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Foreword

Liberalization and restructuring of electricity industry has brought 
peak-load and capacity pricing to the forefront for analysis of regula-
tory policy and market design. In this regard, this volume brings a risk 
management perspective to the discussion of capacity mechanisms in 
electricity markets.

The perspective of risk management is needed for restructuring 
of the electricity industry, and liberalization of wholesale and retail 
markets for power. Industry restructuring introduced a new market 
structure in which power generators and utilities and other retailers 
in large regional markets managed by independent system operators 
(ISOs) and regional transmission operators (RTOs). It also brought 
a new allocation of risk bearing, in which generators initially bear 
investment risks, and utilities and their customers bear price risks—
but then long-term contracts and financial hedges are supposed to 
mitigate these risks. This new scheme works well for some large indus-
trial and commercial customers and the independent power producers 
with whom they contract, but beyond this, contracting has been an 
imperfect solution.

Resource adequacy requirements are justified by the fundamental 
inability of competitive markets to provide incentives for provision of 
sufficient capacity to ensure security of supply in liberalized wholesale 
markets. Many different capacity mechanisms have been implemented 
in various systems to fulfill the requirements. They differ mainly in 
whether they impose capacity obligations or subsidize investments. In 
both cases, the factor most critical for efficiency is a feedback mech-
anism that enables adjustment to changing circumstances, thus pre-
venting under- and over-capacity. There is now some evidence of the 
need to impose requirements for investments in transmission and 
generation resources in order to provide adequate reserves, especially 
when bond ratings of many generators and some utilities under finan-
cial distress have deteriorated and their cost of capital has risen.

Previous regulatory compacts implemented an allocation of risk-
bearing under which customers eventually bore all risks, but only 
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gradually, as retail rates, were adjusted slowly to recover the amor-
tized cost of service. While restructuring has had obvious successes, 
including the development of regional markets and signs of improved 
operating efficiency, deficiencies are also evident in the form of the 
high costs of capital, the prevalence of financial distress among util-
ities, boom-and-bust cycles of investment, insufficient capacity to 
ensure adequate reserve margins, underdeveloped retail markets, and 
inadequate service differentiation. The unfilled promise of restruc-
turing and liberalization reflects inadequate attention to the physical 
and financial aspects of risk management and to the consequences of 
restructuring for risk management by generators, utilities, and core 
customers. A risk management perspective that combines engineer-
ing and economic considerations is essential to resolve the issues of 
market design. Capacity mechanisms are needed to address the inte-
grated resource planning mandates by vertically integrated utilities. 
In addition, an economic approach that draws on the vast literature 
of financial risk management is needed for efficient allocation of risks 
among generators, utilities and other retailers, and customers to lower 
the costs of capital, sustain investments to meet continued growth in 
demand, and encourage efficient demand-side usage.

It is a pleasure to commend Dr. Harris for producing a volume 
that provides a very valuable contribution to the theory of peak-load 
and capacity pricing with a risk management perspective for capacity 
mechanisms. This book should be read by anyone who cares about 
the future development of the electricity market structure.

DR HUNG-PO CHAO

Director, Market Strategy and Analysis at  
Independent System Operator, New England.
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1

Introduction

In this book we consider the development of the theory and practice 
for the pricing of goods delivered by assets that do not run continu-
ously, whether for demand reasons (periodic and/or stochastic) or 
production reasons (planned periodic cycling and/or technical avail-
ability). The focus is on electricity, and much of the analysis can be 
applied to other goods. The pricing of electricity at the peak is closely 
bound with the pricing of capacity.

Our practical purpose is to inform

1. efficient production and consumption choices for both private and 
state actors

2. efficient construction of markets, market arrangements, and capac-
ity obligations, using market disciplines, especially those of traded 
derivatives

3. efficient construction of policy that explicitly recognizes the 
requirement to recover fixed costs and the moral hazards on the 
part of market actors, regulators, and governments

At some risk of oversummary, peak load pricing emphasizes long 
run equilibrium through the recovery of fixed costs through prices, 
and marginal cost pricing emphasizes short run efficiency and mini-
mization of deadweight losses in welfare and in doing so ignores some 
fixed costs in price formulation.

Variable cost pricing remains the majority view in regulation, the 
media, politics, and commentators, and is also prevalent in the aca-
demic literature. We will show how the two methods can be recon-
ciled in equilibrium conditions.

Consideration of peak load pricing has a long history in the theo-
retical literature. The recent development of thought could be viewed 
as having four key phases:

1. Pre-1950s: A long history of the structure of costs through moral 
philosophy and political economics, with key moments such as 
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Adam Smith’s Wealth of Nations in 1776, the physiocrats, Dupuit 
and the French “econo-engineers”1 of the mid-nineteenth cen-
tury, and the growth of marginal microeconomics in the 1890s. 
The peak load versus variable cost debate still turns on the relative 
importance of sustainable equilibrium in classical economics and 
the marginal (and market) price in neoclassical economics.

2. 1950s–early 1970s: The theoretical foundations were developed 
for predominantly state-run electricity systems, commonly with tax 
subsidies in the fuel or other parts of the value chain. The broad 
academic consensus, resting on the heritage of marginal/neoclas-
sical economics, was that most prices should be based on marginal 
variable costs rather than peak load pricing in which the fixed costs 
are loaded onto prices. It was during this period that the economic 
science2 of peak load pricing began as an optimization problem.

3. Late 1970s–2000s: The development of liberalization, with increas-
ing private ownership and operation and the advent of markets 
and market disciplines. Discrete pricing of capacity was introduced 
and developed, and the economics of peak load pricing matured 
at the beginning of this period, and essentially completed, within 
the standard paradigm of separable fixed and variable costs. At the 
end of the period, the science of peak load pricing began to borrow 
from the science of market derivatives.

4. 2000s and forward: Following the California electricity crisis in 
2000/2001, collapse of Enron in 2001, and the ensuing demise of 
similar firms, and then the banking crisis of 2008, a return to state 
intervention and planning, this time without state ownership. The 
tension between consumer protection and competition in the areas 
of essential goods grew, with the result of price caps and protection 
of the socialization of capacity and public goods. In this period, 
the approach to capacity came under the influence of the evolving 
role of geopolitics, the growth of behavioural economics, experi-
ence of application of capacity mechanisms, and the integration of 
power systems and markets on a continental scale. In this period, 
there has been little debate on what was called the marginal cost 
controversy between the peak load and variable cost approaches.

The literature of the 2000s and beyond rests largely on the consen-
sus for short run marginal cost pricing, which since we split into fixed 
and variable cost, we call variable cost pricing. Here we study the orig-
inal texts, mainly in the middle period of the late 1970s to the 2000s, 
in order to examine the sensitivity of the conclusions to changes in 
explicit and implicit assumptions. We find that although there is an 
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apparent tension between the peak load and variable cost approaches, 
that under equilibrium conditions, a careful working through of the 
original papers shows that they can be reconciled.

Our approach here is essentially welfarist, resting on the theories 
of welfare economics, and in particular the second theory, that max-
imum welfare can be delivered by redistribution of wealth outside 
the microeconomy, and free market forces inside the microeconomy. 
In this instance, the microeconomy is the electricity sector and the 
redistribution of wealth is addressed in the macroeconomy of general 
taxation.

We work through the key elements of peak load pricing. As well as 
being the natural method for “energy only” markets (i.e., a normal 
commodity market without an imposed capacity mechanism), it also 
corresponds to the method for the natural development of the installed 
capacity obligation regulatory model—reliability options. These mod-
elling features should therefore be attended to be the administrator/
planner of the system.



2

The Modeling Framework

2.1 Nomenclature

For ease of comparison with the reference works, we have generally 
used the same nomenclature.

Amount delivered S = min(D,Z)
Capacity Q, q, Z
Call option premium C
Cost f ()
Cumulative probability F()
Demand D
Event probability 
Fixed costs B, occasionally 
Marginal probability f (), P(S)
Price  P, S for forward price distribution,  

F for current forward price
Quantity, volume Q, q
Rationing cost R
Shock u
Strike price K
Subperiod length w, H
Surplus S
Variable Costs b, occasionally 
Welfare W
Willingness to pay X 1 (D), WTP, inverse demand

“Suppliers” means retailers, rather than load serving entitities

2.2 Basic Modeling of Consumption

Here we describe the modeling of consumption that is required to 
model peak load and capacity pricing.
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2.2.1 Willingness to Pay and the Demand Function

Willingness to pay is the price at which the consumer is indifferent to 
consuming and nonconsuming.

There are four demand functions of interest, namely: i) linear (qua-
dratic utility in relation to volume, figure 2.1[a]), ii) linear log log (fig-
ure 2.1[b]), iii) two part (figure 2.1[c]), and iv) constant to a limit, called 
right angled (figure 2.1[d]). A particular challenge for electricity is that 
we need a demand function that can encompass a price range over at least 
six orders of magnitude while at the same time having a finite limit.

2.2.2 Utility

Utility is the worth of an endowment of a good to an individual, in 
the money metric. The willingness to pay is equal to the slope of the 
utility function. The main functions in use are shown in figure 2.2.

For the ex ante utility of a risky endowment, we apply the basics 
of the approach of Von Neumann and Morgenstern (1944) (VNM). 
So the ex ante utility of a total wealth that is stochastic is equal to the 
probability weighted average of the ex ante utilities of each wealth 
state. This makes a number of assumptions, the most important of 
which for present purposes are:

Willingness 
to pay 
£/MWh

Volume Watts

(a) (b)

(c)
(d)

Figure 2.1 Four useful demand functions. Function C can be splined to make the 
slope continuous.
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1. probability distributions are stationary (constant distributional 
form and coefficients) for the past and future

2. probability distributions are determinable from nonparametric 
actuarial analysis and ideally reconcile to parametric forms con-
structed from the economic and engineering fundamentals and 
modeled using a Bayesian approach

3. probability distributions are intuitively understood even for 
extremely unlikely events and risk aversion increases monotonically 
with risk amount

4. utility is not path dependent (i.e., the level of wealth uniquely 
determines utility)

Each of these assumptions is fragile and important and should be 
controlled for where relevant.

2.2.3 Surplus

For an individual, the net surplus is equal to the utility minus the cost. 
It is commonly expressed as the area under the inverse demand func-
tion as shown in figure 2.3.

Utility 
utils in 
£

Volume Q Wh

(a) (b)

(c) (d)

Ln (Volume Q) Volume Q Wh

Ln (Volume Q)

Ln(U)

Figure 2.2  Some utility functions (a) Quadratic (b) Log (c) Log log (Cobb 
Douglas) (d) Linear to a limit.
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It is also common in economics to blur the distinction between 
consumer’s (i.e., the individual’s) and consumers’ (i.e., society’s) sur-
plus. Figure 2.3 can apply to either, but we cannot regard the con-
sumers’ surplus as the function to be maximized, unless to recognize 
policy requirements, we apply some constraints that can be described 
with welfare functions.

2.2.4 Welfare

Welfare is the utility of society as a whole, taking inequality into 
account, and the entity that we wish to optimize through policy. In 
constructing a quantity for welfare, we clearly require the ability to 
rank any combination of endowments to different individuals in terms 
of societal welfare. In practice, this requires utility to be interperson-
ally quantitatively comparable. This point is highly contentious and 
here we regard it as an axiom.

What welfare can do for us is to impose restrictions on the con-
sumers’ surplus to recognize features that are additional to the 
optimum arrived through tâtonnement (a continuous auction) in 
the market economy. In particular, these relate to inequality and 
fairness.

The two extremes of welfare functions are:

1. Benthamite—societal welfare is the sum of individual utilities
2. Rawlsian—societal welfare is the lowest of individual utilities, so 

the objective is the maximin (maximum minimum utility)

Price Willingness to pay

Optimal
volume

Clearing
price

Figure 2.3 Consumer’s surplus.
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There are various intermediate functions that for our purposes 
divide into two:

1. general inequality—intermediate between Benthamite and Rawlsian, 
with members of society differentiated by a single  factor – endow-
ment of wealth

2. lexicographical—with further characteristics applied to members 
of society and forming the objective function. Generally ranking 
by endowment amount but other weightings (e.g., by age) are 
possible.

Commonly we express the aggregate surplus as the “first best” 
entity to be maximized, but with a constraint, which makes it “sec-
ond best.” So a second best optimization might be to maximize the 
consumers’ surplus subject to no consumer having less than a fixed 
amount, or half the maximum amount, or some other restriction. We 
also need to consider “third best” (two constraints to observe) and 
even “fourth best.”

2.2.5 Rationing and Deadweight Loss in the  
Hotelling Framework

We can see in figure 2.4 that the loss of welfare from building too 
little or too much volume is for small volume differences and efficient 
rationing proportional to the square of the volume difference. In the 
Hotelling framework,1 fixed costs are regarded as sunk, and optimiza-
tion is at the margin considering only short run costs.

Volume MW*hours

P
ric

e 
£/

M
W

h

Volume delivered

Production
cost 

Demand

Figure 2.4 The deadweight loss of inefficient volume delivered. Shown in gray.
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2.2.6 Shocks

Shocks are changes to demand or available capacity. This can be from 
exogenous forces, common to many or all actors, or endogenous 
forces, specific to the individual or production unit.

The consumer shocks are generally expressed as shocks to the 
demand function, which may be vertical, horizontal, or homothetic 
(horizontal and vertical with a movement of the demand function 
away from the origin).

It is important to understand the cause of the shock. It may be:

1. a change in preference (such as conversion of heating from gas to 
electricity or vice versa)

2. a change in need caused by a shock to endowment (such as a 
changed need for heat as a result of a cold weatherfront)

3. a change in aggregate wealth of the consumer, or
4. a change to relevant population.

For a linear demand function (quadratic utility), linear shocks to vol-
ume demand and to willingness to pay are geometrically equivalent, as 
we see in figure 2.5. Proportional shocks can also be modeled. It is gen-
erally important to reconcile the nature of the shock to a physical expla-
nation. The proportional shock to volume can be understood in terms of 
population change and aggregate volume, and the proportional shock to 
price can be viewed as a shock to money or other good endowment.

2.2.7 The Load Duration Function

The load duration function takes the system load in all subperiods in 
a year and rearranges them from chronological to volume order. This 
is shown in figure 2.6.

Price P

Demand Q

(a) (b) (c)

PP

QQ

Figure 2.5 Demand shocks (a) Homothetic linear (b) Proportional shock to 
volume, for example, endowment (c) Proportional shock to willingness to pay, for 
example, the value of money

 

 

 

 

 



The Modeling Framework 11

In deterministic conditions, the load duration function and price 
duration function unite through the use of the production stack and 
a pricing algorithm, such as peak load pricing or variable cost pricing 
applied to inelastic demand. This is shown in figure 2.7.

Both load and price duration functions can be calibrated against 
ex post outcomes. Due to the uncertainty of the timing of the peaks, 

Chronological time (halfhours)

Load

(a) (b)

Duration (halfhours)

Load

0 17520 0 17520

Figure 2.6 The load duration function (a) Past chronologically correct order (b) 
Reordered.
Source: Harris (2014)

Load Q

Duration t

Variable 
cost b
£/MWh

Fixed cost B £/MW/hr

Price P
£/MWh

Duration t

Duration t

Variable 
cost b
£/MWh

Figure 2.7 Construction of the equilibrium price duration function. The dotted line 
shows that the fixed costs of the peak unit play a role in forming the peak price.
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the price duration function cannot be fully derived from the market 
forward price vectors.

Modeling shocks to the expected load duration function is essential 
for the consideration of capacity mechanisms and peak load pricing, 
and we will attend to this in section 5.7 and 7.1.1.

In common with all stack modeling that uses a load duration curve 
and/or which is not stochastic, the absence of state change cost mod-
eling is a significant shortcoming of this method. While there are 
workarounds,2 such as assuming that the timing of the system peak 
is fairly narrowly distributed around an expectation, resilience failures 
outside expected peak times are poorly catered to.

2.3 Basic Model of Physical/Production

2.3.1 Basic Costs with Hard Constraints

The basic model for power plant is to have a fixed cost in £/MW/hr 
and a variable cost in £/MWh that is constant (i.e., constant returns 
to scale) up to the capacity limit, at which it becomes infinite.

In general, constant returns to scale in capacity are also assumed as 
is seen on the right in figure 2.8.

2.3.2 Costs at System Level—the Merit Order and Stack

The stack is the arrangement of all available units in “merit order” of 
ascending variable cost. For each variable cost, we can impute a fixed 
cost from the technology frontier. It is often convenient to depict the 
stack on the frontier as we see in figure 2.9(b). The length of the solid 
line denotes the installed or available volume.

Volume produced q

Capacity QVariable 
Cost 
£/MWh

Fixed 
costs 
£/MW/hr

Volume built Q

Figure 2.8 The standard cost model for power stations.
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2.3.3 Breakdown of Cost Elements

The four key costs of power stations are:

1. fuel and consumables
2. engineering, and the total cost of plant failure
3. environmental allowances and shadow costs of constraints
4. risk and finance.

Each of these has a fixed and variable element. For the majority 
of theoretical modeling of peak load pricing, it is sufficient to lump 
all fixed costs together and all variable costs together. So to fuel and 
consumable variable costs is added the variable engineering costs 
(plant life utilization constructed from the number of hours run plus 
the number of starts) and tradable emission allowances. The risk and 
finance costs are commonly treated as fixed, but as we see in sec-
tion 2.4.6 and 2.4.7, fixed costs do not fall evenly over time and, in 
addition, can change.

2.3.4 Costs with Soft Constraints

The situation of hard constraint is the asymptotic extreme of the gen-
eral case of soft constraints as shown in figure 2.10.

Variable
cost b 
£/MWh

Cumulative capacity Q

Variable
cost b 
£/MWh

Fixed cost B £/MW/h

(a) (b)

Figure 2.9 (a) The available unit stack on the system; (b) The stack modeled on 
the technology frontier. The length of the vertical lines represent installed or available 
volume and equal the length of the horizontal lines on the stack
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2.3.5 The Energy Supply Chain and Market Arrangements

The key actors in the electricity supply chain are

1. fuel production
2. power stations
3. transmission at high voltage
4. distribution at low voltage to homes and businesses
5. retail suppliers
6. metering at the points of supply
7. wholesale markets in fuel, power, environmental allowances, and 

other

In the nationalized era, these were planned and managed as a 
complex. In the liberalization era, the sectors were “unbundled” 
(separated) to varying degrees, from operating level (managerial 
unbundling) to full ownership unbundling.

In Great Britain, the model is the Supplier Hub, in which the retail 
supplier pays the transmission and distribution companies and con-
tracts with consumers. For capacity modeling, it is often useful to first 
model the physical supply chain using the point-to-point model (see 
figure 7.21 in section 7.4.2) and thence remap the commercial rela-
tionships using the Supplier Hub.

2.4 Other Aspects of Modeling

2.4.1 Load Factor Duality—Time and Probability

In modeling terms, a single subperiod stochastic setting with n dis-
crete probability states is equivalent to a deterministic setting with n 

Variable 
cost 
£/MWh

Load MW

(a) (b)

Figure 2.10 Soft constraints pictured as asymptotic to hard constraints (a) With 
hard constraint having cost dominance (b) No cost dominance.
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subperiods. Similarly, a stochastic setting with m discrete probability 
states and n subperiods is equivalent in modeling terms to a determin-
istic setting with n * m subperiods. This duality is particularly useful in 
modeling peak load pricing.3

2.4.2 Public and Private Goods

Distinct from private goods, public goods cannot have access selec-
tively restricted, for example. to those who can pay.

There are several key drivers to the public goods nature of electricity:

1. The nature of electrical flow, that physical demand is instantaneous 
and draws power from the grid regardless of contract, and in addi-
tion electricity follows the path determined by physics rather than 
the contract path.

2. The inadequate nature of “nonsmart” consumer metering so that 
the measured amount of electricity consumed commonly has a 
granularity of months rather than minutes, and hence it is not pos-
sible in the short term to make the good private by self-rationing, 
combined with ex post charging for electricity used in each short 
timeframe.

3. The status of electricity as an essential good with universal ser-
vice and hence virtual banning of access refusal (disconnection) on 
grounds of nonpayment; in addition, regulatory pressure to social-
ize prices rather than charge on a dynamic (“time of use”) and cost 
reflective basis.

4. Perfectly reliable and stable transmitted electricity is a totem of a 
modern economy and this status is itself a public good.4 So, power 
interruption even if agreed between all actors would be a signifi-
cant political issue.

5. Electricity and the economy are regarded as complementary 
“goods,” in which case both are public goods.

For current purposes, the two key public goods features affecting 
peak load pricing are rationing efficiency and regulatory suppression 
of economically efficient price signals.

We should note that it is technically possible to make electricity a 
fully private good if the amount consumed can be measured at suffi-
cient time resolution and payment enforced and actually collected ex 
post. For example, if all consumers are billed on the basis of halfhourly 
price and consumption, then their good is to all intents and pur-
poses purely private, as there would never be load loss from capacity 
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adequacy shortfall since there would always be demand-side manage-
ment, commonly automated to a price trigger. Consumers who con-
tinue to consume during extreme shortage would pay extreme prices 
that would in practice be limited only by the willingness to accept 
curtailment by other consumers.

2.4.3 Risk and Cost of Risk

The standard representation of the cost of risk in terms of utility is 
shown in figure 2.11. This follows the approach of Pratt (1964). So 
if risk is applied to the quantity of endowment, we can see that both 
higher and lower amounts have quantities lower than the tangent to 
the current curve on which the expectation of utility change in rela-
tion to risk being zero. Cost of risk is just a manifestation of the utility 
function, and in this book we require considerably more sophistication 
than the standard “linear aversion with respect to variance” approach, 
and hence the term “cost of risk” should really be regarded as short-
hand for the application of the utility function to an environment with 
stochastic shocks to quantity.

In this book we begin with the standard formalisms for risk and 
cost of risk. They are:

1. linear aversion to variance, and thence a quadratic utility function
2. no uncertainty, that is, the risks faced are well characterized
3. stationary—the risk coefficients or distributional form do not 

change over time
4. previsibility—the utility on arrival at a wealth state is equal to the 

expected utility at that state. In general, here we are faithful to the 
VNM theory of risk.

Amount Q

Utility U

Figure 2.11 Standard representation of the cost of risk.
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5. no asset portfolio—the asset owner has no other assets or indeed 
other risks

6. forward market drift—linear in proportion to standard deviation
7. no skew—the distribution of prices or price returns are normally 

distributed
8. constant cost of risk—not path dependent, and so on
9. correlations—well characterized, stationary and standard linear.

Each of these is of high practical importance in the consideration of 
peak load and capacity markets and we will discuss each. The largest 
problem in the list above is the incompatibility of items 4 and 5. To be 
consistent with the standard framework of derivatives, we must assume 
5, and to be consistent with utility and asset theory we must assume 
4. The problem is that our physical asset experiences a value drift in 
proportion to stochastic variance and our financial asset experiences a 
drift in proportion to the standard deviation (the square root of var-
iance). While we can reconcile the two worlds by making a portfolio 
assumption, for example, consider that the asset owner has a portfolio 
of assets and thence through the capital asset pricing model experi-
ences a cost of risk in proportion to the standard deviation not vari-
ance of the individual asset. However this framework is unwieldy and 
our attention here is to anchor analysis in standard theory. Therefore 
we have to accept a degree of self-inconsistency within our modeling. 
There is in fact so much uncertainty about cost of risk that this turns 
out not to be a significant practical modeling problem.

2.4.4 Policy Issues in Relation to Market Structure

This book explains capacity obligations and shows how capacity obli-
gations are developing in the direction of energy-only markets, albeit 
that there is no certainty that this is a target or reachable destination. 
The development toward a pure market approach is in fact driven not 
at all by an ideological favor of markets but a continuous drive to effi-
ciency based on the empirical observations of the market as it is. The 
policy opposition to the market approach is prevalent and there are 
three particular objections to the energy-only paradigm with no cen-
tral intervention in relation to capacity.

These are

1. Market power—The regulator fears that a generator who at the 
margin can keep the lights on will charge an extortionate rent if the 
moment arrives.
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2. Moral hazard—The generator fears that a legitimate rent will be 
expropriated by government when the moment arrives. With expro-
priation risk, the generator must plan a higher price and with the 
higher price the more the expropriation risk increases. The situation 
is commonly terminal in that the generation does not get built.

3. Regulation—There is both moral hazard, in which there is a sys-
tematic risk of expropriation through regulatory change (e.g., 
addition of change of price cap, ex post taxation) or simply “time 
inconsistency” in which adverse or beneficial effects on generators 
is a by-product of regulatory change

Each of these can be resolved within the market paradigm. We sim-
ply regard political and other actions as forces with a mix of exogenous 
and endogenous features, as well as correlations and causal links.

2.4.5 Games

In this book, we regard gaming as the behavior of rational actors, and 
in no pejorative or judgmental sense. There are indeed circumstances 
in electricity in which gaming can be, and perhaps has, accrued excess 
returns to market actors who have abused market power.

The key games are:

1. Stackelberg, in which a market follower takes the volume of the 
market leader as a given, and addresses the residual market

2. Bertrand/Edgeworth, in which the market followers assume that 
they have no role whatsoever in price formation and always offer at 
the shortest run marginal costs

3. Cournot,5 in which market actors effectively assume that all actors 
behave in the same way and know each others’ cost functions as 
well as the market demand function

We generally restrict ourselves to Nash equilibria, in which mar-
ket actors make choices based on estimates of the behavior of other 
actors, and do not regret those choices after the decision uncertainties 
have been resolved.

There is a particular game that is of interest in the present context, 
which is the tension between the value of preemption and the value 
of optionality.

In examining real options, as we do in section 5.9, we broadly 
assume that our actions have limited effect on prices or behaviors, that 
is, we are price takers not price makers.
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We also need to consider the value of preemption, in which we 
make a public statement about a decision made that is irrevocable. In 
doing so, we affect the market. The best example is the commitment 
to build a power station and offer at variable costs that is likely to run 
it at baseload. This creates a Stackelberg game, in which the residual 
volume addressable by the rest of the market is reduced. Note here 
that having an option has negative value, as, for example, the market 
might become Cournot rather than Stackelberg and reduce the price 
and/or the volume of the first actor. There is then a tension between 
the positive value of an option and the negative value of the market 
knowing that the actor has an option.

This tension plays out in the modeling of supply function equi-
libria, in which the elasticity of the forward market is affected by the 
advertising to the market immediately after a forward contract has 
been agreed.

The direct relevance here is in the risk management of power plant. 
If we are a pure price taker we should always completely ignore our 
forward and option contracts, and operate “live” in response to the 
prevailing market. However, if the installed stack is anything other 
than the perfect one and there are no price caps, this situation is unsta-
ble as fixed costs are not recovered.

2.4.6 Fixed Cost Allocation Over Time

The standard technique for professional traders is for the net present 
value of the portfolio, called a “book” to be marked to market, and 
for the trader to have a virtual loan at this value so that the total port-
folio has a value of zero. This ensures that interest on the book value is 
taken into account on calculating profit and retained earnings/losses 
are constantly repatriated to the parent company.

The same applies to physical assets. For optimization purposes, the 
fixed costs of capital are set by the current value of the asset and not 
the purchase cost. Over a time interval then, the fixed costs are equal 
to the finance cost at the asset book value plus the decline in asset 
value.

More generally, we can deduce from this that if the only fixed costs 
are capital costs, then we regard these costs as incurred in accordance 
to marginal revenue. This is easy to understand when we have a peak 
period in which we make a marginal profit followed by an off-peak 
period in which the revenue equals the variable cost. If we reverse the 
chronological order of the peak and off-peak we still incur the fixed 
cost in the peak. Finally we can apply load factor duality as described 
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in section 2.4.1 to incur the cost and peak load revenue in a stochastic 
peak in a single period setting.

This cost allocation has a direct bearing on peak load pricing, as we 
will see in section 3.1.

2.4.7 Dependence of Fixed Capital Cost on Plant Value

It is apparent from section 2.4.6 that if the asset value rises, then there 
is an immediate profit that is repatriated, and an increase in fixed costs 
on the now higher value. In equity markets this is essentially the same 
effect as the well-known “Tobin Q.”6

As a further consequence, it is apparent that in the deterministic 
world, the profile of fixed costs in terms of capital relate directly to 
the asset value. It is thence obvious that for optimization purposes the 
fixed costs should not be allocated evenly over time but according to 
the profile of the asset life over time. It follows further that the fixed 
costs relate directly to the ongoing margin between prices and vari-
able costs. A good example of this effect is to be found in the Steiner 
analysis in section 3.4.

2.4.8 Value of Lost Load—VoLL

In theory, the value of lost load (VoLL or VLL) is the average will-
ingness to pay to avoid loss of power or, somewhat equivalently, the 
compensation willingness to accept in lieu of power loss. Clearly the 
use of an average rather than marginal rate is something of an issue in 
terms of efficiency.

VoLL is a huge subject in its own right. For the purpose of this 
book, there are certain key features that take part in the modeling:

1. the marginal VoLL implied from the demand function
2. the inefficiency of rationing, not rationing in order of willingness 

to pay
3. the establishment of VoLL by empirical observation by actual 

willingness to pay and the estimation of VoLL in the absence of 
observation

4. viewing voluntary acceptance of possible lost load in terms of an 
unconditional premium plus a conditional payment at a strike price 
on load loss

5. social welfare considerations, for example, not preserving power 
for the rich on grounds of willingness (ability) to pay more

6. systemic issues.
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We see in section 3.5 that the cost of rationing in relation to total 
amount of rationing can be convex or concave. When we consider 
systemic lost load, we have to take into account broader substitu-
tion and the complementarity of electricity and the operation of 
society. Consider if my home loses power, I can go to my neighbor’s 
home. I am therefore highly affected by his situation. In this sense, 
supply to our respective homes are complementary. As power loss 
widens, fundamental aspects of society start to fail, such as street 
and traffic lighting, pumping clean water, refrigeration of groceries 
for sale, and public transport. For this reason, we should regard sys-
temic loss of supply as having a convex form in relation to amount 
(TWh) of lost load.

2.4.9 Cost Frontier Duality

To make modeling manageable, we need to limit the degrees of free-
dom for modeling power plant. In this regard, there is a duality that 
we find useful, relating to unit size and unit technology. Figure 2.12 
shows two cost frontiers for units with convex costs (soft constraints 
as described in Chapter 4 and therefore no clear unit size). The first 
is the well-known technology frontier, which here we assume applies 
to different units of the same capacity. The second is the equivalent 
figure, for a single technology, in relation to unit size. The vertical axis 
is a proxy for variable costs. We can see that a high technology plant 
has high fixed costs and low variable costs. A small plant has low fixed 
costs by virtue of being small and high variable cost at a given load 
due to cost convexity.

£/MWh 
at Q MW
minus 
£/MW/hr
at 0 MW

Q MW

£/MWh 
at Q MW
minus 
£/MW/hr
at 0 MW

Q MW

(a) (b)

Large plant

Small plantOld plant

New plant

Figure 2.12 Cost frontier duality (a) Different technologies and one size (b) Different 
sizes and one technology.
Source: Harris (2014)

  

 



3

The Framework and Development 

of Peak Load Pricing

3.1 Basic Peak Load Pricing Theory

3.1.1 Introduction

In this chapter, we describe the simplest exposition of peak load 
pricing.

3.1.2 Framework

1. Single epoch with no plant entry, exit, or aging.
2. The setting has two subperiods that can be of uneven length.
3. Demand is deterministic and inelastic.
4. There are two available technologies.
5. Units can be sized just before the period starts, at constant returns 

to scale in capacity (i.e., a single build cost per unit of capacity).
6. Returns to scale in operation are constant, that is, a single variable 

cost for each technology.

This is shown in figure 3.1.

3.1.3 Analysis

3.1.3.1 The Turvey Algorithm for Efficient Build and Run
If we have a baseload unit (baseload meaning running all the time) 
with (B2, b2), we will only build and run the peak unit with (B1, b1) in 
the peak period of length λ1 if

b B b B
1

1

1
2

2

1  
(3.1)

This is the basis of the Turvey algorithm.1 Note that Turvey takes a 
least cost approach and does not require financial equilibrium.
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If the load duration function is continuous, then the amount of 
time for which we run the peak unit is determined by rearranging 
equation (3.1). So we have:

peak

( )
( )
B B
b b

2 1

1 2  
(3.2)

The optimal build volumes can be inferred directly from this. The 
baseload unit build is found from the intersection of the load duration 
function and time λ1, and the peak load unit build is equal to the peak 
load minus the baseload capacity.

3.1.3.2 Convergence of the Turvey Inequality
Consider again discrete time intervals with a peak period length.

Turvey considers replacing a high merit unit 2 with a low merit 
unit 1 in the peak.

We can look at the reverse situation, where we consider replacing 
the high merit unit 2 by the low merit unit 1 in the off-peak. To run 
the off-peak unit we have;

b B b B
1

1

2
2

2

2  
(3.3)

Volume
MW

Q1

Q2

P1 P2

1 2 Time, hours

Figure 3.1 The simplest load variation for analysing peak load pricing.
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Here, λ2 is the time that high merit unit 2 was planning to run, in 
this case, unit time.

Now suppose that we have n units, and n evenly spaced subperiods 
of time, we have

( ) ( )B B b bi i i i i1 1 0 and

( ) ( )B B b bi i i i i1 1 1 0

B B b b B Bi i i i i i i i i i1 1 1 1 1

For subperiods of even length we have

i i in
i
n1

1
and 

So,

B B n b b B Bi i i i i i i i1 1 1 1 1 0* *

b b B B ni i i i i i1 1 1 10 1 as  and  (3.4)

db
dB

ni

i i

1
.

So the higher the divisibility of time and unit size and the higher 
the merit plant we are looking at, the closer the Turvey inequality is 
to an equality.

This is an important equation and the evolution of the technology 
stack works to make it true in practice.

While the installed stack does not have units of infinitely (or even 
very) small size, what counts here is the extent to which a lower bound 
on unit size or economy of scale are practically important. In practice, 
we find that the low slope of the load duration function for low loads 
means that unit size is not important, but for high loads and rare 
events, unit size is indeed important, and the lower bounds of practi-
cal unit size has a real effect.

Regarding the technology frontier, which we will discuss further in 
section 3.9, it is practically continuous even in the presence of discrete 
families of technologies, because of “stack evolution” in which units 
choose the most cost-efficient aging evolution path of fixed and vari-
able costs.2 Additionally, we can see from figure 3.2 that while tech-
nology evolution orthogonal to the frontier is expensive, evolution in 
the shaded regions is less so.
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This effect strengthens the validity of equation (3.4) in the high- 
and mid-merit regions without the requirement for an infinite num-
ber of units.

A further effect strengthening equation (3.4) is the planned evolu-
tion of the unit in terms of the cost of finance, noted in section 2.4.7. 
In practice, the fixed cost evolution vector adjusts the fixed costs in 
the late stages (low merit) of plant life, making the technology frontier 
more continuous even for low merit units.

3.1.3.3 Cost Allocation for One Unit
Suppose the peak/off-peak load profile is delivered by one unit. Assume 
that the only fixed cost is cost of capital and that we price the peak at 
b + B/λ and the off-peak at b. If we allocate fixed costs as described in 
section 2.4.6, then it is obvious that the full allocation is made to the 
peak period. We therefore do not regard the peak period as collecting 
back all the fixed costs incurred over the whole cycle, but in fact the 
fixed costs are incurred only in the peak and recovered in the peak.

3.1.3.4 Cost Equilibrium for Two Units
The lowest merit unit uplifts its offer above variable cost until the 
fixed cost is exactly covered. The second lowest merit unit then does 
the same, and so on.

The first test is to see if any unit makes excess profit.
For cost equilibrium, the price for the peak period is then simply;

P b B1 1 1 1/  (3.5)

Variable
costs b
£/MWh

Fixed costs B £/MW/h

Technology
evolution 
expensive

Technology 
evolution less 
expensive

Figure 3.2 Efficient evolution of the installed technology stack cost frontier.
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This is the essential formula for peak load pricing. For the peak unit 
there is an uplift above the variable cost pricing level b1 in order to 
cover fixed costs.

We can now calculate the cost equilibrium price for the subperiods 
for which the second lowest merit unit is price setting;

P P B b2 2 1 1 1 2 2 2*( ) * *

Rearranging we have

P b
B P b

2 2
2 1 1 2

2 1

( )
( )  

(3.6)

Now substitute equation (3.4) into equation (3.6):

P b
B B b b

2 2
2 1 1 1 2

2 1

( ) ( )
( )  

(3.7)

Noting equation (3.3) we substitute equation (3.4), as an equality, 
into equation (3.3) and arrive at

P b2 2.

3.1.3.5 Consideration of a Third and More Units
Let us now consider a third unit. This is now the baseload unit. So

P P P B b3 3 2 2 2 1 1 1 3 3 3*( ) *( ) * * .

We can then substitute in for P1, P2, and from equation (3.4) and 
the associated arguments, we can apply the Turvey inequality as an 
equality, and substitute for b1, B1, b2, B2, and B3. We then simplify to 
arrive at

P b3 3.

The same approach can be taken for four or more units to give us 
the general

p b ii i  for 1,  (3.8)

where i = 1 represents the peak period.
This is the point of convergence of peak load pricing and marginal 

variable cost pricing. Note the condition for this convergence is finan-
cial equilibrium.
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We can also see that even if the peak period is very short, it plays 
an important role in revenue generation for all units, as the shorter it 
is, the higher the price. Noting the duality of time and probability in 
the load and price duration functions, we can see similarly that price 
revenue during rare events is also important for all units.

We can see that if the price is capped, then we will have “missing 
money.”

A key area of focus of this book from much of the swathe of litera-
ture is the recognition of the fixed cost at the peak period, whether it 
be from i) the fixed costs incurred by readiness for demand-side man-
agement (DSM), ii) the optional fee required by any offer of load, for 
example, by a foreign market, or iii) a fixed fee due to consumers in 
return for ex ante acceptance of finite probability of lost load. These 
are commonly set to zero in the literature.

3.2 Early Days of Tariff Evolution

3.2.1 Introduction

The electricity supply industry began with inventors and entrepre-
neurs, and we should not be surprised that tariffs at the time were 
as innovative as physical invention. Then, as now, tariffs were driven 
by social, political, and commercial realities, and were not always set 
rationally.3 Then, as now, tariffs were also limited by the technological 
capabilities of the meter and metering system.

Pricing in the early days set the precedent. Academic debate has fol-
lowed development in the science of economics. The relation between 
practitioner debate and academic discipline has been the need for 
actors to “use bounded rationality to promote their own agendas.”4 
Pricing now, as then is much influenced by relative power, ownership, 
control, and information, particularly in the metering sector.

3.2.2 The Early Development of Tariffs

The very earliest days were characterized by specific commercial driv-
ers such as the need to generate demand for the product. In the rela-
tive absence of meters, the charge was essentially per outlet (down to 
the level of sockets when electricity arrived to individual consumers 
rather than municipal lighting) with broad estimates of load factor.

Of enduring fame is the Hopkinson tariff. Hopkinson5 (1892) pro-
posed that consumers should pay a fixed and variable cost to ensure 
correct6 compensation for the provision of capacity. At the time, this 
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did not require more than basic metering technology with just the 
cumulative kWh consumption, because the main load was lighting, 
and consumers paid a capacity charge per light. Therefore the installed 
equipment at the consumer site determined the maximum possible 
(and likely7) consumption. If the tariff had a fixed charge per cus-
tomer, in addition to the capacity and energy charges, the tariff was 
termed the Doherty Tariff.8

Arthur Wright had invented a meter that measured9 maximum 
(i.e., Watts) as well as total demand (i.e., kilowatt hours). The story 
goes that he met Samuel Insull during Christmas 1894 to explain 
the economics of fixed and marginal costs, which led to the tariff 
and therefore demand for the meter (for which Insull later became a 
shareholder). There was then a fixed and variable cost, but this time 
the cost could be charged according to actual (ex post) maximum 
consumption rather than theoretical maximum (ex ante) consump-
tion. This was important at the time, because it was a lesser deter-
rent to the installation of equipment such as light bulbs than the 
Hopkinson tariff. Wright recognized10 that producer capacity cost 
depended on aggregate demand at system peak times rather than 
aggregate of theoretical individual maxima. The lack of available 
technology to measure the timing of the peak load led Wright to 
take a load factor approach. The implementations differed slightly. 
So, for example, Eisenmenger (1921) cites a charge for the first 
(ranked by kW rather than chronologically) few kilowatts, followed 
by a lower charge for the next, and so on. Nowadays a Wright tariff 
is generally taken to mean a tariff of this type, not recognizing the 
timing of the peak.

The implementation of tariffs was widely varied11 and lagged theo-
retical and technological development. As late as 1923,12 consumers 
were still paying the capacity part of their tariffs based on the number 
of openings to the distribution system, and paid different rates for dif-
ferent kinds of rooms according to the likely load factor.

None of these two methods considered13 the time of day, or the 
consumption in relation to system peak. A meter innovation by Kapp 
enabled measurement of the peak demand and the time at which it 
occurred. Barstow of Brooklyn Edison promoted this. The Barstow 
tariff was used but has never been widespread14 for domestic15 use.

Figure 3.3 depicts three of these tariffs.
Figure 3.4 shows different charging methods for peak consumption.
Meters with clocks that enabled a (fixed time) peak and off-peak 

tariffs started to be used in the early twentieth century, but rollout was 
limited due to the high total costs.16
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Figure 3.3 Fixed and variable tariff structures (a) No fixed charge (b) Fixed charge 
tied back to actual average consumption (c) Fixed charge tied to predicted average 
(d) Fixed charge tied to actual peak (Wright tariff) (e) Fixed charge tied to actual 
consumption at time of actual system peak (Barstow-Kapp tariff)17 (f) Fixed charge 
tied to theoretical maximum consumption (Hopkinson tariff).
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Figure 3.4 Methods of measurement of peak for fixed charge (a) Instantaneous 
(b) Maximum consumption in single peak in excess of designated duration (c) Load 
duration curve (d) Average maximum consumption in peaks separated by at least a 
minimum interval (the “triad”).
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3.2.3 Pricing in the Nationalized Era

In the early days, the growth of electricity was similar to the growth of 
railways, with private firms, and duplicate and incompatible infrastruc-
ture. While government and municipal involvement in infrastructure 
(build, planning, commitment to use and pay, etc.) had increased over 
the years, it was after 1945 that state control took hold by forced 
nationalization (1947 in Great Britain).

Over the years, there have been numerous tariff experiments. In 
Great Britain the seasonal (but not diurnal) “Clow tariff” was tried 
in 1948 and then abandoned. After that the Hopkinson two-part tar-
iff was applied at wholesale level by the British Electricity Authority 
to the Area Boards. The capacity charge was based on the average 
of the halfhourly maximum18 demand of the last two years for that 
Area Board. The tariff was changed in 1957 to contain a fuel cost 
pass through. In 1962, the capacity charge was based on Area Board 
demand at the time of national peak demand and the energy charge 
was different in the day and the night. The Authority resisted propos-
als to add further diurnal resolution to tariffs.

Adjusted to money of 2014, the bulk supply tariff was £100/kW/
year plus £0.1/kWh.19 For a 1kW load at 50 percent load factor, the 
cost was then £100 for capacity and £385 for energy. The kW level for 
the Area Supply Board was the average of the maximum halfhour in 
each year for each grid supply point in any half hour between 07:00 and 
19:00 hours. Largely in response to South Eastern supply board with 
a peak load on Sundays from cooking, this was revised in 1950/51 to 
include only 07:00 to 19:00 hours on weekdays and 07:00 to 12:00 
hours on Saturdays. In 1955/1956, there was an adaptation that 
reduced the tariff if (predominantly for weather reasons) the average 
countryside consumption was high. This moved some risk from sup-
pliers to the network owner and would have had the effect of increas-
ing transmission tariffs. In 1962/1963, a significant change was made 
to charge according to the average area board demand in the halfhour 
of system peak. This is the origin of the Triad system that prevails 
today. The 1960/1961 development also introduced reduced tariffs 
for the provision by the area boards of load interruptability.

The Netherlands also experimented with time-of-day tariffs for 
domestic consumers. It was in France that consumer tariff pioneering 
continued with the Tempo tariff in the 2000s. In the 365-days year, 
there was a preset number of red, white, and blue days with three 
respective prices, and the “color” of the day was announced in advance. 
Clearly this required metering and billing of daily resolution.
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3.2.4 Development of Competition in the  
Wholesale Sector in Great Britain

The two major power station build types were coal and hydro, with 
nuclear picking up in the 1950s. With coal, the cost structures were 
broadly similar, and hence costing was similar, with consumer tariffs 
aiming to recover costs overall. Hydro was rather different, with high 
capital costs and low variable costs.

