


Human–Computer Interaction Series

Editors-in-Chief

Desney Tan, Microsoft Research, USA 
Jean Vanderdonckt, Université catholique de Louvain, Belgium



HCI is a multidisciplinary field focused on human aspects of the development of 
computer technology. As computer-based technology becomes increasingly perva-
sive—not just in developed countries, but worldwide—the need to take a human-
centered approach in the design and development of this technology becomes ever 
more important. For roughly 30 years now, researchers and practitioners in compu-
tational and behavioral sciences have worked to identify theory and practice that 
influences the direction of these technologies, and this diverse work makes up the 
field of human-computer interaction. Broadly speaking it includes the study of what 
technology might be able to do for people and how people might interact with the 
technology. The HCI series publishes books that advance the science and technol-
ogy of developing systems which are both effective and satisfying for people in a 
wide variety of contexts. Titles focus on theoretical perspectives (such as formal 
approaches drawn from a variety of behavioral sciences), practical approaches (such 
as the techniques for effectively integrating user needs in system development), and 
social issues (such as the determinants of utility, usability and acceptability). 

Titles published within the Human–Computer Interaction Series are included in 
Thomson Reuters’ Book Citation Index, The DBLP Computer Science Bibliogra-
phy and The HCI Bibliography.

For further volumes:
http://www.springer.com/series/6033



Ahmed Seffah

Patterns of HCI Design and 
HCI Design of Patterns

Bridging HCI Design and Model-Driven 
Software Engineering

With Contributions by:
Peter Forbrig, Jean Vanderdonckt, Mohamed Taleb, Homa Javahery, 
Daniel Sinnig, Daniel Engelberg, Christophe Kolski, Michel Labour, 
Ashraf Gaffar and Thanh Diane Nguyen

1  3



ISSN 1571-5035
Human–Computer Interaction Series
ISBN 978-3-319-15686-6              ISBN 978-3-319-15687-3 (eBook)
DOI 10.1007/978-3-319-15687-3

Library of Congress Control Number: 2015933716

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or in-
formation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the 
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing is part of Springer Science+Business Media (www.springer.com)

Ahmed Seffah
Department of Information Management 
and Software Engineering 
Lappeenranta University of Technology 
Lappeenranta 
Finland



For Honey Mjaltë…



vii

Executive Summary

The success of a whole interactive software system, a mobile service, a Web site, 
or any new emerging tangible or ambient system can be attributed to many soft-
ware engineering (SE) technical quality concerns and human–computer interaction 
(HCI)/human factors working in harmony. Because this harmony between HCI and 
SE is hard to predict before a fully functional system is actually put to work, exten-
sive design experience and collaboration are crucial. Interaction design patterns—
also called user experience design patters, HCI or user interface (UI) design pat-
terns, or usability engineering patterns have been proposed as a means to discover, 
encapsulate, and disseminate the best HCI design experiences, hence improving the 
chances of success of new systems.

Despite the obvious and acclaimed potential to support the use of patterns within 
the whole user experience-centric design process, and the rich variety of design 
pattern collections we have today, the reuse of HCI patterns among human fac-
tors, interaction designers, and software developers has not achieved the acceptance 
and widespread applicability foreseen by design pattern pioneers in SE. It has been 
recently found in the research community that patterns are greatly underused by 
mainstream user interface and human factors designers/engineers.

The architect Christopher Alexander introduced design patterns in early 1970. 
He defines a pattern as follows, “Each pattern is a three-part rule, which expresses 
a relation between a certain context, a problem, and a solution.” He goes on to ex-
plain the nature of a pattern, “Each pattern describes a problem which occurs over 
and over again in our environment, and then describes the core of the solution to 
that problem, in such a way that you can use this solution a million times over.” 
The concept of patterns became very popular in the software engineering commu-
nity with the wide acceptance of the book “Design Patterns: Elements of Reusable 
Object-Oriented Software.”

Since then, the software engineering community has generalized this concept by 
using it in different areas including software architecture, requirements, analysis, 
and more recently in software process reengineering and improvement. During the 
last decade, the HCI community has also adopted patterns as a user interface design 
tool. Researchers describe a user interface pattern as a possible good solution to a 
common design problem within a certain context, by describing the invariant quali-



viii Executive Summary

ties of all those solutions. Using patterns should be like asking your experienced 
colleague in the next room for advice.

The concept of usability patterns has been introduced and discussed in different 
workshops. In this tutorial, we define a pattern as a proven design solution or the 
best human–computer interface design (HCID) practice for a user problem that oc-
curs in several contexts. The primary goal of an HCID pattern in general is to create 
an inventory of solutions to help user interface designers resolve UI development 
problems that are common, difficult, and frequently encountered.

The material of this book is organized around the following idea. There are not 
many specialists in user interface development, so most software user interfaces are 
designed and built by software engineers. These engineers need training in effective 
design and how to build usable and useful user interfaces, but the scarcity of user in-
terface specialists is correlated with the lack of ready-to-use design tools for user in-
terface developers unfamiliar with usability engineering. The content focuses on an 
iterative development lifecycle of practical cost-effective patterns for the analysis, 
design, implementation, and evaluation of user interfaces. There will be discussion 
of lecture material, motivating demonstrations, and reinforcing exercises. Widely 
available HCI patterns will be discussed also, with references to the best practices 
in usability engineering.

The book provides background and hands-on experience on patterns for the user 
interface world, explaining how to discover, describe, and apply patterns. It gives 
the necessary theory, but goes beyond explaining, providing hands-on experiences 
of the patterns-assisted design approach. The readers will be exposed to an innova-
tive and comprehensive framework for:

•	 Gathering the best practices in user-centered design and compiling them in the 
format of patterns

•	 Transferring the knowledge of human factors experts to software engineers un-
familiar with usability principles by means of software tools

•	 Facilitating the human-to-human communication between usability experts and 
software engineers

•	 Using XML-compliant descriptions as a high-level notation for describing, doc-
umenting, and disseminating patterns

•	 Translating XML descriptions of a pattern into reusable software components 
such as Java beans

•	 Creating a sound set of principles and techniques for both software and usability 
engineering. The pattern-based framework that we suggest is an example

•	 Guiding the evolution of software and usability engineering to assist with their 
convergence and cross-pollination

Via different industry case studies and research investigations presented by differ-
ent academic researchers and industry practitioners, this book explores two differ-
ent avenues to enhance the discovery, dissemination, and effective application of 
HCI design patterns, pattern languages, and the associated pattern-oriented design 
toolbox.



ixExecutive Summary

On the pattern user’s side (the patterns of HCI design), the book investigates the 
applicability of various HCI patterns and pattern languages in enhancing user inter-
face usability and supporting the user-centric design approach. We provide several 
examples that demonstrate how patterns can support, among others, the integra-
tion of HCI design practices and tools into HCI design artifacts (prototypes, task 
models, etc.). We look also at current software engineering methods (model driven, 
agile, and service oriented) and the commonly used HCI modeling and engineering 
techniques. We suggest several major improvements in terms of usable systems 
through informed application of HCI design patterns within these HCI modeling 
techniques and software engineering methods.

On the HCI pattern authors’ side (the HCI design of patterns), the book discusses 
the current pattern lifecycle and the format of documenting and representing HCI 
patterns. The book proposes a new integrative schema to document patterns and to 
facilitate their discovery and dissemination. The authors show how this format can 
be embedded in supporting software tools as well as how it can be grounded in HCI 
design theories. A research roadmap is also drawn by collecting and gluing together 
interrelated patterns and HCI models within a comprehensive and structured step-
by-step pattern-oriented design approach. We finally explore games as a way of 
facilitating the sharing of patterns between HCI design pattern users and authors.

Audience

This book is best viewed as an intermediate level reading because it assumes some 
general knowledge in software engineering and a basic expertise in human–com-
puter interaction design. There are no other prerequisites, other than an interest in 
the topic of user interface design and usability using patterns.

For industry practitioners, the book provides pointers to HCI pattern languages 
for user interface design, most of which are freely available on the Web. The book 
covers how to use these catalogs of patterns for the design and evaluation of a large 
variety of user interfaces including traditional graphical user interfaces (GUIs), 
Web applications, personal digital assistants (PDAs), and mobiles. Also covered are 
the uses of the tools and notations that can support the development and dissemina-
tion of HCI patterns within the model-driven engineering approaches.

For academic researchers and graduate students, the book investigates the rel-
evant pattern-assisted design theory and methodologies while exploring avenues for 
integrating HCI design patterns into the software development lifecycle and prac-
tices. The book exposes the HCI design fundamentals of patterns, and the practices 
of discovery, description, and delivery of patterns through hands-on experiences 
and real world examples. The book demonstrates how we can apply the ideas of 
HCI design to the design of HCI design patterns themselves.



x Executive Summary

Book Structure and Contributions

The book consists of 12 chapters. Except Chaps. 5, 7, and 12, all the other chapters 
are the results of 10 years of research conducted by Ph.D. and Master’s students 
under the supervision of Dr. Seffah at Concordia University, Montreal Canada.

In Chap. 1, the concept of software design pattern and HCI design pattern are 
investigated from the HCI and software engineering perspectives, contrasting two 
opposite visions.

In Chap.  2, mainly based on the Ph.D. dissertation of Homa Javahery and 
Mohamed Taleb, HCI patterns as a design tool are first reviewed from an historical 
perspective. Then, the different design approaches based on HCI patterns are 
surveyed, ranging from HCI pattern languages to pattern-oriented design.

Within the view to fostering reuse in the instantiation and transformation of user 
interface models, Chaps. 3, 4, and 5 investigate how patterns can supplement the 
model-driven user interface engineering approaches.

In Chap. 3, HCI patterns are viewed as building blocks. They can be first used 
to construct different models. Then, these models are transformed into concrete 
user interface artifacts. In particular, the chapter describes how different kinds of 
HCI design patterns can be used for building task, dialog, presentation, and layout 
models as well as concrete user interface artifacts.

In Chap. 4, we first highlight the fact that traditional interactive system architec-
tures did not provide sufficient support to usability aspects. HCI design patterns are 
proposed as a tool to model the relationships between internal software attributes 
and externally visible usability measures. We demonstrate how enhanced HCI pat-
terns with usability measures can lead to a development approach for improving 
interactive system architectures, and how these patterns can support the integration 
of usability in the software development process. This chapter includes contribu-
tions from Daniel Engelberg and Ashraf Gaffar.

Authored by Peter Forbrig and some of his students, Chap. 5 supplements the 
two previous ones. It proposes a tool for combining pattern-driven and task-based 
development. Additionally, the role of task models for smart environments is dis-
cussed. Specific task patterns for task-driven development in this domain are de-
scribed. The chapter builds on a long collaboration between Prof. Seffah and Prof. 
Forbrig in which several graduate students from Concordia and Rostock Universi-
ties have been involved.

More and more HCI designers are asked to reengineer user interfaces for accom-
modating a diversity of users while taking into account variations in geographical 
regions, population, languages, and cultures. Chapter 6 demonstrates how patterns 
can drive the whole reengineering design process when dealing with the constraints 
of each computing platform. To illustrate this idea, several examples are described 
including how to adapt a Web navigation system to different sizes and models of ab-
stract information structure (architecture) and to different contexts of use. Without 
the help of Daniel Engelberg and Homa Javahery, this chapter would not look the 
same. This chapter paved the road for the next one.



xiExecutive Summary

Chapter 7, authored by Thanh Diane Nguyen, Jean Vanderdonckt, and Ahmed 
Seffah, highlighted the fact that a good documentation of patterns is not sufficient 
for the effective use of patterns in cross-platform user interface design. Supplement-
ing pattern description with an implementation is required. The chapter introduces 
the concept generative pattern which defines the rules for implementing a UI design 
considered as a generic solution to a problem at different levels of abstraction (in 
the way that a UI could be modeled). Generative patterns also describe how to 
transform these expressions into programmable code for diverse computing plat-
forms, while being compliant with the style guide rules that may prevail for these 
platforms.

Chapter 8 is mainly based on the Ph.D. work of Mohamed Taleb under the super-
vision of Ahmed Seffah and Alain Abran from ETS Montreal, Canada. The chap-
ter details an integrative pattern-oriented and model-driven architecture (POMA). 
It integrates in a single framework all the previous research work presented in 
Chaps. 2–7. Chapter 9 illustrates how POMA can be used in the context of Web 
information systems.

The remaining chapters, Chaps. 10–12, address the design concerns of HCI pat-
terns themselves, or what we called the HCI design of patterns. Day-to-day field 
observations show that pattern users—the developers and novice designers using 
patterns to develop software products—may spend a huge amount of time just to 
find the right pattern for their use from the very large and heterogeneous collection 
of patterns that are available via different websites and databases. One key reason 
for this problem is the way patterns are documented.

Chapter 10 discusses pattern documentation concerns from the perspective of 
pattern authors and pattern users. It suggests a generalized format of pattern repre-
sentation, originally proposed by Ashraf Gaffar and Anwar Faraz in their thesis. The 
chapter shows how this format can be embedded in a database-based environment 
for facilitating pattern dissemination as well as for supporting the pattern-oriented 
design approach presented in other chapters. The underlying pattern lifecycle is also 
discussed.

Chapter 11 introduces an innovative tool, PatternCity, a serious game in which 
HCI design patterns are represented as buildings in a virtual city, and where the 
players—designers and developers—can collaboratively build and improve these 
buildings. In doing so, designers and developers are engaged in the capture and dis-
semination of patterns while having fun as game players. The game acts as a com-
munication platform between designers and developers in the stages of the patterns 
capture and dissemination lifecyle.

Michel Labour, Christophe Kolski, and Ahmed Seffah proposed a pedagogical 
pattern in Chap. 12 that aims to facilitate the learning and the effective use of HCI 
design practices captured as HCI design patterns. The proposed pedagogic pat-
tern model is based on learning theories from pedagogy and the original work of 
Christopher Alexander, the father of design patterns.



xiii

Contents

1 � The Patterns of HCI Design: Origin, Perceptions, and 
Misconceptions��������������������������������������������������������������������������������������������     1
1.1 � Original Ideas About Design Pattern���������������������������������������������������     1
1.2 � HCI Design Patterns—A Working Definition�������������������������������������     4
1.3 � Examples of Patterns in HCI����������������������������������������������������������������     5
1.4 � Pattern Benefits������������������������������������������������������������������������������������     7
1.5 � Misconceptions About Design Patterns�����������������������������������������������     9
1.6 � Why and How Design Patterns Can Make a Difference?��������������������   10
References�����������������������������������������������������������������������������������������������������   12

2 � From HCI Patterns Languages to Pattern-Oriented Design������������������   15
2.1 � Patterns as Tool to Capture Design Knowledge and Best Practices�����   15
2.2 � HCI Design Pattern Languages������������������������������������������������������������   18
2.3 � HCI Pattern Languages and the User-Centered Design Process���������   20
2.4 � Pattern Supported Approach (PSA)�����������������������������������������������������   22
2.5 � Pattern-Oriented Design�����������������������������������������������������������������������   24
2.6 � Key Contributions of the Chapter��������������������������������������������������������   31
References�����������������������������������������������������������������������������������������������������   32

3 � HCI Design Patterns as a Building Block in Model-Driven 
Engineering��������������������������������������������������������������������������������������������������   35
3.1 � Motivations������������������������������������������������������������������������������������������   35
3.2 � Patterns and User Interface Model-Driven Engineering����������������������   36
3.3 � Pattern-Driven and MBUI (PD-MBUI) Framework����������������������������   38

3.3.1 � Basic Concepts and Terminology��������������������������������������������   38
3.3.2 � PD-MBUI Major Models���������������������������������������������������������   39

3.4  Examples of Patterns����������������������������������������������������������������������������   41
3.4.1 � HCI Patterns Taxonomy and Samples�������������������������������������   41
3.4.2 � Patterns Instantiation and Application�������������������������������������   41

3.5 � Examples of Models Construction Using Patterns������������������������������   44
3.5.1 � Patterns in Task Modeling��������������������������������������������������������   44
3.5.2 � Patterns in Dialog Modeling����������������������������������������������������   46



xiv Contents

3.5.3 � Patterns in Presentation Modeling�������������������������������������������   47
3.5.4 � Patterns in Layout Management Modeling������������������������������   48

3.6 � An Illustrative Case Study�������������������������������������������������������������������   50
3.6.1 � The Task Model�����������������������������������������������������������������������   50
3.6.2 � Completing the Find Room Task���������������������������������������������   52
3.6.3 � Designing the Dialog Structure������������������������������������������������   52
3.6.4 � Defining the Presentation and Layout Model��������������������������   54

3.7 � Key Contributions of This Chapter������������������������������������������������������   56
References�����������������������������������������������������������������������������������������������������   58

4 � Adding Usability Quality Attributes into Interactive Systems 
Architecture: A Pattern-Based Approach�������������������������������������������������   59
4.1 � Software Architecture—A Definition��������������������������������������������������   59
4.2 � Drawbacks and Fundamentals�������������������������������������������������������������   61
4.3 � A Pattern-Based Integration of Usability in Architecture��������������������   62
4.4 � Identifying and Categorizing Typical Scenarios����������������������������������   63
4.5 � From Scenario to Design Patterns��������������������������������������������������������   67

4.5.1 � System Design Patterns������������������������������������������������������������   68
4.5.2 � Interaction Design (HCI) Patterns�������������������������������������������   72

4.6 � Modeling the Cause–Effect Relationships Between the 
Model and User Interface���������������������������������������������������������������������   75

4.7 � Application�������������������������������������������������������������������������������������������   78
4.8 � Key Contributions of this Chapter�������������������������������������������������������   79
References�����������������������������������������������������������������������������������������������������   80

5 � A Pattern Framework for Task Modeling in Smart Environments��������   81
5.1 � Task Modeling for User Interface��������������������������������������������������������   81
5.2 � Proposed Pattern Framework for Task Modeling��������������������������������   82
5.3 � Task Modeling Patterns Notation���������������������������������������������������������   83

5.3.1 � The Model-Based Approach We Used�������������������������������������   83
5.3.2 � Pattern Notation�����������������������������������������������������������������������   84

5.4 � Pattern References and Pattern Interfaces��������������������������������������������   90
5.4.1 � Example of a Pattern����������������������������������������������������������������   90
5.4.2 � Application of Patterns�������������������������������������������������������������   91

5.5 � Case Study: Task Modelling in Smart Environments��������������������������   96
5.6 � Summary����������������������������������������������������������������������������������������������   104
References�����������������������������������������������������������������������������������������������������   105

6 � HCI Patterns in Multiplatform Mobile Applications  
Reengineering����������������������������������������������������������������������������������������������   109
6.1 � On the Needs for Reengineering����������������������������������������������������������   109
6.2 � Steps in User Interface Reengineering�������������������������������������������������   111

6.2.1 � Reverse Engineering����������������������������������������������������������������   111
6.2.2 � Transformation�������������������������������������������������������������������������   112
6.2.3 � Forward Engineering���������������������������������������������������������������   112



xvContents

6.3 � Patterns in Reengineering��������������������������������������������������������������������   113
6.3.1 � A Brief Overview on Patterns��������������������������������������������������   113
6.3.2 � The Various Role of Patterns in the UI  

Reengineering Process�������������������������������������������������������������   114
6.4 � Examples of UI Reengineering with Patterns��������������������������������������   116

6.4.1 � Migration from Text-Based to GUI for Legacy 
Interactive Systems������������������������������������������������������������������   116

6.4.2 � Reengineering a Web-Based Interface for Small Devices�������   117
6.4.3 � Reengineering Navigation Systems to different 

Architecture Sizes��������������������������������������������������������������������   118
6.5 � Key Issues and Contributions��������������������������������������������������������������   121
References�����������������������������������������������������������������������������������������������������   121

7 � Generative Patterns for Cross-Platform User Interfaces: The 
Case of the Master-Detail Pattern�������������������������������������������������������������   123
7.1 � Introduction������������������������������������������������������������������������������������������   123
7.2 � Related Work����������������������������������������������������������������������������������������   125

7.2.1 � Master-Detail Pattern—An Operational Definition�����������������   125
7.2.2 � The M-D Pattern Usage in Pattern Collections������������������������   127
7.2.3 � The Master-Detail as a Generative Pattern������������������������������   128
7.2.4 � Previous Work on M-D Pattern������������������������������������������������   130
7.2.5 � Shortcomings and Requirements���������������������������������������������   132

7.3 � Revisiting the M-D Pattern Description����������������������������������������������   133
7.4 � Integrate the M-D Pattern in the Whole UI Development Process������   136

7.4.1 � Task Model�������������������������������������������������������������������������������   136
7.4.2 � Domain Model�������������������������������������������������������������������������   136
7.4.3 � Abstract User Interface Model�������������������������������������������������   139
7.4.4 � Concrete User Interface�����������������������������������������������������������   139
7.4.5 � The M-D Pattern Application Support Toward FUI����������������   140

7.5 � The M-D Pattern Application Support�������������������������������������������������   145
7.5.1 � Support for M-D Pattern Application��������������������������������������   146
7.5.2 � M-D Pattern Presentation for Tabbed List  

Presentation in Mobile Application�����������������������������������������   148
7.5.3 � M-D Pattern in Grouped, Ordered, or Structured 

List Presentation�����������������������������������������������������������������������   149
7.6 � Contributions of the Chapter����������������������������������������������������������������   150
References�����������������������������������������������������������������������������������������������������   151

8 � POMA: Pattern-Oriented and Model-Driven Architecture��������������������   155
8.1 � Key Concepts of POMA����������������������������������������������������������������������   155
8.2 � POMA Overview���������������������������������������������������������������������������������   157
8.3 � POMA Justifications����������������������������������������������������������������������������   157
8.4 � POMA Specifications and Representation�������������������������������������������   159

8.4.1 � The eXtensible Markup Language (XML) Notation���������������   159
8.4.2 � The Unified Modeling Language (UML) Notation�����������������   160



xvi Contents

8.5 � Architectural Levels and Categories of Patterns,  
Composition, and Mapping Rules��������������������������������������������������������   160
8.5.1 � Architectural Levels and Categories of Patterns����������������������   161
8.5.2 � Patterns Composition���������������������������������������������������������������   168
8.5.3 � Patterns Mapping���������������������������������������������������������������������   169

8.6 � Model Categorizations�������������������������������������������������������������������������   175
8.6.1 � Domain Model�������������������������������������������������������������������������   176
8.6.2 � Task Model�������������������������������������������������������������������������������   176
8.6.3 � Dialog Model���������������������������������������������������������������������������   177
8.6.4 � Presentation Model������������������������������������������������������������������   177
8.6.5 � Layout Model���������������������������������������������������������������������������   178
8.6.6 � Transformation Rules���������������������������������������������������������������   178

8.7 � Key Issues and Contributions��������������������������������������������������������������   179
References�����������������������������������������������������������������������������������������������������   179

9 � Patterns in Web-Based Information Systems�������������������������������������������   181
9.1 � Introduction������������������������������������������������������������������������������������������   181
9.2 � Design Challenges of Web Applications����������������������������������������������   183
9.3 � Web Design Principles�������������������������������������������������������������������������   185
9.4 � Case Study: A Detailed Discussion������������������������������������������������������   186

9.4.1 � Overview����������������������������������������������������������������������������������   186
9.4.2 � Defining the Domain Model����������������������������������������������������   188
9.4.3 � Defining the Task Model����������������������������������������������������������   193
9.4.4 � Defining the Dialog Model������������������������������������������������������   201
9.4.5 � Defining the Presentation and Layout Models�������������������������   205

9.5 � Key Issues and Contributions��������������������������������������������������������������   215
References�����������������������������������������������������������������������������������������������������   216

10 � HCI Pattern Capture and Dissemination: Practices, 
Lifecycle, and Tools�������������������������������������������������������������������������������������   219
10.1 � Capture and Reuse of HCI (Human–Computer Interaction)  

Patterns�������������������������������������������������������������������������������������������������   219
10.2 � A Survey on Patterns Usages���������������������������������������������������������������   221

10.2.1 � The Survey Structure and Population������������������������������������   222
10.2.2 � Analysis Method and Key Findings���������������������������������������   222

10.3 � An Extended Schema for Representing Patterns���������������������������������   225
10.3.1 � Why a Schema?����������������������������������������������������������������������   225
10.3.2 � A Schema for a Generalized Pattern Model���������������������������   226

10.4 � Modeling the Pattern Discovery and Dissemination Life Cycle���������   229
10.4.1 � The Challenges of Dissemination������������������������������������������   230
10.4.2 � The 7C’s Lifecycle for Collection and 

Dissemination of Patterns������������������������������������������������������   230
10.4.3 � Qualities of Design Patterns���������������������������������������������������   233



xviiContents

10.5 � Tools Support for Pattern Reuse and Dissemination���������������������������   234
10.5.1 � An Online Database for Patterns Documentation  

and Sharing�������������������������������������������������������������������������������   235
10.5.2 � Pattern-Based Assisted Dissemination and Design 

Environment�����������������������������������������������������������������������������   237
10.6 � Key Contributions��������������������������������������������������������������������������������   240
References�����������������������������������������������������������������������������������������������������   241

11 � PatternCity: A Gamification Approach to Collaborative 
Discovery and Delivery of HCI Design Pattern����������������������������������������   243
11.1 � Introduction������������������������������������������������������������������������������������������   243
11.2 � The Problem of Representing and Delivering HCI  

Design Patterns�������������������������������������������������������������������������������������   244
11.2.1 � Early Prototype������������������������������������������������������������������������   246
11.2.2 � Exploration Phase��������������������������������������������������������������������   247
11.2.3 � The PatternCity Concept����������������������������������������������������������   249
11.2.4 � Implementation������������������������������������������������������������������������   251

11.3 � Conclusion�������������������������������������������������������������������������������������������   255
Appendix A���������������������������������������������������������������������������������������������������   256
References�����������������������������������������������������������������������������������������������������   257

12 � A Pedagogic Pattern Model for Upskilling Software 
Engineering Students in HCI Design Practice�����������������������������������������   259
12.1 � Introduction������������������������������������������������������������������������������������������   259
12.2 � A Five-Step Approach to Using a Pedagogic Pattern Model���������������   262

12.2.1 � General Description and Context���������������������������������������������   263
12.2.2 � Spatiotemporal Boundary Markers������������������������������������������   263
12.2.3 � Overall Action Plan of Pedagogical Techniques/Tools������������   264
12.2.4 � Group Interactions Between Poles of the  

Pedagogic Triangle�������������������������������������������������������������������   265
12.2.5 � Feedback����������������������������������������������������������������������������������   265

12.3 � Case Study in HCI Design�������������������������������������������������������������������   265
12.3.1 � Protocol������������������������������������������������������������������������������������   265
12.3.2 � Spatiotemporal Boundary Markers������������������������������������������   266
12.3.3 � Action Plan of Pedagogical Techniques or Tools Used�����������   267
12.3.4 � Group Interactions at Each Pole of the Pedagogic Triangle�����  269
12.3.5 � Feedback����������������������������������������������������������������������������������   270

12.4 � Conclusions������������������������������������������������������������������������������������������   270
References�����������������������������������������������������������������������������������������������������   271



1© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_1

Chapter 1
The Patterns of HCI Design: Origin, 
Perceptions, and Misconceptions

Abstract  This chapter introduces the concept of human–computer interaction 
(HCI) design pattern—also called UI design pattern, interaction design patterns, 
HCI patterns, user experience pattern and usability engineering pattern. In this 
book, we mainly use the term HCI Design pattern, but we also use all these terms 
interchangeably to refer to HCI design pattern. HCI design patterns—have been 
introduced as a medium to capture and represent users’ experiences as well as to 
disseminate it as design knowledge. Patterns have the potential of transferring the 
design expertise of HCI designers to software engineers, who are usually unfamiliar 
with UI design and usability principles. What is the difference between design pat-
terns and HCI design patterns? Why are they important among HCI designers and 
SE practitioners? Why design patterns have been considered as a HCI design tool? 
Why and how HCI design patterns can make a difference? This chapter provides a 
first answer to these questions that are the key objectives of this book.

1.1 � Original Ideas About Design Pattern

Among the early attempts to capture and use design knowledge in the format of 
design patterns, the first major milestone is often attributed to the architect Christo-
pher Alexander, in the late 1970s. In his two books, A Pattern Language (Alexander 
1977) and A Timeless Way of Building (Alexander 1979), Alexander, the father of 
patterns, discusses the avenues to capture and use design knowledge, and presents a 
large collection of pattern examples to help architects and engineers with the design 
of buildings, towns, and other urban entities. To illustrate the concept of pattern, Al-
exander proposes an architectural pattern called Wings of Light (Alexander 1977), 
where the problem is:

Modern buildings are often shaped with no concern for natural light—they depend almost 
entirely on artificial light. But, buildings which displace natural light as the major source of 
illumination are not fit places to spend the day.

Amongst other information such as design rationale, examples, and links to related 
patterns, the solution statement to this problem is:



1  The Patterns of HCI Design 2

Arrange each building so that it breaks down into wings which correspond, approximately, 
to the most important natural social groups within the building. Make each wing long and 
as narrow as you can—never more than 25 ft wide.

According to Alexander, every pattern has three essential elements illustrated in 
Fig. 1.1, which are: a context, a problem, and a solution. The context describes a 
recurring set of situations in which the pattern can be applied. The problem refers to 
a set of forces, i.e., goals and constraints, which occur in the context. Generally, the 
problem describes when to apply the pattern. The solution refers to a design form or 
a design rule that can be applied to resolve the forces. It also describes the elements 
that constitute a pattern, relationships among these elements, as well as responsibili-
ties and collaboration.

All of Alexander’s patterns address recurrent problems that designers face by 
providing a possible solution within a specific context. They follow a similar struc-
ture, and the presented information is organized into pattern attributes, such as 
Problem and Design Rationale. Most noteworthy, the presented solution statement 
is abstract enough to capture only the invariant properties of good design. The spe-
cific pattern implementation is dependent on the design details and the designer’s 
creativity (Dix et al. 2003). In the example above, there is no mention of specific 
details such as the corresponding positions of wings to one another, or even the 
number of wings. These implementation details are left to the designer, allowing 
different instances of the same pattern solution.

In addition, Alexander (1977) recognized that the design and construction of 
buildings required all stakeholders to make use of a common language for facilitat-
ing the implementation of the project from its very beginnings to its completion. If 
organized properly, patterns could achieve this for all the participants of a design 
project, acting as a communication tool for design.

The pattern concept was not well known until 1987 when patterns appeared again 
at Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), 
the object orientation conference in Orlando. There Kent Beck and Ward Cunning-
ham (1987) introduced pattern languages for object-oriented program construction 
in a seminal paper. Since then many papers and presentations have appeared, au-
thored by renowned software design practitioners such as Grady Booch, Richard 
Helm, Erich Gamma, and Kent Beck. In 1993, the formation of Hildside Group 
(1993) by Beck, Cunningham, Coplien, Booch, Johnson and others was the first step 
forward to forming a design patterns community in the field of software engineering.

Context

Solution Problem

Fig. 1.1   Elements of design 
pattern
 



1.1  Original Ideas About Design Pattern 3

In 1995, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the 
Gang-of-Four, GoF) published “Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma et al. 1995). Gamma et al. (1995) documented 23 de-
sign patterns in their book, one example being the “Observer Pattern”. Like all 
other patterns, the observer pattern is described in a specific format, with consistent 
attributes. A short description of this pattern is given in Table 2.1. For comparative 
purposes, Table 1.1 also illustrates an organizational pattern called Review the Ar-
chitecture, by (Coplien and Schmidt 1995). Organizational patterns are also docu-
mented in a specific format, with consistent attributes. Although these attributes 
may differ from those used to describe software design patterns, the principle is 
similar. Indeed, Van Duyne et al. (2006) use the term <Background >  to refer to the 
context and Coplien and Schmidt (1995) prefer to use the <Context> .

Alexander argues that traditional architectural design practices fail to create 
products that meet the real needs of the user, and are ultimately inadequate in im-
proving the human condition. His patterns were introduced in a hierarchical col-
lection with the purpose of making buildings and urban entities more usable and 
pleasing for their inhabitants. Interestingly enough, this very same idea can be ex-
trapolated to human–computer interaction (HCI) design, where the primary goal 
is to make interactive systems that are usable and pleasing to users. This will be 
discussed further in the next section.

Table 1.1   Examples of design and organizational patterns
Design Pattern
(Gamma et al. 1995)

Organizational Pattern
(Coplien and Schmidt 1995)

Name: Observer Name: Review The architecture
Intent: Define a one-to-many dependency 
between objects. When one object changes 
state, all its dependents are notified

Problem: Blind spots occur in the architecture 
and design

Context: A software artifact whose quality is to 
be assessed for improvement
Forces: (1) A shared architectural vision is 
important, (2) Even low-level design and 
implementation decisions matter, (3) Indi-
vidual architects and designers can develop 
tunnel vision

Applicability: (1) A change to one object 
requires changing other unknown objects, (2) 
Object should be able to notify other objects, 
but you don’t want them to be tightly coupled

Solution: All architects should review all 
architectural decisions. Architects should 
review each other’s code. The reviews should 
be frequent and informal early in the project

Participants: Classes are subject, observer, 
concrete_subject, and concrete_observer

Resulting Context: The intent of this pattern 
is to increase coupling between those with a 
stake in the architecture and implementation, 
which solves the stated problem indirectly

Consequences: (1) Abstract for broadcast 
communication, (2) Support for broadcast 
communication, (3) Unexpected updates

Related Patterns: Mercenary analyst, Code 
ownership

Related Patterns: Mediator, Singleton



1  The Patterns of HCI Design 4

1.2 � HCI Design Patterns—A Working Definition

In the last few years, the HCI community has tried to address the quality of HCI 
design by promoting patterns. An HCI pattern, also called a User Interface (UI) 
patterns, have been defined as a proven solution for a common user problem that 
occurs in a specific context of work. Many HCI experts devoted themselves to the 
development of HCI pattern languages, encapsulating their knowledge in a reusable 
format for designers. Among the heterogeneous collections of patterns, “Common 
Ground” (Tidwell 1997); “Amsterdam” (Welie 1999) and “Experience” (Coram 
and Lee 1998) play a major role in this field and wield significant influence It has 
often been reported that all HCI patterns and pattern languages are useful design 
tool (Erickson 2000; Granlund et al. 2000; Sinnig 2004)

One important remark that needs to be made at the forefront of this book is that 
HCI design patterns are a great source of interest, not necessarily because they 
provide novel ideas to the software engineering community, but because of the way 
that they package already-available design knowledge. This way of presenting in-
formation to software designers and developers allows the reuse of best practices, 
and avoids reinventing the wheel each time. In addition, HCI patterns are a great 
way of incorporating usability of best practices into software development. In light 
of this, pattern use has not just gained popularity amongst software engineers, but 
is of great interest to usability engineers and specialists who are concerned with the 
construction of usable systems.

