by the observer, motor planning, execution,
and feedback signals are available before and during the motion to the observer. As
mentioned in the previous section, this information can be used before and during
retinotopic motion. On the other hand, exogenous motion information is not directly
available and needs to be estimated during retinotopic motion.

These important distinctions between exogenous and endogenous sources of motion sug-
gest that different mechanisms are at play in dealing with each case. However, under nor-
mal viewing conditions, exogenous and endogenous motion occur often in conjunction,
implying that these mechanisms need to work in concert. As an example, optokinetic nys-
tagmus (OKN) is a reflexive movement of the eyes, which usually occurs in conjunction
with vestibulo-ocular reflex. As mentioned above, when the body or the head moves, a
large field motion in the retinotopic image is created. This can be compensated both by
vestibulo-ocular reflex using internal sources of information, as well as by external sources
of information by estimating large-field motion directly from the visual input. In fact,
the latter generates optokinetic nystagmus. Similarly, when an object moves in the en-
vironment, the eye can track the object (smooth pursuit), thereby stabilizing the moving
object in the fovea by motor compensation. However, because different objects may move
in different directions and some objects are stationary (for example, background), motor
compensation cannot stabilize everything in the scene. In fact, it involves trade-offs in the
sense that smooth pursuit can stabilize a moving object of choice but will generate addi-
tional movement for all other objects that differ in their velocity.

2.4 Motion Blur and Moving Ghosts Problems

The camera analogy is helpful for understanding why blur occurs. Consider a camera
with a photographic film. The development of the image on the film is not an instantaneous
event but a process. Absorption of light by light sensitive chemicals on the film initiates a
chemical reaction that takes time depending on the intensity of the light and the sensitivity
of the chemicals to light. To capture a successful picture, exposure duration and the aper-
ture of the camera need to be adjusted according to light intensity. For a given aperture,
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short and long exposure durations lead to underdeveloped and overdeveloped (saturated)
pictures. When there is relative motion between the camera and the environment, the mov-
ing image pattern will expose different parts of the film, resulting in a smeared image.
Furthermore, compared to a static object, moving objects will stay on a given region of
the film only briefly, not allowing sufficient time for the chemical process to capture the
form information of the moving object. The situation is similar for digital cameras and
biological systems, which have, respectively, electronic and biological sensors with limited
sensitivities. This implies that light patterns need to be exposed for sufficient duration in
order to generate reliable signals from these sensors. Furthermore, the visual system does
not just register a retinotopic image but processes it in order to give rise to percepts and
to visually guided behaviors. This processing also takes time, putting additional temporal
constraints on vision.

These observations can be summarized by highlighting two interrelated aspects of the
problem:

• The problem of motion blur, which refers to the spatial aspect of the problem. In
other words, the image of the moving object is spatially spread out.

• The problem of moving ghosts, which refers to the figural aspect of the problem.
In other words, since the moving object does not stay long enough on a retinotopic
locus, processes computing the form of the object do not receive sufficient input to
synthesize the form of the moving object. The result is a spatially extended smear
without a significant form information, known as a moving ghost.

The basic technique in photography for taking static pictures of moving objects is to use
a fast shutter speed with a high-sensitivity film (depending on the lighting conditions). For
dynamic imaging (videos), the approach is similar to biological systems; namely, tracking
the moving object with the camera, much like the way humans track moving objects with
smooth-pursuit eye movements. Examination of individual frames of videos of moderately
fast-moving objects show extensive smear for objects that are not stabilized. However,
in natural viewing, humans are not aware of this smear due to brain mechanisms that are
developed to deal with this very problem. But how does the visual system deal with motion
blur and moving ghosts problems?

2.5 Motion Blur in Human Vision

Several studies, going back to the 19th century, examined the motion blur problem by
using a variety of stimuli and techniques. For example, in Reference [3], a bright line
segment was moved in front of a dark field, and it was noticed that the line appeared exten-
sively blurred. Several other studies reported similar results. One exception was a study in
Reference [4], where observers were presented with an array of random dots in motion. It
was found that perceived blur depended on the exposure duration of the stimulus, initially
increasing as a function of exposure duration for up to approximately 30 ms, decreasing
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Schematic of the model. Visual inputs are first registered in retinotopic representations corresponding to early

visual areas. A motion segmentation process transforms these into nonretinotopic representations. Visual

memory is used to buffer information during the three-phase operation discussed in the next section. Motor

systems include stages of motor planning and control that send command signals for motor execution and

control, for example, for moving the eyes. Copies of efferent command and proprioceptive signals are available

to modulate retinotopic and nonretinotopic representations. A motor action can either directly modify the

stimulus, as in grasping, or shift the sensor (for example, the eye), thereby affecting the retinotopic stimulus

indirectly. This relation between motor action and the stimulus is shown by a dashed arrow.

thereafter for longer exposure durations. The study called this motion deblurring. In or-
der to reconcile early reports of extensive perceived blur for isolated moving targets and
reduced blur for more complex stimuli (array of random dots), a study in Reference [5]
varied systematically the density of the dots in the stimulus and showed that perceived blur
depends both on exposure duration and the density of dots. As the dot density increased,
perceived blur decreased. This finding was attributed to inhibitory interactions between
activities generated by neighboring dots. Thus, the visual system uses stimulus-driven
inhibitory interactions to reduce the spatial extent of motion blur caused by exogenous
sources.

Using a similar stimulus, various studies investigated motion blur under conditions that
include endogenous sources of blur [6], [7], [8], [9], [10], [11]. It was found that extra-
retinal signals are used to reduce the spatial extent of motion blur.

Taken together, these results suggest that the human visual system uses stimulus-driven
inhibitory interactions to limit the spatial extent of blur caused by exogenous sources. This
strategy is augmented by use of extra-retinal signals to limit the spatial extent of blur caused
by endogenous sources.

Figure 2.1 illustrates a schematic diagram of the model for how the visual system solves
the problems of motion blur and moving ghosts. Visual inputs are first registered in retino-
topic representations. Within retinotopic representations, moving targets generate exten-
sively blurred (motion blur problem) and formless (moving ghosts problem) activities. The
motion blur problem is addressed by retinotopic inhibitory interactions within retinotopic
representations. In order to compute the form of moving objects, a motion grouping algo-
rithm transforms retinotopic representations into nonretinotopic representations and stores
them in visual short-term memory (VSTM). Endogenous sources of motion blur and mov-
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The RECOD model. The input is processed by retinal cells with transient and sustained response charac-

teristics, giving rise to magnocellular and parvocellular pathways, respectively. The top layers show lumped

representations of postretinal areas receiving their primary inputs from magnocellular and parvocellular path-

ways. Responses to a brief pulse input are shown in different parts of the model. Dark-gray and light-gray

synaptic symbols indicate excitatory and inhibitory connections, respectively.

ing ghosts problems are shown at the top of the figure. Motor control systems of the brain
send efferent command signals to motor systems (control of eye, head, and body muscles)
and a copy of these command signals is available for internal compensation. In addition, the
vestibular system provides sensory signals about self-movement to initiate both motor and
neural compensation. The details of where these internal (retinotopic and nonretinotopic)
signals act to contribute to the solution of the motion blur and moving ghosts problems are
not fully understood. Therefore, in Figure 2.1, these signals are represented as potentially
available to both retinotopic and nonretinotopic representations.

The rest of this chapter focuses on a computational model of how the spatial extent of
motion blur can be controlled by stimulus-driven inhibitory interactions. For the nonretino-
topic components of the general model shown in Figure 2.1, the reader is referred to recent
reviews in References [12] and [13].

2.6 Retino-Cortical Dynamics Model
2.6.1 General Architecture

Figure 2.2 shows the schematic of the retino-cortical dynamics (RECOD) model [14].
The input is first processed by two populations of retinal ganglion cells, those with sus-
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Schematic illustration of the three-phase operation of the RECOD model. The top trace shows a step input

that generates a short latency transient (M) and a longer latency sustained (P) response. The sustained response

initially peaks to a value and decays thereafter to a lower plateau. The transient activity inhibits via transient-on-

sustained inhibition the ongoing activity (shown in black) in postretinal sustained areas. This is the reset phase.

Following this reset, the initial rise to a peak activity in the P response transfers the new input information to

postretinal sustained areas and also activates feedback loops. This is the feedforward dominant phase. As the

feedforward sustained activity decays to a lower plateau, the feedback activities overtake postretinal sustained

responses. This is the feedback-dominant phase.

tained and those with transient responses. The outputs of these two populations form two
segregated pathways as they project from retina to visual cortex. These pathways are known
as parvocellular and magnocellular pathways. In the visual cortex, one can distinguish
neurons with sustained and those with transient responses. These populations are referred
to as sustained and transient channels and correspond, mainly, to the cortical ventral and
dorsal pathways. The ventral pathway is the main cortical system for processing figural
properties, such as boundaries, surface features, color, etc. The dorsal pathway is the main
cortical system for processing dynamic properties of stimuli, such as motion. Unlike pre-
cortical areas, where parallel pathways remain segregated, in the cortex interactions exist
between these two populations. These interactions can be both excitatory and inhibitory.
The presented model emphasizes inhibitory interactions that play a critical role in mo-
tion deblurring. Thus, reciprocal inhibitory connections are shown between sustained and
transient cortical channels. Since the problem of motion blur consists of smear in figural
representations, the extent of smear in sustained pathways for moving targets is analyzed.
It is also known that extensive feedback, including widespread positive feedback, exists in
cortical areas. Because positive feedback can be a major source of hysteresis, and thus blur,
these feedback connections are included in the analysis presented below.

The operation of the model dynamics is summarized in Algorithm 2.1. The following
discusses the original motivations for proposing the three-phase operation of the model.
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ALGORITHM 2.1 The operation of the model dynamics.

1. Through the afferent retino-geniculate pathways, the onset of a stimulus evokes
a fast transient magnocellular (M) activity and a slower sustained parvocellu-
lar (P) activity. These activities are shown schematically in Figure 2.3. The
sustained response consists of an initial peak followed by a decay to a lower
plateau value.

2. P and M activities flow predominantly to the dorsal and the ventral streams
of cortical processing to initiate form/brightness and temporal-change/motion
computations, respectively. Other P and M inputs to the dorsal and ventral path-
ways also exist to implement other functions and interactions between form
and motion systems. Specifically, the model postulates reciprocal connections
conveying M (P) input to the ventral (dorsal) pathway to implement reciprocal
inhibition between these two pathways.

3. The temporal dynamics of the model in response to stimulus onset consists of
three phases: reset phase, feedforward dominant phase, and feedback dominant
phase.

4. At the stimulus onset, the fast transient activity inhibits via transient-on-
sustained inhibitory connections any pre-existing activity at the retinotopic lo-
cation of the new stimulus. This prevents the temporal integration and blurring
of activities generated by different stimuli presented in temporal succession.
This phase of operation is called the reset phase, because it is “resetting” the
retinotopic locus of the new activity by removing any pre-existing activity.

5. As the sustained activity reaches its cortical locus, the initial peak of this activity
transfers information from retina to cortex in a feedforward manner. This phase
of operation is called the feedforward-dominant phase, because signals in the
feedforward connections dominate signals in the feedback connections.

6. As the feedforward signals become registered in cortical areas, they activate
feedback loops. The decay of the afferent sustained activity to a lower plateau
level allows feedback signals to dominate in cortex, giving rise to feedback dom-
inant phase of operation.

7. When a change occurs in the input signal, the whole cycle repeats itself.

Form synthesis under natural viewing conditions is an extremely difficult problem. The
appearance of the stimuli and the context can change drastically within and across scenes.
Feedforward architectures do not have the flexibility required to handle these complex prob-
lems. As a result, feedback, both positive and negative, is required for processing natural
visual stimuli. In fact, the visual cortex contains massive feedback connections. However,
a major problem with positive feedback is that it can drive the system toward unstable be-
havior. To address this problem, it has been suggested that the visual system is designed to
operate in a succession of transient regimes to avoid uncontrolled explosion of activity that
would result from a sustained positive feedback signaling. When an input changes, a fast
transient activity is used to reset the ongoing activity. In the feedforward-dominant phase,
input signals are conveyed to cortical areas with the strong initial overshoot of the activ-
ity in the sustained pathway. This allows fast registration of new inputs. After this initial



46 Perceptual Digital Imaging: Methods and Applications

registration, the feedforward signal decays to a lower plateau, where the signal is strong
enough to maintain a cortical activity but not too strong to override figural synthesis by
feedback signaling. Thus, the third phase consists of feedback-dominant operation, where
feedback signals carry out figural synthesis. Overall, these phases last a few hundred mil-
liseconds. The next reset can occur either exogenously by changes in the stimulus, which
generate reset signals in the retinotopic map at the location of the change, or endogenously
by self-generated motion, which in turn causes global changes and thus a global reset in the
retinotopic map. As discussed in the next subsection, this three-phase operation provides a
natural explanation to how the visual system deals with the motion blur problem.

2.6.2 Mathematical Description

The model is based on general types of differential equations used to describe the be-
havior of neurons, populations of neurons, and the behavior of biochemical dynamics. The
first type of equation used in the model has the form of a generic Hodgkin-Huxley equation

dVm

dt
=−(Ep +Vm)gp +(Ed −Vm)gd − (Eh +Vm)gh, (2.1)

where Vm represents the membrane potential, gp, gd , and gh are the conductances for pas-
sive, depolarizing, and hyperpolarizing channels, respectively, with Ep, Ed , and Eh repre-
senting their Nernst potentials.

The above equation has been used extensively in neural modeling to characterize the
dynamics of membrane patches, single cells, as well as networks of cells [15]. To put
the model in an equivalent but simpler form, let Ep = 0 and use the symbols B, D, and A
for Ed , Eh, and gp, respectively, to obtain the generic form for multiplicative or shunting
equation [15]:

dVm

dt
=−AVm +(B−Vm)gd − (D+Vm)gh. (2.2)

The depolarizing and hyperpolarizing conductances are used to represent the excitatory
and inhibitory inputs, respectively. The second type of equation, called the additive, leaky-
integrator model,

dVm

dt
=−AVm + Id − Ih, (2.3)

is a simplified version of Equation 2.2. The influence of external inputs on membrane
potential occurs directly as depolarizing (Id) and hyperpolarizing (Ih) currents, instead of
conductance changes.

Shunting networks can automatically adjust their dynamic range, allowing them to pro-
cess small and large inputs [15]. Accordingly, shunting equations can be used in the case of
interactions among a large number of neurons so that a given neuron can maintain its sen-
sitivity to a small subset of its inputs without running into saturation when a large number
of inputs become active. The proposed model uses the simplified additive equations when
the interactions involve few neurons.

Finally, a third type of equation is used to express biochemical reactions of the form

S +Z → Y → X → S +Z, (2.4)
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where a biochemical agent S, activated by the input, interacts with a transducing agent
Z (e.g., a neurotransmitter) to produce an active complex Y that carries the signal to the
next processing stage. This active complex decays to an inactive state X , which in turn
dissociates back into S and Z. It can be shown (see Appendix in Reference [16]) that when
the active state X decays very fast, the dynamics of this system can be written as follows:

1
τ

dz
dt

= α(β − z)− γSz, (2.5)

with the output given by y(t) = γ
δ S(t)z(t), where S(t),z(t), and y(t) represent the concen-

trations of S, Z, and Y , respectively. Parameters γ , δ , and α denote rates of complex
formation, decay to inactive state, and dissociation, respectively. The parameter τ dictates
the overall speed of the reaction. This equation has been used in a variety of neural mod-
els, in particular to represent temporal adaptation, or gain control property, occurring for
example through synaptic depression.

These fundamental equations can be now used to develop model equations. The retino-
topic representation is a spatially two-dimensional representation. For simplicity, a one-
dimensional model is built, and an index for each variable is used to denote its location in
the retinotopic representation.

The first step in retinal processing is temporal adaptation realized by using Equation 2.5
as follows:

1
τ

dzi

dt
= α(β − zi)− γ(J + Ii)zi, (2.6)

where zi represents the concentration of a transducing agent, such as a neurotransmitter, for
a neuron positioned at the ith retinotopic location, J is a baseline signal determining base-
line concentration, and Ii is the external input (luminance) impinging on the ith retinotopic
location. This transducing stage provides input to a retinal network that generates the output
of the sustained, or parvocellular, cells. These cells have concentric center-surround recep-
tive field organization and are described by the shunting equation (Equation 2.2) adapted
as follows:

1
τ

dwi

dt
= −Aswi +(Bs−wi)

i+ns

∑
j=i−ns

Gse
j−iΨ(Js + I j)z j

−(Ds +wi)
i+ns

∑
j=i−ns

Gsi
j−iΨ(Js + I j)z j. (2.7)

The conductance values gd and gh controlling the depolarization and hyperpolarization
of the membrane potential in Equation 2.2 have been replaced by depolarizing and hyper-
polarizing terms that consist of the sum of baseline signal Js and external input I j at the
jth retinotopic location multiplied by the concentration of the transducing agent z j. These
inputs are then weighted by Gaussian functions Gse

j−i and Gse
j−i of retinotopic distance j− i.

The superscript s denotes that the baseline input and the Gaussian function is for sustained
cells. The superscripts e and i indicate that the Gaussian function relates to the excitatory
and inhibitory components, respectively, of the difference of Gaussian receptive field pro-
file of sustained cells. The parameter ns determines the spatial extent of the Gaussian in the
retinotopic space. The output of each sustained cell is fed to an additive equation
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dvi

dt
= σ(−vi +λ ([wi−Γs]+)2), (2.8)

where the parameter σ determines the decay rate of the activity, λ is a constant representing
the gain the the transformation of membrane potential to spike rate and [.]+ is the half-wave
rectification function with parameter Γs representing the spiking threshold of the neuron.
These equations together generate the sustained response profile shown in Figure 2.3, where
a step input generates a peak that decays to a lower plateau due to the adaptation dynamics
described by Equation 2.6.

Retinal cells with transient activities (magnocellular) obey a similar but simpler equation

dyi

dt
=−Atyi +(Bt − yi)

i+nt

∑
j=i−nt

Gtse
j−i{I j(t)− I j(t−δ )}. (2.9)

Here the substraction of the delayed version of the input (delay is equal to δ ) implements a
backward differentiation scheme and generates transient responses as shown schematically
in Figures 2.2 and 2.3.

The postretinal network provides a lumped representation of visual areas beyond the
retina (LGN and visual cortical areas). Here again, cells with sustained and transient ac-
tivities are represented as those found in various visual cortical areas. However, unlike the
retina where sustained and transient systems are isolated from each other, direct interac-
tions between them are introduced here. In fact, it is known that parvo (sustained) and
magno (transient) pathways remain separate until they reach visual cortex and constitute
the main inputs to ventral and dorsal cortical streams. On the other hand, a variety of
evidence shows that there exists a certain level intermixing between the pathways at the
cortical level supporting the view of reciprocal interactions. While, both excitatory and
inhibitory interactions can occur between these two systems, the focus here is on reciprocal
inhibitory interactions, which are critical in explaining the motion deblurring phenomenon.

Accordingly, postretinal cells mainly driven by the parvocellular (sustained) pathway are
described by the shunting equation

1
τ

d pi

dt
= −Ap pi +(Bp− pi)[Φ(pi)+2vi(t−η)]− pi[

i+np f

∑
j=i−np f ; j!=i

Φ(p j)

+
i+np

∑
j=i−np

H pi
j−iv j(t−η−κp)+

i+np f

∑
j=i−np

Qmp
j−im j]. (2.10)

The excitatory term contains positive feedback Φ(pi) and the afferent signal from the sus-
tained parvocellular pathway vi, which is subject to delay η . The inhibitory term consists of
inhibitory feedback Φ(p j), inhibitory surround component of the afferent sustained signal
v j, and the inhibition from transient postretinal cells m j. Terms H pi

j−i and Qmp
j−i are Gaussian

weights of the inhibitory signals used to shape the receptive field.
Postretinal inhibitory interneurons carry inhibition from postretinal sustained cells to

postretinal transient cells. They are described by the additive equation

dqi

dt
=−Aqqi +Bq pi, (2.11)

where qi is the activity of the ith postretinal interneuron.
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Space-time diagram depicting activities in the RECOD model for a single dot moving to the right with a

constant speed. The black line represents the stimulus and the light-gray and dark-gray areas represent the

transient and sustained responses, respectively. The length of horizontal lines across the sustained activity at

different time instants indicate the spatial extent of motion blur for corresponding exposure durations. The

spatial extent of motion blur increases linearly until the tp and remains constant until the time corresponding

to the last visible point of the stimulus (ts).

Finally, the equation for postretinal neurons mainly driven by magnocellular pathway is
given by

dmi

dt
= −Ammi +(Bm−mi)2[yi(t)]++−

mi[
i+np

∑
j=i−np

Hmi
j−i[y j(t−κm)]++ +

i+np

∑
j=i−np

Qpm
j−iq j], (2.12)

where mi is the activity of the ith postretinal transient cell and the function [.]++ denotes
full wave rectification generating on-off response characteristics of these transient cells.
The parameter κm is the relative delay of the intrachannel inhibition with respect to the
excitatory signal.

2.7 Motion Deblurring

In order to understand why an isolated target generates motion blur but a dense array of
targets do not, consider the following simplified scenario. Assume one-dimensional space
and, as an isolated target, consider a single dot moving with a constant speed. The activities
that would be generated by the model for such a stimulus are depicted in the space-time
diagram of Figure 2.4. A dot moving at a constant speed corresponds to an oriented line in
the space-time diagram. In response to this stimulus, a fast-transient and a slower-sustained
activity are generated. The sustained activity decays slowly and, as a result, persists for
a considerable time period (for example, 150 ms). As shown by the horizontal lines at
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Space-time diagram depicting activities in the RECOD model for two dots moving to the right with a constant

speed. The black lines represent the stimuli and the light-gray and dark-gray areas represent the transient and

sustained responses, respectively. The length of horizontal lines across the sustained activity at different time

instants indicate the spatial extent of motion blur for corresponding exposure durations. For the trailing dot,

the spatial extent of motion blur increases linearly with exposure duration. The spatial extent of motion blur

for the leading dot increases linearly like the trailing dot until tc when the transient activity of the trailing dot

starts inhibiting the sustained activity of the leading dot.

various time instants in the figure, the spatial extent of motion blur increases as a function
of exposure duration until it reaches a plateau at an exposure duration equal to the duration
of visible persistence (tp). The spatial extent of blur can be converted to an equivalent
duration of blur by dividing it by the speed of the stimulus. If the duration of blur is plotted
as a function of exposure duration, one would find a linear increase for the duration of blur
with a slope of one until it reaches the critical value of the duration of visible persistence.
After this value, it remains constant. This explains why an isolated target appears blurred
and why the extent of spatial blur increases with exposure duration.

To understand why an array of dots does not appear blurred, consider the simple scenario
where two dots travel at the same speed as shown in Figure 2.5. For the trailing dot, one
obtains the same result as a single dot. However, as one can see from the figure, there will be
a spatiotemporal overlap between the sustained activity of the leading dot and the transient
activity of the trailing dot. According to the RECOD model, the transient-on-sustained
inhibition (term ∑i+np f

j=i−np
Qmp

j−im j in Equation 2.10) will inhibit the sustained activity of the
leading dot, thereby reducing the spatial extent of motion blur. If the duration of blur is
plotted as a function of exposure duration, one can see that, initially, the duration of blur
increases the same way for the leading and the trailing dots until the critical time tc, where
the transient activity of the trailing dot starts inhibiting the sustained activity of the leading
dot. After tc, the duration of motion blur for the leading dot remains constant, while the
duration of blur for the trailing dot continues to increase.

These simple predictions of the RECOD model were tested by psychophysical experi-
ments [5]. The results are shown in Figure 2.6. The left and right panels show data for
the leading and trailing dots, respectively, for two spatial separation values between these
two dots. For the trailing dot, the duration of blur increases linearly as a function of ex-
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FIGURE 2.6

Motion deblurring data and model predictions for two dot-to-dot separations [17]: (a) the leading dot and

(b) the trailing dot. ©1998 Elsevier

posure duration with little effect of dot-to-dot separation. In contrast, for the trailing dot,
the linear increase is curtailed beyond exposure duration of approximately 100 ms. More-
over, this motion deblurring is more prominent when the dot-to-dot separation is small. As
it can be seen in Equation 2.10, transient-on-sustained inhibition is weighted by a retino-
topic distance-dependent Gaussian function Qmp

j−i. Moreover, as the dynamics of differential
equations in Section 2.6 suggests, the decay in the activity of the neurons is gradual. As a
result, the effects depicted in Figures 2.4 and 2.5 occur in a more gradual way in the model
compared to the schematic representations shown in these figures. In order to obtain quan-
titative predictions from the model and compare them to data, the model was simulated by
using a numerical ordinary differential equation solver [17]. The results are plotted against
the data in Figure 2.6. The good fit between model predictions and data provides support
for the proposition that spatial extent of motion blur is controlled by inhibitory interactions
between sustained and transient systems within retinotopic representations.

2.8 Conclusion

This chapter reviewed conditions that prevail under normal ecological vision by human
observers. The sources of motion can be divided into exogenous and endogenous cate-
gories. The former refers to motion outside the observer; for example, when a car ap-
proaches the observer. The latter refers to motion resulting from the observer; for example,
when the observer moves his/her head or eyes. This categorization is useful in that it al-
lows to draw fundamental distinctions in resulting dynamic images. Namely, endogenous
motion generates global retinotopic motion with a correlated retinotopic motion field, and
it can be predicted and/or corrected by use of internal signals that control the motion of
the observer. In contrast, exogenous motion is often localized in the visual field and lacks



52 Perceptual Digital Imaging: Methods and Applications

global correlation. Given these fundamental differences, it was suggested that the human
nervous system uses a variety of strategies suited to each condition.

The second part of the chapter focused on the problem of motion blur and outlined a
model of retino-cortical dynamics, called RECOD. It was shown that inhibitory interac-
tions within retinotopic representations can reduce the spatial extent of motion blur. In
this ongoing research, the complementary problem of moving ghosts is investigated. As
shown in Figure 2.1, retinotopic representations are transformed into nonretinotopic rep-
resentations — a fundamental factor in this transformation is the establishment of a new
nonretinotopic reference frame. It was further suggested that motion grouping plays a crit-
ical role in establishing these reference frames. Gestalt psychologists noticed the tendency
of stimuli sharing a common motion direction to group together and called this the grouping
law of common faith. As mentioned above, for exogenous sources of motion, the resulting
retinotopic patterns are local and necessitate a segmentation and a grouping process to iden-
tify and isolate each locus of common motion. Grouping by common faith can achieve this
goal thereby leading to the transformation of retinotopic representations to nonretinotopic
ones. Motion deblurring in retinotopic representations along with dynamic form compu-
tation in nonretinotopic representations can together explain how the visual system solves
simultaneously the motion blur and moving ghosts problems.
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3.1 Introduction

As of June 2010, Internet video accounted for over one-third of all consumer Internet
traffic, and predictions indicate that Internet video will account for more than 57% of all
consumer traffic by 2014 [1]. Predictions also indicate that advanced Internet video, which
includes high-definition and stereoscopic video, will increase by a factor of 23 by 2014,
compared to 2009. The sum of all forms of video, including television, video on demand,
Internet, and peer-to-peer video streaming, will constitute more than 91% of global con-
sumer traffic [1]. At the end of 2010, video accounted for almost 50% of mobile data traffic,
and it is predicted that more than 75% of mobile traffic will be video in 2015 [2]. These
numbers indicate that video – either on mobile devices or otherwise – is fast becoming an
integral part of a daily life and will continue to do so for the next few years as well.

55



56 Perceptual Digital Imaging: Methods and Applications

Today’s average user is spoiled for choice, since visual entertainment is available at the
touch of a button over a variety of devices that encompass a range of resolutions and which
are capable of displaying visual stimuli with varying degrees of acceptability. The palata-
bility of a visual signal is not a function of the display device alone however, since the
stimulus that the user receives passes through a variety of stages that could possibly induce
certain artifacts in the signal that make the stimulus unacceptable or unpalatable. Think
of the blocky video or the sudden freezes that one experiences when viewing movies on
the Internet. The former is due to the heavy quantization (and hence high compression)
that was used in the creation and storage of the video, while the latter is due to a decrease
in the allocated bandwidth leading to an empty buffer. In either case, the introduction of
these compression or frame-freeze artifacts reduce the palatability of the visual stimulus.
Visual quality assessment refers to gauging such palatability of a visual stimulus. Since
humans are the ultimate viewers of such stimuli, human opinion on quality is representa-
tive of the palatability of visual signals. Such human opinion on visual quality is generally
gauged using a large-scale study where human observers view and rate visual stimuli (im-
ages/videos) on a particular rating scale (say, 1 to 5, where 1 is bad and 5 is excellent) and
such assessment of visual quality is referred to as subjective quality assessment. Subjective
assessment of quality is not only time-consuming and cumbersome, but is also impractical
and hence there is a need to develop algorithms that are capable of assessing the percep-
tual quality of a visual stimulus such that the scores generated by the algorithm correlate
well with subjective opinion. Such automatic assessment of visual quality is referred to as
objective quality assessment.

Automatic image quality assessment (IQA) and video quality assessment (VQA) algo-
rithms are generally classified into three broad categories based on the amount of informa-
tion that the algorithm has access to:

• Full-reference (FR) approaches, where the algorithm has access to not only the dis-
torted stimulus whose quality is to be assessed but also the clean, pristine, reference
stimulus with respect to which such quality assessment is performed.

• Reduced-reference (RR) approaches, where apart from the distorted stimulus, the
algorithm has access to some information regarding the original, pristine stimulus
(for example, from a side-channel), but not the original reference stimulus itself.

• No-reference (NR) approaches, which only have access to the distorted stimulus.

The three approaches are summarized in Figure 3.1. The reader will readily infer that as
one moves from the FR to the NR realm, the difficulty of the problem increases, and it is
no surprise that most research has revolved around the development of FR algorithms. Al-
though NR algorithms are the holy grail of quality assessment (QA) research, development
of FR algorithms lends one insight into various aspects of QA algorithm design and hence
FR QA algorithms pave the way for the development of state-of-the-art NR QA algorithms.
Finally, RR QA algorithms remain of interest, not only as a stepping-stone toward NR QA
but also as feasible solutions to the problem.

Apart from predicting perceptual quality, QA algorithms can be deployed for a variety
of purposes. For example, a QA algorithm can be used for the perceptual optimization of
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FIGURE 3.1

Taxonomy of quality assessment approaches. Full-reference approaches have access to both the original and

the distorted signal, reduced reference approaches have access to some information regarding the original

(through the supplementary channel here for example), and no-reference approaches have access only to the

distorted stimulus whose quality is be assessed. (a) Full-reference quality assessment, (b) reduced-reference

quality assessment, and (c) no-reference quality assessment.

a multimedia service; that is, transmission/display parameters of the signal may be varied
in order to maximize perceptual quality, and hence the quality of experience (QoE). Other
applications include benchmarking image processing algorithms, utilization of perceptual
quality measures as optimization objectives for image enhancement algorithms, rate control
using quality, rate-distortion optimization, visually lossless compression and so on.

Having described FR QA algorithms, the reader would presume that the simple mean-
squared-error (MSE), which has been an engineer’s tool of choice for comparison of two
signals is an ideal candidate for FR visual quality assessment. The MSE between two
N-dimensional vectors x and y is defined as

MSE =
1
N

N

∑
i=1

(xi− yi)2. (3.1)

A low MSE value indicates that the two vectors are similar. In order to follow a convention
where a higher value indicates greater similarity, the peak signal-to-noise ratio (PSNR) is
utilized. The PSNR is defined as follows:

PSNR = 10log10

(
L2

MSE

)
, (3.2)

where L is the dynamic range of the pixel values (for example, L = 255 for grayscale
images). Throughout this chapter, MSE and PSNR are used interchangeably.
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FIGURE 3.2

Example of why MSE is a poor measure of quality. The distortion is visible on the face of the woman, but not

in the background on the chair or on the scarf where MSE still accounts for it.

The engineer’s attachment to the MSE is not without reason. The MSE has several
elegant properties, including but not limited to, simplicity, memoryless-ness, convexity,
symmetry, and differentiability. With so much going for it, MSE should have been an ideal
FR measure of quality, however, it is not [3], [4]. The major reason for this is that while
MSE is a good indicator of differences between two signals, in the case of visual signals
existence of such differences does not imply that these differences are perceived by the
human observer, since not all differences are equally significant for the human. This is best
illustrated by the image in Figure 3.2. The image has been distorted uniformly with additive
white noise; however, the noise on the face of the woman is prominent, while one would be
hard-pressed to quantify the distortion on the chair in the background or the scarf. MSE,
however, would identify the distortion in the background and quantify it with equal weight
as the distortion on the face, thereby making it a poor measure of perceptual quality. This
phenomena, where the content of the image masks the presence of distortion, is referred to
as contrast masking and will be discussed in the next section. It is hence that one needs
to design algorithms that are capable of assessing the human perceived quality of a visual
signal.

Quality assessment algorithms are of tremendous practical interest, and hence their de-
sign has attracted tremendous research interest. Since humans are the ultimate receivers
of these visual signals, it is only logical that researchers first approached the QA problem
by attempting to model the various features of the human visual system (HVS). Hence,
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Section 3.2 presents various salient features of the HVS. Section 3.3 summarizes how one
would evaluate a quality assessment algorithm and directs the reader to many publicly
available quality assessment databases for images and videos. Then, Section 3.4 describes
a number of image and video quality assessment algorithms, not only those based on the
HVS but also those that are based on feature-extraction and natural scene statistics as well.
Since FR QA has been an active area of research for some time, leading FR QA approaches
are discussed, and since it is believed that NR approaches for QA are rapidly achieving
competitive performance, approaches to NR QA are summarized as well. Section 3.5 out-
lines current and future areas of interest in the field of quality assessment research. Finally,
this chapter concludes with Section 3.6.

3.2 Computational Modeling of Human Vision

The goal of perceptual quality assessment is to model and predict human behaviour in as-
sessing the quality of multimedia signals. With this goal in mind, all IQA/VQA algorithms
utilize models of the properties of human vision in some form. This section discusses cer-
tain basic properties of human vision and corresponding computational models that have
found their way into IQA/VQA algorithms. As shown in this chapter, certain algorithms
utilize statistical models of natural images/video in developing an IQA metric. However,
since human vision has evolved in response to viewing these natural scenes, natural scene
statistical models are also hypothesized to be dual of human vision models, and this duality
has been studied in the literature [5].

Vision is one of the most important senses that humans use to perceive the outside world.
The HVS is an extremely complex system that has evolved to perform a number of different
functions using visual stimuli that are acquired using the optical components of the eyes.
Vision in humans and various animals has been studied by neuroscientists for centuries and
while tremendous progress has been achieved over the years, visual processing is still not
completely understood.

Within the context of visual quality assessment, several properties of human vision are
particularly relevant and research has focused on adoption of computational models of these
in IQA/VQA. Two types of models of the HVS – behavioral models and neuronal models
– have both been used extensively in IQA/VQA. Behavioral models attempt to use data
derived from experiments performed with human users and examples include determination
of threshold sensitivity models for luminance masking and contrast sensitivity. Neuronal
models are derived from experimental recordings from neurons in animals and such data
have also been used in IQA/VQA [6], [7]. Several models of the HVS that have been
incorporated into IQA/VQA algorithms have focused on modeling the early stages of visual
processing of which a fairly good understanding has been reached over the years and this
includes processing that occurs in the retina and the so-called area V1 of the visual cortex.
More recent algorithms attempt to focus on some of the higher-order processing that occurs
farther downstream, including in the extra-striate cortex, to account for motion perception,
saliency, and so on [7], [8], [9].
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(a) (b)

(c) (d)

FIGURE 3.3 (See color insert.)

The effect of the contrast masking property of human vision on visual quality using JPEG compression:

(a) original Building image, (b) its distorted version with MSE = 134.61, (c) original Caps image, and (d) its

distorted version with MSE = 129.24. The distorted images clearly differ in their visual quality, although they

have similar MSE with respect to the original.

Three properties of human vision – luminance sensitivity, contrast sensitivity, and con-
trast masking – have received a good deal of attention in the literature. Human percep-
tion of brightness is not linear, and a well-known law governing perception known as the
Weber-Fechner law stipulates that over a large dynamic range, and for many parameters, the
threshold of discrimination between two stimuli increases linearly with stimulus intensity.
A commonly used model to account for Weber’s law stipulates that the ratio of discrimina-
tion threshold to the input stimulus intensity is a constant over a specified range of stimulus
intensity. The sensitivity of the human eye for sinusoidal illuminance changes as a function
of spatial frequency was studied in Reference [10], and it was shown that human perception
of brightness follows Weber’s law over a broad range of stimulus strength.

Spatial contrast sensitivity of vision refers to differences in sensitivities to stimuli of vary-
ing spatial frequencies of equal strength. The spatial contrast sensitivity function of human
vision shows a bandpass shape with reduced sensitivity to low and high spatial frequen-
cies [11], [12]. In fact, the reduced sensitivity of human vision to higher spatial frequencies
is exploited in lossy compression of images and video using Joint Photographic Experts
Group (JPEG) or Moving Picture Experts Group (MPEG) coding to provide substantial
gains in compression efficiency.
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Contrast masking, also termed as texture masking, refers to the reduction in visibility of
one signal component due to the presence of a similar signal component at adjacent spatial
locations, spatial frequency, or orientation. Contrast masking, as relevant to image quality,
is illustrated in Figure 3.3. The distorted images shown in Figures 3.3b and 3.3d have
approximately the same MSE with respect to the original images shown in Figures 3.3a
and 3.3c, respectively. However, the visibility of artifacts in these images are clearly very
different. The reason for this difference is contrast masking in vision, where strong edges
and textures in the Buildings image mask the visibility of distortions. However, artifacts
are clearly visible in the predominantly smooth Caps image. This simple example clearly
shows the importance of accounting for contrast masking in visual quality assessment.

Contrast masking has been studied extensively in the literature and psychophysical stud-
ies of this phenomenon that have influenced QA can be found, for example, in Refer-
ences [13], [14], [15], [16], and [17]. Masking models often take the form of a divisive
normalization of the energy/intensity of the test or noise signal by the reference image and
predict the level of distortion to which an image can be exposed before the alteration is ap-
parent to a human observer. Recent work has also studied the relationship between masking
models and IQA indices, such as SSIM and VIF, which are not derived using the HVS mod-
els, but based on hypotheses regarding human response to structural distortions and natural
scene statistical models, respectively [18]. Most existing IQA/VQA methods utilize some
modeling of the contrast masking property of human vision, which is a critical component
in achieving the ultimate objective of matching human perception of image/video quality.

Several human vision-based VQA algorithms incorporate elaborate models of spatial
properties of human vision. However, until recently, VQA algorithms have not success-
fully incorporated meaningful models of temporal vision that account for motion process-
ing. Many algorithms utilized computational models of the first stage of temporal pro-
cessing that occurs in area V1 of the visual cortex. These models typically have the form
of one or two separable linear filters applied along the temporal dimension of the video.
The two filters are usually lowpass and bandpass, to account for the sustained and transient
mechanisms that have been identified in human vision [19], [20]. However, the HVS is
extremely sensitive to motion and one of its critical functions is the computation of motion
information (speed and direction of motion) from visual inputs. It is well known that a
large number of neurons in visual area MT/V5, which is part of the extra-striate cortex,
are directionally sensitive, and it is believed that area MT plays a significant role in mo-
tion perception [21]. This sensitivity to motion is clearly revealed in QA since humans
are extremely sensitive to motion-related artifacts in video, such as ghosting, jerkiness,
mosquito noise, and motion compensation mismatches. Recently, models of area MT/V5
have been utilized to develop a sophisticated VQA algorithm known as the motion-based
video integrity evaluation (MOVIE) index [7], which is described later in this chapter.

Since human sensitivity to color is generally lower than the sensitivity to changes in the
luminance information, most IQA/VQA models primarily focus on the luminance chan-
nel of images/video with only rudimentary inclusion of color information (for example, a
similar or simplified version of the model is applied to the chrominance channels) [22],
[23]. Several HVS based algorithms use different color spaces, such as the CIELAB and
CIEYUV color spaces, that attempt to approximate the spectral response properties of hu-
man vision. In addition to these, the effect of viewing distance on perceived quality has also
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been studied [22], [24]. The spatial resolution of the HVS is nonuniform with increased
resolution at the fovea and with resolution dropping off with eccentricity in the peripheral
regions of vision. Many VQA algorithms incorporate models of the viewing distance and
the resolution of the display to convert pixel units into units of cycles per degree of view-
ing angle, which are then used in the rest of the algorithm. A conservative approach taken
by several models is to assume the same resolution for the entire image at the specified
viewing distance since human subjects can achieve this resolution using eye movements.

3.3 Subjective Quality and Performance Evaluation

Before discussing various visual quality assessment algorithms, the following describes
how the performance of a QA algorithm is gauged. This section assumes an algorithm that
is capable of producing a measure of quality when given as input the image or video whose
quality is to be assessed (and the original for FR algorithms, or additional information for
RR algorithms). Given such an algorithm, one seeks to describe its performance in terms
of its correlation with human visual perception.

Human perception of quality is generally gauged by large-scale subjective studies in
which a number of human observers view and rate distorted visual stimuli on a particular
rating scale. Subject rejection procedures are applied in order to reject those subjects whose
opinions are markedly different from the average observer, and the opinion scores are av-
eraged across the remaining subjects in order to produce a mean opinion score (MOS),
which is representative of the perceived quality of the stimulus. Such subjective studies are
generally carried out in controlled environments, where the stimuli are viewed at a fixed
viewing distance on a calibrated monitor. Most of the human studies listed below follow
the recommendations of the International Telecommunications Union (ITU) [25].

Subjective studies can be single stimulus or double stimulus in nature. Single-stimulus
studies are those in which only one stimulus is seen by the subject at a time, and the sub-
ject is required to rate that stimulus on its own. In double-stimulus studies, the subject is
required to rate the (possibly) distorted stimulus with respect to the pristine reference stim-
ulus, which is displayed as well (usually in a side-by-side arrangement) [25]. It should be
obvious that double-stimulus studies generally take twice as much time as single-stimulus
studies, which is one reason why single-stimulus studies are common in the literature. An-
other reason is that single-stimulus studies better simulate the real-world experience of a
consumer, who ordinarily does not compare the watched videos side-by-side unless pur-
chasing a display device, such as a television.

A popular methodology that has been adopted by many researchers is the single-stimulus
with hidden reference methodology [26], [27]. Here, a single-stimulus study is carried out,
and the pristine original reference stimulus is embedded among the stimuli that the subject
sees; the score that the subject gives this reference is representative of his or her bias, and
in these studies, the score given to the distorted stimulus is subtracted from that given to
the reference to form the differential mean opinion score (DMOS), which is representative
of the perceived quality of the stimulus – a smaller DMOS indicates better quality.
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(a) (b) (c)

(d) (e) (f)

FIGURE 3.4 (See color insert.)

Example distortions from the LIVE IQA database: (a) original image, (b) JPEG2000 compression, (c) JPEG

compression, (d) white noise, (e) blur, and (f) Rayleigh fading.

Given a large database of (distorted) visual stimuli with associated DMOS/MOS scores,
the scores produced by the algorithm under test for these stimuli are correlated with the
MOS/DMOS. Generally, researchers use the following measures of correlation between
MOS and algorithm scores: Spearman’s rank ordered correlation coefficient (SROCC) and
linear (Pearson’s) correlation coefficient (LCC) [28], [29]. Algorithm scores could corre-
late nonlinearly or linearly with MOS/DMOS and since SROCC is a nonlinear measure of
correlation, SROCC can be directly applied. However, LCC is a linear measure of qual-
ity and hence algorithm scores need to be passed through a nonlinearity (referred to as a
logistic function) prior to LCC computation. A similar procedure is applied when com-
puting the root mean squared error (RMSE) between the (linearized) algorithm scores and
MOS/DMOS. A value close to one for SROCC and LCC and a value close to zero for
RMSE indicate good performance in terms of correlation with human perception. The out-
lier ratio has been sporadically used as a measure of performance as well [29]. Apart from
correlations and errors, in order to gauge whether the performance of two algorithms are
statistically different, that is, one algorithm is provably better than the other, researchers
have used the F-statistic between the residuals obtained from the predicted MOS/DMOS
and actual MOS/DMOS [30]. It is here believed that a statistical analysis of performance is
a must when evaluating algorithm performance, since higher correlation numbers have no
merit, unless backed by the approval of statistical superiority.

Although human studies are time-consuming and cumbersome, their need as a tool for
benchmarking QA algorithms emboldens researchers to undertake such studies. In the
past, the video quality experts group (VQEG) performed such a large-scale human study
in order to benchmark the performance of VQA algorithms [29]. Unfortunately, owing to
its poor design [27], [26], none of the algorithms demonstrated better performance than the
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TABLE 3.1
Summary of various publicly available IQA databases.

Reference Distorted Distortion
Database Images Images Categories

LIVE [30] 29 779 5
Cornell-A57 [32] 3 54 6
IVC [34] 10 235 4
Toyama-MICT [33] 14 168 2
TID2008 [35] 25 1700 17
CSIQ [36] 30 866 6

simple PSNR. The VQEG conducted many other studies, and although some of the data
have recently been released for research purposes, copyright issues with regard to content
abound [31]. In general, a database has value only if it is publicly available for future
benchmarking. A closed dataset, with restricted submissions being evaluated, does not help
in algorithm development. By recognizing this fact, various databases have been proposed
for image quality assessment in the recent past [30], [32], [33], [34], [35], [36]. One of
the first IQA databases was proposed by researchers at the Laboratory for Image and Video
Engineering (LIVE) [30], and the LIVE IQA database remains one of the most popular
databases for benchmarking, with more than 1500 download requests as of April 2011.
The LIVE IQA database was created using 29 reference images, which were distorted
using five different distortions – JPEG2000 compression, JPEG compression, white noise,
blur, and a Rayleigh fading channel model – leading to a total of 779 distorted images. In
order to illustrate how each of these distortions affects visual perception, Figure 3.4 shows
a reference image and its various distorted versions.

Although the LIVE IQA database is a de facto standard to measure the performance
of an IQA algorithm, many other databases have followed. Table 3.1 lists the various
IQA databases that are publicly available and details some specifics about these databases,
including the number of reference images used, the number of distorted images, and the
various distortion categories that were used to simulate the distorted images.

FIGURE 3.5 (See color insert.)

Sample frames from the LIVE VQA database.
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Unfortunately, despite the existence of various public databases for benchmarking IQA
algorithms, this abundance is not seen in VQA. As mentioned above, the VQEG was pri-
marily responsible for creating one of the first publicly available databases for VQA, and
the VQEG phase-I dataset, as it is called, was until recently the de facto standard on which
VQA algorithms were tested. However, owing to the poor design of the database, algo-
rithms and humans had difficulty in making perceptual judgments on the quality of the
distorted videos. Recently, researchers at LIVE released a database for VQA [27] that
complements the popular LIVE IQA database. The LIVE VQA database consists of 10
reference, uncompressed, videos in YUV420p format and 150 distorted videos that were
distorted using a variety of distortion techniques, such as MPEG4 compression, H.264
compression, IP packet-losses, and wireless packet-losses [27]. Figure 3.5 shows a subset
of the sample frames from the LIVE VQA database in order to give the reader a visual
example of the content that the database incorporates.

The LIVE VQA database, which is publicly available for download at no cost to re-
searchers (see Reference [27] for details), also provides the associated DMOS for each
of these distorted videos, and it is fast becoming the database on which VQA algorithms
are benchmarked. The LIVE VQA database is extremely challenging and clearly demon-
strates that PSNR is a poor measure of perceptual quality (see next section). The diverse
distortions, along with the carefully conducted human study and the lack of good publicly
available VQA databases, makes the LIVE VQA an invaluable asset to researchers in the
field of video quality assessment.

3.4 Algorithmic Measurement of Perceptual Quality

Having described the human visual system mechanisms that are relevant to visual quality
assessment techniques and having detailed how one assesses the performance of a QA
algorithm, this section summarizes some QA algorithms. The summary is broadly divided
into image and video quality assessment algorithms.

3.4.1 Image Quality Assessment

A taxonomy of image quality assessment (IQA) algorithms includes those algorithms
that seek to model HVS mechanism, those that are based on feature extraction procedures,
as well as those that seek to model natural-scene statistics (NSS), which is seen as a dual
to the problem of HVS modeling. Figure 3.6 provides a classification of the various IQA
algorithms that are summarized below.

3.4.1.1 FR IQA: Human Visual System-Based Approaches

FR QA algorithms based on the HVS generally proceed in the following manner. The
image is decomposed using a scale-space orientation decomposition, which is then fol-
lowed by a masking model that accounts for contrast masking in each of the frequency
channels. The masked coefficients of the reference and distorted image are then compared
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Taxonomy of image quality assessment algorithms summarized in this chapter.

using an error measure, which is generally pooled using a Minkowski summation to pro-
duce an error (quality) score. The major difference between the approaches is the choice of
the decomposition basis, the parameters of the masking models, and the pooling approach
used for collapsing spatial error scores.

One of the first attempts at modeling human visual system mechanisms for quality as-
sessment was presented in Reference [37]. In this pioneering approach, the authors utilize
luminance adaptation and a contrast sensitivity function. However, the model incorporates
only a single visual channel, as opposed to a set of channels over the frequency space, and
fails to model contrast masking. As noted in Reference [38], the method is equivalent to a
weighted MSE, and hence does not perform very well.

The so-called visual difference predictor (VDP) [39] applies a pointwise nonlinearity to
the images to model the inherent nonlinearity of visual sensitivity and perception of light-
ness to luminance, which is followed by a contrast sensitivity function. The image is then
decomposed using a modified version of the Cortex transform [40], which models the initial
stage of the human detection mechanisms. A masking procedure ensues. The dependence
of probability of detection to stimulus contrast is modeled using a psychometric function,
and a probability summation is undertaken to produce a quality score.

Reference [41] proposed DCTune as a measure of perceptual quality so that one may
design image-dependent perceptual quantization values for DCT-based compression algo-
rithms such as JPEG compression. Luminance masking and contrast masking are modeled
in the DCT domain and the obtained coefficients are converted into units of just noticeable
differences (JNDs), which are then pooled using probability summations across space and
frequencies. As discussed in the original work, the model may be used to design quantiza-
tion parameters for different images.

The other popular model for HVS-based IQA is presented in Reference [6], where the
reference and test images are decomposed using a hex-quadrature mirror filter. The re-
sponses are squared and contrast normalization is performed. The vector distance between
the reference and test image forms a measure of error and hence of quality.

Reference [42] proposed an FR IQA algorithm that first applies a set of lowpass filters
and fan filters to the input images; this leads to thirty filtered versions with five spatial fre-
quency bands and six orientations. In the next step, a modified Peli’s contrast is computed.
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A threshold elevation computation ensues, followed by a pooling stage that produces the
perceptual error measure (PEM). The authors evaluate their approach using human opinion
scores from a small-scale study and demonstrate that this measure does better than PSNR
in terms of correlation with human perception.

Visual signal-to-noise ratio (VSNR) [43] aims at evaluating the effect of supra-threshold
distortions using parameters for the HVS model derived from experiments where the stimu-
lus was an actual image as against sinusoidal gratings or Gabor patches. First, a difference
image from the reference and distorted images is computed and subjected to a discrete
wavelet transform. Within each subband, the visibility of distortions is evaluated by com-
paring the contrast of the distortion to the detection threshold and then computing the root
mean squared contrast of the error signal. Finally, using a strategy inspired from what is
termed as global precedence in the HVS, a global precedence preserving contrast is com-
puted. The final index is a linear combination of the error signal and contrast.

3.4.1.2 FR IQA: NSS-Based Approaches

Natural images (that is, any image that is not produced synthetically on a computer) fol-
low certain statistical properties that do not vary with varying content. For example, the
image of a mountain range and the close-up of a dog, both may exhibit the property that
their power spectral density falls of as 1/ f γ . Such content-independent statistical prop-
erties of natural scenes are referred to as natural scene statistics (NSS), and researchers
have been trying to understand the relationship between the statistical properties of natural
scenes and the properties of the human visual system [44]. The hypothesis is that since
humans evolved in natural environments, the HVS is optimized to extract the statistical
properties of natural scenes, and hence modeling scene statistics would give one insight
into human visual processing. NSS-based QA algorithms utilize such NSS properties for
quality assessment.

• Single-scale structural similarity index (SS-SSIM)
For two image patches drawn from the same location of the reference and distorted im-

ages, that is, x = {xi|i = 1,2, . . . ,N} and y = {yi|i = 1,2, . . . ,N}, respectively, SS-SSIM
evaluates luminance, contrast, and structure as follows [45]:

l(x,y) =
2µxµy +C1

µ2
x + µ2

y +C1
, (3.3)

c(x,y) =
2σxσy +C2

σ 2
x +σ 2

y +C2
, (3.4)

s(x,y) =
σxy +C3

σxσy +C3
, (3.5)

where C1, C2, and C3 (C3 = C2/2) are small constants included to prevent instabilities
from arising when the denominator tends to zero. The terms µx, µy, σ2

x , σ2
y , and σxy

are the means of x and y, the variances of x and y, and the covariance between x and y,
respectively, computed using a sliding window approach. The window that is commonly
used is a 11×11 circular-symmetric Gaussian weighting function w = {wi|i = 1,2, . . . ,N},
with standard deviation of 1.5 samples, normalized to sum to unity (∑N

i=1 wi = 1).
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Finally, the SSIM index between signal x and y is defined as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ2

y +C1)(σ2
x +σ2

y +C2)
. (3.6)

The above computation produces a quality map of scores, which is spatially collapsed
using the simple mean in order to produce a final quality measure for the image, although
many other pooling strategies have been explored [8], [46], [47].

• Multi-scale structural similarity index (MS-SSIM)
Since images are multi-scale and the human visual system processes visual information at

multiple scales, Reference [48] proposed to evaluate image quality at multiple resolutions
using the so-called multi-scale SSIM (MS-SSIM) index. This method performs quality
assessment over multiple scales of the reference and distorted image patches (the signals
defined as x and y in the previous discussion on SS-SSIM) by iteratively lowpass filtering
and downsampling the signals by a factor of two. The original image scale is indexed as 1,
the first down-sampled version is indexed as 2, and so on. The highest scale M is obtained
after M−1 iterations.

At each scale j, the contrast (Equation 3.4) and structure (Equation 3.5) comparison
terms are calculated and denoted as c j(x,y) and s j(x,y), respectively. The luminance com-
parison (Equation 3.3) term is computed only at scale M and is denoted as lM(x,y). The
overall SSIM evaluation is obtained by combining the measurement over scales:

SSIM(x,y) = [lM(x,y)]αM ·
M

∏
j=1

[c j(x,y)]β j · [s j(x,y)]γ j . (3.7)

The highest scale used here is M = 5. The exponents α j, β j, and γ j are selected such
that α j = β j = γ j and ∑M

j=1 γ j = 1. Variants of SSIM include SSIM computation in the
complex-wavelet domain [49], [50], a gradient-based approach [51], and techniques based
on pooling three perceptually important parameters [52], [53].

• Visual information fidelity (VIF)
Reference [54] models wavelet coefficients, obtained from a subband decomposition of

the reference and distorted images, using the Gaussian scale mixture (GSM) model [55]
and utilizes the properties of natural scenes [56] in order to produce a quality measure.
Each subband in the reference is modeled as C = S ·U , where S is a random field (RF) of
scalars and U is a Gaussian vector RF. The distortion model is D = GC + ν , where G is a
scalar gain field and ν is additive Gaussian noise RF. It is assumed that the distorted and
source images pass through the human visual system, and the HVS uncertainty is modeled
as visual noise, that is, N and N′ for the source and distorted image, respectively, where
N and N′ are zero-mean uncorrelated multivariate Gaussians. The method then computes
E = C +N and F = D+N′ and evaluates the following criterion:

V IF =
∑ j∈allsubbands I(C j;F j|s j)
∑ j∈allsubbands I(C j;E j|s j)

, (3.8)

where I(X ;Y |Z) is the conditional mutual information between X and Y , conditioned on
Z. The term s j is a realization of S j for a particular image, where j is the index that runs
through all the subbands in the decomposed image.
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Although VIF is directly based on NSS properties, it may not be clear to the reader why
the SSIM indices are classified as NSS-based approaches. While an explanation is beyond
the scope of this chapter, the reader is directed to Reference [57] for an analysis of the
relationship between SSIM and VIF.

3.4.1.3 FR IQA: Feature-Based Approaches

Feature-based approaches for QA are generally based on extracting information relevant
to the task of QA. Such feature extraction procedures seek inspiration from HVS properties
and use certain heuristics while avoiding an explicit modeling of the HVS.

In Reference [58], the authors first compute the difference between the reference and
distorted image, and then filter this difference using directional filters to form oriented edge
images. A mask is applied to each of these oriented responses independently based on the
activity measure and brightness. The resulting output is passed through a nonlinearity to
obtain directional error, which is then pooled to produce a final error (quality) score.

In another work [59], the reference and distorted images are decomposed using the
singular value decomposition (SVD), which is applied to 8× 8 blocks. Distortion per
block is computed as Di =

√
∑n

i=1(si− ŝi), where si and ŝi are the singular values for
block i from the reference and test images. The final quality score is computed as
M− SV D = ∑i∈all blocks |Di −Dmid|, where Dmid represents the median of the block dis-
tortions. Even though the authors claim that the algorithm performs well, its relation to the
HVS is unclear as is the significance of the SVD for IQA.

The IQA index proposed in Reference [60] uses the discrete wavelet transform to de-
compose the reference and test images. In each subband, mean surface curvature maps are
obtained as follows:

H =
Iuu + Ivv + IuuI2

v + IvvI2
u −2IuIvIuv

2(1+ I2
u + I2

v )3/2 , (3.9)

where Iuu, Ivv, Iu, and Iv are the partial derivatives of the image I. The correlation coeffi-
cient between the curvatures of the original and distorted images is then evaluated. These
correlation coefficients are then collapsed across the subbands to produce a quality score.

3.4.1.4 NR IQA: Distortion-Specific Algorithms

Having discussed FR algorithms, the focus is now shifted to no-reference (NR) QA al-
gorithms. NR QA algorithms are broadly classified into those that are distortion specific
and those that are distortion agnostic or holistic in nature. Distortion specific means that
the algorithms can assess the quality of an image under the assumption that the image is
affected by distortion X , where X could be JPEG compression, blur, and so on. Unlike this
approach, which has been extensively studied, there exist just a few holistic QA algorithms,
as discussed below.

• JPEG IQA
Reference [61] proposed a blockiness measure for JPEG coded images under the assump-

tion that although compression leads to multiple artifacts, blockiness is the most important
attribute. To measure blockiness, a hermite transform-based approach is taken in which
the one-dimensional (horizontal/vertical) blurred edges are modeled as a combination of
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the mean signal value, the step amplitude, blur parameters, and distance from the center
of the window being used for computation. Once these properties are measured, simple
statistics, such as the peak, mean, and standard deviation, are computed and evaluated for
their performance. The authors also evaluate a Minkowski sum with various exponents to
tune its performance relative to correlation with human perception.

Another work [62] proposed a JPEG QA algorithm that measures blocking and blurring
due to JPEG compression and relates these measures to quality. The authors compute
a horizontal first-order difference across the image and then estimate blockiness as the
average difference across block boundaries. Further, activity is computed using two factors:
the average absolute difference between in-block image samples and the zero crossing rate.
These measures are combined using a nonlinear pooling strategy where the parameters are
estimated using a training set. The authors report good performance on a relatively large
database.

In Reference [63], the images are first converted from the RGB space to the perceptually
relevant LMS color-space and analysis is performed on the achromatic component only.
Neighboring differences in luminance along horizontal and vertical directions are computed
and combined to produce a local blocking measure, which is pooled using a Minkowski
summation to produce a final blocking measure. The authors also compute a blurring and
ringing measure, using an importance map weighting spatial activity. A nonlinear pooling
follows to produce an objective score.

In another work [64], edges are first classified as either block-boundaries or true edges
using a threshold on the gradient value. The so-called plainness measure is then computed,
which is a measure of the activity; this accounts for masking. Block artifact quality is then
estimated by a combination of the gradient measure and the plainness measure.

Reference [65] proposed a visually significant blocking artifact metric (VSBAM), which
decomposes a JPEG compressed image into a combination of primary edges, undistorted
image edges, and blocking artifacts. In order to evaluate quality, the image is transformed
into the Fourier domain along with the DC-only image, which is computed using local
DCT. Vertical and horizontal blocking artifacts are then defined in the frequency domain
using differences, and these are then transformed back to the spatial domain to produce a
measure of quality.

• JPEG2000 IQA
In Reference [66], the authors compute the gradient image and then obtain the direction

of the gradient, followed by a Canny edge detector. For each edge pixel, a search is per-
formed along the gradient direction as well as in the perpendicular direction to estimate
the edge-spread at local extrema locations, which is a measure of blur. The average edge
spread is then computed and pooled spatially to produce a measure of quality.

In Reference [67], the authors utilize a Canny edge detector to detect edges in an image
and analyze the edge points using a window-based approach. In the training phase, these
windowed edge points are computed for original images (S+) and distorted images (S−).
A covariance matrix Σ = (N− ·Σ− + N+ ·Σ+)/(N+ + N−) is then computed, where N+

and N− denote the number of windowed vectors in S+ and S−, respectively, whereas Σ+

and Σ− denote the covariance matrices for vectors in S+ and S−, respectively. Principal
component analysis (PCA) is then performed on Σ, and the second and third principal
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components are used as axes for projection. During the testing phase, windowed vectors
are projected onto these principal axes and the mean and variance of the distributions along
these axes are computed. Finally, the distortion metric is pooled to produce a quality score,
with parameters obtained from a training set.

A small subjective study for JPEG2000 IQA to produce mean opinion scores (MOS) was
conducted in Reference [68]. The objective measure computes several features, namely, the
standard deviation of luminance in a region around each pixel, the absolute difference of a
central pixel from the second closest neighborhood pixel, and zero crossing in horizontal
and vertical directions. These features are then combined using a nonlinear approach. The
parameters of the model are trained and performance is demonstrated on various datasets,
including the JPEG2000 portion of the LIVE IQA database [30].

A natural-scene statistics (NSS)-based approach to JPEG2000 quality assessment was
proposed in Reference [69], where the measure of quality is evaluated in the wavelet do-
main. The authors exploited the dependency between a wavelet coefficient and its neigh-
bors, and the fact that the presence of distortion will alter these dependencies. The de-
pendencies are captured using a threshold and offset approach, where the parameters are
estimated using a training set. Good performance of the presented approach was demon-
strated on the LIVE IQA dataset.

Reference [70] presented an edge-based approach to blur quality assessment; and applied
this approach to JPEG2000 compressed images. The measure is based on the number of
edges found along a scanline as well as the blur width, which is measured using the local
extrema around the detected edge point. A simple combination of these measures leads to
a blur estimate, which can also be used as a measure of quality for JPEG2000 compressed
images.

• Sharpness/blur IQA
The authors of Reference [71] developed a sharpness measure based on the two-

dimensional kurtosis of block DCT AC-coefficients. First, edge detection is performed,
followed by thresholding, then the two-dimensional kurtosis of the DCT coefficients are
computed over 8× 8 blocks. The average kurtosis over the image forms a measure of
sharpness.

In Reference [72], a Sobel filter is applied to compute the number of edge pixels and the
gradient threshold. Then the gradient threshold is modified and the edge detection process
is reapplied. This loop continues until the number of edge pixels becomes stable. Once the
loop ends, the number of edge pixels found is compared to a parameter to check if the block
is smooth or an edge block. For each edge block, contrast and edge width are estimated and
a probability summation is used to collapse the contrast scores, which are finally subjected
to a Minkowski summation to produce a sharpness metric.

In another work [73], the above algorithm is utilized with the addition of a saliency
model. Specifically, once the amount of perceived blur is computed as in Reference [72],
a saliency mask/weighting similar to that from Reference [74] is applied to the computed
values to collapse the scores using a Minkowski summation.

Reference [75] proposed a measure that estimates the quality of image blur in the pres-
ence of noise using a gradient-based approach. Within a local window, the gradient co-
variance matrix is computed and is subjected to a singular value decomposition to estimate
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the local dominant orientation; the authors contend that the first two singular values are
intimately related to sharpness. The final model for quality involves a contrast-gain-control
mechanism using a combination of predetermined and estimated parameters.

A no-reference IQA algorithm, which measures image sharpness based on a cumulative
probability of blur detection, was proposed in Reference [76]. Again, the algorithm follows
an edge detection-based approach where blocks are categorized as smooth or non-smooth
based on a predetermined threshold on the number of edge pixels. Once edge blocks are
discovered, contrast computation follows. This is accompanied by a measure of edge width
and a cumulative probability of edge detection, which is simply a summation over probabil-
ities of detecting blur. The major difference here with respect to previous approaches [72],
[73] is the absence of a Minkowski pooling stage at the end of the chain.

Reference [77] proposed a just-noticeable blur model that is an extension of the work in
Reference [73], where the authors account for viewing distance as well, though the saliency
model is dropped. Again, a variety of predetermined and computed thresholds are used to
produce a quality score for the image, which is a Minkowski sum.

3.4.1.5 NR IQA: Holistic Algorithms

Reference [78] utilized a series of heuristic measures to quantify visual quality, which
include edge sharpness, random noise level (impulse/additive white Gaussian noise), and
structural noise. Edge detection is used to measure the sharpness of an edge, while im-
pulse noise is measured using a local smoothness-based approach. A partial differential
equation (PDE) model is used to measure Gaussian noise, whereas blocking and ringing
artifacts from compression techniques such as JPEG and JPEG2000 are indicators of struc-
tural noise. While this work describes these measures to encompass a variety of distortions,
it fails to propose a method to combine these measures to produce a quality assessment al-
gorithm and fails to analyze the performance of the algorithm.

An interesting approach to the NR IQA problem was proposed in Reference [79], where
a Renyi entropy measure along different orientations was used to measure anisotropy (that
is, rotational asymmetry) and related the measured anisotropy to visual quality. The ap-
proach uses measure of mean, standard deviation, and range of the Renyi entropy along
four orientations in the spatial domain. Although the authors demonstrate that their mea-
sure correlates with perceptual quality, a thorough performance evaluation is missing.

A different approach to blind IQA, which utilizes a two-stage framework that first iden-
tifies the proportion of each distortion present in the image and then performs distortion-
specific quality assessment, was proposed in References [80] and [81]. This so-called
distortion identification-based image verity and integrity evaluation (DIIVINE) index was
shown to perform extremely well in terms of correlation with human perception on the
LIVE IQA database [30], [81]. The DIIVINE index first decomposes an image using the
wavelet transform and then performs the perceptually relevant step of divisive normaliza-
tion. A series of statistical features, such as spatial correlation structure and across orien-
tation correlation, are computed, and these features are then used to predict quality. The
authors demonstrated that the DIIVINE approach is statistically equivalent in performance
to the FR SSIM index and is statistically superior to the often-used PSNR, across all the
distortions on the LIVE IQA database.
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TABLE 3.2
Median Spearman’s rank ordered correlation coefficient across 1000
train-test trials on the LIVE image quality assessment database. Symbol
∗ indicates NR IQA algorithms, others are FR IQA algorithms.

Distortion

Algorithm JP2K JPEG WN Gblur FF All

PSNR 0.87 0.89 0.94 0.76 0.88 0.87
SSIM (SS) [45] 0.94 0.95 0.96 0.91 0.94 0.91
SSIM (MS) [48] 0.97 0.96 0.98 0.95 0.94 0.95
VIF [54] 0.97 0.96 0.98 0.97 0.97 0.96
BIQI-4D [26]∗ 0.81 0.87 0.96 0.82 0.73 0.82
Anisotropic IQA [79]∗ 0.17 0.09 0.69 0.60 0.54 0.32
BLIINDS [83]∗ 0.95 0.94 0.98 0.94 0.93 0.91
DIIVINE [81]∗ 0.91 0.91 0.98 0.92 0.86 0.92

An alternate distortion-agnostic approach to blind IQA was proposed to compute statis-
tical features in the DCT domain [82], [83]. This pragmatic approach, titled blind image
integrity notator using DCT statistics (BLIINDS–II), extracts shape and variance from gen-
eralized Gaussian fits to DCT coefficients as well as energy ratios between frequency bands
in the DCT. A small number of features are extracted at two scales in order to account for
the multi-scale nature of both images and human visual perception; these statistical features
are then regressed on to DMOS. As demonstrated on the LIVE IQA database, BLIINDS
performs competitively with the FR SSIM index.

In order to provide the reader with a taste for how well some of the algorithms described
here perform, Table 3.2 lists the median SROCC values across 1000 train-test trials on the
LIVE IQA database [30]. Since NR algorithms considered here require training, partition-
ing the dataset is necessary to use the training images in order to set the parameters of the
NR QA algorithm. In order to ensure performance across content, such an evaluation is re-
peated across multiple train-test iterations and the median value is reported. It is pertinent
to note that the BLIINDS and DIIVINE NR models are competitive with the FR SSIM and
beat the FR PSNR in terms of correlation with human perception.

3.4.2 Video Quality Assessment

Video quality assessment algorithms summarized in this section follow a similar taxon-
omy to IQA algorithms, as seen in Figure 3.7.

3.4.2.1 FR VQA: Models Based on the Human Visual System

Human visual system (HVS) based models for VQA generally follow a series of op-
erations akin to that for IQA. Examples of such operations include linear decomposition,
contrast sensitivity modeling, and so on, although the models take into account the tempo-
ral dimension of the video as well. Generally, the spatial contrast sensitivity function (CSF)
is modeled using a lowpass filter (since the HVS is not as sensitive to higher frequencies),
and the temporal CSF is modeled using bandpass filters. It is generally easier to model the
spatial and temporal CSFs separately instead of modeling a spatiotemporal CSF [84]. A
good overview of HVS-based models for IQA/VQA can be found in Reference [85].
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Taxonomy of video quality assessment algorithms summarized in this chapter.

The Sarnoff visual discrimination model (VDM) [86] was extended to the Sarnoff JND
metric for video in Reference [87]. This approach applies a point-spread function (PSF) to
the image, followed by a model of retinal cone-sampling, and then the image is decomposed
using a Laplacian pyramid from which a contrast energy measure is computed. A masking
procedure is then applied, and a JND distance measure is computed to produce a quality
index.

Reference [88] proposed the digital video quality metric (DVQ), where quality is evalu-
ated in the DCT-domain. The DVQ metric first transforms the image into the rarely used
YOZ opponent color space [89], which is then decomposed using an 8×8 block DCT. The
ratio of the AC amplitude to the DC amplitude is computed and labeled as local contrast,
which is converted into JND units using thresholds derived from a human study, followed
by contrast masking. The error scores between the reference and distorted frames are then
computed using a Minkowski sum.

In Reference [90], a video is decomposed using Gabor filters for spatial decomposition
and two temporal channels, which is followed by a spatiotemporal CSF. A simple intra-
channel contrast masking is modeled as well. The moving picture quality metric (MPQM),
as it is called, also segments the video into various regions, such as uniform areas, contours,
and textures. The error scores from the decompositions between the reference and distorted
videos for each of these regions are pooled separately to form a final error (quality) score.

Reference [91] applies a lowpass filter to a video, and this filtered version is subjected
to a wavelet transform. A subset of the resulting coefficients are selected for distortion
evaluation, which is computed using an error measure between the masked coefficients in
the reference and distorted videos. The scalable wavelet-based distortion metric differs
from other HVS-based approaches in that the parameters used for contrast masking and
the contrast sensitivity function are derived from human responses to natural videos, as
opposed to those derived from human responses to sinusoidal gratings.

3.4.2.2 FR VQA: Feature-Based Approaches

Feature-based approaches for VQA are similar to those for IQA, and generally extract
features on a frame-by-frame basis. Some of these models incorporate motion information
to model the temporal dimension of the video as well.
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The perceptual video quality metric (PVQM) [92] extracts three features: edginess, a
temporal indicator, and a chrominance indicator. Edginess is measured using the difference
between the dilated edges of the reference and distorted frames computed using a local gra-
dient measure, and reflects the loss in spatial detail. Temporal indicator is simply a measure
of the correlation coefficient between adjacent frames, and the chrominance indicator is a
function of the color saturation. Each of these three measures is pooled separately across
the video and then combined to produce a quality measure.

The video quality metric (VQM) proposed in Reference [93] was one of the top per-
formers in the video quality experts group (VQEG) phase-II studies [31] and has also been
standardized by the American National Standards Institute; the International Telecommu-
nications Union (ITU) has included VQM as a normative measure for digital cable tele-
vision systems [94]. VQM extracts a series of features from the videos, including those
that describe the loss of spatial detail, a shift in the orientation of the edges, the spread
of chrominance components, and so on. Each of these features is thresholded and passed
through nonlinearities, and the final quality score is a weighted sum of these values. VQM
also includes elementary motion information in the form of the difference between frames
and a quality improvement feature that accounts for improvements arising, for example,
from sharpness operations.

Reference [95] proposed a measure of video quality that models the temporal variations
in spatial distortions and relates such variations to visual quality. Temporal distortions,
such as mosquito noise, flickering, and jerkiness, are modeled as an evolution of spatial
distortions over time. A spatiotemporal tube, consisting of a spatiotemporal chunk of the
video computed from motion vector information, is created, which is then evaluated for its
spatial distortion. The spatial distortion is computed using the WQA quality index [96]. A
temporal filtering of the spatial distortion is then undertaken, followed by a measurement
of the temporal variation of the distortion. The quality scores are then pooled across the
video to produce the final quality index.

The tetra video quality metric [97] is one of the few measure of video quality that utilize
motion information. In this approach, motion estimates are determined using a block-based
motion estimation algorithm, and such motion information from each heuristically deter-
mined shot [98] is utilized for temporal trajectory evaluation of the distorted video. This
information is logged in a temporal information buffer, which is followed by a temporal
visibility mask. Spatial distortion is evaluated by MSE. A spatiotemporal distortion map
is then created, which is masked using a foveation model and temporal summation is then
performed. The approach also accounts for the frame rate, frame pauses, and frame skips.
All of the indicators are pooled to create a measure of quality.

3.4.2.3 FR VQA: Motion Modeling-Based Approaches

It should be clear from the above sections that while there exist many models for quality
assessment of videos, most of these models are simply extensions of IQA algorithms that
are applied on a frame-by-frame basis. Some of these models indeed utilize motion in-
formation, however, none of these models systematically investigate the effect that motion
has on visual perception and how motion modeling may result in a better VQA algorithm.
The reader will appreciate that simple spatial analysis of a video is insufficient to gauge
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the perceived spatiotemporal quality. In this section, two recent motion-modeling based
approaches that seek to predict such spatiotemporal quality, are described.

• Speed-weighted structural similarity index (SW-SSIM)
SW-SSIM is based on the notion that motion-based weighting of spatial scores obtained

from the structural similarity index [45] is sufficient to model motion effects on visual qual-
ity [99]. In order to obtain this weighting scheme, the authors draw inspiration from human
visual speed perception studies conducted by visual psychophysicists [100]. A histogram-
based approach is used to identify the global motion vector for each frame, where the
motion vector estimates are computed using the optical flow computation algorithm from
Reference [101]. Relative motion is then extracted as the difference between the absolute
motion vectors (computed from optical flow) and the global motion vectors. The weight
for each pixel is a function of the relative motion, the global motion, and the stimulus con-
trast. Once such a weight map is obtained at each pixel location, the SSIM map applied
on that frame is weighted by the computed speed-weight map. The weighted scores are
then pooled across the video and normalized to produce a quality score for the video. The
authors demonstrated that the approach well correlates with human visual perception.

• Motion-based video integrity evaluation (MOVIE)
Although SW-SSIM uses motion information to weight SSIM scores, this kind of

motion-based weighting of spatial quality may not suffice in successfully modeling the
effect of spatiotemporal distortions on visual perception. To address this concern, Ref-
erence [102] introduced the MOVIE index, which is loosely based on models of motion
perception in visual area MT of the primary visual cortex.

In the MOVIE approach, the reference and distorted videos are first decomposed using a
multi-scale and multi-orientation spatiotemporal Gabor filter set, akin to what is hypothe-
sized to occur in visual area V1 [103]. The MOVIE index is computed using two separate
channels, one for spatial quality and the other for temporal quality, where the segregation
of computation is inspired from the hypothesized spatiotemporal separability of the human
visual system (HVS). Spatial quality is computed in much the same way as MS-SSIM. A
modified version of the algorithm for optical flow [104] is used to compute motion esti-
mates. Such optical flow computation is efficiently performed using the same set of Gabor
filters that were used to decompose the videos. Temporal MOVIE is based on the principle
that translational motion in the spatiotemporal domain manifests as a plane in the frequency
domain [105] and that deviations from the reference motion will cause a shearing of this
plane. Quantifying the shear leads to a measure of temporal quality. In order to do this,
positive excitatory weights are assigned to the response of those filters which lie close to
the spectral plane defined by the computed motion vectors and negative inhibitory weights
to those filter responses which lie farther away from the spectral plane. Such weighting re-
sults in a strong response if the motion in the test and reference video coincide and a weak
response is produced if the test video has motion deviant from that in the reference video.
The mean-squared error between the responses from the test and reference filter banks then
provides the temporal quality estimate. The final MOVIE index is the product of the spatial
and temporal quality indices. The authors demonstrated that the MOVIE index performs
extremely well in terms of correlation with human visual perception.
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TABLE 3.3
FR algorithm performance on the LIVE VQA database [27] using
Spearman’s rank ordered correlation coefficient.

Distortion

Algorithm Wireless IP H.264 MPEG2 All

PSNR 0.66 0.42 0.46 0.39 0.54
SSIM [45] 0.52 0.46 0.65 0.56 0.53
MS-SSIM [48] 0.73 0.65 0.71 0.66 0.74
Speed SSIM [99] 0.56 0.47 0.71 0.62 0.59
VSNR [43] 0.70 0.69 0.65 0.59 0.68
VQM [93] 0.72 0.64 0.65 0.78 0.70
V-VIF [106] 0.55 0.47 0.68 0.61 0.57
MOVIE [102] 0.81 0.72 0.77 0.77 0.79

Having described a handful of FR VQA algorithms, Table 3.3 lists the value of Spear-
man’s rank ordered correlation coefficient (SROCC) of some of these approaches on the
LIVE VQA database [27], to provide the reader with a sense of how well the various
approaches predict visual quality. It should be noted that MOVIE is currently the best
performer on the LIVE VQA database, as well as the VQEG phase-I dataset [29].

3.4.2.4 NR VQA: Compression

The majority of NR VQA algorithms in literature model quality due to compression
artifacts and hence measure blockiness and bluriness. Some of these models also attempt
to model temporal quality and chrominance artifacts. There exist no general-purpose NR
VQA algorithms yet and hence this section describes algorithms that have specifically been
designed for compression while those that serve various other purposes are described in the
next section.

• Blockiness-based techniques
Reference [107] uses a Sobel operator to compute the gradient of each frame which is

then subjected to a Fourier transform. A harmonic analysis follows, in which the ratio of
the sum of all harmonics to all AC components within a block is computed in both the hori-
zontal and vertical directions. The variance of the empirical pdf obtained from the phase of
the harmonics across frames is an indicator of blockiness. The authors demonstrated that
their technique works well for both I- and P-frames in compressed video.

The method presented in Reference [108] creates a set of subsampled images from each
frame, so that each subimage consists of a particular pixel from one of the 8×8 blocks used
for MPEG compression, and correlates them to produce a blockiness measure for MPEG
compressed SD videos. Reference [109] compared this measure with two other measures
and concluded that this measure is a poor indicator of quality.

The perceptually significant block-edge impairment metric (PS-BIM) [110] computes
horizontal and vertical block strengths as weighted sums of luminance differences in a
frame, where the weights are derived from luminance masking effects. Although no sub-
jective evaluation is conducted, the authors use I-frames from an encoded video to demon-
strate performance.
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Another gradient-based approach was proposed in Reference [111] where a normalized
horizontal gradient is computed at each pixel as the ratio of the absolute gradient and the
average gradient over a neighboring region in a frame. This normalized gradient is then
summed across rows and the ratio of this sum at block boundaries (assuming a fixed block-
size) to the sum at intermediate positions leads to a quality measure. The authors demon-
strated in a small human study that this metric has good performance.

• Multiple artifact measurement-based algorithms
The method presented in Reference [112] computes a series of measures, including mea-

sures of blocking, blur, and sharpness. Blocking is computed as weighted pixel differences
between neighboring blocks, ringing artifacts are computed using an edge detection-based
approach, and a kurtosis-based approach is used for evaluation of sharpness. The parame-
ters for each of these measures are trained using a small set of training videos with subjec-
tive MOS. The authors demonstrated a high degree of correlation with human perception.

Reference [113] evaluates two measures of quality; one for blocking and the other for
packet loss. In this approach, blockiness is a function of the variance of the block, while
packet loss is quantified using a binary-edge image and row-differences for each of the
encoded blocks. A comparison of the proposed metrics is performed with others known
from the literature; however, this comparison does not involve any subjective correlations.

Reference [114] evaluates blockiness, blur, and noise in a similar way as Reference [112].
The method from Reference [108] is modified to measure blockiness. Edge-widths are
used to measure blur, and variances of subblocks within an 8× 8 block to measure noise.
A weighted Minkowski pooling ensues and weights are estimated from human data. The
algorithm is shown to perform well on a small database of human observations.

Another similar approach was proposed in Reference [115], which evaluated noise,
blocking, moving artifacts, and color impariments in videos. The individual color channels
are inspected and thresholded to form a color measure, while spatiotemporal regions are
evaluated to study the effect of noise on quality. Although the authors demonstrated how
these measures can be incorporated into a system, no such pooling was actually undertaken
and no subjective evaluation was performed either.

Reference [116] presents a model for NR VQA consisting of frame quality measure and
correction, asymmetric tracking, and mean value filtering. The frame quality measure is
simply neighboring pixel differences with and without edge preservation filtering. This
is subject to histogram calculations, pooling, and corrections to obtain the final measure.
Asymmetric tracking accounts for the fact that humans tend to perceive poorer regions with
greater severity than good ones [8]. Finally, mean value filtering removes high-frequency
ingredients from the measure to produce the quality index. Evaluation on a small dataset
shows good correlation with perception.

3.4.2.5 NR VQA: Other Techniques

An NR VQA that uses motion information was proposed in Reference [117]. This ap-
proach uses block-based motion estimates from a lowpass version of the distorted video
along with luminance thresholds to identify translation regions of high spatial complex-
ity. The sum of squared error between the block under consideration and its motion-
compensated block in the previous frame is lowpass filtered to produce a spatial distor-
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tion measure. A temporal distortion measure is computed using a function of the mean
of the motion vectors. Parameters and thresholds are trained using a part of the VQEG
dataset [29] and when tested on the remaining part of the database, the approach demon-
strates high correlation with human perception.

Reference [118] evaluated the blur caused due to video compression and imaging by first
reducing the blocking artifacts by lowpass filtering. A subset of pixels from a frame are
selected to evaluate blur due to compression (as opposed to intentional blur effects, such as
those related to focus settings). Blur is then computed by quantifying edge-strength, which
is shown to correlate well with PSNR for three videos.

Reference [119] proposed a measure for videos that have been subjected to frame-drops.
The dropping severity is modeled as a function of the number frame drops using timestamp
information from the video. The video is then segmented into cuts [98], and the motion
activity of such a segment is determined using motion vector information and used to map
the dropping severity to perceptual quality. A series of pooling steps, which include em-
pirically determined thresholds and constants, follow, leading to a final quality score. The
measure is shown to correlate well with human perception on a small dataset.

Channel-induced distortion for H.264/AVC compressed [120] videos is modeled in Ref-
erence [121], which attempts to estimate the MSE between the received and transmitted
video using information from the macroblocks in the distorted video. The authors classify
the macroblocks as either correctly received or lost. The lost macroblocks are modeled
as a sum of distortions arising from motion vectors, prediction residuals, and distortion
propagation. When the macroblocks are correctly received, the distortion is simply due to
its propagation from the previous frame. Correlation between estimated channel distortion
and measured channel distortion is used as a measure of performance.

Finally, Reference [122] modeled jerkiness between frames using absolute difference
between adjacent frames and a threshold. Picture loss is similarly detected with another
threshold. Blockiness is detected using a technique similar to those proposed previously.
The test methodology is nonstandard and requires users to identify number of picture
freezes, blocks, and picture losses in the videos; and perceptual quality is not evaluated.

3.5 Current and Future Research in Quality Assessment

Currently, FR IQA algorithms, such as the SSIM index, perform extremely well in terms
of correlation with human perception, and although researchers have made attempts at bet-
tering performance [8], [51], [123], the gains achieved have been minimal and statistically
insignificant. Hence, it seems as if the field of two-dimensional IQA is currently at a
plateau; that is, any additional gains that may be achieved will be at the cost of significant
increase in processing that might not be justified by the end result. However, efficient im-
plementation of IQA algorithms [124], [125] and use of quality indices as a criterion in the
algorithm development [126], [127] remain exciting fields of research. Investigation of eye
movements for the task of QA is another field that seemingly has great potential [8], [128],
[129], [130], [131], [132], [133].
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The field of NR IQA remains one of interest, since only recently distortion-agnostic
approaches that perform competitively have been proposed [80], [82]. Development of
efficient distortion-agnostic NR IQA algorithms that perform at least as well as leading
FR IQA algorithms, such as MS-SSIM or VIF, are interesting avenues of future research.
Further, evaluation of algorithm performance (of both FR and NR algorithms) on multiply-
distorted images (for example, blur and compression) remains another interesting avenue
of research [134], [135].

The field of FR VQA still has great potential for research, since the best algorithms do
not correlate as well as the best IQA algorithms with human perception. As with FR IQA,
efficient computation of FR VQA algorithms is an interesting direction of future research,
especially when it comes to practical application of VQA algorithms [125]. Predicting
visual attention in videos remains of interest, more so in VQA than IQA, since one would
imagine that extracting low-level features from the reference video would make possible
improved prediction of fixations and hence of quality. Further, the effect of distortions on
visual attention is another ill-explored area of research [133].

As already discussed, existing NR VQA algorithms are generally geared toward com-
pressed videos [110], [119], and a truly blind NR VQA algorithm that is distortion agnostic
does not exist. Research on spatiotemporal perception and models for motion masking,
such as the one used in Reference [27] and explored in Reference [136], may provide re-
searchers with clues on how to model distortion-agnostic NR VQA algorithms. Temporal
pooling of quality scores for VQA remains of interest and would complement existing lit-
erature on spatial pooling strategies for IQA [8], [46].

Apart from two-dimensional QA, stereoscopic or three-dimensional QA is an emerging
research area [137], [138], [139], [140]. Device-specific QA remains of interest, as does
utilization of QA algorithms for perceptual optimization for video delivery, video confer-
encing, and so on [141], [142], [143]. Studying visual aesthetics and context, as well as
content-aware QA, is another interesting direction to pursue [144], [145], [146], [147],
[148].

3.6 Conclusion

This chapter focused on perceptual quality evaluation of digital images and videos. Per-
ceptual quality assessment is critical in the face of the explosion of media applications that
are bringing digital images and video to people via the Internet, television, and cellular
phones. The discussion started by focusing on perception of images and videos by hu-
mans and computational models of visual processing of these signals within the context
of quality. Then, this chapter surveyed quality assessment algorithms that automatically
predict the quality of a signal with or without the presence of a pristine reference based on
perceptual models. It also discussed subjective methods to obtain ground truth data from
human subjects on perceptual quality and presented comparative evaluations of different al-
gorithms in matching visual perception. This was followed by discussing recent advances
in the field of quality assessment and research directions in this field that remain open.
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Although there exists tremendous scope for research in the area of QA, it is believed that
a better understanding of human visual perception as well as better models of visual pro-
cessing will tremendously benefit QA research. Researchers would do well to incorporate
lessons learned from visual psychophysics in the development of visual quality assessment
algorithms – for, after all, the ultimate receiver of the visual signal is the human observer!
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4.1 Introduction

Visual aesthetic quality is a measure of visually perceived beauty. Judgment of the visual
aesthetic quality of images is highly subjective, involving sentiments and personal taste [1].
However, some images are often believed, by consensus, to be visually more appealing than
others. This serves as one of the principles in the emerging research area of computational
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FIGURE 4.1 (See color insert.)

Images with different aesthetic qualities. Images on the first row are taken by professional photographers while

images on the second row are taken by amateur photographers.

aesthetics. Computational aesthetics is concerned with exploring computational techniques
to predict emotional response to a visual stimulus, and developing methods to create and
enhance pleasing impressions [2], [3]. This chapter focuses on exploring computational
solutions to automatically infer the aesthetic quality of images. The greatest challenge in
this research lies in the gap between low-level image properties and the high-level human
perception of aesthetics.

This chapter starts by defining the problem of interest and giving a brief review of re-
lated works. After the introduction, Section 4.2 discusses some key aspects of the problem,
including database and human judgments, and introduces the general flow of a compu-
tational solution for learning the image aesthetics. Section 4.3 introduces the principles
and approaches being employed to extract computational features for representing the aes-
thetic quality. After analyzing the feature extraction, Section 4.4 explores different learning
models that can be utilized for mapping from the computational features to the perceived
aesthetics. Section 4.5 provides some examples among the large amount of applications for
which the aesthetic quality assessment technique is highly desirable. Finally, this chapter
concludes with Section 4.6.

4.1.1 Visual Aesthetics

The Oxford Advanced Learners Dictionary defines aesthetics as “concerned with beauty
and art and the understanding of beautiful things, and made in an artistic way and beautiful
to look at” [4]. Generally speaking, visual aesthetics is a measure of the perceived beauty of
a visual stimulus. The visual aesthetic quality of an image measures how visually appealing
the image is in people’s eyes. As shown in Figure 4.1, different images arouse different
emotional responses in people. Some images give the viewer more pleasing impressions
than other images.

Unlike measuring the visual quality, that is, evaluating the level of image degradation, the
aesthetic quality of an image is more related to its semantic content [5]. Given the abstract
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and subjective properties of aesthetics, it is unclear even for the professional photographers
which characteristics are more correlated with the aesthetic quality of an image. However,
professional photographers have summarized some general rules and techniques to guide
the adjustment of color, composition, depth, and so on.

Psychologists and photography researchers have tried to explore how humans judge vi-
sual aesthetics. From studies in neuroscience, Reference [6] suggests that there is not one
aesthetic sense only but many senses, each tied to a different specialized processing sys-
tem. Different artistic attributes excite different groups of cells in the brain, so there is
also a functional specialization in aesthetics. Reference [2] summarizes the basic dimen-
sions of visual aesthetics, called aesthetic primitives, as the different modularities of the
human visual system, and points out the most important modularities are color, form, spa-
tial organization, motion, depth, and the human body. There are also studies that focus
on how some of these characteristics affects image aesthetics. For example, the role of
color preferences has been studied [7], [8], [9], and the role of the spatial composition has
been analyzed [10], [11]. In previous works on computational aesthetics, psychology and
photography have been important sources that inspire the design of computational features.
More analysis on the aesthetic characteristics will be given in Section 4.3.

What is visual aesthetic quality assessment of images? The goal of image aesthetic qual-
ity assessment is to have an automatic computational algorithm provide images aesthetics
scores that are consistent with human consensus. As will be discussed, to simplify the task,
in some cases the algorithm only needs to predict the aesthetics labels for the images, in-
dicating whether they belong to the high-quality class or low-quality class. The aesthetic
quality assessment technique is highly useful in many applications, such as image search,
photo enhancement, photo management, photography, and so on.

4.1.2 Related Works

Recent years have shown rapidly increasing interest in how to computationally predict
the aesthetic quality of images. Assessing the aesthetic quality of images is a highly subjec-
tive task. Although it has long been studied in photography and visual psychology [6], [7],
[12], [13], [14], [15], and many guidelines have been provided, there are no fixed rules that
can directly connect the image content with the perceived aesthetics. Recent works seeking
for computational solutions address the challenge of automatically predicting image aes-
thetic quality using their visual content as a machine learning problem. Generally, these
techniques first extract computational features from the images and then learn the mappings
from the features to the human-rated aesthetic quality through learning techniques.

One of the earliest attempts in this direction was made in Reference [16], which aimed at
classifying photos as professional or amateur. Without analyzing how the semantic content
in the image relates to the two quality classes, a large group of low-level features was col-
lected and used to train standard learning algorithms for the classification. However, this
black-box approach did not provide insight on how to design better features to represent
the image appeals. Recent research studies in this area have focused on designing features
to represent some high-level concepts that are highly correlated to the image aesthetics [4],
[17]. The intuition of feature extraction often comes from concepts in psychology, photog-
raphy, or human studies. For example, Reference [17] extracted low-level features, such as
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average hue and edge distribution, to represent the high-level properties, like color prefer-
ences or simplicity. Similarly, Reference [4] extracted another group of visual features to
represent different characteristics related to the image’s composition, object shape, color,
and so on. These ideas were further extended in Reference [18] which proposed features
related to the subject region of the image that is assumed to receive more attentions from
the viewer and is thus more relevant to the aesthetic quality. Addressing digital images of
paintings, Reference [19] introduced a set of features motivated from psychology, art, and
controlled human study, to predict common people’s aesthetics judgment toward different
impressionistic paintings. Many efforts have also been made to study features specifically
to assess the aesthetic quality of consumer photographs [20], [21], [22], [23], [24].

In Reference [25], the authors proposed adding the high-level describable image at-
tributes instead of using only the low-level features to represent the image appeal. Existing
algorithms were utilized to extract high-level attributes, such as the presence of salient ob-
jects, the presence of faces, and the scene category to which the respective image belongs.
The significant improvement in performance demonstrates the power of utilizing high-level
semantic attributes. The more the content and structure of the image is understood, the bet-
ter performance can be achieved in the quality prediction. Therefore, the present work also
encourages closer collaboration between aesthetic quality assessment with other areas that
are dedicated to the holistic scene understanding.

Many applications based on the assessment have been developed, such as aesthetics-
assisted image search [17], [24], automatic photo enhancement [26], [27], [28], [29], [30],
and album management [20], [28], [31]. There have been also works that extend the aes-
thetic quality assessment techniques from images to videos [18], [32]. However, the auto-
matic aesthetics assessment itself is still far from being solved. Section 4.2 discusses the
challenges in data collection and human study, and introduces the general techniques used
for aesthetics assessment.

4.2 Database, Human Study, and System Design
4.2.1 Database and Human Study

The subjectivity in predicting aesthetics raises a critical issue: what data should be used
to study image aesthetics? In order to train and evaluate any computational algorithms, a
database of images with aesthetic ratings based on human’s judgments is needed. Unlike
other research areas in computer vision, such as scene recognition and object detection,
where standard datasets are available for evaluation, no benchmark database has been ex-
plicitly created for aesthetic quality assessment. Constructing such a database with manual
aesthetic labels is challenging. Ideally, the database needs to be a large-scale collection of
photos coming from a diverse group of photographers, including amateurs and profession-
als, and representing different contents and styles, from portrait to scenery, from abstract
to realistic, and so on. Moreover, a large-scale human study is needed in order to reach any
consensus in the aesthetic scores/labels given to an image. Participants in the study should
be chosen based on the definition of aesthetics. For example, if the goal is to understand
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FIGURE 4.2

Statistic analysis on two large subsets [34] from two photo sharing websites: (a–c) DPChallenge.com and

(d–f) Photo.net.

aesthetics in the eyes of photographers, a study should be conducted among a large group
of photographers. However, if the goal is to study aesthetics in the eyes of common people
who are non-experts in photography, the diversity in the demography of the participants
has to be increased. The human study also needs to be well controlled in terms of partic-
ipant constitution, viewing conditions, the viewing time, monitor screen resolutions, and
other factors. Although crowdsourcing Internet marketplaces, such as Amazon Mechanical
Turk,1 have been widely utilized to quickly collect labels for other computational vision
tasks [33], using such services to help build a dataset for aesthetics would pose further
challenges in the design of a human study due to the uncontrolled noisy feedbacks. Al-
though there have not been standard datasets in image aesthetics, researchers have made
alternative efforts to push forward the research in this area.

Given the fact that a larger-scale dataset is more difficult for a controlled human study,
prior works have started by creating datasets that contain a certain group of images. For ex-
ample, Reference [35] presented a dataset with consumer photos (that is, non-professional
photos) and aesthetic labels collected through a well-controlled human study. Refer-
ence [22] introduced a dataset of consumer photos containing human faces and the cor-
responding aesthetic labels collected through a human study via Amazon mechanical turk,
with delicate designs to ensure that the participants used consistent standards to assess the
images across the whole survey. Studying photos of paintings, an offline rating survey was
conducted to collect the participants’ general ideas about factors affecting the painting aes-
thetics and the aesthetic scores for all images [19]. However, these existing datasets are
either not large enough or are not yet publicly available.

1https://www.mturk.com/mturk/
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Another option is to use images from popular photo-sharing websites, such as
DPChallenge2 and Photo.net3 [4], [17], [18]. The former one allows users to participate
in theme-based photography contests, in which winners are determined based on the peer
ratings of overall quality on a one to ten scale. The latter one serves as a platform for
photography enthusiasts to post their shots, which are peer rated on a one to seven scale
in terms of the aesthetic quality. Some other websites also provide measures related to the
photo’s aesthetic quality. For example, Flickr4 provides a measure called “interestingness,”
which is computed through analysis of social interactions (such as viewing patterns, popu-
larity of the content owner, favoring behavior, and so on) with that photo. The originality
scores for images are highly correlated with the aesthetics scores given the photos on the
Photo.net website [4]. All of these datasets have the advantage of containing large-scale
data. However, there is not much control in the rating conditions, which results in biased
ratings under certain circumstances. Moreover, the diversity of the rating participants is
limited; many of the ratings are given by professional photographers instead of the general
community. To mitigate this problem, Reference [34] used large subsets from three web-
based sources (Photo.net, DPChallenge, and Terragalleria5) and reported the nature of user
ratings on each dataset.

Here, the samples from Reference [34] are utilized and some statistical results are gen-
erated for the subsets from DPChallenge and Photo.net. Namely, Figures 4.2a and 4.2d
show the distributions of the average scores in the respective dataset, Figures 4.2b and 4.2e
show the distributions of number of ratings received by an image in the respective dataset,
and Figures 4.2c and 4.2f show the standard deviation of the user scores corresponding
to different average scores. Note that for Photo.net, scores are concentrated in the high
end, perhaps because people are more likely to rate high-quality photos without specific
instructions. Moreover, most images in the Photo.net subset received fewer than 20 rat-
ings, while images in DPChallenge receive a larger amount of ratings. In Figures 4.2c
and 4.2f, the variance provides some idea about the consensus of the ratings. The ratings
in DPChallenge are less consistent than those in Photo.net. Another interesting result in
the variance trend for Photo.net is that the photos with average scores at the two extreme
ends (extremely low/high) received better consensus. This result is consistent with what
has been found in controlled user studies in References [21] and [22].

4.2.2 System Design

This section introduces the general flow for designing a visual aesthetic quality assess-
ment system, which is adopted by most of the current aesthetics assessment algorithms.
As shown in Figure 4.3, building such a system comprises two parts: conducting a human
study to collect human ratings and developing the computational algorithms. Note that the
voting and rating activities on those photo-sharing websites mentioned earlier are generally
considered as human studies.

2http://www.dpchallenge.com/
3http://photo.net/
4http://www.flickr.com/
5http://www.terragalleria.com/
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FIGURE 4.3

The general flow used for design an aesthetic visual quality assessment system.

The human ratings gained from the study are used to generate ground-truth labels, which
are important inputs to the computational algorithms. In general, previous works have used
the average score of the human ratings given to an image as the ground-truth aesthetic
score for the image. For the computational part, a series of features representing various
characteristics of the image appeal are extracted, followed by a regression or classification
algorithm to map the extracted features to the ground-truth aesthetic scores. The system
first extracts features from the test image, and then uses the corresponding inference al-
gorithm to predict the aesthetic score. The performance of such a system is evaluated by
measuring how well the predicted scores match with the average human-rated scores. In
this chapter, Section 4.3 details how to extract effective computational features to represent
the image aesthetic appeal, whereas Section 4.4 describes how to make use of a learning
algorithm to predict the image aesthetics.

4.3 Computational Features for Visual Aesthetics

Extracting computational features to represent the image appeal is a crucial part of the
aesthetic quality assessment task. Previous works have designed such features mainly by
using human intuition, conducting human studies, and gaining inspirations from photogra-
phy or psychology literatures. Reference [2] analyzed the modularities of the human visual
system and derived the six basic dimensions of visual aesthetics called aesthetic primitives:
color, form, spatial organization, motion, depth, and human body. Reference [17] found
three distinguishing factors that affect the image appeals: simplicity, realism, and basic
photographic techniques. Similarly, using questionnaires, Reference [19] found that color,
composition, meaning, texture, and shape are the most frequently mentioned factors that
affect judgment of aesthetic quality. Besides considering the global image characteristics,
Reference [18] emphasized the importance of the main subject in an image on the aesthetic
quality and summarized findings presented in References [13], [14], and [36]. According
to those findings, “high quality photos generally satisfy these three principles: a clear topic,
gathering most attention on the subject, and removing objects that distract attention from
the subject.” Thus, Reference [18] considered four criteria related to the different treatment
of the subject and background: composition, lighting, focus controlling, and color.
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TABLE 4.1
Summary of the low-level features introduced in Sec-
tion 4.3.1, which are divided into five groups according to the
characteristics which the respective features represent.

Color Statistics Golden-Section Rule (Rule of Thirds)

color distribution visual balance
color simplicity shapes
color harmony texture and pattern

Illumination Depth Main Subject Region

average lightness linear perspective subject colorfulness
lightness contrast sharpness-blurring distributions background simplicity

subject spatial composition
subject-background contrasts
face-related characteristics

Based on the analysis of criteria used for assessing the image aesthetics, various algo-
rithms, such as those presented in References [4], [17], [18], and [19], have been proposed
to extract low-level image features related to the criteria. Some recent works [22], [25]
also proposed higher-level semantic attributes to describe the image appeal. The following
sections will analyze the low-level features and high-level attributes.

4.3.1 Low-Level Features

This section introduces features that have been popularly used in previous works on aes-
thetic quality assessment. Depending on their representing characteristics, the features can
be mainly divided into the following groups: color-related features, illumination-related
features, spatial composition-related features, depth-related features, and main subject-
related features, as summarized in Table 4.1. However, features in different groups are not
completely independent. Instead, they can be related and contain overlapping information.

4.3.1.1 Color-Related Features

Color is probably the most direct information that can be catched from an image, even
before its close inspection. Creating more appealing color composition is an important
artifice for a professional photographer.