3.2.4.1 The Pool in England and Wales
Partly to facilitate private entry into the market, the internal “merit 
order” (ranking of variable costs) was formalized in England and Wales 
as the pool in 1990. The generator order and loading (GOAL) sched-
uling model took no account of fixed costs, and when the Central 
Electricity Generating Board was privatized, effectively used offers as 
a proxy for variable costs. An interesting feature of the pool was the 
capacity mechanism that we explain in section 5.1.2.

Pool type arrangements remain common, and in fact the trend 
toward real-time pricing of transmission constraints has encouraged 
their growth.

3.2.4.2 Post-Pool Bilateral Markets
The New Electricity Trading Arrangements (NETA) in 2001 (with 
Scotland in 2005 to make BETTA—British Electricity Trading and 
Transmission Arrangements). This was an energy-only market, that is, a 
normal market with no capacity mechanism (although a capacity mech-
anism was added in 2014 as part of the Electricity Market Reform).

Prices at any time are simply a function of bids and offers meeting 
in the market. Fixed cost recovery is driven by market forces rather 
than central management.

A particularly interesting feature about NETA/BETTA market is 
the symmetry between production and consumption. Instead of a 
producer market facing a nominally inelastic stochastic demand, retail 
suppliers procure contracts or pay a buyout “imbalance” price for the 
energy drawn without contract. To stimulate supplier development, 
the cashout prices were set initially at punitive levels. The balancing 
mechanism can be viewed as a capacity mechanism of sorts and is dis-
cussed in section 5.1.3.2.

3.2.5 Liberalization of the Retail Sector

The competitive retail supply market in England and Wales opened 
to business consumers in the 1990s, with full liberalization of the 
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residential sector in 1998. Under the Supplier Hub model, the trans-
mission and distribution revenues regulated under price controls, 
and the actual prices subject to an element of control of charging 
methodologies. The supplier paid the distribution and transmission 
companies.

Suppliers were free to innovate in tariffs, and tended to charge a 
standing charge and a unit rate. With standing charges being unpopu-
lar, suppliers developed two rate tariffs with a high price primary block 
up to a kilowatt hour per month limit and a cheaper secondary block 
thereafter. The overall structure formed a proxy for a standing charge 
and unit rate.

Note that the most cost-reflective tariff has a standing charge 
and thence a convex cost with unit rate increasing with consump-
tion. This can be approximated by a two-rate tariff. We can see this in 
figure 3.5.

Three-rate tariffs are favoured by some consumer advocates as they 
avoid the standing charge for very low consumers. Note that the ter-
tiary rate can be regarded as a form of peak load pricing. In practice, 
this tariff regime is too complex to implement, particularly since the 
threshold amounts would ideally have a daily resolution.

3.3 Postwar Theory and Application of 
Capacity Charging—The DrÈze Approach

3.3.1 Introduction

Drèze provides an excellent introduction to the practical application 
of theory in the early modern age of electricity, which was developed 
and applied mainly in France. A particularly interesting element is 
the movement away from the equilibrium arguments of the French 
econo-engineering school and thence Walrasian school, recognizing 
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Figure 3.5 Tariff structures (a) Cost reflective (b) Approximation of cost by 
standing charge and single unit rate (c) Three-rate tariff.
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the importance of equilibrium as well as marginal economics, to the 
primacy of efficiency at the margin. It provides a good example of 
the continued division between the approach of industry on one side, 
with a focus on equilibrium (covering fixed costs), and the prevailing 
marginalist economic theory that is easier to reconcile to the opera-
tion of short-term markets. The tension is also evident in policy for-
mation, so here the pricing practice of the state-owned Electricité de 
France (EDF), recognized the need for equilibrium. The works of 
EDF employees Boiteux20 and Massé remain seminal.

3.3.2 Framework

Our framework is assumed as follows:

3.3.2.1 Generator Cost and Pricing

1. The generator has constant variable cost returns to scale γ up to the 
capacity limit and constant fixed cost returns to scale β in capacity.

2. The generator is risk neutral.
3. We must make the capacity and pricing decisions prior to the reso-

lution of demand uncertainty.
4. Prices are fixed before the resolution of uncertainty.

3.3.2.2 Consumers and Consumption

1. Consumers are homogeneous and have stochastic demand with a 
mix of endogenous and exogenous shocks.

2. The stochastic consumer demand functions are stationary (i.e., sta-
tistically stable) and actuarially well characterized.

3. The number of consumers is constant.

3.3.2.3 Build Volume
The stochastic consumer demand functions are of the form shown 
in figure 3.6. We can see in this figure that if we increase the stan-
dard deviation of demand, the inefficiency increases. If demand falls, 
then we have wasted capacity at a cost of (1  –  λ)  *  B, and if demand 
rises (with probability 50 percent), we have wasted consumer sur-
plus (WTP  –  P)  *  λ, where WTP is willingness to pay and P the price. 
In selecting our initial build volume for nonstochastic conditions, we 
have assumed a clearing price at the long-term equilibrium of pro-
ducer costs B + γ.

If the producer opportunity cost of loss P  −  (γ  +  β) exceeds the 
stranding cost of wasted capacity β then we build more if the standard 
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deviation σ is higher. For this approach to be welfare optimal, we 
make the implicit assumption that the cost of lost load exceeds the 
cost of wasted capacity and so it is better to have too much than too 
little capacity.

In this simple case, we can see that provided that willingness to pay 
WTP exceeds variable costs plus twice fixed costs, then the optimal 
extra build under stochastic conditions is directly proportional to the 
absolute size of the demand shock dq. We can also see that for the 
producer to cover costs under stochastic conditions, we will need to 
raise the price if standard deviation increases.

We take the analysis forward by assuming that it is optimal to build 
an amount that exceeds the demand expectation by a factor k and the 
size of a statistical function ψ of demand. The combination of these 
two allows us to be a little more generic that having a constant will-
ingness to pay. So, for example k can relate to the value of lost load 
(VOLL) and ψ can relate to the loss of load probability (LOLP). We 
may express ψ = f(σ) or σ = g(ψ).

For ease of analysis, Drèze assumes a normal distribution of aggre-
gate demand21 and hence our most natural factor to use to determine 
build volume is the standard deviation of aggregate demand σ or the 
variance σ2. Thence for analytic simplicity, we build capacity qc, in 
excess over demand expectation on a linear relationship between σ or 
σ2. So q q kc 1  or q q kc 2

2. Ideally k1 and k2 would be dimen-
sionless but the exposition is easier if we make σ a dimensionless per-
centage and k have units of volume. Drèze expresses the probability of 
lost load λ. We drop λ in the equations but explore λ below.

q  is the expectation of aggregate demand. q qi
i n

 for the n 

consumers.

P

Q

B=fixed cost

+B

=variable cost

P

Qq q

P

Qq

dq dq
(a) (c)(b)

Figure 3.6 Build volume in the Drèze framework (a) Build to match deterministic 
demand (b) Wasted capacity cost for demand fall (c) Unsatisfied consumer surplus for 
demand rise dq.
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In making a simplification to a complex demand function, we do in 
fact approximate to the way the industry generally manages to proxy 
for the VOLL and LOLP, as we describe in section 3.11 in our analy-
sis of the Chao framework.

In shortage conditions Drèze assumes that all consumers get the 
same pro rata allocation qc/q. Given that there is a single willingness 
to pay, there is no difference between pro rata allocation for all and 
complete loss for some. In this case we can allocate ex ante capacity for 
the purposes of charging q qi

i n

. Being homogenous, all consumers 

have the same ex ante expectation and distribution of shock, and the 
same ex ante endogenous and exogenous mix of shock.

Also implicit is that the electricity is a public good and so the commit-
ment by one consumer to pay a higher price does not assure provision 
of electricity. The implied arrangement is that the producer only pro-
vides the extra capacity if all consumers commit to a higher payment.

Drèze is not specific about the producer/consumer contractual 
relationship as he deals at the level of aggregate surplus. Nevertheless, 
it is consistent with his analysis to envisage a relationship. The con-
sumers submit to the producer their unbiased ex ante probability dis-
tributions of demand. We assume no moral hazard. They then pay a 
capacity fee equal to the shadow cost of a statistical parameter that 
may, for example, be variance, which we shall examine. The producer 
then by agreement builds an amount that has a linear relationship to 
this parameter. Note that the payment of a capacity fee does engen-
der an increase in capacity, but it does not guarantee delivery. In this 
respect it has some commonality with capacity obligations.

3.3.3 The Analysis

3.3.3.1 Core Equations
For N customers with normally distributed22 demand and standard 
linear correlation between them, we have

i j ij
i j

N

,

,
1

1
2

 
(3.9)

where σi, σj are the individual standard deviations and ρij are the 
correlations.
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If ρij = 0 for i ≠ j we have

i
i

i1
2

22
1
2 .

 
(3.11)

For pij = 1 we have

i
i j

i j
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j
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,

If consumers are homogenous, we have σi = σj for all i, j and hence

i

1
 

(3.12)
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For ρij = 1 we have
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For ρij = 0 we have
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(3.14)

3.3.4 Build and Pricing Criteria

3.3.4.1 Build in Proportion to Standard Deviation
3.3.4.1.i Cost Equations

f q q q q k qc ( , ), * *
1

 
(3.15)

q q kc 1  is the installed capacity
q q qc

*( , , , ) is the quantity actually delivered and received by the 
consumers
ε the random term q q* . q qi

i N

* * .
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In this instance, we can construct the shadow costs to provide to 
individual consumers are as follows:

f
qi

*  is the (marginal) variable cost of energy

f

qi  
(3.16)

f
k

i i
1 .

If ρij = 0 for i ≠ j, then from equation (3.11) we have

f
k

i

i
1 .

 
(3.17)

Substituting from equation (3.14), we have

f
k k

i i
2 1 2 1

1
2

.
 

(3.18)

3.3.4.1.ii Build in Proportion to Standard Deviation.  
Price in Proportion to Standard Deviation
Pricing (as distinct to building) according to an ex ante probability 
distribution (as distinct to actual outturn) is an interesting proposition 
in its own right, particularly when we get to the level of individual 
consumer, as the only way to get an unbiased answer is to use the 
actuarial ex post history to date.

Now let us construct a trial marginal price function for the individ-
ual consumer from the sum of the shadow costs, assuming that these 
are all uncorrelated to each other. The three elements are: expected 
variable cost, expected capacity cost, and a charge for variability. If we 
use standard deviation rather than variance as a shadow cost, then, if 
we can ignore second-order terms and consider only small changes 
to consumer factors, each consumer i should be charged an (ex ante 
identical) expenditure E of

E q q q
f
q

q
f
q

f
q q ki i i i i

i
i

i
i

i
i i

i( , , )* *
*

*
1

2

where we used equation (3.11) for 
f

i

.
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i
i

if
k1

2

 is dependent on the assumption that ρij = 0 for i ≠ j.
 

We will return to this below.
So consumers pay an up front capacity cost that depends both on 

expectation and variation.
From this we can compute the expectation of revenue for the utility 

from all customers. For zero correlation ρij = 0 for i ≠ j, so i
i N

2 2
1

.

Our total expenditure by consumers is

E q q q q
k

q q ki i i i
i

N

i i i
i

N
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N

( , , )* * *

‘1

1 2
1

1ii

N

1

.

This is of course the costs as we saw in equation (3.15). It is no sur-
prise that the utility breaks even on average. Drèze points out that this 
is the formula advocated by Boiteux (1951), Boiteux and Stasi (1952), 
Bessière (1961), and applied at EDF as shown in Boiteux (1957).

However, let us now consider for a given producer cost/consumer 
expenditure, the marginal price of substitution between capacity and 
standard deviation or variance, in comparison to the marginal cost of 
transformation between capacity and standard deviation or variance, 
according to our capacity build algorithm.

For transformation, using equations (3.16) and (3.17), we have
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For ρij = 0 for i ≠ j

k ki
i i

i i
1
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3 1
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2 1
2
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2
.

Since σ >> σi and ρij = 0 or equivalently 
i

0
 
we can ignore the 

second term, so

dq
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i
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i
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2 1 .

So, for the case ρij = 0 for i ≠ j if we build and price according to the 

standard deviation regime, the marginal rate of transformation 
k i1  of 

the producer is not equal to the marginal rate of substitution 
2 1k i  for 

the consumer, and hence the pricing regime is not efficient.

3.3.4.1.iii Build in Proportion to Standard Deviation.  
Price in Proportion to Variance
The consumer expenditure is
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So our utility revenue falls by 1
2 1k  to
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We shortfall against fixed costs.
Let us examine the marginal rates of substitution
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Making the same assumption on the incremental effect on aggregate 
standard deviation of an individual consumer, we have
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dq
d
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i E q q i
i i i i

2 1 2 1

1 1 1

( , , )* const i

k
2

11
2

.

Using equations (3.16) and (3.18) we have
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 for zero correlations.  (3.19)

So the marginal rates of transformation and substitution are the same 

at 
k1

2
.

Therefore the variance pricing regime appears to be short-term 
efficient with respect to the standard deviation build regime.

So it appears that we must make a choice between equilibrium 
and efficiency at the margin. Drèze appears to favour efficiency at the 
margin.

Let us examine further to see if there is a build and pricing regime 
that is efficient at the margin and can sustain equilibrium.

3.3.4.2 Build in Proportion to Variance

f q q q k qc ( ), *
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2   
(3.20)
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If ρij = 0 for i ≠ j then
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f
k i j

i
i ij2 02  if   for 

f
q

.  (3.22)

Now we again construct the trial marginal price from the sum of shadow 
costs. First, we consider pricing according to standard deviation.

3.3.4.2.i Build in Proportion to Variance.  
Price in Proportion to Standard Deviation
We use the same method and find that we over-recover our costs by 
βkσ2 and the marginal rates of substitution 4k2 and transformation 2k2 
σi are different.

3.3.4.2.ii Build in Proportion to Variance.  
Price According to Variance
Now let us price according to variance.
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The utility revenue, for zero correlation, is
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We exactly recover our costs.
Let us now compare the marginal rates of transformation and sub-

stitution. For transformation, from equations (3.21) and (3.22),
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So for variance build and pricing, we have cost equilibrium and 
equality of rates of substitution and transformation k2 for a homoge-
neous set of consumers with no correlation.

Drèze did not examine this solution.
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3.3.4.3 Further Consideration of Correlation
3.3.4.3.i Perfect Correlation—Build and Price According to 
Standard Deviation
A homogenous set of consumers with zero demand correlation can 
only be rationalized by envisaging a set of purely endogenous private 
events such as birthdays, as distinct to exogenous events, such as rainy 
days. It is as easy to imagine perfect correlation of demand.

Repeating the analysis above for this case for ψ = σ (i.e., build 
according to standard deviation) and price according to standard 
deviation, we again have cost equilibrium and marginal rates of trans-
formation and substitution equal at k1.

On reflection, the results should not be a surprise, as for homog-
enous consumers with zero correlation we have 2 2N i  and for 
perfect correlation we have σ = Nσi. Both cases boil down in effect to 
the treatment of the consumer community as a single consumer.

For identical consumers with normally distributed and imperfectly 
and linearly correlated demands, the bounds of aggregate variance 
are N Ni i

2 2 2. Hence for correlations less than perfect, for a 
particular consumer price function and a particular ration rate, the pro-
ducer experiences what Drèze calls increased economic returns to scale, 
as the percentage of capacity held above expectation falls with increas-
ing numbers of consumers. With our assumptions about the identical 
nature of consumers, we have been able to adjust our pricing, without 
worrying about the discriminatory impact on different customers. With 
heterogeneity of customers, this becomes more of a problem.

3.3.4.3.ii Correlation at Higher Moments
When considering security of supply of a highly secure system (as dis-
tinct to a less secure system), it is in fact not the “normal” variation of 
demand that is most important, it is the low-frequency high-impact 
events. The frequency and magnitude of these can be very sensitive 
both to the structure of individual demand distributions and correla-
tions between individuals. There are several effects here

1. For low correlations, the central limit theory has the effect of 
attenuating the tail of the aggregate distribution, driving it toward 
the normal.

2. Standard normal distributions are not necessarily correlated in a 
linear manner.

3. Endogenous shocks are by definition uncorrelated and the correla-
tion between exogenous shocks tends to increase with shock size, 
thereby “fattening23 the tail”24 of the exogenous distributions.25
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4. Regardless of correlation, the extreme value theory and associ-
ated distribution tends to model well the tail of the aggregate 
distribution.

Broadly speaking, the net of all this is that the correlation is not 
standard linear and increases with the moment of the distribution 
and the size of the event. If rationing is inefficient, the demand func-
tion downward sloping, and convex with a high willingness to pay at 
the ordinate, then we must treat all consumers as if they have  perfect  

correlation of demand. The build is then q kk
k

k

K

1
, where K is some  

number of around five. Low correlation can be used for the low 
moments and high correlations for the high ones. We explore this 
further in the analysis of Chao.

3.3.4.3.iii Disaggregation of the Consumer Base
Drèze goes on to examine the potential to divide the consumer base. 
We can do these by taking our demand variation equation and separat-
ing into correlated and uncorrelated elements.

We discuss in the Chao analysis in section 3.11 how we can usefully 
regard our consumer population in terms of the weighted average of 
correlated and uncorrelated elements. So the forces on consumers are 
a result of purely endogenous and purely exogenous forces. The cor-
related component can be simply expressed as

2 2
i

i n
i j ij

i j n i j, ,

.

Similarly, in the spirit of Modern Portfolio Theory, we can con-
sider the correlation between the individual and the whole portfolio 
of individuals. Indeed we can now divide our consumer demand into 
100 percent correlated and 0 percent correlated.

2 2 2 2 22 2i p i p ip i p i ip  where the p in σp denotes 
portfolio, where we have used the standard nomenclature for port-
folio beta.

So the impact on portfolio variance is the sum of the correlated and 
uncorrelated impacts.

We can regard the portfolio as a mixture of perfectly correlated 
and uncorrelated impacts. In simple terms then, the aggregate 
cost of risk will be driven by ψ = a*σ + b*σ2, where a and b are 
constants.
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We will see later, that since we are most interested in very low 
probabilities of insufficiency (i.e., high capacity margins), we can use 
the extreme value theory to show that for probability extremes, the 
normal distribution assumption is not necessary (although of course 
we need to characterize our distribution so that we can quantify it). 
The attention to the extremes is shown in figure 3.7.

3.3.4.4 Cost of Risk
To simplify the situation and address the key point, Drèze uses a 
highly simplified demand function and shock to it. In particular, he 
implicitly assumes an amount of lost load that is directly propor-
tional to the coefficient of the statistical function ψ. If our distribu-
tion of aggregate demand is normal, then for high probabilities of 
lost load, with low capacity margin, the linearity is reasonable as seen 
in figure 3.8.

The fit is however not good for probabilities of lost load in the 
range that we are most interested in, as we see in figure 3.9.

This is immediately obvious to us if we consider the exp 
(− (x  −  μ)2/σ2) form of the normal distribution,26 and then consider the 

expansion of the exponential function e
x
n

x
n

n !1

, which for lower 

and lower probabilities of lost load, higher and higher moments of 
distribution become more important.

Probability
density
f(q)

Demand q

qc

Mean q

F (qc) = 1 1

2

2q
dq

qcexp
2 qc

Figure 3.7 Probability of demand exceeding capacity. Normal distribution assumption.
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3.3.5 Demand Function and Rationing in  
the Drèze Framework

The Drèze analysis uses a demand function, that although stylized and 
still in common practical use, and sufficient to make his key points, 
is not realistic. To examine capacity in the context of a downward 
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Figure 3.8 Approximate linearity of probability of lost load in relation to standard 
deviation—for high probabilities of lost load. Standard normal distribution. Capacity 
= 1. Ex ante expectation of demand = 0.25.
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Figure 3.9 Nonlinearity of probability of lost load in relation to standard 
deviation—for low probabilities of lost load.
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sloping demand function, which is not only much more realistic, but 
very important when we consider DSM, we turn to Steiner.

3.3.6 Conclusions from the Drèze Analysis

Drèze sets efficiency at the margin as the primary objective by requir-
ing the equation of transformation and substitution. He is prepared 
to sacrifice cost equilibrium to do so, allowing the generator to lose 
money on a continuous basis. Since we are able to show that within 
his analytic framework, we can satisfy equilibrium and efficiency at the 
margin, the real key point about his analysis is not the calculations but 
the preparedness to sacrifice equilibrium. It is particularly interesting 
to view this in the Walrasian framework (Drèze being a key author in 
the school called neo- or non-Walrasian) as Walras attended both the 
equilibrium and efficiency at the margin, placing more emphasis on 
equilibrium than the marginalists.

The analytics of standard deviation and variance are not really criti-
cal to the analysis, as in his solutions the simplifying assumptions on 
correlation render much of the workings redundant in making his 
key point. However these workings are very useful for various other 
purposes, such as the consideration of endogenous and exogenous 
shocks, the relationship between individual and aggregate demand, the 
application of the central limit theory, and the relationship between a 
statistical function such as the standard deviation of a normal distribu-
tion and the probability and extent of lost load.

3.4 Elastic Demand for Capacity—  
The Steiner Framework

3.4.1 Introduction

The demand function that is right angled (constant willingness to pay 
up to a level q and thence 0), with a lateral stochastic shock (same WTP 
but changing q) was adequate in the Drèze analysis to explain the recon-
ciliation between equilibrium and the margin. It is however significantly 
inadequate planning for electricity. The first change that we must make 
is the addition of demand elasticity. This is important in particular for

1. allocation of costs to subperiods
2. consideration of rationing when capacity is less than demand at a 

given willingness to pay
3. the nature of stochastic shock.
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Here we attend to cost allocation to subperiods.
Steiner27attended to the problem that charging the highest price in 

the peaks to consumers with elastic demand might actually change the 
timing of the peak.

Here we also introduce the concept of demand for capacity as dis-
tinct to demand for energy, which is so important in the design of 
capacity obligations.

3.4.2 Framework

Steiner considered the following model:

1. There is a single technology.
2. Short-term producer returns to scale are constant.
3. Short-term producer costs are nominally regarded as fuel28 with 

cost b/MWh.
4. Long-term producer returns to scale are constant (i.e., both 

energy and capacity).
5. Long-term capacity cost is nominally regarded as equipment/

capital with amortized cost ½ β/MW/h, where hours are mea-
sured in elapsed time.29

6. The demand function is elastic, deterministic, and periodic (peak 
and off-peak).

7. The demand functions are known to the regulator.
8. The peak and off-peak durations are equal.
9. Demand functions in each period are independent (cross-elastic-

ity is zero).
10. Demand is assured in the long term and nontrending.
11. The system is an autarky.

3.4.3 Analysis

Although the periodicity is regular and continuous as shown in fig-
ure 3.10, we can model this by a single period with a peak subperiod 
and an off-peak subperiod.

If we charge all the capacity in the peak period, then this may reduce 
demand below that in the off-peak, and thence the peak period shifts 
as we see in figure 3.11.

It is clear then that off-peak period 1 must make some contribution 
to capacity. Steiner solves this by adding together vertically30 the two 
demand functions above the intersection with the horizontal line of 
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height b, as we can see in the figure below. The method is shown in 
figure 3.12 and is as follows:

1. Find the intersection of the aggregate demand for capacity, and 
the total cost b + β. This is the demand for both peak and off-peak. 
Here β is expressed in £/MWh paid over a fraction of a cycle. So 
if we must cover £1 for 1MW over a cycle of two periods, then β = 
£2/MWh. If β’ is the cost over the whole cycle of unit length and 
w the period length, then w * β = β’.

2. Find the intersections between this demand and the demand 
curves. These are the prices.

We can see in figure 3.13 that total costs are exactly recovered, since 
the capacity cost saving in the peaks is exactly compensated by the 
capacity cost increase in the off-peaks. Indeed a geometric approach 

MW

Time

Periods 1

Periods 2

Figure 3.10 Periodic demand function as described by Steiner.

D1

P1 = b + 

P2 = b

MW MW

(a) (b)

£/MWh£/MWh

00

D2

D1

D2

x1 x2
x1x2

Figure 3.11 Demonstration of “shifting peaks” (a) All capacity is paid in the peak 
period, and peak demand remains above off-peak demand (b) Case where loading all 
capacity cost on the peak causes peak demand to fall below off-peak demand, and 
thereby shift the peak.
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is very useful for consideration of much of the literature on capacity 
pricing.

We can extend the same argument to more periods. The three-
period example for shifting peaks is shown in figure 3.14. We add the 
functions from their intersection with b, in ascending order.

Williamson (1966a, 1966b) extends the analysis to different lengths 
of peak and off-peak, and again considers the whole cycle as the appro-
priate period over which to consider marginal costs. While not chang-
ing the cost lines, he changes the demand for capacity by applying a 

D1

Dc

D2

b + 

b

£/MWh

00x1 x2
MW

P1

P2

Figure 3.13 Exact recovery of total costs. The two gray areas are equal.
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00x1 x2

Figure 3.12 Steiner optimal pricing in the “shifting peaks” case. See text.
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weighting to the demand for capacity, with the weight equal to the 
length of the respective demand period.

Let the demand in any period i be Di and the period fraction of 
the cycle be wi. Taking each period in isolation, and assuming that 
there is no demand in any other period, the price in that period that 
will give fixed-cost recovery over the whole period is Pi = b + β/wi. 
If Q i is the capacity demanded in any period, then the whole-cycle 
revenue recovered in each period is PiQ iwi, which is equal to the costs 
Qi (bwi + β). We now need to construct a demand for capacity curve 
such that at provided capacity Q i

*, it has a price Pi = b + β/wi. The 
aggregate demand for capacity curve is now formed from the time-
weighted individual demand curves.

Let us suppose that we have an off-peak demand function D1 for 
8 hours and a peak demand function D2 for 16 hours. The Williamson 
framework is represented in figures 3.15 and 3.16.

In the case for which both periods consume the same MW, the 
equation of costs and revenues give us

P Q w P Q w bQ Q1 1 1 2 1 2 1 1
* * * *,

where
Q 1

* is the provided capacity
P1 and P2 are the prices charged in period 1 and period 2
w1 and w2 are the cycle fractions of periods 1 and 2
β is the fixed per cycle cost
b is the marginal cost.

D1
D2D3

Dc£/MWh

MW

b+

b

P1

P2

P3

Figure 3.14 Optimal pricing for a three-period example with shifting peaks.
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We can rearrange as

P b
w

w
w

P b1
1

2

1
2 .

In the case where consumption is different in each period, the revenue is

Q P w Q P w Q w b Q bw2 2 2 1 1 1 2 2 1 1
* *( ) .

Again, costs equal revenues.

3.4.4 Discussion of the Steiner Shifting Peaks Analysis

Steiner’s starting point is a peak load rather than variable cost 
approach as is evident from the axiomatic recovery of fixed costs and 

MW

(a) (b) (c)

Figure 3.15 Optimal pricing in the Williamson framework with different durations 
of peak and off-peak (a) Off- peak. The demand curve, and the differential between 
the demand curve and marginal cost, multiplied by period length (b) Peak (c) Vertical 
addition of the demands for capacity (the dotted lines above the level b) in previous 
two figures.
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1 2

b + 1

Q*
1 Q*

2Q12

P1 = b

P2

b + 2

Figure 3.16 Pricing and capacity for two different levels of fixed cost (1) Example 1, 
consumption Q 1

* in both periods (2) Example 2, different consumption in each period.
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the reduction in consumption from the elevation of the price in the 
off-peak period above short run variable costs b does reduce off-peak 

consumption by P b2

2
, where θ is the slope of the inverse demand 

function. The variable cost approach would avoid the deadweight loss 

of P b2
2

22 .

The deduction of the variable cost from the inverse demand func-
tion is a “demand for capacity” approach is explained by Hirshleifer 
in section 4.2.

The argument can be framed as a public goods argument in which 
the total capacity is available across all periods, and all periods may 
have to pay a contribution to capacity cost. We see in section 4.3 a 
similar approach by Panzar.

Steiner made some emphasis that his analysis introduced the 
importance of discriminatory pricing to the subject of peak pricing. 
However, it was not agreed31 that this pricing is actually discrimi-
natory. The debate hinges on the definition of discriminatory for 
electricity, and in particular whether peak and off-peak electricity are 
different commodities, and whether therefore their costs are linked. 
We noted in section 2.4.6 that fixed cost allocation is influenced by 
revenue allocation.

Note that while we have not necessarily required the assessment of 
a utility function, we nevertheless required a fairly complete knowl-
edge of the demand function. In theory, a demand function can be 
discovered by offering at different prices and finding how much is 
demanded, but in practice this knowledge is restricted to demand vol-
umes close to the equilibrium volumes and we do not test willingness 
to pay in relation to actual loss of load.

3.5 Efficiency of Rationing of Demand

If the amount of goods produced is less than the amount demanded, 
then there must be some rationing. Since electricity has some public 
goods characteristics and because the key focus for capacity mecha-
nisms is loss of supply, we need to examine rationing in detail.

Consider the initial deterministic situation in which each consumer 
consumes amount determined by their demand function and the mar-
ket price P. Clearly this is not a public good situation.

Suppose now that demand suddenly rises. If we may elevate the 
price and in addition have sufficient time resolution on the meters to 
measure consumption in the period of demand elevation, again we 
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have a private good situation and we can achieve balance by elevating 
the price to the level at which aggregate demand matches supply.

Suppose, however, for practical reasons (metering, billing, collec-
tion) or social/political reasons, we may not elevate the price. Our 
demand now exceeds the capacity and something must happen.

One thing that can happen is to terminate power flow to whole 
regions in turn for a four-hour period. This “rota disconnection” is 
what is generally done in sustained power shortages. While in theory 
the concept of public goods is violated by there being a restriction, 
this is not a real concern in theory. We call this random rationing.

A common precursor to rota disconnection is the reduction of sys-
tem voltage. In this case all consumers receive a pro rata reduction to 
their normal use.

With smart meters there are many more possibilities.
For example, the price can be elevated for halfhourly periods. This 

is efficient pricing to the extent that the consumers can respond to the 
price signal, for example, by automation and smart devices.

It is possible to preserve power to some individuals and disconnect 
everyone else at individual meter level. Even if the meter can do no 
more than measure, it is theoretically possible to force self-disconnec-
tion for the shortage period by sending an exceptionally high price to 
the meter for that period. Supposing that for social reasons power was 
preserved only for the poorest, we can see that we can have perfectly 
inefficient rationing in terms of first best welfare.

There are various other ways of rationing in a smart system. For 
example, smart devices can ensure that at consumer level the high-
value uses (e.g., telecommunication) are preserved and the low-value 
uses (e.g., heating) are constrained.

Finally we need to consider when the economic efficiency in ration 
conditions is different to that in normal conditions. The main mecha-
nism for this is the inability to effect a dynamic price.

An interesting situation is when we consider the same shift in aggre-
gate demand function, but in one case arising from increased willing-
ness to pay and in the other case an increased volume of demand. In 
the former case, if rationing is inefficient, increased willingness to pay 
will result in reduced consumption by those already consuming due 
to the sharing with those who are newly prepared to consume at this 
price. In the latter case, we would more naturally expect a widespread 
sharing across consumers. We examine this situation in detail in the 
Visscher analysis in section 3.7.

We now consider the effect of different rationing methods on 
efficiency.
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The key methods both between consumers and by individual con-
sumers are:

1. perfectly efficient
2. perfectly inefficient
3. random
4. pro rata
5. other.

In the most efficient rationing of demand, all those whose willing-
ness to pay exceeds the clearing price receive the goods, and all those 
whose WTP does not, do not.

For pro rata rationing, in which all consumers lose the same pro-
portion of demand, we must obviously start with how much they have 
before rationing. Pro rata rationing is in fact the standard method for 
the early stages of controlled lost load. The distribution companies 
reduce power draw by reducing the voltage.

To model rationing efficiency, we need to look at the level of the 
population (rationing some more than others) and the level of the 
consumer (rationing some uses more than others). In practice the 
literature simplifies this and we do the same.

Our characterization of consumers is:

1. homogenous with only exogenous shocks to demand
2. homogenous with only endogenous shocks to demand
3. heterogeneous
4. other.

The distribution of consumers is

1. normal distribution of the key variable (e.g., WTP at given volume 
q, demand at a given price, population)

2. lognormal distribution of the key variable
3. uniform distribution of the key variable
4. pyramidal (few rich, many poor)
5. other.

The main demand functions are as set out in section 2.2.1.
For the sake of easier modeling, we assume initially that each con-

sumer has a constant willingness to pay (linear utility) up to a volume 
limit at which willingness to pay at the margin drops to zero. For 
heterogeneous consumers we then assume that the WTP for different 
individual consumers has a uniform distribution.
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When considering the rationing of demand, it is common to model 
in terms of the aggregate demand function.

Figure 3.17 shows the efficiency of random rationing in relation to 
the efficient rationing.

Figure 3.18 shows the comparison between the most and least 
efficient rationing. Note that the welfare loss for efficient rationing 

Efficient 
rationing
cost

Rationing
inefficiency

P

Q

Rationing
amount 

Figure 3.18 Most inefficient rationing. Serving the shaded area first. The 
inefficiency cost is the chequered area.
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Figure 3.17 Comparison of random rationing to efficient rationing (a) Initial 
situation, with surplus shaded (b) Change to demand with demand satisfied 
(c) Change to demand with efficient rationing of unsatisfied demand (d) The same 
change to demand but showing the inefficiency of pro rata demand.
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is proportional to the square of the volume lost, while the initial 
cost of rationing of the least efficient rationing is proportional to 
the volume loss.

As is pointed out by Visscher and others, the least efficient (as 
defined by Marshallian surplus) is quite possible. For example, sup-
pose that the “cash rich” are also the “time poor” and energy use can 
by configured by spending time on it. Another reason is the social 
imposition, for example, all citizens receiving a certain amount of 
electricity, and all extra being rationed, or vulnerable consumers being 
prioritized for supply.

Different authors make different assumptions, which we summa-
rize in figure 3.19. Not shown is the Drèze assumption, where since 
there is a single willingness to pay, the loss of welfare is directly pro-
portional to loss of load.

For the most public good we must consider rationing even in deter-
ministic conditions when aggregate capacity is equal to the aggregate 
demand at price P where P is the fully loaded (fixed plus variable) cost 
of generation. At aggregate level it is easiest to assume random ration-
ing (i.e., some consumers lose everything). We see this in figure 3.20. 
Note that we do require demand to be finite even at zero cost.

It is in fact common to assume that the starting position is efficient 
and then a stochastic upward shock to demand may cause some inef-
ficiency. This is examined in the Visscher framework in section 3.7.

Public goods are defined differently by different authors.32 Under 
the Samuelson33 definition, the rationing of public goods is pro rata.

When we consider rationing in practice, it is important to recog-
nize all of price elasticity of demand, the heterogeneity of consumers, 
the heterogeneity of the type of demand (heating, lighting, etc.) and 
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Figure 3.19 Summary of rationing efficiencies.
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the difference between exogenous demand shocks that are systemic 
and endogenous demand shocks that are individual.

It is the heterogeneity of the use of electricity by individuals that 
makes all or nothing random rationing highly inefficient, and for other 
types of rationing, it becomes highly dependent on the consumers’ 
ability to ration effectively, for example, maintaining computing while 
reducing heating. This itself is highly dependent on local storage of 
energy (mainly power, heat, and cold), automation, and social and 
technical ability to use price signals as a rationing tool. We see this in 
figure 3.21.
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Figure 3.21 Depicting of rationing efficiency between consumers and by consumers.
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consumers’ surplus (a) Linear demand function (b) Convex demand function.
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3.6 Pricing under Stochastic Demand—  
The Brown and Johnson Framework

3.6.1 Introduction

As we have noted, the axis of the debate between peak load and mar-
ginal cost pricing revolves around the uplift of fixed costs in prices.

The Brown and Johnson (BJ, 1969) framework and analysis pro-
vides key insights into the debate as it stood.

BJ arrive at the conclusion that for deterministic demand, prices 
are fully loaded (P = b + ) and fixed costs are recovered, but for sto-
chastic demand, prices are set at short run variable costs (P = b), and 
fixed costs ( ) are not recovered. This is an important conclusion that 
is frequently quoted in the literature.34

We examine their analysis here, particularly so that we can consider 
how the specific decision framework can be generalized and to find 
the sensitivity of the conclusions to the assumptions.

3.6.2 Framework

1. There is one technology.
2. There is a single peak and an off-peak subperiod that may be of 

different lengths.
3. Returns to scale in capacity  and operation b are constant.
4. There is a hard capacity constraint (variable costs infinite above it).
5. The inverse demand function is downward sloping (elastic).
6. Demand is stochastic with a linear symmetrical shock.
7. Not noted by BJ, but the implication of the shock is that the 

demand function is linear.
8. Rationing is efficient. We can do this either by changing the price 

to allow consumers to self-ration, or through knowledge of the 
individual demand functions (Kaldor-Hicks efficiency).

3.6.3 The Analysis

3.6.3.1.i Optimum Size in the One Subperiod Deterministic Setting
The welfare equation used to optimize capacity Q’ is

W X Q dQ b Q
Q

1

0

( ) ( ) ’,
’

where X−1 (Q) is the inverse demand function.
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We can regard this either as the total surplus, being gross consum-
ers surplus minus producer costs, or net consumers’ surplus after pay-
ing the set price b + . Figure 3.22 shows the net surplus.

3.6.3.1.ii The Two Subperiod Deterministic Setting
BJ then extends the analysis to the Williamson framework (see section 
3.4) with a peak and off-peak periods. So we have

W w X Q dQ w X Q dQ

w bQ w bQ Q

Q Q

1
1

1 1
0

2
1

2 2
0

1 1 1 2 2

1 2

( ) ( )

’ ’ ’,

’ ’

where period 2 is the peak period35 of length w2. Period 1 is the off-
peak, of length w1. w1 + w2 = 1.

In the case where demand elasticity is such that demand in peak 
and off-peak period is the same (the shifting peaks that we see in sec-
tion 3.8), that is, Q Q Q1 2

’ ’ , then

W
Q

P w P w b
’

( )* *
1 1 2 2 0

We know from the Williamson framework that in this case P b x1
* ,  

so P P b x1 2
* * , where x is as shown in the Steiner/

Williamson framework in section 3.4, and hence fixed costs are exactly 
recovered.

Note that in the one-period case, grouping together the cost terms 
b and , we assume that the incurrence of short-term variable costs 

Price P 
£/MWh

b + 

P = X –1(Q)

Volume Q

Q’W

Figure 3.22 The inverse demand function and consumers’ surplus W.
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necessarily incurs the long-term capacity costs. In other words, the 
owner makes the capacity and operating decision simultaneously at 
build time. We optimize aggregate welfare at build time and we do 
not reoptimize at run time. In the Hotelling framework, we would 
indeed reoptimize, and then set the clearing price at P = b. This is 
outlined in the discussion on Steiner, in section 3.4. The subtlety here 
is that BJ not only assume a deterministic demand function, but also 
deterministic demand satisfaction.

BJ follow the same line for the case of different demand in both 
periods (one demand function intersects the production cost func-
tion on its vertical section, the other on the horizontal section), so 
for off-peak period 1 we have P1 = b and for peak period 2 we have 

P b
w2

2

. Again, fixed costs are exactly recovered.

3.6.3.2 Stochastic Demand
BJ then consider a single period with stochastic demand.

First we consider a well-behaved symmetrical function that is addi-
tive to demand. D = X(P) + u, where D is the quantity demanded at 
price P, and u a stochastic variable. In the Von Neumann Morgenstern 
framework, this is a simple shock to commodity endowment.

The firm must make the price P  and capacity Z decision before 
the resolution of the uncertainty u. We assume that we can ration by 
willingness to pay and hence rationing is efficient.

3.6.3.2.i Welfare
BJ then construct total welfare as for the deterministic case, but this 
time use (unconditional) expectations. So,

Total welfare W E EGCS PC , (3.23)

where GCS is the gross consumer surplus and PC is total producer cost.
If now we have to ration, then BJ express the welfare as:

Expectation of net consumers’ surplus if there were no rationing
Plus expectation of revenue paid by consumer to producer if there 

were no rationing
Minus expectation of the loss of net consumers’ surplus from 

rationing if there is rationing
Minus expectation of the loss of producer revenue from rationing
Minus expectation of variable costs
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Minus fixed capacity costs.

So, to optimize, we will set 
W
P

0 
W
Z

0.

Let us consider the terms one by one:

E f u X P u dP P X P u dunr P

X u
GCS ( )[ ( ) ( ) ]

( )1

,

where the suffix nr denotes no rationing

If u is symmetrically distributed, then P X P u du PX P( ( ) ( ).

So,

E f u X P u dPdu PX Pnr P

X u
GCS ( ) ( ) ( )

( )1

 
(3.24)

The build up of the integral is shown in figure 3.23.
The loss of consumer surplus after a positive demand shock such 

that volume requested at price P exceeds capacity Z, relative to what 
that surplus would have been if the capacity had increased such that 
demand is exactly satisfied, is shown in figure 3.24

Adding together we have,

E f u X p u dPdu PX P

f u P X P u Z

P

X u
GCS

 

( ) ( ) ( )

( ) ( )

( )1

dPdu

f u P X P u Z du

Z X P

Z X P

( )

( )
( ) ( ) 

.

Z

X –1(0 – u)

P

X(P) + u

price

Figure 3.23 Gross consumer surplus when capacity is sufficient, showing construction 
of the integral.
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The expectation of sales volume is simply the expectation without 
constraint, minus the expectation of constraint. So,

E f u X P u du

f u u Z X P d

u

Z X P

Sales

 

( ) ( )

( ) ( ( ))
( )

uu.
 

(3.25)

This gives us the expected variable costs b  *  E{Sales} plus   *  Z and 
the expected producer revenue b  *  P. So the expected producer 
costs are”

E b
X P uf u du

Z X P f u du

Z X P

Z X P

PC
( ) ( )

( ) ( )

( )

( )

Z .

 

(3.26)

The total welfare expectation, which we will need to differentiate 
to arrive at the optimum price and capacity, is the net of the expecta-
tions of costs and gross consumer surplus.

W f u X P u dP du PX P

f u X P u Z

P

X u
( ) ( ) ( )

( ) ( )

( )1

dP P X P u Z du

b X P uf u du Z X

P

X Z u

Z X P
( ) .

( ) ( ) (

( )

( )

1

PP f u du Z
Z X PZ X P

) ( )
( )( )

X(P )Z

P

X –1(Z – u)

X(P )Z

P

(a) (b)

Figure 3.24 Loss of consumer surplus after a shocked demand exceeding capacity, 
relative to the surplus at the ideal capacity level (a) Net consumer surplus (b) Consumer 
cost. The addition of the two areas is the gross consumer surplus differential from this 
shock.
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3.6.3.2.ii Optimizing Price

dW
dP

PX P F Z X P

bX P F Z X P
Z
P

’

’ .0
 

(3.27)

BJ omit the ∂Z/∂P term, effectively assuming that the capacity deci-
sion is taken before the pricing decision. In practice we would not 
necessarily expect this to be the case.

We can see that if 
Z
P

0, then P b.

However if 
Z
P

X P F Z X P’  then P b . (3.28)

F Z X P  is the probability that the capacity exceeds the 

volume demanded at price P  (i.e., the probability of satisfaction of 
demand with no rationing) and X P’  is the slope of the demand 
function at price P .

As before in the deterministic case, this depends on the capacity 
decision. If we optimize capacity and price at the same time, then 
the optimum price is the fully loaded cost. If we optimize aggregate 
welfare after the capacity decision and the resolution of uncertainty, 
then the optimum price is the variable cost. This is precisely the 
peak load versus marginal cost dilemma. With the former, we make 
our investment plans with sight of the risks. With the latter we first 
plan ignoring the risks and then replan after the realization of the 
risks.

Since we conclude, unlike BJ, that ∂Z/∂P ≠ 0, then we should 
look at how optimum price and installed capacity are affected by the 
distribution of u.

3.6.3.2.iii Expectation of Loss
For a negative outcome of u, the cost of wasted capacity relative to 
the perfect hindsight vision case is u, and for a positive outcome of 
u, the welfare cost is 1

2
2u , where  is the slope of the demand func-

tion. If, as we do in the Chao analysis in section 3.11, we simplify the 
distribution to a simple binomial one, then let us assume that we will 
see a positive shock of u , with a probability of 50 percent, and a nega-
tive shock of u , with a probability of 50 percent. So our expectation 
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of welfare loss is 1
2

1
2

2u u . If we allow a distribution to the shock 

u, then the expectation of loss is

E E u u E u uLoss 0 01
2

2 .