HCI design pattern has different definitions sometimes contradictory. From the 
most generic to more HCI domain dependant, a pattern is:

•	 A form, template, or model or, more abstractly, a set of rules which can be used 
to make or to generate things or parts of a thing;

•	 A general repeatable solution to a commonly occurring problem;
•	 “A three-part rule that expresses a relation between a certain context, a problem, 

and a solution” (Alexander 1979);
•	 “An invariant solution to address a recurrent design problem within a specific 

context” (Dix 1998);
•	 A general repeatable solution to a commonly-occurring usability problem in in-

terface design or interaction design;
•	 A solution to a usability problem that occurs in different contexts of use;
•	 “A successful HCI design solution among HCI professionals that provides best 

practices for HCI design to anyone involved in the design, development, evalua-
tion, or use of interactive systems” (Borchers 2001).

In essence, patterns give an invariant solution to a problem and are abstract enough 
to draw on the common elements that hold between all instances of the resulting 
solution. What is notable about design patterns is that they are both concrete and 
abstract at the same time. They are concrete enough to provide sound solutions to 
design problems, which can be put immediately into practice. On the other hand, 
they are abstract enough to be applied to different situations.



1.3  Examples of Patterns in HCI 5

HCI focuses on the design of usable systems, and HCI patterns are one of a hand-
ful of design tools that provide a means to abstract and reuse the essential details 
of successful and usable design solutions. Prior to discussing patterns in detail, it is 
important to review guidelines and claims, two other tools that have influenced and 
promoted the reuse of design knowledge in HCI.

Within the scope of this book, we define an HCI design pattern as:
A proven HCI design solution among interaction/usability/user experience professionals 
that provides best practices for HCI design to anyone involved in the design, engineering, 
evaluation, or usage of interactive system, generally characterized by its user interface.

Beyond this working definition, HCI design patterns should have the following 
properties:

•	 Are problem-oriented, yet not toolkit-specific meaning they are specific to a 
computing platform

•	 Are more concrete and easier to use for novice designers, context-oriented, and 
promote reusability

•	 Are a relatively intuitive means to document design knowledge and best prac-
tices;

•	 Are straightforward and readable for designers, developers and other stakehold-
ers, and can therefore be used for communication purposes;

•	 Come from experiments on good know-how and were not created artificially;
•	 Represent design knowledge from different views, including social and organi-

zational aspects, conceptual and detailed design;
•	 Capture essential principles of good design by telling the designer what to do and 

why, but are generic enough to allow for different implementations.

1.3 � Examples of Patterns in HCI

These properties are an especially discriminating characteristic of patterns, meaning 
a pattern is a good one if and only if it respects these properties. They allow patterns 
to give rise to different implementations of the same design solution for different 
work environments, projects, computing platforms, and type of interactive systems. 
In other words, patterns are an opportunity to bring together a UI design solution 
and a software implementation solution in the same place.

For example, different implementations are necessary to support variations in 
design look and feel, platform preference and usage context. Figure 1.2 illustrates 
how the Quick Access pattern, used to logically group the most frequently used 
pages on a website, can be implemented on three different platforms. For a web 
browser on a desktop, the Quick Access pattern is implemented as an Index Brows-
ing Toolbar; for a PDA, as a Combo Box; and for a mobile phone, as a Selection 
(Javahery and Seffah 2002).

Another example is Overview and Detail (Table  1.2), a pattern for visualiza-
tion environments. This pattern can be implemented differently by the designer, 



1  The Patterns of HCI Design 6

depending on variations in data and usage context. To illustrate, Windows Explorer 
and Google Maps demonstrate two different implementations. In Windows Explor-
er, the user is provided with two views—one which presents a hierarchical overview 
of folders, and the other, the contents of the selected folder. In Google Maps, the 

Table 1.2   HCI Pattern for visualization environments
Title Overview and detail
Context The dataset is large, too large for all the details to fit in a single view, and 

there is a need to view details about subsets of data items.
The data can be viewed at one or more levels of abstraction e.g. directories 
and files within a directory,  aggregated document content and detailed docu-
ment content, etc.
Alternatively the dataset may be large and continuous but only a subset can 
be viewed at any one time, e.g., Map data

Problem How to display the entire contents of a large dataset at once, allow users to 
explore the dataset, and at the same time show details about subsets of items

Solution Show an overview of the entire dataset together with some visual indication 
as to which part of the dataset is currently being viewed. Show details about 
subsets of items in a separate view
The overview can be a scaled version of the main view, i.e., a spatial zoom, 
or some other representation, i.e., a semantic zoom. Since the overview tends 
to display a higher number of data items than any more detailed view it is 
necessary to use simple glyphs that minimize clutter, maximize use of screen 
space and portrait the data attributes most relevant to the task

Examples Windows explorer
Google maps

Other attributes Forces, related patterns, design rationale

Fig. 1.2   Quick Access pattern

 



1.4  Pattern Benefits 7

user is also provided with two views of the data—an orienting view of the selected 
area presented as a corner map, and a detailed view of the same geographic location.

Two cardinal properties of patterns have made their use increasingly valuable for 
designers. First, patterns include user-centered values within their rationale. Sec-
ond, the concept of patterns and their associated pattern languages are generative, 
and can therefore support the development of complete designs. The remainder of 
this chapter will look at how these two properties have allowed patterns to evolve 
from a simple compilation of “best practices” to a powerful tool for designers, to be 
used as building blocks in a user-centered design process.

Some important defining characteristics and basic terminologies that are relevant 
to patterns include: identification of the problem in context and with imposed con-
straints, existence of the solution, recurrence of the problem, invariance abstrac-
tion of aspects of the solution, practicality of the solution, which needs to strike a 
balance between optimality and objectivity, and communicability of the problem 
and the process of arriving at the solution to the user. The relationship between 
some of these characteristics is illustrated in Figs. 1.2 and 1.3.

1.4 � Pattern Benefits

Out of huge literature about pattern benefits, we will briefly explore one as cited by 
Grady Booch:

…at its most mature state, a pattern is full of things that work, absent of things that don’t 
work, and revealing of the wisdom and rationale of its designers.

Being carefully stated to summarize several aspects of patterns, this statement is ac-
ceptable on its own merits. The statement focuses on the benefits that stem from the 
basic nature of pattern concept. We briefly provide some insight into this statement.

Pattern

Identity Consequence

Context

Problem

Recurrence

Solution
Practical

Apply
Environment

Communicable

Fig. 1.3   Pattern’s ingredients 



1  The Patterns of HCI Design 8

“…most mature state”: from that we can understand that patterns are mature 
artifacts; or mature solutions. The maturity process makes the difference between a 
solution and a pattern, and again makes for the goodness of patterns as “tried, tested, 
and true”. In the current shift towards mobile and pervasive computing, universal 
usability, and context-aware interfaces, pattern oriented design processes as well 
as the pattern lifecycle should be investigated, understood, and promoted within 
a pattern community to look for and validate pattern discovery and reuse. Mature 
patterns can provide robust and more predictable solutions in new paradigms than 
new, untested solutions.

“…full of things that work” indicates that a pattern is more than a simple solu-
tion. In today’s sophisticated and highly interactive software, it is not effective to 
just build the system as a collection of simple entities and assemble them accord-
ing to one’s own knowledge. We once learned machine language instruction sets 
as all what was need to solve a problem and we wrote programs that worked well. 
Since then we continuously upgraded our language approach towards higher level 
languages and more abstractions. That definitely increased our ability to address 
and solve more complex problems with relatively less effort. As the complexity 
increased, we tended to reuse existing composite structures instead of building new 
ones every time, and we are constantly looking for better aggregation and abstrac-
tion techniques, both in languages as well as in running software. Patterns enhance 
this trend—in a context sensitive paradigm—as a collection of usable solutions that 
happen to appear repeatedly together in successful applications. Being known—or 
proven—to work better than other combinations, we need to discover and collect 
them, understand why they work well as a group, and in which context, then put 
them in a suitable format that insures their effective reuse with a complete under-
standing description.

“Absent of things that don’t work” reveals another advantage of patterns, 
namely the reduction of failure by warning us of concealed traps. It is human nature 
that we prefer to focus on things that we have seen before, and ignore things that are 
unfamiliar to us. In other words, the ability to analytically observe things is biased 
towards their familiarity to the observer, and not towards their actual importance. 
Consequently, we could underestimate things that are important just because we 
don’t understand them or because we never saw them before or, even worse, be-
cause they are accompanied by other things that are more familiar to us. That might 
explain why experts do better jobs in recognizing more important things faster.

In the huge stream of knowledge that is passing by software designers, they tend 
to only catch those things that they know, and anchor them to their memory, and to 
their design. This can have a negative effect as designers may see the system from a 
programmer’s point of view or point of understanding and not from the users. That 
said, an interface designer might be tempted to think that a certain combination of 
objects will definitely work in the envisioned interface, and indeed they will work, 
only not for the end user’s satisfaction, but rather for the designer’s.

Realizing this fact has promoted the rise of usability patterns, user centered de-
sign, and quality-in-use concepts. While it is hard to explain why certain things that 
had great design were less successful than anticipated, they help guide interaction 



1.5  Misconceptions About Design Patterns 9

designers into seeing things from the user’s perspective and hence avoid things that 
“don’t work”

“…revealing the wisdom and rationale of its designers” indicates an impor-
tant facet of patterns. Many of us have had the opportunity to work with mentors 
that left great impression on us about their professional “wisdom”. We then learned 
how to follow the same approach or a similar one in other situations. While often 
implicit and hard to quantify, we use our intelligence and reasoning to acquire, 
adapt, and reuse this wisdom to new situations, or contexts. Besides giving a solu-
tion to a problem, patterns often provide other information that reveals the wisdom 
of the designer or of the solution. The other end of the spectrum would be the fa-
mous expression of “reinventing the wheel”.

1.5 � Misconceptions About Design Patterns

One possible reason that justifies why these benefits have not yet been reached 
is due to the common misconceptions about patterns in the software engineering 
community. These misconceptions have been promoted by HCI practitioners (Beck 
et al. 1996).

These misconceptions can be summarized as follows:

•	 Patterns are only object-oriented
•	 Patterns provide only one solution
•	 Patterns are implementations
•	 Every solution is a pattern

Although most of the patterns are object-oriented, patterns can also be found in a 
variety of software systems, independent of the methods used in developing those 
systems (Beck et al. 1996). Patterns are widely applicable to every software system, 
since they describe software abstractions (Beck et al. 1996).

Patterns Provide More Than One Solution  Patterns describe solutions to the 
recurring problems, but do not provide an exact solution, rather they capture more 
than one solution. This implies that a pattern is not an implementation, although it 
may provide hints about potential implementation issues. The pattern only describes 
when, why, and how one could create an implementation.

Every Solution Is Not Necessary a Pattern  Not every solution, algorithm, or heu-
ristic can be viewed as a pattern. In order to be considered as a pattern, the solution 
must be verified as a recurring solution to a recurring problem. The verification 
of the recurring phenomenon is usually done by identifying the solution and the 
problem (the solution solves the problem) in at least three different existing sys-
tems. This method of verification is often referred to as the rule of three.

The following example of (Alexander 1979) illustrates this misconception:
Window place: Consider one simple problem that can appear in the architecture. 

Let us assume that a person wants be comfortable in a room, implying that the 



1  The Patterns of HCI Design 10

person needs to sit down to really feel comfortable. Additionally, the sunlight is an 
issue, since the person is most likely to prefer sitting near the light. Thus, the forces 
of pattern in this example are:

(i)	 The desire to sit down, and
(ii)	 The desire to be near light. The solution to this problem could be that in every 

room the architect should make one window into a window place.

Not every pattern can be considered to be a good pattern. There is a set of criteria 
that a pattern must fulfill in order to be a good one. A pattern encapsulating these 
criteria is considered to be a good pattern (Gamma et al. 1995; Alexander 1977; 
Coplien and Zhao 2001):

•	 A solution (but not obvious);
•	 A proven concept;
•	 Relationships;
•	 Human component.

Thus, Gamma et al. (1995), Alexander (1977), and Coplien (2001) claim, according 
to the criteria quoted above, that a good pattern should solve a problem, i.e., pat-
terns should capture solutions, not just abstract principles or strategies. A good pat-
tern should be a proven concept, i.e., patterns should capture solutions with a track 
record, not theories or speculation. A good pattern should not provide an obvious 
solution, i.e., many problem-solving techniques (such as software design paradigms 
or methods) try to derive solutions from first principles. The best patterns generate a 
solution to a problem indirectly, which is a necessary approach for the most difficult 
problems of design. A good pattern also describes a relationship, i.e., it does not 
just describe modules, but describes deeper system structures and mechanisms. Ad-
ditionally, a good pattern should contain a significant human component (minimize 
human intervention). All software serves human comfort or quality of life; the best 
patterns explicitly appeal to aesthetic and utility.

1.6 � Why and How Design Patterns Can Make  
a Difference?

As already mentioned, a wide set of HCI patterns have been suggested. For exam-
ple, Van Duyne’s The Design of Sites (Van Duyne et al. 2003), Welie’s Interaction 
Design Patterns (Welie 1999), and Tidwell’s UI Patterns and Techniques (Tidwell 
1997) play an important role. In addition, specific languages such as Laakso’s User 
Interface Design Patterns and the UPADE Web Language (Engelberg and Seffah 
2002; Laakso 2003) have been proposed as well. Different pattern collections have 
been published including patterns for Web page layout design (Tidwell 1997; Co-
ram and Lee 1998) for navigation in large information architectures, as well as for 
visualizing and presenting information.



1.6  Why and How Design Patterns Can Make a Difference? 11

Similar to the Software Engineering, the HCI design community has also cre-
ated online forums for sharing and discussing this large diversity of patterns among 
professionals. These forums provide a common ground for anyone involved in the 
design, development, and the usability testing of highly interactive systems includ-
ing Web sites and mobile applications. As it will be demonstrated in this book, these 
HCI pattern catalogs make a difference. Furthermore, the Pattern-Oriented Design 
(POD) proposed in this book in various chapters takes HCI patterns to the next level 
of the effective and efficient use of HCI patterns.

Whether you are a software architect, HCI designer, developer, or manager, (Ya-
coub and Ammar 2003) claim that pattern-oriented design and analysis will help 
you build better software systems faster. POD is a methodology of gluing patterns 
together and deriving a design seen as a combination of HCI patterns. It is based 
on various models that detail the structure, behavior, and implementation of HCI 
design patterns. Examples of models include model as business, task, dialog, pre-
sentation, and layout models. All these types of models are necessary for the success 
of the development of any application with HCI patterns.

Up to this point, the only positive feedback is from interaction designers pre-
sented with the POD approach. People appreciate the strength of the format, and 
believe it would really support them in their work (Granlund et al. 2001). However, 
POD approach has started building a language of patterns, and many questions re-
main unsolved.

Originally, the POD approach offered conceptual design patterns, but as these 
turned out to be too abstract to be useful, and turned to the more practical subtask 
patterns. However, POD approach is striving to capture the more complex aspects 
of modeling. POD is also concerned with the robustness of the chain of patterns that 
are offered. What happens if some but not all forces of patterns apply? Can the link 
to the next level of patterns be trusted? Having a “template” component for which 
pointers are always valid. But at the same time, such approach and related patterns 
will become too unwieldy. The goal is that the user of the patterns should never be 
concerned with the construction of the patterns just to choose and to compose them 
to get a structured representation of patterns for his application—they must be easy 
and intuitive.

But above all, the POD architecture and the patterns need to be adapted through 
practical usage. Today, the patterns do not fully supply a lingua franca, but are 
more or less targeting interaction designers. The descriptions, structure, and level of 
detail must be adapted to fit actual design projects. This can only be done through 
iteration based, practical use. In addition, whether or not the patterns can hold their 
promise of facilitating communication must be evaluated.

Unequivocally, people are and will remain the “original ingredient” necessary 
for success. However, with the unified modeling language’s (UML’s) modeling 
techniques and the model-driven architecture’s (MDA’s) architectural framework, 
individuals and teams are further empowered not only to simply address change and 
complexity, but also leverage change and complexity for a competitive advantage 
by capturing and leveraging knowledge encoded in models. Furthermore, it is ex-
perience, experimentation, and application of the UML, MDA, and other associated 



1  The Patterns of HCI Design 12

standards and technologies that will enable us to realize their benefits. The UML is a 
good modeling language (Meservy and Fensternacher 2005). While it does not sup-
port complete code generation, UML does lessen the burden on programmers which 
may be used to facilitate the construction routine code, which allows programmers 
to concentrate their efforts on modeling the system’s more difficult aspects.

Among others, a new architecture of interactive system development called 
pattern-oriented and model-driven architecture (POMA) proposed in this book. It 
bridges the POD and the model-driven architecture while defining:

•	 HCI patterns and their relationships;
•	 Models and the underlying MDA architecture;
•	 Categories and composition rules of HCI patterns

One last comment and not the less important, as it will be discussed in the next 
chapter, certain issues remain to be addressed in patterns and current HCI patterns 
languages. To begin with, there are no standards for the documentation of patterns. 
The HCI community has no uniformly accepted pattern form. Furthermore, when 
patterns are documented (usually in narrative text), there are no tools to formally 
validate them. There should be formal reasoning and methodology behind the cre-
ation of patterns, and in turn, pattern languages. A language in computer science has 
syntax and semantics. None of the current pattern languages follow this principle; 
rather they tend to resort to narrative text formats as illustrated in the Experiences 
example. Finally, the interrelationships described in the patterns are static and not 
context-oriented. This is a major drawback since the conditions underlying the use 
of a pattern are related to its context of use (platforms, environment, and users).

References

Alexander C (1979) The timeless way of building. Oxford University Press, New York
Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiskdahl-King I, Angel S (1977) A pattern 

language. Oxford University Press, New York
Beck K, Cunningham W (1987) Using pattern languages for object-oriented programs. The 3nd 

Conference on Object-Oriented Programming System, Languages and Applications, Orlando
Beck K, Coplien JO, Crocker R, Dominick L, Meszaros G, Paulisch F, Vlissides J (1996) Industrial 

experience with design patterns. In Proceedings of the 18th International Conference on Soft-
ware Engineering. pp. 103–114. IEEE Computer Society Press

Borchers JO (2001) A pattern approach to interaction design. Wiley, New York
Coplien JO, Schmidt DC (1995) Pattern language of program design. Addison Wesley, Reading
Coplien J, Zhao L (2001) Symmetry breaking in software patterns. In: Butler G, Jarzabek S (eds) 

Springer lecture notes in computer science series, LNCS 2177
Coram T, Lee J (1998) A pattern language for user interface design. http://www.maplefish.com/

todd/papers/experiences. Accessed 14 April 2014
Dix A, Finlay J, Abowd and G, Beale R (1998) Human-computer interaction, 2nd edn. Prentice 

Hall, London. (ISBN 0-13-239864–8)
Dix A, Finlay JE, Abowd GD, Beale R (2003) Human-computer interaction, 3rd edn. Pearson, 

London

http://www.maplefish.com/todd/papers/experiences
http://www.maplefish.com/todd/papers/experiences


13References

Engelberg D, Seffah A (2002) A design patterns for the navigation of large information architec-
tures. 11th Annual Usability Professional Association Conference. Orlando (Florida).USA

Erickson T (2000) Lingua Franca for design: sacred places and pattern language. In Proceedings 
of Designing Interactive Systems. ACM Press, New York

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley, Reading

Granlund Åsa Lafrenière D Carr DA (2001) A pattern-supported approach to the user interface 
design process. Proceedings of HCI International 2001 9th International Conference on human-
computer interaction. August 5–10, 2001. New Orleans. USA

Hillside Group (1993) Online available at http://hillside.net/home/history. Accessed 14 April 2014
Javahery H, Seffah A (2002) A model for usability pattern-oriented design. In Proceedings of 

TAMODIA 2002. Bucharest. Romania. pp. 104–110
Laakso SA (2003) Collection of user interface design patterns. University of Helsinki, Dept. of 

Computer Science
Meservy TO, Fensternacher KD (2005) Transforming software development: an MDA Road Map. 

Computer 38(8):52–58
Sinnig D (2004) The complicity of patterns and model-based UI development. Master of Com-

puter Science, Montreal, Concordia University, 148 p
Tidwell J (1997). Common Ground: a pattern language for human-computer interface design. On-

line. http://www.mit.edu/~jtidwell/common_ground.html. Accessed 14 April 2014
van Duyne DK Landay JA Hong JI (2003) The design of sites: patterns, principles and processes 

for crafting a customer-centered web experience. Addison Wesley, Boston
van Duyne DK Landay JA Hong JI (2006) The design of sites: patterns, patterns for creating win-

ning web sites. Pearson, Upper Saddle River
Welie MV (1999) The Amsterdam collection of patterns in user interface design. Online http://

www.welie.com/patterns/. Accessed 14 April 2014
Yacoub S, Ammar H (2003) Pattern-oriented analysis and design: composing patterns to design 

software systems (1st edn; p. 416). Addison Wesley Professional, Germany, ISBN 0-201-
77640-5



15© Springer International Publishing Switzerland 2015  
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_2

Chapter 2
From HCI Patterns Languages to Pattern-
Oriented Design

Abstract  During last decade, several human–computer interaction (HCI) research-
ers and practitioners introduced their own pattern languages with specific terminol-
ogy and classification. Pattern languages have been considered as a lingua franca for 
crossing cultural and professional barriers between different stakeholders. Pattern 
languages have also been presented as building blocks at different levels of granu-
larity, which can be combined to compose new interactive systems. Despite the 
obvious and acclaimed potential for supporting design, patterns languages has not 
achieved the acceptance and widespread applicability envisaged by their authors.
This chapter provides an analysis of the facts about pattern languages and pattern-
based design approaches. Some shortcomings in the presentation and application of 
HCI patterns languages are identified and discussed under the prevailing fallacies. 
Based on the analysis of how pattern languages have been used so far, we draw 
some recommendations and future perspectives on what can be done to address the 
existing shortcomings. Making pattern languages more accessible, easily under-
standable, comparable and integratable in software, and usability in engineering 
tools can promote HCI patterns to claim the usability, usefulness, and importance 
originally envisaged for the pattern-oriented design approach.

2.1 � Patterns as Tool to Capture Design Knowledge  
and Best Practices

Historically, best practices reusability in human–computer interaction (HCI) has at-
tracted far less attention in comparison with other disciplines like software engineer-
ing, but this trend has been changing. The user interface (UI) occupies a large share 
of the total size of a typical system (Myers et al. 1993), and the design of interactive 
systems can be facilitated by applying best design practices. In current practice, 
tools for capturing and disseminating design knowledge include guidelines, claims 
and patterns (Macintosh 1992; Microsoft 1995), and within organizations (Billing-
sley 1995; Rosenzweig 1996; Weinschenk and Yeo 1995). Guidelines concentrate 
most often on the physical design attributes of the user interface, and examples are 
the Macintosh Human Interface Guidelines (Macintosh 1992) and the Java Look 
and Feel Design Guidelines (Sun Microsystems 2001). Claims (Sutcliffe 2000) are 



16 2  From HCI Patterns Languages to Pattern-Oriented Design

a means to capture HCI knowledge in association with a specific artefact and usage 
context. They provide design advice based on theoretical foundations, cognitive 
design rationale, and possible trade-offs.

In the 1990s, design guidelines became an increasingly popular way to dissemi-
nate usability knowledge and ensure a degree of consistency across applications 
(Macintosh 1992; Microsoft 1995) and within organizations (Billingsley 1995; 
Rosenzweig 1996; Weinschenk and Yeo 1995). These guidelines often took the 
form of style guides and were usually platform-specific, prescribing how different 
kinds of windows should look and interact with the user for tasks such as choos-
ing from lists or menu controls. An example of a Java Look and Feel guideline 
for a toolbar is described in Table 2.1. To date, guidelines have yet to realize their 
full potential and have had little impact on the design of user interface software 
(Gould et al. 1991; De Souza and Bevan 1990). Apart from not adequately address-
ing concerns facing designers such as which guidelines should be used under what 
circumstances (Henninger et al. 1995), studies have shown that interface guidelines 
suffer from being too abstract to be applied directly (Tetzlaff and Schwartz 1991; 
Thovtrup and Nielsen 1991). Most guidelines fall short of the goal of putting the 
accumulated knowledge of user-centered design at the fingertips of everyday de-
signers, often becoming a static document read only by human factors specialists.

Introduced in the last decade, Claims (Sutcliffe 2000) are another means to cap-
ture and disseminate HCI design knowledge. They are associated with a specific 
artefact and usage context, providing design advice and possible trade-offs. Claims 
are powerful tools because, in addition to providing negative and positive design 
implications, they contain both theoretical and cognitive rationales. They also con-
tain associated scenarios that provide designers with a concrete idea of the con-
text of use. When first introduced, claims were limited in their generality as they 
were too narrowly defined with specific scenarios and examples. Subsequently, the 
paradigm of reuse was applied to claims in order to make them more generic and 

Table 2.1   Reused claim for a safety-critical application
Reused claim: safety-critical application
Claim ID: rare event monitor
Target artifact: user interface for a chemical analysis instrument control system
Description: infrequent, dangerous events are detected by the system and a warning is issued to 
the user; in this case operational failures in a laser gas chromatograph control system
Upside: automatic detection of dangerous events relieves the user of constant monitoring; auto-
matic detection and warning gives the user time to analyze the problem
Downside: issuing too many warnings may lead the user to ignore critical events; automated 
monitoring may lead to user’s overconfidence in the automated system and decrease their situ-
ation awareness
Scenario: no events are detected in the laser emission controller or power supply, so the system 
gives an audio warning to the user and visually signals the location of the problem on a dia-
gram of the instrument



172.1  Patterns as Tool to Capture Design Knowledge and Best Practices

applicable to a wider range of application contexts. An example of such a reused 
claim for a safety-critical application is given in Table 2.1.

Although both guidelines and claims promote reuse, they have yet to be adopted 
by the mainstream designer. Studies have shown that interface guidelines suffer 
from being too abstract to directly apply (Tetzlaff and Schwartz 1991; Thovtrup and 
Nielsen 1991), while claims are too grounded in specific scenarios and examples, 
limiting their generality (Sutcliffe 2000).

HCI design patterns only capture essential details of design knowledge, and ab-
stract away from superfluous, toolkit-dependent, and platform-specific design in-
formation. In addition, the presented information is organized intuitively within 
a set of predefined attributes, allowing designers, for example, to search rapidly 
and effectively through different design solutions while assessing the relevance of 
each pattern to their design. Every pattern has three necessary elements, usually 
presented as separate attributes, which are: a context, a problem, and a solution. The 
context describes a recurring set of situations in which the pattern can be applied. 
The problem refers to a set of forces, i.e., goals and constraints, which occur in the 
context. The solution refers to a design form or a design rule that can be applied to 
resolve the problem. The solution describes the elements that constitute a pattern, 
the relationships between these elements, as well as their responsibilities and col-
laboration. Other attributes that may be included are additional design rationale, 
specific examples, and related patterns.

Patterns alleviate many of the shortcomings associated with guidelines. Above 
all, they are a good alternative to guidelines as they are problem-oriented, but not 
platform-specific. Their descriptive format, with the use of defined attributes, is 
more concrete and easier to apply for novice designers. Guidelines can be quite 
abstract and intangible when it comes to practical application, whereas patterns are 
more structured and the knowledge is placed in a context. The designer is told when, 
how, and why the solution can be applied. Since patterns are context-oriented, the 
solution is related to a specific user activity. Table 2.2 compares a guideline and a 
pattern that addresses the same problem: helping the user to find frequently used 
commands or pages. The pattern version of the description gives detailed informa-
tion about the context in which the solution can be applied.

Patterns have a more complementary association with claims; this in contrast to 
their somewhat antagonistic relationship with guidelines. Claims are tightly bound 
to specific domains of use, but contain valuable information including design trade-
offs, and a possibility is to use them to complement patterns creating a “package of 
reusable knowledge” (Sutcliffe 2000). Such detailed information can be incorporat-
ed when the pattern is instantiated to a specific context of use. Furthermore, details 
from claims about design and cognitive rationale, including scenario descriptions, 
can provide additional information to designers when combining patterns to create 
comprehensive designs.



18

2.2 � HCI Design Pattern Languages

Patterns have been organized into pattern languages. Just as words must have gram-
matical and semantic relationships with each other in order to create sentences with 
meaning, design patterns must be related to each other in order to form meaningful 
design constructs. Pattern languages are a structured method of describing good 
design practices, containing a collection of interrelated patterns that aim to dissemi-
nate the body of contained knowledge. For designers, pattern languages are a means 
to traverse common HCI problems in a logical way, describing the key character-
istics of effective solutions for meeting various design goals. Furthermore, they act 
as a communicative design tool and give rise to many different paths through the 
design activity.

2  From HCI Patterns Languages to Pattern-Oriented Design

–

–
–

–

–

–

–

–

–

Table 2.2   Guideline versus pattern for the toolbar



192.2 � HCI Design Pattern Languages

A number of pattern languages have been suggested in HCI. For example, 
(Duyne 2003) “The Design of Sites,” (Welie 1999) Interaction Design Patterns, 
and (Tidwell 1997) UI Patterns and Techniques play an important role. In addi-
tion, specific languages such as (Laakso 2003) User Interface Design Patterns and 
the UPADE Language (Engelberg and Seffah 2002) have been proposed as well. 
Different pattern collections have been published including patterns for web page 
layout design (Tidwell 1997) and (Coram and Lee 1998) for navigation in large 
information architectures, as well as for visualizing and presenting information.

Pattern languages have three essential elements. First, the language has to contain 
a standard pattern definition. One format for defining patterns was presented in the 
previous section (Table 2.1 and 2.2)—with the common attributes context, problem, 
solution, forces, related patterns, and examples. Second, the language must logically 
group patterns. Tidwell (1997) organizes her patterns according to different facets 
of UI design; categories include content organization, navigation, page layout, and 
actions/commands. Another example is the experiences pattern language (Fig. 2.1) 
developed by (Coram and Lee 1998), which concentrates on the user’s experience 
within software systems. The main focus is on the interactions between the user and 
the interfaces of software applications. Patterns are grouped according to different 
focus areas and user interface paths such as interaction style, explorable interface, 
and symbols. Third, pattern interrelationships should be described. In experiences, 

Entry Form Selection Menu Conversational
Text

Interaction Style
(1)

Explorable
Interface

(2)

Warning Sounds

Rewarding
Sounds

To more
patterns... Toolbar

Pallette

Menu Bar

Visual Symbols
(9)

Clickable
Symbols

Symbol
Explanations

Context
Sensitive Help

To more
patterns...

Single Setting
(3)

Fig. 2.1   The experiences pattern language

 



20

the relationships between the patterns are mapped and indicated by arrows, creating 
a sort of “flow” within the language. This is illustrated in Fig. 2.1.

Distinguishing between different types of relationships reinforces the genera-
tive nature of pattern languages, and supports the idea of using patterns to develop 
complete designs. However, for designers to be able to use patterns effectively and 
with efficacy to solve problems in HCI and interactive system design, patterns need 
to be intimately related to a design process. Based on the design problem, pattern 
languages should provide starting points for the designer, and a means to systemati-
cally walk the designer from pattern to pattern.

For example, in experiences, the metapattern Interaction style (denoted with 
“(1)” in Fig. 2.1) is the first pattern that leads the designer along the major paths 
through the language. The design advice (Coram and Lee 1998) for this pattern 
includes studying the user and environment, working with the user to determine 
what interaction style is best, and keeping the interface simple and consistent. This 
pattern is connected to four other patterns as indicated by arrows in Fig. 2.1 (entry 
form, selection menu, conversational text, and explorable interface). Based on the 
context of use, the designer is free to choose any of these patterns to incorporate 
into the design. This is a repetitive process as some patterns, such as Explorable 
Interface, are subsequently connected to even more suggested patterns.

Although the experiences language showed the beginnings of associating its pat-
terns to a design process, it was regrettably not developed in its entirety. In the next 
section, we will present some attempts at further linking pattern languages to the 
UI design process.

Having studied linguistics and psycholinguistics extensively, we have some dif-
ficulty with the fact that some pattern authors call their works languages. In most 
cases they are merely collections or taxonomies. Even Alexander’s own original 
work is disappointing by the standard of what we know about languages. At best 
these collections offer some primitive aspects of the combinatorial generatively 
that we see in natural language, but they are severely lacking in the syntactical 
and grammatical properties that are necessary for a language. The fact that we can 
combine two patterns together is not sufficient to make the pattern collection into a 
language. This weakness in the current pattern “languages” points to an enormous 
uncharted area of R&D for turning these collections into true languages. This lan-
guage aspect of patterns is precisely what is needed for making model-driven ap-
proaches useful in practice.

2.3 � HCI Pattern Languages and the User-Centered 
Design Process

The interface design of an interactive system can be a challenging task—and es-
pecially so when a project involves different design participants and stakeholders. 
Successful designs require individuals to communicate their concepts and ideas, 
building a common forum for the discussion of already available design practices. 

2  From HCI Patterns Languages to Pattern-Oriented Design



212.3 � HCI Pattern Languages and the User-Centered Design Process

As in any culture or society, the HCI community needs a common ground for such 
communication and dissemination of knowledge. Designers focus on the creation of 
an artifact that integrates various behavioral theories and technologies. This is done 
without regard to the evaluation of individual variables that may affect the design 
(Zimmerman et al. 2004). Usability experts take a more scientific approach, looking 
at specific behavioral and design elements that best satisfy the requirements. Soft-
ware developers are interested in finding an applicable design and implementing 
it correctly in the most efficient manner, and are often not familiar with usability 
engineering techniques and human interaction theories (Myers and Rosson 1992).

This is a proving ground for patterns as they provide a mechanism to successful-
ly integrate and satisfy the different goals of all individuals involved in the design 
process, crossing cultural and professional barriers, and overcoming limitations in 
communication. Patterns are presented consistently, are easy to read, and provide 
background reasoning. They act as a lingua franca (Erickson 2000) for design, 
which can be read and understood by all. (Erickson 2000) discusses the potential 
of this as a way of making communication in design a more “egalitarian process,” 
with the focus relying less on technical design issues, and more upon broader design 
problems and solutions. A lingua franca facilitates discussion, presentation, and ne-
gotiation for the many different individuals who play a role in designing interactive 
systems.

Acting as a communicative vehicle, pattern languages are interesting tools that 
can guide software designers through the design process. However, there exists no 
commonly agreed upon UI design process that employs pattern languages as first 
class tools. Several people have tried to link patterns to a process or framework, 
bringing some order to pattern languages, and suggesting that potentially applicable 
patterns be identified early on based on user, task, and context requirements. A 
pattern-driven design process should lead designers to relevant patterns based on 
the problem at hand, demonstrate how they can be used, as well as illustrate com-
binations with related patterns. In the following section, we describe three design 
approaches driven by patterns.

In the pattern-supported approach (PSA) framework (Fig. 3.2), HCI patterns are 
used at various levels to solve problems related to business domains and processes, 
tasks, structure and navigation, and graphical user interface (GUI) design (Granlund 
and Lafrenière 1999). The main idea that can be drawn from PSA is that HCI pat-
terns can be documented identified and instantiated according to different parts of 
the design process—giving us knowledge as early on as during system definition. 
For example, during system definition or task and user analysis, depending on the 
context of use, we can decide which HCI patterns are appropriate for the design 
phase. Although PSA shows the beginnings of associating patterns to the design 
process, pattern interrelationships and their possible impact on the final design are 
not tackled in detail.