• Color statistics
A rough measure of an image’s color characteristics is to calculate the mean value of the

pixel colors across the image. From the artistic aspect, the average color more or less repre-
sents the color keynote of the image. Assuming the RGB representation, the mean value can
be computed for each of the three channels. In the case of the HSV representation, similar
operations can be used to get the mean for the S and V channels, but not for the H channel.
Consider the two hue values h1 and h2 shown in Figure 4.4a. Though their perceived colors
are close to each other, the average of these two hue values is h∗ = (h1 +h2)/2 = 0.5, which
is not even close to either of these two hue values. To avoid this problem, the vector repre-
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FIGURE 4.4 (See color insert.)

Different representations of the hue values: (a) scalar representation and (b) vector representation.

sentation for the hue value should be used, as shown in Figure 4.4b. The average hue vector
can be defined as~h∗ = ∑i

~hi/‖∑i
~hi‖, where the normalization is operated because only the

direction of the resulted vector matters. The scalar h∗ can be obtained by converting ~h∗

back to the scalar representation.

• Color distribution
Prior works used a three-dimensional histogram with each axis corresponding to a color

channel, or considered the histogram for the different channels individually. The his-
tograms can be generated based on all the pixels in the image to represent the global color
composition of the image, or based on the pixels within a presegmented region to represent
local color composition.

• Hue count
The hue count of an image is a measure of the image’s simplicity [17]. Most profes-

sional photos are often so simple that the main focusing objects can easily stand out of
the background, while amateurish photos often seem cluttered due to the improper mixture
of the different colors from different objects. The hue count of an image is calculated as
follows. First, color images are converted to the HSV space. Second, only pixels with
brightness values in the range [0.15,0.95] and saturation larger than 0.2 are considered.
This is because a pixel not satisfying these requirements looks close to gray color no mat-
ter what hue value it has. Third, a K-bin histogram is computed on the hue values of the
requirement-satisfied pixels. The hue count is the number of bins with values larger than a
certain threshold t, that is,

Nhue = ‖{i|Hhue(i) > t,1≤ i≤ K}‖, (4.1)

where ‖ · ‖ indicates the number of elements in a set.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.5 (See color insert.)

Harmony hue distribution models with gray indicating the efficient regions: (a) i type, (b) V type, (c) L type,

(d) I type, (e) T type, (f) Y type, (g) X type, and (h) N type. All the models can be rotated by an arbitrary angle.

• Color harmony
Harmony in color is an important factor that affects the image appeal. Some patterns,

such as combining complementary colors or using only neighboring colors, may bring
better harmony than other randomly spread color patterns. Previous works [19], [26], [37]
utilized the models from Reference [38] to evaluate the extent of color harmony in an
image. This prior work studied various color schemes that were adopted as print clothes
and dresses for girl students, and classified them into some groups, respectively, for the hue
distribution and the tone-lightness distribution. As an example, Figure 4.5 shows the eight
hue distribution models. In this figure, the type-N model corresponds to gray-scale images
while the other seven models, each of which consists of one or two sectors, are related
to color images. Gray regions indicate that the respective model prefers the pixel hues to
agglomerate within the specific regions. Since all the models can be rotated by an arbitrary
angle, what they are measuring is the relative relationship of the hues in the image rather
than the specific color distribution modeled by the hue histogram itself. Figure 4.6 gives
three example images that fit well with different types of harmony models.

As discussed in Reference [26], the set of hue distribution models can be used to evaluate
the color harmony. Given an image, each of these models can be fit to the hue histogram of
the image. Let Tk(α) be defined as the kth hue model rotated by an angle α and ETk(α)(p)
as the hue in the model Tk(α) that is closest to the hue of the pth pixel h(p); that is,

ETk(α)(p) =
{

h(p) if h(p) ∈ Gk,
Bnearest if h(p) /∈ Gk,

(4.2)

where Gk is the gray region of model Tk(α) and Bnearest is the hue of the sector border in
model Tk(α) that is closest to the hue of pixel p. Further, let the distance between the hue
histogram and the kth model rotated by α be defined as follows:
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(a) (b) (c)

FIGURE 4.6 (See color insert.)

Image examples that fit with different types of hue harmony models in Figure 4.5: (a) fitting I-type harmony,

(b) fitting Y -type harmony, and (c) fitting i-type harmony.

Fk,α = ∑
p
‖h(p)−ETk(α)(p)‖ · s(p), (4.3)

where ‖ · ‖ refers to the arc-length distance on the hue wheel and s(p) is the saturation
of pixel p, which appears here as a weight since the difference between colors with low
saturation is perceptually less noticeable. Now, in order to fit the kth model with the current
image, it is necessary to look for the best rotation angle α∗

k that minimizes Fk,α as

α∗
k = argmin

α
(Fk,α). (4.4)

The above operations is repeated for all harmony models to find out how each of them fits
with the image; the procedure forms a set of harmony scores {Fk,α∗k }, for k = 1,2, . . . ,K.
These harmony scores can be directly used as the hue harmony features for the image, or
summarized to other features, such as choosing the minimal score to indicate how har-
monious the image is (as in Reference [26]) or forming a K-dimension binary feature to
indicate which harmony model fits the image best (as in Reference [19]). Besides using the
models from Reference [38], some other methods also proposed to measure color harmony
in an image [18].

4.3.1.2 Illumination-Related Features

Choosing proper lighting conditions for capturing photo and controlling the exposure
are basic techniques for professional photographers. Professional photographers also make
good use of the lighting contrast to emphasize the main objects on which they expect the
audience to focus. Therefore, the lighting effects on an image are important measures for
its appeal.

• Average lightness
Considering the HSV color representation, the arithmetic average lightness value of an

image can be computed. Another way to measure the average lightness of an image is
to compute the logarithmic average lightness, that is, 1

Np
∑p log

(
ε + v(p)

)
, where v(p) is

the lightness value of the pixel p, the term Np denotes the number of pixels in the image,
and ε is a small number to prevent from computing log(0). The logarithmic average can
provide some complementary information about the dynamic range of the lighting in the
image. For example, two images with the same arithmetic average lightness can have very
different logarithmic average lightness, due to their different dynamic ranges.
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(a) (b) (c)

FIGURE 4.7

The effects of different spatial compositions: (a) original professional photograph, (b) image created by shuf-

fling the pixels in (a), and (c) image created by changing the spatial composition in (a).

• Lightness contrast
Human color vision relies on both hue and lightness [39]. Without hue contrast, it would

be difficult for human eyes to recognize different objects; without lightness contrast, it
would be difficult for human eyes to decide the exact place for something. Looking at
an image with flat lightness over it, human eyes cannot easily figure out a proper point
to focus on. However, this does not mean that low lightness contrast definitely decreases
the aesthetics of an image. An overexposed or underexposed photograph under certain
scenarios may yield very original and beautiful shots. In artistic creation, low luminance
contrast may create an illusion of vision [39]. This suggests that the lightness contrast is
an important feature related to the image appeals although the preference of high contrast
or low contrast is data dependent. One way to measure the lightness contrast is as follows.
Consider the HSV color representation of the image, with Hv being the histogram of the
lightness values of the pixels. The histogram is used to search for the minimal region
[bl,br] that centralizes 98% energy of the lightness histogram. The lightness contrast to be
measured can be defined as |br−bl|.

4.3.1.3 Spatial Composition-Related Features

Not only the color and lighting compositions are important for the image appeals, but
also the locations of objects and their mutual spatial relations play an important role in the
aesthetic quality of the image. Professional photographers follow a wealth of composition
knowledge and techniques [1]. By shuffling the pixels of an aesthetically appealing pro-
fessional photograph (Figure 4.7a), it is possible to end up getting a noisy and no-longer
appealing image, although the previous color and lighting features are not changed (Fig-
ure 4.7b). Even when keeping the complete shapes of the semantic objects but just changing
their spatial configuration, the aesthetic quality of the resulted image (Figure 4.7c) would
be quite different from the original one. The following discussion introduces some popular
features used to measure the spatial composition of an image. Many features are inspired
by the guidelines and principles in photography, such as golden-section rules, shapes and
lines, visual balance, and so on [12].

• Golden-section rule
Golden section refers to dividing a line at a particular ratio (

√
5−1)/2, so that the ratio

of the smaller part to the larger part is the same as the ratio of the larger part to the whole.
The rule can be commonly found in nature, and has been widely used in photography and
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(a) (b) (c)

FIGURE 4.8

Demonstrations of the golden-section rule and its approximation, rule of thirds, in photography: (a) golden-

section rule, (b) rule of thirds, and (c) subject at one of the intersections.

art as a tool in order to achieve balance and beauty. The golden-section rule specifies that
the focus (main object of the interest) should be located at one of the four intersections as
shown in Figure 4.8. In photography, this rule is often approximated by the so-called rule
of thirds, which approximates the golden ratio as 1/3. So, the first spatial composition-
related feature is to measure how well the composition of an image fits with this rule. The
procedure starts with deciding the main object of interest in the image. Some methods
of extracting the main subject of the image were proposed in Reference [18]. Another
work [22] considered face as the main subject whenever there is face within the image and
performed face detection to extract it. Various object detection and region segmentation
techniques can also be used to identify the main object of the image. Once the main object
has been found, the golden rule-based feature can be computed as the minimum among the
distances between the object center and all four golden-section line intersections:

fgolden = min
i=1,2,3,4

√(
(Ox−Pi

x)2 +(Oy−Pi
y)2

)
, (4.5)

where (Ox,Oy) denotes the coordinates for the center of the object of interest and {(Pi
x,P

i
y)}

is the set of coordinates for the four intersection points. All the coordinates are normalized
by the width and height of the image, respectively. If considering multiple objects/regions
of interest, the above feature can be computed for each salient object/region and then com-
bined using some appropriate techniques. An optional method for combining the set of
features { f j

golden}, where j = 1,2, . . . ,J for the J salient objects, is given by

f c
golden =

1
∑ j w j

∑
j

w jG( f j
golden). (4.6)

The term G(·) denotes a function performing a certain transform on the input features, and
w j is the weight given to the jth salient object. Both G(·) and w j can be chosen based on
the applications and the specific algorithms. For example, some previous works [27], [28]
use G(x) = e−x2

. In Reference [27], w j is set to be the mass of the jth salient region, while
in Reference [28], w j indicates an importance calculated by some algorithm.

• Visual balance
Balance is an important concept related to visual harmony and aesthetics. Reference [12]

discusses that salient objects are preferred to be distributed near-evenly around the center
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of the image for the sake of visual balance. The statement on the “right and left” balance in
visual psychology says: an object with a fixed size seems to have more weight when put on
the right, thus its size needs increasing when put on the left for balance [15]. This statement
suggests larger objects on the left can balance with smaller objects on the right. A simple
way to measure the visual balance is as follows. Consider the top J most salient regions
(objects) in the image. The procedure first computes the center (C j

x ,C
j
y) and the respective

mass M j for the jth region. This is followed by computing the offset between the weighted
average center for these J regions and the image center (Cx

im,Cy
im), as follows:

f x
bal =

∑ j M jC j
x

∑ j M j −Cx
im, f y

bal =
∑ j M jC j

y

∑ j M j −Cy
im, (4.7)

with the coordinates normalized, respectively, by the width or height of the image.

• Shapes
Shapes are crucial components in an image, so they can significantly affect the aesthetic

quality of the image. Reference [19] computed the high-order central moments on the co-
ordinates within a segmented region to represent the shape of the region. Reference [4]
computed the convex hull of a segmented region, and used the ratio of pixels within the
hull to measure the degree of convexity for the region. However, both metrics can only
roughly measure some characteristics of the shapes. Moreover, there is still not enough
understanding of which kind of shape enhances the image appeals. To overcome this draw-
back, it is possible to measure the shape in more detail and leave the learning algorithm
to figure out the useful properties. Borrowing the technique “bag of features” [40], [41]
popularly used for image matching, each region can be represented as a collection of local
features, such as scale-invariant feature transform (SIFT) [42] and maximally stable ex-
tremal region (MSER) [43] features. Another problem is that the segmentation process is
not always reliable and can break one semantic region into multiple segments or merging
semantically non-related regions into one. Potential solutions to these problems can replace
the segmentation technique with the spatial pyramid matching technique [44] to compose
the shape-related features within spatially divided regions at multiple scales. Alternatively,
other techniques, such as object detection and saliency detection, can also be used to better
divide the image into meaningful elements.

• Texture and patterns
Texture describes the structural characteristics of a surface, which can be classified as

graininess, smoothness, line-likeness, regularity, and others. As discussed in Reference [4],
whether an image looks grainy or smooth as a whole is related to the camera settings and
techniques used by the photographer. A grainy image due to high ISO settings or a smooth
image due to out-of-focus capturing is generally not visually preferred. Moreover, texture
is not only related to the photo-shooting conditions, but also an important artistic element
of the image composition in photography. Patterns, which are regular texture with more or
less repetitive entity, can often evoke aesthetic feelings in humans. Figure 4.9 shows some
examples with patterns. Although Figure 4.9c is not even a professional photograph, it is
still pleasing to the eyes of the audience because its regular organization of smiling faces
into rows. To extract texture- and pattern-related features, Reference [4] used Daubechies
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(a) (b) (c)

FIGURE 4.9 (See color insert.)

Texture and patterns. Patterns in these examples evoke aesthetic feelings.

wavelet transform [45] to measure the spatial smoothness in the image. The reader should
also refer to the literature on texture analysis [46], [47], [48], [49], [50], [51], [52]. How-
ever, prior works in texture analysis mainly focus on basic pattern, such as dots, lines, and
lattice. Only very few studies have explored the detection of patterns formed by complex
entities, such as the faces in Figure 4.9c. An example can be found in Reference [53],
which proposed a graph-based algorithm for finding rows of people in group images; this
concept can be extended to other object entities.

4.3.1.4 Depth-Related Features

Image is represented as a two-dimensional plane. However, the real world is composed
of three dimensions. Therefore, a number of techniques have been used in photography
to create the illusion of depth in an image. For example, professional photographers often
compose images in linear perspective, as shown in Figure 4.10. Linear perspective is useful
in extending human’s imagining space out of the limited image space. Another commonly
used technique to create depth illusion is to compose the sharpness and blurring properly.
The contrast between sharp regions and blurring regions can help the viewer to catch easily
the subject emphasized in the image. Besides these two techniques, professional photogra-
phers also use light, shadow, and color to enhance the three-dimensional impression of an

FIGURE 4.10 (See color insert.)

Linear perspective in photographs.
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image [54]. The following discussion focuses on two features related to the depth charac-
teristics of an image: linear perspective and sharpness-blurring distribution.

• Linear perspective
Linear perspective is characterized by converging lines. In reality, the edges of the road,

the edges of the skywalk, and the vertical lines of the building sides in Figure 4.10 are actu-
ally parallel. However, they appear to converge to a vanishing point in human eyes, though
they are still perceived as straight and parallel. Since the image recorded by the camera
is also optical, the same vanishing effect appears in the image, and it can be strengthened
or weaken by various skills used by the photographers. The linear perspective effect of
an image can be represented by estimating the vanishing point or the vanishing line of the
image, and use their locations as features. The problem of vanishing point and vanishing
line detection and estimation have been addressed in many previous studies [55], [56], [57],
[58], [59], and [60].

• Sharpness-blurring distribution
To represent the sharpness, the presence of high-frequency edges is of interest. Pro-

fessional photographers often reduce the depth of field while focusing on only a single
object or region in the scene, which results in a clarified composition with sharp focus-
ing region and blurred background and avoids producing an unpleasant cluttered scene. In
Reference [4], the authors measure the ratio of high-frequency elements within the center
regions over the whole image, assuming that the object of interest is usually near the center
of the image. However, the location of the object of interest may vary from image to im-
age. Another way to measure the spatial distribution of edges is to measure how compact
the sharp region is. The following introduces a method similar to that proposed in Refer-
ence [17]. First, the Laplacian filter is applied to the grayscale version of the image, and
take the absolute values of the results to generate an edge map E(x,y) for the image. The
next step aims at finding the smallest bounding box that encloses a high ratio re of the edge
energy. To do this, the edge map E(x,y) can be projected onto the vertical and horizontal
directions, respectively, as follows:

PX(x) = ∑
y

E(x,y), PY (y) = ∑
x

E(x,y). (4.8)

Figure 4.11 illustrates the implementation on an example image. For the projected vector
PX(orPY ), the procedure search for the minimal region

[
bl

X ,br
X
]
(or

[
bl

Y ,br
Y
]
) that central-

izes the ratio
√

re of energy of the vector as follows:

[
bl

X ,br
X

]
= argmin

[b1
X ,b2

X ]
|b2

X −b1
X |, subject to ∑

b1
X≤x≤b2

X

PX(x)≥√re ∑
x

PX(x), (4.9)

[
bl

Y ,br
Y

]
= argmin

[b1
Y ,b2

Y ]
|b2

Y −b1
Y |, subject to ∑

b1
Y≤y≤b2

Y

PY (y)≥√re ∑
y

PY (y). (4.10)

Note that re is set to 96.04% in Reference [17]. Then, the area of the bounding box (b2
X −

b1
X)(b2

Y −b1
Y ) is computed to measure the compactness of the bounding box. Note that the

image height and width are both normalized to one in the whole process. With this metric,
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FIGURE 4.11

Illustration for the computation of the sharpness-blurring distribution feature.

for a cluttered image the area of the bounding box would be large while for a well-focused
image the area of the bounding box would be smaller.

4.3.1.5 Main Subject-Related Features

Professional photographers make use of various techniques to highlight the main subject
of the photo. Therefore, not every part in an image contributes equally to the aesthetic
quality of the image. The subject region, which may receive more attention from the viewer,
can have a more significant impact on the image appeals than the background regions.
Before discussing any further about the characteristics of the subject region, various ways
of separating the subject region from the background should be considered.

• Subject region detection
Reference [18] presents an efficient subject detection algorithm based on the assumption

that the subject regions appear as a clearer area in the photo while the background looks
blurrier. In the literature on saliency detection, many computational algorithms [61], [62],
[63], [64], [65] have been proposed to extract the subject region in the image based on the
characteristics of color, edge, contrast, and frequency distribution. Furthermore, if some
prior information about the content of the images or the object categories of interest is
available, object detection algorithms can be used to identify objects in certain categories.
Among the thousands of object categories present in a daily life, research in visual psy-
chology [54] presents that the most common high-attractant subjects are the key parts of
the human face. Research in the nervous systems also shows that there are specific brain
modules for recognizing faces. Thus, when faces are present in an image, some works [21],
[22], [23] consider faces as salient subjects, and extract features within the detected facial
regions for predicting the image aesthetics. In these cases, face detection algorithms are
used to detect the subject regions of the image. Besides the faces, many other objects can
be present as the main subject of the image, depending on the scenario where the image is
taken. For example, if an image is already known to be taken in the zoo, then it is more
likely that animals are the subjects; similarly, if it is taken in a garden, then it is more likely
for the flowers to be the subjects. All these contextual information have not been thoroughly
exploited to help aesthetics prediction, which will be among the future directions.
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The following discussion presents certain features proposed in prior works [18], [22],
[66] based on the separation of the foreground subject region and the background. While
the features discussed earlier in this chapter are mostly extracted from the whole image,
many of them can also be extracted within the subject region correspondingly to represent
the color, illumination, texture, and depth characteristics of the subject region. Besides, it
is possible to measure the contrast between the subject regions and the background in sense
of lighting, blurring, and so on.

• Colorfulness of the subject region
The hue count feature introduced in Equation 4.1 is computed for the subject region to

indicate how colorful this region is.

• Background simplicity
In general, simple background can help the viewer better focus on the subject region.

The simplicity of the background can be measured using the color distribution of the back-
ground region. Each of the RGB channels can be quantized into K bins, creating a his-
togram of K3 bins. Then, the procedure evaluates the number of bins that have counts
larger than a threshold, which is set to be a small ratio (for example, 0.1) of the maximum
count in the histogram.

• Spatial location of the subject region
As discussed earlier, the location of the subject region has a high impact on the spatial

composition of the image in the sense of visual balance and the fitness to rule of thirds. Here
the minimal distance between the subject center and one of the four intersection points in
Figure 4.8 is calculated, as described in Equation 4.5. The offset from the subject center to
the image center is also measured as features related to visual balance.

• Subject-background contrast
In this case, the contrast between the subject region and the background is evaluated

in terms of color, lightness, and sharpness. For color contrast, the color histogram of the
subject region Hists and that of the background region Histb can be extracted to compute
the feature 1−< Hists,Histb > /(‖Hists‖‖Histb‖), where < ·, ·> is the operation of inner
product. For lightness contrast, the average brightness of the subject region Ls and Lb is
computed to measure the contrast as log(Ls/Lb). For the sharpness contrast, the procedure
first computes H fs, which is the ratio of the area of high-frequency components in the
subject region over the subject area and H fI , which is the ratio of the area of high-frequency
components across the whole image over the image area. The high-frequency components
can be detected through Fourier transform or wavelet techniques. Then, the sharpness
contrast feature can be defined as H fs/H fI .

• Face-related features
Faces are among the most effective objects that evoke the viewer’s emotion. The number

of faces, the sizes of the faces, the spatial relationship between multiple faces, and the facial
expressions and poses, all have impacts on the image aesthetics. Among these features, the
spatial relationship between multiple faces more or less indicate how close the people in
the photo are in their social relationship. An intuition is that if the people within an image
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Aesthetics prediction schemes based on different inputs: (a) aesthetic prediction using low-level features and

(b) aesthetic prediction using high-level attributes. The term y(I) denotes the aesthetics prediction for the input

image I. Low-level features φn(I), for n = 1,2, ...,N, are extracted based on human intuition to represent the

image appeal. Low-level features ψk(I), for k = 1,2, ...,K, are used as inputs for the kth attribute classifier,

whose outputs are the attribute predictions ak(I).

look close to each other, it may arouse a pleasant feeling in the viewer. In Reference [22],
the authors first extracted a tree graph connecting neighbor faces together, and then mea-
sured the average distance across all pairs of connected faces. Furthermore, to measure
facial characteristics, such as expressions and poses, one can take advantage of the existing
face expression classification and face pose estimation techniques and generate high-level
attributes based on the outputs from these modules, as will be discussed below.

In summary, this section has presented five groups of low-level features to represent the
image appeal in terms of color, illumination, spatial composition, depth, and the subject
region. It has focused on explaining the intuition and knowledge that inspire the design of
the features, rather than introducing all features described in previous works, to encourage
the reader to come up with more interesting and effective features.

4.3.2 High-Level Attributes

The previously discussed features are designed to represent high-level attributes in aes-
thetics, such as image composition, subject-background contrast, and so on. However,
these features themselves may not explicitly describe the aesthetic properties. Inspired
by the recent progress of using describable attributes to improve the performance of object
recognition [67], [68], Reference [25] proposed three groups of describable image attributes
for aesthetics: i) compositional attributes related to the image layout or configuration, ii)
content attributes related to the objects or scene types depicted, and iii) sky-illumination
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TABLE 4.2
The three groups of attributes proposed in Reference [25].

Composition Attributes Content Attributes Sky-Illumination Attributes

presence of a salient object presence of people clear skies
rule of thirds portrait depiction cloudy skies
low depth of field presence of animals sunset skies
opposing colors indoor-outdoor classification

scene type (15 categories)

attributes related to the natural lighting conditions. Instead of designing low-level features
related to these characteristics (Figure 4.12a) as discussed in Section 4.3.1, the proposed
method in Reference [25] explicitly trained classifiers to recognize various high-level de-
scribable attributes (Figure 4.12b).

Table 4.2 summarizes the three groups of attributes used in Reference [25]. For each
attribute, a classifier or predictor is trained on data that contain manual labels for the re-
spective attribute. For example, in order to build a classifier for the “low depth of field”
attribute, the authors first collected a dataset of thousands of images with manual labels
indicating whether an image has low depth of field. Then, the authors trained a support
vector machine (SVM) classifier taking Daubechies wavelet-based features as inputs and
outputting a score to indicate how confident the image has low depth of field. Similarly, to
build a classifier for the “clear skies” attribute, which describes whether a photo is taken
in sunny clear weather conditions, three-dimensional color histograms are computed on
roughly segmented sky regions, followed by a SVM classifier trained using the manually
labeled images.

Experiments in Reference [25] demonstrated that using the high-level attributes produced
a significantly more accurate ranking than using the low-level features proposed in Refer-
ence [17]. Moreover, the combination of both the low-level features and the high-level
attributes resulted in an even stronger classifier for predicting aesthetics. This suggests
that the low-level features and the high-level attributes can provide useful complementary
information for each other.

High-level attributes to be used in the aesthetic quality assessment are not limited to those
proposed in Reference [25]. Consider color characteristics of images as an example. Al-
though the only color-related attribute in Table 4.2 is the presence of opposing colors, there
exist works, such as References [19] and [26], that use all the color harmony models pro-
posed in Reference [38] to represent “the presence of color harmony” attribute within the
image. As another example one can consider attributes related to the presence of different
objects. The presence of people and animals can influence the aesthetic impression of an
image, and other objects, such as plants and decorations, can also be correlated with image
aesthetics. Given that the second-stage aesthetic classifier can automatically learn the im-
portance of different attributes, the more information about the visual content of the image
is derived, the better the aesthetic quality can be predicted. This makes the task of aesthetic
quality assessment no longer an isolated task in computer vision, but can be benefited from
many other tasks that have been more thoroughly explored, such as scene categorization,
object detection, depth estimation, saliency detection, geometric layout prediction, and
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Seeking help from various tasks in computer vision toward the aesthetic assessment.

perspective estimation. One can simply take advantage of the existing state-of-the-art algo-
rithms for all these different tasks and use their outputs as attribute inputs for the aesthetics
classifier, as shown in Figure 4.13.

4.4 Learning Models for Aesthetic Quality Assessment

The previous section has identified a set of features, including the low-level features and
high-level attributes, to represent the image appeal. Although the design of some features
are inspired by rules in photography, art, and psychology, no rules are manually set here
for the mapping from the computational features to the aesthetics scores. This section will
introduce the learning modules applied to the extracted features.

4.4.1 Feature Selection

In the earlier stage, various aspects potentially related to image aesthetics can be taken
into account, thus likely resulting in a large-size feature set. However, some features may
cover overlapping information with others, and some may be less correlated to the human
ratings than others. Especially when considering outputs from some relevant tasks, such
as high-level attributes (for example, the predicted depths across the image from the depth
estimation task), the dimension of the features becomes very high and can suffer from
overfitting in building learning models. Dimension reduction algorithms and feature se-
lection algorithms are both well-studied topics in machine learning. Compared to popular
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dimension reduction algorithms like principle component analysis (PCA), feature selec-
tion approaches, which try to find a subset of the original features, provide greater power
in interpreting the resulted low-dimension features. There are two common strategies in
feature selection [69]: filter-based approaches and wrapper-based approaches. Filter-based
approaches work as a preprocessing step to remove redundant features based on metrics,
such as correlation and mutual information, or remove irrelevant features based on the
class separability of individual features. Wrapper-based approaches choose features by
searching through the space of possible features and evaluating the subsets by running the
classifier on the subset. For example, among previous works in aesthetics assessment, Ref-
erence [4] used the forward selection algorithm, References [16] and [19] used boosting
algorithms [70], [71], and Reference [28] used L1-sparsity based linear model [72], in
order to select features.

4.4.2 Classification

Many works on assessing visual aesthetics have formulated the quality assessment prob-
lem as a classification problem. Formulating the task into a classification problem not only
provides an easier starting point for this new research area but also reduces the noise due
to the inconsistency of the human ratings. The ratings are highly subjective, and different
people may have different standards for their ratings. Even the ratings given by the same
person toward different images are likely to be made based on not the same standards.
Therefore, the slight differences in the average scores within a certain range, are not neces-
sarily meaningful. Instead, considering images whose average scores are within a certain
range as a group, can help to eliminate the effect from inconsistent ratings. In this case,
each group of images represent the aesthetic quality at a certain level, corresponding to a
certain quality category. Hence, by dividing the average scores in to M regions, one ends
up with an M-class aesthetic quality classification problem, defined below.

Consider a set of images with aesthetic quality labels (I1,y1),(I2,y2), . . . ,(IN ,yN), where
Ii indicates the features extracted from the respective image and yi is the quality class la-
bel for the respective image. In the training stage, a classification algorithm is learned to
discriminate the data in different classes. In the testing stage, given a testing image with
extracted features Itest , the learned algorithm predicts its quality label ŷtest .

Many previous works treat the problem as a binary classification problem, that is, M = 2.
The two classes are defined as “high-aesthetic quality” and “low-aesthetic quality.” As dis-
cussed in Section 4.2.2, the human ratings from some controlled studies [21], [22] have
shown that the rating variance values for images with extremely low or extremely high av-
erage scores are lower than those for images with average scores in the middle. Therefore,
to reduce ambiguity, previous works often choose images with top average scores as the
high-quality class and images with bottom average scores as the low-quality class. Classi-
fiers used in previous works include decision trees [4], Bayesian classifiers [16], [17], [18],
[19], [73], SVM [4], [16], [18], [22], [25], boosting [16], [18], [19], and so on.

To evaluate the performance of an aesthetic quality assessment algorithm whose learning
module performs classification, one can use the general metrics in classification. For the
two-class aesthetics classification, the receiver-operating characteristic curve or precision-
recall curve are generally used. Take the precision-recall curve as an example. At any
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threshold set to separate the testing outputs, the precision and recall are computed as

recall =
# high-quality photos above threshold

total # high-quality photos
, (4.11)

precision =
# high-quality photos above threshold

# photos above threshold
. (4.12)

To evaluate a multi-class aesthetics classification algorithm, some previous works [22]
used the metric cross-category error (CCE). Consider M categories and the category label
increasing from 1 to M to indicate that the respective quality varies from lowest to high-
est, that is, Category 1 indicates the lowest aesthetic-quality category while Category M
indicates the highest aesthetic-quality category. The CCE is then defined as follows:

CCE(k) =
1

Ntest

Ntest

∑
i

I (ŷi− yi == k), (4.13)

where Ntest denotes the number of photos for testing, yi is the ground-truth category label
for the ith test image, and ŷi is the estimated category label for the ith test image. The
function I (·) equals to one when its content stands, otherwise it equals to zero. The term
CCE(k) indicates the ratio of images whose estimated labels has a k-category offset to their
respective ground-truth labels.

4.4.3 Regression

Although the classification solution can help to eliminate the learning model from over-
fitting to the noisy scores, the ideal target is to have the computer robustly predict aesthetic
scores as human do. Especially for some tasks like ranking photos based on aesthetics, one
may want more accurate score outputs other than just rough quality levels since the learn-
ing in classification problems do not ensure to catch the relative ranking between images in
the same category. Therefore, this section describes regression models for connecting the
extracted features and the human ratings on the image aesthetics.

Regression for aesthetic quality prediction. Consider a set of images with aesthetic qual-
ity labels (I1,s1),(I2,s2), . . . ,(IN ,sN), where Ii indicates the features extracted from the re-
spective image and si is the average rating score on aesthetics for the respective image.
In the training stage, a regression model is learned to approximate the mapping between
the image features and the desired scores. In the testing stage, given a testing image with
extracted features Itest , the learned model predicts its aesthetic quality score ŝtest .

Previous attempts on using regression algorithms for aesthetics prediction relied on linear
regression [4], [22], [28], [73], SVM regression [22], and so on. To evaluate the perfor-
mance of the predicted aesthetics, the residual sum-of-squares error defined as

Rres =
1

Ntest −1

Ntest

∑
i=1

(ŝi− si)2, (4.14)

is commonly used. Here, Ntest is the number of photos for testing, si is the ground-truth
aesthetic score for the ith test image, and ŝi is the respective estimated score. To verify
whether the extracted features have contribution to the prediction, Reference [4] proposed
the processing flow depicted in Algorithm 4.1.
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ALGORITHM 4.1 Verification of the extracted features contributing to the aesthetic
quality prediction.

1. Shuffle the ground-truth scores for the training images, so that the correlation
between the scores and the features are broken.

2. Train the regression model based on the shuffled scores.

3. Test the resulted model on the testing data and compute the Rsh f l
res .

4. Repeat the above operations for several rounds and calculate the average error
as R̄sh f l

res .

5. Compare R̄sh f l
res with the performance Rres from the normal algorithm. If Rres

is obviously smaller, it indicates that the extracted features contribute to the
aesthetic quality prediction.

4.5 Applications

With the proliferation of digital cameras, the number of photos that can be accessed
online and that are stored in personal photo albums is growing explosively. In 2010, an
average of 6.5 million photographs were uploaded daily by the users of Flickr. People
instinctually seek for visual aesthetics in daily life. Automatic aesthetic quality assessment
can help people better search, browse, manage, and create visually appealing photos. This
section discusses several real-life applications of aesthetic quality assessment.

4.5.1 Aesthetics Assisted Web Search

Many of the previous works on visual aesthetics assessment [17], [18], [25] have demon-
strated the effectiveness of their algorithms in refining the ranks for images retrieved from
popular web search applications. A common situation of using current image search en-
gines is as follows. The search engine retrieves a large amount of related results based on
the user’s query; however, the top results do not look visually appealing. In that case one
need to browse more results to find the one that is both relevant and visually satisfying.
In this situation, automatic aesthetic quality assessment can reduce this effort. Acting as
a postprocessing step, the aesthetic quality assessment algorithm re-ranks the top retrieved
images based on their aesthetics. As a result, the top ranked images are of higher quality.
In the future, the ranking based on aesthetics is expected to be combined with other ranking
criteria in order to provide a more enjoyable experience in image search experience.

4.5.2 Automatic Photo Enhancement

Photo editing tools are commonly used by photographers and designers to modify some
characteristics of a photo according to the user’s intent. Commercial software like Adobe
Photoshop provides such tools but often requires the user to have good knowledge of design
concepts and photography theory. For general users, it is unclear which elements need to
be edited and how to edit them in order to make their images more appealing. In this case,
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an automatic photo-editing tool for increasing the image aesthetics would be helpful. As
discussed in Reference [27], developing such a tool is a twofold problem: how to edit the
image and how to measure the aesthetics for different editing proposals. The answer to
the latter is to employ the aesthetic quality assessment technique. Some success has been
achieved using the aesthetic quality assessment technique to help photo editing [26], [27],
[28], [29], [30]. Reference [26] focused on editing the color aesthetics in terms of harmony;
the best editing scheme is chosen by measuring the different aesthetic qualities resulting
from fitting different color harmony schemes. Other works [27], [28], [29], [30] utilized
the assessment of composition-based aesthetics to aid in the automatic editing of photo
composition. A common implementation is to iterate between two operations: selecting a
candidate scheme and evaluating the aesthetic quality of the candidate scheme. All of these
attempts demonstrate the promising potential of the aesthetics assessment technique, which
allows a computer not only to tell the user how good a photo looks but also to help the user
to enhance the photo appeal automatically.

4.5.3 Photo Selection and Album Management

As discussed in Section 4.5, the proliferation of personal photos raises an issue: manually
managing a large amount of photos would be time consuming. Thus, it becomes necessary
and important to develop automated tools for efficient photo selection and management.
Automated tools, such as those in References [20] and [31], have been proposed to better
organize and retrieve photos based on various photo characteristics. Consider the manual
photo selection process for general people. Aesthetic visual quality actually plays an im-
portant role in this process. Reference [28] presented a photo selection application to select
quintessential photos from large personal photo collections. The input of the application, a
personal album, can be a collection of photos taken during a trip with friends, a collection
of photos from a series of family events, and so on. The photos might contain different
individuals and can be taken in different places and by different cameras. The core algo-
rithm in this application measures the quintessence in terms of appeal and representation.
Regarding photo appeal, the selected photos are expected to have high scores predicted by
the aesthetic quality assessment algorithm. Regarding representation, the selected photos
are supposed to cover as many different scenes and as many different people that have
appeared in the collection as possible. As a result, the top selected photos are not only
aesthetically appealing but also diverse in sense of scene ad people inside the image. This
application demonstrates the potential of using aesthetic quality as an optional metric for
photo indexing in album management.

4.5.4 Personalized Aesthetics

So far, this chapter has considered a learning setting trained on the average ratings and
the consensus in a general community. As a result, a model for predicting the consensus-
based aesthetics has been learned. However, given sufficient information and feedback
from a single user or a small group of users that share similar opinions in aesthetics, per-
sonalized models of aesthetics can be learned. Since the aesthetic quality assessment is a
highly subjective task, individual models can help adapt to different tastes. Personalization
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was discussed in Reference [34], but no computational implementation was provided there.
A personalized photograph ranking and selection system was proposed in Reference [24],
where information given by the users were employed to train and adjust the parameters
inside the score prediction module. The system provided two personalized ranking user in-
terfaces: one is feature based, and the other is example based. Users can provide either their
preferences on some specific aspects of the image (feature based), or select their preferred
and non-preferred examples (example based). With the extra user input, the system outper-
formed the previous algorithms [17], [18] that studied only the general aesthetics. Also, a
human study showed that the example-based interface was preferred by twice as many peo-
ple than the feature-based one. This result is understandable, since the feature-based input
may be confusing for the general users who are not familiar with the underlying charac-
teristics of images. Recently, a preliminary attempt on learning the personalized aesthetics
of videos was conducted [32]. Although only two persons were investigated in this initial
trial, the preliminary results showed that the personalized aesthetics learners can produce
more accurate predicted aesthetic scores than the generalized aesthetics learner.

4.5.5 Video Aesthetics

With the increasing attention on image aesthetics and the proliferation of videos on the
Internet, research has been extended from image aesthetics to video aesthetics [18], [32].
Two databases used for video aesthetics have been constructed. The dataset used in Ref-
erence [18] contains 4000 professional movie clips and 4000 amateurish clips, labeled as
high aesthetic quality and low aesthetic quality videos, respectively. However, as pointed
out in Reference [32], there is not enough information on how the dataset was obtained,
what the video contents are, or how well the assumption of equating professional videos to
aesthetically high quality videos stands. To address these problems, a smaller but better-
controlled consumer video dataset was proposed in Reference [32]. This database contains
160 videos from YouTube with aesthetic scores collected via a controlled human study.
Although the existing datasets are not well controlled or relatively small, they provide a
starting point to explore video aesthetics.

The main difference between video content and image content lies in the additional tem-
poral and motion information across the frames in a video sequence. Therefore, besides
using previously mentioned image-based features, the recent works [18], [32] proposed a
series of features related to the temporal and motion characteristics, including the length
of the subject region motion in the video, the motion stability, the actual frame-rate in the
video, the blockiness effect from video compression, and so on. While Reference [18]
combined the frame-based features by taking the average, Reference [32] proposed a two-
stage pooling strategy: first, generating shot-based features by combining the frame-based
features and second, generating the video feature from the shot-based features. The promis-
ing results reported in these works help to envision many potential applications in the near
future. For example, Reference [32] presented some plans to develop aesthetics-assisted
hierarchical user interfaces to allow end-users to efficiently navigate their personal video
collections. Furthermore, as the image aesthetics assessment technique can help to re-rank
the results from the image search engines, video aesthetics assessment techniques can be
also utilized to refine the results returned by the online video search engines.



Visual Aesthetic Quality Assessment of Digital Images 117

Applications that can benefit from aesthetic quality assessment are not limited to the
above examples. For instance, a real-time aesthetic quality assessment module could be
integrated into the cameras to feature new functions, such as providing users with real-time
composition or lighting suggestions. However, continuous efforts are needed to advance
the development of the aesthetic quality assessment techniques.

4.6 Conclusion

This chapter discussed the assessment of the visual aesthetic quality. Because of the
subjectivity of aesthetics, the problem of aesthetic quality assessment is far more difficult
compared to objective quality assessment, which measures the image quality or its lack due
to various degradations, for example, introduced during image acquisition, or caused by
faulty transmission or aggressive processing / compression. Recent efforts [4], [17], [18],
[19], [22], [24], [32] in this area have achieved some progress, by addressing the automatic
evaluation of aesthetics as a machine learning problem. Following the general flow used
by recent algorithms, this chapter discussed the basic modules in developing algorithms for
aesthetics assessment: data collection and human study, computational feature extraction,
and learning techniques. The focus was on the computational feature extraction, since the
features designed to represent the aesthetic characteristics have immediate influence on
the amount of useful information passed to the following learning modules. Efforts toward
feature extraction span from designing effective image features according to the knowledge
and experience in visual psychology, photography, and art, to creating high-level attributes
by employing state-of-the-art techniques from other computational vision areas.

Although promising results have been demonstrated by recent works in predicting the
visual aesthetics, there are many avenues that still need to be explored. Computational
aesthetics is a challenging multidisciplinary research topic. Closer communication and
collaboration between researchers in the areas of psychology, photography, and compu-
tational vision will be of great help for further progress. On the visual computing side,
researchers have been making continuous efforts to exploit, through computational intel-
ligent algorithms, the underlying structures, and characteristics within the images, which
relate to the perceived quality by humans. Furthermore, it is also worthwhile to develop
more real-life applications based on the assessment of visual aesthetics in order to attract
more attention from the general community, from whom stronger support in terms of data
collection, human study, and algorithm design can be achieved.
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5.1 Introduction

The human visual system plays a pivotal role in the creation of images in a digital cam-
era. Perceptually based image processing helps ensure that an image generated by a digital
camera “looks right” from a human visual system perspective. In achieving this goal, per-
ceptual considerations are present in all aspects of a digital image processing chain.

In this chapter, the components of a digital image processing chain are described, with
particular emphasis on how perceptual considerations influence algorithm design at each
stage in the processing chain. There are a variety of ways in which the human visual system
impacts processing decisions. Even before the capture button is pressed, perceptual consid-
erations affect the decisions made by the automatic camera control algorithms that adjust
the exposure, focus, and white balance settings of the camera. The design of the color filter
array on the image sensor, as well as the associated demosaicking algorithm, are influenced
by the human visual system. Computational efficiency is also important in a digital image
processing chain, and algorithms are designed to execute quickly without sacrificing per-
ceptual quality. Even image storage is influenced by perceptual considerations, as image
compression algorithms exploit the characteristics of the human visual system to discard
perceptually insignificant data and reduce the size of the image file.

The remainder of this chapter is organized as follows. In Section 5.2, a canonical dig-
ital camera image processing chain is presented. This section introduces the processing
steps that are described in greater detail throughout the remainder of the chapter. Namely,
Section 5.3 discusses automatic camera control, Section 5.4 focuses on demosaicking, Sec-
tion 5.5 discusses noise reduction, and Section 5.6 presents color rendering. Edge enhance-
ment is detailed in Section 5.7 and compression is discussed in Section 5.8. Concluding
remarks are provided in Section 5.9.

5.2 Digital Camera Image Processing Chain

A digital camera image processing chain is constructed to simulate the most important
functions of the human visual system (HVS). What follows is an overview of a represen-
tative chain [1], with detailed discussions of the components occurring in subsequent sec-
tions.

Figure 5.1 is a diagram of an example chain. The input image of this chain is a “raw”
color filter array (CFA) image produced by the camera sensor. From an HVS perspective,
much may have already occurred prior to the CFA image being produced. If the camera is
in an automatic setting, autofocus, autoexposure, and automatic white balancing algorithms
(collectively referred to as “A*”) will have sensed the scene edge content, brightness level,
and illuminant color and have adjusted the corresponding camera capture parameters before
the shutter button has been pressed. This can be thought of as simulating the automatic
adjustment of HVS parameters, such as the eye’s pupil diameter and lens thickness, as well
as the gains within the retina.
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FIGURE 5.1

Digital camera image processing chain.

Once the CFA image has been read from the camera sensor, the first of possibly many
noise reduction operations is performed. While the name of this operation carries an obvi-
ous meaning and intent, noise reduction is a far more subtle and sophisticated task than one
might presume. From the HVS perspective, not all kinds of noise are equally important, and
married with the additional HVS perspective that not all kinds of scene detail are equally
important, the noise reduction task now becomes one of modifying the aggressiveness of
the cleaning process to respect the integrity of the underlying scene detail that is visually
most important. At the same time, the effectiveness of the noise reduction operation must
be ensured.

Following noise reduction, white-point correction or white balancing, is performed. This
simulates the chromatic adaptation of the HVS. Regardless of the color of the scene illumi-
nant, be it a bluish daylight or a yellowish incandescent lightbulb glow, colors must appear
as expected. This means that a piece of white paper needs to appear white regardless of the
color of the illuminating light. While the HVS performs this task automatically, it is the
role of the white balancing operation to mimic this capability.

CFA interpolation, or demosaicking, is perhaps the image processing operation most
unique to digital cameras. To reduce cost and size, most cameras employ a single sensor
covered with a CFA. The CFA restricts each pixel in the sensor to a single color from
a small set of colors, typically red, green, and blue. Since each pixel records only one
color channel value, and three color channel values are needed to describe a color, it is the
job of the demosaicking operation to restore the missing two color channel values at each
pixel. This is accomplished by taking advantage of the inherent color channel correlation
between neighboring pixels and the luminance-chrominance signal processing of the HVS.

The color values produced by the demosaicking operation are generally in a device-
specific, nonstandard color space. The role of color correction is to transform the non-
standard color data into a standard color space appropriate for the final use or uses of the
image. These uses could include display on a computer monitor, hardcopy printing, or
storage and archiving. When the image is rendered to a device, the limitations of the des-
tination equipment usually mean not all colors can be produced faithfully. Depending on
the sophistication of the color correction process, colors that are out of gamut of the desti-
nation device can end up producing rather significant artifacts. Additionally, as with most
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signal amplifying operations, precautions must be taken against undue noise amplifica-
tion. Therefore, the color correction operation usually compromises among color accuracy,
color gamut limitations, and noise amplification. The color sensitivity of the HVS, both
objectively and subjectively, becomes the primary tool for guiding such color correction
compromises.

Tone scaling is the means in which the image processing chain simulates the brightness
adaptation mechanism of the HVS. The HVS is capable of sensing scene brightnesses over
a range of ten orders of magnitude! However, it cannot sense that entire range simultane-
ously. Instead, it uses brightness adaptation to properly sense the portion of the brightness
range that is currently being observed, be it a brightly lit beach or a candle-lit birthday
cake. In each case, the contrast of the scene is adjusted to appear similar. Tone scaling
generally addresses the situation of rendering a scene captured under outdoor lighting so
that it looks correct when shown on a display that is dimmer by a number of magnitudes.
This is achieved by applying an appropriate nonlinear transformation (a tone scale) to the
image data. The design of the tone scale naturally follows from the characteristics of the
HVS.

There are a number of elements of the digital camera imaging chain, both hardware and
software, that act as lowpass (blurring) filters. The genuine high-frequency spatial com-
ponents of the image can be significantly attenuated, if not outright eliminated, by factors
such as lens aberrations and aggressive noise reduction. Edge enhancement (sharpening)
attempts to restore at least some of the fidelity of this high-frequency spatial image content.
Since this sharpening operation is, by its nature, a signal amplifying step, it is important
that some effort is made to amplify the real image detail and not the image noise. Again, the
HVS can be referenced so as to note which spatial frequencies in an image are important
to sharpen, and which can be left unaltered in the name of avoiding noise amplification and
image processing artifacts.

From the perspective of the HVS, there is a lot of redundancy in the image produced by
a digital camera and its image processing chain. This redundancy takes the form of spatial
frequency detail that is visually unimportant, if not outright undetectable. Additionally,
what is important spatial frequency detail in the luminance portion of the image is not nec-
essarily as important in the chrominance portions of the image. Lossless compression of a
digital camera image looks for mathematical redundancies in the image data and removes
them in order to produce a smaller image file for reduced storage requirements. Since loss-
less compression is exactly reversable, no information is lost, although this also means the
amount of compression achieved is generally modest. Lossy compression uses knowledge
of the HVS to discard data that are perceptually unimportant in order to achieve a much
higher compression ratio. While the result is no longer mathematically reversible, an im-
age with little to no visual degradation can be reconstructed from a much smaller image
file.

Taken together, the image processing chain of a digital camera simulates the major op-
erations of the HVS. The exact composition of the chain is not fixed, and Figure 5.1 must
be taken as just a starting place. Some operations such as noise reduction can easily occur
at different locations and more than once within the chain. Additional operations can be
added, such as motion deblurring. Still, the image processing chain and its components
discussed here provide a foundation from which to discuss subsequent variations.
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High-level flow for processing in a digital camera.

5.3 Automatic Camera Control

The HVS adapts to an extremely wide range of circumstances, placing similar demands
on a camera for general consumer use. This section discusses automatic camera control for
a general purpose compact digital camera. The primary algorithms are autoexposure, auto-
focus, and automatic white balancing, sometimes collectively referred to as “A*.” Because
the goal is reproduction of a scene for human viewing, perceptual considerations are key in
developing the algorithms. This has been the case for decades in photography. For exam-
ple, an early approach to standardization of film “speed” (measurement of film sensitivity)
focused precisely on the photographic exposure required to make an excellent print [2]. On
the other hand, the development of the zone system was based on exposing, processing,
and printing a negative to achieve specific aims for the reproduced image [3].

While the goal is framed around the perceived quality of the reproduction, achievement
of the goal begins with capturing (at least) the scene information a human sees. Maximiz-
ing the information captured is important, but a related goal is to minimize perceptually
significant degradations in reproduced images. There are limits to the scene information
that can be captured with conventional camera technology, and trade-offs must be made.
For example, most exposure control algorithms maximize the exposure (light captured)
to improve the signal-to-noise ratio in the reproduced image. However, still cameras also
limit the exposure time to avoid motion blur, because the quality degradation caused by sig-
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nificant motion blur usually outweighs the quality improvement from increased exposure.
These trade-offs vary with the scene and with viewing conditions, such as the size of the
reproduced image, the image processing, and the viewing distance. For example, because
perception of a stream of images is different from perception of a still image, video cam-
eras usually control exposure time primarily to fit the frame rate of the capture and limit
motion artifacts such as judder, rather than simply minimize motion blur. These trade-offs
and others will be discussed in more detail later.

To discuss these decisions in context, a brief tutorial on the operation of compact digital
cameras is presented. Figure 5.2 shows a simplified diagram of processing in a digital still
camera. The central column of the figure illustrates the preview flow—the capture and
presentation of images to display on a panel or in an electronic view finder. The right-
hand column of the figure illustrates the video flow—the capture, display, and storage of
a sequence of images in a video. The video and preview flows are largely the same; the
primary difference is whether images are compressed and stored, or simply displayed. The
block at the left of the figure represents all of the operations for capture and processing of
a still image once a still capture is initiated.

In this diagram, camera operation begins in the preview oval at the top of the diagram.
Normal operation continues through capture, processing, and display of a preview image,
a test of the shutter trigger, and without shutter activation a return to the top of the preview
column for another iteration. The diamond decision blocks in the figure show responses to
shutter operation. If the camera is set in still capture mode, the preview flow is active until
the shutter is actuated. When the shutter is triggered, the still capture process is executed,
then processing returns to the preview flow. If the camera is set in video capture mode,
triggering the shutter moves control to the video flow, which includes capture, process-
ing, display, compression, and storage. Once in the video flow, the camera stays in video
operation until the shutter is triggered again, finishing storage of the video sequence and
returning the camera to preview mode.

From a camera control perspective, the preview and video flows are essentially identical.
In both cases, there is a stream of images being captured, processed, and displayed. Both
flows have the same constraints: operation at video rates, such as 30 frames per second,
with images of low to moderate resolution (for example, 640×480 on up to 1920×1080).
Still capture mode entails capture of a high-resolution image, however, it does not need
to fit the same constraints. The exposure time for a still image may be different from
the exposure time for a video frame, and flash or other active illumination may be used.
However, exposure and focus decisions about capture of the still image are based primarily
on analysis of the preview stream. The following discussion will describe the preview
stream and the reader should understand the comments generally apply as well to a video
capture.

Figure 5.3 shows a slightly more detailed diagram of processing in a typical compact
digital camera while a scene is being composed for capture. The first step, in the upper
left corner of Figure 5.3, is capture of a raw preview image, stored in a buffer denoted by
the oval at the top of the figure. This image is fed to three analysis processes (exposure,
focus, white balance) as well as to an image processing chain to render the preview image
for display. The three analysis processes may interact with each other, but are shown this
way because the parameters for controlling exposure, focus, and white balance are largely
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Nominal flow for preview analysis and display.

independent and will be discussed in turn. This largely independent processing for exposure
and focus is also practiced in digital single-lens reflex (DSLR) cameras, which often have
separate, dedicated subsystems for focus and exposure control. The perceptual issues with
DSLRs are similar to those with compact digital cameras, although there is greater use of
dedicated hardware in DSLRs. The current discussion will use the compact digital camera
as an example system, to highlight algorithm development rather than hardware design.

After a preview image is analyzed, the capture parameters updated, and the image is
displayed, the process is repeated. The processing chain to display the preview image
normally uses parameters already determined from previous preview images, rather than
hold up the display process waiting for analysis of the current image to be completed.

Other processing steps, such as face detection, face recognition, and automatic scene
detection, not shown in the figure, are often used in digital cameras. These processes can
provide important information for camera control, but are not tied to one specific camera
control decision. This discussion will focus on the simpler algorithms tied more directly to
control of a camera.

5.3.1 Automatic Exposure

As shown in Figure 5.3, exposure control is essentially a feedback control loop, repeat-
edly analyzing a captured image and updating the exposure parameters. The degree to
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which the preview image is underexposed or overexposed is considered the exposure er-
ror, the feedback signal for this control loop. The discussion here separately addresses the
analysis of exposure error in a preview image and the use of different parameters to control
exposure.

As with any control loop, stability is important, but for this loop, the criteria for closed
loop behavior are based on human perception, since the goal is to produce a stream of
rendered images that are all exposed well. Rapid adjustment to a new exposure when the
scene changes significantly must be balanced against the desire for stable exposure in the
face of minor scene changes.

When capturing video, this exposure control loop is all that is needed, since the video
sequence is the captured product. In a digital still camera, the analysis performed on the
preview stream can be a precursor to further exposure analysis for a still capture. Because
the processing path for the still capture is different from the video path, the optimal ex-
posure can be different, so exposure is often re-analyzed just before a still capture. In
addition, still capture normally has different limitations on exposure parameters and active
illumination than video capture. This will be discussed further under exposure control.

5.3.1.1 Exposure Analysis

In simplified form, the exposure analysis module considers whether the latest preview
image is well exposed, overexposed, or underexposed. This can be quantified as a relative
exposure error, and exposure parameters (discussed later) are adjusted to minimize the
exposure error. To begin, the normal definition of proper exposure is simply that exposure
which provides a suitable image when viewed in print or on display. This means the proper
exposure depends on the image processing chain, especially the color and tone rendering
steps.

Some exposure analysis, such as detection of faces, other specific content, or a pyramid
decomposition, may be too computationally demanding to run at preview frame rates. In
this case, the preview exposure analysis is often simplified to fit the available resources.
Sometimes, the complex processes are run less often, with the results fed into the exposure
control loop when available.

For decades, with relatively static rendering systems (film and paper tone scales), auto-
matic exposure analysis focused on aligning the exposure of a midtone gray with the proper
location on a fixed tone curve. Development of digital adaptive tone scale technology has
made the exposure problem more complex as the rendering process becomes more com-
plex, but most camera autoexposure algorithms still operate as extensions of the traditional
process.

Human perception is not linear with exposure; a midtone gray is not 50% reflectance.
This is illustrated in Figure 5.4, showing a plot of the conversion from linear relative ex-
posure to CIE L*, a perceptually even measure of lightness [4]. As shown in Figure 5.4,
a midtone gray near 50 L* corresponds to a relative exposure of 18%, highlighted by the
small circle on the curve at L* 50. Most automatic exposure algorithms are based on some
extension of the observation that images of many different scenes will average out to this
18% gray, often known as the gray world model. Many scenes taken together do average
near 18% gray, but individual scenes vary widely from the average.
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CIE L* vs. relative linear exposure.

Because the gray world model is so weak when applied to an individual scene, greater
sophistication is needed. The approaches involve various schemes for weighting regions
of the image differently, trying to improve the correlation between an estimated gray and
a perceptual gray. In effect, the goal is to roughly discount what is unimportant and em-
phasize what is most important. Fully automatic metering systems use a combination of
methods to improve metering estimation:

• Area weighting uses the spatial location of pixels within the image to determine
significance. Spot metering and center-weighted metering are the simplest examples
of area weighting.

• Tone weighting uses the tone value to determine significance. The simpler methods
weight the central portion of the tone scale more heavily, although usually with less
emphasis on shadows than lighter tones.

• Modulation weighting uses the local modulation (texture) in the scene to control
weighting, to avoid the average being overly affected by large, flat areas in the scene.

These weighting methods are combined in practice, and even early metering systems, such
as one presented in Reference [5], describe combinations of area weighting and modu-
lation weighting, especially considering scene types with substantial differences between
center areas and surround areas. Because the different weighting methods are motivated by
different perceptual scenarios, they are discussed separately below.

Area weighting is motivated by the realization that the subject of a scene is more likely
to be in the central portion of the image, the upper portion of the scene is more likely to
contain sky, and so on. Other models of the probability of subject locations within images
can also be used. An early example of area weighting can be found in Reference [5], with
more recent implementations presented in References [6] and [7]. The use of multiple
metering zones continues to develop, especially combined with modulation weighting and
recognition of classified scene types.

Tonal weighting is motivated by the fact that different portions of the tone scale in a
rendered image have different importance. Exposure analysis from a preview image is
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complicated by the fact that many scenes have a greater observed dynamic range than can
be captured in a single exposure, and also greater dynamic range than can be displayed
in the reproduced image. When scene content has an exposure beyond the captured or
rendered range of an image, it is clipped, such as a white wedding dress being rendered
without highlight detail. In practice, the problem of clipping tends to be one-sided, since
only highlights are clipped at capture, while shadows recede into the dark noise. On the
other hand, the large dynamic range of many scenes means a simple approach, such as
calculating exposure to capture the brightest portion of the scene without clipping, is likely
to fail. Images containing candles, the sun, and other light sources would be exposed “for
the highlights,” resulting in a much lower signal-to-noise ratio than desired for the rest of
the scene.

As with all averaging processes, a small variation in the distribution of extreme scene
exposure values affects the mean much more than similar variations closer to the mean.
For example, exposure of an evening street scene would vary with the number of street
lights included in the field of view. The effect is partially addressed by transforming data
to a more visually even metric, such as CIE L*, before computing an average. Considering
the shape of Figure 5.4, the compression of highlight information (decreasing slope with
increased L*) mitigates the impact of highlight data on an average. The limited exposure
range for many consumer cameras also tends to limit the problem, since these highlight
values are often clipped in capture of a preview image. A clear example emphasizing the
use of tone weighting is presented in Reference [8].

Modulation weighting is driven by the realization that people pay more attention to scene
regions with modulation than to flat areas. Averaging image areas near edges also tends to
make the results more robust, since scene tones on both sides of an edge are included. The
challenge is to avoid confusing modulation caused by noise with modulation caused by the
scene. This can be done by using a bandpass analysis that is sensitive to relatively low
frequencies. More sophisticated use of modulation is described in Reference [9].

Modeling of the human visual response to scenes with high dynamic range has expanded
with the development in high dynamic range capture and rendering technology. One exam-
ple is a multi-scale pattern, luminance, and color processing model for the HVS [10]. A
somewhat different approach is the development of a tone reproduction operator to gener-
ate suitable reproduction images from a high dynamic range scene [11]. Because of their
complexity, these analyses are mostly used in development of adaptive renderings, rather
than in precise exposure control of the initial captured image(s).

Many refinements of automatic exposure analysis use classification approaches, such as
identifying scenes with faces, blue skies, or snow, and handling them differently. These
approaches tend to operate heuristically, but they are driven more by perception than opti-
mization of a single objective metric. Development of theory-based objective metrics that
correlate with subjective decisions is an open area of research.

Figure 5.5 shows an example of the difference between naive gray world exposure and
perceptually driven exposure. Two different portrait scenes are shown, one with a dark
background and one with a light background. Figures 5.5a and 5.5b were captured with
perceptually based exposure, resulting in fairly consistent exposure for the main subject.
Figures 5.5c and 5.5d illustrate naive exposure control. Both of these images average to a
mid-tone gray, but the overall captures are not as good as with perceptually based exposure.
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FIGURE 5.5 (See color insert.)

An illustration of exposure: (a) portrait with a dark background and perceptual exposure, (b) portrait with a

light background and perceptual exposure, (c) portrait with a dark background and naive mean value exposure,

and (d) portrait with a light background and naive mean value exposure.

The result of exposure analysis can be quantified as an estimate of how far the preview
image is from optimal exposure, providing a natural error signal for the preview exposure
control loop.

5.3.1.2 Exposure Control

The parameters used for capture of the preview image and the estimated exposure error
can be combined to compute the scene brightness. Once the scene brightness is estimated,
the next challenge is to determine how to best utilize the camera exposure controls to cap-
ture the given scene. Physical camera exposure is controlled through aperture (f/number),
gain, exposure time, and flash, or other active illumination. The parameters that control
exposure have simple physical models, but they have multiple, often conflicting, percep-
tual effects in the final image, depending on the scene captured. For example, increasing
gain allows rendering of images captured with less exposure, at the expense of increasing
the visibility of noise in the image. Increasing the exposure time used to capture an image
increases the amount of light captured, but also increases the potential for motion blur in
the captured image. Active illumination, such as flash or light-emitting diodes, adds light to
the scene being captured, increasing the signal and improving the signal-to-noise ratio, and
also filling in some shadows cast by harsh ambient illumination. The exposure added falls
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off with the square of the distance to the scene, so active illumination has a very different
impact on foreground and background scene content.

Exposure calculations for cameras are commonly based on the Additive Photographic
Exposure (APEX) system [12]. In computing exposure for digital cameras, it is common
to refer to changing the camera’s ISO setting, but this is more accurately changing an
exposure index (EI) setting. The notions of EI and ISO value have become confused in
common usage associated with digital photography, so a brief tutorial is presented here.

ISO speed ratings were developed to quantify photographic film speed or sensitivity.
The ISO value quantifies the exposure required at the film surface to obtain standard image
quality. A film ISO rating can also be entered into a light meter and used to control expo-
sure metering to obtain the desired exposure on the film. When the ISO value is used in
metering, the precise descriptor for this value is exposure index (EI). While ISO represents
the exposure a particular film needs for standard exposure, EI is a way to specify how much
exposure is actually used for a single capture of a scene.

The standard for digital camera sensitivity [13] defines at least two pertinent ISO values.
One is the saturation limited ISO, typically between 40 and 100 for consumer cameras,
quantifying the lowest EI value at which the camera can operate. The other is the noise
limited ISO, usually ranging up to 1600 or so for compact cameras, quantifying the max-
imum EI value at which the camera can operate and still achieve the signal-to-noise ratio
stated in the sensitivity standard [13]. These two ISO values quantify the range of exposures
within which the camera can produce normally acceptable images, although it is common
for a camera to allow operation over a different range of EI values. The user interface for
most digital cameras uses the term ISO, although as explained previously, EI is a more
precise term.

Adjustment of EI in a digital camera has a dual role in exposure control. In the first role,
selection of a specific EI for capture of a scene determines how much light is accumulated
on the sensor for that capture, although several other parameters, such as exposure time and
f/number, are used to control the exposure. In the other role, image processing parameters,
such as gain, noise reduction, and sharpening, are usually adjusted in a camera as a function
of EI. This allows a camera to provide its best image rendering for a given EI.

ALGORITHM 5.1 A simplified automatic exposure control algorithm.

1. Set f/number to the lowest available value and set EI to the camera’s saturation-
limited ISO (lowest EI value).

2. Estimate scene brightness from the preview stream.

3. Calculate exposure time t from scene brightness, f/number, and EI.

4. If t > tmax, set t = tmax and obtain EI from scene brightness, f/number, and t.

5. If t < tmin, set t = tmin and obtain f/number from scene brightness, EI, and t.

Returning to exposure control, the optimum trade-offs between various capture param-
eters (for instance, f/number, exposure time, EI, flash) vary depending on the scene con-
ditions, the design limitations of the camera, and the viewing conditions. Comprehensive
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understanding of the scene is an open research question, so most algorithms for choosing
a set of exposure control parameters have been based on very simple heuristic algorithms,
such as one depicted in Algorithm 5.1. In this example, tmax is a threshold for maximum
exposure time, normally calculated based on the focal length of the camera to limit the risk
of motion blur. The term tmin denotes a minimum exposure time, based on the shutter
limitations of the camera. This very simple model works fairly well for many scenes in the
context of a compact digital camera.

The relatively large depth of field for a compact digital camera means there is usually not
a significant advantage from stopping down the lens. With the small pixels often used in
compact digital cameras, decreasing the lens aperture (running at higher f/number) usually
degrades resolution and sharpness, as well as decreasing the light available for capture with
the sensor. The optical reasons for this are discussed in more detail in the Appendix.

These considerations lead to an exposure control algorithm that keeps the f/number at the
lowest value possible. This leaves exposure time, EI, and active illumination available for
exposure control. Of these parameters, EI is usually simply adjusted to provide an effective
change in sensitivity. In the end, there are practically two variables to change: active
illumination and exposure time. Before the development of practical motion estimation
technology, the process of balancing the risk of motion blur associated with longer exposure
time against signal-to-noise ratio was done heuristically based on the focal length of the
camera. Some recent work explicitly models the quality impact of motion blur versus the
quality impact of operation with higher exposure index [14], providing a framework for a
more precise trade-off. This framework has been extended to include use of electronic flash
along with ambient illumination [15].

As mentioned previously, video and still capture have different exposure constraints.
While exposure time for a still capture can easily range from 1/1000 second to 1/15 second
or longer, exposure time for video is usually limited. The exposure time for a video frame
can approach the frame time, but it cannot be longer than the frame time (for instance,
1/30 second for video at 30 frames per second). There are also two perceptual artifacts
that further constrain exposure time in video. When motion is captured in a video, longer
exposure times increase the motion blur captured in each frame, which can lead to a soft,
blurry video of low quality. Conversely, exposure times much shorter than the frame time
can lead to frames with very little motion blur, but large motion displacement between
frames. This presents the visual system with an artificial stop-action kind of motion. In
practice, the exposure time for video capture is usually selected to minimize or balance
both of these motion artifacts.

5.3.2 Automatic Focus

As with exposure, the goal for automatic focus is to adjust the camera to capture the
scene at hand, with the most important portion of the scene in best focus. The depth of
field depends on the focal length of the lens, the aperture (f/number), and the focus setting.
Some cameras, particularly inexpensive ones with fixed wide angle lenses, are fixed focus,
obviating automatic focus completely. Focus control is more critical at longer focal lengths,
because depth of field is decreased. As a result, cameras with zoom lenses have focus
requirements that vary with focal length. Finally, focus for a high-resolution capture is
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more critical than for a low-resolution capture. This is important for cameras that provide
both still and video functions, since stills are usually much higher resolution than videos.

5.3.2.1 Focus Analysis

The HVS has greater sensitivity to luminance detail than chrominance detail, and the
green channel has a greater impact on luminance than the red or blue channels. Focus
analysis is simplified by choosing a single color band for which to optimize focus, normally
the green channel.

Focus can be analyzed in a number of ways, but the most common approach in compact
digital cameras is contrast maximization. A series of images are captured and analyzed
with the lens at different focus settings. Local contrast values at the different focus settings
are compared, and the focus setting that provides maximum local neighborhood contrast,
or best sharpness, is chosen as being in best focus. A key step in the contrast maximization
process is filtering to determine local contrast. The usual approach is to process a preview
image with one or more bandpass filters, designed to maximize the ability to determine
changes in sharpness. Focus changes affect higher more than lower spatial frequencies, but
scene modulation is also reduced at higher frequencies, especially considering the modula-
tion transfer function of the camera lens, reducing the signal available for focus detection.
In addition, human perception of sharpness tends to be weighted toward lower frequencies,
as discussed later in Section 5.7.

Human perception also influences focus analysis in the selection of a focus region within
the image. When a scene has significant depth, it is crucial that the focus analysis em-
phasizes the scene content most likely to be the subject. Preferably, focus analysis is also
performed on image data in a metric with a visually even tone scale, so that edges at differ-
ent tone values produce similar contrast values. Calculating local contrast in a non-visual
metric, such as relative linear exposure, will make brighter areas of the scene appear to
have much greater contrast than midtones.

Selection of focus areas also considers analysis results from multiple focus settings. Re-
gions that show a sharper peak in focus values are usually weighted more heavily than
regions that show less of a focus peak, which usually have less edge content. Regions with
peak contrast at a closer focus setting are also more likely to be the main subject.

Viewing a video raises temporal concerns not present with a still capture. In particular,
stability of the focus setting is important. As described earlier, contrast maximization re-
quires images collected at different focus settings, some of which must be measurably out
of focus in order to ensure the best focus has been found. The challenge is to measure local
sharpness changes to confirm focus, while minimizing the visibility of focus changes in the
stored video stream. Analysis of frame or scene differences can be used to help the camera
determine when the scene has shifted enough to warrant refocusing.

Most other interesting features of focus analysis algorithms are driven by optical and
engineering concerns rather than perceptual ones. Reference [16] describes an autofocus
system in a digital camera, including discussion of system hardware, focus evaluation,
and logic for focus region weighting. Reference [17] describes the use of noise reduction
and the use of filter banks for improved autofocus analysis. The temporal problems of
maintaining focus in video capture are discussed in Reference [18].
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5.3.2.2 Focus Control

Focus control is essentially the movement of one or more elements in the camera or lens
to bring the image into best focus. The perceptual concerns here are minor; the major
concerns are mechanical and optical. The only impact human perception has on focus
control is in tolerance analysis.

5.3.3 Automatic White Balancing

Automatic white balancing has been an active area of research since the development
of color photography. It is the technology that allows images to be captured under a wide
variety of illuminants and then reproduced in a pleasing way. Because the HVS has great
flexibility in adaptation to different illuminants, cameras must provide roughly similar be-
havior. As with automatic exposure and focus, white balance correction must have the
desired speed of response to scene and illuminant changes, while offering stability in the
face of insignificant changes.

5.3.3.1 White Balance Analysis

Much of the early work on white balance analysis focused on automatic creation of prints
from color negatives. The gray world hypothesis (the average of many scenes will integrate
to 18% gray) was first mentioned in Reference [19]. Models of human adaptation to differ-
ent illuminants are considered in color science, although the models tend to be more com-
plex than those commonly used in cameras. The problem usually addressed in a camera is
more precisely illuminant estimation, rather than complete modeling of human adaptation
to it.

White balance analysis during preview or video capture must be computationally
lightweight, usually using dedicated hardware and very simple processing based on ex-
tensions of the original gray world model. The goal of the analysis is the estimation of a
gain triplet, with an element for each of three color channels, which scales the native sensor
response so neutral scene content will have equal mean values in all channels. Having ap-
proximately equal channel responses for neutral scene content improves robustness in the
later color correction operation, allowing colors to move around the neutral axis. Tone cor-
rection can then render the tone scale for proper reproduction. Some camera sensors have
more than three channels [20], but the automatic white balance analysis is quite similar.

Most white balance analysis is done in a luminance-chrominance color space in order
to better separate exposure effects from illuminant balance effects, somewhat akin to the
human perception of color [21]. Because this analysis is done before full color correction,
it is not in a calibrated color space, but even an approximate separation of luminance from
chrominance helps decorrelate the channels for analysis. A common color space used is the
ratio of red to blue and green to magenta (combined red and blue). If the linear red, green,
and blue values are converted to a log space, this is easily accomplished with a matrix
transform similar to one proposed in Reference [22], shown below:
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Algorithms for white balance analysis usually employ averaging schemes with variable
weighting of different content in the scene. The variable weighting schemes generally
emphasize regions based on five perceptual phenomena:

• local modulation (texture),

• distance from the neutral axis,

• location in the tone scale, particularly highlights,

• recognizable scene content, such as faces or memory colors, and

• human sensitivity to different white balance errors

The motivation for emphasizing areas with modulation or texture is partly statistical. It
avoids having the balance driven one way or another by large areas of a single color, such
as red buildings, blue skies, or green foliage. Further, as with exposure analysis, there is
greater likelihood that the main subject is in a region with modulation.

Colors closer to the neutral axis are weighted more heavily than saturated colors, because
people are more sensitive to white balance errors in neutrals. It also helps stabilize the bal-
ance estimate a bit, as the extreme colors are weighted less. This concept complicates the
algorithm, since the notion of neutral is not well defined before performing illuminant esti-
mation. This can be approached by applying a calibrated daylight balance, then analyzing
colors in the resulting image [23]. Another option is to estimate the probability of each of
several illuminants being the actual scene illuminant [24], [25].

Highlight colors can be given special consideration, based on the theory that highlights
are specular reflections that are the color of the illuminant [26], [27], [28]. This theory is
not applicable for scenes that have no truly specular highlights. However, human sensitivity
to balance errors tends to diminish in shadows, justifying a tonally based weighting even in
the absence of specular highlights.

Some white balance approaches also consider the color of particular scene content. The
most common of these is using face detection to guide balance adjustments, providing a
reasonable balance for the face(s). This has other challenges, because faces themselves
vary in color. Memory colors, such as blue skies and green foliage, may also help, but the
complexity of reliably detecting specific scene content, especially before proper balance
and color correction, makes this challenging.

Finally, because human sensitivity to balance errors is not symmetric, white balance
algorithms are adjusted to avoid the worst quality losses. For example, balance errors in the
green-magenta direction are more perceptually objectionable than balance errors in the red-
blue direction. Preference can also enter into the tuning. For example, many people prefer
a slightly warm (yellowish) reproduction of faces to a slightly cool (bluish) reproduction.

When a camera is used in a still capture mode, the white balance analysis for the full
resolution still image can be more complex than the analysis run at video rates, since the
regular preview stream is interrupted. If the camera uses a flash or other active illumination,
the white balance analysis will yield very different results from analysis of preview images,
captured without active illumination. Further, since flash is often a somewhat different color
balance than the ambient illumination, still captures with flash are usually mixed illuminant
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captures, making the estimation problem more complex, although use of distance or range
information can help.

5.3.3.2 White Balance Control

Control of white balance is almost always the application of a global adjustment to each
color channel. If the balance is applied to linear data, the white balance correction is a triplet
of gain factors. Because the white balance operation is usually approached independently of
the exposure operation, the triplet of channel gains has two degrees of freedom. Multiplying
all channels by a constant gain is in effect an exposure adjustment; therefore, the gain triplet
is usually normalized so the minimum gain in the triplet is one, leaving only two values
greater than one.

Some algorithms deal with flash as a special case of mixed illuminant capture by using a
spatially varying balance correction. This is perceptually helpful, since a human observer
rarely ever “sees” the scene with the flash illumination, so it is especially desirable to
minimize the appearance of mixed illuminant white balance problems in the reproduced
image.

5.4 Color Filter Array Interpolation (Demosaicking)

The process of designing CFAs and the related task of CFA interpolation (or demo-
saicking) can derive significant inspiration from the HVS. Due to differences in how the
HVS perceives edges based on their orientation and colors based on their luminance-
chrominance composition, significant economies can be made in the CFA process without
sacrificing high image quality in the final results. The details of HVS-driven array and
algorithm designs are discussed below.

5.4.1 Color Filter Array

As stated in Section 5.2, CFA interpolation attempts to reconstruct the missing color val-
ues at each pixel that were not directly captured [29]. By far the most ubiquitous CFA is
the Bayer pattern [30]. Referring to Fig. 5.6a, this pattern was initially introduced as a
luminance-chrominance sampling pattern, rather than a red-green-blue system. It used the
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FIGURE 5.6

Bayer CFA pattern: (a) luminance-chrominance version, (b) red-green-blue version.
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FIGURE 5.7

Checkerboard sampling Nyquist diagram.

HVS as the motivation: “In providing for a dominance of luminance sampling, recogni-
tion is taken of the human visual system’s relatively greater ability to discern luminance
detail (than chrominance detail)” [30]. This reasoning has set the tone for most subsequent
efforts in CFA design. When designing a new CFA pattern, the first step is to establish a
strong luminance sampling backbone. This frequently takes the form of a checkerboard of
luminance pixels as in Figure 5.6a. This is attractive from an HVS perspective due to the
oblique effect [31], [32]. The oblique effect is the observed reduction of the visibility of
diagonal edges compared to horizontal and vertical edges. The relationship between the
oblique effect and CFA sampling with a checkerboard array can be developed from the
frequency response of this sampling pattern as follows [33]:
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where δ (x,y) is the two-dimensional delta function [34]. The corresponding Nyquist dia-
gram of Equation 5.2 is shown in Figure 5.7. The dots mark the centers of the fundamental
frequency component (within the dashed diamond) and some of the sideband frequency
components of the frequency response. The dashed lines indicate the Nyquist sampling fre-
quency of the fundamental component, that is, the maximum detectable spatial frequency
of the sampling array. It can be seen that the Nyquist frequency reaches its peak along the
horizontal and vertical axes and is lowest in the diagonal directions. Therefore, in accor-
dance with the oblique effect, a checkerboard array has its maximum frequency response
when sampling horizontal and vertical edges, and its minimum frequency response when
sampling diagonal edges.

Once the positions of the luminance pixels are fixed in the CFA pattern, the remaining
locations are usually evenly divided among the chrominance channels. In the case of a 2×2
pattern such as Figure 5.6a, the locations of the chrominance pixels are essentially forced.
However, with larger CFA patterns, additional degrees of freedom become available and
multiple chrominance patterns are then possible for a given luminance pattern.
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Bayer green interpolation neighborhood.

5.4.2 Luminance Interpolation

It is natural to approach the task of interpolating the CFA luminance values by using
neighboring luminance values within the CFA pattern, such as in Figure 5.6a. In Fig-
ure 5.6b, this would be equated to interpolating missed green values from neighboring green
values. This can be posed as a linear or nonlinear interpolation problem. Figure 5.8 depicts
a typical green pixel interpolation neighborhood. Linearly, one would simply compute
G′

0 = (G1 +G2 +G3 +G4)/4. Nonlinearly, the approach would be to perform directional
edge detection and interpolate in the direction of least edge activity [35]. For example,
if |G2−G3| ≤ |G1−G4|, then G′

0 = (G2 +G3)/2. Otherwise, G′
0 = (G1 +G4)/2. Any

number of more sophisticated decision-making processes can be described, but the essence
would be the same.

All of the preceding misses a point, however, from the HVS perspective. The red and
blue pixels do not produce true chrominance values. Instead, they produce color values that
can be thought of as consisting of a luminance component and a chrominance component.
For example, in Figure 5.9, a full-color image (Figure 5.9a) is shown with its corresponding
green (Figure 5.9b) and red (Figure 5.9c) color channels. Both color channels have strong
luminance components. Therefore, it is possible for the red and blue pixel values to con-
tribute to the interpolation of green pixel values. A simple, yet very useful, model is given
below:

R = Y +CR, G = Y, B = Y +CB. (5.4)

This model reflects the color channel correlation present in the HVS [1]. Over small dis-
tances in the image, CR and CB can be considered to be approximately constant, as shown in
Figure 5.9d. Under this model, spatial variation is largely confined to the luminance chan-
nel with chrominance information changing slowly across the image. Using Equation 5.4
and Figure 5.10, an improved luminance interpolation calculation based on HVS consider-
ations can be developed [36]. Assuming a symmetric interpolation kernel, the horizontally
interpolated green value G′

5 can be computed as follows:

G′
5 = a1 (R3−CR)+a2G4 +a3 (R5−CR)+a2G6 +a1 (R7−CR) . (5.5)

In this equation it is assumed that the chrominance term CR is constant over the depicted
pixel neighborhood. Three constraints are required to determine the coefficients a1 through
a3. Since CR is generally unknown, the first constraint is to eliminate it from the equation.
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FIGURE 5.9

Full-color image and its components: (a) original image, (b) green channel, (c) red channel, and (d) CR channel.
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FIGURE 5.10

Bayer green-red interpolation neighborhood.

This is done by computing its coefficient and setting it to zero:

G′
5 = a1R3 +a2G4 +a3R5 +a2G6 +a1R7− (2a1 +a3)CR ⇒ a3 =−2a1, (5.6)

resulting in
G′

5 = a2 (G4 +G6)+a1 (R3−2R5 +R7) . (5.7)
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Triangular edge profile with collocated sinusoid.

The next constraint to add is that a neutral flat field input produces a neutral flat field
output. In other words, if G4 = G6 = R3 = R5 = R7 = k, then G′

5 = k. This results in
a2 = 1/2. Finally, there is no one ideal constraint for determining a1, which is the last
coefficient. One reasonable constraint is the exact reconstruction of a neutral edge with a
triangular profile, as shown in Figure 5.11. As indicated, this edge profile could also be a
sampled version of 1 + cos(2πx/4). Setting G4 = G6 = 1, R3 = R7 = 0, and R5 = G′

5 = 2
produces a1 =−1/4. The final expression is given below [37]:

G′
5 =

G4 +G6

2
− R3−2R5 +R7

4
. (5.8)

The set of constraints used could also be interpreted as imposing exact reconstruction at
spatial frequencies of 0 and 1/4 cycles/sample. While the constraint at 0 cycles/sample is
probably best left intact, the second constraint could easily be changed to a different spatial
frequency with a differing corresponding value for a1. A vertical interpolation expression
would be generated in the same way. For a linear interpolation algorithm, both horizontal
and vertical expressions can be averaged to produce a two-dimensional interpolation kernel
as follows:

G′
5 =

G2 +G4 +G6 +G8

4
− R1 +R3−4R5 +R7 +R9

8
. (5.9)

The color channel correlation of the HVS can also be used to improve the edge de-
tectors used in a nonlinear, adaptive interpolation algorithm [38]. Using reasoning simi-
lar to that used above, the horizontal edge detector can be augmented from |G4−G6| to
|G4−G6|+ |R3−2R5 +R7| and the vertical edge detector from |G2−G8| to |G2−G8|+
|R1−2R5 +R9|. Again, the direction of least edge activity would be interpolated with the
corresponding horizontal or vertical interpolation expression.

5.4.3 Chrominance Interpolation

Since the HVS is most sensitive to changes in chrominance at the lower spatial frequen-
cies, linear interpolation of chrominance values should be sufficient under most circum-
stances. As stated in Section 5.4.2, it is important to interpolate chrominances and not
simply colors [39]. This can be accomplished by returning to Equation 5.4 and rewriting
the model in terms of chrominances as follows:

CR = R−Y, Y = G, CB = B−Y. (5.10)
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Chrominance interpolation neighborhood: (a) colors, (b) chrominances.

Assuming luminance interpolation has been previously performed, each pixel will have
an associated luminance (green) value. Therefore, at each red pixel location a chrominance
value CR = R−G can be computed. Similarly, at each blue pixel location CB = B−G
can be computed. The resulting pixel neighborhood is given in Figure 5.12b. Missing
CR chrominance values are computed using averages of nearest neighbors, for example,
C′R2 = (CR1 +CR3)/2, C′R4 = (CR1 +CR7)/2, and C′R5 = (CR1 +CR3 +CR7 +CR9)/4. Miss-
ing values for CB are computed in a similar manner. After chrominance interpolation, the
chrominance values can be converted back to colors using Equation 5.4. It is possible to
combine the color to chrominance and back to color transformations with the chrominance
interpolation expressions to produce equivalent chrominance interpolation expressions us-
ing just color values. These resulting expressions are given below:

R′2 =
R1 +R3

2
− G1−2G2 +G3

2
, (5.11)

R′4 =
R1 +R7

2
− G1−2G4 +G7

2
, (5.12)

R′5 =
R1 +R3 +R7 +R9

4
− G1 +G3−4G5 +G7 +G9

4
. (5.13)

These expressions are written in a way to illustrate their differences from simply averag-
ing color values of the same color, for example, averaging only neighboring red values to
produce interpolated red values.

5.5 Noise Reduction

Noise reduction lessens random signal variation in an image while preserving scene con-
tent. The random variation, commonly called noise, diminishes the quality of a reproduced
image viewed by a human observer [40]. Since noise reduction usually introduces undesir-
able side effects, the challenge in designing the noise reduction algorithm is to ensure that
the perceptual quality improvement exceeds the quality degradation from side effects.
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The primary side effects from noise reduction are perceived as loss of sharpness or loss
of texture. Adaptive noise reduction normally preserves high-contrast edges but smooths
lower-contrast edges, leading to texture loss. The quality degradation caused by loss of
texture is a topic of current research, especially for development of ways to objectively
measure image quality from digital cameras [41].

Other side effects can be caused by abrupt transitions in smoothing behavior. Usually,
small modulations (small in spatial extent, contrast, or both) are smoothed, while larger
modulations are preserved. When a single textured region (such as a textured wall, grass, or
foliage) contains both small and large modulations, noise reduction will change the texture
greatly if the transition from smoothing to preservation is too abrupt, thus causing switching
artifacts. Another potential side effect is contouring, when a smooth gradation is broken
into multiple flat regions with sharp transitions, that is, an image is heavily quantized. This
can occur with noise reduction based on averaging values near a neighborhood mean, such
as a sigma [42] or bilateral [43] filter, especially with iterative approaches.

In addition to the perceptual complexity of side effects, noise reduction must operate
over a large range of conditions in a compact digital camera. When a camera operates at
its lowest EI, the signal-to-noise ratio in the raw capture is often four to eight times the
signal-to-noise ratio when operating at the maximum EI. Further, noise in a raw image
and the visibility of noise in the rendered image vary with signal level. The wide range of
signal-to-noise ratios and noise visibility requires noise reduction to adapt over a broad set
of conditions to provide a pleasing reproduced image. For example, if a camera operates at
a very low EI and the raw image has a good signal-to-noise ratio to begin with, the noise
may degrade image quality only slightly. In this case, noise reduction should be tuned to
minimize its side effects and ensure retention of maximum scene content.

Overall image quality has been modeled by considering multiple distinct degradations
to image quality as perceptually independent visual attributes, such as sharpness, noise,
contouring, and others [40]. Because noise reduction produces multiple effects that are not
necessarily perceptually independent, this modeling approach will vary in effectiveness,
depending on the precise nature of the noise reduction effects. However, the multivariate
quality model of [40] has been applied with some success to modeling the overall quality
of images from a camera operating over a range of EI values [14].

5.5.1 Contrast Sensitivity Function and Noise Reduction

Since human contrast sensitivity diminishes at higher spatial frequencies, noise reduction
primarily reduces higher-frequency modulation and preserves lower-frequency modulation
as much as possible. However, the relationship between a contrast sensitivity function
(CSF) and optimal noise reduction is indirect for two reasons. First, the human CSF is
defined in terms of a contrast sensitivity threshold as a function of angular frequency at
the eye. The relationship between spatial frequency in a camera image (cycles/pixel) and
angular frequency at the eye depends on the full image processing chain, including resizing,
output or display, and viewing conditions. Second, contrast sensitivity functions are usually
based on measurement of minimum detectable contrast in a uniform field. The modulation
that is due to noise in a compact digital camera is often above the threshold of visibility,
and the quality degradation that arises from different levels of supra-threshold noise is more
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complex than expressed in a simple CSF.

5.5.2 Color Opponent Image Processing

The human visual system sensitivity to luminance modulation is different from its sensi-
tivity to chrominance modulation. The luminance CSF has a bandpass character with peak
sensitivity between one and ten cycles/degree. The chrominance contrast sensitivity is also
reduced as frequency increases, but the reduction begins at a lower frequency, roughly one
third to one half the spatial frequency of the peak of the luminance CSF. Because of this,
noise reduction is most effective when operating in a luminance-chrominance color space,
treating the luminance and two chrominance channels differently. While a colorimetric
uniform color space such as CIELAB is attractive for separating luminance from chromi-
nance, the transformation is somewhat complex. Because noise reduction makes relatively
small changes to mean signal values, an approximate transformation is usually adequate. A
common approach is a matrix transform similar to one proposed in Reference [22], shown
earlier in Equation 5.1. Another very common space is the YCBCR space used for luma-
chroma JPEG compression. The primary advantage of using the JPEG YCBCR space for
noise reduction is that the data are usually converted to that space for compression. Con-
verting to that color space earlier in the chain and applying noise reduction there saves one
or two color conversions in the processing chain.

After converting to a luma-chroma color space, it is normal to apply noise reduction to
each of the resulting channels with different techniques. Noise reduction for the luminance
channel seeks to attenuate high-frequency noise, rather than eliminate it completely, and
seeks to preserve as much sharpness as possible within the cleaning requirements. Noise
reduction for the chrominance channels is generally much more aggressive, and the as-
sociated degradation of sharpness and spatial resolution is quite acceptable. In practice,
since chroma is often subsampled for compression, noise reduction is often applied to the
subsampled chroma channels. This saves processing and makes control of lower spatial
frequencies easier because the chroma channels are sampled at lower frequency.

To illustrate the effect of noise reduction in a digital camera, Figure 5.13 shows example
hypothetical noise power spectra (NPS) for rendered images of flat patches with noise re-
duction applied, along with an example CSF. Noise in a raw digital camera image generally
has a relatively flat (white) frequency response, so a non-flat shape for the final NPS is the
result of noise reduction (and other operations) in the processing chain. The first curve
in Figure 5.13 is a luminance CSF using the model from Reference [44]. For this figure,
the CSF has been computed for a viewing distance of 400 mm and a pixel pitch of 0.254
mm, corresponding to viewing an image at full resolution on a typical LCD display, and
normalized so the CSF response fills the range of the plot to overlay the NPS curves. The
peak CSF response is at 0.11 cycles/pixel for this situation. Increasing the viewing distance
would move the peak toward lower frequencies, as would using a higher resolution display.

The application of noise reduction in a luma-chroma color space causes the resulting
image’s NPS for the luma channel to be very different from those for the chroma channels.
Figure 5.13 shows four sample NPS curves: a sample luma NPS at a low EI (Luma 100), a
luma NPS at a high EI (Luma 1600), and corresponding chroma curves (Chroma 100 and
Chroma 1600). The CB and CR channels normally have similar NPS characteristics, so this
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Example noise power spectrum for a still image.

example shows a single chroma NPS curve. All of the NPS plots show a lowpass character-
istic, although of variable shape. At low EI, the luma NPS has relatively little reduction and
a fairly wide passband. Since small amounts of noise have little impact on overall quality,
there is relatively little need to reduce the luma noise lower than shown for EI 100. The
chroma NPS shows no significant response past 0.25 cycles/pixel, consistent with subsam-
pled chroma channels. Because of the perceptual degradation from low-frequency chroma
noise, the preference is to make the chroma NPS similar to or lower than the luma NPS.

At high EI, the luma NPS is much more aggressively filtered. The noise in the raw image
at EI 1600 is usually roughly four times the noise at EI 100, yet after noise reduction, it
is less than three times the noise at EI 100. Further, the relatively flat NPS from white
noise in the raw image has been modified much more than for EI 100. While attenuation
is still fairly linear with frequency, there is more attenuation of higher frequencies and
a tendency to be concave upward. The chroma NPS is much more aggressively filtered
than for EI 100, deliberately sacrificing chrominance detail in order to reduce chrominance
noise. At the higher EI, the quality degradation that is due to noise is substantial, so trading
off sharpness and texture to limit the noise provides better overall quality. Modeling of the
relationship between NPS and human perception is a topic of current research [45].

NPS analysis for a frame of a video shows some similar characteristics; noise reduction
is more aggressive at higher frequencies and at a higher EI. In compact digital cameras,
there is typically a greater emphasis on limiting the noise in the video than on preserving
sharpness, partially driven by the greater compression applied to videos. As noise is diffi-
cult to compress and tends to trigger compression artifacts, there is a greater emphasis on
avoiding these noise-induced artifacts than on preserving scene detail.

Another important feature illustrated in Figure 5.13 is the use of masking. Allowing luma
noise power to be greater than chroma noise power tends to mask the chroma noise with the
luminance modulation, making the chroma noise less visible. In addition, the development
of noise reduction algorithms also depends on use of masking from scene content. Noise
reduction algorithms tend to smooth more in areas with little scene modulation and preserve
more modulation in regions with greater local contrast. The challenge is to discriminate as
well as possible between noise and local contrast due to scene content.
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FIGURE 5.14 (See color insert.)

Example images with: (a) noise, (b) light RGB smoothing, (c) aggressive RGB smoothing, and (d) simple

color opponent smoothing.

An example illustrating some of the power of color opponent processing for noise re-
duction is shown in Figure 5.14. Namely, Figure 5.14a is an example noisy image, such
as might come from a capture at a high EI, processed through demosaicking and white
balance. The raw captured image was very noisy with a fairly flat NPS, and the early pro-
cessing steps have reduced some noise, especially at higher frequencies, while leaving a
fair bit of lower-frequency noise. Figure 5.14b illustrates a light smoothing (Gaussian blur)
applied in RGB color space. There is modest sharpness loss, but also modest reduction
in noise, especially in the lower frequencies. Low-frequency variations in color remain in
areas of low scene texture, such as the blue wall, the face, and green background. Fig-
ure 5.14c illustrates a more aggressive smoothing (Gaussian blur) applied in RGB. The
noise is significantly reduced, but the loss in sharpness degrades the quality substantially.
Figure 5.14d illustrates light smoothing applied to a luma channel and more aggressive
smoothing applied to both chroma channels. The luma channel smoothing matches that for
Figure 5.14b and the chroma channel smoothing matches that for Figure 5.14c. The overall
quality is significantly better than the other three figures, because the reduction in chroma
noise is achieved without a similar reduction in sharpness.

5.5.2.1 Noise Probability Distributions

The probability distribution for noise has a great impact on noise reduction. The domi-
nant noise in a digital camera raw image is usually shot noise with a Poisson distribution,
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plus an additive read noise with a Gaussian distribution. The read noise is signal indepen-
dent, but the shot noise is dependent on signal level. Further, a small number of pixels in
the sensor are abnormal, casually referred to as defective pixels. Defective pixels act like
impulse noise, but have highly variable responses. Rather than two or three clear peaks
(normal, dark defects, bright defects), a histogram of a low-light, flat-field image capture is
more like a mixture of Gaussians, with a main peak and an extremely wide tail.

One treatment for defective pixels and other contributors that spread out the tails of the
noise distribution is to apply an impulse filter before other operations, preventing spread
of impulse noise into other pixels during smoothing. The challenge in performing impulse
filtering is to avoid filtering scene detail unnecessarily. For example, small light sources,
and their reflections in eyes, are easily misidentified as impulses. Despite their similarity
to impulse noise, they have exceptional perceptual importance.

5.6 Color Rendering

Nearly all practical imaging systems have a small number of band-limited light detectors
and emitters. The shape of the detectors’ spectral efficiencies and the emitters’ radiance
characteristics determine the intrinsic color reproduction of the imaging system, and this
reproduction is almost never accurate or visually pleasing without any signal processing.
Additionally, there may be factors present when viewing a reproduction that alter its ap-
pearance and that may not have been present when capturing the corresponding original
scene. The signal processing that modifies an image to account for the differences between
the HVS and the imaging system and to account for the viewing environment is called color
rendering. Knowledge of HVS color perception and a mathematical specification of color
stimuli help to define the signal processing needed for rendering. These two topics are de-
scribed in the following section, prior to a discussion of the specific steps to render colors
of an image captured with a camera and displayed on a monitor.

5.6.1 Color Perception

In the seventeenth century, it was discovered that a color is a percept induced by light
composed of one or more single-wavelength components [46]. In the early nineteenth
century, the hypothesis was that there are three retinal light sensors in the human eye [47],
even though the sensing mechanism was unknown. Later in the nineteenth century, it was
determined that wavelengths that are usually associated with red, green, and blue compose
a minimal set of primary wavelengths that can be mixed to induce the colors associated with
the rest of the wavelength spectrum [48], [49]. It is now known that there are two types of
light-sensitive cells in the human eye, called rods and cones because of their shapes. Rods
and cones derive their light sensitivity from the bleaching of chromoproteins by light, and
the rods have higher sensitivity than the cones [50], [51], [52]. Signals from the rods
significantly contribute to human vision only under low illumination levels and do not
contribute to color vision. The signals that contribute to color vision are produced by
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three types of cones, which are called rho, gamma, and beta cones. Each type of cone
has a different chromoprotein, giving the rho, gamma, and beta cones spectral passbands
with maximum sensitivities near 580 nm, 550 nm, and 445 nm, respectively. The three
passbands correspond to light wavelength bands that are usually associated with the colors
red, green, and blue, and therefore the light-sensitive cone cells are the biological cause of
the early findings presented in References [48] and [49].

The signals created by the rods and cones during photo-stimulation are electrical nerve
impulse trains, and the four impulse trains (one from the rods and three from the cones) are
transformed into one achromatic signal and two chromatic signals. In the late nineteenth
century, it was proposed that the chromatic signals represent a color-opponent space [21].
In the modern view, the achromatic signal is also included in the color-opponent space,
making it three dimensional, and the most basic model specifies that each axis of the space
represents a measure of two opponent, mutually exclusive sensations: redness and green-
ness, yellowness and blueness, and lightness and darkness. The basic model explains why
humans do not perceive any color as being, for example, simultaneously greenish and red-
dish but may perceive a color as being, say, simultaneously greenish and bluish. The visual
signals are transmitted through the optic nerve to the brain, and several effects originate
during the perception of color. The effects are psychological and psychophysical in nature
and three such effects that are relevant to color rendering are general brightness adaptation,
lateral brightness adaptation, and chromatic adaptation.

General brightness adaptation of the visual system is an adjustment that occurs in re-
sponse to the overall luminance of the observed scene. The overall sensitivity of the visual
system increases or decreases as the overall luminance of the observed scene decreases
or increases, respectively. An emergent effect of this type of adaptation is that a scene is
perceived to have lower contrast and to be less colorful when viewed under a lower overall
luminance than when viewed under a higher overall luminance. Another effect that arises is
related to changes in instantaneous dynamic range. Even though the total dynamic range of
the visual system is extremely high (on the order of 1010), at any given general brightness
adaptation level the instantaneous dynamic range is much smaller (and varies, on the order
of 10 for a very dark level and up to 103 under full daylight) [53].

Lateral brightness adaptation is a change in the sensitivity of a retinal area as influenced
by the signals from neighboring retinal areas. This type of adaptation is very complex and
yields several visual effects, including Mach bands [54] and the Bezold-Brücke effect [55].
Another lateral brightness adaptation effect is simultaneous contrast, whereby the lightness,
hue, and colorfulness of a region [56] depend on the color of its surround. Simultaneous
contrast is the origin of the dark-surround effect, which occurs when an image is perceived
as having lower contrast if viewed with a dark surround than if viewed with a light sur-
round [57].

Chromatic adaptation is a reaction of the visual response to the overall chromaticity of the
observed scene and the chromaticity of a stimulus that is perceived as neutral is called the
chromatic adaptation point. This type of adaptation allows the visual system to recognize
an object under a range of illumination conditions. For example, snow is perceived as
white under daylight and incandescent lamps even though the latter source lacks power in
the shorter wavelengths and therefore yields a radically different visual spectral stimulus
than daylight.
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For a more detailed description of the physiology, properties, and modeling of human
vision, see References [32], [56], and [58].

5.6.2 Colorimetry

Human vision is an astonishingly complex mechanism of perception and a complete the-
oretical description has not yet been developed. However, the science of colorimetry can
be used to predict whether two color stimuli will perceptually match [59], [60], [61]. Col-
orimetry is based on color-matching experiments, where an observer views test and refer-
ence stimuli and the reference stimulus is adjusted until the observer perceptually matches
the two stimuli. The reference stimulus is composed of three independent light sources,
which are called the color primaries. The observers adjust the intensity of each color pri-
mary to achieve the perceptual match. When a perceptual match to the test stimulus is
achieved, the primary color intensities are recorded and are called the tristimulus values for
the test color. If a color-matching experiment is carried out for all test colors composed of
a single wavelength, the set of tristimulus values forms a set of three curves that are called
color-matching functions (CMFs). Each set of color primaries will have an associated CMF
set, and any CMF set may be converted with a linear transform into another CMF set having
different color primaries [62].

Besides depending on the color primaries, CMFs can also vary because of differences
in the eye responses among individuals, so the Commission Internationale de l’Eclairage
(CIE) defined standard observers for unambiguous tristimulus specification [63]. The CIE
XYZ tristimulus values for any arbitrary stimulus can be calculated as

X = k
∫ λ2

λ1

S (λ ) x̄(λ )dλ , (5.14)

Y = k
∫ λ2

λ1

S (λ ) ȳ(λ )dλ , (5.15)

Z = k
∫ λ2

λ1

S (λ ) z̄(λ )dλ , (5.16)

where λ is the wavelength variable, the interval [λ1,λ2] defines the visible wavelength
range, S (λ ) is the spectral power distribution of the stimulus in units of watts per nanome-
ter, and x̄, ȳ, and z̄ are the CIE standard observer CMFs. The normalizing constant k is
sometimes chosen such that Y is equal to 1 when S (λ ) is equal to the spectral power distri-
bution of the illuminant, yielding luminance factor values. When this type of normalization
is used, the tristimulus values specify relative colorimetry. The normalizing constant k can
also be chosen such that Y yields luminance values in units of candelas per square meter
(cd/m2), in which case the tristimulus values specify absolute colorimetry [58].

The CIE Y value, or luminance, correlates well with the perception of brightness. The
magnitudes of the CIE X and Z values do not correlate well with any perceptual attribute,
but the relative magnitudes of the CIE XYZ tristimulus values are correlated with hue and
colorfulness [56]. For these reasons, the CIE defined relative tristimulus values, called xyz
chromaticities, as

x =
X

X +Y +Z
, y =

Y
X +Y +Z

, z =
Z

X +Y +Z
. (5.17)



152 Perceptual Digital Imaging: Methods and Applications

5.6.3 Color Rendering Using Relative Colorimetric Matching

One common imaging task is to display on a monitor an image that was captured with a
digital camera. It is usually required to display a realistic, visually pleasing reproduction of
the original scene. A reasonable strategy, but one that is not preferred as will be discussed
later, is to apply a color rendering that achieves a relative colorimetric match between the
displayed reproduction and the original scene. Relative rather than absolute colorimetry is
used because the dynamic range and the gamut of many original scenes are greater than
the monitor’s dynamic range and gamut, and in those cases an absolute match cannot be
achieved.

A monitor display is an additive color reproduction device that typically has three color
primaries. Three control code values are input to the device to produce a color stimulus
composed of the mixture of the three color primary intensities. The dynamic range of
a cathode-ray tube (CRT) monitor in a darkened viewing environment is typically on the
order of 103 and that of a liquid-crystal display (LCD) is on the order of 102, although when
viewed with environmental flare an LCD monitor may actually have a larger dynamic range
than a CRT monitor [64]. CRTs were the most popular monitor devices until recently but
now LCDs dominate the monitor market. The neutral tone scale characteristic of many
CRTs can be approximated by a simple power-law relationship:

Ym = km

(
V

Vmax

)γ
+Ym0, (5.18)

where Ym is the CIE luminance factor produced by the monitor, V is the input control
code value, Vmax is the maximum input code value, Ym0 is the CIE luminance factor when
V = 0 and km is a normalizing constant chosen such that Ym = 1 when V = Vmax. The
relation between control code value and CIE luminance factor for LCD monitors is more
complicated than for CRTs, but it can be made to follow the same power-law relationship
as shown above with some signal processing between the input and the output [64].