We can use the symmetry of the distribution to further simplify to

E Loss USE LOLP* * ,1
2

2

where USE is the conditional expectation of lost energy, LOLP is the 
probability of losing energy, and 2 is the variance of u.

Now let us consider adding a volume q to the riskless optimum Z in 
order to maximize welfare. So our expectation of loss is now

E u q u qqLoss 1
2

1
2

2( )

E E q qu qq qLoss Loss 0
1
2

22 .

It is clear from this that depending on the distribution, it may be bet-
ter to increase or decrease capacity. The more convex the demand func-
tion, the smaller the variance at which it is best to increase capacity.

For large variance, the optimal installed capacity increases mono-
tonically with variance. Note the similarity to the Drèze conclusion.

The argument for price is similar. For large variance, we install a 
large amount of capacity. Let us for a moment forget the problem 
of negative demand for a symmetric distribution, and consider again 
a simple binomial distribution with two outcomes. Suppose that the 
shock is equal to the current deterministic equilibrium demand. Let 
us also suppose for simplicity that the optimal installed capacity in this 
stochastic situation is exactly equal to that for deterministic demand. 
The aggregate welfare is then

W Z bZ Zd d d
1
2

1
2

1
2

2 .

Zd is the deterministic demand.
There is no direct dependence on P, but there is a dependence on Z, 
which depends on P.

There is another feature of the BJ framework that merits consid-
eration. BJ advocate a price of b. Let us consider two cases for build 
volume. First, a build volume that is commensurate with satiating of 
demand at price b. There is no rationing, although the long-term eco-
nomic inefficiency is 1

2
2 . Suppose instead that the build volume is 
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commensurate with a price of b + . We must then have rationing if 
we set the price at b. BJ assume that this rationing is efficient. This is 
consistent with the BJ framework, but when we include rationing inef-
ficiency, it means that if we build a volume consistent with a price of 
b + , then we must consider rationing inefficiency if we have an offer 
price below this. We will see this in the Visscher framework below.

3.6.4 Discussion of the Brown and Johnson Framework

We can regard the BJ framework as a stochastic application of the 
Hotelling framework in which a volume decision is made first and inde-
pendently of the pricing decision. Once built, the fixed costs play no fur-
ther part in the analysis and thence the price gravitates to variable costs.

We can see from equation (3.26) that when we recognize pricing 
at the time of build, we return to equilibrium pricing in which fixed 
costs are recovered.

3.7 Modeling under Variable Rationing 
Efficiency—The Visscher Framework

The BJ framework in section 3.6 above is highly dependent on effi-
cient rationing. Since in practice rationing is inefficient, we need to 
examine the sensitivity to rationing efficiency. The Visscher frame-
work allows us to do this. We are then able to show that the optimal 
volume may increase or decrease with standard deviation of demand 
shock, according to the nature of the demand function and shock.

While being faithful to the analysis, we here take a geometric 
approach to the calculus and in doing so can address some other 
effects, and in particular consideration of a shock to the demand func-
tion either in terms of increased volume of demand or of increased 
willingness to pay.

3.7.1 Visscher’s Framework and the Implied Utility Function

1. There is one technology.
2. There is a single subperiod.
3. Returns to scale in capacity  and operation b are constant.
4. There is a hard capacity constraint (variable costs infinite above it).
5. The inverse demand function is downward sloping (elastic).
6. Demand is stochastic with a linear symmetrical shock to the inverse 

demand function that can be viewed as upward (willingness to pay) 
or rightward (volume).

7. Rationing can be efficient or inefficient.
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Visscher considers welfare in terms of the probability weighted 
expectation of welfare delivered in all outcomes. In doing so, the wel-
fare of all consumers (born and unborn, domestic and foreign, plan-
ning and unplanned) are considered equally in our objective function.

3.7.2 The Analysis

The gross rationing cost to the consumer is the sum of the efficient 
rationing costs L1 plus the maximum inefficiency L2 as shown in fig-
ure 3.25. Visscher’s formula is

E L L f u
X P u dP

X u

X u X Z u P

X u

1 2
1

1 1

1

( )
( )

( )

( ) ( )

( )

XX Z u P

X P u Z

du
Z X P 1( )

( )

.
( )

P  is the preset price.

£/MWh

MWX(P ) + u

P

Z

L1

L2

Z

Z

X(P )+u–Z

X(P )

uu

Z –u

X –1(Z –u)

X –1(–u)

X (P) + u
X –1(–u) –X –1(Z –u) + P

u

X(P ) – (Z–u) + u

[I]

[I]

X –1(Z –u) –P

Figure 3.25 Geometric representation of the Visscher framework for a linear demand 
function.
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The welfare formula is then found by finding the total consumer sur-
plus assuming no rationing, subtracting the gross rationing cost, and 
subtracting the variable cost saving from rationing. To demonstrate 
our workings, we use slightly different nomenclature to Visscher.

W u P u dPdu PX P

f u X P u

p

x u

z X P

f( ) X[ ( ) ] ( )

( ) [ ( ) ]

( )

( )

1

ddPdu

f u X u X Z u P

X u X Z u P

X u

1 1

1

1 1

( ) ( )

( )

( ) ( ) ( )
ZZ X P

z X P

X P u Z du

b X P uf u du Z X P f

( )

( )

( )

( ) ( ) ( ) (uu du Z
Z X P

)
( )

.

 (3.29)

The first term is the gross consumer surplus without rationing, the 
second and third terms36 on the second line of the equation are the 
gross consumer rationing costs, and the fourth and fifth terms on 
the third line of the equation are the variable and fixed costs respec-
tively. The fourth term is comprised of the variable cost with no ration-
ing minus the variable cost saving from rationing.

While Visscher remains general with respect to demand function, 
the nature of the shock does lend itself naturally to an assumption of 
linearity.

3.7.2.1.i Varying Rationing Efficiency
Visscher allows for the complete spectrum of rationing efficiency from 
perfect (as in BJ) to perfectly inefficient. We see in figure 3.26 that 
for perfect efficiency the welfare loss from rationing is proportional to 
the square of volume difference from the ideal and the additional loss 
from perfect inefficiency is proportional to the volume difference.

If we denote the welfare loss from rationing inefficiency by We, 
then, for quadratic utility, and beginning with a build amount z that is 
optimized for the deterministic case,

W X P g u due u

u1

0
0( ) ( )  where g() is the probability density, 

and here we have looked only at positive shocks to demand (negative 
shocks to endowment).

Expectation of the rationing cost is the sum of efficient rationing 
plus the inefficiency:

W g u X u X du

X P u g u du

r u

u

u

u

( ) ( ) ( )

( ) * ( )

1 1

0

1

0

0
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1
2

2
1 0 0

u
X P u u E u u( ) * | , Where 

where  is the rationing inefficiency. Note that we have the BJ frame-
work as the special case for  = 0, and the Visscher case for  = 1. 
We can in this equation clearly see the quadratic term for perfect effi-
ciency and the linear term for inefficiency.

3.7.2.1.ii Comparison of Horizontal and Vertical Shifts  
to the Demand Function
The same shock to the demand function can be regarded as a pure 
shift to volume (e.g., the number of consumers) or a pure shift in 
willingness to pay (e.g., due to shock to wealth or endowment of sub-
stitute goods), or a combination. We will show how these are related 
by the inefficiency.

Let us then start with the trial solution, price equals fully loaded 
cost b + B, estimate the expectation loss of surplus from stochastic 
shock, and then see how this changes with a small increment and dec-
rement of capacity. Finally we could, with no loss of generality for this 
one period one technology setting, set variable cost b = 0, and then 
add b to the optimum price at the end. We do not do this here, in 
order to make the diagrams similar to those of Visscher.

£/MWh

MW

X –1(0)

u

b +

Z = X(b + )
X(b + )+u

X –1(–u)

u

L1

L2

X(P )
X(P ) + u

Figure 3.26 Positive demand shock in the Visscher framework. Efficient rationing 
(L1) plus rationing inefficiency (L2) for a linear demand function and an additive 
shock to demand.
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The central case is shown first, for a positive shock u, which has a 
50 percent probability. This is shown in figure 3.26.

The gross consumer surplus for u = 0 is

( ) ( ( ) ( )) ( ( )

( ) ( ) ( (

b X b X b

X b X b

1
2

1

1
2

1

0

0 ) .

The total cost for u = 0 is

( ) ( ( ) .b X b

The extra gross consumer surplus for an increase in demand of mag-
nitude u, with no rationing is

X u u u X u X u X u X1 1
2

1 1 1
2

1 10 0( )* * ( ) ( ) * ( ) ( ) .

The reduction in gross consumer surplus for a decrease in demand of 
magnitude u, with no allocative inefficiency is

X u u X X u u X X u1 1
2

1 1 1
2

1 10 0 0( )* * ( ) ( ) * ( ) ( ) ,

which for a linear demand function is

1
2

1 1 0u X u X* ( ) ( ) .

The extra cost, were it possible to deliver this load with no change in 
capacity is

u * b.

If we had known in advance about the (certain) shock u, then the 
spend on extra capacity u would be

u * .

The gross consumer cost of rationing is

u X X u X u X u X* ( ) ( ( ) ( )) * ( ) ( )1 1
2

1 1 1
2

1 10 0 0 .

Using the assumed linearity of the demand function, we can express

X u X u1 1 0( ) ( ) * ,
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where  is the negative of the slope of the demand function

X u X X u1 1 10 2 0( ) ( ) ( ) * .

So the total welfare for positive shock is equal to the welfare with 
no shock, plus the increase in gross consumer surplus with no ration-
ing, minus the total consumer welfare loss from rationing minus the 
increase in cost.

The increase in gross consumer surplus with no rationing is equal to

X u u X u X1 1
2

1 10 0( )* * ( ) ( ) .

The gross cost of rationing is equal to the cost of efficient rationing 
plus the inefficiency

1
2

1 1 10 0u X u X u X b* ( ) ( ) * * ( ) ( ) .

There is no change in cost.
So,

W W X u u X bu Z X b Z X b, ( ) , ( ) ( )* * * ( ) ( ) .0
1 10 0

For the efficient case  = 0, we have the welfare after positive shock u

W W X uu Z X b Z X b, ( ) , ( ) ( )* .0
1 0

For the inefficient case  = 1 we have

W W u bu Z X b Z X b, ( ) , ( ) *( ).0

The cost of perfect inefficiency is then u X b*( ( ) ( ))1 0 .
We will now examine why this expression is also equal to the wel-

fare gain from a vertical shock (i.e., a shock to willingness to pay).
We can see from the figure 3.27 that the maximum inefficiency fol-

lowing a horizontal demand shock is equal to the surplus gain from a 
willingness to pay (vertical) shock giving rise to the same shock to the 
demand function.

We can see that

X b B
X b B

1 0( ) ( )
( )

,
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and that the horizontal demand function shock u is equivalent to a 
vertical shock u .

For the former, the inefficiency is

X b B u1 0( ) ( ) * .

For the latter, the surplus gain is

X b B u( )* * .

Substituting for , we can see in figure 3.27 that the areas are the same.

3.7.2.2 Interpretation of the Nature of the  
Demand Function Shock

It is worth considering how we might interpret an increase in wel-
fare without an increase in load delivered, due to the constraint in 
capacity.

Let us first suppose that it is a result of increased willingness to pay. 
For a linear demand function, a horizontal movement of u has the 
same effect as a vertical one of u * .

We can see by inspection that an increase in willingness to pay with 
no change in load for anyone results in an increase in welfare of

Z X u X Z u Z
X b

Z
u

u X b

( ( ) ( ))
( ) ( )

( ) ( ) .

1 1
1

1

0
0

0

P

Q

B + b

Capacity P

Q

(a)
(b)

u

u

Figure 3.27 Welfare equivalence of demand shock and willingness to pay shock (a) 
Demand shock with perfect inefficiency (b) WTP shock with constrained capacity.
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A vertical movement in the demand function would require no 
reallocation to consumers, and hence the rationing is efficient. The 
welfare gain is precisely equal to the inefficiency of the change in 
demand curve. For a linear demand function, we cannot tell from the 
movement of the function whether the shock was vertical or horizon-
tal. However, while a vertical movement would not cause reallocation, 
a horizontal change would.

The inefficiency of investment (i.e., the welfare relative to the 
optimal investment case with perfect foresight for a one-off demand 
shock) is 1

2
2u .

If instead we suppose that consumers are heterogeneous, with 
inelastic demand to a willingness to pay threshold and add u consum-
ers, with a high willingness to pay between X−1 (u) and X−1 (0), none 
of whom get served, then it is easy to see that our allocation is perfectly 
inefficient, and our welfare is unchanged. If the allocation is perfectly 
efficient, then we redistribute allocation from the consumer with WTP 
in the range b +  to those in the range b X u X( ( ) ( ))1 1 0 . We 
can see by inspection that this redistribution delivers a utility

u X b1 0( ) ( ) .

We can therefore see why the welfare gain from vertical demand 
shock with perfect efficiency is equal to the efficiency cost of perfect 
inefficiency.

3.7.2.3 Estimation of the Inefficiency  for Random Rationing
Changes in the number of consumers in society gives us problems, 
for example, regarding the tax base and the welfare of visitors. Let us 
then suppose that the horizontal shock to the demand function is a 
result of shock to endowment. Let us suppose first that all consum-
ers are homogenous and hence the downward slope of the aggregate 
demand function is entirely due to the individual slopes and not at 
all due to the heterogeneity of society. Our inefficiency now is not 
a result of withdrawing power from those with highest willingness 
to pay (as all consumers have the same WTP), but the welfare ineffi-
ciency of withdrawing a large amount from a small number of people 
(as happens in practice) than a small amount of load from a large 
number of people.

For a system-wide loss  percent of satiated demand, or Z(b + ) 
MW, the most efficient way is to spread evenly across all consumers if 
they are homogenous, that is, all consumers lose  percent rather than 
 percent losing all consumption. For maximum efficiency, we assume 
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that the consumers can ration use according to value. For n homog-
enous consumers, with pro rata loss that is efficient at the level of the 
individual, the net consumer welfare loss is

1
2

2 2* * * ( ) * ,n Z b

where  is the negative of the slope of the demand function.
If instead some consumers lose all their power, then the net con-

sumer welfare loss is

* * * ( ) ( ) ( ) .n X b Z b1
2

1 0

If it were the case that either i) all consumers lost some power, and 
that the mechanics of utilization were that this were the most valuable 
power, or ii) some consumers lose all power and these have the high-
est WTP, then the net consumer welfare loss is

* * ( ) ( ) ( ) .n X b Z b1 0  This is the 1 case.

So,

rr

n X b Z b n Z b

n

* * * ( ) ( ) ( ) * * * ( ) *

*

1
2

1 1
2

2 20

** ( ) ( ) ( ) * * * ( ) *
,

X b Z b n Z b1 1
2

2 20

where rr denotes random rationing.

0 1
0

1

rr

0.5

0.25

Figure 3.28 The change of rationing inefficiency with amount of lost load, for 
random rationing.
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Noting that 
X b B

Z b B

1 0( ) ( )
*( )

 and then simplifying, we have

rr

1
2

.

We can see that for small losses   0, then rr
1
2 , and for large 

losses   1 then rr  0.
The form is shown in figure 3.28. Being of concave form, the inef-

ficiency pervades to fairly high amounts of lost load.
Let us turn to efficient build and pricing under stochastic condi-

tions of an additive shock.

3.7.2.4 The Dependence of the Efficient Build Volume  
on Rationing Efficiency

We assume initially that for the deterministic case u = 0, there is no 
allocative inefficiency to consumers. Allocative efficiency for this case 
is something we examine later.

For a positive shock, the welfare is the gross consumer surplus with 
no rationing, minus the efficient rationing cost minus the cost minus 
the net inefficiency

W Z X b X b X bu ( ( )) ( ( ) ( )) ( ( )1
2

1 0

                     

                    

1
2

1 1

1
2

1

0u X u X

u X

* ( ) ( )

* ( u X

b X b

) ( )

( ) ( ( )

1 0

                    

                     u X b* * ( ) ( ) .1 0

If the shock is negative, and there is no productive allocative ineffi-
ciency/rationing cost, there is a cost saving of u * b.

W Z X b X b X bu ( ( )) ( ( ) ( )) ( ( )1
2

1 0

                     

                    

1
2

1 10u X X u

b X

* ( ) ( )

( ) ( (( ) * .b u b

Here we use the sign convention that u is always positive, and is 
multiplied by +1 for a positive shock and −1 for a negative shock.

The expectation is

E W W Wu u u
1
2

1
2
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2 2

2 0 01
2

1

E W E W Z b

X b X b
u u* ( ( ))

( ( ) ( )) ( ( )

 1
2

1 1

1

0

2 0

u X u X

b X b u b u X

* ( ) ( )

( ) ( ( ) * * * ( ) ( ) .b

Here we have assumed that since we have a linear demand function 
and an additive shock,

X u X X X u1 1 1 10 0( ) ( ) ( ) ( ).

The deterministic case was

E W X b X bu 0
1
2

1 0( ( ) ( )) ( ( ) .

So the expectation of welfare loss from the addition of stochasticity is

E W E W u X u X

u b u X

u u0
1
2

1 1

1
2

1
2

1

0

0

* ( ) ( )

* * * ( )) ( ) .b

Let

X u X u1 1 0( ) ( ) * .

So,

X X b b1 0( ) * ( ) ( ).

So the expectation of loss from the addition of the stochastic shock 
u  is

E W Z E W u u b X bu u Z0
1
2, * * * ( ) .,

Now let us add a small amount of capacity z, where z < u.
For zero shock, the addition of capacity does not result in an 

increase of delivered load, so the welfare change from the increase in 
demand is simply –  * z.

For a positive shock to demand, let us visualize the aggregate 
demand curve as being represented as a set of heterogeneous con-
sumers, each with a single willingness to pay, and each of whom expe-
rience the same shock.
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Relative to the Z = X(b + ) case, we look at the changes to i) 
gross surplus with no rationing, ii) efficient rationing cost, iii) cost of 
rationing inefficiency, and iv) delivery cost.

The no-rationing welfare is unchanged relative to the z = 0 case.
The efficient rationing cost component of welfare changes from

1
2

1 1 0u X u X* ( ) ( )  to 1
2

1 1 0u X u z X* ( ) ( ) .

The delivery cost component of welfare changes from

( ) ( ( )b X b  to ( ) ( ( )b X b z .

The inefficiency component of welfare changes from

u X b* * ( ) ( )1 0  to ( )* * ( ) ( )u z X b1 0 .

So, for positive shock u, the total difference in welfare from the 
increase in capacity is

1
2

1 1

1 0

u X u z X u

b z z X b

* ( ) ( )

( )* * * ( ) ( )
1
2

1
2

u z b z z Z

z u b Z

* ( )* * *

( * ( ) * ).  (3.30)

For a negative demand shock, then relative to the Z = X(b + ) case, 
there is still no rationing, and the cost is increased by  * z.

E W E W z u b Z zu Z z u Z, , * ( ) * *1
2

1
2

E W E W

z
u b Z

u Z z u Z, ,
* ( ) * .1

2
1
2 2

For u  0,  = 0, and z > 0,37 then this is just the expected increase 
in costs 1

2 b . Remembering that we limited z < u, this is the initial 
slope of the quadratic form of the deadweight loss.

For  > 0 and u  0, we add a benefit of 1
2 * Z .

The size of u at which it becomes beneficial to add capacity is

u
b

Z
2 2

2
( )

* * . This is depicted in figure 3.29.

The introduction of rationing inefficiency therefore causes us to 
reduce the size of u for which it is beneficial to add capacity. The 

 

 

 

 



Peak Load and C apacity Pricing78

optimum capacity for the inefficient rationing case is at least equal to 
that for the efficient rationing case.

So for linear demand functions and constant returns to scale, inef-
ficiency in rationing never decreases the optimal capacity, and always 
decreases the stochastic shock size at which capacity addition is wel-
fare optimal.

For small u, we have seen that the optimum capacity for the sto-
chastic case can be less than for the deterministic case.

3.7.2.5 Price and the Financial Position of the Generating Unit
In this book we have made much of the Pareto optimality require-
ment of the generator not to make losses on an ex ante expectation 
benefit, and of the competitive market force to drive positive genera-
tor profits to zero.

The main argument about the value of ∂Z/∂P in welfare equation 
(3.29) is the same as BJ and not repeated here. There is more flex-
ibility in the Visscher framework to consider the additional effect of 
inefficient rationing.

We can see that if we set price at the full cost b +  and then intro-
duce stochasticity of demand, that if the generator builds an amount 
X b1( ), then it has an expectation loss of 1

2 * *u , since there is no 
revenue change for positive shock, but there is a net loss of revenue of 
u *  for negative shock. The same is true for efficient or inefficient 
rationing, given that P = b + , although we should remember that 
willingness to pay does depend on rationing efficiency.

X(b + )

2(b + 2 )
u =

u

Optimum
build Q

2* *X−1(b + )

α = 0

α > 0

Figure 3.29 The impact of rationing efficiency on optimum build. a > 0 represents 
inefficiency.
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To restore economic equilibrium and ensure the build of plant, 
the unit must make the same profit under positive shock as loss under 
negative shock.

Let us assume initially that u is large enough for the demand with 
positive shock u and price P + ΔP exceeds the demand with no shock 

and price P. So u
P

 where  is the negative of the slope of the 

demand function  > 0
The demand is not met and build volume X(b + ) is delivered. So 

with offer price b +  + ΔP, we have an expectation of profit:

E X b b P b

X b P u b P b
P

1
2

1
2

* ( ) *( )

( ( ) ) *( ) * ( ).X b

We know that

X b P X b
P

( ) ( ) .

So,

E u
P

X b
P

u P X bP ( ) *( ) * ( )1
2

1
2

E u
P

P X b
P

u PP * ( ) *( )).1
2  (3.31)

The term on the left is the profit increase from the price increase if 
there is no change in demand.

We can break down the term on the right as follows:

1
2

1
2u P

P
u* *

If u
P , then we always have excess capacity and so,

E X b P u b P b

X b P u b
P

1
2

1
2

* ( ( ) ) *( )

( ( ) ) *( P b X b) * ( )

( ( )) *( ) * ( )X b P P X b

( ( )) *( ) * .X b P P
P
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Within the range, there is no dependence on u, since there is a 
symmetrical gain if demand increases (since the producer has spare 
capacity and can deliver it) and if demand decreases.

Clearly, profit is 0 when ΔP = 0. We can also see that if the producer 
can price above fully loaded costs (implying market power), then he 
can make more, with the optimum price determined by the level at 

which 
E

P
P 0.

Now in a competitive market for the deterministic case, a positive 
ΔP is unsustainable, as it attracts new production. In the stochastic 
case, the equilibrium ΔP is set by the level at which ex ante profit 
expectation is zero (ignoring cost of risk for the moment).

E
P

u P P X bP 0 1
2

1
2

1*( ) * ( ).

This is a rather awkward quadratic equation, but it does have a solution.

The net consumer welfare change from the price rise is 

1
2

2P
.

If we build a lesser amount X (b + ) −ΔQ, and correspondingly 
price at X X b Q b Q1( ( ) ) * , then our expectation 
profit is

E b Q b X b Q u

b Q b X b

1
2

1
2

( * )* ( )

( * )* ( )

* ( )

Q

X b Q

0

 

E Q X b Q u

Q X b Q

1
2

1
2

( * )* ( ( ) )

( * )* ( ( ) ) 

 * ( ( ) )X b Q

X b Q Q Q u( ) ( * ) ( * )*1
2

X b Q Q Q u( ) ( * ) ( * )*1
2

This is maximized by
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Q
X b

u
( )

.
2

1
4

If we have constrained the capacity to generate a higher producer 
profit for the deterministic case (with producer entry barriers), then 
the addition of stochasticity increases the optimum build, since an 
increment of build generates a marginal profit of  +  Δ Q for positive 
shock and only a loss of  for negative shock.

In the absence of a price increase, the addition of the stochastic 
term decreases the optimal installed volume from the producer per-
spective. This is due to the wasted capacity and lost revenue on a 
negative demand shock, with no opportunity for gain on a positive 
demand shock.

In the absence of entry barriers or market power, then the solution 
drives to E 0.

3.7.3 Discussion of the Visscher Analysis

We can regard the Visscher framework as a generalization of the BJ 
framework for a range of rationing inefficiency.

The sensitivity of price to fixed costs is apparent from differen-
tiating equation (3.29) with respect to price and the arguments for 
including or omitting the fixed cost term are the same as for BJ.

Interestingly, as is common with many authors, Visscher does not 
regard the covering of fixed costs as paramount, and indeed he views 
the uplift of price from variable to full costs as a function of rationing 
inefficiency.

The framework is very useful for examining more general results in 
relation to rationing inefficiency, such as the effect on optimal capac-
ity, the loss of welfare. The use of a linear demand is particularly use-
ful, as horizontal and vertical shocks look the same but actually can 
be quite different in terms of rationing. We see in the analysis that it 
can be sensible to assume efficient rationing in static conditions and 
either efficient or inefficient rationing in dynamic conditions, and this 
depends on the driver to the shock to the demand function.

3.8 Demand for Capacity with Stochastic 
Elastic Demand—the Carlton Framework

So far we have introduced the demand for capacity, stochastic demand 
functions, rationing, efficiency at the margin, and equilibrium.
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The work of Carlton (1977) allows us to bring some of these 
together in a more general manner, with a less restricted demand 
function and shock to it, albeit still with a stochastic demand function 
with a maximum willingness to pay in all circumstances. The event 
order is shown in figure 3.30.

3.8.1 Framework

1. a one period setting
2. a single unit with fixed costs , variable costs b, and constant returns 

to scale in capacity and operation
3. a hard constraint at installed capacity z
4. a convex demand function D(p) = x(p), finite at price p = 0
5. demand shock is a dimensionless stochastic variable u, so D(p) = 

x(p)u,
6. u may represent number of consumers.
7. Correspondingly pu x D1( ).

For maximum consistency we imagine the following:

1. We have a finite population of n people (in fact the most consistent 
form of shock here is shock to population).

2. They each have an identical utility function.
3. They each have a stochastic endowment of a substitute good.
4. The endowment has digital stochasticity (zero or nominally infinite).

Build
capacity

Set
price

Resolve
uncertainty

Ration

Figure 3.30 Event ordering in the Carlton analysis.

Volume

Price

u = 0.5

u = 1

u = 2
D = x(p)

Volume

Price

u = 0.5
u = 1

u = 2
p = x −1 (D)

Figure 3.31 The demand function for different outcomes of multiplicative stochastic 
variable u.
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5. Each has the same ex ante probability of endowment.
6. The probability distribution of the number of those with a single 

demand function as depicted below is therefore Poisson, which we 
may variously simplify to binomial or normal for convenience.

7. There is a maximum willingness to pay, which we see in 
figure 3.31.

3.8.2 Analysis

We choose to invest a total of z MW of capacity. If the realization of 
demand u * x(p) exceeds z then we have to ration. Carlton assumes 
random rationing (for an n percent rationing overall, this means that 
n percent of consumers receive no product).

The rationing is shown in figure 3.32. We demand x(P) at price P, 

receive z, and so the rationing ratio defined as s
z

x p( )
. The assump-

tions on rationing are described further down.
The expectation of (Marshallian) surplus to society is equal to 

the unconditional expectation of surplus for no rationing (u < 1), 
plus the (unconditional) expectation of surplus for rationing (u > 1), 
minus the expectation of the cost of rationing. Note that Carlton 
makes a key assumption here that society is a consistent entity. For 
example, if we really do regard society as having a varying number 
of members that we maximize the welfare of this varying number, 
rather than, for example, the current number, which may correspond 
to our tax base.

Volume MW

Price
£/MWh

Price P

D = x(P)
z

x(p)
z

s =

Figure 3.32 Rationing when demand exceeds capacity. The shaded area is 
consumers’ surplus before rationing.
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We should note that when the shock factor u is multiplicative u * 
x(p) rather than additive u + x(p), an increase in u will increase the 
mean, and we must adjust for this. If u is normally distributed then 
this is straightforward and the adjustment is 1

2
2u

3.8.2.1.i The Stochastic Term
For u 1, the surplus, if unconstrained, and with no rationing effi-
ciency costs is

S x q dq bx p z
x p 1

0
( ) ( ) ,

( )

where b is the variable cost and  is the fixed cost. We can see the net 
surpluses in figure 3.33.

For u 1 then, for the unconstrained case, given the nature of the 
stochastic variation, we simply multiply the marginal surplus by u.

If unconstrained, then the surplus is

S u x q dq bx p z
x p 1

0
( ) ( ) .

( )

If constrained, then the surplus is

S s x q dq bx p z
x p 1

0
( ) ( ) .

( )

Putting these together in the stochastic world, the expectation of sur-
plus S is

S u x q dq bx p dF u

s x q dq bx p

x pu s

x

1

00

1

0

( ) ( ) ( )

( ) ( )

( )

 
(( )

( ) ,
p

u s

u
dF u z

 
(3.32)

MW

£/MWh

MW

£/MWh

P

x –1(q)

x(P )x(P)

b

Figure 3.33 Producer marginal surplus and consumer surplus after payments in the 
Carlton framework.
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where
p is the price
F is the cumulative probability density of u .

On the right hand side, the surplus before rationing is the surplus 

for u = 1 times u, and the amount of rationing is 
z

x p( )
. The effect of 

rationing is shown in figure 3.34.
For a given z, to find the price for ex ante maximum welfare, we set 

the first derivative of welfare/surplus with respect to price to zero.
The chain rule is

d
dx

g y dy g x
d
dx

g y dy g f x f x
x f x

( ) ( ) ( ) ( ( )) ’( ),
( )

 and 

So,  where  and 
p

x q dq x p p x p x p
p x

x p 1

0

1( ) ’( )* ’( ) ( ) (
( )

xx p p( )) ,

dS
dp

u x p p b dF u s x p p b dF u
u s

u s
’( )( ) ( ) ’( )( ) ( )

0

        sx p’( ) .0  (3.33)

B + b

B

P
£/MWh

q MW

Consumer surplus

Producer surplus

x –1(q)

x –1(Z ) = P *u

Z

F

0

1

u0

No
rationing

Rationing

p
£/MWh

D (p)

z

Set price P

z
x(P)

s =

(b)(a)

(c)

Figure 3.34 Random rationing in the Carlton analysis a) Net surpluses for u = 1 b) 
Application of ratio for surplus under rationing for u > 1 c) Probability domains.
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Dividing through by x’(p), which is nonzero, we have

( ) ( ) ( )p b udF u sdF u s
u s

u s

0
0

 
(3.34)

If we set the capacity z just at the point at which we have to ration 
and assume a very tiny stochastic variation38 in u from u = 1, then this 
equation resolves to 

( )
( ) ( )

( )
p b

udF u udF u

sdF u

u s

u s

u s

u s

u s

0

sdF u
u s

( )
* ,1 0

( ) * * .p b 0 1 1 0 01
2

1
2

P = b + . So for the deterministic case, costs are exactly recovered.

We can rearrange equation (3.34) to

( ) ( ) ( ) .p b udF u s sdF u s
ss

00
0

If s u dF u
s

( )
0

0 and p > b then p > b + . This is true for both 

deterministic and stochastic conditions.

3.8.2.2 Discussion of the Optimum Price
As with the other frameworks, if our capacity commitment is made 

first and then we commit to price, then z
p 0 and thence p = b.

The elevation of p above b +  does not give us any particular indi-
cation for optimal build. The elevation caters for the fact that under 
stochastic conditions, units will be idle, but costing money for part of 
the time.

We are then expecting consumers to pay extra to producers for hav-
ing the ability to have varying demand satisfied by available capacity.

As for the deterministic case, we have co-optimized capacity and 
price, and we have also assumed that our rationing regime is such that 
it is more expensive in welfare terms to have too little capacity than too 
much. Since we can underuse capacity but not overuse it, we would 
expect stochasticity to cause an increase in price charged by the pro-
ducer. Where u is multiplicative, it is not easy to work out whether 
producers break even on average, because an increase in  increases the 
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average level of demand. We will examine in a few paragraphs the case 
where u is additive (i.e., quadratic utility with endowment shock).

Let us consider the intuition on this, simplifying with a single will-
ingness to pay. First, suppose we invest in the amount of capacity that 
is optimal for deterministic conditions. The surpluses in relation to the 
realization of u is shown in figure 3.35. The ex post investment ineffi-
ciency, that is, the surplus we would have got if we had predicted the 
outcome of u, minus the actual surplus, is shown in figure 3.35(c).

So, for a simple single willingness to pay, and with constant returns 
to scale in capacity and operations, we have symmetry (i.e., indepen-
dence of optimal installed volume with respect to standard deviation), 
if  = WTP − b − , that is, WTP = b + 2 . The problem is that we 
should expect that if the willingness to pay is calculated at the same 
horizon time, then, at least for the non-stochastic case, we would 
expect WTP = b + , as otherwise more and more production would 
arrive until the capacity cost has risen.

(a) (b)

(C)

Surplus

Total consumers’

Over
invested

Under
invested

u = 1

0
Producer

Total
Surplus

Total actual surplus
relative to that with 
perfect foresight

u

0

0

1*(WTP-b- )

WTP-b-

WTP-b-

Figure 3.35 Producer and consumer surpluses for different stochastic outcomes.  
(a, b) following capacity investment at the volume that is optimal for the deterministic 
case. The situation with constant willingness to pay. (c) aggregate surplus relative to 
that with perfect foresight in demand outcome. Consumers’s surplus shown linear for 
simplicity.
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3.8.2.2.i Consideration of Different Forms of Demand Function
With a multiplicative shock, and hence a linear shock to the logarithm, 
the natural demand function candidate is similar to the logarithmic, 
although, recalling that the willingness to pay is equal to the slope of 
the utility function, we must take care to have finite willingness to pay 
and welfare for vanishingly small consumption.

Three interesting functions shown in figure 3.36 are i) constant 
willingness to pay, ii) quadratic utility (linear demand function), and 
iii) exponential.

The welfare outturn compared to that for perfect demand foresight 
is shown in figure 3.37.

Quantity Q

Willingness 
to pay
£/MWh

(a) (b) (c)

Figure 3.36 Upward shocks only shown for three demand functions (a) Constant 
willingness to pay (b) Linear (c) Exponential.

Total Actual
Surplus 
relative to that 
with perfect 
foresight of u

0

Constant willingness to pay

Downward sloping linear 
demand function 
(quadratic utility)

Downward sloping 
concave demand 
function

Figure 3.37 Lack of symmetry in inefficiency, leading to a dependence on optimum 
build on the form of the utility/demand function and standard deviation.
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We can see by inspection, that our optimal capacity, relative to the 
u = 0 case, is decreased for small u and increased for large u. We noted a 
similar effect in our analysis of the Visscher framework, and also showed 
with the Visscher framework how the combination of inefficiency 
rationing and quadratic utility can combine to give an approximately 
linear aggregate utility function (i.e., constant willingness to pay).

The loss of surplus on the right-hand side of the figure in outcome 
where demand exceeds capacity is proportional to the square of the 
shortfall. The slope of the expectation-of-loss function on the right-
hand side is dependent on the probability function. For example, for 
a very simple uniform distribution, the slope is proportional to the 
capacity shortfall and hence is zero at the equilibrium point.

We notice here the similarity of surplus profile of the formula 
s u dF u

s
( )

0
0 to that of a put option with strike s and underling 

price u. The expectation loss of surplus in relation to the variance of u 
can then be found with standard option analytics.

The producer has zero probability of making a profit and a finite 
probability of making a loss and hence must raise his price above b +  
to maintain ex ante cost equilibrium.

The aggregate surplus argument for raising the price above b +  is 
in the effect on demand. By raising the price above b +  the demand 
expectation drops. Since we did not change capacity z, the expected 
amount of rationing also drops. So in effect we are rationing by price, 
since consumers will expect to consume less and will choose to forego 
the least valuable demand. We can regard this, instead of maintain-
ing z and raising price, as providing spare capacity for a self-rationed 
demand.

The effect of the benefit of foresight of demand is shown in 
figure 3.38.

We therefore conclude that whether the addition of stochastic-
ity to the demand function should increase or reduce capacity, is 

Surplus

0
u

0
u

0

(a) (b) (c)

Figure 3.38 (a) Producer and consumers’ surplus as in figure 3.37 (b). As (a) but 
with increased capacity build (c) Surplus relative to “perfect foresight” surplus for 
optimal build and extra build.
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indeterminate in the general case. The raising of price above b +  is 
simply a result of raising price to encourage consumers with down-
ward sloping demand functions, to self-ration.

Another way of looking at this is the loading of capacity cost into 
price—a demand for capacity.

Note that asymmetry of the inefficiency function causes us to have 
a capacity bias relative to the deterministic case that increases with dis-
tributional variance. The multiplicative nature of the stochastic demand 
suggested by Carlton would normally suggest an asymmetric distribu-
tion, such as lognormal, although as we have seen, a symmetric distribu-
tion is technically possible. The reason that we consider it unlikely is that 
to rationalize the framework, we applied a nominally infinite endow-
ment of a substitute good. We would not expect this to have 50 percent 
probability as we require for a symmetric distribution, but would instead 
have a very low probability and hence a highly skewed distribution.

We conclude then that addition of stochastic shock to demand 
could either decrease or increase optimal capacity, according to the 
relative slopes of demand and cost functions.

3.8.3 Discussion of the Carlton Analysis

The Carlton analysis confirms the BJ and Visscher result for optimal 
price of marginal cost b given a capacity decision but is more emphatic 
on the optimal price of the fully loaded cost b + B when price and vol-
ume are co-optimized. The result is not dependent on an excessively 
simple assumption of demand function and shock to it, although the 
assumption on rationing efficiency is less flexible than Visscher’s.

Having now modeled single assets, we now move closer to model-
ing a whole installed stack of power station units.

3.9 Optimal Pricing, Capacity and  
the Technology Frontier—Crew and 

Kleindorfer

So far we have considered the one-period stochastic setting. We now 
consider the situation where we have many subperiods and many 
power station units. The demand in each period is stochastic and the 
function being continuous, we cannot have easy recourse to the dual-
ity between stochastic and deterministic load factor that we described 
in section 2.4.1. If there were m stochastic states per period, then we 
could model as deterministic with m * n subperiods.
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Crew and Kleindorfer (CK) pursue an interesting discussion on 
generation diversity modeled as a spectrum of fixed/variable costs. 
We characterize the problem as follows, which is consistent with the 
CK analysis.

3.9.1 Framework

1. Over the cycle considered, there are n periods of equal length, 
with a total length of 1.

2. We have an initial candidate installed generation stack, and the 
number of technologies is limited to those in the candidate stack.

3. The units that have arbitrarily small capacity (i.e., they are infi-
nitely divisible from a practical perspective), and they are available 
in infinite volume at investment time.

4. Generating units never fail, have zero start costs, and have clearly 
delineated fixed and variable costs. There is no step change in 
costs as load rises from zero.

5. Generating units can operate at all levels from zero to full load 
with constant returns to scale in the short and long run (i.e., 
energy and capacity).

6. All generating units are owned and operated by a benign 
monopolist.

7. Prices, which are periodic, are set before the cycle begins, may not 
be changed subsequently and must be the same to all consumers.

8. Demand is periodic and elastic with zero cross-elasticity between 
periods. The demand functions are continuously differentiable.

9. The stochastic disturbance to demand is a linear addition or 
reduction in volume rather than price.

10. When demand exceeds capacity, load is rationed. The welfare loss 
is consistent with random rationing.

11. Demand rationing may be associated with costs to generator effi-
ciency—for example, from the appearance of transmission con-
straints under increased flow on peak days.

We make some relatively minor changes to the nomenclature of 
CK, to add clarity for the purposes of our arguments.

3.9.1.1.i Consumer Characteristics
The demand function and inverse demand functions associated with 
this is shown in figure 3.39. The demand function is depicted as con-
vex to maintain generality, though we note that a function that is 
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highly convex at low loads, with an additive quantity shock do not 
go well together for electricity. For a relatively modest change in heat 
load, there is a huge change to the VOLL (the intersect with the 
ordinate)

3.9.2 The Analysis

Let x = (x1, x2, . . . , xn) denote before any shock the vector of quantities 
of consumption of periods i = 1, . . . , n and let p = (p1, p2, . . . , pn) be 
the corresponding vector of prices.

D p u X p ui i i i i i( , ) ( ) . Here the stochastic demand experiences 
an additive shock

Here Xi (pi) represents the mean demand in period i for price pi and 
the disturbance term ui  has an expected value E ui 0.
We consider power plant as follows:

bl is the variable operating cost of the lth plant, in £/MWh
l is the capacity cost of the lth plant in £/MW/cycle

ql, also noted ql  is the capacity of the lth plant in MW
qli is the actual output of the lth plant in the ith period, in MWh.

We index the plants such that 0 < b1 < b2, . . . , bm for all periods, and 
since returns to scale are constant and we would not wish to run infe-
rior,39 plant we can state that 1 > 2 > . . . > m > 0.

The peak period is period m and it is a reasonable assumption that 
the first unit runs baseload.

3.9.2.1.i The Installed Stack and Available Technology Frontier
Figure 3.40 shows the construction of the plant cost envelope. In 
this case, the continuous envelope is constructed from the four actual 

Di

MW

£/MWh MW

Demand

Price

Price
£/MWh

Demand

Ui
Ui

Figure 3.39 Stochastic demand as depicted in Crew and Kleindorfer.
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plants ABCD. Under deterministic conditions, and with divisibility, 
the performance of intermediate plant on the connecting lines can 
be achieved by weighted mixtures of these plants. The plants anno-
tated “X” are subordinate plants that are not invested in. It is obvi-
ous from figure 3.40 that the plant technology envelope under the 
assumptions given must be downward sloping and non-concave at 
any point.

Plant is fully characterized by three parameters, capacity q, fixed 
cost /kW/period, variable cost b/MWh. Since we have assumed full 
divisibility and constant returns to scale in energy (marginal costs) and 
capacity (fixed costs), q is not an important parameter for individual 
plant, though there may be some limit on total MW of plant available 
of any type.

We need to consider the CK assumption that the optimum plant 
envelope can be constructed by linear interpolation of lower bound 
points. This makes interlinked assumptions of i) divisibility and ii) 
constant returns to scale for both short run and long run marginal 
costs. Assume that we have two plants a 500 MW plant of £40/kw/
year and £30/MWh and a 500 MW plant of £44/kw/year and £28/
MWh. CK assume that we can deliver 500 MW at £42/kw/year and 
£29/MWh by delivering 250 MW at £40/kw/year and £30/MWh 
and 250 MW at £44/kw/year and £28/MWh.

Fixed costs
b/MW/hr

Marginal costs /MWh 

A

C

B

D

X

X

X

X

X

Figure 3.40 Plant envelope in the Crew and Kleindorfer analysis.
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3.9.2.1.ii Unit Operation
The stack that runs is then all “in-merit” (in variable cost order) plant 
running at full load, and the marginal plant running at part load.

We can represent the energy produced in period i by plant l for-
mally by

q x x q x q qli i i ki i
k

l

l( , ) min ( , ) , ,q
1

1

where q q qi n( ,..., ) represents the vector of installed capacities of 
plant types 1 to m. This is shown in the figure 3.41 below.

Note that this equation caters for the possibility of part load. In 
reality, the construction of the framework does not require part load-
ing. This is due to the discretization of the stack and the time periods, 
and the constant returns to scale.

3.9.2.1.iii Stochastic Demand

D p u X p ui i i i i i( , ) ( ) .

3.9.2.1.iv Build Up of the Welfare Equation
The output of the lth unit in period i is q D p uli i i i( ( , )).

Here u  is an outcome of the stochastic variable u , which has actu-
arial parameters that are known and constant. u is the more generic 
term for the variation.

We assume efficient allocation for u = 0. There is no running in 

excess of capacity, so for peak period i = n q D p ul
l

m

i n n
1

1

( , ) as we see 

in figure 3.41.
Demand is periodic, and since we are not concerned with start 

costs or capacity changes during the total period, and assume zero 
cross-elasticity between periods and independent stochastic shock to 
periods, we can rank in a load duration curve.

We denote the total installed capacity by z, where z q
ll m

1
.

Let us specify the shortfall of generation capacity in any period by 
D p u z qi i i si( , ) .