Duyne et al. (2003) describe a second approach, where patterns are arranged into 
12 groups that are available at different levels of web design. Their pattern language 
has 90 patterns that address various aspects of web design, ranging from creating a 
navigation structure to designing effective page layouts. The order of their pattern 



22

groups generally indicates the order in which they should be used in the design pro-
cess (Table 2.3). In addition, patterns chosen from the various groups have links to 
related patterns in the language. The highest level pattern group in their scheme is 
Site Genres, which provides a convenient starting point into the language, allowing 
the designer to choose the type of site to be created. Starting from a particular Site 
Genre pattern, various lower level patterns are subsequently referenced. In this way, 
the approach succeeds not only in providing a starting point into the language, but 
also demonstrates how patterns of different levels may interact with one another.

2.4 � Pattern Supported Approach (PSA)

The “Pattern Supported Approach” (PSA) addresses patterns not only during the de-
sign phase, but also during the entire software development process. PSA (Granlund 
et al. 2001) aims to support early system definition and conceptual design through 
the use of HCI patterns. In particular, patterns have been used to describe business 
domains, processes, and tasks to aid early system definition and conceptual design. 

Table 2.3   Pattern groups ordered according to a web design process
Step Pattern groups Description Pattern examples
A Site genres Construct particular site type Personal e-commerce

Nonprofits as networks of 
help

B Creating a navigation 
framework

Choose patterns to navigate, 
browse and search on the site

Multiple ways to navigate
Task-based organization

C Creating a powerful 
homepage

Design the homepage based 
on user needs

Homepage portal
Up-front value proposition

D Writing and managing 
content

Manage content and address 
user accessibility

Page templates
Internationalized and local 
content

E Building trust and 
credibility

Address issues dealing with 
trust and credibility

Site branding
Fair information practices

F Basic e-commerce Create a good customer expe-
rience for e-commerce

Quick-flow checkout
Clean product details

G Advanced 
e-commerce

Incorporate advanced 
e-commerce features

Featured products
Cross-selling and up-selling

H Helping customers 
complete tasks

Structure your site to improve 
task completion

Process funnel
Persistent customer sessions

I Designing effective 
page layouts

Create clear, predictable and 
understandable layouts

Grid layout
Expanding width screen size

J Making site search 
fast and relevant

Design interaction so that 
user searches are effective

Search action module
Straightforward search forms

K Making navigation 
easy

Display helpful navigation 
elements

Unified browsing hierarchy
Action buttons

L Speeding up your site Incorporate patterns to make 
your site look and feel fast

Low number of files
Fast downloading images

2  From HCI Patterns Languages to Pattern-Oriented Design



232.4 � Pattern Supported Approach (PSA)

The main idea of PSA is that HCI patterns can be documented according to the 
development lifecycle. In other words, during system definition and task analysis, 
depending on the context of use, it can be decided which HCI patterns are appropri-
ate for the design phase. In contrast to POD, the concept of linking patterns together 
to result in a design is not tackled in this approach.

The PSA to the user interface design process suggests a wider scope for the use 
of patterns by looking at the overall design process. Based on the fact that the us-
ability of a system emerges as the product of the user, the task and the context of 
use, PSA integrates this knowledge in most of its patterns, dividing the forces in the 
pattern description correspondingly (i.e., describing task, user, and context forces). 
PSA provides a double-linked chain of patterns (parts of an emerging pattern lan-
guage) that support each step of the design process (Granlund et al. 2001).

Building on PSA, PSA-proposed approach highlights another important aspect 
of pattern-oriented design: pattern combination. By combining different patterns, 
developers can use pattern relationships and combine them in order to produce an 
effective design solution. As a result, patterns become a more effective vehicle that 
supports design reuse.

Up to this point, most of the work on patterns in HCI has focused on screen 
design issues. PSA addresses patterns not only at the design phase, but also before 
design (Fig. 2.2).

For example, task patterns point to Structure and Navigation Patterns, which in 
turn point to GUI Design Patterns, and vice-versa. These patterns offer a way to 
capture and communicate knowledge from previous designs (including the knowl-
edge from system definition, task/user analysis and structure and navigation de-
sign). Given a mature language of patterns belonging to the described classes, the 
PSA approach provides an entry point to this pattern language, and suggests (with-
out restricting the pattern usage) a chain of appropriate patterns at different levels 
of analysis and design (Granlund et al. 2001).

Business
Domain
Pattern

Business
Process
Pattern

Task Pattern

Subtask
Pattern

Subtask
Pattern

Information Pattern

Structure &
Navigation

Design
Pattern

GUI Design
Pattern

UI Design Pattern

System
Definition

Task/User
analysis

User
Interface

Architecture
Design

Fig. 2.2   The PSA framework with the relationships between PSA patterns

 



24

2.5 � Pattern-Oriented Design

Javahery and Seffah (2002) proposed first the design approach called Pattern-Ori-
ented Design (POD). The initial motivation for POD arose from interviews carried 
out with software developers using our patterns from the UPADE web language. 
These interviews revealed that in order for patterns to be useful, developers need to 
know how to combine them to create complete or partial designs. Providing a list 
of patterns and loosely defined relationships, as is the case for most HCI pattern 
languages, is insufficient to effectively drive design solutions. Understanding when 
a pattern is applicable during the design process, how it can be used, as well as how 
and why it can or cannot be combined with other related patterns, are key notions 
in the application of patterns.

First, POD provides a framework for guiding designers through stepwise design 
suggestions. At each predefined design step, designers are given a set of patterns 
that are applicable. This is in stark contrast to the current use of pattern languages, 
where there is no defined link to any sort of systematic process. Pattern relation-
ships are explicitly described, allowing designers to compose patterns based on an 
understanding of these relationships.

As a practical illustration, we have applied POD within the context of the UPADE 
pattern language for web design. Each pattern in UPADE provides a proven solution 
for a common usability and HCI-related problem occurring in a specific context of 
use for web applications. Patterns are grouped into three categories, corresponding 
closely to the various steps and decisions during the process of web design: archi-
tectural, structural, and navigation support. Structural patterns are further subcat-
egorized into page manager and information container patterns (Fig. 2.3 for pattern 
examples). During each design step, designers choose from a variety of applicable 
patterns: (1) architectural, relating to the architecture of the entire website; (2) page 
manager, establishing the physical and logical screen layout; (3) information con-
tainer, providing ways to organize and structure information; and (4) navigation 
support, suggesting different models for navigating between information segments 
and pages.

Taleb et al. (2006) have described five types of relationships between categories 
patterns. This multicriterion classification is based on the original set of relation-
ships (Zimmer 1994; Duyne et al. 2003; Yacoub and Ammar 2003) used to classify 
the patterns proposed in (Gamma et al. 1995). The relationships are used to compose 
a UI design, allowing designers to make suppositions such as: for some problem P, 
if we apply pattern A, then patterns B and C apply as subordinates, but pattern D 
cannot apply since it is a competitor. The relationships are explained below:

In POD, designers first should follow a POD model. We have published litera-
ture on a preliminary version of this model (Javahery and Seffah 2002). As part of 
this thesis, we refined the model and the corresponding pattern relationships. POD 
defines the overall design composition of a particular type of application, including 
a breakdown of this composition into different UI facets. The model acts as a guide 
for designers in making stepwise design decisions. To illustrate, for website design, 

2  From HCI Patterns Languages to Pattern-Oriented Design



252.5 � Pattern-Oriented Design

we define four steps that designers should follow: (1) defining the architecture of 
the site with architectural patterns, (2) establishing the overall structure of each 
page with page manager patterns, (3) identifying content-related elements for each 
page with information container patterns, and (4) organizing the interaction with 
navigation support patterns. Landay and Myers (2001) and Welie and Van Der Veer 
(2003) also propose to organize their web pattern languages according to both the 
design process and UI structuring elements (such as navigation, page layout, and 
basic dialog style).

Second, designers should exploit relationships between patterns. We have de-
scribed five types of relationships between the UPADE patterns, published in 
(Taleb et al. 2006; Javahery et al. 2006). The same relationships can easily be applied 
to other pattern libraries. This multicriterion classification is based on the original 
set of relationships (Zimmer 1994; Duyne et al. 2003; Yacoub and Ammar 2003) 
used to classify the patterns proposed in (Gamma et al. 1995). The relationships are 
used to compose a UI design, allowing designers to make suppositions such as: “For 
some problem P, if we apply Pattern X, then Patterns Y and Z apply as subordinates, 
but Pattern S cannot apply since it is a competitor.” The relationships are:

UPADE Web
Pattern Language

Structural
Patterns

Page
Managers

Architectural
Patterns

Sequential

Hierarchical

Grid

Composite

Information
Containers

Home Page Executive Summary

On Fly DescriptionFocus Page

Utility Page

Navigation Page

Tiled Page

Form

Bullet

Menu Bar

Quick Access

Convenient Toolbar

Path

MapStack Page

Index Browsing

Navigation Support
Patterns

Fig. 2.3   An overview of the UPADE pattern language

 



26

The first step of the POD process begins with the description of the architecture 
of the entire web site, and application of architectural patterns. Four basic patterns 
can be used to organize the content of a complex web site. These patterns are the 
sequence, hierarchical, grid and, composite patterns. The simplest architectural pat-
tern is the sequence pattern that organizes web application content as a sequence, or 
a linear narrative. The hierarchical pattern is a tree-based hierarchy, and is one of the 
best ways to organize complex bodies of web information. Hierarchical organiza-
tion schemes are particularly well suited to organizing a complete web site. Finally, 
the grid pattern should be used when topics and contents are fairly correlated with 
each other, and there is no particular hierarchy of importance. Procedural manuals, 
lists of university courses, or medical case descriptions are often best organized 
using grid pattern. For larger and more complex websites, a combination of these 
basic patterns is often required, referred to as the composite pattern. Figure 2.7 il-
lustrates the composite pattern. Among the many relationships that exist between 
these three basic patterns, we note that the composite pattern is superordinate to the 
sequence, grid, and hierarchical patterns.

Second, designers should exploit relationships between patterns. We have de-
scribed five types of relationships between the UPADE patterns, published in (Ta-
leb et al. 2006; Javahery et al. 2006). The same relationships can easily be applied 
to other pattern libraries. This multicriterion classification is based on the original 
set of relationships (Zimmer 1994; Duyne et al. 2003; Yacoub and Ammar 2003) 
used to classify the patterns proposed in (Gamma et al. 1995). The relationships 
are used to compose a UI design, allowing designers to make suppositions such 
as: “For some problem P, if we apply Pattern X, then Patterns Y and Z apply as 
sub-ordinates, but pattern S cannot apply since it is a competitor.” The relation-
ships are:

1.	 Similar (X, Y) if X and Y address the same problem within a similar context, by 
providing different solutions. As a result, X and Y can be replaced by each other 
in a certain composition. For example, index browsing and menu bar patterns 
are similar (Fig. 2.4). They both provide navigational support in the context of 
a medium size website, allowing users to navigate among items from the menu. 

Fig. 2.4   Comparison of similar patterns

 

2  From HCI Patterns Languages to Pattern-Oriented Design



27

Therefore, the index browsing pattern can be replaced by the menu bar pattern 
and still solve the same design problem. Moreover, because both patterns pro-
vide different solutions to the same problem, they can be used at the same time in 
a design. In our example below, each pattern is used for a distinct set of naviga-
tion items.

2.	 Competitor (X, Y) if X and Y address the same problem within a similar con-
text, by providing equivalent solutions. In other words, X and Y are competitors 
if they are similar and interchangeable. As a result, they cannot be used at the 
same time in a design. For example, the web convenient toolbar and menu bar 
patterns are competitors (see Fig. 2.5). The convenient toolbar solution states: 
“Group the most common convenient action links, such as home, site map help, 
etc.” The convenient toolbar allows a user to directly access a set of common 
services from any web page. At the same time, the menu bar pattern, when used 
as a shortcut, provides an equivalent solution: “Provide a collection of most fre-
quently visited page links.” Both patterns provide the same solution of presenting 
a group or a collection of most frequently used links. Hence, making these pat-
terns competitors.

3.	 Super-ordinate (X, Y) is a basic relationship to compose several patterns of dif-
ferent categories. A pattern X that is a superordinate of pattern Y means that Y 
is used as a building block to create X. For example, the home page pattern is a 
super-ordinate of convenient toolbar and index browsing patterns; because, both 
of them are used in home page pattern (see Fig. 2.6).

4.	 Subordinate (X, Y) if and only if X is embeddable in Y. Y is also called super-
ordinate of X. This relationship is important in the mapping process of POD. 
For example, a home page pattern is composed of several other patterns, such as 
index browsing and convenient toolbar patterns (Fig. 2.6). All patterns used in a 
home page pattern will be sub-ordinate to it.

Fig. 2.5   Two competitor patterns

 

2.5 � Pattern-Oriented Design



28

5.	 Neighboring (X, Y) if X and Y belong to the same pattern category (family). For 
example, the sequential and hierarchical patterns are neighboring as they belong 
to the category of architectural patterns.

Within the scope of the development of web-based applications using the UPADE 
language, POD allows for the exploitation of 48 pattern relationships, allowing 
even novice developers to use the underlying best practices to iterate through con-
crete and effective design solutions. As described in our pattern model, each pattern 
contains a list of related patterns. For example, the stack page pattern would contain 
the following information about related patterns: (1) super-ordinate: sequential, hi-
erarchical, grid, composite. (2) sub-ordinate: Executive summary, on fly descrip-
tion, browsing index. (3) competitor: focus page, tiled page.

Let us illustrate how pattern composition (Fig. 2.7) can be applied to our website 
design for serge. We will use the POD model in combination with the patterns se-
lected from existing collections.

During the second step, the designer applies structural patterns to establish a 
consistent physical and logical screen layout for each page that was defined in the 
previous step. This step involves applying page manager patterns, which are a type 
of structural pattern (Table 2.4). Different relationships exist between these patterns, 
and even between these patterns and those used in the previous design step. As an 
example, all the structural patterns are subordinate to the architectural patterns from 
the last step. In addition, to further illustrate some relationships, tiled page and stack 
page patterns are competitors (Fig. 2.8). This means that if you choose the tiled page 
pattern as a basic model for your home page, you cannot use the stack page pattern 

Home Page

Tangline

Quick Search

Index Browsing

About

Executive Summary

Executive Summary

Executive Summary

Maintainer Info
Disclaimer

Convenient toolbar
SearchGo Safe Place Site map

Frequently
Visited Pages

Fig. 2.6   Home page pattern with subordinate patterns

 

2  From HCI Patterns Languages to Pattern-Oriented Design



29

for any of the subsequent pages. Such knowledge can be critical for pattern users 
because if it is not taken into consideration during design, it can compromise the 
benefits of the pattern.

The third step of the POD process involves employing information container 
patterns, the second type of structural patterns, to quickly “plug in” an information 
segment for each page. Long before the web was invented, authors of technical 

Fig. 2.7   The composite pattern

 

Table 2.4   Pattern examples used in the POD process
Pattern type Pattern name Description
Structural patterns:
Page managers

Tiled page Structures and presents content to the user from 
more general to specific by dividing the page into 
several surfaces

Stack page Groups content into categories that have no obvi-
ous hierarchy; this is done by designing several 
surfaces stacked together and labeling them 
appropriately

Structural patterns:
Information 
containers

Executive summary Provides an information preview or summary for a 
certain topic of choice

On fly description Provides the user with a short description of the 
object when the mouse hovers over it

Navigation sup-
port patterns

Dynamic path Indicates the user’s entire path starting from 
when the web application was initially accessed, 
and is similar to “breadcrumbs” in other pattern 
languages

Index browsing Allows the user to easily and promptly navigate 
among important content pages, and is located 
consistently throughout the website

2.5 � Pattern-Oriented Design



30

documents discovered that users appreciate short segments of information. Such 
design practices should be embedded in the design process and presented to the 
designer. For example, for users, how long does it take to determine if a large docu-
ment contains relevant information? This question is a critical design issue, and the 
executive summary pattern (Table  2.4), which provides an information preview, 
may be an appropriate design solution.

The fourth and final step consists of building the navigation support. It is pos-
sible to consider navigation elements earlier in conjunction with other patterns. 
Navigation Support patterns suggest different models for navigating between infor-
mation segments and pages. To illustrate an example of existing relationships, the 
index browsing and dynamic path patterns (Table 2.4) are considered neighboring 
since they belong to the same design step. Although they are both used for naviga-
tion support, they are not used to solve the same usability problem and are applied 
in different contexts. Dynamic path is used to navigate between pages in an already 
taken path, and gives the user a sense of safety and control. Index browsing is gener-
ally used to navigate among important content pages, and allows the user to reach 
these pages safely.

Although all of the patterns can be applied independently, one of the main 
strengths of the POD approach is that developers can exploit pattern relationships 
and apply this knowledge to their design solutions. As an example, the executive 
summary pattern, combined with the index browsing pattern from navigation sup-
port, allows users to preview information about a certain topic before spending time 
to download, browse and, read different pages (Fig. 2.9). Executive summary is 

Fig. 2.8   Comparison of stack and tiled page patterns

 

2  From HCI Patterns Languages to Pattern-Oriented Design



312.6 � Key Contributions of the Chapter

weighted as a highly recommended subordinate pattern when pattern users try to 
use the index browsing pattern.

Knowledge about context-oriented relationships, as described above, can be very 
useful to pattern users. They can be a guide in choosing the best solution for a 
specific user problem based on a particular context. Novice designers and software 
developers who are unfamiliar with user-centered design and usability engineering 
can especially benefit from such a systematic design process.

2.6 � Key Contributions of the Chapter

Even the effort made to collect patterns by, both, practitioners and researchers, a 
universally accepted taxonomy for pattern is still missing in HCI. Patterns deal 
with different levels of abstraction and have to be considered at different stages. 
Therefore, if languages are not structured logically, it can be confusing for design-
ers trying to work with them. Some authors have suggested their own partial clas-
sifications to facilitate the use of patterns. For example, (Welie 1999) discusses 
a taxonomy based on the domain of web application, GUI, or mobile UI design 
patterns. Tidwell (1997) organizes her patterns according to different facets of UI 
design; categories include content organization, navigation, page layout, and ac-
tions/commands.

Furthermore, pattern languages need to clearly define pattern relationships. Cur-
rently, pattern interrelationships are often incomplete and not context-oriented. This 
is, by far, the most serious drawback of current languages. For example, the ex-
periences language describes some pattern relationships, but is incomplete. Other 
languages mention “related patterns” in their descriptions, but do not define the 
precise nature of the relationship. This is a limitation since relationship definitions 
are an important factor in determining the circumstances under which a pattern is 
applicable, having an effect on the pattern’s context of use.

For Laptop and PDA
platforms, the Executive

Summary pattern is
implemented in the same

manner

Fig. 2.9   The index browsing and executive summary pattern

 



32

References

Billingsley PA (1995) Starting from scratch: building a usability program at union pacific railroad. 
Interactions 2(4):27–30

Coram, T, Lee J (1998) A pattern language for user interface design. http://www.maplefish.com/
todd/papers/experiences. Accessed 14 April 2013

DSouza F, Bevan N (1990) The use of guidelines in menu interface design. Proceedings IFIP IN-
TERACT ’90, Cambridge, (27–31 August), pp 435–440

Duyne DK, Van Landay JA, Hong JI (2003) The design of sites: patterns, principles and processes 
for crafting a customer-centered web experience. Addison Wesley, Boston

Engelberg D, Seffah A (2002) A design patterns for the navigation of large information architec-
tures. 11th Annual Usability Professional Association Conference, Orlando (Florida)

Erickson T (2000) Lingua Franca for design: sacred places and pattern language. In Proceedings 
of Designing Interactive Systems. ACM, New York

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley, Boston

Gould JD, Boies SJ, Clayton L (1991) Making usable, useful, productivity-enhancing computer 
applications. Commun ACM 34(1):74–85. doi:10.1145/99977.99993

Granlund A, Lafreniere D (1999) A pattern-supported approach to the user interface design pro-
cess. Workshop report, UPA’99 Usability Professionals’ Association Conference. Scottsdale, 
AZ, June 29–July 2, 1999

Granlund Å Lafrenière D Carr DA (2001) A pattern-supported approach to the user interface de-
sign process. Proceedings of HCI International 2001 9th International Conference on Human–
Computer Interaction. (August 5–10, 2001), New Orleans

Henninger S, Haynes K, Reith MW (1995) A framework for developing experience-based us-
ability guidelines. Proceedings of the conference on designing interactive systems: processes, 
practices, methods, & techniques, Ann Arbor, pp 43–53. doi:10.1145/225434.225440

Javahery H, Seffah A (2002) A model for usability pattern-oriented design. Proceedings of TAMO-
DIA 2002, Bucharest, pp 104–110

Javahery H, Sinnig D, Seffah A, Forbrig P, Radhakrishnan T (2006) Pattern-based UI design: 
adding rigor with user and context variables. Proceedings of the TAMODIA 2006, pp 97–108

Laakso SA (2003) Collection of user interface design patterns. University of Helsinki, Dept. of 
Computer Science, Helsinki

Landay JA, Myers BA (2001) Sketching interfaces: toward more human interface design. IEEE 
Comput 34(3):56–64

Macintosh (1992) Human interface guidelines. Apple Computer Company. Publisher Addison 
Wesley Professional. Cupertino. http://interface.free.fr/Archives/Apple_HIGuidelines.pdf. Ac-
cessed 14 April 2013

Microsoft (1995) The windows interface guidelines for software design. Microsoft Press. Red-
mond. http://www.ics.uci.edu/~kobsa/courses/ICS104/course-notes/Microsoft_Windows-
Guidelines.pdf. Accessed 14 April 2013

Myers BA, Rosson MB (1992) Survey on user interface programming. Proceedings of the CHI 
1992, New York, pp 195–202

Myers BA, McDaniel RG, Kosbie DS (1993) Marquise: creating complete user interfaces by dem-
onstration. Proceedings of the INTERCHI 1993, New York, pp 293–300

Rosenzweig E (1996) Design guidelines for software products: a common look and feel or a fan-
tasy? Interactions 3(5):21–26 (Sept/Oct. 1996). doi:10.1145/234757.234759

Sun Microsystems (2001) Java look and feel design guidelines. Publisher Addison Wesley Profes-
sional. http://java.sun.com/products/jlf/ed2/book/. Accessed 14 April 2013

Sutcliffe AG (2000) On the effective use and reuse of HCI knowledge. ACM Trans Comput Hum 
Interact 7(2):197–221

Taleb M, Javahery H, Seffah A (2006) Pattern-oriented design composition and mapping for cross-
platform web applications. The XIII international workshop. DSVIS 2006, vol  4323/2007, 

2  From HCI Patterns Languages to Pattern-Oriented Design

http://www.maplefish.com/todd/papers/experiences
http://www.maplefish.com/todd/papers/experiences
http://interface.free.fr/Archives/Apple_HIGuidelines.pdf
http://www.ics.uci.edu/~kobsa/courses/ICS104/course-notes/Microsoft_WindowsGuidelines.pdf
http://www.ics.uci.edu/~kobsa/courses/ICS104/course-notes/Microsoft_WindowsGuidelines.pdf
http://java.sun.com/products/jlf/ed2/book/


33References

doi:10.1007/978-3-540-69554-7. ISBN 978-3-540-69553-0. (July 26–28 2006. Trinity College 
Dublin Ireland. Publisher Springer-Verlag Berlin Heidelberg. Germany)

Tetzlaff L, Schwartz DR (1991) The use of guidelines in interface design. Proceedings of CHI’91, 
pp 329–333

Thovtrup H, Nielsen J (1991) Assessing the usability of a user interface standard. Proceedings 
of the ACM CHI’91 Conference Human Factors in Computing Systems, New Orleans, (28 
April-2 May), pp 335–341

Tidwell J. Common Ground (1997) A pattern language for human-computer interface design. 
http://www.mit.edu/~jtidwell/common_ground.html. Accessed 14 April 2013

Weinschenk S, Yeo SC (1995) Guidelines for enterprise-wide GUI design. Wiley, New York
Welie MV (1999) The Amsterdam collection of patterns in user interface design. http://www.we-

lie.com/patterns/. Accessed 14 April 2013
Welie MV, Van der Veer Gerrit C (2003) Pattern languages in interaction design. Proceedings of 

the INTERACT 2003
Yacoub S, Ammar H (2003) Pattern-oriented analysis and design: composing patterns to design 

software systems, 1st edn. Addison Wesley Professional, p 416
Zimmer W (1994) Relationships between design patterns. In: Coplien JO, Schmidt DC (eds) Pat-

terns languages of program design. Addison-Wesley, Boston
Zimmerman J, Evenson S, Baumann K, Purgathofer P (2004) The relationship between design and 

HCI. Workshop of CHI Extended Abstracts 2004, pp 1741–1742

http://www.mit.edu/~jtidwell/common_ground.html
http://www.welie.com/patterns/
http://www.welie.com/patterns/


35© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns, 
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_3

Chapter 3
HCI Design Patterns as a Building 
Block in Model-Driven Engineering

Abstract  The main idea surrounding Model-Based User Interface (MBUI) engi-
neering is to identify useful abstractions that highlight the core aspects and prop-
erties of an interactive system and its design. These abstractions are instantiated 
and iteratively transformed at different levels to create a concrete user interface. 
However, certain limitations prevent user interface (UI) developers from adopting 
model-based approaches for UI engineering. One such limitation is the lack of 
reusability of best design practices and knowledge within such approaches. With 
a view to fostering reuse in the instantiation and transformation of models, we 
introduce patterns as building blocks, which can be first used to construct differ-
ent models and then instantiated into concrete UI artifacts. In particular, we will 
demonstrate how different kinds of patterns can be used as modules for establish-
ing task, dialog, presentation, and layout models. Starting from an outline of the 
general process of pattern application, an interface for combining patterns and a 
possible formalization are suggested. The Task Pattern Wizard, tool we developed, 
uses an eXtensible markup language (XML approach. It is built on eXtensible 
user languages (XUL)-based. This tool helps designers for selecting, adapting, 
and applying patterns to task models. In addition, an extended example will illus-
trate the intimate complicity of several patterns and the proposed model-driven 
approach.

3.1 � Motivations

The model-based methods are rarely used in practice (Trætteberg 2004). One 
major reason for this limitation is that creating various models, instantiating, 
and linking them together to create lower level models is a tedious and very 
time-consuming work, especially when most of the associated activities have to 
be done manually; tools provide only marginal support. This presents an over-
head that is unacceptable in many industrial setups with limited resources, tough 
competition, and short time-to-market. This crippling overhead can be partially 
attributed to the fact that model-based methods (MOBI-D 1999; TERESA 2004) 



3  HCI Design Patterns as a Building Block in Model-Driven Engineering36

lack the flexibility of reusing knowledge in building and transforming models. 
At best, only few approaches offer a form of copy-and-paste reuse. Moreover, 
many of these reuses involve the “reuser” merely taking a copy of a model com-
ponent and manually changing it according to the new requirements. No form 
of consistency with the original solution is maintained (Mens et al.1998). Copy-
and-paste analysis and the concept of fragmented design models are clearly in-
adequate when attempting to integrate reuse in a systematic and retraceable way 
in the model-based user interface (MBUI) development life cycle.

This practical observation motivates the need for a more disciplined form of 
reuse. We will demonstrate that the reusability problems associated with current 
model-based approaches can be overcome through patterns. Patterns have been 
mainly known as proven solutions to well-known problems that occur in different 
situations. They are usually presented as a vehicle to capture the best practices and 
facilitate their dissemination. Because patterns are context-sensitive, the solution 
encapsulated in the pattern can be customized and instantiated to the current context 
of use before being reused (Alexander 1977). Nevertheless, in order to be an ef-
fective knowledge-capturing tool in model-based approaches, the following issues 
require investigation:

1.	 A classification of patterns according to models must be established. Such a clas-
sification would distinguish between patterns that are building blocks for models 
and patterns that drive the transformation of models, as well as create a concrete 
user interface (UI).

2.	 A tool support that can assist developers when selecting the proper patterns, 
instantiating them once selected, as well as when combining them to create a 
model.

These two aspects are the essence of this chapter. After a brief overview of existing 
model-based approaches, we will introduce how we have been combining model-
based approaches and several patterns to build a framework for the development of 
user interfaces. A clear definition of the various models used and an outline of the 
UI derivation process are also given. Furthermore, we will suggest how to enhance 
this framework using patterns as a reuse vehicle. We will demonstrate how human-
computer interaction (HCI) patterns can be used as building blocks when construct-
ing and transforming the various models, and list which kind of HCI patterns lend 
themselves to this use. A brief case study is presented in order to validate and illus-
trate the applicability of our approach and the proposed list of pattern.

3.2 � Patterns and User Interface Model-Driven 
Engineering

The HCI design patterns have the potential to provide a solution to the reuse prob-
lem while acting as driving artifacts in the development and transformation of mod-
els. However, in order to facilitate their reuse and applicability, patterns should be 



373.2 � Patterns and User Interface Model-Driven Engineering

presented within a comprehensive framework that supports a structured design pro-
cess, not just according to the structure of each individual aspect of the application 
(e.g., page layout, navigation, etc.), which is currently the case for most HCI pat-
terns. This demonstrates the virtue of using model-based design approach in com-
parison to manual design practices. (Gaffar et al. 2005) is one attempt to seemingly 
integrate patterns in the design process. Based on the Usability Patterns-Assisted 
Design Environment (UPADE) Web Language, the approach aims to demonstrate 
when a pattern is applicable during the design process, how it can be used, as well as 
how and why it can or cannot be combined with other related patterns. Developers 
can exploit pattern relationships and the underlying best practices to devise concrete 
and effective design solutions.

Similarly, the “Pattern Supported Approach” (PSA) (Granlund and Lafrenière 
1999) addresses patterns not only during the design phase, but throughout the entire 
software development process. In particular, patterns have been used to describe 
business domains, processes, and tasks to aid in early system definition and con-
ceptual design. In PSA, HCI patterns can be documented according to the develop-
ment lifecycle. In other words, during system definition and task analysis, it can 
be determined which HCI patterns are appropriate for the design phase, depending 
on the context of use. However, the concept of linking patterns together to put up a 
design is not tackled.

In addition, Molina et al. (2002) found that existing pattern collections focus on 
design problems, and not on analysis problems. As a result, he proposes the JUST-
user interface (JUST-UI) framework, which provides a set of conceptual patterns 
that can be used as building blocks to create UI specifications during analysis. In 
particular, conceptual patterns are abstract specifications of elemental UI require-
ments, such as: how to search, how to order, what to see, and what to do. Molina 
also recognized that the relatively informal descriptions of patterns used today are 
not suitable for tool use. Within the Just-UI framework, a fixed set of patterns has 
been formalized so that they can be processed by the “OliverNova” tool (Oliver-
Nova 2004). Eventually, the JUST-UI framework will use code generation to derive 
a UI implementation based on the analysis model.

Breedvelt et al. (1997) discuss the idea of using task patterns to foster design 
knowledge reuse while task modeling. Task patterns encapsulate task templates for 
common design issues. This means that whenever designers realize that the issue 
with which they are contending is similar to an existing issue that has already been 
detected and resolved, they can immediately reuse the previously developed solu-
tion (as captured by the Task patterns). More specifically, Task patterns are used 
as templates (or task building blocks) for designing an application’s task model. 
According to Breedvelt, another advantage of using Task patterns is that they fa-
cilitate reading and interpreting the task specification. Patterns can be employed as 
placeholders for common, repetitive task fragments. Instead of thinking in terms of 
tasks, one can think in terms of patterns at a more abstract level. Such an approach 
renders the task specification more compact and legible.



3  HCI Design Patterns as a Building Block in Model-Driven Engineering38

However, Breedvelt et al. (2007) consider Task patterns as individual static en-
capsulations of a (task) design issue in a particular context of use. Concepts for a 
more advanced form of reuse, including customization and combination, are not 
presented. The (Gaffar et al. 2005) approach has highlighted another important as-
pect of the pattern concept: pattern combination. By combining different patterns, 
developers can utilize pattern relationships and combine them in order to produce 
an effective design solution. We will consider this principle in Sect. 3.5.2 and sug-
gest an interface for combining patterns. As a result, patterns become a more effec-
tive vehicle for reuse.

3.3 � Pattern-Driven and MBUI (PD-MBUI) Framework

3.3.1 � Basic Concepts and Terminology

PD-MBUI (Pattern-Driven and MBUI) aims to reconcile and unify in a single 
framework the pattern-driven and model-based approaches, two powerful methods 
for UI and software engineering as in Fig. 3.1:

1.	 A library of HCI patterns that can be used, as building blocks, in this construc-
tion and transformations. A taxonomy and examples of patterns are given in 
Sect 3.3.2.

2.	 A method of identifying, instantiating, and applying patterns during the construc-
tion and refinement of these models. This method is summarized in Sect. 3.4.1.

3.	 A set of models including domain, task, user, environment, dialog, presentation, 
and layout models. These models as well as the process of constructing them are 
detailed in Sect. 3.5.2.

4.	 A tool, the Pattern Wizard, which helps user interface developers in selecting 
and applying patterns when constructing and transforming the various models 
to a concrete user interface. This tool aims to combine all the ingredients of the 

HCI
Pattern
Library

Models

Dialog

Layout

Patterns Wizard

Presentation

TaskUserDomain

Environment

UI
Designers

Fig. 3.1   PD-MUI framework

 



393.3 � Pattern-Driven and MBUI (PD-MBUI) Framework

PD-MBUI in a single and integrative framework for the engineering of pattern-
driven and MBUI’s.

Within our approach, we will be using the following notions as defined here:

1.	 UI or HCI design patterns as proven solutions to a user problem that occurs in 
various contexts and projects. We take for granted that the proposed library of 
patterns and the pattern-driven approach are valid. This aspect has been largely 
debated by others including our preliminary work (Gaffar et  al. 2005; Sinnig 
2004). An example of pattern is Multi-Value Input Form (Paternò 2000). This 
task pattern provides a solution to the typical user problem of entering a number 
of related values. These values can be of different data types, such as “date,” 
“string,” or “real.”

2.	 User interface component or widgets such as buttons, windows, and dialog 
boxes are generally defined as object–oriented classes in UI toolkits such as Java 
swing, etc.

3.	 An artifact is an object that is essential in order for a task to be completed. The 
state of this artifact is usually changed during the course of the task performance. 
In contrast to an artifact, a tool is merely an object that supports performing a 
task. Such a tool can be substituted without changing the task’s intention (Sinnig 
2004).

4.	 Within our framework, several notations have been used including XUL, Unified 
Modeling Language (UML) as well as Concurrent Task Tree (CTT). We feel it 
is beyond the scope of this work to deal with these notations in any substantive 
detail. Readers unfamiliar with these notations can find more details at (XUL 
2014), (OMG 2009) and CTT Environment (CTTE) (Paternò 2005).

3.3.2 � PD-MBUI Major Models

Figure 3.2 depicts the models considered in this book within our approach. We have 
selected these models based on the fact that they have been largely cited in scien-
tific literature (Puerta 1997; Schlungbaum 1996; Trætteberg 2002). We put in some 
effort to define them in such a way that they do not overleap and that the flow of 
transformation is also clearly stated, as detailed in Fig. 3.1. This is fundamental in 
order to know precisely which type of pattern is needed and when it applies.