A digital color camera is equipped with a light sensor and, most often, with an array of
three types of light receptors (RGB or CMY) whose responses are linear with respect to
irradiance. The dynamic range of a sensor depends on the receptors’ electron-gathering
capacity [65], but it is common for a sensor to have a dynamic range of at least 103, which
is sufficient to cover the instantaneous dynamic range of the human eye. Sensor spectral
responsivities typically form approximations to a set of color-matching functions. If the
approximation is good, a sensor’s responses can be multiplied by a 3× 3 matrix to obtain
good approximations to CIE XYZ tristimulus values.

Suppose that an image is captured with a digital color camera that has spectral respon-
sivities that are good approximations to color-matching functions and that the camera re-
sponses have been transformed to CIE XYZ tristimulus values. For neutral stimuli (that is,
all stimuli that have the chromaticity of the chromatic adaptation point), the chromaticity
ratios x/y and z/y are constant and therefore the tristimulus ratios X/Y and Z/Y are also
constant. Thus, it is possible to gain the camera channels such that neutral stimuli produce
the same response in all three channels as described in Section 5.3.3. Such channel balanc-
ing is assumed, as well as that the display monitor is calibrated such that the chromaticity
of its output is the same for any triplet of equal input code values. Further suppose that
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the goal is to display the image such that a colorimetric, rather than a perceptual, match is
achieved between the original scene and the monitor reproduction. For simplicity, it is as-
sumed that the camera signals do not saturate, that all of the camera responses are within the
monitor’s gamut, that the observer is chromatically adapted to CIE illuminant D65 when
viewing the original scene and the monitor reproduction, and that the monitor white point
has the chromaticity of CIE illuminant D65.

The camera’s output CIE luminance factor can be transformed with the inverse of the
monitor neutral tone scale characteristic:

V = Vmax

(
Yc−Ym0

km

) 1
γ

, (5.19)

where Yc is the CIE luminance factor measured by the camera. This type of transformation,
that accounts for the display nonlinearity, is usually called gamma correction. The code
value V is used as input to the monitor’s three channels so that the output luminance factor
of the monitor is Ym = Yc (and, by monitor calibration, the output chromaticity is the same
as that of CIE illuminant D65). In short, the relative colorimetric matching for the neutral
tone scale is achieved with the transformation of camera responses to CIE XYZ approxi-
mations, camera channel balancing, monitor calibration, and gamma correction. Assuming
a colorimetrically matched neutral tone scale, the relative colorimetric matching of non-
neutral stimuli is described next.

A set of CMFs for the monitor may be derived by performing a color-matching exper-
iment using the monitor to produce the reference stimuli. Once the display CMFs are
obtained, relative colorimetric matching of non-neutral stimuli would be achieved if the
camera responsivities are proportional to the display CMFs because the camera would di-
rectly measure how much of each monitor primary is present in a given color stimulus of an
original scene. However, the proportionality is impossible for physically realizable cameras
and monitors, but the matching can be achieved with additional signal processing [66]. The
balanced camera responses may be transformed with a 3×3 matrix to tristimulus values as-
sociated with the monitor color primaries [62]. This transformation is usually called color
correction. Once color correction is accomplished, the new tristimulus values are gamma-
corrected and applied to the monitor to achieve relative colorimetric matching between all
of the stimuli in the original scene and the monitor reproduction.

Figure 5.15a shows how an image as captured with a camera with no signal processing
approximately appears when displayed on a monitor. The camera signals are linear with
sensor irradiance, no gamma correction is applied, and there is a discrepancy between the
camera responsivities and the monitor CMFs. Under these circumstances most colors are
reproduced too dark with incorrect chromaticities. When that camera image is gamma-
corrected before being displayed, the colors will have approximately the correct luminance
factors but the chromaticities will remain incorrect as illustrated in Figure 5.15b. If color
correction is performed before gamma correction, then the chromaticities will also be cor-
rect. Figure 5.15c shows an illustration of an image that has been processed with color and
gamma corrections and thus simulates a perfect relative colorimetric match to the original
scene. Yet, this image still looks like it could be improved – its luminance contrast and
colorfulness seem low. These two attributes are perceived to be low because the observer’s
general brightness adaptation level corresponds to the display’s overall luminance level,
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.15 (See color insert.)

A series of images illustrating how an image approximately appears when displayed on a monitor at different

steps in the color rendering, where (a–c) simulate images viewed within a flareless viewing environment and

images (d–f) simulate images viewed with flare. (a) The original linear camera image, (b) after gamma cor-

rection but not color corrected, (c) after color correction and gamma correction, (d) after color correction and

gamma correction (with flare), (e) with boosted RGB scales, and (f) after flare correction.

which is much lower than the level of the original scene. Colorimetric matching is evi-
dently not sufficient to achieve perceptual matching. While the system has accounted for
chromatic adaptation (by balancing the camera channels for neutral stimuli and setting the
monitor white point to have the chromaticity of CIE illuminant D65), no other adaptation
effects have been considered in the system setup or the signal processing. Moreover, up to
this point the viewing environment has been assumed to be flareless. If the colorimetrically
matched image of Figure 5.15c is displayed in a viewing environment with flare, then the
darker colors will look less dark as illustrated in Figure 5.15d. Viewing flare can have many
forms, but here it is assumed that it is light with the same chromaticity as the monitor white
point and that it has a uniformly distributed intensity over the monitor face.

5.6.4 Color Rendering with Adaptation and Viewing Flare Considerations

A way to simultaneously account for the low luminance contrast and low colorfulness
that is perceived as a result of an observer’s low general brightness adaptation level is to
boost all three image channels. The boost can be achieved by gaining the color-corrected
tristimulus values just before sending the signal to the display. The same gain is applied
to all three channels to maintain the chromaticities of all colors. Figure 5.15e shows how
the image in Figure 5.15d would approximately appear if the three channels are gained.
The overall luminance contrast and the colorfulness have been increased, but the darker
colors appear to not be dark enough because of the viewing flare. Since it is assumed that
the viewing flare is uniform across the monitor, to correct for the flare it is sufficient to
subtract the boosted tristimulus values of the flare from the boosted tristimulus values of
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the scene. The channels are gained again such that the white point remains the same before
and after the flare tristimulus subtractions. Figure 5.15f illustrates the results of applying
the flare correction to the image from Figure 5.15e, and it can be seen that while lighter
colors appear about the same in both figures, the darker colors appear even darker after the
correction. It is this last image that appears to be a perceptual match to the original scene.

5.7 Edge Enhancement

During image capture, edge detail is lost through optical and other effects that reduce the
transfer of modulation from the scene to the reproduced image. Edge enhancement, also
known as sharpening, is used to boost edge contrast, making the image appear sharper and
partially compensating for the losses in the modulation transfer function (MTF). There are
several main perceptual effects from edge enhancement: increased sharpness, increased
noise, and spatial artifacts such as over-sharpening or ringing, visible as halos at high-
contrast edges. Just as noise reduction is intended to reduce noise while preserving sharp-
ness, edge enhancement is intended to increase sharpness while avoiding noise amplifica-
tion and other artifacts. When applying edge enhancement, it is important that the quality
improvement from increased sharpness is greater than the quality loss from increased noise
or other artifacts.

5.7.1 Human Visual Sharpness Response

The human visual sharpness response depends more strongly on low and intermediate
spatial frequencies in a viewed image. An early publication investigated sharpness in pho-
tographic images and concluded that both acutance and resolving power contributed to a
prediction of sharpness [67]. Since then, further work relating system MTF and sharpness-
related image quality included the development of an optical merit function based on cam-
era or system MTF and the contrast sensitivity of the eye [68]. A more recent publication
describing models of visual response for analysis of image processing algorithms included
a conveniently parameterized model for a two-dimensional CSF [44].

Perception of sharpness in a reproduced image depends on viewing distance, the resolu-
tion of the reproduced image, and the MTF of the entire reproduction chain from camera
lens through print or display. Figure 5.16 shows an example camera MTF (including lens,
sensor, and processing effects) along with a CSF from Reference [44].

The frequency axis for the CSF is scaled for viewing the image at 100 pixels per inch on
a display at a viewing distance of 20 inches, a common viewing distance for a computer
display. The peak in the human CSF aligns fairly well with the peak of the camera MTF,
which is desirable for a well-tuned image chain. The perceived improvement from edge
enhancement is maximized if the edge enhancement has the greatest effect on frequencies
with the greatest response in the human CSF.

During capture, viewing conditions for the reproduced image are generally unknown
and variable, since users view digital images in a variety of ways on a variety of devices.
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FIGURE 5.16

Example spatial frequency response with CSF overlay.

Because the viewing conditions are variable, digital camera edge enhancement is usually
optimized for a selected, somewhat conservative, viewing condition. One common condi-
tion is viewing of the image on a high-resolution display at one camera pixel per display
pixel and a viewing distance of twice the image height, cropping the image to fit the dis-
play. Another viewing condition, with images resized to fill a large display and viewing
at a distance of 34 inches, was used in development of a quality ruler for subjective image
evaluation [69], [70], while other options include viewing prints of various sizes.

5.7.2 Linear Edge Enhancement

Routine edge enhancement is based on a convolution operation to obtain an edge map,
which is scaled and added to the original image, as follows:

A′ = A+ kE, (5.20)

where A′ is the enhanced image, A is the image from the previous processing stage, k is
a scalar gain, and E is the edge map. There are several possible ways to create E, one of
which is an unsharp mask:

E = A−A∗b, (5.21)

where b is a lowpass convolution kernel and ∗ refers to a convolution. A second method is
direct convolution:

E = A∗h, (5.22)

where h is a highpass or bandpass convolution kernel. The design of the convolution ker-
nel, either b or h, and the choice of k, are the main tuning parameters in linear edge en-
hancement. The kernel controls which spatial frequencies to enhance, while k controls the
magnitude of the enhancement. Often, the kernel is designed to produce a bandpass edge
map, providing limited gain or even zero gain at the highest spatial frequencies.

Consistency of edge response in the enhanced image is an important consideration in
kernel design. If the camera has an anisotropic optical transfer function (OTF), such as
caused by an anti-aliasing filter that blurs only in one direction, the kernel may be designed
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edge in

FIGURE 5.17

Soft thresholding and edge limiting edge enhancement nonlinearity.

to partially compensate for the anisotropy. If the camera OTF is isotropic, a rotationally
symmetric kernel provides equal enhancement for edges of all orientations, preserving that
consistency.

Equations 5.21 and 5.22 do not specify the color metric for A, such as linear camera
RGB, rendered image RGB, or another color space. If the loss in system MTF is primarily
in the camera optical system, then performing enhancement in a metric linear with relative
exposure will allow for the most precise correction. However, MTF losses occur in multiple
steps in the image processing chain, several of them not linear with the original exposure.
Experience has shown that edge enhancement in a nonlinear space (for example, after tone
rendering and gamma correction) provides a more perceptually even enhancement than
applying it in a linear space [1].

5.7.3 Nonlinear Edge Enhancement

Even with a well-designed bandpass kernel, the formulation in Section 5.7.2 amplifies
noise and can produce halo artifacts at high-contrast edges. While limiting the edge en-
hancement is possible, better perceptual results can be achieved by applying a nonlinearity
to the edge map before scaling and adding it to the original image.

Figure 5.17 shows an example of nonlinearity to be applied to values in the edge map E
with a simple lookup table operation, E′ = f (E). Small edge map values are most likely to
be the result of noise, while larger edge map values are likely to come from scene edges.
The soft thresholding function shown in Figure 5.17 reduces noise amplification by reduc-
ing the magnitude of all edge values by a constant, and is widely used for noise reduction,
such as in Reference [71]. Soft thresholding eliminates edge enhancement for small mod-
ulations, while continuing to enhance larger modulations. The nonlinearity shown in Fig-
ure 5.17 also reduces halo artifacts by limiting the largest edge values, since high-contrast
edges are the most likely to exhibit halo artifacts after edge enhancement.

Figure 5.18 illustrates some of the effects discussed here. Namely, Figure 5.18a shows
an image without edge enhancement applied. There is measurable noise in the image, but
it does not detract substantially from the overall quality of the image under the intended
viewing conditions. Figure 5.18b shows the same image with a simple linear convolution
edge enhancement, as described in Section 5.7.2. The image is much sharper, with higher
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(a) (b)

(c)

FIGURE 5.18 (See color insert.)

Example images with: (a) no edge enhancement, (b) linear edge enhancement, and (c) soft thresholding and

edge-limited enhancement.

edge contrast, but also much higher noise and halo artifacts, particularly obvious in the text
in the cookbook. Figure 5.18c shows the same image with an edge-limiting soft threshold-
ing step used in edge enhancement. The sharpness of the image is only slightly less than
the sharpness of Figure 5.18b, but the noise and halo artifacts are substantially reduced.

Application of edge enhancement in an RGB color space tends to amplify colored edges
caused by chromatic aberration or other artifacts earlier in the capture chain, as well as
colored noise. Because of this, edge enhancement is often applied to the luma channel of
the image after converting to a luma-chroma color space. The specific luma-chroma color
space is often the JPEG YCBCR space, chosen for the same reasons as for noise reduction.

5.8 Compression

A digital image that has been captured and processed as described in the previous sections
of this chapter contains both mathematically redundant as well as perceptually insignificant
data. An image compression step can be included in the overall image processing chain to
produce a more efficient representation of the image, in which the redundant and percep-



Perceptually Based Image Processing Algorithm Design 159

tually insignificant data have been removed. This step of image compression reduces the
amount of physical storage space required to represent the image. This also increases the
number of images that can be stored in a fixed-size storage space as well as to allow faster
transmission of individual images from a digital camera to other devices.

Image compression can be divided into two categories: lossy and lossless. Lossless im-
age compression is reversible, meaning that the exact original image data can be recovered
from the compressed image data. This characteristic limits the amount of compression
that is possible. Lossless image compression focuses on removing redundancy in an image
representation. Images commonly have both spatial redundancy and spectral redundancy.

In addition to removing redundancy, lossy image compression uses knowledge of the
HVS to discard data that are perceptually insignificant. This typically allows a much greater
compression ratio to be achieved than with lossless image compression, while it still allows
an image with little or no visual degradation to be reconstructed from the compressed image
data. When no visual degradation occurs, the compression is referred to as visually lossless.

During (or even before) compression, images are often converted from an RGB color
space to a luminance-chrominance color space, such as YCBCR [72]. This conversion serves
multiple purposes. First, it reduces the spectral redundancy among the image channels, al-
lowing them to be independently encoded more efficiently [73]. Second, it transforms the
image data into a space in which the characteristics of the HVS can be more easily ex-
ploited. The HVS is generally more sensitive to luminance information than chrominance
information, in particular at higher spatial frequencies [74]. The chrominance channels can
be compressed more aggressively than can the luminance channel without visual degrada-
tion. One way this is achieved is by spatially subsampling the chrominance channels prior
to encoding.

Many lossy compression schemes transform the pixel data into the frequency domain.
Digital cameras predominantly use the JPEG lossy image compression standard [72]. JPEG
employs a two-dimensional discrete cosine transform (DCT) to convert pixel values into
spatial frequency coefficients. For natural imagery containing mostly low-frequency infor-
mation, this transformation compacts most of the signal energy into a small fraction of the
transform coefficients, which is advantageous for compression. Representing images in the
frequency domain is also beneficial for optimizing compression with respect to the HVS.

It is known that the HVS has varying sensitivity to different spatial frequencies [74]. In
particular, the HVS has decreasing sensitivity at higher spatial frequencies. The HVS also
has varying sensitivity according to the orientation of the spatial frequency information,
being less sensitive at a diagonal orientation than at horizontal or vertical orientations.

In JPEG image compression, the DCT is performed on 8×8 blocks of image data. This
produces a collection of 64 frequency coefficients, varying in horizontal and vertical spatial
frequency. Each of these coefficients is quantized. This is the lossy step within JPEG com-
pression, in which information is discarded. Quantization involves dividing each frequency
coefficient by an integer quantization value, and rounding the result to the nearest integer.
Reducing the accuracy by which the frequency coefficients are represented allows them to
be more efficiently compressed. Increased quantization generally results in increased com-
pression. On the other hand, the greater the quantization value applied to a given frequency
coefficient, the more uncertainty and hence greater expected error there is when recovering
the frequency coefficient from its quantized representation during decoding.
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TABLE 5.1
Default JPEG luminance quantization table.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

The characteristics of the HVS can be applied to this quantization process, exploiting the
varying sensitivity of the HVS to different spatial frequencies and orientations, as well as
to luminance and chrominance information. The contrast sensitivity function is used to in-
dicate the base detection threshold at which a spatial frequency just becomes visible under
certain viewing conditions [74]. These detection thresholds can be used to design a quanti-
zation table (also referred to as a quantization matrix) that allows maximum quantization of
frequency coefficients while retaining a visually lossless representation of the information.
Table 5.1 lists the default luminance quantization table associated with the JPEG image
compression standard, designed to be at the threshold of visibility under specific viewing
conditions [75]. The quantization values generally increase as spatial frequency increases
(from left to right, and from top to bottom), corresponding to the decreased sensitivity of
the HVS at high spatial frequencies. Also, there are relatively larger quantization values
for spatial frequencies at 45◦ orientations (on the diagonal of the matrix), indicative of the
decreased sensitivity of the HVS to diagonal frequency content.

In the JPEG compression standard, the quantization process is content independent. For
a given color channel, a single quantization table is used throughout the entire image. Be-
cause of this, JPEG-based compression is unable to directly exploit the HVS characteristic
of contrast masking. Contrast masking refers to the change in visibility of a target signal
due to the presence of a background signal [74]. As the contrast of the masking background
signal increases, it can be more difficult to detect the target signal. Contrast masking can be
observed, for example, when random noise is added to an image. The noise is more visible
in smooth regions with low contrast than in regions of high contrast and texture.

Contrast masking applies to compression. Studies have suggested three perceptually sig-
nificant activity regions in an image: smooth, edge, and texture [76]. Because of the mask-
ing properties of the HVS, high-contrast textured image regions can tolerate more error
without visual degradation than smooth regions of low contrast or isolated sharp edges in
an image. In JPEG, high-contrast textured image regions can tolerate greater quantization
of frequency coefficients than other regions. However, since the quantization tables used in
JPEG are constant throughout the image, a compromise must be made. A conservative level
of quantization can be applied throughout the image to avoid visual degradation in the most
sensitive areas. This comes at a cost of poor compression efficiency, particularly in regions
of texture where extra bits are wasted encoding perceptually insignificant information.

One method to exploit the masking properties of the HVS to increase compression effi-
ciency while remaining compliant with the JPEG image compression standard is discussed
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in Reference [77]. In this approach, local texture measurements are used to compute vis-
ibility thresholds for the spatial frequency coefficients in each block. Coefficients that are
smaller than their corresponding visibility threshold can be prequantized to zero without
introducing any visual degradation. This prequantization allows some coefficients to be
quantized to zero that otherwise would not be when the standard quantization matrix is
applied. Zero values after quantization are more efficiently encoded than nonzero values,
resulting in improved compression efficiency.

An alternative method to exploit the masking properties of the HVS within the framework
of JPEG is discussed in Reference [78]. In this approach, the quantization matrix value
applied to a particular frequency coefficient can be normalized based on previously encoded
quantized frequency coefficients. The previously encoded information is used to estimate
the amount of contrast masking present, and correspondingly the normalization factors that
can be applied to subsequent quantization matrix values. In particular, when significant
contrast masking is present, normalization values greater than one are used to increase
the quantization applied to an individual frequency coefficient. The increased quantization
results in increased compression efficiency, without introducing any visual degradation.
Although this can be done using a single quantization matrix (for a given color channel)
throughout the image as required by the JPEG standard, it does require a smart decoder
to properly interpret the compressed image data. The smart decoder must duplicate the
calculation of the normalization terms used during quantization in order to allow correct
recovery of the frequency coefficients from their quantized representations.

5.9 Conclusion

The human visual system influences the design of image processing algorithms in a dig-
ital camera. This chapter illustrates the perceptual considerations involved in the many
different steps of a digital camera image processing chain. Most tangibly, perceptual con-
siderations affect processing algorithms to help ensure that the final image “looks right.”
Noise reduction, color rendering, and edge enhancement are all performed with the human
visual system in mind. Other aspects of the processing chain are affected by the human vi-
sual system as well. The design of the image sensor color filter array and the corresponding
demosaicking algorithm exploit human visual system characteristics. Even computational
and compression efficiency are influenced by perceptual considerations. Throughout the
processing chain, perceptual considerations affect the design of image processing algo-
rithms in a digital camera.

Appendix

Compact digital cameras usually have a pixel pitch between 1 and 2 µm, so the sharpness
of the captured image is often limited by the lens even when the scene is at best focus. The
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Diffraction-limited lens MTF.

MTF for a diffraction-limited lens with a circular aperture for a perfectly focused image
can be expressed as follows [79]:

MTF(ν) =

{
2
π

[
arccos( ν

νC
)− ν

νC

√
1− ( ν

νC
)2

]
for ν < νC,

0 otherwise,
(5.23)

where ν is spatial frequency and νC = 1/(λN) denotes the cutoff frequency, which depends
on wavelength λ and the f/number N. This function is plotted for green light (550 nm) and
a wide range of f/numbers in Figure 5.19.

Each MTF curve in the figure is labeled with the f/number used to generate it. Inexpen-
sive lenses rarely have an f/number below 2.5, even for fairly short focal lengths. Inex-
pensive lenses with a longer focal length have higher minimum f/numbers, often at least
5.6. The half-sampling frequency is also shown for several different pixel pitches, each la-
beled with the appropriate pixel pitch. Finally, small circles are shown for f/numbers equal
to four and above where MTF goes through the frequency corresponding to the Rayleigh
resolution limit (0.82νC). This figure shows that as the f/number is increased, the reso-
lution limit is decreased and the MTF drops at all frequencies. While lenses are usually
not diffraction-limited at their widest apertures, the MTF still tends to drop further as the
f/number is increased.
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6.1 Introduction

Despite recent advances in digital color imaging [1], [2], producing digital photographs
that are faithful representations of the original visual scene remains still challenging due
to a number of constraints under which digital cameras operate. In particular, differences
in characteristics between image acquisition systems and the human visual system consti-
tute an underlying problem in digital color imaging. Digital cameras typically use various
color filters [3], [4], [5] to reduce the available color information to the light of certain
wavelengths, which is then sampled by the image sensor, such as a charge-coupled device
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(a) (b) (c)

FIGURE 6.1 (See color insert.)

The Macbeth color checker taken under the (a) daylight, (b) tungsten, and (c) fluorescent illumination.

(CCD) [6], [7] or a complementary metal oxide semiconductor (CMOS) sensor [8], [9].
Unfortunately, achieving a precise digital representation of the visual scene is still not quite
possible and extensive processing [10], [11], [12] of acquired data is needed to reduce an
impact of shortcomings of the imaging system.

For example, as shown in Figure 6.1, the coloration of captured images often appears
different from the visual scene, depending on the illumination under which the image is
taken. Although various light sources usually differ in their spectral characteristics [13],
[14], [15], the human visual system is capable of discounting the dominant color of the
environment, usually attributed to the color of a light source. This ability ensures the ap-
proximately constant appearance of an object for different illuminants [16], [17], [18], [19]
and is known under the name of chromatic adaptation. However, digital cameras have to
rely on the image processing methods, termed as white balancing [20], [21], [22], [23], to
produce images with appearances close to what is observed by the humans. Some cam-
eras use a sensor to measure the illumination of the scene; an alternative is to estimate the
scene illuminant by analyzing the captured image data. In either case, fixed parameters are
typically used for the whole image to perform the adjustment for the scene illuminant.

This chapter presents a framework [24], [25] that enhances the white balancing process
by combining the global and local spectral characteristics of the captured image. This
framework takes advantage of the refined color modeling and manipulation concepts in
order to adjust the acquired color information adaptively in each pixel location. The pre-
sented design methodology is reasonably simple, highly flexible, and provides numerous
attractive solutions that can produce visually pleasing images with enhanced coloration and
improved color contrast.

To facilitate the subsequent discussions, Section 6.2 presents the fundamentals of color
vision and digital color imaging, including the adaptation mechanisms of the human vi-
sual system, basic numerical representations of color signals, and various practical color
modeling concepts. Section 6.3 focuses on the white balancing basics and briefly surveys
several popular methods. Section 6.4 introduces the framework for joint white balancing
and color enhancement. Motivation and design characteristics are discussed in detail, and
some example solutions designed within this framework are showcased in different ap-
plication scenarios and analyzed in terms of their computational complexity. Section 6.5
describes methods that are commonly used for color image quality evaluation and quanti-
tative manipulation. Finally, conclusions are drawn in Section 6.6.
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Estimated effective sensitivities of the cones. Peak sensitivities correspond to the light with wavelengths of

approximately 420 nm for S-cones, 534 nm for M-cones, and 564 nm for L-cones.

6.2 Color Vision Basics

Color is a psycho-physiological sensation [26] used by the observers to sense the envi-
ronment and understand its visual semantics. It is interpreted as a perceptual result of the
light interacting with the spectral sensitivities of the photoreceptors.

Visible light is referred to as electromagnetic radiation with wavelengths λ ranging from
about 390 to 750 nanometers (nm). This small portion of the electromagnetic spectrum is
referred to as the visible spectrum. Different colors correspond to electromagnetic waves
of different wavelengths; the sensation of violet appears at 380 to 450 nm, blue at 450 to
475 nm, cyan at 476 to 495 nm, green at 526 to 606 nm, yellow at 570 to 590 nm, orange at
590 to 620 nm, and red at 620 to 750 nm. The region below 390 nm is called ultra-violet,
the region above 750 nm is called infra-red.

The human visual system is based on two types of photoreceptors localized on the retina
of the eye; the rods sensitive to light, and the cones sensitive to color [16]. The rods are
crucial in scotopic vision, which refers to vision in low light conditions where no color is
usually seen and only shades of gray can be perceived. In photopic vision, which refers to
vision in typical light conditions, the rods become saturated and thus the perception mecha-
nism completely relies on less-sensitive cones. Both rods and cones contribute to vision for
certain illumination levels, creating thus gradual changes from scotopic to photopic vision.

It is estimated that humans are capable of resolving about 10 million color sensa-
tions [20]. The perception of color depends on the response of three types of cones, com-
monly called S-, M-, and L-cones for their respective sensitivity to short, middle, and long
wavelengths. The different sensitivity of each type of cones is attributed to the spectral
absorption characteristics of their photosensitive pigments. Two spectrally different lights
that have the same L-, M-, and S-cone responses give the same color sensation; this phe-
nomenon is termed as metamers [16], [17].
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FIGURE 6.3 (See color insert.)

Chromatic adaptation. Stare for twenty seconds at the cross in the center of the top picture. Then focus on the

cross in the bottom picture; the color casts should disappear and the image should look normal.

6.2.1 Adaptation Mechanisms of the Human Visual System

The human visual system is capable of changing its sensitivity in order to adapt to pre-
vailing lighting conditions (Figure 6.3), thus maximizing its ability to extract information
from the actual environment. It operates over a very large range of illumination, although
the range of light that can be processed and interpreted simultaneously is rather limited [17].
Some quick changes are achieved through the dilation and constriction of the pupil in the
eye, thus directly controlling the amount of light that can enter the eye [18]. The actual
sensitivity changes with the response of the receptive cells on the retina of the eye. This
is a slower process and may take a few minutes until the visual system is fully adjusted
to the actual lighting conditions. Temporal adaptation and steady-state adaptation refer,
respectively, to the performance of the human visual system during the adaptation process
and in the situations when this process has been completed [17].
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Light and dark adaptation [17], [18] are the two special cases which refer to the process
of adjusting for the transition from a bright environment to a dark environment and from
a fully adapted dark environment to a bright environment, respectively. Transient adapta-
tion [19] refers to the situations typical for high-contrast visual environments, where the
eye has to adapt from low to high light levels and back in short intervals. This readaptation
from one luminous background to another reduces the equivalent (perceived) contrast; this
loss can be expressed using the so-called transient adaptation factor.

Chromatic adaptation [17], [18] characterizes the ability of the human visual system to
discount the dominant color of the environment, usually attributed to the color of a light
source, and thus approximately preserve the appearance of an object under various illumi-
nants. Different types of the receptive cells in the eye are sensitive to different bands in the
visible spectrum. If the actual lighting situation has a different color temperature compared
to the previous lighting conditions, the cells responsible for sensing the light in a band with
increased (or reduced) amount of light relative to the total amount of light from different
bands, will reduce (or increase) their sensitivity relative to the sensitivity of the other cells.
This effectively performs automatic white balancing of the human visual system. Assum-
ing that chromatic adaptation is an independent gain regulation of the three sensors in the
human visual system, these relations of the spectral sensitivities can be expressed as [17]:

l2(λ ) = kll1(λ ), m2(λ ) = kmm1(λ ), s2(λ ) = kss1(λ ), (6.1)

where l1(λ ), m1(λ ), and s1(λ ) denote the the spectral sensitivities of the three receptors at
one state of adaptation and l2(λ ), m2(λ ), and s2(λ ) for a different state. The coefficients
kl , km, and ks are inversely related to the relative strengths of activation.

Chromatic adaptation models, such as the one presented above, are essential in describing
the appearance of a stimulus and predicting whether two stimuli will match if viewed under
disparate lighting conditions where only the color of the lighting has changed. Various
computational models of chromatic adaptation are surveyed in References [17] and [18].

6.2.2 Numeral Representation of Color

Color cannot be specified without an observer and therefore it is not an inherent feature
of an object. The color stimulus S(λ ) depends on both the illumination I(λ ) and the object
reflectance R(λ ); this relationship can be expressed as follows [20], [27]:

S(λ ) = I(λ )R(λ ),

=

(
m

∑
j=1

α jI j(λ )

)(
n

∑
k=1

βkRk(λ )

)
,

=
m

∑
j=1

n

∑
k=1

α jβkI j(λ )Rk(λ ), (6.2)

where I j(λ ) and Rk(λ ) terms denote known basis functions. Given any object, it is possible
to theoretically manipulate the illumination so that it produces any desired color stimulus.

Figure 6.4 shows the spectral power distribution of sunlight, tungsten, and fluorescent
illuminations. The effect of these illumination types on the appearance of color is demon-
strated in Figure 6.1.
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FIGURE 6.4

Spectral power distribution of common illuminations.

When an object with stimulus S(λ ) is observed, each of the three cone types responds to
the stimulus by summing up the reaction at all wavelengths [20]:

X =
∫ 750

390
l(λ )I(λ )R(λ )dλ ,

Y =
∫ 750

390
m(λ )I(λ )R(λ )dλ , (6.3)

Z =
∫ 750

390
s(λ )I(λ )R(λ )dλ ,

where l(λ ), m(λ ), and s(λ ) denote the spectral sensitivities of the L-, M-, and S-cones
depicted in Figure 6.2.

Since three signals are generated based on the extent to which each type of cones is
stimulated, any visible color can be numerically represented using three numbers called
tristimulus values as a three-component vector within a three-dimensional coordinate sys-
tem with color primaries lying on its axes [28]. The set of all such vectors constitutes the
color space.

Numerous color spaces and the corresponding conversion formulas have been designed
to convert the color data from one space to some other space, which is more suitable for
completing a given task and/or addresses various design, performance, implementation, and
application aspects of color image processing. The following discusses two representations
relevant to the scope of this chapters.

6.2.2.1 Standardized Representations

The Commission Internationale de l’Éclairage (CIE) introduced the standardized CIE-
RGB and CIE-XYZ color spaces. The well-known Red-Green-Blue (RGB) space was
derived based on color matching experiments, aimed at finding a match between a color
obtained through an additive mixture of color primaries and a color sensation [29]. Its
standardized version [30] is used in most of today’s image acquisition and display devices.
It provides a reasonable resolution, range, depth, and stability of color reproduction while
being efficiently implementable on various hardware platforms.
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RGB color space.

The RGB color space can be derived from the XYZ space, which is another standardized
space. Since the XYZ space is device independent, it is thus very useful in situations where
consistent color representation across devices with different characteristics is required. Al-
though the CIE-XYZ color space is rarely used in image processing applications, other
color spaces can be derived from it through mathematical transforms.

A relationship between these two spaces can be expressed as follows [28], [31]:



X
Y
Z


 =




0.49 0.31 0.20
0.17697 0.81240 0.01063

0 0.01 0.99







R
G
B


 , (6.4)

where the Y component corresponds to the luminance, whereas X and Z do not correspond
to any perceptual attributes.

The RGB space is additive; as shown in Figure 6.5, any color can be obtained by com-
bining the three primaries through their weighted contributions [29]. Equal contributions
of all three primaries give a shadow of gray. The two extremes of gray are black and white,
which correspond, respectively, to no contribution and the maximum contributions of the
color primaries. When one primary contributes greatly, the resulting color is a shade of that
dominant primary. Any pure secondary color is formed by maximum contributions of two
primary colors: cyan is obtained using green and blue, magenta using red and blue, and
yellow using red and green. When two primaries contribute greatly, the result is a shade of
the corresponding secondary color.

The RGB space models the output of physical devices, and therefore it is considered
device dependent. To consistently detect or reproduce the same RGB color vector, some
form of color management is usually required. This relates to the specification of the white
point, gamma correction curve, dynamic range, and viewing conditions [32]. Given an
XYZ color vector with components ranging from zero to one and the reference white being
the same as that of the RGB system, the conversion to sRGB values starts as follows:
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Lab / Luv color space.




R
G
B


 =




3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416

0.0556 −0.2040 1.0570







X
Y
Z


 . (6.5)

To avoid values outside the nominal range, which are usually not supported in RGB encod-
ing, both negative values and values exceeding one are clipped to zero and one, respectively.
This step is followed by gamma correction:

f (τ) =
{

1.055τ1/2.4−0.055 if τ > 0.00304,
12.92τ otherwise,

(6.6)

where τ denotes the uncorrected color component. Finally, gamma-corrected components
f (R), f (G), and f (B) are multiplied by 255 to obtain their corresponding values in standard
eight bits per channel encoding.

6.2.2.2 Perceptual Representations

Perceptually uniform CIE u,v, CIE-Luv, and CIE-Lab representations are derived from
XYZ values. In the case of CIE u and v values, the conversion formulas

u =
4X

X +15Y +3Z
, v =

9Y
X +15Y +3Z

(6.7)

can be used to form a chromaticity diagram that corresponds reasonably well to the char-
acteristics of human visual perception [33].

Converting the data from CIE-XYZ to CIE-Luv and CIE-Lab color spaces [31] requires
a reference point in order to account for adaptive characteristics of the human visual sys-
tem [29]. Denoting this point as [Xn,Yn,Zn] of the reference white under the reference
illumination, the CIE-Lab values are calculated as

L∗ = 116 f (Y/Yn)−16,

a∗ = 500( f (X/Xn)− f (Y/Yn)) , (6.8)

b∗ = 200( f (Y/Yn)− f (Z/Zn)) ,
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whereas the CIE-Luv values are obtained as follows:

L∗ = 116 f (Y/Yn)−16,

u∗ = 13L∗ (u−un) , (6.9)

v∗ = 13L∗ (v− vn) ,

where un = 4Xn/(Xn +15Yn +3Zn) and vn = 9Yn/(Xn +15Yn +3Zn) correspond to the refer-
ence point [Xn,Yn,Zn]. The terms u and v, calculated using Equation 6.7, correspond to the
color vector [X ,Y,Z] under consideration. Since the human visual system exhibits different
characteristics in normal illumination and low light levels, f (·) is defined as follows [31]:

f (γ) =
{

γ1/3 if γ > 0.008856,
7.787γ +16/116 otherwise.

(6.10)

Figure 6.6 depicts the perceptual color space representation. The component L∗, rang-
ing from zero (black) to 100 (white), represents the lightness of a color vector. All other
components describe color; neutral or near neutral colors corresponds to zero or close to
zero values of u∗ and v∗, or a∗ and b∗. Following the characteristics of opponent color
spaces [34], u∗ and a∗ coordinates represent the difference between red and green, whereas
v∗ and b∗ coordinates represent the difference between yellow and blue.

Unlike the CIE-XYZ color space, which is perceptually highly nonuniform, the CIE-
Luv and CIE-Lab color spaces are suitable for quantitative manipulations involving color
perception since equal Euclidean distances or mean square errors expressed in these two
spaces equate to equal perceptual differences [35]. The CIE-Lab model also finds its appli-
cation in color management [36], whereas the CIE-Luv model can assist in the registration
of color differences experienced with lighting and displays [33].

6.2.3 Color Image Representation

An RGB color image x with K1 rows and K2 columns represents a two-dimensional ma-
trix of three-component samples x(r,s) = [x(r,s)1,x(r,s)2,x(r,s)3] occupying the spatial location
(r,s), with r = 1,2, ...,K1 and s = 1,2, ...,K2 denoting the row and column coordinates. In
the color vector x(r,s), the terms x(r,s)1, x(r,s)2, and x(r,s)3 denote the R, G, and B component,
respectively. In standard eight-bit RGB representation, these components can range from
0 to 255. The large value of x(r,s)k, for k = 1,2,3, indicates high contribution of the kth
primary in the color vector x(r,s). The process of displaying an image creates a graphical
representation of the data matrix where the pixel values represent particular colors.

Each color vector x(r,s) is uniquely defined by its magnitude
√

x2
(r,s)1 + x2

(r,s)2 + x2
(r,s)3 (6.11)

and direction
x(r,s)/

√
x2
(r,s)1 + x2

(r,s)2 + x2
(r,s)3, (6.12)

which indirectly indicate luminance and chrominance properties of RGB colors, and thus
are important for human perception [37]. Note that the magnitude represents a scalar value,
whereas the direction, as defined above, is a vector. Since the components of this vector
are normalized, such vectors form the unit sphere in the vector space.
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(a) (b) (c)

FIGURE 6.7

Luminance representation of the images shown in Figure 6.1 for the (a) daylight, (b) tungsten, and (c) fluores-

cent illumination.

(a) (b) (c)

FIGURE 6.8 (See color insert.)

Chrominance representation of the images shown in Figure 6.1 for the (a) daylight, (b) tungsten, and (c) fluo-

rescent illumination.

In practice, the luminance value L(r,s) of the color vector x(r,s) is usually obtained as
follows:

L(r,s) = 0.299x(r,s)1 +0.587x(r,s)2 +0.114x(r,s)3. (6.13)

The weights assigned to individual color channels reflect the perceptual contributions of
each color band to the luminance response of the human visual system [16].

The chrominance properties of color pixels are often expressed as the point on the trian-
gle, which intersects the RGB color primaries in their maximum value. The coordinates of
this point are obtained as follows [38]:

x(r,s)k

x(r,s)1 + x(r,s)2 + x(r,s)3
, for k = 1,2,3, (6.14)

and their sum is equal to unity. Both above vector formulations of the chrominance repre-
sent the parametrization of the chromaticity space, where each chrominance line is entirely
determined by its intersection point with the chromaticity sphere or chromaticity triangle
in the three-dimensional vector space.

Figures 6.7 and 6.8, generated using Equations 6.13 and 6.14, respectively, show the
luminance and chrominance representations of the images presented in Figure 6.1. As it
can be seen, changing the illumination of the scene has a significant impact on the cam-
era response, altering both the luminance and chrominance characteristics of the captured
images.
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6.2.4 Color Modeling

Any of the above definitions can be used to determine whether the two color vectors will
appear similar to the observer under some viewing conditions. By looking at this problem
from the other side, various color vectors matching the characteristics of the reference color
vector can be derived based on some predetermined criterion. For example, simple but yet
powerful color modeling concepts follow the observation that natural images consist of
small regions that exhibit similar color characteristics. Since this is definitely the case of
color chromaticity, which relates to the direction of the color vectors in the vector space, it
is reasonable to assume that two color vectors x(r,s) and x(i, j) have the same chromaticity
characteristics if they are collinear in the RGB color space. Based on the definition of dot
product x(r,s).x(i, j) = ‖x(r,s)‖‖x(i, j)‖cos

(〈x(r,s),x(i, j)〉
)
, where ‖x(·,·)‖ denotes the length of

x(·,·) and 〈x(r,s),x(i, j)〉 denotes the angle between three-component color vectors x(r,s) and
x(i, j), the following can be derived [39]:

〈
x(r,s),x(i, j)

〉
= 0⇔ ∑3

k=1 x(r,s)kx(i, j)k√
∑3

k=1 x2
(r,s)k

√
∑3

k=1 x2
(i, j)k

= 1. (6.15)

The above concept can be extended by incorporating the magnitude information into the
modeling assumption. Using color vectors x(i, j) and x(r,s) as inputs, the underlying mod-
eling principle of identical color chromaticity enforces that their linearly shifted variants
[x(r,s) + γI] and [x(i, j) + γI] are collinear vectors:

〈
x(r,s) + γI,x(i, j) + γI

〉
= 0⇔ ∑3

k=1 (x(r,s)k + γ)(x(i, j)k + γ)√
∑3

k=1 (x(r,s)k + γ)2
√

∑3
k=1 (x(i, j)k + γ)2

= 1, (6.16)

where I is a unity vector of proper dimensions and x(·,·)k + γ is the kth component of the
linearly shifted vector [x(·,·) + γI] = [x(·,·)1 + γ,x(·,·)2 + γ,x(·,·)3 + γ]. A number of solutions
can be obtained by modifying the value of γ , which is a design parameter that controls the
influence of both the directional and the magnitude characteristics.

By reducing the dimensionality of the vectors to two components, some popular color
correlation-based models can be obtained, such as the normalized color-ratio model [40]:

x(r,s)k + γ
x(i, j)k + γ

=
x(r,s)2 + γ
x(i, j)2 + γ

, (6.17)

or the color-ratio model [41] given by
x(r,s)k

x(i, j)k
=

x(r,s)2

x(i, j)2
, (6.18)

which both enforce hue uniformity. Another modeling option is to imply uniform image
intensity by constraining the component-wise magnitude differences, as implemented by
the color-difference model [42]:

x(r,s)k− x(i, j)k = x(r,s)2− x(i, j)2. (6.19)

The above modeling concepts have proved to be very valuable in various image process-
ing tasks, such as demosaicking, denoising, and interpolation. It will be shown later that
similar concepts can also be used to enhance the white balancing process.



178 Perceptual Digital Imaging: Methods and Applications

FIGURE 6.9 (See color insert.)

Examples of the images taken in different lighting conditions without applying white balancing.

6.3 White Balancing

As previously noted, the humans observe the approximately constant appearance of an
object in different lighting conditions. This phenomenon of chromatic adaptation, also
termed as color constancy, suggests that the human visual system transforms recorded
stimuli into representations of the scene reflectance that are largely independent of the
scene illuminant [16].

Automatic white balancing of the visual data captured by a digital camera attempts to
mimic the chromatic adaption functionality of the human visual system and usually pro-
duces an image that appears more neutral compared to its uncorrected version. This correc-
tion can be performed using chromatic-adaption transforms to ensure than the appearance
of the resulting image is close to what the human observer remembers based upon his or
her own state of adaptation. Figure 6.9 shows several images captured in different lighting
conditions prior to performing white balancing.

Digital cameras use image sensors and various color filters to capture the scene in color.
Similar to the process described in Equation 6.3, which characterizes the response of the
human eye, the photosensitive elements in the camera respond to the stimulus S(λ ) =
I(λ )R(λ ) by summing up the reaction at all wavelengths, which gives

Rsensor =
∫ 750

390
r(λ )I(λ )R(λ )dλ ,

Gsensor =
∫ 750

390
g(λ )I(λ )R(λ )dλ , (6.20)

Bsensor =
∫ 750

390
b(λ )I(λ )R(λ )dλ ,

where r(λ ), g(λ ), and b(λ ) denote the spectral sensitivities of the sensor cells with the red,
green, and blue filters, respectively. The discrete version of the above equation is expressed
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as follows:

Rsensor =
m

∑
j=1

r(λ j)I(λ j)R(λ j)∆λ ,

Gsensor =
m

∑
j=1

g(λ j)I(λ j)R(λ j)∆λ , (6.21)

Bsensor =
m

∑
j=1

b(λ j)I(λ j)R(λ j)∆λ .

Automatic white balancing can be seen as the process that aims at minimizing the effect
of I(λ ) to ensure that Rsensor, Gsensor, and Bsensor correlate with the object reflectance R(λ )
only [20], [43]. To solve this complex problem, various assumptions and simplifications
are usually made, as discussed below.

6.3.1 Popular Solutions

In automatic white balancing, the adjustment parameters can be calculated according
to some reference color present in the captured image, often using the pixels from white-
like areas, which are characterized by similar high contributions of the red, green, and
blue primaries in a given bit representation. This so-called white-world approach works
based on the assumption that the bright regions in an image reflect the actual color of the
light source [44]. If the scene does not contain natural white but it exhibits a sufficient
amount of color variations, better results can be obtained using all pixels in the image [15],
[23]. In this case, the underlying assumption is that the average reflectance of the scene
is achromatic; that is, the mean value of the red, green, and blue channel is approximately
equal. Unfortunately, this so-called gray-world approach can fail in images with a large
background or large objects of uniform color. To obtain a more robust solution, the two
above assumptions can be combined using the quadratic mapping of intensities [45].

A more sophisticated approach can aim at preselecting the input pixels to avoid being
susceptible to statistical anomalies and use iterative processing to perform white balanc-
ing [46]. Another option is to use the illuminant voting scheme [47], which is a procedure
repeated for various reflectance parameters in order to determine the corresponding illu-
mination parameters that obtain the largest number of votes by solving a system of linear
equations. In the so-called color-by-correlation method [43], the prior information about
color distributions for various illuminants, as observed in the calibration step, is correlated
with the color distribution from the actual image to determine the likelihood of each possi-
ble illuminant. Another solution combines various existing white balancing approaches to
estimate the scene illuminant more precisely [48].

6.3.2 Mathematical Formulation

Once the prevailing illuminant is estimated, the white-balanced image y with the pixels
y(r,s) = [y(r,s)1,y(r,s)2,y(r,s)3] is usually obtained as follows:

y(r,s)k = αkx(r,s)k, for k = 1,2,3, (6.22)
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where αk denotes the gain associated with the color component x(r,s)k. The process
alters only the red and blue channels of the input image x with the pixels x(r,s) =
[x(r,s)1,x(r,s)2,x(r,s)3] obtained via Equation 6.20, and keeps the green channel unchanged,
that is, α2 = 1.

In the case of the popular gray-world algorithm and its variants, the channel gains are
calculated as follows:

α1 =
x̄2

x̄1
, α3 =

x̄2

x̄3
, (6.23)

where the values

x̄k =
1
|ζ | ∑

(i, j)∈ζ
x(i, j)k, for k = 1,2,3, (6.24)

constitute the global reference color vector x̄ = [x̄1, x̄2, x̄3] obtained by averaging, in a
component-wise manner, the pixels selected according to some predetermined criterion.
This criterion can be defined, for instance, to select white pixels, gray pixels, or all pixels
in the input image x in order to obtain the set ζ , with |ζ | denoting the number of pixels
inside ζ .

6.4 Joint White Balancing and Color Enhancement

This section presents a framework that can simultaneously perform white balancing and
color enhancement using refined pixel-adaptive operations [24], [25]. Such adaptive pro-
cessing, which combines both the global and local spectral characteristics of the input im-
age, can be obtained, for instance, using the color modeling concepts presented in Sec-
tion 6.2.4 or a simple combinatorial approach.

6.4.1 Spectral Modeling-Based Approach

More specifically, instead of applying the fixed gains αk in all pixel locations to pro-
duce the white-balanced image y with pixels y(r,s), the adaptive color adjustment process
is enforced through the pixel-adaptive parameters α(r,s)k associated with the pixel x(r,s).
Following the multiplicative nature of the adjustment process in Equation 6.22, the color-
enhanced white-balanced pixels y(r,s) can be obtained as follows:

y(r,s)k = α(r,s)kx(r,s)k, for k = 1,2,3, (6.25)

where α(r,s)k are pixel-adaptive gains updated in each pixel position using the new reference
vector x̂(r,s) = [x̂(r,s)1, x̂(r,s)2, x̂(r,s)3], which depends on the actual color pixel x(r,s) and the
global reference vector x̄.

Similar to Equation 6.23, the actual α(r,s)k values in Equation 6.25 are formulated as
the ratios of proper color components from the reference vector used to guide the ad-
justment process. Namely, as discussed in Reference [49] based on the rationale be-
hind Equation 6.18, the pixel-adaptive gains are obtained as α(r,s)k = x̂(r,s)2/x̂(r,s)k for
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x̂(r,s)k = x(r,s)2x̄k/x̄2, x̂(r,s)2 = x(r,s)kx̄2/x̄k, and k ∈ {1,3}, resulting in

α(r,s)1 =
x(r,s)1x̄2

2

x(r,s)2x̄2
1
, α(r,s)3 =

x(r,s)3x̄2
2

x(r,s)2x̄2
3
, (6.26)

where care needs to be taken to avoid dividing by zero.
In situations where x(r,s)k and x(r,s)2 represent two opposite extremes in a given bit rep-

resentation, the corresponding gain coefficient α(r,s)k, for k ∈ {1,3}, will have too large
or too small value and Equation 6.25 can produce saturated colors. To address this prob-
lem, a positive constant γ can be added to both the nominator and the denominator of ratio
formulations in Equation 6.26 as follows:

α(r,s)1 =
x(r,s)1x̄2

2 + γ
x(r,s)2x̄2

1 + γ
, α(r,s)3 =

x(r,s)3x̄2
2 + γ

x(r,s)2x̄2
3 + γ

, (6.27)

which is equivalent to α(r,s)k = (x̂(r,s)2 + γ)/(x̂(r,s)k + γ), for k ∈ {1,3}. The parameter γ
controls the adjustment process; using γ = 20 usually gives satisfactory result in most sit-
uations, further increasing γ above this value reduces the adjustment effect down to the
original white-unbalanced coloration for some extreme settings since α(r,s)1 = α(r,s)3 = 1
for γ →∞. Since shifting linearly the components of the reference vector may significantly
change the original gain values, an inverse shift should be added to the adjusted color com-
ponents to compensate for this effect, which gives the following adjustment formula [25]:

y(r,s)k =−γ +α(r,s)k(x(r,s)k + γ), for k = 1,2,3. (6.28)

The above formula takes the form of the normalized color ratios in Equation 6.17. The
components of the reference vector x̂(r,s), obtained previously using standard color ratios,
can also be redefined using the normalized color ratios as x̂(r,s)k = −γ +(x(r,s)2 + γ)(x̄k +
γ)/(x̄2 + γ) and x̂(r,s)2 =−γ +(x(r,s)k + γ)(x̄2 + γ)/(x̄k + γ) for α(r,s)k with k ∈ {1,3}. This
modification gives

α(r,s)1 =
(x(r,s)1 + γ)(x̄2 + γ)2

(x(r,s)2 + γ)(x̄1 + γ)2 , α(r,s)3 =
(x(r,s)3 + γ)(x̄2 + γ)2

(x(r,s)2 + γ)(x̄3 + γ)2 , (6.29)

where too small values of γ can result in images with excessive color saturation.
To increase the numerical stability of pixel-adaptive gains, the local color ratios

x(r,s)k/x(r,s)2 in Equations 6.26 and 6.27 and (x(r,s)k + γ)/(x(r,s)2 + γ) in Equation 6.29 can
be constrained as

(
x(r,s)k

x(r,s)2

)ρ
and

(
x(r,s)k + γ
x(r,s)2 + γ

)ρ
, for k ∈ {1,3}, (6.30)

where ρ is a tunable parameter, with a typical operating range set as −1 ≤ ρ ≤ 1. Using
ρ = 0 eliminates the contributions of the actual pixel from the gain calculations. Increasing
the value of ρ above zero enhances the color appearance of the image, whereas reducing the
value of ρ below zero suppresses the image coloration. Figures 6.10 and 6.11 demonstrate
this behavior using Equations 6.28 and 6.29.
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.10 (See color insert.)

Joint white balancing and color enhancement using the spectral modeling approach: (a,d) ρ = 0, (b,e) ρ = 0.25,

and (c,f) ρ = 1.0.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.11 (See color insert.)

Joint white balancing and color enhancement using the spectral modeling approach: (a,d) ρ =−0.5, (b,e) ρ =
0, and (c,f) ρ = 0.5.

As suggested in the above discussion, various color modeling concepts can be em-
ployed within the presented framework. For example, in addition to the color ratio-based
calculations, the reference vector x̂(r,s) can be obtained as x̂(r,s)k = x(r,s)2 + x̄k − x̄2 and
x̂(r,s)2 = x(r,s)k + x̄2− x̄k for α(r,s)k with k =∈ {1,3} using the color difference concept pre-
sented in Equation 6.19. The enumeration of all available options or the determination
of the optimal design configuration according to some criteria is beyond the scope of this
chapter.
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.12 (See color insert.)

Joint white balancing and color enhancement using the combinatorial approach: (a,d) w = 0.5, (b,e) w = 0,

and (c,f) w =−0.5.

6.4.2 Combinatorial Approach

Spectral modeling is not the only available option to combine the global and local refer-
ence color vectors in order to obtain pixel-adaptive gains. This combination function can
be as simple as a weighting scheme with a tunable parameter assigned to control the contri-
bution of the local gains and its complementary value assigned to control the contribution
of the global gains [24], [50]:

α(r,s)k = w
x(r,s)2

x(r,s)k
+(1−w)

x̄2

x̄k
, for k ∈ {1,3}, (6.31)

where w is a tunable parameter. Substituting α(r,s)k in Equation 6.25 with the above gain
expression leads to the following:

y(r,s)k = wx(r,s)2 +(1−w)
x̄2

x̄k
x(r,s)k, for k = 1,2,3, (6.32)

which is another formulation of pixel-adaptive white balancing.
The amount of color adjustment produced in Equation 6.32 consists of the white bal-

ancing term (1−w)x(r,s)kx̄2/x̄k and another term wx(r,s)2, which can be seen as a color
enhancement term for certain values of w. Namely, for w = 1 no white balancing is per-
formed, as the method produces achromatic pixels by assigning the value of x(r,s)2 from the
input image to all three components of the output color vector y(r,s). Reducing the value of
w toward zero enhances the amount of coloration from achromatic colors to those gener-
ated by white balancing. Further decreasing w, that is, setting w to negative values results in
color enhancement, with saturated colors produced for too low values of w. This behavior
is demonstrated in Figure 6.12.
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.13 (See color insert.)

Color enhancement of images with inaccurate white balancing: (a–c) input images and (d–f) their enhanced

versions.

6.4.3 Experimental Results

Following the common practice, the presented framework keeps the green channel un-
changed using α(r,s)2 = 1. Color adjustment effects are thus produced through the red and
blue channel gains α(r,s)1 and α(r,s)3, which are updated in each pixel location of the cap-
tured image; that is, for r = 1,2, ...,K1 and s = 1,2, ...,K2.

The uncorrected color images, such as those shown in Figure 6.9, were produced by
demosaicking the scaled raw single-sensor data captured using the Nikon D50 camera with
a native resolution of 2014× 3039 pixels. In order to do the best possible adjustment for
the scene illuminant, the global reference vector x̄ was calculated using the pixels in white
regions whenever possible.

Figures 6.10 to 6.12 show the results of joint white balancing and color enhancement for
some example solutions. As it can be seen, these solutions produce a wide range of color
enhancement. Moreover, as demonstrated in Figures 6.11 and 6.12, the color enhancement
effects can range from image appearances with suppressed coloration to appearances with
rich and vivid colors. The desired amount of color enhancement, according to some criteria,
can be easily obtained through parameter tuning.

The next experiment focuses on the effect of color enhancement in situations with inac-
curate white-balancing parameters. Figure 6.13 shows both the images with simulated (and
perhaps exaggerated) color casts due to incorrect white balancing and the corresponding
images after color enhancement. As expected, the color cast is more visible in the images
with enhanced colors. In general, any color imperfection, regardless whether it is global
(such as color casts) or local (such as color noise) in its nature, gets amplified by the color
enhancement process. This behavior is typical also for other color enhancement operations
in the camera processing pipeline, including color correction and image rendering (gamma
correction, tone curve-based adjustment).
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(a) (b) (c)

(d) (e) (f)

FIGURE 6.14 (See color insert.)

Color adjustment of the final camera images: (a,d) suppressed coloration, (b,e) original coloration, and (c,f) en-

hanced coloration.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.15 (See color insert.)

Color enhancement of the final camera images: (a–c) output camera images and (d–f) their enhanced versions.

Finally, Figures 6.14 and 6.15 show the results when the presented framework operates
on the final processed camera images. To adapt to such a scenario, one can reasonably
assume that the images are already white balanced; this implies that the components of the
global reference vector x̄ should be set to the same value. Also in this case, the framework
allows for a wide range of color enhancement, which suggests that the visually pleasing
images with enhanced colors and improved color contrast can be always found through
parameter tuning.
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6.4.4 Computational Complexity Analysis

Apart from the actual performance, the computational efficiency is another realistic mea-
sure of practicality and usefulness of any algorithm. Several example solutions designed
within the presented framework are analyzed below in terms of normalized operations, such
as additions (ADDs), subtractions (SUBs), multiplications (MULTs), divisions (DIVS), and
comparisons (COMPs).

For the color image with K1 rows and K2 columns, the solution defined in Equations 6.25
and 6.26 requires 2K1K2 + 2 MULTs and 2K1K2 + 2 DIVs to calculate the pixel-adaptive
gains, and 2K1K2 MULTs to apply these gains to the image. Implementing Equations 6.28
and 6.29 requires 4K1K2 + 4 ADDs, 2K1K2 + 2 MULTs, and 2K1K2 + 2 DIVs to calculate
the pixel-adaptive gains and additional 2K1K2 SUBs and 2K1K2 MULTs to apply these
gains to the image. The tunable adjustment in Equation 6.30, implemented as a look-
up table, will slightly add to the overall complexity. In the case of Equation 6.32, the
adjustment process requires 2K1K2 ADDs, 1 SUB, 4K1K2 + 2 MULTs, and 2 DIVs. In
addition to the above numbers, 3K1K2− 3 ADDs and 3 DIVs are needed when the global
reference vector x̄ in Equation 6.24 is calculated using all the pixels, or 3|ζ |−3 ADDs, 3
DIVs, and 3K1K2 COMPs when x̄ is calculated using the selected pixels. As can be seen,
all the example solutions have a very reasonable computational complexity, which should
allow their efficient implementation in various real-time imaging applications.

Moreover, as reported in Reference [25], the execution of various solutions designed
within the presented framework on a laptop equipped with an Intel Pentium IV 2.40 GHz
processor, 512 MB RAM box, Windows XP operating system, and MS Visual C++ 5.0
programming environment can take (on average) between 0.4 and 0.85 seconds to process
a 2014× 3039 color image. Additional performance improvements are expected through
extensive software optimization. Both the computational complexity analysis and the re-
ported execution time suggest that the presented framework is cost-effective.

Finally, it should be noted that this chapter focuses on the color manipulation operations
performed on full-color data. In the devices that acquire images using the image sensor
covered by the color filter array, the full-color image is obtained using the process known
as demosaicking or color interpolation. However, as discussed in References [24], [25],
and [50], the presented framework is flexible and can be applied before or even combined
with the demosaicking step. Thus, additional computational savings can be achieved.

6.4.5 Discussion

Numerous solutions can be designed within the presented framework by applying the
underlying principle of mixing the global and local spectral characteristics of the captured
image. In addition to using the actual pixel to produce the color enhancement effect, the
framework allows extracting the local image characteristics using the samples inside a local
neighborhood of the pixel being adjusted. These neighborhoods can be determined by di-
viding the entire image either into non-overlapping or overlapping blocks, and then select-
ing a block that, for example, contains the pixel location or minimizes the distance between
its center and the pixel location being adjusted. However, such block-based processing may
significantly increase the computational complexity compared to true pixel-adaptive meth-
ods, such as the example solutions presented in this chapter.
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The presented framework can operate in conjunction with the white balancing gains
recorded by the camera. This can be done through the replacement of ratios x̄2/x̄k, for
k ∈ {1,3}, with the actual gains indicated by the camera for each of the respective color
channels. If the gain associated with the green channel is not equal to one, then the white
balancing gains should be normalized by the gain value associated with the green channel
prior to performing the replacement.

In summary, the presented framework, which integrates white balancing and pixel-
adaptive color enhancement operations, can be readily used in numerous digital camera
and color imaging applications. The example solutions designed within this framework are
flexible; they can be used in conjunction with various existing white balancing techniques
and allow for both global or localized control of the color enhancement process. The frame-
work is computationally efficient, has an excellent performance, and can produce visually
pleasing color images with enhanced coloration and improved color contrast. The frame-
work can be seen as an effective solution that complements traditional color correction,
color saturation, and tone curve adjustment operations in the digital imaging pipeline or a
stand-alone color enhancement tool suitable for image editing software and online image
processing applications.

6.5 Color Image Quality Evaluation

The performance of color image processing methods, in terms of image quality, is usually
evaluated using the subjective evaluation approach and the objective evaluation approach.

6.5.1 Subjective Assessment

Since most of the images are typically intended for human inspection, the human opin-
ion on visual quality is very important [51]. Statistically meaningful results are usually
obtained by conducting a large-scale study where human observers view and rate images,
presented either in specific or random order and under identical viewing conditions, using
a predetermined rating scale [52]. For example, considering the scope of this chapter, the
score can range from one to five, reflecting poor, fair, good, very good, and excellent white
balancing, respectively. Using the same score scale, the presence of any distortion, such as
color artifacts and posterization effects, introduced to the image through the color adjust-
ment process can be evaluated as very disruptive, disruptive, destructive but not disruptive,
perceivable but not destructive, and imperceivable.

6.5.2 Objective Assessment

In addition to subjective assessment of image quality, automatic assessment of visual
quality should be performed whenever possible, preferably using the methods that are ca-
pable of assessing the perceptual quality of images or can produce the scores that correlate
well with subjective opinion.
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In the CIE-Luv or CIE-Lab color space, perceptual differences between two colors can
be measured using the Euclidean distance. This approach is frequently used in various
simulations to evaluate the difference between the original image and its processed version.
It is also common that the image quality is evaluated with respect to the known ground-truth
data of some object(s) present in the scene, typically a target, such as the Macbeth color
checker shown in Figure 6.1.

If the image is in the RGB format, the procedure includes the conversion of each pixel
from the RGB values to the corresponding XYZ values using Equation 6.4, and then from
these XYZ values to the target Luv or Lab values using the conversion formulas described
in Section 6.2.2.2. Operating on the pixel level, the resulting perceptual difference between
the two color vectors can be expressed as follows [29]:

∆E∗uv =
√

(L∗1−L∗2)
2 +(u∗1−u∗2)

2 +(v∗1− v∗2)
2, (6.33)

∆E∗ab =
√

(L∗1−L∗2)
2 +(a∗1−a∗2)

2 +(b∗1−b∗2)
2. (6.34)

The perceptual difference between the two images is usually calculated as an average of
∆E errors obtained in each pixel location. Psychovisual experiments have shown that the
value of ∆E equal to unity represents a just noticeable difference (JND) in either of these
two color models [53], although higher JND values may be needed to account for the
complexity of visual information in pictorial scenes.

Since any color can be described in terms of its lightness, chroma, and hue, the CIE-Lab
error can be equivalently expressed as follows [29], [33]:

∆E∗ab =
√(

∆L∗ab

)2 +
(
∆C∗ab

)2 +
(
∆H∗

ab

)2
, (6.35)

where ∆L∗ab = L∗1−L∗2 denotes the difference in lightness,

∆C∗ab = C∗1 −C∗2 =
√

(a∗1)
2 +(b∗1)

2−
√

(a∗2)
2 +(b∗2)

2 (6.36)

denotes the difference in chroma, and

∆H∗
ab =

√
(a∗1−a∗2)

2 +(b∗1−b∗2)
2− (

∆C∗ab

)2 (6.37)

denotes a measure of hue difference. Note that the hue angle can be expressed as h∗ab =
arctan(b/a).

A more recent ∆E formulation weights the chroma and hue components by a function
of chroma [54]:

∆E∗94 =

√(
∆L∗ab
kLSL

)2

+
(

∆C∗ab
kCSC

)2

+
(

∆H∗
ab

kHSH

)2

, (6.38)

where SL = 1, SH = 1 + 0.015
√

C∗1C∗2 , SC = 1 + 0.045
√

C∗1C∗2 , and kL = kH = kC = 1 for
reference conditions. More sophisticated formulations of the ∆E measure can be found
in References [55], [56], and [57], which employs spatial filtering to obtain an improved
measure for pictorial scenes.
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6.6 Conclusion

This chapter presented a framework that can simultaneously perform white balancing and
color enhancement. This framework takes advantage of pixel-adaptive processing, which
combines the local and global spectral characteristics of the captured visual data in order
to produce the output image with the desired color appearance. Various specific solutions
were presented as example methods based on relatively simple but yet powerful spectral
modeling or combinatorial principles.

The framework is flexible, as it permits a wide range of functions that can follow the un-
derlying concept of adaptive white balancing using a localized reference color vector that
blends the spectral characteristics of the estimated illumination and the actual pixel. An
additional degree of freedom in the design can be achieved through various tunable param-
eters that may be associated with such functions. The variety of such functions and efficient
design methodology makes the presented framework very valuable in modern digital imag-
ing and multimedia systems that attempt to mimic the human visual perception and use
color as a cue for better image understanding and improved processing performance.
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7.1 Introduction

As shrunk versions of pictures, thumbnails are commonly used in image preview, organi-
zation, and retrieval [1], [2], [3], [4]. In the age of digital media, a thumbnail plays a similar
role for an image as an abstract does for an article. Just consider today’s digital cameras;
it is hard to find one with less than six Megapixels. Viewers expect to observe both the
global composition and important perceptual features of the original full-size picture by
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inspecting its thumbnail, which should thus provide a faithful impression about the image
content and quality.

In practice, thumbnails mainly serve in the following two aspects. First, they provide
viewers a convenient way to preview high-resolution pictures on a small display screen. For
instance, many portable devices, such as digital cameras and cell phones, provide prompt
image preview function by small-size LCD displays [5]. Second, thumbnails enable the
user to quickly browse a large number of images without being distracted by unimportant
details. For example, almost all visual search engines, such as Google Images and Bing
Images, use thumbnails to organize their returned search results. As the proliferation of
digital images has been increasing in recent years, generating perceptually faithful thumb-
nails becomes very important.

From the historical viewpoint, the concept of thumbnail is gradually changed due to the
developing practical requirements in real-world applications. At the very beginning, for a
given full-size picture, a thumbnail was generated simply by filtering and subsampling [6],
[7]. Then, to emphasize some important portions in original pictures, region of interest
(ROI)-based thumbnails were proposed based on visual attention models [1], [8]. Com-
pared to conventional downsampled thumbnails that equally treat all image parts and fea-
tures in the original size, ROI-based thumbnails highlight visually important regions only,
thus helping viewers to focus on essential parts, but inevitably losing the perceptual faith of
global composition in original pictures. In recent years, moreover, people start to realize the
necessity and importance of perceptual thumbnails [5], [9]. Specifically, perceptual thumb-
nails highlight the quality-related and perceptually important features in original pictures,
with the global structural composition preserved. From perceptual thumbnails, viewers can
easily assess the image quality without checking the original full-size versions, thus facil-
itating faithful image preview on small displays and fast browsing of a large number of
pictures. In contrast, without perceptual thumbnails, evaluating the quality of images taken
by digital cameras requires that the user has to repeatedly zoom in, zoom out at different
scales, and shift across different parts of the pictures at higher resolutions, which is usually
very time consuming, inconvenient, and ineffective. Moreover, the operation of zooming
in may also make viewers lose the perception of the global composition of pictures.

Clearly, both conventional downsampled thumbnails and ROI-based thumbnails are not
qualified to serve as perceptual thumbnails. As shown in Figure 7.1, some apparent percep-
tual features in the original pictures, for instance, blur and noise, may easily be lost in the
downsampled thumbnails, no matter what interpolation algorithm is used. As mentioned
above, the conventional downsampling process may significantly reduce the resolution of
perceptual features in downsampled thumbnails. To discover a phenomenon in an image,
the resolution of the phenomenon must be larger than some threshold that represents the
perceiving capability of viewers. When the reduced resolution of naively downsampled
perceptual features becomes less than viewers’ perceiving thresholds, these features cannot
be noticed. Therefore, in perceptual thumbnails, some important quality-related features
should be highlighted and the resolution of perceptual features should not be affected by
the downsampling process. Besides, ROI-based thumbnails cannot be used as perceptual
thumbnails since this approach destroys the global composition of the original pictures.
To this end, successful perceptual thumbnail generation should meet the four requirements
discussed below.
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• Low cost: As thumbnails are widely used in prompt preview of high-resolution pic-
tures and fast browsing of a large number of images, they must be generated in an
economic way in terms of their computation and storage. Hence, fast and simple
algorithms for highlighting perceptual features are desirable.

• Unsupervision: Since one may want to quickly produce a large number of thumbnails
in a browsing task, they should be generated automatically. Both preliminary training
and on-the-fly parameter tuning should be avoided.

• Highlighting multiple perceptual features: To faithfully reflect the content and qual-
ity of original full-size pictures in thumbnails, multiple quality-related features, such
as blur and noise, should be highlighted according to their respective strengths.

• Preserving the original composition: It is important for perceptual thumbnails to
provide viewers with a clear impression about the global structure (composition) of
original pictures. For instance, the user may want to quickly decide whether or not
to take a second shot of the same scene by checking the thumbnails on small display
screens in their cameras.

This chapter focuses on introducing the recent development of perceptual thumbnail gen-
eration techniques that satisfy the above four requirements. Within a unified framework,
particular attention is paid to preserving and highlighting two types of quality-related per-
ceptual features, that is, blur and noise.

Section 7.2 briefly introduces the techniques for traditional thumbnail generation and
specifically discusses signal-level downsampled thumbnail generation and ROI-based
thumbnail generation methods. Signal-level thumbnail generation concerns the develop-
ment of different filtering or interpolation techniques in order to reduce aliasing artifacts in
thumbnails. In contrast, ROI-based thumbnail generation aims at preserving salient image
regions and essential structures during image resizing.

The next three sections focus on the technical details of perceptual thumbnails. Namely,
Section 7.3 first described the commonly noticed visual cues/features that indicate image
quality and need to be preserved in perceptual thumbnails. Then, it introduces a general
framework for perceptual thumbnail generation, focused on blur and noise as two com-
monly encountered types of low-level perceptual features. This framework can be extended
to include other types of perceptual features, such as bloom and overexposure. At last, this
section briefly presents several state-of-the-art perceptual thumbnail generation methods
that are based on the proposed general working flow. Sections 7.4 and 7.5 elaborate how
to highlight spatially variant blur and homogeneous noise in thumbnails, respectively. Al-
though blur and noise estimation has been studied for decades in image processing and
computer vision, most previous deblurring and denoising methods tried to get an accurate
estimate of blur and noise strength for the goal of recovering blur-free and noise-free im-
ages. Perceptual thumbnail generation, on the contrary, aims to highlight blur and noise at
a noticeable scale in thumbnails. This raises the requirements of appropriate but inexact
algorithms for blur and noise estimation, as well as alias-free blur and noise visualization.
Therefore, these two sections also discuss how to quickly estimate blur and noise from the
original images, and effectively visualize them in the downsampled thumbnails.
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Section 7.6 presents a number of experimental results that comprehensively compare
the performance of different techniques in perceptual thumbnail generation. Current per-
ceptual thumbnail generation only handles blur and noise, the two low-level visual cues.
Finally, this chapter concludes with Section 7.7, which summarizes the state-of-the-arts of
perceptual thumbnail generation and discusses some possible ways to highlight other types
of perceptual cues, including red-eye effect and bloom, in thumbnails.

7.2 Traditional Thumbnail Generation

Traditional thumbnail generation techniques can be classified as signal-level thumbnail
generation and ROI-based thumbnail generation. Signal-level thumbnail generation tech-
niques [7], [10], [11], [12], [13] create the thumbnail from a high-resolution original image
by prefiltering and subsampling. The generated thumbnail preserves the original compo-
sition. ROI-based thumbnail generation techniques [2], [3], [14], [15], [16], on the other
hand, aim at detecting and retaining important regions in the resulting thumbnail.

7.2.1 Signal-Level Thumbnail Generation

Signal-level thumbnail generation relies on image resampling techniques, which usually
employ both filtering and subsampling [17]. Due to different filtering schemes employed,
the quality of the resulting thumbnails may differ greatly. Among the existing image re-
sampling techniques, the simplest method is decimation, that is, keeping some pixels of the
original image and throwing others away. Without prefiltering the original image, decima-
tion typically leads to significant aliasing artifacts.

To reduce such aliasing artifacts, lowpass filters can be used before decimation. For
example, box filter computes an average of pixel values within the pixel neighborhood. Bi-
linear filter performs linear filtering first in one direction, and again in the other direction.
The bicubic filter [10] is often chosen over the bilinear filter since the resampled image
is smoother and has fewer aliasing artifacts. Other than second-order polynomials defined
in bilinear filter and third-order polynomials defined in bicubic filter, high-order piecewise
polynomials [12] can also be used, although the improvement is marginal. More sophis-
ticated B-spline approximation is reported in the literature for image resampling [7], [11].
There exist other suitable linear methods, including Lanczos [6] and Mitchell [18] filters.
The aforementioned filters are space-invariant (isotropic) in nature. In the context of tex-
ture mapping, perspective mapping leads to space-variant (anisotropic) footprint. For this
application, elliptic Gaussian-like filters have been employed [19], [20], [21].

Another trend of image resampling is to perform edge-adaptive interpolation in order to
generate sharp edges in the resampled image. In Reference [22], the authors developed an
edge-directed image interpolation (NEDI) algorithm. They estimated local covariance from
a low-resolution image and used the low-resolution covariance to adapt the image interpo-
lation at a higher resolution. Reference [23] developed a method to optimally determine
the local quadratic signal class for the image. Reference [24] proposed an edge-guided
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(a) (b)

(c) (d) (e) (f)

FIGURE 7.1 (See color insert.)

Signal-level thumbnail generation: (a) original image, (b) two magnified regions cropped from the original

image, and (c–f) thumbnails. Thumbnails are downsampled using (c) decimation, (d) bilinear, (e) bicubic, and

(f) Lanczos filtering.

nonlinear interpolation algorithm, which estimates two observation sets in two orthogonal
directions, and then fuses the two observation sets by the linear minimum mean square-
error estimation technique. Another work [25] relied on a statistical edge dependency re-
lating edge features of two different resolutions, and solved a constrained optimization. It
should be noted that edge-adaptive resampling techniques are specially designed for image
upsampling, and they are usually not suitable for image downsampling.

Figure 7.1 illustrates several commonly used image resampling methods. The origi-
nal image has a resolution of 2048× 1536 pixels, and is downsampled to a resolution of
320×240 pixels. As shown in Figure 7.1c, decimation results in severe aliasing artifacts.
Bilinear filtering, shown in Figure 7.1d, removes artifacts. Bicubic filtering, shown in Fig-
ure 7.1e, produces a smoother thumbnail by further reducing the aliasing artifacts. The
thumbnail generated using Lanczos filtering, shown in Figure 7.1f, has even fewer arti-
facts; however, this method is much slower than others. Obviously, signal-level thumbnail
generation techniques can prevent aliasing artifacts and preserve the original image compo-
sition. However, they are not designed to preserve perceptual image quality during image
resampling. In fact, they probably lose such features that are useful to the user to identify
the image quality. Visual inspection of the magnified regions in Figure 7.1b reveals that the
original high-resolution image suffers from noticeable blur and noise. However, the three
thumbnails in Figures 7.1d to 7.1f all appear rather clean and clear. A qualitative analysis
of the loss in the blur and noise will be presented in Section 7.3.
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(a) (b) (c)

FIGURE 7.2 (See color insert.)

ROI-based thumbnail generation: (a) high-resolution image, (b) automatic cropping, and (c) seam carving.

7.2.2 ROI-Based Thumbnail Generation

Unlike signal-level thumbnail generation, which preserves the original image composi-
tion, ROI-based thumbnail generation (Figure 7.2) just displays important image regions
in the small-scale thumbnail. In Reference [1], the downsampling distortion was reduced
by treating the high-resolution original image with edge-preserving smoothing, lossy im-
age compression, or static codebook compression. Reference [8] used an image attention
model based on region of interest, attention value, and minimal perceptible size to incor-
porate user attention in the process of adapting the high-resolution image on small-size
screens. For screens with different scale and aspect ratio, different important regions were
cropped from the original image for downsampling. Similarly, Reference [14] detected
key components of the high-resolution image based on a saliency map, and then cropped
images prior to downsampling (Figure 7.2c). Although the cropping-based methods can
render important image portions in a more recognizable way, the user will lose the global
overview of the original image.

Another research direction relating to thumbnail generation is image retargeting, which
considers geometric constraints and image contents in the resizing process. Reference [26]
maximized salient image objects by minimizing less important image portions in-between.
Since the spatial spaces between image objects may be narrowed, the relative geometric
relation between the objects can be altered in the thumbnail. Reference [15] presented
a seaming carving approach (Figure 7.2c), which removes or inserts an eight-connected
path of pixels on an image from top to bottom, or from left to right in one pass. This
method, though quite simple, is rather time consuming and may damage the image structure
severely. To address the problems in seaming carving, various retargeting techniques [16],
[27], [28], [29] have been proposed. Although the techniques can be quite different, their
objectives are similar: preserving the important image content, reducing visual artifacts,
and preserving internal image structures. A comprehensive evaluation of state-of-art meth-
ods can be found in Reference [30].

Additionally, special concerns have been reported to address the situation when the high-
resolution image contains texts. For example, Reference [3] created thumbnails for web
pages by combining text summaries and image thumbnails. Reference [2] cropped and
scaled image and text segments from the original image and generated a more readable
layout for a particular display size. Following the aforementioned two works, many subse-
quent research works can be found, such as References [31], [32], and [33].
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The ROI-based thumbnail generation techniques have been proven successful in pre-
serving important image contents in the low-resolution thumbnail. However, none of them
account for perceptual quality features in the high-resolution image. As a result, such tech-
niques may remove these desired features during image downsizing.

7.3 Perceptual Thumbnail Generation

This section first describes several common visual/perceptual cues that indicate image
quality. Then, it presents a general framework for perceptual thumbnail generation, specif-
ically focusing on highlighting blur and noise in thumbnails. Finally, a brief overview of
the state-of-the-art methods in perceptual thumbnail generation is presented.

7.3.1 Quality-Indicative Visual Cues

Given a picture shot with a digital camera, the user often demands to inspect whether or
not the picture is well shot by quickly checking the thumbnail image. Such a quality in-
spection process can certainly benefit from properly highlighting some perceptual features
in the thumbnail. However, in order to do so, one first needs to find what features or ef-
fects in the original picture should be highlighted in the thumbnail. According to practical
photography experiences, there are generally two categories of quality-related perceptual
features: low-level image features and high-level semantic features.

7.3.1.1 Low-Level Image Features

There are some features that degrade the quality of an image but have less to do with
the image content. Such features include blur, noise, bloom, overexposure, underexposure,
and so on. In most cases, these features are quality indicative and should be noticed by the
user during the photo-taking process, thus requiring to be preserved and highlighted by the
downsampling operation when creating the thumbnails.

• Blur: Except for some special cases, a blurry picture is usually inferior to a sharp pic-
ture of the same scene. The user often accidently moves his or her hands during photo
shooting, thus creating blur, which may also occur when there are moving objects in
the scene or when some subjects are out of focus of the camera. Image blur, such
as spatially varying blur and homogeneous blur, caused by different reasons may ex-
hibit different spatial properties. In most cases, if the user notices unexpected blur in
a picture through the preview screen of a digital camera, the user may choose to take
a second shot on the same scene. Hence, blur is a very important quality-indicative
effect in images and certainly should be highlighted in perceptual thumbnails. An
example of image blur is shown in Figure 7.3a.

• Noise: Image noise is the random variation of color or brightness information pro-
duced by image sensors during exposure and analog-to-digital conversion. It often
looks like color grains and scatters over the entire image. There are two types of



200 Perceptual Digital Imaging: Methods and Applications

(a) (b)

(c) (d)

FIGURE 7.3 (See color insert.)

Quality-indicative visual cues: (a) blur, (b) noise, (c) bloom, and (d) red-eye defects.

image noise: fixed pattern noise and random noise [34]. Fixed pattern noise is gener-
ally visible when using long exposure time or when shooting under low-light condi-
tions with high ISO speed. It has the same pattern under similar lighting conditions.
Random noise occurs at all exposure times and light levels. It appears as randomly
fluctuated intensities and colors, and is different even under the identical lighting
condition. Banding noise is a special type of random noise that appears as horizon-
tal or vertical strikes. It is generated by the camera when reading data from image
sensors, and is more noticeable at high ISO speed. Generally, any noise degrades the
quality of a picture and therefore is also quality indicative. Figure 7.3b demonstrates
how image noise appears in a picture.
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• Bloom: Bloom is the phenomenon that a bright light source appears as a bright halo
and leads to color bleeding into nearby objects. This phenomenon occurs when the
light source is so strong that the sensor pixels become saturated. For example, in
Figure 7.3c, shooting direct sunlight will generate such effect around the boundary
of sunlight area. Since the appearance of bloom will significantly destroy the local
details of a scene, bloom is also quality indicative.

• Overexposure and underexposure: Overexposure and underexposure refer to the ef-
fect of losing details in highlight and shadow regions, respectively. This is usually
caused by inappropriate setting of camera’s shutter speed and exposure. In high-
resolution photography, except for some special effects, overexposure and underex-
posure should be avoided in order to maintain high image quality.

7.3.1.2 High-Level Semantic Features

High-level perceptual features are highly related to the image content [35], as they ei-
ther reflect some unexpected phenomena of the particular objects or even relate to some
aesthetic aspects of the image. Some typical high-level perceptual features are listed be-
low. High-level perceptual features are more difficult to be detected and highlighted in
thumbnails than low-level perceptual features.

• Defected eyes: When shooting a human subject, the user usually cares whether the
eyes were opened at the time of pressing the camera shutter and do not appear as red
due to the reflected light from the flash (Figure 7.3d). To automatically detect and
correct the red-eye effects in images, various methods have been designed [36], [37].

• Simplicity: The most discriminative factor that differentiates professionals from am-
ateur photographers is whether the photo is simple [35]. For a picture, being simple
usually means that it is easy to separate the subject from the background. There are
various ways for professionals to achieve this goal, including making background
out of focus, choosing significant color contrast, and using large lighting contrast
between the subject and the background. Recently, simplicity was also used as an
important criterion for image quality assessment [35].

• Realism: Similar to simplicity, realism is another high-level feature that reflects aes-
thetic image quality [35]. Professional photographers often carefully choose the
lighting conditions and the color distribution, and make use of filters to enhance
the color difference. They are also very deliberate in the picture composition of the
subject and background. All these are for the purpose of keeping the foreground of
pictures as realistic as possible.

In the context of thumbnail generation, some features (for example, simplicity and re-
alism) might remain in the low-resolution thumbnail to some extent, while other features
(for example, blur, noise, bloom, overexposure/underexposure, and defected eyes) are less
noticeable due to the downsampling process. This chapter focuses on studying how to pre-
serve two typical low-level image features, that is, blur and noise, in thumbnails. As already
mentioned, these two phenomena may significantly degrade image quality and commonly
exist in digital pictures.
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7.3.2 A General Framework

Before presenting the general framework of producing perceptual thumbnails, the loss of
blur and noise features by conventional image downsampling is first analyzed. Suppose the
original image is represented as vector x. Denote the antialiasing lowpass filter as T and
subsampling operation as S. The conventional thumbnail can then be expressed as follows:

y = S◦T (x), (7.1)

where ◦ stands for function composition. When the original image suffers from blur and
noise, it can be formulated as

x = B(x̂)+n, (7.2)

where B and n represent the blur and noise, respectively, and x̂ is the ideal image without
blur and noise degradation. Substituting Equation 7.2 into Equation 7.1 gives

y = S◦T ◦B(x̂)+S◦T (n). (7.3)

The following examines the term S ◦ T ◦B(x̂) of the above equation. Except for some
extreme blurs, the lowpass filter B, usually representing accidental blur, has a much larger
bandwidth than the lowpass filter T . In another words, compared to the influence of filter
T , the influence of filter B can be much less noticeable in small-resolution thumbnails.
Consequently, the conventional downsampled thumbnails will appear rather sharp than at
their original scales.

In the second term S◦T (n) of the same equation, the noise n, mostly composed of lots of
high-frequency information, is filtered by T . Thus, it will become much less apparent than
in the original resolution. For instance, if n is a Gaussian noise of zero mean and moderate
variance, T (n) will be close to zero under typical downsampling factors. As a result, the
conventional thumbnail y will appear rather clean.

To highlight the blur and noise effects in y with proper strength, the perceptual thumbnail
can be formulated as follows:

y′ = B(y)+n. (7.4)

Intuitively, the conventional thumbnail should be blurred according to the blur strength in
the original image, and the noise information should be superimposed at the same time. By
this way, the user can easily inspect and discover the blur and noise level in the image by
viewing the thumbnail alone.

Using the above extract-and-superimpose strategy, the general framework of perceptual
thumbnail generation, which is capable of highlighting blur and noise features, can now be
summarized. As illustrated in Figure 7.4, the high-resolution image is first downsampled
to get the conventional thumbnail. Then, the blur and noise information present in the
original high-resolution image is estimated and extracted. Afterward, the detected amount
of blur is properly added into the thumbnail, followed by rendering the estimated noise in
order to produce the refined perceptual thumbnail. Note that the presented framework for
perceptual thumbnail generation is general enough and can be easily extended to include
other types of perceptual features.
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FIGURE 7.4

The framework of perceptual thumbnail generation, which particularly highlights two typical perceptual fea-

tures, that is, blur and noise. This framework uses the general extract-and-superimpose strategy that can be

easily extended to include other types of perceptual features.

7.3.3 State-of-the-Art Methods

Although perceptual thumbnail generation is relatively a new topic, there are several re-
lated preliminary works that have been reported in the literature. For instance, the image
preview method introduced in Reference [5] divides the problem of perceptual thumbnail
generation into structure enhancement and perceptual feature visualization tasks. The first
task highlights the salient structure and suppresses the subtle details in the image by non-
linearly modulating the image gradient field. The second task estimates the strength of
blur and noise in the original image and then superimposes blur and noise with appropriate
degrees in the conventional thumbnail. Similarly, Reference [4] studied how to estimate
and visualize blur and noise features in the thumbnail. The perceptual thumbnail were gen-
erated by directly blurring the conventional thumbnail and adding noise to it. The noise
estimation method was further improved to achieve fast performance [9]. Other related
efforts in this direction have been exploited in References [38] and [39].

Current perceptual thumbnail generation is highly related to the problems of image de-
blurring [40], [41], [42] and denoising [43], [44]. These two problems are rather difficult,
and the relevant algorithms are usually complicated and time consuming. In contrast, in-
stead of reconstructing the ideal high-resolution image, the goal of perceptual thumbnail
generation is to visualize blur and noise in a proper way with reasonable complexity. This
relieves the need of recovering actual blur kernels and estimating the noise accurately. In-
stead, a rough yet fast algorithm for blur and noise estimation is preferable. This is indeed
the focus of the existing works related to perceptual thumbnail generation. Although most
of these works consider blur and noise in perceptual thumbnails, they adopt quite differ-
ent algorithms for blur/noise estimation and rendering. The following describes the two
representative methods proposed in References [4] and [5].
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7.4 Highlighting Blur in Thumbnails

This section suggests how to highlight the reduced blurriness in perceptual thumbnails.
Specifically, for the blurred regions in the original high-resolution picture, the perceptual
blur highlighting method should magnify the reduced blurriness in their downsampled
counterparts, while for the sharp regions at original scales, the goal is to maintain their
clearance in thumbnails. Hence, the two major steps in perceptual blur highlighting are
blur strength extraction from the original pictures and faithful visualization of extracted
blurriness in thumbnails.

7.4.1 Blur Estimation

In the literature, there exist many methods for blur estimation; these methods provide
global blur metrics and evaluate the overall blurriness of an image [45], [46], [47]. A
suitable global blur metric is helpful to assess images with uniform blurs, such as the mo-
tion blur due to shaking cameras. This is, however, insufficient for producing perceptual
thumbnails, since the pictures may contain spatially varying blurs. For example, the out-of-
focus regions may appear different blur strength at different depth. This raises the demands
for local blur estimation. Although there exist studies focused on spatially varying blur
determination [48], [49], [50], most of them rely on solving various optimization prob-
lems, which is is usually time consuming and inconvenient, and thus these methods are not
suitable for efficiently generating perceptual thumbnails. To overcome this drawback, two
techniques [5], [9] for roughly determining a local blur strength map from a high-resolution
image will now be described.

7.4.1.1 Gradient-Based Blur Estimation

Gradient-based blur estimation [5] relies on an important observation that the variation
of a blurry edge region is much more gradual than that of a sharp edge region. Thus, the
strength of regional blurriness can be quantitatively measured according to the variance of
gradient angles/directions within the corresponding edge region. Specifically, the smaller
the regional variance of gradient angles is, the blurrier the edge region would be. To verify
this fact, Figure 7.5 shows the simulation test where each of the six high-resolution im-
ages were first blurred by Gaussian filters with increased standard deviations and then the
variances of gradient directions in all edge regions were measured. As can be seen, as the
strength of Gaussian filters increases, the average of directional variances in the gradient
field decreases significantly.

Let Ai denote the gradient angle of the i-th edge pixel, which can be obtained as

Ai = arctan
(∆t(i)

∆s(i)

)
, (7.5)

where ∆t(i) and ∆s(i) are the first-order differences of pixel i along two spatial dimensions.
Then, the gradient-based space-varying blur metric can be defined as follows:

Bi = α exp
(−β var(Ai)τ), (7.6)
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Inverse relationship of blur strength and regional variance of gradient directions.
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Gradient-based blur estimation flowchart.

where var(·) is the variance operator and returns the direction variance within the neighbor-
hood of pixel i. Parameters α , β , and τ control the influence of local gradient directional
variance to the estimated blur strength. With this equation, the estimated blur strength is
increasing with respect to the standard deviation of the Gaussian filter, as will be shown
later.

In the context of perceptual thumbnail generation, there is no need to estimate the blur
metric for the entire image at the original high resolution. In fact, one needs only to partially
measure the blur strength in the low-resolution thumbnail image. Specifically, the blur
around edge regions is visually much more noticeable and important to the viewers than
in other regions [5], even when the entire image is very blurry. Hence, to speed up the
computation, gradient-based blur estimation and highlight can be performed only around
the edge regions in the thumbnail image by referring to its original version at the high
resolution. As a result, as illustrated in Figure 7.6, gradient-based blur estimation is a
three-step process. First, edge detection is performed on the conventional thumbnail to
get salient edge pixels. Second, for each edge pixel in the thumbnail, its corresponding
region at the original high-resolution picture is found. This small region defines the pixel
neighborhood that is used to evaluate the gradient angel variance of current edge pixel.
Finally, the blur metric is computed according to Equation 7.6. In this way, a blur strength
map for all edge pixels in the thumbnail image can be obtained.



206 Perceptual Digital Imaging: Methods and Applications

subsampled

range map

conventional

thumbnail

pyramid

filtering

range map
original

image

range map

at s

range map

at s

range map

at s

..
.

0

1

n

find the scale

with the best

feature match

blur map

FIGURE 7.7

Scale-space-based blur estimation flowchart.

7.4.1.2 Scale-Space-Based Blur Estimation

Scale-space-based blur estimation [9] generates a space-varying blur map. Its basic idea,
in contrast to gradient-based estimation, is first to smooth the conventional thumbnail using
various Gaussian kernels with different scales and then to find the best filter scale such that
the smoothed region in the filtered thumbnail image is most similar to the corresponding
region in the high-resolution image. The algorithmic flow of scale-space-based blur esti-
mation is illustrated in Figure 7.7. In order to generate a space-varying blur map, filter scale
matching is performed for the entire thumbnail image. Similar to gradient-based blur esti-
mation, this method does not differentiate between motion blur and out-of-focus blur, and
just estimates the pixel-level blur metric. However, unlike gradient-based blur estimation,
the scale-space method estimates the blur strength of all pixels in the thumbnail image.

In more detail, the conventional thumbnail y is blurred by a series of Gaussian kernels g
with increasing scales {σ j}, generating an indexed set of filtered thumbnails f j as follows:

f j = g(σ j)∗ y, (7.7)

where g(·) represents Gaussian filter. As shown in Figure 7.7, for each blurred thumbnail,
a local feature is extracted at each pixel and is compared to the features extracted from the
high-resolution image. Here, the local feature of a pixel is defined as the maximum abso-
lute difference between the appearances of the pixel and its surrounding eight neighbors.
This generates a series of range maps {r j}, where j is the index of evaluated Gaussian filter
scales [9]. Similarly, a range map for the high-resolution image is generated and subsam-
pled to the thumbnail scale by further taking the maximum range value in a high-resolution
neighborhood conforming to the subsampling factor. Specifically, denote the subsampled
range map to be ro. The blur map index at pixel i can then be computed as

mi = min
j
{ j |r j(i)≤ γro(i)}, (7.8)
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where the parameter γ controls the amount of highlighted blur in thumbnails. Empirically,
besides the conventional thumbnail, ten additional scales were used in experiments, starting
from σ1 = 0.5 and ending at σ11 = 2.4 with an increment of 0.2111. Note that in the above
equation, the blur map returns the index of evaluated Gaussian filters. For illustration
purposes, the corresponding blur scale is visualized in Figure 7.7.

7.4.2 Blur Visualization

The second step of perceptual blur highlighting is faithful blur visualization. After per-
forming either gradient-based blur estimation [5] or scale-space-based blur estimation [9],
the extracted space-varying blur maps control Gaussian kernels with varying scales, which
are finally superimposed into the downsampled thumbnail y pixel by pixel and result in a
faithfully blurred thumbnail yb. Note that although the actual image blur in the original res-
olution may not be exactly conformed to Gaussian kernels, using Gaussian filters in the blur
visualization for perceptual thumbnails is empirically a reasonable and effective choice, as
the goal is to produce a visually faithful and noticeable blur effect.

Particularly, there are two types of methods to superimpose the space-varying Gaus-
sian blurs in thumbnails. The first method is incremental superimposition. In the case of
gradient-based blur estimation [5], the estimated pixel-level blur metric can be used as the
standard deviation of a Gaussian filter. Note that the blur is estimated only at edge pixels of
the conventional thumbnail. To get a reliable blurring effect, the blur strength at edge pixels
is diffused to their neighborhood with self-adjusted filter scales. The blur metric for one
pixel near an edge region is approximated as a weighted average of blur strengths of edge
pixels nearby. The second method is independent superimposition. For the case of scale-
space-based blur estimation [9], the estimated blur value corresponds to a specific Gaussian
kernel with a particular scale. Since blur estimation is conducted at the entire thumbnail
image, pixel values can be directly selected from the blurred thumbnails as follows:

yb(i) = fmi(i), (7.9)

where mi is the detected index of Gaussian filters for pixel i, and fmi is the smoothed
neighborhood of pixel i in the thumbnail image.

Note that both incremental and independent superimposition have respective pros and
cons. For instance, independent superimposition tends to produce artifacts in the blurred
thumbnails, since there is nothing to protect the spatial coherence of blur strength by in-
dependent blur rendering. On the other hand, incremental superimposition has no such
problem; however, the exact blur strength rendered into the thumbnail image is not implic-
itly clear when using incremental superimposition.

7.4.3 Evaluation

A simulation test with uniform blur is conducted to study how the blurriness is preserved
across different blur strengthes. Six sharp high-resolution images are chosen as the test
dataset. Each high-resolution image is blurred by a series of Gaussian kernels with increas-
ing standard deviations starting from 0.5. The conventional thumbnails that match different
blur strengths are prepared as well. Finally, the average blur strength is obtained for each
blurred image using gradient-based blur estimation and scale-space-based blur estimation.
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Relationship between detected blur strength and the ground truth Gaussian filter scales: (a) gradient-based blur

estimation and (b) scale-space-based blur estimation.

Figure 7.8 shows the results of the average of the estimated blur standard deviations
for the considered dataset. For gradient-based blur estimation, the estimated blur standard
deviation is the computed blur metric. For scale-space-based blur estimation, the standard
deviation of matched filter is retrieved according to the estimated index of tested Gaussian
kernels. In both cases, the estimated standard deviation values increase as the blur gets
more severe. In addition, they increase rapidly for small blur scales and become saturated
for large blur scales.

7.5 Highlighting Noise in Thumbnails

Highlighting image noise in the thumbnail also involves two major steps, that is, estimat-
ing the noise in a high-resolution image and visualizing the noise in the image thumbnail.

7.5.1 Noise Estimation

Traditional image denoising [43], [44], [51] aims at reconstructing a noise-free image
from its input noisy version. It is critical to have an accurate estimate of noise, otherwise
the recovered image is still degraded. In perceptual thumbnail generation, the goal is to
visualize noise and the exact precise form of the noise is not necessary for displaying noise
in thumbnails. This relieves the requirement for noise estimation in two aspects. First,
some prior knowledge about noise distribution can be exploited. Second, fast and inexact
noise estimation methods [5], [9] can be used.

7.5.1.1 Region-Based Noise Estimation

Image noise, as discussed in Section 7.3, is generated by image sensors during image
acquisition. It is distributed over the entire image irrespective of the image content. How-
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Region-based noise estimation flowchart.

ever, image noise is more visually apparent to the viewer in intensity-uniform regions than
texture-intensive regions. It is because image noise is a high-frequency signal. Texture
regions also have lots of high-frequency details; therefore, differentiating image noise from
high-frequency texture details is usually difficult. Uniform regions, on the contrary, contain
much less details, and hence the high-frequency information in uniform regions are mainly
from image noise. Taking this prior knowledge, a region-based noise estimation was de-
veloped in Reference [5]. Its basic idea is to detect noise in a small uniform region of
the high-resolution image, and then to synthesize a noise map in the thumbnail resolution
based on the estimated noise region. Figure 7.9 illustrates the procedure.

Region-based noise estimation starts with the conventional thumbnail y and divides it
into non-overlapped regions {Ωk(y)}. The most uniform region Ωu(y) is selected as the
one with the minimum intensity variance, as follows:

Ωu(y) = min
k
{k|var(Ωk(y))}. (7.10)

The uniform region Ωu(x) in the high-resolution image can then be determined from Ωu(y)
via upsampling. To estimate the noise in Ωu(x), a wavelet-based soft thresholding [51]
is used. It first obtains empirical wavelet coefficients cl by pyramid filtering the noisy
region Ωu(x). Next, the soft thresholding nonlinearity is applied to the empirical wavelet
coefficients:

ĉl = sgn(cl)(|cl|− τ)+, (7.11)

where (a)+ = a if a ≥ 0, and (a)+ = 0 if a < 0. The threshold τ is specially chosen
as τ = 1.6σl

√
2log(N)/N, where N is the number of pixels in the noisy uniform region

Ωu(x). The noise standard deviation is estimated as σl = cm/0.6745, where cm is the median
absolute value of the normalized wavelet coefficients. Finally, the noise-free uniform region
Ωu(x̂) is recovered by inverting the pyramid filtering and the noise region is determined as

nu(x) = Ωu(x)−Ωu(x̂). (7.12)

Note that the estimated noise region nu(x) may not be in the thumbnail resolution. Hence,
a noise map n(x) in the thumbnail resolution needs to be created. As noise distributes
uniformly in the high-resolution image, one can use a simple yet efficient method to obtain
n(x). Namely, for each pixel in n(x), its value is randomly selected from the estimated
noise region nu(x). Although the resulted noise map n(x) may not have exact match in the
high-resolution image, it offers the viewer a quite similar visual experience.
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7.5.1.2 Multirate Noise Estimation

The noise estimation method presented in Reference [4] also relies on wavelet-based soft
thresholding [51]. Instead of a full wavelet transform, a single high-pass filtered signal is
used to generate the noise. This signal is determined as

xh = x−g(σ)∗ x, (7.13)

where g(σ) is a Gaussian filter with standard variation σ = 1. The soft threshold nonlin-
earity, as defined in Equation 7.11, is applied to the filtered signal. Then the noise map is
given by

ρ(i) =
{

xh(i), if xh(i) < τ,
τ , otherwise.

(7.14)

where the threshold τ is estimated from xh without performing wavelet transform, and thus
differing from region-based noise estimation. Here, the noise estimate ρ corresponds to
the high-resolution original image. According to Reference [52], subsampling the noise
estimate ρ by a scaling factor t generates the noise map n at the thumbnail resolution with
the same standard deviation. Therefore, the noise map n can be computed as

n(i) = ρ(ti). (7.15)

In this noise estimation algorithm, estimating ρ can be rather slow due to the high resolu-
tion of the original image. A fast version of this algorithm was developed in Reference [9]
by exchanging the order of subsampling and noise generation. More specifically, multirate
signal transformations [52] was used to estimate the noise at the low thumbnail resolution.
Multirate noise estimation is feasible since there are enough pixels at the thumbnail reso-
lution for the determination of the noise standard deviation. In addition, the soft threshold
nonlinearity commutes with the subsampling operator. Due to these two facts, subsam-
pling can be applied to the high-resolution image and the noise estimate is performed on
the subsampled low-resolution image. Note that the threshold τ is estimated from the low-
resolution image subsampled from the high-resolution image. Figure 7.10 illustrates the
process of multirate noise estimation. Readers are referred to Reference [9] for a more
detailed analysis of multirate noise estimation.