We denote the total output in period i by Si. This is the minimum 
of demand and capacity

S p u z D p u zi i i i i i( , , ) min ( , ), .
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The terms added to arrive at the total welfare W u p q( , , ) are i) gross 
consumers’ surplus, ii) variable cost, iii) fixed cost, and iv) rationing 
cost (efficient cost plus inefficiency).

The consumer surplus, before payment, and ignoring rationing, 
over all periods is

P x u dxi i i i

S n u z

i

n
i i i

( )
( , , )

0
1  

(3.35)

The producer cost is

b q D p u q ql li i i i l l
l

m

i

m

i

n

( ( , ), ) ,
111

where q  is the installed capacity vector.
CK assume that the surplus loss under rationing is a generalized 

upward sloping linear function:

R r q r D P u zi si
i

n

i i i i
r

n

( ) ( ( , ) ).
1 1

MW

Pi l–1

k–1
qki

xi

qli

Figure 3.41 Marginal generation and demand curves in six of the n periods.
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Collecting all of these terms, we have the welfare equation

W u p q P x u dx

b q D p u q

i i i i

S n u z

i

n

l li i i i

i i i
( , , ) ( )

( ( , ),

( , , )

0
1

 )) ( ( , ) )
i

m

i

n

l l
l

m

i i i i
i

n

q r D p u z
11 1 1

To arrive at the first term on the right-hand side, we do the following:
Using the chain rule

W
P

W
S

S
P

.

For a regular integral, we may interchange the order of differentiation 
and expectation.

S
P p

P x u dx

P S p u

i
i i i i

S p u z

i

n

i i i i

i i i
( )

( ( , ,

( , , )

0
1

zz u
p

S p u zi
i

i i i) ) ( , , )

p X p u z X pi i i i i’ ( ) ( ) if 
0 if u z X pi i i( )

3.9.2.1.v Derivatives of the Welfare Formula

W p q E W u p qu( , ) ( , , ) .

This is what we wish to maximize with respect to qk and pi. So we solve 

the installed volume from
W
qk

0, and we solve the optimal price vec-

tor from 
W
pi

0.

3.9.2.2 Capacity Optimization
Here we have used the above definition of Si and P Xi i

1.
The results are, for the capacity of the kth unit under given prices:

W
q

P z u dF u b F Q X p
k

i i i i k i k i iz X p
i i i

( ) ( ) ( ( )
( )

1
1

1
1

1

n

l i l i i i l i i
i

m

k u

b F Q X p F Q X p

E r

( ( ) ( ( )

’’ ( ( ) ) .i i i iX p u z  

(3.37)
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So here we optimize the installed capacity and running load, a unit 
at a time, in relation to the demand vector and the available frontier 
of m units. This is a variant of the Turvey approach. We can simplify 
the equation above by equating the number of units and the num-
ber of subperiods and ensuring that we have enough capacity for no 
rationing.

W
q

P z u dF u b F Q X p
k

i i i i k i k i iz X p
i i i

( ) ( ) ( ( )
( )

1
1

1
1

n

l i l i i i l i i
i

n

kb F Q X p F Q X p ( ( ) ( ( ) .

3.9.2.3 Price Optimization
For the price in the ith period, under given capacities

W
p

p X p F z X p b X p
F Q X p

Fi
i i i i i i l i i

i l i i

i

’ ( ) ( ( )) ’ ( )
( ( ))

(Q X p

X p E r X p u z

l i il

m

i i u i i i i
i

11 ( )

’ ( ) ’ ( ( ) ..
 (3.38)

Here

X p X p
pi i

i i

i
’( ) ( )

and Q l is the capacity up to plant l Q ql k
k

l

1

, l = 1, . . . , m. So z Q m.

For simplification of notation, CK define
F F Q X P D p u Qi

l
i l i i i i i l( ( )) Pr ( , )  for all i, l where F as 

usual denotes the cumulative probability distribution function.
They also define F F z X Pi

m
i i i( ( )).

We also note that F Q X pi l i i( ( )) is the probability that the capac-
ity Q l  of the first l units exceeds the demand Xi (pi).

Setting ∂Wi/∂pi = 0, we have

p X p D p u z b X p Q D p u Qi i i i i i l i i l i i i l
l

m

’ ( )Pr ( , ) ’ ( )Pr ( ,1
1

 X p E r D p u zi i u i i i ii
’ ( ) ’ ( ( , ) )

The left-hand side is the expected marginal benefits in the form of 
revenue and consumer surplus at price pi and the right-hand side is the 
sum of expected marginal operating costs and rationing costs.

(3.39)
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There is some resonance here with the way Chao breaks down his 
similar equation. The apparent absence of fixed costs in the equation 
above is described partly by our analysis of Chao in section 3.11 and 
partly by our analysis of Dansby in section 3.10. In brief, the fixed and 
variable costs are so bound together that we could replace the term 
bl by bl ( l)

So in equation (3.39), we divide all terms by X pi i
’ ( ) and by Fi

m  to 
get

p b E r X p u z F i mi li i i i i i
l

m

i
m’( ( ) / , , ,

1

1 for 
 

(3.40)

where 0 < γli < 1 is defined by

li i
l

i
l

i
m

l i i i l i i iF F F Q D p u Q D p u z( ) / Pr ( , ( , )1
1

We can therefore see that the price in each period is the condi-
tional expectation of variable operating costs of the marginal unit plus 
rationing costs. The condition is that capacity exceeds demand.

3.9.3 Discussion of the Crew and Kleindorfer Analysis

CK set the optimum price at the variable cost of the marginal unit plus 
an allowance for rationing that effectively treats rationing as an extra 
cost that can be regarded as a power station unit of infinite size and 
no fixed costs or demand response.

In nonequilibrium conditions, this may give a small excess profit to 
the nonmarginal unit but this disappears as the divisibility of unit size 
and pricing period increases.

CK are explicit in not requiring units to recover their costs. 
Though we showed in equation (3.8) in section 3.1.3.5 that this 
pricing regime can ensure the recovery of all costs, provided the peak 
unit covers cost or DSM can be used as virtual production. In fact, 
the recovery of fixed cost is implicit in the CK analysis as a version 
of the Turvey algorithm appears in equation (3.37). It is neverthe-
less of interest that CK do not place high importance on financial 
equilibrium.

Divisibility of time period and unit size is clearly important, espe-
cially in the peak. We showed in section 3.1.3 that the peak price plays 
an important role in fixed-cost recovery for all units. This is not cov-
ered in the CK analysis, but is in the Dansby analysis.
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3.10 Further Development of the  
Price Vector—from Dansby

The absence of fixed-cost terms in optimum price formulae of CK, 
Chao, and others might lead a reader to infer that these analyses cor-
rectly indicated marginal cost pricing. This is not the case. The analy-
sis of Dansby (1978) in a quasi-deterministic framework provides a 
useful setting to discuss this.

3.10.1 Framework

The Dansby framework is:

1. constant returns to scale in fixed and variable costs
2. a continuous load duration curve (i.e., infinite number of subperi-

ods for demand)
3. a fixed number n of subperiods j for the purposes of pricing, 

although not necessarily the same length
4. deterministic elastic demand
5. a discrete number m of technologies l on the technology frontier.

3.10.2 The Analysis

3.10.2.1 Welfare
Dansby then takes total welfare as the net consumer surplus and total 
costs, and applies a Lagrangean function to maximize welfare, subject 
to price in each pricing period, with the constraint that load is fully 
served in each period. That is, if demand at price P is Q (P), then there 
is sufficient capacity to deliver Q (P).

W B P t dt K b H P x dxj j l l l j j
K

K

j nl
l

l

( , ) ( , )
1

1

mj n j

j

R
11

1

W is the total welfare over the period
Bj (Pj, t) is the gross consumer welfare rate (i.e., £/hr) at time t, if 

the price is Pj, and assuming that the load is delivered
Kl is the capacity of the lth unit
Kl  is the total capacity of all units up to and including the lth unit
b1, l are the variable and fixed costs of the lth unit. bl+1 > bl, l+1 > l

Pj is the single price across the whole jth subperiod
Hj (Pj, x) is the amount of time in period j for which the demand 

at price Pj exceeds a level x
R is the rationing cost, which Dansby sets to zero by ensuring suf-

ficient capacity.
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3.10.2.2 Optimal Pricing with Full Divisibility
The Lagrangean application to the welfare equation, with the con-
straint that capacity is not less than demand, is:

L B P t dt K b H P x dxj j l l l j j
K

K

j nl
l

l

( , ) ( , )
1

1

mmj n

m j j

j

j

K Q P

11

1

1

 ( ( )).

We have assumed that capacity is a public good across all periods, and 
therefore the constraint only bites in the peak subperiod (subperiod 1).

Dansby then optimizes using the Kuhn Tucker conditions applied 
in effect as a generalization of the BJ method. Of key importance for 

us is that in Dansby’s analysis the term 
K
P

l

j

0, for all l and j, where 

Kl is the capacity of unit l and Pj is the price of period j. So the price 
is optimized on the basis of a given installed stack, and the capacity is 
optimized on the basis of least cost optimization to a given load pro-
file. For off-peak periods we have

W B P t dt b H P x dx Kj j j l j j
K

K

l l
l m

l

l

j

j

( , ) ( , )
1

1 1

..

Let us simplify by assuming that the demand function has the same 
slope θ in all periods, that is, quadratic utility. Then using the standard 
Hotelling analysis for deadweight loss, we have

W
P

H t H

P dt

H H
H

j
l

l
l

l

t
H

H

l
l

l
l

l

l
l

l
l

1

1 1

1

1

1

1
1

1

* * ,

where ΔPt is simply the price above or below the optimal price, which 
is the variable cost of the marginal unit at time t, and the first expres-
sion on the right-hand side of the equation is the average ΔPt over the 
time for which unit l would set the price if the subperiod lengths were 
infinitely small.

For infinitely small periods, then the price in each subperiod is 

exactly equal to the variable cost of the marginal unit, and 
W
P

t

t

0 at 

all times, that is, pricing is optimal.

   

 

 

 



Development of Peak Load Pricing 101

The averaging of prices for finite ΔPt can be seen to be a result of 
the inefficiency of the timing of the subperiods. We also note that 
if the technology frontier is continuous, then it is inefficient for the 
number of units not to equal the number of subperiods, that is, for 
optimality n = m.

3.10.2.3 Optimal Pricing without Full Divisibility
Dansby maintains a high degree of generalization throughout, and we 
briefly summarize his analysis below. Figure 3.42 shows the continu-
ous inelastic load duration as it intersects the installed power genera-
tion stack

Figure 3.43 shows the adaptation of figure 3.42 to accommodate 
price elasticity. To simplify we have depicted a single slope for all 
demand functions.

MW

Unit I

1 2 j n
Pricing periods

Kl

j – 1 j

Kl

Hj (Pj ,Kl )

Kl – 1

Figure 3.42 The loading of unit l in period j.

P

Pl Pl – 1
t = 0

1

n
2

t = 1

t = j – 1

t = j

t = n
Q

j – 1
Q

t = j –1 + Hj (Pj,Pl)

Q
j +Hj (Pj ,Kl)

Figure 3.43 Demand functions at different times within the period referenced 
against the final load duration curve.
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Given the construction of the Kuhn Tucker conditions, the con-
straint is slack in all but the peak period, which gives the optimal price 

equation for all periods but the peak period. Setting L
Pj

0, we 

have

P bj l jl
l

*

where Pj
* is the welfare optimal price in subperiod j

l is the index number of the lowest merit unit that runs in period j

jl

j

jx K

x K

j

j

x K

H

P
dx

H

P
dx

l

l

m

1

0

.

As we have expressed in this formula,40 the numerator and denomi-
nator have the units of time, and the denominator is equal to the 
subperiod length.

For all periods in which the unit is not loaded for part of the 
period (i.e., for those in which it is fully loaded or not loaded), then 

H

P
j

j

0 and for the part loaded periods, then 
H

P
j

j

 is the slope of the 

load duration curve and 
H

P
dxj

jx K

x K

l

l

1

 is the time spent loaded. The 

denominator is the period length.
Expressed crudely, we have, as depicted in figure 3.44,

H

P

H

Q

Q

P
lj

j

lj

j

j

j

* ,

Q

P
j

j

 is the negative of the reciprocal of the slope of the demand 
 
function, that is, −1/θ

H

Q
lj

j

 is the negative of the reciprocal of the slope of the load duration 

curve at the last moment of operation of unit l, which is at the margin 
in period l. Let us call the negative of the slope φ and φi at the last 
moment of the loading of unit l. This is shown in figure 3.45.
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So, 
H

P
lj

j l

1
.

Slightly more formally we have

H

P

H

Q

dQ

dP
lj

j

lj

j

j

j
t Hj j

* .
1

We have expressed the demand functions in terms of a family in 
which since the implied utility function is quadratic, we can regard 
the intrinsic utility function as identical in all periods, and the inter-
period differences are explained by endowment differences. Using the 

P
£/MWh

I runs at P+ P

I runs at P

Price
rise

P

Q MW

Q
Hj

Pj

j

j –1 + Hj (Pj,)

j –1 + Hj (Pj + P)

j –1

Figure 3.44 Depiction of reduction in run time of unit l in period j, resulting from 
a price increase ΔP.

Q (MW)

l

mth unit

Ith unit

End of nth period
time

Figure 3.45 The slope φ of the load duration curve at the l th unit. See text.
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familiar form of the demand function Pj = aj − θQj, if we designate qj 
as the intercept of the demand function with the abscissa in period 
j, then we can see that aj = qj * θ, so qj gives us the relative endow-
ment in the period. Then φ is a proxy for the slope of the qj duration 
curve.

So the price in all off-peak periods (all periods being off-peak except 
for the single peak period) is a convex combination of the variable 
costs of the different units. If the number of units and periods is the 
same and nominally infinite, then this resolves to variable cost pricing 
in all but the peak period, which is infinitesimally short.

Let us now turn to the peak period. The averaging process across 
the subperiod is similar to that for off-peak prices. The welfare optimal 
price of the peak period, given the installed stack, is

P b

Q
P

Q
P

dt
l il m

l m
1

1

1

1

10

1

1

*

 

(3.41)

This is the key equation. On the left-hand side we see that all units 
that are marginal in the price period have a role in price setting, and 
the indivisibility causes a cost shortfall for the lowest merit units, as 
the price falls below their variable costs.

The right-hand side shows the fixed cost contribution. It is highly 
dependent on unit divisibility. If the inverse demand function is flat in 
the peak period, and only the peak unit runs in the peak period, then 
the peak price is Pl = bl + l.

In optimizing, we find a version of the Turvey equation:

l l

l l
j j l

jb b
H P K1

1

( , ).

3.10.3 Discussion of the Dansby Analysis

Dansby considers a discrete stack facing a continuous load duration 
curve. In requiring the optimum price to be a combination of the vari-
able costs of the units that set price at any time in subperiod, he there-
fore prices below variable costs for the marginal unit. As divisibility of 
the stack increases, and the pricing subperiods shorten to match, the 
theoretical problem of not covering fixed costs disappears.

The Dansby approach is quite different to that of Crew and 
Kleindorfer and allows us to model divisibility discretely. However, 
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as with CK, we find in the analysis a version of the Turvey algorithm, 
and in doing so implicitly recognize the consideration of fixed costs at 
the time of optimization.

3.11 Stochastic Variation in both  
Production and Demand—the Chao 

Framework

To a great extent, we can regard this framework as the conclusion of 
the peak load pricing debate, before moving to reliability options, the 
liberalization agenda, and thence to capacity and security of supply 
as a public good. The main paper draws together the threads of the 
literature to date, adds the final ingredient of plant reliability, and 
demonstrates variable cost pricing in a manner that is consistent with 
peak load pricing. There are additional results relating to lost load that 
we will examine.

In modeling the probability and impact of production shortfall, we 
commonly treat only production or only demand as stochastic, mod-
eling the total effect by assuming similar stochasticity and loading all 
variance into either production of demand. So, production failure is 
treated as demand increase. For some applications we need to look in 
more detail into the specifics of one or other (as we did in rationaliz-
ing demand stochasticity in the Carlton framework), perhaps because 
our regulatory measures require separate treatment. Also, if we need 
to take a more sophisticated approach to consumer utility and ration-
ing, we need to model stochastic demand and production functions 
separately.

Chao (1983) considers a single period in order to establish opti-
mum pricing and capacity in the face of stochastic demand as well as 
power station failure, in circumstances where we cannot change prices 
following the resolution of uncertainty, and hence need to ration. In 
doing so, he allows us to investigate and test the sensitivity of welfare 
optimization to the specifics of the consumer demand function, and, 
by implication, the stochastic utility function. The sequence of deci-
sions is shown in figure 3.46.

Price and
capacity 
decision

Resolution of
uncertainty in
demand and 
outage

Decision on unit 
schedule and load 
allocation

Production and 
consumption

Figure 3.46 Representation of the Chao framework.
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3.11.1 Framework

The framework is:

1. single period
2. multiple plant installation choice, on the technology frontier, with 

a finite number of units
3. constant returns to scale for capacity (and perfect divisibility)
4. constant returns to scale for energy
5. downward sloping convex stochastic demand function
6. stochastic availability of units41

7. specified rationing efficiencies.

3.11.2 Analysis

We write the demand

D P E D Pe ( ) ( ) ,

where D P( ) is a random variable and the suffix e the exogenous 
variable.
θ is the period length
ξ is a random event   , with  being the sample set
E is the expectation operator.

Chao assumes that the plant offer stack is the same as the variable 
cost stack, and there is no uplift added for fixed cost recovery. In 
doing so, he does not require all units to cover costs.

We define the total benefit (i.e., area under the marginal utility 
curve for a given ξ) of consumption (before payment) by U(q, ξ) or 
simply U q( ). At this point there is no restriction to the form of this 
stochastic function other than the assumption that is always con-
cave for all ξ and q, and later for the multisubperiod version, that the 
chronological order of the load duration curve does not change.

For a consumption volume D Pe ( ), the marginal willingness to pay 

is the derivative of the benefit P
U D P

P
e( ( ))

.

On the production side, we have Yi MW installed for each unit 
with fixed costs ki and variable costs Ci, so our total capacity cost 

over a unit time interval is k Yi i
i

n

1

. We can install as much or as little 

of any plant on the fixed marginal cost frontier with constant returns 
to scale.
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Due to the impact of forced outages, our available capacity for each 
unit is a random variable Yi, as we see in figure 3.47.

We assume that at the beginning of the period θ, but before the 
units are stacked for the schedule decision, that the available unit 
capacity is resolved. There is no restriction on the sophistication of 
this function.

The stochastic available capacity for unit i over the cycle is then found 
by integrating the marginal probability function over the capacity, so

Y Y Y y z dzi i i i i

Yi
( ) ( ) ,

0

y zi ( ) is a stochastic factor with a uniform distribution between 0 and 
1, and mean ai. In the Chao analysis, it has the dimension of MW. 
For ease of exposition in this long analysis, we assume that all units 
are the same size and interpret y zi ( ) as dimensionless. This does not 
affect the result.

Our available capacity of our plant stack up to unit i is then

Z Yi j
j

i

1

So our power actually supplied up to any technology i, given the 
capacity constraint is

Q P Z D P Zi i( , ) min ( ), )  for all i = 1, . . . , n (where the nth plant 

is the lowest merit unit required42).

0

Capacity available for Unit i over the cycle

Cumulative
probability

0

1

aiYi

Yi

Figure 3.47 Stochastic cycle availability vector for unit i.
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So the expected amount supplied by each technology is

E Q P Z Q P Zi i( , ) ( , 1

In section 3.9, we showed a similar representation of unit opera-
tion under the Crew and Kleindorfer analysis. Figure 3.48 shows the 
downrating total capacity from generator unavailability.

Figure 3.49 shows the effect of the position of the unit in the merit 
order on the effect of its failure on the relevant section of the cost 
function.

Our expected total variable running cost is

C E Q P Z Q P Zi i i
i

n

( , ) ( , 1
1

.

We have seen that there are numerous possible rationing schemes. 
In general, the expected loss of welfare in a period resulting from 

£/MWh

MW

(a) (b)

P

Stack if 
100% 
availableActually 

available 
stack

Nn

Figure 3.48 Unit operation for (a) Plant capacity sufficient; (b) Plant capacity 
insufficient.

P

(a) (b) (c)

q

~
Z1−i Zi

~

Yi
~

D
~

Figure 3.49 Effect of variation in the availability of a unit (a) Out of merit unit; 
(b) Marginal unit; (c) In merit unit.
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outages is a function of the energy supplied and demanded. So we 
represent this stochastic cost S  by

S Q P Z D P Q P Z E Q P Ze n e e n n( ( , ), ( )) ( , ) ( , . where 
 

(3.42)

We wish to maximize the expectation of social welfare, which is 
gross consumer benefit, assuming no rationing, minus capacity cost 
minus operating cost minus outage cost, by optimizing the price and 
the capacity levels of each technology.

We must first codify the shortage cost. Chao initially assumes a 
linear cost in relation to volume loss.

bE D P Q P Zn( ) ( , ) , where D P( ) is the quantity demanded, 

Q P Zn( , ) and b is the multiplier arising from the demand function 
and the rationing regime. In effect b is the VOLL, and moreover we 
shall see that the problem takes the form of a system with no loss of 
load, but containing a unit of infinite size, zero fixed costs, and vari-
able costs of b.

Using this, Chao builds the total expected social welfare from gross 
consumer benefit, minus the sum of capacity cost, operating cost, and 
outage cost. It is a minor point here but important in considering the 
value of “available capacity” (ACAP) obligations, that Chao does not 
scale down our fixed costs according to unit availability. So ∂ki/∂ai 
= 0 and ∂σ(ki)/∂ai = 0, where σ (ki) is the standard deviation of the 
stochastic availability. We will see in equation (3.43) the stochastic 
version of the Turvey equation that the fixed cost does actually get 
normalized by the availability.

W E U D P k Y C E Q P Z Q P Ze i i i i i
i

n

i

n

(( ( )) ( , ) ( , )1
11

 bE D P Q P Zn( ) ( , )

 

(3.43)

Equation 3.43 Four terms of aggregate welfare. Gross consumer 
surplus, fixed costs, variable costs, rationing costs.

We can see from this equation that the consumer who loses load is 
effectively treated as a power generator with marginal cost of b, and 
infinite capacity.

To optimize the installed capacity, we need to set 
W
Yi

0 for all 

i  1, . . . , n, where n is the number of units installed.
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3.11.2.1 Optimization of Capacity
If unit i is in merit (the offer price is less than the clearing price, with 
offers being made in variable cost order), the differential of energy 
delivered up to unit i, with respect to the availability of unit j is

Q P Z
Y

y D P Z j ii

j
j i

( , )
( ) if  and 

Q P Z
Y

D P Z j ii

j
i

( , )
( )0 if  or 

As we can see in figure 3.50, the availability of the unit is only impor-
tant if it is merit.

Since we hold the price constant, the volume delivered is then the 
lower of the stochastic demand at price P and the available capacity 
with variable cost less than P. We assume independence of stochastic 
forces, and so for an individual unit, the expectation of delivery is then 
the expectation of availability multiplied by the probability of demand 
exceeding the plant position in the merit order.

E Q P Z D P Zi i( , ) min ( ), )

So,

E Q P Z
Y

E y D P Z D P Z j ii

j
j i i

( , )
( ) Pr ( )  if  (3.44)

E Q P Z
Y

j ii

j

( , )
0 if  (3.45)

£/MWh

MWij i j

(a) (b)

Figure 3.50 Dependence on the sensitivity of energy delivered up to unit i to the 
availability of unit j (a) j < i, j > i. See text.

   

 

 

 

 

 

 



Development of Peak Load Pricing 111

The random variable y j  is assumed independent of D P( ) and Zi, so 
the conditional expectation can be unconditional.

So equations (3.44) and (3.45) become

E Q P Z

Y
a D P Z j i

i

j
j i

( , )
Pr ( )  if  (3.46)

E Q P Z

Y
j i

i

j

( , )
0 if  (3.47)

where aj denotes the availability of unit j, that is, the ex ante prob-
ability of being able to run when called.43

So the derivative of the first part of the third term of equation 
(3.43) is

Y
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Now, turning to the second part of the third term in equation (3.43),
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Hence,
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So the whole of the derivative of the third term is,
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Now, turning to the fourth term of equation (3.43), we have,

bE D P Q P Z

Y
a b D P Z j i

n

j
i n

( ) ( , )
Pr ( ) .0  for 

So finally we have, for all four terms in equation (3.43)

W
Y

k a C C D P Z

a b

i
i i j j

j i

n

j

i

0 1

1

Pr ( )

(        C D P Zn n)Pr ( ) .  (3.48)

We can regard the right-most term of this equation as denoting the 
aforementioned unit of infinite capacity and variable cost b.

In this equation, we are looking at the total welfare relative to the 
availability of the ith unit on the stack. The second term refers to the 
jth unit running under a particular outcome of D P( ).

For i = n,

W
Y

k a b C D P Z
n

n n n n0 0 ( )Pr ( ) .
 

(3.49)

Rearranging, we have,
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For i = n – 1, we have,
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Substituting the above equation into the one above, we have:
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Note that the fixed cost kn is normalized by the availability an.
Chao’s interpretation of this is a stochastic version of the Turvey 

equation (3.2) described in section 3.31.
If demand and supply are certain, then the optimal running time 

for technology i is, from the Turvey formula,

k k

C C
i i

i i

1

1 )
. (3.52)

Now suppose that a fully operational (a = 1) unit of technology 
i + 1 is substituted by one of technology i. Multiply both sides of 
equation (3.51) by θ(Ci+1−Ci)) giving us

Pr ( ) ) ( / ) ( / ).D P Z C C k a k ai i i i i i i1 1 1  (3.53)

We now interpret the left-hand side as the expected variable savings 
from the substitution, and the right-hand side as the capacity cost 
increase. Here we have weighted the capacity cost by availability. This 
is consistent with a forward-looking view of capacity in a competitive 
market, on the assumption that failure is a completely random event 
and that the welfare cost of rationing is linear.

The optimal running time is of some interest as it informs us of load 
factor, but since we always run plant in variable cost merit order, there 
is no real decision to make once we have installed the technology. The 
equation does, however, guide us to the optimal installation.

Having concluded a long work through of this framework, now let 
us turn to the key point of interest for us, which is the sensitivity to 
the form of the utility function.

3.11.2.2 LOLP, Optimum Capacity, and the Utility Function
Noting that, at least in the one period setting, Pr ( )D P Zn LOLP, 
where LOLP is, as usual, the loss of load probability, then our formula 
for optimum LOLPo is

LOLPo

n

n

n

k
a

b C( )
.

 
(3.54)

Now, we can express USE,44 the expectation of loss, divided by the 
expectation of demand

USE E D P Q P Z E D Pn( ) ( , ) / ( ) .
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So the loss of load expectation, conditional on there being a loss of 
load is:

LOLE
USE

LOLP
E D P Q P Z D P Z E D Pn n( ) ( , ) ( ) / ( )

Chao is interested to show that LOLP is an oversimplistic objective 
measure when rationing costs are convex and we now develop this 
theme. We do this in stages.

1. simplification of LOLP and VOLL
2. application of simplified LOLP and VOLL with an extra term in 

the rationing polynomial.

3.11.2.2.i Simplification of LOLP and VOLL.
Chao initially simplifies with a single failure event possibility. So we 
make a simplifying equation of a single event losing L/M with prob-
ability LOLP = λM. Formally, the conditional variance of LOLE is 
zero, and M represents a change of measure.45

In essence, we have assumed a very simple distribution, that demand 
is fully satisfied with a probability 1 − λ, or that there is, with a prob-
ability λ, some loss of load, and that the conditional expectation of loss 
of load is L, and the conditional variance is zero. This is similar to the 
assumptions used by Drèze and Brennan. If the distribution changed 
so that with a probability λM, we had a conditional expectation of los-
ing L/M, then for a given USE the economics would be sensitive to 
the size of M.

In equation (3.43), the linearity of the rationing cost is implicit. We 
have noted that we can regard rationing as having DSM units with a 
variable cost b. So, when we need to calculate the conditional expec-
tation of loss, we are not presented with complications. We consider 
that we lose LOLE with a probability of LOLP.

The motivation for using LOLP as an objective function is that it is 
practically feasible to estimate it. LOLE and USE are much harder. In 
this simple case, we can use the Black (1976) option formula to relate 
standard deviation, LOLP, LOLE, and USE together in a straightfor-
ward manner.

For policy, simplification, or other reasons, we can adjust M. 
Indeed, this is exactly what regulators do. So, for example, in England 
and Wales, LOLP was set artificially high, and VOLL artificially low. 
Two reasons for this were i) the political externality of the impact of 
lost load and ii) the use of VOLL as a regulatory price cap. In the 
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single Irish electricity market, there is an explicit “power factor”46 that 
reduces LOLP in the peak period.

3.11.2.2.ii Addition of the Second Term to the  
Rationing Polynomial
Particularly since we recognize the application of M ≠ 1, then it is 
apparent that in adjusting VOLL (and therefore LOLP), we are mak-
ing some adjustment for the convexity of rationing costs. We can make 
a better adjustment by explicitly recognizing this convexity.

With convex rationing costs, which may arise, for example, from 
quadratic utility, the distribution is more important. For example, we 
would be sensitive to the size of M in the previous paragraph.

This next simplest polynomial generalization of our initial formula, 
which allows for demand convexity and/or rationing efficiency is

S x y b y x b
y x

y
( , ) ( )

( )
1 2

2

.

Here we have dropped Chao’s ½ multiplier on the right-hand side, 
as we can absorb it into b2. The range is depicted in figure 3.51.

Note that the second term on the right hand side contains 
( )y x

y

2

 

rather than (y − x)2 to preserve the correct dimensions of the equa-
tion, as the units of b are £/MWh and y and x are MW * hr.

Our loss in £ is b
L
M

M b
L
M

M b
L
M

M1 2

2

* * * * * * * * * .

So b b b1 2

USE
LOLP

.

Loss of 
surplus

Loss of load

Figure 3.51 Loss of surplus in relation to loss of load. Feasible region between 
linear and quadratic shaded.
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We substitute for this b in equation (3.50) and get,

LOLP
USE

LOLP

o

n

n

o

o
n

k
a

b b C( )1 2

which simplifies to

( )b C b k
an o o

n

n
1 2LOLP USE

So the reliability index that we need to optimize is a weighted average 
of LOLP and USE. Diversity improves both but has a much greater 
effect on LOLP. If we use lognormal distribution of demand increase 
plus production shortfall, then we can use the European option for-
mula in section 5.2 to establish some simple relationships.

Let us first give some consideration to the VOLL. The Chao frame-
work makes it quite compatible for us to regard lost load in terms of 
alternative production rather than actual loss. Indeed, for electricity, a 
finite value of VOLL is somewhat predicated on this. The alternative 
technology must have a fixed cost associated with it. So, for example, 
if it is a diesel generator, fully dedicated to electricity standby, then we 
must, if we do not include the unit in the production stack, load its 
fixed costs into its short-term price offer. If it has shared use (candles, 
flashlight, etc.), then we apply hedonic pricing to isolate that part of 
fixed costs that should be applied to electricity substitution. Finally, 
regarding load that was lost with no replacement, the consumer will 
do something else with the money saved from spend on electricity 
consumption spend. The activity would have entailed a fixed cost 
somewhere along the way.

3.11.2.3 Optimum Price

Q P Z
P

D Pi( , )
’( ) when D P Zi( )  for i = 1, . . . , n, and 0 for D P Zi( ) .

So,

E Q P Z

P
E D P D P Z D P Z

i

i i

( , )
’( ) ( ) Pr ( ) .

  

 

 

 

 



Development of Peak Load Pricing 117

So, to optimize, we differentiate

W
P

PD P C E D P Z D P Z

Z D P

i i i
i

n

i

0 1
1

’( ) ’( ) ( )

Pr ( ) Z E bD P D P Z D P Zi n n1 ’( ) ( ) Pr ( ) .

We can see in the second and third terms on the right-hand side 
that this requires a knowledge of the joint probability distribution of 

the marginal demand 
D P

P
( )

 and the total demand D P( ).

Accordingly, Chao takes two alternative demand specifications. 
First, as Chao expresses it, marginal demand is uncorrelated to total 
demand, and second, it is perfectly correlated. We can regard this as a 
development of the Drèze analysis, with more sophisticated produc-
tion and demand functions, and distributional forms.

By representing two stochastic outcomes of the demand function, 
as shown in figure 3.52, we can see that the correlation between mar-
ginal demand and total demand is a function of the stochastic form of 
the demand curve. So if the shock u is additive to demand, then there 
is no correlation between marginal and total demand, but if the shock 
u is multiplicative to demand, then there is 100 percent correlation 
between them.

Demand
D(P)

Price P

Total demand 1

Total demand 2

Marginal 
demand 1

Marginal 
demand 2

Figure 3.52 Correlation between marginal and total demand depends on the 
demand function shape and stochastic nature.
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Figure 3.53 shows that the correlation between marginal and total 
demand is dependent on the form of the shock.

For zero correlation of total and marginal demand, the formula, 
which is a generalization of the CK formula is,

P C C C D P Z b C D P ZI l i i
i

n

i n n1
1

1

Pr ( ) Pr ( )

Under this condition, the long run price is apparently lower than 
the total cost, and Chao expressly states that expected profits are neg-
ative (and hence fixed costs are not covered). Our rationalization of 
this follows the same logic as for the CK result and the Dansby result. 
In brief, under long-term equilibrium, the evolution of the stack is 
such that profits become zero.

Next we assume perfect correlation of marginal and total demand. 
Uncertainty now appears in multiplicative form, and in this case Chao 
states that the long run profit could be positive or negative according 
to rationing. The profits are zero with pro rata rationing, negative for 
perfect rationing, and positive if those who have lowest willingness to 
pay get served first.

More generally, we can express the optimum price as a weighted 
average of the correlated and uncorrelated components.

Demand
D(P )

Price P

+u

*u

Figure 3.53 Effective of shock on the correlation of total and marginal demand. 
Additive (=u) with zero correlation and multiplicative (*u) with 100 percent correlation.
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3.11.2.4 Extension to Multiple Subperiods
Finally, Chao extends the analysis to multiple periods, reasoning that 
the solution reduces to that of the single period. This effectively makes 
us of load factor duality described in section 2.4.1.

3.11.3 Concluding Remarks on the Chao Analysis

In summary, Chao then addressed a number of key features of the 
problem in hand, and his framework is sound, robust, and flex-
ible. The elegance of the formal formulation does make the analysis 
rather intractable to the layman, and the extent of ground covered 
in a single paper precludes Chao from developing the theory to an 
examination to the sensitivity to probability distributions and utility 
functions. Nevertheless, he conclusively proves that while we can sim-
plify a demand distribution with a single VOLL, that LOLP is even 
then an inappropriate objective measure where the circumstances of 
demand loss are such that utility concavity and/or rationing convex-
ity/efficiency are a practical issue. The development of his theory, 
using USE as an objective function, has the same conclusion for the 
use of USE as a sole objective measure. Given that VOLL and USE 
are the dominant objective measures used in practice, these conclu-
sions are important.

In reviewing the Chao framework, we reveal a key asymmetry in the 
analytics of production and consumption in the provision of energy 
in rare events. In assigning a de facto economic VOLL, which we 
interpret as voluntary DSM, we have created a virtual producer. This 
producer has no fixed costs, which, though a standard framework, is 
problematic. For the simplest analysis with a constant willingness to 
pay b, we can simply model the variable cost b as b = b + B/λ where λ 
is the probability of lost load (with zero conditional variance) and B 
is a proxy for the fixed costs of maintaining alternatives to networked 
electrical consumption. A simple example would be having a portable 
generator.

Using the Chao framework, a more sophisticated analysis for 
a downward sloping demand function is possible, thereby creat-
ing a range of virtual producers, which can all be regarded as real 
producers.

This however does not optimize the “DSM stack.” This is because 
we have not at this point assigned a fixed cost to having the capabil-
ity to lose networked power without harm. By simple assignation of 
fixed cost to DSM, we can use the Chao generalization of the Turvey 
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algorithm to determine the optimum amount of build and run of the 
lowest merit technology.

3.12 Discussion of the Pricing Analyses

We find by working through the details of all papers in the canon that 
none contradict the theory of peak load pricing, in which we recover 
the fixed costs in the peak period/s. While many and perhaps most 
authors regard the recover of fixed costs as unnecessary or low prior-
ity, we can in all cases find either an implicit recognition of fixed cost 
in optimizing the power generation stack through a version of the 
Turvey algorithm or an explicit decision to make price optimization 
decisions regarding fixed costs as sunk and irrelevant.

The array of model features is rich, and each feature is important 
for practical modeling. These are:

1. periodicity (one or many periods)
2. discretization of the periods and a discontinuous technology 

frontier
3. returns to scale in capacity (discontinuity at zero load, slope, 

convexity)
4. returns to scale in operation (discontinuity at zero load, slope, 

convexity)
5. price cap in the highest peak period
6. dimensions in the technology stack (variable costs, fixed costs, 

divisibility, flexibility start costs)
7. plant aging characteristics (aging profiles, stack stationarity, tem-

poral indivisibility)
8. the application of fixed costs to variable plant value (so-called 

Tobin Q)
9. consumer utility function (Marshallian or various concave forms)

10. producer utility function (weighting relative to consumers’, cost 
of risk)

11. drivers of stochastic demand (number of consumers, demand of 
individual consumers)

12. homogeneity/heterogeneity of individual consumers
13. boundaries of the economy (visitors, immigrants, unborn, 

nonconsumers)
14. producer response timeframe (stack evolution, investment, price 

offer strategy, price offer)
15. actuarial consistency of stochastic variations (stationary or not, 

risky or uncertain)

  



Development of Peak Load Pricing 121

16. chronological order of the load duration curve and ‘principal 
component’ shock to this

17. the complexity of the demand shock vector across different periods
18. the individual or joint optimization of price and of capacity build
19. consumer response timeframes
20. the degree to which electricity can be a private good
21. the rationing method
22. gaming (Cournot, market power, stationarity of unit offer 

structures).

We established that if all units regard themselves as price takers 
rather than price makers, and hence we can ignore gaming, evolution 
of the installed generation stack in terms of fixed and variable cost 
and volume installed, tends to self-optimize toward equilibrium, with 
both an engineering and finance (fixed cost) response.

The treatment of lost load is somewhat problematic, as the ideal 
is to view lost load as a series of DSM contracts that are like virtual 
power stations, with both fixed and variable costs. In fact there is 
minimal empirical observation.

We have largely ignored gaming considerations. In general, the 
analysis is robust with respect to gaming. For example, with the opti-
mal price in a subperiod in equilibrium being the variable cost of the 
marginal unit, the Stackelberg game is in operation with no distortion. 
By far the most important game is the feared or actual expropriation 
of the rent of peaking units by the state and the reciprocal fear by the 
state that peaking units will lever market power.



4

Rel axing the Hard C apacity 

Constraint

4.1 Introduction

Most authors in the canon have simplified plant costs by assuming a 
single variable cost up to a hard capacity limit at which variable costs 
become infinite. The cost of capacity then tends to have constant 
returns to scale. If we have decreasing returns to scale in opera-
tion, then the concept of capacity becomes harder to define. Since 
decreasing returns to scale in operation is a reality, we must attend 
to this.

4.2 The Hirshleifer Framework

Hirshleifer (1958) offers a tantalizing view of this in a paper that, in 
the author’s view, had the potential to change the development of the 
canon on capacity costing, pricing, optimisation, and regulation, but 
did not do so. We now use his framework to develop the argument.

Hirshleifer first begins with the Steiner framework that we define as

1. a setting with two equal length period
2. constant returns to scale in capacity, starting at the origin and with 

no upper limit. There is no “fixed operational cost,” that causes a 
step change as operation increases from zero.

3. constant returns to scale in operation, starting at the origin,1 up to 
the capacity limit

4. full divisibility (this is a direct consequence of the above two 
statements)

5. downward sloping linear demand curves that are deterministic 
in the setting considered, but not necessarily known before the 
capacity build decision.
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Because the Steiner diagrammatic representation of demand for 
capacity cannot be used for relaxation of the hardness of the capacity 
constraint, Hirshleifer first presents the Steiner framework in a differ-
ent diagrammatic representation. In particular, Hirshleifer shows the 
actual demand function rather than the demand function net of vari-
able costs (the so-called demand for capacity).

This is shown in figure 4.1. For ease of reference, we have used 
the same nomenclature for fixed and marginal costs as he did. b per 
period are the fixed costs and β the variable costs. In the first instance, 
Hirshleifer supposes that the capacity decision has been made prior to 
the resolution of the demand curve, and/or that the installed capac-
ity QA is less than would optimally be installed with knowledge of the 
demand function. In this case, Hirshleifer states that the prices in the 
peak and off-peak are represented by P and S. We discuss the validity 
of this statement below. Hirshleifer then supposes that the demand 
function is known prior to capacity commitment. The optimum build 
is then QB, the optimum pricing is β in the off-peak, and β + 2b in the 
peak. We ignore peak shifting here.

Let us consider the optimum pricing and build under hard con-
straint. These prices are T and V. Since the two-period pricing with 
full capacity cost loaded into the peak is somewhat trivial, we wish to 
confirm that the Hirshleifer framework is equivalent to the Steiner 
framework in the shifting peak case, in which the off-peak period 
should pay above variable costs.

Hirshleifer follows convention in pricing at the intersection between 
the demand function and the vertical constraint, but this pricing in 
practice makes an assumption on build optimization, and therefore 
should not be considered as optimal short run pricing. In particular, 

p
£/MWh
£/MW/h

p
£/MWh
£/MW/h

q MWQA QB

b

b + 
2b + 

c + 
2c + 

D1

D2

D1 + D2

q MW

c

SRMCA SRMCB

P

S
T

V

P ’

S ’

T ’

V ’

Figure 4.1 Vertical addition of demand curves for the constrained flat marginal cost 
and the Ricardian function. Adapted from Hirshleifer (1958). b, c are marginal costs, 
β is marginal costs, QB is the installed sufficient capacity, and QA a smaller capacity.
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we should not regard the vertical section of the cost function as in 
any sense representing a part of the short run cost function whose 
intersection with the demand curve can be used for optimal pricing, 
but rather the intersection with the vertical line represents the price at 
which we most efficiently ration the demand. The price, as long as it 
exceeds variable costs, has no effect on aggregate production.

Hirshleifer now states that the Steiner framework with a hard con-
straint is simply a special case of a more general framework, which 
we here call the Hirshleifer framework, where the constraint is softer. 
Hirshleifer posits a curve that (probably asymptotically) approaches 
the right-angled function at low loads and at nominal capacity. The 
Hirshleifer framework is then presented, in diagrammatical form as 
shown in figure 4.1, as a generalization of the Steiner framework.

First, under hard constraint, let us again assume that we have made 
the capacity decision prior to the resolution of demand uncertainty, 
and that this capacity turns out lower than the optimum that would 
have been built if we had known the demand function. Hirshleifer 
states that the peak and off-peak prices should be P and S as shown 
in figure 4.1. He then allows capacity build after the resolution of 
demand uncertainty and arrives at the prices T and V.

Now, under soft constraint, suppose again that we have somehow 
ended up with less capacity than we would have built with knowledge 
of the demand function. Hirshleifer proposes prices of P ’ and S ’ in 
the peak and off-peak periods respectively. While being presented as 
essentially the same as the Steiner framework, we note i) that different 
prices now engender different produced volumes and ii) that we have 
explicitly ignored fixed costs. This is definitively short run pricing.

Now suppose that we know the demand function in advance and 
accordingly build optimally. Hirshleifer again presents a curve to use 
as a generalization of the right-angled function. Note however, that 
we now make explicit the cost dominance of the larger production 
volume. This was the case with the right-angled function, but less 
obviously so. It is quite clear that if the larger production capacity has 
a cost dominance in variable costs, it must have higher fixed costs, or 
it would not be on the technology frontier that we choose from. It is 
now obviously incorrect to have a single fixed cost c in the low-build 
and high-build cases. Further, the returns to scale in capacity cannot 
be linear from the origin, and must either start above the origin, or 
be convex, or both.

So, while not following Hirshleifer’s conclusion that short run 
pricing is best after all, we do use his work to demonstrate the key 
relationship between short and long run costs.
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The Hirshleifer example, recast using a Crew and Kleindorfer fea-
sible plant frontier, is shown in figure 4.2.

In modeling, decreasing returns to scale with production, and 
thereby reducing the hard capacity constraint, we must ensure a tech-
nology frontier by allowing the fixed/variable cost curves of units to 
cross. In doing so, we demonstrate that peak pricing and not vari-
able cost pricing is correct. This conclusion reinterprets the work of 
Hirshleifer.