The process of constructing these variety of models distinguishes three major 
phases.

The starting point of phase I is the domain model. This model encapsulates the 
important entities of an application domain together with their attributes, methods, 
and relationships (Schlungbaum 1996). Within the scope of UI development, it de-
fines the objects and functionalities accessed by the user via the interface. Such a 
model is generally developed using the information collected during the business 
and functional requirements stage. Two other models are then derived from this 
model: user and task models.



3  HCI Design Patterns as a Building Block in Model-Driven Engineering40

The user model captures the essence of the user’s static and dynamic character-
istics. Modeling the user’s background knowledge is useful when personalizing the 
format of the information (e.g., using an appropriate language that is understood by 
the user). The task model specifies what the user does or wants to do, and why. It 
describes, an abstract meaning without any knowledge of the tasks that users per-
form while using the application, as well as how the tasks are interrelated. In simple 
terms, it captures the user tasks and system behavior with respect to the task set. 
Beside natural language, notations such as Goals, Operators, Methods, and Selec-
tion rules (GOMS) and CTT are generally used to document task models. The task 
model is constructed in mutual relationship to the user model, representing the func-
tional roles played by users when accomplishing tasks, as well as their individual 
perception of the tasks. The user model is also related to the domain since the user 
may require different views of the same data while performing a task. Moreover, a 
relationship must be formed between the domain model and the task model, because 
objects of the domain model may be needed in the form of artifacts and tools for 
task accomplishment.

The second stage starts with the development of the environment model. This 
model specifies the physical and organizational context of interaction (Trætteberg 
2002). For example, in the case of a mobile user application, an environmental 
model would include variables such as the user’s current location, the constraints 
and characteristics presented by this location, the current time and any trigger con-
ditions specified or implied by virtue of the location type. This model also describes 
the various computer systems that may run a UI (Prasad 1996). The platform model 
describes the physical characteristics of the target platforms, such as the target de-

Domain

User
Task

Environment

Dialog

LayoutPhase II

Phase II

Phase I

Presentation

Fig. 3.2   Models and their relationships in the PD-MBUI framework

 



41

vices’ input and output capabilities. Based on this model and those developed in the 
first stage, the dialog and the presentation model can be developed.

The dialog model specifies when the end user can invoke functions and interac-
tion media, when the end user can select or specify inputs, and when the computer 
can query the end user and present information (Puerta 1997). In particular, this 
model specifies the user commands, interaction techniques, interface responses, and 
command sequences permitted by the interface during user sessions. The presen-
tation model describes the visual appearance of the user interface (Schlungbaum 
1996). The presentation model exists at two levels of abstraction: the abstract and 
the concrete presentation model. The former provides an abstract view of a generic 
interface, which represents a corresponding task and dialog model.

In the last stage, the “Layout Model” is realized as a concrete instance of an 
interface. This model consists of a series of UI components that defines the visual 
layout of UI and the detailed dialogs for a specific platform and context of use. 
There may be many concrete instances of layout model that can be derived from a 
presentation and dialog model.

3.4  Examples of Patterns

3.4.1 � HCI Patterns Taxonomy and Samples

Figure 3.3 portrays which types of patterns are used to construct and transform each 
type of model and how this happens in the model-driven engineering process.

The following are the major types of patterns we considered:

1.	 Task and feature patterns are used to describe hierarchically structured task frag-
ments. These fragments can then be used as task building blocks for gradually 
building the envisioned task model.

2.	 Patterns for the dialog model are employed to help with grouping the tasks and 
to suggest sequences between dialog views.

3.	 Presentation patterns are applied to map complex tasks to a predefined set of 
interaction elements that were identified in the presentation model.

4.	 Layout patterns are utilized to establish certain styles or “floor plans” which are 
subsequently captured by the layout model.

The following Table 3.1 summarizes some of the considered patterns.

3.4.2 � Patterns Instantiation and Application

In this book, we stated that patterns can be used as building blocks for different 
models throughout the UI development approach. For the construction of models, 

3.4 � Examples of Patterns



3  HCI Design Patterns as a Building Block in Model-Driven Engineering42

the following process, which is a part of the PD-MBUI, was proposed to instantiate 
and apply patterns:

1.	 Identification: A subset M′ of the target model M is identified thus: M′ ⊇ M. This 
relationship should reduce the domain size and help focus attention on a smaller, 
more pertinent subset for the next step.

2.	 Selection: An appropriate pattern P is selected to be applied to M’. By focusing 
on a subset of the domain, the designer can scan M′ more effectively to iden-
tify potential areas that could be improved through patterns. This step is highly 
dependent on the experience and creativity of the designer.

3.	 Adaptation: A pattern is an abstraction that must be instantiated. Therefore, this 
step has the pattern P adjusted according to the context of use, resulting in the 
pattern instance S. In a top–down process, all variable parts are bound to specific 
values, which yield a concrete instance of the pattern.

Fig. 3.3   PD-MUI framework revisited (putting it all together) Patterns as building blocks within 
a model based methodology

 



43

4.	 Integration: The pattern instance S is integrated into M′ by connecting it to the 
other elements in the domain. This may require replacing, updating or otherwise 
modifying the other objects to produce a seamless piece of design.

Variables are used as placeholders for the context of use. During the process of pat-
tern adaptation, these placeholders are replaced by concrete values representing the 
particular consequences of the current context of use.

Pattern name Type Problem
Browse Task The user needs to inspect an information 

set and navigate a linear ordered list of 
objects such as images or search results.

Dialog Task The user must be informed about 
something that requires attention. The 
user must make a decision that will have 
an impact on further execution of the 
application, or the user must confirm the 
execution of an irreversible action.

Find Task The user needs to find any kind of infor-
mation provided by the application.

Login Task The user needs to be authenticated in 
order to access protected data and/or to 
perform authorized operations.

Multi-value input form 
(Paternò 2000)

Task The user needs to enter a number of 
related values. These values can be of dif-
ferent data types, such as “date,” “string” 
or “real.”

Print object Task The user needs to view the details related 
to a particular information object

Search Task The user needs to extract a subset of data 
from a pool of information.

Wizard (Welie 2004) Dialog The user wants to achieve a single goal, 
but several consecutive decisions and 
actions must be carried out before the 
goal can be achieved.

Recursive activation (Paternò 
2000)

Dialog The user wants to activate and manipulate 
several instances of a dialog view.

Unambiguous format Presentation The user needs to enter data, but may 
be unfamiliar with the structure of the 
information and/or its syntax.

Form Presentation The user must provide structured textual 
information to the application. The data 
to be provided is logically related.

House style (Tidwell 2004) Layout Applications usually consist of several 
pages/windows. The user should have the 
impression that it all shares a consis-
tent presentation and appears to belong 
together.

Table 3.1   Pattern summary

3.4 � Examples of Patterns



3  HCI Design Patterns as a Building Block in Model-Driven Engineering44

Figure 3.4 shows the interface of “Pattern A”. The UML notation for parametric 
classes is used to convey that the pattern assumes two parameters (variables x and 
y). In order to instantiate the pattern, both variables must be assigned concrete val-
ues. In practical terms, the interface informs the user of the pattern that the values 
for variables x and y must be provided in order for the pattern to be used. In the 
figure, pattern A has been instantiated, resulting in “Pattern A Instance”. In addition, 
UML stereotypes are used to signal the particular type (role) of the pattern.

Patterns are often implemented using other patterns, i.e., a pattern can compose 
of several subpatterns. This pattern–subpattern relationship, based on the concept 
of class aggregation, is presented in Fig. 3.3. Pattern A consists of the subpatterns 
B and C. If we place patterns in this kind of relationship, special attention must be 
given to the pattern variables. A variable defined at the super-pattern level can affect 
the variables used by the subpatterns.

In Fig. 3.5, variable x of pattern A affects the variables yy and zz of subpatterns 
B and C. During the process of pattern adaptation, variables yy and zz will be bound 
to the value of x. As such, we observe how modifying a high-level pattern can affect 
all subpatterns.

3.5 � Examples of Models Construction Using Patterns

In previous sections of this book, it was shown how patterns can generally be ap-
plied to models and how they can be aggregated. This section provides an in-depth 
discussion of how different categories of patterns can be used together when con-
structing the task, dialog, presentation, and layout model.

3.5.1 � Patterns in Task Modeling

Patterns for the task model describe generic reusable task fragments that can serve 
to establish the task model. In particular, instances of task patterns ( i.e., already 

<<Type>>
Pattern A

x : =Value 1
y : =Value 2

<<Type>>
Pattern A Instance

Variable x
Variable y

Fig. 3.4   Interface of a 
pattern
  



453.5 � Examples of Models Construction Using Patterns

customized patterns) can be used as building blocks for the task model. Examples 
of such patterns for the task model include: Find something, Buy something, Search 
for something, Login to the system or Fill out an input form.

A typical example of a task pattern is Search (Gaffar et al. 2005). The pattern 
is suitable for interactive applications that manage considerable amounts of user-
accessible data. The user wants to have fast access to a subset of this data.

As a solution, the pattern suggests giving the user the possibility to enter search 
queries. On the basis of these queries, a subset of the searchable data ( i.e., the result 
set) is calculated and displayed to the user. The Multi-Value Input Pattern (Paternò 
2000; Sinnig 2004) may be used for the query input. After submission, the results 
of the search are presented to the user and then they can either be browsed ( Browse 
Pattern; Sinnig 2004) or used as input for refining the search.

Figure  3.6 illustrates how the Search pattern is composed of the subpatterns 
Multi-Value Input and Browse, as well as of recursive references to itself ( Search). 
It also demonstrates how the variables of each pattern are interrelated. The value of 
the “Object” variable of the Search Pattern will be used to assign the “Object” vari-
able of the Browse and Sub-Search Patterns. In addition, a subset of the “Search” 
object attribute is used to determine the various “Input Fields” of the Multi-Value 
Input Pattern, which is in turn responsible for capturing the search query. During 
the adaptation process, variables of each pattern must be resolved in a top-down 
fashion and replaced by concrete values.

The suggested task structure of the Search Pattern is illustrated in Fig. 4.7. In or-
der to apply and integrate the task structure, the pattern and all its subpatterns must 
be instantiated and customized to the current context of use (Fig. 3.7).

The top-down process of pattern adaptation can be greatly assisted by tools 
such as wizards. A wizard moves through the task pattern tree and prompts the user 
whenever it encounters an unresolved variable. The Sect. 4.6 introduces the Task 

Variable x

<<Type>>
Pattern A

<<Type>>
Pattern C

Variable zz := xVariable yy := x

<<Type>>
Pattern B

Fig. 3.5   Pattern aggregation

 



3  HCI Design Patterns as a Building Block in Model-Driven Engineering46

Pattern Wizard, a tool that assists the user in selecting, adapting and integrating task 
and feature patterns.

3.5.2 � Patterns in Dialog Modeling

Our framework’s dialog model is defined by a so-called dialog graph. Formally 
speaking, the dialog graph consists of a set of vertices (dialog views) and edges 
(dialog transitions). Creating the dialog graph is a two-step process: first, related 
tasks are grouped together into dialog views. Second, transitions from one dialog to 
another, as well as trigger events are defined.

In order to foster establishing the dialog model, we believe that patterns can help 
with both grouping tasks to dialog views and establishing the transition between the 
various dialog views.

A typical dialog pattern is the Recursive Activation Pattern (Breedvelt et  al. 
1997). This pattern is used when the user wishes to activate and manipulate several 
instances of a dialog view. In practical terms, it suggests a dialog structure where, 

Search

Show Results

Submit Browse

III

SearchMulti - Value Input Pattern

>>

>>

Enter Query

Fig. 3.7   Structure of the Search Pattern

 

Object

Search

Input Fields := SubSet (Object Attributes)

Multi-value Input Browse Search*

Object := Object Object := Object

Fig. 3.6   Interface and composition of the Search Pattern

 



47

starting from a source dialog, a specific creator task can be used to instantiate a copy 
of the target dialog view. The pattern is applicable in many modern interfaces where 
several dialog views of the same type and functionality are concurrently accessible. 
A typical example of an application scenario is an e-mail program that supports 
editing several e-mails concurrently during a given session.

In the left pane of Fig. 3.8, we observe that in order to adapt (instantiate) the pat-
tern, the source dialog view and the corresponding creator task, as well as the target 
dialog view must all be set. A specific instance of the pattern is shown in the right 
part of Fig. 3.8, simulating the navigational structure of Microsoft Outlook when 
composing a new message. For this particular example, the visual notation of a tool 
called the Dialog Graph Editor (Sinnig 2004) was used.

3.5.3 � Patterns in Presentation Modeling

The abstract delineation of a user interface is determined in the presentation model 
through a defined set of abstract UI elements. Examples of such UI elements are 
Buttons, Lists or more complex aggregated elements such as trees or forms. Note 
that all interaction elements should be described in an abstract manner without ref-
erence to any particular interface components. Likewise, style attributes such as 
size, font, and color remain unset, pending definition by the layout model. Abstrac-
tion is a key to the success of presentation model as it frees the designers from un-
needed details and allows for more efficient reuse on different platforms

Patterns for the presentation model can be applied when describing the abstract 
UI elements. However, they can be more effective when applied for defining and 
mapping complex tasks (such as advanced search) to a predefined set of interaction 

Source Dialog View
Creator Task
Target Dialog View

<<Dialog>>
Recursive Activation

Compose Message

Outlook - Main Screen

New

Fig. 3.8   Interface and “Microsoft Outlook” instance of the Recursive Activation Pattern

 

3.5 � Examples of Models Construction Using Patterns



3  HCI Design Patterns as a Building Block in Model-Driven Engineering48

elements. In this many-to-many interaction, patterns can provide insight into proven 
solutions ready to reuse.

One illustrative example of a presentation pattern is the Form Pattern. It is ap-
plicable when the user must provide the application with structural and logically 
related information. In Fig. 3.9, the interface of the Form Pattern is presented, in-
dicating that the various Input Fields to be displayed are expected as parameters. It 
is also shown that the Unambiguous Format Patterns can be employed in order to 
implement the Form Pattern.

In particular, the Unambiguous Format Pattern is used to prevent the user from 
entering syntactically incorrect data. In conjunction with the Form Pattern, it de-
termines which interaction elements will be displayed by the input form. XUL code 
will be produced for the most suitable interaction element, depending on the data 
type of the desired input as shown in Fig. 3.10. Three different instances of the Un-
ambiguous Format Pattern are presented.

3.5.4 � Patterns in Layout Management Modeling

In this step, the abstract UI elements of the presentation are physically positioned 
following an overall layout or floor plan, which yields the layout model. Further-
more, the visual appearance of each interaction element is specified by setting fonts, 
colors, and dimensions.

Input Fields

<<Presentation>>
From

<<Presentation>>
Unambiguous Format

Datatype := Datatype (Input Field)

Fig. 3.9   Interface of the Form Pattern

 



49

There are two different ways in which patterns can be employed when defining 
the layout model: (1) by providing a floor plan for the UI and (2) by setting the style 
attributes of the various widgets of the UI. The proposed solutions and the criteria of 
selecting between different designs depend—among other factors—on the context 
of use, nature of the application and satisfaction of the users. Aesthetic and human 
behavior aspects can complicate the design and make the final results unpredictable. 
Patterns come in handy as shortcuts to analyzing some of these considerations by 
offering solutions that have been used before with good results.

The layout planning consists of determining the composition of the UI by pro-
viding a floor plan. Examples of such patterns are the Portal Pattern (Welie 2004), 
Card Stack (Tidwell 2004), Liquid Layout (Tidwell 2004) and Grid Layout (Welie 
2004). Figure 3.11 presents the floor plan suggested by the Portal Pattern, which is 
applicable for web-based UIs.

In the style planning, Layout Patterns are beneficial when the style attributes of 
the various widgets of the UI must be configured. For instance, the House Style Pat-
tern suggests maintaining an overall look-and-feel for each page or dialog in order 
to mediate the impression that all pages share a consistent presentation and appear 
to belong together.

Unambiguous Format Pattern
D
at
at
yp

e

(text field)

Datatype = Data (3 selection lists)

(check box)

Jauary 20047

Datatype = Boolean

Datatype = Strin
g

Velocity

Fig. 3.10   The Unambiguous Format Pattern with three unique instances

 

Substitute-Navigation
Logo

Navigation

Navigation Content

Footer, Disdaimer, etc.

Contextual
Navigation

Search

Fig. 3.11   Floor plan sug-
gested by the Portal Pattern
 

3.5 � Examples of Models Construction Using Patterns



3  HCI Design Patterns as a Building Block in Model-Driven Engineering50

3.6 � An Illustrative Case Study

The management of a hotel is going to be computerized. The hotel’s main business 
is renting out rooms of various types. There are a total of 40 rooms available, priced 
according to their amenities. The hotel administration needs a tool capable of book-
ing rooms for specific guests. More specifically, the application’s main functional-
ity consists of adding a guest to the internal database and booking an available room 
for a registered guest. Moreover, only certified guests have access to the main func-
tionality of the program. Eventually, the application would be running on windows, 
icons, menus, pointer (WIMP)-based systems.

Note that only a simplified version of the hotel management system will be de-
veloped. The application and corresponding models will not be tailored to the dif-
ferent platform and user roles. The main purpose of the example is to show that 
MBUI design consists of a series of model transformations, in which mappings 
from the abstract to the concrete models must be specified. Furthermore, it will be 
shown how patterns are used to establish the various models, as well as to transform 
one model into another. A summary of all patterns used in this article can be found 
in Table 4.2. For a more detailed description, refer to (Sinnig 2004).

3.6.1 � The Task Model

Figure 3.12 depicts the coarse-grained task structure of the envisioned hotel man-
agement application. Only high-level tasks and their relationships are portrayed. 
An impression about the overall structure and behavior of the applications is given. 
The structure provided is relatively unique for a hotel management application; the 

Fig. 3.12   Course-grained task model of the hotel management application

 



513.6 � An Illustrative Case Study

concrete “realization” of the high-level tasks has been omitted. The Pattern Task 
symbol is used as a placeholder representing the suppressed task fragments.

A large part of many interactive applications can be developed from a fixed 
set of reusable components. If we decompose the application far enough, we will 
encounter these components. In the case of the task model, the more the high-level 
tasks are decomposed, the easier the reusable task structures (that have been gained 
or captured from other projects or applications) can be employed. In our case, these 
reusable task structures are documented in the form of patterns. This approach en-
sures an even greater degree of reuse, since each pattern can be adapted to the cur-
rent context of use.

The main characteristics of the envisioned hotel management application, mod-
eled by the task structure of Fig. 3.13, can be outlined as follows:

Accessing the application’s main functionality requires logging in to the system 
(the login task enables the management task). The key features are “adding a guest” 
by entering the guest’s personal information and “booking a hotel room” for a spe-
cific guest. Both tasks can be performed in any order. The booking process consists 
of four consecutively performed tasks (related through “Enabling with Information 
Exchange” operators):

1.	 Locating an available room.
2.	 Assigning the room to a guest.
3.	 Confirming the booking.
4.	 Printing a confirmation.

As shown in Fig. 3.12, the Login, Multi-Value Input Form, Find and Dialog patterns 
can be used in order to complete the task model at the lower levels. In the next sec-
tion, the application of the Find Pattern will be described in greater detail.

<<Feature>>
Agent

Object := Information

Information

<<Task>>
Find

<<Feature>>
Browse

<<Feature>>
Search

Object := Information Object := Information

Fig. 3.13   Interface and structure of the Find Pattern

 



3  HCI Design Patterns as a Building Block in Model-Driven Engineering52

3.6.2 � Completing the Find Room Task

The Find Pattern is essential for completing the “Find Room” task. In contrast to 
the patterns already used in this example, the Find Pattern suggests a number of 
options rather than providing a task structure. Figure 3.13 illustrates how finding an 
object can be performed by searching, browsing or employing an agent, depending 
on the pattern.

Within the scope of the hotel management application, the task of finding an 
available room should only be performed by searching with the help of query pa-
rameters. As shown in Fig. 3.13, the “Information” variable of the Find Pattern (in 
this case, a placeholder for the “Hotel Room” value) is used to assign the “Object” 
variable of the Search Pattern.

The Search Pattern suggests a structure in which the search queries are entered, 
and then the search results are displayed. Again, the Multi-Value Input Form Pat-
tern is used to model the tasks for entering the search parameters into a form. The 
following search parameters can be used when searching for an available room: 
“Arrival Date,” “Departure Date,” “Non-Smoking,” “Double/Single,” and “Room 
Type.” After submitting the search queries, the search results ( i.e., the available 
hotel rooms) can be manually scanned using the Browse Pattern or, based on the 
search results; a refinement search can be performed by employing the Search Pat-
tern recursively. For the scope of this case study, refinement searches are unneces-
sary, and the search results should only be browsed.

According to the Browse Pattern, the list of objects (the hotel rooms) is printed, 
after which it can be interactively browsed as an option. Details of the hotel room 
can be viewed by selecting it. The Print Object Pattern is used to print out object’s 
properties. It suggests using application tasks to print the object values that can 
be directly or indirectly derived from the object’s attributes. In the case of the ho-
tel management application, the following hotel room attributes should be printed: 
“Room Number,” “Smoking/Non-Smoking,” “Double/Single,” “Room Type,” and 
“Available Until.”

After adapting all patterns to suit the hotel management application, the task 
structure displayed in Fig. 3.14 is derived. Note that the “Make Decision” task has 
been added manually, without pattern support.

A first draft of the envisioned task model can be derived once all patterns have 
been adapted and instantiated. At this point, first evaluations can be carried out. For 
instance, the XUL-Task-Simulator (Sinnig 2004) can be used to simulate and ani-
mate possible scenarios. Results of the evaluation indicate that preliminary modifi-
cations and improvements of the task model are possible.

3.6.3 � Designing the Dialog Structure

After establishing the task model for our example application, the dialog models 
can be interactively derived. In particular, the various tasks are grouped to dialog 



53

views, then transitions are defined between the various dialog views. Since the de-
sired target platform of the hotel management application is a WIMP-based system, 
a dialog view will be subsequently implemented as either a window or a container 
in a complex window.

When designing the dialog graph for the hotel management application, we des-
ignated the login dialog view as both modal and the start-up dialog. After executing 
Submit, the “Main Menu” dialog will be opened. As such, a sequential transition 
between both dialog views is defined. From the main menu, either the “Add Guest” 
or “Search Applicable Room” dialog view can be opened by a sequential transition. 
After completing the “Add Guest” dialog view, the main menu will be reopened. 
For this reason, a sequential transition to the “Main Menu,” initiated by the “Store 
Data” task, must be defined.

The application’s booking functionality consists of a series of dialog views that 
must be completed sequentially. The Wizard dialog pattern emerges as the best 
choice for implementation. It suggests a dialog structure where a set of dialog views 
is arranged sequentially and the “last” task of each dialog view initiates the transi-
tion to the following dialog view. Figure  3.15 depicts the Wizard Pattern’s sug-
gested graph structure.

After applying the Wizard Pattern, the dialog views “Search Applicable Room,” 
“Browse Results,” “Show Details,” “Enter Booking Parameters,” “Confirm Book-
ing,” and “Print Confirmation” are connected by sequential transitions.

However, the sequential structure of the booking process must be slightly modi-
fied in order to enable the user to view the details of multiple rooms at the same 
time. Specifically, this behavior should be modeled using the Recursive Activation 
dialog pattern. This pattern is used when the user wishes to activate and manipulate 
several instances of a dialog view. In this particular case, the user will be able to 
activate and access several instances of the “Show Room Details” dialog view. This 
pattern suggests the following task structure: starting from a source dialog view, a 

Fig. 3.14   Concrete Task Structure Delivered by the Find Pattern

 

3.6 � An Illustrative Case Study



3  HCI Design Patterns as a Building Block in Model-Driven Engineering54

creator task is used to concurrently open several instances of a target dialog view. 
In our example, the source dialog view is “Browse Rooms” and the “Select Room” 
task is used to create an instance of the “Show Room Details” dialog view.

A premature exit should be provided to offer the user the possibility to abort 
the booking transaction. In the hotel management application, this is achieved by 
the “Confirm Booking” dialog view. At this point, the user can choose whether to 
proceed with the booking or to abort the transaction. Another sequential transition 
must therefore be defined: one which is initiated by the “Select Cancel Booking” 
tasks and leads back to the main menu. The hotel management application’s com-
plete dialog graph, as visualized by the Dialog Graph Editor is depicted in Fig. 3.16.

The next step is to evaluate the defined dialog graph. The dialog graph can be 
animated using the Dialog Graph Editor to generate a preliminary abstract proto-
type of the user interface. It is possible to dynamically navigate through the dialog 
views by executing the corresponding tasks. This abstract prototype simulates the 
final interface’s navigational behavior. It supports communication between users 
and software developers: design decisions are transparently intuitive to the user, and 
stakeholders are able to experiment with a dynamic system.

3.6.4 � Defining the Presentation and Layout Model

In order to define the presentation model for our example, the grouped tasks of each 
dialog view are associated with a set of interaction elements, among them forms, 
buttons, and lists. Style attributes such as size, font, and color remain unset and will 
be defined by the layout model.

A significant part of the user’s tasks while using the application revolves around 
providing structured textual information. This information can usually be split into 
logically related data chunks. At this point, the Form Presentation Pattern, which 
handles this exact issue, can be applied. It suggests using a form for each related 
data chunk, populated with the elements needed to enter the data. Moreover, the 
pattern refers to the Unambiguous Format Pattern, in conjunction with which it can 
be employed.

The purpose of the Unambiguous Format Pattern is to prevent the user from 
entering syntactically incorrect data. Drawing on information from the business 
object model, it is able to determine the most suitable input element. In other words, 
depending on the domain of the object to be entered, the instance of the pattern 

Fig. 3.15   Graph structure suggested by the Wizard Pattern

 



55

provides input interaction elements chosen in such a way that the user cannot enter 
syntactically incorrect data.

Figure  3.17 shows the windows prototype interfaces rendered from the XUL 
fragments of the hotel management application’s presentation model for the “Log-
in,” “Main Menu,” “Add Guest,” and “Find Room” dialog views. All widgets and 
UI components are visually arranged according to the default style.

In the layout model, the style attributes that have not yet been defined are set 
in keeping with the hotel management application’s standards. According to the 
House Style Pattern (which is applicable here), colors, fonts, and layouts should be 
chosen so that the user has the impression that all windows of the application share 
a consistent presentation and appear to belong together. Cascading style sheets have 
been used to control the visual appearance of the interface. In addition, to assist the 
user when working with the application, meaningful labels have been provided. The 
Labeling Layout Pattern suggests adding labels for each interaction element. Using 
the grid format, the labels are aligned to the left of the interaction element.
The layout model determines how the loosely connected XUL fragments are ag-

gregated according to an overall floor plan. In the case of this example, this is fairly 

Fig. 3.16   Dialog graph of the hotel management application

 

3.6 � An Illustrative Case Study



3  HCI Design Patterns as a Building Block in Model-Driven Engineering56

straightforward since the UI is not nested and consists of a single container. After 
establishing the layout model, the aggregated XUL code can be rendered together 
with the corresponding XUL skins as the final user interface. Figure 3.18 shows the 
final UI rendered on the Windows XP platform.

3.7 � Key Contributions of This Chapter

In this chapter, we demonstrated how patterns can be delivered and applied within 
be MBUI development approaches. Within our proposed framework PD-MBUI, 
patterns were introduced to overcome the lack of reuse in model construction and 
transformation. This represents one of the major limitations of the existing MBUI 
development frameworks. In particular, we illustrated how different kinds of pat-
terns can be used as building blocks for the establishment of task, dialog, presenta-
tion, and layout model. In order to foster reuse, we proposed a general process of 
pattern application, in which patterns are seen as abstractions that must be instanti-
ated. In addition, we described an interface for combining patterns and a possible 
model-based formalization. The applicability of the proposed pattern-driven model-
based development approach has been demonstrated through a comprehensive case 
study. Furthermore, we introduced the Task—Pattern Wizard tool for using, select-
ing, adapting, and applying patterns.

A major contribution of this work is the use of patterns to support model reuse in 
the construction of specific models and their transformations. Traditionally, patterns 

Fig. 3.17   Screenshots of visualized XUL fragments from the presentation model

 



573.7 � Key Contributions of This Chapter

are encapsulations of a solution to a common problem. In this research, we extended 
the pattern concept by providing an interface for patterns in order to combine them. 
In this vein, we proposed the general process of pattern application, in which pat-
terns can be customized for a given context of use. We then transferred the pattern 
concept to the domain of MBUI development. In order to foster reuse and avoid 
reinventing the wheel, we demonstrated how task, dialog, presentation, and layout 
patterns can be used as building blocks when creating the corresponding models, 
which are the core constituents of our development approach.

In order to demonstrate the applicability of our approach, we developed a UI 
prototype for a hotel management application. In this, elaborate case study pat-
terns were identified and applied for each of the models that were used during de-
velopment. The main purpose of the example is to show that MBUI development 
consists of a series of model transformations, in which mappings from the abstract 
to the concrete models must be specified and—more importantly—automatically 
supported by tools.

We are currently expanding the modeling concept into an integrated pattern en-
vironment (IPE), which integrates this and other tools into a generalized pattern 
driven development environment that is independent of platform and programming 
languages. The transformation between models is automated by the use of XML 

Fig. 3.18   Screenshots from the hotel management application

 



3  HCI Design Patterns as a Building Block in Model-Driven Engineering58

as a common medium to communicate the modeling semantics between different 
models. This helps tailor the application and corresponding models to different plat-
form and user roles.

References

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiskdahl-King I, Angel S (1977) A pattern 
language. Oxford University Press, New York

Breedvelt I, Paternò F, Severiins C (1997) Reusable structures in task models. In: Proceedings of 
Proceedings Design, Specification, Verification of Interactive Systems ’97, June 1997, Grana-
da, Springer, pp 251–265

Gaffar A, Seffah A, Van der Poll J (2005) HCI patterns semantics in XML: a pragmatic approach, 
HSSE 2005. In: Workshop on Human and Social Factors of Software Engineering, in conjunc-
tion with ICSE 2005, the 27th International Conference on Software Engineering, St. Louis, 
Missouri, USA, May 15–21, proceedings of ACM

Granlund A, Lafreniere D (1999) PSA: a pattern-supported approach to the user interface design 
process, July, Scottsdale, Arizona

Mens T, Lucas C, Steyaert P (1998) Supporting Disciplined Reuse and Evolution of UML Models. 
In: Proceedings of UML98: Beyond the Notation, June 3–4, 1998, Springer, Mulhouse, France, 
pp 378–392

MOBI-D (1999) The MOBI-D interface development environment. http://smi-web.stanford.edu/
projects/mecano/mobi-d.htm

Molina P, Meliá S, Pastor O (2002) JUST-UI: a user interface specification model. In: CADUI 
2002, Valenciennes, France

OliverNova (2004) CARE technologies. http://www.care-t.com. Accessed 20 April 2015
OMG (2009) Unified modeling language. http://www.omg.org/spec/UML/index.htm. Accessed 20 

April 2015
Paternò F (2000) Model-based design and evaluation of interactive applications. Springer, London
Paternò F (2005) Model-based tools for pervasive usability. Interact Comput 17(3):291–315
Prasad S (1996) Models for mobile computing agents. Special Issue: position statements on stra-

tegic research directions in computing research. ACM Computing Survey 28(4), Dec 1996
Puerta A (1997) A model-based interface development environment. IEEE Software 14(1997):41–

47
Schlungbaum E (1996) Model-based user interface software tools—current state of declarative 

models. Technical Report 96–30. Graphics, Visualization and Usability Center Georgia Insti-
tute of Technology. (Georgia). USA.

Sinnig D (2004) The complicity of patterns and Model-Based UI Development. Master of Com-
puter Science, Montreal, Concordia University, p 148

TERESA (2004) Transformation environment for interactive systems representations. http://giove.
cnuce.cnr.it/teresa.html. Accessed 20 April 2015

Tidwell J (2004) UI patterns and techniques. http://time-tripper.com/uipatterns/index.php
Trætteberg H (2002) Model-based user interface design in computer and information sciences. 

Norwegian University of Science and Technology, Trondheim
Trætteberg H (2004) Integrating dialog modelling and application development. In: Making Mod-

el-based UI Design Practical: Usable and Open Methods and Tools: A Workshop at IUI 2004, 
January, Madeira, Portugal

Welie M (2004) Patterns in interaction design. http://www.welie.com. Accessed 20 April 2015
XUL (2014) https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL. Accessed 20 April 

2015



59© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_4

Chapter 4
Adding Usability Quality Attributes  
into Interactive Systems Architecture:  
A Pattern-Based Approach

Abstract  Traditional interactive system architectures such as MVC (Model, View, 
Controller) and PAC (Presentation, Abstraction and Control) decompose the system 
into subsystems that are relatively independent, thereby allowing the design work to 
be partitioned between the user interfaces (UI) and underlying functionalities. Such 
architectures also extend the independence assumption to usability, approaching 
the design of the UI as a subsystem that can be designed and tested independently 
from the underlying functionality. This Cartesian dichotomy can be dangerous, as 
functionalities buried in the application’s logic can sometimes affect the usability of 
the system. Likewise, in a design process where usability aspects are incorporated 
early on, they can affect the architecture of the system.

Our investigations model the relationships between internal software attributes 
and externally visible usability factors. We propose a pattern approach for modeling 
these relationships and for providing an effective solution. We conclude by discuss-
ing how these enhanced patterns with usability measures can lead to development 
approach for improving interactive system architectures, and how these patterns can 
support the integration of usability in the software design process.

4.1 � Software Architecture—A Definition

Software architecture is a fundamental design concept of any system, embodied 
in its components, their relationships to each other, and the principles governing 
its design, development, and evolution (ANSI/IEEE 1471–2000). In addition, it 
encapsulates the fundamental entities and properties of the application that generally 
ensure the quality of application including reliability, robustness, and reusability. 
However, usability that is more and more recognized as important quality factor has 
been neglected in these architectural models (ISO 9126 2003).

In the field of human–computer interaction (HCI), interactive systems architec-
tures of the 1980s and 1990s such as MVC (Model, View, Controller) and PAC 
(Presentation, Abstraction and Control) are based on the principle of separating 
the core functionality from the UI. The functionality is what the software actually 
does and what data it processes, thereby offering behavior that can be exploited to 



4  Adding Usability Quality Attributes into Interactive Systems Architecture60

achieve some user needs. The UI defines how the functionality is presented to end-
users and how the users interact with it. The underlying assumption is that usability, 
the ultimate quality factor, is primarily a property of the UI. Therefore, separating 
the UI from the application’s logic makes it easy to modify, adapt, or customize the 
interface after user testing. Unfortunately, this assumption does not ensure the us-
ability of the system as a whole.