7.5.2 Noise Visualization

Visualizing noise is rather simple. As the noise is assumed to be additive to the ideal
signal, the noise-preserved thumbnail is formed by adding the estimated noise map n to
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the thumbnail. Considering image blur, the noise visualization is performed after blur
visualization as follows:

yn(i) = yb(i)+mag∗n(i), (7.16)

where the parameter mag controls the strength of noise to be visualized.
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7.5.3 Evaluation

A simulation using a noise image is conducted to evaluate the performance of the two
noise estimation methods. To roughly simulate the observed noise in photographs [53],
the noise image is generated by adding a Gaussian noise with the standard deviation
σ = 10/255 = 0.392 to a gray image with constant values. In Figure 7.11a, the 2048×1536
noise image (with one patch shown in the left-top position) is downsampled by different
subsampling factors. At each subsampling scale, a 100× 100 region is cropped for il-
lustration. It is obvious that increasing the subsampling scale reduces the strength of noise
gradually. In the thumbnail of a resolution 205×154 shown in Figure 7.11b, the noise is al-
most invisible. The two noise estimation methods, with the outputs shown in Figures 7.11c
and 7.11d, are applied at each downsampling scale to estimate the noise map. Figure 7.11e
shows the results of the standard deviations for the estimated noise maps with respect to
the subsampling factors. The conventional thumbnail has a decreased standard deviation.
The decreasing slope verifies the observation that the larger the subsampling factor is, the
less noisy the thumbnail appears. Both noise estimation methods, on the other hand, have
nearly horizontal lines and quite close to the ideal curve. The results indicate that the two
methods are able to preserve the noise standard deviations faithfully across scale.

7.6 Experimental Results

This section presents some experimental results and comparisons of perceptual thumb-
nail generation with the ability of highlighting blur and noise. All results reported here are
produced using α = 1, β = 3.0, τ = 2.0, and γ = 1.5.

First, the experimental results on blur highlighting are reported. Note that a good blur
highlighting algorithm should be able to reflect present blur and should not to introduce ob-
vious blur when the picture is sharp. Figure 7.12 demonstrates a blurry picture due to cam-
era shake. The conventional thumbnail with 423×317 pixels appears rather clear and sharp,
although the magnified regions in the original high-resolution image with 2816×2112 pix-
els look blurry. Both gradient-based and scale-space-based blur estimation can reflect blur
in the modulated thumbnails. Visual inspection of the corresponding blur maps reveals that
both methods have effects around edge regions. The difference is that the gradient-based
method visualizes blur around salient edges only, while the scale-space-based method is
effective in most edges, including weak edges. In terms of visual experience, the scale-
space-based method introduces larger blur that is thus more visible to viewers; however, it
appears to produce block artifacts.

Now that the existing blur highlighting methods are effective for blurry pictures, their
performance is exploited in the case of sharp pictures, for which the methods are expected
to introduce as small blur as possible. Refer to Figures 7.13 and 7.14. The two high-
resolution pictures with 2048×1536 pixels are shot without motion blur or camera shake.
One can see in the magnified image region that the edges are rather strong and sharp.
Hence, the perceptual thumbnail at a resolution of 342× 256 pixels should look similar
to the conventional thumbnail, which is also sharp and clear. A close inspection of the



Perceptual Thumbnail Generation 213

(a) (b)

(c) (d)

(e) (f)

FIGURE 7.12 (See color insert.)

Highlighting blur in the thumbnail when the original image is blurred: (a) conventional thumbnail at a resolu-

tion of 423×317 pixels, (b) two magnified regions from the original image with 2816×2112 pixels, (c) per-

ceptual thumbnail obtained using gradient-based blur estimation, (d) corresponding blur map, (e) perceptual

thumbnail obtained using the scale-space-based blur estimation, and (f) corresponding blur map.

thumbnails in Figures 7.13c, 7.13d, 7.14b, and 7.14c reveals that either method introduces
some blur in the resulted thumbnails. From side-by-side comparisons, it can be observed
that the gradient-based method suffers less from the unexpected blur, and the scale-space-
based method may introduce obvious distracting blur in some regions.
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(a) (b)
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FIGURE 7.13 (See color insert.)

Highlighting blur in the thumbnail when the original image is sharp: (a) conventional thumbnail with 341×256

pixels, (b) magnified region from the original image with 2048× 1536 pixels, (c) perceptual thumbnail via

gradient-based blur estimation, and (d) perceptual thumbnail via scale-space-based blur estimation.

(a) (b) (c)

FIGURE 7.14 (See color insert.)

Highlighting blur in the thumbnail when the original image with 1536×2048 pixels is sharp: (a) conventional

thumbnail with 256×341 pixels, (b) perceptual thumbnail via gradient-based blur estimation, and (c) percep-

tual thumbnail via scale-space-based blur estimation.
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FIGURE 7.15

Highlighting noise in the thumbnail: (a) original noisy image, (b) two magnified regions from the original

image, (c) conventional thumbnail, (d) perceptual thumbnail obtained using region-based noise estimation, and

(e) perceptual thumbnail obtained using multirate noise estimation.

The following discusses the experimental results for noise highlighting. Similar to the
requirements of blur highlighting methods, a good noise highlighting method shall be able
to visualize image noise for noisy images, and not to introduce apparent noise for noise-
free images. Figures 7.15 and 7.16 compare the conventional thumbnail and the perceptual
thumbnail from region-based noise estimation and multirate noise estimation. The two
high-resolution images (2272× 1704 and 2048× 1536 pixels) suffer from severe noise;
however, such noise cannot be observed when viewing their conventional thumbnails. On
the contrary, the two noise estimation methods are able to generate thumbnails that reflect
noise in a similar way to the original high-resolution images.

In Figure 7.17, noise estimation is performed for a noise-free high-resolution image with
2048×1536 pixels. The perceptual thumbnail should be similar to the conventional thumb-
nail which looks clean. Comparing the results reveals that the thumbnail from region-based
noise estimation is almost the same as the conventional thumbnail. The thumbnail from
multirate noise estimation has details enhanced in texture-intensive regions. Here, both
noise estimation methods used Equation 7.16 with the parameter mag = 2. A smaller value
of this parameter can be used to reduce the level of detail enhancement.

Finally, Figure 7.18 shows an example that combines both blur highlighting and noise
highlighting. The high-resolution image with 2048× 1536 pixels suffers from image blur
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FIGURE 7.16

Highlighting noise in the thumbnail: (a) original noisy image, (b) two magnified regions from the original im-

age, (c) conventional thumbnail, (d) thumbnail obtained using region-based noise estimation, and (e) thumbnail

obtained using multirate noise estimation.

and noise that take effect in the entire image. The thumbnails generated by using bilinear,
bicubic, and Lanczos filtering methods shown in Figures 7.18c to Figures 7.18e appear
rather clean and clear; by viewing these thumbnails the user cannot tell that the high-
resolution image is noisy and blurry. This is not the case when the thumbnails are created
by adding blur only according to the gradient-based and scale-space-based blur estimation
methods. Comparing the resulted thumbnails with the conventional ones, image blur is
reflected in the resulted thumbnails. The final thumbnails are generated by superimposing
the estimated noise. As can be seen in Figures 7.18h and 7.18k, the perceptual thumbnails
well reflect the blur and noise present in the high-resolution image.

7.7 Conclusion

This chapter discussed perceptual thumbnail generation, a practical problem available
in digital photography, image browsing, image searching, and web applications. Differing
from the conventional image thumbnails, the perceptual thumbnails allows inspecting the
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FIGURE 7.17

Highlighting noise in the thumbnail: (a) original noise-free image, (b) two magnified regions from the original

image, (c) conventional thumbnail, (d) thumbnail obtained using region-based noise estimation, and (e) thumb-

nail obtained using multirate noise estimation.

image quality at the small thumbnail resolution. Perceptual thumbnails serve in an intuitive
way by displaying the perception-related visual cues in the thumbnail resolution.

Perceptual thumbnail generation is still a rather new problem in the field of computer
vision and media computing. Existing methods mainly focus on two low-level visual cues,
that is, blur and noise. Although blur and noise estimation and removal have been exten-
sively studied, the goal of most techniques is to obtain the blur kernel and noise model and
in turn to reconstruct the ideal image. Perceptual thumbnail generation does not have such
strict requirements for blur and noise estimation. A rough and fast estimation is sufficient
and necessary in this case. Existing techniques on perceptual thumbnail generation exploit
how to assess the local spatial-varying blur strength and the noise in a fast way.

One potential future task for perceptual thumbnail generation is to highlight other visual
cues, like the red-eye effect. There are many works on detecting and removal red-eye
effects [36], [37]. However, visualizing red eyes in the thumbnail is not as straightforward
as highlighting blur and noise. Superimposing the detected red eyes with the thumbnail
may result in an unnatural preview. To highlight red eyes in the thumbnail, a possible
solution is to mark its region in the thumbnail. For example, one may draw a red ellipse
around the defected eyes. Image bloom is another phenomenon which is associated with
similar problems, that is, how to effectively visualize it in thumbnails.
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FIGURE 7.18 (See color insert.)

Highlighting blur and noise in the thumbnail: (a) original image with both blur and noise, (b) two magni-

fied regions from the original image, (c) conventional thumbnails obtained using bilinear filtering, (d) con-

ventional thumbnails obtained using bicubic filtering, (e) conventional thumbnails obtained using Lanczos

filtering, (f) gradient-based estimation blur map, (g) perceptual thumbnail obtained using gradient-based blur

estimation, (h) perceptual thumbnail obtained using gradient-based blur estimation and region-based noise es-

timation, (i) scale-space-based estimation blur map, (i) perceptual thumbnail obtained using scale-space-based

blur estimation, and (k) perceptual thumbnail obtained using scale-space-based blur estimation and multirate

noise estimation.
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8.1 Historical Background and Overview

Where does patch come from? The earliest appearance of patch as a technical term in the
open literature can be found in Reference [1], which focuses on textural features for image
classification. In those old days, pixels are termed as resolution cells and small-area patches
typically refer to a window or patch of 3×3 pixels. Later, Reference [2] introduced an im-
age enhancement approach based on local statistics, such as mean and variance, calculated
on a patch-by-patch basis in order to drive the filter to remove additive or multiplicative
noise. Computing optical flow [3] or disparity field [4] from a pair of images was also
based on the assumption that the gradient of image intensity field can be locally calculated
within a patch, where patch is often interchanged with the term window or block. Fast
advances of communication and computing technologies stimulated the research into im-
age compression, especially the development of Joint Photographic Experts Group (JPEG)
coding standard [5]. Under the context of JPEG compression, an 8× 8 discrete cosine
transform (DCT) [6] became the favorite but also contributed to the notorious block arti-
facts; from this perspective, decomposing an image into non-overlapping patches or blocks
represents a simple yet effective way of overcoming the curse of dimensionality [7].
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The establishment of wavelet theory [8], also known as filter-bank theory in the field
of electrical engineering [9] and multi-resolution analysis in the field of computer sci-
ence [10], rapidly shattered the hope of lapped or overlapped-block transforms [11]. This
new wavelet theory, connected with the intuitive Laplacian pyramid [12] but with a lot
more mathematical rigor, has found numerous applications from image coding [13] to seis-
mic signal analysis [14]. The sparsity or heavy-tailed distribution of wavelet coefficients
has become the signature of transient events — thanks to the good localization property of
wavelet bases in space and frequency, singularities (such as edges, lines, and corners) in
natural images only produce a small number of exceptions in the wavelet space. Mathe-
matically, Besov-space functions [15] and statistical modeling of wavelet coefficients [16],
[17] became the new frontiers of image modeling. The concept of patch or window was
quickly absorbed into this new context; for instance, it is often convenient to estimate the
local variance of wavelet coefficients within a local patch or window [18], [19], [20].

It was the vision community who discovered that wavelet-based image models, when
applied to the task of texture synthesis, might not be as splendid as what they have deliv-
ered for lossy image compression. The breakthrough on texture synthesis was presented
in Reference [21], where nonparametric sampling techniques convincingly demonstrated
the capability of synthesizing a large class of textures and arguably outperformed compet-
ing parametric models in the wavelet space [22]. Since then, patch-based image models,
powered by the magic of nonparametric sampling, have shown increasingly more vitality.
This resulted in many applications, such as image inpainting with exemplar-based [23],
[24], fragment-based [25], and deterministic annealing based [26] approaches, image de-
noising with nonlocal-mean [27], patch-based [28], and block-matching three-dimensional
(BM3D) [29] techniques, super-resolution imaging with exemplar-based [30], epitome-
based [31], sparsity-based [32] approaches, and object recognition with scale-invariant fea-
ture transform (SIFT) [33], local binary pattern (LBP) [34], and speeded-up robust features
(SURF) [35] techniques. Most recently, the unification of patch models and sparse repre-
sentation [36], [37] finally gave the birth to a new meaning of patch-based image models,
commonly referred to as nonlocal sparsity.

This chapter reviews the basic principles of underlying patch-based image models,
demonstrates their potential in engineering applications, and explores their possible scien-
tific connections with human vision models. Section 8.2 defines two classes — descriptive
(analysis) and generative (synthesis) — of patch-based image models and discusses their re-
lationship. Section 8.3 presents first-generation patch-based image models and emphasizes
their root in the Hilbert space. Section 8.4 introduces second-generation patch-based image
models and articulates their connection with set theoretic estimation techniques [38]. The
key for transition from first-generation to second-generation models will be to think out-
side of Hilbert space or to “think globally, fit locally” [39]. Section 8.5 presents extensive
and reproducible experimental results to demonstrate the superiority of second-generation
patch models in image denoising, compression artifact removal, and inverse halftoning.
Section 8.6 attempts to make some overarching connections with the known theories of
contour integration [40] and redundancy exploitation [41] in neuroscience. Under the hy-
pothesis that sparsity has been adopted by the human visual system as an efficient coding
strategy for adapting to the statistics of natural stimuli in the physical world, the ultimate
unsettled question appears to be: where does the sparsity come from?
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8.2 Patch-Based Image Models: Descriptive versus Generative

Why are image models or representations needed? As argued in Reference [42], one
important reason is that they provide an abstraction of the large amount of data contained
in an image. Image models enable to systematically develop algorithms for accomplishing
a particular image-related task. The nature of the specific task (for example, recognition
versus compression) suggests which of the two classes of image models – descriptive and
generative, often associated with the tasks of image analysis and synthesis, respectively
– should be used. Descriptive models focus on the extraction of distinctive features from
a given image such that they can facilitate the task of classifying the image into one of
several categories [43]. Whether a plausible image can be reconstructed from those fea-
tures is irrelevant to descriptive models. By contrast, generative models preserve the image
information and their synthesis capability lends them more desirable for the task of com-
pression and restoration than that of classification and recognition. However, recent trend
in sparsity-based recognition [44] has challenged the above common perception about gen-
erative models – they could achieve highly competent performance in recognition tasks
even though the capability of synthesis is not necessary.

Common to both descriptive and generative models is a challenge called the curse of
dimensionality. Since an image is usually decomposed of 104 to 108 pixels, developing
models directly in that high-dimensional space is often practically infeasible. This is where
the concept of patch becomes useful; instead of working with the whole image, one can
focus his attention to a small area of so-called image patches. Why is this a good idea? For
the class of descriptive models, local patches often experience much less distortion than
global images and therefore it becomes easier to define the similarity between two local
patches. Such an idea is essential to the success of a class of local keypoint descriptors, such
as SIFT [33], local binary pattern (LBP) [34], SURF [35] and affine SIFT (ASIFT) [45].
Despite the outstanding performance and increasing influence of those local descriptors,
the interest here is focused on the class of patch-based generative models.1

For the class of generative models, the discussion should articulate more about the over-
lapping among image patched. In a complete or non-redundant representations, such as
block-based DCT coding [5], no overlapping between adjacent patches is allowed – a naive
argument often goes like that patch overlapping introduces redundancy and therefore is bad
for the task of lossy image compression. Such claim is partially true or can only be justified
from an encoder perspective where satisfying the bit budget constraint is eminent. It will
be shown in the remainder of this chapter that overcomplete or redundant representations,
not just allowing but promoting patch overlapping, are highly desirable not only in various
engineering applications related to image restoration but also in scientific investigation of
how to mathematically model the human visual system. As shown in Section 8.6, there ex-
ists physiological evidence supporting the significant overlap among local receptive fields
of adjacent neurons [47], which clearly indicates that redundancy has been exploited by the

1It will be argued at the end of this chapter that under the context of bio-inspired computing, local descriptive
models have to be extended to admit global synthesis in order to reflect the organizational principles underlying
neural systems [46].
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law of evolution in nature [41]. As discussed in Section 8.3, first-generation patch-based
models basically echo the message of taking a local view toward a complex phenomenon,
which has been at the foundation of classical physics [48]. As the complexity of a natural
system increases (for instance, from physical to chemical to biological) [49], the funda-
mental assumption with locality principle is likely to fall apart, which motivates discussion
of second-generation patch models in Section 8.4.

8.3 First-Generation Patch Models: Dictionary Construction and Learning

This section reviews first-generation patch models, which are designed with the local
view and under the influential paradigm of Hilbert space. This design principle can be
considered to historically follow two competing yet complementary paths: the construction
of a signal-independent dictionary (or basis functions) and the learning of a dictionary
from training data (and therefore signal dependent). Both lines of attacks have turned out
fruitful and it has often been found that two approaches end up with dictionaries of similar
characteristics and algorithms of comparable performance.

Mathematically, it is a standard practice of decomposing a given signal f under a col-
lection of basis functions {φ1, ...,φn} as f = ∑N

i=1 aiφi, where ai =< f ,φi > denotes the
inner product between the signal of interest and basis functions. The challenge here often
surrounds the choice of dictionary or basis functions; for example, what dictionary could
give the most parsimonious representation of f ? For stationary Gaussian process, the op-
timal choice of dictionary has been long known as Karhunen-Loève transform (KLT) [50],
also known as principal component analysis [51]. However, since the basis functions of
KLT are calculated from the covariance matrix, they are signal dependent (therefore con-
sume extra bandwidth which is undesirable for image compression) and computationally
demanding (therefore limit its potential in practical applications). Consequently, alternative
approaches toward dictionary construction have been proposed in the literature; the story
of discrete-cosine-transform (DCT) [52] is summarized below.

The motivation behind the definition of DCT is that it provides a good approximation
to the optimal KLT for a class of so-called AR(1) process [53]. It has been experimen-
tally shown [52] that DCT achieves better energy compaction property than Fourier or
Walsh-Hadamard transform and almost identical performance to KLT for an AR(1) source
with correlation coefficient of ρ = 0.9. Additionally, the discovery of fast algorithms for
computing DCT (for example, Reference [6]) greatly facilitates the adoption of DCT by
JPEG [5], which is the first lossy image compression standard, and several video coding
standards, including Moving Picture Experts Group (MPEG) [54] and H.263 [55] stan-
dards. However, since each block or image patch is processed independently from others,
both JPEG and MPEG produce notorious block artifacts at the low bit rates. Even in the
new image compression standard JPEG2000 [13], the concept of tile is no different from
that of block except that the choice of dictionary varies – from DCT to discrete-wavelet
transform (DWT). Therefore, patch-based models were reinvented in JPEG2000 with dif-
ferent motivation of supporting object-based or region-of-interest coding [56].
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Another line of research on patch-based models deals with learning signal-dependent ba-
sis functions from training data. The discovery of independent component analysis (ICA)
algorithms [57], [58], [59] supplied different technical communities a cool and new tool
that rapidly found it to be applied to a variety of signal processing, computer vision, and
machine learning tasks. It is worth noting that the independent components of natural im-
ages were found to be edge-like filters [60], which resemble the receptive fields of simple
cells in visual cortex [61]. However, ICA has failed to deliver is a precise characterization
of statistical independence; that is, it is often difficult to justify the independency assump-
tion except few idealistic scenarios, such as blind source separation, where source mixing
admits a linear model [62]. By contrast, recent advances in dictionary learning, such as K-
SVD [63], [64], [65], have shown that a learned dictionary can support both reconstruction
and recognition tasks.

Regardless of construction or learning, an open question that has not been sufficiently ad-
dressed in the open literature is the size of dictionary N. In engineering applications such
as data compression, N is often chosen to be the same as the size of the original image be-
cause that is when the system is neither underdetermined not overdetermined. However, it
has been suggested that a larger N or an overcomplete representation might achieve higher
sparsity. Depending on how the sparsity of transform-coefficients a is measured, one could
face convex (for example, l1 or l2-norm) and nonconvex (for example, l0-norm) optimiza-
tion problems in determining ai’s for a fixed dictionary. This problem has been known as
basis pursuit [66], [67], and there has been growing interest in the development of new pur-
suit algorithms in recent years (for example, K-SVD [63], [68]). Nevertheless, the question
of choosing dictionary size N remains open and the difficulty with answering this question
partially motivates exploring second-generation patch-based models, as elaborated below.

8.4 Second-Generation Patch Models
8.4.1 From Local Transience to Nonlocal Invariance

The difficulty of choosing a proper dictionary size has to be appreciated from a point
of view that raises the skepticism at a more fundamental level, that is, the Hilbert-space
formulation or the locality assumption. To facilitate the illustration, Figure 8.1 depicts a
toy example of two-dimensional spiral data. Namely, Figure 8.1a shows the learned basis
vectors (highlighted by “+”) by K-SVD algorithm [63] as the dictionary size increases
from M = 5 to M = 40. It is not difficult to verify that the sparsity (as measured by the
percentage of nonzero coefficients) does improve along with the dictionary size; but what
remains troublesome is that the topology of learned dictionary has little to do with the actual
probability density function (pdf) of the spiral data. However, by switching the tool, in this
case from K-SVD to an expectation maximization (EM)-based learning of finite mixture
model [69], the approximation of spiral pdf by a collection of Gaussian mixture models
does appear plausible, as shown in Figure 8.1b.

The above example suggests that Hilbert-space functions are not the only possible for-
mulation to model signals. The introduction of artificial structures, such as inner product
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FIGURE 8.1

Two ways of discovering the manifold structure underlying a signal: (a–d) dictionary learning [63] with atoms

in dictionary A highlighted using the ‘+’ symbol, (e) structural clustering [69] with each segment denoting a

different cluster p(x|θm).

and basis function, has been better justified, instead of taking them for granted. In fact,
it is well-known from the mathematical literature [70] that Hilbert space is at the bottom
of the hierarchy of mathematical spaces. On top of it, there exist several other choices,
such as metric space and topological space, which contain a larger set of functions than
what Hilbert space does. Moreover, locality assumption is likely to be only a part of the
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story because the definition of local neighborhood is conditioned on the way to represent
a signal. Adjacent points in the patch space might correspond to two image patches spa-
tially distant from each other; for example, consider self-repeating texture patterns. This
summary motivates the following study of second-generation patch models.

Instead of committing to Hilbert-space formulation, it is proposed here to consider pdf of
image patches as a low-dimensional manifold embedded in the patch space and ask: what
is a good tool for studying manifold? The idea of analyzing the topology of a manifold
by studying differential functions on that manifold was first conceived in Reference [71].
Along this line of reasoning, one can see that an alternative approach toward modeling com-
plex signals is to model their associated dynamical systems or more precisely a nonlinear
map that operates on the signal manifold. Note that the nonlinearity is the key for departing
from the standard practice of linear system analysis. More important, the focus here will
be put on the nonlinearity arising from the bilateral representation of image signals [72],
that is, two patches could become neighbors if they are close either in the spatial domain or
in the range space. The following nonlinear filter (NLF) in the continuous space has been
found general enough to incorporate both local and nonlocal filters in the literature:

PNLF( f (x,y)) =
∫
Ω w(x,y;x′,y′) f (x′,y′)dx′dy′∫

Ω w(x,y;x′,y′)dx′dy′
, (8.1)

where w(x,y;w′,y′) is a generic weighting function related to the structural similarity be-
tween two patches at (x,y) and (x′,y′).

It should be noted that despite the linear weighting form at the surface, the weighting
coefficients are recursively defined with respect to the patch similarity and therefore in-
trinsically it is nonlinear. In fact, there have only been primarily two types of nonlinear
operations in the open literature: memoryless (related to nonlinear point-operations such as
thresholding [73] and sigmoid function [74]) and with memory (related to hysteresis [75]
and clustering [76], [77], [78]). The nonlinearity of Equation 8.1 could arise from either
hard thresholding or the soft definition (connected with clustering) of weighting coeffi-
cients. A more tantalizing question is: how can this new perspective of nonlinear map be
useful to processing or modeling image signals? It will be shown in this section that it does
have practical applications in set theoretic image restoration, whereas extensive experimen-
tal results will be reported in the next section.

Set theoretic image estimation [38] or alternating projection-based image restoration [79]
has been extensively studied by the image processing community. What novel element do
the second-generation patch-based models bring about? It is argued here that the a priori
knowledge about the image source emphasizes the global invariant property (in contrast
to the local transient property characterized by first-generation patch models). Such global
view is particularly effective for the class of image structures, including regular edges and
textures, because they are often approximately translation-invariant. The translation invari-
ance of edges and textures is essential to the justification of quantifying weight coefficients
by structural similarity in Equation 8.1; a heuristic idea that has been widely adopted by
various filtering techniques from bilateral filter [72] to nonlocal-mean denoising [27].

It has been shown [80] that nonlinear filter based projection operator PNLF as defined
by Equation 8.1 is a non-expansive mapping [81]. Such result generalizes previous one for
first-generation patch models [82], which makes it convenient to develop a new class of im-
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age restoration algorithms with nonlocal regularization techniques. In traditional paradigm
of image estimation via alternating projections [83], [84], the target of interest is pursued as
the intersection of two constraint sets: observation constraint set specified by the degrada-
tion model (for example, blurring or quantization) and regularization constraint set carrying
out a priori knowledge. By replacing local regularization constraint set by the nonlocal one,
a new class of projection-based image restoration algorithms can be obtained.

ALGORITHM 8.1 Projection-based image restoration with nonlocal regularization.
Input is the degraded image g, output is the estimated image f̂.

1. Initialization: Set f̂(0)
to be an initial estimate.

2. Main loop:

• Projection onto the observation constraint set via fk+1/2 = Pobsfk, where
Pobs is dependent on a specific degradation model.

• Projection onto the prior constraint set via fk+1 = PNLF fk+1/2, where PNLF
is given by Equation 8.1.

Inspired by the success of BM3D denoising [29], the following experiment is based on
a specific implementation of PNLF . The basic idea is to select a set of exemplars from the
collection of patches (for example, those at a fixed sampling lattice) and perform k nearest-
neighbor (kNN) search for each exemplar. Then, a transform-domain thresholding strategy
is applied to the three-dimensional data array formed by each two-dimensional exemplar
and its k nearest neighbors. The non-expansive property of such BM3D-thresholding based
PNLF has been rigorously shown in Reference [85], which theoretically justifies the good
numerical behavior of Algorithm 8.1. However, it is noted that the regularization con-
straint set arising from nonlocal similarity is non-convex because the cost functional of
data clustering (for example, kNN and k-means) is seldom convex. The nonconvexity of
sparsity optimization is the other significant departure of second-generation patch models
from their first-generation counterpart.

8.4.2 From Convex to Nonconvex Sparsity Optimization

Though less popular, the problem of nonconvex minimization has been extensively stud-
ied. The most well-known optimization technique for nonconvex problems is likely to be
simulated annealing [86] inspired by the analogy between combinational optimization and
statistical mechanics. It was argued in Reference [86] that “as the size of optimization
problems increases, the worst-case analysis of a problem will become increasingly irrel-
evant, and the average performance of algorithms will dominate the analysis of practical
applications.” Such observation has motivated the introduction of an artificial temperature
parameter to simulate the annealing process in nature. Simulated annealing was often im-
plemented by Metropolis algorithm based on local random perturbation; more powerful
Monte Carlo nonlocal/clustering methods [87], [88] have been developed afterward. An
important insight behind clustering algorithms is that collective updating could eliminate
the problem of “critical slowing down” [89].
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FIGURE 8.2

Illustration of deterministic annealing. (a) The minimum of a nonconvex function J may be found by a series

of convex approximations Ji. (b–i) Sample stable states (local minima) corresponding to varying temperatures.

For image restoration applications, one can argue that it is also the average performance
that matters because any restoration algorithm is supposed to work for a class of images
instead of an individual one. In fact, it is often difficult to come up with the worst-case ex-
ample in the first place (that is, what kind of image is the hardest to recover?). What seems
an unknown connection between nonlocal Monte Carlo methods and nonlocal sparse rep-
resentations is the role played by clustering. More specifically, the observation constraint
appears to suggest that it is not necessary to do annealing in a stochastic but determinis-
tic fashion because observation data g offers a valuable hint for clustering. Indeed, de-
terministic annealing (DA), often known as graduated nonconvexity (GNC) in the vision
literature [90], has been proposed as a statistical physics inspired approach toward data
clustering [91], [92].
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The basic idea behind DA is simple and appealing; one can modify the nonconvex cost
function J(f) in such a way that the global optimum can be approximated through a se-
quence of convex cost functions J∗p(f) (the auxiliary variable p parameterizes the annealing
process), as shown in Figure 8.2a. When the iteration starts from a small parameter favoring
a smooth cost function (that is, high temperature), it is relatively easy to find a favorable
local optimum. As the cost function becomes more jagged after several iterations, the
local optimum will be gradually driven toward the global minimum as the temperature de-
creases [90]. In addition to the above standard interpretation, a twist can be added from the
saddle-point thinking here; functions J∗p(f) do not need to be convex everywhere but only
locally around the point of interest. In other words, the strategy of convex approximation
can be made data dependent; therefore, as the point of interest f moves to f′, a different
sequence of locally convex cost functions would be in action.

To illustrate how DA works, the following Monte Carlo experiment has been designed.
Starting with random noise realization, iterative filtering is applied via fn+1 = Pθ fn, where
Pθ denotes a nonlocal filter with a temperature parameter θ (the threshold T in nonlinear
shrinkage or the Lagrangian multiplier λ in nonlocal regularization [93]). As long as the
Pθ is non-expansive [80], it can be observed that limn→∞fn would converge to a fixed point;
without any observation constraint, such fixed point could wander in the phase space de-
pending on the order parameter θ . By varying the θ value, varying structures in physical
systems (for example, crystal versus glass) can be observed; analogously in image restora-
tion, the constellations of an image manifold is discovered: smooth regions, regular edges,
and textures as shown in Figure 8.2b, where the hard thresholding stage of BM3D denois-
ing [29] is used as PT . It is also worth to note that the phenomenon of phase transition (as
the temperature varies) has not been observed for conventional local image models, such as
Markov random field (MRF) [94]. In other words, clustering has played a subtle role in con-
necting nonlocal sparsity with nonconvex optimization; even though such connection has
not been fully understood yet (some preliminary results can be found in Reference [85]).

8.5 Experimental Results

This section presents reproducible experimental results to demonstrate the superiority
of second-generation patch models. Due to the space limitation, only experiments related
to image denoising, compression artifacts removal, and inverse halftoning are included.
The source codes and various simulations, including deblurring and super-resolution, are
available online.2 Additional results can be found in References [37], [80], [95], and [96].

8.5.1 Image Denoising

The simplest restoration task is likely to be the removal of additive white Gaussian noise
from a degraded image y = x + w, where w ∼ N(0,σ2

w). Such problem is often called
image denoising in the literature and has been extensively studied in the past decades. The

2http://www.csee.wvu.edu/∼xinl/demo/nonlocal.html
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(d) (e) (f)

FIGURE 8.3

Denoising performance comparison for Monarch image: (a) original image, (b) noisy image with σw = 20,

(c) SA-DCT output [97] with PSNR = 30.06 dB and SSIM = 0.9125, (d) K-SVD output [68] with PSNR =
30.09 dB and SSIM = 0.9102, (e) BM3D output [29] with PSNR = 30.45 dB and SSIM = 0.9194, and (f) CSR

output [37] with PSNR = 30.57 dB and SSIM = 0.9190.

following experiment compares four leading image denoising algorithms with reproducible
source codes; these algorithm use concepts of shape-adaptive DCT (SA-DCT)3 [97], K-
SVD4 [68], BM3D5 [29], and clustering-based sparse representation (CSR)6 [37]. More
specifically, SA-DCT is among the very best techniques built upon local sparsity models.
K-SVD and BM3D represent the approaches of obtaining nonlocal sparse representations
via dictionary learning and structural clustering, respectively. Finally, CSR combines both
dictionary learning and structural clustering.

The two test images used in the experiment are Monarch (edge-class) and Straw (texture-
class); the two popular objective quality metrics employed here are the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) index [98]. Figures 8.3 and 8.4 allow the
comparison of of denoised images by different algorithms, both subjectively and objec-
tively. It can be observed that nonlocal methods noticeably outperform the local one and
the gain becomes more significant for the class of texture structures. This is not surpris-
ing because nonlocal similarity is stronger in texture images. Another observation is that

3http://www.cs.tut.fi/∼foi/SA-DCT/
4http://www.cs.technion.ac.il/∼ronrubin/software.html
5http://www.cs.tut.fi/∼foi/GCF-BM3D/
6http://www.csee.wvu.edu/∼xinl/CSR.html
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(a) (b) (c)

(d) (e) (f)

FIGURE 8.4

Denoising performance comparison for Straw image: (a) original image, (b) noisy image with σw = 20, (c) SA-

DCT output [97] with PSNR = 26.22 dB and SSIM = 0.8760, (d) K-SVD output [68] with PSNR = 26.91 dB

and SSIM = 0.8894, (e) BM3D output [29] with PSNR = 27.09 dB and SSIM = 0.8968, and (f) CSR out-

put [37] with PSNR = 27.35 dB and SSIM = 0.9003.

both the ideas of dictionary learning and structural clustering can lead to improved denois-
ing performance and their gain is complementary. Combining those two ideas often lead
to significant performance improvements for the class of texture images; from a manifold
point of view, dictionary learning and structural clustering can be interpreted as adapting
to the local geometry and global topology, respectively. More detailed comparison and
analysis related to image denoising can be found in References [29], [68], and [97]. Recent
advances in this field are presented in References [36], [99], [100], and [101].

It is interesting to note the potential benefit of exploiting more general geometric in-
variance than translation-invariance. For instance, if it is known that an image is rotation-
invariant, one can construct a dictionary D consisting of patches generated from not only
translation but also rotations and reflections (conceptually they can be viewed as a kind of
bootstrap resampling techniques [102]). It has been found for the class of images satisfying
more strict global invariant properties, the improvements over BM3D achieved by boot-
strapping are impressive both subjectively and objectively (see Figure 8.5). Visual quality
improvements primarily come from better recovery of global symmetric structures. Note
that the objective SSIM metric does not always correlate with subjective assessment (SSIM
is based on local comparisons only). In other words, the measurement of global symmetry
in an image is still beyond the reach of existing image quality assessment techniques.
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(e) (f) (g) (h)

FIGURE 8.5

Performance comparison of BM3D and exemplar-based EM-like (EBEM) denoising methods: (a) original

Disk image, (b) noisy image with σw = 50, (c) BM3D output with PSNR = 29.36 dB and SSIM = 0.9243, and

(d) EBEM output [100] with PSNR = 31.38 dB and SSIM = 0.9214; (e) original Rays image, (f) noisy image

with σw = 50, (g) BM3D output with PSNR = 20.99 dB and SSIM = 0.9497, and (h) EBEM output [100] with

PSNR = 23.05 dB and SSIM = 0.9670.

8.5.2 Compression Artifact Removal

Lossy image coding is probably the most successful application of wavelets as of to-
day. From the embedded zerotree wavelet (EZW) method [16] to the new JPEG2000 stan-
dard [13], nonlinear approximation of Besov-space functions has well served as the models
for photographic images thanks to the good localization property of wavelet bases in space
and frequency. However, from a set theoretic perspective toward lossy image coding [103],
the original image belongs to a convex set characterized by the quantization cell, that is,
g = Q[Tf] where T denotes the transform and Q is a uniform quantizer. Outputting the
center of quantization cell corresponds to a maximum-likelihood (ML) decoding strategy
whose optimality becomes questionable at low bit-rates (for example, the notorious ringing
artifacts around sharp edges produced by wavelet coders). An improved decoding strat-
egy is to pursue maximum a posteriori (MAP) estimation of f based on the observation
data g and the a priori knowledge about f. The nonlocal sparsity regularization conveyed
by second-generation patch models distinguish them from previous attacks based on first-
generation patch models (see, for example, References [84], [104], and [105]).

The above idea has been tested using the set partitioning in hierarchical trees (SPIHT)7

algorithm [106], which is a widely used benchmark codec. For a uniform quantizer with
stepsize of ∆, the observation constraint set is defined as Cobs = { f (m,n)|y(m,n)−∆/2≤
x(m,n) < y(m,n)+∆/2}. The corresponding projection operator is defined as Pobsx = y+

7http://www.cipr.rpi.edu/research/SPIHT/spiht3.html
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FIGURE 8.6

PSNR performance improvement of MAP decoding for images (a) Lena and (b) Barbara.

∆/2 for x > y+∆/2, Pobsx = y for x∈ [y−∆/2,y+∆/2], and Pobsx = y−∆/2 for x < y−
∆/2. In Reference [107], it has been opted to implement the projection onto prior constraint
set Pprior by a BM3D-based nonlocal filter with threshold δ (it plays the role of Lagrangian
multiplier). A deterministic annealing protocol similar to Reference [108] has been adopted
as δn = δ0 − 0.02n,n = 1− 10, where δ0 is the initial threshold set proportional to the
average of block-wise variations within y. Figure 8.6 shows the PSNR gain achieved over
SPIHT [106] by MAP decoding for two typical 512×512 images Lena and Barbara. It is
not surprising that the gain is much more dramatic for Barbara image because it contains
significant portions of texture patterns. Visual inspection of decoded images in Figures 8.7

(a) (b)

FIGURE 8.7

Performance comparison of SPIHT decoding for Lena image at the bit rate of 0.20 bpp: (a) ML estimation

with PSNR = 32.70 dB and SSIM = 0.8669, (b) MAP estimation with PSNR = 33.29 dB and SSIM = 0.8784.
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(a) (b)

FIGURE 8.8

Performance comparison of SPIHT decoding for Barbara image at the bit rate of 0.20 bpp: (a) ML estimation

with PSNR = 26.19 dB and SSIM = 0.7572, (b) MAP estimation with PSNR = 27.33 dB and SSIM = 0.7942.

and 8.8 confirms that texture regions are much better reconstructed by MAP estimation than
ML scheme. For Lena image, the gain is more observable for the low bit rates than high
bit rates. Such finding can be explained by the prioritization of bits in scalable coder, such
as SPIHT. The first batch of bits typically contain important structural information at the
global level whose self-similarity is justified. As bit rate increases, more bits are assigned
to less regular textural information locally (for example, hair region); therefore, the gain of
exploiting the nonlocal sparsity diminishes.
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FIGURE 8.9

PSNR performance improvement of JPEG system due to graduated nonconvexity-based nonlocal regularization

for images (a) Cameraman and (b) House.
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(a) (b)

FIGURE 8.10

Performance comparison of JPEG decoding for Cameraman image at the bit rate of 0.42 bpp: (a) without

nonlocal regularization with PSNR = 27.71 dB and SSIM = 0.8355, (b) with nonlocal regularization with

PSNR = 28.39 dB and SSIM = 0.8570.

(a) (b)

FIGURE 8.11

Performance comparison of JPEG decoding for House image at the bit rate of 0.32 bpp: (a) without nonlocal

regularization with PSNR = 32.07 dB and SSIM = 0.8452, (b) with nonlocal regularization with PSNR =
33.22 dB and SSIM = 0.8636.

The above discussion has also justified the merit of nonlocal sparsity regularization on
deblocking JPEG-coded images. It will be more convincing if the reconstructed images can
be compared on the same test image with previous deblocking techniques such as those in
References [84], [104], and [105]. Unfortunately, such comparison is difficult due to the
lack of source codes or executables of previous works. For the 512×512 Lena image and
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FIGURE 8.12

Inverse halftoning comparison: (a) 200× 200 portion of original Peppers image, (b) halftoned image after

Floyd-Steinberg diffusion, (c) reconstructed image by wavelet-based inverse halftoning [116] with PSNR =
31.03 dB, (d) reconstructed image by TV restoration [112] with PSNR = 30.92 dB, and (e) reconstructed

image by nonlocal regularization with PSNR = 32.64 dB.

at the bit rate of 0.24 bpp, nonlocal regularization can easily achieve the gain of 1.3 dB
without parameter optimization, while both projection-based [84] and wavelet-based [105]
methods reported the gain of around 0.8 dB. Moreover, as can be seen in Figures 8.10
to 8.11, visual quality improvements achieved by nonlocal sparsity regularization are also
convincing.

8.5.3 Inverse Halftoning

The last application of second-generation patch models is inverse halftoning, which
refers to the conversion of a halftoned image to a continuous-tone version, as demon-
strated in Figures 8.12 and 8.13. This application has been chosen here for the purpose
of emphasizing the point that heavy-tailed signal models, local or nonlocal, are capable of
handling a wide range of noise, including halftoning noise. In the past decade, a flurry of
competing inverse halftoning techniques have been developed with varying choice of regu-
larization strategies, example techniques include linear filtering [109], Markov random field
(MRF) based method [110], wavelet thresholding [111], nonlinear filtering [112], hybrid
least-mean-square (LMS) and minimum mean square error (MMSE) estimation [113], and
look-up-table method [114]. Despite the diversity of those strategies, they are unanimously
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(a) (b) (c)

(d) (e)

FIGURE 8.13

Inverse halftoning comparison: (a) 200× 200 portion of original Baboon image, (b) halftoned image after

Floyd-Steinberg diffusion, (c) reconstructed image by wavelet-based inverse halftoning [116] with PSNR =
23.03 dB, (d) reconstructed image by TV restoration [112] with PSNR = 21.60 dB, and (e) reconstructed

image by nonlocal regularization PSNR = 23.36 dB.

local and produce comparable performance. Just like lossy image coding, halftoning can
be also interpreted from a set theoretic perspective [115]. Therefore, it is convenient to ob-
tain an inverse halftoning algorithm with nonlocal sparse representations; one only needs
to modify the projection operator associated with the observation constraint set. The ini-
tial estimate is simply set to be a lowpass filtered version (the 3× 3 blurring kernel is
[121;242;121]/16). A similar deterministic annealing procedure to compression artifact
removal is adopted as δn = 10−n, for n = 1,2, ...,10.

The nonlocal inverse halftoning algorithm has been compared with two local schemes,
that is, wavelet-based inverse halftoning via deconvolution (WInHD)8 [116] and inverse
halftoning based on total variation (TV),9 which is a technique similar to nonlinear filter-
ing [112]. Experiments are performed on test images Peppers (edge-class) and Baboon
(texture-class). For the Peppers image, the best reported PSNR results in the literature are
in the range of 30−31.5 dB, while the proposed nonlocal technique can achieve 32.64 dB.
Moreover, as shown in Figure 8.12, the nonlocal method avoids producing unpleasant ring-
ing artifacts around sharp edges.

8http://www.dsp.rice.edu/files/software/winhd.zip
9http://www.math.ucla.edu/∼gilboa/PDE-filt/tv denoising.html
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Texture structures are often more challenging to handle for the task of inverse halftoning
because they tend to have similar characteristics to halftoning noise locally. The impor-
tance of preserving texture structures has not been openly addressed in the literature of
inverse halftoning before. Therefore, including experimental results for texture images in
this chapter may be useful for those who are interested in the inverse halftoning problem in
order to maintain a healthy skepticism toward the current practice — in computational sci-
ence, what kind of test data should be used in the experiments is often an issue as important
as the development of new algorithms. Figure 8.13 contains the objective and subjective
quality comparison among original and reconstructed images by different inverse halfton-
ing schemes. It is noted that for this specific image, TV model is a poor match again as the
reconstructed image by wavelet method suffers from the loss of high-frequency informa-
tion around the hair and beard region. By contrast, the proposed nonlocal scheme appears
to obtain the most visually pleasant reconstruction even though the PSNR gain is modest;
this is partially due to the fact that the fur pattern is somewhat irregular and therefore not
exactly translation invariant.

8.6 Connections with Redundancy Exploitation and Contour Integration

In addition to support engineering applications, image models play a major role in shed-
ding new insights into the understanding of sensory coding exploited by the human visual
system. First-generation patch models can be viewed as being connected with the redun-
dancy reduction hypothesis [117]. In the original proposal (influenced by communication
theory [118]), the objective of sensory coding was thought of as reducing the redundancy
in the stimulus; such view has been shared by many source coding researchers who pursue
the most parsimonious representation of a source. The sparsity of image representation –
when cast under the framework of sensory coding – has led to several influential works on
computational modeling of the primary visual cortex (also called V1) [119], [120]. The
hindsight after decade of research has suggested that lossy image compression and visual
perception might be two related but disparate problems. For example, encoder is often more
important than decoder in lossy image compression; however, it is the decoding strategy of
neural systems that conceals the secret of sensory memory and adaptation [121], [122].

More important, as technology advances, anatomical and physiological studies of cortex
in most mammals have shown that the channel capacity (as measured by the number of neu-
rons) increases (instead of decreases) when moving to the higher levels. Such observation
has even forced to abandon the original redundancy reduction hypothesis and replace it by
a so-called redundancy exploitation hypothesis [41]. In this modified proposal, the role of
redundancy is argued to support more accurate prediction which includes both reconstruc-
tion (a low-level vision task) and recognition (a high-level vision task) as special cases. In
fact, a hypothesis unifying the inference tasks at low-level and high-level is highly desirable
especially from the perspective of avoiding semantic gaps [123]. The equal importance of
both feedforward and feedback connections in visual cortex also suggests that redundancy
or statistical regularity of sensory stimuli is exploited by the human visual system in a
seamless fashion, no matter what level of inference task it deals with.
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So how do the second-generation patch models fit the paradigm of redundancy exploita-
tion? As already discussed, the major innovation behind second-generation patch models
lies in the exploitation of nonlocal sparsity arising from translation invariant property of
regular edges and textures. In other words, the clustering of similar patches manifests
another important source of statistical regularity (complementary to their local smooth-
ness). Note that the transition from local smoothness to nonlocal (structural) similarity also
matches the fact of increasing redundancy at higher level of visual cortex because stor-
ing more sophisticated similarity relationship requires more neurons (conceptually similar
to the Quine-McCluskey method in logic design [124] and the theory of structural map-
ping [125]). Exactly how does the human visual system identify two similar patches (up
to not just translation but more general projective transformations) is the task of percep-
tual organization and still largely remains a mystery. However, the positive role played
by clustering to reconstruction (the focal point of this chapter) as well as recognition (for
example, recent advances in sparsity-based robust face recognition [44]) has clearly shown
the promising direction of better understanding redundancy exploitation hypothesis.

Along this line of reasoning, it can be envisioned that a logically natural next step of
extending second-generation patch models is to integrate them with the models of contour
integration [40], [126]. Along the contour of an object, how does the human visual sys-
tem collectively organize local patches together to form the sensation of a single contour?
To address this question, it seems that one can either generalize the definition of similar
patches from translation invariance to rotational invariance [34] or explore the feasibility
of integrating straight contours (lines). The latter hypothesis seems to be more biologically
plausible in view of what is known about the anatomy and physiology of frog vision [127].
Various studies on optical illusion (for example, Kanizsa triangle [128]) also seem to sup-
port the existence of neurons devoted to the reconstruction or imagination of global long
contours. For frogs, their capability of recognizing preys and predators heavily relies on
an efficient sensory coding strategy developed through evolution, that is, the image is not
analyzed pixel-by-pixel but in terms of a matrix of overlapping contexts. The key lesson
learned from studying frog vision is the importance of relationship between a local recep-
tive field and its neighboring ones (for example, Figures 17.2 to 17.6 in Reference [47]);
maybe similar organizational principles have been recycled by the law of evolution across
different scales (that is, figure-ground separation in ventral pathway and texture segmenta-
tion in dorsal pathway [129]).

8.7 Conclusion

This chapter has reviewed the history of patch-based image models, focusing on the
class of generative ones. The evolution from first-generation patch models (dictionary con-
struction and learning) to second-generation patch models (structural clustering and spar-
sity optimization) offers refreshing insights on how locality and convexity have served as
double-bladed sword in mathematical modeling of photographic images. On one hand, lo-
cal variation and nonlocal similarity turn out to be the two sides of the same coin as they
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jointly characterize the statistical regularity of image source; on the other hand, noncon-
vexity associated with the clustering procedure dictates to maintain a healthy skepticism
toward the increasing popularity of convex optimization such as l1-based techniques. It is
strongly believed that it is more fruitful to mathematically model image source by thinking
outside the box of Hilbert space. A differential function on a manifold will, in a typical
case, directly reflect the underlying topology. The nonlinear projection operators intro-
duced in this chapter can be viewed as the first step toward such topological thinking of
patch-based image models. The abstraction of nearness in a topological space or patch
similarity is an issue that deserves further study and could pave the path toward the next-
generation modeling of images – what is more important than the concept of patch is the
organizational principle underlying patches.

In addition to theoretic reasoning, this chapter has also strived hard to make the presented
experimental results fully reproducible, which is as important as mental reproducibility in
scientific research. Especially in view of the physical origin of image data, a good theoretic
model or representation does not necessarily lead to a better image processing algorithm.
The risk of model-data mismatch appears to be among the most less-acknowledged chal-
lenges to image processing community. As the legendary physicist R. Feynmann once said:
“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it
doesn’t agree with experiment, it’s wrong.” Computational science, including image pro-
cessing, lives by its “disdain for authority and reliance on experimentation” (Chris Quigg).
As the only way of falsifying a theory or model, image data and processing algorithms
could play a role bigger than serving engineering applications alone. It is the last mis-
sion of this chapter to make an open call for promoting the current state of reproducible
research not only in image processing but also across its adjacent fields, such as computer
vision and graphics, machine learning, and speech processing. Only by stepping on each
other’s shoulders (rather than feet) can further open the view at the horizon – a new vista
of understanding geometry through topology might be there!
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9.1 Introduction

Nowadays, high-resolution (HR) image/video applications are reaching every home and
soon will become a necessity rather than a mere luxury. Whether it is through a high-
definition (HD) television, computer monitor, HD camera, or even a handheld phone, HR
multimedia applications are becoming essential components of consumers’ daily lives.
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Moreover, the demand for HR images transcends the need for offering a better-quality
picture to the common viewer. HR imagery is continuing to gain popularity and dominate
many industries that require accurate image analysis. For example, in surveillance appli-
cations, high-resolution images are needed for a better performance of target detection,
face recognition, and text recognition [1], [2]. Furthermore, medical imaging applications
require HR images for accurate assessment and detection of small lesions [3], [4].

The capture and delivery of HR multimedia content is a complex and problematic pro-
cess [5]. In any typical imaging system or multimedia delivery chain, the quality of HR
media can be impaired by processes of acquisition, transmission, and display. The resolu-
tion of the imaging systems is physically limited by the pixel density in image sensors. On
one hand, increasing the number of pixels in an image sensor via reducing the pixel size is
limited by the existence of shot noise and associated high cost. On the other hand, increas-
ing the chip size is deemed ineffective due to the existence of a large capacitance that slows
the charge transfer rate and limits the data transfer [6]. Thus, a major drawback of HR im-
age acquisition in many of the aforementioned applications is the inadequate resolution of
the sensors, either because of cost or hardware limitation [7]. In addition to hardware lim-
itations, HR imagery can be blurred during acquisition due to atmospheric turbulence and
the camera-to-object motion [8]. Transmission of HR media requires extremely high band-
width, which is usually not available in real-time scenarios. Thus, high compression rates
are imposed on the media content, resulting in annoying compression artifacts and high
frame dropping rates [9]. Moreover, large displays use interpolation techniques to scale
video content to fit a target screen size, thus introducing blurred details and system noise
enlargement. Hence, advanced signal processing, such as super-resolution (SR) imaging,
offers a cost-effective way to increase image resolution by overcoming sensor hardware
limitations and reducing media impairments.

When choosing a solution for the SR problem, there is always a trade-off between com-
putational efficiency and HR image quality. Existing SR approaches suffer from extremely
high computational requirements due to the high dimensionality in terms of large number
of unknowns to be estimated when solving the SR inverse problem. Recently, SR tech-
niques are at the heart of HR image/video technologies in various application areas, such
as consumer electronics, entertainment, digital communications, military, and biomedical
imaging. Most of these applications require real-time or near real-time processing due to
limitations on computational power with the essential demand for high image quality re-
quirements. Efficient SR methods represent vital solutions to the digital multimedia acqui-
sition, delivery, and display sectors. Iterative SR solutions, that are commonly Bayesian or
regularized optimization-based approaches, can converge to a high-quality SR solution but
suffer from high computational complexity. Moreover, non-iterative SR solutions, such as
the kernel-based SR approaches, are inherently efficient in nature but can result in limited
HR reconstruction quality. As a consequence, a new class of selective SR estimators [10],
[11], [12], [13], [14], [15] have been introduced to reduce the dimensionality or the compu-
tational complexity of popular SR algorithms while maintaining the desired visual quality
of the reconstructed HR image. Generally, these selective SR algorithms detect only a sub-
set of active pixels that are super-resolved iteratively based on the pixels’ local significance
measure to the final SR result. The subset of active pixels selected for processing can be
detected using non-perceptual measures based only on numerical image characteristics or
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perceptual measures based on the human visual system (HVS) perception of low-level fea-
tures of the image content. In References [10] and [11], a non-perceptual selective approach
is presented where the local gradients of the estimated HR image at each iteration are used
to detect the pixels with significant spatial activities (that is, pixels at which the gradient is
above a certain threshold). The drawback of this approach lies in manually tweaking the
gradient threshold for each image differently to attain the best desired visual SR quality.

Unlike the hard thresholding applied to the non-perceptual gradient measures in Ref-
erences [10] and [11], selective perceptually based SR approaches presented in Refer-
ences [12], [13], [14], and [15] adaptively determine the set of significant pixels using
an automated perceptual decision mechanism without any manual tuning. These percep-
tual detection mechanisms are based on perceptual contrast sensitivity threshold modeling,
which detects details with perceived contrast over a uniform background, and visual at-
tention modeling, which detects salient low-level features in the image. Such perceptually
driven SR methods proved to significantly reduce the computational complexity of iterative
SR algorithms without any perceptible loss in the desired enhanced image/video quality.
Perceptually based SR imaging is a new research area, where very few approaches have
been proposed so far. Existing solutions usually focus on enhancing the perceptual quality
of the super-resolved image and ignore the essential factor of computational efficiency. For
example, a perceptual SR algorithm presented in Reference [16] minimizes a set of percep-
tual error measures that preserve the fidelity and enhances the smoothness and details of
the reconstructed image. Unfortunately, this approach is not very efficient since it is still an
iterative SR solution which uses a conjugate gradient or constrained least squares solution,
where every pixel in the SR error function is processed inclusively.

This chapter focuses on efficient selective SR techniques driven by perceptual model-
ing of the human visual system. Section 9.2 presents a survey of relevant SR techniques.
The multi-frame SR observation model is described in Section 9.3. Section 9.4 provides a
general background on multi-frame SR formulation and comparisons. Section 9.5 presents
the selective perceptual SR framework employed to enhance the computational efficiency
without degrading the HR quality. The contrast sensitivity threshold model used for detect-
ing active pixels for selective SR processing is described and a mechanism for detecting
the perceptually significant pixels, that are selected for SR processing, is presented. Sec-
tion 9.6 presents an efficient attentive-selective perceptual SR framework based on salient
low-level features detection concepts. Several saliency detection algorithms based on visual
attention modeling are reviewed. Section 9.7 describes the application of the perceptually
driven SR framework to increase the computational efficiency of a maximum a posteriori
(MAP)-based SR method and a two-step fusion-restoration SR method, respectively. It also
includes simulation results. Finally, this chapter concludes with Section 9.8.

9.2 Main Super-Resolution Techniques

Super-resolution (SR) techniques are considered to be effective image enhancement and
reconstruction solutions that approach the resolution enhancement problem from two dif-
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Single-frame SR block diagram. The forward model, f{z}, is a mathematical description of the image degra-

dation process exploiting the relationship between HR neighboring pixels. The inverse problem or backward

model f−1{x} is estimating the HR image from the low-quality captured image.

ferent perspectives. The so-called single-frame SR methods require one under-sampled or
degraded image to reconstruct a higher resolution enhanced image whereas the multi-frame
SR methods combine multiple degraded frames or views of a scene to estimate a higher res-
olution enhanced image. This section presents a survey of relevant single/multi-frame SR
techniques and introduces essential SR background material.

9.2.1 Single-Frame Super-Resolution

Single-frame SR approaches are widely applied solutions to the resolution enhancement
problem, especially in cases where only one degraded low-resolution (LR) observation
is available [17]. Single-frame SR approaches can also be referred to as image interpo-
lation or reconstruction techniques and thus can be used interchangeably. Recovering a
high-resolution image from an under-sampled (according to Nyquist limits [18]) and noisy
observation is a highly ill-posed inverse problem. Thus, prior image models relating neigh-
boring pixels or prior models learned through similar image patches are needed extra in-
formation that can aid in solving the inverse problem. A common approach among these
SR techniques is that they take advantage of the relation between neighboring pixels of the
same image to estimate the values of missing pixels. Figure 9.1 illustrates a general single-
frame SR process where f{z} and f−1{x} denote the forward and backward degradation
process of the imaging system, respectively.

A well-known problem with common kernel-based super-resolution, such as bilinear
and bicubic interpolation [19], is the blurring and blockiness effects of sharp edges. The
blurring of sharp edges results from the inaccurate kernel resizing to adapt to the edge
sharpness. The edge blockiness, also known as staircase effects, is mainly due to the fail-
ure of the filter to adapt to various edge orientations. Reference [20] proposed an edge-
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directed interpolation method that uses local covariance estimates of the input LR frame
to adapt interpolation coefficients to arbitrarily oriented edges of the reconstructed HR im-
age. This method is motivated by the geometric regularity property [21] of an ideal step
edge. Recently, Reference [22] presented a new edge-directed interpolation approach that
uses multiple low resolution training windows to reduce the covariance mismatch between
the LR and HR pixels. Reference [23] proposed a smart interpolation method that uses
anisotropic diffusion [24], a technique aiming at reducing noise and enhancing contrast
without significantly degrading edges and objects in an image. References [25], [26], [27],
[28], and [29] proposed SR methods based on the optimal recovery principle, which model
the local image regions using ellipsoidal signal classes and adapts the interpolating kernels
accordingly. Another model-based SR approach [30] is based on multi-resolution analysis
in the wavelet domain, where the statistical relationships between coefficients at coarser
scales are modeled using hidden Markov trees to predict the coefficients on the finest scale.
Finally, learning-based SR approaches recover missing high-frequency information in an
image through matching using a large image database [31], [32], [33], [34].

Many single-frame SR methods are computationally efficient. However, super-resolving
from a single low-resolution image is known to be a highly ill-posed inverse problem due
to the low number of observations relative to the large number of missing pixels/unknowns.
Thus, the gain in quality in the single-frame SR approach is limited by the minimal number
of information provided to recover missing details in the reconstructed HR signal.

9.2.2 Multi-Frame Super-Resolution

Multi-frame SR techniques offer a better solution to the resolution enhancement problem
by exploiting extra information from several neighboring frames in a video sequence. In a
multi-frame acquisition system, the subpixel motion between the camera and object allows
the frames of the video sequence to contain oversampled similar information that make the
reconstruction of an HR image possible.

This chapter focuses on multi-frame SR techniques that enhance the resolution of im-
ages by combining information from multiple low-resolution (LR) frames of the same
scene to estimate a high-resolution (HR) unaliased and sharp/deblurred image under re-
alistic bandwidth requirements and cost-effective hardware [6]. Interest in multi-frame
super-resolution re-emerged in the recent years mainly due to the use of multi-frame image
sequences, which can take advantage of additional spatio-temporal information available
in the video content, and the increase of hardware computational power and advancement
of display technologies, which make SR applications possible. Figure 9.2 presents a block
diagram showing a multi-frame SR estimation process using multiple degraded LR frames,
with subpixel shifts, to estimate one HR reference frame. The figure also shows the LR
pixels registered relative to a common HR reference grid to further visualize the number of
pixels used in the process of estimating the missing pixels in the SR image.

Since Reference [35] first introduced the multi-frame image restoration and registration
problem/solution, several multi-frame SR approaches have been proposed in the past two
decades. These multi-frame SR approaches are described and broadly categorized accord-
ing to their methods of solution into Bayesian, regularized norm minimization, fusion-
restoration (FR), and non-iterative fusion-interpolation (FI) approaches. Bayesian maxi-
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Multi-frame SR block diagram.

mum a posteriori (MAP) solutions have gained great attention and proved to be effective
due to the inclusion of a priori knowledge about the HR estimate and inherent probabilistic
formulation of the relation between the LR observations and the HR image [36], [37], [38],
[39]. Regularized norm minimization solutions aim at minimizing an error term with some
smoothness regularization assumption on the HR estimate [40], [41], [42]. It was shown
in Reference [42] that the l1-norm minimization approach is the most robust to errors in
the system and that the bilateral total variation regularization function gave the best per-
formance in terms of robustness and edge preservation. The two-step fusion-restoration
(FR) SR estimation methods [40], [42] were devised in order to decrease the computational
requirements and to increase the robustness to outliers. The FR methods employ a non-
iterative fusion step, which includes a one-step registration process, and a restoration step,
which simultaneously deblurs and denoises the fused image by minimizing an error func-
tion with or without a specific regularization term. The non-iterative fusion-interpolation
(FI) SR approaches [43], [44] are composed of a fusion step and a non-iterative reconstruc-
tion step using kernel-based interpolation, which is inherently efficient in nature; however,
these non-iterative methods can result in lower visual quality than the iterative methods
as discussed later in this chapter. All the previous methods consider the subpixel motion
between the observations to recover missing information by solving the SR problem.

9.3 Multi-Frame Super-Resolution Observation Model

Multi-frame reconstruction techniques, as described earlier in Section 9.2.2, reduce the
sensitivity of the SR inverse problem solution to some given LR observation measures
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Multi-frame SR observation model.

by exploiting extra information from several neighboring frames in a video sequence. A
necessary assumption for multi-frame SR solutions to work is the existence of subpixel
shifts between the observed LR frames. Due to these fractional pixel shifts, registered LR
samples will not always fall on a uniformly spaced HR grid, thus providing oversampled
information necessary for solving the SR inverse problem. The LR pixels in the data ac-
quisition model are defined as a weighted sum of appropriate HR pixels. The weighting
function, also known as the system degradation matrix, models the blurring caused by the
point spread function (PSF) of the optics. An additive noise term can be added to compen-
sate for any random errors and reading sensor noise in the acquisition model. Assuming
that the resolution enhancement factor is constant and the LR frames are acquired by the
same camera, it is logical to consider the same PSF and statistical noise for all the LR ob-
servations. Taking into consideration all these assumptions, a common observation model
for the SR problem is formulated.

Consider K low-resolution frames yk, for k = 1,2, ...,K, each arranged in lexicographical
form of size N1N2 × 1 pixels. Let L1 and L2 be the resolution enhancement factors in
the horizontal and vertical directions, respectively. For simplicity, it is assumed here that
L = L1 = L2. The values of the pixels in the kth low-resolution frame of the sequence can
be expressed in matrix notation as

yk = Wkz+n, (9.1)

where z represents the lexicographically ordered undegraded HR image of size N× 1 for
N = L2N1N2, and n is the additive noise modeled as an independent and identically dis-
tributed (i.i.d.) Gaussian random variable with variance σ 2

η . In Equation 9.1, the degrada-
tion matrix is represented by Wk = DHFk, where Fk is the warping matrix of size N×N, the
term H denotes the blurring matrix of size N×N representing the common PSF function,
and D is the decimation matrix of size N1N2×N.

Let y be the observation vector composed of all the LR vectors yk, for k = 1,2, ...,K,
concatenated vertically. The pointwise notation counterpart of Equation 9.1 for the mth
element of yk is given by

ym =
N

∑
r=1

wm,rzr +nm, (9.2)

where nm represents the additive noise and wm,r represents the contribution of zr (which
is the rth HR pixel in z), to ym (which is the mth LR pixel in the observation vector y).
Figure 9.3 illustrates the SR observation model for acquiring the LR frames.
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9.4 Super-Resolution Problem Formulation

The formulation of the existing solutions for the SR problem usually falls into three main
categories:

• The Bayesian maximum likelihood (ML) methods and maximum a posteriori
(pMAP) methods. The former ones produce a super-resolution image that maxi-
mizes the probability of the observed LR input images under a given model, whereas
the latter ones aim at stabilizing the ML solution under noisy conditions by making
explicit use of prior HR information.

• The regularized-norm minimization methods produce an SR image by minimizing
an error criteria (lp-norm) with a regularization term. Efficient methods emerged
from this category by swapping the order of the warping and blurring operators in
the observation model to fuse the images into one HR grid followed by an iterative
regularized optimization solution. An example is the fusion-restoration class of SR
methods, as discussed in Section 9.7.2.

• The non-iterative kernel-based methods, also referred to as fusion-interpolation (FI)
methods, merge all the observations on a common HR grid and solve for the best
interpolation through adaptive kernel design techniques. This category is inherently
computationally efficient since it is non-iterative in nature.

9.4.1 Bayesian Super-Resolution Formulation

Bayesian MAP-based estimators are common solutions for the SR problem since they
offer fast convergence and high-quality performance [36], [37], [38], [39]. In Bayesian SR
solutions all parameters or unknowns (that is, HR image, motion parameters, and noise) and
observable variables (that is, the LR observations) are assumed to be unknown stochastic
quantities with assumed probability distributions based on subjective beliefs. In the follow-
ing formulation of the MAP solution, the motion parameters are assumed to be known for
simplicity. For example, in cases of compressed video content the motion vectors can be
retrieved from the headers of the bitstream (note that motion estimation is a mature field of
research with many proposed accurate methods). In order to estimate the HR image z, a
Bayesian MAP estimator is formed given the low-resolution frames yk, for k = 1,2, ...,K,
and appropriate prior. The HR estimate ẑ can be computed by maximizing the a posteriori
probability Pr(z|{yk}), or by minimizing the log-likelihood function as follows:

ẑ = argmin
z

log[Pr(z|{yk}) ]. (9.3)

Using Bayes rule and assuming that the LR observations yk are statistically independent
of z, the problem reduces to

ẑ = argmin
z
{−log[Pr({yk}|z)]− log[Pr(z) ]} . (9.4)
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Now solving for an accurate HR estimate in Equation 9.4 is highly dependent on the
prior HR image density Pr(z) and the conditional LR density Pr({yk}|z) models. Note
that when dropping the prior HR probability model in Equation 9.4, the MAP optimization
problem reduces to an ML estimation problem that is highly unstable under small errors
in the parameters of the acquisition model and noisy conditions [37]. It has been widely
used in Bayesian SR formulation literature [36], [37], [38], [39], [45], [46], [47], [48],
[49], [50], [51], [52] that the noise model is assumed to be a zero mean Gaussian. From
Equation 9.4, and given that the elements of nk are i.i.d Gaussian random variables, the
conditional probability distribution can be modeled as follows:

Pr(yk|z) =
1

(2π)
N
2 σN

η
exp

{
− 1

2σ2
η
‖yk−Wkz‖2

}
, (9.5)

where σ 2
η is the noise variance. The problem of determining which HR image prior model

is the best for a particular HR reconstruction is still an open problem widely targeted by
various existing literature [6], [53]. However, a common approach followed by existing
MAP-based SR solutions is the assumption of smoothness constraints on the HR priors
within homogeneous regions [36], [37], [54], [55]. These priors can generally be modeled
as

Pr(z) ∝ exp
[−λ

2
‖Qz‖2

]
, (9.6)

where Q represents a linear high-pass operator that penalizes the estimates that are not
smooth and λ controls the variance of the prior distribution. In References [36] and [37],
these piecewise smoothness priors in Equation 9.6 take the form of Huber-Markov random
fields that are modeled as Gibbs prior functional according to Reference [56]. Then, the
prior model can be written as follows:

Pr(z) =
1
2

zT C−1
z z, (9.7)

where Cz is the covariance of the HR image prior model imposing piecewise smoothness
constraints between neighboring pixels. Thus, with the smoothness prior model (Equa-
tion 9.7) and mutually independent additive Gaussian noise on the prior error model (Equa-
tion 9.5), the MAP SR estimation problem can be formulated by minimizing the following
convex cost function with a unique global minimum:

f (z) =
1

2σ 2
η

K

∑
k=1

(
yk−WkzT )

(yk−Wkz)+
1
2

zT C−1
z z, (9.8)

where Wk is the degradation matrix for frame k, the term σ 2
η denotes the noise variance, z

is the HR frame in lexicographical form, and yk are the observed LR frames in vector form.
Thus, the MAP estimator can be reformulated as a least-squares error minimization prob-
lem, which in matrix notation is the l2-norm square of the error vector, with a smoothness
regularization constraint, given by

ẑ = argmin
z

{
C−1

η

K

∑
k=1
‖yk−Wkz‖2

2 +λΓ(z)

}
, (9.9)
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where ‖.‖2
2 is the square of the l2-norm and Cη is the i.i.d. Gaussian noise covariance matrix

equal to σ2
η I. The λ in the second term is a regularization weighting factor, and Γ(z) is a

smoothness regularization constraint in function of the SR image prior.

9.4.2 Regularized-Norm Minimization Formulation

Here, an SR image is estimated by following a regularized-norm minimization
paradigm [40], [41], [42], [57]. Then, in an underdetermined system of equations (Equa-
tion 9.1), estimating the HR image z given a sequence of LR observations yk, for k =
1,2, ...,K, is commonly formulated as an optimization problem minimizing an error crite-
ria and a regularization term. Thus, the SR optimization problem can be written as

ẑ = argmin
z
{ f (z)} , (9.10)

where the cost function f (z) has the following form:

f (z) =
1
γ

K

∑
k=1

E (yk,Wkz)+λΓ(z). (9.11)

In the above equation, E (.) is the error term in function of yk and z. The weighting factors
γ and λ are constant tuning parameters. The regularization term Γ(.), which is in function
of the HR image only, is designed to preserve important image content or structures, such as
edges and objects, and also to increase the robustness of the solution to outliers and errors
in the system. Unlike MAP-based algorithms, such as the one presented in Section 9.4.1,
there is no a priori assumption made about the distribution function of the reconstructed
HR image. Reference [42] proved that an l1-norm imposed on the error residual is the most
robust solution against outliers. Also in Reference [42], different regularization terms are
considered for best performance in terms of robustness and edge preservation. Therefore,
a cost function formulation for the SR problem can be expressed as follows:

f (z) =
1
γ

K

∑
k=1
‖yk−Wkz‖p

p +λΓ(z), (9.12)

where ‖.‖p
p is the lp-norm raised to the power p = {1,2}. The weighting factor γ is set

to {1,σ2
η} for p = {1,2}, respectively. Previous SR solutions are based on the warp-blur

observation model following Equation 9.1. Assuming a circularly symmetric blurring ma-
trix and a translation or rotation type of motion, then the motion and blur matrices in
Equation 9.1 can be swapped. Consequently, the observation model, referred to by the
blur-warp model, can be deduced from Equation 9.1 by defining the degradation matrix
as Wk = DFkH, where Fk is the warping matrix of size N ×N, the term H denotes the
blurring matrix of size N×N representing the common PSF function, and D is the deci-
mation matrix of size N1N2×N. The question as to which of the two models (blur-warp or
warp-blur) should be used in SR solutions is addressed in Reference [58]. Following this
blur-warp observation model, a fast implementation of the regularized-norm minimization
solution, referred to as the fusion-restoration (FR) approach, can be achieved by solving
for a blurred estimate zb = H ẑ of the HR image followed by an interpolation and deblur-
ring iterative step. Often, the blurred HR estimate is a non-iterative approach composed of
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The blur-warp observation model for multi-frame SR.

registering all the LR observations relative to the HR grid and estimating the HR pixel by
using an average or median operator of the LR pixels at each HR location [40], [41], [42].
The formulation of this FR approach will be discussed in Section 9.7.2.

9.4.3 Non-Iterative Kernel-Based Formulation

In the category of non-iterative kernel-based SR solutions, following the blur-warp ob-
servation model, all the LR observations are registered and merged on a common HR grid
and non-iterative kernel-based solutions solve for the best estimate through adaptive kernel
design techniques. The blur-warp acquisition model can be visualized as a non-uniform
sampler (U = DFk) applied on the blurred HR estimate zb as shown in Figure 9.4.

A locally adaptive approach using such SR estimators is described in References [43]
and [44], where the fused LR samples are processed using a moving observation window to
estimate the interpolation kernel and an estimation window to apply the designed kernel on
the spanned LR observed samples to estimate the missing HR pixels. Figure 9.5 illustrates
the non-iterative estimation approach using locally adaptive convolution kernel processing.
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SR image

LR frames

fused LR observations
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information
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observation

window

FIGURE 9.5

Non-iterative kernel-based SR.
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From Figure 9.5, consider that the observation window is of size Wx×Wy pixels on the
HR grid and spans P = KWxWy/L2 LR pixels denoted by vector Gi, and the estimation win-
dow is of size Dx×Dy pixels on the HR grid and spans DxDy estimated SR pixels denoted
by vector Di, where i is the location of the respective window index. Estimating a local set
of SR pixels can then be achieved by simply filtering the vector Gi by its locally designed
kernel coefficients Wi, following Di = Wi.Gi. In Reference [43], the interpolation kernel
coefficients are designed by minimizing the mean square error of Di−WiGi. Solving for
the optimal weights of the matrix Wi for each partition reduces to an adaptive Wiener filter
solution for the considered observed LR pixels in the window. In References [44] and [59],
the weights of the Wiener filter are defined as

Wi = R−1
i Pi, (9.13)

where Ri = E
{

GiGT
i
}

and Pi = E
{

GiDT
i
}

. Thus, the determination of the weighting
coefficients in Equation 9.13 requires the unknown HR image that can be either modeled
parametrically or by training data. To avoid training, a parametric modeling approach can
be adopted as described in Reference [43]. This category of SR estimation is inherently
computationally efficient since it is non-iterative in nature.

9.4.4 Super-Resolution Solutions in Practice

Existing SR approaches suffer from extremely high computational requirements due to
the high dimensionality in terms of large number of unknowns to be estimated in the so-
lution of the SR inverse problem. Generally, MAP-based SR methods are computationally
expensive, but can converge to a high-quality solution. Even for solutions with fast conver-
gence rates, commonly used Bayesian approaches are conditioned on the number of dif-
ferent LR observations and the HR image prior statistical model that can lead to very high
computational requirements even for small image estimates. To reduce the computations
required for the regularized norm minimization SR solutions, the fusion-restoration (FR)
methods register and merge all the LR observations on one HR grid before using an iterative
regularized minimization reconstruction process. However, these solutions are still compu-
tationally intensive due to the high dimensionality of the problem with good reconstruction
quality. Moreover, the non-iterative fusion-interpolation (FI) SR approaches, also referred
to as kernel-based SR, are inherently less computationally intensive but suffer from lim-
ited reconstruction quality depending on their assumed statistical model. Learning-based
SR approaches recover missing high-frequency information in an image through matching
using a large image database of training sets. The drawbacks of these methods is the re-
quirement of large representative training sets that are targeted toward example-based and
specific applications. For example, the MAP-based SR approach in Reference [37] requires
a total of approximately 395×106 multiplication and addition operations to estimate an HR
image with 256× 256 pixels from 16 LR frames of size 64× 64 pixels with translational
motion and noise. Also, for the same problem, the FR-based SR method in Reference [42]
requires approximately a total of 200× 106 multiplication and addition operations. Addi-
tionally, the inherently faster non-iterative FI-based SR approach in Reference [43], with
parameters set as Wx = Wy = 12, Dx = Dy = 4, and ρ = 0.75, requires 72×106 multiplica-
tion and addition operations but suffers from a limited reconstruction quality.
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(a) (b) (c)

(d) (e)

FIGURE 9.6

Super-resolved 256× 256 HR Cameraman image obtained using sixteen 64× 64 low-resolution images with

noise standard deviation σn = 4: (a) original image, (b) bicubic interpolation with PSNR = 22.44 dB, (c) base-

line MAP-SR with PSNR = 25.67 dB, (d) baseline FR-SR with PSNR = 25.73 dB, and (e) non-iterative FI-SR

with PSNR = 24.11 dB.

Figure 9.6 compares the visual quality of the HR estimates generated using various
SR solutions described in References [37], [42], and [43]. As it can be seen, the MAP-
based [37] and the FR-based [42] result in a noticeably sharper image and approximately
2 dB increase in PSNR compared to the FI-based SR approach [43]. Given these results,
the following sections present a new trend of efficient selective quality-preserving SR tech-
niques that are driven by perceptual modeling of low-level features.

9.5 Perceptually Driven Efficient Super-Resolution

The high dimensionality of the SR image reconstruction problem demands high compu-
tational efficiency to be deemed of any practical value. As described in Section 9.4, many
powerful iterative solutions were proposed to reduce the complexity and increase the sta-
bility of solving a very large system of linear equations. Although these SR methods are
theoretically justifiable and presented reliable results in terms of image quality and robust-
ness, still at each iteration all the pixels are processed on an HR grid inclusively and thus
they still suffer from high dimensionality in solving the inverse problem. As a consequence,
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(a) (b) (c)

(d) (e) (f)

FIGURE 9.7

Super-resolved 256× 256 HR Cameraman image obtained using sixteen 64× 64 low-resolution images with

noise standard deviation σn = 10: (a) original image, (b) bicubic interpolation, (c) baseline MAP SR, (d) SELP-

MAP SR, (e) gradient-detector with block-based mean thresholds (G-MAP) SR, and (f) entropy-detector with

block-based mean thresholds (E-MAP) SR.

a selective perceptually driven efficient (SELP) SR framework, that takes into account the
preservation of perceptual quality and the reduction of computational efficiency, has been
introduced to reduce the dimensionality of existing iterative SR techniques. The percep-
tual SR approach is selective in nature; only a limited set of perceptually significant pixels,
detected through human perceptual and/or attentive modeling, are super-resolved.

Early attempts on selective SR processing, as presented in References [10] and [11], used
a non-perceptual gradient-based approach in order to detect active pixels that are signifi-
cant for SR processing. Although the gradient-based approach (and other similar high-
frequency detection-based approaches) resulted in savings, it suffered from a significant
drawback, consisting of using a different threshold on the gradient for different images in
order to be able to detect the pixels of interest and achieve good performance. This is not
practical as it requires tweaking the gradient threshold for each image differently. Further-
more, general high-frequency detection methods, such as gradient or entropy based, do not
incorporate any perceptual weighting and cannot automatically adapt to an image’s local
high-frequency content that is perceptually relevant to the human visual system (HVS).
Thus, in the SELP SR method [12], [13], a set of perceptually significant pixels is deter-
mined adaptively using an automatic perceptual detection mechanism that proves to work
over a broad set of images without any manual tuning.
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SNR comparison of the baseline MAP SR, SELP-MAP SR, G-MAP SR with block mean thresholds, and

E-MAP SR approaches with block mean thresholds using sixteen 64× 64 low-resolution images with noise

standard deviation σn = 10 for the 256×256 Cameraman image.

The problem of devising automatic detection thresholds that can adapt to local image
content perceptually is of major importance. Figures 9.7 and 9.8 demonstrate the supe-
rior performance of perceptual automatic thresholds, such as the SELP SR algorithm of
References [12] and [13], and the one discussed in the following section, over the simple
non-perceptual gradient and entropy-based approaches. To avoid the impractical manual
tweaking of the detection thresholds for each image differently and to eliminate global
thresholding that does not adapt to local image features and which was shown in Refer-
ence [11] to require manual tweaking to lead to good performance, the local non-perceptual
detection thresholds are computed as the mean value corresponding to the magnitude of the
gradient or entropy of each block of 8×8 pixels. That is, the detection mechanism in Ref-
erence [11] is replaced by locally thresholding the magnitude of the gradient (G-MAP), and
locally thresholding the entropy (E-MAP).

Figure 9.7 clearly demonstrates the superior perceptual quality of the SELP SR method
(Figure 9.7d) as compared with the non-perceptual methods, including the gradient-based
(Figure 9.7e) and the entropy-based (Figure 9.7f) methods. Compared to the gradient-
based and the entropy-based MAP SR methods, the SELP-MAP method results in a better
reconstruction of edges, as it can be seen around regions such as the tripod of the camera
and the face of the cameraman. Furthermore, Figure 9.8 illustrates the significant increase
in SNR gains per iteration using the SELP-MAP method compared to the gradient-based
and entropy-based MAP SR methods. It also shows that the SELP-MAP and the baseline
MAP SR algorithms have similar performance.

9.5.1 Selective Perceptual Super-Resolution Framework

A block diagram of the SELP-SR estimation framework is shown in Figure 9.9. Initially,
a rough estimate z0 of the high-resolution image is obtained by either interpolating one of
the LR images in the observed sequence or by fusing all the LR frames on one HR grid
(also referred to as the shift-and-add technique). Other techniques, such as learning-based
approaches [31], [32], [33], can also be used to produce initial estimates. At each iteration
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Flowchart of the selective perceptual SR framework.

and for each estimated HR image, active pixels are detected based on the human visual
detection model described in Section 9.5.2. Then, only these perceptually active pixels are
updated by the SR estimation algorithm, which is based generally on minimizing an SR
cost function. As a result, at each iteration, only a subset of pixels (that is, the active pixels)
is selected for the SR processing phase. The algorithm stops whenever the change between
the current HR estimate and the previous one is less than a small number ε , or whenever
the total number of specified iterations is reached. Only the selected perceptually active
pixels need to be included in computing the change in the estimated SR frames between
iterations; the other pixels remain unchanged. The SELP SR framework is very flexible in
that any iterative SR estimation algorithm can be easily integrated in the SELP system.

9.5.2 Perceptual Contrast Sensitivity Threshold Model

Neurons in the primary visual cortex of the human visual system (HVS) are sensitive to
various stimuli of low-level features in a scene, such as color, orientation, contrast, and lu-
minance intensity [60]. The luminance sensitivity also referred to as light adaptation is the
discrimination of luminance variations at every light level. Moreover, the contrast sensitiv-
ity is the response to local variations of luminance to the surrounding luminance [60]. Lim-
its on the human visual sensitivity to low-level stimuli, such as light and contrast, are con-
verted to masking thresholds that are used in perceptual modeling. Masking thresholds are
levels above which a human can start distinguishing a significant stimulus or distortion [61].
Thus, the human visual detection model discriminates between image components based on
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contrast sensitivity of local information to their surroundings. In References [12] and [13],
the SELP SR scheme attempts to exclude less significant information from SR processing
by exploiting the masking properties of the human visual system through generating con-
trast sensitivity detection thresholds. The contrast sensitivity threshold is the measure of
the smallest contrast, or the so-called just noticeable difference (JND), that yields a visible
signal over a uniform background.

Digital natural images can be represented using linear weighted combinations of co-
sine functions through the discrete cosine transform (DCT). This is exploited in the lossy
JPEG standard and many other image compression algorithms, including lossless ones. The
models presented in References [62] and [63] derive contrast sensitivity thresholds and con-
trast masking thresholds for natural images in the DCT domain. The contrast sensitivity
model considers the screen resolution, the viewing distance, the minimum display lumi-
nance Lmin, and the maximum display luminance Lmax. The contrast sensitivity thresholds
are computed locally in the spatial domain using a sliding window of size Nblk×Nblk. The
obtained thresholds per block will be used to select the pixels to be super-resolved for each
HR estimate. The model, described in this section, involves first computing the contrast
sensitivity threshold t128 for a uniform block having a mean grayscale value equals to 128,
and then obtaining the threshold for any block having arbitrary mean intensity using the
approximation model presented in Reference [63].

The contrast sensitivity threshold t128 of a block in the spatial domain is computed as

t128 =
T Mg

Lmax−Lmin
, (9.14)

where Mg is the total number of grayscale levels (that is, Mg = 255 for eight-bit im-
ages), and Lmin and Lmax are the minimum and maximum display luminances, respectively.
The threshold luminance T is evaluated based on the parametric model derived in Refer-
ence [62] using a parabolic approximation, where T = min(10g0,1 ,10g1,0) and the terms g0,1
and g1,0 are defined as follows:

g0,1 = log10 Tmin +K(log10[1/(2Nblkwy)]− log10[ fmin])2, (9.15)

g1,0 = log10 Tmin +K(log10[1/(2Nblkwx)]− log10[ fmin])2, (9.16)

where wx and wy denote the horizontal width and vertical height of a pixel in degrees of
visual angle, respectively. The term Tmin denotes the luminance threshold at the frequency
fmin, where the threshold is minimum, and K determines the steepness of the parabola.
The parameters Tmin, fmin, and K are the luminance-dependent parameters of the parabolic
model and are computed as follows [62]:

Tmin =

{(
L

LT

)αT LT
S0

for L≤ LT ,

L/S0 for L > LT ,
(9.17)

fmin =

{
f0

(
L
L f

)α f
for L≤ L f ,

f0 for L > L f ,
(9.18)

K =

{
K0

(
L

LK

)αK
for L≤ LK ,

K0 for L > LK .
(9.19)
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Generation process of the SELP mask.

In Reference [62], the values of the constants in Equations 9.17 to 9.19 are set as LT =
13.45 cd/m2, S0 = 94.7, αT = 0.649, α f = 0.182, f0 = 6.78 cycles/deg, L f = 300 cd/m2,
K0 = 3.125, αK = 0.0706, and LK = 300 cd/m2. For a background value of 128, the local
background luminance is computed as

L = Lmin +128
Lmax−Lmin

Mg
, (9.20)

where Lmin and Lmax denote the minumum and maximum luminance of the display, respec-
tively. Once the threshold t128 at a grayscale value 128 is calculated using Equation 9.14,
the just noticeable difference (JND) thresholds for the other grayscale values are approxi-
mated using a power function [63] as follows:

tJND = t128

(
∑Nblk−1

n1=0 ∑Nblk−1
n2=0 In1,n2

N2
blk(128)

)aT

, (9.21)

where In1,n2 is the intensity level at pixel location (n1,n2) and aT is a correction exponent
that controls the degree to which luminance masking occurs and is set to aT = 0.649, as
given in Reference [63]. Note that if the block has a mean of 128, then tJND of Equation 9.21
reduces to t128 as expected.

A DELL UltraSharp 1905 FP liquid crystal display is used to show the images. For a
screen resolution of 1280× 1024, and for a measured luminance of Lmin = 0 cd/m2 and
Lmax = 175 cd/m2, the threshold t128 is computed to be equal to 3.3092 for Nblk = 8.

9.5.3 Perceptually Significant Pixels Detection

The perceptual mask determines the significant pixels that need to be processed at each
iteration of the SR algorithm. For each estimated HR image, the perceptual mask is gen-
erated based on comparisons with the computed JND thresholds tJND (Section 9.5.2) over
a local block of size 8×8 pixels. Note that t128 is computed only once according to Equa-
tion 9.14 since it is a constant. Also, for all eight-bit images, the remaining tJND values,
corresponding to the 255 possible mean intensity values (other than 128), can be precom-
puted and stored in a lookup table (LUT) in memory. For each image block, the mean of
the block is computed and the corresponding tJND is simply retrieved from the LUT.
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(a) (b)

FIGURE 9.11

Illustration of the detected set of active pixels: (a) the blurred and noisy version of the 512× 512 Monarch

image and (b) the corresponding map Mp with white intensities denoting the active pixels selected using the

perceptual mask.

As shown in Figure 9.10, after tJND is obtained, the center pixel of a sliding 3×3 window
is compared to its four cardinal neighbors. If any absolute difference between the current
center pixel and any of its four cardinal neighbors is greater than tJND, then the correspond-
ing pixel mask is set to one indicating an active pixel. The remaining pixel mask locations
are set to zero corresponding to non-active pixels. The sliding window will scan all the
pixels of the HR image estimate to generate the perceptual mask. In general, the active
locations consist of pixels in regions where edges are visible to the HVS. As a result, the
perceptual mask signals a subset of pixels that are perceptually relevant for SR processing,
resulting in significant computational savings. The SELP framework saves a significant
number of computations in the SR processing stage with minimal overhead of operations
per pixel for generating the perceptual mask. Figure 9.11 shows an example of the per-
ceptually active pixels that are obtained by applying the SELP mask to a blurred and noisy
version of the 512×512 Monarch image.

9.6 Attentively Driven Efficient Super-Resolution

To further enhance the SELP SR framework, previous work [14], [15] showed that not
all the detail pixels detected by the SELP algorithm are needed to preserve the overall vi-
sual quality of an HR image. It is known that the human visual system scans a visual
scene through a small window, restricted by the foveal region, having high central reso-
lution and degrading resolution toward the peripheries. A large field of view is processed
by a number of fixation points, attended to with high visual acuity, connected by fast eye
movements referred to as saccades. The ordered selection of these regions of interest is
predicted according to a visual attention model by studying the eye movement sensitivity
to top-down mechanisms, such as image understanding, and bottom-up salient image fea-
tures, such as contrast of color intensity, edge orientations, and object motion [64], [65].
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Given the fact that the attended regions are processed at high visual acuity, artifacts present
in these regions are better perceived by the HVS than artifacts present in non-attended ar-
eas. In consequence, the observer’s judgment of image quality is prejudiced by distortions
present in salient regions as shown in Reference [66]. Following this logic, saliency maps
generated by visual attention modeling, can play a fundamental role in reducing the num-
ber of processed pixels of selective SR approaches. Hence, an attentive selective perceptual
(AT-SELP) SR estimators, that exploit the human visual attention for processing the visual
content, are introduced in References [14], [15], and [67]. Moreover, different low-level
features influenced by visual attention models presented in References [68], [69], and [70]
are studied to illustrate the efficiency and quality of the attentive SR framework.

9.6.1 Attentive-Selective Perceptual Super-Resolution Framework

A block diagram of the AT-SELP SR estimation framework is shown in Figure 9.12.
Similarly as in Figure 9.9, at each iteration and for each estimated HR image, active pix-
els are detected based on the human visual detection model described in Sections 9.5.2
and 9.6.2. Then, only these perceptually active pixels are updated by the SR estimation
algorithm which is generally based on minimizing an SR cost function as in Equation 9.10.
As a result, at each iteration, only a subset of pixels (that is, the active pixels) is selected
for the SR processing phase.

The first phase of the SR algorithm processes the perceptually active pixels determined
by a contrast sensitivity mask Mp, as explained in Section 9.5.3. Then, in the second phase
of the SR estimation, only the subset of active pixels that is determined to be salient by
the selective attention mask Ma is further iterated upon. The process of updating the HR
estimates of the perceptual/attentive active pixels continues until a maximum number of
iterations is reached or the system stabilizes; that is, until |Ma.(zn+1− zn)|/|Ma.zn| < ε
in the attentive active region and |Mp.(zn+1 − zn)|/|Mp.zn| < s.ε in the perceptual non-
attentive active region. Here, s is a scaling factor greater than 1 and ε is a predetermined
threshold that represents the desired accuracy or quality of the SR algorithm. Only the
selected perceptually active and salient attentive pixels need to be included in computing the
change in the estimated SR frames between iterations; the other pixels do not change their
values. It is necessary in the first phase of the algorithm to super-resolve the perceptually
significant information of the non-attended regions to a certain acceptable quality level (s.ε)
that will not attract and bias the HVS perception of the background quality, thus, leading to
an acceptable homogeneous quality of the entire image. As a result, the salient regions are
reconstructed with a higher visual acuity while maintaining a trade-off between smoothing
the flat regions dominated by noise and sharpening the perceptually relevant edges.

9.6.2 Saliency-Based Mask Detection

Any saliency-based visual attention model, such as those in References [68], [69],
and [70], can be adopted to detect the attentive mask Ma in the AT-SELP SR framework
to further reduce the set of active pixels selected by the contrast sensitivity detector, thus
reducing the computational complexity of the SR algorithms. Saliency maps S combine
several low-level image features that compete to attract the human attention, providing
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FIGURE 9.12

Flowchart of the AT-SELP SR framework.

measures of the level of attention at every point in the visual scene. After computing
the saliency information at each point in the scene, the attentive mask Ma is generated
by choosing the pixel locations corresponding to the highest τ% of the saliency map val-
ues. Existing saliency map generation techniques inspired by a hierarchical visual attention
model (IT) [68], a foveated gaze attentive model (GAF) [69], and a frequency-tuned atten-
tion model (FT) [70] are detailed in this section for further comparisons and analysis in the
AT-SELP SR framework.
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9.6.2.1 Hierarchical Saliency Model

Reference [68] computes a hierarchical saliency map SIT using center-surround differ-
ences of intensity and orientation between different dyadic Gaussian scales. The input
image I is subsampled into a dyadic Gaussian pyramid of four levels σ , obtained by pro-
gressively filtering and downsampling each direction separately. The intensity information
is the image intensity values at each pyramid level, Iσ . The orientation information is cal-
culated by convolving the intensity pyramid with Gabor filters as follows:

O(σ ,θ) = ‖Iσ ∗G0(θ)‖+‖Iσ ∗Gπ/2(θ)‖, (9.22)

where Gψ(θ) is a Gabor filter with phase ψ = [0,π/2] and orientation θ =
[0,π/4,π/2,3π/4]. The foveated visual perception and the antagonistic “center-surround”
process are implemented as across-scale differences between fine levels c = {1,2} corre-
sponding to center pixels, and coarse levels s = c+δ with chosen δ = {1,2} corresponding
to surround pixels. The across-scale difference ª is calculated by interpolation to the finer
scale followed by point-by-point subtraction. Feature maps that signify the sensitivity of
the HVS to differences in intensity and orientation are calculated as follows:

FI(c,s) = |I(c)ª I(s)|, (9.23)

FO(c,s,θ) = |O(c,θ)ªO(s,θ)|. (9.24)

At this point, four intensity feature maps and sixteen orientation feature maps are created.
Each group of feature maps is combined into two conspicuity maps through across-scale
addition ⊕ by downsampling each map to the second scale of the pyramid followed by
point-by-point addition. A map normalization operator ℵ(.) is applied to scale the values
of different ranges into a common fixed range [0,M]. The conspicuity maps for intensity
and orientation are calculated as follows:

CI = ⊕2
c=1⊕c+2

s=c+1 ℵ(I(c,s)), (9.25)

CO = ∑
θ
⊕2

c=1⊕c+2
s=c+1 ℵ(O(c,s,θ)). (9.26)

A saliency map is then calculated by averaging over the two normalized conspicuities as

S =
1
2
(ℵ(CI)+ℵ(CO)). (9.27)

Figure 9.13a shows the attentive mask Ma(IT ) generated from the hierarchical saliency
map with τ = 20%. The resulting attended regions are used in the AT-SELP method to
promote the detected subset of attended pixels for further iterations or enhancement.

9.6.2.2 Foveated Saliency Model

A foveated visual attention model in Reference [69] is based on the analysis of the statis-
tics of low-level features at the point of gaze in a scene. The saliency map SGAF is gen-
erated by a foveated combination of low-level image features, such as mean luminance,
contrast, and bandpass outputs of both luminance and contrast. For an image patch of size
M = M1×M2, the mean luminance Ī is calculated as follows:
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(a) (b) (c)

FIGURE 9.13

Illustration of the detected set of active pixels (20% of highest saliency values) for the blurred and noisy version

of the 512×512 Monarch image shown in Figure 9.11 by generating and applying: (a) the hierarchical attentive

mask Ma(IT ), (b) the foveated attentive mask Ma(GAF), and (c) the frequency-tuned attentive mask Ma(FT ).
White intensities denote active pixels.

Ī =
1

∑M
i=1 wi

M

∑
i=1

Iiwi, (9.28)

where Ii is the grayscale value of the pixel at patch location i, and wi is the raised cosine
function given by

wi = 0.5[cos(
πri

R
)+1], (9.29)

where ri =
√

(xi− xc)2 +(yi− yc)2 is the radial distance of pixel location (xi,yi) from the
center of the patch (xc,yc) and R is patch radius. Then, the root-mean-squared contrast C is
computed as follows:

C =

√
1

∑M
i=1 wi

M

∑
i=1

wi
(Ii− Ī)2

(Ī)2 . (9.30)

The bandpass of patch luminance features are computed by using Gabor kernels designed
for different eccentricity values. Eccentricity values e, measured in degrees of visual angle,
represent the distance needed to reach a particular patch. Then the bandpass-luminance for
each patch is computed as Glum = max |Glum(e)∗I(e)|, where Glum(e) is the designed Gabor
filter at eccentricity e. Similarly, the bandpass of patch contrast is computed using Ggrad =
max |Ggrad(e) ∗ |∇(I(e))||, where Ggrad(e) is the designed Gabor filter at eccentricity e of
the image gradient |∇(I(e))|. More details on the Gabor filters design can be found in
Reference [69]. The saliency map is then calculated by averaging all the computed image
features after scaling them to a common fixed range [0,M]. Figure 9.13b shows the attentive
mask Ma(GAF) generated from the foveated saliency map with τ = 20%.

9.6.2.3 Frequency-Tuned Saliency Model

Reference [70] proposed a frequency-tuned saliency approach, using difference of Gaus-
sians (DoG) of luminance intensity, to generate saliency map information SFT . The band-
pass filters using DoG are designed by properly selecting the standard deviation of the
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Gaussian filters targeting saliency generation. In Reference [70], the saliency map infor-
mation (SFT ) is generated by taking the magnitude of the differences between the image
mean vector and Gaussian blurred version using a 5×5 separable kernel as follows:

SFT = |Iµ − Iwhc |, (9.31)

where |.| is the norm operator, Iµ is the arithmetic mean pixel value of the image, and Iwhc is
the Gaussian blurred version of the original image. Figure 9.13c shows an example of the
attentive mask Ma(FT ) to a blurred and noisy version of the 512× 512 Monarch image.
Comparing the masks shown in Figures 9.13a to 9.13c and the perceptual mask (Mp) shown
in Figure 9.11 reveals that the significantly lower number of active pixels is selected for SR
processing using the attentive masking phase.

The existing visual attention approaches [68], [69] introduce a significant computational
overhead for computing the saliency maps. These would be useful for the AT-SELP frame-
work only if the saliency maps were already precomputed as part of another task (such as
visual quality assessment for example). Such available saliency maps can then be exploited
to improve the efficiency of the SR process. However, if these saliency maps were not
available, generating those using the existing visual attention methods would not improve
the SR process due to the high computational overhead that is introduced when computing
these saliency maps. In order to tackle this issue and make the AT-SELP process feasi-
ble when saliency maps are not available, an efficient low-complexity JND-based saliency
detector targeted toward efficient selective SR was recently proposed in Reference [67].

9.7 Perceptual SR Estimation Applications

The perceptually driven SR frameworks (SELP, AT-SELP), previously discussed in Sec-
tions 9.5 and 9.6, are very flexible in that any iterative SR estimation algorithm can be
easily integrated in the perceptually selective system. Hence, application of the selec-
tive perceptual (SELP) and the attentive selective (AT-SELP) SR framework to an iterative
MAP-based SR method [37] and a FR-based SR method [42] are described below in Sec-
tions 9.7.1 and 9.7.2, respectively. The attentively or perceptually driven SR schemes result
in significant computational savings while maintaining the perceptual SR image quality, as
compared to the iterative baseline SR schemes [37], [42].

9.7.1 Perceptual MAP-Based SR Estimation

Existing Bayesian MAP-based SR estimators present high-quality estimation but suf-
fer from high computational requirements [36], [37], [38], [39]. In order to illustrate
the significant reduction in computations for MAP SR techniques, the popular gradient-
descent optimization-based algorithm from Reference [37] is integrated into the attentive-
perceptual selective SR framework (SELP, AT-SELP).

In Reference [37], a uniform detector sensitivity is assumed over the span of the detec-
tor degradation model, then the point spread function (PSF) H in the observation model
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(Section 9.3) is represented using an averaging filter. Following the Bayesian MAP-based
SR formulation in Section 9.4.1, the regularization smoothness constraint term (in the cost
function of Equation 9.9) is represented in Reference [37] by Γ(z) = 1

2 zT C−1
z z, where Cz is

the covariance of the HR image prior model imposing a piecewise smoothness relationship
between neighboring pixels in z as follows [37]:

C−1
z =

1
λ

N

∑
i=1

di,k

(
N

∑
j=1

di, jz j

)
, (9.32)

where λ is scaling factor controlling the effect of rapidly changing features in z, and z j is
the pixel at the jth location of the lexicographically ordered vector z. The coefficients di, j,
which express a priori assumption about the relationship between neighboring pixels in z,
are defined as follows [37]:

di, j =
{

1 for i = j,
−1/4 for i 6= j : z j ∈ cardinal neighbors of zi

(9.33)

In the AT-SELP-MAP SR scheme, the gradient descent minimization procedure is ap-
plied selectively and only to pixels that are determined to be perceptually significant by the
attentive-perceptual detectors (Sections 9.5.3 and 9.6.2). Following the steepest descent so-
lution in the perceptually driven framework, the HR image is estimated using Equation 9.8
as follows [37]:

ẑn+1 = ẑn−βnM{ 1
σ2

η

K

∑
k=1

WT (Wzn−y)+
1
2

C−1
z zn}, (9.34)

where M represents the attentive-perceptual mask for selecting active pixels at every iter-
ation of the SR process. Note that the initial HR image estimate is an interpolated version
of one of the LR frames. The elements in M take binary values, where ones indicate active
pixels that should be included in the SR update at the current iteration, whereas zero mask
values indicate that the corresponding pixels are non-active and will not be processed in the
current iteration.

9.7.2 Perceptual Fusion-Restoration SR Estimation

The efficient perceptually driven framework can be used in conjunction with the fusion-
restoration (FR) SR algorithms. Reference [42] proposed a two-step algorithm by using
first a non-iterative data fusion step followed by an iterative gradient-descent deblurring-
interpolation step. This algorithm models the relative motion between low-resolution
frames as translational and the point spread function (PSF) as an L1×L2 Gaussian lowpass
filter with a standard deviation equals to 1. Following the regularized-norm SR formula-
tion in Section 9.4.2, a fast fusion-restoration implementation of the minimization solution
(Equation 9.12) can be achieved by solving for a blurred estimate zb = H ẑ of the HR image
followed by an interpolation and deblurring iterative step. An initial blurred version of the
HR estimate zb is produced in the data fusion step by registration followed by a median op-
erator of the LR frames on the HR grid, referred to as the “median shift and add” operator.
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As for the regularization term in Equation 9.12, a bilateral total variation regularization that
preserves edges is adopted as follows [42]:

ΓBTV (z) =
R

∑
l=−R

R

∑
m=0

α |m|+|l|∥∥z−Sl
xSm

y z
∥∥

1 , (9.35)

where Sl
x and Sm

y shift the HR image z by l and m pixels in the horizontal and vertical
directions, respectively, and R≥ 1 represents several scales of shifting values. The weight α
is applied as a decaying factor for convergence purposes, and is chosen between 0≤ α ≤ 1.
The SR problem in Equation 9.12 reduces to deblurring and interpolating for the missing
pixels in the initial HR estimate zb that is formulated as a regularized l1-norm minimization
problem [42]. In the AT-SELP-FR SR scheme, the steepest descent minimization is applied
selectively only to the active pixels identified by the perceptual detection schemes:

ẑn+1 = ẑn−βnM
[
HT AT sign(AH ẑn−Azb)+

λ
R

∑
l=−R

R

∑
m=0

α |m|+|l|
[
I−S−m

y S−l
x

]
sign(ẑn−Sl

xSm
y ẑn)

]
, (9.36)

where βn is the step size in the direction of the gradient and λ is a regularization weighting
factor. Matrix A is an N×N diagonal matrix with diagonal values equal to the square root
of the number of measurements that contribute to make each element of zb. Also, S−l

x and
S−m

y define a shifting effect in the opposite directions of Sl
x and Sm

y . The term M represents
the perceptually attentive masking that selects the active pixels that are processed at each
iteration, thus reducing the computations required in Reference [42].