We now turn to a more formal treatment of the soft capacity con-
straint by using decreasing returns to scale.

4.3 Optimizing with Decreasing Returns to 
Scale—The Panzar Framework

The Hirshleifer framework attempts to draw together the short- and 
long-term cost structures of a plant into a single convex upward 
sloping curve. Panzar does something rather similar and uses his 
framework to make some conclusions about the pricing of periodic 
demand and the cost recovery by generators. He posits a convex 
short run cost, and a constraint that is limited by the spend on 
capacity.

Steiner showed that if elasticity is such that demand management 
in the peak can bring the peak price below the off-peak price, then 
both periods should pay some contribution to capacity. Panzar (1976) 
goes further and suggests that all periods should pay some capacity 
cost. We examine this here.

Panzar used “neoclassical” (upward sloping quasi-convex) mar-
ginal cost curves. He noted that the conclusions of much of the work 
to date rested on the assumption of constant returns to scale (“fixed 
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Figure 4.2 Hirshleifer analysis recast with a feasible production set.
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proportions” of fixed and marginal costs). He concluded that under 
an assumption of ef < 1, where ef is the elasticity of scale of short run 
costs, that i) even under deterministic conditions, all periods should 
pay a contribution to capacity costs, not just the peak period and ii) it 
is efficient under the ef < 1 assumption not to use full capacity at any 
time.

Panzar used a purely mathematical approach with little reference to 
physical terminology, and, as ever, the conclusion is dependent on the 
assumptions. Let us first rationalize the description in terms of power 
stations.

4.3.1 Framework

n equal length subperiods from t = 1, . . . , T
m units
Decreasing returns to scale in operation (convex variable cost)

Decreasing returns to scale in capacity/size (convex fixed cost). 
Here “size” and “capacity” could be regarded differently. Capacity 
refers to an absolute constraint and size conforms to the running 
load at maximum average efficiency (i.e., power output divided by 
fuel input).

Perfect reliability
The analysis is not readily interpretable in a physical sense but 

 figure 4.3 shows one possibility.
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Figure 4.3 A physical representation consistent with the Panzar framework, showing 
unit i in period t.
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K is regarded as a capacity limit that we will describe
Q f x Kp

t t t( , ) is the MWh electrical output produced from the 
power station in period t, which is determined only by physical pro-
duction and configuration, and is entirely unaffected by whether it is 
requested by consumer. We imagine that there is a physical vehicle, 
such as pumped storage to which we can dump unwanted power. The 
suffix “p,” which Panzar does not use, denotes production.

x t is the factor input in period t, which we shall interpret as run-
ning level in MW that is sent (from the station transformer2) to the 
substation to the grid.

The marginal efficiency of the jth unit at load Q p in period t is 

a x
Q

xj
p
t

j
t( )  if the jth unit substation is unconstrained by its capacity, 

that is, x Kj
t

j  and x j
t  is the output of the jth unit in time interval t.

We treat constraint of the jth as the point at which 
Q

x
p
t

j
t 0 if the 

j th unit is constrained and thence the effect of the constraint limit is 

Q

K
p
t

j

1 if the j th substation is constrained and 
Q

K
p
t

j

0 if it is not.

K t is the vector of capacities in period t. We regard this as substa-
tion capacity.

We suppose that the first element of running corresponds to the 
first element of capacity. Physically we imagine that K corresponds to 
the thermal capacity of the transmission line sending electricity out of 
the power station, and that there is some entity on the substation that 
dumps excess power to avoid overloading the lines. We could, if we 
chose, regard the forced dumping of power as a zero marginal efficiency 
of the station, once the substation capacity is reached. We suppose no 
electrical losses from the station transformer to the substation busbars 
(the exit point to the grid) K Kt . K K Kn n m1,...,  where K is a 
scalar quantity equal to the sum of unit substation capacities. The vec-
tor is described in the stylized manner beginning at n + 1, where we 
interpret n as the number of units, because Panzar strictly decouples 
the variable costs from the capacity vector, which is regarded as a 
public good. It is a public good in the sense that the capacity mobi-
lization in any period is limited to the sum of capacities and that the 
cost of capacity mobilization in one period is entirely unaffected 
by the mobilization in any other period. In our stylization, m = n, 
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although Panzar does not use a physical representation and does not 
note this, and in fact regards capacity as being a public good across 
space (i.e., all units) as well as time (i.e., all periods). Panzar regards 
the mobilization of both the private good (fuel into units) and the 
public good (capacity) as necessary for production, but does not 
bring these together, for example, by defining a variable cost func-
tion for a unit that becomes infinite at its capacity, either by asymp-
tote or discontinuity. The two possible physical interpretations of 
the Panzar framework are shown in figure 4.4, with (a) being the 
most faithful to the equations, while (b) being more faithful to the 
standard paradigm and normal physical reality.

a is the constant ratio of inputs to outputs, which we can regard as 
efficiency. It is consistent with Panzar’s analysis, to regard efficiency as 
a function of load a xt

4.3.2 The Analysis

We now assume that because of the form of vectors x and K, that 
f (x, K) is a continuously differentiable quasi-concave function; 
that is, we have continuously decreasing short run returns to scale. 
Panzar explicitly states that long run returns to scale are constrained 
to be decreasing, and we can rationalize this by assuming that the 

(a) (b)

PeakBaseload Mid
merit

Figure 4.4 Panzar framework with and without link between units, capacities, and 
load (a) without (b) with (as used in this analysis).
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energy and capacity vectors can expand at constant or declining cost 
if they are given time, but at an increasing cost if they are not given 
enough time.

Short-term decreasing returns to scale are represented by short run 

elasticity of scale being less than unity e
x f x K

f x Ks

j j
j

n

( , )

( , )
1 1.

We then add some boundary conditions to which we can apply 
physical descriptions. First, standard fuels work in standard power sta-

tions, so 
f

Kk

0 for all k = 1, . . . , n + m, subject to x > 0. Second, 

either no fuel or no capacity results in no output, but small finite capac-
ity and fuel result in small but finite output, so f (0, K) = f (x, 0) = 0. 
Hence the cost curves pass through the origin.

The key analysis in this framework is expounded in a multiperiod 
setting with deterministic periodic inelastic demand. Under a stylized 
neoclassical cost function, the key Panzar conclusions that are relevant 
to this book are i) even in the highest demand period, it is not eco-
nomic for all units to run at full capacity and ii) full cost equilibrium is 
only optimal in the special case where cost elasticity = 1.

We will see below that the fixed costs of the fleet are related to the 
capacity, and hence K refers to unit capacity, not unit running level.

Before moving on, we must characterize our cost frontier. In par-
ticular, we need to decide whether to have units of variable size, vari-
able technology, or both. There are too many degrees of freedom to 
solve the Lagrangean to have both, and hence we must have one or the 
other. The duality of the cost frontier is described in section 2.4.9.

In constructing the Lagrangean to minimize the cost of deliver-
ing the inelastic load in all periods, Panzar ignores the welfare cost 
of rationing in the event of insufficient capacity, since his Lagrangean 
condition ensures sufficient capacity. Under the neoclassical cost 
model with a soft capacity constraint then, capacity is infinite.

The full cycle average3 cost is w x Kj j
t

k k
k

n

j

n

t

T

111

,

where wj = wj (xj) is the average variable cost, which we interpret as 
fuel, and βk = βk (Kk) is the average fixed cost, which we interpret as 
substation capacity. Note that Panzar makes no link between the fixed 
and variable costs and hence has no technology frontier. Our inter-
pretation of total average cost is the cost per MW per unit period to 
satisfy a δ MW increment of load in each and every period, that is, a δ 
increment of baseload.
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Note that we have not used the summation terminology of Panzar 
of capacity mobilization n + 1, . . . , n + m, but we use the index k 
instead of j in order to maintain the decoupling of running and capac-
ity that Panzar envisages. It is not efficient to have more technolo-
gies than time periods (since this would cause running of units that 
are subordinate in cost terms) or less technologies than time periods 
(since we would prefer more discrete technologies on the technology 
frontier). Hence we can state that the number of technologies should 
equal the number of time subperiods.

The capacity constraint is f Qt
d
t 0 where f f x Kt t ,  and 

Q d
t  is the inelastic and exogenously determined demand in period t. 

The suffix “d,” which Panzar does not use, denotes demand.
So our Lagrangean is

L w x K f Qt j j
t

k k
k

n

j

n

t

T
t t

d
t

t

T

111 1  
(4.1)

P t t  price = shadow cost

w x dqj
t

j
tQ

j
tj

t

0
 for the j ’th unit in the t’th period

j k

Q

kf dq
j

0
 for the j ’th unit.

To find the optimum deployment of short- and long-term resource, 
we solve for the Karush Kuhn Tucker (KKT) conditions. The KKT 
conditions for multiple constraints (capacity sufficient in each and 
every period), tell us that either the Lagrangean multiplier is zero or 
the associated constraint is binding.

The first condition is

t
t

d
t t

d
t

tf Q f Q0 0 0; ;  

Thence,
L
x j

t 0 For all t = 1, . . . , T, and j = 1, . . . , n and

L
Kk

0 For all k = 1, . . . , n.

Marginal variable cost is w
w x x

xj
j j j

j

( )
. Similarly for k for marginal

 
fixed costs.

 

 



Peak Load and C apacity Pricing132

For j, t, k =1 we have
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where 
tt

k

K
K

, )

Here we have added the term 
x K

K
1
1( )

 to the Panzar term and then 

set it to zero to be consistent with Panzar.
The addition of the two terms stated, in the partial differential 

equations, is a matter of judgment, and depends on whether the rela-
tionship, for example, between x and K is first order (e.g., as in the 
Crew and Kleindorfer technology frontier) or second order. We can 
interpret this in two ways as follows.

First, we can, as Panzar states, regard Kk as a public good, which 
is a pure capacity limit, more or less unrelated to any unit. This cor-
responds to the Ramsey analysis in this most general form, but to 
make it more meaningful in the present context, we require the total 
cost recovery to relate to the total capacity. In this case there can be 
no relationship between the cost structure of any individual unit and 

therefore 
x K

K
1
1

0
( )

.

Second, we can regard Kk as broadly relating to the “size” of the 
individual unit to which the capacity cost is directly associated, but 
with no hard constraint. Spend on capacity then reduces the marginal 
and average variable cost at high loads. In this case, at the optimum 
for the unit, for getting an increment of load δ MW out of the unit, 
we are indifferent between running it beyond its normal limit and 
spending more on its size to increase its nominal limit.

Clearly, if 
x K

K
1
1

0
( )

, then 
K

x K1
1 0
( )

. Our interpretation of 

K
x K1

1 0
( )

 is that we make the capacity decision and the running 
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decision at the same time. This point was discussed in section 3.6 
on the Brown and Johnson framework and in 3.8 in the Carlton 
framework.

The subtlety of the neoclassical cost function is that it is curved, so 
while we would expect for a linear cost function for only one cost to 
be tangent to the constraint and thence bind, a curved function could 
more easily be tangent to many constraints.

Panzar invokes KKT further:

w f x x w f j n

t
j

t
j
t

j
t

j
t

j
t

j
t0 0 0 1, , , ,   for all  

and 1, ,t

Under KKT, either the delivered volume of unit j must exceed 
zero, or its cost structure must affect the optimum welfare, or both.

w
f fj

k

k

1

1
1

1

1
1

f
f w

k

j

k1
1

1
1

1

We can interpret this variously. If we tie the investment to the unit, 
such that the increase in size decreases it variable costs, then this rep-
resents the conditions at optimum size and load.

Panzar again invokes KKT to arrive at

k
t

k
t

t

T

k k k
t

k
t

t

T

f K K f0 0 0 0
1 1

; ;   for all  k

Panzar then states that all Lagrangean multipliers μ are positive, 
and the constraints must be nonbinding, that is, there must be excess 
capacity in all periods.

Our understanding of the construction of KKT is that either the 
capacity of unit K is used, or its cost structure must affect the opti-
mum welfare, or both.

Clearly this conclusion is dependent on the statement that the con-
straints bind in all periods.

We noted earlier that Panzar regards the production system as 
being comprised of n private goods (power generating units) and m 
public goods (which we picture as substations). He derives the KKT 
conditions by differentiating the Lagrangean with respect to both unit 
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cost and capacity. However, as we showed above, if we are to invoke 
technological efficiency in the form of the technology frontier, then 
we must regard each public good as being directly associated with its 
corresponding private good. So in equating the number of public and 
private units to the number of time periods, we have initially twice 
as many constraint terms as time periods in the KKT, but then the 
terms involving the private good become redundant as the constraints 
do not bite. In doing so, we lose Panzar’s requirement for all unit 
constraints to be finite and thence lose the condition that all capacity 
constraints are slack.

Panzar’s conclusion that all units must run in all periods is correct 
only in a particular theoretical construction of the physical configura-
tion of the industry, and becomes invalid when that configuration is 
provisionally optimized by removal of entities not on the technology 
frontier.

4.3.3 Physical Interpretation

Let us consider this in physical terms, beginning with the peak period. 
Note that in our physical representation of the Panzar framework, 
we not only require the n substations to match the n units, but also 
require n periods with a different unit being the highest merit in each. 
In Panzar terminology, n = m.

If we build our plant stack according to the technology/size fron-
tier, then we will choose and build N units and not build the N + 1th. 
By definition we run the Nth unit in the peak period and by definition 
we do not build the N + 1th.

If it is not optimal for any unit to run harder in the off-peak than 
in the peak, then there should be no spare capacity in the peak. Let us 
suppose this is the case.

We will have spare substation capacity in all periods but the peak 
period.

Now let us consider the units. While the technology frontier is 
constructed with a single degree of freedom in plant characteristic, 
that of “size,” there is no limit to the running of any unit. Provided 
that there is sufficient substation capacity for each unit, then depend-
ing on the level and convexity of the variable cost curves, all variations 
are possible, from only one unit being optimal in any timeframe, to all 
units running even in the lowest demand period.

It is not however correct, as Panzar does, to couple the unit and 
substation together and state that the capacity limit of the joint entity 
is at the same level as an asymptote of the variable cost curve. This is 
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incorrect in two ways, one of which is important and one less so. First, 
the less important aspect is that there is a clear coupling between the 
substation and the unit, and hence capacity is not public in the way 
expressed by Panzar. This aspect has been incorporated in our analy-
sis by setting m = n. The second is more important. The substation 
capacity is a hard and not soft limit to unit output. By dumping load, 
we have represented it as a sharp reduction of marginal efficiency to 
zero at the capacity constraint. There is no connection to the unit 
itself and hence no reason to assume an asymptotic approach of mar-
ginal unit efficiency to zero (or, equivalently asymptotic approach of 
marginal variable costs to infinity as the capacity limit). Indeed there 
is no connection, other than a practical optimization of asset sizes, 
to connect the substation limit to the unit size. As with the Boiteux 
analysis, the unit has no size in the sense of a capacity limit. Size 
is simply a parameter denoting increasing efficiency with increasing 
spend.

Let us consider the practicalities of the Panzar framework. If returns 
to scale are negative (i.e., cost elasticity < 1) in both energy and capac-
ity, then it is clear that we would ideally build lots of very small units. 
This restores the situation of constant returns to scale, and therefore 
to restore the Panzar framework, we must place a limitation on this. 
One way is to add indivisibility. We cannot do this because the cal-
culations require the cost functions to be twice differentiable. The 
alternative is to provide a plant choice frontier that makes small units 
prohibitively expensive.

Let us now successively add shape to the load duration curve. 
Initially we start with baseload at a particular MW. We choose the plant 
with the lowest cost to serve the baseload. This is the plant with the 
lowest b + β, where b are variable costs and β are fixed costs. Note that 
both are load dependent but we drop the suffixes for convenience.

Now let us add more load in the peak. To simplify, we assume that 
the peak period is half the total period, and the load added is equal to 
the previous baseload level. Let us now add a unit with the minimum 
1
2 b . This is represented in figure 4.5 in two ways. One, which is 
most consistent with practical application, has units with fixed and 
variable operating costs,4 and the other, which is most consistent with 
the Panzar framework (and similar to the Williamson framework), for 
which short-term costs are zero at, and also slightly above, zero load.

We can add more and more periods to the load duration curve 
using the same method. For example, if we add a super peak to this 
example, of duration ¼ of the whole period, then we use the unit with 
the lowest ¼ b + β.
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Our definition of costs is as in Panzar. That is, large units have 
higher per MW capacity costs than small units, and unit capacity limits 
unit output.

We can check that our solution is optimal by

1. rebalancing the relative running volumes of the two units
2. replacing the high merit unit with a different unit
3. replacing the low merit unit with a different unit.

The first of these represents the application of the Turvey algo-
rithm, described in section 3.1.3.1, and the latter two are both unit 
replacements, visualized as beginning the solution with a set volume 
of one unit and zero of a different unit, and seeing if a nonzero vol-
ume of the second unit is optimal.

The question on hand is whether in any of these possibilities, we 
have a nonbinding capacity constraint.

We can represent the optimum as shown in figure 4.6. For different 
installed capacity ratios, scheduling optimally for each, we can observe 
the aggregate welfare in relation to total installed capacity.

At the optimum, in each period, the marginal variable cost must be 
the same for all units running.

In addition, to meet the equilibrium load, the capacity cost sav-
ing from disinvesting an infinitesimal amount of capacity for any unit 
must equal the variable cost increase for that unit to meet the same 
load profile.

Brief consideration shows that even if marginal costs become 
asymptotically infinite, we do not necessarily run all available units. In 
figure 4.7 we can see that for a delivered demand in period t of Q 1 + 
Q 2 + Q 3 with the first three highest merit units, we would not run the 
fourth even if it were installed. The criterion for running the fourth 

£ / period

Envelope

MW served

£ / period

MW served

Large

Small
Large

Small

Figure 4.5 Unit cost envelopes.
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installed unit is represented by the point at which the horizontal line 
intercepts the fourth unit variable cost function at the ordinate. Note 
that since the market is orderly (centrally managed), once total deliv-
ered volume in the period is affected by unit fixed costs, the allocation 
of this volume is determined only by variable costs.

In deciding whether to build unit 4, we look at the peak period 
and the loads delivered by the other three units in total equilibrium, 
and then test to see whether the total cost of unit 4 in the period 
(i.e., variable cost, plus fixed costs load into that period), is less than 
the equilibrium clearing price in the period. Supposing that figure 4.7 
represents the peak, then the clearing price is found by adding the 

Optimal%

Overweight% 
with large units

Total installed MW

Aggregate
welfare

Overweight
% with small
units

100% large

100% small

Figure 4.6 Optimum aggregate welfare for different percentage mixes and total size 
of two units.

MW running

Variable cost 
£/MWh

Q1Q2Q3

Figure 4.7 Allocation of unit output to deliver Q1 + Q2 + Q3 MW in period t.
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fixed costs of the first three units, loading into the periods in which 
they run.

For deterministic demand, fixed costs should only be loaded into 
the period for which units run. Once built, units do not necessarily 
run in all periods. These conclusions differ to Panzar’s.

4.3.4 The Relevance of Returns to Scale

Panzar also arrives at the very interesting conclusion that there is cost 
equilibrium only in the special case when cost elasticity is equal to 1 
(i.e., constant returns to scale). Let us consider if this can be applied 
in our physical situation.

The key equation here is

TR TC t t
l
t

t

T

f e1
1

where TC is total costs, TR is total revenue, μ is the Lagrangean mul-
tiplier, and el

t  is the variable cost elasticity of unit l in period t where 
the cost elasticity in period t is defined as
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From the KKT conditions we have
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Our Lagrangean to maximize total surplus subject to the constraint 
of satisfying demand is

L P Q dQ w x K f Qt
j j

t
k k

t t t
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t

T t

( )
1111

0
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For this to represent aggregate surplus, P  t (Q) must be the willing-
ness to pay and hence the first term is the gross Marshallian consumer 
surplus. The last term (the Lagrangean constraint) is the condition of 
no rationing once prices are set.

Panzar then sets

TR P Q ft t
t

T

t
t

t

T

1 1

Here Pt must be the price received by the producer.
So,

TR TC t

T
t

l
tf e

1

1( )

Hence for el
t 1, TR = TC

What is more interesting is the cases where el
t 1. While this is 

in accordance with conventional analysis for short run equilibrium, 
ignoring fixed costs, Panzar presents this in the context where fixed 
costs are included. Our argument has been that TR = TC for all 
elasticities.

From a variable cost basis, it is easy to see how units with an upward 
sloping (neoclassical/Ricardian) variable cost function make money in 
the short term, even if the price equals the marginal variable cost. 
This is because the price is above the average variable cost. The total 
revenue will only equal the total cost and the surplus in each period 
is exactly matched by the fixed cost. It is quite possible for net of 
revenue and cost, that is, the profit to be negative, zero, or positive. 
For a given combination of technology frontier, load duration curve, 
rationing characteristics, and stochastic features, if we constrain no 
unit to have negative profits, then one will have zero profits and the 
rest will have positive profits. Evolution of the technology frontier and 
the so-called Tobin Q effect described in section 2.4.7 drives all unit 
profits to zero.
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4.4 Concluding Discussion of  
Soft Constraints

In practice, the relaxation of hard constraint to more accurately 
model capacity and peak load pricing is problematic. To make the 
analysis tractable we either end up with an infeasible set of costs, as 
with Hirshleifer in which we have dominant or subordinate units, or 
we create false constraints, as with Panzar, in which the connection 
between cost and capacity is lost.

For this reason the analytics here and in the literature use hard 
constraints as an essential simplification.

There are nevertheless some important results that come from soft 
constraint modeling, for example, the theory that most or even all 
units can set price simultaneously.

  



5

Modeling C apacity Using 

Derivatives

The development of peak load pricing theory, with something 
of a conclusion in the Chao framework of the early 1980s, had for 
its context a world of central planning for power generation and 
scheduling.

The early 1980s ushered in the world of privatization and private 
access to wholesale markets. Development in the finance markets was 
broadly similar to the explosion of the growth of derivative trading. 
At this time, management science involving the value of choice and 
planning for different outcomes in a probabilistic manner, and the 
development of mathematics and formalism of derivatives converged 
in the form of “real options,” which, in their “no arbitrage” form, 
synthesized the holding of a physical asset through the holding of a 
derivative contract.

While capacity mechanisms of sorts did exist earlier in privatized 
models (e.g., the England and Wales pool) and capacity pricing did 
exist (e.g., in France as noted in the Drèze framework), it was in the 
2000s that the new breed of capacity mechanisms grew. The form 
that they have developed to, called reliability options, are very simi-
lar to traded derivatives. With increasing concerns about the capac-
ity adequacy aspect of security of supply, and power station capacity 
in particular, it is now essential to view electricity markets in terms 
of derivatives. In addition to this, the complexities of power plant, 
particularly the interaction of market prices, plant engineering, and 
reliability costs, environmental constraints, plus the “dimensions of 
service” of power plant in terms of products more complicated than 
“off” and “full load” are highly amenable to a real option approach. 
Finally the literature on derivatives is vast, and provides a ready-made 
tested library of functions for our use.
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To use this modeling suite, we have to start by making some 
assumptions, namely:

1. single service—plant is running at full load or off
2. zero state-change costs—in particular the engineering cost of a 

power station start
3. perfect reliability and zero engineering costs
4. unconstrained cost-free transmission of electricity
5. constant price for fuel and a market of infinite depth (elasticity)
6. constant price for environmental allowances per MWh of 

production.

All these can be unraveled, and must be in practice.
The logical flow for approaching this subject is

1. power markets
2. spot and forward contracts
3. European options
4. American and swing options
5. real options.

We will then examine the next level of complication, such as plant 
reliability, nonfirm contracts, price dynamics, the value and probabil-
ity of lost load, and demand-side management as virtual production.

5.1 Power Markets

There are some aspects of market structures that have an important 
effect on the design and efficacy of capacity mechanisms. The three 
main models are i) fully administered, ii) pool, and iii) bilateral.

The optimal market structure can evolve from any of administered, 
pool, and bilateral markets.

5.1.1 Administered Regimes

Administered regimes tend to have some common features, being

1. treating of demand as inflexible and with a halfhourly variable 
forecast

2. plant build made on a strategic basis, commonly state-owned
3. plant scheduling done using a merit order of variable cost
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4. ex ante and ex post adjustments to the administrative schedule, 
such as modeling some plant as “must run,” and adjusting the 
initial schedule to take account of factors such as transmission 
constraint and adequate system reserve.

5.1.2 Pool Markets

Pools come in a variety of models and share certain key features that 
are relevant for this book.

1. Demand forecast by the system operator
2. scheduling based on the legacy models of administered regimes, 

treating unit offers as the proxy for variable costs
3. a set of rules for bidding (offering) plant, such as allowing or not 

prices that are profiling across time and load bands, withdrawal 
and resubmission of bids, penalty on failure to deliver

4. a resulting family of indices, for example, a day-ahead profile of 
48 halfhourly prices, constructed from the intersection of the 
offer “stack” and the demand forecast

5. a contracting suite of ancillary services offered by the monopsony 
system operator

6. schedule instructions from the system operator
7. governance arrangements regarding market abuse
8. mandation of offers, such as frequency response, or offering of 

available capacity.
9. price limits

10. a variety of locational structures.

5.1.2.1 Locational Structure and Transmission  
Charging in the Pool

At one extreme we have postage stamp pricing in which there is a single 
price across the whole control area. Annual transmission charges may 
have both a regional structure, varying cost split between production 
and demand, and a temporal structure (e.g., the triad system in which 
the whole year’s charges are based on three halfhourly peaks).

At the other extreme, in the location marginal pricing (LMP) 
model, each node has a different price at any time according to the 
status of transmission constraint. A node is one or a family of Grid 
Supply Points.

There are many intermediate models. For example, in markets that 
are coupled and split, the price is the same across all zones for which 
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transmission constraint does not bite between the zones, and the 
zones have different prices when interzonal flow is constrained.

5.1.2.2 Value of Lost Load in the Pool
All markets apply a value of lost load (VOLL that is nominally a proxy 
for the price at which consumers would be prepared to accept loss of 
load. In practice this is a regulatory construct with only a tenuous link 
to the economic VOLL.

5.1.2.3 Short-Term Capacity Payments in the Pool
The system marginal price (SMP) is found by the intersection of the 
generation offer stack and the demand forecast. To this is added a 
capacity amount equal to (VOLL – SMP) * LOLP. All plants get this 
whether or not it runs. The units with accepted offer therefore get in 
total the pool purchase price PPP = SMP + capacity. The suppliers pay 
an additional uplift related to system costs.

In fact, LOLP was artificially elevated, and VOLL, though approxi-
mately based on empirical estimates, was artificially depressed. The 
significance of lowering VoLL while increasing LOLP to maintain a 
constant VOLL * LOLP is explored in section 3.11 within the Chao 
framework.

5.1.3 Bilateral Markets

Bilateral markets have three key features:

1. the market in physical notifications (PNs)
2. the imbalance “cashout”
3. the balancing mechanism.

There are in all markets numerous adjustments. In BETTA in 
Great Britain, one of most interest is the balancing service use of sys-
tem (BSUoS) charge in which the system operator charges an ex post 
amount to participants, which varies halfhourly, and for the moment 
at least has no regional variation.

5.1.3.1 Physical Notification and Forward Contracting  
in the Bilateral Markets

In the BETTA bilateral market in Great Britain, one party sells a PN 
to the buyer. The trade is notified to the system operator.

The PN is commonly described as being physical. This is a rea-
sonable description in normal circumstances, but this representation 
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breaks down in conditions of tight margins, load shedding, options, 
and contracting for capacity. Since these conditions are of great inter-
est to us in this book, we must consider the nature of PNs in more 
detail.

The PN is not in any sense a right to physical power, and the pur-
chase of a PN has no effect on physical delivery to the consumer. In 
this sense it has public goods characteristics.

We can conveniently regard a PN as three things:

1. an intent to produce/consume at the date/time specified, notified 
to the system operator

2. a financial arrangement with the market operator, offsetting the 
volume that is cashed out as imbalance

3. the potential for compensation for lost load, although this is not 
currently a core market feature.

After “gate closure,” currently an hour ahead of real time, no more 
PNs can be submitted and all subsequent transactions are with the 
system/market operator.

5.1.3.2 Balancing in Bilateral Markets
Balancing contracts are options provided to the system operator by 
generators or suppliers who can adjust load or have it adjusted by 
the system operator. There is no premium. The balancing mechanism 
can be viewed as the monopoly/monopsony market immediately after 
gate closure.

Balancing mechanism prices differ, but the one of most interest 
here is the “pay as bid,” in which the participants pay/receive the bid 
amount if they are called to change volume. We will see in section 5.2.3 
that balancing offers can be viewed as options with no premium.

The system operator will accept balancing bids even when the sys-
tem is at national balance, for example, to resolve transmission con-
straints, maintain adequate reserve, or manage more complex issues 
such as reactive power and frequency. This does not affect our core 
analysis.

It is worth noting that there is a public goods elements to 
balance.

1. If the system is in balance, then the cost to an individual supplier 
of their imbalance is much reduced.

2. If a supplier is out of balance, for correlation reasons, it is likely 
that the system is out of balance.
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3. Even if a supplier is in balance, they pay for system imbalance, 
the mechanism in Great Britain being the BSUoS charge, which is 
halfhourly ex post.

4. The bulk of demand is not metered on a halfhourly basis, the rest 
of demand being settled centrally using central estimates of con-
sumption profiles. The imbalance is charged in relation not to the 
actual demand but the profile estimated demand.

5.1.3.3 Imbalance in Bilateral Markets
If the actor consumes or produces more or less than the PN, then 
the difference is cashed out at the imbalance price. Commonly there 
is a different price for extra spill (energy into the system) and draw 
(energy from the system), and they depend on whether the actor’s 
individual imbalance made the system imbalance better or worse.

For analytic convenience we will generally assume that the imbal-
ance price is equal to the volume weighted average of accepted bal-
ancing offers. We will also ignore all balancing acceptances for system 
reasons, such as reserve and transmission constraint, and finally 
assume that there is no simultaneous positive and negative imbalance 
of individual power station units and suppliers. While unrealistic in 
normal circumstances, it is less so for the situations of tight capacity 
that we consider. It is also relatively easy to relax the assumption. For 
example, we might net all imbalances that help the system (i.e., excess 
production or less consumption when the system is short overall) at a 
balancing offer price.

5.1.4 Forward Contracting

5.1.4.1 Definitions
Spot contracts—A spot contract is the sale by one counterparty to 
another of commodity in a standard form. A spot contract will typi-
cally have “weight-rate-date” specification, that is, how much, at what 
price and at what time. Electricity contracts have a maximum resolu-
tion that is equal to the balancing period of the market. For exam-
ple, for a market with halfhourly balancing, the contract will specify 
a MWh total for the period. There is in general no specification for 
the MW profile within the halfhourly period, although in practice the 
producer may be limited by the grid code.

Forward contracts—Forward contracts are exactly the same as spot 
contracts and apply to fixed dates/times in the future. Since electric-
ity has three periodic cycles (daily, weekly, and seasonal), these can be 
“sliced” in different ways.1 Contracts involving simultaneous purchase 

  

 

  

 

 

 



Modeling C apacity Using Derivatives 147

of one contract and sale of another (which may be a different com-
modity or a different delivery time) are termed spread contracts.

Over-the-counter (OTC) contracts—OTC contracts are between 
two counterparts and can be of any legal nature that they wish. 
Commonly OTC contracts become fungible on exchanges by an 
“exchange for physical” process; in the current case, an OTC PN must 
become a formal PN to have any value.

Futures contracts—Futures contracts are very similar to forward 
contracts and are traded on exchanges. To access the greatest liquid-
ity, their delivery specifications can be broader than forward contracts. 
The differential between futures and forward prices, particularly if the 
“cheapest to deliver2” mechanism embeds a high degree of basis dif-
ferentials3 on the forward contracts.

Forward and futures contracts can be described as weight-rate-
date.

1. Weight commitment volume—A total MWh per commitment 
period and a MW.

2. Rate—Strike price—If there is a strike price, then the seller sells 
energy at this price. Otherwise the seller can sell at the market 
price, which may be floating or have a cap.

3. Date—This has several dimensions: the commitment period being 
the first and last dates/times of the whole commitment (e.g., a cal-
endar year), the notice period before delivery of energy, a weight-
ing of payment, or deficiency in relation to time of day or week or 
season.

A key definition is firmness. If the commitment is firm, then some 
form of preagreed penalty or liquidated damage is paid for failure to 
deliver. Ideally for firm markets, this is the prevailing offer price in the 
energy market. We will see that a PN in the bilateral market is firm to 
the system operator and nonfirm to the buyer.

For a nonfirm contract, there is no penalty for failure. An example 
is the submission of an offer to the England and Wales pool. There 
was no penalty for nondelivery by a scheduled unit.

In a pool market, the forward contracts for difference (CFD), 
for example, are OTC and nominally4 entirely unconnected to sys-
tem scheduling. They simply result in the buyer/seller paying to the 
seller/buyer an amount equal to contract volume times the difference 
between the CFD price and the outturn of the index.

Finally, a physical activity that is not optimized in the market is 
called nonruthless. The term ruthless in some circumstances mean 
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that market optimization is out of keeping with the spirit of the con-
tract. Burning one’s house done for the insurance, if not in violation 
of contract or illegal, would be an example of a ruthless activity.

5.1.5 Price Limits

All or almost all markets have price limits that are either enshrined 
in regulation or de facto, in that offers/bids higher/lower than the 
maximum are not accepted by the portals, for example, due to a limit 
in the number of digits enterable.

In pool markets, the OTC CFD has a practical cap created by the 
maximum pool price index. In the bilateral market the practical cap is 
associated with the imbalance price cap.

The price limit of interest to us is the maximum price in the balanc-
ing mechanism (creating an arbitrage limit in the multilateral market) 
or pool market, and the equivalent limits in the reserve markets.

Price limits are commonly set well below the peak price needed for 
equilibrium and this causes the problem known as “missing money” 
for peaking units.

Normally the balancing price cap exceeds the imbalance price cap, 
which exceeds the market price cap.

The way that a price cap affects the probability distribution is not 
straightforward. By simple preservation of unit total probability, we 
arrive at figure 5.1, which decreases the price expectation. However, 

0

Probability

Price
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Figure 5.1 Effective of probability distribution of price from a price cap.
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the price cap acts as a focal point that has the effect of flattening the 
distribution at high prices and restoring the expectation price to its 
precap level.

5.1.6 Reserve and Ancillary Markets

These are contracted on a monopsony basis with the system 
operator.

The key ancillary contract types are i) black start, in which a unit 
can start and deliver load to a grid that has stopped, ii) reactive 
power to stabilize voltage and phase of the alternating current, and 
iii) reserve. Our interest here is in reserve.

Reserve is essentially the same product as bilateral option contract-
ing except for time, in particular, i) temporal resolution within the 
main pricing period and ii) shorter option notice that can be man-
aged in the multilateral market. Reserve is ultimately a monopsony 
market with the system operator, although there can be a secondary 
market.

Commonly a reserve contract with the system operator would have 
the same weight-rate-date delivery components as option contracts. 
The weight is the MW or MWh according to contract, the rate is the 
price in £/MWh for volume and £/MW/hr for capacity, and the date 
is the delivery period.

In practice not only does the system operator have the ability 
to foreclose the forward market with the reserve market but often 
has a commercial incentive to do so. There is a balance to be struck 
between having the confidence that markets can self-balance power in 
short timeframes and recognizing that managing the very short term, 
resolving transmission constraints, and technical aspects such as fre-
quency, phase, and voltage are the natural province of an expert and 
accountable monopoly/monopsony.

5.1.7 Arbitrage between Markets

The three markets of forwards (PNs, CFDs), balancing and imbalance 
are partly fungible with each other. For example, a supplier can choose 
to buy a PN or get cashed out in imbalance. This causes convergence 
of the forward price, the expectation of the average long and short 
imbalance price, and the average balancing acceptance price.

This is relevant from the perspective of price expectations and price 
caps in each market.
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The arbitrage exists at the level of options as well as forward 
contracts, and here the substantial potential for foreclosure of the 
option markets through the monopsony reserve market is highly 
relevant.

There is also arbitrage between interconnected markets, particu-
larly where there exist price caps and cross-border contracts, such as 
importable/exportable capacity.

5.1.8 Modeling Similarities between Pool and  
Bilateral Markets

In this book we use pool markets for some models and bilateral mar-
kets for others. In fact, the two markets are very similar in modeling 
terms and differ in practice mainly through different emphases. For 
example, in bilateral markets, the market operator exerts considerable 
emphasis on the construction of balancing and imbalance prices and 
in addition can charge or credit a halfhourly and locational amount 
evenly or unevenly to all actors, thereby having the same effect as 
transforming the pool price.

Consider some situations:

1. For a small player, selling a PN at price F has a very similar out-
come to selling a CFD at F and offering at zero price in the 
pool.

2. For any player, buying no PN and thereby paying the imbalance 
price on all power drawn is similar to paying the pool selling 
price.

3. For any player selling a PN at F and having a strategy to buy back 
if the forward price falls below variable cost b is similar to selling a 
CFD at F and offering into the pool at b.

4. Selling no PN and having a strategy to offer in balancing at K is 
similar to offering into the pool at K.

5.2 Single Period—Modeling Using  
Options of “European” Type

The holder of a call/put option has the right, but not the obliga-
tion to buy/sell from/to the option grantor at a predetermined price 
formula, usually a fixed strike price. The buyer pays a premium for 
this right.
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5.2.1 Definitions for Contract Terms for Options of  
European Type

Call (vertical) spread—the purchase of a European call, accompanied 
by the sale of a European call identical in all respects except strike 
price, which is higher.

Calendar (horizontal) call spread—the purchase of a European call, 
accompanied by the sale of a European call identical in all respects 
except expiry date, which is nearer.

Caplets—are European call options—struck on short periods (e.g., 
halfhours).

Caps—these are a continuous series of caplets, struck at the same 
strike, independently exercisable.

Declaration—the decision declared by the option owner on the 
option grantor. If not declared the option is abandoned on the expiry 
date.

Delivery date—the delivery date of the forward contract that is 
called.

Exercise for financial delivery—when the forward contract declared 
is immediately sold at the prevailing price, resulting in a cash settle-
ment in favor of the option buyer.

Exercise for physical delivery—when declaration of the option 
causes the buyer to have a forward contract.

Expiry date—the date and time on which the option expires.
Ladder—a series of call options struck at different levels.
Strike price K—the preagreed fixed or variable price at which the 

commodity is bought if the option is exercised.
Swaption—A family of caplets that may only be exercised 

together.

5.2.2 Modeling Definitions

Average volatility—the average volatility over a period, being either 
the average historic, or the average implied volatility, assuming con-
stant volatility over the averaging period.

Cost of risk—the amount that someone will pay to avoid the risk 
for the period in question.

Current/instantaneous volatility—the current volatility of a for-
ward contract, whether historic or implied.

Delta—Δ = ∂C/∂P. The increase in option value for a unit increase 
in underlying forward price, thereby representing the option amount 
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of forward contract to sell to minimize risk to an option holder with 
no other positions.

Drift—the change in value of a market forward price over time is 
the superposition of random change and deterministic drift. The drift 
is a direct function of cost of risk.

Extrinsic value—time value
Gamma—Γ = ∂Δ/∂P = ∂2C/∂P2 the increase in option delta for 

a unit increase in underlying forward price, thereby causing option 
holders to sell into a rising market and buy into a falling one.

Historic volatility—the volatility of a forward contract calculated 
actuarially from the price history.

Implied volatility—the forward contract volatility implied from the 
actual current traded price of options.

Intrinsic value—the value of the option with volatility is set to zero.
In the money—a call option with strike price below the forward 

price, which is therefore likely to be exercised.
Kappa—the exposure of the value of the option to changes in vola-

tility. κ = ∂C/∂σ. Also called vega.
Out of the money—a call option with strike price above the for-

ward price, which is therefore unlikely to be exercised.
Price returns—dP/P. The change in price dP over time interval dt, 

divided by price P.
Risk—a parameter denoting ex ante variation of a quantity over 

time. Usually standard deviation or variance.
Stochastic—varying over time, usually according to defined coef-

ficients of a defined probability distributional form.
Tenor—the time from now to the period in question. Also called 

horizon.
Term structure of volatility—at an instant in time, the structure 

of the (current or average) volatilities of forward prices of different 
tenors.

Time value—the value of an option that relates to volatility. Intrinsic 
value plus time value = total value.

Volatility—σ, the annualized deviation of the price returns or 
equivalently of the logarithm of price. For low volatility, this can be 
viewed as a percentage of price per year.

5.2.3 Regarding Balancing Mechanisms as  
No Premium Options

The rationale for making a commitment with no immediate rec-
ompense is that balancing is a market foreclosed by the monopoly 
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operator. In the absence of any other route to market, a unit that 
offers the option with a strike K above the variable cost b, such that 
K > b, has a finite probability of making a profit. Since no offer will 
with certainty deliver zero profit, offering balancing is a dominant 
strategy relative to not offering, even in the absence of a premium.

The value of selling the balancing option at K < b has only negative 
value and hence is a subordinate strategy. There is then the question 
of which strike to sell. The profit is zero if K = b, but the exercise 
probability tends to zero as K >> b. There is then an optimum. While 
it is quite possible to do regression analysis on forward price at gate 
closure, imbalance price and balancing acceptance probability accord-
ing to submitted price, in practice there are so many system idio-
syncrasies that this is a matter of judgment more than statistics. The 
optimization is represented in figure 5.2.

5.2.4 Modeling Probability Extremes Using Options

First we do this assuming zero cost of risk, constant volatility, and zero 
interest rate. The value of the option must be C P S S K dS

K
( )( ) .
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Actual
profit

0
Imbalance price outturn Pi

K – b

Likelihood
p

Imbalance price outturn Pi

Forward
market
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(a)
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e
Expectation
profit
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Figure 5.2 Influencers of the choice of strike offered in balancing (a) Payoff 
following offer in balancing at K (b) Probability distribution of imbalance price 
(c) Optimization of balancing price offer K.
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A rearrangement gives the market price conditional of exercise as 

E S S K K
C

P S K( )
.

We can then “bootstrap” a probability distribution, using the log-
normal as a basis, starting the calibration with high strike price options 
and moving down.

In practice the off-the-shelf techniques available from the deriva-
tives world are much more amenable to working upward from the “at 
the money” option with S = K.

The simplest method is to evaluate the premium for any strike by 
using the Black5 formula for option pricing C = S * N(d1) – K * N(d2). 
We can see by inspection that N (d2) is the probability of exercise.

d
t

S
K

t1
1
2

21
ln

where t is the time to exercise and deliver and σ is the lognormal 
standard deviation, called volatility, and for low volatilities can be 
expressed as a percentage of price.

d d t2 1

The standard method of expressing the vector of call option pre-
miums in relation to strike price is through the implied volatility, tak-
ing the probability distribution to be normal. The shape of this vector 

50% Option delta 0%

Option
volatility

No smile

With smile

Figure 5.3 Simple variations to the option smile.
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is commonly called “smile” and can be modeled in different ways. 
About the simplest way to model smile with one degree of freedom 
while observing boundary conditions such as monotonic decrease 
in value with increasing strike is by a sine function as depicted in 
figure 5.3.

More generally we can perfectly model any strike/volatility vec-
tor with a polynomial, although this is in practice highly unstable. 
We could instead model the actual distribution with a polynomial. 
This is mathematically more pure, although in practice it is even more 
unstable than modeling the smile with a polynomial.

With the strike/premium vector, we can build a probability 
distribution.

When modeling cost of risk, it can be useful to have the conditional 
variance.

The formula is6 

V F t N d N d N d K d d2 2
3 1

2
2 1 22exp( ) ( ) ( ) ( ) ( ) ( )FN KN

or V F t N d N d C K Cexp( ) ( ) ( ) ( )2
3 1

,

where d F K t t3
3
2

2ln( / )

5.2.5 Cost of Risk Bias

Cost of risk in power is complex. In the long term, there are compet-
ing forces. On one hand, the stock market is generally averse to posi-
tions that are negatively correlated to the oil price. The power price is 
broadly correlated with oil in the long term, mainly via the gas price. 
On the other hand, generators are long of power and seek to reduce 
this. Overall the net effect is a positive cost of risk, that is, the market 
is long and the forward price is lower than the expectation of the spot 
price, that is, it has a downward bias. In the short term, both genera-
tors and suppliers avoid being caught short and hence the forward 
price is an upward biased estimator of spot price. The bias is reduced 
by price caps.