We now realize that system features can have an impact on the usability of the 
system, even if they are logically independent from the UI and not necessarily 
visible to the user. For example, Bass observed that even if the presentation of a 
system is well designed, the usability of a system can be greatly compromised if 
the underlying architecture and designs do not have the proper provisions for user 
concerns (Bass et al. 2001). We propose that the software architecture should define 
not only the technical issues needed to develop and implement the functionality, but 
also dialogs with the users.

At the core of our vision are those invisible components that are the implemen-
tations of functionality can affect usability. By invisible components, we mean 
precisely any software entity that does not have visible cues on the presentation 
layer. They can be an operation, data, or a structural attribute of the software. 
Examples of such phenomena where invisible component affects usability are com-
monplace in database modeling. Queries that were not anticipated by the modeler, 
or that turn out to be more frequent than expected, can take forever to complete 
because the logical data model (or even the physical data model) is inappropriate. 
Clientserver and distributed computer architectures are also particularly prone to 
usability problems stemming from their “invisible” components.

Another example came from the Web where designers of distributed applica-
tions with web browser-based UI are often faced with these concerns. They must 
carefully weigh what part of the application logic will reside on the client side 
and what part will be on the server side in order to achieve an appropriate level of 
usability. User feedback information, such as application status and error messages, 
must be carefully designed and exchanged between the client and server part of the 
application, anticipating response time of each component, error conditions and 
exception handling, and the variability of the computing environment. Sometimes, 
the web UI becomes crippled by the constraints imposed by these invisible com-
ponents because the appropriate and required style of interactions is too difficult to 
implement.

Like other authors (Bass et  al. 2001; Folmer et  al. 2003), we argue that both 
software developers implementing the system’s features and usability engineers 
in charge of designing the user interfaces should be aware of the importance of 
this intimate relationship between the way that the features are implemented and 
the user interfaces. This relationship can inform architecture design for usability. 
As discussed in this chapter, with the help of patterns that incorporate the attri-
butes that quantify usability, this relationship can help to integrate the usability 
concerns in software architecture while ensuring the usability of the product. We 
will identify scenarios where invisible components of an interactive application will 



614.2 � Drawbacks and Fundamentals

impact on usability; we will also propose solutions to each scenario. The solutions 
are presented in the form of patterns. Beyond proposing a list of patterns to solve 
specific problems, we will detail a measurement-oriented framework for studying 
and integrating usability concerns in interactive software architecture via patterns 
and usability measures.

4.2 � Drawbacks and Fundamentals

The concept of separating the view from the real object is relatively old. It reflects 
the fundamental need of reducing system complexity while improving its scalabil-
ity, reusability, and other quality concerns. In the field of database engineering, a 
clear separation between table and view help achieve many goals (Gaffar 2001):

•	 Increase security by masking classified information in tables from the views 
presented to unauthorized users.

•	 Reduce redundancy by storing atomic, normalized data in efficiently designed 
tables while displaying them in different views according to users’ needs.

•	 Increase system flexibility by allowing the addition of new views as needed 
without the need to change the actual tables which is a costly and risky task.

•	 Increase data integrity by limiting the changes to normalized tables and simply 
updating the views as needed.

This principle of concerns separation is so deeply rooted in database engineering 
that it is supported not only at the design level but also at the language level. Most 
query languages offer direct manipulation to creating and manipulating tables and 
views separately.

The same need for separation has been identified in software interfaces. Large 
number of architectures for interactive systems have been proposed, e.g., Seeheim 
model, MVC, Arch/Slinky, Presentation PAC, PAC-Amadeus and Model-View-
Presenter (MVP) (Bass et al. 1998). Most of these architectures distinguish three 
main components: (1) abstraction or model; (2) control or dialog; and (3) presenta-
tion. The model contains functionality of the software. The view provides graphical 
user interface (GUI) components for a model. It gets the values that it displays by 
querying or receiving notification from the model of which it is a view. A model can 
have several views. When a user manipulates a view of a model, the view informs a 
controller of the desired change. Figure 4.1 summarizes the role of each one of these 
three components for an MVC-based application.

The motivation behind these architecture models is to improve, among others, 
the adaptability, portability, and complexity concerns. However, even if the prin-
ciple of separating interactive software in components has its design merits, it can 
be the source of serious adaptability and usability problems in software that pro-
vides fast, frequent, and intensive semantic feedback. The communication between 
the view and the model makes the software system highly coupled and complex. 



4  Adding Usability Quality Attributes into Interactive Systems Architecture62

Design patterns such as the observer pattern (Gamma et al. 1995) have emerged to 
reduce this complexity, but they do not acknowledge the presence of dependencies 
between the model and the views (Gamma et al. 1993).

In general, these architectures lack provisions for integrating usability in the 
design of the model or abstraction components. For example, Bass et  al. (2001) 
identified specific connections between the aspects of usability (such as the ability 
to “undo”) and the model response (processed by an event-handler routine).

4.3 � A Pattern-Based Integration of Usability  
in Architecture

To quantify and model this intimate relationship that exists between the model and 
the interface, we proposed the following methodological approach to (Fig. 4.2):

1.	 Identify and categorize typical design scenarios that illustrate how invisible 
components and their intrinsic quality properties might affect the usability and 
UI components. Samples of the scenarios we identified are detailed in Sect. 4.4.

2.	 Detail each scenario while specifying the cause/effect relationship between the 
measures that quantify the quality of an invisible software entity and usability 
factors such as efficiency, effectiveness, and satisfaction. As it will be discussed 
in Sect. 5.5, we have been using an enhanced version of ISO 9126 quality model 
and the related measures (Seffah et al. 2003).

Method Invocations

Model
- Encapsulates application 
state
- Responds to state queries
- Exposes application 
functiona lity
- Notifies views of changes

State Query

Views
- Renders the models
- Requests updates 
from models
- Sends user events to 
controllers
- Allows a controller to 
select views

View Selection

User Events

Controller
- Defines application 
behavior
- Maps user actions to 
model updates
- Selects vie for 
response
- One for each 
functionality

State
Change

Events

Change
Notification

Fig. 4.1   The separation of concerns in the MVC architecture

 



634.4 � Identifying and Categorizing Typical Scenarios

3.	 Identify and select design patterns, ones that can solve the problem described in 
similar scenarios. Some patterns we proposed are detailed in Sect. 4.5. However, 
the detailed description of the whole library of patterns and the related pattern-
oriented design approach goes beyond the scope of this chapter. The interested 
reader can find more details in Sinnig (2004); Gaffar (2005).

4.	 Incorporate these patterns to enhance existing architectural models such as 
MVC. An example is given in Sect. 4.7.

4.4 � Identifying and Categorizing Typical Scenarios

The first step in our approach for achieving usability via software architecture and 
patterns is to identify typical situations that illustrate how invisible components 
of the model might affect usability. Each typical situation is documented using 
a scenario. Scenarios are widely used in HCI and software engineering (Carroll 
2000). Scenarios can improve communication between user interface specialists 
and software engineers who design invisible components—this communication is 
essential in our approach to patterns. In this context, we define a scenario as a narra-
tive story written in natural language that describes a usability problem (effect) and 
that relates the source of this problem to an invisible software entity (cause). The 
scenario establishes the relationship between internal software attributes that are 
used to measure the quality of the invisible software entity and the external usability 
factors that we use for assessing the ease of use of the software systems.

The following are some typical scenarios we extracted from our empirical stud-
ies and from a literature review. Other researchers also proposed other scenarios 
(Bass et  al. 2001). The goal of our research is not to build an exhaustive list of 
scenarios, but rather to propose a methodological framework for identifying such 
scenarios and to define patterns that can be used by developers to solve such prob-
lems. The scenarios are therefore intended as illustrative examples.

Cause/effect
Relationship DefinitionTypical Design

Scenarios

Patterns Selection
Design

Patterns
Libraiy

Software
Quality Model

Fig. 4.2   Proposed methodological framework

 



4  Adding Usability Quality Attributes into Interactive Systems Architecture64

Scenario 1: Time-Consuming Functionalities  It is common for some underlying 
functionalities of an interactive system to be time consuming. The lack of several 
quality attributes can increase the time for executing these functionalities. A typical 
situation is the case where a professional movie designer expects the high band-
width of high-speed Internet access when downloading large video files, but the 
technology available for Internet connection has lower speed, making downloading 
overly slow.

The user needs feedback information to know whether or not an operation is 
still being performed and how much longer he will need to wait, but sometimes this 
information is not provided. Feedback tends to be overlooked in particular when the 
designers of the UI and those developing the features are not in the same team and 
that there is a lack of communication between them.

Scenario 2: Updating the Interface When the Model Changes Its State  Usabil-
ity guidelines recommend helping users understand a set of related data by allow-
ing them to visualize the data from different points of view. A typical method is to 
provide graphical and textual representations of the same underlying data model.

Whenever the data model changes, the underlying model should update the 
graphical and the textual representations. Two main techniques to deal with this 
issue are polling—where interfaces are designed to poll the system periodically 
for changes, and broadcasting—where the system notifies the interfaces of new 
changes. Depending on the nature and rate of changes, the cost of notification, and 
the overall context of use, designers choose an optimal updating technique, and 
select the rate of polling or broadcasting if applicable. In certain cases, the system 
might not be designed to automatically update all views when one view changes. 
This can result in inconsistent views that can in turn increase the user’s memory 
load, frustration, and errors.

Scenario 3: Performing Multiple Functionalities Using a Single Control  It is 
easier and more straightforward to use a dedicated control for each functionality and 
in particular for critical functions, even at the expense of more buttons and menus. 
This is the current practice in much standard functionality like File Save, Save As, 
and Print options. However, for complex domain-specific functionality, this is not 
always the case. When a single control performs multiple operations, it requires a 
complex menu structure and choice of modes, which increases the likelihood of 
mode errors and other usability problems.

Unfortunately, there is a design trade-off between simplicity in appearance and 
simplicity in use. Aggregating several related functionalities under one control or 
in one procedure makes it easier for users to find and use them in one “click,” and 
offer a lower number of total controls, increasing the learnability of the system. 
This is a dangerous design trap as it clearly limits the flexibility of interacting with 
the system and the effectiveness of accomplishing unforeseen complex tasks. Alas, 
consumers (and organizations) make purchase decisions based on appearance first, 
so this is a fundamental conflict (Norman 2002).

Scenario 4: Invisible Entities Keep the User Informed  We know that providing 
the user with an unclear, ambiguous, or inconsistent representation of the system’s 



4.4  Identifying and Categorizing Typical Scenarios 65

modes and states can compromise the user’s ability to diagnose and correct failures, 
errors, and hazards, or even simply interact with the system. This can happen when 
a system functionality allows the user to visualize information that competes or 
conflicts with currently or previously displayed information in other views. A well-
known example is when a user opens a Microsoft explorer window to navigate the 
file system and the available drives on the computer, and then adds a USB memory 
stick (external storage device) to the system. Depending on the version of the soft-
ware, the user may not be able to see the new addition in current explorer window 
at all, and they may have to open a new explorer window.

In other cases, they might not see it in the main window, but can see it under 
“My Computer” within the main window, which is an inconsistency in displaying 
the system state. In older systems that are batched up to support this new technol-
ogy, the user can eject the added USB storage device but it remains displayed in the 
explorer window, even if it is no more functional. All these cases vary by the version 
of the operating system, and are especially seen in older versions where “true plug 
and play” feature was not available. This feature is indeed challenging to implement 
and requires modifications to the file explorer software to dynamically detect the 
system state and consistently refresh user’s views. It is even more challenging to 
modify older versions by new batches to accommodate this feature. Without going 
into technical details, we can see the intricate relationship between the interface and 
the underlying system, and the confusion the inexperienced users might go through 
in these situations.

To avoid such situations, it is important for the functionality developers to 
accurately communicate the system’s modes and states to the user interface design-
er. Ignoring this informative feedback can lead to users making wrong assumptions 
that may lead to inefficient or incorrect interaction. User interface designers should 
inform the developers about all the tangible consequences related to the states and 
modes of the systems.

Scenario 5: Providing Error Diagnostics When Features Crash  When a feature 
failure occurs due for example to exception handling, the interface sometimes 
provides unhelpful error diagnostics to the user.

The user should be notified of the state that the system is currently in and the 
level of urgency with which the user must act. The system feature should help the 
user to recognize potential hazards and return the system from a potentially hazard-
ous state to a safe state. Messages should be provided in a constructive and correct 
manner that helps restore the system to a safe state.

Scenario 6: Technical Constraints on Dynamic Interface Behavior  Particularly 
in web-based transactional systems, technical and logistic constraints can severely 
limit dynamic behavior of the interface within a highly interactive page. It can 
therefore be difficult or impossible to design elements that automatically update as 
a result of an action elsewhere on the same page. For example, in a series of depen-
dent drop-down lists “Country,” “Province,” and “City,” it may be challenging to 
automatically update “Province” as a function of the “Country” selection without 
referring back to the server after each selection to download the next dependant 



4  Adding Usability Quality Attributes into Interactive Systems Architecture66

list. The complexity increases when combined with business rules and restrictions. 
For example in an e-banking system, a user who transfers money from her check-
ing account to pay her credit card of the same bank can see the new balance on the 
checking account immediately but keep seeing the old credit card balance without 
update.

While it might look like an interface problem and the user might become upset 
when seeing the money deducted from the checking account but not added to the 
credit card, the fact might be that the bank policy explicitly prevents displaying 
credit card account updated until they are manually verified; within 36 h. A perfect-
ly correct interface would still display this inconsistency for the next 36 h. A usable 
interface would be aware of some business rules and hence of this potential incon-
venience. The UI (client side) would simply notify the user of the reason, saving her 
a lot of frustration, especially when many users are weary of technology glitches or 
have less trust on web-based transactions than on teller-based interactions.

These technical constraints against dynamism are often imposed in web-based 
client-server contexts due to the dictum that the business rules must be separate 
from the UI. Dynamic interface behavior of an interactive system can require the UI 
to have a degree of intelligence that incorporates certain business rules, which con-
flicts with the “separate layers” dictum. In few cases, the alternative is for the client 
to call the server more frequently to refresh the page dynamically, but architects 
tend to avoid this approach because of the presumed extra demand on bandwidth. 
In other cases, the only alternative is for the client to call or visit the bank to inquire 
about the allegedly missing money. We can see that a usable interface can be much 
more useful.

There is no easy solution to this problem. The most important principle in this 
situation is to analyze user needs relating to dynamism before making technology 
decisions that could have an impact on dynamism. Transactional systems often re-
quire considerable dynamism, whereas purely informational systems can often get 
by without dynamism in the UI. If it is unacceptable for business rules to imme-
diately incorporate electronic transactional changes (as one example), which will 
have an impact on the interface behavior, then the interface should be aware of 
this business rule. It would help to incorporate some business rules into the client 
side. In other cases, business rules are confidential and cannot be incorporated in 
client interfaces, reducing the usability of interface. When fully dynamic behavior 
is not possible, it would help to increase the network bandwidth to better support 
pseudo-dynamic behavior, involving more frequent page refreshes through calls to 
the server.

The preceding scenarios are used as an illustrative sample. In total, we have 
identified more than 24 scenarios. Len Bass also described a list of 26 scenarios, 
some of which were a source of inspiration for our work. Providing an exhaustive 
list of scenarios is certainly useful from the industry perspective. However, our goal 
for this research is to better understand and validate how software features affect us-
ability in general and as such our focus is to model the scenarios in term of a cause/
effect relationship. This relationship connects the quality attributes of invisible 
components with recognized usability factors. Section 5.6 details this perspective.



4.5  From Scenario to Design Patterns 67

4.5 � From Scenario to Design Patterns

As defined in the previous section, a design scenario illustrates a category of 
problem that may occur in different situations. Here, we look at solutions to these 
problems while introducing patterns as vehicle for representing the problem, the 
situation, and the solution in an integrative manner. Each design pattern is defined 
as a solution to the problem described in a scenario. Within our methodological ap-
proach, we have been considering two types of patterns:

•	 System Design Patterns. The aim of these design patterns is to propose soft-
ware designs and architectures for building portable, modifiable, and extensible 
interactive systems. A classical pattern of this category is the observer that acts 
as a broker between the UI (views) and the model (Gamma et al. 1995). When 
the observers receive notification that the model has changed, they can update 
themselves. This pattern provides a basic solution to the problem described in 
scenario 3 in Sect. 4.4;

•	 Interaction Design Patterns, Defined at the level of GUI. These are proven user 
experience patterns and solutions to common usability problems. A number of 
pattern languages have been developed over the last few years (Tidwell 1997; 
Welie 1999).

We believe that these two categories of patterns need to be applied and combined 
in order to provide an integrated design framework to problems described in our 
scenarios. System design patterns, widely used by software engineers, are a top-
down design approach that organizes the internal structure of the software systems. 
Interaction design patterns, promoted by human–computer interaction practitioners, 
are used as a bottom-up design approach for structuring the UI.

To illustrate how these diverse system and interaction patterns can be combined 
to provide comprehensive solutions, in the following sections we describe our five 
scenarios using interaction and design patterns. Although a number of de facto stan-
dards have emerged to document patterns, we use a simple description with the 
following format:

•	 “Name” is a unique identifier.
•	 “Context” refers to a recurring set of situations in which the pattern applies.
•	 “Force”: The notion of force generalizes the kind of criteria that we use to justify 

designs and implementations. For example, in a straightforward manner, simple 
study of functionality, the main force to be resolved is efficiency (resources 
complexity) or effectiveness (task complexity). However, patterns deal with the 
larger, harder to measure and conflicting sets of goals and constraints encoun-
tered in the design of every component of the interactive system.

•	 “Problem” refers to a set of constraints and limitations to be overcome by the 
pattern solution.

•	 “Solution” refers to a canonical design form or design rule that someone can 
apply to resolve these problems.



4  Adding Usability Quality Attributes into Interactive Systems Architecture68

•	 “Resulting context” is the resulting environment, situation, or interrelated condi-
tions. Again, in a simple system this can be easily predictable, while in complex 
interactive system it can be hard to find out in a deterministic way.

•	 “Effects of invisible components on usability” which defines the relationship 
between the software quality attributes and usability factors.

4.5.1 � System Design Patterns

The first pattern is Observer pattern proposed by Gamma et al. (1995). Within the 
MVC architecture, this largely used pattern ensures the separation between the code 
related to UI and the invisible components that form the model. This pattern defines 
a one-to-many dependency between objects, mainly a model and several views with 
the MVC model, so that when one object changes state, all its dependents are no-
tified and updated automatically (Fig. 4.3). This pattern establishes the basis for 
separating the UI and functionality.

The second pattern that we have considered is the Abstract Factory pattern that 
complements the previous. It provides an interface for creating families of related 
or dependent objects (mainly views) without specifying their concrete implemen-
tations (e.g. The Toolkit class). Given a set of related views that forms the user 
interfaces, the Abstract Factory pattern provides a way to create instances of those 
abstract classes from a matched set of concrete subclasses.

Figure 4.4 illustrates the enhanced MVC architecture that includes two system 
design patterns.

We also used several other system design patterns. An example is the Working 
Data Visualization pattern that copes with the specific usability problem described 
in scenario 2 in the Sect. 4.4.

observer

+Update()
+Attach(in Observer)
+Detach(in Observer)
+Notify()

Subject

Subject
observer State

+Upate()

return SubjectState observerState –
subject GetState()

Concrete Subject
–Subject State
+GetState()

Concrete Observer

Observer

foreach o in observers
  o.Update()

Fig. 4.3   Observer pattern as a basis for separating UI (user interface) and model concerns

 



4.5  From Scenario to Design Patterns 69

Name: Working Data Visualization
(Scenarios addressed: 2. Updating the Interface When the Model Changes 
its State)
Problems
If the user cannot see working data in different view modes so as to get a 
better understanding of it, and if switching between views does not change the 
related manipulation command, then usability will be compromised.
Context
Sometime users want to visualize a large set of data using different point of 
view, to better understand what they are doing and what they need to edit to 
improve their documents.
Forces

•	 Users like to gain additional insight about working data while solving 
problems;

•	 Users like to see what they are doing from different viewpoints depending 
on the task and solution state;

•	 Different users prefer different viewpoints (modes)
•	 Each viewpoint (mode) should have related commands to manipulate data

Solution
Data that is being viewed should be separate from the data view description, 
so that the same data can be viewed in different ways according to the differ-
ent view descriptions. The user gets the data and commands according to the 
user-selected view description.

Effects of invisible components on usability

•	 Quality attributes of invisible components: Integrity
•	 Usability factors affected: Visual consistency

Abstract
View

Abstract
Factary

Register

R
e

gi
st

e
r

If state changes
Notify all views 

Update the
model states

Get information about
the m odel states

Model
Mutator methods

Query methods (Accessors)

Controller

View
Update Method

Fig. 4.4   An enhanced version of the basic MVC model

 



4  Adding Usability Quality Attributes into Interactive Systems Architecture70

Other relevant patterns we used include Event Handler, Complete Update, and 
Multiple Update (Sandu 2001). We use them to notify and update views (scenario 1- 
Sect. 4.4) using traditional design patterns such as Observer and Abstract Factory. 
We incorporated these patterns into the subform pattern that groups the different 
views in the same container, called the Form (Table 4.1). The Event Handler, Com-
plete Update, and Multiple Update patterns can be applied in two phases. The first 
phase changes the states of the user interface models in response to end user events 
generated by the visual components, and the second phase updates the visual com-
ponents to reflect the changes in the UI model. Since the update phase immediately 
follows the handling phase, the UI always reflects the latest changes.

The next example of software design patterns we propose is the Reduce Risk of 
Errors pattern.

Table 4.1   Example of design patterns
Pattern Problem Solution
Event Handler How should an invis-

ible component handle an 
event notification message 
from its observable visual 
components?

Create and register a handler 
method for each event from 
observable visual components

Complete Update How to implement behavior in 
the user interface to update the 
(observer) visual component 
from the model

Assume all (observer) visual 
components are out-of-date 
and update everything

Multiple Update How to implement changes 
in the model of subform to 
reflect parent of subform, 
child of subform, siblings of 
subform

Each subform should notify 
its parent when it changes 
the model. The parent should 
react to changes in the sub-
form via the Event Handler 
and update its children com-
ponents via Complete Update

Subform How to design parts of user 
interfaces to operate on the 
model in a consistent manner

Groups the components that 
operate on the same model 
aspect into subforms

Name: Reduce Risk of Errors
(Scenarios addressed: 2. Updating the Interface When the Model Changes Its 
State; 4. Invisible Entities Keep the User Informed)
Problem
How can we reduce the likelihood of accidents arising from hazardous states?
Forces

•	 Hazardous states exist for all safety-critical systems; it is often too complex 
and costly to find every hazardous state by modeling all system states and 
user tasks.

•	 Risk can be effectively reduced by reducing the consequence of error 
rather than its likelihood.



4.5  From Scenario to Design Patterns 71

The last example of software design patterns is the Address Dynamic Presentation 
pattern.

•	 When a hazardous state follows a nonhazardous state, it may be possible 
to return to a nonhazardous state by applying some kind of recovery opera-
tion.

Solution
Enable users to recover from hazardous actions they have performed. Recov-
ering a task is similar to undoing it, but promises to return the system to a 
state that is essentially identical to the one prior to the incorrect action. This 
pattern may be useful for providing a recover operation giving a fast, reliable 
mechanism to return to the initial state. Recovering a task undoes as much 
of the task as is necessary (and possible) to return the system to a safe state.
Resulting Context
After applying this pattern, it should be possible for users to recover from 
some of their hazardous actions. Other patterns can be used to facilitate 
recovery by breaking tasks into substeps, each of which may be more easily 
recovered than the original task. The user should be informed of what the 
previous state is that the system will revert to.
Effects of invisible components on usability
Effects 1:

•	 Quality attributes of invisible components: Integrity
•	 Usability factors affected: Visual consistency

Effects 2:

•	 Quality attributes of invisible components: Suitability
•	 Usability factors affected: Operability

Name: Dynamic Presentation in User Interface
(Scenarios addressed: 6. Technical Constraints on Dynamic Interface 
Behavior)
Problem
How can we avoid technical constraints on dynamic behavior of the user 
interface?
Forces\

•	 Users benefit from immediate feedback on their actions
•	 Dynamically updating fields can reduce the time required to accomplish a 

task



4  Adding Usability Quality Attributes into Interactive Systems Architecture72

4.5.2 � Interaction Design (HCI) Patterns

Over the last 5 years, several HCI patterns languages have been proposed to 
facilitate the design of user interfaces and ensure their usability (Tidwell 1997; 
Welie 1999; Sandu 2001). Examples include Amsterdam collection (Tidwell 1997) 
and common ground (Welie 1999). Within our approach, we adapted and used 
some of these patterns to solve some of user problems reported in one of the five 
design scenarios.

The first basic HCI pattern that we used is the progress indicator pattern (Tidwell 
1997). It provides a solution for the time-consuming features scenario (scenario 1, 
Sect. 4.4).

Solutions

•	 Analyze user needs relating to dynamism before making technology deci-
sions that could have an impact on dynamism. Transactional systems often 
require considerable dynamism.

•	 If it is unacceptable for business rules to be incorporated into the client, 
then it might be possible to make a business case for increasing the network 
bandwidth so as to better support pseudo-dynamic behavior, involving 
more frequent page refreshes through calls to the server.

Resulting Context
After applying this pattern, users will have more immediate feedback on 
the consequences of their actions, increasing the understandability of the UI 
and reducing errors; in addition, time and effort to accomplish a task will be 
reduced in certain cases.
Effects of invisible components on usability
Effects 1:

•	 Quality attributes of invisible components: Functionality
•	 Usability factors affected: Understandability

Effects 2:

•	 Quality attributes of invisible components: Suitability
•	 Usability factors affected: Operability

Name: Progress Indicator
(Scenarios addressed: 1. Time-Consuming Functionalities)
Problem
A time-consuming functionality is in progress, the results of which are of in-
terest to the user. How can the artifact show its current state to the user, so that 
the user can best understand what is happening and act on that knowledge?



4.5  From Scenario to Design Patterns 73

The second pattern we integrated in our framework is the keep the user focused 
pattern, which brings an integrated solution to the problems described in scenarios 
2, 3, and 4 in the Sect. 4.4.

Forces

•	 The user wants to know how long they have to wait for the process to end.
•	 The user wants to know that progress is actually being made, and that the 

process has not just “hung.”
•	 The user wants to know how quickly progress is being made, especially if 

the speed varies.
•	 Sometimes it is impossible for the artifact to know how long the process is 

going to take.

Solution
Show the user a status display of some kind, indicating how far along the pro-
cess is in real time. If the expected end time is known, or some other relevant 
quantity (such as the size of a file being downloaded), then always show what 
proportion of the process has been finished so far, so the user can estimate 
how much time is left. If no quantities are known—just that the process may 
take a while—then simply show some indicator that the process is ongoing.
Resulting Context
A user may expect to find a way to stop the process somewhere close to the 
progress indicator. It’s almost as though, in the user’s mind, the progress in-
dicator acts as a proxy for the process itself. If so, put a “stop” command near 
the progress indicator if possible.
Effects of invisible components on usability
Effects 1:

•	 Quality attributes of invisible components: Performance
•	 Usability factors affected: User satisfaction

Name: Keep the User Focused
(Scenarios addressed: 2. Updating the Interface When the Model Changes 
its State; 3. Performing Multiple Functionalities Using a Single Control; 4. 
Invisible Entities Keep the User Informed)
Context
An application where several visual objects are manipulated, typically in 
drawing packages or browsing tools
Problem
How can the user quickly learn information about a specific object they see 
and possibly modify the object?



4  Adding Usability Quality Attributes into Interactive Systems Architecture74

Forces

•	 Many objects/views can be visible but the user usually works on one 
object/view at a time.

•	 The user wants both an overview of the set of objects and details on 
attributes and available functions related to the object he or she is working 
on.

•	 The user may also want to apply a function to several objects/views.

Solution
Introduce a focus in the application. The focus always belongs to an object 
present in the interface. The object of focus on which the user is working 
determines the context of available functionality. The focus must be visually 
shown to the user, for example, by changing its color or by drawing a 
rectangle around it. The user can change the focus by selecting another object. 
When an object has the focus, it becomes the target for all the functionality 
that is relevant for the object. Additionally, windows containing relevant 
functionality are activated when the focus changes. This reduces the number 
of actions needed to select the function and execute it for a specified object. 
The solution improves the performance and ease of recall.
Resulting Context
The “Keep the User Focused” pattern complements the software design 
patterns in the following situations:

•	 Helping users anticipate the effects of their actions, so that errors are 
avoided before calling the underlying features

•	 Helping users notice when they have made an error (provide feedback 
about actions and the state of the system)

•	 Providing time to recover from errors
•	 Providing feedback once the recovery has taken place

Effects of invisible components on usability
Effects 1:

•	 Quality attributes of invisible components: Integrity
•	 Usability factors affected: Visual consistency

Effects 2:

•	 Quality attributes of invisible components: Functionality
•	 Usability factors affected: Understandability

Effect 3:

•	 Usability factors affected: Operability
•	 Quality attributes of invisible components: Suitability



4.6  Modeling the Cause–Effect Relationships Between the Model and User Interface 75

There is not a one-to-one mapping between software design patterns and HCI pat-
terns. The problems described in a specific scenario can require any number of 
HCI and software design patterns, and each pattern may be affected by a number 
of problems described in different scenarios. In our approach, we argue that using a 
few patterns can be very valuable, even without an entire pattern language.

Our list of patterns is not intended to be exhaustive. We are considering some of 
the existing patterns (Newman and Lamming 1995; Buschmann et al. 1996). How-
ever, most of the existing patterns have not originally been proposed to cope with 
the problem we are addressing. We are therefore adapting them as we did with the 
ones we introduced in these sections.

4.6 � Modeling the Cause–Effect Relationships Between  
the Model and User Interface

In this chapter, we focused on specific ways in which internal software properties 
can have an impact on usability. In this section, we attempt to provide a more 
general, theoretical framework for modeling the relationships between usability and 
invisible software attributes. In particular, among the huge or potentially infinite 
number of ways that invisible components can affect usability, our main goal is to 
understand whether there are specific places where we are more likely to find these 
relationships or effects. Another goal is to verify whether there is any structure 
underlying these relationships, which would allow us to define a taxonomy of how 
usability issues arise from invisible components.

Usability is often thought of as a modular tree-shaped hierarchy of usability 
concepts, starting at the level of GUI objects, and abstracting progressively up 
toward low-level usability criteria or measures and then into high-level usability 
factors. Figure  4.5 illustrates this definition of usability and its relationship to 
parallel “towers” of other software attributes.

GUI
objects

Usability
criteria

Usability
factors

Usability

Usability and 
software quality

Maintainability, dependability,
efficiency, etc.

Software quality factors

Software quality 
criteria

Invisible
objects

Software
objects

Fig. 4.5   Traditional “twin towers” model of usability and other software quality factors

 



4  Adding Usability Quality Attributes into Interactive Systems Architecture76

Table 4.2 provides more detailed information on the software quality factors and 
criteria referred to schematically in the right-hand branch of Fig. 4.2. (In principle, 
each quality factor would form a separate branch.). In our work, we have adopted 
the software quality model proposed by ISO 9126. Table 4.2 is an overview of the 
consolidated framework we have been using (Seffah et al. 2003).

The table shows the criteria for measuring usability as well as five other software 
quality factors including functionality, reliability, efficiency, maintainability, and 
portability. This measurement framework automatically inherits all the metrics and 
data that are normally used for quantifying a given factor. The framework helps us 
to determine the required metrics for (1) quantifying the quality factors of an invis-
ible software entity, (2) quantifying the usability attributes, and (3) defining the 
relationships between them.

Relationships between software attributes of invisibles components and usability 
factors have two properties:

1.	 They are lateral relationships between the modules of usability and architecture.
2.	 They are hierarchical relationships between two or more levels of description, 

since usability properties are a higher-level abstraction based on architectural 
elements.

Thus to understand the relationship, we need an approach that takes into account 
both modularity and hierarchy.

Software quality 
factor

Measurement criteria

Functionality Suitability
Accuracy
Interoperability
Security

Reliability Maturity
Fault tolerance
Recoverability

Usability Understandability
Learnability
Operability
Attractiveness

Efficiency Time behavior
Resource
Utilization

Maintainability Analyzability
Changeability
Stability
Testability

Portability Adaptability
Instability
Co-existence
Replaceability

Table 4.2   A partial 
vision of the ISO 9126 
measurement framework. 
Taxonomy of usability 
issues arising from invisible 
components



4.6  Modeling the Cause–Effect Relationships Between the Model and User Interface 77

In software engineering, software modules have two features that need to be con-
sidered during design, namely, coherence and coupling. Coherence refers to how 
relevant the components of a subsystem are to each other, and it needs to be maxi-
mized. On the other hand, coupling refers to how dependent a subsystem is on other 
subsystems, and it needs to be minimized.

In a similar approach in “The Architecture of Complexity”, Simon (1962) dis-
cusses “nearly decomposable systems.” In hierarchic systems, interactions can be 
divided into two general categories: those among subsystems, and those within 
subsystems. In a simplified approach, we can describe a system as being “decom-
posable” into its subsystems by basically assuming that we are fully aware of all 
interactions between subsystems and that everything has been “taken care of.” At 
this stage we can go on with the studying and development of each subsystem sep-
arately, relying on our limited model of interaction. However, as a more refined 
approximation, it is more accurate to speak of a complex system as being “nearly 
decomposable,” meaning that there are complex interactions between the subsys-
tems, and that after separation, these interactions remain active and nonnegligible.

Nearly decomposable systems have two properties:

•	 Modularity: In the short run, the behavior of each subsystem is approximately 
independent of the other subsystems.

•	 Hierarchy (or aggregation): In the long run, the behavior of any one subsystem 
depends in only an aggregate way on the other subsystems.

These properties indicate that in reality, the traditional model of usability is over-
simplified. Although the usability subsystem is fundamentally different from the 
architecture, Simon’s principle of nearly decomposable systems predicts that it is 
possible for usability properties to be affected to some degree by architectural prop-
erties. Figure 4.6 illustrates an interpretation of this alternative model of usability.

In this Fig. 4.6, a node (usability property) at any level of usability can poten-
tially be influenced by nodes at any lower level of architecture, or conceivably 

Usability and
software quality

Usability

Usability
factors

Usability
criteria

GUI
objects

Software
objects

Invisible
objects

Software quality
criteria

Software quality factors

Maintainability, dependability,
efficiency, etc.

Fig. 4.6   Revised model of usability, including possible types of cross relationships with architec-
ture ( bold links)

 



4  Adding Usability Quality Attributes into Interactive Systems Architecture78

even by combinations of several different levels of architecture. Figure 4.6 is a first 
approximation. Simon’s second principle of near decomposability states that sub-
systems depend in only an aggregate way on other subsystems.

This principle implies that if architecture has an effect on usability, it will tend 
to be in an aggregate way and therefore at a higher level of architecture, rather than 
through the effect of an individual low-level architectural component. We interpret 
this principle to mean that the effects of architecture on usability will tend to propa-
gate from levels of architecture that are closer to the level of usability, rather than 
farther away.

Therefore to refine the model, we will assume that the most likely relationships 
occur between usability properties and the immediately closest lower architectural 
level, and that more distant architectural levels have an exponentially decreasing 
probability of having an effect on usability. The revised model, based on this 
assumption, is illustrated in Fig. 4.7. This model reflects a more clearly recursive 
definition of usability.