9.7.3 Perceptually Driven SR Results

The performance of the efficient perceptually driven SR framework is assessed using
a set of test images shown in Figure 9.14. The images used in this experiment include
Cameraman, Lena, and Clock from the USC image database [71], and Monarch from the
LIVE image database [72], as shown in Figure 9.14. These images, all of the size of 256×
256 pixels, differ in their characteristics. For example, the Clock and Monarch images
contain many smooth regions, while the Cameraman and Lena images have more edges and
texture variations. Moreover, the Lena image can be used to demonstrate the application of
SR in face recognition applications.

(a) (b) (c) (d)

FIGURE 9.14

Original 256×256 test images: (a) Cameraman, (b) Lena, (c) Clock, and (d) Monarch.
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FIGURE 9.15

Comparison between the baseline MAP, SELP-MAP, and the AT-SELP-MAP SR estimators using sixteen

64× 64 LR images, resizing factor L = 4, and noise variance σ2
η = 16 for the ninth frame of the 256× 256

Cameraman sequence: (a) SNR gain per iteration and (b) number of processed pixels per iteration.
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FIGURE 9.16

Comparison between the baseline FR, SELP-FR, and the AT-SELP-FR SR estimators using sixteen 64× 64

LR images, resizing factor L = 4, and noise variance σ2
η = 16 for the ninth frame of the 256×256 Cameraman

sequence: (a) SNR gain per iteration and (b) number of processed pixels per iteration.

A sequence of LR images is generated from a single HR image by passing the HR im-
age through the SR degradation model described in Section 9.3 to generate a sequence of
blurred, shifted, and noisy LR images. Then, for a resolution factor of four, the degradation
process is applied by randomly shifting the reference 256×256 HR image in the horizon-
tal and vertical directions, blurring the shifted images with a lowpass filter of size 4× 4,
and subsampling the result by a factor of four in each direction to generate sixteen 64×64
LR frames. The blur filters are modeled as an average filter and as a Gaussian filter with
standard deviation of one for the MAP-based [37] and the FR-based [42] SR observation
models, respectively. Then, an additive Gaussian noise of variance σ2

η = 16 is added to the
resulting LR sequence. Figure 9.3 depicts the simulated sequence generation process.
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The attentive-selective perceptual MAP-based super-resolution and attentive-selective
perceptual fusion-restoration super-resolution schemes referred to as AT-SELP-MAP [15]
and AT-SELP-FR [14], respectively, are compared with their existing non-selective coun-
terparts MAP-SR [37] and FR-SR [42], as well as the selective SR counterparts SELP-MAP
and SELP-FR [12], [13]. The simulation parameters of the compared MAP-based SR meth-
ods are set to λ = 100, ε = 0.0001, and s = 100, and a maximum of twenty iterations are
performed. On the other hand, the simulation parameters of the compared FR-based SR
methods are set to R = 2, α = 0.6, λ = 0.08, and β = 8, ε = 0.0001, s = 120, and a
maximum of thirty iterations are performed. The parameter τ of the saliency map detec-
tion is set to 20% to identify the attentive active pixels. Experimentally, percentage values
between 20 and 40% offered promising results in terms of quality and computational effi-
ciency trade-off. These numbers are plausible, since shifts of attention based on competing
saliency results needs 30 to 70 ms [73]. Then, in a 30.33 ms time interval given to view
one frame, assuming 30 fps video sequence, one can only perceive 20 to 40% of the salient
regions. For the saliency mask detection schemes, different saliency maps generated from
existing visual attention models presented in References [68], [69], [70] are also integrated
and tested in the proposed AT-SELP SR framework.

Figure 9.15 gives a quantitative comparison among the baseline MAP, SELP-MAP, and
proposed AT-SELP-MAP SR methods using different saliency detection techniques applied
to super-resolve the ninth frame of the simulated Cameraman LR sequence. Similarly, Fig-
ure 9.16 shows a quantitative comparison among the baseline FR, SELP-FR, and proposed
AT-SELP-FR SR methods. Error measures, represented by the SNR gain per iteration, and
the computational complexity, signified by the number of processed pixels per iteration,
are presented in Figures 9.15, 9.16a, and 9.16b, respectively. It can be seen that in the case
of baseline MAP and FR SR methods all the pixels are processed at each iteration for all
the images (that is, for a 256× 256 image, the total number of processed pixels is 65536
at each iteration). As shown in Figures 9.15b and 9.16b for the SELP-MAP and SELP-
FR SR methods, respectively, the number of processed pixels per iteration varies from one
image to the other depending on the visual content. In Figures 9.15b and 9.16b, the vi-
sual attention processing takes effect around the fifth iteration, thus further reducing the
detected active pixels processed. Due to the attentive selectivity, the AT-SELP SR frame-
work presents considerable savings in terms of the number of processed pixels, leading
to a significant reduction in computational complexity. Comparing the SNR measures in
Figures 9.15a and 9.16a, it can be easily seen that the Ma(IT ) mask integrated into the AT-
SELP SR framework has the best error performance among the other implemented saliency
mask detectors. Also, the efficient and simple saliency mask generator Ma(FT ) adopted
from Reference [70] does not enhance the overall quality of the SR estimate due to select-
ing objects and features in the image that are not relevant to SR processing applications.
Furthermore, the overall quantitative assessment is also shown in terms of PSNR measures
in Tables 9.1 and 9.2.

Since the employed PSNR and SNR gain measures do not necessarily reflect the result-
ing visual quality [74], Figures 9.17 and 9.18 show the SR outputs obtained for the ninth
frame of the simulated Cameraman sequence for all compared MAP-based and FR-based
SR methods, respectively. Despite the fact that the AT-SELP-SR scheme processes sig-
nificantly less pixels per iteration, it produces a comparable visual quality to the existing
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TABLE 9.1
PSNR values in dBs of MAP-based SR methods for all test sequences using mag-
nification factor L = 4 and noise variance σ2

η = 16.

Test Sequence

Method Cameraman Lena Clock Monarch Average

MAP 25.67 25.22 28.57 21.01 25.12
SELP-MAP 26.08 25.51 29.18 21.73 25.63
AT-SELP-MAP (IT) 25.56 25.16 28.64 21.20 25.14
AT-SELP-MAP (GAF) 25.48 25.19 28.63 21.22 25.13
AT-SELP-MAP (FT) 25.23 24.98 28.47 20.85 24.88

TABLE 9.2
PSNR values in dBs of FR-based SR methods for all test sequences using mag-
nification factor L = 4 and noise variance σ2

η = 16.

Test Sequence

Method Cameraman Lena Clock Monarch Average

FR 25.73 24.74 28.58 21.78 25.21
SELP-FR 25.74 24.75 28.52 21.81 25.21
AT-SELP-FR (IT) 25.48 24.66 28.36 21.59 25.02
AT-SELP-FR (GAF) 25.46 24.63 28.29 21.58 24.99
AT-SELP-FR (FT) 24.90 24.38 27.98 21.01 24.57

selective and non-selective [37], [42] SR schemes. Furthermore, Tables 9.3 and 9.4 show
similar pixel savings achieved by the different visual attention methods when integrated in
the AT-SELP SR framework. It is shown in Table 9.3 that up to 66% in pixel savings can
be achieved by the AT-SELP-MAP SR over the baseline MAP SR, while around 31% in
pixel savings is achieved over the efficient SELP-MAP SR. Table 9.4 shows that the pro-
posed AT-SELP-FR framework saves around 71% in SR processing over the non-selective
baseline-FR and around 44% in SR processing over the efficient SELP-FR SR.

9.8 Conclusion

This chapter provided an overview of existing SR techniques, with a focus on percep-
tually driven multi-frame super-resolution (SR) techniques. The MAP-based SR methods,
that are based on Bayesian formulations of the SR problem, strongly depend on prior HR
information. The MAP SR approaches were shown to have a good reconstruction quality
but with high computational requirements. The FR-based SR methods provide relatively
efficient implementations of the regularized-norm minimization methods by reducing ma-
trix operations and are more robust to errors.

This chapter also presented a new class of perceptually driven selective (SELP, AT-SELP)
SR solutions that can reduce the computational complexity of iterative SR problems while
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(a) (b) (c)

(d) (e) (f)

FIGURE 9.17

Super-resolved ninth frame of 256×256 HR Cameraman image obtained using sixteen 64×64 low-resolution

images with σ2
η = 16 and τ = 20%: (a) bicubic interpolation, (b) baseline MAP-SR, (c) SELP-MAP SR,

(d) AT-SELP-MAP SR using hierarchical Ma(IT ), (e) AT-SELP-MAP SR using foveated Ma(GAF), and

(f) AT-SELP-MAP SR using frequency-tuned Ma(FT ).

TABLE 9.3
Percentage of pixel savings of MAP-based SR methods for all test sequences using
magnification factor L = 4 and noise variance σ2

η = 16.

Test Sequence

Method Cameraman Lena Clock Monarch Average

MAP — — — — —
SELP-MAP 34.93 16.37 46.61 29.10 31.75
AT-SELP-MAP (IT) 68.01 62.76 67.61 68.34 66.68
AT-SELP-MAP (GAF) 67.85 61.47 67.00 68.80 66.28
AT-SELP-MAP (FT) 67.41 62.25 67.68 67.97 66.33

maintaining the desired estimated HR media quality. It was shown that general high-
frequency and edge detection methods, such as gradient-based or entropy-based methods,
that do not incorporate any perceptual weighting, cannot automatically adapt to local visual
characteristics that are perceptually relevant to the human visual system (HVS). Thus, the
problem of devising automatic detection thresholds that can adapt to the local perceptually
relevant image content is addressed. Due to human visual attention, not all the detail pixels
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(a) (b) (c)

(d) (e) (f)

FIGURE 9.18

Super-resolved ninth frame of 256×256 HR Cameraman image obtained using sixteen 64×64 low-resolution

images with σ2
η = 16 and τ = 20%: (a) bicubic interpolation, (b) baseline FR-SR, (c) SELP-FR SR, (d) AT-

SELP-FR SR using hierarchical Ma(IT ), (e) AT-SELP-FR SR using foveated Ma(GAF), and (f) AT-SELP-FR

SR using frequency-tuned Ma(FT ).

TABLE 9.4
Percentage of pixel savings of FR-based SR methods for all test sequences using
magnification factor L = 4 and noise variance σ2

η = 16.

Test Sequence

Method Cameraman Lena Clock Monarch Average

FR — — — — —
SELP-FR 44.47 36.56 62.77 34.47 44.57
AT-SELP-FR (IT) 71.17 70.23 74.20 69.37 71.24
AT-SELP-FR (GAF) 71.75 70.57 74.38 69.08 71.45
AT-SELP-FR (FT) 71.33 70.63 74.37 68.53 71.22

detected by the contrast sensitivity threshold model are needed to preserve the overall visual
quality of an HR image. Toward this goal, an efficient attentive-selective perceptual (AT-
SELP) SR framework jointly driven by human visual perception and saliency-based visual
attention models, was presented. The effectiveness of the proposed attentive-perceptual
framework in reducing the amount of SR processing while maintaining the desired visual
quality was verified by investigating different saliency map techniques that combine several
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low-level features, such as center-surround differences in intensity and orientation, patch
luminance and contrast, and bandpass outputs of patch luminance and contrast. The SELP
and AT-SELP SR frameworks were shown to be easily integrated into a MAP-based SR
algorithm as well as a FR-based SR estimator. Simulation results showed significant re-
duction on average in computational complexity with comparable visual quality in terms
of subjectively perceived quality as well as PSNR, SNR, or MAE gains.
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10.1 Introduction

Digital halftoning refers to the process of converting a continuous-tone image or photo-
graph into a binary pattern of black and white pixels for display on binary devices, such
as ink-jet or electrophotographic printers. Early approaches to digital halftoning mimic
the analog process of projecting a film negative, through a silk screen, onto high-contrast
lithographic film. These early approaches produce periodic patterns of round dot clusters
varying in size with tone such that light and dark shades of gray were represented by small
and large dot clusters, respectively. By thinking of the size of round clusters as ampli-
tude, these periodic clustered-dot methods are generally referred to halftoning by means of
amplitude modulation.

By turning pixels on according to the average gray level of the entire cell, the result-
ing halftone loses fine details from the original; furthermore, significant computational
resources are spent calculating the specific path by which pixels are turned on according to
the pixel’s row and column coordinate within the cell. So as a means of preserving finer im-
age details as well as to reduce overall computational complexity, the pixels of the halftone
cell can be independently thresholded according to a quantization level stored in a dither
array of the same size and orientation of the cell. As such, a solid black line of small width
(1–2 pixels) will be preserved (Figure 10.1a). The specific arrangement of consecutive
thresholds within the dither array determines the resulting dot shape with early approaches
to dither array construction recreating the spiraling path of Post-Script screening.
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(a) (b) (c)

FIGURE 10.1

Demonstrations of halftoning by means of (a) a clustered-dot dither array, (b) Bayer’s dither array, and (c) a

blue-noise dither array.

Later approaches to halftoning involve the process of error diffusion, where a pixel is
quantized to black or white, and its quantization error is passed on to neighboring, soon-
to-be-processed pixels. The resulting patterns are composed of an aperiodic pattern of
isolated dots, homogeneously distributed where light shades of gray are represented by
a loose packing of dots and dark shades by a tight packing. Thinking of the spacing of
dots as their frequency, methods like error diffusion that create varying shades of gray by
manipulating the spacing between dots are generally referred to as halftoning by means of
frequency modulation. Because of the high computational complexity of error diffusion, a
means of producing frequency modulation patterns using dither arrays was developed.

10.2 State of the Art Work

While patterns of printed dot clusters, formed by early dither arrays, create consistent,
smooth halftones in electrophotographic device unable to reliably print isolated dots, these
same arrays create an apparent spatial resolution much lower than the native resolution of a
reliable printing device such as an ink-jet printer. In such devices, higher image quality can
be achieved through the dispersion of consecutive thresholds as first specified by Bayer [1]
(Figure 10.1b). The drawback of Bayer’s dither is that by distributing thresholds along
a deterministic path, resulting halftones show a strong periodic structure that imparts an
unnatural appearance on the image [2].

In order to eliminate the periodic textures of Bayer’s dither while preserving the high
fidelity of isolated dot patterns, various authors have proposed distributing consecutive
thresholds in such a way that print dot patterns minimize the visibility of resulting bi-
nary texture to the human viewer. Such approaches require careful consideration of how
the human visual system works. To this end, various lowpass filter models have been
employed, such as in References [2], [3], [4], [5], [6], [7], [8], [9], and [10], to intro-
duce so-called blue-noise dither arrays where consecutive thresholds are distributed in a
pseudo-random fashion to create the illusion that the resulting halftone was created by
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means of error diffusion (Figure 10.1c). Error diffusion [11], [12], [13] is a neighborhood
process of quantizing the current input pixel and then diffusing the resulting quantization
error onto soon-to-be-processed input pixels. While involving significantly more computa-
tional resources than dither array halftoning, error diffusion patterns are visually superior
to periodic dither arrays because the algorithm minimizes the low-frequency content of
the halftone, creating patterns composed exclusively of high-frequency spatial content. As
blue is the high-frequency component of visible white light, Reference [12] coined the term
“blue-noise” to describe these patterns. The human visual system, being less sensitive to
random patterns while finding isolated dots harder to see, would find the resulting texture
less visible overall.

The process of constructing blue-noise dither arrays typically involves the steps of gener-
ating a set of binary dither patterns, with a separate pattern for each unique gray level, and
then summing the patterns pixelwise to produce a multilevel threshold matrix. An eight-bit
display, for example, will involve the construction of 256 unique dither patterns ranging
from an all black pattern up to an all white pattern. In constructing the dither pattern for
an intermediate gray level, an iterative process is used that swaps black and white pixels in
order to minimize the pattern’s low-frequency energy under a stacking constraint such that
pixels set to white for one gray level are also white for all higher gray levels. Summing all
of the component dither patterns pixelwise creates a threshold matrix such that a particular
pixel threshold value equals to the percentage of times that pixel is set to one across the
component dither pattern set. When halftoning, an output pixel is then set to 1 if the corre-
sponding input pixel equals or exceeds the corresponding threshold in the dither array. For
large images, the dither array is tiled end-to-end until each input pixel has an associated
threshold value. For this reason, it is extremely important that the dither array show no
discontinuity in texture when wrapping around from one side to the other.

In comparing various approaches to dither array construction, the majority of algorithms
differ in the way that they measure low-frequency energy to determine which pixels to
swap. In the case of Ulichney’s void-and-cluster (VAC) algorithm [2], the current itera-
tion’s dither pattern is filtered by means of circular convolution with a human visual model
consisting of a lowpass, Gaussian filter kernel. Having applied this filter, the resulting vi-
sual model of the halftone is then a measure of white pixel density such that low values
indicate regions of the dither pattern with a low concentration of white pixels while large
values indicate regions with a high concentration. Wanting to achieve a homogeneous
distribution of ones and zeros, this algorithm selects the white pixel corresponding to the
highest concentration of white pixels and sets it to black. The image is then refiltered to
determine the current concentration of white pixels minus the one that was just toggled.
From the resulting concentration, the algorithm then selects the black pixel corresponding
to the lowest concentration of white pixels and sets it to white. Repeating this process of
voiding and clustering, the algorithm stops after the black pixel set to white is the same
pixel that was just turned to black during the void stage.

A popular alternative to void-and-cluster is the direct binary search (DBS) [14], which
is an iterative process. For a particular iteration, a pixel is either toggled of swapped with
one of its eight nearest surrounding neighbors, depending upon which modification leads
to the largest drop in squared error between the visual model of the halftone and original
continuous-tone input image. If none of the modifications lead to a reduction in error, then
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(a) (b)

FIGURE 10.2

Illustration of the tiling artifacts created by (a) a single repeating blue-noise dither of size 108×108 pixels and

(b) ten randomly selected dither arrays of size 108×108 pixels with a common border region [18].

no modification is performed with processing continuing with the next pixel in the raster
order. If, after a complete pass through the image, no modifications are performed, then the
algorithm has converged and processing stops; otherwise, the algorithm performs another
pass through the image. Because direct binary search is a steepest descent algorithm like
void-and-cluster, the final result is susceptible to local minima, depending on the initial
halftone as well as the particular HVS model.

To date, the various blue-noise dither array construction algorithms fail to fully achieve
the smooth textures of error diffusion due to their reliance on steepest descent algorithms
to minimize a visual cost measure, resulting in the algorithms falling into local minima. As
such, this chapter introduces a postprocessing stage based on centroidal Voronoi tessella-
tions (CVTs) to design dither arrays that, when thresholded with at a constant gray level,
yield binary patterns that approximate the ideal blue-noise pattern regardless of the input
gray level. This algorithm allows for a fine tuning in the distribution of minority pixels and
a fine control over the quality of binary patterns at different gray levels. Centroidal Voronoi
tessellations have been used in many applications ranging from data compression to optimal
quadrature rules, optimal representation, quantization, clustering [15], and also halftoning.
In halftoning, CVTs have been used before [16], [17] for the automatic generation of stip-
plings, which is a method traditionally performed by artists to represent continuous tone
images as black an white images.

In Reference [17], an initial binary image, created using some halftoning algorithm is
optimized through the use of weighted Voronoi digrams, using the original continuous tone
image as the density function. This approach leads to good results but involves a high
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computational load since numerical integrations have to be performed at each iteration of
the algorithm. Techniques to precalculate dot distributions, and then use look up tables to
generate the halftone are also presented in Reference [17], but the quality of the halftones
obtained degrades considerably with respect to the initial approach. In general the useful-
ness of CVTs for any application is based on its minimization properties and the capacity
to create uniform distributions of dots. The algorithm presented here takes advantage of
these properties to optimize the distributions of minority pixels in the binary patterns of
the array. By introducing a modification of Lloyd’s algorithm, this optimization can be
controlled, yielding binary patterns of even quality across the complete grayscale.

Now regardless of the construction method, the use of the dither array technique for
halftoning continuous tone images have a fundamental problem related with the unavoid-
able tiling process of multiple copies of the dither array. As demonstrated in Figure 10.2a,
the tiling creates a globally periodic halftone that is visible to the human eye. To overcome
this difficulty, Reference [18] explored the possibility of constructing multiple dither arrays
with component arrays tiled end-to-end in a random ordering. As shown in Figure 10.2b,
this process involves constructing dither arrays with a common border, such that each pat-
tern satisfies a wrap-around property with itself and all other component masks. However,
the authors offered no criteria by which to set the size of the common border region, where
too small a region leads to texture discontinuities between tiles while too large a region
leads to visible tiling artifacts in the bands of the common region.

Along similar lines as described above, Reference [19] proposed the use of multiple small
blue-noise screens, designed using direct binary search that could be tiled in a random order
to yield high-quality halftones with an overall screen that is periodic but not having periodic
artifacts. A similar approach was then offered in Reference [20] which proposed the use
of screen tile indices as a watermark. Finally, Reference [21] proposed the use of multiple
small constant binary texture tiles, arranged in any manner, to design highly compressible
halftones.

This chapter presents a generalization of the approach first offered in Reference [18],
by which the size of the common border region between component arrays is optimized
as a function of the gray level. In addition, this chapter also reviews the extension of the
stochastic dither arrays to nonzero screen angles, taking advantage of the human eye’s
reduced sensitivity to diagonal correlation. This technique can be easily extended to color
halftoning, where the possibility of tiling artifacts can be further reduced by using different
screen angles for each color, as performed in traditional clustered-dot dithering.

In closing this chapter, the focus is shifted on the especially challenging problem of
lenticular printing, which spatially multiplexes a series of component images to create a
composite image as illustrated in Figure 10.3 [22]. These images are then transferred onto
the backside of a lenticular lens array. When viewed through the lenses and depending on
the incident angle through the array, the human eye sees a single de-interlaced component
image. Oriented horizontally, the rotation of the lens array creates an animated image se-
quence. Oriented vertically, the lens array forms a stereoscopic pair that, given a sufficient
number of component viewing angles, creates a full-color holographic display. Within the
printing industry, lenticular imaging is most commonly associated with advertising, and in
particular, most observers will associate lenticular printing with movie posters and other
kiosk displays.
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FIGURE 10.3

Illustration of the lenticular imaging process where: (top-center) images are divided into strips and are inter-

laced together into on graphic, (right) the graphic is printed directly onto the back of an extruded lens, and

(bottom-right) the lenticule isolates and magnifies the interlaced image beneath, depending on the angle of

observation, such that if the lenticule runs vertically, then a different image is delivered to each eye to create a

3D image. If the lenticule runs horizontal, then a rotation of the lens array creates an animation effect.

(a) (b)

FIGURE 10.4

The halftoned grayscale ramps (a) before and (b) after downsampling using a traditional void-and-cluster dither

array.
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Due to the manner in which the lens array de-interlaces the component images, the use
of a blue-noise dither array to halftone the composite image creates a noisy uncorrelated
appearance as demonstrated in Figure 10.4. So as an attempt to maintain a smooth homo-
geneous distribution of printed dots in the composite image while also achieving a smooth
blue-noise appearance in the component de-interlace images, this chapter introduces a mod-
ified technique for constructing blue-noise dither arrays that constrains their construction to
maintain a smooth texture in both their original form as well as in their downsampled ren-
ditions. Specifically, the construction of these lenticular aware dither arrays will be studied
by means of the void-and-cluster algorithm [2] where the computational complexity asso-
ciated with this technique of converting a continuous tone pixel value into a binary value
is a pointwise operation, requiring no additional complexity than in a traditional halftoning
application.

10.3 Dither Array Construction

The masking process is a point process by which each pixel of the continuous tone input
image f [n] of G gray levels is compared to a corresponding pixel in a threshold matrix S[n]
of size M×N, which is called a mask or screen. If the input is greater than the threshold
at position n, the binary output denoted by b[n] is set to one or otherwise to zero. In the
masking processes, there is a distinct output binary pattern Ii corresponding to each constant
input of gray level i with i∈ {0,1, ...,G−1}. The number of pixels set to one in each binary
pattern corresponds to the gray level it represents. The parameter I0 is the all zero matrix
while IG−1 is the all ones matrix. And Ii has bMNi/(G−1)+0.5c pixels set to one.

If a position in Ii0 is set to one, at gray level i0, that position remains set to one for any
other Ii1 with i1 > i0. Conversely, if a position in Ii2 is set to zero, at gray level i2, then Ii1
is set to zero in the same position for any i1 < i2 (see Figure 10.5). These restrictions are
called stacking constraints given by

if Ii−1[n] = 1 ⇒ Ii[n] = 1,
if Ii+1[n] = 0 ⇒ Ii[n] = 0.

(10.1)

Having all the binary patterns corresponding to each of the input gray levels, the threshold
matrix S[n] is given by

S[n] =
G−1

∑
i=0

Ii[n], (10.2)

and the output of the masking process is

b[n] =
{

1 if f [n] > S[n mod[M,N]],
0 if f [n]≤ S[n mod[M,N]].

(10.3)

The order in which binary patterns are designed has an important impact on its quality, since
with advancing in the process more and more pixels are constrained leaving less room for
the selection of new minority pixels.
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FIGURE 10.5

Stacking constraints for gray levels i0 < i1 < i2. White pixels represent a 1, black pixels represent a 0, and gray

pixels represent an undetermined value in Ii1 . These values are the ones that must be set to either 1 or 0 using

the binary pattern design algorithm.

In the process of designing Ii1 based on previously designed patterns Ii0 and Ii2 with
i0 < i1 < i2, the stacking constraint implies that there would be bMNi0/(G− 1) + 0.5c
pixels constrained to be one in Ii1 and MN−bMNi2/(G− 1)+ 0.5c pixels constrained to
be zero, leaving

bMNi2/(G−1)+0.5c−bMNi0/(G−1)+0.5c (10.4)

unconstrained pixels to be determined at the design stage. The criterion to select the best
design order would be to maximize the number of undetermined pixels at every stage,
since this allows to generate better binary patterns using the appropriate algorithm. A way
to maximize Equation 10.4 is by having i2 and i0 as far as possible at every iteration and
that is accomplished if the design order pivots between the extremes of the grayscale, that
is, i = 0,G−1,1,G−2, ...,(G−2)/2. Following this ordering, the base patterns Ii0 and Ii2
always will be in opposite sides of the grayscale. The pixels considered as minority pixels
are the ones set to one for Ii0 and to zero for Ii2 .

As it is desirable to use the same algorithm to create binary patterns at either end
of the grayscale range, regardless of the definition of a minority pixel, two sets of bi-
nary patterns defined as {Ib

i }(G−2)/2
i=1 and {Iw

i }(G−2)/2
i=1 (assuming G even) are considered

here. These binary patterns correspond to binary patterns in the mask, as Ii = Iw
i for

i = 0, . . . ,(G− 2)/2 and Ii = 1− Ib
G−1−i for i = (G− 2)/2 + 1, . . . ,G− 1. The letters b

and w stand for black (bits set to zero) and white (bits set to one) since the patterns in {Ib
i }

arises for input gray levels i > (G−1)/2 and the patterns in {Iw
i } for i < (G−1)/2. Using

these two sets, a minority pixel will always be equal to one in any given pattern and the
same algorithm can be used either to design Iw

i or Ib
i . The design order proposed is then
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{Ib
1 , Iw

1 , Ib
2 , Iw

2 , . . . , Ib
(G−2)/2, I

w
(G−2)/2} and the stacking constraints reformulated in terms of

Iw
i and Ib

i are
if Ib

i−1[n] = 1 ⇒ Ib
i [n] = 1,

if Iw
i−1[n] = 1 ⇒ Iw

i [n] = 1,
(10.5)

and
if Ib

i [n] = 1 ⇒ Iw
j [n] = 0 for j = i, ...,(G−2)/2,

if Iw
i [n] = 1 ⇒ Ib

j [n] = 0 for j = i, ...,(G−2)/2.
(10.6)

Once the two sets of binary patterns are designed, the mask is obtained by adding up both
sets in two partial threshold matrices

B =
(G−2)/2

∑
i=1

Ib
i , W =

(G−2)/2

∑
i=1

Iw
i , (10.7)

and then calculating

S =
(

G−2
2

)
1M×N −B+W, (10.8)

where 1M×N is a matrix of dimension M×N filled with ones.
Each binary pattern Ib

i is designed based on the previously designed binary patterns Ib
i−1

and Iw
i−1 and for the case of Iw

i is based on the patterns Ib
i and Iw

i−1. Starting from Iw
0 and Ib

0
as the all zero matrices, the algorithm that determines where to locate new minority pixels
in Ib

i−1 to generate Ib
i consists of a proper number of minority pixels being added to Ib

i−1
such that the resulting pattern represents gray level i (that is, has Ni = bMNi/(G−1)+0.5c
pixels set to one). If the number of pixels set to one in Ib

i−1 is Ni−1, then the number of pixels
needed to create Ib

i is Ki = Ni−Ni−1. These Ki pixels are placed one by one using the same
procedure as in void-and-cluster [2]. The binary pattern Ib

i−1 is circularly convolved with a
human visual system filter model B and then a new minority pixel is added in the position
n∗ corresponding to the minimum of the filtered pattern, subject to the stacking constraint

n∗ = argmin
n

(
Ib
i−1⊗B

)
[n] (10.9)

such that
Iw
i−1[n] = 0, Ib

i−1[n] = 0. (10.10)

Instead of the traditional Gaussian visual model B = e−
m2+n2

2σ2 , the following model

B[n] = e−
(|m|p+|n|p)2/p

2σ2 (10.11)

can be used and tuned to increase the likelihood of minority pixel placement along vertical
or diagonal directions (see Figure 10.6).

The parameter p determines the degree of isotropy and also influences the likelihood of
minority pixel placement. By choosing values of p < 2, the likelihood of placing minority
pixels in diagonal directions is increased since the Lp norm has greater values than the
L2 norm in diagonal directions and thus smaller values of the filter. For p > 2, the filter
takes a square shape, product of the approximation of the Lp norm to the infinity norm
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(a) (b) (c) (d)

FIGURE 10.6

(a) Level curves of the filter with p = 1.5 and σ = 2, (b) filtered binary pattern of size 32×32, (c) level curves

of the filter with p = 3 and σ = 2, and (d) filtered binary pattern of size 32×32. The ∗ symbols denote local

minimums and • symbols indicate the locations of minority pixels in the pattern.

as p grows. In this case, the likelihood of placing minority pixels along horizontal and
vertical directions increases. This filter also has the particularity that along the vertical and
horizontal axis it always decays as the Gaussian for any p; the setting p = 2 yields the two-
dimensional Gaussian filter. Here, the values of p and the variance σ = λb are adjusted
according to the gray level of the binary pattern being generated.

With regards to the parameters defining the visual model, Reference [23] established that
the mean distance between minority pixels in an ideal blue-noise pattern is determined by
the principal wavelength

λb =





1/
√

g for 0 < g≤ 1/4,
2 for 1/4 < g≤ 3/4,
1/
√

1−g for 3/4 < g≤ 1,
(10.12)

where g = i/(G− 1) is the gray level represented by the pattern and λb is the principal
wavelength of the pattern. Furthermore, the same work studied the influence of the regular
grid on the spectral characteristics of binary patterns and, in particular, the aliasing effects
that appears at gray levels in the region 1/4 < g < 3/4. From that study, it is known
that to avoid disturbing artifacts and to maintain radial symmetry in the spectrum, some
amount of clustering must be allowed in the region 1/4 < g < 3/4 while for the region
g < 1/4 and g > 3/4, the dots are mostly isolated and the principal wavelength can be used
as an accurate approximation of the interpoint distance. A good method to design binary
patterns according to this model is one that is capable of maintaining the interpoint distance
as uniformly as possible for g < 1/4 and g > 3/4 and that also allows some clustering in
the region 1/4 < g < 3/4 while keeping radial symmetry.

10.4 Blue-Noise Patterns and CVTs

The algorithm proposed for constructing dither arrays in this section is a hybrid algorithm
that smoothly switches the binary pattern design method between the regions g < 1/4,
g > 3/4, and 1/4 < g < 3/4. For the region g < 1/4 and g > 3/4, a variation of Lloyd’s
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algorithm is proposed to improve the uniformity of interpoint distances that can be tuned
according to the gray level and that is capable of optimizing a binary pattern without sig-
nificantly disturbing the previously designed binary patterns. On the other hand, for the
region 1/4 < g < 3/4, the criteria to design binary patterns have to be based on the min-
imization of the low-frequency content and the preservation of the radial symmetry of the
spectrum, rather than in the homogenization of the interpoint distances. As such, any of the
commonly utilized dot placement algorithms can be selected. In particular, the void-and-
cluster algorithm is used since it is one with less complexity and, as will be demonstrated
later, leads to very good results if used in conjunction with the Lloyd optimization stage
and with a specially tuned filter.

The proposed variant of Lloyd’s algorithm, described in this section, involves iteratively
tweaking the position of minority pixels within the component dither patterns using Voronoi
tessellations where, in order to escape the local minima of void-and-cluster, the discrete-
space dither patterns are mapped to continuous-space. The points are then mapped back to
discrete-space after completing the optimization. This relaxation of discrete to continuous-
space allows for a smooth and continuous optimization of the points distribution, which
considerably improves the quality of the final binary pattern. As the discussion constantly
goes from one space to the other, it is fundamental to clearly define the discrete and contin-
uous spaces, introduce a proper representation of binary patterns in both spaces, and define
the mappings between the two spaces.

This description begins by defining the discrete space of minority pixels as

D = {n = [m,n] ∈ Z2 | 0 < m≤M,0 < n≤ N} (10.13)

and the continuous space of minority pixels as

C = {z = (x,y) ∈ R2 | 0 < y≤M,0 < x≤ N}, (10.14)

where n = [m,n] are the discrete coordinates of a minority pixel and z = (x,y) are its contin-
uous coordinates. Each binary pattern Ib

i or Iw
i in the discrete space will be represented by

an M×N binary matrix with Ni = bMNi/(G−1)+0.5c entries set to one. In addition, the
binary pattern DIb

i = Ib
i − Ib

i−1 are defined, that corresponds to the set of pixels swapped to
one from Ib

i−1 to Ib
i , according to the stacking constraint (the definition of DIw

i is analogous).
Each binary pattern DIb

i has a number of minority pixels Ki such that Ni = Ni−1 +Ki.
Based on the definition of DIb

i and DIw
i , any binary pattern can be expressed as

Ib
i =

i

∑
j=1

DIb
j , Iw

i =
i

∑
j=1

DIw
j . (10.15)

On the other hand, in the continuous space, the corresponding representation of the binary
pattern Ib

i is the set of Ni points I b
i = {z j}Ni

j=1 such that z j = (n j,m j), where n j = [m j,n j]
are the coordinates of each pixel set to one in Ib

i . The set DI b
i = {zb

i,l}Ki
l=1 is defined as the

set of points zb
i,l = (nl,ml) corresponding to each pixel set to one in DIb

i (and analogously
for DI w

i = {zw
i,l}Ki

l=1). As in the discrete case, the binary patterns I b
i and I w

i can be
expressed as a function of the sets DI w

j and DI b
j as follows:

I b
i =

i⋃

j=1

DI b
j , I w

i =
i⋃

j=1

DI w
j . (10.16)
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Now, while the mapping to go from the discrete to the continuous space is clearly defined
for each minority pixel as z j = (n j,m j), the inverse mapping is not clearly defined since
the continuous space has a infinite number of possible points in it whereas discrete space
contains only a finite set of elements. Therefore in any mapping, different sets of points in
the continuous space will have the same discrete representation. The inverse mapping used
here is the following.

Given a set of points in the continuous space Ii = {z j}Ni
j=1, the associated matrix in the

discrete space Ii is defined by quantizing the coordinates of the points z j = (x j,y j) such
that

n j =
{ bx j +0.5c if bx j +0.5c ≥ 1,
bx j +0.5c+N if bx j +0.5c< 1,

(10.17)

m j =
{ by j +0.5c if by j +0.5c ≥ 1,
by j +0.5c+M if by j +0.5c< 1,

(10.18)

and the pixels in Ii according to

Ii(n) =
{

1 if n = [m j,n j] for j = 1, ...,Ni,
0 otherwise.

(10.19)

This mapping is denoted by Ii = Q(Ii), and as long as the points in Ii are sufficiently
separated (d(zi,z j) > 1/21/2 ∀ i, j), then this mapping returns a matrix Ii with the same
number of minority pixels as the input set Ii.

Given a set of K points {zi}K
i=1 in Ω⊂R2 that will be called here as the set of generators,

the Voronoi tessellation is defined as the collection of K subsets {Vi}K
i=1 ⊂ Ω such that each

Vi is given by
Vi = {z ∈ Ω|d(z,zi) < d(z,z j) ∀ j 6= i}. (10.20)

Note that Vi is the set of nearest neighbors to the point zi under the distance metric d(·, ·)
and also that this collection of subsets covers the whole set Ω except only by the borders
of the Voronoi regions. Figure 10.7a depicts an example of a Voronoi tessellation of four
points in which a wrap-around Euclidean distance was used. Evidently for the same set of
points there are different Voronoi tessellations, depending on the distance metric used. A
thorough review can be found in Reference [24] where many variations and applications
of Voronoi tessellations defined for different distances are presented. The distance used
here is the Euclidean distance that wraps around the set Ω. This selection is due to the fact
that Voronoi tessellations are used in the design process of binary patterns, and all binary
patterns in a dither array must have the wrap-around property.

Besides the previous definitions, the definition of the centroid of a Voronoi region is also
necessary. As a consequence of the distance metric used, it can be demonstrated [24] that
all the Voronoi cells Vi are convex polygons. Then, denoting its vertices by vi = (xi,yi), the
definition of the centroid z∗i = (x∗i ,y

∗
i ) of a Voronoi cell Vi is given by

x∗i = 1
6A ∑N−1

i=0 (xi + xi+1)(xiyi+1− xi+1yi),

y∗i = 1
6A ∑N−1

i=0 (yi + yi+1)(xiyi+1− xi+1yi),
(10.21)

where A = 1
2 ∑N−1

i=0 (xiyi+1−xi+1yi) is the area of the cell and vi = (xi,yi) are the coordinates
of its vertices.
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FIGURE 10.7

(a) Example of Voronoi tessellation using the wrap-around distance, where Vi are the Voronoi cells, z∗i the

centroids of the cells, and zi its generators; (b) Voronoi tessellation of a random distribution of generators (30

points); and (c) Centroidal Voronoi tessellation (30 points).

Centroidal Voronoi tessellations (CVTs) are a particular kind of Voronoi tessellations in
which all the centroids of the cells z∗i corresponds to its generators zi, that is, z∗i = zi for all i.
Figures 10.7b and 10.7c show examples of a regular and a centroidal Voronoi tessellation,
respectively. As it can be appreciated, the centroids and generators do not coincide, in
general, for a given distribution of points. There are various method to construct CVTs [15];
Algorithm 10.1 depicts popular Lloyd’s method. In the following, a modification of this
algorithm is used as a second stage of the binary pattern design, as a global optimization
over the whole binary pattern constructed using the void-and-cluster algorithm.

ALGORITHM 10.1 Lloyd’s algorithm.

1. Set a starting distribution of points {zi}Ki
i=1.

2. Calculate the Voronoi tessellation generated by the distribution.

3. Calculate the centroids z∗i of each Voronoi cell Vi according to Equation 10.21.

4. Replace the generators by the centroids zi ← z∗i .

5. Terminate if the maximum number of iterations is reached; otherwise do step 2.

From the binary pattern Ib
i created by means of void-and-cluster, its continuous version

is obtained as I b
i =

⋃i
j=1 DI b

j . The set DI b
j is the continuous version of the pixels

added to go from Ib
j−1 to Ib

j , and each set is composed of individual points denoted by z j,l .
The subindex j identifies the stage in which the point was introduced, and the subindex l
identifies each individual point within that stage. In the following steps, the integer con-
straint over the coordinates of minority pixels is relaxed and they are treated as points in
the continuous space. Eventually, they have to be remapped to the discrete space, but this
step is performed after the optimization of interpoint distances had converged. Before ex-
plaining the modified Lloyd’s algorithm used for the optimization of binary patterns, a set
of constants µ j needs to be defined; these constants are associated to each of the minority
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pixels which are used to control its mobility. The values of µ j go from zero to one, with
zero meaning that the minority pixel is not able to move at all, and one meaning complete
freedom of movement.

ALGORITHM 10.2 Modified Lloyd’s algorithm.

1. Start with the set I b
i =

⋃i
j=1 DI b

j formed from all previous DI b
j = {zb

j,l}
K j
l=1

patterns.
2. Assign a weight µ j to each point zb

j,l in the set of generators I b
i .

3. Compute the Voronoi tessellation {V b
j,l} associated with I b

i .

4. Calculate the centroid z∗b
j,l of each Voronoi cell V b

j,l in the tessellation.

5. Update zb
j,l ← zb

j,l +(z∗b
j,l − zb

j,l)µ j.
6. Terminate if the maximum number of iterations Nmax is reached and output

I b
i =

⋃i
j=1{zb

j,l}
K j
l=1; otherwise go to step 3.

Taking as input the continuous version of the binary pattern Ib
i , the steps of the modified

Lloyd’s algorithm are listed in Algorithm 10.2. In contrast to the traditional void-and-
cluster algorithm in which once the minority pixels are located they remain unchanged
for the rest of the process, this two-step algorithm of void-and-cluster followed by Lloyd’s
algorithm permits the soft placement of minority pixels. It takes into account several binary
patterns in which minority pixels are allowed to move with respect to their initial positions.

As an illustration of the improved spatial distribution of minority pixels afforded by
Lloyd’s algorithm, Figure 10.8 depicts three different binary patterns generated using void-
and-cluster (VAC) [2], direct binary search (DBS) [14], and centroidal Voronoi tessellations
(CVTs). The patterns are compared in terms of their radially averaged power spectral
densities (RAPSD) defined in Reference [25] by dividing the Fourier domain into a series
of non-overlapping annular rings and taking the average power within each ring. The power
spectra are being generated by means of Bartlett’s method of averaging periodograms. In
Figure 10.8, the pattern resulting from a CVT is clearly the one with less power at low
frequencies and the one that has the most isotropic distribution of points.

With regards to adding points in subsequent dither patterns under the stacking constraint,
the Lloyd’s process allows for the early added points to reconfigure themselves in order to
yield a more uniform distribution in the emerging binary pattern. The amount of move-
ment allowed to previous minority pixels is controlled by the constant µ j in such a way
that in each iteration smaller constants are assigned to older points. By doing so, binary
patterns are altered for a few design stages after their creation, but eventually converge to a
fixed distribution. The drawback of the continuous optimization is that in the process, the
stacking constraints with respect to the complementary set of binary patterns {Iw

i } can be
violated. To account for that, after the optimization, the output is quantized Ib

i = Q(I b
i )

and the stacking constraints in Equation 10.6 are checked. If some of the points do not
meet the stacking constraints, they are removed one by one and relocated using the same
procedure as in the first stage (see Equation 10.9). The resulting pattern Ib

i is converted to
its continuous version and used in the next iteration to generate Ib

i+1.
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FIGURE 10.8

Centroidal Voronoi tessellations of patterns from (a) VAC, (b) DBS, and (c) CVT. Radially averaged power

spectral densities (RAPSD) of patterns from (d) VAC, (e) DBS, and (f) CVT.

The set of parameters used at each component pattern change with the gray level where
in the first stage of void-and-cluster, the parameters p and σ control the likelihood of mi-
nority pixel placement. In the second stage, the parameters µ j and Nmax need to be set; µ j

parameters control the mobility of each point, and Nmax denotes the number of iterations
of the modified Lloyd’s algorithm. As explained in Section 10.3, there are two different
regions of the grayscale in which the criteria used to design the binary patterns change. For
g < 1/4 and g > 3/4, the goal is to optimize the interpoint distances. For 1/4 < g < 3/4,
the goal is to reduce the low frequency content and to maintain the radial symmetry in the
spectral domain. In the first stage of the design process, it was found through extensive
simulation that the set of parameters giving the best results are p = 1.6 and σ = λb for
g < 1/4 and g > 3/4, and p = 2 and σ = 1.5 for 1/4 < g < 3/4. For g < 1/4 and g > 3/4,
the process to design the mask is based on the binary pattern design algorithm presented.
For 1/4 < g < 3/4, the process is based on a searching process using the modified filter.

As the second stage aims to uniformly distribute the added points, more iterations of
Lloyd’s algorithm must be performed for lighter and darker gray levels than for midrange
gray levels. The values used for the masks shown in this chapter are Nmax = 50 for the
first two binary patterns Ib

1 and Iw
1 , and Nmax = 10 for the remaining patterns. The selection

of the number of iterations was determined experimentally and might change for different
mask sizes. The optimal value has to be determined in each case. Regarding the parameter
µ j, it was found that in lighter and darker regions of the grayscale bests results are obtained
if only two binary patterns are optimized at a time while for midrange gray levels up to four
binary patterns can be optimized. As such, the values of the constants are updated at each
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(a) (b)

FIGURE 10.9

The resulting eight-bit 128×128 blue-noise dither array in (a) the spatial domain and (b) the spectral domain.

iteration in an exponentially decreasing sequence, initializing all the constants at µ j = 0.94,
and then updating their values as µ j = µ25

j for g < 1/32 and g > 31/32, and µ j = µ4
j for

1/32 < g < 1/4 and 3/4 < g < 31/32. For 1/4 < g < 3/4, the parameter µ j is set to zero
since no Lloyd optimization is performed.

The mask design process starts by setting Ib
i = 0 and Iw

i = 0, and then the binary patterns
up to Ib

(G−2)/4 and Iw
(G−2)/4 are designed using the two-step procedure of void-and-cluster

followed by Lloyd’s algorithm under that stacking constraint. For subsequent patterns in
the range from i = (G−2)/4+1 to i = (G−2)/2, a searching process is used where, given
Ib
i−1 and Iw

i−1, the pattern Ib
i is designed by adding Ki minority pixels to Ib

i−1 to complete the
Ni = bMNi/(G−1)+0.5c necessary for gray level i. The minority pixels are added one by
one, subject to the stacking constraints in Equations 10.5 and 10.6 in positions n∗ given by

n∗ = argmin
n

(
Ib
i−1⊗B

)
[n],

subject to Iw
i−1[n] = 0 and Ib

i−1[n] = 0.
(10.22)

Analogously, Iw
i is designed adding Ki minority pixels to Iw

i−1 in positions n∗ given by

n∗ = argmin
n

(
Iw
i−1⊗B

)
[n],

subject to Iw
i−1[n] = 0 and Ib

i [n] = 0.
(10.23)

The process continues until the two last binary patterns Ib
(G−2)/2 and Iw

(G−2)/2 are generated.
It is important to note that only the continuous versions of the binary patterns are

stored, updating the sets DI b
j at each iteration. In contrast to the algorithm used for

i < (G− 2)/4, there is no optimization of the interpoint distance through Lloyd’s algo-
rithm, and the placement of minority pixels is always performed in the discrete space in
the range i = (G− 2)/4 + 1 to i = (G− 2)/2. However, their continuous space versions
are stored to reconstruct the discrete patterns at the end according to Equation 10.24. The
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(a) (b) (c)

FIGURE 10.10

Comparison of binary patterns generated using (a) VAC, (b) DBS, and (c) CVT algorithm. The number shown

over the binary patterns is the ink coverage percentage of the pattern and the column on the right of each binary

pattern correspond to the absolute value of its DFT with the DC component removed.

matrices B and W are built according to Equation 10.7 and the mask is generated according
to Equation 10.8, where the sets of binary patterns in the discrete space are recovered from
their continuous versions by computing

Ib
i =

i

∑
j=1

Q(DI b
j), Iw

i =
i

∑
j=1

Q(DI w
j ). (10.24)

Figure 10.9 depicts the resulting dither array along with the magnitude of its Fourier trans-
form, created using this process. As expected, this array has a highpass power spectrum.

In order to compare the quality of binary patterns from masks designed using the Voronoi
optimization algorithm, Figure 10.10 depicts a set of binary patterns from VAC, DBS, and
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(a) (b) (c)

FIGURE 10.11

Halftoned images resulting from the masking process using (a) VAC mask, (b) DBS mask, and (c) Voronoi

optimized mask. The size of the rendered image is 400×602 pixels and it is printed at 160 dpi.

CVT masks along with their Fourier transforms. These patterns correspond to only half
of the grayscale, since as a consequence of the design order used, the characteristics of
patterns in diametrically opposed gray levels are almost equal.

The binary patterns from the VAC mask (Figure 10.10a), designed using the VAC algo-
rithm [2] with a fixed variance of the filter set to σ = 2.5, have much of their power in
the high-frequency region, with power accumulation in diagonal directions for g = 1/2.
As noted in Section 10.4, a good blue-noise mask must have some degree of clustering
for 1/4 < g < 3/4; the VAC mask does not present any clustering in that region, yielding
a noisy appearance and the emergence of artifacts at midrange gray levels. The patterns
from the DBS mask (Figure 10.10b), on the contrary, have a more stable appearance and
a much more symmetric spectrum, but at the expense of a higher degree of clustering for
1/8 < g < 7/8 with power accumulation at lower frequencies. Finally, the patterns from
the CVT mask (Figure 10.10c) are in between the patterns from VAC and DBS, having
less low-frequency content than DBS patterns, but at the same time preserving the radial
symmetry in the frequency domain for all gray levels. This is understandable because the
Voronoi optimization algorithm can be tuned to smoothly switch the criteria for binary
pattern design in different regions of the grayscale. Through the appropriate selection of
parameters, one can design patterns that are better approximations to the ideal blue-noise
pattern. Figure 10.11 presents halftoned images using the VAC, DBS, and CVT masks.

10.5 Artifact-Free Dither Arrays

As shown in Figure 10.2, the problem with halftoning by means of a single, blue-noise
dither array is that, through the process of tiling, the resulting halftone becomes periodic
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and at high print resolutions, this periodicity imparts a visually disturbing texture onto
the image. Reference [18] addresses this problem by generating a set of unique dither
patterns such that, regardless of their ordering, would show no apparent discontinuities in
texture when tiled together. This phenomenon is here referred to as a wrap-across property.
The resulting halftoning process would reduce the tiling artifacts of traditional dither array
halftoning while maintaining the computational simplicity of a point-process.

In order to generate a set of dither arrays that satisfy the wrap-across property, the method
of Reference [18] starts from a dither array generated according to the traditional technique.
From this initial array, the method generates a set of subsequent dither arrays, where the
boundary pixels are constrained to correspond exactly with those of the initial array. Specif-
ically in this chapter, the initial sets of binary patterns {Ib

i,1, I
w
i,1 : i = 0,1, . . . ,(G−2)/2} are

generated for the first dither array S1 using the algorithm described in previous sections.
Given this initial array, a mask M is defined as a binary image with the same row and col-
umn dimensions as the proposed component binary patterns. This matrix has the boundary
pixels of k rows at the top and bottom and k columns at the right and left equal to one, in-
dicating that these pixels must remain unchanged in the new dither array. The center pixels
of M are set to zero, indicating that these pixels need to be designed independently.

Having the mask M, the process begins by generating the set of binary patterns {Ib
i,2, I

w
i,2 :

i = 0,1, . . . ,(G−2)/2} corresponding to the second mask S2. Starting from Ib
0,2 and Iw

0,2 as
all zero matrices, the pattern Ib

1,2 is generated by adding K1 = bMN1/(G− 1)+ 0.5c ones
to Ib

0,2. The term Ib
1,2 is initialized as Ib

1,2 = Ib
0,2 and the remaining ones are added as follows:

if M[n] = 1 ⇒ Ib
1,2[n] = Ib

1,1[n]. (10.25)

For M[n] = 0, the remaining minority pixels to complete the K1 pixels are added one by
one in positions n∗, where

n∗ = argmin
n

(
Ib
1,2⊗B

)
[n],

subject to Iw
1,2[n] = 0, Ib

1,2[n] = 0, and M[n] = 0.
(10.26)

In the next step, the continuous space version of the resulting pattern from the previous
process I b

1,2 is optimized using the modified Lloyd’s algorithm with the constants µ j set to
zero for the pixels in the common border and to one for the rest of the pixels. The term Ib

1,2 is
obtained by mapping the result of the optimization to the discrete space as Ib

1,2 = Q(I b
1,2).

The second binary pattern Iw
1,2 is generated in a similar way. First, the pattern Iw

1,2 is
initialized as Iw

1,2 = Iw
0,2 and the pixels in the common border are set as Iw

1,2 = Iw
1,1 in positions

where M[n] = 1. The remaining pixels are added in positions n∗, where

n∗ = argmin
n

(
Iw
1,2⊗B

)
[n],

subject to Iw
1,2[n] = 0, Ib

1,2[n] = 0, and M[n] = 0.
(10.27)

Then, the continuous version of Iw
1,2, I w

1,2 is optimized setting the constants µ j to zero for
pixels in the common border and to one for the rest. The discrete version of the binary
pattern is obtained by doing Iw

1,2 = Q(I w
1,2). If for some pixels the conditions in Equa-

tions 10.5 and 10.6 are not met, these pixels are removed one by one and placed according
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(a) (b)

FIGURE 10.12

The resulting eight-bit 128× 128 complementary blue-noise dither array derived from dither array of Fig-

ure 10.9 in (a) the spatial domain and (b) the spectral domain.

to Equation 10.27. For the first two binary patterns, the number of iterations of Lloyd is
set to Nmax = 50. For the remaining patterns, the parameters are set as described previ-
ously. The remaining binary patterns {Ib

i,2, I
w
i,2 : i = 2,3, . . . ,(G−2)/2} are designed in an

analogous way as in Section 10.4 with the difference that at each iteration the binary pat-
terns Ib

i,2 and Iw
i,2 are generated by first copying the common border pixels Ib

i,2[n] = Ib
i,1[n]

and Iw
i,2[n] = Iw

i,1[n] in positions where M[n] = 1. The remaining pixels to complete the Ki

necessary are added in positions where M[n] = 0 according to Equations 10.22 and 10.23
and optimized in the same way as the first two patterns Iw

1,2 and Ib
1,2. The results of applying

this algorithm to the dither array presented in Figure 10.9 are shown in Figure 10.12 with
clear blue-noise characteristics.

In order to further minimize the likelihood of visible tiling artifacts deriving from the
common boundary region, the goal should be to reduce k, which denotes the number of
pixels, by defining the width of the boundaries in M. This approach is limited by the ex-
pected spacing between printed dots of the component dither patterns such that too small
k results in discontinuities in texture near the boundary between two unique dither pat-
terns. Here, k = dλbe is defined as a gray-level dependent variable equal to the principal
wavelength, defined in Equation 10.12. This way takes advantage of what is known from
Reference [10] about the correlation between printed dots of blue-noise patterns, ensur-
ing that unconstrained thresholds of one component array are twice λb apart from those
of neighboring component arrays. Figure 10.13a shows the result of applying the adaptive
border technique and Figure 10.13b shows the common pixels between two complementary
dither arrays resulting from the approach of Reference [18]. The common pixels near the
boundaries are greatly reduced for the adaptive technique, leading to a reduction in tiling
artifacts as well. Figure 10.14 depicts the corresponding halftone pattern representing the
70% gray level using ten randomly selected masks with adaptive common border.
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(a) (b)

FIGURE 10.13

The common pixels, marked in black, between the complementary dither arrays: (a) the result of adapting the

common border according to λb, (b) the result of setting a common border to ten pixels.

FIGURE 10.14

Illustration of the tiling artifacts created by ten randomly selected dither arrays with a minimized common

border region.

As a further means of reducing the visibility of the repeating boundaries, one can rely on
the human visual system’s reduced sensitivity to diagonal correlation and generate dither
arrays at rational screen angles. In particular, it is known that, at rational screen angles,
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(a) (b)

FIGURE 10.15

(a) The result of tiling nine dither arrays created with the adaptive border technique at an angle of 27o, and

(b) common pixels, marked in black, between the base dither array and nine common border dither arrays.

the halftone cells of a traditional amplitude modulation screen form a regular tiling pat-
tern. Combining these halftone cells (on the order of 12×12 or 16×16 pixels) into larger
cells allows creating a regular tiling pattern whose cell period is on the order of a tradi-
tional blue-noise dither array (128× 128 or 256× 256). Figure 10.15 illustrates the tiling
pattern created by such an arrangement using a 27o screen angle with a minimized border
region and cell size of 128× 128. Now, because the dither array can be aligned at any
rational screen angle, an obvious extension of the proposed dither array scheme is to vary
the screen angles between color primaries as is performed with traditional, clustered-dot
ordered dithering. By doing so, the likelihood of tiling artifacts is further minimized, as
could also be achieved by varying the size of the component dither arrays between colors.
This is especially advantageous for small screen sizes, where the common border region
accounts for a significant percentage of dither array area and hence, a large portion of the
final halftone contains a repeating artifact.

To study the reduction in tiling artifacts achieved by the adaptive common border tech-
nique presented in Section 10.5, two patches of 3×3 dither arrays are compared. The first
one denoted by Y corresponds to the tiling of nine randomly selected arrays generated with
the adaptive technique, and the second one denoted by W correspond to the periodic tiling
of one dither array S1. Denoting by Si the common border dither arrays, the cells Y and W
are given by

Y =




S1 S2 S3
S4 S5 S6
S7 S8 S9


 , W =




S1 S1 S1
S1 S1 S1
S1 S1 S1


 . (10.28)

To quantify the amount of reduction in tiling artifact, the autocorrelations of both
cells Y and W are evaluated and the peaks present at multiples of the dither array size
are compared. Calling FY = FFT (Y) and FW = FFT (W), where FFT stands for the
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FIGURE 10.16

(a) Autocorrelation of Y evaluated at [0,k]. (b) Autocorrelation of W evaluated at [0,k]. The size of the dither

arrays used were 128×128 pixels.

(a) (b)

FIGURE 10.17

Gaussian lowpass filters used by VAC: (a) standard and (b) lenticular aware filter. Darker colors indicate larger

filter values.

fast Fourier transform, the autocorrelations can be obtained as RYY = IFFT (|FY|2) and
RWW = IFFT (|FW|2), with the DC component of FY and FW subtracted before cal-
culating the inverse FFT (IFFT). Figure 10.16 shows the values of both autocorrelations
evaluated at the horizontal axis [0,k], since it is along horizontal and vertical directions
where the peaks in the autocorrelation are found. It can be seen that the peaks at k = 128
and k = −128 are significatively reduced in the cell containing the adaptive border arrays
with respect to the periodic cell.



310 Perceptual Digital Imaging: Methods and Applications

(a) (b)

FIGURE 10.18

(a) The lenticular aware dither pattern. (b) The corresponding dither pattern constructed by repeating a down-

sampled rendition eight times.

(a) (b)

FIGURE 10.19

(a) The lenticular aware dither array. (b) The corresponding dither array constructed by repeating a downsam-

pled rendition eight times.

10.6 Lenticular Screening

Now, in order to modify the void-and-cluster algorithm to produce lenticular aware dither
arrays, the lowpass filter is modified to maintain smooth textures in the downsampled image
such that
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(a) (b)

FIGURE 10.20

(a) The magnitude of the Fourier transform of the lenticular aware dither array. (b) The red-noise voids,

indicated by white ovals, caused by the upsampling operation on the lowpass filters used by VAC.

(a) (b)

FIGURE 10.21

The halftoned grayscale ramps (a) before and (b) after downsampling using a lenticular aware dither array.
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(a) (b)

FIGURE 10.22

A composite lenticular image halftoned by means of (a) a traditional VAC dither array and (b) a lenticular

aware VAC dither array.

B[n] =





exp(− (|m|p+(|n|/N)p)2/p

2σ2 ) for n = 0,+−N,+−2N,+−3N, . . .

exp(− (|m|p+|n|p)2/p

2σ2 ) otherwise,
(10.29)

where N is the number of printed pixel columns under each lens of the lenticular image.
In the case of having eight pixel columns under each lens, Figure 10.17 compares the new
lenticular aware filter against a traditional VAC version. Applying this new filter, Fig-
ure 10.18 shows the dither pattern before and after downsampling, where no discontinuity
in texture can be observed, although there are some unwanted hole artifacts. As for the re-
sulting dither array, Figure 10.19 shows the final dither array and the corresponding dither
array formed by first downsampling the original array by a factor of eight and then tiling the
resulting array eight times to create a new 256×256 array. Figure 10.20a presents the mag-
nitude of the raw dither array’s Fourier transform that shows the effects of the upsampling
operation on the lowpass filter. This results in multiple red-noise voids, which are indicated
in Figure 10.20b by the white ovals superimposed over the Fourier transform plot.

Looking now at the dot patterns produced by this array, Figure 10.21 shows the corre-
sponding grayscale ramp and image produced by thresholding with the lenticular aware
dither array with neither dot pattern showing any significant discontinuity in texture ex-
cept at extreme gray levels. To evaluate the effects of the new dither array on lenticular
images, Figure 10.22 shows the halftones produced by a traditional and the new lenticular
aware dither array for a lenticular image composed of eight component images with each
image corresponding to single pixel-wide slices. In the composite images, neither halftone
shows any discontinuity in texture caused by the dither array. However, in Figure 10.23,
which shows one of the eight de-interlaced component images, one can see what looks like
a white-noise halftone produced by the traditional dither array while the lenticular aware
array creates a traditional blue-noise texture.

With regards to the change in texture across two neighboring component images, such
as would be visible when progressing through an animated sequence, one can look at the
textures produced when the composite image is downsampled by a factor one-off from its
true rate, in this case downsampled by seven instead of eight. The resulting textures are
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(a) (b)

FIGURE 10.23

A de-interlaced lenticular image halftoned by means of (a) a traditional VAC dither array and (b) a lenticular

aware VAC dither array.

(a) (b)

FIGURE 10.24

A de-interlaced lenticular image downsampled by a factor of seven (one-off from the true rate of eight) and

halftoned by means of (a) a traditional VAC dither array and (b) a lenticular aware VAC dither array.

visible in Figure 10.24 where, again, the traditional dither array produces a white-noise
texture while the new array maintains a much smoother texture. The vertical blind effect,
visible in these two figures, are a result of the transition from the eight component image
back to the first component image occurring at every eight sample, since one component
image is shifted with each downsampled pixel. What these two figures suggest is that as a
human subject’s eye animates through the lenticular sequence, it will see larger amounts of
twinkling in the traditional halftone versus the lenticular aware technique.

A further implication of Figure 10.24 is that it suggests that the size of the lenticular
aware dither array does not need to be an integer multiple of the downsampling rate, and
that one could make the dither array of size KN − 1, where K is some positive integer.
Such a dither array would have the advantage of producing a periodic texture in the de-
interlaced image with a horizontal period of (KN)2 lenses instead of K lenses. It would
still have a vertical period of approximately KN pixels, but at the printer’s native resolu-
tion, not the lens resolution. Of course, it is possible to construct non-square dither arrays
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(a) (b)

FIGURE 10.25

The halftoned grayscale ramps (a) before and (b) after downsampling using a lenticular aware dither array of

size 255×255 pixels.

with large vertical periods. The important feature here is that one can achieve much larger
horizontal periods in the de-interlaced images with modest periods in the composite image.
Figure 10.25 demonstrates the reduction in tiling artifacts achieved through this process,
where Figure 10.25b shows the grayscale ramp produced by a downsampled rendition of
the lenticular aware dither array. In summary, the lenticular aware VAC process produces
consistent halftone textures in both the composite and de-interlaced renditions of a lentic-
ular image with reduced tiling artifacts achieved by using a non-integer multiple of the
downsampling rate for the dither array width. Tiling artifacts in the composite image are
of no significant consequence.

10.7 Conclusion

By introducing a concise description of the ideal spectral shape of visually pleasing dither
patterns, Reference [12] introduced a means by which dither patterns could be quantita-
tively evaluated, and hence, one could compare multiple halftoning algorithms with the
better technique being the one with a spectral profile closest in shape to this ideal model.
While this cost played a fundamental role in the optimization of error-diffusion [26], [27],



Methods of Dither Array Construction Employing Models of Visual Perception 315

[28], [29], its most significant contribution may be its leading to the construction of aperi-
odic dispersed-dot dither arrays. While sharing many similarities to periodic clustered-dot
dithering arrays, blue-noise arrays have, so far, failed to achieve the same level of variabil-
ity/flexibility with their only significant variation being the dither array size.

This chapter has attempted to bridge the gap between blue-noise dither arrays and tradi-
tional ordered dithering, offering a wider range of parameters by which the user can opti-
mize threshold placement. Through the selection of different sets of parameters µ j, Nmax,
p, and σ for each gray level, the textures and radial symmetry of the binary patterns ob-
tained can be controlled with greater versatility. The amount of power accumulated along
vertical or diagonal directions can be controlled by choosing p > 2 or p < 2 in the searching
filter and the uniformity of the whole pattern regulated by performing more iterations of the
modified Lloyd’s algorithm. In addition, an even quality across the whole grayscale can be
achieved by optimizing multiple binary patterns simultaneously at each iteration, choosing
the rate at which the µ j constants change with each iteration.

The reduction in tiling artifacts achieved by optimizing the common border of dither ar-
rays has proved to be significant, as shown in Figure 10.16. The design of dither arrays
at rational screen angles have further reduced the presence of artifacts allowing to produce
nearly artifact-free screens. Beyond the reduction in tiling artifacts, the technique of tiling
common border dither arrays creates new opportunities for data encryption and digital wa-
termarking [19], [30], [31], in which a message can be encoded in the ordering chosen for
the tiling of small binary patterns.

Looking at lenticular printing, it should be noted that even simply modifications to ex-
isting techniques can produce dramatic improvements over applying traditional halftoning
algorithms. This chapter has presented such a modification by altering the lowpass filter
of void-and-cluster algorithm. In doing so, the proposed dither array produces smooth,
blue-noise textures in both the raw composite image as well as the de-interlaced compo-
nent images. Beyond this improvement, this chapter has also introduced a novel means
of evaluating halftone texture in lenticular images by looking at the halftone produced by
downsample one-off from the true de-interlacing rate. This new means of texture evalua-
tion attempts to analyze the change in dot patterns across neighboring component images
as would be seen in an animated lenticular sequence.
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11.1 Introduction

Color in general plays a crucial role in today’s world. Color alone can influence the
way humans think, act, and even react. It can irritate or soothe eyes, create ill-tempers,
or result in loss of appetite. Whenever used in a right form, color can save on energy;
otherwise, it can cause detrimental effects. Particularly, the color composition of an image
can turn out to be a powerful cue for the purpose of content-based image retrieval (CBIR),
if extracted in a perceptually oriented way and kept semantically intact. Furthermore, the
color structure in a visual scenery is robust to noise, image degradations, changes in size,
resolution, and orientation. Eventually, most of the existing CBIR systems use various color
descriptors in order to retrieve relevant images (or visual multimedia material); however,
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their retrieval performance is usually limited especially on large databases due to lack of
discrimination power of such color descriptors. One of the main reasons for this is because
most of such systems are designed based on some heuristics or naive rules that are not
formed with respect to what humans or more specifically the human visual system (HVS)
finds relevant in terms of color similarity. The word relevance is described as “the ability
(as of an information retrieval system) to retrieve material that satisfies the needs of the
user.” Therefore, it is of decisive importance that human color perception is respected
while modeling and describing any color composition of an image. In other words, if
and only when a particular color descriptor is designed based entirely on HVS and human
color perception rules, further discrimination power and hence certain improvements in the
retrieval performance can be achieved.

Accordingly, the study of human color perception and similarity measurement in the
color domain become crucial and there is a wealth of research performed in this field.
For example, Reference [1] focused on the utilization of color categorization (termed as
focal colors) for CBIR purposes and introduced a new color matching method, which takes
human cognitive capabilities into account. It has exploited the fact that humans tend to think
and perceive colors only in eleven basic categories. Reference [2] performed a series of
psychophysical experiments, analyzing how humans perceive and measure similarity in the
domain of color patterns. These experiments resulted in five perceptual criteria (so-called
basic color vocabulary), which are important for comparing the color patterns, as well as a
set of rules (so-called basic color grammar), which are governing the use of these criteria in
similarity judgment. One observation worth mentioning here is that the human eye cannot
perceive a large number of colors at the same time, nor is it able to distinguish similar
colors well. At the coarsest level of judgment, the HVS judges similarity primarily using
dominant colors, that is, few prominent colors in the scenery. Henceforth, the two rules are
particularly related for modeling the similarity metrics of the human color perception. The
first one indicates that the two color patterns that have similar dominant colors (DCs) are
perceived as similar. The second rule states that two multicolored patterns are perceived as
similar if they possess the same (dominant) color distributions regardless of their content,
directionality, placement, or repetitions of a structural element.

It is known that humans focus on a few dominant colors and their spatial distributions
while judging the color similarity between images. Humans have the ability to extract such
a global color view out of a visual scenery, irrespective of its form, be it a digital image or a
natural three-dimensional view. However, accomplishing this is not straightforward while
dealing with digital images for CBIR purpose. In a standard 24-bit representation, there
is a span of 16 million colors, which can be assigned on thousands of individual pixels.
Such a high-resolution representation might be required for current digital image technolo-
gies; however, it is not too convenient for the purpose of describing color composition or
performing a similarity measurement based on the aforementioned perception rules. Never-
theless, it is obvious that humans can neither see individual pixels, nor perceive even a tiny
fracture of such a massive amount of color levels, and thus it is crucial to perform certain
steps in order to extract the true perceivable elements (the true DCs and their global distri-
butions). In other words the imperceivable elements, called here as outliers, which do not
have significant contribution or weight over the present color structure, in both color and
spatial domain, should be suppressed or removed. Recall that according to two color per-
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ception rules presented in Reference [3], two images that are perceived as similar in terms
of color composition have similar DC properties; however, the color properties of their
outliers might be entirely different and hence this can affect (degrade, bias, or shift) any
similarity measurement if not handled accordingly. For example, popular perceptual audio
coding schemes, such as MP3 and AAC [4], maximize the coding efficiency by removing
outlying sound elements, that humans cannot hear, in both time and frequency domains
and thus more bits can be spent for the dominant sound elements. In a similar fashion,
the outliers both in color and spatial domain should be removed for description efficiency.
Henceforth, this chapter mainly focuses on a systematic approach to extract such a percep-
tual color descriptor and efficient similarity metrics to achieve the highest discrimination
power possible for color-based retrieval in general-purpose image databases.

Furthermore, one can also note that human color perception is strongly dependent on the
variations in their adjacency, thus the spatial distribution of the prominent colors should
also be inspected in a similar manner. The color correlogram [5], [6], is one of the most
promising approaches in the current state of art, which is a table where the kth entry for
the color histogram bin pair (i, j) specifies the probability of finding a pixel of color bin j
at a distance k within a maximum range d from a pixel of color bin i in an image I with
dimensions W ×H quantized with m colors. Accordingly, Reference [7] conducted a com-
prehensive performance evaluation among several global/spatial color descriptors for CBIR
and reported that the correlogram achieves the best retrieval performance among many oth-
ers, such as color histograms, color coherence vector (CCV) [8], color moments, and so
on. However, it comes along with many infeasibility problems, such as its massive mem-
ory requirement and computational complexity. This chapter shall first present a detailed
feasibility analysis for the correlogram in the next section. Apart from the aforementioned
feasibility problems, using the probability alone makes the descriptor insensitive to the
dominance of a color or its area (weight) in the image. This might be a desirable property
in finding the similar images, such as images that are simply zoomed [6], and hence the
color areas significantly vary while the distance probabilities do not. On the other hand,
it also causes severe mismatches especially in large databases, since the probability of the
pairwise color distances might be the same or close independent of their area and hence
regardless of their dominance (whether they are DCs or outliers). Therefore, in this chapter,
stemming from the earlier discussions, a perceptual approach will be presented in order to
overcome the shortcomings of the correlogram, namely, its lack of perceptuality and infea-
sibility. This chapter shall present a color descriptor that utilizes a dynamic color clustering
and extracts the DCs present in an image in order to bring in the nonexistent perceptuality
to the correlogram. Global color properties are thus obtained from these clusters. Domi-
nant colors are then back-projected onto the image to capture the spatial color distribution
via a DC-based correlogram. Finally, a penalty-trio model combines both global proper-
ties extracted from the DCs and their spatial similarities obtained through the correlogram,
forming a perceptual distance metric.

The perceptual correlogram, although an efficient solution for the lack of color percep-
tual model and computational infeasibility, cannot yet properly address the outlier problem.
In order to remove the spatial outliers and to secure the global (perceptual) color properties,
one alternative is to apply nonlinear filters (for example, median or bilateral [9]). However,
there would be no guaranty that such a filter will remove all or the majority of the outliers
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and yet several filter parameters are needed to be set appropriately for an acceptable per-
formance, which is not straightforward to do so, especially for large databases. Instead,
a top-down approach is adopted both in extracting DCs and modeling their global spatial
distribution. This approach is in fact phased from the well-known Gestalt rule of percep-
tion [10] formulated as “humans see the whole before its parts.” Therefore, the method
strives to extract what is the next global element both in color and spatial domain, which
are nothing but the DCs and their spatial distribution within the image. In order to achieve
such a global spatial representation within an image, starting from the entire image, quad-
tree decomposition is applied to the current (parent) block only if it cannot host the majority
of a particular DC; otherwise, it is kept intact (non-decomposed) representing a single, ho-
mogeneous DC presence in it. So, this approach tries to capture the whole before going
through its parts, and whenever the whole body can be perceived with a single DC, it is
kept as is. Hence outliers can be suppressed from the spatial distribution and furthermore,
the resultant (blockwise) partitioned scheme can be efficiently used for a global model-
ing and due description of the spatial distribution. Finally, a penalty-trio model uses both
global and spatial color properties, and performs an efficient similarity metric. After the
image is (quad-tree) decomposed, this global spatial distribution is then represented via
inter-proximity statistics of the DCs, both in scalar and directional modes. These modes
of spatial color distribution (SCD) can both describe the distribution of a particular DC
with itself (auto-SCD) and with other DCs (inter-SCDs). Integrating both techniques as a
feature extraction (FeX) module into MUVIS framework [11] allows for testing the mutual
performance in the context of multimedia indexing and retrieval.

The rest of this chapter is organized as follows. Section 11.2 surveys the related studies in
the area of color-based CBIR, stressing particularly their limitations and drawbacks under
the light of the earlier discussion on human color perception. Section 11.3 presents the
perceptual correlogram and compares it with the original correlogram in sample image
databases. Section 11.4 introduces a generic overview of the spatial color descriptor (SCD)
along with the extraction, formation of the feature vector, and calculation of the similarity
distances. Finally, this chapter concludes with Section 11.5.

11.2 Related Work

There is a wealth of research done and still going on in developing content-based mul-
timedia indexing and retrieval systems, such as MUVIS [11], QBIC [12], PicHunter [13],
Photobook [14], VisualSEEk [15], Virage [16], Image-Rover [17], and VideoQ [18]. In
such frameworks, database primitives are mapped into some high-dimensional feature do-
main, which may consist of several types of descriptors, such as visual, aural, and so on.
From the latitude of low-level descriptors, careful selection of some sets to be used for a
particular application may capture the semantics of the database items in a content-based
multimedia retrieval (CBMR) system. Although color is used in many areas, such as object
and scene recognition [19], this chapter shall restrict the focus on CBIR domain, which
employs only color as the descriptor for image retrieval.
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11.2.1 Global Color Descriptors

In one of the earlier studies on color descriptors, Reference [20] used the color of ev-
ery corresponding pixel in two images for comparison and the number of corresponding
pixels having the same color to determine the similarity between them. Recall the HVS
fact mentioned earlier about the inability of humans to see individual pixels or to perceive
large amount of color levels. Hence, this approach does not provide robust solutions, that is,
slight changes in camera position, orientation, noise, or lightning conditions may cause sig-
nificant degradations in the similarity computation. Reference [21] proposed the first color
histogram, which solves this sensitivity problem. Namely, color histograms are extracted
and histogram intersection method is utilized for comparing two images. Since this method
is quite simple to implement and gives reasonable results especially in small- to medium-
sized databases, several other histogram-based approaches emerged [11], [12], [13], [14],
[17], [22], [23], [24], [25], [26], [27]. The MPEG-7 color structure descriptor (CSD) [28]
is also based on color histogram; however, it provides a more accurate color description
by identifying localized color distributions of each color. Unlike the conventional color
histograms, CSD is extracted by accumulating from a 8× 8 structuring window. The im-
age is scanned and CSD counts the number of occurrences of a particular color within the
structuring window. Additional information, including an efficient representation of color
histograms based on Karhunen-Loeve transform (KLT), can be found in Reference [29].

The primary feature of such histogram-based color descriptors (be it in the RGB, CIE-
Lab, CIE-Luv, or HSV color space) is that they cluster the pixels into fixed color bins,
which are quantizing the entire color space using a predefined color palette. This twofold
approach, clustering all the pixels having similar color and reducing the color levels from
millions to usually thousands or even hundreds via quantization, is the main reason behind
the limited success that the color histograms achieved since both operations are indeed the
small steps through obtaining the perceivable elements (the true DCs and their global dis-
tributions); yet their performance is still quite limited and usually degrades drastically in
large databases due to several reasons. First and the foremost, they apply static-quantization
where the color palette boundaries are determined empirically or via some heuristics; none
of these are based on the perception rules. If, for example, the number of bins are set too
high (fine quantization), then similar color pairs will end up in different bins. This will
eventually cause erroneous similarity computations whenever using any of the naive met-
rics, such as L1 and L2, or using the histogram intersection method [21]. On the other hand,
if the number of bins is set too low (coarse quantization), then there is an imminent danger
of completely different colors falling into the same bin and this will obviously degrade the
similarity computation and reduce the discrimination power. No matter how the quantiza-
tion level (number of bins) is set, pixels with such similar colors happens to be opposite
sides of the quantization boundary, separating two consecutive bins will be clustered into
different bins and this is an inevitable source of error in all histogram-based methods.

The color quadratic distance [12] proposed in the context of QBIC system provides a so-
lution to this problem by fusing the color bin distances into the total similarity metric. Writ-
ing the two color histograms X and Y , each with N bins, as pairs of color bins and weights
gives X =

{(
c1,wX
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, ... ,

(
cN ,wX

N
)}

and Y =
{(

c1,wY
1
)
,
(
c2,wY

2
)
, ... ,

(
cN ,wY

N
)}

.
Then, the quadratic distance between X and Y is expressed as follows:



324 Perceptual Digital Imaging: Methods and Applications

DQ(X ,Y )2 = (X−Y )T A(X−Y )

=
N

∑
i

N

∑
j

(wX
i −wY

i )(wX
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j )ai j, (11.1)

where A = [ai j] is the matrix of color similarities between the bins ci and c j. This formula-
tion allows the comparison of different histogram bins with some inter-similarity between
them; however, it underestimates distances because it tends to accentuate the color similar-
ity [30]. Furthermore, Reference [31] showed that the quadratic distance formulation has
serious limitations, as it does not match the human color perception well enough and may
result in incorrect ranks between regions with similar salient color distributions. Hence, it
gives even worse results than the naive Lp metrics in some particular cases.

Besides the aforementioned clustering drawbacks and the resultant erroneous similarity
computation, color histograms have computational deficiencies due to the hundreds or even
thousands of redundant bins created for each image in a database, although ordinary im-
ages usually contain few DCs (less than eight). Moreover, they cannot be perceived by the
HVS [3] according to the second color perception rule mentioned earlier. Therefore, color
histograms do not only create a major computational deficiency in terms of storage, mem-
ory limit, and computation time due to spending hundreds or thousands of bins for several
present DCs, but their similarity computations will be biased by the outliers hosted within
those redundant bins. Recall that two images with similar color composition will have sim-
ilar DC properties; however, there is no such requirement for the outliers as they can be
entirely different. Hence, including color outliers into similarity computations may cause
misinterpreting two similar images as dissimilar or vice versa, and usually reduces the dis-
crimination power of histogram-based descriptors, which eventually makes them unreliable
especially in larger databases.

In order to solve the problems of static quantization in color histograms, various DC de-
scriptors [3], [27], [28], [32], [33], [34] have been developed using dynamic quantization
with respect to image color content. DCs, if extracted properly according to the aforemen-
tioned color perception rules, can indeed represent the prominent colors in any image. They
have a global representation, which is compact and accurate, and they are also computa-
tionally efficient. Here, a top-down DC extraction scheme is used; this scheme is similar to
the one in Reference [33], which is entirely designed with respect to HVS color perception
rules. For instance, HVS is more sensitive to the changes in smooth regions than in detailed
regions. Thus, colors can be quantized more coarsely in the detailed regions, while smooth
regions have more importance. To exploit this fact, a smoothness weight w(p) is assigned
to each pixel p based on the variance in a local window. Afterward, the general Lloyd
algorithm (GLA), also referred to as Linde-Buzo-Gray and equivalent to the well-known
K-means clustering method [35], is used for color quantization.

11.2.2 Spatial Color Descriptors

Although the true DCs, which are extracted using such perceptually oriented scheme
with the proper metric, can address the aforementioned problems of color histogram, global
color properties (DCs and their coverage areas) alone are not enough for characterizing and
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FIGURE 11.1

Different color compositions of red (light gray), blue (dark gray), and white with the same proportions.

describing the real color composition of an image since they all lack the crucial information
of spatial relationship among the colors. In other words, describing what and how much
color is used will not be sufficient without specifying where and how the (perceivable) color
components (DCs) are distributed within the visual scenery. For example, all the patterns
shown in Figure 11.1 have the same color proportions (be it described via DCs or color
histograms), but different spatial distributions, and thus cannot be perceived as the same.
Especially in large image databases, this is the main source of erroneous retrievals, which
makes accidental matches between images with similar global color properties but different
in the color distribution.

There are several approaches to address such drawbacks. Segmentation-based methods
may be an alternative; however, they are not feasible since in most cases automatic segmen-
tation is an ill-posed problem and therefore, it is not reliable and robust for applications on
large databases. For example, in Reference [36], DCs are associated with the segmented
regions; however, the method is limited for use on a small size National Flags database
where segmentation is trivial. Some studies relied on the local positions of color blocks
to characterize the spatial distributions. For instance, Reference [22] divides the image
into nine equal subimages and represented each of them by a color histogram. Similarly,
Reference [30] splits the image into five regions (an oval central region and four corners)
and tries to combine color similarity from each region while attributing more weight to the
central region. In Reference [37], the image is split into 16× 16 blocks, and each block
is represented by a unique dominant color. Due to the fixed partitioning, such methods
become strictly domain-dependant solutions. Reference [38] enhances the idea of using
a statistically derived quad-tree decomposition to obtain homogeneous blocks, but again
the matching blocks (in the same position) are compared to determine the SCD similarity.
Basically, in such approaches, the local position of a certain color in an image cannot really
describe the true SCD due to several reasons. First, the image dimensions, resolution, and
their aspect ratio can vary significantly. Thus, an object with a certain size can fall (perhaps
partially) into different blocks in different locations. Furthermore, such a scheme is not
rotation and translation invariant.

Reference [8] presented the color coherence vector (CCV) technique, which partitions
the histogram bins based on the spatial coherence of the pixels. A given pixel is coherent if
its color is similar color to a colored region; otherwise, it is considered as incoherent. For
each color ci, let α(ci) and β (ci) be the number of coherent and incoherent pixels. The pair
(α(ci),β (ci)) is called a coherence pair for the ith color. Thus, the coherent vector for an
image I can be defined as

CCV (I) = {(α(c1),β (c1)) ,(α(c2),β (c2)) , ...,(α(cN),β (cN))} . (11.2)
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A nice property of this method is the classification of the outlying (that is, incoherent)
color pixels in spatial domain from the prominent (that is, coherent) ones. A better retrieval
performance than that of the traditional histogram-based methods was reported. Yet apart
from the aforementioned drawbacks of histogram-based methods with respect to individual
pixels, classifying color pixels alone, without any metric or characterization for the SCD,
will not describe the real color composition of an image.

Another variation of this approach is characterizing adjacent color pairs through their
boundaries. Using a color matching technique to model color boundaries, two images are
expected to be similar if they have similar sets of color pairs [39]. Reference [30] used
the boundary histograms to describe the length of the color boundaries. Another color
adjacency-based descriptor can be found in Reference [40]. Such heuristic approaches of
using color adjacency information might be more intuitive than the ones using fixed blocks,
since they at least used relative features instead of static ones. Yet the approach is likely
to suffer from changes in background color or relative translations of the objects in an im-
age. The former case implies a strong dissimilarity, although only the background color is
changed while the rest of the object(s) or color elements stay intact. In the latter case, there
is no change in the adjacent colors; however, the inter-proximities of the color elements
(hence the entire color composition) are changing and hence a certain dissimilarity should
occur. Therefore, the true characterization of SCD lies in the inter-proximities or relative
distances of color elements with respect to each other. In other words, characterizing inter-
or self-color proximities, such as the relative distances of the DCs, shall be a reliable and
discriminative cue about the color composition. This property is invariant to translations,
rotations and variations in image properties (dimensions, aspect ratio, and resolution), and
hence will be the basis of the SCD presented in this chapter.

11.2.3 Color Correlogram

One of the most promising approaches among all SCD descriptors is the color correlo-
gram [5], [6], which is a table where the kth entry for the color histogram bin pair (i, j)
specifies the probability of finding a pixel of color bin j at a distance k from a pixel of color
bin i in the image. A similar technique, the color edge co-occurrence histogram, has been
used for color object detection in Reference [41].

Let I be an W ×H image quantized with m colors (c1, . . . ,ci, . . . ,cm) using the RGB
color histogram. For a pixel p = (x,y) ∈ I, let I(p) denote its color value and let I <
ci >≡ { p| I(p) = ci}. Thus, the color histogram value h(ci, I) of a quantized color ci can
be defined as follows:

h(ci, I) = W H Pr(p ∈ I < ci >). (11.3)

Accordingly, for the quantized color pair and a pixel distance, the color correlogram can be
expressed as

γ(k)
ci,c j = Pr

p1∈I<ci>,p2∈I

(
p2 ∈ I < c j >

∣∣ |p1− p2|= k
)
, (11.4)

where ci,c j ∈ {c1, ...,cm}, k ∈ {1, ...,d} and |p1− p2| is the distance between pixels p1 and
p2 in L∞ norm. The feature vector size of the correlogram is O(m2d), as opposed to the
auto-correlogram [5], which captures only the spatial correlation between the same colors
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and thus reduces the feature vector size to O(md) bytes. A variant of the correlogram based
on the HSV color domain can be found in Reference [42].

In the spatial domain and at the pixel level, the correlogram can characterize and thus
describe the relative distances of distinct colors between each other; therefore, such a de-
scription can indeed reveal a high-resolution model of SCD. Accordingly, References [7]
and [43] conducted comprehensive performance evaluations among several global/spatial
color descriptors for CBIR and reported that the (auto-)correlogram achieves the best re-
trieval performance among the others, such as color histograms, CCV, and color moments.
In another work [44], Markov stationary features (MSFs) were proposed (this method is an
extension of the color auto-correlogram) and compared with the auto-correlogram and other
MSF-based CBIR features, such as color histograms, CCVs, texture, and edge. Among
all color descriptors, the auto-correlogram extended by MSF performs the best, although
only slightly better than the auto-correlogram. Another extension is the wavelet correlo-
grams [45]; it performs slightly better than the correlogram and surpasses other color de-
scriptors, such as color histograms and scalable color descriptor. Reference [46] proposed
another approach, called Gabor wavelet correlogram, for image indexing and retrieval and
further improved the retrieval performance.

This chapter shall make comparative evaluations of the proposed technique against the
color correlogram whenever applicable, since it suffers from a serious computational com-
plexity and a massive memory requirement problems. Nowadays, digital image technol-
ogy offers several Megapixel (Mpel) image resolutions. For a conservative assumption,
consider a small size database with only 1000 images, each image with only 1 Mpel res-
olution. Without any loss of generality, it is here assumed that W = H = 1000. In such
image dimensions, a reasonable setting for d would be 100 < d < 500, corresponding to
10%−50% image dimension range. Any d setting less than 100 pixels would be too small
for characterizing the true SCD of the image, probably describing only a thin layer of ad-
jacent colors (that is, colors that can be found within a small range). Assume the lowest
range setting d = 100 (yet a correlogram working over only a 10% range of the image di-
mension is hardly a spatial color descriptor). Even with such minimal settings, the naive
algorithm will require O(1010) computations, including divisions, multiplications, and ad-
ditions. Even with fast computers, this will require several hours of computations per image
and infeasible time is required to index even the smallest databases. In order to achieve a
feasible computational complexity for the naive algorithm, the range has to be reduced
drastically (that is, d ∼ 10), and the images should be decimated by three to five times in
each dimension. Such a solution unfortunately changes (decimates) the color composition
of the scheme and with such limited range, the true SCD cannot anymore be characterized.

The other alternative is to use the fast algorithm. A typical quantization for RGB color
histogram can be eight partitions in each color dimension, resulting in 8×8×8 = 512 bins.
The fast algorithm will speed up the process around 25 times while requiring a massive
memory space (more than 400 GB per image); and this time neither decimation nor drastic
reduction on the range will make it feasible. Practically speaking, one can hardly make it
work only for thumbnail size images and only when d < 10 and much coarser quantization
(for example, using a 4× 4× 4 RGB histogram) is used. Furthermore, a massive storage
requirement is another serious bottleneck of the correlogram. Note that for the minimal
range (d = 100) and typical quantization settings (that is, 8× 8× 8 RGB partitions), the
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amount of space required for the feature vector storage of a single image is above 400 MB.
This allows the correlogram barely applicable only for small size databases, that is, for
1000 image database the storage space required is above 400 GB. To make it work, the
range value has to be reduced drastically along with using a much coarser quantization
(4× 4× 4 bins or less), resulting in similar problems as discussed for color histograms.
The only alternative is to use the auto-correlogram instead of the correlogram, as proposed
in Reference [5]. However, without characterizing spatial distribution of distinct colors
with respect to each other, the performance of the color descriptor may be degraded.

Apart from all such feasibility problems, the correlogram may exhibit several limitations
and drawbacks. The first and the foremost is its pixel-based structure, which characterizes
the color proximities at a pixel level. Such a high-resolution description not only makes
it too complicated and infeasible to perform, it also becomes meaningless with respect to
HVS color perception rules, simply because individual pixels do not mean much for the
human eye. As an example, consider a correlogram description such as “the probability of
finding a red pixel within a 43 pixel proximity of a blue pixel is 0.25;” so what difference
does it make to have this probability in 44 or 42 pixels proximity for the human perception?
Another similar image might have the same probability, but in 42 pixels proximity, which
makes it indifferent or even identical for the human eye; however, a significant dissimilarity
will occur via correlogram’s naive dissimilarity computations. Furthermore, since the cor-
relogram is a pixel-level descriptor working over RGB color histogram, the outliers, both
in color and spatial domains, have an imminent effect over the computational complexity
and the retrieval performance of the descriptor. Hundreds of color outliers hosted in the
histogram, even though not visible to the human eye, will cause computational problems
in terms of memory, storage, and speed; thus making the correlogram inapplicable in many
cases. Yet the real problem lies in the degradation of the description accuracy caused by
the outliers; this is the case of bias or shift that affects the true/perceivable probabilities or
inter-color proximities. Finally, using the probability alone makes the descriptor insensitive
to the dominance of a color or its area (weight) in the image. This is basically due to the nor-
malization by h(ci, I) denoting the amount (weight or area) of color; and such an important
perceptual cue is omitted in the correlogram’s description. An example of such a descriptor
deficiency can be seen in a query of the sample image shown in Figure 11.2. To this end,
these properties make the correlogram more of a colored texture descriptor rather than a

(a) (b)

FIGURE 11.2 (See color insert.)

Top six ranks of correlogram retrieval in two image databases with (a) 10000 images and (b) 20000 images.

Top-left is the query image.
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FIGURE 11.3

Overview of the perceptual correlogram descriptor.

color descriptor, since its pixel-level, area-insensitive, co-occurrence description is quite
similar to texture descriptors based on co-occurrence statistics (for example, gray-level co-
occurrence matrix) only with a major difference of describing color co-occurrences instead
of gray-level (intensity) values.

11.3 Perceptual Correlogram

In order to obtain the global color properties, DCs are extracted in a way human the vi-
sual system perceives them and then back-projected onto the image to extract their spatial
relations using the DC-based correlogram. The overview of the feature extraction (index-
ing) process is illustrated in Figure 11.3. In the retrieval phase, a penalty-trio model is
utilized that penalizes both global and spatial dissimilarities in a joint scheme.

11.3.1 Formation of the Color Descriptor

The adopted DC extraction algorithm is similar to one in Reference [33], where the
method is entirely designed with respect to human color perception rules and configurable
with few thresholds: TS (color similarity), TA (minimum area), εD (minimum distortion),
and Nmax

DC (maximum number of DCs).
As the first step, the true number of DCs present in the image (that is, 1≤ NDC ≤ Nmax

DC )
are extracted in the CIE-Luv color domain. Let Ci represent the ith DC class (cluster) with
the following members: the color value (centroid) ci and the weight (unit normalized area)
wi. Due to the DC thresholds set beforehand, wi > TA and |ci−c j|> TS for 1≤ i≤NDC and
1≤ j ≤ NDC. The extracted DCs are then back-projected to the image for further analysis,
namely, extraction of the SCD. Spatial distribution of the extracted DCs is represented as a
correlogram table as described in Reference [5], except that the colors utilized are the ones
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coming from the DC extraction; hence, m = NDC. Thus, for every DC pair on the back-
projected image, the probability of finding a pixel with DC ci at distance of k pixels from
a pixel with DC c j is calculated. The extracted correlogram table and the global features
(ci,wi) are stored in the database’s feature vector.

11.3.2 Penalty-Trio Model for Perceptual Correlogram

In a retrieval operation in an image database, a particular feature of the query image Q
is used for similarity measurement with the same feature of a database image I. Repeating
this process for all images in the database D and ranking the images according to their sim-
ilarity distances yield the retrieval result. In the retrieval phase, while judging the similarity
of two image’s global and spatial color properties, two DC lists together with their correl-
ogram tables are to be compared. The more dissimilar colors are present, the larger their
similarity distance should be. In order to do so, DCs in both images are subjected to a one-
to-one matching. This model penalizes for the mismatching colors together with the global
and spatial dissimilarities between the matching through Pφ , which denotes the amount of
different (mismatching) DCs, and PG and PCorr, which denote, respectively, the differences
of the matching DCs in terms of the global differences and correlogram differences.

The overall penalty (color dissimilarity) between query image Q and a database image I
over all color properties can be expressed as

PΣ(Q, I) = Pφ (Q, I)+(αPG(Q, I)+(1−α)PCorr(Q, I)), (11.5)

where PΣ ≤ 1 is the (unit) normalized total penalty, which corresponds to (total) color
similarity distance, and 0 < α < 1 is the weighting factor between global and spatial color
properties of the matching DCs. Thus, the model computes a complete distance measure
from all color properties. Note that all global color descriptors mentioned in Section 11.2.1
use only the first two (penalty) terms while discarding PSCD entirely. The correlogram, on
the other hand, works only over PSCD without considering any global properties. Therefore,
the SCD penalty-trio model fuses both approaches to compute a complete distance measure
from all color properties. Since color (DC) matching is a key factor in the underlying
application, a two-level color partitioning is proposed here. The first level partitions the
group of color elements, which are too close for the human eye to distinguish, using a
minimum (color) threshold T min

C . Recall from the earlier discussion that such close color
elements are clustered into DC classes, that is, |ci− c j| ≤ TS for ∀c j ∈ Ci, and using the
same analogy T min

C can conveniently be set as TS. Another threshold T max
C is empirically

set for second-level partitioning, above which no color similarity can be perceived. Finally,
for a given two DCs with the inter-color distance falling between the two levels, that is,
T min

C < |ci−c j|< T max
C , there exists a certain level of (color) similarity, but not too close to

be perceived as identical.
Define such colors, which show some similarity, as matching, and let T max

C be used to
partition the mismatching colors from the matching ones. In order to get a better under-
standing of the penalty terms, consider a set of matching colors (SM) and a set of mismatch-
ing colors (Sφ ) selected among the colors of a database I(CI) and query Q(CQ) images, thus
SM +SQ = CI +CQ. Here Sφ consists of the colors that holds |ci− c j|> TS for ∀ci,c j ∈ Sφ ,
and the subset SM holds the rest of the (matching) colors. Accordingly, Pφ can be defined
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directly as

Pφ (Q, I) = ∑(wi|ci ∈ Sφ )
2

≤ 1. (11.6)

Consider the case where SM = {φ}, which means there are no matching colors between
images Q and I. Thus P∑ = Pφ = 1, which makes sense since colorwise there is nothing
similar between two images. Conversely, if Sφ = {φ}⇒ Pφ = 0, the dissimilarity will only
emerge from the global and spatial distribution of colors. These distributions are denoted
here as PG and PCorr, respectively, and can be expressed as follows:

PG(Q, I) = β
NM

∑
i=1

∣∣∣wQ
i −wI

i

∣∣∣+(1−β )
1

TSNM

√
NM

∑
i=1

(cQ
i − cI

i )2 ≤ 1, (11.7)

PCorr(Q, I) = ∑
i, j∈SM

d

∑
k=1





0 if γ(k)
ci,c j(Q) = γ(k)

ci,c j(I) = 0∣∣∣γ(k)
ci,c j (Q)− γ(k)

ci,c j (I)
∣∣∣

γ(k)
ci,c j (Q)+γ(k)

ci,c j (I)
otherwise





, (11.8)

where γ(k)
ci,c j is the probability of finding DC ci at a distance k from DC c j, and 0 < β < 1

in PG provides the adjustment between color area (weight) difference indicated by the first
term and DC (centroid) difference of the matching colors indicated by the second term.
Note that the distance function used for comparing two correlogram tables (PCorr) differs
from the formulation proposed in Reference [5], which avoids divisions by zero by adding
the value of one to the denominator. However, correlogram values are the probabilities
that hold 0 < γ(k)

ci,c j < 1, thus such an addition becomes relatively significant and introduces
a bias to distances; hence, it is strictly avoided in proposed distance calculations. As a
result, the weighted combination of PG and PCorr represents the amount of dissimilarity that
occurs in the color properties; through the weight α one color property can be favored over
another. With the combination of Pφ , the penalty trio models a complete similarity distance
metric between two color compositions.

11.3.3 Retrieval Performance on Synthetic Images

The perceptual correlogram and the two traditional descriptors, that is, correlogram and
MPEG-7 dominant color descriptor (DCD), are implemented as a feature extraction (FeX)
module within MUVIS framework [11] in order to test and perform performance com-
parisons in the context of CBIR. All descriptors are tested using two separate databases
on a personal computer with 2 GB of RAM and Pentium 4 central processing unit (CPU)
operating at 3.2 GHz.

First database has 1088 synthetic images that are formed of arbitrary shaped and colored
regions. In this way, the color matching accuracy can visually be tested and the penalty
terms Pφ , PG, and PCorr can individually be analyzed via changing the shape and/or size of
any color regions. Furthermore, the robustness against resolution, translation, and rotation
changes can be compared against the traditional correlogram. First, twelve retrievals of
two queries from the synthetic database are shown in Figure 11.4. In Q1, correlogram’s
area insensitivity, due to its probabilistic nature, can clearly be observed. It can retrieve
the first relevant image only at the eight rank, whereas the perceptual correlogram retrieves



332 Perceptual Digital Imaging: Methods and Applications

(a) (b) (c)

(d) (e) (f)

FIGURE 11.4

Two queries Q1 (a–c) and Q2 (d–f) in the synthetic database with typical and perceptual correlograms with

different parameters: (a,d) typical correlogram, (b,e) perceptual correlogram for d = 10, and (c,f) perceptual

correlogram for d = 40. Top-left is the query image.

seven similar color compositions on the first page using d = 10 and still fails to bring
them to higher ranks due to the limited range value (d = 10). For d = 40, all relevant
images sharing with similar color compositions can be retrieved in the highest ranks. In the
same figure, Q2 demonstrates the resolution dependency of the correlogram, which fails
to retrieve the image with identical color structure but different resolution in the first page.
Even though the penalty-trio model aids to overcome the resolution dependence problem,
note that this descriptor still utilizes the correlogram as the spatial descriptor and hence
the perceptual correlogram manages to retrieve it only at the third rank and despite severe
resolution differences, it can further retrieve most of the relevant images on the first page.

11.3.4 Retrieval Performance on Natural Image Databases

The second database has 10000 medium resolution (384× 256 pixels) images from di-
verse contents selected from the Corel image collection. The recommended distance met-
rics are implemented for each FeX module, that is the quadratic distance for MPEG-7 DCD
and L1 norm for the correlogram. Due to its memory requirements, the correlogram could
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 11.5 (See color insert.)

Four queries in Corel 10K database: (a–d) correlogram for d = 10, (e–h) perceptual correlogram for d = 10,

and (i–l) perceptual correlogram for d = 40. Top-left is the query image.

be implemented only with m = 27 colors (3×3×3 bins RGB histogram) and d = 10, since
further increase in either setting is infeasible in terms of computational complexity. In order
to measure the retrieval performance, an unbiased and limited formulation of normalized
modified retrieval rank NMRR(q) is used here, which is defined in MPEG-7 as the retrieval
performance criteria per query q. It combines both of the traditional hit-miss counters;
Precision – Recall, and further takes the ranking information into account as follows:

AV R(q) =
1

N(q)

N(q)

∑
k=1

R(k) with W = 2N(q), (11.9)

NMRR(q) =
2AV R(q)−N(q)−1

2W −N(q)+1
≤ 1, (11.10)

ANMRR =
1
Q

Q

∑
q=1

NMRR(q)≤ 1, (11.11)
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TABLE 11.1
ANMRR results for Corel 10K database.