Figure 5.4 shows this term structure. It also shows the term struc-
ture of the price conditional on option exercise. The residual risks of 
high and low merit units are different. High merit plants have more 
forward hedges in place, especially if failure risk is low. Low merit 
plants have little or no forward hedges in place.
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5.2.6 Selling Options at Variable Cost

We will examine real options in section 5.9. For the moment we 
assume that our perfect asset has a fixed cost B £/MW/hr and a vari-
able cost b £/MWh.

If the asset sells a call option at strike K for premium C, where 
K = b and C = B, then with certainty the unit earns a revenue of 
C – B = 0 and with likelihood λ, the unit earns an additional revenue 
of K – b = 0, where λ is the likelihood of exercise.

The situation in which cash flows are certain is called “no arbitrage” 
and competitive conditions drive the net present value to zero.

The situation where C > B for K = b or C = B with K > b generates 
an excess return equivalent to the alpha7 α of capital market theory.

For simplicity we focus on the situation with zero α.
The cost of risk can influence what strike to sell at and whether or 

not to sell an option. Generally speaking, a reliable high merit genera-
tor will be fully hedged. A reliable low merit generator can capture the 
value of cost of risk premium to price by selling something (generally 
an option) forward.

5.2.7 Selling Options above or below Variable Cost

Suppose that a generator has a variable cost b and sells at strike K. 
What issues does it cause if K ≠ b?

If K < b, then the generator will lose whenever called, but will, if 
the options are fairly priced, recover this ex ante in an option premium 

Expectation 
bias forward
relative to 
spot £/MWh

0

Conditional Price P |P > K

Unconditional Price P |P > K where K = 0

Figure 5.4 Expectation bias of forward prices from cost of risk.
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that is higher for K < b than for b = K. There is a maximum loss per 
period of ((K – b) – C)*Q, where Q is the capacity and C is the total 
premium for the period. A simple utility analysis of the cost of risk 
shows us that the generator should charge a fairly high-risk premium 
for this profile, with a maximum at K = 0.

If K > b, then the generator will gain whenever called, but will 
have reduced premium. This is a step toward having no option 
at all, since this can be represented by K = ∞. In practice K > b 
allows for a degree of uncertainty of variable costs (the uncertainty 
arising both from general uncertainty and also from the division 
of fixed and variable costs, which is in turn partly theoretical. In 
terms of risk profile, the worst case is no exercise and hence the 
minimum net revenue is C. This is a benign risk profile and hence 
will not be accompanied by a high-risk premium charged by the 
generator.

Figure 5.5 shows these different situations.
If we set aside issues such as gaming, general uncertainties, cost of 

risk bias of prices, and plant failure, the optimum strategy for a risk-
averse producer is to sell an option struck at variable costs. We will 
examine this in the no arbitrage approach.
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Figure 5.5 Situation faced by producer according to different strike prices and 
market price outturn (a) Call option versus premium, showing the position of one 
generator (b) Call exercise probability in relation to strike(c) Risk in relation to strike 
(d) Profit expectation in relation to strike (e) and (f) Profit realization versus outturn 
price for strikes above and below variable costs.
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5.2.8 Options Struck at the Market Price Cap K = Pmcap

It is not straightforward to apply a price cap to OTC trades not on 
a formal market, but in most markets there is a portal for trades, on 
which price caps can be applied.

5.2.8.1.i K = Pmcap: Pbalcap= Pimbalcap = Pmcap

Let us firstly consider the situation in which the PN market, balancing 
and imbalance caps are equal.

An option purchase struck at the cap has no guarantee of physical 
delivery to the buyer and no prospect of profit. Therefore the value of 
the option to the buyer is zero.

An option sale struck at the cap results in a PN, if exercised. Failure 
to deliver against the PN is punished only at the imbalance price. 
Therefore the maximum cost to the seller is zero.

In the absence of any other consideration, there is then no incen-
tive to pay more than zero and there is no cost of sale. The contract 
is essentially irrelevant.

5.2.8.1.ii K = Pmcap: Pbalcap = Pimbalcap > Pmcap

Now the balancing and imbalance cap exceed the market cap. This 
now has potential value to the buyer, since if they arrive at gate closure 
with a short position and no PN offers in the market, they face the 
imbalance cost. Knowing that they can achieve the balancing price, 
the sellers may withhold volume from the PN market and instead offer 
into balancing to capture the missing money lost by the market price 
cap. The likelihood of this strategy is enhanced by the fact that the 
balancing cap acts as a focal point.

Note from figure 5.4 in section 5.2.5 that the forward actual or 
implied price exceeds the spot/imbalance price expectation and hence 
the unit will prefer to sell an option than wait.

The option price will move up and down as the expectation of bal-
ancing and imbalance prices change.

Now, if we consider how the option value rises and falls with the 
prevailing forward price, we can use basic option theory to construct 
an implied forward price. The logic is as follows:

1. We can model the probability distribution of the forward price for 
any future observation date, such as contract maturity.

2. We can model the relationship between today’s forward price and 
today’s vector of option prices with different strike prices.
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3. For any option, we can, using the strike and the premium, impute 
an effective forward price at option exercise, conditional on option 
exercise

4. For the option vectors at the current and different today’s forward 
prices, we can model the probability distribution of the effective 
forward price.

We now have an effective forward price distribution as shown in 
figure 5.6. Note in particular that options have circumvented the price 
cap. In essence, the option market has restored the economic signals 
denied by the cap.

5.2.8.1.iii K = Pmcap: Pbalcap > Pimbalcap > Pmcap

If, as we expect, the balancing cap exceeds the imbalance cap, then 
the maximum revenue is attained by offering in balancing. Broadly 
speaking, if the market arrives overall short at gate closure, then few 
players will be long.

In the absence of the option, the supplier has a worst-case cost 
of Pimbalcap. Through the purchase of the option, this is reduced to 
PPNcap + C, with C being the call premium.

The buyer (generally retail supplier) has several choices:

1. intentionally overcontract to be expected to be long at gate clo-
sure—this is consistent with risk averse behavior

2. knowingly undercontract—this may attract censure by the market 
operator or regulator but can happen if the participant baulks at 
paying a rising price and “chases the market” eventually ending up 
short

3. undercontract due to lack of liquidity in the PN market as the mar-
ket demand forecast rises—this would be quite normal

Option 
premium 
with strike 
at cap

Forward price

Cap
Probability 

Effective forward price

(a) (b)

High 
imbalance 
cap

Imbalance cap
? market cap

Figure 5.6 Demonstrating an effective forward price above the cap.
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4. buy an option well in advance—this is the optimum behaviour,8 
although there is no empirical evidence since no market is this 
developed

5. buy an option if and when PN liquidity dries up at the cap price—
this will depend on the relativities of the imbalance and balancing 
price caps and the concomitant probability distributions of the 
two prices.

The issue now is that the maximum revenue for the generator is 
found by withholding capacity from the option market and offering 
in the balancing mechanism instead. The maximum revenue for the 
generator also exceeds the maximum cost for the supplier. The actual 
strategy will depend on the value and probabilities.

Broadly speaking, we would expect generators to prefer to sell the 
option than wait for balancing for two reasons: i) lower cost of risk 
and ii) lower likelihood of censure, expropriation of revenues, or other 
regulatory intervention that would compromise the benefit of being 
called at the balancing cap. Clearly the relative expectations of the 
two strategies will play a role. In addition to this, the price bias effect 
of cost of risk depicted in figure 5.4 means that a reliable generator 
selling forward or options can capture an expectation of profit from 
the bias.

5.2.8.1.iv K = Pmcap: Pimbalcap > Pbalcap > Pmcap

Now the imbalancing cap exceeds the balancing cap, which exceeds 
the market cap, but the strike is only at the market cap. This is not 
a normal situation, as the monies received from imbalance would 
exceed the monies paid for balancing, and these would need recycling 
to participants.

However, it is an interesting situation when we consider capacity 
mechanisms, and worth pursuing here.

Now the maximum imbalance cost of the supplier (or generator) 
exceeds the maximum balancing revenue of the generator (or supplier).

With respect to worst/best case, the impetus of the supplier to buy 
an option struck at the market price cap is greater than the impetus 
of the generator to sell. This then drives up the premium. We would 
expect a market to develop.

5.2.9 Options Struck at the Imbalance Price Cap K = Pimbalcap

First, we must consider how this can come about since options deliver 
to PNs and the PNs have a price cap. One possibility is that the PN is 
tagged in some way so that it may exceed the market price cap.
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We can see that there is never either physical surety or financial 
value to the supplier.

If the balancing cap exceeds the imbalance cap, the generator may 
prefer to withhold volume

We would therefore expect no trades.

5.2.10 Options Struck at the Balancing Price Cap K = Pbalcap

5.2.10.1.i K = Pbalcap: Pbalcap = Pimbalcap > Pmcap

There is no physical surety or financial value to the supplier.
There is no cost to the generator of failing to deliver or benefit in 

excess of offering in balancing.
The contract is therefore irrelevant.

5.2.10.1.ii K = Pbalcap: Pbalcap > Pimbalcap > Pmcap

There is no value to the supplier.
The maximum profit in selling the option is less than the maximum 

profit in balancing.
We therefore expect no trades.

5.2.10.1.iii K = Pbalcap: Pimbalcap > Pbalcap > Pmcap

With this ranking of caps, the situation is the same as for the strike 
equal to the market cap, that is, a market should develop.

5.2.11 Generator Reliability Considerations

With the imbalance cap set very high, the greatest fear is imbalance. 
The generator will fear short-term failure and the supplier will fear 
shortfall in demand forecast. As a result of this, both may be con-
servative. The supplier may enter gate closure with a long position, 
the generator may withhold capacity when the risk is highest, that is, 
when the system is tightest. In tight-system high-price conditions, 
the generator will then spill power and the retail supplier will draw 
less than the PN. Both get the imbalance cashout for long players. 
Seeing the high implied forecast from the PN, the low generation 
from the PN, the system operator may call on reserve. This displaces 
other power and hence the spill price received by the supplier and 
generator are low.

Given the inefficiency of using costly reserve power that displaces 
market PNs, it may be efficient for all actors to limit their imbalance 
cost exposure by collectively commissioning reserve capacity.

A very important feature in this scenario is the probability profile 
of failure. Plant status (in a fail or not failed state) has relatively high 
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“persistence,” that is, if it is not in a failed state now, it will probably 
not be in a failed state tomorrow. This means that while a unit may 
not wish to sell high strike options a long term ahead, for fear of 
imbalance cost on failure, she may be happy to do so a few hours or 
even days ahead as the plant status is well characterized.

Let us then consider the near horizon when the plant is in an 
unfailed state. There is a high driver for the supplier to buy as this lim-
its the imbalance cost. There is a high driver for the generator to sell 
as the premium is captured, and in addition the implied price expec-
tation captured conditional on exercise may exceed the expectation 
without the option. Note that the more units get called on through 
option declaration the less the imbalance and thence the less prospect 
of high returns in balancing.

5.2.12 Raising the Imbalance Cap in Times of  
System Tightness

We can envisage three situations:

1. normal
2. scarcity
3. actual loss of load.

Scarcity is actually a commonly used term. For now, we will con-
sider only loss of load.

Let us cap the imbalance charge at Pimbalcap in normal times and set 
a charge of Pimbalvoll for times of actual loss of load on the system.

We can immediately see from the analysis above that options at any 
strike below Pimbalvoll has a finite value.

This could have adjustments, for example, the imbalance rate on 
loss of load could be different for suppliers and generators, or for 
generators who failed unexpectedly, and so on.

5.2.13 Ex Post Settlement of the Imbalance Charge  
on Lost Load

A simple mechanism is to charge for each halfhourly period, a VOLL 
(which could be both cyclic and stochastic) times the lost load in 
GWh and charge ex post pro rata to all market participants according 
to their imbalance.

There are some particular problems with this approach.
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1. If load is actually interrupted involuntarily then we have no way to 
know ex ante or ex post what the real VOLL is.

2. Particularly, given point (i) above, the actors risking this charge 
have no real way to estimate VOLL ex ante.

3. The charge can be very large, and being charged ex post is accom-
panied by substantial risk of nonpayment.

4. The actors have no real view of the loss of load probability 
(LOLP).

5. Knowing neither the volume nor the price of imbalance, each indi-
vidual supplier might act conservatively to such a degree that the 
aggregate contracted capacity is excessively conservative as diversi-
fication of risk is not taken into account.

6. Credit risk, that a supplier will exit under extreme prices, and 
thence default on their obligations.

Nevertheless we can see that the mechanism can work crudely. In 
practice, it is the credit issue that is the largest.

We can see how this mechanism can stimulate demand-side man-
agement. If regulatory VOLL is set very high, then individual con-
sumers may offer demand-side management with a strike lower than 
VOLL. While they get less than VOLL in the event of system failure, 
there are times when they get K when the system is whole. In fact, 
the more consumers recognize this, the more they compete for load 
loss. The initial off would be at just below Pimbalvoll or otherwise at the 
highest price allowed.

5.2.14 Ex Ante Settlement of Imbalance

Suppose that the issues for ex post imbalance settlement on lost load 
are considered too great. We can reduce the issues, while creating oth-
ers, by an ex ante method.

We could do this by requiring each supplier to have a demand 
forecast and then purchase in advance some form of capacity (for-
ward, options with potential value, options with no potential value) 
to an amount equal to the demand forecast plus a capacity margin Q 
percent.

There is then an element of public good since the purchase of 
capacity by any supplier reduces the LOLP for the system and thence 
all other suppliers. Suppliers may then choose to make a rule that 
everyone, including them, must buy capacity.
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5.2.15 Deficiency

To have ex ante settlement of failure against any obligation we need 
a censure mechanism. One mechanism is an infinite fine, but this 
raises uncertainty costs. It may then make sense to have a regulatory 
backstop, commonly called a “buyout,” in which the obligation can 
be discharged by a penalty payment, in this case a deficiency charge. 
This would be at some level above the lower of the cost to mobilize 

Real timePassage of Time (Months)

Deficiency
£/MWh

Lower of 
reserve cost 
and VoLL

Figure 5.7 Deficiency charge in relation to its economic value.
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Figure 5.8 Probability distribution of the effective price.
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reserve or the VOLL, otherwise it has no purpose and does not act to 
resolve the issues with ex post imbalance charges in times of scarcity. 
An example of such a function is shown in figure 5.7. The stepwise 
nature of the function acts to ease the administration and concentrate 
the liquidity in the secondary market.

Putting all the price caps and deficiency charge together, we can 
see that the market price cap is largely circumvented and we have a 
reasonably continuous distribution of the effective price, as we see in 
figure 5.8

5.3 Modeling System Operator Option 
Procurement in the One-Period Setting

Here we consider a one-period setting and suppose that the system 
administrator/operator views the system entirely as a collection of 
firm European options. Demand is assumed stochastic and inelastic 
and that there is a single system price. We assume either demand-side 
management at VOLL or an infinite generation capacity at VOLL, so 
we can regard demand as always satisfied.

The initial distribution of price can be found in a number of ways. 
For example, we assume that all options are backed with units that 
have well-defined views of their fixed and variable costs, and then offer 
calls with strike K at variable cost b and premium C and fixed costs B.

We can then apply some premium-strike vector that moves to give 
the system operator least cost. So all units below the line get paid 
premium. Lost load is treated as a cost at VOLL. Figure 5.9 shows 
that the descending clock method can start with excess plant and then 

Strike b
£/MWh

Premium B £/MW/h

Descending clock

Ascending clock

Figure 5.9 Ascending and descending clock auction to select options.
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reduce the vector until the requirement is just satisfied. The ascending 
clock works in reverse.

Figure 5.10 shows some non-homothetic shifts to the strike-pre-
mium vector used for the descending clock auction.

We could instead start with best-fit vector through the points, and 
by assuming that all of the strikes are set at variable costs move the 
vector rightward until least cost is achieved.

Another approach is to construct the stochastic equivalent of the 
load duration function and apply the Turvey algorithm starting with 
the highest merit unit.

Finally, there can be a tâtonnement in which the strike-premium 
vector moves continuously and units can see if they qualify or not, 
before the process closes. There would then be a moving strike-pre-
mium vector and units can see if they are above or below the line as 
shown in figure 5.11.

All methods essentially end up in the same place, which is the single 
optimum selection of units.

There is now a significant complication, as summarized in sec-
tion 2.4.7, that fixed costs are dependent on plant value. A plant not 
selected loses value and therefore fixed costs. Similarly a plant recog-
nizing that it could offer higher and still be selected can do so, increase 
its value, and therefore its fixed costs. There is then a convergence of 

K

C

Figure 5.10 Non-homothetic changes to the option premium-strike vector.
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units toward a single vector, which we may regard as an expression of 
the law of one price. This is further enhanced by the temporal alloca-
tion of fixed costs as described in section 2.4.6, and physical choices 
available for different stack evolutions. The convergence is shown in 
figure 5.12.

5.4 Modeling More Complex Options  
in the One-Period Setting

For more complex modeling we require commodity spread options, 
contingent claim options, average rate options, and various deriva-
tives that can be constructed from components of the options 
mentioned.

Premium Transformed
premium
(log scale)

Strike Strike

Lognormal
“Black Scholes”

Actual
“fat tail”

(a) (b)

Figure 5.11 (a) Continuous fair value curve for option premiums and strikes 
(b) Mapping of transformed premiums to strike prices, showing actual offers relative 
to the transformed fair value line.

Strike b
£/MWh

Premium B £/MW/h

Figure 5.12 Convergence of units onto the single strike-premium vector.
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Fortunately not only is there a vast literature on traded derivatives, 
but there is a variety of off-the-shelf solutions that can be applied 
directly.

Whilst fuel price variations are in principle a significant analytic 
hurdle to surmount, in practice when we consider capacity obliga-
tions, we can ignore all variables except plant availability (which is 
technology specification) and variation in demand.

5.4.1 Option with Strike Indexed to Fuel Cost

We include this section for completeness as the analysis of peak load 
and capacity obligations has to be done first assuming static fuel and 
environmental costs, and then the practical reality of volatility in these 
factors must be addressed.

The standard approach to complex derivatives, which we can regard 
power stations as, has several steps:

1. Split the contract out into discrete components. The orthogo-
nal “dimensions of service” approach described in section 5.9.2 
does this, while recognizing the conditionality of exercise of some 
options on exercise or nonexercise of others

2. Make simplifying approximations or boundary conditions where 
possible. An example is the simplification of swing options as 
Bermudan flexicaps

3. Hedge out the main risks into separate trading “books” as shown 
in figure 5.13. The three key risks are volatility (kappa and/or 
gamma), forward hedges (delta), and correlation. In practice, cor-
relation instruments are very limited and any correlation hedges 
are highly approximate.

Correlation is in fact very important when considering capacity 
mechanisms and high strike options, noting in particular that correla-
tions in extreme events are very different indeed to those in normal 
events. So some correlations go from ~0 to ~100 percent and some 
from c100 to c0 percent.

In very general terms, these rules of thumb work

1. Electricity does not matter to oil. So oil prices drive electricity 
prices and not vice versa.

2. “Clean spark spreads” (power minus gas minus CO2) and “clean 
dark spreads” (power minus coal minus CO2), at the relevant 
standard power station efficiencies are primary state variables 
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commonly with lower volatilities than the underlying commodi-
ties, with “power” here being either baseload, peak, or off-peak 
according to what plant is at the margin.

3. Gas is highly correlated to oil. Coal price is driven by global 
demand and has a flat term structure of volatility. CO2 prices must 
be treated in swing terms and are highly dependent on how much 
time remains in the compliance period.

4. The volatility of the transaction currency should be taken into 
account, although this can generally be ignored when considering 
capacity and high strike price options.

5.5 Many Periods—Modeling Using  
Options of “American” Type

Peak load and capacity pricing relies heavily on modeling shocks to 
the price and load duration functions. In doing so, vital information 
on the timing of events is discarded.

Electricity prices are exposed to seasonal factors, and these are sub-
ject to shocks of phase.

Option 
struck at
fuel cost

Option
on power

Option
on fuel

Forward
power 
contracts

Forward
fuel 
contracts

Correlation 
instruments

Volatility 
hedges

Forward 
hedges

Correlation 
hedges

Option
books

Spot/
Forward
books

Complex
books

Figure 5.13 Trading book structure for options struck at the fuel price.
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The result of these two facts means that we have to model the 
derivatives in their “American” form. This greatly complicates the 
analysis but it is necessary.

We should note the modeling commonality between European and 
American options for electricity, through the consideration of time-
probability load factor duality described in section 2.4.1. On one 
hand, we can model a single period and consider the ex ante (and ex 
post verified) probability distribution of load or prices. On the other 
hand we can consider first, a many-period deterministic load duration 
function and second, a many-period stochastic load duration function, 
as described in section 2.4.1. The single-period stochastic version is 
pure European in modeling. The many-period deterministic version 
is pure American although not stochastic. What we are interested in is 
the ex ante expectation of the load (or price) duration curve and the 
stochastic shocks to it. For this we need to do swing modeling as we 
see in section 5.7.

5.5.1 Definitions of American Options

American options—The contractual definitions of American options 
are very similar to European options. The critical difference is that 
while the forward contract to which the European option refers to is 
constant, the forward contract delivery date to which the American 
option refers to is tied to the declaration date. So, for example, a 
December delivery European option contract expiring in August 
will always deliver in December if it is exercised. If the correspond-
ing American option is exercised in March, then it will deliver in 
March, and if exercised in April will deliver in April, and so on. For 
deliverables with zero or near-zero cost of physical storage, such 
as gold or money, this difference is not critical. For electricity, the 
nonstorability of the commodity makes the American option a very 
complex one.

5.5.2 Simplification of American Options as “Bermudan”

Bermudan9 options—these are American options for which the oppor-
tunity to exercise is at discrete occasions, rather than at any time/date 
prior to expiry. The difference in value is generally relatively small, and 
modeling American options as Bermudan even if this does not match 
the contract, makes modeling much simpler.
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5.5.3 Modeling Bermudan Options as European

Consider an option of Bermudan type, in which there are two delivery 
date possibilities A and B, where B is after A. We can treat this as the 
sum of

1. a European option with delivery date A, expiring on date A
2. a European option on the price differential between contracts A 

and B, with expiry date A
3. a European option on contract B, expiring on date B, with a strike 

price of the value of B, conditional on no exercise of the first two 
options.

This method is called semianalytic. In practice this technique is 
sufficiently reliable because the more complex models that model the 
single instrument are limited in the degree to which they can model 
the principal components of the forward price vector and any incre-
mental gain from modeling perfection is lost in increased opacity and 
problems in calibrating the coefficients.

5.6 Modeling System Operator Option 
Procurement in the Unrestricted  

Many-Period Setting

The system operator can in theory work out the required option port-
folio at system level, for the stochastic multiperiod setting. We can 
view this as the option version of the Crew and Kleindorfer model.

Initially assuming deterministic inelastic demand, the market oper-
ator experiences a cost of

Cost Q C Q Ki ij
n m

i ij ij
n,

,

where Cij is the premium that the ith of the n units accepted offers in 
the j th of the m subperiods, Kij and ρij are the strike price and load fac-
tor of the i th unit in the j th period. Q  i is the capacity of the i th unit. 
For convenience, we have assumed that there is no part loading.

In practice we have two problems with modeling as a series of caps:

1. cross-elasticity of demand between subperiods is complex
2. power stations commonly have some restrictions of the swing type.

We therefore need to use swing option models.
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5.7 Modeling Many Periods under Constraint 
Using Options of “Swing” Type

American options refer to options with a single exercise.
A swing option allows the buyer to buy any amount of commodity 

on any date/time, subject to a maximum volume overall and a maxi-
mum “take” on any one date/time. There is one strike price.

Modeling of swing options is essential in both gas and power mar-
kets and is of particular relevance to the value of capacity and capacity 
obligations.

Unfortunately there are considerable modeling difficulties.10 Even 
the flexicap, which is the well characterized analogue in the money 
markets is highly complicated when the market moves in a more com-
plex way than the simple one factor.

Swing options are also essential to model in upstream gas contracts, 
and industrial and commercial gas and power supply contracts. Much 
of the analytics in the literature refer to the former and the analysis for 
capacity obligations and the analysis for upstream gas can be regarded 
as two branches of the same tree. Here we focus on the version most 
appropriate to capacity obligations.

5.7.1 Definitions

Swing—a general form of contract at a fixed delivery price in which 
there are minimum and maximum volumes over the contract period.

Flexicap—a cap in which the total number m of caplets exercisable 
is less than the total number n of caplets in the cap. Can be viewed as 
a swing contract in Bermudan form and with only a maximum take.

Take or pay—Below a minimum volume “take” the commodity is 
paid for whether or not delivered. There is a limit to the maximum 
take at the take or pay price. Commonly there would be daily and 
monthly minimum and maximum takes.

5.7.2 Modeling of Swing Options

The complexity of swing options is such that we make model simplifica-
tions to suit specific applications. For the consideration of capacity, the 
approach that we take is stochastic shock to the load duration curve.

There are different ways to do this:

1. spot price trajectories
2. spot price probability trees
3. forward price vector analysis
4. load/price duration shocks.
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In spot price trajectory modeling, jump diffusion models are used 
to simulate spot price trajectories. These models commonly accom-
modate “regime switching” (e.g., normal and scarcity conditions). 
The backward induction method is readily applicable for American 
options but not so for swing. Spot price models are generally less ame-
nable for calibration to market instruments than other methods.

Spot price probability trees (“forests” for swing options) are the 
standard method for swing modeling. However the restrictions on 
both the volatility structure in time (term structure) and price (mod-
eling skew to the lognormal distribution) are too excessive for capac-
ity modeling.

Forward price vector shocks are the standard methods from 
advanced derivative markets. However they are commonly much 
more flexible in relation to volatility term structure then volatility 
strike structure (smile, etc.) and in practice not useful for capacity 
modeling.

Here we use load factor shocks as described in section 7.1.1.
We can now see the expectation load factor, and all other statistical 

coefficients of any unit in the stack based on the assumption that it 
will run in merit. We can incorporate demand-side management and 
estimate the probability of lost load.

We can now work out the equilibrium price duration curve in the 
following way:

1. For the lost load period, set the price to equal VoLL.
2. For the peak unit we know the probability profile of loading. 

Noting that the peak price is VoLL we raise the second peak price 
P1 to the level at which unit is at ex ante financial equilibrium, tak-
ing cost of risk into account if required.

3. We now go the next unit and keep going until all units cover their 
costs.

4. We now have a stochastic price duration function. In the same way 
that we did with European options in a single period setting in 
figure 5.12, in section 5.3 we can now adjust the fixed costs of the 
units and iteratively optimize.

5.8 Modeling System Operator Option 
Procurement in the Restricted  

Many-Period Setting

We will see in the section on real options (section 5.9.1) that while 
treating units as caps is a good starting point, it is better to model 
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them as flexicaps with a limit on the number of exercises over the year. 
If the variation in the percentage of caplet exercise (equivalent to the 
load factor) is low, then the restriction in exercises makes little differ-
ence to value.

5.9 Modeling Real Assets

We have noted that there are three key risk factors for plant, them 
being fuel, environmental, technical (mainly failure), and the main 
nonfuel costs are capital and engineering. These can all be modeled 
effectively and in a single framework.

5.9.1 Real Options

Over the last 30 years, the science of optimizing both the provision 
and the exercise of choice in business decisions has advanced consid-
erably. The factors driving our choices are extremely varied, such as 
consumer demand/trends, politics, natural/weather events, and mar-
ket changes. If the choices can be synthesized by tradable instruments 
then the physical/decision options are regarded as the real options of 
their synthetic counterparts. Insurance and reinsurance cover a wider 
variety of risks, which can be synthesized with varying difficulty.

Our interest here is in a family of real options called no arbitrage. 
For example, we saw in section 5.2.6 in the simplified example that a 
plant that sells a call option struck at variable cost is financially indif-
ferent to the outturn of the market price. If the total portfolio of asset, 
market instrument, decision framework are assembled such that the 
financial outcome is independent of market outcome, then we have a 
no arbitrage situation.

5.9.2 Complex Real Options and Dimensions of Service

For the majority of theoretical modeling of peak load pricing, it is 
sufficient to consider two plant states “full load” and “off.” For more 
general practical and theoretical modeling of power plant it is impor-
tant to recognize further states such as minimum stable generation, 
the ability to switch fuels, the ability to load cycle on a planned and 
unplanned basis, and the provision of short-term reserve (more or less 
load) either by storing energy in the plant or by incurring more engi-
neering damage. Additionally, there are further dimensions of service 
such as “black start” (starting without grid power), reactive power 
(a form of power essential for grid stability), maximum generation 
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(“maxgen”) above normal capacity, and movement of planned outage 
dates (essential for capacity planning).

Figure 5.14 shows the hierarchy of services that do not conflict 
(in derivative terms, they are “orthogonal”) if offered in the correct 
order and the values are additive. Not shown here is the fuel switching 
family (e.g., coal to gas, coal to biofuel co-fire or dedicated biofuel, 
gas to distillate). Ignoring environmental restrictions for convenience, 
the sequence is:

1. sell baseload power, and buy the fuel
2. buy back power in the off peaks, and sell back the fuel
3. offer to increase load in the off peaks and decrease in the peaks, at 

the behest of the option buyer
4. offer the remaining flexibility options “live” in the market rather 

than prearranged by option sales. For example, if the plant is par-
tially loaded, it can offer upward reserve. There is a series of further 
options according to plant status, for example, very short-term 
reserve in the form of frequency response.

We note that conceptually this is a form of the principal component 
method and that each subarea is orthogonal to all others. Figure 5.15 
shows a schematic view of the values of the different dimensions for 
two plant types.

Baseload

Planned load 
cycling with coarse
intervals (e.g. 
day/night)

Dynamic
cycling

Extra flex 1

Extra
flex 2

XF3

Figure 5.14 Visualization of unit valuation. Area is proportional to value of service 
dimension.
Source: Harris (2014).
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5.9.3 Plant Reliability and Nonfirm Contracts

Our core modeling assumes perfect plant reliability. However since 
plant availability is such an integral plant of security of supply model-
ing and the construction of capacity obligations, we cannot ignore it.

Here we briefly summarize an approach.
Where a plant is selling forward contracts, as distinct to option 

contracts, the internal market model can operate. This is shown in fig-
ure 5.16. “RCo” acts as an internal insurer and buys power according 
to fail likelihood. The unit sells firm power, and in the event of failure 
RCo sells power to the unit at its marginal cost, so that it can honor 
its contracts with no financial loss.

The flows of fuel and environmental allowances are not shown, 
nor are the engineering costs. We can see that this arrangement has 
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Figure 5.15 Visualization of the value mix of two different unit types (a) New build 
CCGT (b) OCGT.
Source: Harris (2014).
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Figure 5.16 Money and power flows on plant failure.

 

 

 

 



Modeling C apacity Using Derivatives 177

the net effect that the contracts from OpCo from TCo are firm even 
when the plant fails, and on failure the insurer RCo loses the differ-
ence between market price P and variable cost b on the volume. The 
plant is financially unaffected by the failure.

The model can work in principle for option contracts. The core 
mechanism is essentially the same, in that RCo acts as an insurer. 
There are significant complications.

1. Instead of the prevailing forward price, RCo must model the for-
ward price conditional on exercise.

2. Due to the heterogeneity of units called on, the market price is 
affected significantly by the failure of the unit, and this must be 
factored in.

3. The correlation between failure events is complex as they can be 
dependent on logistics, technologies, natural events, and human 
events.

4. In failure events, not only are the units called on heterogeneous, 
but they are few, and technology frontier characterization is not 
straightforward.

These complications are broadly manageable in modeling terms, 
although for actual detailed planning of system security, the idiosyn-
crasies must be taken into account.

If, as we expect there would be, there is a correlation between plant 
failure and other plant failure on the system, this introduces convexity 
to the loss on exercise of insurance cover.

RCo can in principle provide insurance for options. Here the con-
cavity of the risk is severe because not only is the market price condi-
tional on exercise high, but correlation between failures of different 
units increases in scarce conditions. Though the RCo method can be 
used to evaluate the commercial aspects of failure (whether to con-
tract, how much to spend on reliability, etc.), it is not a useful product 
for internal market transactions. In practice, power stations rely on 
system reserve to cater for short notice failure.

5.10 Modeling Prices and Price Dynamics

5.10.1 Modeling the Stack as European Call  
Options—Caps

Since power stations can be expressed as options, the power system 
can be modeled “virtually.” What is particularly useful here is that we 
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can ignore failure, and real plant failure can be readily handles with the 
RCo modeling above.

In fact the situation in which we have a series of options with strike 
prices and premiums is practically identical to that of the modeling 
environment of Crew and Kleindorfer.

We now apply the no arbitrage11 condition and have a series of 
options, each with premium equal to the fixed cost and a strike price 
equal to the variable cost. Each option premium must be at its fair 
value,12 equal to the probability weighted conditional payoff.

We now ignore the physical characteristics of the plant and consider 
the development of price.

With stochastic inelastic demand, or demand with an inelastic and 
elastic component, price is now determined only by option holders. 
There are many possibilities.

One possibility is that each option holder does nothing until dis-
patch day and offers power at variable cost b. The market will clear at 
the intersection of the demand and the option offer stack, and pro-
vided that the lowest merit unit offers at b + B/λ, that is, with a fixed 
cost uplift, then all units will run in merit, and option holders will 
have an expectation of profit equal to the option premia.

5.10.2 Hedging

The finite cost of risk of option holders causes them to hedge their 
positions in the forward market. Let us consider the main effects to 
see if they make a difference to outturn prices.

First, the option delta ideally requires a forward hedge that matches 
the tenor of the forward contract that underlie the option.

Second, cost of risk considerations gives more impetus to forward 
“delta” hedge a low strike “in the money” option than a high strike 
“out of the money” option. This is shown in figure 5.17(a).

Third, the further out in time horizon the option declaration is, the 
closer the delta is to 50 percent.13 This is shown in figure 5.17(b).

The overall result is this:

1. Hedge selling generally increases continually with time, as seen in 
figure 5.17(a).

2. If the forward price is low then the passage of time may cause 
hedge selling, as is evident from figure 5.17(b).

3. As prices rise, not only do all traders hedge sell (the “gamma”), but 
the increased impetus shown in figure 5.17(a) increases this effect 
as forward price P rises relative to strike price K.
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The only people to sell to are the suppliers, so we must consider 
their position. We can generally simplify the supplier delta with two 
parameters:

1. the latency—broadly corresponding to the time taken for consum-
ers to switch supplier once they have decided to do so

2. the persistence—broadly corresponding to the intersupplier switch-
ing rate for consumers and the number of suppliers in the market. 
Low switching and few suppliers give rise to higher persistence. 
Market volatility reduces persistence.

These are shown in figure 5.18.

% delta
hedged

Horizon (months)

Delta

Declaration horizon (months)

100%

0%
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100%
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K > P

K ~ P

(a) (b)

Figure 5.17 Hedge and delta relationships between horizon and strike.

Horizon (months)

Hedge Δ 
as % of 
demand 
forecast

100%

0%

50%

Latency

Persistence

Figure 5.18 Simplification of supplier hedge position.
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Suppliers then buy as time progresses, but the core delta does not 
change with commodity price.

A key issue now is that the supplier hedge tenor is much shorter 
than the producer (and option holder) hedge tenor. This is the case in 
all commodity markets.

One producer tactic is to stack hedge, in which a shorter-term liq-
uid contract is hedged as a proxy for a longer-term contract. In prac-
tice this is not prevalent, both because a producer is risk averse to the 
“naked” short exposure in the stack hedge, and second, because stack 
hedging by producers would involve selling forward more volume 
than the system demand forecast, and hence liquidity is very limited.

While this is an important effect, we will set it aside for the 
moment.

Another important effect that we will set aside is that retail sup-
pliers do in fact have concave risk positions that can be expressed, 
and indeed hedged, by options. The generation stack cost function is 
convex, so prices rise in a convex manner in relation to demand. Small 
increases in demand relative to expectation increase supplier profits, 
but the slope decreases until the point is reached where the wholesale 
price has risen such that variable costs exceed consumer tariff unit 
rates. Further demand increases then causes a stronger and stronger 
effect with the convex stack, and the profits fall sharply from there. In 
the absence of option trading between producers and suppliers, there 
is no particular economic reason for the supplier profit concavity in 
relation to prices to correspond to the producer convexity, and indeed 
the situation in gas is much complicated by gas-fired power stations 
that consume gas. Broadly speaking however, the match is a reason-
able one, although in practice highly occluded by a plethora of other 
factors.

5.10.2.1 Price Dynamics with Call Option Holdings
In the risk neutral world, the expectation payoff of the option holder 
is zero. In the absence of hedging, they either just lose the premium 
or gain a payoff minus the premium. Since the Black option formula 
is C = S * N(d1) − K * N (d2) then we can see by inspection that the 
probability of exercise λ = N(d2). Non-lognormality affects this but 
not enough to affect the logic.

By hedging, the actual payoff becomes much closer to zero. In fact 
the genius of the Black Scholes formulation is that by hedging con-
tinuously, under specified conditions such as constant volatility, the 
payoff is actually riskless.
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Let us consider what happens after the financial player has pur-
chased the option expiring a matter of hours before prompt. If the 
option seller is called, then she calls on the power station unit.

Consider the purchase of a high strike option (i.e., a mid-merit or 
peak unit, most relevant to the consideration of system capacity). The 
call option is out of the money. The buyer hedge sells the delta. Now, 
if the forward price falls, the holder buys back part of the hedge, and 
if the price rises, she sells. Initially then, she drives the forward price 
away from the strike price. Only when the market actually crosses the 
strike does it act as an attractor, with the option holder buying below 
and selling above. We can see first that dispatch is efficient, as the unit 
will run if the market price exceeds variable cost (the strike price), 
but that the forward or spot prices are not driven to the variable cost 
(which would cause variable cost pricing).

The result of this is that not only do all units therefore run in merit, 
as the option holders will only declare the option if P > (K = b), but 
the hedging behaviour, acting as an attractor, will drive the outturn 
price to the variable cost of the marginal unit.

5.10.2.2 Market Completeness
Markets obey the law of one price, meaning that there can only be 
one price in the market. There can also only be one probability distri-
bution implied from all market instruments, including options at all 
strikes. Provided that there is a liquid forward market, and that volatil-
ity is constant, the riskiness of the arbitrage in buying one apparently 
overpriced option and buying an underpriced one is much reduced 
by the ability to delta hedge. So we can consider that there is a single 
price distribution implied from all options.14

   



6

C apacity Mechanisms

6.1 Types of Capacity Mechanism

There are numerous ways to secure capacity. These are summarized 
below. The countries listed should be viewed as case examples to 
review rather than a strict categorization.

1. central planning (e.g., Japan)
2. long term power purchase (e.g., Finland)
3. mandatory vertical integration (e.g., Greece)
4. strategic reserve (e.g., Australia, Ireland, New Zealand, France, 

Sweden, Norway, Finland)
5. strategic capacity payments (e.g., China)
6. generation contracting by the system operator (e.g., Great Britain, 

Norway, Sweden, Germany, Netherlands)
7. day-ahead capacity payments (e.g., England and Wales pre-2,000, 

Chile, all Ireland, Argentina, South Korea, Spain, Peru, Colombia, 
Bolivia)

8. mandatory forward contracting (e.g., Brazil, Chile, Guatemala, 
Nicaragua, Panama, Honduras, Costa Rica)

9. mandatory option contracting (e.g., Brazil)
10. installed capacity (ICAP) type obligation (e.g., control areas in 

the United States, being ISO-NE, CAISO, NY-ISO, PJM)
11. direct demand side contracts (e.g., ERCOT in the United 

States)
12. virtual power plant (e.g., France, Spain)
13. pure market, called “energy only” (nowhere).

These can be grouped into the following core methods:

1. strategic capacity paid by the taxpayer or consumers, and admin-
istered by government or the system operator

2. leave it to the market to decide
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3. require retail suppliers to procure energy or options in advance
4. capacity incentive embedded in the short-term price
5. development of capacity obligations of the ICAP type.

The key axis is between strategic capacity decided between govern-
ment and the system operator, and pure market. The actual mecha-
nisms tend at all times toward one or the other, but this direction 
changes according to events and the prevailing politics.

We are particularly interested in the ICAP model. In this model, 
suppliers are required to buy capacity certificates with the general aim 
that the aggregate purchased volume exceeds the system peak by a 
reserve margin. Capacity certificates confer no benefit to the supplier 
other than avoiding penalties.

We will examine the features of this model, and in doing so show 
that in practice and in theory, and especially in the absence of price 
caps and the presence of the physical and political ability to make elec-
tricity a private good, the natural evolution is toward an energy-only 
market model.

6.2 Development of the Key Variables  
in the ICAP Model

6.2.1 Ex Post or Ex Ante Methods

In section 5.2.13 we noted that having an imbalance price that dif-
fered according to whether the prevailing regime was normal or 
scarce (possibly with load loss) creates two specific difficulties, namely 
credit risk and excessive uncertainty to the parties. We showed that it 
may be in the interests of all parties to set up a rule that they will all 
be required to purchase capacity ex ante. In this way the aggregate 
knowledge may be used more effectively to make the system more 
efficient overall.

The ex post approach is undoubtedly closer to the pure market 
approach and more efficient, as private knowledge is used more effec-
tively, if the problems of credit and fragmentation of knowledge can 
be solved.

Attending first to the issue of credit, electricity markets commonly 
have a credit cover arrangement in which all actors are required to 
post credit in advance, whether by cash or by letter of credit or by 
other guarantee. It is therefore quite possible for the market opera-
tor to track prospective cash flow from imbalance in relation to credit 
cover posted, and to call for credit on a daily or intraday process as 
required. In practice, market operators and regulators have been 
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reluctant to legislate, enshrine and enact regimes, whereby a failure 
to post sufficient credit results in timely and firm action in the way 
that happens on traded exchanges. While exchanges have the facility 
to forcibly close out trades when the initial and variation margins are 
insufficient, the action in retail supply has to be much further as there 
is no asset (in the case of the exchanges, and “in the money” contract) 
to call against. The supply license has to be withdrawn and an immedi-
ate takeover of the company, or the consumers (by a “supplier of last 
resort” process that incumbent suppliers are required to participate 
in) switched to a new supplier who takes on the settlement liabilities.

To date then, it appears that the ex post method, while the most 
efficient, is institutionally unworkable at this point. ICAP does in fact 
generally work on an ex ante basis.

The ex ante system does have a complete spectrum. So, for exam-
ple, an ex ante capacity requirement that is set on a day-ahead basis is 
very close to an ex post requirement. An ex ante requirement set years 
ahead leaves the obvious question about what to do about changing 
size of the supplier in terms of customer numbers.

Since electricity has seasonal demand, the optimum horizon for ex 
ante capacity mechanism is sufficient time ahead of the next seasonal 
peak.

6.2.2 Firmness

In the most basic model—the UCAP unforced capacity model—retail 
suppliers buy capacity, generators sell capacity, and there is no penalty 
for actual generator failure, although there may be some ex ante gen-
erator testing.

The simplest way to allow for generator failure is to apply a per-
centage uplift to total capacity requirement. One development can be 
to leave the capacity requirement as it is but downlift generator certifi-
cates by an amount that could be related to historic failrates.

Since i) unavailability rates of power stations are very high compared 
to other assets, ii) security of supply events are commonly associated 
with generator failure, iii) there can be systemic generator failures, 
and iv) there is insufficient incentive to maximize reliability in critical 
times, the UCAP method is considerably exposed to systemic events.

6.2.3 Deficiency

Given that i) the key advantage of the ex ante method is the additional 
certainty to market participants, ii) the ex ante method requires a 
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penalty mechanism, and iii) a solution for generator failure is required, 
we need a deficiency mechanism.

In the simplest form, an actor who has failed against an obligation, 
whether this be ex ante (e.g., not buying enough certificates) or ex 
post (e.g., a generator failing), there is a buyout charge, which, if not 
constant, is reasonably estimable in advance.

It is the most pure in market terms for deficiency to be “ruthless,” 
that is, the payment of a deficiency charge not be regarded as a regu-
latory censure.

The deficiency charge acts i) as an incentive not to be deficient, ii) 
to provide funds, for example, for lost load compensation or the pur-
chase of reserve.

6.2.4 Secondary Markets

We saw in section 5.3 that we either need well-crafted models for 
the initial strike-premium vector and its movement or an effective 
market tâtonnement for the optimum strike-premium vector to be 
achieved. For the tâtonnement to be effective we need a liquid market 
for options and this may not be realistic.