Based on Simon’s principles of nearly decomposable systems, we can conclude 
that these types of relationships between architecture and usability are the exception 
to the rule, but frequent enough that they should not be neglected.

4.7 � Application

This measurement model provides a framework within which to visualize and 
explore these exceptional ways that architecture can affect usability, to work toward 
a more complete model of usability. The model is useful because it helps us know 
where to look for, investigate, and experiment on relationships between architecture 

Usability and
software quality

Usability

Usability
factors

Usability
criteria

GUI
objects

Software
objects

Invisible
objects

Software quality
criteria

Software quality factors

Maintainability, dependability,
efficiency, etc.

Fig. 4.7  Most probable types of cross relationships between usability and architecture ( bold links)

 



4.8  Key Contributions of this Chapter 79

and usability. Further progress will require detailing the hierarchies on both sides 
of the tree, and considering each possible relationship between nodes at proximate 
levels. Another goal will be to provide other heuristic principles to further narrow 
down the likely interrelationships between these two branches.

Table  4.3 provides examples of the specific types of relationships that occur 
in the scenarios described in Sect. 4.2. The second column refers to the invisible 
object’s properties and software qualities identified in the right-hand branch of 
Figs. 4.5 through Fig. 4.7, and the third column represents the usability properties 
identified in the left-hand branch of those figures.

For example, the scenario 1 (Sect. 4.4) can be modeled as a relationship that 
connects the performance of the software feature with certain usability attributes 
such as user satisfaction. It can lead to the following requirement related to scenario 
1 (Sect.  4.4): “To ensure an 80 % level of satisfaction, the maximum acceptable 
response time of all the underlying related feature should not exceed 10 s; if not the 
user should be informed and a continuous feedback needs to be provided.”

4.8 � Key Contributions of this Chapter

In this book, we first identified specific scenarios of how invisible software com-
ponents can have an effect on the usability of the interactive system. Then, we 
provided a list of patterns that solved the problems described in the scenarios. This 
research effort can benefit software architecture designers and developers, who can 
use our approach in two different ways. First, the scenarios can serve as a checklist 
to determine whether important usability features (external attributes) have been 
considered in the design of features and the related UI components. Second, the pat-
terns can help the designer incorporate some of the usability concerns in the design.

More than defining a list of scenarios and patterns that describe the effects of in-
visible software attributes on software usability, the long-term objective is to build 
and validate a comprehensive framework for identifying scenarios. The goal of the 
framework is to define these patterns as a relationship between software quality 
factors and usability factors. In this chapter, we have suggested different HCI and 
software design patterns as solutions to the problems described in these scenarios 
and in similar ones. Every pattern has a set of problems to be solved and a set of 
goals to be achieved.

As designers gain a better understanding of the relationship between interaction 
design patterns and software architecture patterns, this knowledge will affect 
the evolution of standards in architecture design and GUI software libraries. 
Some developers are making proper use of standard GUI libraries and respect-
ing interface design guidelines in a way that considerably increases the usability 
of interactive applications. However, more can be done in this direction, and the 
approach we have outlined in this chapter is an attempt to build a better and more 
systematic understanding of how usability can be incorporated into software archi-
tecture.



4  Adding Usability Quality Attributes into Interactive Systems Architecture80

References

ANSI/IEEE Std (1471–2000) Recommended practice for architectural description of software-
intensive systems

Bass L, Clements P, Kazman R (1998) Software architecture in practice. Addison- Wesley, Reading
Bass L, John BE, Kates J (2001) Achieving usability through software architecture, SEI Report. 

Carnegie Mellon University, Pittsburgh, PA 15213–3890
Buschmann F, Meunier H, Rohnert P, Sommerlad Stal M (1996) Pattern-oriented software 

architectures: a system of patterns. Wiley, West Sussex
Carroll JM (2000) Scenario-based design of human–computer interactions. MIT Press, Cambridge
Gaffar A (2001) Design of a framework for database indexes. Master thesis, Concordia University, 

Montreal
Gaffar A, Seffah A, Van der Poll J (2005) HCI patterns semantics in XML: a pragmatic approach, 

HSSE 2005. In: Workshop on Human and Social Factors of Software Engineering, in 
conjunction with ICSE 2005, the 27th International Conference on Software Engineering, St. 
Louis, Missouri, USA, May 15–21, proceedings of ACM

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: elements of reusable object-
oriented software. Addison Wesley

Folmer E, van Gurp J, Bosch J (2003) A framework for capturing the relationship between usability 
and software architecture. Softw process: improv pract 8(2):67–87

ISO/IEC TR 9126-3:2003. Software engineering—product quality—part 3: internal metrics, ISO 
2003

Newman W, Lamming MG (1995) Interactive system design. Addison-Wesley, Harlow
Norman BD (2002) The computer industry. CACM 45(July), 7
Sandu D (2001) User interface patterns. In: 8th Conference on Pattern Languages of Programs 

September 11–15, llerton Park Monticello, Illinois, USA
Seffah A, Abran A, Khelifi A, Suryn W (2003) Usability meanings and interpretations in ISO 

standards. Soft Quality J 11(4)
Simon HA (1962) The architecture of complexity. Proceedings of the American Philosophical 

Society, Vol 106, No. 6. (Dec. 12, 1962), pp. 467–482
Sinnig D (2004) The complicity of patterns and Model-Based UI Development. Master of 

Computer Science, Montreal, Concordia University, 148 p
Tidwell J (1997) Common ground: a pattern language for human–computer 848 interface design. 

http://www.mit.edu/~jtidwell/common_ground.html. Accessed 20 April 2015
Welie MV (1999) Patterns in interaction design: the Amsterdam Collection. http://www.welie.

com/patternl. Accessed 20 April 2015

http://www.mit.edu/~jtidwell/common_ground.html
http://www.welie.com/patternl
http://www.welie.com/patternl


81© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_5

Chapter 5
A Pattern Framework for Task Modeling 
in Smart Environments

Abstract  Although, the wide range of tools that exist to support model-based 
approaches, creating various models, transforming, and linking them is still a time 
consuming and complex activity. In addition, model-based approaches lack an 
advanced concept of reuse of already modeled solutions. In this chapter, an attempt 
to overcome the high complexity of the modelling process of applications is pre-
sented. It will be shown that patterns may be employed to avoid these disadvantages, 
since they provide an advanced concept of reuse by definition. After introducing the 
concept of pattern-driven and task-based development in general concrete tool sup-
port will be discussed. In addition, the role of task models for smart environments 
will be discussed. Specific task patterns for this domain will be discussed as well.

5.1 � Task Modeling for User Interface

One of the first popular modelling methods for user interface design was Task 
Knowledge Structure (TKS) Johnson et al. 1985. Tool support was later provided 
by the ADEPT system Johnson et al. 1993. Some years later Mobi-D (Model-based 
Interface Designer) Paternó and Santoro 2002 provided even more successful re-
sults in developing task-based user interfaces. It is based on a user task, a domain, 
a user, a dialog, and a presentation model. Extensible Interface Markup Language 
(XIML 2012) was developed to use this model-based approach together with XML 
technology. Tool support was provided accordingly.

The idea got more momentum with the appearance of mobile devices. The One 
Model Many Interfaces approach Paterno 2001 suggests to use task models as well 
as abstract and concrete user interface models. It aims to support the development 
of multimodal user interfaces. For the purpose of specifying the single models, it 
contains the Teresa XML notation TeresaXML 2012. The User Interface Exten-
sible Markup Language (UsiXML) approach UsiXML 2014 is based on the experi-
ences with XIML and structured according to the Cameleon Unifying Reference 
Framework (Balme et al. 2004). Among other models, UsiXML uses task, domain, 
context, abstract, and concrete user interface models.



82 5  A Pattern Framework for Task Modeling in Smart Environments

Building task models requires a great amount of expertise and knowledge es-
pecially when building a task model bfrom scratch. Not only this involves a lot of 
work and is error prone. Patterns can be a solution for such problems. In Breedvelt 
et al. 1997 task patterns are suggested. They capture a high level description of re-
occurring activities. These activities can be performed with and without interactive 
applications.

This chapter supplements Chap. 3. It provides a specific approach of using the 
concept task patterns as a task modeling technique and as a tool to generate user 
interfaces from an HCI task models. A general pattern application framework is 
discussed and illustrated using a smart environment application. It abstracts from a 
specific model-based approach, a concrete pattern language, and a specific pattern 
notation in order to abstract as much as possible and make the framework applicable 
for different models.

5.2 � Proposed Pattern Framework for Task Modeling

Figure 5.1 portrays the proposed framework for task modeling using task patterns. 
The application of patterns is into three main general phases.

In the first pattern selection phase, a designer works on a certain submodel and 
feels that a certain user interface pattern should be applied to the sub-model. It can 
also be possible that the designer identifies a certain problem in the sub-model and 
looks for a pattern that provides a solution to the problem. In both cases a pattern is 
chosen out of a pattern repository. It would be optimal if there would exist only one 
repository that contains the available patterns of the pattern language.

Within a pattern language, the patterns are hierarchically structured into patterns 
and sub-patterns. Each pattern in the pattern language is specified according to a 
specific pattern notation. It contains a model fragment that describes the pattern 
solution. This solution can be generic in order to be applicable in various contexts 
and to allow the pattern to be instantiated in multiple ways.

The generic parts of the selected pattern have to be adapted during the pattern 
instantiation phase. To be more precise the instantiation phase can be divided in 
two subphases, the adaptation of the pattern to the context of use. The generic part 
is adapted to the current sub-model under development. This has to be done in an 
interactive way. Later the instantiation can be performed. The whole process results 
in a pattern instance derived.

Finally, the interactively produced pattern instance has to be applied to the se-
lected sub-model. This means that the sub-model is transformed by the pattern in-
stance. The transformed sub-model has to be finally integrated in the context, the 
whole model. Corresponding links have to be updated. The whole phase is called 
pattern integration phase.



835.3 � Task Modeling Patterns Notation

5.3 � Task Modeling Patterns Notation

5.3.1 � The Model-Based Approach We Used

The modelling approach we used was proposed in Wolff et al. 2005, and later adapt-
ed further in order to serve as modelling approach component within the framework 
implementation. Similar approaches of that of Fig.  5.1 were suggested by other 
publications as well (see, e.g., Stary 1999). According to this approach, the develop-
ment of software starts with the envisaged task model that will be performed in the 
future via the user interface. A business object model describes properties of domain 
objects that are needed for the executing the tasks. Typical characteristics of user 
groups are specified within the user model. Information about platforms and general 
context information is specified by a domain model.

Based on these models, dialog model is specified that describes the navigational 
structure of the user interface in form of views and transitions between these views. 

General Pattern Application Framework

User-Interface Multi Model

Model-based Approach

User-
Interface

model

Pattern Repository

Pattern Language

Pattern Notation

2.
Selection

2.
Instantiation

3.
Integration

User-Interface
Modeling Pattern

Pattern Instance

Model
Fragment

Generic
model

Fragment

Designer/
User

Fig. 5.1   The proposed pattern application framework. (Radeke 2007)

 



84

An abstract user interface model can be generated automatically that is interactively 
refined into the concrete user interface model afterwards (Fig. 5.2).

5.3.2 � Pattern Notation

The specification of a pattern consists of two parts. The first part helps the devel-
oper to determine whether a specific pattern is applicable in a concrete design situ-
ation and the second part provides hints for solutions. In the following, the first part 
is referred as contextual information. The second part describes a solution but often 
does not contain machine-readable information about the solution. Including such 
information in the pattern enables computer support for the entire pattern applica-
tion process. Such machine-readable information is referred to as implementational 
information in the following.

During a workshop at CHI 2003 (Conference on Human Factors in Computing 
Systems), the specification language Pattern Language Markup Language (PLML ; 
Forbrig et al. 2012) was developed. There was the goal to have a common language 
to express the specification of patterns. PLML contains common elements, like for 
instance the pattern name, the problem, and the solution, that can be found in most 
of the patterns suggested so far. UsiPXML structures its context information accord-
ing to the format as suggested by PLML. The specification of the implementation 
is based on UsiXML (User Interface Extensible Markup Language, UsiXML 2014). 
The following figure gives an impression of the structure of the language (Fig. 5.3).
UsiXML is well suited for the specification of user interfaces. However, it is not 

generic. As patterns describe solutions in a generic way, this feature would be very 
helpful. The notation of UsiXML has been extended with pattern-specific compo-
nents as outlined in the lower part of Fig. 5.3. Such extensions are structure attri-
butes, variable declarations and assignments, and pattern references and interfaces. 
They will be discussed in the following by using an illustrative example. A more 
detailed description of the extensions can be found in Radeke 2007.

Task Model

Business
Object Model

User Model

Device Model

Dialog Model AUI Model CUI Model

Fig. 5.2   Model-based approach for developing user interfaces

 

5  A Pattern Framework for Task Modeling in Smart Environments



85

We will now address the question of describing the patterns in an appropriate 
way. Two problems have to be tackled. First, a pattern should provide information 
that supports the designer in selecting an adequate pattern. It is additionally stated 
in Molina and Hernández 2003 that a pattern has to be described in such a way that 
the result of its application is predictable. Thus, practitioners can realize quickly 
whether a pattern is suitable in a given context or not. Information that tackles this 
problem is referred to as contextual information in the following. Beside this con-
textual information, a pattern has to provide information that describes its solution 
in a machine-readable way in order to enable tool support for its application. In the 
following information of a pattern that described the solution in a machine-readable 
way is referred to as implementational information. UsiPXML strictly follows the 
structure of PLML and adds some more language elements that are presented sepa-
rately below.

Although, PLML may be suitable to capture most of the patterns proposed so far, 
it does not tackle the problem of how to describe the solution itself in a machine-
readable way in order to allow computer supported pattern application. Most of 
the patterns captured in pattern languages (e.g., Tidewell 1998; van Duyne et al. 
2005; Welie 2012) are described in a textual or graphical form. In contrast to this, 
Sinnig (Sinnig 2004) developed a pattern notation for task patterns that contains, 
apart from the contextual information, details of the implementation which are de-
scribed in a machine-readable way, called TPML (Task Pattern Markup Language). 
Analogous to common task modelling notations, TPML describes the task solution 
in a hierarchically structured XML-based notation. In the following, the UsiXML 
modelling notation will be extended in order to capture the information regarding 
the implementation of the pattern. UsiXML is capable to describe user-interface 

UsiPXML

UsiXML

Structure Attributes

Variable Declarations and Assignments

Pattern References and Interfaces

Contextual Information

Implementational Information

PLML

Fig. 5.3   Structure of the language UsiPXML

 

5.3 � Task Modeling Patterns Notation



86

using various models on different levels of abstraction. UsiXML is supported by an 
active community and may become a standard of user-interface modelling notation.

In order to describe the implementation of a pattern in a generic way, the follow-
ing extensions have been integrated into UsiXML:

•	 Structure attributes,
•	 Variables declarations and assignments, and
•	 Pattern references and pattern interfaces.

These extensions are outlined in more detail in the following subsections.

5.3.2.1 � Structure Attributes

Most of the basic elements, like task or concrete interface elements that can occur 
in UsiXML specifications have been extended with structure attributes. They al-
low specifying the pattern structure in a flexible way. The “minOccurrence” and 
“maxOccurrence” attributes often specify how the element may occur in the result-
ing pattern instance. The concrete occurrence number of the element is determined 
during pattern instantiation by the designer. The “minOccurrence” and “maxOccur-
rence” attributes are optional. By default, an element is allowed to occur exactly 
one time.

minOccurrence maxOccurrence Meaning
0 1 Elective element. Element 

may occur once or not at all
1 unbound Recurring element. Element 

may occur once or arbitrarily 
often

0 unbound Elective and recurring ele-
ment. Element may occur 
arbitrarily often or not at all

1 1 Element occurs exactly 1 time. 
(default)

1 5 Element may occur 1–5 times

Figures 5.4 and 5.6 demonstrate the usage of attributes by showing a fragment of 
a task pattern. The fragment contains the two tasks: “Root Task” and “Sub Task.” 
The numbers in brackets indicate the values of the “minOccurrence” and “maxOc-
currence” attributes. “Root Task” has to occur exactly once, whereas “Sub Task” 
can occur arbitrarily often. Figure 5.6 shows a task pattern at the top and a possible 
instance of that pattern at the button, where the task “Sub Task” occurs thrice.

Another structure attribute allows deactivating elements while setting its value to 
“false.” The elements may be reactivated while setting the value back to “true.” The 
attribute is used for activating and deactivating parts of the pattern. For instance, 
a designer may specify during pattern instantiation that the resulting solution is 
intended for a PDA. The “set” attribute may be used in this context to activate the 

5  A Pattern Framework for Task Modeling in Smart Environments



87

Pattern

Pattern

Task Model Fragement

Task Model Fragement

Task: Root Task (1,1)

Task: Root Task (1,1)

Task: Sub Task (1,unbound)

Task: Sub Task (1,unbound)

Task: Sub Task (1,unbound)

Task: Sub Task (1,unbound)

Fig. 5.4   Task “Sub Task” 
may occur arbitrarily often
 

Pattern

Task Model Fragement

Task: Root Task (1,1)

Variable Declaration

Variable Declaration

Name: Variable1

Name: Variable2

Current Value: ABC

Current Value: DEF

Task: Sub Task (1,unbound)

V

V

Fig. 5.6   Pattern with variable 
declarations
 

Task: Input Value for this input (1,1)

Task: Modify Value for this input (0,1)

Fig. 5.5   Activated and 
deactivated task element
 

5.3 � Task Modeling Patterns Notation



88

parts of the pattern that describe the PDA-specific solution, whereas the parts of the 
pattern that describe the desktop PC specific solution are deactivated. As shown in 
Fig. 5.7, deactivated elements are displayed in a gray color. Elements that are de-
activated as well as their sub-elements are not integrated into the resulting pattern 
instance (Fig. 5.5).

The structure attributes allow specifying the pattern structure in a generic way 
since elements may occur flexibly or may be activated or deactivated depending on 
the context of pattern application.

5.3.2.2 � Variable Declarations and Assignments

For each declared variable, a designer is asked to assign a value during pattern 
instantiation. In this way, the variables represent design decisions. A variable dec-
laration contains the identifying name of the variable, the variable type, and a de-
scription. It may furthermore contain a set of allowed values and a default value. 
During the pattern instantiation, values are assigned to variables. Depending on the 
assigned values, a designer can influence the resulting pattern instance. Figure 5.8 
shows a pattern fragment that contains two variables declarations. Since variable 
declaration elements may be used on all hierarchy levels, scopes can be defined. For 
example, “Variable2” in Fig. 5.8 is only visible for task “Sub Task,” whereas “Vari-
able1” is visible for “Root Task” and “Sub Task.” Creating new occurrences of “Sub 
Task” as described above also creates new occurrences of the variable declaration 
for “Variable2” (Fig. 5.6).

Task: Sub Task(1,1)

Assignment

Expression: if (variable1 ==’’DEF’’) then true

Destination: attribute1

A

Fig. 5.8   Assignment using 
a conditional statement as 
expression

 

Pattern

Task Model Fragement

Task: Root Task (1,1)

Variable Declaration

Assignment

Name: Variable1

Expression: Variable1

Current Value: ABC

Destination: attribute1

Task: Sub Task (1,1)

V

A

Fig. 5.7   Pattern with 
assignment element
 

5  A Pattern Framework for Task Modeling in Smart Environments



89

Depending on the evaluation of variables, attributes of pattern elements can be 
changed. This is done by employing assignment elements within the pattern. The 
“destination” attribute allows specifying an attribute of the target element to which 
the expression value is assigned. The attribute “substitution form” specifies whether 
the value of the target attribute is replaced by the expression value or whether it is 
added to the original value of the attribute. In the following, an assignment is illus-
trated by an example (Fig. 5.7).

In the simplest case, the expression of an assignment element contains the name 
of a variable as shown in the example of Fig. 5.9. The expression has the content 
“Variable1. Evaluating such expression returns the value of the variable. In the ex-
ample the expression result, which is the current value “ABC” of “variable1,” re-
places the destination attribute “attribute1” of the task element “Sub Task.”

However, often it is helpful not to assign a variable value directly to an attribute 
as done in Fig. 5.9, but assign a specific value to an attribute depending on the vari-
able value. For this purpose, the assignments may contain conditional statements as 
expressions as outlined in the example of Fig. 5.10, Fig. 5.8. Conditional statements 
can be specified using a notation similar to the Java programming language. The 
value of the expression in the example means that if the variable “variable1” has 
the current value “DEF,” then return as expression result “true.” The value “true” is 
later assigned to “attribute1.”

Pattern

–

–

–

–

–

–

–

–

–

–

+

+ A

V

A

V

V

+

+

CUI Model Fragment

Window (1,1)

Box (1,1)

Output Text: Introduction Text (0,1)

Variable Declaration

Assignment

Box:Inputs (1,1)

Box: Single Input (1,unbound)

Variable Declaration

Name: inputType

Current Value: text

Output Text (1,1)

Variable Declaration

Assignment

Box: Unambiguous Input (1,1)

Pattern: Unambiguous Format Pattern (inputType)

Box (1,1)

Button: Send Button (0,1)

Newsletter

Picture

Password

Last Name

First Name

Please enter the required information.

John

Smith

c:/pics/me.jpeg

*******

Send

...

...

a b

Fig. 5.9   UsiPXML structure (a) of the “Form Pattern” and a generated pattern instance (b)

 

Maintence Support System

Access Main Functionality

Manage Service Schedule lll
Find Documentation lll
Assemble Maintenance Jobs

Authenticate >>
–

 Fig. 5.10   Initial task model

5.3 � Task Modeling Patterns Notation



90

Variables and assignments allow specifying the pattern elements character in a 
generic way. Thereby, every attribute of a pattern element may be manipulated by 
an assignment depending on the variable values. Assignments allow even activat-
ing or deactivating entire pattern parts while setting the “set” attribute of the cor-
responding elements to “true” or “false.”

5.4 � Pattern References and Pattern Interfaces

Pattern references allow employing lower level patterns as subpatterns for the fur-
ther refinement of a higher level pattern. For this purpose, the higher level pattern 
may contain a pattern reference to the lower level subpattern. It may also contain a 
list of parameters that are passed to the sub-pattern.

In order to access parameters that are passed to a sub-pattern, the sup-pattern has 
to define a pattern interface. The pattern interface contains a list of variable decla-
rations, whereby each describes a single parameter. If the pattern is instantiated as 
stand alone, these parameters are handled like usual variables. Otherwise, if the pat-
tern is employed as sub-pattern, each parameter receives the values that are passed 
to the sub-pattern via the pattern interface.

5.4.1 � Example of a Pattern

The way of specifying task patterns with UsiPXML will be demonstrated by an 
example. Figure 5.9a shows the UsiPXML task structure of the “Form Pattern” that 
was discussed in Sinnig 2004. It is originally a UI pattern that can be employed in 
situation where the user has to enter a set of related values. Figure 5.9b shows a pos-
sible instance of a UI. However, a corresponding task model can be used to specify 
the features that have to be presented in the user interface.

The variable “Introduction Text” allows specifying an optional introduction text. 
In case the designer assigns “Please enter the required information” to that variable, 
the result looks like shown in Fig. 5.9b. The content of the variable is displayed on 
top of the form.

The element “Box: Single Input (0, unbound)” that can be found in the middle of 
Fig. 5.9a is allowed to occur arbitrarily often in the final instance. During instantia-
tion, the designer has to determine the concrete number. The mentioned element 
occurs five times (each input) in the instance of Fig. 5.9b.

As shown in the lower part of Fig. 5.9b, the “Form Pattern” refers to the “Unam-
biguous Format Pattern.” The purpose of the “Unambiguous Format Pattern” is to 
provide a single input element depending on the type of information that is entered. 
According to the pattern interface, the “inputType” is expected as parameter.

5  A Pattern Framework for Task Modeling in Smart Environments



915.4 � Pattern References and Pattern Interfaces

5.4.2 � Application of Patterns

The UsiPXML pattern notation allows the usage of the patterns within tools. Such 
tools have been developed in order to implement a pattern-driven model-based ap-
proach. The tools are developed as so called plug-ins for the Eclipse (Eclipse 2014) 
environment.

They strictly follow the three steps of the pattern application process proposed 
by the framework:

1.	 Pattern selection,
2.	 Pattern instantiation, and
3.	 Pattern integration.

In order to find a pattern, a designer can browse the pattern hierarchy and retrieve 
contextual information. This allows him to select an appropriate pattern for the cur-
rent modelling situation. The adaptation of the selected pattern is later supported 
by an “Instantiation Wizard.” It supports to determine the structure of the pattern 
instance and to assign values to variables that occur within the pattern. The insertion 
of the resulting pattern instance into a target model is supported by an “Integration 
Wizard.”

To get an impression of the support that those tools provide, let us have a look 
at a system that has to be developed in order to support maintenance work. It is the 
goal of the system to assist technicians in managing the maintenance jobs that arise. 
The entire case study is discussed in more detail in Radeke 2007.

It is assumed that the analysis of the domain resulted in an initial task model as 
outlined in Fig. 5.10. It specifies that an authentication of a user is necessary before 
the main functionality can be accessed. After a successful authentication, the tasks 
“Manage Service Schedule,” “Find Documentation,” and “Assemble Maintenance 
Jobs” can be performed concurrently.

At this stage, patterns can be employed for further refining the initial task model. 
The task “Authenticate” can be refined by the “Login Pattern” Sinnig 2004. This 
task pattern is applicable when users need to identify themselves in order to perform 
authorized operations. It contains the “Multi-Value Input Pattern” as shown in the 
following figure (Fig. 5.11).

Pattern

Task Model Frogment

Task Login (1,1)

Task: Show Login Prompt (1,1)

Task: Enter Coordinates (1,1)

Pateern: Multi Value Input Form Pattern

Task: Submit Coordinates (1,1)

Task: Provide Feedback (1,1)

–

–

–

Fig. 5.11   Login pattern 



92

For logging in, there has to be, as shown, a login prompt and later coordinates 
have to be entered. They have to be submitted, and finally feedback has to be given.

Within the tool, there is a possibility to have a look at the specification of each 
pattern. Figure 5.15 partly provides the “Login Pattern” description gives an im-
pression of how users get support. It might be necessary to have a look at this speci-
fication before being able to apply the pattern (Fig. 5.12).

The “Login Pattern” employs the “Multi Value Input Form Pattern” a sub-pat-
tern. The “Multi Value Input Form Pattern” can be used when the user has to pro-
vide a set of related values. In the context of the “Login Pattern,” it is employed to 
specify which coordinates have to be provided to authenticate the user (Fig. 5.13).

One can see in the specification of the patter that there exists a task “Enter value 
for this input” that has to exist at least once in the pattern. However, this task can ex-
ist as often as the context of the application of the pattern asks for. For the example 
of our maintenance software, it might be appropriate to ask the user to enter name 
and password. In case of more data, the pattern has to be adapted accordingly.

The following screenshot (Fig. 5.17) shows the adapted pattern for two inputs. 
The corresponding part of the task model is duplicated.

In addition, the developer is allowed to update the names of the input data that 
are currently “this input.” Figure 5.18 provides the corresponding result. It can be 
seen that with input from the user the names of the tasks have been changed accord-
ingly.

Fig. 5.12   First part of the description of the “Login Pattern” in the tool

 

5  A Pattern Framework for Task Modeling in Smart Environments



93

Fig. 5.13   First part of the description of the “Multi Value Input Form Pattern”

 

Fig. 5.14   Adapted “Multi Value Input Form Pattern”

 

5.4 � Pattern References and Pattern Interfaces



94

Fig. 5.16   Instantiated “Login Pattern”

 

Fig. 5.15   Further adapted “Multi Value Input Form Pattern”

 

5  A Pattern Framework for Task Modeling in Smart Environments



95

The resulting instantiated “Login Pattern” can be seen in Fig. 5.19. It includes 
an instantiated “Multi Value Input Form Pattern.” This instance can, in our tool, 
now be exported for further usage in other tools or it can be used to transform a task 
model, which is the case in our example (Fig. 5.13). A task model has to be selected; 
and within a task model, a task has to be specified that is intended to be replaced by 
the task model of the instantiated pattern. Figure 5.20 demonstrates this situation 
for our example. The task “Authenticate” is selected for transformation. The task 
could be replaced. However, for our tool it was decided to have root of the subtree 
as subnode of the original task. The reasons were for demonstrational purposes only 
(Fig. 5.14).

Fig. 5.17   Selected task for transformations

 

Fig. 5.18   Resulting task 
model
 

5.4 � Pattern References and Pattern Interfaces



96

Values can be changed according to the current context of use. Currently 
“Name” and “Password” seem to be appropriate values for the variables (Fig. 5.15, 
Fig. 5.16).

The pattern instance is ready to be exported or to be applied to a model. The fol-
lowing figure represents the situation after pressing the integrate button, selecting 
the appropriate model and subtask (Fig. 5.17).

The result of the corresponding transformation can be seen in the following fig-
ure. It shows the resulting task model (Fig. 5.18).

It was possible to demonstrate how generic task patterns can be handled by a tool 
to specify a detailed task model.

At the moment, leaf nodes of a tree are replaced by sub-trees. In future, it could 
be imagined that subtrees are replaced by sub-trees. This can be helpful if already 
some parts of a specific node are already specified. Some further research is neces-
sary for such situations.

The considered task models were intended to support the development of inter-
active systems that have graphical user interfaces. The next section will broaden the 
view a little bit and considers general smart environments that have to be developed.

5.5 � Case Study: Task Modelling in Smart Environments

Cook and Das (2004) define a smart environment as “a small world where different 
kinds of smart devices are continuously working to make inhabitants’ lives more 
comfortable.” A smart meeting room is, according to Yu and Nakamura 2010, a 
smart environment that aims to assist the resident actors while exchanging ideas and 
information among each other. However, a thorough understanding of the tasks the 
users are planning to perform is a mandatory step in order to make the room react in 
a convenient and seamless way.

Therefore, modelling the user’s behaviour in the environment is recommended 
for the deliverance of a successful and optimal assistance to the resident actors 
within the environment. In the last few years, an increasing interest in task models 
which proved to be a suitable starting point for designing interactive applications 
is detectable.

However, in order to truly model the tasks executed in a given environment, the 
conditions and environmental settings intervening and affecting the way the tasks 
are performed have to be taken into account. For example, in a smart meeting room 
stationary and dynamic devices as well as some objects may be crucial for the ex-
ecution of a given task in the environment. Thus, a simple task model isolated from 
the environmental constraints fails to express the exact way the tasks have to be 
executed in the environment. Therefore, the collaborative task modelling language 
(CTML) was developed by Wurdel et al. 2008. The following figure gives an im-
pression of the models used within CTML (Fig. 5.19).

Table 5.1 presents a schematic sketch of a CTML cooperation model. Elements 
in the inner circle represent modelling entities (post fixed with “− 1”) whereas dia-

5  A Pattern Framework for Task Modeling in Smart Environments



975.5 � Case Study: Task Modelling in Smart Environments

grams outside of the inner circle show detailed specifications of the corresponding 
entities (post fixed width “-2”).The cooperation model specifies the relevant entities 
on an abstract level. Usually roles (e.g., A-1), devices (e.g., B-1), a location model 
(C-1), a domain model (D-1), and a team model (E-1) are necessary to be specified.

The potential actions a user is able to perform are determined by his role(s). 
More precisely, a role is associated with a collaborative task model (A-2).

Whereas, CTML seems to be able to successfully describe the scenarios taking 
place in a given smart environment, the building of the different included models 
(e.g., task model, device model, domain model…etc.) is a real burden for the de-
veloper. Moreover, the mutual dependencies existing between all the entities in a 
given environment increase the complexity of the modelling process, turning it to 
an error-prone and time-consuming activity.

The mentioned problems can be overcome by building a pattern language ad-
dressing this domain. It is noteworthy that the methodology that was employed to 
extract and define our patterns can also be used to define similar patterns for other 
types of smart environments.

As we already discussed, to have a comprehensive idea about the task perfor-
mance in the environment, the task and all influencing surrounding factors have to 
be represented. Thus, we also consider the following entities: the devices assisting 
the user, the objects needed the specific location in which the user should be while 
performing the task, the user’s characteristics, and finally the dependencies between 

Fig. 5.19   CTML models for supporting meetings

 



98

Table 5.1   Task pattern present slides

 

5  A Pattern Framework for Task Modeling in Smart Environments



99

a given user’s role and the roles to be played by the other actors in the environment. 
Thus, for every one of those intervening factors, a corresponding model has to be 
created and somehow linked to the task model embracing the tasks to be executed 
by a given actor in the environment.

In order to be able to extract useful reusable patterns, we started by identifying 
all common team-based goals (e.g., perform conference session) for which several 
actors may gather in a meeting room. Each of these goals can be realized through 
multiple different runs or scenarios. For example, to achieve the state “conference 
session performed” all presenters should be finished with their talks. However, 
whether there are impaired actors in the environment or not, as well as the exact 
number of presentations in the session may differ from one situation to another. 
Thus, we find it useful to create the so-called goal-based patterns that are abstract-
ing from the detailed and precise context of execution. In other words, they provide 
a holistic model for the whole team-based goal, while the exact adaptation of this 
model to the developer’s context of use is achieved during the pattern instantiation 
phase. Furthermore, by investigating those goals, a set of entity-based patterns are 
revealed. For example, some devices like a projector or a laptop are mandatory 
for various team-based goals, and consequently a device template capturing the 
dynamic behaviour of those devices can be considered as device patterns that can 
be reused several times in various situations. In addition, we defined role-based 
patterns, where a whole role to be played is represented using CTT and can also be 
adapted according to the characteristics of the actor performing the task, in addition 
to some other environmental factors. Those role-based patterns can be further de-
composed to the so-called task patterns, which represent the lower level of patterns 
we have in our language. However, a new structure for the task patterns is suggested 
in order to maximize the benefit of those patterns.

The classification of our patterns is presented in Fig. 5.21. It consists of three 
distinguishable divisions. We will focus our discussion here on the task-based pat-
terns that are related to the role-based patterns (Fig. 5.20).

A more detailed explanation of all patterns is provided in Zaki and Forbrig 2012. 
We argue for a broad definition of task patterns by specifying the environmental 

Fig. 5.20   Categories of patterns for smart meeting rooms

 

5.5 � Case Study: Task Modelling in Smart Environments



100

preconditions and effects in the pattern structure. While Sinnig 2004 suggested the 
idea of having domain attributes to which the task template is adaptable; in Wurdel 
et al. 2008, there was the idea of using OCL constrains to specify the context of use. 
Actually, those approaches enable the adaptation of task patterns to various contexts 
like described in the previous paragraph.

However, the executions of every task within a given task pattern sometimes 
need a set of complex preconditions. The previous approaches were extended by 
a visual representation of the environmental and dependencies for executions. In 
Table 5.1, one of the task patterns “Present Slides Pattern” is depicted. The skeleton 
of the patterns is inspired by CTT Paterno and Meniconi 1997 and the solution 
provided by the pattern is textually described in the “solution” section, while in the 
“diagram” section a graphical representation of the solution is represented.