Method Score

MPEG7 DCD 0.495
correlogram for d = 10 0.422
perceptual correlogram for d = 10 0.391
perceptual correlogram for d = 40 0.401

where N(q) is the minimum number of relevant images (based on ground-truth) in a set
of Q retrieval experiments, R(k) is the rank of the kth relevant retrieval within a window
of W retrievals, which are taken into consideration during per query q. If there are less
than N(q) relevant retrievals among W , then a rank of W +1 is assigned for the remaining
ones. The term AV R(q) is the average rank obtained from the query q. Since each query
item is selected within the database, the first retrieval will always be the item queried and
this obviously yields a biased NMRR(q) calculation; therefore, it is excluded from ranking.
Hence, the first relevant retrieval R(1) is ranked by counting the number of irrelevant im-
ages a priori and if all N(q) retrievals are relevant, then NMRR(q) = 0; the best retrieval
performance is thus achieved. On the other hand, if none of relevant items can be retrieved
among W , then NMRR(q) = 1 as the worst case. Therefore, the lower NMRR(q), the better
(more relevant) the retrieval is for the query q. Keeping the number of query-by-example
experiments sufficiently high, the average NMRR and ANMRR can thus be used as the
retrieval performance criteria.

In total, 104 query-by-example experiments were performed for each descriptor, with
some retrieval results shown in Figure 11.5. The average scores are listed in Table 11.1.

The perceptual correlogram extracts both global and spatial color properties throughout
the whole image, thus erroneous queries such as in Figure 11.2 can be avoided where global
color properties vary significantly (for example, see Figure 11.6).

FIGURE 11.6 (See color insert.)

Retrieval result of the perceptual correlogram for the query in Figure 11.2.
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(a) (b)

FIGURE 11.7 (See color insert.)

A special case where the correlogram works better than the perceptual correlogram descriptor: (a) correlogram

and (b) perceptual correlogram.

As discussed earlier, in some particular cases, the traditional correlogram may yield a
better retrieval performance than the perceptual correlogram. Figure 11.7 shows a typical
example, where the images retrieved using the correlogram are the zoomed versions of the
query image or they are all taken from different viewpoints. Apart from such special query
examples, the perceptual correlogram achieved better retrieval performance on the major-
ity of the queries performed. Yet the most important point is the feasibility issue of both
descriptors. Note that the utilization of the traditional correlogram is only possible because
image resolution is fairly low (384× 256 pixels), database contains only 10000 images,
and the range value d is quite limited (d = 10). Even with such settings, the correlogram
required 556 MB disk space and 850 MB memory (fast algorithm) during the feature ex-
traction phase, whereas the perceptual correlogram takes 53 MB disk space and 250 MB
memory for Nmax

DC = 8 and d = 10, thus reducing the storage space by approximately 90%
and the computational memory (fast algorithm) by 70%. Henceforth, only the perceptual
correlogram descriptor can be used if a further increase occurs in any of the settings.

11.4 Spatial Color Descriptor

Under the light of the earlier discussion, an efficient spatial color descriptor (SCD) is
designed to address the drawbacks and problems of the color descriptors, particularly the
color correlogram. In order to achieve this goal, various perception rules are followed by
extracting and describing the global and spatial color properties in a way as perceived by
the HVS. Namely, outliers in color and spatial domains are suppressed or eliminated by
adopting a top-down approach during feature extraction. The SCD is formed by a proper
combination of global and spatial color features. During the retrieval phase, the similarity
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between two images is computed using a penalty-trio model, which penalizes the individ-
ual differences in global and spatial color properties. In the following subsections, both
indexing (feature extraction) and retrieval schemes are discussed in detail.

11.4.1 Formation of the Spatial Color Descriptor

As previously discussed, the DCs represent the prominent colors in an image while the
imperceivable color components (outliers) are discarded. As a result, they have a global
representation, which is compact and accurate, and they represent few dominant colors that
are present and perceivable in an image. For a color cluster Ci, its centroid ci is given by

ci = ∑w(p)x(p)
∑w(p)

, for x(p) ∈Ci, (11.12)

and the initial clusters are determined by using a weighted distortion measure, defined as

Di = ∑w(p)‖x(p)− ci‖2, for x(p) ∈Ci. (11.13)

These definitions are used to determine which clusters to split until either Nmax
DC denoting

a maximum number of clusters (DCs) is achieved or εD denoting a maximum allowed dis-
tortion criteria is met. Hence, pixels with smaller weights (detailed sections) are assigned
to fewer clusters so that the number of color clusters in the detailed regions, where the
likelihood of outliers’ presence is high, is suppressed. As the final step, an agglomerative
clustering (AC) is performed on the cluster centroids to further merge similar color clusters
so that there is only one cluster (DC) hosting all similar color components in the image.
A similarity threshold TS is assigned to the maximum color distance possible between two
similar colors in a certain color domain (for instance, CIE-Luv, CIE-Lab). Another merging
criterion is the color area, that is, any cluster should have a minimum amount of coverage
area TA so as to be assigned as a DC; otherwise, it will be merged with the closest color clus-
ter since it is just an outlier. Another important issue is the choice of the color space since a
proper color clustering scheme for DC extraction tightly relies on the metric. Therefore, a
perceptually uniform color space should be used and the most common ones are CIE-Luv
and CIE-Lab, which are designed such that perceived color distances are qual for the Eu-
clidean (L2) distance in these spaces. The HSV space, although it represents an intuitive
color domain, suffers from discontinuities and the RGB color space is not perceptually uni-
form. To this end, among CIE-Luv and CIE-Lab, the former one is selected here since it
yields a lower transformation cost from native RGB space. For CIE-Luv, a typical value
for TS is between 10 and 20, whereas TA is between 2 to 5% [28], and εD < 0.05. Based
on the earlier remarks, Nmax

DC can be conveniently set to 8. As shown in Figure 11.8, the
employed DC extraction method is similar to the one in Reference [33], which is entirely
designed with respect to HVS color perception rules and configurable with few thresholds,
TS (color similarity), TA (minimum area), εD (minimum distortion), and Nmax

DC (maximum
number of DCs). As the first step, the true number of DCs present in the image (that is,
1≤NDC ≤Nmax

DC ) is extracted in CIE-Luv color domain and back-projected to the image for
further analysis involving extraction of the spatial properties (SCD) of DCs. Let Ci repre-
sents the ith DC class (cluster) with the following members: ci is the color value (centroid),
wi is the weight (unit normalized area), and σi is the standard deviation obtained from



Perceptual Color Descriptors 337

the distribution of (real) colors clustered by Ci. Due to the DC thresholds set beforehand,
wi > TA and |ci− c j|> TS for 1≤ i≤ NDC and 1≤ j ≤ NDC.

During the back-projection phase, the DC with the closest centroid value to a particu-
lar pixel color will be assigned to that pixel. As a natural consequence of this process,
spatial outliers, that is, isolated pixel(s), which are not populated enough to be perceiv-
able, can emerge (see Figure 11.8) and should thus be eliminated. Due to the perceptual
approach based on the Gestalt rule that states “humans see the whole before its parts,” a
top-down approach, such as quad-tree decomposition, can process the whole first, meaning
the largest blocks possible which can be described (and perceived) by a single DC, before
going into its parts. Due to its top-down structure, the SCD scheme does not suffer from
the aforementioned problems of some pixel-based approaches.

Two parameters are used to configure the quad-tree (QT): TW , which is the minimum
weight (dominance) within the current block required from a DC not to go down for further
partition and Dmax

QT , which is the depth limit indicating the maximum amount of partition
(decomposition) allowed. Note that with the proper setting of TW and Dmax

QT , QT decom-
position can be carried out to reach the pixel level; however, such an extreme partitioning
should not be permitted to avoid the aforementioned problems of pixel-level analysis. Us-
ing a similar analogy, TW can be set in accordance with TA, that is, TW ∼= 1−TA. Therefore,
for the typical TA setting (between 2 and 5%), TW can be conveniently set as TW ≥ 95%.
Since Dmax

QT determines when to stop the partitioning abruptly, it should not be set too low
so that it does not cause inhomogeneous (mixed) blocks. On the other hand, extensive ex-
perimental results suggest that Dmax

QT > 6 is not required even for the most complex scenes
since the results are almost identical to the one with Dmax

QT = 6. Therefore, the typical range
is 4≤ Dmax

QT ≤ 6. Let Bp corresponds to the pth partition of the block B, where p = 0 is the
entire block and 1 ≤ p ≤ 4 represents the pth quadrant of the block. The four quadrants
can be obtained simply by applying equal partitioning to the parent block or via any other
partitioning scheme, which can be optimized to yield most homogenous blocks possible.
For simplicity the former case is used here, and accordingly a generic QT algorithm can be
expressed as depicted in Algorithm 11.1.

ALGORITHM 11.1 QuadTree(parent, depth).

1. Let wmax be the weight of the DC which has the minimum coverage in parent
block.

2. If wmax > Tw, then return.

3. Let B0 = parent.

4. For ∀p ∈ [1,2,3,4] do QuadTree(Bp, depth).

5. Return.

The QT decomposition of a (back-projected) image I can then be initiated by calling
QuadTree(I,0) and once the process is over, each QT block carries the following data: its
depth D≤ Dmax

QT where the partitioning is stopped, its location in the image, the major DC
with the highest weight in the block (that is, wmax > TW ), and perhaps some other DCs
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Overview of the SCD formation.
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which are eventually some spatial outliers. In order to remove those spatial outliers, a QT
back-projection of the major DC into its host block is sufficient. Figure 11.8 illustrates
the removal of some spatial outliers via QT back-projection on a sample image. The final
scheme, where outliers in both color and spatial domains are removed and the (major) DCs
are assigned (back-projected) to their blocks, can be conveniently used for further (SCD)
analysis to extract spatial color features. Note that QT blocks can vary in size depending
on the depth, yet even the smallest (highest depth) block is large enough to be perceivable,
and carry a homogenous DC. So instead of performing pixel-level analysis, such as in the
correlogram, the uniform grid of blocks in the highest depth (D = Dmax

QT ) can be used for
characterizing the global SCD and extracting the spatial features in an efficient way. As
shown in Figure 11.8, one of the two modes, which perform two different approaches to
extract spatial color features, can be used. The first is the scalar mode, over which inter-DC
proximity histograms are computed within the full image range. These histograms indicate
the amount of a particular DC that can be found from a certain distance of another DC;
however, this is a scalar measure which lacks the direction information. For example, such
a measure can state “17% of red is eight units (blocks) away from blue,” which does not
provide any directional information. Therefore, the second mode is designed to represent
inter-occurrence of one DC with respect to another over a two-dimensional (proximity)
grid, from which both distance and direction information can be obtained. Note that inter-
color distances are crucial for characterizing the SCD of an image; however, the direction
information may or may not be useful depending on the content. For example, the direction
information in “17% of red is eight units (blocks) right of blue” is important for describing a
national flag and hence the content, but “one black and one white horse are running together
on a green field” is sufficient to describe the content without any need to know the exact
directional order of black, white, and green. The following subsections will first detail both
modes and then evaluate their computational and retrieval performances individually.

11.4.2 Proximity Histograms-Based Description

Once the QT back-projection of major DCs into their host blocks are completed, all QT
blocks hosting a single (major) DC with a certain depth (D≤ Dmax

QT ) are further partitioned
into the blocks in highest depth (D = Dmax

QT ) to achieve a proximity histogram in the highest
blockwise resolution. Therefore, in such a uniform block-grid, the image I will have N×N
blocks for N = 2Dmax

QT , each of which hosts a single DC. Accordingly the problem of com-
puting inter-DC proximities turns out to be block distances and hence the block indices in
each dimension (that is, ∀x,y ∈ [1, N]) can directly be used for distance (proximity) calcu-
lation. Since the number of blocks does not change with respect to image dimension(s),
resolution invariance is achieved (for example, the same image in different resolutions will
have identical proximity histograms/grids as opposed to significantly varying correlograms
due to its pixel-based computations). As shown in Figure 11.8, one can use either L1 or L∞
norms for block-distance calculations. Let b1 = (x1,y1) and b2 = (x2,y2) be two blocks,
their distance for the L1 norm can be defined as ‖b1−b2‖ = |x1− x2|+ |y1− y2|, and for
the L∞ norm as ‖b1−b2‖= max(|x1− x2| , |y1− y2|), respectively. Using the block indices
in both norms, the block distances become integer numbers and note that for a full range
histogram, the maximum (distance) range will be [1,L], where L is N−1 in L∞ and 2N−2
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FIGURE 11.9

N(bi,k) templates in 8×8 block grid (Dmax
QT = 3) for three range values in L∞ (top) and L1 (bottom) norms.

in L1 norms, respectively. A blockwise proximity histogram for a DC pair ci and c j stores
in its kth bin the number of blocks hosting c j (that is, ∀b j

∣∣ I(b j) = c j, equivalent to the
amount of color c j in I) from all blocks hosting ci (that is, ∀bi| I(bi) = ci, equivalent to
amount of color ci in I) at a distance k. Such a histogram clearly indicates how close or
far two DCs and their spatial distribution with respect to each other are. Yet the histogram
bins should be normalized by the total number of blocks, which can be found k blocks away
from the source block bi hosting the DC ci, because this number will significantly vary with
respect to the distance (k), the position of source block (bi), and the norm (L1 or L∞) used.
Therefore, the kth bin Φc j

ci (k) of the normalized proximity histogram between the DC pair
ci and c j can be expressed as follows:

Φc j
ci (k) = ∑

bi

∑
b j

∆(bi,b j,k), (11.14)

where

∆(bi,b j,k) =
{

N(bi,k)−1 if bi ∈ I(ci), b j ∈ I(c j),
∥∥bi−b j

∥∥ = k,
0 otherwise.

(11.15)

The normalization factor N(bi,k), denoted as the total number of neighbor blocks in dis-
tance k, is independent from the DC distribution and hence it is only computed once and
used for all images in the database. Figure 11.9 shows N(bi,k) templates computed for
all blocks (∀bi ∈ I), both norms, and some range values. In this figure, N is set to eight
(Dmax

QT = 3) for illustration purposes. Note that normalization cannot be applied for blocks
with N(bi,k) = 0, since k is out of image boundaries and hence Φc j

ci (k) = 0 for ∀ci.
Once the N(bi,k) templates are formed, computing the normalized proximity histogram

takes O(N4). Note that this is basically independent from the image dimensions W and
H, and it is also a full-range computation (that is, k ∈ [1,L]), which may not be necessary
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The process of proximity grid formation for the block (X) for L=4.

in general (say, half image range may be quite sufficient since above this range most of
the central blocks will have either out-of-boundary case, where Φc j

ci (k) = 0 for ∀ci, or only
few blocks are within the range, which is too low for obtaining useful statistics). A typical
setting Dmax

QT = 5, which implies N = 32 and Nmax
DC = 8, requires O(106) computations,

which is 10000 times less compared to the correlogram with a minimal range setting (10%
of image dimension range). In fact, the real speed enhancement is much more since the
computations in the correlogram involve several additions, multiplications, and divisions
(worst of all) for probability computations, whereas only additions are sufficient for com-
puting Φc j

ci (k) as long as N(bi,k)−1 is initially computed and stored as the template. The
memory requirements for the full-range computation are O(N2L) for storing N(bi,k)−1 and
plus O(N2

DCL) for computing Φc j
ci (k), respectively. The memory space required for the typ-

ical settings given earlier will thus be 500 Kb, which is a significant reduction compared to
that of the correlogram. The typical storage space required per database image is less than
17 Kb with L∞, and less than 33 Kb with L1 norm, which is eventually 50 times smaller
than the auto-correlogram’s requirement O(md) with minimal m and d settings.

11.4.3 Two-Dimensional Proximity Grids-Based Description

An alternative approach for characterizing the inter-DC distribution uses the respective
proximities and also their inter-occurrences accumulated over a two-dimensional proxim-
ity grid. The process starts from the same configuration outlined earlier. Let the image
I have N ×N blocks, each of which hosts a single DC. The two-dimensional proximity
grid, Ψc j

ci (x,y), is formed by cumulating the co-occurrence of blocks hosting c j (that is,
∀b j

∣∣ I(b j) = c j) in a certain vicinity of the blocks hosting ci (that is, ∀bi| I(bi) = ci) over a
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Proximity grid compared against histogram for a sample red-blue color pair.

two-dimensional proximity grid. In other words, by fixing the block bi (hosting ci) in the
center bin of the grid (x = y = 0), the particular bin corresponding to the relative position of
block b j (hosting c j) is incremented by one and this process is repeated for all blocks host-
ing c j in a certain vicinity of bi. Then, the process is repeated for the next block (hosting ci)
until the entire image blocks are scanned for the color pair (ci,c j). As a result, the final grid
bins represent the inter-occurrences of the c j blocks with respect to the ones hosting color
ci within a certain range L (that is, ∀x,y∈ [−L,L], with L≤N−1). Although L can be set as
N−1 for a full-range representation, this is a highly redundant setting since L≥ N

/
2 can-

not be fit exactly for any block without exceeding the image (block) boundaries. Therefore,
L < N

/
2 would be a reasonable choice for L.

The computation of Ψc j
ci (x,y) can be performed in a single pass through all image blocks.

Let bi(xi,yi) be the next block hosting the DC ci. Fixing bi in the center (that is, Ψc j
ci (0,0)),

all image blocks within the range L from bi (that is, ∀b j = (xi + x, yi + y) ∈ I
∣∣ ∀x,y ∈

[−L,L]) are scanned and the corresponding (proximity) grid bin Ψc j
ci (x,y) for a color c j in a

block b j = (xi +x, yi +y) ∈ I is incremented by one. This process is illustrated on a sample
image shown in Figure 11.10. During the raster-scan of uniform blocks, the block with
white DC updates only three proximity grids (white to white, brown, and blue), since those
DCs can only be found within the range of ±L. For illustration purposes, Dmax

QT = 5 which
implies N = 32, and L = 4. As a result, such a proximity grid characterizes both inter-DC
proximities and the relative spatial position (inter-DC direction) between two DCs. This
is straightforward to see in the sample images in Figure 11.11, where the proximity grid
distinguishes the relative direction of a DC pair (red-blue), while the proximity histogram
cannot do it due to its scalar metric. Note that Ψc j

ci (0,0) = 0 for i 6= j, and Ψc j
ci (0,0) indi-

cates the total number of blocks hosting ci. Since this is not a SCD property, rather a local
DC property showing a noisy approximation of wi (weight of ci), it can be conveniently
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excluded from the feature vector and the remaining (2L + 1)2−1 grid bins are (unit) nor-
malized by the total number of blocks N2 to form the final descriptor Ψc j

ci
(x,y), where

Ψc j
ci
(x,y)≤ 1 for ∀x,y ∈ [−L,L].

The proximity grid computation takes O(N2L2). Similar to the proximity histogram, this
is also independent from original image dimensions W and H, and for a full-range process
(L = N

/
2), the same number of computations equal to O(N4) is obtained. However, instead

of regular addition operations required for the proximity histogram, or multiplications and
divisions for the correlogram, the proximity grid computation requires only incrementing
operations. Thus, for a typical grid dimension range, for example, N

/
8 < L < N

/
4, com-

puting the proximity grid takes the shortest time. The memory space requirement is in
O(N2

DCL2) and for a full-range process (L = N
/

2) with the typical settings Dmax
QT = 5 imply-

ing N = 32, and Nmax
DC = 8, the memory required per database image will be 256 Kb. This is

still smaller than O(md) by the auto-correlogram even with the minimal m and d settings,
and it is equivalent to half of the memory required for the proximity histogram. Since
Ψc j

ci (x,y) = Ψci
c j
(−x,−y), which indicates the symmetry with respect to origin, the storage

(disk) space requirement is even less, namely, O(N2
DCL2). However, it requires eight times

more space than the proximity histogram. This is the cost of computing full-range proxim-
ity grid, and therefore, it is recommended to employ the typical grid dimension range (for
example, N

/
8 < L < N

/
4 ) to reduce this cost to an acceptable level.

11.4.4 Penalty-Trio Model for Spatial Color Descriptors

As previously discussed, the penalty-trio model used therein provides a balanced simi-
larity metric that encapsulates three crucial global and spatial color properties. Therefore,
a similar penalty-trio model is adopted for computing the similarity distance between two
SCDs. As shown in Figure 11.8, the SCDs of Q and I contain both global and spatial color
properties. Let CQ

i and CI
j represent the ith and jth (i ≤ NQ

DC, j ≤ NI
DC) DC classes, where

NQ
DC and NI

DC are the number of DCs in Q and I, respectively. Along with these global
properties, the SCD descriptors of Q and I contain either proximity histogram Φc j

ci (k) or
grid Ψc j

ci (x,y) depending on the SCD mode. Henceforth, for the similarity distance com-
putation over the SCD, both global and spatial color properties are used within a similar
penalty-trio model used earlier, which basically penalizes the mismatches between Q and
I. The three mismatches considered here are Pφ denoting the amount of different DCs,
and the differences of the matching DCs in global color properties expressed via PG and
SCD properties expressed via PSCD. Thus, the penalty-trio over all color properties can be
expressed as

PΣ(Q, I) = Pφ (Q, I)+(αPG(Q, I)+(1−α)PSCD(Q, I)), (11.16)

where PΣ≤ 1 is the normalized total penalty, which corresponds to the total color similarity
distance, and 0 < α < 1 is the weighting factor between global and spatial color properties.

As mentioned earlier, one can form two sets, that is, matching (SM) and mismatching
(Sφ ) DC classes from CQ and CI . This is accomplished by assigning each DC ci ∈Ci in one
set, which cannot match any DC c j ∈ C j in the other (implying |ci− c j| > T max

C for all i
and j) into SΦ and the rest (with at least one match) into SM. Note that SM +SΦ = CQ +CI ,
and using the DCs in SΦ, the term PΦ can directly be expressed as given in Equation 11.6.
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FIGURE 11.12

One-to-one matching of DC pairs among three images.

Recall that the dissimilarity (penalty Pφ ) increases proportionally with the total amount
(weight) of mismatching DCs. In one extreme case, where there are no colors matching,
SM = {φ} implying PΣ = Pφ = 1 means that the two images have no similar (matching) col-
ors. In another extreme case, where all DCs are matching, so Sφ = {φ} implying Pφ = 0,
color similarity will only emerge from global PG and spatial PSCD color properties of the
(matching) DCs. Typically, Pφ contributes a certain color distance as a natural consequence
of mismatching colors between Q and I, yet the rest of the distance will result from the
cumulated difference of color matching. This is, however, not straightforward to compute
since one DC in Q can match one or more DCs in I (or vice versa). One solution is to apply
color quadratic distance [12] to fuse DC distances into the total similarity metric. How-
ever, besides its serious drawbacks mentioned earlier, this formulation can be applied only
to distance calculation from global DC properties and hence cannot address the problem
of fusing SCD distances (from proximity grid or histogram of each individual DC pair).
Another alternative is to enforce a one-to-one DC matching, that is, one DC alone in Q can
match a single DC in I by choosing the best match and discarding the other matches. This,
as well, induces serious errors due to the fact that DC extraction is a dynamic clustering
algorithm in color domain and due to variations in color composition of the scenery or its
predetermined parameters (thresholds), it can result in over-clustering or under-clustering.
Therefore, similar color compositions can be clustered into different number of DCs and
enforcing one-to-one matching may miss part of matching DCs from both global and spatial
similarity computation.

A typical example of such a consequence can be seen in Figure 11.12 which shows three
images with highly similar content, that is, “an elephant under cloudy sky.” In two images
(B and C), the cloud and sky are distinguished during DC extraction with separate blue
and white DCs; however, in image A, only one DC (light blue) is extracted with the same
parameters. Consequently, there is no (one-to-one) matching problem between B and C and
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such a matching will naturally reflect similar global and spatial DC properties. However,
between A and B or C, if the single DC (light blue) is matched only with one DC (white
or blue), this will obviously yield an erroneous result on both global and spatial similarity
computations since neither DC (white or blue) properties such as weight, distribution, and
proximities to other DCs are similar to the one in A (light-blue).

As a result, before computing PG and PSCD, the DC sets in Q (or I), which are in a close
vicinity of a single DC in I (or Q) should be first fused into a single DC. For instance, in
Figure 11.12, the DC light-blue in image A is close to both white and blue in image B (and
C); therefore, both colors in B should be fused into a new DC (perhaps a similar light-blue
color) and then PG and PSCD can be computed accurately between A and B. In order to
accomplish this, T min

C = TS is used for matching the close DCs and a twofold matching
process is performed via function TargetMatch, which first verifies and then fuses some
DCs in the target set T , if required by any DC in the source set S. Let SM

Q ⊂ SM and
SM

I ⊂ SM be the sets of matching DCs for Q and I, respectively. Since any DC in any set
can request fusing two or more DCs in the other set, the function is called twice, that is,
first TargetMatch(SM

Q ,SM
I ) and then TargetMatch(SM

I ,SM
Q ). Accordingly, TargetMatch can

be expressed as depicted in Algorithm 11.2.

ALGORITHM 11.2 TargetMatch(S,T ).

1. For ∀ci ∈ S, let LM
i be the matching DC list for ci.

2. For ∀c j ∈ T , if |ci− c j| ≤ TS, then c j → LM
i .

3. If |LM
i | ≥ 2 then:

• Let LN
i = T −LM

i be the non-matching list.
• Cx = FuseDCs(LM

i ,LN
i )

• Update T = LN
i +Cx.

4. Return.

ALGORITHM 11.3 FuseDCs(LM
i , LN

i ).

1. Create Cx : {cx,ww,σx} by fusing ∀c j ∈ LM
i .

• wx = ∑
C j∈LM

i

w j

• cx =
∑

Cj∈LM
i

w jc j

∑
Cj∈LM

i

w j
and σx =

∑
Cj∈LM

i

w jσ j

∑
C j∈LM

i

w j

2. Form both Xcx
cx and (Xc j

cx −Xcx
c j

)|∀c j ∈ LN
i .

• Xcx
cx = ∑

C j∈LM
i

∑
Ck∈LM

i

Xck
c j

• Xcx
c j

= ∑
Ck∈LM

i

Xck
c j |∀c j ∈ LN

i

• Compute X
c j
c j from Xcx

c j
, ∀c j ∈ LN

i .
3. Return Cx.
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The function FuseDCs depicted in Algorithm 11.3 fuses all DCs in the list LM
i , reforms

the SCD descriptors of all (updated) DC pairs Φc j
ci (k) or Ψc j

ci (k), and finally returns a new
(fused) DC CX . Then, the target set T is updated accordingly. Let Xc j

ci be the SCD operator
(that is, Φc j

ci or Ψc j
ci depending on the SCD mode as shown in Figure 11.8) and Xc1

ci
+Xc2

ci
be

defined as

Xc1
ci

+Xc2
ci

=
{

Φc1
ci

(k)+Φc2
ci

(k) for ∀k ∈ [1, L]
Ψc1

ci
(x,y)+Ψc2

ci
(x,y) for ∀x,y ∈ [−L, L]

(11.17)

Furthermore, let ⊕ be the fusing operator over DC classes. It is simple to show that
Xc1⊕c2

ci
= Xc1

ci
+Xc2

ci
for c1,2 6= ci. Once the DCs in LM

i are fused, they are removed along with
their SCD descriptors while keeping the DCs (and their internal SCD descriptors) in LN

i in-
tact. The new (fused) DC CX (along with its SCD descriptors) is inserted into the target set
T . Recall from the earlier remarks on SCD descriptor properties that Φc j

ci (k) = Φci
c j
(k) and

Ψc j
ci (x,y) = Ψci

c j
(−x,−y); therefore, once Xcx

c j
for ∀c j ∈ LN

i are formed, it is straightforward
to compute Xc j

cx for ∀c j ∈ LN
i . After the consecutive calls of TargetMatch function, all DC

sets in each set, which are close (matching) to a particular DC in the other set, are fused.
Thus, one-to-one matching can be conveniently performed by selecting the best matching
pair in both sets. As a result, the number of DCs in both (updated) sets SM

Q and SM
I becomes

equal, that is, |SM
Q |= |SM

I |= NM). Assume without loss of generality that ith DC class in set
CQ

i : {cQ
i ,wQ

i ,σ Q
i } ∈ SM

Q matches the ith DC in set CI
i : {cI

i ,w
I
i ,σ I

i } ∈ SM
I , via sorting one set

with respect to the other. So the penalties for global and SCD properties can be expressed
as follows:

PG(Q, I) = β
NM

∑
i=1

∣∣∣wQ
i −wI

i

∣∣∣+(1−β )
1

T max
C NM

√
NM

∑
i=1

(
cQ

i − cI
i

)2
≤ 1 (11.18)

PSCD(Q, I) =





1
N2

M(2L+1)2

NM

∑
i=1

NM

∑
j=1

L
∑

x,y=−L
∆

(
Ψ

cQ
j

cQ
i
(x,y)−Ψ

cI
j

cI
i
(x,y)

)
≤ 1

1
N2

ML

NM

∑
i=1

NM

∑
j=1

L
∑

k=1
∆




Φ
cQ

j

cQ
i

(k)

max(wQ
i ,wQ

j )
−

Φ
cI

j
cI
i
(k)

max(wI
i ,w

I
j)


≤ 1

(11.19)

where

∆(x− y) =
{

0 if x = y = 0
|x− y|/(x+ y) otherwise

(11.20)

and 0 < β < 1, similar to α , is the weighting factor between the two global color properties
that are DC weights and centroids. The term ∆ denotes the normalized difference operator
which emphasizes the difference from zero to nonzero pairs. This is a common conse-
quence when the DC pairs’ area is relatively small whereas their SCDs are quite different.
It also suppresses the bias from similar SCDs of two DCs with large weights. Note that
computing PSCD should be independent from the effect of DC weights since this is already
taken into consideration within PG computation. As a result, the combination of PG and
PSCD represents the amount of dissimilarity present in all color properties and the unit nor-
malization allows the combination in a configurable way with weights α and β , which can
favor one color property to another. With the combination of Pφ , which represents the nat-



Perceptual Color Descriptors 347

ural color dissimilarity due to mismatching, the penalty trio models a complete similarity
distance between two color compositions.

11.4.5 Experimental Results

Simulations are performed to evaluate the SCD efficiency subjectively and to compare
retrieval performances, in terms of the query-by-example results, within image databases
indexed by SCD and competing correlogram and MPEG-7 DCD [28], [31] FeX modules.
Comparisons with other color descriptors, such as color histograms, CCV, and color mo-
ments, are not included since the study in Reference [7] clearly demonstrates the correle-
gram’s superiority over other descriptors. The experiments performed in this section are
based on four sample databases described below.

• Corel 1K image database: There are total of 1000 medium resolution (384× 256
pixels) images from 10 classes with diverse contents, such as wildlife, city, buses,
horses, mountains, beach, food, African natives, and so on.

• Corel 10K image database: Same database used in the previous section.

• Corel 20K image database: There are 20000 images from Corel database bearing 200
distinct classes, each of which contains 100 images with a similar content.

• Synthetic image database: Same synthetic database used in the previous section.

The classes in Corel databases are extracted by the ground-truth, considering the con-
tent similarity and not the color distribution similarity. For instance, a red car and blue
car are still in the same Cars class, although their colors do not match at all. Accordingly,
color-based retrievals are also evaluated using the same ground-truth methodology, that is,
considering a retrieval as relevant only if its content matches with the query. Note that all
sample databases containing images with mediocre resolutions had to be selected; other-
wise, it is not feasible to apply the correlogram method due to its computational complexity,
especially for Corel 10K and Corel 20K databases. Finally, the performance evaluation is
presented for the synthetic database in order to demonstrate the true description power of
the SCD whenever color alone entirely characterizes the content of the image. Moreover,
the robustness of the SCD is also evaluated against the changes of resolution, aspect ratio,
color variations, translation, and so on. All experiments are carried out on a Pentium 5
computer with 1.8 GHz CPU and 1024 MB memory. If not stated otherwise, the following
parameters are used for all the experiments performed throughout this section: Nmax

DC = 6,
TA = 2%, and TS = 15 for DC extraction; TW = 96% and Dmax

QT = 6 for QT decomposition;
and T min

C = 45, T min
C = TS, and α = β = 0.5 for the penalty-trio model. For the auto-

correlogram, RGB color histogram quantization is set as 8×8×8 (that is, m = 512 colors)
with d = 20 for Corel 1K and 4×4×4 (that is, m = 64 colors) with d = 10 for Corel 10K
and Corel 20K. For the correlogram, 4×4×4 bins are used for Corel 1K and 3×3×3 bins
for Corel 10K with d = 10. Note that the auto-correlogram was used only for Corel 20K
due to its infeasible memory requirement for this database size. The same DC extraction
parameters were used for MPEG-7 DCD and SCD. A MUVIS application, called DbsEd-
itor, dynamically uses the respective FeX modules for feature extraction to index sample
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FIGURE 11.13

Query of a three-color object (top-left) in the synthetic database.

databases with the aforementioned parameters. Afterward, MBrowser application is used
to perform similarity-based retrievals via query-by-example operations. A query image is
chosen among the database items to be the example and a particular FeX module, such as
MPEG-7 DCD, is selected to retrieve and rank the similar images in terms of color using
only the respective features and an appropriate distance metric implemented within the FeX
module. The recommended distance metrics are implemented for each FeX module, that
is, the quadratic distance for MPEG-7 DCD and the L1 norm for the correlogram.

11.4.5.1 Retrieval Performance on Synthetic Images

Recall that the images in the synthetic database contain colored regions in geometric and
arbitrary shapes within which uniform samples from the entire color space are represented.
In this way, the color matching accuracy can be visually evaluated and the first two penalty
terms Pφ and PG can be individually tested. Furthermore, the same or matching colors
form different color compositions by varying their region’s shape, size, and/or inter-region
proximities. This allows for testing both individual and mutual penalty terms PG and PSCD.
Finally, the penalty-trio’s cumulative accuracy and robustness against variations of resolu-
tion, translation, and rotation can also be tested and compared against the correlogram.

Figure 11.13 presents a snapshot of the query of an image with three-color squares on
a white background. The color descriptor is used with proximity histogram as the SCD
descriptor and the retrieval results are ranked from left to right and top to bottom and the
similarity distances are given on the bottom of the images. Among the first six retrievals, the
same amount of identical colors are used and hence Pφ = PG = 0, which allows for testing
the accuracy of PSCD alone. The first three retrievals have insignificant similarity distances,
which demonstrates the robustness of PSCD against the variations of rotation and translation.
The fourth, fifth, and sixth ranks present cases where spatial proximity between the three
colors starts to differentiate, and hence SCD descriptor reflects the proximity differences
successfully. For the seventh (Pφ 6= 0 ) and the eight (PG 6= 0) ranks, PΣ starts to build up
significantly, since the color composition changes drastically due to emerging and missing
color components.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 11.14

Three queries in the synthetic database processed using (a,d,g) correlogram, (b,e,h) SCD with proximity his-

togram, and (c,f,i) SCD with proximity grid. Some dimensions are tagged in boxes below pictures. Top-left is

the query image.

Figure 11.14 shows three queries in the synthetic database with different color compo-
sitions and resolutions. In the case of Figures 11.14a to 11.14c, both proximity histogram
and proximity grid successfully retrieve images with similar color compositions, whereas
the correlogram cannot do it due to its invariance to weight (area) and limited range. The
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TABLE 11.2
Similarity distances and ranks of A and B in Fig-
ure 11.12 when C is queried in Corel 1K database.

PΣ Rank

Approach A B A B

with DC fusing 0.176 0.156 3 1
without DC fusing 0.585 0.205 258 1

area invariance effect can be easily seen in the second and particularly the third ranks,
where entirely different red and green weights occur. The same comments can be made in
the case of Figures 11.14d to 11.14f for the fifth and all ranks above the seventh. More-
over in this case, it is obvious that the correlogram cannot retrieve the image with identical
color composition among the first eleven ranks due to its resolution (pixel-based) sensitiv-
ity. Note further that the SCD with both proximity histogram and grid first retrieves the
color compositions, where all colors are perfectly matching (Pφ = 0) with the weights in
a close vicinity (PG 6= 0), and then balances between mismatching colors and weight dif-
ferences of the matching ones. The case of Figures 11.14g to 11.14i is particularly shown
here to emphasize the effect of image resolution over the correlogram and the SCD. The
query of the largest image among the others with dimensions in five different resolutions
logarithmically scaled from 60 to 960, but the same color composition (four red squares
over white background), resulted in accurate ranking for the SCD. On the other hand, the
correlogram retrieves accurately only one while the other two are shifted to lower ranks
and the one (with 60×60 dimension) is missed within the first twelve ranks.

11.4.5.2 Retrieval Performance on Natural Images

In this section, three sample databases (Corel 1K, Corel 10K, and Corel 20K) are indexed
using each FeX module and each individual (sub)feature is used for retrieval. As presented
in Table 11.2, the first retrieval experiment is performed to demonstrate the effect of DC
fusing over the retrieval accuracy. Similar results of several retrieval experiments suggest
that DC fusing becomes the key factor for the success of the SCD. Therefore, DC fusing is
applied for the rest of the experiments presented in this section.

TABLE 11.3
ANMRR scores of the SCD and the competing descriptors for
databases Corel 1K (34 queries), Corel 10K (176 queries), and
Corel 20K (22 queries).

Database

Descriptor Corel 1K Corel 10K Corel 20K

MPEG-7 DCD 0.180 0.458 0.461
auto-correlogram 0.222 0.381 0.444
correlogram 0.195 0.357 N/A
SCD (proximity histogram) 0.154 0.263 0.357
SCD (proximity grid) 0.162 0.291 0.390
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 11.15 (See color insert.)

Four typical queries using three descriptors in Corel 10K database: (a–d) dominant color, (e–h) correlogram,

and (i–l) proposed method. Top-left is the query image.

Table 11.3 presents ANMRR results and the query dataset size of each of the three Corel
databases. The query dataset is prepared a priori by regarding a certain degree of color
content coherency. This means that the content similarity can mostly be perceived by color
similarity. However, unlike previously presented synthetic images, a unique one-to-one
correspondence between content and color similarities can never be guaranteed in natural
images due to the presence of other visual cues, such as texture and shape. Nevertheless, ac-
cording to the presented ANMRR scores, SCD with either mode achieves superior retrieval
performance than the competing methods (correlogram, auto-correlogram, and MPEG-7
DCD combined with the quadratic distance computation) for all Corel databases. More-
over, it was observed that in the majority of the queries (between 58 and 78%), the SCD
outperforms the (auto-)correlogram, whereas the figure is even higher (76–92%) with the
MPEG-7 DCD. Finally, for shorter descriptor size with proximity histograms, a norm was
used since comparative retrieval results promise no significant gain of using L1 (for exam-
ple, ANMRR score of SCD with proximity histogram using L1 is 0.254 for Corel 10K).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 11.16 (See color insert.)

Four typical queries using three descriptors in Corel 20K database: (a–d) dominant color, (e–h) auto-

correlogram, and (i–l) proposed method. Top-left is the query image.

For visual evaluation, four retrieval results are presented for both Corel 10K and
Corel 20K databases using all three descriptors. For the queries as shown in Figure 11.15,
the proximity grid in SCD was used against the correlogram and MPEG-7 DCD. In the
first, second, and fourth queries, one can easily notice the erroneous retrievals of the cor-
relogram due to its color area insensitivity (for instance, compare the amount of red, white,
and black colors between the query and the fifth ranked image in the first query). As already
discussed, in such large databases the co-occurrence probabilities can (accidentally) match
images with significantly different color proportions. Particularly in the first and fourth
queries, erroneous retrievals of MPEG-7 DCD occur due to the lack of SCD description,
which also makes accidental matches between dissimilar images with close color propor-
tions (for instance, in the first query, the amount of white, red, and black colors is quite
close between the query and sixth, seventh, and eight ranks; however, their SCDs are not).

For the queries shown in Figure 11.16, the proximity histogram in SCD was used against
the auto-correlogram and the MPEG-7 DCD. Similar conclusions as before can be drawn
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 11.17 (See color insert.)

Two queries in (a,b,e,f) Corel 10K and (c,d,g,h) Corel 20K databases where (auto-)correlogram performs better

than SCD: (a,e) correlogram, (b,f) proposed method, (c,g) auto-correlogram, and (d,h) proposed method. Top-

left is the query image.

for the retrieval results. Furthermore, it should be noted that the amount of erroneous
retrievals is increased particularly in the second and third queries, since the database size
is doubled and hence accidental matches occur more often than before. However, in both
databases, the (auto-)correlogram may occasionally perform better than SCD; the case of
the queries shown in Figure 11.17, where significant (color) textures are present in all query
images. This is indeed in accordance with the earlier remark stating that the correlogram
is a colored texture descriptor and hence it can outperform any color descriptor whenever a
textural structure is dominant.

11.5 Conclusion

This chapter presented two perceptual and spatial color descriptors. The first one, the
perceptual correlogram is primarily designed to overcome the drawbacks of the color cor-
relogram and brings a solution to its infeasibility problems. Utilization of dynamic color
quantization instead of a static color space quantization not only achieves a more percep-
tual description of the color content, but also significantly decreases the number of colors.
By doing so, the size of the correlogram table is reduced to feasible limits and since the
memory limitations are also suppressed, implementation with higher-range values has be-
come possible. However, it should be still noted that such a pixel-based proximity measure
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is highly resolution dependent, and if large image resolutions are considered, increasing
the range value would become a restrictive factor in terms of memory and speed. Since
a dynamic color quantization is applied, the obtained DCs do not have fixed centroids as
in static quantization. Therefore, during the retrieval phase, such colors were compared
using a one-to-one color matching scheme, which is preferred due to its accurate and fast
computation. Yet much complex color matching methods are also possible, such as one-to-
many matching, that involves comparison and/or combination of many global and spatial
features. Apart from efficient and perceptual description of the color content, using spatial
differences only, particularly in terms of probabilities, leaves a color descriptor incomplete.
Retrieval experiments on the synthetic databases also demonstrate that global properties
are indispensable in judging the color content similarity. These experiments further reveal
that the penalty-trio model effectively combines spatial and global features into a similarity
distance metric. Although the main aim of this descriptor was to solve the infeasibility
problems of the traditional correlogram, the induced perceptuality and addition of global
properties further increased the discrimination power. Experimental results, including the
ANMRR scores, also demonstrate such superiority. However, it should be noted that color
alone does not fully describe the entire image content and it can be associated with it only
in a certain extent.

The spatial color descriptor (SCD) presented next in this chapter characterizes the per-
ceptual properties of the color composition in a visual scenery in order to maximize the
description power. In other words, the so-called outliers, which are the imperceivable color
elements, are discarded for description efficiency using a top-down approach while extract-
ing global and spatial color properties. In this way, severe problems and limitations of
traditional pixel-based methods are effectively avoided and in spatial domain only the per-
ceived (visible) color components can be truly extracted using QT decomposition. In order
to reveal the true SCD properties, the proximity histogram and the proximity grid, repre-
senting the inter-proximity statistics in scalar and directional modes, are presented. During
the retrieval phase, one-to-many DC matching is performed in order to apply the penalty-
trio model over matching (and possibly fused) DC sets. This greatly reduces the faulty mis-
matches and erroneous similarity distance computations. The penalty-trio model computes
the normalized differences in both spatial and global color properties and combines all so
as to yield a complete comparison between two color compositions. Experimental results
approve the superiority of the SCD over the competing methods in terms of discrimination
power and retrieval performance especially over large databases. The SCD has a major
advantage of being applicable to any database size and image resolution. Thus, it does not
suffer from the infeasibility problems and severe limitations of the correlogram. Finally,
it achieves a significant performance gain in terms of ANMRR scores. However, this gain
remained below higher performance expectations, particularly when compared with the
correlogram due to two reasons. First and foremost, the correlogram has the advantage of
describing texture in color images thanks to its pixel-level analysis via co-occurrence prob-
abilities. Yet the major reason is that the color similarity alone does not really imply the
content-similarity. This significantly degrades the retrieval performance of SCD in several
experiments. For instance, when an image with gray horse on a green field and a blue sky is
queried, all retrievals with a gray elephant and similar background are counted as irrelevant
(since they do not belong to horse class), although the color distribution is quite similar.
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Many other irrelevant retrievals with similar color properties can be seen in the figures pre-
sented above. In summary, color properties correlate with the true content only in a certain
extent and cannot be used as the single cue to characterize the entire content [47].
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12.1 Introduction

Most of today’s content-based multimedia analysis and retrieval systems tend to follow
a low-level approach when tackling both content analysis and retrieval tasks, thus falling
short of benefits uprising from higher-level interpretation and knowledge. The role of addi-
tional information in the sense of semantics, context, and implicit or explicit knowledge is
gaining focus on the task of bridging the semantic and conceptual gap that exists between
humans and computers, in order to further facilitate human-computer interaction and scene
content understanding. This chapter focuses on modeling and exploiting contextual knowl-
edge toward efficient multimedia content understanding. As discussed below, this type of
information acts as a simulation of the human visual perception scheme, by taking into ac-
count all contextual information relative to the visual content of a scene [1]. As a result, the
notion of context, provided that it will be properly modeled and justified, may be used to
improve the performance of knowledge-assisted analysis, semantic indexing, and retrieval
of multimedia content.

When tackling the well-known problems of semi-automated high-level concept detec-
tion or scene classification, the researcher faces a challenging and broad research area. In
order to achieve better semantic results during any multimedia content analysis phase, the
influence of additional contextual information may be of great help, because although the
well-known semantic gap [2] has been acknowledged for a long time, current multimedia
analysis approaches are still divided into two rather discrete categories as low-level mul-
timedia analysis methods and tools (for example, Reference [3]) and high-level semantic
annotation methods and tools (for example, References [4] and [5]). Semantic knowledge
technologies, like ontologies [6] and folksonomies [7], are only lately being successfully
incorporated within multimedia analysis and retrieval frameworks, especially when using
them for creation, manipulation, and postprocessing of multimedia metadata.

Still, one of the most interesting problems in multimedia content analysis is detection of
high-level concepts within multimedia documents. Recognizing the need for such an anal-
ysis, many research works set focus on low-level feature extraction to efficiently describe
various audiovisual characteristics of a multimedia document. However, the semantic gap
often characterizes the differences between descriptions of a multimedia object by different
representations and the linking from the low-level to the high-level features. Moreover, the
semantics of each object depend on the context it is regarded within. For multimedia ap-
plications this means that any formal representation of real-world analysis and processing
tasks requires the translation of high-level concepts and relations, for instance, in terms of
valuable knowledge, into the elementary and extensively evaluated characteristics of low-
level analysis, such as visual descriptions and low-level visual features.

An important step for narrowing this gap is to automate the process of semantic feature
extraction and annotation of multimedia content objects, by enhancing image and video
classification with semantic characteristics. The main idea introduced herein relies on the
integrated handling of concepts evident within multimedia content. Recent advances in
the research field of knowledge-assisted multimedia analysis, along with the emerge of
new content and metadata representations, have driven more and more researchers looking
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beyond solely low-level features (such as color, texture, and shape) in pursuit of more ef-
fective high-level multimedia representation and analysis methods. Current and previous
multimedia research efforts are starting to focus on the combination of both low-level de-
scriptors computed automatically from raw multimedia content and semantics focusing in
extracting high-level features.

In the following, Section 12.2 describes the motivation in utilizing the notion of visual
context in concept detection and scene classification. Section 12.3 presents the notions
of bag-of-words image analysis techniques and visual context, and surveys the relevant
state-of-the art methods. Section 12.4 deals with a novel proposition of an enhanced visual
conceptualization of relative knowledge, as well as the instantiation of an image’s region
types. Section 12.5 presents three different types of context knowledge formalization, to-
gether with the proposed contextual adaptation in terms of the visual context algorithm and
its optimization steps, according to the utilized knowledge. Some self-explanatory exam-
ples are presented in Section 12.6, whereas Section 12.7 lists experimental results derived
from the beach domain. Finally, this chapter concludes with Section 12.8.

12.2 Motivation and Overview

Visual context forms a rather classical approach to context, tackling it from the scope
of environmental or physical parameters that are evident in multimedia applications. The
discussed context representation supports audiovisual information (for example, lighting
conditions, environmental information) and is separately handled by visual context models.
Research objectives in the field include visual context analysis, that is, to take into account
the extracted/recognized concepts during content analysis in order to find the specific con-
text, express it in a structural description form, and use it for improving or continuing the
content analysis, indexing, and searching procedures, as well as personalization aspects.
The following text refers to the term visual context, by interpreting it as all information
related to the visual scene content of a still image or video sequence that may be useful
during its analysis phase.

Since there is no globally applicable aspect of context in the multimedia analysis chain,
it is very important to establish a working representation for context, in order to benefit
from and contribute to the proposed enhanced multimedia analysis. The problems to be
addressed include how to represent and determine context, how to use it, and how to define
and model corresponding analysis features to take advantage of it. Additionally, efficient
ways to utilize the new content and context representations must be investigated, in order
to optimize the results of content-based analysis. In general, the lack of contextual infor-
mation significantly hinders optimal analysis performance [8] and, along with similarities
in low-level features of various object types, results in a significant number of misinter-
pretations. Taken into account the current state-of-the-art, both in terms of works dealing
with content classification and regional visual dictionaries, as well as context modeling
techniques, this work aims at a hybrid unification of them, in order to achieve optimized
content analysis results and strengthen its high-level and low-level correlation.
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According to the previous statements, visual context is strongly related to two main
problems of image analysis; that is, scene classification and high-level concept detec-
tion/recognition. Scene classification forms a top-down approach, where low-level visual
features are typically employed to globally analyze the scene content and classify it in
one of a number of predefined categories, such as indoor/outdoor, city/landscape, and so
on. Concept detection/recognition is a bottom-up approach that focuses on local analysis
to detect and recognize specific objects in limited regions of an image, without explicit
knowledge of the surrounding context (for example, recognize a building or a tree). The
above two major fields of image analysis actually comprise a chicken-and-egg problem.
For instance, detection of a building in the middle of an image might imply a picture of a
city with a high probability, whereas pre-classification of the picture as city would favor the
recognition of a building versus a tree.

However, a significant number of misclassifications usually occur because of the simi-
larities in low-level color and texture characteristics of various object types and the lack of
contextual information, which is a major limitation of individual object detectors. Toward
the solution to the latter problem, an interesting approach is the one presented in Refer-
ence [9]. A spatial context-aware object-detection system is proposed, initially combining
the output of individual object detectors in order to produce a composite belief vector for
the objects potentially present in an image. Subsequently, spatial context constraints, in the
form of probability density functions obtained by learning, are used to reduce misclassifi-
cation by constraining the beliefs to conform to the spatial context models. Unfortunately,
such an approach alone is not considered sufficient, as it does not utilize the significant
amount of available additional knowledge in the form of semantic relations.

So far, none of the existing methods and techniques utilizes the herein proposed contex-
tual modeling in any form. This tends to be the main drawback of these individual object
detectors, since they only examine isolated strips of pure object materials, without taking
into consideration the context of the scene or individual objects themselves. This is very
important and also extremely challenging even for human observers. The notion of visual
context is able to aid in the direction of natural object detection methodologies, simulating
the human approach to similar problems. For instance, many object materials can have the
same appearance in terms of color and texture, while the same object may have different
appearances under different imaging conditions, such as lighting and magnification. How-
ever, one important trait of humans is that they examine all the objects in the scene before
making a final decision on the identity of individual objects. The use of visual context in
the visual analysis process is the one that provides the necessary added value and forms
the key for such a solid unambiguous recognition process and will be extensively presented
and exploited in the following.

More specifically, this chapter presents an integrated approach, offering unified and un-
supervised manipulation of multimedia content. It acts complementary to the current state-
of-the-art, as it tackles both aforementioned challenges. Focusing on semantic analysis of
multimedia, it contributes toward bridging the gap between the semantic and raw nature of
multimedia content. It tackles one of the most interesting problems in multimedia content
analysis, namely, detection of high-level concepts within multimedia documents, based on
the semantics of each object, in terms of its visual context information. The latter is based
on semantic relationships that are inherent within the visual part of the content. The pro-
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posed approach proves also that the use of such information enhances the results obtained
from traditional knowledge-assisted image analysis techniques, based on both visual and
contextual information.

12.3 Image Analysis Based on Regions and Context

If focused solely on the visual part of analysis, it is rather true that high-level concept
detection remains still a challenging and unsolved problem. Its most interesting aspects
are first the low-level feature extraction, aiming to capture and describe the visual content
of images or regions, and last the way that these features will be assigned to high-level
concepts. This chapter deals with the latter part of the analysis process, and aims to cre-
ate image descriptions from image regions, using standardized visual features, that is, the
MPEG-7 (Moving Picture Experts Group) descriptors.

The most common approach in detection and recognition tasks begins with the extraction
of a low-level description of the visual content of concepts. Then, for each concept, a
detector is trained based on one or more examples. This is typically done using various
machine learning techniques, such as neural networks, support vector machines (SVMs),
and fuzzy systems.

In order to train the concept detectors, it is important to use or create a specific dataset,
appropriately annotated either globally or locally. For a globally annotated image, one
only gets the knowledge of the existence of certain concepts within it. For a locally anno-
tated image, one also knows the exact location of concepts within it. However, despite the
continuous growth of audiovisual content, the available locally annotated image collections
remain few. This is not surprising, since such an annotation process is a difficult and tedious
task. Two of the most important locally annotated collections are LabelMe [10], a collab-
oratively annotated collection for a very large number of concepts, and the PASCAL [11]
collection. On the other hand, a global annotation of a given image is a much easier and
less time-consuming task. There exist many such datasets, among which one should note
the collaborative annotation of the LSCOM workshop [12], which focused on sequences
from news videos of the TRECVID 2005 collection, and a similar attempt presented in
Reference [13], focusing on cultural videos from the TRECVID 2007 collection. It should
be noted here that in many popular social networks, such as Flickr,1 many thousands of
photos are globally annotated, while research efforts toward the annotation of such datasets
are still increasing [14], [15], [16].

It is now clear that image analysis techniques that focus on the extraction of high-level
concepts from globally annotated content are of greater importance and may have a broader
field of applications. Thus, the algorithms that are presented in this chapter aim toward
this exact problem, that is, how to extract and manipulate efficiently the visual content of
globally annotated images in order to detect the presence of high-level concepts, without
specifying their exact location.

1http://www.flickr.com
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12.3.1 The Bag-of-Words Model

A very popular model that combines the aforementioned aspects of visual analysis is
the bag-of-words model. Visual descriptions are extracted locally, from groups of image
pixels. Using an appropriate visual dictionary, these descriptions are quantized to the cor-
responding visual words. An image is then described by a set of visual words, without
considering any spatial or semantic relations. Finally, an appropriate detector is trained for
each concept.

In order to develop a bag-of-words based technique, the first step to consider is how
to select image parts, from whom visual descriptors should be extracted. Early approaches
used a grid, dividing images to blocks. References [17] and [18] used square blocks of equal
size. These techniques were very fast, but lacked in terms of the semantic interpretation
of each block. To overcome this, Reference [19] used random sampling and a variable
block size. Since this disintegration proved not to be very robust, later techniques were
based on the extraction of points of interest. References [20] and [21] extracted features
from the neighborhood of Harris affine points. Reference [18] selected points detected by
the difference-of-Gaussian and extracted multi-resolution features. All these approaches
aimed to selected invariant points under scale and some geometrical transforms and are very
effective in the case of object detection. In parallel, Reference [22] applied a segmentation
algorithm, in order to split an image to regions, based on their color and texture properties,
with many advantages in material or scene detection.

The next step to consider is the extraction of the visual descriptions. In the case of grid-
selected regions, color and texture descriptors are extracted. When regions are selected by a
segmentation process, shape descriptors may also be extracted, if applicable to the targeted
concepts. The MPEG-7 standard [23] contains many visual descriptors that are broadly
used. Finally, in the point-of-interest-based regions, appropriate and popular features are
those generated by the scale-invariant feature transform (SIFT) [24] and speeded-up robust
feature (SURF) [25] methods and their various variations.

The success or failure of each technique is highly related to the creation of an appro-
priate codebook, based on which an image region is assigned to a visual word. Most of
the techniques use typical clustering algorithms, such as the traditional K-means [26], or a
hierarchical variation, such as the one proposed in Reference [27]. The selection of K is
usually selected empirically or by a trial-and-error process on a validation set. However,
certain techniques, such as the minimum description length (MDL) approach, are often
applied in order to determine the appropriate dictionary size [28]. Typical sizes of dictio-
naries vary from a few tenths for grid approaches to many thousands of visual words for
point-of-interest approaches.

The last step is to select an appropriate bag-of-words representation, with which the
detectors will be trained. A number techniques have been proposed; many of them have
been inspired by text categorization. A brief overview of the most important techniques is
presented below.

Reference [29] created a texton library and trained texton histogram-based detectors.
Similarly, Reference [30] constructed a codebook of prototype regions with specific geo-
metric and photometric properties, namely, three-dimensional textons. Reference [31] used
mean-shift clustering to split images to regions based on color features. Each image was
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then represented by a binary vector indicating the presence of absence of visual words.
In another work [32] pixel-based concept detectors were used in order to achieve seman-
tic image clustering. Visual features were extracted from the resulting regions and scenes
were detected using a codebook. Reference [20] replaced visual words with points of in-
terest (bag-of-keypoints) and used K-means clustering to construct the visual dictionary.
Both SVM and naive Bayesian techniques were then applied for concept detection. Refer-
ence [33] used semantic descriptions instead of low-level descriptors. In Reference [34],
the authors used the bag-of-words model to a contour-based object recognition problem.
They constructed the visual dictionary based on curve parts. Another work [35] divided
images to subregions and calculated local histograms within these subregions. Then, the
bag-of-words model was used. Reference [36] proposed the use of keyblocks, which is the
equivalent of keywords in the field of images. A codebook, that contained those keyblocks
in various resolutions, was built. Reference [18] investigated various methods of splitting
images to parts and used a Bayesian hierarchical model.

During the past few years, there have been a few notable attempts to enhance the bag-
of-words model with spatial relations. Reference [37] used adaptive correlation histograms
and presented a model robust to geometric transformations. Reference [38] suggested a
hierarchical probabilistic model, based on a set of parts, each describing the expected posi-
tion of objects. Reference [39] suggested a hierarchical bag-of-words model of spatial and
spatiotemporal features of video sequences, whereas another work [40] suggested a seg-
mentation algorithm as an extension of object detection techniques with the aid of a visual
dictionary.

As the bag-of-words model is inspired by text processing techniques, it is not surprising
that it has been enhanced by popular methods in this field. For example, the latent semantic
analysis (LSA) approach [41] aims at exploiting the latent relations among the visual words.
References [42] and [43] extended the bag-of-words model using LSA and probabilistic
LSA (pLSA). Reference [21] modeled images as a mixture of concepts and also applied
pLSA, in a fully unsupervised model.

12.3.2 The Role of Context

Scene context is probably the simplest way to model context in an image analysis prob-
lem. According to Reference [44], scene context may be defined as a combination of
objects/concepts which are correlated under human perception and share the property to
complement each other. Thus, in order to exploit scene context, one has first to detect
present concepts and optionally their location within the image and then use contextual
information to infer the scene the image depicts. For example, in a concept detection prob-
lem, if the concept sea is detected with high confidence, one could also expect the image to
contain sky and depict a beach scene. Reference [45] used scene context to detect events.
Reference [46] applied the expectation-maximization algorithm to the low-level features of
image parts that depict concepts. Reference [47] investigated the use of Bayesian networks,
Boltzmann machines, Markov random fields, and random fields to model the contextual re-
lations between concepts. Reference [48] used scene context as an extra source in global
descriptions and faced scene classification and object detection as a unified problem.
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Spatial context aims at modeling the spatial relations among concepts. This step is used
to enhance context models, after modeling scene context. It may be defined as a combina-
tion of objects/concepts, which, apart from their co-occurrences, occupy spatial positions
within an image that are not independent. For example, to further extend the previous scene
context example, if an image is detected to depict a beach scene and for a region it can-
not be determined with high confidence whether it depicts sky or sea, two concepts that
share similar visual features, its location should be considered. Thus, if it is located on
the top of all other regions it should depict sky. Reference [49] used quantitative spatial
and photometric relations among regions in a scene classification problem. Reference [50]
used probabilistic models to model spatial relations among materials; this effort was further
enhanced in Reference [9] by modeling spatial relations among concepts after a learning
process. Reference [51] proposed an expectation-maximization model, which after a learn-
ing process low-level features to visual words that describe concepts. Reference [52] used
a grid to split images to blocks and encoded both relations among low-level features and
concepts and spatial relations among concepts. References [53] and [54] also used a grid
and a two-dimensional hidden Markov model to form spatial relations among concepts.
Another work [55] used graphs and statistics and showed that spatial relation-driven mod-
els increase precision. In Reference [56], the authors combined knowledge about scene
layout and a generative model using material detectors and further improved their model in
Reference [57].

Temporal context considers the relations of an image with other images from the same
collection, taken with a small time difference, independently of their visual content. For
example, if an image depicts a beach scene with a confidence, concepts present in images
taken by the same user with a small time difference should also be in the context of beach.
Reference [58] exploited the idea that the visual content of a photo is correlated to the one
of photos taken with a small time interval. Reference [59] used many successive images
from different viewpoints and exploited their temporal context to solve a three-dimensional
photo retrieval problem by employing a Bayesian model. Reference [60] used temporal
context in event detection in text documents. References [61] and [62] combined temporal
context and photo location, whereas Reference [63] constructed hierarchical event models
based on the visual content and temporal context of photo collections.

Metadata context involves the relations among the metadata that are available in digital
images, such as the camera settings with which the image was taken. These metadata are
embedded in image files according to the EXIF (Exchangeable Image File) standard [64].
For example, for an indoor/outdoor scene classification problem, the knowledge of the fo-
cus distance can let one assume the depicted scene; for example, a large distance usually
indicates an outdoor scene. Reference [65] used metadata of camera settings combined
with low-level features to automatically annotate photos. Reference [66] used a boost-
ing algorithm and metadata in a scene classification problem. Reference [67] combined
metadata with color features and face and natural place detectors. References [68], [69],
and [70] showed that metadata information can significantly assist in the problems of in-
door/outdoor classification and sunset detection, using Bayesian networks. Finally, Refer-
ence [71] proposed a system that combines metadata and visual features in order to auto-
matically construct photo collections.
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FIGURE 12.1 (See color insert.)

An input image and its coarse segmentation.

12.4 Image Description and High-Level Concept Detection Using a Region
Thesaurus

The following presents the proposed approach to tackle the problems of image descrip-
tion and high-level concept detection from a different and at the same time innovative as-
pect, that is, based on a region thesaurus containing a set of region types [72]. This research
effort was expanded and further strengthened in References [73], [74], [75] and [76] by ex-
ploiting visual context in the process and achieving promising research results. The main
focus remains to provide an ad hoc ontological knowledge representation containing both
high-level features (that is, high-level concepts) and low-level features and exploit them
toward efficient multimedia analysis.

Generally, the visual features extracted from an image or video can be divided into two
major categories. The first contains typical low-level visual features that may provide a
qualitative or quantitative description of the visual properties. Often these features are
standardized in the form of a visual descriptor. The second category contains high-level
features that describe the visual content of an image in terms of its semantics. One fun-
damental difference between these categories is that low-level features may be calculated
directly from an image or video, while high-level features cannot be directly extracted, but
are often determined by exploiting the low-level features. A human observer can easily
recognize high-level features, even in situations when it could be rather difficult to provide
their qualitative description and almost impossible to provide a quantitative one.
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Offline part of the high-level concept detection algorithm.
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Online part of the high-level concept detection algorithm.

In this sense, this chapter tries to enhance the notion of a visual context knowledge model
with mid-level concepts. Those concepts are referred to as region types, for reasons clar-
ified in Section 12.4.2. Such concepts may provide an in-between description, which can
be described semantically, but does not express neither a high-level nor a low-level feature.
Thus, this work will focus on a unified multimedia representation by combining low-level
and high-level information in an efficient manner and attach it to the context model by
defining certain relations. To better understand the notion of region types, Figure 12.1
presents a visual example. In this example, a human could easily describe the visual con-
tent of the image either in a high-level manner (that is, the image contains sky, sea, sand,
and vegetation) or in a lower level, but higher than a low-level description (that is, an azure
region, a blue region, a green region, and a gray region). Although a quantitative descrip-
tion cannot be provided, each image can be intuitively and even efficiently described by a
set of such features, that is, the region types. Therefore, it is of crucial importance to en-
code the set of region types in an effective manner that can efficiently describe almost every
image in a given domain. To achieve this, a region thesaurus needs to be constructed. The
next sections briefly describe the extraction of the low-level features and the construction
of the region thesaurus. Figure 12.2 presents the offline part of the overall methodology
for the high-level concept detection process that leads to a trained set of classifiers, while
Figure 12.3 presents the online part that leads to the extraction of high-level features.

12.4.1 Low-Level Feature Extraction

To represent the color and texture features of a given image, this chapter follows an ap-
proach of extracting visual descriptors locally, that is, from image regions. First, color seg-
mentation is performed using a multi-resolution implementation of the well-known RSST
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method [77], tuned to produce a coarse segmentation. Note that this under-segmentation
both facilitates image description and prevents the problem from being too complex. After
extracting image regions, low-level visual descriptors from the MPEG-7 standard [23] are
extracted to capture a description of their visual content. Here, the extraction process fo-
cuses on color and texture features using appropriate MPEG-7 color and texture descriptors,
since the employed high-level concepts belong to the categories of materials and scenes. To
perform such feature extraction, a descriptor extraction tool [78], which is fully compatible
with the MPEG-7 eXperimentation Model (XM) [79], is used.

More specifically, four color and two texture descriptors are selected: the dominant color
descriptor (DCD), the color layout descriptor (CLD), the scalable color descriptor (SCD),
the color structure descriptor (CSD), the homogeneous texture descriptor (HTD), and the
edge histogram descriptor (EHD). To obtain a single region description from all the ex-
tracted region descriptions, features are merged after their extraction [80] into a feature
vector. The feature vector fi that corresponds to a region ri ∈ R, for R denoting the set of
all regions, is defined as follows:

fi = f (ri) = [DCD(ri),CLD(ri),SCD(ri),CSD(ri),HT D(ri),EHD(ri)]. (12.1)

12.4.2 Construction of a Region Thesaurus

After extracting color and texture features, the next step aims to bridge these low-level
features to the high-level concepts aimed at detection. To achieve this, first a region the-
saurus will be constructed to assist with quantizing regions and forming an intermediate
image description. This description will contain all the necessary information to connect
one image with every region type of the dictionary. In this way, a fixed-size image descrip-
tion can be achieved, tackling the problem that the number of segmented regions is not
fixed. Moreover, this description will prove again useful when contextual relations will be
exploited, as described in Section 12.5.

Given the entire training set of images and their extracted regions, one can easily observe
that regions belonging to similar semantic concepts also have similar low-level descrip-
tions, and that images containing the same high-level concepts consist of similar regions.
This gives a hint to exploit region similarity, as region co-existences often characterize the
concepts that exist within an image [72].

The first step is the selection of region types that will form the region thesaurus. Based on
the aforementioned observations, the proposed method starts from an arbitrary large num-
ber of segmented regions and applies a hierarchical clustering algorithm [81], adjusted for
the problem at hand and with the clustering level empirically selected. After the clustering
process, each cluster may or may not represent a high-level feature and each high-level
feature may be contained in one or more clusters. This means that the concept sand can
have many instances differing, for example, in color or texture. Moreover, in a cluster that
may contain instances from a semantic entity (for example, sea), these instances could be
mixed up with parts from another visually similar concept (for example, sky). Here, a single
region is selected to represent each cluster, that is, the region type.

Finally, a region thesaurus T can be formally described as a set of NT visual words ti:

T =
{

ti, i = 1,2, . . . ,NT

}
, ti ⊂ R, (12.2)
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Generally, a thesaurus combines a list of every term in a given domain of knowledge and
a set of related terms for each term in the list, which are the synonyms of the current term.
In the proposed approach, the constructed region thesaurus contains all the region types
that are encountered in the training set. Each region type is represented by its feature vector
that contains all the extracted low-level information. As it is obvious, a low-level descriptor
does not carry any semantic information. It only constitutes a formal representation of the
extracted visual features of the region. On the other hand, a high-level concept carries only
semantic information. It is now clear that a region type lies in-between those features. It
contains the necessary information to formally describe the color and texture features, but
can also be described with a lower description than the high-level concepts. Namely, one
can describe a region type as a green region with a coarse texture.

12.4.3 Construction of Model Vectors

This section presents the algorithm, which is used here to describe each image with the
aid of the region thesaurus. First, it must be noted that the MPEG-7 standard does not spec-
ify strict distance measures. It only suggests some, so as to allow for other measures to be
used and test their efficiency. As depicted in the experiments presented in Reference [72],
the use of the Euclidean distance provides a simple yet effective way to fuse all extracted
low-level information, leading also to satisfactory results. Then, the distance d(r1,r2) be-
tween two regions r1 and r2 defined in R is calculated by the Euclidean distance of their
feature vectors f1 and f2 as follows:

d(r1,r2) = d( f1, f2) =

√
n

∑
i=1

( f i
1− f i

2)
2. (12.4)

Having calculated the distance of each image region to all the words of the constructed
thesaurus, the model vector that semantically describes the visual content of the image is
formed by keeping the smaller distance for each intermediate concept (region type), thus
containing all the necessary information to associate an image with the whole set of the
region thesaurus. In particular, the model vector mp describing image p is given by

mp = [mp(1),mp(2), . . . ,mp( j), . . . ,mp(NT )], i = 1,2, . . . ,NK , (12.5)

where
mp( j) = min

r∈R(p)
{d( f (t j), f (r))}, i = 1,2, . . . ,NT ; j = 1,2, . . . ,NT , (12.6)

and R(p) denotes the set of all regions of image p.
In order to better understand the above process, Figure 12.4 presents an indicative ex-

ample, where an image is segmented in regions and a region thesaurus is formed by six
region types. On the left, this figure presents the distances of each region type from the sky
region; the distances of each image region from region type 5 are presented on the right.
The model vector is constructed by the smallest distances for each region type. In this case
and considering region type t5, the minimum distance is equal to 0.1. The model vector for
the specific image, given the region thesaurus, is defined as



Concept-Based Multimedia Processing Using Semantic and Contextual Knowledge 371

0.45

0.70

0.70

0.80

0.15

0.10

1

2

3

4

5

6

region type

(a)

0.15

0.80

0.10

0.75

1

2

3

4

5

6

region type

(b)

FIGURE 12.4 (See color insert.)

Distances between regions and region types: (a) distances between an image region and all region types;

(b) distances between all regions and a specific region type.
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Construction of model vectors for two images and a visual thesaurus of six region types; lowest values of

model vectors are highlighted (light gray) to note which region types of the thesaurus are most contained in

each image, whereas a high value (dark gray) indicates a high distance between the corresponding region type

and the image.
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m = [m(1),m(2), . . . ,m(5),m(6)], (12.7)

where m(5) will be equal to 0.1. Taking into consideration all distances between all four
image regions and all six region types (that is, a total of 24 distances), the corresponding
model vector is formed. Figure 12.4 presents the model vectors for two images, using the
region thesaurus shown in Figure 12.5.

12.4.4 High-Level Feature Detection

After extracting model vectors from all images in the (annotated) training set, an SVM-
based detector is trained separately for each high-level concept. A model vector mi, de-
scribing a keyframe in terms of the region thesaurus, is fed to the detectors. The output
of the network is the confidence that the image in question contains the specific concept,
this is done for all concepts. It is important to note that the detectors are trained based on
annotation per image and not per region. The same stands for their output, thus providing
the confidence that the specific concept exists somewhere within the keyframe in question.

12.5 Visual Context Optimization

In order to fully exploit the notion of visual context and combine it with the aforemen-
tioned bag-of-words technique, a threefold approach is introduced next. The proposed
methodology could be divided into the following three sections, according to the effect of
visual context regarding concepts and region types:

• a scene context approach that aims to refine initial high-level concept detection re-
sults by exploiting solely the contextual relations between high-level concepts;

• an approach that aims to refine the input of trained high-level concept detectors based
on the contextual relations between region types of the given training set; and

• a unified approach that utilizes contextual relations among high-level concepts and
region types.

It should be emphasized here that this research effort focuses on the integrated approach of
the subject, which offers a unified and unsupervised management of multimedia content.
It is proved that the use of enhanced intermediate information can improve the results of
traditional, knowledge-assisted image analysis, based on both visual and contextual infor-
mation.

12.5.1 Scene Context

The proposed approach differentiates itself from most of the related research works, be-
cause it deals with a global interpretation of the image and the concepts that are present in
it. In other words, high-level concepts either exist or do not exist within the entire image un-
der consideration and not within a specific region of interest (for example, the image might
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contain concept water, but there is no information regarding its spatial location). Now,
in order to further adapt the results of low-level and descriptor-based multimedia analy-
sis, utilizing the notion of region types, a scene context method, founded on an enhanced
high-level contextual ontology, is introduced. The proposed visual context application opti-
mizes the high-level concept detection results (in terms of the classifiers’ output) that were
obtained based on the detailed methodology described in the previous sections.

12.5.1.1 A Scene Context Knowledge Model

The high-level concept ontology proposed herein is described as a set of concepts and
semantic relations between concepts within a given universe. This set is introduced in order
to efficiently express the real-world relations that exist between the concepts of the domain
at hand. In general, one may decompose such an ontology Oc into two parts:

• Set C = {ci}, for i = 1,2, . . . ,n, of all semantic concepts in the domain of interest.

• Set Rc = {Rci j}, i, j = 1,2, . . . ,n of all semantic relations among concepts. Note that
Rc,i j = r(k)

c,i j contains the K relations that can be defined among concepts ci and c j.

Moreover, for a given relation r(k)
c,i j, its inverse r̄(k)

c,i j can be defined.

More formally:
Oc = {C,Rc}, Rc,i j : C×C →{0,1}. (12.8)

However, modeling of a domain using Oc is inappropriate, since it does not model re-
lations among concepts as fuzzy as in real-world domains. Therefore, the aforementioned
model is expanded to produce a fuzzified version of the scene context ontology, formally
denoted as follows:

Oc = {C,Rc}, (12.9)

where Rc = {Rc,i j} is the set of fuzzy relations among concepts, with Rc,i j = r(k)
c,i j and r̄(k)

c,i j
denoting again the corresponding inverse relation. Now, the following can be written:

rci j : C×C → [0,1] . (12.10)

Since for two concepts the existence of more than one relations is possible, a combination
of all relations among ci and c j is defined as

Uc,i j = ∪
k
[r(k)c,i j]

p, i, j = 1,2, . . . ,N, k = 1,2, . . . ,K. (12.11)

The final combination of the MPEG-7 originating relations forms a resource description
framework (RDF) graph and constitutes the abstract contextual knowledge model to be
used (Figure 12.6). The value of p is determined by the semantics of each relation rci j used
in the construction of Uc,i j. More specifically:

• p = 1, if the semantics of rci j imply that it should be considered as is;

• p =−1, if the semantics of rci j imply that its inverse r̄ci j should be considered; and

• p = 0, if the semantics of rci j do not allow its participation in the construction of the
combined relation Uc,i j.
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A fragment of the Beach domain ontology depicting the relations between concept Beach (the root element)

and seven high-level concepts.

As indicated in Reference [82], any kind of semantic relation may be represented by such
an ontology, however, herein it is restricted to a fuzzified ad hoc context ontology. The latter
is introduced in order to optimally express the real-world relationships that exist between
each domain’s participating concepts. In order for this ontology to be highly descriptive,
it must contain a representative number of distinct and even diverse relations among con-
cepts, so as to scatter information among them and thus describe their context in a rather
meaningful way. Moreover, the utilized relations need to be meaningfully combined, so
as to provide a view of the knowledge that suffices for context definition and estimation.
Since modeling of real-life information is usually governed by uncertainty and ambiguity,
it is believed that these relations must incorporate fuzziness in their definition. Therefore,
the proposed method extends a subset (Table 12.1) of the MPEG-7 semantic relations [83]
that are suitable for image analysis and specified, in this case, by a domain expert. It should
be noted at this point that since the proposed semantic relations are redefined in a way to
represent fuzziness, a degree of confidence is associated to each of them. To further un-

TABLE 12.1
Fuzzy scene context semantic relations between concepts.

Name Inverse Symbol Meaning

Specialization Generalization Sp(a,b) b is a specialization in the meaning of a
Part PartOf P(a,b) b is a part of a
Example ExampleOf Ex(a,b) b is an example of a
Instrument InstrumentOf Ins(a,b) b is an instrument of or is employed by a
Location LocationOf Loc(a,b) b is the location of a
Patient PatientOf Pat(a,b) b is affected by or undergoes the action of a
Property PropertyOf Pr(a,b) b is a property of a
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A fragment of the Beach domain ontology depicting the relations between concept sand (the root element) and

six high-level concepts.

derstand the meaning of these semantic relations, some indicative examples are presented
below. For example, a bear is a Specialization of an animal, whereas tree is a part of forest.
Moreover, clay is an Example of a material and a wheel is the Instrument of a car. Beach
might be the Location of an umbrella, gun is a Patient of the action of soldier, and wavy is
a Property of a sea.

The graph of the proposed model contains nodes (that is, domain concepts) and edges
(that is, an appropriate combination2 of contextual fuzzy relations between concepts). The
degree of confidence of each edge represents fuzziness in the model. Non-existing edges
imply non-existing relations, meaning that relations with zero confidence values are omit-
ted. An existing edge between a given pair of concepts is produced based on the set of
contextual fuzzy relations that are meaningful for the particular pair. For instance, the edge
between concepts rock and sand is produced by the combination of relations Location and
Patient, whereas the edge between water and sea utilizes Specialization, PartOf, Example,
Instrument, Location, and Patient, in order to be constructed. Since each concept has a
different probability to appear in the scene, a flat context model would not have been suf-
ficient in this case. On the contrary, concepts are related to each other, implying that the
graph relations used are in fact transitive. The degree of confidence is implemented using
the RDF reification technique [84].

12.5.1.2 Scene Context Optimization

Once the contextual knowledge structure is finalized and the corresponding represen-
tation is implemented, a variation of the context-based confidence value readjustment al-
gorithm [8] is applied to the output of the neural network-based classifier. The proposed
contextualization approach empowers a postprocessing step on top of the initial set of re-

2The combination of different contextual fuzzy relations toward the generation of a practically exploitable
knowledge view is conducted by utilizing fuzzy algebraic operations in general and the default t-norm in
particular.
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Contextual influence on high-level concepts.

gion types extracted. It provides an optimized re-estimation of the initial concepts’ degrees
of confidence for each region type and updates each model vector. In the process, it uti-
lizes the high-level contextual knowledge from the constructed contextual ontology. The
corresponding methodology is presented in Figure 12.8.

The degree of membership for each concept is estimated from direct and indirect rela-
tionships of the concept with other concepts using a meaningful compatibility indicator or
distance metric. Again, depending on the nature of the domains provided in the domain on-
tology, the best indicator could be selected using the max or the min operator, respectively.
Algorithm 12.1 depicts the general structure of the degree of membership re-evaluation
procedure. The number of the iterations is defined empirically and usually three to five it-
erations are enough. The final output of the algorithm are the updated degrees of confidence
for the presence of all concepts of the given domain within image p.

ALGORITHM 12.1 Procedure for evaluating the degree of membership.

1. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure ws ∈ [0,1].

2. For each image p, a fuzzy set Lp with the degrees of confidence µp(ci) is defined
for all concepts ci of the domain.

3. For each ci in the fuzzy set Lp with a degree of membership µp(ci), the particular
contextual information is obtained in the form of the set Uc,i = {Uc,i j : ci,c j ∈
C,∀i 6= j}.

4. The new degree of membership µ ′p(ci) is calculated by taking into account each
domain’s similarity measure. In the case of multiple concept relations in the on-
tology, when relating concept ci to more concepts apart the root concept (Fig-
ure 12.6), an intermediate aggregation step should be applied for the estima-
tion of µ ′p(ci) by considering the context relevance notion, cri = max j{Uc,i j},
j = 1,2, . . . ,ck, defined in Reference [8]. The calculation of µp(ci), which is the
degree of confidence for ci at the l-th iteration, is expressed with the recursive
formula

µ l
p(ci) = µ l−1

p (ci)−ws(µ l−1
p (ci)− cri).

Equivalently, for an arbitrary iteration l:

µ l
p(ci) = (1−ws)l ·µ0

p(ci)+(1− (1−ws)l) · cri,

where µ0
p(ci) represents the initial degree of membership for concept ci.
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12.5.2 Region Type Context

This section presents a different approach on scene context. The context optimization
will have an effect on region types rather than concepts. It is relatively easy to prove
that the utilization of this context information will improve the results of traditional image
analysis. Indeed, initial analysis results are enhanced through the utilization of semantic
knowledge, in terms of region-independent region types and semantic relations between
them. In general, this information may be described by an intermediate description, which
can be semantically described, but does not express the high-level concepts.

12.5.2.1 A Region Type Knowledge Model

The proposed methodology, that is presented in this section, follows precisely the steps of
the scene context optimization from Section 12.5.1. Thus, an appropriate fuzzified ontology
will be first defined in order to model in an appropriate way the real-world relations among
the region types. In this case, the crisp ontology OT may be described as set T of m region
types and a set RT,i j of semantic relations among them. More specifically, let:

1. T = {ti}, for i = 1,2, . . . ,m, be the set of all region types of the visual thesaurus used
in the problem at hand, and

2. RT = {RT,i j}, for i, j = 1,2, . . . ,m, be the set of the semantic relations among region
types. Set R(k)

T,i j, for k = 1,2, . . . ,K′, includes K′ relations that can be defined between

region types ti and t j. Moreover, for a given relation r(k)
T,i j, its inverse r̄(k)

T, ji can be
defined.

Thus, for a given ontology OT and sets T and RT,i j, the following can be written:

OT = {C,RT}, (12.12)

RT,i j : T ×T →{0,1}. (12.13)

Now, the ontology modeling should be redefined to include fuzziness. A fuzzified version
OT of OT is defined as

OT = {T,RT}, (12.14)

where RT = {RT,i j} denotes the set of fuzzy semantic relations. Set RT,i j = r(k)T,i j, for
k = 1,2, . . . ,K′, includes all K′ relations that can be defined between two region types ti
and t j. Moreover, for each relation r(k)T,i j, its inverse r̄(k)T, ji can be defined. Finally, since
relations are fuzzy, the following can be written:

rT,i j : T ×T → [0,1]. (12.15)

Since it is possible that more than one relation may be valid simultaneously between two
region types, a combination of relations can be defined as

UT,i j = ∪
k
[r(k)T,i j]

p, i, j = 1,2, . . . ,N; k = 1,2, . . . ,K′. (12.16)

The value of p is once again determined by the semantics of each relation r,i j used to
construct U,i j. More specifically:
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• p = 1, if the semantics of rT,i j imply that it should be considered as is;

• p =−1, if the semantics of rT,i j imply the use of its inverse r̄T, ji; and

• p = 0, if the semantics of rT,i j do not allow its participation in the construction of the
combined relation UT,i j.

12.5.2.2 Relations between Region Types

Once again, semantic relations defined by the MPEG-7 standard [83] are chosen and
redefined to include fuzziness. The relations that may be applicable between region types
are summarized in Table 12.2.

In this case, these relations may be calculated after a statistical analysis in an appropriate
training set, that is, the one used to form the region thesaurus. To make their semantics and
the calculations clear, a few indicative examples are presented below.

• Similar denotes that a region type is similar to another region type, under a certain
degree of confidence. To calculate this degree, their low-level features should be
compared using an appropriate similarity function.

• Accompanier denotes the degree to which two region types co-occur in an image.
It is calculated as the percentage of the images in the training set that contain both
region types to the images that contain either of them.

• PartOf denotes that a region type is part of another. This relation is defined by
an expert, when this knowledge derives from observations to the visual thesaurus
construction.

• Combination denotes that two region types are combined to form another region type.
This is a special case where the inverse relation cannot be defined.

It becomes obvious that modeling region type context with an ontology leads again to
the construction of an RDF graph (Figure 12.9). Its nodes correspond to region types and
its edges to their combined relations. RDF reification [84] is used again here to estimate
the corresponding degrees of confidence. This way RDF triplets are formed, for instance,
blue partOf green, with a degree of confidence equal to 0.85. This triplet does not imply
that a blue region type will always be part of a green region type.

The region types of the ontology are those of the region thesaurus that have been con-
structed for the visual analysis. The final ontology relations are formed after calculations
among these regions.

TABLE 12.2
Contextual relations between region types.

Relation Inverse Symbol Meaning

Similar Similar Sim(a,b) region type a is similar to region type b
Accompanier Accompanier Acc(a,b) region type a is accompanier of region type b
Part PartOf P(a,b) region type a is part of region type b
Combination – Comb(a,b) combines two or more region types
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FIGURE 12.9

A fragment of the Beach region type knowledge model.

12.5.2.3 Region Type Context Optimization

After the construction of the model vector of an image p, an appropriately modified
version of Algorithm 12.1 is applied. The algorithm now aims at refining the model vector
by modifying its constituents, each corresponding to the degree of confidence for a region
type. This is a preprocessing step that outputs an improved version of the model vector
after considering the context of its region types. This leads to an increase in the detectors’
precision, as the refined model vectors are closer to those used for their training.

To make this clear, a simplistic example is considered below. The sea detector in the
Beach domain may have correlated this concept with the existence of a blue, a light blue,
and a brown region, which corresponds to a typical Beach image that depicts sea, sky, and
sand, respectively. If an image is presented where the region type that corresponds to sea is
green (as in Figure 12.10) while the others remain as described before, the sea detector is
certain to produce either a wrong result or a correct result with a small confidence, which
will decrease overall precision.

Algorithm 12.2, which is a modified version of the previous algorithm, aims at this exact
problem. In the given example, the model vector will be altered in a way that the confidence
of the existence of a blue region type is increased, while the one of a green region type is
decreased.

(a) (b)

FIGURE 12.10 (See color insert.)

An example from the Beach domain, where the region types of an image are different than a typical Beach

image.
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ALGORITHM 12.2 Improved procedure for evaluating the degree of membership.

1. The model vector for the image in question is calculated using the procedure
presented in Section 12.4.3.

2. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure wT ∈ [0,1].

3. For each image p, the fuzzy set LT with the degrees of confidence µp(ti) is
defined for all region types ti, with i = 1,2, . . . ,k′ of the visual thesaurus.

4. For each region type ti in the fuzzy set L with a degree of confidence µp(Ti),
the particular contextual information is obtained in the form of the set UT,i =
{UT,i j : ti, t j ∈ T,∀i 6= j}.

5. The new degrees of confidence µ ′p(Ti) are calculated by taking into account
the current domain’s similarity measure. In the case of multiple concept re-
lations, when ti is related with one or more types, apart from the root of the
ontology, an intermediate aggregation step should be applied in order to calcu-
late µ ′p(Ti) using the context relevance notion cri defined in Reference [8] as
cri = max j{UT,i j}, for j = 1,2, . . . ,ck. The calculation of µ l

p(ti), which is the
degree of confidence for ti at the l-th iteration, is expressed with the recursive
formula

µ l
p(ti) = µ l−1

p (ti)−wt(µ l−1
p (ti)− cri).

Equivalently, for an arbitrary iteration l:

µ l
p(ti) = (1−wt)l ·µ0

p(ti)+(1− (1−wt)l) · cri,

where µ0
p(ci) represents the initial degree of confidence for ti.

Figure 12.11 depicts a flowchart that describes the region type context. The number of
the iterations is defined empirically and usually three to six iterations are enough also in this
case. The final output of the algorithm is a refined model vector that is fed to the concept
detectors instead of the one that is calculated by the visual features.

12.5.3 Unified Context

This section further advances the proposed conceptualization; it introduces a novel
knowledge representation approach in the form of an extended mixed context model [74].
The classical notion of a contextual ontology is enhanced with mid-level concepts, that is,
the region types and relations among different types of entities. These provide an interme-
diate description, which may be semantically described, but they do not express a high-level

visual context
multimedia

documents
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estimation

optimized model

vector

high-level

feature extraction

FIGURE 12.11

Contextual influence on region types.
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nor a low-level concept. As a result, the focus here is on an integrated multimedia represen-
tation, combining efficiently low-level and high-level information and the description of a
typical context model by defining new and expanding older relations. Within this section,
both high-level concepts and region types will be simply referred to as entities.

12.5.3.1 A Unified Knowledge Model

This section describes a mixed fuzzified ontology that aims to model real-world relations
among all entities present in images, that is, high-level concepts and region types. An
ontology O that will model the unified context of a given domain contains:

• C = {ci}, for i = 1,2, . . . ,n, which is the set of all high-level concepts of a given
domain;

• T = {ti}, for i = 1,2, . . . ,m, which is the set of all region types of the visual thesaurus
used in the analysis process; and

• R = Ri j, for i, j = 1,2, . . . ,n+m, which is the set of all semantic relations among two
entities xi and x j. The set Ri j = r(k)

i j , for k = 1,2, . . . ,K +K′, includes at most K +K′

relations among xi and x j.

Thus, for a unified context ontology O and the aforementioned sets C, R, and T , the follow-
ing can be written:

O = {C,T,Ri j}, (12.17)

r(k)
i j : (C∪T )× (C∪T )→{0,1}, i, j = 1,2, . . .m+n, i 6= j. (12.18)

As can be observed in Equation 12.18, unified context includes relations among concepts
and region types. To model these relations as they exist in real-world problems, a fuzzified
ontology O should be defined as follows:

O = {C,T,R}, (12.19)

where R contains fuzzified relations among entities. As in the crisp ontology, R = Ri j.
Set Ri j = r(k)

i j , for k = 1,2, . . . ,K +K′, includes K +K′ among two entities xi and x j. For a

given relation r(k)
i j , its inverse r̄(k)

ji can be defined. Finally, ri j can be formally expressed as

ri j : (C∪T )× (C∪T )→ [0,1]. (12.20)

Since there often exist more than one relation among two entities, their combination is
defined as

Ui j = ∪
k
[r(k)i j ]p, i, j = 1,2, . . . ,N; k = 1,2, . . . ,K′. (12.21)

This way allows constructing the model to be used in the analysis step. The value of p is
defined by the semantics of each relation ri j. More specifically:

• p = 1, if the semantics of ri j imply that it should be considered as is;

• p =−1, if the semantics of ri j imply the use of its inverse r̄ ji; and

• p = 0, if the semantics of ri j do not allow its participation in the construction of the
combined relation Ui j.
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TABLE 12.3
Semantic relations used in unified context.

Relation Inverse Symbol Meaning C×C T ×T C×T

Similar Similar Sim(a,b) similarity between a and b – • –
Accompanier Accompanier Acc(a,b) co-occurrence between a and b • • •
Part PartOf P(a,b) a is part of b • • •
Component ComponentOf Comp(a,b) a is a component of b • • •
Specialization Generalization Sp(a,b) b specializes the meaning of a • – –
Example ExampleOf Ex(a,b) b is an example of a • – –
Location LocationOf Loc(a,b) b is a location of a • – –
Property PropertyOf Pr(a,b) b is a property of a – • •

12.5.3.2 Relations between Entities

The relations between entities, as defined in Sections 12.5.1 and 12.5.2, are summarized
in Table 12.1. Note that each entity may be related to another with more than one relation.
However, it should be made clear that not all of the relations are appropriate for any two
given entities. For instance, Similar cannot be defined between two concepts or a concept
and a region type, whereas sea cannot be Similar to sand or to a brown region type. All
applicable pairs of entities for each relation are summarized in Table 12.3.

The appropriate degrees of confidence of the semantic relations are either defined by an
expert or calculated as described in Sections 12.5.1 and 12.5.2. For example:

• Similar may be defined only between two region types, with their visual similarity
denoting the degree of confidence.

• Accompanier denotes the co-occurrence of any two entities in the same image. It
should be noted here that a region type that co-occurs with a high degree of con-
fidence with a concept does not necessarily depicts this concept. This degree is
calculated statistically.

• PartOf is defined for any two given entities, when one is part of the other. For
example, in case of two concepts, sea is PartOf Beach. In case of two region types,
a green and textured region type is PartOf a green region type. Finally, in case of a
concept and a region type, a green region type is PartOf a tree.

• Component is defined for any two given entities. For example, in case of two con-
cepts, tree is a Component of forest, and in case of two region types, a dark green
region type is a Component of a green region type. Finally, in case of a concept and
a region type, an orange region type is a Component of a sunset. It should be noted
here that there is also the case that a concept may be Component of a region type, due
to undersegmentation. However, this case is not considered in this approach, since
local annotation per image are unavailable.

• Specialization may be defined between two concepts, as defined in Section 12.5.1.

• Example may be defined between two concepts, as defined in Section 12.5.1.

• Location may be defined between two concepts, as defined in Section 12.5.1.
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A fragment of unified context ontology that includes relations among sand and all other entities.
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A fragment of unified context ontology that includes relations among region type t1 and all other entities.

• Property may be defined between a concept and a region type, or between two con-
cepts. In the first case, a green region type is a Property of vegetation. In the latter
case, wave is a Property of sea.

The aforementioned relations model the unified context among all concepts and region
types of a given domain. Between any two given entities xi and x j a single relation Ui j

is formed and the occurring ontology O forms again an RDF graph, using RDF reifica-
tion [85] to describe the degree of confidence for each edge. It is noted again that an edge
between two entities is formed based on the set of valid relations for this pair. For exam-
ple, the edge between rock and sand is formed by Location and Accompanier, while the
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edge between water and sea is formed by Specialization, PartOf, Example, and Location.
Similarly, a green and a blue region types are related by the combination of Similar, Accom-
panier, and Component, while a blue region type and sea are related by the combination of
Accompanier, PartOf, and Component.

Figures 12.12 and 12.13 present two fragments of the graph built for the Beach domain.
More specifically, Figure 12.12 depicts relations among sea and other entities, while Fig-
ure 12.13 depicts relations between region type T4 and other entities.

12.5.3.3 Unified Context Optimization

Algorithm 12.3 is used for the optimization in the case of the unified context. This
algorithm is a mixture of the ones presented in Sections 12.5.1 and 12.5.2. The target now
is to refine model vectors and detector results in an iterative way.

ALGORITHM 12.3 Optimized iterative procedure for evaluating the degree of
membership in the case of the unified context.

1. The considered domain imposes the use of a domain similarity (or dissimilarity)
measure wm ∈ [0,1].

2. For each image p, the fuzzy set Lp with the degrees of confidence µp(ci) is
defined for all concepts ci, with i = 1,2, . . . ,k of the given domain.

3. For each image p, the fuzzy set LT with the degrees of confidence µp(ti) is
defined for all region types ti, with i = 1,2, . . . ,k′ of the visual thesaurus.

4. For each concept ci in Lp with a degree of confidence µp(ci), the particular
contextual information is obtained in the form of the set Uc,i = {Uc,i j : ci,c j ∈
C,∀i 6= j}.

5. For each region type ti in L with a degree of confidence µp(Ti), the particular
contextual information is obtained in the form of the set UT,i = {UT,i j : ti, t j ∈
T,∀i 6= j}.

6. The new degrees of confidence µ ′p(ci) and µ ′p(Ti) are calculated by taking into
account the similarity measure of the given domain. In the case of multiple
concept relations, when xi is related with one or more types, apart from the root
of the ontology, an intermediate aggregation step should be applied in order to
calculate µ ′p(ci) and µ ′p(Ti) by applying the context relevance notion [8], that
is, cri = max j{Ui j}, for j = 1,2, . . . ,ck. The calculation of µ l

p(ci) and µ l
p(ti),

which correspond to the degrees of confidence for the presence of ci and ti at the
l-th iteration of the algorithm, is expressed with the recursive formula

µ l
p(xi) = µ l−1

p (xi)−wm(µ l−1
p (xi)− cri). (12.22)

Equivalently, for the l-th iteration:

µ l
p(xi) = (1−wm)l ·µ0

p(xi)+(1− (1−wm)l) · cri,

where µ0
p(xi) denotes the initial degree of confidence for xi.

The number of the iterations is defined empirically and usually three to six iterations are
enough also in this case. A flowchart that describes the influence of the unified context is
depicted in Figure 12.14.
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Unified contextual influence.

12.6 Context Optimization Examples

In order to clarify the influence of the context optimization on image analysis, this section
presents simplistic examples for all three above cases.

12.6.1 Scene Context Example

Focused on scene context optimization, a simple example is presented to illustrate the
way in which this optimization influences on the initial degrees of confidence. Based on
the context ontology, whose fragments are depicted in Figures 12.6 and 12.7, and using
appropriately trained detectors, Table 12.4 depicts degrees of confidence for all concepts
before and after context optimization for the images shown in Figure 12.15. It can be
observed that concepts detected with high confidence are considered to appear on images
with a higher confidence. The opposite may be observed for concepts initially detected
with low confidence.

12.6.2 Region Type Context Example

Next, a simple example is presented to illustrate region type context influence. In this
case, context acts as a preprocessing step. For the image shown in Figure 12.10 and the

TABLE 12.4
Degrees of confidence before and after scene context optimization for the
images shown in Figure 12.15.

Figure 12.15a Figure 12.15b Figure 12.15c

Concept Before After Before After Before After

sea 0.77 0.85 0.65 0.75 0.62 0.72
water 0.63 0.70 0.60 0.69 0.58 0.67
vegetation 0.35 0.43 0.35 0.40 0.62 0.72
sky 0.45 0.57 0.55 0.60 0.53 0.61
sand 0.69 0.75 0.45 0.56 0.52 0.60
rock 0.25 0.35 0.63 0.68 0.65 0.75
wave 0.00 0.00 0.25 0.34 0.20 0.27
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.15 (See color insert.)

Three examples from the Beach domain. Initial images and their segmentation maps.

simplistic ontology, a fragment of which is depicted in Figure 12.9, the model vector cal-
culated from the visual features is as follows:

MVbe f ore =
[

0.723 0.220 0.753 0.364
]
. (12.23)

As it can be observed from the example image, it depicts sky and sea and intuitively one
would expect that it should contain region types similar to those of the region thesaurus.
However, in this case, sea is significantly different, perhaps more similar to a rock. After
region type optimization, the model vector takes the following form:

MVa f ter =
[

0.778 0.452 0.800 0.338
]
. (12.24)

Thus, the degree of confidence for the region type that corresponds to sea (2nd constituent)
is increased while the one that corresponds to rock (4th constituent) is decreased.

12.6.3 Unified Context Example

Finally, in the unified context case, the ontology with fragments depicted in Figures 12.12
and 12.13 is used. The proposed algorithm is applied to the image shown in Figure 12.10.
Model vector T is initially set as

T = {Ti}=
[

0.89 0.62 0.21 0.68 0.670.31
]
, (12.25)

while the degrees of confidence ci are

C = {ci}=
[

0.32 0.91 0.12 0.87 0.35
]
. (12.26)
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As can be seen, the input image depicts sea, sky, and wave. However, the initial con-
fidence for sea was low because no similar instances of sea were part of the training set.
After unified context optimization, the improved value of the model vector T ′ is

T′ = {T ′i }=
[

0.89 0.62 0.21 0.68 0.670.31
]
, (12.27)

and the degrees of confidence for all concepts are

C′ = {c′i}=
[

0.62 0.95 0.18 0.90 0.29
]
. (12.28)

In brief, it should be emphasized that the unified context algorithm exploited the follow-
ing information that was stored in the unified ontology:

• This was a Beach image, thus using the appropriate ontology.

• Sky was initially detected with a high confidence.

• Wave was initially detected with a high confidence.

• Image contains a blue region type.

• Image contains a white region type.

• sky and wave are related with a high degree with sea.

• blue and white region type are related with a high degree with sea.

Thus, the model vector and the degrees of confidence were modified in a way that:

• The confidence for the blue region type was increased.

• The confidence for the other region types remained invariable.

• The confidence for sea was increased.

• The confidence for the other concepts remained invariable.

12.7 Experimental Results

The following presents an indicative selection of experimental results. It includes results
from the application of the proposed visual context utilization methodology, as presented
in Sections 12.5.1.2 to 12.5.3.3. The utilized expert knowledge is rather ad hoc; however,
this is not considered to be a liability, nor part of the discussed context model and is aligned
to the current application datasets. More specifically, the evaluation focuses on both utiliz-
ing parts of the well-known Corel and TRECVID datasets and compares the efficiency of
relevant state-of-the-art techniques.
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FIGURE 12.16 (See color insert.)

Indicative Corel images.

Initially, a set of experimental results are presented from the application of the proposed
visual context approaches on a dataset containing 750 images, 40 region types, and 6 high-
level concepts (sea, vegetation, sky, sand, rock, and wave). The number of the region types
was selected based on the size of the region thesaurus and was verified using the minimum
description length (MDL) method [28]. The amount and type of utilized concepts is im-
posed by the problem/dataset at hand; the employed dataset was a subset of the well-known
Corel image collection [86], an indicative sample of which is presented in Figure 12.16.
For the non-contextual detection of high-level concepts, the methodology described in Sec-
tion 12.4 was applied. Overall, 525 images were used to train six individual SVM-based
concept classifiers and 225 images were used as the test set.

Some additional results are also presented from the application of the proposed uni-
fied contextualization approach on a second dataset, consisting of 4000 images from the
TRECVID collection [87], 100 region types and 7 high-level concepts (vegetation, road,
fire, sky, snow, sand, water). The number of region types for this dataset was again decided
based on experiments on the size of the region thesaurus and verified by using the mini-
mum description length methodology introduced in Reference [28]. Figure 12.17 shows
a characteristic sample of this dataset. In total, 250 of those images were used to train 7
individual SVM classifiers, whereas other 997 images were used for testing.

To evaluate the proposed approaches, they are compared to similar techniques used in
previous research work. The results of all approaches on both Corel and TRECVID datasets
are summarized in Tables 12.5 and 12.6. Note that Region Types (RT) refers to the results
based only on the detection scheme presented in Section 12.4, without exploiting any con-
textual knowledge. Results from the application of contextual approaches correspond to
RT+Scene Context (SC), RT+RT Context (RTC), and RT+Unified Context (UC).

To further evaluate the last proposed approach, two other techniques are implemented.
The first technique, known as relative LSA (RLSA) [42], adds directly structural constraints
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FIGURE 12.17 (See color insert.)

Indicative TRECVID images.

to the visual words of the thesaurus. The fundamental difference between the traditional
LSA and RSLA is that every possible unordered pair of clusters is this time considered as a
visual word. In this way, a visual thesaurus with too many words (that is, pairs of clusters)
is created. Nevertheless, the low-level features extracted from each region are simpler than
the MPEG-7 low-level features used here. More specifically, a 64-bin histogram expressed
in the hue-saturation-value (HSV) color space is used to capture the color features of 24 Ga-
bor filters whose energies capture the texture features. The number of the words that form
the visual thesaurus is determined empirically. The second implemented technique [88]
starts with the extraction of local interest points (LIPs). The local interest points, often de-
noted as salient, tend to have significantly different properties compared to all other pixels
in their neighborhood. To extract these points, a method called difference of Gaussians is
applied. From each LIP, a SIFT descriptor is extracted from an elliptic region. A visual
thesaurus is generated by an offline quantization of LIPs. Then, using this thesaurus, each
image is described as a vector of visual keywords. Finally, for each high-level concept,
a classifier is trained. It should be noted that the proposed method is compared against
the above techniques and methodologies mainly because they try to face the same problem
with more or less the same motivation as the presented work. The first one tries to exploit
the co-occurrence of region types and to incorporate structural knowledge when building
a visual thesaurus, while the the other one defines the LIPs as the regions of interest and
extracts therein appropriate low-level descriptors. Moreover, both works have been suc-
cessfully applied to the TRECVID dataset. Finally, as it is obvious from the interpretation
of Tables 12.5 and 12.6, the proposed contextual unified approach outperforms in principle
all compared approaches in terms of the achieved precision, whereas in some cases it lacks
in terms of the recall criterion.