Accordingly one method of approach is to have an initial auction 
with the monopsony system/market operator followed by trading 
in the secondary market. This concentrates liquidity and can allow a 
first-pass schedule. Then using the price (premium) vector, the market 
has something to start with.

A good example of a market that can arrive at an efficient run by 
tâtonnement is the bilateral market, and one that relies on a central 
schedule is the pool.

6.2.5 Requirement Setting for Retail Suppliers

The aggregate requirement ideally relates to the optimal security 
requirement, equating benefit at the margin to cost at the margin. In 
practice there are several issues with security requirements:

1. They are commonly unclear in terms of quantity, for example, a 
capacity margin may include an assumed requirement for reserve 
that may be substantial (approximately 10 percent).

2. The amount of reserve needed depends on many factors such as 
transmission constraint, reactive power, and power station inertia.

3. They are commonly unclear in terms of formal function, for exam-
ple, LOLP must be over a time interval of designated length and 
apply clearly to either system or grid supply point.
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4. They commonly do not recognize amount of load lost, that is, 
recognizing only LOLP and not either expectation or conditional 
expectation of GW or TWh.

5. They are commonly biased, the England and Wales pool being an 
example.

In practice the only way to apply the security requirement is by 
setting an aggregate capacity requirement, and this is set somewhat 
arbitrarily using a view of an acceptable LOLP, unconditional loss of 
load expectation (LOLE), conditional LOLE, and estimated reserve 
requirement.

Accordingly then, the retail supplier requirement normally refers 
to their market share of the system peak and not their peak or aver-
age demand. The normal way to do this is to look back at the prior 
year/s and use market share at the peak/s. Clearly there are a number 
of issues to consider here, such as whether last year’s peak was at an 
unusual time, whether the period of most risk is actually at the system 
peak, the supplier customer base or market share may be changing, 
and so on.

6.2.6 Demand-Side Provision of Capacity

The key for the demand side is the reference point. So if a consumer 
consumed Q MW at last year’s peak and has a contract that limits her 
consumption to Q MW for the same period this year, then the provi-
sion of D MW demand response is meaningful.

If however, as is usual, the consumer has a full requirement con-
tract that allows any amount of consumption then there is no refer-
ence point from which to offer demand response.

The supplier can however benefit from demand-side management 
(DSM) that is not submitted for capacity. If this year’s requirement is 
based on last year’s demand at system peak, then any DSM has a direct 
saving for the next year’s obligation.

6.2.7 Price Formation for ICAP

We noted in section 5.3 that the system operator can run an auction 
with a vector that is defined. It was very clear that the auction has to 
be iterated as offers refine.

A standard method for capacity obligations is to set an official 
demand for capacity function and then run a descending clock auc-
tion, so starting with a high price, the price is gradually lowered 
until only the required amount of capacity is tendered. The demand 
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for capacity function is refined over the years. This is shown in 
 figure 6.1. Figure 6.1(d) is conceptual, as in practice, figure 6.1(c) 
is used.

Figure 6.1(c) has four coordinates. The key one is the peak demand 
for capacity. This is set by the production side rather than the con-
sumption side, with the logic being essentially as laid out in section 
5.2.15, that given sufficient time, the demand for capacity should be 
set by the lower of production cost and willingness to pay. A common 
level to use is twice the fixed cost of new entrants (CONE) for peak-
ing plant.

A specific problem here is that in the situation where the production 
and demand functions are both near vertical and maximum demand 
is uncertain, that price is very unstable.1 This requires the demand for 
capacity to have an artificially low price and flat slope and hence the 
mechanism caters poorly for demand-side response.

6.2.8 System/Market Operator Setting of Price Caps

We have noted that the setting of price caps is driven largely by the 
minimization of moral hazard. We have seen also that caps can be 

Capacity 
payment
£/MW/hr
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(b)
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Figure 6.1 Development of the demand for capacity function.
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circumvented, and indeed the California crisis2 of 2000/2001 pro-
vides a good example of such arbitrage in action.

We can apply some broad rules of thumb to the levels of price 
caps:

1. They should not be too low or too high. A rough range would be 
within £1,000 and £10,000/MWh. Commonly they are set low.

2. The ideal ordering by size is market, balancing, imbalance, scarcity, 
VOLL, and in practice this order of balancing and imbalance in 
particular is difficult.

3. The price caps of each should not be so different as to make arbi-
trage an attractive proposition to enact frequently.

6.2.9 Interconnection

At high level, there are two distinct approaches:

1. with a focus on resilience, decentralization of electricity produc-
tion, and DSM, a drive for energy balance at the peak at a local 
level

2. with a focus on adequacy and long-distance energy flows from 
primary sources to demand, a drive for interconnectivity and two-
way adequacy arrangements between control areas or countries.

Broadly speaking, it is the latter method that prevails and which we 
will discuss. It should be noted that in practice, network resilience 
and the reactive power issues that arise from long-distance flows, need 
to be addressed. In addition, the increased decentralization of pro-
duction and increased participation in small-scale DSM are likely to 
change the dynamics of security of supply.

The main focus on interconnection from an ICAP perspective is 
the recognition of export from the control area as a risk factor and 
import to the control area as a risk mitigator.

For current purposes there are two considerations.

1. The sale of a capacity certificate requires the ability to deliver elec-
tricity in the control area, whether it be direct generation, direct 
demand response, or import.

2. To guarantee import, any electricity purchased out of state must 
be firm (e.g., not “recallable”) and in addition must be import-
able (in particular the interconnector transmission must be 
secured).
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6.2.10 Locational Issues within a Control Area

Where there are local constraints, or wider constraints that due to 
loop flow have the effect of local constraints, some control areas use 
the local installed capacity obligations (LICAP) mechanism.

6.3 Development of ICAP toward the  
Use of Strike Prices

There are numerous problems with having a capacity obligation with 
no strike price, particularly,

1. they are public goods that poorly represent the actual lost load 
demand function

2. their presence forecloses the option market
3. being administered, they cannot respond efficiently to market 

signals
4. they encourage the lowering of price caps, thereby further denying 

demand-side participation.

Many of these problems are avoided by having strike prices. This 
brings many benefits and the principal change is that an option with a 
strike price has a potential value as a private good.

In the closest model to the energy-only model, the regulator 
requires all retail suppliers to have not a no-strike capacity certificate 
(ICAP) but an option, with the rules on volume requirement and ex 
ante deficiency management the same as for ICAP.

However, given that the presence of ICAP suppresses the option 
market, it is a large step to go straight from no-strike to any-strike 
obligation. The market must therefore evolve.

We first consider some actual proposals and mechanisms with 
strikes.

6.3.1 Transformation of Prices by the Single Buyer  
and Market Operator

This ability by the market operator in the pool model facilitates the 
use of dividing the market in regimes of “normal” and “scarcity;” in 
addition, it allows different prices for generators and retail suppliers 
at the same time.

The same effect can be achieved in the bilateral market by ex post 
levies and rebates. While some levies are indeed charged ex post on a 
halfhourly basis, such as the Balancing Services Use of System charge 
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in Great Britain, they are less in keeping with the ethos of bilateral 
markets, which is closer to “energy only” than the pool.

In the pool, the single buyer pays for all power generation as a mon-
opsony and sells to the retail suppliers as a monopoly. Generators and 
suppliers can trade contracts for differences (CFDs) with each other.

The single buyer has discretion in the construction and transfor-
mation of the prices for generators and suppliers. For example, in the 
England and Wales pool, the Pool Purchase Price (PPP) paid to gen-
erators was a construction from the System Marginal Price formed 
from the generator offers, and the Pool Selling Price for suppliers had 
an uplift from PPP that could have been adjusted.

6.3.2 Effect of Pool Price Transformation on Hedges

Since CFDs are settled against pool prices, it is important to recog-
nize the effect of pool price transformation on these. For example, 
if a retail supplier buys an option from the generator that is finan-
cially settled against the ex post pool index, and the power is drawn 
as expected, and the market operator transforms the prices in such a 
way that the “basis” difference between the pool price index and the 
price paid by the retail supplier changes, then basis risk is introduced. 
Suppose the PPP used for the option is not transformed, the price 
received by the generators is transformed relative to the PPP, and the 
pool selling price paid by suppliers follows the transformed PPP, then 
risk is introduced to the retail supplier.

6.3.3 Development of ICAP by Lowering the  
Option Strike below the Cap

Oren (2005) proposed a weaning off from ICAP capacity obliga-
tions by the inclusion of a strike price below the market cap in the 
obligation.

He also suggests a ban on short selling by generators, so if they sell 
ICAP certificates, they must offer physical plant to support the sale, 
rather than simply plan to buy back financial power to support the 
contract. The same logic would preclude short selling in the second-
ary market

We can approach the lowering of strike this in three ways:

1. ICAP becomes a private good to the retail supplier.
2. ICAP remains a public good forcibly paid for by the supplier; the 

option is owned by the system operator.
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3. The intermediate case in which the option is a private good with 
part of its value surrendered to the market operator.

In the former case we are effectively allowing the presentation of an 
option in lieu of a capacity certificate. We can regard the purchase of 
a capacity certificate as the purchase of an option struck at Pimbalvollcap, 
that is, the highest possible price, as described in section 5.2.9. The 
valuation of lower strike options is then as described in section 5.2. 
As described in sections 5.2.6–5.2.10, the development of the option 
market depends largely on the setting of price caps. Additionally, the 
deficiency mechanisms can make a substantial difference.

With regard to the second case, where the option is a purely pub-
lic good, there is no incentive for the retail supplier to buy an option 
of lower strike than is mandated. The market development will be 
minimal.

In the third case, we can regard this as the purchase of an option 
from the generator plus the surrender of a call spread to the market 
operator. The value of this spread is closely related to the peak energy 
rent operating in some markets.

6.3.4 Strike Prices and the Regulatory Option Tender

Vázquez, Rivier and Pérez-Arriaga (VRP, 2002) proposed what they 
call a “market approach,” which we will call, for taxonomical conve-
nience, a “regulatory option tender.” The essence of the model is that 
the regulator should require the system operator to purchase options 
from generators, possibly via a market.

VRP recognize the difficulty of having an auction with a contin-
uum of strike prices, and propose that the regulator specify the vol-
ume of each tranche of options. We saw from section 5.2.7 that it is 
not hugely problematic for generators to offer options at a designated 
strike (here being that of the tranche) rather than exactly at variable 
costs.

Bidwell (2005) proposes a similar solution. The generators sell 
options with strike prices, and these options are called by the system/
market operator. The strike prices can be above the market cap.

Figure 6.2 shows a generalization of the model in which there is a 
regulatory option tender in which the single buyer buys all options in 
the market.

The system operator ends up with a stack that can be represented as 
in figure 6.3. The vertical thickness of the area in gray in figure 6.3(a) 
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represents the installed volume at any particular strike/premium pair. 
This translates to figure 6.3(b) in which we can see that the probabil-
ity of lost load is finite. We can see the convergence of VOLL and the 
peak load price for the peak unit.

If the single buyer buys all the options, then to cover her costs she 
must charge the retail suppliers according to peak load pricing.

The suppliers are then exposed to price risk. They cannot hedge 
with the generators, physically or financially, because the generators 
are already hedged with the single buyer. The single buyer however 
has a risk that broadly matches the suppliers and hence forms a natu-
ral counterpart for forwards and options. In the extreme, all of the 
options are sold and then the single buyer has no risk and the retail 
suppliers have their risks greatly mitigated by their options.

The market in options is completely foreclosed, but in theory at 
least, for inelastic stochastic demand, the aggregation of knowledge 
with the system operator means that the aggregate option purchase 
is optimal.

Unit 1

Unit 3

Unit 2

Single buyer

Retail
Supplier 1

Retail
Supplier 2

Retail
Supplier 3

Options
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Figure 6.2 The regulatory option tender by the single buyer.
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K £/MWh

Premium C £/MWh/hr

Strike
K £/MWh

Volume GW

K + C/ ~VoLL

Lost
load

(a) (b)

Figure 6.3 Single buyer of options showing construction of the peak price given a 
unit selection.
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No formal capacity mechanism is required, but in its absence there 
does exist the credit risk that an unhedged retail supplier defaults, 
when, to satisfy their demand, they must buy power at peak load pric-
ing in the peaks but has to sell at retail tariff.

Figure 6.4 shows how the market can develop in 6 stages:

1. The system operators buys all options and sells power in real time 
according to peak load pricing as above. The system operator 
funds the extrinsic value via a capacity obligation levy-—essentially 
an enforced deficiency payment.

2. The system operator buys the options and offers forward hedges to 
retail suppliers, continuously or in auction rounds.

3. The system operator offers options to retail suppliers, and option 
purchases relieve the suppliers of part of their capacity obligation.

4. The generators offer options to both the system operator and sup-
pliers, and demonstration of option holdings relieves the suppliers 
of capacity obligations.

5. The system operator participates only as a backstop, taking deficiency 
payments for ex ante shortfalls in option holdings and using these 
to fund option purchases, effectively bringing on “difficult” capac-
ity (reducing unreliability, running units beyond maximum genera-
tion, delaying close, relaxing environmental limits, accelerating new 
peaker build, securing transmission and generation import, etc.).

6. The market operator treats deficiency purely as credit risk. Retail 
suppliers are required to post collateral (cash, letter of credit, par-
ent guarantee, etc.) in relation to deficiency. Deficiency can be 
defined variously such as having insufficient options and similar 
contracts.

6.3.5 Discussion of the Introduction of a Strike Price

The best energy-only solution is for retail suppliers to have an ex ante 
requirement to purchase options in volume relating to a volume cor-
responding to the demand forecast expectation at the expected system 
peak, with a series of deficiency auctions. An additional comfort fac-
tor is commonly added, and 10 percent would be normal. The sys-
tem operator then ensures that all deficiency payments (plus/minus 
a residual payment that flows back to suppliers over a period of time) 
fund the purchase of adequate reserve.

What starts as the other extreme is when the system operator is a 
single buyer monopsony and then disburses options, and/or capacity 
certificates, and levies deficiency charges.
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The challenge of the energy-only method is getting it going 
with the market prices capped too low and options foreclosed by 
the existing capacity mechanism. By gradually raising the cap and 
allowing options in lieu of capacity certificates, the market can 
develop.

The challenge of the single buyer method is in gradually allow-
ing direct purchase by suppliers. This can be achieved by the system 
operator gradually increasing the lowest strike that it purchases and 
opening the low strike sector to the market. Option purchase would 
need to be notified to the system operator so that she can tally the 
total capacity.

6.3.6 Forms of Peak Energy Rent Remission

We showed in section 5.1.2.3 how in a pool market the market opera-
tor has the capability to transform prices. We see an example in the 
Forward Capacity model.

Cramton and Stoft (2006) (CS) note that while many origins and 
designs of the capacity models start in different places, their adapta-
tions are making them converge. They note the problem of fixed cost 
recovery—the “missing money,” particularly in the presence of price 
caps, and propose a solution.

Consumption at pool price

Capacity payment on non option/CFD volume
Backstop option hedges via deficiency payment

Option premiums

Schedule at strike price SO/MO
Consumption at pool price

Capacity payment

SO/MO

Consumption at pool price
Hedge CFD at forward price

Capacity payment on non CFD volume

SO/MO

Consumption at pool price
Option hedges

Capacity payment on non option volume

SO/MO

Forward CFD and option hedges

Schedule at bid/pool price SO/MO Consumption at pool price

Credit posted for deficiency

Forward CFD and option hedges

Option premiums

Schedule at strike price

Option premiums

Schedule at strike price

Schedule at bid/pool price

(1)

(2)

(3)

(5)

(6)

Figure 6.4 Development of option capacity from fully administered to fully market.
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Here we follow a generalization of the CS approach.
Figure 6.5 shows a simplified variable cost generation stack, 

approximately conforming to the American model in which peaking 
plant is built for peaking and is of uniform technology. The schedul-
ing of peakers effectively defines scarcity conditions. The pool price is 
uplifted as shown in figure 6.5. The key here is

1. while generators do earn scarcity rent, the moral hazard on the 
generator side is reduced by the administratively determined value 
of the rent

2. retail suppliers pay the Normal Rent (NR) on the day, but fund ex 
ante the generator Scarcity Rent (SR) by an ex ante charge.

We can see here that there is discretion on the multiplier M of 
the scarcity rent. It can be constant ex ante, or variable according to 
circumstance.

Consider now the position of the retail supplier. As we can see in 
figure 6.6, the risk profile is that of a call option, with the premium 
being the capacity payment.

From the generator perspective, if all units receive NR + SR, then 
if the scarcity rent is equal to the variable cost of the peakers plus the 
fixed costs divided by the ex ante peaker load factor, that is, , we can 
see that we have peak load pricing.

An alternative model is in which the retail supplier buys options 
from the generator but is required to forego part of the payoff. We 
can regard this as the purchase of a call option and the surrender of a 
call spread.

£/MWh

Duration 

£/MWh

Normal Rent (NR)

in scarcity

NR + Scarcity Rent (SR)

NR + SR * M

NR

NR + SR*M
Constant M

NR + SR * M
M ~ 1/

Duration 

Scarce

Normal

(a) (b)

Figure 6.5 Pool price transformation in scarcity.
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It is of course important that the retail supplier receives an appro-
priate amount of hedge benefit from the option purchase. This how-
ever happens to some degree automatically. For example, if the option 
has a strike b then if the volume purchased covers physical demand 
that is notified, then the option potentially saves cashout at the imbal-
ance price. If however the supplier does not need to volume, then 
they sell the PN into the market and gain a payoff of (S − b) where S 
is the prevailing market price that may be at the cap. The additional 
payoff of up to Pimbalcap- Pcap is automatically lost.

If the capacity certificate is a public good to the retail supplier but 
an option with a strike for the system operator, then the peak energy 
rent goes to the system operator.

Consider, for example, the purchase of an option at strike, b being 
the variable cost of the generating unit. Figure 6.7 shows the various 
possibilities of surrender of call spread parts of an option struck at the 
generator variable cost b.

Obvious shortcomings of the hybrid models are i) they are highly 
contrived, ii) the monopoly/monopsony situation creates conflict of 
interest for a system operator, iii) the price lacunae are complex and 
opaque, iv) there is a quasi-market above the cap that is opaque and 
controlled, and v) the determinants such as whether the system opera-
tor decides that the market is tight are opaque and subject to conflict 
of interest.

At best these models can act as temporary patches to ICAP models 
in which excess or insufficient rent for generators or cost to suppliers 
has become manifest.

Pool 
Selling 
Price
£/MWh
+capacity
levy
£/MW/hr

System Marginal Price £/MWh

Normal
conditions

Scarce
conditions

Figure 6.6 Retail supplier pool cost under normal and scarcity conditions.
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6.4 Division of the Market to Regimes

We have seen that the system operator can divide the market into 
regimes. Examples are:

1. transformation of the pool price under scarcity conditions
2. elevation of the imbalance price under scarcity conditions.

It is almost impossible at one time to obey the “market-first” 
principle and to participate at points of market failure. The standard 
method is to limit system operator intervention only to peak produc-
tion, generally by controlling a unit but only running it when there 
are no other units available.

Almost by definition, the system operator will either pollute the 
market with bids subsidized by socialized costs, or pay more for peak 
capacity than consumers are willing to pay.

Where we can apply a specific regime is when there is actual lost 
load on the transmission system.

6.5 General Development of Capacity 
Mechanisms toward Energy-Only Markets

We can characterize the general development of capacity mechanisms 
toward energy-only markets with a single theme, which is the grad-
ual movement from ex ante administered estimates to live values as 
expressed by the market, and settled ex post.

Profit 

Price £/MWhb ~Mcap Imcap

Potential
Peak Energy 
Rental 
claimed by SO
from supplier

Margin 
tightness 
payment 
by SO to 
generator

Payoff for call spread
struck at b and Mcap

Payoff for option
struck at Mcap

Payoff for option
struck at b

Potential cap
provided by 
SO for retail 
suppliers

Figure 6.7 Depiction of peak energy rental and scarcity rental in an options format.
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The three key developments are:

1. strike prices—conversion of options/capacity to private goods
2. generator deficiency—ex post deficiency charging for actual failure 

at prevailing prices
3. supplier deficiency—conversion of ex ante requirement to the 

posting of credit.

This presents an interesting dilemma to a country with a devel-
oped market in energy and a nascent market in options. Should they 
i) create a capacity mechanism and develop that over time so that in 
the end it resembles an energy only mechanism? or ii) do they incen-
tivize development of the option market, for example, by accepting 
option notifications in lieu of capacity certificates? This is shown in 
figure 6.8.

2000 2005 2010 2015 2020

Development of the capacity market in the USA

ICAP ACAP Deficiency enhancements Strike prices Energy only

Choice B
Begin here 
and hope to
catch up

Choice A
Work out an end 
point and a journey
from the current 
market

Figure 6.8 Development of the ICAP model toward an energy only model.

 



7

The Power Complex

The modeling to this point has been based on the old-world para-
digm of treating consumption as stochastic and inelastic and having 
an administered view of the value of lost load (VOLL).

We have also paid scant attention to the importance of transmis-
sion constraints, neighbor markets and the physical interconnection to 
them, and consideration of the complexities of loop flow in networks.

We now address these.

7.1 The Demand Side

7.1.1 Modeling Shocks to the Load Duration Curve

We have shown that largely due to the stochasticity of the phase of 
demand and also the cross-elasticity of demand across time periods, 
load factor modeling is essential for peak load and capacity modeling.

One reasonably straightforward way to do this is using principal 
components (PCs). All PC shocks are orthogonal, in that they do not 
affect one another. This is represented in figure 7.1.

Load Q
MW

Duration hours

Load Q
MW

Duration hours

shift

tilt

bow

(a) (b)

Figure 7.1 Principal component shocks to the load duration function (a) Whole 
function (b) Peak area of the function.
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We are particularly interested in the peak, hence for consideration 
of peaks only we just shock this area.

By applying one, two, and three standard deviation shocks to the first 
four PCs we now have for any duration the probability profile of load 
with 25 points. Similarly for any load we have the duration profile.

7.1.2 The Changing Paradigm of Decentralized Energy

The England and Wales pool typifies the old-world paradigm of treat-
ing generation as predictable (reliability being well-characterized in 
short horizons) and flexible and consumption being stochastic and 
inelastic.

As we see in figure 7.2, the new-world paradigm is the reverse, 
mainly due to

1. general movement from fossil fuel power stations with discretion-
ary load to low-carbon generation, which is either “must run” with 
energy flow determined by nature (wind, sun, etc.) or designed 
largely for baseload operation (nuclear)

2. modern power stations being designed in recognition of the need 
for flexibility but in reality so finely tuned that there is less inherent 
flexibility

3. generation units decentralized and therefore much smaller and 
with less sophisticated control systems

4. potentially large increase in power consumption from the electrifi-
cation of heat and power in which the time of user demand may be 
inflexible

£/MWh

MW

£/MWh

MW

(a) (b)

Figure 7.2 Change from old world to new world production-demand paradigm 
(a) Old world with flexible generation and inflexible stochastic demand (b) New world 
with flexible demand and inflexible stochastic generation.
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5. the necessity of demand-side management of the load of items such 
as heat pumps and electric vehicles, in order to minimize transmis-
sion and distribution network and generation capacity build

6. the general change in demand patterns and the response of con-
sumers to price, meaning that the system operator’s demand fore-
cast will become increasingly inaccurate.

7.1.3 “Smart” in Metering and Other Areas

The market arrangements for consumption have been largely driven 
by a single factor, namely the extraordinarily poor temporal resolu-
tion of the measurement of energy flow compared to that needed by 
consumers and the system.

Fortunately this is changing in this decade, and we can expect the 
meters to have halfhourly resolution of energy, polled on a regular 
basis. This commercially enables a vast and still-to-be discovered infra-
structure of smart, being grids (distribution systems), devices, applica-
tions (“apps”), algorithms, consumption, communication, heuristics, 
tariff structures, and so on.

What counts for present purposes is that with a universal smart sys-
tem, electricity, including security of supply, becomes a private good. 
Smart meters can reduce/prevent the flow of electricity, and even if 
there is not the regulatory functionality to do so, it can be effected by 
the consumer setting the algorithm to stop consuming on receipt of a 
price signal and thence the sending of the signal.

7.1.4 Fixed and Variable Costs of the Demand Side

We have seen that it is very common to treat demand side manage-
ment as a single VOLL with no fixed costs. We have also seen that it is 
quite possible for entities that have fixed costs to load the fixed costs 
onto the price received if there is no premium in advance.

This approach is inadequate for integrating the demand side into 
peak load and capacity modeling for the following reasons:

1. Generation and demand can be harmonized if both use the mecha-
nism of a premium (for fixed costs) and a strike price (for variable 
costs).

2. Demand-side contingency for lost load has in practice a fixed cost, 
for example, a portable generator.

3. In the absence of a premium, the uplift applied to VOLL for low 
probability events is too extreme for the valuation to be practical.
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We must therefore treat the demand side as having fixed costs, vari-
able costs, and capacity. We can see this in figure 7.3. The gray area 
shows where the frontier ends in theory if the volume of certain areas 
of the production and consumption “stacks” can be expanded.

7.1.5 Consumer Protection

We have at the same time two paramount requirements:

1. The ability of consumers to participate in the market, both out of 
democratic fairness in terms of access to market and policy reasons 
for managing the system in the new-world paradigm.

2. The need to protect from high prices those consumers who cannot 
access the market for reasons of vulnerability.

These can be achieved together and indeed it is the ability of the 
active consumers to respond that provides both the security at a rea-
sonable price that vulnerable consumers require and the cost efficiency 
that allows the general lowering of bills.

However it is essential to ensure proactive consumer protection at 
the level of the individual.

The welfarist approach to this is to find (each and every) individuals 
who are disadvantaged by inability to respond effectively to price sig-
nals without hardship and provide energy efficiency and demand-side 

Variable 
costs b 
£/MWh

Fixed costs B £/MW/hr

Figure 7.3 Composite frontier from production and demand-side management.
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management free or heavily subsidized, or apply financial compensa-
tion directly to the bill.

7.2  Transmission and Interconnection

7.2.1 Policy Modeling of Capacity Obligations in  
a Networked Island Economy

We have examined in some detail the nature of consumers and con-
sumption, and the significance of the ordering and timing of stages, 
such as capacity build, pricing, and uncertainty resolution. We can 
now look at capacity from a whole system perspective, adding in con-
siderations of a connected foreign market, and domestic and interna-
tional transmission constraints.

We can take a gaming analysis to the efficacy of capacity obligations 
under a set of simplifying assumptions. The analysis here closely fol-
lows the calculus of Creti and Fabra (2004) (CF), which was inspired 
by the Pennsylvania–New Jersey–Maryland (PJM) market, although 
there are some material differences in description in order to apply to 
an unbundled market.

This framework is particularly useful because it has the key ingre-
dients needed to model the efficacy of a capacity obligation and the 
flexibility to relax the key assumptions.

7.2.1.1 Characterization

1. Single demand period.
2. Demand—right-angled demand function with willingness to pay 

v. Stochastic with zero probability above a maximum. Stochastic 
form is twice differentiable in all domains with probability density 
g(D) and cumulative G(D), as shown in figure 7.5.

3. Domestic transmission—perfectly reliable. Fixed and variable 
costs nominally zero up to capacity limit K at which variable costs 
become infinite.

4. Interconnector to foreign market—perfectly reliable. Fixed and 
variable costs nominally zero up to capacity limit  in both direc-
tions, at which variable costs become infinite.

5. Production—fixed and variable costs nominally set to zero. Perfectly 
reliable. Capacity K >  and K Dmax  that is, demand can 
always be fulfilled. Infinitely flexible with zero state change cost. 
Infinite life.

6. Retail supply market—n actors of equal size. Regulated.
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7. Market structure—fully competitive and monopoly both examined. 
No trading of energy or capacity between suppliers or between 
generators.

8. Domestic regulator—benign optimizer of welfare. Assigns an 
attenuation factor of  to generator welfare. The regulator sets a 
price cap P < f, a capacity certificate price cap C, and mandatory 
capacity purchase  across the retail suppliers.

9. Foreign market—always at price f < v and infinitely elastic.

The limit of demand to K +  is somewhat contrived. We must 
assume that generation and transmission capacity evolved to meet this 
limit. In doing so however, we must have made assumptions about the 
probability distribution of demand, since the probability of demand at 
the near the K +  limit must be sufficient to merit the build.

The sale of a capacity certificate requires the generator to provide 
power on demand, whether by generating without selling abroad, or 
by importing. The purchase of a capacity certificate gives the retail 
supplier the license to operate. We can treat this as having zero com-
mercial value but an infinite fine for not having sufficient capacity to 
redeem against the regulatory obligation.

The overall system is shown in figure 7.4.

2 31
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MW

£/MWh
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MW

£/MWh
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K
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0 1

f

K

P

v

Figure 7.4 Depiction of the system described. Nodes 1 and 2 are domestic and 
node 3 is foreign.
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7.2.1.2 The Game
We consider a two-period setting with one consumption period. In the 
first period, suppliers have unbiased estimates of expected consump-
tion and buy capacity according to regulations. The regulator also 
has perfect and unbiased estimates of ex ante demand distributions 
in aggregate and by supplier. In the second period, the consumption 
uncertainty is resolved and the energy flows.

We assume that build can be executed after the capacity order and 
price cap setting by the regulator and before any reforecast of demand 
becomes material.

We now solve by backward induction with the sequence shown in 
figure 7.6. We begin with the energy market competition game, and 
then move to the capacity market. Finally, we analyze the regulator’s 
problem, who has to set the capacity obligation , the cap C of the 
capacity price, and cap P of the market price.

We will assume that the regulator can guarantee 0 percent prob-
ability of lost load as we see in figure 7.7(a).

G(D)

D

g(D)

0 1
0

1

Figure 7.5 Cumulative and density probability functions of demand D.

Commit to
regulatory
regime

Commit to 
generation
installment

Exogenous 
force resolved

Time

Commit to
prices

Figure 7.6 The stages of the game.
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7.2.1.2.i Example 1—The Monopoly Generator with Regulated Prices
Since demand for energy is inelastic, the monopoly generator opti-
mizes her revenue in the energy market by offering at the cap P. In 
addition, if the regulatory environment is such that demand for capac-
ity is inelastic, then she also optimizes her revenue by offering capacity 
at the cap C.

Her decision is how much capacity  to offer. Since f > P, she 
exports all uncommitted energy to the full capacity of the link. This 
leaves her with nonexportable capacity K − .

If she has sold capacity, the cost of default is high (it should be 
equal to v). In this case, since we assumed that the probability of 
demand exceeding domestic capacity plus transmission constraint is 
zero, she can go to the foreign market and buy energy at f and sell it 
in the domestic market at P, and hence we simply set the default rate 
to be greater than f.

Let us first consider the case for the sale of capacity at below the 
nonexportable limit  < K − .

We can see from figure 7.8 that the optimum energy sale level by 
the generator is unrelated to the capacity sale , for all  < K − , 
and therefore the generator will sell at least K −  to gain the capacity 
income C * (K − ). The profit expectation is

m D

D K

D K

D D

K C PD f dG D

P K f

( ) ( )

m

0

aax
( )dG D

Figures 7.8–7.10 show the actions for the probability domains. 
The generator exports, even when the supplier imports, netting off 
the flows.

D

E [D]

g(D)

0 1

(a)

D

E [D]

g(D)

0 1

(b)

Figure 7.7 (a) Regulator sets capacity requirement for 0 percent probability of lost 
load (b) Regulator sets capacity requirement for finite probability of lost load.
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Figure 7.8 Contractual energy flows for capacity sale  < K −  for the different 
probability domains of demand.
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Figure 7.9 Contractual energy flows for capacity sale K −  <  < K.
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We generalize slightly from the CF framework, allowing a finite 
probability  of a demand outturn D Kmax

So the profit, including the capacity income is

m D

D K

D K

D

K K C PD f dG D

PD f K D

( ) ( )

( )

0

ddG D

P f K dG D

P f K
D

D K

( )

( )

( ) .

To find the optimum , conditional on it being within a specified 
range, we differentiate the conditional profit with respect to .

If the capacity price is above a critical level Cm, we will commit 
some level  rather than K − .

C C K Km m m m( ) *( ) ( )
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K – K + K
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D K

K D D K 

K 

Figure 7.10 Contractual energy flows for capacity sale K <  < K + .
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C
f P DdG f P K dG

Km
K

K

K

K
( )

( ( ))
,

2

where Cm denotes monopoly.
Note the resonance between the numerator and the Chao analysis 

in section 3.11. We have a term on the right-hand side that is only 
related to the probability of demand exceeding the non exportable 
amount K − , and a term on the left-hand side, which is related to 
the probability distribution of demand. The key term for the matter 
in hand is the term on the left-hand side. Depending on the shape 
of the distribution,  could be anywhere from K −  to K + .

To understand this equation, let us rearrange it. To simplify, we 
assume that  = K + .

C f P D K dGm K

K1
4

( ) .

At the extremes, D = K +  and D = K − , and correspondingly 

C
f P

m 2
 and Cm 0 respectively.

This has the form of the call option equation, only this time we 
have a fixed payoff with variable volume, rather than vice versa. For 
lognormally distributed demand, we have off-the-shelf solutions for 
this, and the noninfinite upper limit of the integral is easily handled by 
regarding the option as the difference between two options with an 
infinite limit (i.e., a call option spread).

We will in a moment consider the position of the regulator, but 
first let us examine the position of the generator facing perfect 
competition.

7.2.1.2.ii “Perfect Competition” in Generation
The model that CF are looking for is the sale of domestic energy 
at a price that does not exceed variable costs. We can arrive at this 
construction in a number of ways. One way is an infinite number 
of competitors who, while managing to come to an arrangement in 
sharing the profitable export market, have not done the same in the 
domestic market, and instead offer at variable costs. Another way is 
for the regulator to proscribe internal sales above variable costs, and 
allow a sharing of the export market.
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Similarly, the capacity market is perfectly competitive and hence 
clears at the opportunity cost of the marginal seller of capacity.

We must now take a moment to consider what the build algorithm 
is. If build has already been done, and capacity is in excess, then given 
that energy sales cannot be above variable cost, the policy of offering 
capacity must dominate the policy of not offering capacity. However, 
in the event of allowed collusion or Cournot competition in capacity, 
it might be optimal for producers to offer less capacity than would be 
offered from a competitive market and an upward sloping capacity 
cost curve.

Our profit equation is similar to before, only now the (ex ante) 
marginal profits for energy sold in the domestic market are zero.

We commit  rather than K −  if

c c K Kc c* ( ) *( ) ( ),

where now c is the clearing price in the capacity market.
Rearranging and substituting as before we have

c C
K

Kc
c c( ) ( )

( )

where Cc denotes competition
After some more calculus we have

C
f DdG f K dG

Kc
K

K

K

K
( )

( ( ))2

We can compare the critical capacity price for perfect competition 
Cc to that for monopoly Cm.

C
f

f P
Cc m.

So the critical capacity price in competition exceeds that in monopoly.
We now have the capacity price bounds between the extremes of 

monopoly and perfect competition, and can then, in theory at least, 
use this to estimate the use of market power. This may be exercised in 
part to ensure fixed cost recovery.

The relationship between capacity price cap and the capacity com-
mitment is shown in figure 7.11.
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7.2.1.2.iii The Regulator
Finally we consider the position of the regulator. His decisions are

1. whether or not to introduce a capacity obligation and a capacity 
market

2. at what level to set P, C, and .

Let us think initially why a regulator would want to intervene 
between a willing buyer and willing seller. It can only be because some 
form of coordination between producers results in a volume of capac-
ity offering that is less than the amount that they would offer without 
coordination, or because either a buyers consortium is impractical or 
illegal or with conditions that cannot be enforced.

We begin with the monopoly case.
We, (i.e., Creti and Fabra) will show that

1. There is some level of welfare level v f P Km ( , , , )  above (and 
only above) which it is optimal for the regulator to impose a capac-
ity obligation.

2. For v vm  and where m K , the optimal choice of capacity 
obligation is maximum possible demand m

* 1.
3. For v vm  the optimal choice of capacity price cap equals the mini-

mum value at which the market clears C C K f Pm m
* ( , , )1 .

Again we work by backward induction. First, we examine the opti-
mal conditions if there is a capacity obligation, and then we compare 

K – 

Committed capacity 

m( ) C( )

Portfolio
value

K + 

C Cm

C Cm

C Cm

Figure 7.11 The critical cap price for the producer to offer capacity.
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this to the welfare with no capacity obligation to see if it worth having 
an obligation.

Creti and Fabra ignore the case of K , arguing that regard-
less of a capacity market, the generator will install this amount of 
capacity without being compensated for it in advance, as he can export 
at a price higher than his costs.

We can also ignore C Cm since below this price, as we saw above, 
the generator will only offer nonexportable capacity.

So, for K  and C Cm we consider the total welfare under 
monopoly and in the presence of a capacity market, Wm

c, for a given , 
C by differentiating welfare with respect to capacity obligation.

CF give us

W C
v f G

f P
K

K
D K

m
C

m( , )
( )

(
(

1

1
KK

dG D
K )

( ).

Both terms exceed zero and hence within the specified range 1 
it is optimal to increase . Hence the optimum mandatory regulatory 
capacity m

* 1.

7.2.1.2.iv Benefit of Capacity Obligations
So, under monopoly conditions, the benefit of having a capacity obli-
gation is;

W C W v P f P
K

K

D K dG

m
C

m m
NC( , )

( )
( )

( ( ))

1
1
1

(( ).D
K

1

So, there are conditions under which it is welfare optimal for the 
regulator to apply a capacity obligation.

We can see that the right hand side of the above equation is positive 
if and only if

v v v f K f
K

Km c ( , , )
( )

( )
1
1

For  = 1, this simplifies to v fc

So if VoLL is less than the foreign price there should be no capacity 
obligation
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For the case of  = 1, let us simplify equation (8) above.

W C W v f D K dG Dm
C

m m K
( , ) ( ( )) ( )1

1NC

We note the similarity of this equation to the critical capacity price 
equation and the similarity of form to the option equation. We can 
see by inspection, that the expectation of saving from having a capac-
ity obligation is simply equal to the payoff to the consumer of being 
able to import volumes above the nonexportable capacity, rather than 
lose load.

So, there is indeed a welfare benefit from having a capacity obliga-
tion, but this is in the context of a specific institutional constraint—
capping the price P at below the foreign price f. In effect we are 
facilitating the sale of energy at price f by the producer, but bypassing 
the rules by loading the cost of this purchase into the capacity pay-
ment rather than the energy payment. Looking at it this way, we can 
see why the equation has option form—the producer simply weights 
the capacity payment (the premium) against the expectation payoff. It 
is particularly useful then to consider the producer welfare weighting 

, in circumstances where the capacity has been built and the pro-
ducer is exposed to moral hazard on the part of the regulator.

7.2.1.3 Conclusions and Dependence on Assumptions
Creti and Fabra make key conclusions that are consistent with the 
analysis presented above. The lemma’s are, in summary:

1. With a retail supplier monopoly, if there is a capacity obligation 
with capped price, then it is optimal for the generator to offer suffi-
cient capacity, above the nonexportable capacity, only if the capac-
ity price cap exceeds the free market clearing price for capacity.

2. The same conclusion as above for a retail supplier market that is 
competitive in terms of the description.

3. Under monopoly, it is optimal for the regulator to introduce capac-
ity obligations if and only if the VOLL exceeds a particular level, 
which is a function of , f, P and K − . With the demand limit, it 
is optimal for the generator to set the capacity at this limit, and the 
price at the minimum price at which the market would clear this 
volume.

4. The same conclusion for a retail supplier market that is competitive 
in terms of the description.

5. In the monopoly case, the price cap should remain lower than the 
foreign price.
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So, in summary, for a high VOLL, it is optimal in this model for the 
regulator to introduce a capacity obligation.

This begs the question of why an intervention should be benefi-
cial—that is, why not let producers and consumers make their own 
arrangements for capacity. Indeed if electricity were a private good 
under all circumstances, then there would be no benefit to force con-
sumers to do what they would anyway. The benefit of the obligation 
is a direct result of the public goods nature of electricity in conditions 
of shortage.

The model made a number of assumptions that may be impor-
tant. We examine this now to see whether their relaxation alters the 
conclusions.

They are

1. price cap
2. producer welfare weighting
3. interconnector constraint
4. domestic transmission constraint
5. transmission costs
6. power station failure
7. fixed costs
8. limit on demand
9. demand management

10. rationing
11. infinite capacity at fixed price in the foreign market
12. VOLL
13. retail competition
14. many periods
15. constant willingness to pay.

7.2.1.3.i Price Cap
We have shown that the reason that it is indeed optimal for a regu-
lator to intervene in the partially regulated bilateral arrangements 
between a willing buyer and willing seller is that the capacity obliga-
tion facilitates a partial undoing of a prior restriction by the regulator 
on bilateral engagements—namely the imposition of a price cap.

The price cap limits the generator revenue. This limit is circum-
vented by providing a capacity payment to the generator.

In almost all markets with price caps, there are various mechanisms 
that circumvent the cap, generally in the reserve markets.
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7.2.1.3.ii Producer Welfare Weighting
The use of  to weigh welfare is a useful construct that is important in 
practice. Since any deviation from  = 1 essentially violates the market 
paradigm (as all producers are consumers and vice versa), any mod-
eling of a <> 1 should be examined carefully, for example, rational 
behavior by generators.

We showed that for  = 1, if VOLL is less than the foreign price, 
there should be no capacity obligation. While we would indeed expect 
VOLL to be far above any normal market price, the treatment of the 
foreign market here is essentially that of reserve power. Indeed we 
also saw that for  = 1 the expectation of saving from having a capac-
ity obligation is simply equal to the payoff to the consumer of being 
able to import volumes above the nonexportable capacity, rather than 
lose load.

7.2.1.3.iii Interconnector Constraint
We can view the interconnector in two ways. First, we can assume that 
any capacity build applies equally to flow in either direction. At the 
other extreme, we have to build one for import and one for export. 
While import and export constraints tend to be similar, we do need to 
consider who pays for the interconnector. Since the interconnector is 
heavily used for export to the foreign market, the cost should be borne 
by the domestic generator and the foreign consumer. We can view the 
Panzar or Steiner analysis to take a view of whether the domestic con-
sumer should pay a contribution to interconnector capacity cost or 
whether it is a free public good for him.

In this model, since the foreign price is high, we would in fact 
expect both generator and interconnector build to increase until the 
point that the generator only provided power to the domestic con-
sumer when the domestic price reaches the foreign price.

If the interconnector is constrained to zero, we have an autarky.
Partial constraint is covered by CF. We are interesting in the sensi-

tivity to the constraint.
The greater K the greater the domestic generator will export. The 

sensitivity of the benefit from the obligation, under monopoly condi-
tions, is

K
v P f P

K
K

D K dG D
K

1
1

1( )
( )

( ( )) ( ) .
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For  = 1 we have

v f
K

D K dG D
K

( ( )) ( ).
1

We can see that this is a version of our option formula.

7.2.1.3.iv Domestic Transmission Constraint
If the domestic transmission is completely constrained, then all power 
must be imported, and hence the domestic price is always f.

The depression of the domestic price below the foreign price 
relies on the interconnector constraint and indeed we would expect 
interconnector capacity to expand until foreign and domestic prices 
converge.

The domestic generator, domestic consumer, and foreign importer 
all rely on the domestic transmission.

We would expect domestic transmission to get built up to the 
capacity of the interconnector.

7.2.1.3.v Transmission Costs
Broadly speaking we can treat transmission as having zero variable 
cost. We can take a peak load approach to transmission costs. This can 
be done with the standard Lagrangean method. The way to calculate 
the allocation of costs is first to discretize the probability domains 
as seen in figures 8.5–8.7 and then to use load duration duality as 
described in section 2.4.1. We can then apply peak load pricing.

7.2.1.3.vi Power Station Failure
This can be taken into account by assuming that each power station 
has an individual probability of complete failure of i. In the simplest 
case we assume no correlation between the failures of any power sta-
tions or between failure and demand. For an infinite number of very 
small power stations, the aggregate failure distribution is normal. To 
model the pricing we can use load duration duality and model two 
subperiods, one with the power station failed and one unfailed.

7.2.1.3.vii Fixed Costs
CF set fixed costs of the generator to zero, but at the same time create 
a proxy for fixed costs by considering the export earnings potential of 
the generator. If we take as a base case the situation in which the gen-
erator is built and gains an export revenue exactly equal to fixed plus 
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variable costs, then f = B + b. If the generator stops exporting then it 
loses B = f − b. We can with no loss of generality set variable costs b = 0 
and in this instance B = f.