By having a closer look at the “Present Slides Pattern”, one can notice that the 
solution is actually decomposed into three distinguishable parts. First of all, the task 
fragment to be loaded by the developer and integrated into his task model is pro-
vided. This task fragment specifies the tasks to be executed by the actor in the room. 
Then, a UML class diagram is used to identify the relevant entities for all the tasks 
represented in the task fragment. Finally, a formal representation of every individ-
ual task’s execution constraints is available using UML activity diagram notation.

Actually, the execution of a given task may have two different types of con-
straints. We have the temporal constraints specifying the order of execution of this 

Laptop

has

needs

Presenter
exists in

Smart Meeting Room Location

Conference Session Domain

Chairman

Listener

exists in

exists in

needs

has

Projector

Fig. 5.21   Conference session goal-based pattern

 

5  A Pattern Framework for Task Modeling in Smart Environments



101

task with correspondence to the others, and we adopt the approach presented in 
Brüning et al. 2008 in order to have a valid transformation of temporal operators 
defined by CTT to activity diagrams notations.

The other sort of constraints is the one resulting from the environmental depen-
dencies (e.g., device state, object existence, actor location…etc.). Preconditions and 
postconditions are provided by the activity diagrams notation. In that way, activity 
diagrams are able to visualize all the execution constraints related to the tasks to be 
performed. It is noteworthy that each of the solution’s parts can be adapted accord-
ing to the context of use. While decision nodes are used to adapt, both, task models 
and activity diagrams, the UML class diagram can be adapted using the cardinality 
associated to the objects. In the pattern example shown above, the case of having a 
deaf user in the room is considered. Thus, one of the attributes to which the pattern 
instance is adapted is the fact whether the actor suffers from any kind of hearing 
problems.

A last point to mention is that we define identically role-based patterns, which 
are task patterns abstracting from a complete repetitive role to be played in the 
environment.

Every entity that is sometimes relevant for the task execution has to be taken 
into account. By investigating CTML as an appropriate language for modelling col-
laborative environments, one can notice that an isolated model is needed for every 
entity type, and then those models are linked to the task model using dependencies.

The domain of smart meeting rooms reveals several models or templates, which 
can be reused. For instance, a device model capturing the dynamic behaviour of a 
projector is needed in most of the scenarios we discovered so far. Another example 
is the arrangement of the objects in the location (smart room) captured in the loca-
tion model, and which can also be the same in various scenarios and while achiev-
ing several goals. Thus, as presented in Fig. 5.21 we develop a set of patterns for 
every environmental aspect to be considered. We compile the following patterns:

a.	 Device-based template: illustrates the dynamic behaviour of a device in the envi-
ronment. We use state-chart diagrams to define those templates.

b.	 Domain-based pattern:captures the static attributes of all included entities in one 
of the defined team-based goals. UML class diagram notation is employed to 
represent those patterns.

c.	 Location-based template: defines a specific arrangement of objects and a precise 
description of zones within the environment.

d.	 Team-based pattern: presents the tasks to be executed by the group of users 
in cooperation (not every individual user). We build those patterns using task 
models.

A crucial point to mention is the fact that all of the above described patterns can be 
adapted according to some attributes that should be set by the developer.

If the goal for which the actors currently exist in the environment is one of the 
team-based goals we already expected, then we make it feasible for the develop-
er to load a complete cooperation model (including all roles, device models, do-
main models, and location models), which then should be adapted according to the 

5.5 � Case Study: Task Modelling in Smart Environments



102

context of use in order to represent the exact encountered scenario. It is noteworthy 
that within our pattern language, those goal-based patterns after being adapted (ad-
aptation attributes should have concrete values) provide the highest level of assis-
tance, since the developer can load all the models needed to assimilate the scenario 
taking place in the environment.

Therefore, to effectively use our pattern language, the developer should start by 
iterating over our set of goal-based patterns. In other words, the developer starts 
by checking whether the scenario one is about to develop can be mapped to one of 
the goal-based patterns existing in the language. When this is the case, the pattern 
is loaded and the developer assigns concrete values to adapt the pattern as already 
described. Despite the fact, that we tried to identify all team-based goals for which a 
group of actors may gather in a smart meeting room, it is still possible to have some 
scenarios which are not covered by this level of patterns. In this case, the developer 
may be assisted by the entity-based patterns. Thus, she may load a complete model 
for one or more of the included entities (e.g., a device model for one of the existing 
devices). However, it is obvious that the assistance provided by those patterns is less 
than the assistance provided by the previous ones, as the developer still has to build 
the non-loaded models; and in addition, all the models should be linked to the task 
model. The developer may also take advantage of the existing role-based patterns. 
In case no complete matching roles are usable, the designer can still take benefit 
of the task patterns providing repetitive task fragments, which may be integrated 
within the developer’s task model. In addition, those task patterns offer some infor-
mation the developer may need to build the other environmental-related models. We 
illustrate one of our goal-based patterns in the example below.

For the sake of brevity, we only show one pattern application example. We pres-
ent the “Conference Session Pattern” as an application example of a goal-based 
pattern in a scenario. First of all, let us consider the following conference session 
scenario taking place in a smart meeting room: “The chairman, Mr. Georges, enters 
the room, introduces the topic of the session, welcomes the audiences, and gives 
the floor to the first speaker. Before starting her talk, the presenter connects her 
presenter device to one of the projectors in the room. Later, she iterates over all the 
slides of her presentation, while explaining them to the listeners. Every listener is 
taking notes of the interesting information she gets from the talk. One of those lis-
teners is actually deaf. Once this speaker is finished with her talk, the chairman asks 
the audiences for questions which should be answered by the talker.

The same process is repeated for three presenters, and at the end Mr. Georges 
concludes the ideas, thanks the presenters, and closes the session.”

By investigating the above described scenario, the developer can easily notice 
that it is addressed by the “Conference Session Pattern,” which is one of the team-
based patterns available in our pattern language. Thus, the developer may model 
the previous scenario by loading this pattern and adapting it according to the exact 
situation described. Figure 5.4 illustrates this pattern before being configured and 
adapted to the developer’s scenario (Fig. 5.21).

Every entity within the previous pattern is defined using a corresponding model. 
For example, the listener, presenter, and chairman roles are available using task 

5  A Pattern Framework for Task Modeling in Smart Environments



103

models. Also, the conference session domain is described using a UML class dia-
gram. Actually, all of those entities are built out of some of the entity-based patterns 
available in the second category. Consequently, every goal-based pattern (e.g., Con-
ference Session Pattern) is composed of a concatenation of entity-based patterns 
(e.g., Projector template, presenter role-based pattern, chairman role-based pattern, 
etc.) which actually enables us to achieve the idea of a pattern language for the 
domain. However, all those models are to be instantiated according to the scenario 
presented. Thus, an adaptation process for all these models is taking place and it 
results in a specific suitable configuration for the current situation. Figure 5.23 de-
picts the role listener for a normal user in the environment, while Fig. 5.24 depicts 
the role played by the only deaf user among the audiences. In Fig. 5.24, it is shown 
that the deaf user is using a conversion mechanism in order to be able to process the 
information provided by the speaker. Moreover, whenever this user needs to ask a 
question, she will provide the question in text format to a text-to-speech converter 
that is able to alter the modality of the information provided to usual speech and 
broadcast it in the room, so that the speaker can listen to the question and answer it. 
Thus, the instance resulting from the adaptation of the “conference session” goal-
based pattern depicted in Fig. 5.22 will contain two different listener roles that are 
depicted in Fig. 5.23 and Fig. 5.24, and then everyone in the audience will be bound 
to one of those models. Similarly, all the other models are instantiated and that is 
how we achieve the final instance of our goal-based pattern. For the sake of brevity, 

Fig. 5.23   Deaf listener role

 

Fig. 5.22   Listener role

 

5.5 � Case Study: Task Modelling in Smart Environments



104

we do not show the adaptation process of each of those models. It is also noteworthy 
to mention that a pattern application tool is currently being developed in order to 
assist the developer, while applying the different patterns from this pattern language 
to her model.

In this section, we attempt to overcome the high complexity of the modelling 
process of applications in smart meeting rooms. We started by highlighting the need 
for modelling those environments in which the main goal is to assist the user, while 
performing her daily life tasks. We discussed the various entities and factors which 
constrain the tasks’ execution in the room, and thus should be considered.

We investigated one of the languages (CTML) that is designed to model collab-
orative environments, and enable the developer to represent and model all entities 
which are relevant for the task’s execution. However, we explained that the depen-
dencies existing between all those entities dramatically increase the burden on the 
developer who is supposed to build all those models, and goes afterwards through a 
verification process to guarantee the validity of the resulting model.

Therefore, in our work we suggested to build a pattern language addressing the 
domain of smart meeting rooms that can assist the user while building those models, 
and thus making this process of a better performing and less time-consuming. Our 
pattern language is composed of three distinguishable categories that we discussed.

We suggested the existence of a division containing patterns providing the high-
est level of assistance, but which are only convenient in case that the team goal is 
successfully expected. In other cases, we have the entity-based patterns where we 
offer the developer the possibility to load a complete model presenting one of the 
entities to be considered in her case. Finally, the last type of patterns that we have 
in our language and from which the developer can take benefit is the so-called task 
patterns. Those patterns enable the integration of task fragments acting as building 
blocks within the user’s task model.

However, a new definition and understanding of the “task pattern” was also ex-
plained. In order to make our ideas more clear, we provided a pattern application 
example where a specific scenario was described and we illustrated the instantiation 
and application process of one of the goal-based patterns existing in our language. 
Our work is still missing the existence of a tool that facilitates the application of all 
of those patterns. We are currently developing this tool, and we truly believe that the 
idea of providing this pattern language assisted by the tool can be a successful step 
in order to deliver proper and effective assistance to the developer while modelling 
a learning scenario running in a given smart meeting room.

5.6 � Summary

Even though most of the model-based approaches are supported by tools, creating 
the various models, transforming and linking them to each other is still a time con-
suming and complex activity. In addition, the approaches lack an advanced concept 
of reuse of already modelled solutions. In this chapter, we presented an attempt to 
overcome the high complexity of the modelling process of applications.

5  A Pattern Framework for Task Modeling in Smart Environments



105References

It was shown that patterns may be employed to avoid these disadvantages, since 
they provide an advanced concept of reuse by definition. After introducing the con-
cept of pattern-driven and task-based development in general, concrete tool support 
was discussed.

It was demonstrated how the three pattern application steps:

1.	 Selection of an appropriated pattern in order to solve a given design problem,
2.	 Instantiating the pattern in order to achieve a concrete design solutions, and
3.	 Integrating the pattern instance in the existing models.

can be supported for task patterns.
Later, we highlighted the need for modelling environments in which the main 

goal is to assist the user while performing her daily life tasks. We discussed the 
various entities and factors which constrain the tasks’ execution in the room, and 
thus should be considered.

However, we explained that the dependencies existing between all those entities 
increase dramatically the burden on the developer who is supposed to build all those 
models, and later goes through a verification process to guarantee the validity of the 
resulting model. Therefore, we suggested building a pattern language addressing 
the domain of smart meeting rooms and which can assist the user while building 
those models, and thus making this process better performing and less time consum-
ing. We had a closer look at the so-called task patterns. Those patterns enable the 
integration of task fragments acting as building blocks within the user’s task model. 
However, a new definition and understanding of the “task pattern” was also ex-
plained. In order to make our ideas more clear, we provided a pattern application ex-
ample where a specific scenario was described, and we illustrated the instantiation 
and application process of one of the goal-based patterns existing in our language.

Our work is still missing the existence of a tool that facilitates the application of 
all of those patterns. We are currently developing this tool, and we truly believe that 
the idea of providing this pattern language assisted by the tool can be a successful 
step in order to deliver proper and effective assistance to the developer, while mod-
elling scenarios running in a given smart meeting room.

References

Alexander C et al (1977) A pattern language. Oxford University Press, New York
Alexander C (1979) The timeless way of building. Oxford University Press, New York
Balme L, Demeure A, Barralon N, Coutaz J, Calvary G (2004) CAMELEON-RT: a software ar-

chitecture reference model for distributed, migratable, and plastic user interfaces. In: Mar-
kopoulos Panos Eggen Berry Aarts Emile HL Crowley James L (eds.) EUSAI 2004– ambient 
intelligence—second european symposium November 8–11, Eindhoven, The Netherlands, 
pp. 291–302

Borchers J, Thomas J (2001) Patterns: what’s in it for HCI? In: Proceedings of conference on hu-
man factors in computing (CHI) 2001. Seattle

Breedvelt I, Paternò F, Severiins C (1997) Reusable structures in task models. In: Proceedings 
of design, specification, verification of interactive systems ’97. Springer Verlag, Granada, 
pp. 225–239



106

Breiner K, Seissler M, Meixner G, Forbrig P, Seffah A, Klöckner K (2011) PEICS: towards HCI 
patterns into engineering of interactive systems. In: Proceedings of the 1st international work-
shop on pattern-driven engineering of interactive computing systems (PEICS ’10). ACM, New 
York, 1–3. doi=10.1145/1824749.1824750 (http://doi.acm.org/10.1145/1824749.1824750)

Brüning J, Dittmar A, Forbrig P, Reichart D (2008) Getting SW engineers on board: task model-
ing with activity diagrams. In: Gulliksen J et al (eds) Engineering interactive systems. Lecture 
Notes in Computer Science, vol 4940. Springer-Verlag, Berlin, pp. 175–192

Calvary G et al (2003) A unifying reference framework for multi-target user interfaces. Interact 
Comput 15(3):289–308

Cook D, Das S (2004) Smart environments: technology, protocols and applications, ISBN: 978-
0-471-54448–7

Eclipse (2014) Eclipse—an open development platform. http://www.eclipse.org. Accessed Dec 
2014

Forbrig P (2012) Interactions in smart environments and the importance of modelling, Romanian 
Journal of Human-Computer Interaction, vol  5, pp  1–12. (Special issue: Human Computer 
Interaction 2012 ISSN 1843–4460, http://rochi.utcluj.ro/rrioc/en/rochi2012.html)

Forbrig P, Wurdel M, Zaki M (2012) The roles of models and patterns in smart environments, EICS 
workshop—model-based interactive ubiquitous systems (MODIQUITOUS), Copenhagen

Forbrig P, Märtin Ch, Zaki M (2013) Special challenges for models and patterns in smart environ-
ments, human-computer interaction. Human-centred design approaches, methods, tools, and 
environments. LNCS 8004:340–349

Fincher S (2003) CHI 2003 workshop report—perspectives on HCI patterns: concepts and tools 
(introducing PLML). Interfaces, vol. 56, pp. 26–28

Janeiro J, Barbosa Simone DJ, Springer T, Schill A (2010) Semantically relating user inter-
face design patterns. In: Proceedings of the 1st international workshop on pattern-driven 
engineering of interactive computing systems (PEICS ’10). ACM, New York, pp.  40–43. 
doi=10.1145/1824749.1824759, http://doi.acm.org/10.1145/1824749.1824759

Johnson P, Diaper D, Long J (1985) Task analysis in interactive system design and evaluation. In: 
Johannsen J, Mancini C, Martensson L (eds) Analysis, design and evaluation of man-machine 
systems. Pergamon Press, Oxford

Johnson P, Wilson S, Markopoulos P, Pycock J (1993) ADEPT—Advanced Environment for Pro-
totyping with Task Models. In: Ashlund, Stacey, Mullet, Kevin, Henderson, Austin, Hollnagel, 
Erik and White, Ted (eds.) Proceedings of the ACM CHI 93 Human Factors in Computing 
Systems Conference April 24–29, Amsterdam, The Netherlands. p. 56

Limbourg Q et al (2004) USIXML: a user interface desciption language for context-sensitive user 
interfaces. In: Proceedings of ACM AVI’2004 Workshop “Developing User Interfaces with 
XML: Advances on User Interface Description Languages”. Gallipoli

Luyten K (2004) Dynamic user interfaces generation for mobile and embedded systems with mod-
el-based user interface development. PHD in Maastricht, Universiteit Maastricht

Mobile Design Pattern Galery (2013) http://www.mobiledesignpatterngallery.com/mobile-pat-
terns.php. Accessed 19 July 2013

Mobile Patterns (2013) http://www.mobile-patterns.com/. Accessed 15 July 2013
Molina PJ, Hernández J (2003) Just-UI: using patterns as concepts for UI specification and code 

generation, CHI 2003 workshop. http://www.cs.kent.ac.uk/people/staff/saf/patterns/chi2003/
submissions/pjmolinaCHI2003WS.pdf

Norman DA, Draper SW (1986) User centered system design: new perspectives on human-com-
puter interaction, Hillsdale. Lawrence Erlbaum Associates, New Jersey

OCL (Object Constraint Language) (2014) http://www.omg.org/spec/OCL/. Accessed Dec 2014
Paternó F (2000) Model-based design and evaluation of interactive applications. Springer-Verlag, 

Berlin
Paterno F (2001) Task models in interactive software systems, handbook of software engineering 

& knowledge engineering. S. K. Chang, World Scientific Publishing Co
Paterno F, Meniconi C (1997) ConcurTaskTrees: a diagrammatic notation for specifying task mod-

els. IFIP TC 1: 362–369

5  A Pattern Framework for Task Modeling in Smart Environments



107

Paternó F, Santoro C (2002) One model, many interfaces. In: Proceedings of CADUI 2002. Va-
lenciennes, France

Puerta A, Eisenstein J (1999) Towards a general computational framework for model-based inter-
face development systems. In: Proceedings of IUI99: International Conference on Intelligent 
User Interfaces. Los Angeles

Radeke F (2007) Pattern-driven model-based user-interface development, Diploma Thesis in the 
Department of Computer Science. University of Rostock, Rostock

Sinnig D (2004) The complicity of patterns and model-based UI development, Master’s Thesis in 
the Department of Computer Science. Concordia University, Montreal

Stary C (1999) Toward the task-complete development of activity-oriented user interfaces. Int J 
Hum Comput Interact 11(2):153–182

TeresaXML (2012) XML languages of Teresa. http://giove.isti.cnr.it/tools/TERESA/. Accessed 
Nov 2012

Tidewell J (1998) Interaction design patterns: twelve theses, PLoP’98. Conference on pattern lan-
guages of programming. Illinois

Tidwell J (2005) Designing interfaces—patterns for effective interaction design. O’Reilly, Beijing
UI-Design Patterns (2013) http://ui-patterns.com/patterns. Accessed July 2013
UML (Unified Modeling Language) (2012) http://www.uml.org/. Accessed Dec 2012
UsiXML (2014) User interface extensible markup language. http://www.usixml.org. Accessed Dec 

2014
van Duyne D Landay J Hong J (2005) The design of sites—patterns, principles and processes for 

crafting a customer-centered web experience, Addison Wesley, Boston
Welie M (2012) Patterns in interaction design. http://www.welie.com/. Accessed Nov 2012
Welie M, Trætteberg H (2000) Interaction patterns in user interfaces. In: Proceedings of Pattern 

Languages of Programs (PLoP 2000). Monticello, Illinois
Wurdel M, Radhakrishnan T, Sinnig D (2007) Patterns for task-and dialog-modeling, Springer, 

vol. 4550, pp. 1226–1235
Wurdel M, Sinnig D, Forbrig P (2008) CTML: domain and task modelling for collaborative envi-

ronments. J.UCS 14:3188–3201
Wolff A, Forbrig P, Dittmar A, Reichard D (2005) Linking GUI elements to tasks—supporting an 

evolutionary design process. In: Proceedings of TAMODIA 2005. Gdansk, Poland
Wolff A, Forbrig P, Dittmar A, Reichard D (2005) Tool support for model-based generation of 

advanced user interfaces, MDDAUI. http://www.ceur-ws.org/Vol-159/paper2.pdf
XIML (2012) A universal language for user interfaces. http://www.ximl.org/. Accessed Oct 2012
Yahoo Design Pattern Library (2013) http://developer.yahoo.com/ypatterns/. Accessed 19 July 

2013
Yu Z, Nakamura Y (2010) Smart meeting systems: a survey of State-of-the-Art and open issues. 

ACM Computing Surv 42(2):8
Zaki M, Forbrig P (2011) User-oriented accessibility patterns for smart environments. HCI (1) 

2011:319–327
Zaki M, Forbrig P (2012) Towards the generation of assistive user interfaces for smart meeting 

rooms based on activity patterns. AmI 2012:288–295
Zaki M, Forbrig P (2013) A methodology for generating an assistive system for smart environ-

ments based on contextual activity patterns. In: Proceedings of the 5th ACM SIGCHI sym-
posium on Engineering interactive computing systems (EICS ’13). ACM, New York, 75–80

Zaki M, Forbrig P, Brüning J (2012) Towards contextual task patterns for smart meeting rooms. 
Second International Conference on Pervasice and Embedded Computing and Communication 
Systems (PECCS), Feb 24–26, 2012 Rome Italy. pp 162–169

References



109© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_6

Chapter 6
HCI Patterns in Multiplatform Mobile 
Applications Reengineering

Abstract  With the advent of the Internet and mobile computing, more and more 
human–computer interaction (HCI) designers are asked to reengineer user interface 
(UI) for accommodating a diversity of users while taking into account variations in 
geographical regions, population, languages, and cultures. Developers are asked to 
implement the same UI with a variation of functionalities using diverse and con-
tinually changing development languages. The lack of methods that help developers 
with UI reengineering motivated us to explore patterns-oriented reengineering.

In this chapter, we demonstrate how patterns can drive the whole reengineering 
design process when dealing with the constraints of each computing platform. To il-
lustrate our ideas, several examples will be described including how to adapt a Web 
navigation system to different sizes and models of abstract information structure 
(architecture) and to different contexts of use. We wish to ground our pattern-driven 
reengineering methodology as solidly as possible in empirical data and theoretical 
principles. In order to build the theoretical foundation of our framework, this chap-
ter relies on a combination of proven facts, best-guess assumptions, and logic. In 
the long term, we will return to cover the individual issues in more detail and with 
more empirical and formal proof.

6.1 � On the Needs for Reengineering

An inevitable fact is that user interfaces (UIs), like any software, change over time. 
Original design will have to be modified to account for changing user needs, ad-
vances in technology as well as shift to new interaction styles. Current trends in 
graphical user interface (GUI) design have been changing rapidly. The Web, as a 
vital medium for information transfer, has had an impact on UI design.

Furthermore, the introduction of new platforms and devices in particular mo-
bile phones and personal digital assistant (PDA) has added an extra layer of com-



6  HCI Patterns in Multiplatform Mobile Applications Reengineering110

plication to required UI system changes, from where the concept of multiple UIs 
emerges. In the migration of interactive systems to new platforms and architectures, 
many modifications have to be made to the UI. As an example, in the process of 
adapting the traditional desktop-GUI to other kinds of UIs such as Web or handheld 
UI or wearable computing, most of the UI code has to be modified. In this scenario, 
UI reengineering techniques can facilitate such transition. As illustrated in Fig. 6.1, 
reengineering methods can be applied, to result in a high-level model of the UI. This 
task-oriented model can then be used to help in the redesign of the UI.

The new technological context of UI development has made it necessary, for 
developers, to move to different tools and techniques that support both scripting and 
programming approaches. Writing code from scratch is no longer a viable solution, 
and many techniques concentrate on reuse. Furthermore, it is a critical necessity 
to bring an acceptable answer to the following question. How can an organization 
implement and validate N interfaces for M devices without writing N*M programs, 
training an army of developers in L languages and UI toolkits, and maintaining 
N*M architectural model for describing the same interface?

In this book, we will be introducing the use of patterns as a multiple user inter-
face (MUI) reengineering tool. The use of patterns helps in the reuse of design solu-
tions, and plays a significant role throughout the whole UI reengineering process. 
The fundamental aspect of our work in comparison with existing UI reengineering 
is that we take into account the vertical and horizontal usability issues. Vertical us-
ability refers to the usability requirement specific to each platform while horizontal 
usability is concerned with the cross-platform usability issues of a MUI.

The remainder of this chapter is organized as follows: Sect. 6.2 will give an over-
view of the steps involved in UI reengineering. Section 6.3 will discuss the role that 
patterns can play in UI reengineering. Section 6.4 will provide three concrete exam-
ples where UI patterns are applied in the reengineering process. The first example 
entails the use of a specific pattern for the reengineering of text-based UI. The two 
other examples introduce the idea of web-based UI patterns in MUI development. 
Finally, Sect. 6.5 presents a perspective for a tool that supports the developers in 
using and selecting patterns for UI reengineering.

Fig. 6.1   Current and future 
context for user interface 
engineering

 



6.2  Steps in User Interface Reengineering 111

6.2 � Steps in User Interface Reengineering

The UI reengineering process consists of three major steps:

•	 Reverse engineering where the challenge is to understand the interface code for 
building a high-level and declarative UI model. This UI model represents all the 
relevant aspects of a UI in some type of interface modeling language. Different 
high-level models have been suggested in the literature including object-oriented 
models, abstract UI specification, as well as general task model for the problem 
domain or environment-dependent task model. All these variety of models can 
be exploited to drive the interface development process (Bomsdorf and Szwillus 
1998; El Kaim et al. 2001).

•	 Transformation that consists to redesign the UI model to accommodate new plat-
form constraints and user needs.

•	 Forward Engineering in which we provide automatic support for the generation 
of a new UI. This operation consists to generate the complete or partial UI code 
using a specific programming language.

6.2.1 � Reverse Engineering

Reverse Engineering is the process of analyzing software code with the objective of 
recovering its design and specification (Moore 1996b). In the reverse engineering of 
interactive systems, the ideal behavioral specification of the system is an abstract UI 
model with enough detail to allow appropriate UI techniques, in particular model-
based approaches, to be chosen in the new interface domain (Moore 1996b). There 
are two main aspects of an interface that need to be analyzed during the reverse 
engineering process:

•	 The structural aspects which consist to identify the interface components and the 
relationships that can exist between them

•	 The behavioral aspects which describe the dynamic behavior of the interface 
including the dialogs and the user feedback

Merlo et al. (1993) introduce an intermediate representation language, called the 
Abstract User Interface Description Language (AUIDL). This language helps in 
the representation and description of UI structure and behavior. Since it is not 
necessary to understand all of an application’s functionality to reengineer its UI, 
time and resources can be saved if only the significant parts of the system are 
investigated. Removing superfluous information from the code and higher-level 
representations can make the construction of an abstract model easier. Moore de-
veloped a technique for analyzing the UI by identifying the user interface slice 
(UIS) (Moore 1996a).



6  HCI Patterns in Multiplatform Mobile Applications Reengineering112

6.2.2 � Transformation

The transformation process tries to first identify the problems of the old UI model, 
obtained during reverse engineering, and then attempts to come up with viable solu-
tions that can help in the creation of a new UI model. The goal of the transformation 
process is to change the UI in order to meet the new requirements. This can include 
the computing platform capabilities and contrasts as well as the UI look and feel, 
and the dialog style. It is important to note that in the new UI model, some of the 
components of the old model can be reused if even their behaviors can be reengi-
neered. Furthermore, input from human and their experiences is an essential part of 
the transformation phase (Moore 1996b; Lau and Stacsek 1999). As we will explain 
it, human experiences captured as UI design patterns can be used for driving and 
supporting the transformation process. Fundamentally speaking, a transformation is 
defined as follows:
T (GUI, P1) → {((Web UI, P2) or (Web UI, P3)) and (Web UI, P4)}
where P1, P2, P3, and P4 are patterns for navigation support. This transformation 

means simply that the equivalent of P1 pattern for Web UI is P2 or P3 and P4. Intui-
tively, a transformation can be as easy as “The equivalent of the GUI toolbar which 
provides a direct link to common features in GUI is a combo which includes the 
same features for a PDA. This transformation is motivated by the size of screens.

6.2.3 � Forward Engineering

The last step of UI reengineering consists of the generation of a new interface. This 
new interface must provide all required services and tasks to the user, and must 
convey all information exchanged between the user and the system in an adequately 
designed manner. Several factors must be satisfied during forward engineering, 
which are indicative of the success of the UI reengineering process (Moore 1996b):

•	 The new UI has to be consistent with the reengineered UI, particularly in terms 
of functionality. We are not referring to exact functionality, but rather that the 
new UI should contain all original functionality even if enhancements or chang-
es are made.

•	 The forward engineering phase should commence where the transformation 
phase is left off. In other words, the new UI abstract model should allow for the 
occurrence of forward engineering.

•	 Certain relationships exist between UI components and pieces of code. It is im-
portant to ensure the preservation of these relationships.

There are few tools and techniques suggested by researchers to support in the UI 
reengineering process; one of them called URGenT: User Interface ReGENeration 
Tool as described by Stroulia and Matichuk (1999). This tool records user interac-



6.3  Patterns in Reengineering 113

tions and then generates an appropriate GUI that can interact with the back-end of 
the legacy system.

6.3 � Patterns in Reengineering

Current reengineering approaches exploit an explicit high-level UI model which is 
not always easily doable and time consuming. Here, we are exploring the UI design 
patterns as an alternative reengineering. Patterns can drive the reengineering pro-
cess without the need to build and maintain explicitly a descriptive, abstract, and 
high-level model.

6.3.1 � A Brief Overview on Patterns

The architect Alexander introduced design patterns in the early 1970s. He defined a 
pattern as follows: “Each pattern is a three-part rule, which expresses a relation be-
tween a certain context, a problem, and a solution.” He went on to explain the nature 
of a pattern: “Each pattern describes a problem which occurs over and over again 
in our environment, and then describes the core of the solution to that problem, in 
such a way that you can use this solution a million times over.” The concept of pat-
terns became very popular in the software engineering community with the wide 
acceptance of the book “Design Patterns: Elements of Reusable Object-Oriented 
Software” (Gamma 1995). Since then, other categories of patterns, such as process 
patterns and activity patterns (Coplien 1995), have been defined. The goal of all 
these software-related patterns is to provide common solutions to recurring prob-
lems in various parts of the software development lifecycle.

During the last 3 years, the UI design community has been a forum for vigorous 
discussion on patterns for UI design. Many groups devoted themselves to the devel-
opment of pattern languages for the UIs design and usability. Among the heteroge-
neous collections of pattern, “Common Ground,” Experiences, and “Amsterdam” 
play a major role in this field and wield significant influence (Tidwell 1997; Coram 
and Lee 1998; Welie et al. 2000). It has been also reported that patterns are useful 
for a variety of reasons. They have the potential to support/drive the whole design 
process (Borchers 2000; Granlund and Lafrenière 1999; Javahery and Seffah 2002), 
and they are an alternative/complementary design tool to guidelines (Welie et al. 
2000).

For UIs, design patterns can be seen as a medium to encapsulate user experiences 
and design practices. Pattern users, who are most often software developers unfa-
miliar with the new emerging platforms, need a thorough understanding of when the 
pattern applies (context), how it works, why it works (rationale), and how it should 
be implemented (Javahery and Seffah 2002; Welie et al. 2000).



6  HCI Patterns in Multiplatform Mobile Applications Reengineering114

6.3.2 � The Various Role of Patterns in the UI Reengineering 
Process

In our approach to pattern-oriented UI reengineering, we distinguish between three 
categories of patterns:

•	 UI design patterns all deal with UI-specific concerns. They are product-oriented 
that capture best user experiences;

•	 Design patterns are more technical and applicable to the internal architecture of 
the system. Examples includes Abstract Factory and Command Action patterns. 
They can be used for implementing adaptation mechanisms;

•	 Reengineering and usability patterns are process-oriented. These patterns de-
scribe a proven, successful approach and/or series of actions for developing soft-
ware. Reengineering patterns can come in many flavors, including but not lim-
ited to analysis patterns, reverse engineering patterns, transformation patterns, 
and forward patterns.

All these patterns are descriptions of a general solution to a common problem or is-
sue from which a detailed solution to a specific problem may be determined. In our 
work, we mainly investigated the first category. For example, the Web convenient 
toolbar pattern helps the user reach the most commonly used pages/screens quickly 
regardless of where the user has navigated. It can provide direct access to frequently 
used pages such as what are New, Search, Contact Us, Home Page, and Site Map. 
Figure 6.2 illustrates the descriptive notation we used (Javahery and Seffah 2002).

What make patterns an interesting reengineering tool is the fact that the same 
pattern can be implemented differently for a Web browser and a PDA. For a PDA, 
the convenient toolbar pattern can be implemented as a combo box using the Wire-
less Markup Language (WML). For a Web browser, it is implemented as a toolbar 
using embedded scripts or a Java applet in HTML. Pattern descriptions should pro-
vide advice to pattern users in terms of selecting the suitable implementations for 
their context.

The concept of applying patterns in reengineering has been explored by a num-
ber of individuals (Ismail and Keller 1999; Ducasse et al. 2000; Beedle 1997). How-
ever, there has been little work done in the area of UI reengineering with patterns. 
Design patterns have been applied in the forward engineering phase of reengineer-
ing to further refine design models (Ismail and Keller 1999). Furthermore, the actu-
al concept of a reengineering pattern was discussed by Ducasse et al. (2000). Their 
definition was that a reengineering patterns “describes how to go from an existing 
legacy solution to a new refactored solution,” and essentially, they deal with process 
patterns specific to reengineering.

Figure 6.3 describes the process of pattern-oriented reengineering that we are 
introducing. UI design patterns are mainly used during the transformation phase. 
Let us take the example of a text-based legacy system. To make the interface user 
friendly and to adapt it to newer technologies, we need to change the design of the 
UI. This could entail the construction of a GUI. Applying a proper usability pat-
tern in transforming the old design to the new GUI can make the process of design 



6.3  Patterns in Reengineering 115

Pattern_Name: Convenient Toolbar Pattern

type:

Context_Use

Workplace:

Usability_Factor:

Usability_Problem:

User:Expert
Task: Assist user to reach the most useful and frequently
visited pages at any time through the Web site.

Web applications

The user can easily find most commonly used pages
regardless of the current state of the artifact.
The user can reach these convenient pages promptly.

Factor:Efficiency, Safety
Criteria: Consistency, Minimal Action, Minimal Memory,
User Guidance, Helpfulness

Group the most convenient action links, such as home,
site map, help and etc.
Use meaningful metaphors and accurate phrases as lables
Place it consistently throughout the Web site

Design_Principle
Related Usability_Patterns
Reading

Example:

Design_Solution:

Other Language
Attributes:

Navigation Support Pattern

Fig. 6.2   A description of the convenient toolbar pattern

 

Fig. 6.3   Role of patterns in UI reengineering

 



6  HCI Patterns in Multiplatform Mobile Applications Reengineering116

easier, and will result in less usability errors. In addition, since usability patterns are 
context-oriented, their use will assure that the best solution has been applied.

In our approach to pattern-driven reengineering, patterns should be considered 
as early on as during the reverse engineering phase, and then describe their role 
during the other phases of the reengineering process. Information gathered during 
the reverse engineering phase could help the software engineer to make a decision 
about which usability pattern is appropriate for design. Information such as domain 
knowledge and UI system architecture can be used to assess the appropriateness of 
a pattern. Knowing the capability of the system and usability problems will help the 
software developer in deciding which pattern to use. Furthermore during the for-
ward step, since the context of use is included in pattern descriptions, the designer 
can easily select appropriate pattern implementation according to the desired con-
text. There is no need to provide the code explicitly, as part of the pattern descrip-
tions. We provide different strategies for implementing the patterns for different 
context of use.