390
PerceptualD

igitalIm
aging:

M
ethods

and
A

pplications

TABLE 12.5
Comparative precision P, recall R, and F-measure scores per concept for six different concept detection methodologies applied on the Corel dataset.

RT SC RTC UC LIPs [88] RLSA [42]

Concepts P R F P R F P R F P R F P R F P R F

road 0.22 0.40 0.28 0.25 0.37 0.30 0.39 0.32 0.35 0.43 0.35 0.39 0.34 0.37 0.35 0.42 0.35 0.38
sand 0.38 0.50 0.43 0.40 0.46 0.43 0.50 0.41 0.45 0.55 0.44 0.49 0.47 0.46 0.46 0.52 0.45 0.48
sea 0.72 0.85 0.78 0.71 0.81 0.76 0.81 0.78 0.79 0.89 0.80 0.84 0.77 0.83 0.80 0.80 0.82 0.81
sky 0.81 0.88 0.84 0.79 0.80 0.79 0.77 0.81 0.79 0.88 0.82 0.85 0.86 0.85 0.85 0.88 0.83 0.85
snow 0.48 0.68 0.56 0.51 0.62 0.56 0.62 0.57 0.59 0.72 0.57 0.64 0.58 0.61 0.59 0.64 0.57 0.60
vegetation 0.67 0.81 0.73 0.67 0.76 0.71 0.67 0.71 0.69 0.81 0.74 0.77 0.73 0.76 0.74 0.76 0.73 0.74

Total: 0.55 0.69 0.61 0.56 0.64 0.59 0.63 0.60 0.61 0.71 0.62 0.57 0.62 0.65 0.54 0.67 0.63 0.55

TABLE 12.6
Comparative precision P, recall R, and F-measure scores per concept for six different concept detection methodologies applied on the TRECVID dataset.

RT SC RTC UC LIPs [88] RLSA [42]

Concepts P R F P R F P R F P R F P R F P R F

vegetation 0.50 0.64 0.56 0.50 0.60 0.55 0.68 0.49 0.57 0.78 0.45 0.57 0.50 0.59 0.54 0.52 0.55 0.54
road 0.22 0.31 0.26 0.25 0.30 0.27 0.41 0.27 0.33 0.43 0.24 0.31 0.30 0.30 0.30 0.37 0.27 0.31
sand 0.83 0.82 0.81 0.87 0.80 0.83 0.93 0.69 0.79 1.00 0.76 0.86 0.93 0.76 0.84 0.94 0.71 0.81
water 0.60 0.67 0.63 0.57 0.68 0.62 0.70 0.58 0.63 0.81 0.57 0.67 0.60 0.66 0.63 0.61 0.64 0.63
sky 0.60 0.79 0.68 0.62 0.77 0.69 0.74 0.68 0.71 0.90 0.57 0.70 0.59 0.79 0.67 0.60 0.76 0.67
snow 0.43 0.50 0.46 0.40 0.44 0.42 0.51 0.38 0.44 0.57 0.37 0.44 0.50 0.44 0.47 0.56 0.40 0.47
fire 0.30 0.47 0.37 0.22 0.44 0.29 0.46 0.37 0.41 0.55 0.36 0.43 0.38 0.45 0.41 0.45 0.43 0.44

Total: 0.50 0.60 0.55 0.49 0.58 0.54 0.63 0.50 0.56 0.72 0.47 0.57 0.54 0.57 0.55 0.58 0.54 0.55
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Experimental results presented above show that existing relationships between concepts
improve the precision of results, not only for the well trained, but also for weak SVM
classifiers. The proposed unified context algorithm uses and exploits these relations and
provides an expanded view of the research problem, which is based on a set of meaningful
semantic relations. The interpretation of presented experimental results depicts that the
proposed contextualization approach will favor rather certain degrees of confidence for the
detection of a concept that exists within an image. On the contrary, it will also discourage
rather uncertain or misleading degrees. It will strengthen the concepts’ differences, but
it will treat smoothly almost certain concepts’ confidence values. Finally, based on the
constructed knowledge, the algorithm is able to disambiguate cases of similar concepts or
concepts being difficult to be detected from the simple low-level analysis steps.

12.8 Conclusion

Research effort summarized in this chapter clearly indicates that high-level concepts can
be efficiently detected when an image is represented by a model vector with the aid of
a visual thesaurus and visual context. The role of the latter is crucial and significantly
aids the image analysis process. The core contributions of this work include, among oth-
ers, the implementation of a novel threefold visual context interpretation utilizing a fuzzy,
ontology-based representation of knowledge. Experimental results presented in this chap-
ter indicate significant high-level concept detection optimization over the entire datasets.
Although the improvement is not considered to be impressive, it is believed that the pro-
posed approach successfully incorporates the underlying contextual knowledge and further
exploits visual context in the multimedia analysis value chain. Moreover, minor enhance-
ments of the implemented contextual model, for example, in terms of additional spatial,
temporal, or semantic relationships exploitation, would further boost its performance.
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13.1 Introduction

Analyzing a video shot requires identifying the meaningful components that influence
the semantics of the scene through their behavioral and perceptual attributes. This chapter
describes an unsupervised approach to identify meaningful components in the scene using
perceptual grouping and perceptual prominence principles. The perceptual grouping ap-
proach is unique in the sense that it makes use of an organizational model that encapsulates
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the criteria that govern the grouping process. The proposed grouping criteria rely on spa-
tiotemporal consistency exhibited by emergent clusters of grouping primitives. The prin-
ciple of perceptual prominence models the cognitive saliency of the subjects. Prominence
is interpreted by formulating an appropriate model based on attributes which commonly
influence human judgment about prominent subjects. The video shot is categorized based
on the observations pertaining to the mise-en-scène aspects of the depicted content.

Perceptual organization is the process of identifying inherent organizations in visual
primitives. Simpler primitives can be organized to obtain higher-level meaningful struc-
tures. In order to group simpler primitives one needs to formulate a grouping model that
specifies the grouping criteria that influence the formation of meaningful (perceptual) clus-
ters. For example, a model of a human being can be specified as a spatial organization
of parts, such as torso, head, legs, hands, and so on. Being able to detect the parts and
their requisite spatial organization reinforces the belief that the human being is present in
the scene. For a general video the grouping primitives need to be simple enough to be
extracted from all types of objects. Further, the organization model should make use of
general grouping criteria and be flexible enough to incorporate grouping evidences from an
object category-specific grouping model, if available. One also needs unsupervised algo-
rithmic procedures that can make use of the grouping model to identify salient clusters.

The principle of perceptual prominence [1] is motivated from film grammar that states
that scene understanding depends on the characteristics of the scene components. Human
attention gets focused on the most over-riding or prominent components in the scene. A
film-maker or a painter uses the arrangement of the mise-en-scène [2] to direct visual at-
tention across the visualization space (a scene in space and time). Perceptual prominence
captures the cognitive aspects of attention, which deals with perceiving the perceptible (vi-
sual) attributes in the context of prior knowledge or expectation from the scene, and is used
to identify the perceived prominent subjects. The semantics of a scene are closely linked
with the way humans interpret the scene and thereby establish the visual attributes and
behavioral patterns of the prominent subjects. The perceptual attribute specifications are
parametrized into different prominent models that correspond to different interpretations of
prominence. The behavioral aspects of prominent subjects and the mise-en-scène features
are used to generate a taxonomy of interpretation of the video scene.

Many classical perceptual organization studies, which have addressed organizing and
grouping primitives in images, have been recently extended to organizing primitives in
the spatiotemporal domain of video. Given a pair of frames, the organization principle
of smoothness (or continuity) has been used for computing optical flow, organizing mov-
ing points for planar motion [3], and estimating the dense motion field in a tensor voting
framework [4]. Organization of motion fields to detect patterns, such as saddles, sinks,
and sources, has been used to study qualitative behaviors of objects [5], [6]. Perceptual
organization has been applied to primitives that exist over extended sequence of frames
in different applications like grouping feature trajectories [7], tracking structures [8], and
object extraction [9].

Attempts to quantify the saliency of organizational structures have made use of different
properties like transformational invariance [10], structural information [11], local charac-
teristics [12], and probability of occurrence of the structure [13]. There has been work on
modeling pre-attentive vision [14] and computation of visual saliency [15]. Reference [16],
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has used perceptual features of the groupings and computed qualitatively significant per-
ceptual groupings by repeated applications of rules. The “interestingness” of a structure
is evaluated by considering its size, contrast, extent, type of similarity, and the number of
groupings the structure is associated with.

This chapter presents a perceptual grouping scheme for the spatiotemporal domain of
video. The proposed grouping model is motivated from the Gestalt law of common fate
that states that the entities having a coherent behavior in time are likely to be parts of the
same organization. The researchers in the Gestalt school of psychophysics [17], [18], [19]
have identified certain relationships, such as continuation of boundaries, proximity, adja-
cency [20], enclosures, and similarity of shape, size, intensity, and directionality, which
play the key role in the formation of “good” structures in the spatial domain. These associ-
ations have been used to identify salient groupings of visual patterns (primitive entities) in a
two-dimensional visual domain [21]. However, in the spatiotemporal domain, the spatially
salient grouping must show coherence (common fate) in the temporal domain. Therefore,
this chapter also presents formulations for association measures which characterize tempo-
ral coherence between primitives to group them into salient spatiotemporal clusters, termed
as perceptual clusters. The foreground perceptual clusters identified by the proposed per-
ceptual grouping algorithm correspond to the subjects in the scene.

Semantic information from a video is extracted here in the form of a collection of con-
cepts interpreted by analyzing the behavior and properties of the identified meaningful
components. In order to do so, video shots are categorized into two broad categories:

1. Subject-centric scenes, which have one or few prominent subjects and are more suit-
able for object-centric descriptions that facilitate an object-oriented search [22], [23].

2. Frame-centric scenes, which have many subjects, but none of them can be attributed
a high prominence. Hence, the overall activity depicted in the scene is the subject of
interest. Such scenes can be described in terms of features and semantic constructs
that do not directly pertain to the objects but characterize the gross expressiveness
of the medium at the frame level or the shot level, for example, features like color
histogram, dynamicity [24], tempo [25], dialogue [26], etc.

Note that the annotations for a given video scene would be more efficacious when they
align with the viewer’s perception of the content depicted in the scene. Therefore, per-
ceptual grouping and prominence principles are employed here toward the end goal of
automatic semantic annotation of videos into general categories. Content specific seman-
tic metadata can facilitate effective utilization of video information in various applications,
such as transcoding, browsing, navigation, and querying.

This chapter is organized as follows. Section 13.2 gives an overview of proposed clus-
tering methodology to extract space-time blob tracks, which are the visual primitives for
grouping. Extraction of meaningful components in a video is done by applying percep-
tual organization principles on visual primitives. Section 13.3 describes the basic ideas
behind spatiotemporal grouping and outlines the formulations of association measures that
play a key role in formation of salient groupings. Section 13.4 describes the proposed
spatiotemporal grouping model which is then used in a perceptual grouping algorithm to
identify the foreground subjects in the video shot. Section 13.5 reports results obtained by
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applying the perceptual grouping algorithm to video scenes. Section 13.6 provides a gen-
eral framework to evaluate perceptual prominence of the identified subjects by making use
of perceptual attributes such as life span and movement, and mise-en-scène features like
placement in the scene, and color contrast. The attribute specifications are parametrized
into different prominence models that signify different interpretations of prominence. A
taxonomy of interpretation of video scenes based on the behavior of prominent subjects is
also generated. Video shot interpretation into generic categories follows from the analysis
of prominent subjects in the scene. Section 13.7 uses domain knowledge in the form of
learned object-part models to perform object recognition through a grouping process. This
chapter concludes with Section 13.8.

13.2 Space-Time Blob Tracks

The grouping primitives are identified here as space-time regions, homogeneous in color
using unsupervised clustering techniques, and modeled as tracks of two-dimensional blobs
along time. Video data are multidimensional; they can be represented using two spatial
coordinates (x, y), three color components (for example, RGB or LUV), and one time
dimension. This makes a heterogeneous feature vector because color, space, and time
have different semantics. Clustering such a six-dimensional feature space can result in
undesirable smoothing across features of different semantics. Pixels having similar color
but actually lying on different objects may become part of the same cluster. This leads
to a higher variance along certain dimensions, which may be semantically unacceptable
because the cluster is encompassing patches that belong to different objects. To ensure that
the clusters model patches that are homogeneous in color and belong to the same object,
one can apply clustering in stages and consider a subspace of semantically homogeneous
features at each stage. Each cluster is divided into further subclusters at the subsequent
level, resulting in a hierarchical clustering tree called the decoupled semantics clustering
tree (DSCT) [27]. The clustering methodology and the feature subspace can be chosen as
different for each level. The choice is guided by the distribution of feature points in the
feature space used for partitioning the cluster.

The root node (level 0) of the clustering tree represents all the feature points, that is,
pixels, in the video shot. At level 1 of the clustering tree, the entire set of pixels is par-
titioned along time to form video stacks or subclusters, each comprising ten consecutive
video frames. Making such video stacks or sets of consecutive frames reduces the amount
of data handled by the clustering algorithm at the next level. At level 2, pixels in the video
stack are decomposed into regions homogeneous in color. This is done by applying hierar-
chical mean shift [28] to obtain clusters in the color subspace, such as the LUV color space.
Hierarchical mean shift results in a dendrogram of color modes. A set of color modes are
chosen as the color model. Each color cluster comprises the set of pixels that had converged
to the mode during the mean shift process. At level 3, the pixels in the color cluster are par-
titioned along time by projecting them onto the individual frames. The clusters at this level
comprise pixels having similar color and belonging to the same frame. Pixels in clusters at
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level 3 are modeled as two-dimensional Gaussians (blobs) using Gaussian mixture model
clustering. These blobs are then tracked across successive frames to obtain blob tracks that
model space-time regions. These space-time blobs are the primitive patterns to be grouped
to identify the perceptual clusters, as discussed in the next section.

13.3 Perceptual Grouping in Spatiotemporal Domain

The perceptual units that serve as input to the proposed perceptual grouping algorithm
are the spatiotemporal blob tracks that model regions homogeneous in color. The goal is to
identify meaningful groupings of these blob tracks to form perceptual clusters.

Consider a set of patterns S = {p1, p2, ...pn} and a set ck such that ck ⊆ S. Let G(ck)
denote a spatial grouping of the patterns in ck. The set of attributes for all the member
patterns in ck at time t are denoted as ct

k and the attributes of the complete spatial grouping
considered as a single entity are denoted by Gt(ck). A set ck ∈ S is a perceptual cluster in the
spatiotemporal domain if {ct

k,G
t(ck)} obeys a spatiotemporal grouping model that defines

a salient temporally coherent organization. This model specifies a set of temporal behavior
attributes for the cluster ck and an operational method that uses these attributes to compute
a grouping saliency measure for ck. Temporal behavior attributes, for example, related to
visual characteristics or contextual behavior, can be formulated for the overall grouping
and the individual patterns. The proposed definition requires that in addition to the overall
grouping Gt(ck), the individual patterns in the grouping must show temporal consistency in
terms of their attributes ct

k, which could be, for example, visual characteristics or contextual
behavior. Such a formalism allows enforcement of specific visual and temporal behavior
characteristics on some or all patterns of a grouping.

Following the proposed definition of a perceptual cluster, there are three possible types
of attributes that can be used to characterize spatiotemporal saliency:

• Properties of the patterns: The individual patterns can be characterized using visual
properties like appearance or shape. Let pt

i denote the attribute values of pattern
pi at time t and let p̈i be the attributes that characterize the temporal behavior of
pt

i . Specific knowledge about the temporal change in appearance or deformation
of a meaningful grouping allows constraining the values for p̈i, for a grouping to
be computationally valid. A computationally valid grouping should correspond to a
meaningful perceptual cluster.

• Associations amongst the patterns: The inter-pattern associations characterize the
structural (that is, grouping) compatibilities for the patterns. Let Et(pi,c j) denote
the attribute values for the association of pattern pi with cluster c j at time t. The
attributes characterizing the temporal behavior of Et(pi,c j) are denoted as Ë(pi,c j).

• Structural characteristics of the overall cluster: These attributes are derived for the
cluster as a whole (not viewing it as a set of patterns). Let Gt(c j) denote the structural
characteristics of the grouping c j at time t. The term G̈(c j) denotes the temporal
behavior attributes of the structural characteristics Gt(c j).
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Depending on the convenience of modeling and the available computer vision tools for
gathering observations, the saliency of a cluster can be formulated based on any or all of
the aforementioned attributes. A spatiotemporal grouping model defines a set of tempo-
ral behavior attributes p̈i, Ë(pi,c j), and G̈(c j), and an operational method that uses p̈i,
Ë(pi,c j), and G̈(c j) for all pi ∈ c j to compute a grouping saliency measure for the cluster
c j. A cluster that evaluates a high value of saliency measure is taken as meaningful and
also as computationally valid. The proposed formulation for temporal consistency makes
use of temporal behavior attributes that characterize the temporal coherence of a grouping.
The remaining part of this section presents the formulations for the attributes from Refer-
ence [1], which are used here to characterize the spatiotemporal saliency of a cluster. All
measures are formulated to produce a value between zero and one. Higher values depict
stronger associations.

13.3.1 Motion Similarity Association

A real-world object generally comprises several parts, each of which shares an adjacency
to at least one of the other parts. When a real-world object undergoes translation, all its
parts appear to exhibit a similar motion over an extended period of time. The motion
similarity association between two blob tracks can be formulated using the steps depicted
in Algorithm 13.1a, where the resulting measure takes into account only the translational
motion of the blobs.

ALGORITHM 13.1 Motion similarity association between two blob tracks.

1. Identify the smooth sections of the trajectories of the blobs A and B.

2. Consider one such smooth section of f frames; the measured displacements of
the two blobs are ~dA and ~dB. The motion difference between the two blobs,
computed as pixels per frame, is formulated as |~dA− ~dB|/ f .

3. Average the motion difference values for all the smooth sections in the trajecto-
ries of the two blobs.

4. Divide the computed motion difference value by ten and clamp the result to one
in order keep the computed value of motion difference in the range [0,1].

5. Subtract the motion difference value from one to give the motion similarity mea-
sure.

13.3.2 Adjacency Association

The parts of a real-world object are connected to each other. The adjacency association
is formulated such that it exhibits strongly for the blob patterns that belong to a scene ob-
ject. A strong adjacency link should involve a good amount of overlap between adjacent
patterns [1]. However, some adjacent patterns may have a small overlap, thus leading to a
weak link. In the proposed algorithm, a representative blob (one with the longest life span)
in the cluster is selected and labeled as the generator pattern of the cluster. A given pattern
is considered to have a qualified adjacency with a cluster if it has a direct or indirect con-
nectivity with the generator pattern of the cluster. The strength of the adjacency association
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between a pattern and a cluster depends on the strengths of all the links involved in the
direct or indirect connectivity. Presence of weaker links have a debilitating effect on the
adjacency association. Assimilating the temporal information, the adjacency association
measure can be formulated as the ratio of the number of frames in which the pattern has
a qualified spatial adjacency with the cluster, to the total life span (in terms of number of
frames) of the cluster.

13.3.3 Cluster Bias Association

The cluster bias for a pattern signifies the affinity of the cluster toward the pattern. A
pattern may be important for a cluster if it could facilitate the adjacency of other patterns
with the cluster. Consider a pattern pi whose removal from a cluster c would cause a set of
patterns q (including pi) to get removed from the cluster. The bias applied by a cluster c
toward the pattern pi is formulated as:

Cluster bias association measure =
∑∀qk∈q duration of disconnection(qk)

∑∀pi∈c life span(pi)
(13.1)

The duration of disconnection and the life span are measured in number of frames.

13.3.4 Self-Bias Association

The self-bias association signifies a pattern’s affinity toward a cluster. Self-bias is incor-
porated to facilitate an appropriate grouping for patterns that remain mostly occluded in
the cluster but show up for a small time span. The purpose is to facilitate grouping such a
pattern to an adjacent cluster, even if the life span of the pattern is small compared to the
life span of the cluster. A pattern will have a self-bias to a cluster if it shares an adjacency
for a duration that is a large fraction of the pattern’s life span. The measure is formulated
as the ratio of the duration of qualified adjacency of the pattern with the cluster to the life
span of the pattern.

13.3.5 Configuration Stability Association

The configuration stability association measure favors a grouping of a pattern with a
cluster only if the relative configuration of the pattern with respect to the other patterns
in the cluster remains stable. To assess the configuration stability of a given pattern with
a cluster, the generator of the cluster is considered here to be a reference pattern, and the
placement (orientation and position) of the centroid of each of the member patterns relative
to the generator is computed. Any change observed in the relative orientation of a given
pattern with respect to the other member patterns penalizes its association strength with the
cluster.

The measure is formulated [1] by computing the average of the relative change in the
orientation of the pattern pi with respect to the other patterns p j (except for the generator).
The computed value is normalized by dividing it by 180, and then subtracting the result
from one.
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13.4 Spatiotemporal Grouping Model: Computing the Cluster Saliency

Given the observed values of inter-pattern associations for a putative cluster, it is neces-
sary to develop a computational framework that can assimilate all these grouping evidences
and give the grouping saliency of the cluster. A belief network (Figure 13.1) is used here
as the evidence integration framework [1]. Some salient points about this methodology for
computing the grouping saliency for a putative cluster c j are mentioned below:

1. The node S shown in the belief network takes on two states [groupingIsSalient,
groupingIsNotSalient]. The probability that a cluster c j is salient is denoted as P(c j).
The grouping saliency of a cluster c j is formulated as Sc j = P(c j).

2. The nodes A, B, C, D, and E correspond to the grouping evidences arising due to dif-
ferent inter-pattern associations and grouping characteristics of the emergent cluster
c j. Each of these nodes also takes on two states [groupingIsSalient, groupingIs-
NotSalient], which concern with the saliency arising from the grouping evidence
contributed by the respective node. The grouping probability computed at either of
nodes A, B, C, D, and E as denoted by Pg(c j), where g denotes the particular node.
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FIGURE 13.1

Belief network for spatiotemporal grouping [1]. The nodes shown in dotted rectangles are the virtual evidences.
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3. Each pattern (except the generator) in a putative grouping contributes an evidence
for the saliency of the grouping. An evidence is computed by evaluating a specified
association of a pattern with the rest of the grouping. In the proposed belief network,
such an evidence instantiates a virtual evidence node which contributes probability
values in favor and against the saliency of a grouping. Figure 13.1 shows the virtual
evidence Vai contributed by the ith pattern when assessing the grouping criterion of
node A. Likewise, other virtual evidences contribute for their respective nodes.

4. Association measures described in the previous section are used for computing evi-
dences at the leaf nodes Vai, V bi, V ci, and so on, for the different grouping criteria.
Every pattern (except the generator) in a cluster c j provides one evidence for each
type of association. If a cluster c j has a pattern that exhibits a weak association (say,
of type A) with the cluster, then it would contribute an evidence against the grouping,
leading to a low probability Pa(c j) and hence a low P(c j), which implies an invalid
cluster. Specifically, a cluster is considered to be invalid if P(c j) < 0.5, which would
imply a higher probability for the negative state groupingIsNotSalient.

5. The a priori probabilities for the proposition states in node S are set as {0.5, 0.5}.
The conditional probability values for the nodes A, B, C, D, and E are set as P(x|S) =
0.95, P(x|S) = 0.05, P(x|S) = 0.05, and P(x|S) = 0.95, where x is the positive state
of any of the nodes A, B, C, D, and E.

6. For the virtual evidence node (V bi, V ci, or V di), the probability of the parent states x
and x is calculated as P(v|x) = {associationmeasure} and P(v|x) = 1−P(v|x), where
x and x are the two states for each of the nodes A, B, C, and D. All the association
measures are computed in the range [0,1].

7. The association strength given the combined observations of motion similarity and
adjacency is computed using a three-node belief network shown in Figure 13.1b,
where the node Sai has two states [groupingIsSalient, groupingIsNotSalient]. The
nodes Mi and Ni represent virtual evidences corresponding to motion similarity and
adjacency in the belief network of Figure 13.1b. The conditional probability values
for P(Sai|mi,ni) are set as:

• 0.5, when the adjacency measure is small and motion similarity is large (imply-
ing a weak evidence in favor of the grouping),

• 0.1, when motion similarity is small (implying a strong evidence against the
grouping), and

• 0.9, when both the adjacency measure and the motion similarity measure are
large (implying a strong evidence in favor of the grouping).

8. The node E of the network incorporates any kind of evidence which relates to the
visual or the overall structural characteristics of a valid grouping. This kind of ev-
idence is not generic and essentially requires the use of domain knowledge. Such
evidences play an important role in the grouping process when the evidences due to
other associations do not exhibit strongly enough to identify the valid clusters.
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13.4.1 Perceptual Grouping Algorithm

Given a spatiotemporal grouping model, an algorithm [1], which makes use of the group-
ing model and finds the perceptual cluster in the scene, can now be designed. The grouping
saliency for the entire scene can be formulated as:

Sscene = ∑
∀c j∈C

Sc j (13.2)

where C is the set of all perceptual clusters identified in the scene.
The spatiotemporal grouping problem is to identify the set C of perceptual clusters in the

scene so as to maximize Sscene such that the final set of clusters have:

P(ci)≥ 0.5, P(ci∪ c j) < 0.5, and ci∩ c j = φ ,∀ci,c j ∈C, i 6= j (13.3)

The first condition in Equation 13.3 mandates that each cluster in the set of groupings be
valid. The second condition constrains the set of valid groupings so that no two clusters
can be further grouped together to form a valid cluster as per the specified grouping model.
The third condition specifies that a pattern can be a member of only one cluster.

This formulates the perceptual grouping problem as an optimization problem. A naive
perceptual grouping algorithm would explore all possible sets of clusters and output the one
that has the maximum scene’s grouping saliency and all the clusters valid as per conditions
in Equation 13.3. However, these conditions restrict the set of groupings which need to
be explored. Therefore, Algorithm 13.2 outlines a procedure which maximizes Sscene to
a local maximum and obtains a set of clusters satisfying conditions in Equation 13.3. The
algorithm is graphically depicted in Figure 13.2.

ALGORITHM 13.2 Perceptual grouping algorithm (PGA).

Input: Set of patterns P = {p1, p2, ..., pn}.
Output: Set of clusters C which satisfy conditions in Equation 13.3.

1. Initialize the set of clusters C = {}. Hence, Sscene = 0. Instantiate a queue,
clusterQ, to be used for storing the clusters. Initially, none of the patterns have
any cluster label.

2. If all the patterns have cluster labels and the clusterQ is empty, then exit. Other-
wise, instantiate a new cluster if there are patterns in set C that do not have any
cluster label. From among the unlabeled patterns, pick up the one that has the
maximum life span. This pattern is taken as the generator pattern for the new
cluster cnew.

3. (a) Compute associations of the generator pattern of cnew with the unlabeled pat-
terns. An unlabeled pattern pi is added to the cluster cnew if P(pi ∪ cnew)>0.5.
Repeat this step till no more unlabeled patterns get added to cnew. Any unlabeled
patterns that exist now are the ones that do not form a valid grouping with any
of the existing clusters.
(b) Compute associations of the generator pattern of cnew with the labeled pat-
terns of other clusters. If there are patterns, say pk (of another cluster, say, c j)
which form a valid grouping with cnew, that is, P(pk ∪ cnew)>0.5, then put cnew
and c j into the clusterQ if they are not already there inside it.
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4. If the clusterQ is empty, go to step 2. Otherwise, take the cluster at the front of
the clusterQ. Let this cluster be c f .

5. Pick a pattern, say, pi, of the cluster c f . The pattern pi is considered to be a part
of, one by one, every cluster in the set C. The association measures between pi
and a cluster c j need to be recomputed if c j has been updated. For each cluster
c j in C, compute the grouping probability for the putative grouping {pi∪c j}. If
the grouping {pi ∪ c j} is valid (that is, P(pi ∪ c j)>0.5), note the change in the
scene grouping saliency as δS = P(pi ∪ c j)− P(c j). The pattern pi is labeled
with the cluster (say, cm) for which δS computes to the highest value. If cm is
not c f , then put cm into the clusterQ if it is not already inside it. Repeat step 4
for all the patterns in c f .

6. If any pattern in c f changes its label as a result of step 5, then go to step 4. If
none of the patterns changes its label, remove the front element of the clusterQ
and go to step 4.

The iterative process terminates when the pattern labels have stabilized. It attempts to
hypothesize new clusters and organizes them such that Sscene reaches a local maximum.
Convergence to a local maximum is guaranteed since 4Sscene ≥ 0 is ensured at every step
of the algorithm. A grouping formed out of a single pattern always leads to an increase
in Sscene. A pattern would change its cluster label only when the increase in saliency of
the cluster to which it is joined is larger compared to the decrease in saliency of the cluster
from which it is defected. Thus, instantiation of clusters as well as relabeling of patterns
always leads to an increase in the Sscene. The conditions in Equation 13.3 are enforced in
step 2, where instantiation of clusters is done only when the clusterQ is empty. This implies
that all existing clusters are stable at that stage and merging any two clusters would lead to
an invalid grouping (since otherwise the two clusters would not have emerged as separate).
The proposed algorithm performs a local optimization (similar to k-means), since at every
step the set of groupings being explored depends on the set of groupings in the previous
step. A simple heuristic is used to label a cluster as a foreground or a background. A
cluster which touches two or more frame borders (top, bottom, left, right) for a reasonable
proportion (over 80%) of its life span is marked as a background cluster. Most of the videos
have the background as a single cluster which touches all four frame borders.

Association measures, which rely on the evaluation of adjacencies between patterns and
clusters, are dependent on the groupings that emerge as the algorithm proceeds. Two pat-
terns which do not share boundary pixels can be taken as connected only if they can be
linked together by a contiguous path of intermediate adjacent patterns, all of which belong
to the same cluster. Thus, the adjacency strength of two indirect neighbor patterns depends
on the cluster labels of the intermediate patterns. The dependence of adjacency on cluster
labels implies that the existing adjacency associations for the member patterns in a cluster
are examined every time when any member pattern is defected from the cluster. Similarly,
a new member joining a cluster may lead to an indirect adjacency of other patterns (which
carry a label of some other cluster) to this cluster. To summarize, the pattern-to-cluster ad-
jacencies need to be re-evaluated only for those clusters whose compositions get affected
as a result of reorganization. With the revised adjacencies, the association measures, such
as self-bias, cluster bias, and configuration stability, need to be recomputed. This is not the
case of motion similarity since it does not depend on adjacency.



410 Perceptual Digital Imaging: Methods and Applications

labeled patterns

set of clusters C

unlabeled patterns

clusterQ

(a)

labeled patterns

unlabeled patterns

instantiated

cluster

clusterQ

set of clusters C

(b)

labeled patterns

unlabeled patterns

instantiated

cluster

clusterQ

set of clusters C

(c)

labeled patterns

unlabeled patterns

front cluster

from clusterQ

clusterQ

set of clusters C

(d)

labeled patterns

unlabeled patterns

clusterQ

set of clusters C

(e)

labeled patterns

unlabeled patterns

clusterQ

set of clusters C

(f)

FIGURE 13.2

Illustration of the steps performed in Algorithm 13.1. (a) Initial stage, where the set of clusters C is empty.

(b) Step 2, where a cluster is instantiated by using the pattern with longest life span as the generator. The new

cluster computes associations with the unlabeled patterns in step 3a of PGA. (c) Step 3b, where the new cluster

computes associations with labeled patterns. (d) Step 5, where re-organization of patterns for the clusters that

have been put in the clusterQ takes place. (e) ClusterQ is empty at the end of the re-organization step. This

state leads to step 6 followed by step 4 and step 2. Further instantiation of new clusters and reorganization

takes place till no more unlabeled patterns are left. (f) Termination stage.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 13.3

PGA performance demonstration: (a,e,i) frame 4, (b,f,j) frame 25, (c,g,k) frame 50, and (d,h,l) frame 83. (a–

d) Some original frames from a sequence in which two persons are walking in the background of trees. The

total length of the sequence is 356 frames. (e–h) Color segmented (clustered) frames produced by the DSCT

algorithm. (i–k) The PGA groups foreground clusters, which are marked using rectangles of distinct colors.

Blobs that constitute a foreground cluster are highlighted in (e–h) with the same color as that of the bounding

rectangle. (l) All other blobs in the scene get grouped into the background cluster. Total number of blob tracks

processed is 32 of which 11 were grouped as foreground clusters. Grouping of the background cluster took

four iterations of step 5 of PGA, while the two foreground clusters took two iterations each.

13.5 Evaluation of Cluster Identification Using Perceptual Grouping

The output of the perceptual grouping algorithm (PGA) is verified manually and is con-
sidered to be correct if the output clusters correspond to meaningful foreground subjects,
and no actual foreground region is incorrectly merged with the background or any other
foreground cluster. PGA groups the background as a single perceptual cluster; meaning-
ful components in the background are not searched here. Figure 13.3 shows a sequence
in which the background has dynamic textures (trees). The color clustering step in the
decoupled semantics clustering tree algorithm smooths out the textured background and
models all homogeneous color regions as space-time blob tracks. The blobs belonging
to the background are more or less static, while those that are part of the two foreground
subjects show distinct motion. The PGA identifies three clusters, two foreground clusters
and one background cluster, which comprises all the remaining blobs. The decoupled se-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 13.4 (See color insert.)

PGA performance demonstration on a sequence from Titanic movie: (a,e,i) frame 77, (b,f,j) frame 103,

(c,g,k) frame 142, and (d,h,l) frame 175. (a–d) Original frames, (e–h) PGA-identified foreground blobs on

the DSCT color-clustered frame, and (i–l) perceptual clusters marked with the same color as the blobs belong-

ing to the distinct foreground clusters. Note that the person wearing the red jacket, initially seen on the right of

the person wearing the yellow jacket, comes to the left starting from frame 110.

mantics clustering tree algorithm can handle dynamic textures without the need of explicit
modeling in contrast to Reference [29].

Figure 13.4 shows a sequence in which people walk along a passage in a ship. The
camera is not static and there are some frames for which the distinct subjects get adjacent
to each other and they even change their orientation with respect to each other. As can
be seen, the PGA identifies the foreground subjects correctly. Some more representative
results of PGA are shown in Figure 13.5. The detailed results and explanations can be
found in Reference [1].

Overall, it can be said that the PGA successfully identifies foreground subjects for the
class of scenes where the subjects show distinct characteristics compared to the back-
ground. The use of node E plays a crucial role in the grouping process when associations
like motion similarity and adjacency do not exhibit strongly enough. The output of the
PGA crucially depends on what qualifies to be a valid grouping. The factors governing a
valid grouping are the observed Gestalt associations, the evidences formulated correspond-
ing to the associations, and the Bayesian network parameters. The PGA reasonably outputs
the chunk of pixels that belong to the foreground subjects even in the presence of some
inconsistencies in the blob tracks.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 13.5 (See color insert.)

PGA performance demonstration on various scenes: (a–d) original frames in four different scenes, (e–h) iden-

tified foreground blobs, and (i–l) perceptual clusters.

Having identified the meaningful objects in the scene foreground, the next problem to-
ward the task of video understanding is to interpret the scene. An interpretation establishes
the context in which humans perceive the information about the scene content. The con-
text, among other things, depends significantly on the prominent components in the scene.
These ideas and a computational model for perceptual prominence are discussed below.

13.6 Perceptual Prominence

The following describes the proposed principle of perceptual prominence for the subjects
in the scene. Prominence refers to cognitive interest in the subjects. The semantics of the
scene is closely associated with the prominent subjects, that is, the subjects that deserve
attention. Perceptual prominence is different from visual saliency [15], which refers to the
identification of salient locations in the scene by the psychophysical sensory mechanisms
before any cognitive interpretation is carried out.

Context plays an important role in influencing the prominence measure for scene compo-
nents (the perceptual clusters). Though a perceptual cluster may be prominent as a stand-
alone cluster, the presence of other clusters may establish a context in which it may not be
prominent. Hence, it may happen that within a context and an interpretation, one, few, or
none of the clusters come out as prominent. The proposed approach to modeling the context
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FIGURE 13.6

Belief network [1] for computing the prominence measure for a perceptual cluster ci.

is to use perceptual attributes that characterize the context. A contextual attribute captures
the distinguishing properties of a cluster with respect to the surrounding background blobs
or other foreground clusters present in the scene.

Prominence can arise in several ways. In many scenes, a subject occupying a position
that is in imbalance with the arrangement of the scene components turns out to be promi-
nent. A marked contrast in the appearance of a subject relative to the background or other
foreground subjects also directs visual attention, making the subject perceptually promi-
nent. Different interpretations of prominence can be encoded into different prominence
models. A specific prominence model denotes a set of perceptual attributes and the way
the computed values for the attributes influence the prominence measure for a subject. The
choice of a prominence model depends on the type and interpretation of the scene. For ex-
ample, in a subject-oriented scene, the leading subject generally lasts for a long duration in
the shot period and hence is prominent. In surveillance scenes, the subjects appearing for a
short span of time or subjects moving in a direction different from other subjects are consid-
ered as prominent (deserving attention). Thus, it is possible to formulate one prominence
model that identifies subjects showing zigzag motion as prominent, and another model that
identifies large-sized subjects with a long life span as prominent, and so on.

The proposed methodology for computing the prominence measure makes use of a belief
network, shown in Figure 13.6, which models the prominence of a cluster as a propositional
node P. The prominence measure is formulated as the probability computed for the proposi-
tion that the cluster is prominent. Each of the nodes P, S, and X takes on two discrete states
{isProminent, isNotProminent} for the cluster. The evidences are computed based on a
characterization of the perceptual attributes over the entire life span of the subject. All the
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attributes do not need to be contextual. If none of the perceptual attributes take the context
into account, the prominence measure thus computed from the non-contextual (that is, sub-
ject specific) attributes is called as the self-prominence measure. In the belief network there
are separate nodes for computing measures (that is, probabilities) for self-prominence and
contextual prominence. The virtual evidence nodes A through J in the belief network char-
acterize the observation of the perceptual attributes over the entire life span of the subject,
and hence are termed as the observation nodes. Instantiation of evidence nodes leads to
belief propagation [30] in the Bayesian network and each node updates the posterior prob-
ability for its states. The marginalized probability for the positive state of node P is taken as
the prominence value. The proposed framework for computing the prominence can be used
to model different interpretations of prominence by using an appropriate subset of relevant
observation nodes. The computed attribute value is mapped to its contribution toward the
prominence by using an evidence function.

13.6.1 Evaluation of Perceptual Prominence

For the sequence shown in Figure 13.7, the proposed grouping algorithm groups the
moving subjects (since they have relative motion with respect to the background, they can
be grouped without any world knowledge) and the subjects who are stationary (sitting)
by making use of the face detector and a skin detector (with vertical oval-shaped blobs
signifying a face) and grouping the face regions with the body region below it. Table 13.1
lists the normalized perceptual attributes for four subjects (who are eventually prominent
in the scene), along with the computed probability of prominence. A subject with a frontal
face gets a higher contribution (at node E) toward its prominence (because a frontal face
is generally in focus), compared to non-frontal view faces. The prominence computed for
subjects sp1 and sp2 (see Figure 13.7) is high, primarily because of their large life span and
size. The motion of the moving subjects, and their higher color contrast compared to the
other subjects give them a higher prominence.

A scene can be interpreted in terms of the behavioral analysis of prominent subjects
and the mise-en-scène concepts. Cognitive analysis forms the link between the extracted
meaningful components and the perceived interpretation of the content. The next section
describes the proposed scene interpretation framework.

13.6.2 Scene Categorization Using Perceptual Prominence

Perceptual prominence helps in identifying the meaningful subjects which influence
many of the cognitive abstractions from the scene. A scene is characterized here using
two broad categories:

• Frame-centric scene – A cognitive understanding of a frame-centric scene requires
shifting the focus of attention to different spots on the entire frame. A frame-centric
scene generally comprises multiple prominent subjects that may be engaged in a
group-specific activity or independent activities.

• Subject-centric scene – In a subject-centric scene the focus of attention is mainly on
the activity of one or two subjects. A subject-centric scene comprises fewer promi-
nent subjects that normally exist for most of the duration of the shot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 13.7

Perceptual prominence computation for a sequence in which two persons are sitting in a restaurant:

(a,e,i) frame 25, (b,f,j) frame 37, (c,g,k) frame 61, and (d,h,l) frame 231. Note other persons sitting in the

background and sporadically moving persons, such as the waiter. The foreground subjects are named as sp1

and sp2, for the persons sitting on the right and the left side, respectively; and wp1 and wp2 for the waiter

wearing a red uniform and the moving person wearing a dark green coat, respectively.

TABLE 13.1
Perceptual attributes, as depicted in Figure 13.6, computed (and normalized) for four foreground subjects in the
sequence shown in Figure 13.7. The normalized perceptual attributes are shown only for prominent subjects
(with prominence measure > 0.5). The probabilities computed for self-prominence (S), contextual prominence
(X), and the overall prominence (P) are also shown. The prominence computed for subjects sp1 and sp2 is high
because of their longer life span and a larger size. The subject sp1 has a frontal face that contributes a higher
prominence compared to sp2, which has a side-view face. The prominence for the moving subjects wp1 and wp2
is mainly contributed by their motion and higher color contrast. ©2007 IEEE.

Self-Prominence Contextual Prominence Prominence

Subject A B C D E F G H I J S X P

sp1 0.34 0.10 1.00 0.09 0.05 0.50 0.38 0.41 0.70 0.90 0.92 0.97 0.94
sp2 0.62 0.10 1.00 0.10 0.10 0.50 0.38 0.44 0.60 0.70 0.96 0.87 0.92
wp1 0.23 0.60 0.30 0.64 0.79 0.50 0.39 0.80 0.50 0.70 0.80 0.86 0.83
wp2 0.47 0.20 0.19 0.52 0.86 0.50 0.64 0.65 0.50 0.50 0.81 0.59 0.70
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 13.8 (See color insert.)

Scene categorization: (a–d) subject-centric scenes, as they all have one or two prominent subjects, which exist

throughout the duration of the shot, and (e–h) frame-centric scenes because the subjects in these scenes last

only for a small duration in the shot. Prominence values for the subjects taken from left to right: (a) {0.96,0.1},

(b) {0.3, 0.8, 0.95}, (c) {0.8, 0.8, 0.18}, (d) {0.61, 0.66}, and (e–h) values smaller than 0.5 according to the

proposed prominence model which includes life span as an attribute.

Examples of subject-centric and frame-centric scenes are given in Figure 13.8. Each
of the subject-centric and frame-centric scene category is divided into three subcategories
based on the kind of activity exhibited by the subjects:

• Independent activity scenes, where a subject follows an independent movement pat-
tern without any influence from the other subjects. The subjects are likely to move
in a uniform direction.

• Involved activity scenes, where a subject normally moves in response to the move-
ment of the other subjects and are more likely to exhibit an irregular motion com-
pared to those in an independent activity scene. Moreover, the subjects may move in
different directions.
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• No-activity scenes, where the subjects do not show any significant activity. There is
little or no motion.

A Bayesian network is a convenient way to model the uncertain relationships between
observations and concepts. In the proposed belief network (Figure 13.9) for characterizing
the scenes, the nodes G, S, F, Vs, Ds, Os, Vf, Df, and Of are the scene type nodes, and
each has two discrete states that correspond to the positive and negative propositions of
whether a given scene belongs to the specified type. The nodes shown in dotted rectangles
are observation nodes, each contributes to the belief of the scene type node to which it is
connected. The node Nsubjects corresponds to the total number of subjects identified in the
scene. Three types of prominence models are used, which could identify subjects showing
a prominent zigzag motion (subscript zz), or a prominent uniform motion (subscript u) or
a prominent no motion (subscript nm). Observations related to these prominent subjects
are used in virtual evidence nodes P1

zz, P1
u, P1

nm, P2
zz, P2

u, or P2
nm to provide evidences for the

relevant scene types.

13.6.3 Evaluation of Scene Categorization

Different scenes are characterized by making use of key mise-en-scène aspects and sub-
ject behaviors specific to the scene types. For illustration, the subject behavior observations
and scene categorization results are discussed below for a few example scenes:

• Cricket: A cricket scene is frame centric, with the subjects generally showing an
independent or an involved activity. For a typical scene in which a batsman plays
a ball, the camera is moved fast to follow the ball, and hence the subjects exhibit
an apparent fast motion in a uniform direction. The subjects show adherence to a
prominence model highlighting high-speed motion in a uniform direction.

• Tennis: A tennis scene is subject-centric and exhibits an involved activity of the
subjects. The subjects show adherence to a prominence model highlighting zigzag
motion behavior.
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FIGURE 13.9

The belief network for the proposed scene model [1]. ©2007 IEEE.
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TABLE 13.2
Scene interpretation on various test videos. Scene 1 evaluated a higher probability for frame centric (0.911) compared to subject centric (0.161). Within frame
centric, the subcategory that got the highest probability is involved activity. Hence, this scene is categorized as frame centric with involved activity. Likewise the
final categorization of other examples is listed in the table. ©2007 IEEE

Subject Centric (SC) Frame Centric (FC) Final Scene

Scene Example Subj. Cent. Invol. Act. Indep. Act. No Act. Frame Cent. Invol. Act. Indep. Act. No Act. Categorization

Scene 1 (football) 0.161 0.285 0.631 0.224 0.911 0.952 0.822 0.539 FC, invol. act.
Scene 2 (person walking) 0.808 0.394 0.970 0.394 0.353 0.411 0.539 0.411 SC, indep. act.
Scene 3 (tennis) 0.884 0.955 0.815 0.383 0.391 0.534 0.537 0.410 SC, invol. act.
Scene 4 (cricket) 0.097 0.237 0.291 0.237 0.868 0.548 0.961 0.548 FC, indep. act.
Scene 5 (crowd walking) 0.164 0.225 0.284 0.628 0.877 0.546 0.960 0.607 FC, indep. act.
Scene 6 (news reader) 0.655 0.350 0.350 0.966 0.364 0.411 0.457 0.527 SC, no activity
Scene 7 (crowd sitting) 0.102 0.236 0.236 0.321 0.877 0.546 0.593 0.969 FC, no activity

TABLE 13.3
Evaluation of subject- and frame-centric scene catego-
rization on a test set of 215 video shots.

Subject Centric Frame Centric

Subject Centric 100% 0%
Frame Centric 21% 79%

TABLE 13.4
Evaluation of activity-based scene categorization on a test set of 215 video shots.

Independent Activity Involved Activity No Activity

Independent Activity 92% 8% 0%
Involved Activity 19% 77% 4%
No Activity 0% 0% 100%
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• Football: A football scene is frame centric with involved or independent activity
of the subjects. The subjects show adherence to a prominence model highlighting
zigzag motion or a uniform direction motion.

• News report: A news report has many subject-centric scenes, for example, the scenes
where a reporter (a prominent subject) may stand in front of a still background or one
having moving objects such as traffic. The foreground subject adheres to a promi-
nence model highlighting subjects with a longer life span and showing no motion.

• Crowd scenes: Crowd scenes are frame centric, and generally exhibit independent
activity of the subjects. The subjects may be walking in a uniform direction, or may
be just sitting.

A scene is classified as subject centric or frame centric depending on which of the nodes
(S or F) computes a higher belief. A subject-centric scene is further classified as belonging
to any of the subcategories that (propositional node) compute the highest belief (among
Vs, Ds, and Os); and likewise for a frame-centric scene. The classification accuracy for a
given scene category is computed as the ratio of the number of shots that were correctly
classified as belonging to that category to the number of shots that actually belonged to that
category. Table 13.2 lists the results of scene interpretation on various example videos. The
classification performance is summarized in Tables 13.3 and 13.4. The performance figure
is lower for frame-centric scenes; that was mainly because of missed subject detection by
the PGA, since generally, such scenes have subjects of small sizes. Further, the involved
activity scenes also have a lower classification accuracy and are more likely to get misclas-
sified as independent activity scenes. This happens mostly when the subject life span is
small or the shot duration is small, so that the subject motion appears more or less uniform
and in similar directions. As it can be seen, the various scene examples have been correctly
interpreted into the scene hierarchy. Extensibility of the proposed interpretation frame-
work to incorporate other classes of scenes requires formulating appropriate observations
(evidences) for characterizing the scenes.

13.7 Perceptual Grouping with Learned Object Models

This section explores the use of learned object-model knowledge with the perceptual
organization process. A framework, which not only performs detection of foreground ob-
jects but also recognizes the object category, is proposed. The advantages of the add-on
grouping evidences, as contributed by the object models for a more robust perceptual or-
ganization in the spatiotemporal domain, are demonstrated. The object is modeled as a
pictorial structure [31], [32] since this kind of representation involves modeling an object
as a composition of parts. It offers a probabilistic model, which allows computing the like-
lihood of the part or the object as a whole in the process of grouping. This in turn provides
a scheme for object recognition through a grouping process in a video sequence. Using per-
ceptual grouping in spatiotemporal domain avoids the need of bootstrapping, that is, having
a correct recognition of the object in the first frame. Further, it gathers grouping evidences
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from all the frames of a video, and is thus more reliable in detecting specific (with known
models) objects as well as general objects.

Section 13.7.1 describes the proposed object model formulated as pictorial structures.
The perceptual grouping algorithm that uses the domain knowledge is discussed in Sec-
tion 13.7.4. The experimental results are reported in Section 13.7.5.

13.7.1 Object Model as a Pictorial Structure

Consider an object with parts v1,v2, ...,vn, where each part vi has a configuration-label
specified as li on a common coordinate frame. This label is formulated as li = (xi,yi,θi,σi),
where (xi,yi) denotes the location, θi is the orientation, and σi is the scale at which the
object part occurs in the image plane. An instance of the pictorial structure model for an
object can be defined using its part-configuration parameters l = {l1, l2, ..., ln} and the part-
appearance parameters a = {a1,a2, ..,an}, where the subscript indicates the part index. The
Bayesian formulation is adopted for pictorial structures as given in Reference [32]. Let
nP be the set of parts that together comprise the object model. Let Di denote the image
region of the ith part. The posterior distribution from the model parameters can be defined
as follows:

P(a, l|D) ∝
i=nP

∏
i=1

P(Di|ai)
P(Di|abg)

exp

(
−∑

j 6=i
Ψ(li, l j)

)
(13.4)

where Ψ(li, l j) is the potential between parts vi and v j, and ai and abg are appearance param-
eters for part vi and background, respectively. The part labels which maximize the posterior
probability are taken as the best fit for the pictorial structure model.

13.7.2 Learning the Object Model

An object model is learned in terms of the configuration of the body parts and the appear-
ance of each of the body parts. Considering analogy with a Markov random field model,
each object part is considered to be a site. Configuration compatibility of the two parts
is formulated as the potential between them. To compute a continuous measure of con-
formance of an observed configuration with the expected (true) configuration, the relative
configuration of the two parts is modeled using parameters hi j = {length,orientation} of
a hypothetical line joining the centroid of the parts vi and v j. Then, the distribution of the
two parameters is modeled as a mixture of Gaussians.

The potential Ψ(li, l j) between two parts is defined as

Ψ(li, l j) =
C

∑
x=0

wx

∣∣∣Σ−1
xi j

∣∣∣
1/2

2π
exp

(
−1

2
(hi j−µxi j)

tΣ−1
xi j

(hi j−µxi j)
)

(13.5)

where C is the number of Gaussians, wx is the weight given to the xth Gaussian modeled
with covariance matrix Σxi j and mean µxi j . While learning the potential, it was found that
the Gaussian mixture model learning algorithm gives the maximum log-likelihood score
(sum of log-likelihoods over all the training samples) for a mixture of two Gaussians.
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13.7.3 Formulation of Appearance Parameters for Object Parts

An object part may have fine distinguishing image features and may also contain im-
portant information in lower frequencies. It is desirable that the visual attributes provide
a representation of the appearance that is jointly localized in space, frequency, and orien-
tation. For this purpose, a wavelet transform is used to decompose the image into various
subbands localized in orientation and frequency. The subbands represent different frequen-
cies in horizontal, vertical, and diagonal orientations, and in multiple resolutions. The
coefficients within a subband are spatially localized as well. Here, a three-level wavelet
decomposition using Haar filter is performed. Level 1 describes the lowest octave of fre-
quency, whereas each subsequent level represents the next higher octave of frequencies.

Algorithm 13.3 summarizes the steps in learning the object-part detector using the ap-
pearance attributes formulated on wavelet coefficients. Note that the attribute histograms
need to be learned on a fairly large labeled dataset in order to be representative of the object
and non-object categories.

ALGORITHM 13.3 Learning of the object-part detector using the appearance at-
tributes formulated on wavelet coefficients.

1. Decompose the known object region (rectangular) into subwindows.

2. Within each subwindow (wx,wy), model the joint statistics of a set of quantized
wavelet coefficients using a histogram. Several such histograms are computed,
each capturing the joint distribution of a different set of quantized wavelet coef-
ficients. Here, 17 such histograms are obtained. The coefficient sets are formu-
lated as given in Reference [33].

3. A histogram is a nonparametric statistical model for the wavelet coefficients
evaluated on the subwindow. Hence, it can be used to compute the likelihood
for an object being present or not being present. The detector makes its decision
using the likelihood ratio test:

Π
wx,wy

17
Π

k=1
Pk (histogramk(wx,wy),wx,wy) | object)

Π
wx,wy

17
Π

k=1
Pk (histogramk(wx,wy),wx,wy) | non-object)

> λ

where the outer product is taken over all the subwindows (wx,wy) in the image
region of the object. The threshold λ is taken as P(non−object)/P(object), as
proposed in Reference [33].

13.7.4 Spatiotemporal Grouping Model with Object Model Knowledge

The spatiotemporal grouping framework relies on making use of evidences formulated on
the observed associations amongst the patterns. In Figure 13.1, the evidence contributed by
a pattern signifies its association strength with the rest of the grouping. The virtual evidence
nodes ve1,ve2, ...,ven contribute evidences corresponding to the conformance of a putative
grouping of blob patterns to a known object model. A virtual evidence vei computes the
grouping probability of a pattern pi with the rest of the patterns in the grouping, given the
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knowledge of the object model. A pattern pi may exhibit only a partial overlap with an
object. Assuming an object Om comprising of vm

1 ,vm
2 , ...,vm

n parts, it is necessary to find
whether pi overlaps with any of the object parts. Algorithm 13.4 summarizes the steps of
this procedure.

ALGORITHM 13.4 Searching for overlaps between pattern pi and object parts.

1. Define a search window (around the pattern) that is larger than the size of the
pattern.

2. At all locations (wx,wy) within that window do a search for each as yet unde-
tected object part at three different scales. An object part is taken to be detected
correctly if its posterior (Equation 13.4) is above a threshold. Note that when
using Equation 13.4, the product index i is taken over the nD parts that have
been already detected up to this step.

3. The overlap of pi with object part(s) provides a measure of the degree to which
the pattern belongs to the object. If the fractional overlap (in number of pixels)
of pi with the object is found to be more than 30% of the area of pi, the pattern
is said to have a qualified overlap with the object Om.

4. Step 3 is repeated for all the frames Fpi for which the pattern (blob track) pi
exists. The association strength of the pattern pi with the object Om is formu-
lated as (∑∀ f∈Fpi

α f
pi)/Fpi , where α f

pi = 1 if pi has a qualified part match in the

frame f , and α f
pi = 0 otherwise. This association measure gets computed in

the range [0,1] and is taken as the probabilistic evidence contributed at nodes
ve1,ve2, ...,ven, in favor of the putative cluster.

13.7.4.1 Grouping-Cum Recognition

Having formulated the grouping evidence for a pattern using the object-model knowl-
edge, the following lists the steps of the grouping-cum recognition algorithm. Using object
model knowledge requires an extra procedure (step 3 in Algorithm 13.5) to be added to the
grouping algorithm discussed in Section 13.4.1. The node E is used to provide the object
model-based grouping evidences when the cluster c j has been associated with a hypothe-
sized object-class label. The object class label is chosen depending on the object part to
which the generator pattern matches. If the generator pattern does not match with any ob-
ject part, then it would initiate a general grouping without any object class label. Given
a set of object models O = {O1,O2, ...,Os} and a set of patterns P = {p1, p2, ..., pn}, the
proposed algorithm outputs the set of perceptual clusters C = {c1,c2, ...,cr}.

ALGORITHM 13.5 Perceptual grouping-cum recognition.

Input: Set of object models O = {O1,O2, ...,Os} and a set of patterns P =
{p1, p2, ..., pn}.
Output: Perceptual clusters with a labeled object class (if any).

1. Initialize the set of clusters C = {}. Hence, Sscene = 0. Instantiate a queue,
clusterQ, to be used for storing the clusters. Initially none of the patterns have
any cluster label.
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2. If all the patterns have cluster labels and the clusterQ is empty, then exit. Other-
wise, instantiate a new cluster if there are patterns in set C that do not have any
cluster label. From among the unlabeled patterns, pick up the one that has the
maximum life span. This pattern is taken as the generator pattern for the new
cluster cnew.

3. The generator may or may not be a part of any of the objects in set O . Define
a search region around the generator and look for possible parts of any of the
objects, as depicted in Figure 13.10. The object part(s) which compute (by
virtue of their appearance) the a posteriori probability in Equation 13.4 to be
greater than a threshold are considered as present in the search region. The
generator pattern is labeled as belonging to the object with which it shares the
maximum overlap (in terms of number of pixels). The correctness of the object
label is further verified by checking its consistency in five other frames in which
the generator blob exists. Once an object label (say, Om) has been associated
with the generator, the node E is used to provide a probability of a pattern being
a part of the object Om. If the generator pattern cannot be associated with any
object label from set O , the node E is not used in the grouping model. The
cluster formed by such a generator corresponds to a general grouping without
any specific object tag. Moreover, such a grouping would use only the general
associations for grouping.

4. (a) Compute associations of the generator pattern of cnew with the unlabeled pat-
terns. An unlabeled pattern pi is added to the cluster cnew if P(pi∪ cnew) > 0.5.
Repeat this step till no more unlabeled patterns get added to cnew. Any unlabeled
patterns that exist now are the ones that do not form a valid grouping with any
of the existing clusters.
(b) Compute associations of the generator pattern of cnew with the labeled pat-
terns of other clusters. If there are patterns, say, pk (of another cluster, say, c j)
that form a valid grouping with cnew, that is, P(pk ∪ cnew) > 0.5, then put cnew
and c j into the clusterQ if they are not already there inside it.

5. If the clusterQ is empty, go to step 2. Otherwise, take the cluster at the front of
the clusterQ. Let this cluster be c f .

6. Pick a pattern, say, pi, of the cluster c f . The pattern pi is considered to be a part
of, one by one, every cluster in the set C. The association measures between pi
and a cluster c j need to be recomputed if c j has been updated. For each cluster
c j in C, compute the grouping probability for the putative grouping {pi∪c j}. If
the grouping {pi∪c j} is valid (that is, P(pi∪c j) > 0.5), the change in the scene
grouping saliency is noted as δS = P(pi∪ c j)−P(c j). The pattern pi is labeled
with the cluster (say, cm) for which δS computes to the highest value. If cm is
not c f , then put cm into the clusterQ, if it is not already inside it. Repeat step 4
for all the patterns in c f .

7. If any pattern in c f changes its label as a result of step 5, then go to step 4. If
none of the patterns changes its label, remove the front element of the clusterQ
and go to step 4.

Apart from step 3 (which gives an object label to the generator), the algorithm follows
the steps in the original PGA. The iterative process terminates when the pattern labels have
stabilized. Each cluster has a label of the object class to which it belongs.
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FIGURE 13.10

Illustration of the steps performed in Algorithm 13.2: (a) a bounding box defined around a pattern pi, (b) the

consistency of the overlap of the object part with the pattern pi is established for a sequence of frames.

13.7.5 Evaluation of Perceptual Grouping with Object Models

The models were trained for two object categories: cows and horses. For the purpose of
learning the appearance attribute histograms for the object parts and the non-object regions,
the appearance features were computed for each object part for about 650 images, sampled
from cow/horse videos. A large training set is needed since the skin texture/color has
substantial variations within certain animal categories. The features were also learned for
the mirror images of the object regions. To minimize the classification error, different
weights were used for the different attributes [33]. The Gaussian mixture model distribution
of configuration for each pair of object parts was also learned. The appearance attribute
histograms for non-object regions were learned from about 1200 random images that did
not have the object.

The experiment has helped to establish two advantages offered by the perceptual group-
ing process through an effective use of object model knowledge. First, once an object
part has been reliably detected (with high probability), other (computationally costly) ev-
idences, such as adjacency and cluster-bias, do not need to be gathered for all the frames
since an object model is a very strong grouping evidence that would allow grouping of only
the blobs that overlap with some part of the same object. Second, there are scenes in which
the foreground subjects do not show a distinct motion with respect to the background. For
such a case, the general grouping criteria would group all the blobs in the scene to output a
single cluster having both the background and the foreground. Such failure cases are shown
to be successfully handled by the use of object models that provide a stronger grouping ev-
idence to compensate for the (non-exhibited) general grouping evidences. Searching an
object part around a blob pattern is a costly operation; however, it needs to be done only
once, and not in every iteration of the grouping algorithm. Moreover, it can be computed
on a few frames (around five) and not on all the frames of the blob track, since a consistent
overlap of the blob with an object part on a few frames can be taken as an indicator that
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FIGURE 13.11 (See color insert.)

Results obtained for various horse and cow videos. Probability at node E: (a) 0.814, (b) 0.795, (c) 0.910,

(d) 0.935, and (e) 0.771, 0.876, 0.876, 0.800, and 0.911 for different videos with the object model cow.

the blob belongs to the object region. It was observed that certain object parts get missed
by the detectors when a large object motion causes blur in the object appearance, since
the appearance gets confused with the background. For such cases, the generic grouping
evidences play the major role in the grouping process.

Figure 13.11 presents the results of grouping with learned object models. Namely, Fig-
ures 13.11a and 13.11b show the result of applying the grouping algorithm to test videos
of a horse galloping in a barn. The camera is panning and the background remains almost
constant. Thus, blob patterns belonging to both the object and the background have almost
no motion. Hence, simple generic grouping (using motion similarity, adjacency, and so
on), when applied to such a video, fails to successfully cluster the patterns into meaningful
organizations and clusters all patterns into one large cluster. This situation is resolved in the
proposed model-guided perceptual grouping scheme, where the evidence from the object
model knowledge is used to correctly groups the object region blobs into a separate cluster.
In the presented figures, the recognized object parts are shown as rectangles overlaying the
blobs belonging to the horse region.
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Figures 13.11c to 13.11e show results on various test videos with cows of very different
textures and appearances. The algorithm is successfully able to cluster all the blob pat-
terns belonging to the cows and detect and recognize parts around the patterns (shown as
rectangles).

The proposed algorithm has demonstrated the benefits of using object models as domain
knowledge to assist, in both computational speed-up and detection accuracy, in the per-
ceptual organization process applied to videos. The results have been presented on two
object classes; and as future work, the goal will be to demonstrate use of object models for
correctly grouping multiple foreground-objects, which could be sharing similar motion and
adjacency in the video frames.

13.8 Conclusion

This chapter presented unsupervised techniques to identify objects that show distinct per-
ceptual characteristics with respect to the background. The decoupled semantics clustering
tree methodology is an unsupervised clustering tool for analyzing video data. It employs
a decoupled clustering scheme applied to feature subspaces with different semantics for
the six-dimensional heterogeneous feature space of video to model the homogeneous color
regions in a video scene as temporal tracks of two-dimensional blobs.

The space-time blob tracks (simpler primitives or visual patterns) obtained by the decou-
pled semantics clustering tree methodology are subsequently grouped together to compose
the meaningful objects. A perceptual grouping scheme for the spatiotemporal domain of
video was proposed to complete this task. The grouping scheme relies on a specified group-
ing model. This model makes use of inter-pattern association measures motivated from the
Gestalt law of common fate, which states that the entities having a coherent behavior in
time are likely to be parts of the same organization. Temporal coherence is established
with the premise that time is not an added dimension to the data to be grouped, but it is
an added dimension to the grouping such that the grouping should maintain coherence in
time. This chapter presented formulations for novel association measures that characterize
the temporal coherence between primitives in order to group them into salient spatiotempo-
ral clusters, termed as perceptual clusters. The foreground perceptual clusters correspond
to the subjects in the scene. The grouping saliency was defined as a measure of goodness of
a grouping, and quantified as a probabilistic measure computed using a Bayesian network
model. The perceptual grouping problem was formulated as an optimization problem. The
perceptual grouping algorithm (PGA) maximizes the overall scene saliency to a local max-
imum and obtains a set of perceptual clusters. The PGA successfully identifies foreground
subjects for the class of scenes where the subjects show distinct characteristics compared to
the background. As part of future work it would be interesting to explore if such grouping
models could be learned. This would mean learning the structure of the grouping belief net-
work, the optimal set of association attributes to be used, and their relative influence in the
computation of grouping saliency. This chapter also demonstrated the use of learned object
models as domain knowledge to assist in grouping as well as recognition of the object class
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instances in a video shot. Use of object models was also shown to assist in computational
speed-up and improved detection accuracy in the perceptual organization process.

The problem of general scene characterization was explored by making use of differ-
ent interpretation models to detect and analyze the meaningful components in the scene.
A computable model for characterizing a video scene into two broad categories was de-
signed. The two categories are subject-centric scenes, which have one or few prominent
subjects, and frame-centric scenes, in which none of the objects can be attributed a high
prominence and hence the overall activity depicted in a sequence of frames is the subject of
interest. In addition, a novel concept of perceptual prominence for the identified subjects
was proposed. Perceptual prominence has been motivated from film grammar that states
that human understanding of the scene depends on the characteristics of scene components
focused on. It is an extension of the concept of saliency to the cognitive level. Further, it
depends on chosen interpretation of prominence, as different subjects may turn out to be
prominent when using different interpretations of prominence. Prominence is interpreted
by formulating an appropriate model based on attributes that commonly influence human
judgment about meaningful subjects. Here, empirical prominence models for formulating
perceptual evidences for various types of scenes were used. The attribute specifications
were parametrized into different prominence models that signify different interpretations
of prominence. A set of perceptual and contextual attributes that influence the prominence
were described and a methodology that uses the perceptual attributes and computes a value
signifying the prominence was developed. Moreover, a taxonomy of interpretation of video
scenes was generated; each of the subject-centric and frame-centric scene classes was di-
vided into three subcategories (independent activity scenes, involved activity scenes, and
no-activity scenes), based on the kind of activity exhibited by the subjects. Presented ex-
perimental results established the effectiveness of the proposed perceptual attribute-based
prominence formulation and showed that such attributes indeed have a direct relationship
to many of the cognitive abstractions from a video scene. The scene interpretation frame-
work can be extended to incorporate other classes of scenes by formulating appropriate
observations (evidences) for the more specific scene classes.
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14.1 Introduction

Digital images and videos are so ubiquitous nowadays that it would be difficult to live
without them in the heavily digitized and networked world. Various digital devices, such
as digital cameras, camcorders, scanners, digital televisions, personal computers, mobile
phones, and printers, rely on digital image and video processing and coding technologies.
Despite the extreme usefulness of digital images and videos, there are more and more con-
cerns about security and privacy rising from a heavy dependence on digital images and
videos: how to protect sensitive information recorded as digital images and videos from
unauthorized access and misuse? Different people may have completely different reasons
for having such a security concern. For instance, digital content providers are worrying
about pirate copies of their products, end users want to keep their private images and videos
in their mobile phones and their online web spaces safe from unwanted hands, and govern-
mental/military/diplomatic bodies need to carefully protect classified documents (many of
which are recorded in the form of digital image and video). All of these demands require
content protection and access control, which can be fulfilled by applying cryptography to
multimedia data, that is, by encrypting digital images and videos and by defining who can
access the encrypted contents.

A unique feature of digital images and videos is their bulky size. Despite the increasing
power of computers and image/video coding standards, the demand for high-resolution and
high-quality multimedia contents, such as high-definition television (HDTV) and stereo-
scopic television, keeps asking for more storage space of digital multimedia data. For ex-
ample, in the era of video compact disc (VCD), a typical movie was of size around 700 MB.
Today, a high-definition movie on a Blu-ray disc can require more than 20 GB space. A
natural consequence of the extensive size of multimedia data is that full encryption of dig-
ital images and videos may not be necessary or economical in some applications. Because
of the entertaining nature of many commercial multimedia content, selectively encrypting
parts of the whole content to downgrade the visual quality to a predefined degree becomes a
desirable solution in applications like pay-per-view television (TV) services. This leads to
a new concept called perceptual encryption (or transparent encryption), whose goal is not
to conceal all perceptual information but only a specific amount of it. Here, the leakage of
partial perceptual information is intended because the low-quality contents can be used to
attract potential buyers and to allow further postprocessing (such as digital watermarking)
of encrypted multimedia contents by an agent without access to the decryption key.

While perceptual encryption has to be implemented via selective encryption, the former
has higher technical requirements than the latter, thus leading to much more technical chal-
lenges. There are mainly three issues making perceptual encryption more complicated.
First, while selective encryption can be achieved, for example, by randomly encrypting one
bit out of n bits of the image/video bitstream, perceptual encryption cannot be done this
way because the bitstream has a strict syntax format that has to be respected so that the
partial unencrypted perceptual information can be decoded. This calls for joint multimedia
encryption-encoding, which is not trivial because most image and video coding standards
are not designed to be encryption-friendly and recent research revealed that there exists
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trade-offs among different requirements of compression and encryption. Second, percep-
tual encryption naturally asks for a definition of perceptual information, which has been
a long-standing open problem in the field because of a very limited understanding of the
human visual system. Last, dividing multimedia data into two parts implies that there are
two ways of attacking the system: breaking the encrypted part directly and recovering the
encrypted part from unencrypted part. The second approach is possible in practice be-
cause existing compression techniques cannot completely remove correlative information
among different parts of digital images and videos. Very recent research has demonstrated
that attacks based on such correlative information are far more effective than originally ex-
pected. The attacks also challenge experts to re-think how perceptual information should
be encoded more effectively and how encryption should be combined with compression to
ensure a desired level of security.

This chapter gives an overview of perceptual encryption of digital images and videos,
paying special attention to very recent research on advanced attacks on perceptual encryp-
tion schemes for images and videos coded using the discrete cosine transform (which covers
most mainstream image and video coding standards like JPEG and MPEG-1/2/4). Namely,
Section 14.2 introduces some fundamental backgrounds of multimedia coding and cryp-
tography. Section 14.3 surveys multimedia encryption to prepare some basic facts about
joint multimedia encryption-encoding (JMEE) as the foundation of perceptual encryption.
Section 14.4 focuses on different aspects of perceptual encryption, including a brief survey
of various encryption schemes and classifications of different attacks on these schemes.
Section 14.5 introduces a special form of attacks, error-concealment attack (ECA), which
represents the most latest and interesting advances in the field. Finally, this chapter con-
cludes with Section 14.6 by pointing some future research trends.

14.2 Fundamentals of Multimedia Coding and Cryptography
14.2.1 Image and Video Coding

Multimedia technology has been rapidly developed in the past several decades. Multime-
dia coding – compression and binary representation of multimedia data – plays a key role in
multimedia applications [1]. Among different forms of multimedia data, digital images and
videos are widely used. A digital image is a two-dimensional matrix of pixels whose values
represent the brightness or the color of discrete points on the image plane. Depending on
the nature of an image, a pixel value can be either a scalar, which is the case of binary and
grayscale images, or a triplet representing some color, which is the case of red-green-blue
(RGB) color images, for instance. A pixel value can also contain more than three color
components, which is the case for multispectral images, but this chapter will not discuss
such cases. However, note that all facts about RGB images discussed in this chapter can be
generalized to multispectral images because they are largely independent of the dimension
of pixel values. Similarly, a digital video is a three-dimensional matrix of pixels where the
additional dimension is time. In other words, a digital video is simply a collection of digital
images with a sequential order in temporal domain. Each image contained in a digital video
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The general structure of an image or video codec, where the dotted parts represent optional components:

(a) encoder, (b) decoder.

is called a frame, and the number of video frames per second is called the frame rate of the
video. In some video coding systems, a video frame is divided into a top field composed
of odd rows and a bottom field composed of even rows; the two fields are coded separately,
which is called interlaced video coding. This chapter does not differentiate video frames
from fields to simplify discussion.

Whenever talking about coding, both encoding and decoding are always considered here.
The encoding process (or an encoder) transforms an image or a video into a bitstream con-
suming less space, and the decoding process (or an decoder) recovers the encoded bitstream
back to the original uncompressed image/video. An encoder and a decoder are often called
a codec collectively.

The encoding and decoding processes are basically symmetric in structure, but they can
have completely different computational complexities. Normally, the decoder is much less
computationally costly than the encoder. The asymmetry is mainly due to different goals
of the two processes: encoding tries to find the compression transform with the best overall
encoding performance (compression efficiency as one major but not the only factor), but de-
coding merely translates what has been encoded in a bitstream into perceptual information
following the transform selected by the encoding process. In some cases, however, there is
a different scenario: the encoding process should be computationally light but the decoding
process can be more computationally expensive. A typical application is wireless multi-
media sensor networks (WMSNs) [2], in which encoding is done by resource-constrained
sensor nodes (often powered by battery) and decoding by computationally more powerful
devices like multicore computers. A special multimedia coding architecture called dis-
tributed coding has been developed to handle such asymmetric coding [3].

Although there are many different image and video coding schemes, almost all of them
follow the basic structure shown in Figure 14.1. Because of the similarity between the en-
coder and the decoder, their functionality is briefly explained on the example of an encoder.
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In the first step, the input image or video passes a preprocessing step, which can include
several different processes, such as color space conversion, signal partitioning, and pre-
filtering (for example, subsampling and noise removal). The main goal of this step is to
prepare data for future steps and remove some redundant information that does not need to
be processed by later steps. For instance, encoding of color images and videos normally
involves a conversion from RGB space to another color space, such as YCbCr and YUV,
to separate the luminance and chrominance components so that the lower sensitivity of the
human visual system to chrominance components can be exploited to reduce information
needed for encoding. The reduction of chrominance information is done by subsampling
the chrominance components, meaning to sample them with a lower (normally halved)
sampling rate than the luminance component. While this immediately leads to a 2:1 com-
pression ratio, the visual quality of the image/video reconstructed from the halved data
remains almost as good as that of the original image/video. Partitioning is another widely
use preprocessing technique, which is often useful for speeding up the encoding process.

The second step is lossy coding. It aims at removing psycho-visually redundant informa-
tion, thus creating an image that is perceptually nearly indistinguishable from the original.
The lossy coding part is usually realized by converting the data from spatial domain to fre-
quency domain via a transform, such as the discrete cosine transform (DCT) [4] and the
discrete wavelet transform (DWT) [5], and then quantizing the resultant transform coeffi-
cients to be integers. The main purpose of using a transform is to decorrelate the original
image/video so that less correlative information exists in the new transform domain than
in spatial domain. Performing a transform on the whole image/video is computationally
expensive, so the common practice is to first partition the image and each video frame into
n× n blocks and apply the transform locally on each block. The lossy coding step is op-
tional because in some applications, such as medical imaging and forensics, it may not be
desired to lose any information (even when it is invisible to human eyes).

The lossy coding step is followed by lossless coding, which aims at encoding the data
in a more compact form so that less bits are needed to represent the same amount of infor-
mation. Since no information loss is involved in lossless codding, all information can later
be exactly recovered by the decoder from the encoded bitstream. Lossless coding relies
on information theory [6], which has introduced a concept called information entropy to
measure the amount of information contained in a random source of messages and offered
a number of effective ways of representing messages more effectively while still losslessly.
All lossless coding methods based on information entropy are collectively called entropy
coding. The two commonly used entropy coding algorithms are Huffman coding and arith-
metic coding; both algorithms can be made context adaptive to improve their encoding
performance. Besides entropy coding, some other lossless coding algorithms have also
been developed. The two most important ones are dictionary coding and run-length cod-
ing. Dictionary coding compresses a message by building a static or dynamic dictionary
of strings and replacing an input message by a sequence of dictionary entries. Run-length
coding represents a message as a sequence of (run,level) pairs, which can effectively com-
press the message if the distribution of “run” has a long tail. Both methods have their roots
in information theory, but normally they are not classified as entropy coding. Many lossless
coding algorithms, including Huffman coding and arithmetic coding, belong to variable-
length coding (VLC) because they encode an input symbol into a variable number of bits.
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The last step of the encoding process is postprocessing. It mainly aims at collecting the
output from the previous step and assembling the final bitstream. In some applications, the
final bitstream may contain several quality layers that should be encoded in such a way that
separated decoding is possible. When there are multiple streams involved, for example,
audio and video streams of a TV program or the left- and right-eye video streams of a
stereoscopic video, a container is needed to hold the multiple streams and some mechanism
is needed to guarantee the synchronization among them. Different from previous steps, this
last step does not involve any compression technique.

In addition to the above four steps, there is another optional step called predictive cod-
ing. It can be done together with the first two steps, which explains its multiple connections
with other parts of the encoding process. As its name implies, the goal of predictive cod-
ing is to predict not-yet-encoded part from already-encoded data to reduce the amount of
information for further encoding. If the prediction error (also called residual data) has a
more skewed distribution than the original data, which is the normal case, information the-
ory guarantees that the compression efficiency will be higher. For instance, for image and
video coding based on DCT transform, the first transform coefficient (called DC coeffi-
cient) of each block can be predicted from the previous block’s DC coefficient with a fairly
high accuracy. This prediction can also happen in temporal domain, where the motion of
objects in the input video is estimated and the obtained motion vectors are encoded as part
of the final bitstream. Predictive coding is particularly important for video coding because
consecutive frames are often highly correlated in both spatial and temporal domains.

Different image and video coding schemes can be developed by combining different
techniques for different steps of the whole encoding/decoding process. Various image and
video coding standards have been established, among which JPEG and MPEG-1/2/4 are
the most successful standards. The development of image and video standards on one
hand takes advantage of existing technologies, but on the other hands also promotes new
research by offering a platform for testing different kinds of new technologies. As a matter
of fact, the latest image and video coding standards, such as JPEG2000 [7], JPEG-XR [8],
MPEG-4 AVC/H.264 [9], and SMPTE VC-1 [10], represent the state of the art of the field.

Generally speaking, a multimedia coding standard defines a syntax format of the en-
coded bitstream and a method of decoding an encoded bitstream to reconstruct the original
multimedia data (that is, the input of the encoder) with an acceptable perceptual qual-
ity. Multimedia coding standards are designed to offer balanced solutions to the following
goals simultaneously: good perceptual quality, high compression efficiency, and low com-
putational complexity of the codec. In addition, some other factors are often taken into
account to enhance the applicability of the designed standard, which include flexibility to
support diverse applications, backward compatibility with old standards, scalability, re-
silience against transmission errors, and so forth. Because of the limited space, existing
image and video coding standards are not discussed in detail; this chapter aims to describe
perceptual encryption schemes working with those standards in a more general sense.

14.2.2 Modern Cryptography and Cryptanalysis

Modern cryptography is the science of securing digital systems, which is often consid-
ered as a subfield of computer science although it does have a strong link to information
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The encryption and decryption procedures of an encipher/decipher pair.

theory (thus communications in general) and mathematics (especially number theory, fi-
nite field, and combinatorics) [11], [12]. Traditionally, cryptography is mainly about data
encryption, but nowadays more complicated cryptographic systems, such as cryptographic
hash functions, digital signatures, and security protocols, have been developed. This chap-
ter is mainly focused on data encryption. The nature of modern cryptography implies that
cryptanalysis, the study on how to break existing cryptographic systems, is extremely im-
portant and plays a key role in the development of any secure systems. In some sense, it
can be said that modern cryptography is built on top of cryptanalysis; or that cryptology is
composed of two subfields: cryptography and cryptanalysis, one is about designing secure
systems and the other about breaking them. This subsection introduces only some very
basic concepts and terms of modern cryptography and tries to avoid discussing any ad hoc
designs and attacks; as these topics are widely discussed in References [11] and [12].

An encryption system is also called an encipher, and a decryption system is called a
decipher. When there is no need to differentiate an encipher and a decipher or the same
system can be used for both encryption and decryption, such a system can be simply called
a cipher or a cryptosystem.1 The plain message taken as the input of an encipher (and the
output of a decipher) is called a plaintext. Similarly, the encrypted message as the output
of an encipher (and the input of a decipher) is called a ciphertext. Denoting the plaintext
and the ciphertext by P and C, respectively, the encryption procedure of an encipher can be
described by

C = EKe(P), (14.1)

where Ke is the encryption key and E(·) is the encryption function implemented by the
encipher. Similarly, the decryption procedure of a decipher can be described by

P = DKd (C), (14.2)

where Kd is the decryption key and D(·) is the decryption function implemented by the
decipher. If an encipher and a decipher are concatenated by feeding the ciphertext C to the
decipher, the following is obtained:

P = DKd (EKe(P)). (14.3)

Basically, the decryption function D(·) can be considered as the inverse of the encryption
function E(·). Figure 14.2 illustrates how an encipher and a decipher can work together to
allow secure transmission of data over a public insecure channel.

1The term cryptosystem actually can be used to represent more cryptographic systems beyond ciphers, but in
many application scenarios it is a synonym of cipher.
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Note that if the encryption and decryption keys should be made public it is possible to
have two different kinds of ciphers. When both keys have to be kept secret, the cipher is
called a private-key cipher or a symmetric cipher. The second name comes from the fact
that for most private-key ciphers the encryption key and the decryption key are identical, or
the decryption key can be derived from the encryption key so that they can be considered
as identical. The main problem with private-key ciphers is the key management issue.
Since the keys have to be kept secret, they have to be transmitted to both the sender and
the receiver in advance via a secret channel. For n users in a community, communications
between any of these users will require secure transmission of n(n− 1)/2 keys, which
can become difficult or impossible to manage when n becomes large. This problem can be
solved if only the decryption key needs to be kept secret but the encryption key can be made
public, thus leading to the so-called public-key cipher or asymmetric cipher. Apparently,
for an n-user community only n encryption keys need to be published to support secure
communications between any two users. Normally, public-key ciphers are much slower
than private-key ciphers due to their special properties, but they can be combined in such a
way that a public-key cipher is used to implement the key management process of a private-
key cipher. This chapter is more concerned about private-key ciphers because encryption
of multimedia data is always performed by a private-key cipher.

Private-key ciphers can be further divided according to their encryption structure into
block ciphers and stream ciphers. Block ciphers encrypt the plaintext block by block in
the same manner, meaning that the same plaintext block will lead to the same ciphertext
block independent of the position of the block in the whole plaintext/ciphertext. In con-
trast, stream ciphers encrypt the plaintext based on a pseudo-random sequence (called a
keystream) generated under the control of the encryption key, thus allowing producing dif-
ferent ciphertext blocks for two identical plaintext blocks at different positions. Over the
years, many different block ciphers and stream ciphers have been proposed, among which
Advanced Encryption Standard (AES) [13] was the most widely used block cipher and
(Alleged) Rivest Cipher 4 (RC4) the most widely used stream cipher [14] at the time this
chapter was written.

While block ciphers are memoryless compared with stream ciphers, they can be made to
behave in a way similar to a stream cipher by running it under different modes of operation.
There are many different modes of operations, among which the naive way of running a
block cipher is called the electronic code book (ECB) mode. By introducing ciphertext
feedback, that is, revising the encryption procedure as follows:

Ci = E(Pi⊕Ci−1), (14.4)

the so-called cipher block chaining (CBC) mode is obtained, where C0 is a given initial
vector (IV) and ⊕ denotes XOR operation. There are also other modes that can transform
a block cipher into a stream cipher, thus making block ciphers a foundation of building
stream ciphers. This can be done, for example, by repeatedly encrypting an initial vector,
a counter, or a combination of both. One of the reasons why more advanced modes of
operation are needed is a security problem with the ECB mode, as shown in Figure 14.3.

Following a well-known principle proposed in References [15] and [16], the security of
a cipher should rely solely on the decryption key Kd , but not about secrecy of the algorithm
itself. This is widely accepted in modern cryptography because an obscured algorithm can
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The encryption results of an image by AES running in ECB and CBC modes: (a) plaintext, (b) ciphertext of

ECB mode, and (c) ciphertext of CBC mode.

be easily reverse engineered by crackers or exposed by insiders. Keeping this principle in
mind, an upper bound of the security of a cipher is defined by the size of the key space,
that is, the number of all possible keys. This is because the simplest attack on a cipher is to
exhaustively try every possible key and see which one can give a meaningful output. Such
a naive attack is called brute-force attack in cryptanalysis. Considering the computational
power of today’s computers and distributed computing, the key space is required to be as
large as 2128 or even 2256. In addition to brute force attack, there are also attacks defined
according to the capability of the attack to access/choose plaintexts and/or ciphertexts:

• ciphertext-only attack: the attacker can access the ciphertexts only;

• known-plaintext attack: the attacker has access to some plaintexts and the corre-
sponding ciphertexts;

• chosen-plaintext attack: the attacker can choose plaintexts and get the corresponding
ciphertexts; and

• chosen-ciphertext attack: the attacker can choose ciphertexts and get the correspond-
ing plaintexts.

The ciphertext-only attack represents the most common attacking scenario because the
ciphertext is supposed to be transmitted through a public channel (otherwise, data encryp-
tion is not needed at all). The known-plaintext attack is often possible in practice because
many files have fixed headers and the contents of encrypted messages may be guessed in
some cases (or simply exposed by the sender or receiver intentionally or unintentionally2).
Chosen-plaintext and chosen-ciphertext attacks become possible when the attacker gets
temporary access to the encipher and the decipher (but not the key), respectively. Note that
the goal of a ciphertext-only attack is usually the plaintext, but the other attacks normally
target the decryption key.

2For instance, a receiver may decide to reveal a secret message once he/she believes that the value of the
message itself has expired. But the exposure of this message may be useful for an attacker to accumulate
information for breaking future messages encrypted with the same key.
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The threat model of a typical multimedia encryption system.

Besides the above attacks, there are also many other attacks defined in different con-
texts. For instance, when a cipher is implemented in a real product, the energy and/or the
time consumed on encrypting different plaintexts with different encryption keys may differ.
Such differences may be captured by an eavesdropper to derive useful information about the
plaintext and the key, if one has access to the environment of the encryption machine. Such
implementation-oriented attacks are called side channel attacks and they have been proved
very effective in breaking many real implementations of theoretically secure ciphers.

14.3 Multimedia Encryption in General

As pointed out in the introductory section, depending heavily on multimedia creates the
need for securing the data for both security and privacy purposes. As a consequence, mul-
timedia encryption has attracted attention from all parties on the multimedia production
and consumption chain, including content creators, producers, distributors, and consumers.
Some standardization efforts have been made to facilitate incorporation of security tools
(including ciphers) into multimedia codecs to build digital rights management (DRM) sys-
tem working with image and video coding standards like JPEG2000 and MPEG-2/4 [17],
[18], [19]. Contents and copy protection schemes have also been deployed in digital ver-
satile discs (DVDs), advanced video coding high definition (AVCHD) media, and Blu-ray
discs for thwarting unauthorized access to encrypted multimedia contents [20]. This section
discusses the threat model and main technique challenges related to multimedia encryption
in general.

14.3.1 Threat Model

A typical multimedia encryption system consists of an encoder-encipher (equipped with
an encryption key Ke) and a decoder-decipher (equipped with a decryption key Kd), as
shown in Figure 14.4. The input data may be already compressed in some applications, in
such cases a decoder (or a partial decoder) is needed to decode the data first before encoding
and encryption. A decoder without access to the decryption key Kd may try to decode the
encoded-encrypted multimedia data. It is also possible that some multimedia processing
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Three possible approaches to multimedia encryption at the encoder side.

units are inserted between the encoder-encipher and the decoder-decipher to perform some
additional manipulation on encoded-encrypted multimedia data, such as watermark embed-
ding and detection, re-encryption, filtering, bitrate re-control, re-packetization, transcoding,
and so on. In most cases, these in-between multimedia processing units have no access to
the encryption key nor to the decryption key. They may even be encryption-agnostic, that
is, unaware whether the bitstream has been encrypted. On the other hand, the encoder-
encipher often has no clue which multimedia processing operations may happen after the
encoded-encrypted data are sent out to the transmission channel.

The threat model of such a multimedia encryption system is as follows. An attacker may
appear at any point after the encoder-encipher and may have access to a compliant decoder,
but no access to the decryption key. The attacker is assumed to know all the details of the
encryption algorithm and of the key management process. The attacker may have access
to a database of multimedia data of the same type as the plaintext. The main goal of an
attacker will be to break the decryption key, or to completely/partially recover perceptual
information in the encrypted multimedia data. In other words, both ciphertext-only attacks,
known/chosen-plaintext attacks, and chosen-ciphertext attacks are possible threats. Side
channel attacks may also be possible if the attacker has access to the ambience of the
encoder-encipher or the decoder-decipher.

14.3.2 Three Approaches to Multimedia Encryption

According to where encryption is added into a multimedia encoder, there are three pos-
sible approaches to realize multimedia encryption, as shown in Figure 14.5: encryption
before encoding, encryption after encoding, and joint encryption-encoding. The third ap-
proach also covers the case when an encoded multimedia file/bitstream is (partially) de-
coded and a joint process of encryption and (partial) re-encoding is performed to generate
the encrypted multimedia file/bitstream. Note that the (partial) decoding and re-encoding
processes may not involve decompression and/or re-compression. One typical example
is sign bit encryption, in which only partial decompression is involved in the decoder at
the encipher side, since the encrypted sign bits can be directly put back into their original
places in the input (already encoded) multimedia data.

The first two approaches are much simpler due to their independence of the encoding
process. Unfortunately, they suffer from some nontrivial drawbacks that cannot be easily
overcome without introducing dependence on the encoding process. The following briefly
discusses the three approaches of multimedia encryption and explains why the third ap-
proach, that is, joint encryption-encoding, is of greater interest.
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14.3.2.1 Encryption before Encoding

This approach has been followed in some multimedia encryption algorithms designed
to encrypt raw multimedia data. However, it hardly works with any existing multimedia
coding systems because encryption generally leads to a random-like output that cannot be
further compressed effectively. There do exist some special algorithms supporting com-
pression after encryption. One solution based on distributed source coding was reported
in Reference [21], taking the encryption key as useful side information available at the de-
coder side. For this solution, decoding is generally impossible without the knowledge of
the key, so decryption and decoding have to be carried out simultaneously, which is not
desired in applications requiring format compliance. In addition, this specific scheme puts
some requirements on the encryption algorithm used such that not all available ciphers can
be chosen and deployed.

14.3.2.2 Encryption after Encoding

This is the most direct and simplest approach, and is often called naive encryption in
the literature [22]. Compared with the previous approach, this approach has no negative
influence on the compression process and can run (much) faster since the data encrypted
have been efficiently compressed by the encoder. The main drawback of naive encryption
is its incapability of maintaining format compliance of compressed multimedia data, which
is a natural result of its independence of the encoding process. Here, format compliance
is defined as follows: the encoded-encrypted data can still be (probably partially) decoded
without access to the key. Although format compliance is not always very important in all
applications, it is indeed an essential requirement of many multimedia applications such as
the following:

• in-between multimedia processing of encrypted multimedia data without access to
the key;

• perceptual encryption: encryption of selective perceptual information, which re-
quires that the unencrypted part of the multimedia data can still be decoded without
access to the key;

• scalable encryption: different resolutions and quality levels of the same multimedia
bitstream have different encryption configurations; and

• region-of-interest encryption: encryption is selectively performed on regions of in-
terest (maybe dynamically detected objects) instead of the whole multimedia data.

The following example demonstrates why format compliance is useful in practice. Imag-
ine a web site hosting millions of compressed video files uploaded by a large number of
registered users. One user, Alice, wants some of her video files publicly accessible to all
registered users, but with a visual quality determined by a threshold q. Interested users have
to pay a fee to Alice for the high-resolution videos. The video hosting site automatically
embeds a watermark into each video file to track each specific user for the anti-piracy pur-
poses. This digital watermarking process has to be done without access to the decryption
key, because Alice does not fully trust the server. Apparently, blindly applying a cipher like
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AES to an encoded video file cannot help Alice. Instead, the encipher has to be aware of
the syntax format of the video file, in order to know what syntax elements should be en-
crypted. That is, Alice needs joint encryption-encoding – the third approach to multimedia
encryption.

It deserves mentioning that homomorphic encryption [23] may be used to achieve format
compliance for some applications. However, the performance of homomorphic encryption
is still very limited because a really practical encryption scheme should be homomorphic to
all possible signal processing and compression operations, which include not only addition
and multiplication, but also nonlinear operations like non-uniform quantization. Although
designing an encryption scheme homomorphic to a single operation like addition or mul-
tiplication is easy, it remains an open problem to design a practical encryption scheme
homomorphic to various operations simultaneously [24], [25].

14.3.2.3 Joint Encryption and Encoding

While joint encryption-encoding is the only approach to keep compression efficiency
and format compliance simultaneously, it actually has more advantages over the other two
approaches. Essentially, joint encryption-encoding is a problem of how to apply a cipher
to multimedia data so that some application-oriented requirements can still be fulfilled. As
part of the encoding process, the encipher can adapt itself to achieve an optimal/acceptable
solution to the target application. When there are multiple performance factors, which is
the normal case in practice, jointly performing encryption and encoding is often helpful to
achieve a better trade-off among all the performance factors.

Since the 1990s, a large number of joint multimedia encryption-encoding (JMEE) algo-
rithms have been proposed. The basic encryption techniques [26] include secret permuta-
tions of syntax elements at different levels, fixed-length codewords encryption, variable-
length codewords index encryption, secret entropy coding, “virtual full encryption” work-
ing with context-adaptive coding, header encryption, and so forth. Three main aspects of
joint encryption-encoding are what cipher should be used, what syntax elements should be
encrypted, and how the selected syntax elements should be encrypted. Most JMEE algo-
rithms are independent of selection of the underlying cipher, although some can only work
with stream ciphers or newly designed ciphers tailored for multimedia encryption.

For a typical JMEE algorithm, several performance factors need to be considered si-
multaneously, which mainly include security, format compliance, compression efficiency,
computational complexity, energy efficiency, size preservation, and parallelism. The need
for format compliance has been clarified in the previous subsection and the security re-
quirement is obvious, so the following discusses other factors.

• Compression efficiency becomes a concern when the encryption algorithm changes
the behavior of the encoder, which often decreases the compression efficiency to
some extent. Note that compression efficiency is always calculated and compared
with respect to a level of perceptual quality.

• Computational complexity determines the processing speed and the throughput of the
JMEE system. Since encryption will always add more computations on top of the
multimedia encoding process, it is beneficial to minimize the additional complexity
induced by encryption.
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• Energy efficiency is one of the most crucial factors for resource-constrained devices
like wireless multimedia sensor networks (WMSNs) [2]. It has a close link to compu-
tational complexity, but cannot be replaced by the latter because different computing
components (for example, CPU and the wireless module) often have different energy
consumption rates. This implies that the fastest solution is not necessarily the most
energy-efficient one.

• Size preservation can become a desirable feature, when the multimedia data have
already been encoded. In this case, one may want that (ideally) each syntax element
keeps its original size. Such a feature is useful to avoid bitrate re-control, and to sup-
port some interesting functionalities, such as on-the-fly encryption/decryption and
concurrent encryption/decryption of different parts of a single file. Size preserva-
tion is a non-trivial issue for multimedia encryption due to the use of variable-length
coding (VLC) in most multimedia coding systems.

• Parallelism is possible for some selective encryption schemes of encoded multimedia
data. For instance, sign bit encryption can run in parallel for different random access
units (for example, frames or slices). The structure of a specific multimedia coding
system may allow different kinds of parallelism at different levels, and the added
encryption may enhance or compromise the parallelism.

As a whole, an ideal JMEE system should have the following features:

• high security, meaning that no perceptual information leaked from the encrypted part;

• low computational complexity, which corresponds to fast encryption/decryption and
high throughput;

• high energy efficiency or low energy consumption;

• strict format compliance, meaning that every syntax element can be decoded without
access to the key;

• strict size preservation, that is, every syntax element preserves its original size;

• high parallelism or high throughput on multicore and distributed platforms; and

• other desirable features, such as supporting perceptual encryption, working with any
cipher, and so forth.

Many multimedia encryption schemes are designed following the idea of selective en-
cryption. Although many modern ciphers (like AES and RC4) are fast enough to handle
multimedia data, it is always nice to avoid handling the whole bulky data. Even if the re-
duction in computational complexity is considered insignificant, the saved energy may still
be meaningful for power-constrained devices, such as sensor nodes. For instance, a 10%
reduction in computational complexity is not too much, but the saved energy will extend
the lifetime of a power-constrained device from 9 days to 10 days. Selective encryption is
specifically important when the input plaintext is compressed. In this case, there is no full
encoding process, but only a partial decoding process followed by encryption and probably
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by a partial re-encoding process. This partial decoding and encoding process can be signifi-
cantly simpler than the whole coding process, and thus selective encryption can help reduce
the total computational complexity and energy consumption dramatically. For instance, for
sign bit encryption of MPEG videos, the partial decoding process does not involve motion
compensation, inverse DCT and some other time-consuming steps. In addition, the number
of sign bits is significantly smaller than the total number of bits. Therefore, selective en-
cryption will be much more efficient than naive full encryption in terms of computational
complexity and energy efficiency.

Since multiple performance factors have to be considered, it is a challenging task to
design a multimedia encryption scheme fulfilling all the desired features. As a matter of
fact, recent research has shown trade-offs among different performance factors for all the
available multimedia encryption methods. Some of these trade-offs are listed below.

• Encryption of variable-length codewords or their indices can maintain format com-
pliance, but normally cannot preserve the size. Leaving variable-length codewords
unencrypted can preserve the size, but may not be able to offer a sufficient level of
security.

• Secret permutations can be easily implemented to ensure format compliance and size
preservation, but it is insecure against known/chosen-plaintext attacks [27] and even
ciphertext-only attacks [22].

• FLC encryption can maintain format compliance and size preservation easily, but
it is unable to provide a very high security level against error-concealment attacks
(ECA) [28].

• VLC index encryption can ensure format compliance and security when used prop-
erly, but it has an uncontrollable influence on compression efficiency and cannot
maintain size preservation. By constraining the index encryption in a small number
of VLCs, the influence on compression efficiency will be less problematic, but the
security will be compromised to some extent [29].

• Secret entropy coding is unable to keep format compliance and size preservation.
In addition, most secret entropy coders are either insecure against chosen-plaintext
attacks [30], [31], [32] or unable to provide a better performance than simple naive
encryption (that is, encryption after compression) [32].

• “Virtual full encryption” and header encryption cannot ensure format compliance for
some multimedia coding standards, mainly due to the dependence of the encrypted
syntax elements on the context.

• Most format-compliant selective encryption schemes cannot conceal all perceptual
information, thus they cannot be used for some applications requiring a high level of
perceptual security [33], [34], [35], [36], [37], [38].

• High parallelism can be achieved by some size-preserving JMEE schemes, which are
unable to offer a high level of perceptual security because some syntax elements are
left unencrypted.
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It has been known that most of the trade-offs have their roots in the underlying multimedia
coding process: independent coding of different syntax elements, scattering of visual infor-
mation over different syntax elements, visual information contained in bit sizes of syntax
elements, embedded error-concealment mechanisms, and so on. In case when the underly-
ing multimedia coding standard cannot be changed, the problem of multimedia encryption
becomes how to achieve a better trade-off among all the performance factors for the target
application.

14.4 Perceptual Multimedia Encryption

As mentioned above, perceptual encryption is one of the key reasons for joint encryption-
encoding. As a major branch of multimedia encryption, perceptual encryption can be useful
in many applications, such as pay-per-view and video on demand (VoD) services. When a
multimedia application involves multiple parties and not all of them are trusted, perceptual
encryption is also useful to allow those untrusted parties to perform some postprocessing on
encrypted multimedia data. For instance, in the example discussed in the previous section,
digital watermarking may be allowed by a third party without access to the decryption key,
where the watermark can be embedded into the unencrypted part without influencing the
encrypted part but still remain detectable at the user end.

The concept of perceptual encryption was introduced in Reference [39], where the au-
thors used the term “transparent encryption” in the context of digital TV broadcasting.
Some other researchers later used the term “perceptual encryption” because “transparent
encryption” may be confused with another term “format-compliant encryption” (meaning
encryption is transparent to encoding and vice versa). This chapter adopts the term “per-
ceptual encryption.” In the literature, there are different perceptual encryption proposals for
audio, speech, image, and video. This chapter focuses on perceptual encryption for digital
images and videos only.

14.4.1 Definition and Performance Evaluation

Perceptual encryption is selective multimedia encryption where only a specific amount of
perceptual information is encrypted by encryption. Equivalently, perceptual encryption can
be seen as intended quality degradation by the means of encryption but the degraded quality
can be recovered by a decryption key. The nature of perceptual encryption leaves part of the
data untouched and allows a decoder to recover unencrypted perceptual information with-
out accessing to the decryption key. Ideally, a fully scalable perceptual encryption should
allow the perceptual quality to be downgraded under the control of a continuous quality
factor q ∈ [0,1]. When q = 1, the maximum amount of perceptual information is encrypted
and the perceptual quality becomes minimal; when q = 0, the minimum amount of percep-
tual information is encrypted and the perceptual quality is maximized; when 0 < q < 1,
part of the perceptual information is encrypted and the perceptual quality is downgraded
accordingly. Figure 14.6 shows an illustrative view of a perceptual encryption scheme.
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FIGURE 14.6

A perceptual encryption scheme.

Given the above definition of perceptual encryption, the following facts about the control
factor q should be noted:

• Despite extensive research on visual quality assessment (VQA), there still does not
exist a well-accepted objective measure of visual quality that can replace an average
human observer’s subjective quality assessment. Therefore, the control factor q is
generally chosen to represent a rough measure of the quality degradation.