Suppose that we built the power station before the interconnector, 
and with the domestic market in mind. Then B = b + B. If we have a 
technology frontier with B and b as the axes, then we will choose an 
optimal technology mix. If we assign a cost of risk to the producer, 
this will drive the built mix toward the higher fixed cost end of the 
frontier.

7.2.1.3.viii Limit on Demand
We have seen that the calculus of the CF model can relatively easily 
accommodate an increase in maximum demand and for this to tend 
to infinity. It is the physical model and cost assumptions that start to 
break down.

Given that there is a single willingness to pay, we do need to worry 
about degrees of loss of load. We can simply assume that there is a con-
ditional amount of lost load, with a probability . This was explored in 
the Chao analysis in section 3.11.

The way to analyze this is to assume that demand is distributed as 
we have described, but instead of having a cumulative probability of 
1 for some level of demand K + , the probability of demand being 
below K +  is (1 − ). The demand, conditional on it exceeding 
K + , is some higher level D .

The combination of the limit on demand and the constant willing-
ness to pay means that we omit the effect of steeply downward sloping 
demand curves. With the limit on demand there is no rationing since 
we build K  or  and nothing in between, so if we have some 
capacity build there is no rationing and hence rationing method is 
irrelevant. If we have no limit on demand, or a high limit, then it may 
be that consumers are prepared to pay for the common pool good of 
capacity, as was described in the simple framework in section 5.2

7.2.1.3.ix Infinite Capacity at Fixed Price in the Foreign Market
The assumption of a foreign market with infinite elasticity at price f is 
critical. We assumed that v f P , so the domestic price effectively 
flips from P to f during times of shortage, and the interconnector 
energy flow reverses. The foreign market is effectively providing a 
call option, struck at price f, with infinite volume, for zero premium. 
A national operator in the foreign market would instead offer to the 
domestic market at v rather than f, even if he truly has the infinite 
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volume option struck at f, and hence we can approximately value the 
option at (v − f) times the expectation of reverse flow. To a degree, 
we can imagine the existence of an option struck at f, if foreign 
operators have more access to these options than exist in the domes-
tic market, and there are many competing neighbor countries, or 
full competition in one country with no national regulation. Finally, 
we have assumed in the reversal of flow in conditions of tightness 
that the foreign system does not experience the same tightness from 
the same causes. Either way, our model is so heavily dependent on 
the foreign system that we should not regard it as self-contained, 
and we should recognize significant physical and political heteroge-
neity in the bi or multinational complex. To avoid this heterogeneity 
requires us to set f = P, in which the foreign system becomes part 
of the domestic system. Alternatively we create an autarky by set-
ting  = 0.

Let us then consider the autarky (  = 0). First, let us take the gen-
eration capacity K as given and assume that maximum demand = K. 
Let us initially assume a highly simplified demand structure such that 
demand is zero with probability (1 − ) and is K with a probability . 
If the consumer is forced by capacity if offered, then the generator 
profit is bK K PK CK. We can see by inspection that 
we will wish to build K if ( )P b C .

We can now model the foreign market by considering the autarky 
and adding a generator with zero fixed costs and variable costs of f. 
Clearly, with zero fixed costs, the generator will build as much as pos-
sible. Pursuing this analysis we should then add a fixed cost to the 
generator, and then make the build decision as described in the previ-
ous paragraph. This tells us how much capacity payment we should 
really pay to the foreign market.

Alternatively, the foreign market could charge f for exports and 
some price less than f for its own domestic trading. In effect this sim-
ply becomes a method of circumventing the domestic price cap.

7.2.1.3.x Value of Lost Load
It is obvious that if v = 0 then no capacity is required and if v  then 
the capacity requirement must be the maximum possible demand.

With the right-angled demand function, if the shock to demand 
is lognormal then this is very convenient analytically, since we arrive 
at a version of our option formula, transposing the payoff and the 
volume.

This makes modeling of lost load more straightforward.
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A downward sloping demand function is more problematic in this 
framework, and we must then use some of the more sophisticated 
frameworks such as those of Crew and Kleindorfer, or Chao.

7.2.1.3.xi Retail Competition
If we add retail competition then we must consider consumer switch-
ing. We must then apply the capacity obligation to market share. To 
apply a deficiency penalty, we must either define market share accord-
ing to actual flow or anticipated flow. If we define according to actual 
flow, then our system is not really a capacity obligation but a cashout 
at VOLL. If we define according to anticipated flow, then we have the 
practical problem of calculating this in the light of ongoing switching, 
of possible gaming of the system to increase flow after the capacity 
auctions.1

7.2.2 Modeling Capacity Obligations in  
a Simple Networked System

At this point, we have considered a simple system with a single node 
and a uniform generation fleet. Before going into more detail with 
this model, we briefly examine how adding system complexity, in 
particular the consideration of transportation, changes our analysis. 
Here we consider a simple system with generators and a transmis-
sion system constraint. We use the formalism of Cremer, Gasmi, and 
Laffont (CGL) as a basis. As the authors point out, the approach uses 
a combination of location theory and equilibrium economics in the 
“economics of spatial equilibrium” as well as operations research and 
computational economics that developed the field of transportation 
economics. It is particularly useful for us because the work of Laffont 
in industrial economics is very important.

We now have six entities, one consumer, two producers, and three 
transporters. The transporters effectively convert production at one 
point to production at a different point. This is the equivalent of con-
verting production in one period to production in another. We ignore 
capacity limits for the producers but consider them for the transport-
ers. We borrow extensively from the analytics of the 2003 paper, com-
menting as we go on elements that are particularly important for the 
discussion in hand.

The paper is posed as a gas transportation problem. We pose this as 
an electricity capacity problem. Gas is driven by pressure differentials 
and direct current is driven by voltage differentials, and we can inter-
pret Kirchhoff’s voltage law as having a single pressure at any node 
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and Kirchhoff’s current law as having zero total net flow to any node. 
We can visualize the equivalence between gas and power as shown in 
figure 7.12. The power network has no resistance except for a resis-
tor in the middle of each line. Power is lost through the resistors and 
power flow is determined by the relative resistances. The gas network 
is a frictionless pipe with an aperture in the middle of each pipe. Gas is 
lost at the apertures by using gas to drive motors to compress the gas 
to drive it through the pipes. Gas flow is determined by the aperture 
sizes.

The system set up is as follows:

1. There is one producer at each of two nodes, and one consumer at 
the third node.

2. The producers have zero (or ignored) fixed costs and (different) 
variable costs. Returns to scale on variable costs are constant.

3. Generation offers at variable costs, either because it is forced to by 
regulation (the Hotelling model) or because the prevailing many-
player Cournot game is to offer at variable costs.

4. The network is unconstrained except between the consumer and 
producer 2.

5. The network has both fixed and variable costs.
6. The social planner can set all prices, dispatch volumes, and has 

sight of all cost functions.
7. Demand is elastic and deterministic.
8. We initially examine a single period.

Figure 7.13 shows a possible representation of the system.
Producers 1 and 2 have variable cost functions C1 and C2 respec-

tively, which we state as inverse supply functions p q1 1( ) and p q2 2( )  
respectively for outputs q1 and q2.

The inverse demand function is denoted as p3(d3) where d3 is the 
demand.

Figure 7.12 Visualization of the gas network as equivalent to a power network.
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The marginal cost for the network owner operator to get electric-
ity from i to j is C z lij ij ij( , ), where zij is the flow and lij is some other 
cost determinant that we notionally regard as network length,2 so we 
assume that C z l c z lij ij ij ij ij ij( , ) ( ) .

The cost and revenue functions are shown in figure 7.14.

2

31

z13

d3

z12
z23

q1

q2

Variable
Cost C1
£/h

q1 MW

Production q1 MW

Price p1 £/MWh

Willingness
to pay
£/MWh

MW

Demand d3

Price p3 £/MWh

Variable
Cost C2
£/h

q2 MW

Production q2

Price p2 £/MWh

K

Figure 7.13 Summary of the system as defined by Cremer, Gasmi, and Laffont cast 
as electricity rather than gas.
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Figure 7.14 Cost and revenue functions (1) Consumer welfare (2) Cost and 
revenue for single producer (3) Cost and revenue for producer 1 (with lower costs 
than producer 2 for lower loads) (4) Profit for producer 1 if both producers available.
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7.2.2.1.i The Construction of the Aggregate Welfare Function
In the first instance, let us assume that network capacity (i.e., the 
cost/volume relationship) is given.

Our net social welfare SW is then the sum of the surpluses for the 
producers, the network owner-operator, and the consumer.

SW3 3 3 3 3S d p d d( ) ( )  —consumer, (7.2)
SW1 1 1 1 1 1p q q C q( ) ( ) —producer 1,
SW2 2 2 2 2 2p q q C q( ) ( )  —producer 2,
SW

 
n p d d p q q p q q c z l

c z l c
3 3 3 1 1 1 2 2 2 12 13 13

21 21 21 2

( ) ( ) ( ) ( )
( ) 33 23 23( )z l H

The term p d d p q q p q q3 3 3 1 1 1 2 2 2( ) ( ) ( )  is the network rent, which 
for zero losses, we can write p d q q p q q p q q3 3 1 2 1 1 1 2 2 2( ) ( ) ( ) . We 
can see that the network rent is constructed from the nodal prices.

Note that the linear relationship between money paid and social 
welfare, implies risk neutrality for the consumer.

Here we assume that the network operator n acts economically by 
buying electricity at one node, selling at another, and honoring the 
contract by transportation3. H is the fixed inescapable cost of the net-
work owner operator. Note that the units of this are in £/period and 
not £/MW/period. Note also that we are treating the generator and 
network capacity costs quite differently in recognizing the network 
fixed costs and not the generator fixed costs.

The cost structure is shown in figure 7.15.

£/hr
fixed

MW

H

Figure 7.15 Network cost structure envisaged by Cremer, Gasmi, and Laffont.
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Now let us assume that the line linking nodes 2 and 3 has a max-
imum capacity of K. We shall later consider how we determine the 
optimum capacity K.

Let us briefly look at the structure of H. Let us first generalize 
it slightly in a manner consistent with CGL. H H K H( ) ‘ . Note 
that ‘H exists as a constant in all states of the world as defined. It is 
therefore a lump sum that is exogenously determined and is entirely 
unrelated to build or running costs. This is in accordance with the 
Ramsey framework, and should not be applied to consumption in an 
optimizing economy.

We know from the conservation of flow that q2 = z21 + z23, z21 + q2 
= z13, z13+z23 = d3 and q1 + q2 = d3.

The social planner must then solve:

max( , , ) ( ) ( ) (
(
z z z S z z C z z C z z

c
13 23 21 13 23 1 13 21 2 21 23

13

SW
zz l c z l c z l H13 13 21 21 21 23 23 23) ( ) ( )

subject to z K23 .

CGL use the usual Lagrangean method to solve for optimum pric-
ing of the constrained link. Noting the equation of price to the dif-
ferential of surplus and the pricing of transmission as the difference 
of price between two nodes, CGL show that the optimum pricing 
for transmission for the unconstrained link is equal to the variable 
costs, and for the constrained link, there is an additional cost. This 
is consistent with the analysis in the rest of this book, and the solu-
tion for pricing for three constraints can follow the Carlton method 
described in section 3.8. While this is quite consistent with Ramsey 
pricing, we have shown that for a (Walrasian) balancing economy, 
there should be no volume-independent term in H. By taking the 
simplest case of H K H KK( ) * , we can in this one-period deter-
ministic setting load this cost into the variable cost c, and the Ramsey 
term disappears.

So far so good. Where the CGL analysis is useful for the matter 
in hand is in the implied conclusion that in the deterministic case, 
the decentralized market correctly optimizes and hence there is no 
need for regulatory intervention in prices or volumes. CGL state 
that “The optimal allocation can be decentralized with transporta-
tion charges equal to the (short-run) marginal cost of transportation 
plus a Ramsey term (if any), supplemented by an ex ante sale of 
capacities priced at marginal cost, followed by competitive second-
ary markets.”
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7.2.2.1.ii Modeling the Decentralized Economy with Decentralized 
Transmission
Let us take the simplest cost structures that we can, while being suf-
ficiently general to attack the nub of the problem—the efficacy of 
decentralization to maximize aggregate welfare. Since we have a deter-
ministic one-period setting, with inelastic demand and fragmented 
production, there is no separate identity of fixed and variable costs. 
To allow for different cost structures, we do need to consider the 
“fixed heat” required for the first MW of load delivered. The simplest 
formulation is shown in figure 7.16.

Let us suppose that we have direct rather than alternating current, 
that the three major lines 12, 23, 13 have equal resistance.

Let us initially assume that the line resistances represent an insignif-
icant efficiency cost. Since there is an efficiency/capital cost tradeoff, 
we simply imagine all lines to be short.

In the solution above, we effectively assumed that the transmission 
system was made up of large number of parallel lines, so that we can 
control the flow using switches. Let us now consider the reality of an 
electrical transmission system.

1

£/hr

MW

£/hr

MW

£/hr

MW

£/hr

MW

£/hr

MW
£/hr

MW

£/hr

MW

Production

Transmission

Demand

Production

Transmission

Transmission

Transmission

3

2

Figure 7.16 Simplest formulation for a three-node constrained electrical system. 
The transmission line cost slopes are near zero in the calculations.
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We must of course remember Kirchhoff’s laws. In this instance, 
once constrained, an increment of demand requires not only an 
increase in production from unit 1 but a decrease in production from 
unit 2.

The progression of optimal loading as demand at point 3 rises is 
shown in figure 7.17. The rationale is as follows:

First (build and) load the cheapest unit at low load. At the point 
of crossover of unit cost curves, we switch from unit 1 to unit 2. We 
increase the load on unit 2 until flow on line 23 hits the constraint. At 
this point, for every MW of load, we must add 2 MW from unit 1 and 
deload4 unit 2 by 1 MW. This we do until the unit 2 loading is zero.5 
In the first instance, let us suppose that the line constraint is absolute, 
and cannot be resolved at any cost.

Let us change the framework slightly to see if the decentralized mar-
ket will optimize the complex. We can divide the units, so that even 
under a Cournot game, they do not offer above costs. Conceptually, 
we can do the same with transmission lines, dividing them into paral-
lel lines. Let us assume constant returns to scale in commodity and 
capacity, zero variable costs at zero and near-zero loads, and a down-
ward sloping demand function.

£/MWh

MW
Cost 
crossover
of units

Constraint
bites

No more load 
possible under 
constraint

Unit 1

Unit 2

Figure 7.17 Cost structure for gradually increasing demand.
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Our question then is whether Pareto optimization would arrive at 
the optimum solution. Let us consider how a decentralized solution 
would gradually change the nodal prices as demand increases. The 
first increments of load are straightforward. Unit 1 undercuts unit 2, 
and then unit 2 undercuts unit 1.

Let us turn to the decentralization of nodal pricing. This works 
by buying and selling nodes, and “financial transmission” occurs by 
buying power at one node from the system operator and selling it at 
an adjacent node. We now simplify power generation costs as being 
infinitely elastic at the nodes at variable cost b1 and b2.

Given our constant returns to scale in generation, zero fixed costs, 
and no generation capacity constraint, for the volume range in which 
the line constraint bites, the prices at nodes 1, 2, and 3, must be b1, b2, 
and 2 1 2b b  respectively.

The required reconfiguration of power station load to relieve net-
work constraint is described in section 7.2.3.3. Here we note briefly 
that if line 23 exceeds the constraint level by amount , we must 
reduce the load of high merit (cheaper) unit 2 by  and increase the 
load of low merit unit 1 by 2 . The marginal cost, and thence the 
price at demand node 3 is then 2b1 − b2.

With a constraint on line 23 of z23, we have three load regimes,
2
3 23Q z  p3 = b2

z Q z23
2
3 232  < p3 = 2b1 − b2

2
3 232Q z  inadmissible due to constraint violation.
For load Q z3

2 23  where 0;
The total consumer cost is Q b b( )2 1 2 .
The total producer cost is Qb2 .
Hence the available rent to the transmission system is 2 1 2Q b b( ).
If line 23 is given 1 MW more capacity, then (assuming as before 

equal resistance/impedance on each line), unit 2 can increase by 
3 MW and unit 1 decrease by 3 MW. We use the principle of super-
position to add the flows from node 1 to/from the load and the flows 
from node 3 to/from the load. This reduces the cost to deliver the 
same amount of energy to the consumer by 3 1 2( )b b . The changes in 
line rents are 2 1 2( )b b , ( )b b1 2 , and ( )2 21 2b b  on 12, 13, and 
23 respectively. The sum of these is an aggregate fall of ( )b b1 2  but 
line 23 expansion is funded.

7.2.2.1.iii Self-Dispatch into a Passive Network
Here we assume that there are no switches in the network and that 
load is controlled only by pricing signals at the nodes.
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In a decentralized market, in the region where line 23 is constrained 
but no constraints are violated, we would expect rents for lines, 12, 
13, and 23 to be 1

3 1 2Q b b( ), 2
3 1 2 1

2
3 1 22Q b b b Q b b( ) ( ),  

and 1
3 1 2 2

2
3 1 22Q b b b Q b b( ) ( ) respectively. This adds up to 

5
3 1 2Q b b( ), which exceeds the available rent.

In the absence of nodal pricing or switches, unit deliveries would 
increase until the constraint was exceeded and line 23 burnt out6; it 
would continue to increase until lines 12 and 13 burn out. The order 
depends on their respective capacities and resistances.

While generators can affect prices at loads through the effects of 
changing their offers at the margin, networks can affect the difference 
in prices of adjacent nodes. The question is whether the simple expe-
dient of price signals can drive the most efficient generation, flow, and 
demand satisfaction.

The particular challenge here is that the whole network has to 
be modeled in one go. For example, the appearance of a constraint 
a long way away in the network can have a significant difference on 
local flows. This is called “loop flow.” The location marginal pricing 
model, described briefly in section 7.2.3.3 explains this. From this, 
it is clear that in a passive network the so-called loop flow acts as an 
externality to the commercial driver to get load from one node to 
another.

In summary—while price differences between local nodes can 
indeed be influenced by the transmission line between the nodes, and 
the transmission build between nodes can indeed be influenced by the 
nodal price differences, it is very hard if not impossible for nodal prices 
to develop purely organically, with generator and line build driven by 
these prices. In practice, a system operator is needed to construct the 
nodal pricing system across the whole network.

b1

b2

2b1 – b2

£/MWh

Volume Q MWVolume Q MW

£/hr

(a) (b)

Unit 1

Unit 2

Lines 13 and 23

Line 12

Figure 7.18 (a) Generator cost and line rents as network load increases (b) Price at 
the demand node.
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As a brief aside, it is worth mentioning that private lines do get 
built.7 However these are single entities that can to all intents and 
purposes be regarded as interconnectors. In commercial terms, 
loop flow along parallel routes to the interconnector are ignored 
and thence the net system saving from interconnection arrives at the 
same interconnector value as treating each zone as a node with one 
price.

The capacity of transmission lines, financial transmission rights, and 
location marginal pricing, are subjects very closely related to our sub-
ject here, but they are out of scope for further analysis in this book, 
and we predominantly model on the assumption of an unconstrained 
zero-cost network.

7.2.2.1.iv Risk Aversion and Stochastic Load
CGL introduce consumer risk aversion by the utility function 

2

2 0
U SW

q
( )  and used a linear rationing cost. The importance of the 

structure of the utility function and rationing cost were considered in 
detail with the Chao framework analysis in section 3.11.

CGL then show that in their framework risk aversion increases 
optimum build. While on the basis of comparative statics, if we change 
nothing else but consumer risk aversion, then this is true. However, 
we should not forget that i) there is no reason to suppose that the 
normalized risk aversion of producers is less than that of consumers 
and ii) increased risk (as distinct to increased risk aversion) could make 
optimum capacity higher or lower than the deterministic case.

The assertion that risk aversion on the part of the consumer 
increases optimum build is correct within the CGL framework but 
cannot be generalized without some care. If the net (i.e., after vari-
able costs) VOLL exceeds the cost of capacity (as is true in the CGL 
framework), and producer cost of risk is zero, then indeed, consumer 
risk aversion increases the optimum build.

7.2.2.2 Conclusions of the Network Model
For the purposes of considering capacity payments, the analysis of 
single interconnectors is very similar to that of generating units. The 
essential difference is that networks have high fixed costs and low 
variable costs.

However, where networks are complex enough to have loop flow, 
decentralized scheduling does not work, and hence capacity payments 
cannot be applied to individual lines.
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7.2.3 Peak Load Pricing in Transmission Charging

Transmission networks, and high voltage direct current (HVDC) 
interconnectors in particular have very low variable costs in relation 
to the construction costs. In modeling terms it is reasonable to model 
them as having zero variable costs.

The recognition of the need to recover fixed costs therefore repre-
sents a useful precedent. As is obvious from section 7.2.3.3, the flow 
through transmission networks generally has to be managed centrally 
and only in specific circumstances can the primary influence on the 
nodal price differentials at either end of the line be by the line owner. 
An example would be a single interconnector between two isolated 
systems.

The triad charging system in Great Britain, depicted in fig-
ure 3.4 and noted in section 3.2.3 is a form of peak load pricing for 
transmission.

7.2.3.1 Consideration of Incremental Load
If we are to charge peak load pricing for transmission, we need to con-
sider who to charge. There are three relevant theories to use.

The first is Kirchhoff’s laws. These are uncontroversial and straight-
forward to understand. Kirchhoff’s voltage law (KVL) says that the 
voltage at a node must be equal to the sum of voltages applied to it 
and the current law says that the current through a node must be the 
sum of currents flowing through it.

The second is the principle of superposition, which is a representa-
tion of Kirchhoff’s laws, saying that the total voltage and current in a 
system can be represented as the sum of voltage and current of flows 
that observe Kirchhoffs laws. This is shown in figure 7.19. We see that 
figure 7.19(c) can be viewed as the sum of (a) and (b)

This is done with direct current load flow (DCLF) models for the 
“active” power that is used by consumers. Given the importance of 
reactive power in security of supply incidents, it is important for sys-
tem operation to use alternating current load flow (ACLF) models to 
run the system. This is complicated for the use of pricing, not least 
because the ratio of capacitance to impedance of transmission lines 
decreases as load increases.

So far so good, but suppose that all we can see is figure 7.19(c) 
and we need to allocate the constraint cost on one (or both) of the 
two lines bearing a load of 3 GW. In the absence of electrical losses 
or regulatory constraints on charging a specific percentage to produc-
tion and generation, allocation between the generation and demand 
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sectors is simple. Since 1 GW of demand requires 1 GW of produc-
tion, we can charge production and demand equally.

The third principle is the principle of additionality.
To allocate cost within the production or demand sectors, we need 

to rely on the principle of additionality. This principle assumes that 
we can chronologically rank the individual flows. In figure 7.19 this 
means that if we first built and ran the power station in A, then all of 
the constraint costs should be charged to B.

Consider however some scenarios:

1. Power complex B was planned a long time in advance and com-
mitted to paying for the transmission. Power complex A arrived 
quicker and had no contracts.

2. Power complex A has a certain demand and production of 3 GW 
and power complex B has a production demand of 3 GW plus or 
minus 1 MW for half the time each.

3. Power complex B has a certain demand and production of 3 GW 
and power complex A has a production demand of 3 GW plus or 
minus 1 MW for half the time each.

4. Transmission was built under contract with complex B but without 
contract for complex A, with A paying live for transmission.

5. There are no contracts and complex B reduces its load relative to 
its original plan in order to deconstraint all transmission lines.

3

21

3

1

3

2 + 1

1
2

1

3 + 33

3

3

2 + 1

1 – 1

(a) (b)

(c)

Figure 7.19 Application of the principle of superposition to a simple network A + B = C.
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What becomes obvious here is that what counts in charging for 
transmission is actual flow and actual commitment and intent. We 
apply the electrical flow using the principle of superposition not 
according to the arrival chronology of production and demand but 
according to commitment first and intent second.

Suppose now that we are building a distribution system in an area 
of growing population. Networks cannot easily be expanded incre-
mentally and have to be done in large chunks in intervals that are 
commonly decades long. We size the “wires” to accommodate the 
anticipated growth and have a distribution charging profile over time 
that recovers the cost in a manner that recognizes that some but not 
all of the load growth is caused by the existing population on the net-
work. A newly built factory then argues that the spare network capac-
ity should be allocated to it for free, and when the line constrains 
following population growth, it will pay some cost then.

Before moving on, it is worth noting that the cost of electrical 
losses adds an interesting extra dimension to this problem. Because 
the losses are not linearly proportional to power flow but the square 
of the flow, the allocation of losses is an interesting problem that can 
use the methods above.

7.2.3.2 Charging according to Peak Load
If we consider a time period of, say, a year, in which there is no effect 
of long-term trend of production and consumption change, then the 
allocation of cost has three elements to it.

First, we use load factor duality with a discretization of probability 
of events to m events in each of the m subperiods (commonly half-
hourly), to construct a single deterministic load duration function for 
the year, with m * n elements.

Second, we consider the events for which constraint is exceeded. 
For each of these we consider two things i) reschedule power sta-
tions, as we see in section 7.2.3.3 and ii) drop load voluntarily 
or by the distribution system operator. The constraints are now 
resolved.

Third, we apply both a fixed and variable cost to each deconstraint 
scenario.

Now we can charge system users using both extremes of method.
If all charging is fixed then we charge users ex ante fixed costs 

(irrespective of actual outturn) according to their contribution to the 
constrained scenarios. The Panzar method can be used for this.

If all charging is variable then we charge users on arrival at each 
constraint scenario using peak load pricing.

In practice there can be a mixture.
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A good example is the triad system in Great Britain. The total cost 
recovered by the transmission network is set in advance. The share of 
this cost is allocated according to the average market share across the 
actual three peaks (the halfhourly peak in its peak, which is separated 
by a fortnight).

A good example of live pricing of constraint is the location mar-
ginal pricing described in section 7.2.3.3.

In practice the regulatory culture tends to be one of socialization 
of prices and avoidance of peak load pricing. Hence much of network 
pricing i) is charged per MWh over the year rather than actual GW 
peak and ii) has a total system charge over the year that is constant 
(“capacitized”) rather than variable (“commoditized”).

7.2.3.3 Location Marginal Pricing
Location marginal pricing is a pioneering model for pricing electricity 
at nodal level at high temporal resolution. It has been in operation in 
PJM since 1998.

In this model bids and offers are made at each node, which we can 
regard here as a grid supply point (GSP), and the price at the node 
depends on the transmission constraint. If we have a generator at cost 
X that is “constrained down” to resolve constraint and generator Y is 
dispatched instead, then the cost at the node that cause the constraint 
is not Y but Y + (Y − X).

We can see this in figure 7.20. If the bottom line is constrained to 
2 GW, then to satisfy a 1 GW increase in demand we have to load unit 
B and deload unit A. The cost of the 1 GW is equal to 2 * £120 + 2 * 
100 − 3 * £100 = £140/MWh.

Note that even if only one watt of load is added under conditions of 
constraint, the marginal price at the demand node is still £140/MWh. 

(a) (b)

A £100/MWh

B £120/MWh

A £100/MWh A 4/3 + B 2/3 = 2

A 2/3 + B 4/3 = 2

3

1

3

1

2

42

2

0

Figure 7.20 Location marginal pricing. Increasing demand under conditions of 
constraint can cause a deload of the cheaper unit.
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We can see from the above that the total cost for the 4 MWh is £440 
and the total revenue is £560/MWh.

7.3 Peak Load Pricing in Distribution 
Charging

Increasingly the distribution networks are likely to become constrained 
as electrification of heat and transport take hold. A challenge in distri-
bution is that upgrade of capacity is expensive and cannot be done in 
increments. The infrastructure can be in place for at least 50 years.

If the population of individuals over the full period of investment 
and use is unchanged and the interest costs to the people, the state 
and the network company are the same, then allocating the cost is 
straightforward. We simply form a load duration function of n periods 
per year times y years times m stochastic states and then apply peak 
load pricing.

However there are numerous practical problems:

1. emigration from the area
2. immigration to the area
3. net population change
4. moral hazard that the regulator will abrogate commit to refund 

investment through network charges
5. moral hazard that the network company really has lower costs of 

capital or operation than recognized by the regulator
6. the incentive of the network to “gold plate” the assets, for rea-

sons of capital advantage [the Averch and Johnson (1962) effect], 
operational advantage or avoidance of opprobrium on lost load

7. the risk of stranded assets, that is, assets that turn out not to be 
required and hence no consumers to fund them.

For the reasons above we need to charge consumers in the early 
rather than load period of use. The location marginal pricing model 
is useful in this regard, not so much in relation to the solving the 
economics of loop flow but for the principal of live pricing of network 
constraint. For example, users could pay according to their incremen-
tal effect on the cost of reinforcement.

7.4 Commercial Arrangements on Lost Load

Politics aside, a mature electrical system should allow for lost load and 
have a nonpunitive level of compensation.
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We have concentrated mainly on the relationship between pro-
ducer, consumer, supplier, and system/market operator/regulator.

We can now consider the wider commercial arrangements on lost 
load. In particular it is important to recognize that a network failure 
in the peak can deny the generator essential revenue.

7.4.1 Generator Inadequacy in an Integral Network

If the supplier has a short imbalance position, then they must pay 
Pimbalvollcap on the excess load provided and VOLL to consumers for 
whom the loss of load is out of keeping with the contract.

If the supplier is in balance and load is lost, then he must pay his 
consumers VOLL and this must come from the system operator, as 
the PN purchased from generators are not really physical, as described 
in section 5.1.3. The system operator must collect the money. There 
are here several scenarios.

1. Suppliers bought capacity certificates and the total demand exceed 
the total certificates.

2. Suppliers bought capacity certificates and the total demand did not 
exceed the total certificates but generators failed.

3. No capacity certificates, and the total demand exceeded the total 
physical notifications by suppliers.

4. No capacity certificates, and the total demand did not exceed the 
total physical notifications by suppliers but generators failed.

In the first case the system operator must pay (via the market oper-
ator) the suppliers and in practice would do this by a mix of “recov-
ery” mechanism in which he pays now but increases ongoing supplier 
charges to recover the loss, and an incentive mechanism in which the 
system operator takes part of the loss.

In the second and fourth cases the generators pay Pimbalvollcap to the 
system operator who pays the suppliers.

In the third case the suppliers must pay Pimbalvollcap on the extra 
power provided and VOLL to their consumers on the balance.

7.4.2 Transmission Failure

Now the generator and consumer are both denied volume. The trans-
mission company must pay Pimbalvollcap to both generator and supplier. 
Indeed it may be that they have to pay VOLL to the supplier.
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In practice we would expect generators to have balancing offers, 
and hence transmission failure would result in the denied unit being 
sold power at its bid in balancing and a unit that has been called on, if 
there is one, paid its balancing offer.

A transmission failure would in general be highly correlated to high 
demand.

When modeling arrangements between generation, transmission, 
and distribution, it is commonly helpful first to consider these using 
the point-to-point business model shown in figure 7.21 and then map 
to the supplier hub if required.

We work out the compensation economics using the point-to-
point model, and then the actual payment path through the supplier 
hub model.

7.4.3 Distribution Failure

A distribution failure is generally regarded as a local and not a system 
event.

G

G + T

G + T + D

G + T + D + S

(a)

G

T

D

G + T + D + S

(b)

Figure 7.21 The point-to-point and supplier hub market models (a) Point-to-
point showing generation, transmission, distribution, supply, and consumption 
(b) Supplier hub.
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In theory the distribution system operator (DSO) should pay the 
generators (via the market operator) for lost opportunity, although 
this does not happen in practice.

The DSO should pay the suppliers the VOLL to go to consumers.
Distribution failures are in general lowly correlated to system 

demand, although there may in future be a stronger relationship 
between local loading and local failure.



8

Final Comments

There remains a debate about the relative merits of peak load pric-
ing, in which the covering of fixed costs is specifically recognized as a 
required uplift of price above variable costs, and variable cost pricing, 
which advocates market clearing at variable costs, in order to maxi-
mize economic efficiency at the margin.

While the rhetoric of variable cost pricing remains dominant, both 
in the literature and in the formation of policy, we found by following 
the development of the canon that in fact the two alternatives con-
verge under equilibrium conditions in which there have been some 
discretionary choices, for example, in technology selection and the 
degree of investment in maintenance.

This conclusion is robust with respect to the alteration of a number 
of modeling variables, such as divisibility in time of the pricing period, 
divisibility of asset size, the form of the demand function and the 
shocks to it, varying plant reliability, and other features.

We find that the status of public goods is important for electric-
ity in many dimensions, including physical capability, social require-
ments, and the general structure of metering, billing, and payment 
for energy. While electricity delivered can become a private good, and 
may become so in the “smart” system, there is little evidence of this at 
this point. As a result, it is important to be able to model the degree 
of rationing efficiency in conditions of scarcity, in order to optimize 
the system.

We then showed how power stations can be represented as financial 
options, first, in the most simple European call option, but also with 
much more complex modeling, for example, flexibilities in load level 
and other types, and constraints such as environmental limits. In addi-
tion, the whole system can be modeled as a family of options.

We showed that capacity obligations can be represented in terms of 
call options, with extra features such as nonfirmness, mandatory sur-
render of part of the peak energy rent value in terms of a call spread. 
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We also showed that while the ICAP installed capacity model begins 
very crudely as an option with no strike or value to the buyer and an 
option with no cost to the seller (even on plant failure), the continu-
ous refinement of the mechanism introduces more and more market 
disciplines. The logical conclusion, albeit somewhat distant at present, 
is for a mature energy-only market with liquid forward and option 
trading to develop.

Finally we model capacity on a wider landscape by considering con-
sumers, complex transmission networks, and distribution systems. We 
find that at this point at least, it seems that network management, 
including network capacity, is a matter of a central system operator, 
market operator, and capacity planner.

Much market design remains constrained by moral hazard. On the 
part of the generators there is the fear that excess rent will be extracted 
through market power. On the part of the regulator and government 
there is the fear that fair rent from infrequent or other events will be 
expropriated. There is in addition a related risk that while the most 
efficient capacity obligation may be simply an ex post charge for imbal-
ance, the same system/market event can cause both the requirement 
to pay and the inability to pay. Credit risk is therefore a key feature 
that drives capacity obligation models.

Cost of risk has a significant effect on the models shown. Separately, 
and in addition, there is the cost of uncertainty, such as in moral haz-
ard. This is a large subject worthy of further exploration.



Notes

1 Introduction

1. See Ekelund and Hébert (1999).
2. For the early period, see, for example, Baumol and Bradford (1970), 

Buchanan (1966), Clemens (1964), and for the later period, Joskow 
(1976).

2 The Modeling Framework

1. After Hotelling (1939).
2. An example of a workaround is the operation of Lagrangean optimization 

by iteration. The state change costs that are loaded into standardized var-
iable costs can be adjusted mid-routine according to the development of 
the load duration curve.

3. This is described in more detail in Harris (2014).
4. See, for example, Abbot (2001).
5. See Rosellón (2005) for a Cournot analysis in relation to the offering of 

capacity.
6. After Tobin (1969) and Brainard and Tobin (1968).

3 The Framework and Development of  
Peak Load Pricing

1. Turvey (1968a) and Turvey and Anderson (1977). See also Turvey (1968b, 
1968c, 1969, 2000).

2. See Harris (2014) for a detailed description.
3. See Yakubovich, Granovetter, and McGuire for an illuminating description 

of price formation in the early days.
4. From the study of early days pricing by Yakubovich, Granovetter, and 

McGuire (2005)
5. Consulting engineer to First Edison and subsequently professor of 

Electrical Engineering at King’s College, London.
6. The motivation was more to optimize the respective applications of 

electricity and gas for different consumer segments than for price 
regulation.
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7. The working assumption was that maximum load would be in times of 
fogs and therefore consumer peak demands were coincident.

8. See Eisenmenger (1921).
9. The technology was such that the measurement was over about ten min-

utes, rather than being instantaneous.
10. Wright (1896).
11. In 1900 examples, in modern terminology are flat rate, uniform meter 

rate, nonlinear meter rate, peak capacity triad rate, Wright tariff, and two-
rate meter. Source: Doherty (1900).

12. Lyndon (1923).
13. In his 1892 paper, Hopkinson refers to the problem and the ideal solu-

tion, but does not propose a practical application.
14. The same method is still used today. The “triad” transmission charging 

method in Great Britain uses this method.
15. In England and Wales, the transmission cost paid by suppliers to the 

transmission operator for industrial consumer load is equal to the aver-
aged maximum demand on the three “triad” periods of maximum system 
demand. As of 2014, this is under sporadic review to increase the number 
of periods. The French “critical periods” tariff contains features of the 
Barstow tariff.

16. Byatt (1963) quoting H. H. Perry in 1913 at the Manchester Section of 
the Institution of Electrical Engineers.

17. The width of the peak can be quite important, particularly in a system 
with hydrogeneration (Turvey 1968).

18. Excluding nights between 19:00 pm and 7:00 hours. In 1950, Saturday 
afternoons and Sundays were also excluded. Source: Meek (1963).

19. There was additionally a fuel price adjustment.
20. See Boiteux (1949, 1956a, 1956b, 1957, 1960a, 1960b).
21. The central limit theory is invoked. This requires homogeneity of 

consumers.
22. We assume a probability of demand falling below zero or twice the mean 

to be sufficiently low as not to affect the analysis. This is an important 
assumption when using a power law demand function.

23. “Fat tail” is a common colloquial description of a distribution that is near 
normal for low excursions from the mean and much more probable for 
high excursions than is predicted by the normal distributions.

24. For empirical application in electricity, see Weron and Simonsen (2005).
25. This is due to the wide reach of high impact low probability events. 

Using the language of reinsurance, the facultative commonality of claims 
increases with the maximum limit of the retrocession band.

26. Here we resort to the extreme value theory, rather than the approxima-
tion of the binomial distribution by the normal distribution, and hence 
are untroubled by high moments in the form of fat tails.

27. It later transpired that Steiner’s 1957 analysis had been anticipated by 
Boiteux in the appendix to his 1949 paper. While observing the proper 
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accreditation, in this book we use only the work by Boiteux that was 
known in the British academic community. We do this because the British 
economists arrived at essentially the same models and conclusions as 
Boiteux, and because the evolution of the associated ideas is accessible 
to sole Anglophones. Similarly, Crew and Kleindorfer (1995) note that 
Ault and Ekelund (1987) cite Bye (1926) as an early author. Ekelund 
and Hebert (1999) thence provide the path back to the French econo-
engineers.

28. Steiner is not so specific, and uses the term “operating cost.”
29. Steiner is not specific on the time denominator. However, implicit in his 

analysis is the fact that there are only two time periods, and they are of 
equal length. Since he assumes that charging /MWh for half the time 
covers the fixed costs, we can imply that the capacity cost is ½ /MWh 
when measured in elapsed time.

30. This technique was already in use at the time. See, for example, the 
Samuelson (1955) application from Lindahl (1919).

31. See, for example Hirshleifer (1958).
32. For example, Weisbrod (1964).
33. Samuelson (1954,1955).
34. It is commonly quoted as if it were correct. Crew and Kleindorfer point 

to the problem of the discontinuity of the the optimal price as demand 
variance rises incrementally above zero, and propose a resolution for the 
error. Our exposition of the problem with the BJ result differs to that of 
Crew and Kleindorfer.

35. This differs from most of our analysis, where the convention is that period 
1 is the peak. The BJ convention is followed for easier cross reference to 
the literature.

36. We can see in figure 3.25 that for the division between L1 and L2 to be 
at, as specified by Visscher, then we need u = 0.

37. The slope for z < 0 is the opposite of this. The derivative is discontinuous 
at z = 0.

38. The probability function for u is a singularity, or a Dirac delta, centered 
at u = 1.

39. CK assume only two cost dimensions to plant, fixed and variable, and 
inherently assume deterministic and constant demand, by ignoring cost 
functions that cross each other twice.

40. Dansby uses a shorthand by integrating across t not x in the denomina-
tor, and does not make the assumption that the (m + 1)th unit is not 
installed (not being used).

41. Although the framework allows for partial failure of individual units, 
given the perfect divisibility, we do not need to attend to the problems of 
part loading.

42. The loading order is prespecified from the variable cost stack. n is deter-
mined following the resolution of the uncertainties of demand and 
availability.
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43. We assume here a zero correlation between being called to run and avail-
able to run. In practice the correlation is high.

44. Note that Chao uses the acronym LOEP.
45. This is a common device in the calculus of traded derivatives. An excellent 

introduction to the principles can be found in Baxter and Rennie (1996).
46. The power factor is unrelated to the power factor used for reactive power 

estimation.

4 Relaxing the Hard Capacity Constraint

1. There is no “fixed operational cost,” that causes a step change as opera-
tion increases from zero.

2. For simplicity, we have simplified the terminology. Here the station trans-
former is the only connection between station and grid, and on this sta-
tion there is only one unit.

3. Panzar is unclear about whether this is average or marginal. We choose it 
to be average, for best consistency, with the Lagrangian constraint.

4. This is the Ruggles (1949) framework, described in Harris (2014), where 
fixed costs are only incurred during operation.

5 Modeling Capacity Using Derivatives

1. For example, daily peaks, weekdays, quarterly baseload.
2. Pool models generally use the cheapest to deliver method on location, 

that is, all locations get the same price. In the LMP model this applies for 
supply points in the same node

3. A “basis” risk is the difference in value between the market reference con-
tract (here the cheapest to deliver) and the actual physical delivery (here 
the grid supply point).

4. In practice they are closely related due to gaming effects.
5. See Black (1976).
6. See Harris (2006).
7. Technically the alpha is the excess return over the fair value return 

adjusted for volatility and correlation. Here we regard  in a simple sense 
ignoring these factors.

8. The retail supplier risk profile is concave on a profit versus price axis. The 
optimum hedge is to buy convex instruments, that is, options.

9. Called Bermudan because they are between the European and American 
type.

10. See in particular Clewlow and Strickland (2000), Eydeland and Wolniec 
(2003), and Geman (2005). The practicalities of pricing swing options 
are described in Harris (2006), p. 349.

11. The no arbitrage method is the foundation of derivative pricing. Here we 
have used the concept, such that a generation unit that has sold an option 
experiences no future net cash flows.
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12. Whether a risk weighting is applied depends on numeraire asset and the 
alternative strategy. In this setting we assume the presence of a forward 
market, which will be risk adjusted, and provided that forward prices are 
used for valuation, no further adjustment for market price risk (as distinct 
to volatility risk and risk that is nonlinear with respect to variance) need 
be applied.

13. This is true for low volatilities and sufficiently true generally for the pur-
poses of this argument

14. The breakdown of the Black Scholes formalism for a non-lognormal dis-
tribution has only a minor effect on this. In practice the volatility of vola-
tility has a sufficiently large value bias (“kappa convexity”) and cost of risk 
bias that it is does need to be corrected for.

6 Capacity Mechanisms

1. This is explained in Weitzman (1974).
2. See Borenstein et al. (1999), Joskow (2001), Joskow and Kahn (2001, 

2002a, 2002b).

7 The Power Complex

1. This might seem unlikely, but in fact the large industrial market is fast 
moving, and it is quite credible for the aggregate defined supplier capac-
ity to be less than the aggregate anticipated energy flow by holding back 
on booking these contracts.

2. National cost models vary. Postage stamp pricing (see Harris 2006) is 
used in Denmark, Finland, Sweden, and Spain. Distance-related pricing is 
used for national transmission in Austria, France, Germany, Netherlands, 
and Spain. In Great Britain, national transmission is distance-related for 
system entry to the national balancing point (NBP), and distance-related 
(with short-haul exceptions) from the NBP. In Great Britain, the distri-
bution charge uses sum of notional distance, with small pipes carrying a 
higher distance weighting per physical length.

3. This is a “commodity chain” view of the world rather than an “unbun-
dled third party access” view of the world. However for a centrally man-
aged system or a benign monopoly, this does not make any difference.

4. This is easily calculated in this example using Kirchoff’s laws. This is in elec-
trical textbooks and briefly summarized in Harris (2006), pp. 66, 493.

5. Note that it can be cost-effective to dump load. This is not considered 
further here.

6. “Burnt out” is a simplifying metaphor. Probably the line would sag and 
be exposed to contact with vegetation or other objects that casuse a short 
circuit.

7. See, for example, Littlechild and Skerk on the building of the “fourth 
line” in Argentina.
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