• While the relationship between the control factor q and the quality degradation can-
not be linear (due to the lack of a proper VQA metric), the monotonicity should
be maintained, meaning that a larger q should statistically correspond to a higher
level of quality degradation. This implies that a selective format-compliant encryp-
tion scheme is not necessarily a perceptual encryption scheme unless the selective
encryption can downgrade the perceptual quality in a monotonic manner under the
control of a factor q.

• In most cases, the control factor q is defined as a parameter of the encryption scheme
that have a direct relationship with the visual quality of the encrypted image/video,
for example, the percentage of syntax elements encrypted.

• For digital videos, the quality degradations of different frames may be different, so
the control factor represents the average quality of all frames.

• Depending on applications, the control factor may have different levels of granularity,
so there are may be only a limited number of possible values of q.

• Multiple control factors may be used to have a finer control of different aspects of
visual quality degradation.

As in general multimedia encryption schemes, there are multiple performance factors to
be considered when evaluating the performance of a perceptual encryption scheme. Among
all the performance factors, main attention is focused on security since all the other factors
are not unique for perceptual encryption. There are two unique features making the secu-
rity of perceptual encryption schemes essentially different from other kinds of multimedia
encryption schemes: i) the existence of two separate sets of data (one encrypted and one un-
encrypted) containing perceptual information; and ii) the unencrypted data are decodeable
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to an attacker who does not know the key. The need of maintaining some level of perceptual
quality immediately leads to two different levels of security that should be considered:

• cryptographical security – measurement of security against cryptographical attacks
that try to recovery the plaintext of the encrypted data;

• perceptual security – measurement of security against perceptual attacks that try
to recover as much perceptual information as possible out of the unencrypted data
without any attempt of breaking the underlying encryption algorithm.

Although most perceptual encryption schemes are based on cryptographically strong ci-
phers, the cryptographical security may not be guaranteed because the interface between
the cipher and the image/video coding system may create new insecure points so that the
cipher fails. Perceptual security is a unique concept for perceptual encryption and covers
perceptual attacks that can recover perceptual information from the encrypted data in non-
cryptographical means. Perceptual attacks are by definition indifferent of any details about
how the encryption algorithm works, which means that they are more general and can also
be generalized to applications where some data are missing, corrupted, or distorted due to
other reasons (for example, transmission errors and noise, and/or intended or unintended
data removal, truncation, and manipulation).

In the following, a brief survey of perceptual encryption schemes for digital images and
videos is provided, then the two levels of security are separately discussed with greater
detail.

14.4.2 Perceptual Encryption Schemes

This subsection does not attempt to give a complete coverage of all schemes in the litera-
ture; it aims at highlighting the main relevant techniques and some representative schemes
that can better demonstrate interesting features of perceptual encryption schemes in gen-
eral. Most perceptual encryption schemes are conceptually simple and straightforward, and
the main technical question is what data should be selected for encryption given a specific
image and coding standard as the carrier of the multimedia data. Despite the conceptual
simplicity of many perceptual encryption, performance evaluation of them especially secu-
rity analysis is non-trivial, as will be shown later. Throughout the subsection, it is assumed
that perceptual encryption is implemented by adopting a cryptographically strong cipher
like AES or RC4 unless otherwise stated.

14.4.2.1 Scalability-Based Encryption

Some image and video coding standards, such as JPEG2000 [7], MPEG-2/4 [40], [41]
and MPEG SVC [42], have inherent support on scalable coding, meaning that more than
one quality layer can be included in a single image or video bitstream. As a consequence,
it is natural to realize perceptual encryption by encrypting selected quality layers while
leaving others untouched [43]. Perceptual encryption of this kind is also called scalable
encryption or multilevel encryption due to the existence of several quality layers. The main
problem with this perceptual encryption setting is the mandatory requirement on scalable
coding, which may not be adopted by some image and video formats. The limited quality
granularity caused by the small number of quality layers is another problem.
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14.4.2.2 DCT-Based Image and Video Encryption

Discrete cosine transform (DCT) is the most widely used transform in image and video
coding standards [9], [10], [40], [41], [44], [45],3 so many researchers have proposed per-
ceptual encryption schemes based on selective encryption of DCT coefficients and their
bit planes. There are several approaches of achieving perceptual encryption in DCT do-
main [28], [46], [47], [48], [49], [50], [51]: DC encryption, AC encryption, sign bit en-
cryption, bit-plane encryption, and hybrid encryption (for example, DC encryption plus
sign bit encryption). Note that DCT encryption can implement scalable encryption be-
cause different DCT coefficients of a block represent visual details of different frequency
components.

In most DCT-based image and video coding standards, DC coefficients and sign bits are
coded differently from AC coefficients and other bit planes, so although conceptually DC
encryption has no real difference from AC encryption, the overall performance of the per-
ceptual encryption scheme can be very different. For instance, in JPEG and MPEG-1/2/4
standards, DC coefficients and sign bits are (partly or completely) coded as fixed-length
codewords, which means that DC and sign bit encryption can achieve strict size preser-
vation and maintain compression efficiency. AC encryption and bit-plane encryption are
relatively complicated because they involve rule-length coding and variable-length coding
(VLC). One simple way of circumventing the VLC problem is not to encrypt the value of
each AC coefficient or bit plane, but to encrypt their positions by shuffling all encrypted
elements. The shuffling process can be driven by a stream cipher. Another solution is to
encrypt selected AC coefficients and bit planes before VLC happens, which unfortunately
will influence compression efficiency in an uncontrollable manner.

In DCT-based perceptual encryption, the quality factor q is usually set as the percentage
of targeted syntax elements (DC/AC/sign bits/bit planes) encrypted. Perceptual encryption
operations can be performed immediately after DCT transform, but only some can work at
the bitstream level. For the former case, the compression efficiency will normally be com-
promised because encryption can increase the information entropy of the encrypted syntax
elements. Therefore, the quality control factor also becomes a control factor of compro-
mised compression efficiency. For the latter case, encryption cannot be directly applied to
syntax elements in order to maintain format compliance, and often the only possible way
of performing encryption is to randomly permute the syntax elements concerned. Depend-
ing on how the underlying image and video coding standard is designed, only some syntax
elements can be permuted at the bitstream level. For instance, for JPEG and MPEG per-
mutations of AC coefficients are possible by shuffling the VLC codewords representing a
group of running zero AC coefficients and a nonzero AC coefficient.

14.4.2.3 DWT-Based Image and Video Encryption

As the second most widely used transform in image and video coding [7], [52], [53],
discrete wavelet transform (DWT) has also attracted significant attention from researchers

3Note that some video coding standards use an integral approximation of DCT, so strictly speaking they are not
based on DCT but DCT-like transforms. However, such a subtle difference does not influence how perceptual
encryption and cryptanalysis work, and therefore it is ignored in this chapter.
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working on perceptual encryption [54], [55], [56], [57], [58], [59]. The perceptual encryp-
tion settings for DCT can be largely generalized to DWT, but different DWT decomposition
levels and high-/low-frequency subbands replace DC and AC coefficients in the DCT case.

Most DWT-based image and video coding schemes follow an incremental coding prin-
ciple; that is, the most significant bits are encoded first and less significant bits come later.
This means perceptual encryption can be naturally realized by gradually encrypting the en-
coded bitstream from the beginning of each independently coded unit. In addition, DWT
has a pyramid structure that allows performing random permutations at different levels and
on different subbands to achieve different degrees of quality degradation.

For perceptual encryption schemes working at the encoded bitstream level of JPEG2000
images/videos, a special issue has to be carefully handled to ensure format compliance of
ciphertexts; the encrypted bitstream should not create fake termination markers that are
words in the range 0xff90 to 0xffff [60], [61].

14.4.2.4 Motion Vector Scrambling

For digital videos, scrambling motion vectors can create lightweight perceptual encryp-
tion schemes controlling temporal visual quality only [28], [62]. Since intra-coded video
frames do not contain any motion vectors, this approach cannot have any quality control
over these frames. As a result, motion vector scrambling should be used as a supplemental
option for further enhancing the performance of perceptual encryption schemes based on
other techniques.

14.4.2.5 Fixed-Length Codeword Encryption

In most image and video coding standards, there are syntax elements coded as fixed-
length codewords (FLCs). Taking MPEG-1/2/4 videos as an example, the following syntax
elements are FLCs: sign bits of nonzero DCT coefficients, (differential) DC coefficients
in intra blocks, ESCAPE DCT coefficients (DCT coefficients out of the scope of Huffman
coding), and sign bits and residuals of motion vectors. By selectively encrypting some
FLCs in an image/video, one can achieve strict size-preservation and format compliance at
the same time. The size-preservation will further allow on-the-fly encryption and concur-
rent encryption, as pointed out in Section 14.3. A typical perceptual encryption based on
FLC encryption is the so-called perceptual video encryption algorithm (PVEA) [28], which
is designed for MPEG videos. A unique feature of PVEA is the use of three independent
quality-control factors for the low-resolution rough (spatial) view, the high-resolution (spa-
tial) details, and the (temporal) motions.

14.4.2.6 Fractal Coding-Based Encryption

Fractal coding has been developed as an image compression algorithm [63]. The basic
idea behind is to represent an image as a set of transformations associated with an iterated
function system, which can converge to a so-called fixed point (which is a normally a fractal
set). In the case of fractal image coding, the fixed point will be an approximation of the
original image. Since fractal coding represents an image as a set of transforms, it is possible
to encrypt part of the parameters of the transforms to achieve perceptual encryption, as
proposed in Reference [64].
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14.4.3 Cryptographical Security

The following discusses cryptographical security from the perspectives of different at-
tacks. If one can break the cipher used to encrypt the selected part of the image and video
data, then the whole perceptual encryption scheme will collapse. While normally a cryp-
tographically strong cipher like AES or RC4 is used to guarantee security, the way how
such a cipher is applied to image and video data can make a difference. This becomes
more obvious when the cipher has to be applied in a way different from its original design.
For instance, some perceptual encryption schemes are based on random permutations of
selected syntax elements of an image/video bitstream. A stream cipher is usually used to
produce a pseudo-random permutation map, which is then applied to achieve the effect of
encryption. Here, the use of the stream cipher differs from the normal usage in cryptog-
raphy, where the keystream is used to mask the plaintext (normally via XOR or modular
addition) rather than to shuffle their positions.

14.4.3.1 Brute-Force Attacks

The simplest way of breaking a cryptosystem system is to exhaustively try all possible
plaintexts/keys until the correct one is found. This attack can be estimated by the size of
the plaintext/key space.

For the key space, the security against brute-force attack can be ensured by using a cryp-
tographically strong cipher, which always uses a sufficiently large key space. The plaintext
space is a bit more complicated because it depends on the number of bits of the encrypted
part of the image/video bitstream. Here, one has to consider each independently encrypted
unit rather than the whole encrypted data, because independent units can be guessed sep-
arately. Although it is possible to make all encrypted bits dependent on each other, for
example, by using a mode with ciphertext feedback like CBC, those bits may still be sep-
arately guessed because of their semantic meanings. A typical example is DC encryption
of DCT-transformed images and videos. One can make encryption results of all DC coeffi-
cients dependent on each other; however, the attacker only needs to break a small amount
of them to reveal part of the image. Since part of an image may already contain sensi-
tive perceptual information (for instance, a person’s face), this partial brute-force attack
can be considered successful although it is not in a cryptographical sense. This can be a
serious problem when the quality control factor q is small, meaning that the percentage of
encrypted syntax elements is low and thus the average distance between consecutive syntax
elements encrypted is large. In other words, this fact creates a lower bound of the quality
control factor q. For a more detailed discussion of this subtle issue on an ad hoc design of
perceptual encryption, readers are referred to Reference [28, Sec. III.B]. Note that this fact
also blurs the boundary between cryptographical security and perceptual security because
now one has to ask what is the consequence of revealing part of the encrypted data without
considering what encryption algorithm is actually used.

Another related issue about brute-force attacks is how to judge a guessed key is cor-
rect. Apparently this should not be done by manually checking the perceptual quality of
recovered plaintext unless this only requires a very small number of manual checks (say,
hundreds). To automate the checking process, one needs some criteria. For image and video
perceptual encryption, this can be naturally done by using a no-reference image/video qual-
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FIGURE 14.7

The means and variances of coefficients of 8×8 DCT on a 256×256 test image Cameraman.

ity assessment tool that can measure the difference between the original plaintext and the
ciphertext in terms of perceptual quality. For instance, DC encryption will create disconti-
nuity along block boundaries, so the level of such blockiness can be used as a measurement
of how good a guessed key is. The key giving the minimum level of blockiness can be
selected as the correct key.

14.4.3.2 Ciphertext-Only Attacks

Since it is assumed here that a cryptographically strong cipher is used for encryption,
the target of a ciphertext-only attack in this context is not the key, but the plaintext of the
encrypted data. Being cryptographically strong, the underlying cipher should not allow an
attacker to launch a successful ciphertext-only attack. However, in perceptual encryption,
there is the context that is not encrypted, that is, what the encrypted data represent seman-
tically. This may give the attacker a chance. This is the case when random permutations
(driven by a stream cipher) are applied to DCT coefficients. Consider a perceptual encryp-
tion scheme random permutes the first eight most significant DCT coefficients, that is, DC
coefficient and the first seven AC coefficients. The nature of DCT as a suboptimal decor-
relation map implies that the both the mean and the variance of the DCT coefficients drop
from the low-frequency to high-frequency bands (see Figure 14.7). As a consequence, if
the permuted DCT coefficients are sorted according to their amplitudes, the original order
of the eight encrypted DCT coefficients will likely be recovered with a non-negligible prob-
ability, thus recovering the image/video with a better overall quality. Figure 14.8 shows the
result when such an attack is applied to a test image Cameraman. One can see that the
visual quality of Figure 14.8b is obviously much better than that of the ciphertext shown in
Figure 14.8a. A similar attack for DCT encryption of MPEG videos can be found in Refer-
ence [65, Sec. 3.4]. There are also ciphertext-only attacks that are completely independent
of how encryption is implemented, but those attacks are about perceptual security and will
be discussed in the next subsection.
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(a) The ciphertext of randomly permuting the first eight DCT coefficients in each block. (b) The result of the

ciphertext-only attack by sorting the first eight DCT coefficients according to their amplitudes.

14.4.3.3 Known/Chosen-Plaintext Attacks and Chosen-Ciphertext Attacks

In these attacking scenarios, the target is the key since the plaintexts have been known.
Under the assumption that the underlying cipher is cryptographically strong, such attacks
are largely impossible. However, due to the special structure of stream ciphers, the key
cannot be reused to avoid extraction of the keystream by comparing the plaintext and its
ciphertext. The common practice is to change the key for each image/video frame or the
minimum encryption unit (for example, a slice of an MPEG-1/2/4 video frame). This can
be done by making the key dependent on the contents of the plaintext. One approach is to
combine a long-term master key with the hash value of the image/video (or hash value of
the concatenation of both). In this case, the hash value should also be transmitted with the
image/video, but it does not need to be kept secret so it can be encoded in the user data field
of the image/video. When the employed image and video coding format does not support
user data, one can consider embedding the hash value into the image/video as a watermark.
Since the watermark does not need to be secret but need to be lossless, it is also accepted
to make the watermark visible at one corner of the encrypted image/video like a logo in a
broadcasted TV program.

14.4.4 Perceptual Security

For perceptual security, one does not care about any detail of the encryption algorithm,
but cares about how to recover a better quality out of the unencrypted data. This means that
all attacks in this category fit into the class of ciphertext-only attacks.

From an attacker’s point of view, the problem to be solved can be described as follows:

• What is available – the unencrypted visual data and the known semantics of such
data (for example, the encrypted data are all DC coefficients or sign bits).
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• What is a successful attack – if one can recover the plaintext image/video with a
quality (statistically) better than that of the ciphertext (that is, the one defined by the
quality control factor q).

• What are the constraints – both the time complexity and the space complexity should
be sufficiently low to make the attack practical even for relatively large images and
videos.

The above points are self-explanatory, but the last one needs a bit more discussion. How
high the time complexity, that is, how slow an attack, is allowed depends on the application.
If the attacker wants to crack a live broadcast program, the attack will have to be fast enough
to catch the frame rate, meaning that the attack should be done in O(10) milliseconds. If
the attacker just wants to crack what is stored on a hard disk or a DVD disc, then it is
possible to run the attack for hours or even days. When an attacker has access to a botnet or
a supercomputer, the above requirement can be relaxed at an order of O(106). Note that an
attack running in polynomial time (in the so-called P complexity class) may not be practical
at all if either the hidden constant factor or the fixed exponent is too large. The requirement
on the space complexity is normally tighter because the storage available to an attacker is
largely fixed and does not grow over time.

All attacks in the perceptual security category follow the same basic approach; namely,
replace the encrypted data by an estimate from the available unencrypted data/information
and then run the decoder to get an approximate edition of the plaintext image/video. The
more accurate the estimate is, the better the recovered quality and the more successful
the attack will be. Since this approach is very similar to error concealment in multimedia
coding, these attacks are collectively called error-concealment attacks (ECAs) [34]. Some
researchers also use the term concealment attacks or replacement attacks [59].

Error-concealment attacks have been so far the most successful attacks on perceptual en-
cryption and some very promising results have been obtained in recent years on DCT-based
encryption. It is also likely that these attacks can be easily generalized to other transforms,
including DWT. Some error-concealment attacks also have more profound implications on
image and video coding (compression) in general. Such attacks are discussed in more detail
in the next section.

Since the performance of an error-concealment attack has to be judged against the quality
defined by the ciphertext, measuring the perceptual information for the comparative pur-
poses becomes an important task. The golden standard of perceptual information measure-
ment is subjective evaluation by human experts. However, subjective quality assessment
is very time-consuming and costly, so researchers have proposed various objective visual
quality assessment (VQA) metrics for digital images and videos [66], [67]. Traditionally,
image and video coding community has been using a simple metric called peak signal-to-
noise ratio (PSNR). For an M×N image or video frame I∗ = {I∗(i, j)} and its distorted
version I = {I(i, j)}, where 1≤ i≤M and 1≤ j ≤ N, PSNR is defined as follows:

PSNR = 10 · log10
I2
max

∑M
i=1 ∑N

j=1(I(i, j)− I∗(i, j))2/(MN)
, (14.5)

where the denominator, called mean square error (MSE), is also widely used in objective
quality assessment. Unfortunately, neither PSNR nor MSE matches subjective quality very
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well [67, Figure 1.1], so more advanced VQA metrics, such as the structural similarity
index (SSIM) [68], visual information fidelity (VIF) [69], and visual signal-to-noise ratio
(VSNR) [70], have been proposed. Although VQA metrics are commonly tested on various
test databases to demonstrate their good correlation with subjective data collected from hu-
man observers, a recent comprehensive comparative study has shown that none of existing
VQA metrics consistently outperforms all others [71].

Some encryption-oriented VQA metrics have also been proposed to obtain more accu-
rate measurements on encrypted images and videos. Such metrics include the luminance
similarity score (LSS) and edge similarity score (ESS) [72], neighborhood similarity [73],
similarity of local entropy [74], and a number of metrics based on image histogram and
radial Fourier spectrum [75]. Basically speaking, these encryption-oriented VQA metrics
focus more on a specific aspect of the overall visual quality that is supposed to be influ-
enced by perceptual encryption in a more scalable way (meaning that no abrupt change
will happen as the quality factor q changes slightly). The main drawback of all the existing
encryption-oriented VQA metrics is the lack of performance evaluation against subjective
quality. This makes it difficult to judge whether there exist the best metric and if so, which
one it is.

14.5 Error-Concealment Attacks

This section surveys all error-concealment attacks currently known. At first, it discusses
the so-called naive ECA, which involves only replacement of encrypted data by a fixed
value. Then, this section introduces different kinds of advanced ECAs that try to have a
better estimate of the encrypted data by looking at the semantics/statistics of the encrypted
data and its interplay with the unencrypted data. This section ends with the most promis-
ing ECA reported very recently, which represents a universal approach to breaking many
perceptual encryption schemes with globally optimized results.

14.5.1 Naive Attacks

The naive ECA is the simplest ECA in the sense that it just tries to replace all encrypted
syntax elements of the same kind by a fixed value according to their semantic meanings.
This can be more easily explained by how such an attack works with DC encryption of
DCT-transformed images. While one has no idea what the DC coefficients are, it is known
that they have a range determined by the valid range of pixel values. For N×N DCT and
eight-bit grayscale images, this range is [0,255N]. By setting all DC coefficients to any
value in this valid range, for example, 0 or 255N/2, and then scale the dynamic range of
the resultant image to [0,255], an image with an overall quality better than the ciphertext
can be produced. Figure 14.9 shows the result on the test image Cameraman. One can see
that the image obtained via the naive ECA obviously has a higher visual quality than the
ciphertext image. Using PSNR as the objective VQA metric, the same conclusion can be
reached: the ciphertext image has PSNR = 11.5883 dB, whereas the image recovered from



456 Perceptual Digital Imaging: Methods and Applications

(a) (b)

FIGURE 14.9

(a) The ciphertext image of Figure 14.7a when all DC coefficients are encrypted. (b) The image recovered

from the ciphertext image by setting all encrypted DC coefficients to zeros.

this ciphertext by the naive ECA has PSNR = 13.0428 dB. The naive ECA is the widely
acknowledged attack. Most perceptual encryption schemes were tested against this attack
to validate its perceptual security.

14.5.2 Local Constraints-Based Attacks

In the naive ECA, all encrypted syntax elements of the same kind are replaced by the
same fixed value. Such a global replacement is not necessarily (generally not) the best
choice. By considering a small local window around each encrypted syntax element, some
local constraints with a tighter range than the global range may be found. Once again,
this can be best demonstrated by the case of DC encryption. Since the two-dimensional
DCT is performed blockwise, the local window can be naturally selected as the block each
encrypted DC coefficient lies in. In this case, Property 14.1 gives an interesting local
constraint of the unknown DC coefficients defined by the known AC coefficients.

Property 14.1
Given an N×N block B, the pixel values calculated from its DC-free edition B(0) (that is,
the inverse DCT result by setting the DC coefficient to 0) define a constraint on the DC
coefficient:

N(tmin−min(B(0)))≤ DC(B)≤ N(tmax−max(B(0))), (14.6)

where [tmin, tmax] denotes the valid range of pixel values. 2

The local constraint defines a valid range of the DC coefficient of the block containing
it, which is a proper subset of the global valid range with high probability. Therefore, if the
midpoint of the tighter range is used to replace the encrypted DC coefficient, the ECA attack
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FIGURE 14.10

The image recovered from the ciphertext image shown in Figure 14.9a by setting each encrypted DC coefficient

to the midpoint of the valid range of that block. ©2011 IEEE

(a) (b)

FIGURE 14.11

The results of attacks on the test image Cameraman. (a) The naive ECA by setting all encrypted DPSS co-

efficients to zeros, resulting in PSNR = 12.7071 dB. (b) The advanced ECA as reported in Reference [76],

resulting in PSNR = 18.2721 dB.

should give results closer to the plaintexts with a higher visual quality. Figure 14.10 shows
the result of such an advanced ECA applied to the ciphertext in Figure 14.9a. Comparing
Figure 14.10 with Figure 14.9b reveals that the visual quality is further improved, which is
also reflected by higher PSNR, that is, 13.8837 dB.

This advanced ECA on DC coefficients can also be generalized to any encrypted DCT
coefficients. When more than one DCT coefficient are encrypted in each block, the local
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constraints have to be calculated jointly by checking all possible values of the encrypted
DCT coefficients and taking those values that do not produce invalid pixel values.

14.5.3 Prior Statistics-Based Attacks

If the attacker can have access to an image database that represents the statistics of the
plaintext image of interest, then it will be more beneficial to replace the encrypted syn-
tax elements by the means of the most likely values rather than the midpoints of the valid
ranges. Such an advanced ECA was demonstrated in Reference [76] on an image encryp-
tion scheme based on two-dimensional discrete prolate spheroidal sequences (DPSS) [77].
This image encryption is not a real perceptual encryption scheme, but the basic idea behind
the statistics-based ECA demonstrated in Reference [76] can be generalized to any percep-
tual encryption scheme. To be more exact, the advanced ECA exploits statistics of the ratios
between the encrypted DPSS transform coefficients and the most significant unencrypted
coefficient. Then, the statistics are used to derive a better estimate of each encrypted DPSS
transform coefficient. Compared with the results of the naive ECA, the performance of the
statistics-based ECA is significantly better, as shown in Figure 14.11.

14.5.4 DC Encryption Attacks Using Coefficient Recovery

All previously introduced ECAs are relatively simple and the recovered image can hardly
reach a PSNR value larger than twenty. In Reference [38], the authors proposed a method
that can boost the performance of an advanced ECA to a level far more than all previous
ECAs. This attack was aimed at DC encryption of DCT-transformed images/videos. To
facilitate the following discussion, this method is named here as USO by taking the initials
of the three authors. The USO method is based on Property 14.1 of digital images and
Property 14.2 of natural images.

Property 14.2
The difference between two neighboring pixels is a Laplacian variate with zero mean and
small variance. 2

The two properties play two different roles and can work together to design an iterative
ECA. Namely, Property 14.2 allows the attacker to estimate the DC coefficient of a block
relative to its neighbor blocks by minimizing the pixel difference along the block bound-
aries, and Property 14.1 applies a tighter range of the DC coefficient on each block so that
the intersection of all the relative DC coefficients can give a rough estimate of the global
brightness of the image. After an attacker has the global brightness and all the relative
DC coefficients, approximations of absolute values of the encrypted DC coefficients can
immediately be obtained. Note that the estimation process of the relative DC coefficients
involves a scanning process, which starts from a corner block of the image and then con-
tinues through the whole image toward the opposite corner to derive all the relative DC
coefficients one after the other. It is obvious that such a scanning process suffers from er-
ror propagations. To mitigate this problem, Reference [38] proposed to have four different
scans starting from the four different corners and then average the results to get a less noisy



Perceptual Encryption of Digital Images and Videos 459

FIGURE 14.12

The image recovered from the ciphertext image shown in Figure 14.9a by performing the USO attack, resulting

in PSNR = 19.6975 dB.

result. After the whole process, the recovered plaintext image may still have pixel values
out of the valid range, then a scaling or truncating operation is applied to remove those
invalid pixel values. Figure 14.12 shows the result of the USO attack on the test image
Cameraman. As it can be seen, the perceptual quality of the recovered image is boosted
a lot. The PSNR value becomes 19.6975 dB, much higher compared to that of the naive
ECA and the simple advanced ECA described in Sections 14.5.1 and 14.5.2. For some
other images, such as Lena, the PSNR can go beyond 20 dB.

14.5.5 DC Encryption Attacks via Underflow/Overflow Rate Minimization

While the USO method works largely well, it sometimes suffers from a relatively low
accuracy of the DC estimation when the error propagation is not under control so that many
pixel values go out of the valid range. For the averaged result from the four scans shown in
Figure 1 of Reference [78], the pixel values range in the interval [−88.6,303.0]. By scaling
the range to [0,255], the finally recovered image has a low PSNR value of 14.3 dB.

To further reduce the error propagation effect, Reference [78] proposed to apply Prop-
erty 14.1 during the relative DC estimation process rather than after it. To be more exact,
during the scanning process, the underflowed and overflowed pixel values are checked for
each block. Once such underflows and/or overflows happens, the whole block is shifted
toward the valid range of pixel values until all underflowed and overflowed pixel values
disappear. The modified DC estimation process makes the final result more sensitive to the
global brightness, or equivalently the DC coefficient of the first block in each scan. Ref-
erence [78] also proposed an iterative process to get a more accurate estimate of the first
DC coefficient, which is based on an interesting observation that roughly holds for various
natural images: the more accurate the estimate of the first DC coefficient, the less fre-
quently underflowed and overflowed pixel values appear in each block. In other words, the
underflow/overflow rate is a unimodal function (with only one global minimum) of the es-
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FIGURE 14.13

The performance of the FRM method on recovering the test image Cameraman shown in Figure 14.11a, re-

sulting in PSNR = 22.8142 dB.

timate of the first DC coefficient. Based on this observation, the authors proposed to search
all possible values of the first DC coefficients and take the one with the minimum under-
flow/overflow rate as the estimate. Since this rate is a unimodal function, the searching
process can be done effectively with a time complexity of O(MB log2(N(tmax− tmin)/∆)).
This method was named as underflow/overflow rate minimization (FRM).

Because the iterative process of searching for the optimal value of the first DC coeffi-
cient, the FRM method is generally slower than the USO method, but it outperforms the
USO method significantly according to experimental results carried out on 200 test im-
ages. The authors tested the performance improvement measured in ten different VQA
metrics, and the FRM method was proved to be consistently better than the USO method.
Figure 14.13 shows an example of using the FRM and USO methods for recovering a test
image Cameraman; it can be seen that the FRM produces a result with an obviously better
visual quality. For a detailed comparison between the USO and FRM methods, the readers
are referred to Reference [78, Sec. 3.3].

14.5.6 Optimization-Based Approach to DCT Encryption Attacks

Both the USO and FRM methods can break DC encryption only. They cannot be eas-
ily generalized to more general cases, such as AC encryption or combination of DC and
AC encryption, because Properties 14.1 and 14.2 describe the relationship between one
unknown coefficient and all other known coefficients. The question about where an gener-
alized attack exists was answered by in Reference [79] affirmatively.

This time the whole ECA is modeled as a discrete optimization problem and solved as a
linear program. For the ECA breaking DC encryption, the discrete optimization problem
can be described as follows:

minimize f
({x(i, j)}0≤i, j≤N−1

)
(14.7)
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FIGURE 14.14

The image recovered from the ciphertext image shown in Figure 14.9a by performing the linear programming-

based ECA, resulting in PSNR = 26.4866 dB. ©2011 IEEE

subject to x = A · y, xmin ≤ x(i, j) ≤ xmax, and y(k, l) = y∗(k, l) for all AC coefficients.
The terms x(i, j) and y(k, l) are variables denoting the value of pixel (i, j) and the DCT
coefficient (k, l), respectively. The term A represents the linear relationship between pixel
values and DCT coefficients defined by the blockwise two-dimensional DCT, and y∗(k, l)
represents the ground truth of y(k, l). Note that the last constraint fixes all AC coefficients to
their ground truths while the DC coefficient y(0,0) remains as a variable. In principle, the
objective function f can be any convex function to allow a polynomial-time optimization
algorithm. However, considering Property 14.2, the authors chose the objective function to
be ∑{(i, j),(i′, j′)} |x(i, j)− x(i′, j′)|, where the sum ranges over all pairs of neighboring pixels.
This choice makes the optimization problem a linear one, which can be solved efficiently by
using the linear programming (LP) technique [80]. The linearization is done by introducing
variables hi, j,i′, j′ into the model as follows:

minimize ∑hi, j,i′, j′ (14.8)

subject to x(i, j)− x(i′, j′) ≤ hi, j,i′, j′ , x(i′, j′)− x(i, j) ≤ hi, j,i′, j′ , and the constraints related
to Equation 14.7. In the above model, the variable hi, j,i′, j′ will be tight at |x(i, j)− x(i′, j′)|
for the optimum solution.

With the above optimization model, the generalization from DC encryption to DCT en-
cryption is straightforward: one can simply fix y(k, l) = y∗(k, l) for known DCT coefficients
while keeping all unknown variables in their natural ranges. The generalized model main-
tains the linearity, so it can still be solved via linear programming. Given an n×m image
and U unknowns in each of B blocks with dimensions N ×N, the optimization model
contains 2nm− (n+m) variables h and UB variables y while all other unknowns can be de-
termined by these key variables in a presolve step. The average time complexity and space
complexity of the optimization problem were experimentally verified to be O(n2m2U) and
O(nmU), respectively.
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(a) (b)

FIGURE 14.15

The recovery results of the linear programming-based ECA when sixteen most significant DCT coefficients are

encrypted in each block of the image Cameraman shown in Figure 14.13a: (a) the image recovered by setting

all missing DCT coefficient to the midpoints of their valid ranges and (b) the image recovered by the linear

programming-based ECA.

The performance of the linear programming-based ECA works nearly perfectly for
breaking DC encryption. For the test image Cameraman, the recovered image reaches
a PSNR value of 26.4866 dB (see Figure 14.14). For the DC encryption case, the linear
programming-based method outperforms the FRM method statistically with a significant
margin (see Figure 2 of Reference [79]). What is more surprising, even when more than
ten most significant DCT coefficients are encrypted, the linear programming-based ECA
can still recover the plaintext with relatively high perceptual quality for some images. Fig-
ure 14.15 shows an example on the test image Cameraman when sixteen most significant
DCT coefficients are missing from each block.

The big success of the optimization-based ECA is rather unexpected, especially when it
turned out that a relatively simple optimization model can work so perfectly. The results
not only reveal that DCT encryption largely failed, but also lead to some more profound
implications on image and video coding. It raises the question about how much information
should be encoded for a DCT-based image and video coding scheme. In addition, some
digital watermarking and data hiding schemes can also be handled by the same optimization
model if they use some AC coefficients to hide the watermarks/hidden information.

14.6 Conclusion

Perceptual encryption of digital images and videos is useful for many applications and
can be easily implemented by selectively encrypting part of the whole image/video bit-



Perceptual Encryption of Digital Images and Videos 463

stream. However, recent research on error-concealment attacks has raised an alarm about
the security of many perceptual encryption schemes.

Although the optimization-based ECA is very new, it has shown great potential of break-
ing probably almost all DCT-based perceptual encryption with high probability. Its gen-
eralization to DWT and other transforms is still to come, but it is highly likely that the
generalized attacks will still work. Therefore, it is believed that more study on further ex-
tension of the optimization-based ECA should be the main research direction in the field.
A combination of the optimization based method and the statistics-based approach could
be another topic for further enhancing the results, especially when the plaintext image has
unique statistics that are known to the attacker (for example, satellite images). In addition,
applications of the optimization model to other fields, such as image and video coding, dig-
ital watermarking, and steganography, are also interesting directions that deserve further
investigation.

It remains unclear whether the optimization-based attacks can also be generalized to non-
perceptual multimedia encryption where the unencrypted data are not decodeable. It seems
to be still possible that some new attacks can be developed by combining the current opti-
mization model with the image and video codecs. For instance, although the unencrypted
data are not decodeable, it is known that it will become decodeable if the encrypted data are
correctly revealed. So the question becomes whether it is possible to build an optimization
model that can find this optimal point which maximizes the degree of decodeablility of the
non-decodeable data. This is certainly another big challenge to the multimedia encryption
community.
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15.1 Introduction

Existing display devices introduce a number of physical constraints, which make real-
world appearance difficult to realistically reproduce. For example, a direct reproduction
of the luminance range of a moonless night to the intensity of the sun is technically out
of reach. Similarly, the continuous nature of spatial and temporal information does not
directly fit to the discrete notions of pixels and frames per second.

The human visual system (HVS) has its own limitations, which to certain extent reduce
the requirements imposed on display devices. For example, through a luminance adapta-
tion process (that can be extended in time) human eyes can operate both in dark-night and
sunny-day conditions, however, simultaneously only four to five log10 units of luminance
dynamic range can be perceived at once. Similarly, the limited density of photoreceptors
in the retina (in the foveal region the size of cones amounts to 28 arcsec) as well as im-
perfections in the eye optics limit the spatial resolution of details that can be perceived. In
the temporal domain, the critical flickering frequency (CFF) limits the ability to discern
temporal signals over 60 Hz.

469
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All such HVS-imposed limitations are taken into account, when designing display de-
vices, but still a significant deficit of reproducible contrast, brightness, and spatial pixel
resolution can be observed, which fall short with respect to the HVS capabilities. Moreover,
unfortunate interactions between technological and biological aspects create new problems,
which are unknown for real-world observation conditions. For example, the conflict be-
tween the eye accommodation adjusted to the display screen and the eye-ball vergence
driven by depth (disparity) reproduced in three-dimensional (3D) stereo displays imposes
limitations on the depth range that can be comfortably observed. Also, “frozen in time” dis-
crete frames (for LCD displays, for instance) result in perceptual issues. While the entire
sequence might appear smoothly animated, each frame is actually static for a short period
of time. When the eye tracks dynamic objects (to keep their steady projection in the fovea),
the static image is traversed smoothly and values crossed by the eye start to integrate on the
retina, which results in a perceived hold-type blur. Note that such blur does not exist in the
physical space (that is, in displayed images), but is created in a perceptual space. Nonethe-
less, hold-type blur can degrade the impression of perceived image quality in a similar way
as physical blur introduced to images.

This chapter refers to perceptual effects, rather than to physical effects, which can be
experienced but not measured physically. In particular, it aims at the exploitation of per-
ceptual effects to help overcome physical limitations of display devices in order to enhance
apparent image qualities. Section 15.2 shows how the perceived image contrast can be
improved by exploiting the Cornsweet illusion. Section 15.3 introduces glare effect and
shows how it can be used for brightness boosting. Section 15.4 presents techniques for re-
ducing the negative impact of some perceptual effects, such as hold-type blur. It shows how
high-quality frames can be interleaved with low-quality frames, still improving the over-
all appearance. Afterward, Section 15.5 demonstrates how the high quality of all frames
can improve apparent spatial resolution. Section 15.6 discusses the role of perception in
the context of stereovision and accommodation/vergence conflict reduction. Finally, this
chapter concludes with Section 15.7.

15.2 Apparent Contrast Enhancement

Image contrast is an important factor for image perception. Nonetheless, there is usually
a mismatch between the optical contrast of the displayed image and the real world due to
the contrast limitations of typical display devices. Fortunately, humans, nonetheless, have
the impression of a plausible real-world depiction when looking at images on a computer
screen, despite the far lower luminance and contrast ranges in comparison to reality. So,
the key issue for image reproduction is to allocate a sufficient contrast for a plausible repro-
duction of all important image features, while preserving the overall image structure [1].
The amount of allocated contrast influences the discrimination and identification of the ob-
jects depicted in the image, which are important factors for image quality judgments [2].
Numerous psychophysical studies show a clear preference toward images with enhanced
contrast often by 10–20% with respect to their original counterparts [3], [4].
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(a) (b) (c)

FIGURE 15.1

Cornsweet illusion. (a) By imposing the so-called Cornsweet luminance profile (as depicted by the black plot

below), onto the center of isoluminant bar, a lightness illusion is created that the left bar side is brighter than

the right one (as depicted by the gray plot). (b) By occluding the Cornsweet profile with the black rectangle

the lightness of visible bar parts becomes the same, as one could expect for the isoluminant bar shown in (c).

Existing tone mapping and color grading operators are usually quite efficient in allocating
an available dynamic range to reproduce image details and to preserve a certain overall
image appearance. However, global contrast must often be traded off when texture details
are faithfully reproduced. Conversely, preservation of contrast relations between major
image components require a local contrast reduction that leads to a loss of small-scale
information. Since physical contrast manipulations reach a dead end in such conditions,
the question arises: Can the perceived contrast be enhanced?

Contrast perception is a far more complex phenomenon than accounting for physical
contrast [5]. The eye’s adaptation plays an important role, just like the display’s luminance
levels, ambient lighting, and spatial frequencies of the contrast signal [6]. While one can
mostly reliably predict the influence of global adaptation, spatial-vision effects, which arise
from intensity and color patterns created by neighboring pixels, are not easy to model [5].
This fact makes perceived contrast difficult to quantify in isolation from the actual image
content because simultaneous contrast and Mach-band effects appear. While these effects
are well known, their interactions can be complex and their controlled use to enhance ap-
parent contrast has not yet been shown.

In this respect the Cornsweet perceptual illusion [7] is far more promising as it enables
contrast enhancement along edges [8]. The illusion is created by introducing a pair of
gradient profiles that are gradually darkening and, on the opposite side, lightening toward
the common edge. At this edge they result in a sharp shading discontinuity, as shown in
Figure 15.1. The lightness levels on both sides of the discontinuity are propagated through
some filling-in mechanisms of human perception [9]. While this process is not fully un-
derstood, it is likely to be similar to image restoration processes that take place in the
retinal blind spot where the optic nerve exits from the eyeball, and, for dark conditions,
in the foveal blind spot due to the absence of foveal rods. The luminance propagation of
the Cornsweet perceptual illusion creates the impression of a lightness step function, even
though the gray levels on both sides match physically and do not actually correspond to a
step function. Note that to trigger such an effect, one would usually need to introduce a
physical contrast in form of a luminance step function, which would then require a certain
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(a) (b) (c) (d)

FIGURE 15.2

Different luminance profiles, which create the Craik-Cornsweet-O’Brien illusion: (a) Craik O’Brien, (b) miss-

ing fundamental, (c) Cornsweet, and (d) repeated Cornsweet.

dynamic range. For the Cornsweet perceptual illusion, the gradient profiles (called further
the Cornsweet profiles) gradually tend to the original luminance levels on both sides of the
edge, hence, the apparent contrast is produced without any extra use of dynamic range.

The illusion can also be achieved by inserting the Cornsweet profile into uniform lumi-
nance regions, as shown in Figure 15.1; it is even more interesting that the profile can be
added to existing edges to boost their apparent contrast even further. In the latter scenario,
skillfully inserted Cornsweet profiles affect the image appearance relatively little, as they
contribute to a desirable apparent contrast enhancement at the edge, but do not produce
additional sharp contrast patterns or ringing, as they gradually vanish. Obviously, when
exaggerated, such profiles can create an infamous halo effect as discussed in the context of
tone mapping, so an important issue is to control their strength. In art, adding such profiles
along important lines and silhouettes is usually referred to as countershading [10].

In fact, a whole family of profiles similar to those shown in Figure 15.2, which are often
called by the names of their inventors, can be used to trigger the apparent contrast illu-
sion [7]. For example, the one-sided Craik-O’Brien profile is extremely useful to enhance
image contrast in the proximity of saturated (clamped) image regions, where there is not
enough dynamic range to use a fully symmetric Cornsweet profile.

Technically speaking, the Cornsweet profile can be generated by subtracting from the
original image Y its lowpass version Yσ obtained by means of Gaussian blurring. Then by
adding back the difference U = Y −Yσ to Y as:

Y ′ = Y + k ·U = Y + k · (Y −Yσ ) (15.1)

the resulting image Y ′ has its contrast perceptually enhanced. This procedure is equivalent
to the well-known image processing technique called unsharp masking [11], which is com-
monly used to sharpen image details (hereby, the apparent contrast increases as well [3],
[12]). Unsharp masking produces Cornsweet profiles and, hence, its perceptual effect can
be explained by the Cornsweet illusion [13].

While for naive unsharp masking the same amount of high frequencies is added to the
whole image, one can imagine an adaptive procedure, where detail contrast is enhanced
only in those regions, where the texture visibility is reduced. Reference [14] proposed a
multi-resolution metric of local contrast, which detects feature loss in tone-mapped images
with respect to a high-dynamic range reference and drives the spatial extent and the strength
of Cornsweet profiles (Figure 15.3).
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(a) (b) (c)

(d) (e) (f)

FIGURE 15.3 (See color insert.)

Two examples of how the Cornsweet illusion can enhance the contrast of tone-mapped images are presented on

the left. (a–c) Example processed using a global tone mapping operator, where countershading restores contrast

in the heavily compressed dynamic range of the sky and highlights. (d–f) Example processed using a local tone

mapping operator, which emphasizes on local details at expense of losing global contrast between the landscape

and sky. In this case countershading restores brightness relations in this starkly detailed tone mapping result.

Notice that the contrast restoration preserves the particular style of each tone mapping algorithm.

Although the Cornsweet illusion is the most effective for the luminance signal, it can
also be applied to chromatic channels. For example, one can measure the loss of contrast in
luminance, while the corrective signal U affects chroma. Chroma enhancement strengthens
the image colorfulness, and it turns out that increasing the original chroma values by 10%
to 20% usually results in a preferred image appearance [15]. Reference [16] experimented
with the introduction of the Cornsweet profile into the chroma signal to enhance the overall
image contrast (Figure 15.4).

(a) (b)

FIGURE 15.4 (See color insert.)

The Cornsweet illusion used for color contrast enhancement: (a) original image and (b) its enhanced version

using Cornsweet profiles in the chroma channel. In this example, the higher chroma contrast improves the sky

and landscape separation and enhances the impression of scene depth.
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FIGURE 15.5

The Cornsweet effect strength in 3D scenes. Brightness of the bottom cube’s wall looks different in these two

images which differ only in the presence of black rectangle that occludes the Cornsweet profile [9].

Countershading has proved to be also useful in other applications, such as color-to-gray
image conversion, where the dimensionality reduction from the usual three color channels
into one achromatic channel may lead to an information loss. The lost chromatic contrast
can be restored by adding the Cornsweet profiles into the achromatic channel [17].

In 3D graphics, other signals can be used to produce countershading profiles, for ex-
ample, image depth [18]. Also, as discovered in Reference [9], the apparent contrast en-
hancement is significantly stronger when Cornsweet profiles are consistent with the scene
lighting, undergo correct perspective foreshortening, and respect other cues resulting from
3D scene interpretation. Figure 15.5 shows an example where the apparent contrast en-
hancement was increased by 167% with respect to a standard two-dimensional Cornsweet
profile, as reported in Reference [9]. Motivated by this observation, Reference [19] pro-
posed a 3D unsharp-masking technique, where the Cornsweet profiles are created directly
in object space over the outgoing reflectance function. In this way, the depiction of various
visual cues can be enhanced, including gradients from surface shading, surface reflectance,
shadows, and highlights. These modifications lead to an improved overall image appear-
ance and eases the interpretation of the 3D scene. Figure 15.6 shows an example of an
image that was enhanced using 3D unsharp masking, where the Cornsweet profile was in-
serted at the shadow boundary and deepens the blackness impression. At the same time
enough dynamic range is left (it is not completely black) in the shadow, so that the text on
the opened book page remains legible.

In summary, contrast enhancement in displayed images is an important factor toward a
better reproduction of real-world contrast ranges, and it leads to an overall preferred image
appearance. By relying on apparent contrast enhancement by means of the Cornsweet illu-
sion, the often contrast-limited displays can reach new levels. This effect was demonstrated
for two-dimensional images or with an even stronger effect for 3D rendering. The Corn-
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(a) (b) (c)

FIGURE 15.6

3D unsharp masking: (a) original image, (b) enhanced image, and (c) the corresponding correction signal U ′

but computed and added to the surface shading in the 3D object space. ©ACM, 2008.

sweet illusion profiles can be introduced into achromatic (luminance) or chromatic channels
to improve channel-related contrast deficits. Interestingly, this observation even opens up
the road for other applications, such as color-to-gray conversion, where chromatic contrast
in isoluminant regions is reproduced in the achromatic channel. Section 15.6 demonstrates
another incarnation of the Cornsweet illusion that is used to enhance the impression of
perceived depth by modifying the visual disparity signal.

15.3 Apparent Brightness Boost

This section discusses the problem of brightness enhancement by capitalizing on optical
imperfections of the human eye, depicted in Figure 15.7. Every real-world optical system is
affected by a certain amount of reflected and scattered stray light, which causes the contrast
reduction due to a veil of luminance in the proximity of bright light sources and highlights.
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light
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FIGURE 15.7

The human eye anatomy [22]. Notice opaque particles suspended in the lens and vitreous humor, which create

the ciliary corona pattern due to light scattering, as shown in Figure 15.9. The right inset shows the lens

structure with fiber membranes in the lens cortex, which act as a diffraction net and are responsible for the

lenticular halo effect. ©The Eurographics Association 2009.
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(a) (b) (c) (d)

FIGURE 15.8

It is not necessary to have physical light sources to evoke the impression that an object is self-luminous, as can

be seen in (b) and (d). Painting halo (luminance gradients) around objects enhance their brightness or even

creates an impression of glow without the actual light emission. Interestingly, the same surface representations

without such luminance gradients cannot trigger the self-luminosity impression, and instead are perceived as

reflective, as can be seen in (a) and (c). Redrawn from Reference [21].

This usually unwanted effect is called veiling glare or simply glare, and it occurs when
bright objects are present in the field of view. In particular, in night scenes such scattered
lighting may dominate at certain regions of the human eye retina. One may recall from the
night driving experience how difficult is to read the registration plate of an approaching car
while being exposed to its beam lights.

The human eyes are prone for glare effects due to structural shape imperfections of op-
tical elements and the presence of various particles suspended in the lens and vitreous
humor. Of particular interest is synthetic rendering of typical veiling glare patterns in im-
ages, which are somehow interpreted by the human brain as caused by the real presence of
bright objects and lead to the so-called glare illusion. It turns out that when a veiling pattern
is painted around nominally bright objects in the image, this illusion makes them appear
brighter. Since the levels of luminance required to naturally trigger the glare effects in the
eye cannot be achieved using traditional display technology, such glare patterns, painted
directly in the images, improve the impression of realism. Moreover, even the effect of
glowing caused by the introduction of smooth gradients around bright objects can be easily
obtained [20], [21], as illustrated in Figure 15.8. Such gradients have been used by artists
for centuries to improve the apparent dynamic range of their paintings, and it is just as
attractive today in a digital imaging context.

A typical glare pattern for a small light source, as perceived by most subjects with normal
eyes, is depicted in Figure 15.9. Two major component can be distinguished in the glare
pattern [23], [24]: bloom, which refers to a general loss of contrast in the proximity of
bright objects (veil), and flare, which comprises the ciliary corona (the sharp needles) and
the lenticular halo. Some people report temporal changes in the glare appearance, such as
a pulsation of the glare intensity and flickering of the fine needles in the ciliary corona [22].

The majority of existing approaches to computer-generated glare, while inspired by the
knowledge about the human eye anatomy and physiology, are based on phenomenological
results rather than explicit modeling of the underlying physical mechanisms. A common
approach is to design convolution filters, which reduce image contrast in the proximity
of glare sources by effectively adding luminance gradients around bright regions patterns
similar as in Figure 15.8. In Reference [24], the authors base their filter on the point-spread
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FIGURE 15.9

The glare appearance example [22]. ©The Eurographics Association 2009

function measured for the optics of the human eye [25], [26]. A set of Gaussian filters with
different spatial extent, when skillfully applied, may lead to very convincing visual results
as well. This approach is commonly used in computer games [27]. A recent perceptual
study [28] has shown that the impression of displayed image brightness can be increased
by more than 20% by convolving high-intensity pixels in the image with such simple filters.

Other glare effects, such as the ciliary corona and the lenticular halo, are often designed
off-line and placed in the location of the brightest pixel for each glare source as a billboard
(image sprite) [29], [24]. However, using billboards, it is difficult to realistically render
glare for glare sources of arbitrary shape and non-negligible spatial extent.

Recently, References [30], [31], and [22] investigated the application of wave optics
principles to glare modeling, considering various obstacles causing light scattering on its
way from the pupil to the retina, as shown in Figure 15.7. Reference [31] investigated the
role of small particles randomly distributed in the lens and floating in the vitreous humor
in creating the ciliary corona pattern, as originally suggested in Reference [23]. Regularly
spaced fiber membranes in the lens cortex act as the diffraction grating which produces
lenticular halo [23], [29], [24]. Reference [22] considered the dynamic aspect of glare,
observing that the pupil size, the shape of lens, and particle positions change in time.

light
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FIGURE 15.10

A simplified scheme of optical system in the eye used for wave optics simulation of light scattering in the

eye [22]. ©The Eurographics Association 2009.
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It turns out that under a simplifying assumption that all these opaque light scattering
obstacles are orthographically projected onto a single plane aperture Figure 15.10, a sim-
ple wave-optics model can be derived. Essentially, the model boils down to taking the
Fourier transform F of the pupil aperture function P(xp,yp), and computing its squared
value |F {

P(xp,yp)
} |2 to derive the point-spread function (PSF) for this aperture. Then it

is enough to convolve the input high-dynamic range image with the PSF to obtain a glare
image. More formally, the Fresnel approximation to Huygen’s principle [32] for the optical
system depicted in Figure 15.10 under the assumption of homogeneous incident light of
unit amplitude is given by

Li(xi,yi) = K
∣∣∣F

{
P(xp,yp)E(xp,yp)

}
p= xi

λd ,q= yi
λd

∣∣∣
2
, (15.2)

E(xp,yp) = ei π
λd (x2

p+y2
p), K = 1/(λd)2, (15.3)

where (xi,yi) denotes the coordinate at the retina plane, λ is the wavelength of the light,
and d is the distance between the pupil and the retina. The pupil aperture function P(xp,yp)
gives the opacity of each point in the pupil, with zero opacity values denoting transparent
and ones denoting opaque attributes. The Fourier transform F is computed at the grid of
points (p,q) =

( xi
λd , yi

λd

)
.

Figure 15.11 summarizes the computation process that is performed in real time using
recent graphics hardware. Namely, the high-resolution opacity image is composed from
the images representing the pupil aperture, the lens diffraction grid (at the lens cortex) and
particles, the eyelashes, and particles in the vitreous humor (obviously other light scat-
tering elements can be considered as well). The resulting aperture function P(xp,yp) is
multiplied by the imaginary Fresnel term E(xp,yp), as in Equation 15.2. Then, the fast
Fourier transform (FFT) is performed over the resulting complex aperture, and the PSF for
a single wavelength is computed. By rescaling the PSF for different wavelengths (refer to
Reference [22] for more details) and summing up all resulting PSFs, the spectral PSF is
computed. Then, the convolution of the input high-dynamic range image with the spectral
PSF is performed in the Fourier domain, where it boils down to a simple multiplication.
The inverse fast Fourier transform (IFFT) is performed to obtain the image with glare in
the spatial domain, which is then tone mapped and displayed.

Figure 15.12a demonstrates a simple billboard approach on the candle image, where the
spectral PSF is just placed at the flame center. Note the differences in the visibility of
horizontal needles in the ciliary corona with respect to Figure 15.12b, which is computed
using the processing pipeline depicted in Figure 15.11.

In summary, the glare illusion is a powerful tool to enhance the apparent image brightness
and create an impression of light emission from the image. Similar observations have been
made in the context of lens flares [33], and their simulation can be used to improve the
overall perceived image appearance in the same way. The possibility to enhance brightness
and to create the impression of light emission is highly desirable when aiming at a more
realistic observer experience. As shown in this section, a direct glare simulation based on
the principles of wave optics gives a convincing result and it is surprisingly inexpensive in
terms of computations.
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(a) (b)

FIGURE 15.12 (See color insert.)

The glare appearance for a luminous object of non-negligible spatial size [22]: (a) the light diffraction pattern

(point-spread function) is just imposed on the background candle image, (b) the light diffraction pattern is

convolved with the image. ©The Eurographics Association 2009.

15.4 Image Temporal Resolution Retargeting

The continuous demand for better-quality displays results in a huge development in the
display industry. Attempts of creating mini-cinemas at home and/or visualization centers
lead to the production of bigger screens. At the same time viewers tend to move closer
to their displays in order to enjoy fine details of visualized content. Therefore, today’s
new designs – apart from improved contrast and brightness – need to ensure that the spatial
display resolution is sufficient to convey a high-quality image appearance. This section will
show that temporal aspects (that is, frame rate) can have a huge impact on the perception
of spatial resolution.

Under standard conditions, the world is perceived as a crisp and sharp mental image.
However, under certain conditions, the visual percept is blurred, which suggests that the
human visual system indeed is a time-averaging sensor. This usually happens in the case
of fast-moving objects, which cannot be easily tracked by the human eye (for example, car
wheels or objects behind a fast train window). The blur, respectively, the temporal integra-
tion is because that quickly moving objects cannot be stabilized on the human eye’s retina
for certain velocities. This phenomena is usually called motion blur and is similar to the
situation of taking a picture with a long exposure while objects are moving quickly in front
of the camera. It is often assumed that the temporal integration of information by the HVS
follows Bloch’s law [34], which states that detectability of stimuli of similar characteristic
depends only on their energy, which is a product of exposure time and luminance. Although
this law holds only up to a short time duration (∼40 ms), it becomes crucial for displays
showing dynamic content, where the time of one frame, assuming 25 frames/s content, is
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FIGURE 15.13

Illustration of hold-type blur for a ball under translational motion of constant velocity [35]. In the top row,

physical reality denoted by six intermediate moments in time is shown. The open circle denote the eye fixation

point. As the ball continuously moves and the human eyes perfectly track the ball (SPEM), its image is

stabilized on the retina producing a crisp and sharp image. On a hold-type display shown in the middle row,

the ball is displayed at the same position for the time period of one frame. However, at the same time, the

fixation point will continuously move to smoothly track the ball. Therefore, as the ball’s image on the retina is

no longer stabilized, the signal registered on the retina will be blurred along the trajectory of motion, which is

shown in the bottom row. ©The Eurographics Association 2010.

exactly 40 ms. This basically shows that an observer looking at a display does not only
perceive what is currently shown but also what was shown and perceived before.

The eye integration has a huge influence on the appearance of moving objects on a dis-
play. Consider the continuously-moving real object shown in Figure 15.13 and assume that
it is tracked perfectly by the HVS. Because of this tracking, a single receptor on the ob-
server’s retina will always receive the same signal over time. The percept is, hence, sharp
and crisp. However, in all current display devices, objects are displayed for the time period
of one frame at the same position (so-called hold-type effect), whereas the tracking per-
formed by the HVS is continuous due to smooth pursuit eye motion (SPEM). Therefore, in
contrast to what is found for real objects, the single receptor considered previously will not
receive the same signal over time anymore. Instead, it will average values along the object
trajectory resulting in a blurred percept. Note that this so-called hold-type blur is not due
to any display limitations. It happens in human eyes, meaning that it is purely perceptual
and cannot be captured easily by any camera.

A simple solution to reduce hold-type blur is to reduce the hold time, the period for which
the same frame is shown on a display. This requires a high frame rate, which is, in case
of broadcasting applications, usually not provided by the original content or too expensive
in the case of rendered content. Therefore, many temporal upsampling techniques have
been developed to increase the frame rate. Since this field is relevant to both the computer
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graphics and the display communities, solutions to reduce hold-type blur or to increase
frame rate can be categorized in two according groups. The first considers the general
problem of temporal upsampling, where solutions are usually implemented using a CPU
or dedicated graphics hardware (GPUs). Here, the computation time can usually be traded
in for higher quality. The second group is formed by solutions found in television screens,
which have to be really efficient even on a low-cost computation units.

15.4.1 Computer Graphics Solutions

In the computer graphics community, a high frame rate is desired as it has a huge influ-
ence on animation smoothness, interactivity, and perceived image quality. Because high-
quality image generation techniques are very often time consuming, a high frame rate is not
always possible to achieve. Therefore, less expensive methods for improving the temporal
resolution of the content without scarifying overall quality have been introduced.

One of the first attempts to increase the number of frames in the context of interactive
applications was presented in Reference [36]. The method relied on depth information
that allowed to reproject shaded pixels from one frame into another, thus creating many
frames out of a single originally rendered frame. Similar ideas were exploited in later
studies, where very expensive shaded samples were reused to speed up the image generation
process. First such methods [37] scattered information from previously rendered frames
into new frames by means of forward reprojections. Because of problems with occlusions
and gaps that needed to be fixed explicitly, Reference [38] replaced forward reprojection
by reverse reprojection, which also better fits common GPU architectures. Instead of pixel
colors, one can also reuse computationally expensive intermediate values whose choice
can be automated [39]. All these techniques can also been adapted to respect time-varying
phenomena [40], which makes them particularly interesting for remote-rendering contexts
as well [41]. More details can be found in Reference [42].

Another category of methods that allow for creating additional frames are morphing
methods. An extended survey discussing various techniques was presented in Refer-
ence [43]. Recently, Reference [44] used content-preserving warps targeting the problem
of video stabilization rather than temporal upsampling. However, similar techniques could
be used also for temporal upsampling.

There are also methods that directly target the creation of intermediate frames. An ex-
ample of such a method is presented in Reference [45], where the problem of temporal
upsampling of video content has been addressed. The work is well-suited for a single dis-
occlusion which allows for producing high-quality results for a standard content. However,
it requires full knowledge of future frames and is computationally expensive; therefore, it
is not really suitable for real-time applications. Although the quality of additionally created
frames is important and can be produced using various methods, such as the one described
above, in the case of temporal upsampling not all regions of the image are equally impor-
tant. Reference [46] showed that high-quality moving edges are a key feature to the HVS.
Therefore, any ghosting produced by temporal upsampling methods as well as hold-type
blur can significantly lower perceived quality. The same work also proposed a method that
addresses those perceptual effects and performs temporal upsampling, which preserves a
high edge quality.
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15.4.2 Industrial Solutions in Television Sets

Although the problem of temporal upsampling is well studied in computer graphics and
many methods providing good quality have been developed, most of them are computation-
ally expensive. Therefore, such solutions cannot be easily implemented as computational
units manufactured for television screens. As the problem of hold-type blur is a widely
known issue in the display industry, many off-the-shelf television sets nowadays offer so-
lutions that are designed to reduce blur, but do not require much computational power. The
key idea is, to increase the frame rate, usually to 100 or 200 Hz (respectively, 120 and
240 Hz for NTSC content), by introducing intermediate frames produced internally from
a low frame rate signal. The following shortly summarizes existing solutions while an
extended survey can be found in Reference [47].

The simplest solution is black data insertion (BDI), which reduces the hold-type effect
by introducing new black frames interleaved with the original. This is similar to the way
old cathode-ray tube (CRT) displays work; the light is emitted only for a small fraction of
the frame time. However, this solution has some drawbacks and limitations. Similarly to
classic CRT displays, it can significantly reduce brightness or introduce temporal flickering,
especially in large bright areas, where the HVS temporal sensitivity is high.

Instead of inserting black frames other solutions turn the backlight of an LCD panel on
and off, a procedure called backlight flashing (BF) [48], [47]. This is possible because
in many available displays, LCD panels are illuminated using hundreds of LEDs, whose
response is very fast. Therefore, it is easy to flash them at frequencies as high as 500 Hz.
Note that this solution has similar drawbacks to that of BDI methods. Besides hold-type
blur reduction, such techniques are also useful for reducing the effect of long LC response
by turning on the backlight only at the moment when the desired state of the LCs is reached.

The problems of black data insertion methods can be overcome by using the original
frames, that are duplicated and blurred, instead of black frames. On the other hand, this
blurred frame insertion (BFI) solution [49] can cause visible ghosting since the blurred
frames are not motion compensated.

Another category of methods reducing hold-type blur is frame rate doubling (FRD). For
such solutions, additional frames are obtained by interpolating pairs of original frames
along their optical flow trajectories [50]. Such techniques are commonly used in current
television sets, where they can easily expand standard 24 Hz content to much higher frame
rates (for example, 240 Hz) without reducing brightness or introducing flickering prob-
lems. The biggest limitation of frame interpolation comes from the optical flow estimation.
While it is usually not a problem for objects that are moving slowly, optical flow estima-
tion algorithms tend to fail when velocity gets bigger. As reported in Reference [35], in
such situations, the optical flow is automatically deactivated and the original frames are
simply duplicated, hereby, lowering the frame rate to the original, but avoiding visible er-
rors. Such problems are because that the optical flow estimation problem is usually very
complex and time consuming. Because all algorithms in television sets must be very ef-
ficient, they generally tend to show difficulties for challenging cases. Another drawback
of using interpolation is the time lag introduced by the need of knowing the future frames
in order to create intermediate frames. This is usually not a problem for broadcasting ap-
plications; however, in scenarios where a high interactivity is needed (for example, video
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games) the lag in interaction even beyond 90 Hz can be detected by the user and result in
discomfort [35], [51].

Instead of increasing the frame rate, a software solution for reducing the hold-type blur
is to apply an image filter to the content to be shown on the screen, that aims to invert
hold-type blur. This technique is called motion compensated inverse filtering (MCIF). As
hold-type blur can be modeled in image-space by a local one-dimensional convolution
kernel oriented in the direction of the optical flow, a deconvolution technique can be used
in order to inverse this process. In practice [52], it boils down to applying a local sharpening
filter, which is computed according to the local optical flow. The effectiveness of such a
technique is limited by the fact that hold-type blur is a lowpass filter, which removes certain
frequencies. Therefore, none of those frequencies that are completely lost can be restored.
Only those that are attenuated by hold-type blur can be recovered by amplifying them
beforehand using linear filtering.

There exists a possibility to combine several methods described above; for example, the
in-between frame derivation based on optical flow with the backlight flashing. However
details on such custom solutions are not published.

15.4.3 Perceptually Motivated Temporal Upsampling for 3D Content

The solutions described in the previous section can be used for hold-type blur reduction
and come either from the computer graphics community or television industry. Solutions
from the first group are able to provide high-quality results at the expense of a high compu-
tational cost; therefore, depending on the complexity of the rendering, the achievable frame
rate can be limited. Solutions from the second group are usually implemented as small
chips in television sets, are well suited for real-time application (for example, broadcast
content) but offer limited quality. The quality loss is because such solutions are limited to
the information found in the signal that is immediately displayed. Therefore, additional in-
formation, such as optical flow, needs to be recovered in order to create in-between frames.
However, this step usually introduces visible artifacts since correct data cannot be obtained.
Fortunately, in the case of synthetic content, such information is in fact available. The most
common example is 3D rendering, where perfect optical flow, often needed for other pur-
poses (for example, motion blur), can be computed very efficiently.

Reference [35] presented a method, which performs temporal upsampling for computer
generated content by exploiting information available during 3D rendering and various
aspects of the human perception. This method produces quality similar to that by solutions
designed for computer graphics applications (Section 15.4.1), but at a low computational
cost usually required in current industrial real-time solutions (Section 15.4.2). Another
advantage of this method is that it performs extrapolation instead of interpolation, and
hence, it does not produce any additional time lag. To this end, the method achieves trade-
off between the single additional frame quality and the cost of its production by exploiting
human perception.

In contrast to the previously described computer-graphics solutions, this method targets
temporal upsampling from frame rates that are already relatively high. Namely, extrapola-
tion was demonstrated from 40 Hz to 120 Hz signals, although the idea can be extended to
even higher frame rates. The pipeline of the method is presented in Figure 15.14.
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FIGURE 15.14

The pipeline of the temporal upsampling method from Reference [35]. From left to right; to extrapolate one or more additional frames, first a grid is created with vertices

snapped to geometry discontinuities. Later the grid is used to morph the originally rendered frame into multiple in-between frames. These are later blurred in order to hide

artifacts where morphing failed, for example, at disocclusions. Finally, the high-frequency losses are compensated for by frequency enhancement in the original frame.
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(a) (b)

FIGURE 15.15

Simulation of the blur perceived when the same sequence is played at (a) 40 Hz and (b) 120 Hz. Notice how

the horizontal blur (hold-type effect), along the motion trajectory, was reduced. The simulation comes from a

user adjustment task where the level of blur in the presented images was matched with the blur perceived in

played animations [35]. ©The Eurographics Association 2010.

As the method is meant to work at a high frame rate, the time budget for the additional
frame computation is very low. The method first performs a fast and rough approximation
of the additional frames based on the knowledge of the past. This is achieved by extrapolat-
ing the current original frame using a mesh-based approach. First, a coarse grid is attached
to the original frame. This grid is then morphed, according to the optical flow that is ob-
tained from the rendering pipeline, by translating each vertex of the grid by the vector of
the optical flow that corresponds to the location of the vertex. While the grid is deformed
also the underlying textures are morphed according to the optical flow. In the scenario of
upsampling 40 Hz content to 120 Hz, this technique was used to produce two predicted
frames. The low time consumption comes from the fact that morphing a coarse grid along
with a texture is relatively inexpensive using current GPUs. Unfortunately, this comes at
the expense of possible artifacts that can appear on discontinuities of optical flow (geom-
etry). In order to suppress and hide them two solutions were proposed. First, to prevent
big drifts on geometry edges, vertices of the grid are snapped to geometry discontinuities
before the morphing. Although this aligns the grid with geometry well, small artifacts can
persist as the grid is too coarse to handle small geometric details. To improve the result fur-
ther, the time-averaging property of the HVS is used. The extrapolated frames are blurred
in order to avoid such artifacts. The resulting high-frequency losses are compensated for in
the original frames that are, by definition, perfect. Because of the time averaging property
of the HVS, the perceived images are composed to the desired animation. However, the
compensation is not always feasible, particularly in high contrast regions. A black object
that is brightened by the blur would need a negative compensation, which is physically
impossible. In such places, the blur can be reduced, especially if artifacts are unlikely to be
visible. An example, how such a technique can reduce the hold-type effect, is shown in Fig-
ure 15.15. Table 15.1 compares the perceptually motivated temporal upsampling technique
to other techniques used in television sets described previously in Section 15.4.2.

This section showed that the temporal integration ability of the human visual system has
a significant impact on the perceived image quality. A low frame rate is the reason why
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TABLE 15.1
Comparison of the various methods.

Method

Criterion BDI BF BFI FRD MCIF Ref. [35]

LCD response required high moderate high high no high
backlight response required no high no no no no
optical flow quality no no no high moderate high
ghosting artifacts possible possible yes no no no
flickering artifacts yes yes no no no no
luminance reduction yes yes no no no no
limitation of blur reduction flickering flickering no no frequency cut-off no
other possible artifacts no no no fast motion oversaturation no

objects moving on a hold-type screen are perceived as less sharp and crisp. The presented
techniques reduce this problem and achieve a higher apparent visual quality using different
temporal upsampling strategies or inverse filtering. It was also shown that the limitations
of the HVS imply that not all frames need to be perfect. The latter can be exploited to
make solutions more efficient. If performance is not an issue, one can even turn these HVS
deficiencies to an advantage; as shown in the next section, carefully computed high-quality
frames can even allow for the improvement of image quality (in terms of resolution and
color depth) beyond the physical properties of a display.

15.5 Apparent Color and Resolution Enhancement

While hold-type blur leads to an objectionable reduction of perceived image quality, the
fact that the eye integrates information over time can be turned into an advantage. The
following describes two examples, that is, the increase of color and resolution, which allow
enhancement of content appearance by exploiting the HVS.

The techniques presented here rely on the temporal effects. This idea can be illustrated on
a prominent example of DLP projectors. These devices display the three color channels of
an image independently, but in rapid succession. These mono-colored images are integrated
in the eye and then lead to the impression of a full-color image.

Ideas similar to the DLP projector principle were also exploited in the early days of
computer graphics and video games. The available color palettes were often limited and
only a few could be used simultaneously. By making use of temporal effects, it is possible
to virtually lift these constraints slightly. The idea is to flicker different colors that then
integrate in the eye to a new mix that was not previously available.

For example, in a video game, one might want to add a shadow to the scene. To simulate
such a shadow, one would usually rely on a darkened version of the affected pixels, yet, the
necessary darker tints were not always available in the palette. To overcome this limitation,
one could draw the shadow only in one out of two frames, resulting in a flickering shadow.
If the refresh rate is high enough to exceed the critical flickering frequency (CFF) [53], the
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affected colors start to mix with the black of the shadow, hereby, leading to an apparent
extension of the available colors.

Similar principles are also used in LCD screens under the name of frame rate control.
In fact, many devices are limited to 6 bits per color channel, while the graphics card usu-
ally sends 8-bit color information per channel. Many screens exploit a simple technique
to display the different nuances, which otherwise would be lost. Whenever a color is not
representable by 6 bits, the screen displays its immediate color neighbors in quick succes-
sion over time [54]. Hereby, the apparent bit depth is effectively increased because the eye
integrates the information and reports an average value to the brain.

The color impression is not the only feature that can be improved by exploiting the tem-
poral domain. Resolution can also be enhanced to produce details that physically cannot be
displayed on a screen. Such a possibility is of high interest because today’s image content
becomes increasingly detailed. There is an often striking difference between the resolution
that a camera uses to record an image and the number of pixels that can actually be shown
on a display device. Gigapixel images are no longer uncommon, but displaying them in
full detail is a challenge.

In order to increase the apparent resolution of an image, it is again possible to make use
of perceptual solutions. As explained in the previous section on hold-type blur, the eye
integrates neighboring pixels when moving over the screen to track dynamic content. This
effect would, for a static image, lead to an image blur that reduces the overall quality. On
the other hand, if the display frequency is increased and the image does no longer appear
static, the information perceived during the eye trajectory changes rapidly. Consequently,
the information that is integrated in each photoreceptor of the eye can vary drastically.
By choosing appropriate temporal color patterns, one can produce an illusion of a high-
resolution image by stimulating each receptor in an appropriate way.

The precise setup, recently presented in Reference [55], is as follows. The goal is to dis-
play a single high-resolution image (animations will be discussed later) on a low-resolution
screen. The idea is to move this high-resolution image slowly across the screen. The ob-
server will track this image and the smooth pursuit eye motion will fixate image points at
their corresponding position on the retina. As the movement is perfectly smooth, the eye
photoreceptors will integrate the time-varying information in each pixel over a short period
of time (Figure 15.16a). As explained before, this integration time is related to the CFF.
For example, consider the CFF of 40 Hz; consequently, on a 120 Hz display, three frames
are integrated together. In other words, if the eye tracks a point, it will constantly project
to the same photoreceptor on the retina; hence, the receptor will perceive three temporal
value changes besides the changes when moving from one pixel to the next.

Mathematically, if a receptor moves over an image I (which varies in its pixels and over
time) during a duration T that conforms with the CFF along a path p(t), the perceived result
is ∫ T

0
I(p(t), t)dt. (15.4)

When tracking across the screen, retinal photoreceptors switch pixels of the low-
resolution device at different time steps, which, in combination with the temporal changes
of the image content, results in a sufficient variance of the perceived information to create
the illusion of looking at a higher-resolution screen (Figure 15.16b).
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FIGURE 15.16

Perceived integration of an animated image: (a) the continuous case, where an animated image I(p(t), t) is

perceived by a receptor r moving along a continuous path p(t), and (b) the discrete case, where an animated

image consists of discrete pixels at discrete frames of time with a discrete motion in every frame.

One important observation from Equation 15.4 is that the eye movement is crucial in
order to enhance apparent resolution. The reason becomes clearer when looking at a given
time t0, as I(p(t), t0) is constant for all receptors inside of a pixel. Consequently, the same
color sequence would be perceived and hence, the same integrated response will be re-
ported. The image on the retina corresponds thus to a low-resolution image.

Interestingly, although Equation 15.4 looks continuous, the change of the frames (as-
suming a CFF of 40 Hz, three frames will be integrated) and the pixels are discrete. Thus,
the integral becomes a weighted sum with the weights proportional to the time for which a
pixel’s color is seen by the photoreceptor:

N

∑
t=0

wtI(p(t), t). (15.5)

Formally, a weight wi, j,t , where i and j refer to a discrete pixel position and k the discrete
time interval during which the pixel’s color is constant, is computed as

wi, j,k :=
∫

χ(i, j)(p(t)) χk(t)dt, (15.6)

where χ describes a characteristic function. Namely, χ(i, j)(p(t)) equals to one if p(t) lies in
pixel (i, j); otherwise, it is zero. The term χk(t) denotes a characteristic function according
to the time interval. In this step, one underlying assumption is that the temporal integration
on the retina corresponds to a box filter in the temporal domain, further, time variation of
the pixel colors is assumed to be produced instantaneously.

So far, only a single photoreceptor was considered. In Reference [55], the authors as-
sumed that the these receptors are arranged on a uniform grid and hence, that each pho-
toreceptor is actually located on a pixel of the high-resolution image. If the illusion of a
higher-resolution image is to be reproduced, each photoreceptor should then perceive an in-



490 Perceptual Digital Imaging: Methods and Applications

(a) (b) (c) (d) (e) (f) (g)

FIGURE 15.17 (See color insert.)

Resolution enhancement: (a) test images, (b–d) subimages obtained in the optimization process, (e) resolution

enhancement via simulation of the images created on the retina once the three subimages are shown on a high

frame rate display, (f) Lanczos downsampling as a standard method, and (g) original high-resolution images.

Note, that even though the resolution was reduced three times, the presented method was able to recover fine

details in contrast to the standard downsampling method.

tegrated response according to Equation 15.5 that is close to the value of its corresponding
high-resolution image pixel.

For each receptor, Equation 15.5 describes a linear relationship. For all receptors, this
results in a linear system that one can solve for the image sequence I over time. The solution
can be found in a least-square sense. A constrained optimization is often used to assure that
the values of I lie in the displayable range. Examples of the resolution enhancement are
shown in Figure 15.17.

As the equation models the integration in the eye, one has to make sure that the CFF
is respected and the eye properly integrates the information. Reference [55] proposed a
postprocessing technique that blends the optimal solution with a low-resolution filtered
version. The blending process is spatially varying, according to the predicted CFF, which
is strongly scale and contrast dependent [56]. It ensures that the variance in the temporal
signal is properly reduced and the integration assured. Consequently, flickering is avoided,
but the resolution gain might be slightly reduced.

For general high-resolution animation, such as 3D rendering, an extension was intro-
duced in Reference [57]. Here, the idea is to rely on optical flow (extracted from the movie
or 3D scene) to predict the way the eye tracks general information. A novel GPU-based
solver, which drastically reduces the computation time, was proposed. These measures lead
to higher processing rates, that enable the treatment of general movies.

Overall, the exploitation of the temporal domain offers an interesting opportunity to pro-
duce a perceived resolution increase. This improvement has been proven in several user
studies that show the superiority of the approach with respect to standard downsampling
techniques. The gain in information has been illustrated by producing a font of 2×3 pixels
that remains legible. This latter case illustrates that there is an actual gain in information
and not just the illusion of it. In the future, the temporal domain is an important aspect that
should be considered when producing image content.
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15.6 Apparent Depth Manipulation

Recently, 3D stereo has received much attention in applications, such as computer games,
feature films, and television production. Although 3D movies, 3D games, or even first 3D
television channels are accessible to a wide range of customers, many challenges exist when
aiming to produce stereo content that is perceptually convincing. The previous sections dis-
cussed how the knowledge of the HVS helps to improve luminance contrast, brightness, as
well as spatial and temporal resolutions, which are important constituents of image quality.
This section complements this argument by showing that taking into account the HVS in
the context of 3D stereo improves the perceived quality and the viewing comfort of stereo
content.

15.6.1 Depth Perception

In reality, the HVS relies on a number of different mechanisms that allow perceiving
depth. They are known as depth cues and can be categorized [58] as pictorial (occlu-
sion, perspective foreshortening, relative and familiar object size, texture and size gra-
dients, shadows, aerial perspective), dynamic (motion parallax), ocular (accommodation,
vergence), and stereoscopic (binocular disparity). The sensitivity of the HVS to different
cues mostly depends on the distance between the observer and the observed objects [59].
The HVS is also able to combine the information coming from different cues even if they
contradict each other [58, Chapter 5.5.10]. Recently, both the feature film and the computer
game industries have been undertaking considerable effort to introduce binocular disparity
(one of the strongest depth cues) into the content they produce. It is introduced artificially
by showing different images to the left and the right eye. This strongly affects accommo-
dation and vergence, which are closely coupled and due to the synthetic stimulation easily
contradict each other. The problem is caused by the fact that accommodation tends to main-
tain the display screen within the depth of focus (DOF) that roughly falls into the range of
±0.3 diopters [60]. On the other hand, with increasing screen disparity, vergence drives the
fixation point away from the screen plane. This results in a conflict between the fixation
point and the focusing point, which can be tolerated to some degree by the accommodation-
vergence mechanisms, but at the expense of possible visual discomfort [60] (Figure 15.18).
However, even if the problem of depth conflicts would not exist, the HVS is limited in
perceiving big disparities. Retinal images can be fused only in a region called Panum’s
fusional area, where disparities are not too big and otherwise double vision (diplopia) is
experienced. It was also shown that the fusion depends on many other factors, such as
individual differences, stimulus properties (better fusion for small, strongly textured, well-
illuminated, static patterns), and exposure duration.

Binocular disparity, as one of the most appealing depth cues, can turn flat images shown
on a screen into three-dimensional scenes with significantly enhanced realism. Therefore,
it is crucial to understand how the HVS interprets this information, and possibly overcome
the limitations stemming from using standard 3D equipment. Unfortunately, disparity per-
ception has not yet received as much attention as brightness perception, which is already
a well-studied topic, but it is interesting how many properties they share [61], [62], [63].
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The problem of discomfort due to the disagreement between accommodation and vergence. When some none-

zero disparity is introduced by showing different images to the left and the right eye, the fixation point is driven

further from the screen plane, on which the focusing point is located. As the disparity gets bigger the distance

between the focusing and the fixation point is increased. This disagreement can be tolerated only to some

extent by the accommodation-vergence mechanism, causing discomfort when the fixation point gets too far the

screen plane.

Sensitivity to disparity and brightness is defined by detection thresholds, which depend
on the spatial frequency of depth corrugations and their amplitude. The “u”-shape of the
disparity sensitivity function (DSF) is analogous to the contrast sensitivity function (CSF).
However, it is shifted and has a peak around 0.3 to 0.5 cpd and a cut-off frequency around
3 to 5 cpd [63]. For brightness it was shown that CSF is an envelope of responses for a
number of independent channels that are tuned to different spatial frequencies [64]. Sim-
ilar conclusions were provided for disparity [65, Chapter 19.6.3]; however, it is not yet
clear what the independent channel bandwidth for disparity modulation is, although some
estimates suggest one to three octaves. Interestingly apparent depth, similarly to apparent
brightness, is also dominated by the distribution of disparity contrasts rather than absolute
disparities [61]. All the analogies listed above suggest that disparity and brightness per-
ception undergo similar mechanisms. Therefore, new models, that potentially could handle
disparities, can be inspired by already existing work for luminance.

15.6.2 Perceptual Disparity Model

There were many attempts to better understand how the HVS interprets depth and how
sensitive it is to different cues [59], [65]. It is also interesting how disparity can be reduced
in order to increase the viewing comfort [66]. Also many psychophysical measurements
were performed to better understand the sensitivity of the HVS to disparities [67], [63],
[65]. However, none of them allowed to build a model as complete as the ones available
for luminance [64], [68].

Reference [69] recently developed a perceptual model for disparity based on a series of
psychophysical measurements that allows for a better understanding of binocular disparity
and predicts the response of the HVS to different stimuli. This work was mostly inspired
by the existing similarities between brightness and depth perception described in the pre-
vious section. The key information needed to build such a model are measurements of
disparity detection thresholds. The authors conducted a number of psycho-visual experi-
ments to obtain the thresholds for sinusoidal patterns in depth with different frequencies
and amplitudes. This allowed them to fit an analytic function to the obtained data, which
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describes detection thresholds for a whole range of possible sinusoidal depth corrugations.
Such function can be later used for computing a so-called transducer function that maps
disparity values to a perceptually linearized space. The transducer function is invertible,
therefore changing from physical disparity values into a perceptual space and back be-
comes possible. This allows for performing all operations on disparity in a perceptually
linearized space and take into account the nonlinearity of human disparity perception. As
the disparity sensitivity depends on the spatial frequency of the depth pattern, before apply-
ing the transducer function, a disparity map needs to be decomposed into frequency bands
and all operations have to be performed separately on each band.

Reference [69] showed a number of possible applications of the model. One of them is a
disparity metric which allows for comparing two stereo images. Given an original disparity
map and a distorted one, it computes a spatially varying map of perceived disparity distor-
tion magnitudes. Both disparity maps are first decomposed into frequency bands and later
transformed using the model to the perceptually uniform space, where they are expressed
as just-noticeable difference units (JNDs). In order to compute the perceived difference,
corresponding bands are first subtracted and per-band difference is calculated. Later, dif-
ferences from all bands are combined to one map that illustrates the perceived differences.
The metric was validated by the authors using scenes with different number of cues, where
distortions were introduced as a postprocessing step using a warping method [70].

Another possible application is disparity compression. Since the model can transfer dis-
parity maps into JND space, it is easy to decide which disparities are invisible to the human
observer. Removing such information allows for good compression, preserving at the same
time the high quality of images. As the response of the HVS can be predicted, it is also
possible to enforce the same response on another person or different equipment, as those
factors can influence the disparity sensitivity. Therefore, it is possible to display the same
content on two different devices optimizing the disparity for both of them in such a way that
the depth impression will be similar regardless of the device or the observer. The presented
model allows also to adjust the disparity range to the viewing conditions. The usual scaling
of disparities, such as the one presented in Reference [66], is performed without taking into
account how the HVS perceives disparity. Using the presented model, the disparity can be
scaled in the perceptual space and the nonlinear behavior of the HVS will be implicitly cap-
tured. Such a method will allow for bigger manipulations of disparities to which the HVS
is not sensitive, whereas those places that are crucial for the HVS will be better preserved.

Reference [69] also showed backward-compatible stereo as a novel application of the
proposed model. It allows for minimizing disparity in a way that the stereo content seen
without glasses does not reveal any significant artifacts; however, once special equipment
is used, the observer can experience a stereo effect. As an example application, one can
consider the problem of printing a stereo image using anaglyph (red/green or red/cyan
glasses) techniques. In such a situation, the stereo impression can be enjoyed only when a
viewer wears anaglyph glasses, but when such equipment is not available, standard stereo
images can be easily spoiled by color artifacts. In contrast, when the backward-compatible
technique is used, the color artifacts can be minimized. The technique can also be useful for
other 3D equipment. For example, when the content must be seen through shutter glasses,
a person who does not have them will perceive blurred pictures, that is, an average of the
left and right eye view.
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(a) (b)

FIGURE 15.19

The Cornsweet illusion shown in anaglyph colors. A circle with (a) depth due to disparity and (b) apparent

depth due to Cornsweet disparity profiles. The plots show the disparity profiles and their perceived shapes.

The solid area depicts the total disparity, which is significantly smaller when using Cornsweet profiles.

The backward-compatible stereo technique exploits the Cornsweet illusion, which was
shown (Section 15.2) to be able to enhance the contrast of luminance patterns. It turns out
that the illusion holds for quite different signals, such as perceived line lengths or texture
pattern density [71]. Reference [72] found that a depth Cornsweet profile adds to the per-
ceived depth difference between real textured surfaces. In Reference [73], this effect was
confirmed for random-dot stereograms. The authors observed that the typically induced
depth difference over the whole surfaces amounted up to 40% of the depth difference at
the discontinuity, which was roughly twice larger than in experiments conducted in Refer-
ence [72] for real surfaces. It was concluded that a gradual depth decay in the Cornsweet
profile remains mostly invisible and the object dislocation at the discontinuity is propagated
by the HVS over both surfaces [73]. This effect is illustrated in Figure 15.19.

In order to obtain a stereo image that does not exhibit disturbing artifacts while watched
without special equipment, the backward-compatible technique first compresses (that is,
flattens) the image disparity. At the same time, the disparity metric is employed to make
sure that a specified minimum of perceived disparity remains. In this process, the Craik-
O’Brien-Cornsweet illusion [72], [73] is created on disparity discontinuities by removing
the low-frequency component. Since the HVS is less sensitive to low-frequency dispar-
ity corrugations, the obtained Cornsweet profiles are not visible. Instead, apparent depth
is created by propagating the disparity discontinuities introduced by the profiles over sur-
faces [73] (Figure 15.20).

One additional advantage of exploiting the Cornsweet illusion comes from the fact that
a cascade of the local Cornsweet profiles still conveys a consistent impression of discrete
depth changes, while in the traditional approach disparity accumulation is required for
proper stereoscopic effect. Thus, there is no need of accumulating global disparities, which
further improves the backward compatibility.
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(a) (b) (c) (d)

FIGURE 15.20 (See color insert.)

Backward-compatible anaglyph stereo (c) offers good depth-quality reproduction with similar appearance to

the standard stereo image. The small amount of disparity leads to relatively high-quality images when stereo

glasses are not used. To achieve equivalent depth-quality reproduction in the traditional approach significantly

more disparity is needed (b), in which case the appearance of anaglyph stereo image is significantly degraded

once seen without special equipment.

Note, that the Cornsweet illusion can be also used for enhancement of 3D impression,
similarly as it was done for luminance by introducing the unsharp masking profiles de-
scribed in Section 15.2. Examples of such enhancement can be seen in Figure 15.21.

Because of the huge success of 3D equipment, the study of stereo perception plays an in-
creasingly important role and is likely to still occupy researchers in the future. Especially,
the nonlinear relationship between physical disparity and perceived depth is an interest-
ing observation. It is important for a deeper understanding, but also crucial when creating
stereo content. It has been even shown that the perceived depth can be augmented by per-
ceptual means. Currently, experts are only scratching the surface of this topic and exciting
avenues for future research remain.

15.7 Conclusion

This chapter demonstrated how perceptual effects can be employed to exceed physical
limitations of display devices. By capitalizing on various aspects of the human visual sys-
tem’s insensibility, display qualities, at least perceptually, have been significantly enhanced
in a stable and persistent way. Similar enhancement could often be achieved only by im-
proving physical parameters of displays, which might be impossible without fundamental
design changes in the existing display technology and clearly may lead to overall higher
display costs.

The presented techniques achieve their goals by means of relatively simple image pro-
cessing operations, which often rely on a skillful gradient introduction into the luminance
and disparity domains. The Cornsweet gradient profile inserted across luminance and depth
discontinuities (edges in the image) enhances apparent perceived contrast and disparity.
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(a) (b)

(c) (d)

FIGURE 15.21 (See color insert.)

Depth enhancement using the Cornsweet illusion for two different scenes with significant depth range:

(a,c) original images and (b,d) enhanced anaglyph images. A better separation between foreground and back-

ground objects and a more detailed surface structure depiction can be perceived in enhanced images.

The halo effect surrounding bright image regions enhances perceived image brightness. In-
terleaving, in the temporal domain, high-quality sharpened and low-quality blurred frames
on high-refresh rate displays, reduces perceptual hold-type blur and improves apparent mo-
tion smoothness. Similar in spirit, the principles of temporal signal integration in the retina
can be used to improve color perception, reduce quantization errors on low bit-depth dis-
plays, and enhance apparent resolution.

In the research presented here, each quality dimension, such as image contrast, bright-
ness, sharpness, temporal, and spatial resolution, have been handled separately. An inter-
esting question remains: can the possible interactions between those dimensions also be
exploited to even further improve apparent display qualities?
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(a) (b)

(c) (d)

FIGURE 3.3

The effect of the contrast masking property of human vision on visual quality using JPEG compression:

(a) original Building image, (b) its distorted version with MSE = 134.61, (c) original Caps image, and (d) its

distorted version with MSE = 129.24. The distorted images clearly differ in their visual quality, although they

have similar MSE with respect to the original.



(a) (b) (c)

(d) (e) (f)

FIGURE 3.4

Example distortions from the LIVE IQA database: (a) original image, (b) JPEG2000 compression, (c) JPEG

compression, (d) white noise, (e) blur, and (f) Rayleigh fading.

FIGURE 3.5

Sample frames from the LIVE VQA database.



FIGURE 4.1

Images with different aesthetic qualities. Images on the first row are taken by professional photographers while

images on the second row are taken by amateur photographers.
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FIGURE 4.4

Different representations of the hue values: (a) scalar representation and (b) vector representation.



(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4.5

Harmony hue distribution models with gray indicating the efficient regions: (a) i type, (b) V type, (c) L type,

(d) I type, (e) T type, (f) Y type, (g) X type, and (h) N type. All the models can be rotated by an arbitrary angle.

(a) (b) (c)

FIGURE 4.6

Image examples that fit with different types of hue harmony models in Figure 4.5: (a) fitting I-type harmony,

(b) fitting Y -type harmony, and (c) fitting i-type harmony.

(a) (b) (c)

FIGURE 4.9

Texture and patterns. Patterns in these examples evoke aesthetic feelings.



FIGURE 4.10

Linear perspective in photographs.

(a) (b)

(c) (d)

FIGURE 5.5

An illustration of exposure: (a) portrait with a dark background and perceptual exposure, (b) portrait with a

light background and perceptual exposure, (c) portrait with a dark background and naive mean value exposure,

and (d) portrait with a light background and naive mean value exposure.



(a) (b)

(c) (d)

FIGURE 5.14

Example images with: (a) noise, (b) light RGB smoothing, (c) aggressive RGB smoothing, and (d) simple

color opponent smoothing.

(a) (b) (c)

(d) (e) (f)

FIGURE 5.15

A series of images illustrating how an image approximately appears when displayed on a monitor at different

steps in the color rendering, where (a–c) simulate images viewed within a flareless viewing environment and

images (d–f) simulate images viewed with flare. (a) The original linear camera image, (b) after gamma cor-

rection but not color corrected, (c) after color correction and gamma correction, (d) after color correction and

gamma correction (with flare), (e) with boosted RGB scales, and (f) after flare correction.



(a) (b)

(c)

FIGURE 5.18

Example images with: (a) no edge enhancement, (b) linear edge enhancement, and (c) soft thresholding and

edge-limited enhancement.

(a) (b) (c)

FIGURE 6.1

The Macbeth color checker taken under the (a) daylight, (b) tungsten, and (c) fluorescent illumination.



FIGURE 6.3

Chromatic adaptation. Stare for twenty seconds at the cross in the center of the top picture. Then focus on the

cross in the bottom picture; the color casts should disappear and the image should look normal.

(a) (b) (c)

FIGURE 6.8

Chrominance representation of the images shown in Figure 6.1 for the (a) daylight, (b) tungsten, and (c) fluo-

rescent illumination.



FIGURE 6.9

Examples of the images taken in different lighting conditions without applying white balancing.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.10

Joint white balancing and color enhancement using the spectral modeling approach: (a,d) ρ = 0, (b,e) ρ = 0.25,

and (c,f) ρ = 1.0.



(a) (b) (c)

(d) (e) (f)

FIGURE 6.11

Joint white balancing and color enhancement using the spectral modeling approach: (a,d) ρ =−0.5, (b,e) ρ =
0, and (c,f) ρ = 0.5.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.12

Joint white balancing and color enhancement using the combinatorial approach: (a,d) w = 0.5, (b,e) w = 0,

and (c,f) w =−0.5.



(a) (b) (c)

(d) (e) (f)

FIGURE 6.13

Color enhancement of images with inaccurate white balancing: (a–c) input images and (d–f) their enhanced

versions.

(a) (b) (c)

(d) (e) (f)

FIGURE 6.14

Color adjustment of the final camera images: (a,d) suppressed coloration, (b,e) original coloration, and (c,f) en-

hanced coloration.



(a) (b) (c)

(d) (e) (f)

FIGURE 6.15

Color enhancement of the final camera images: (a–c) output camera images and (d–f) their enhanced versions.

(a) (b)

(c) (d) (e) (f)

FIGURE 7.1

Signal-level thumbnail generation: (a) original image, (b) two magnified regions cropped from the original

image, and (c–f) thumbnails. Thumbnails are downsampled using (c) decimation, (d) bilinear, (e) bicubic, and

(f) Lanczos filtering.



(a) (b) (c)

FIGURE 7.2

ROI-based thumbnail generation: (a) high-resolution image, (b) automatic cropping, and (c) seam carving.

(a) (b)

(c) (d)

FIGURE 7.3

Quality-indicative visual cues: (a) blur, (b) noise, (c) bloom, and (d) red-eye defects.



(a) (b)

(c) (d)

(e) (f)

FIGURE 7.12

Highlighting blur in the thumbnail when the original image is blurred: (a) conventional thumbnail at a resolu-

tion of 423×317 pixels, (b) two magnified regions from the original image with 2816×2112 pixels, (c) per-

ceptual thumbnail obtained using gradient-based blur estimation, (d) corresponding blur map, (e) perceptual

thumbnail obtained using the scale-space-based blur estimation, and (f) corresponding blur map.



(a) (b)

(c) (d)

FIGURE 7.13

Highlighting blur in the thumbnail when the original image is sharp: (a) conventional thumbnail with 341×256

pixels, (b) magnified region from the original image with 2048× 1536 pixels, (c) perceptual thumbnail via

gradient-based blur estimation, and (d) perceptual thumbnail via scale-space-based blur estimation.

(a) (b) (c)

FIGURE 7.14

Highlighting blur in the thumbnail when the original image with 1536×2048 pixels is sharp: (a) conventional

thumbnail with 256×341 pixels, (b) perceptual thumbnail via gradient-based blur estimation, and (c) percep-

tual thumbnail via scale-space-based blur estimation.



(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

FIGURE 7.18

Highlighting blur and noise in the thumbnail: (a) original image with both blur and noise, (b) two magni-

fied regions from the original image, (c) conventional thumbnails obtained using bilinear filtering, (d) con-

ventional thumbnails obtained using bicubic filtering, (e) conventional thumbnails obtained using Lanczos

filtering, (f) gradient-based estimation blur map, (g) perceptual thumbnail obtained using gradient-based blur

estimation, (h) perceptual thumbnail obtained using gradient-based blur estimation and region-based noise es-

timation, (i) scale-space-based estimation blur map, (i) perceptual thumbnail obtained using scale-space-based

blur estimation, and (k) perceptual thumbnail obtained using scale-space-based blur estimation and multirate

noise estimation.



(a) (b)

FIGURE 11.2

Top six ranks of correlogram retrieval in two image databases with (a) 10000 images and (b) 20000 images.

Top-left is the query image.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 11.5

Four queries in Corel 10K database: (a–d) correlogram for d = 10, (e–h) perceptual correlogram for d = 10,

and (i–l) perceptual correlogram for d = 40. Top-left is the query image.



FIGURE 11.6

Retrieval result of the perceptual correlogram for the query in Figure 11.2.

(a) (b)

FIGURE 11.7

A special case where the correlogram works better than the perceptual correlogram descriptor: (a) correlogram

and (b) perceptual correlogram.
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(i) (j) (k) (l)

FIGURE 11.15

Four typical queries using three descriptors in Corel 10K database: (a–d) dominant color, (e–h) correlogram,

and (i–l) proposed method. Top-left is the query image.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 11.16

Four typical queries using three descriptors in Corel 20K database: (a–d) dominant color, (e–h) auto-

correlogram, and (i–l) proposed method. Top-left is the query image.



(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 11.17

Two queries in (a,b,e,f) Corel 10K and (c,d,g,h) Corel 20K databases where (auto-)correlogram performs better

than SCD: (a,e) correlogram, (b,f) proposed method, (c,g) auto-correlogram, and (d,h) proposed method. Top-

left is the query image.

(a) (b)

FIGURE 12.1

An input image and its coarse segmentation.
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FIGURE 12.4

Distances between regions and region types: (a) distances between an image region and all region types;

(b) distances between all regions and a specific region type.

0.10

0.10

0.90

0.40

0.20

0.10

region type

original image

segmentation

6

5

4

3

2

1

original image

segmentation

0.20

0.10

0.20

0.60

0.10

0.20

FIGURE 12.5

Construction of model vectors for two images and a visual thesaurus of six region types; lowest values of

model vectors are highlighted (light gray) to note which region types of the thesaurus are most contained in

each image, whereas a high value (dark gray) indicates a high distance between the corresponding region type

and the image.



(a) (b)

FIGURE 12.10

An example from the Beach domain, where the region types of an image are different than a typical Beach

image.

(a) (b) (c)

(d) (e) (f)

FIGURE 12.15

Three examples from the Beach domain. Initial images and their segmentation maps.



(a) (b) (c)

(d) (e) (f)

FIGURE 12.16

Indicative Corel images.

(a) (b) (c)

(d) (e) (f)

FIGURE 12.17

Indicative TRECVID images.



(a) (b) (c) (d)
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FIGURE 13.4

PGA performance demonstration on a sequence from Titanic movie: (a,e,i) frame 77, (b,f,j) frame 103,

(c,g,k) frame 142, and (d,h,l) frame 175. (a–d) Original frames, (e–h) PGA-identified foreground blobs on

the DSCT color-clustered frame, and (i–l) perceptual clusters marked with the same color as the blobs belong-

ing to the distinct foreground clusters. Note that the person wearing the red jacket, initially seen on the right of

the person wearing the yellow jacket, comes to the left starting from frame 110.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 13.5

PGA performance demonstration on various scenes: (a–d) original frames in four different scenes, (e–h) iden-

tified foreground blobs, and (i–l) perceptual clusters.



(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 13.8

Scene categorization: (a–d) subject-centric scenes, as they all have one or two prominent subjects, which exist

throughout the duration of the shot, and (e–h) frame-centric scenes because the subjects in these scenes last

only for a small duration in the shot. Prominence values for the subjects taken from left to right: (a) {0.96,0.1},

(b) {0.3, 0.8, 0.95}, (c) {0.8, 0.8, 0.18}, (d) {0.61, 0.66}, and (e–h) values smaller than 0.5 according to the

proposed prominence model which includes life span as an attribute.



(a)

(b)

(c)

(d)

(e)

FIGURE 13.11

Results obtained for various horse and cow videos. Probability at node E: (a) 0.814, (b) 0.795, (c) 0.910,

(d) 0.935, and (e) 0.771, 0.876, 0.876, 0.800, and 0.911 for different videos with the object model cow.



(a) (b) (c)

(d) (e) (f)

FIGURE 15.3

Two examples of how the Cornsweet illusion can enhance the contrast of tone-mapped images are presented on

the left. (a–c) Example processed using a global tone mapping operator, where countershading restores contrast

in the heavily compressed dynamic range of the sky and highlights. (d–f) Example processed using a local tone

mapping operator, which emphasizes on local details at expense of losing global contrast between the landscape

and sky. In this case countershading restores brightness relations in this starkly detailed tone mapping result.

Notice that the contrast restoration preserves the particular style of each tone mapping algorithm.

(a) (b)

FIGURE 15.4

The Cornsweet illusion used for color contrast enhancement: (a) original image and (b) its enhanced version

using Cornsweet profiles in the chroma channel. In this example, the higher chroma contrast improves the sky

and landscape separation and enhances the impression of scene depth.



FIGURE 15.9

The glare appearance example [22]. ©The Eurographics Association 2009

(a) (b)

FIGURE 15.12

The glare appearance for a luminous object of non-negligible spatial size [22]: (a) the light diffraction pattern

(point-spread function) is just imposed on the background candle image, (b) the light diffraction pattern is

convolved with the image. ©The Eurographics Association 2009.
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FIGURE 15.17

Resolution enhancement: (a) test images, (b–d) subimages obtained in the optimization process, (e) resolution

enhancement via simulation of the images created on the retina once the three subimages are shown on a high

frame rate display, (f) Lanczos downsampling as a standard method, and (g) original high-resolution images.

Note, that even though the resolution was reduced three times, the presented method was able to recover fine

details in contrast to the standard downsampling method.

(a) (b) (c) (d)

FIGURE 15.20

Backward-compatible anaglyph stereo (c) offers good depth-quality reproduction with similar appearance to

the standard stereo image. The small amount of disparity leads to relatively high-quality images when stereo

glasses are not used. To achieve equivalent depth-quality reproduction in the traditional approach significantly

more disparity is needed (b), in which case the appearance of anaglyph stereo image is significantly degraded

once seen without special equipment.



(a) (b)

(c) (d)

FIGURE 15.21

Depth enhancement using the Cornsweet illusion for two different scenes with significant depth range:

(a,c) original images and (b,d) enhanced anaglyph images. A better separation between foreground and back-

ground objects and a more detailed surface structure depiction can be perceived in enhanced images.
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