6.4 � Examples of UI Reengineering with Patterns

6.4.1 � Migration from Text-Based to GUI for Legacy 
Interactive Systems

In this first example, patterns are applied to redesign the interface of an interactive 
legacy system. This design entails replacing a text-based interface with a perspec-
tive to make the UI more users friendly. This would improve their acceptance and 
extend the life span of the systems in which they are embedded (Stroulia and Stac-
sek 1999).

One of the issues in generating a GUI from a text-based UI would be to find a 
solution to data entering problems which are one of the critical usability problems 
with interactive legacy systems. Often, the user is not familiar with data constraints 
and syntaxes proposed by the legacy system. It is also difficult to master and re-
member all options that a command might have. Furthermore, errors can result from 
fast and careless typing. The Unambiguous Format pattern from the Amsterdam 
Collection (Welie et al. 2000) is a proven solution to this problem. This pattern is 
particularly appropriate in the following situation:

•	 When the data are entered using an unexpected syntax, the data cannot be used 
by the application.

•	 The user may be familiar with the data but may not know the exact required 
syntax.

•	 The user strives for entry speed but also wants it to be entered correctly.
•	 Cultural conventions determine what the user expects the syntax to be. For ex-

ample, dd/mm/yy is usual in Europe while mm/dd/yy is used in the USA.



6.4  Examples of UI Reengineering with Patterns 117

As shown in Fig. 6.4, these forces will result in a design that will prevent the user 
from entering any incorrect syntax. The solution for this problem can be imple-
mented via the use of radio buttons, check boxes, drop-down menus, and field pa-
rameters. Additionally, explaining the syntax to the user with an example, providing 
concrete defaults for the required fields, and marking optional fields, are supple-
mentary options in the description of this pattern.

6.4.2 � Reengineering a Web-Based Interface for Small Devices

Most often, Web applications are designed first for a desktop with a Web browser. It 
is common to see the following reminder on some Web sites “This Website is better 
viewed or optimized with/for Internet Explorer or Netscape Communicator.” With 
the rapid shifting toward mobile computing, these Web sites need to be customized 
and migrated to different devices with different capabilities. In this context, when 
designing a big versus small screen, we need to rethink the strategies for displaying 
information. For example, an airline reservation system may display choosing a 
flight and buying the ticket on two separate screens for a small PDA. This separa-
tion is not required for a large screen that unifies the choosing and buying into a 
single screen. Also, the PDA interface may eliminate images or it may show them 
in black-and-white. Similarly, text may be abbreviated on a small display, though 
it should be possible to retrieve the full text through a standardized command. For 
all these situations, patterns can facilitate the reengineering while ensuring that all 
these constraints will be taken into account.

Figure 6.5 illustrates an example with the CNN site. Even though the basic func-
tionality and information provided are the same for all three platforms (desktop, 

Fig. 6.4   Pattern in legacy UI reengineering

 



6  HCI Patterns in Multiplatform Mobile Applications Reengineering118

mobile phone, and PDA), it has been adapted according to the context of use and 
the limitations of each platform. In this design, different navigation support patterns 
have been used in the three designs. They provide the same solution for the same 
problem, but they are implemented in different ways.

For example, as previously explained in Sect. 6.3.2, the convenient toolbar pat-
tern can help the user to search for the most frequented and important information 
on a Web site. For the PDA, the convenient toolbar can be implemented using the 
Combo Box to solve the limitation of space. Finally, for the mobile phone, the navi-
gation system is limited to a few buttons and it has a small monocolor screen. Popu-
lar Web sites like CNN have been adapted to these constraints by using a design 
solution similar to that described in the Selection Pattern (Welie et al. 2000). For 
this pattern, the user is provided with a list of all possible links that can be chosen.

6.4.3 � Reengineering Navigation Systems to different Architecture 
Sizes

Web sites are generally a dynamic system where the size and the structure of content 
can vary over a period of time. It can start very small and grow very fast. The vol-
ume of information can be reduced to accommodate the capabilities and constraints 
of large diversity of users and variety of technology. The UIs are continually 

Fig. 6.5   Usability patterns in a MUI framework

 



6.4  Examples of UI Reengineering with Patterns 119

designed, redesign, and reengineered. In particular, the original navigation system 
has to be adapted or customized. An empirical study we conducted shows us that 
a good navigation system for a small Web site is not necessary suitable for a very 
large Web site architecture (Engelberg and Seffah 2002). A navigation system has 
to be reevaluated and possibly replaced for different sizes and models of abstract 
information structure (Table 6.1).

For example, when reengineering a very large portal like Yahoo for mobile 
phones, the navigation patterns have to be replaced by other more appropriate for 
small or medium size. This is because only a view of the whole Web site will be 
available for PDA and mobile phones users. Users are also interested to have an ac-
cess to some specific pages such latest news, sport, movies, etc. Table 6.2 outlines 
the appropriateness of several design patterns adapted to certain attributes of the 
context of use and in particular to the size of architecture and physical constraints 
of the devices. This table is the result of the empirical analysis we did.

This list is far from exhaustive, but helps to communicate the flavor and abstrac-
tion level of design patterns for navigation that we are targeting. Due to space limi-
tations, we can only provide the title and a brief description, rather than the full de-
scription format as described by Borchers (2001). The contents and structure of the 
list will be elaborated in future publications. In the following lists, we have found 
it useful to distinguish between model-based (top-down), data-based (bottom-up), 
and hybrid navigation patterns (combination model and data-based).

The following are some of the popular model-based navigation patterns:

•	 M.1—Bread crumbs pattern: Navigation trail from home page down to current 
page; see Amsterdam collection

•	 M.2—Contextual (temporary) horizontal menu at top (called up by a higher-
level menu or a link)

•	 M.3—Contextual (temporary) vertical menu at right in content zone (called up 
by a higher-level menu or a link)

•	 M.4—Information portal: Broad first and second level on home page. Same 
principle as the Amsterdam collection’s “Directory” pattern

•	 M.5—Permanent horizontal menu at top
•	 M.6—Permanent vertical menu at left
•	 M.7—Progressive filtering (see Amsterdam collection)

Table 6.1   Number of menu levels and pages as a function of architecture size
Number of pages Size range measured 

in terms of number of 
pages

Label Examples

17 1–100 Small Personal pages
273 100–1000 Medium Medium size 

companies
4396 1000–10,000 Large Large organizations
69,905 10,000–100,000 Very large Global information 

sites: CNN
1,118,481 100,000–4,000,000 Extra large Worldwide portals: 

Yahoo



6  HCI Patterns in Multiplatform Mobile Applications Reengineering120

•	 M.8—Shallow menus (1 or 2 levels in same menu)
•	 M.9—Simple universal: Shallow left-hand main menu for top levels, usually 

permanent. After running out of top menu levels, use a series of sequential one-
level contextual menus in content zone

•	 M.10—Split navigation (see Amsterdam collection)
•	 M.11—Sub-sites: Shallow main menu or broad portal leading to smaller sub-

sites with simple navigation architectures
•	 The following list includes data-based (bottom-up) navigation patterns:
•	 D.1—User-driven
−	 D.1.1—Alphabetical index;
−	 D.1.2—Key-word search: D.1.2.1 Global vs. D.1.2.2 Contextual;
−	 D.1.3—Key-word search: D.1.3.1 Simple vs. D.1.3.2 Iterative (embedded).

•	 D.2—Intelligent agents.

The following potentially useful patterns are uncommon in Internet sites, but known 
in other applications:

•	 M.12—Container navigation: Different levels of menu displayed simultaneously 
in separate zones (e.g., Outlook Express or Netscape Mail)

•	 M.13—Deeply embedded menus (e.g., file manager menu).

Table 6.2   Design patterns as a function of architecture size
Size Best approach for navigation Design patterns
Small
(2 levels)

Model (menu) based approach: Simple 1-and 
2-level main menus

M5, M6, M8

Medium
(4 levels)

Model (menu) based approach: Simple 1-and 
2-level menus calling up contextual (tempo-
rary) menus for the deeper levels
Alphabetical index

M2, M3, M9, M10, M12
D1.1

Large
(6 levels)

Model-based approaches adapted to deep 
menus
Possibly hybrid approach (depending on 
efficiency of search agent): Keyword search 
(or other data-based navigation) to target 
followed by menu-based navigation within 
target
Within the target, use a navigation patterns 
consistent with the size of the target ( See 
small or medium)
Data-based (bottom-up) approaches (depend-
ing on efficiency)

M1, M4, M7, M9, M11, 
M13, M14
(H1)
D1.1, D1.2, D1.3, D2

Very and extra large
(8 + levels)

Hybrid approach: Keyword search (or other 
data-based navigation) to target followed by 
menu-based navigation within target
Within the target, use a navigation patterns 
consistent with the size of the target (See 
small, medium or large)
Data-based (bottom-up) approaches
Model-based approaches adapted to deep 
menus

H1
D1.2, D1.3, D2
M1, (M14)



References 121

The following are some new and experimental design patterns that we are exploring:

•	 H.1—Hybrid approach: Keyword search to access target, followed by menu-
based navigation within target;

•	 M.14—Refreshed shallow vertical menus (see slide presentation).

6.5 � Key Issues and Contributions

This chapter introduced the idea of utilizing usability patterns as an approach for 
UI reengineering. Some work in the area of reengineering patterns has commenced, 
although there is much more that needs to be explored, especially in UI redesign. 
Patterns for UI reengineering can effectively fill the existing gap in present meth-
ods. These patterns capture best design practices, and can play a role throughout the 
complete reengineering process. The application of patterns has a number of advan-
tages. First, they can make the process of reengineering shorter since, for the most 
common usability problems, there already exists a pattern solution. Second, they 
reduce the cost of the reengineering process. Third, possible usability errors are re-
duced since most of the patterns have already been tested by other systems. Finally, 
usability patterns help the comprehension of the system for future maintenance.

In particular, we demonstrate how pattern can be used to reengineer Web site 
navigation systems that adapt to different sizes and models of information structure 
(architecture). One of our most important conclusions is that in large architectures, 
model-based navigation patterns are good for navigating within the target, but rela-
tively poor for navigation to the target.

We plan to investigate some of the three following research issues in the near 
future:

•	 Define more data points (empirical data) for the patterns applicability and ap-
propriateness

•	 Validate and compare design patterns with usability tests, particularly for new 
and experimental patterns

•	 Using XML as language for documenting and implementing patterns

References

Beedle M (1997) Pattern based reengineering. Object magazine
Bomsdorf B, Szwillus G (1998) From task to dialogue: task-based user interface design. SIGCHI 

Bull 30:4
Borchers JO (2000) A pattern approach to interaction design, proceedings of the DIS 2000 inter-

national conference on designing interactive systems, pp 369–378, ACM Press, New York, 
16–19 Aug 2000

Borchers JO (2001) A pattern approach to interaction design. Wiley, New York
Coplien JO, Schmidt DC (1995) Pattern language of program design. Addison Wesley



6  HCI Patterns in Multiplatform Mobile Applications Reengineering122

Coram T, Lee J (1998) A pattern language for user interface design. <http://www.maplefish.com/
todd/papers/experiences>. Accessed 15 April 2013

Demeyer S, Ducasse S, Nierstrasz O (2000) A pattern language for reverse engineering. EuroPLoP 
conference 189–208

El Kaim W, Burgard O Muller P-A (2001) MDA compliant product line methodology, technology 
and tool for automatic generation and deployment of web information systems. In: Proceedings 
of the 14th international conference on software engineering and its applications, Paris

Engelberg D, Seffah A (2002) A design patterns for the navigation of large information architec-
tures. 11th annual usability professional association conference. Orlando (Florida), USA

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley.

Granlund A, Lafreniere D (1999) PSA: A pattern-supported approach to the user interface design 
process, Scottsdale, Arizona, July

Ismail K, Rudolf KK (1999) Transformations for pattern-based forward engineering. Universite de 
Montreal. <http://www.iro.umontreal.ca/~labgelo/Publications/Papers/sts99.pdf>. Accessed 
15 April 2013

Javahery H, Seffah A (2002) A model for usability pattern-oriented design. In: Proceedings of 
TAMODIA 2002, Bucharest, Romania, pp 104–110

Lau T, Stacsek J (1999) A contextual inquiry-based technique of the strudel web site maintenance. 
Department of computer science, University of Washington

Merlo E, Girard J, Kontogiannis K, Panangaden P, Mori RD (1993) Reverse engineering of user 
interfaces. In: Working conference on reverse engineering, pp 171–179, Baltimore, MD

Moore M. (1996a) Representation issues for reengineering interactive systems. ACM Comput 
Surv 28(4es):199

Moore M (1996b) Reverse engineering user interfaces: a technique. ACM Comput Surv 199–es
Stroulia, KE, Matichuk B (1999) Legacy interface migration: a task-centered approach. 8th In-

ternational Conference on Human-Computer Interaction, Munich, Germany, 22–27Aug 1999
Tidwell J (1997) Common Ground: A Pattern language for human-computer interface design. 

<http://www.mit.edu/~jtidwell/common_ground.html>. Accessed 15 April 2015
van Welie M, van der Veer GVC (2000) Patterns as tools for user interface design. International 

workshop on tools for working with guidelines, Biarritz, France, Oct 7–8



123© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_7

Chapter 7
Generative Patterns for Cross-Platform User 
Interfaces: The Case of the Master-Detail 
Pattern

Abstract  To become valuable, such design patterns should encode the structure of a 
solution and its associated forces, rather than cataloguing just a solution, often for a 
specific platform. We introduce the generative pattern as a way of both documenting 
and implementing the human–computer interaction (HCI) patterns. A generative 
pattern not only tells us the rules for implementing a user interface (UI) design is 
considered as a generic solution to a problem at different levels of abstraction (in 
the way that a UI could be modeled), but also shows us how to transform these 
expressions into programmable codes for the diverse computing platforms, while 
being compliant with the style guide rules that may prevail for these platforms. As 
a case study, the master-detail (M-D) pattern, one popular and frequently used HCI 
design pattern, is developed: this displays a master list of items and the details for 
any selected item. While this MD pattern is documented in very different, possibly 
inconsistent, ways across various computing platforms, the M-D generative pattern 
consolidates these particular implementations into a high-level pattern description 
based on design options that are independent of any platform, thus making this 
pattern “cross-platform.” A framework provides developers and designers with a 
high level UI process to implement this pattern in using different instances and 
its application in some designated languages. Some examples of applying an M-D 
generative pattern are explained as well as a particular implementation for the 
Android platform.

7.1 � Introduction

A human–computer interaction (HCI) pattern is not considered as a finished user 
interface (UI) design that can be programmed straightforwardly. The importance 
of implementing design patterns has been pointed out since its inception (Alexan-
der 1977). Here, by implementation we mean designing an effective support for 



7  Generative Patterns for Cross-Platform User Interfaces124

applying design patterns and transforming this intention into a code. Each time the 
problem has to be addressed, the pattern application and transformation are applied, 
thus repeating each time yet another application-specific concrete implementation. 
Each such implementation often remains specific to one single context of use, i.e., 
one single user or category of users conducting an interactive task on one dedicated 
computing platform in a designated location, thus reducing the reusability of this 
concrete implementation for another context of use. If any dimension of the con-
text of use changes, for instance a new user, a new platform, or a new location, a 
new transformation has to be applied that is not necessarily available for this new 
context.

Since the emergence of new devices offering a multitude of interaction styles 
and allowing every user access to information and services from everywhere and 
at any time, cross-context patterns are required. Therefore, we hereby define cross-
context patterns as a general repeatable solution to a commonly occurring task to 
be conducted in various contexts of use, possibly with different users, platforms, 
and locations.

Similarly, we hereby define cross-platform patterns as a general repeatable solu-
tion to a commonly occurring task to be conducted on various computing platforms, 
independent of user and locations. Consequently, the question arises how to struc-
ture and implement such a design pattern on a large myriad of platforms. The goal 
is to give the opportunity of HCI designers and UI software developers to “switch” 
patterns when engineering an application for diverse platforms. Because different 
design patterns may offer different advantages and suffer from different drawbacks 
depending on the platform, even if they are intended to support the same interactive 
task of the pattern, another design pattern could become more suitable for a system 
as it evolves. Or a different behavior observed for the same task that could not be 
realized by the original patterns might be needed later. However, we cannot switch 
design patterns using the same implementation, as long as these application-specific 
implementations are derived from design patterns.

Platform capabilities and constraints largely influence the way a cross-platform 
pattern could be implemented on a target platform: the programming or markup 
language expressiveness, the operating system, the underlying development toolkit, 
the constraints imposed by the platform itself such as screen resolution, interaction 
style, and interaction devices.

Rendering a cross-platform pattern could be achieved in two ways: (i) by code 
generation, when UIs are implemented in using a set of instructions of any pro-
gramming language, whatever programming paradigm it follows, and/or a set 
of assertions of this language; (ii) by interpretation, when the UI is described 
by a declarative language or a user interface description language (UIDL) to be 
interpreted at run time by a rendering engine. Typical examples of rendering by 
code generation are: direct coding in a programming language such as C, Java, 
Visual Basic, model-to-code transformation in model-driven engineering such as 
in JustUI (Molina 2004), code generation techniques such as generative program-
ming, template filling such as Velocity. Typical examples of rendering by inter-
pretation are declarative languages such as Hypertext Markup Language (HTML), 



7.2  Related Work 125

EXtensible Markup Language (XML), any UIDL or integrated environment like 
systems, applications & products in data processing (SAP) or Oracle that produces 
their UI internally.

The remainder of this chapter is structured as follows: Sect. 7.2 reviews various 
definitions of the M-D pattern found in the literature using classifications and illus-
trations. Based on the shortcomings and requirements identified in this literature, 
Sect. 7.3 revisits the definition of the master-detail (M-D) pattern to transform it 
into a cross-platform pattern as intended. The following sections then respectively 
examine this pattern more closely at the various levels of abstraction of the Cam-
eleon Reference Framework (CRF): Sect. 7.4 details the UI development life cycle 
of the M-D pattern by instantiating it at the task and domain, abstract, concrete and 
final UI levels respectively, Sect. 7.5 explains how to generate a UIDL-document 
to facilitate its implementation on cross-platform context and illustrates this frame-
work on a case study of a “car rental” task; Sect. 7.6 concludes the chapter by dis-
cussing the contributions of our approach comparing it with respect to related work 
and by presenting some future avenues of this work.

7.2 � Related Work

In order to substantiate this research, we decided to focus its discussion on the M-D 
pattern, also known as master-slave or director-detail pattern (Pastor and Molina 
2007). This pattern has been selected for the following reasons: it starts from a 
domain model, thus offering a data-oriented perspective and a conceptual starting 
point; it is widely used both in the literature and in practice, by designers, devel-
opers, private ones, and software vendors; it is largely considered in systematic 
development of interactive information systems; previous work do not examine the 
cross-platform dimension of this pattern in the light of UI implementation and us-
ability concerns; this pattern can be defined as a unified class or can be interpreted 
such as an aggregation in relationship between two different classes.

This section is divided into five sub-sections regarding five major dimensions of 
the M/D pattern: the definitions discussed in the literature, its classification in col-
lection patterns, its generative form, its current engineering implementation based 
on illustrations, and the motivations to present this pattern into a cross-platform one.

7.2.1 � Master-Detail Pattern—An Operational Definition

The M-D pattern is typically used in a single scenario where several tasks are 
performed at the same time, while maintaining the details synchronized related to its 
master (Pastor and Molina 2007). An M-D pattern is applied, like any pattern, to re-
flect on possible changes to a technical space or situation (Nilsson 2009). By relying 
on the context, patterns can prevent repetitive errors in a cross-platform environment. 



7  Generative Patterns for Cross-Platform User Interfaces126

That also allows understanding better possible impacts of new technologies, the screen 
resolution being probably one of the most constraining one. This pattern should be 
prescriptive to promoting creation of new instances in order to help designers in its 
implementation. The presentation of the M-D pattern for a wide variety of screen 
types defines how and which elements are suitable. The pattern can then be used 
to capture essential problems of different “sizes” in using different customizations. 
Therefore, the using of patterns for documenting design knowledge allows dividing 
“a large problem area into a structured set of manageable problems (Nilsson 2009).”

In HCI, a master-detail interface displays a master list of items, called master 
area, and the details for any selected item, called the detail area. A master area can 
be a form, a list or a tree of items, and a detail area can be a form, a list or a tree of 
items typically placed as close as possible to the master area (e.g., below or next 
to it) in order to satisfy the usability guideline: “Semantically, related information 
should be placed close to each other to reflect this link, while unrelated informa-
tion should be placed far from each other.” Selecting an item from the master area 
causes the details of that item to be populated in the detail area. A master-detail 
relationship is a one-to-many type relationship, among which typical examples are: 
a set of purchase orders and a set of line items belonging to each purchase order, 
an expense report with a set of expense line items or a department with a list of 
employees belonging to it. An application can use this master-detail relationship to 
enable users to navigate through the purchase order data and see the detail data for 
line items only related to the master purchase order selected.

Figure  7.1 graphically depicts a master-detail by showing how to display in-
formation in soccer regarding teams that plays in a league. Let us assume that 
LeagueList is a collection of leagues. Each league has a name and a collection of 
divisions, and each division has a name and a collection of teams. Each team has 
a team name. The divisions ListBox automatically tracks selections in the leagues 
ListBox and displays the corresponding data. The teams ListBox tracks selections 
in the other two ListBox controls.

Figure 7.1 also shows that the M-D pattern could be applied recursively (this is 
sometimes called master-detail-MoreDetail pattern):

Fig. 7.1   An example of a 
user interface (UI) implemen-
tation of the master-detail 
(M-D) pattern on desktop 
view

 



7.2  Related Work 127

1.	 The three ListBox controls bind to the same source. You set the path property of 
the binding to specify which level of data you want the ListBox to display

2.	 You must set the IsSynchronizedWithCurrentItem property to true on the List-
Box controls of the selection you are tracking. Setting this property ensures that 
the selected item is always set as theCurrentItem. Alternatively, if the ListBox 
gets it data from a CollectionViewSource, it synchronizes selection and currency 
automatically.

7.2.2 � The M-D Pattern Usage in Pattern Collections

Multiple user interfaces (MUIs) have to adapt to any variation of the cross-platform 
context. Using a pattern approach allows us to design UIs by a set of models (the 
model-based UI development) (Seffah and Forbrig 2002) and to provide high ab-
straction elements before coding the software. Several HCI pattern collections were 
introduced in the literature since Alexander (1977). “Using patterns to clearly and 
succinctly describe particular workplaces, in order to understand possible impacts 
of new technologies.” (Bayle et al. 1998)

UI patterns are found more descriptive than generative in most pattern collec-
tions (Table 7.1): descriptive patterns are aimed at maximizing their descriptivity 
(i.e., the level with which they have described in the collection) and their genericity 
(i.e., the scope in which they are applicable; Vanderdonckt and Montero 2010). To 
become descriptive, a pattern should solve a trade-off: contain enough information 
to foster its descriptivity, but not too much in order not to constrain its genericity. A 
generative pattern is aimed at maximizing its expressivity (i.e., the capability with 
which they are expressed in a rigorous way) and their generativity (i.e., the level 

Table 7.1   Classification of patterns collection according to the four properties: descriptivity, gener-
icity, expressivity, generativity (From “ ” = no information, + = low, + + = medium, to + + + = high)
Classification of patterns collection
Pattern collection Descriptivity Genericity

Descriptivity Genericity Expressivity Generativity
Pattern catalogue
Tidwell (2010)  + + +  + + +  +  +
van Welie and van der Veer (2003)  + + +  + + +  +

van Duyne et al. (2006)  + + +  + +  + +
Management patterns
Brochers (2000)  + + +  + + +
Pemberton and Griffiths (1999)  + +  + +  + +
Coram and Lee (2011)  + + +  + + +  + +
Pattern-based design tool
Molina (2002)  + + +  + +  + + +  + + +
Henninger (2001)  + +  + +  + +



7  Generative Patterns for Cross-Platform User Interfaces128

with which they could lead to a final user interface (FUI), manually or (semi-)auto-
matically. To become generative, a pattern should solve another trade-off: express 
enough information to foster its expressivity, but not too much or not too informally 
in order to foster their generativity.

Table  7.1 compares some famous pattern collections according to the afore-
mentioned four properties classified as: “ + ” if the specification of the language 
is limited but we have some elements and directives with example to describe UI 
patterns. “ + + ” if the patterns are described with a specific language for one con-
text and “ + + + ” if their description involving two or more languages for several 
contexts of use (user, platform or environment). An empty field means that not 
enough information belonging to this property is available in the publicly accessible 
literature to assess it.

Table 7.2 reveals that most pattern collections cover the M-D pattern, but with a 
limited genericity. Some other collections do not contain the M-D pattern explicitly, 
but refers to it in a different way. For instance, van Welie and van der Veer (2003) 
presents the “tab UI element” as a possible master area in an M-D pattern and 
another UI element called “overview by detail” as a detail area in this pattern. Its 
description focuses on a single implementation language and usability explanation. 
Moreover, Loranger et al. (2002) and Johnson (2003) cover this usability explana-
tion. Globally speaking, the definition of patterns found in these collections are too 
often oriented towards one single context of use, for instance a particular user, a 
single computing platform, or a specific environment. They do not cover the three 
aspects together and they do not cover variations within these aspects.

7.2.3 � The Master-Detail as a Generative Pattern

JUST-UI, an object-oriented (OO) framework for generating UI from object-oriented 
models, was probably the first to introduce a generative pattern, for instance for the 
M-D (Molina et al. 2002). JUST-UI automatically generates interactive application 
from a series of conceptual models, such as the presentation model (Fig. 7.2), built  

Table 7.2   Description of master-detail in pattern collections (From “ ” = no informa-
tion, + = low, + + = medium, to + + + = high)
Master-detail pattern in pattern collections
General description Management Pattern-based 

design tool
Usability

Gang 
of four 
(Gamma 
et al. 
1994)

Tidwell 
(2010)

van 
Welie 
and 
van der 
Veer 
(2003)

van 
Duyne 
et al. 
(2006)

Bro-
chers 
(2000)

Pem-
berton 
(1999)

Molina 
(2002)

Hen-
ninger 
(2003)

Lor-
anger 
et al. 
(2002)

Johnson 
(2003)

 +  +  +  + +  + + +  + +  +  +



7.2  Related Work 129

upon conceptual patterns. The presentation model, also used in OO-Method, is 
decomposed into three levels (Fig. 7.2):

•	 Level 1: Hierarchical action tree (HAT). HAT is also called system access 
structure. This level solves the user–system interaction issue.

•	 Level 2: Interaction units (IUs). Each element composing the IUs represents a 
possible scenario through which users can perform tasks. This middle level is 
composed of four different types of Interaction Units.

•	 Level 3: Elementary patterns (EPs). This last level is defined by a large set of 
basic elements, also named building blocks, from which a variety of scenarios 
(IUs) are founded.

The M-D pattern starts at level 2 as a combination of a population interaction unit 
and an instance interaction unit, which are then automatically generated as a web 

Fig. 7.2   The Presentation Model of object-oriented (OO)-Method. (Aquino et al. 2010)

 



7  Generative Patterns for Cross-Platform User Interfaces130

application (Fig. 7.3), a desktop application for MS Windows (Fig. 7.4a) and for 
MacOs (Fig. 7.4b).

7.2.4 � Previous Work on M-D Pattern

HCI design patterns have proven their potential as a solution to guide developers 
in capturing knowledge at a high level of abstraction while facilitating the design 
of MUIs. But their scattered information is sometimes too complex to understand 
for some developers, especially when different platform style guides and software 
manuals address the pattern in different, possibly inconsistent, terms. Figure 7.5 
reproduces the instructions to follow for implementing the M-D pattern in Objec-
tive-C, the programming language used by Apple for OS X and iOS operating sys-
tems for mobile platforms. While Fig. 7.6 does the same job for desktop, but for 

Fig. 7.4   M-D pattern for desktop platforms: a Microsoft Windows and b MacOS. (PJ Molina 
2013)

 

Fig. 7.3   M-D pattern for a Web application

 



7.2  Related Work 131

Oracle (Fig. 7.6a) and MS Windows again (Fig. 7.6b) and Fig. 7.7 for OpenERP 
(Fig. 7.7a) and SAP (Fig. 7.7b), which are however two desktop-based Entreprise 
Resource Planning systems.

a b

Fig. 7.6   M-D pattern with an expanded List of Detail part on Oracle instance (a) and a list on 
Windows view (b)

 

Fig. 7.5   A guidance of M-D pattern implementation based on Objective-C

 



7  Generative Patterns for Cross-Platform User Interfaces132

Leading to the same conclusion, Table  7.3 suggests that UI toolkits do not 
frequently support the expression of the M-D pattern at a higher level of abstraction 
than the code level.

7.2.5 � Shortcomings and Requirements

Based on the examination of M-D literature, the following shortcomings have 
appeared to be important to address when solving the cross-platform UI design 
problem:

S1. Lack of expression consistency. Information related to the pattern description 
and its applicability is fragmented across different attributes. A list of factors or 
criteria is necessary to validate a pattern.

S2. Partial pattern representation. The current works about patterns are con-
strained to one or some levels of the UI development life cycle. When they do it, 
the entire process is not completely addressed.

Table 7.3   Toolkits expressing the M-D pattern design at a high level of abstraction (☒= unsup-
ported, ☑ = supported)
To design M-D pattern in high level abstraction
UI toolkit Objective-C Android tool Visual Studio 

2010
OpenERP Oracle

Task & 
domain model

☑ (only domain 
model)

☑ (only domain 
model)

☑ (only domain 
model)

☒ ☑ (only 
domain model)

AUI ☒ ☒ ☒ ☒ ☒
CUI ☒ ☒ ☒ ☒ ☒
FUI ☑ ☑ ☑ ☑ ☑

Fig. 7.7   A list of elements to present the master pattern and a single presentation for Detail pattern 
in OpenERP (a) and M-D pattern in SAP (b)

 



7.3  Revisiting the M-D Pattern Description 133

S3. Limitation of technological space. Most UI patterns available are specific to 
one platform or at least provides an example for one platform, often for the Web 
and desktop.

S4. Lack of usability approach. Tools to support pattern assisted design and de-
velopment exist but the way they handle usability knowledge is limited, if not 
explicitly incorporated.

S5. Lack of implementation information. Only some tools offer effective instruc-
tions on how to guide the pattern application and implementation.

In order to address the aforementioned shortcomings, the following requirements 
are elicited:

R1. Revisiting the M-D pattern definition with up-to-date information
R2. Integrate the M-D pattern in the whole UI development process
R3. Consolidate methods and techniques in using a guidance system
R4. Design M-D pattern within usability concerns explicitly incorporated
R5. Structure an M-D pattern based on Dijkstra’s principle of separation of concerns 

(Dijkstra 1959)

In order to satisfy these requirements, the following section revisits the M-D 
description with a focus on expressivity and generativity, as opposed to descriptivity 
and genericity. The usability concern is a large scope. It needs more application and 
technic. We will just use it in the guidance system.

7.3 � Revisiting the M-D Pattern Description

During a period of steady technological growth, a large variety and availability of 
devices and hardware/software platforms are being developed. The ideal situation 
for users is to have access to information and services on the device that they are 
using in a different context or environment. Usability concerns should be integrated 
to UI patterns (Folmer and Bosch 2003). M-D patterns are therefore augmented in 
this work by ergonomic criteria (Scapin and Bastien 1997) such as user guidance, 
or consistency, or error management which are addressed when applying the pat-
tern. Table 7.4 provides an enriched pattern definition based on the template intro-
duced by the Gang-of-Four (Bayle et al. 1998), such as template attributed found in 
Wendler et al. (2013). Information from Bayle et al. (1998), van Welie et al. (2002), 
and Kruschitz (2009) about the M-D patterns are also included. Elements of the 
consistent template (Engel et al. 2013) are:

•	 Pattern Name: How is the pattern called?
•	 Also Known As: What are the other names for this pattern?
•	 Classification: Is the pattern creational, structural, or behavioral?
•	 Motivation or Problem: What is an example scenario for applying this pattern?
•	 Intent or Solution: What problem does this pattern solve?
•	 Restriction: What restriction does this pattern require? What are its constraints?



7  Generative Patterns for Cross-Platform User Interfaces134

Pattern name Master/details
Also known as Master/slave, director/details
Classification Structural/object centric
Problem The scenario, in which the user has to search in a list and select an item to 

have more details, is frequent. A set of information units linked or not by a 
relationship have to be presented to users. At the end these have a scenario 
that the master interaction unit determines information of details interaction 
unit will show

Solution Perform a composed presentation in which master and detail data are shown 
in a synchronized way. In the master unit, its object is to guide and trigger the 
update in the details unit. Detail unit presentation is provided while master 
unit presentation is changing

Restriction The constraint is to have synchronized information between the master 
information units and detail information units

Forces This pattern is used in numerous situation, context. The scenario of this 
pattern allows simplifying the user’s task. Indeed, navigation is decreased for 
getting specific information. Moreover, information is maintained synchro-
nized between the master and details units

Weakness The size of screen can discourage the presentation of this pattern. Less 
information can be shown at the same time on a screen. The details need to 
have a great navigation and to follow some usability guidelines in order to 
respect users’ requirements and to have a graceful presentation

Rationale Provide a presentation to reduce several navigations and to simplify the 
user task. Users need to interact with several objects aggregated or not. The 
scenario offered by M-D pattern allows us to get detailed information aligned 
with its master component.
Moreover, the purpose of this pattern is to make explicit information related to 
an instance

Context of use All types of users can use this pattern. All environments can get this pattern 
and adapt it. For instance, we can use this pattern to show the cases Project/
Employees or Invoice/Lines. All kinds of platforms can adapt this pattern in 
line with usability studies

Applicability The M-D pattern is used when we need to interact with several objects 
aggregated

Structure In the case of an aggregated relationship, the master unit is the head element 
of the details unit

Participants One or two instances with an aggregated relationship
Collaborations Objects can operate though their aggregated relationship or attributes.
Consequences Need to use usability elements for adapting this pattern on different platform. 

Knowledge about these devices is required
Implementation The issue about using a unity class or aggregated classes is necessary before 

implementing this pattern. The M-D pattern uses a list of model objects which 
can be presented in the table list pattern. Each selected object is presented 
in the display pattern. Therefore, the user navigates through a list with 
synchronize information

Known uses Commercial system can use this pattern to show the case invoice/line
Related 
patterns

Object presentation, population unit, instance interaction unit, display form, 
table list pattern

Table 7.4   Master-detail pattern description



7.3  Revisiting the M-D Pattern Description 135

•	 Forces: What are advantages and forces to use this pattern?
•	 Weakness: What are disadvantages or limits to use this pattern?
•	 Rationale: Why does this pattern work? What is the history behind the pattern?
•	 Applicability or Content: When does this pattern apply?
•	 Context of use: What are the category of user, environment, and platform that 

this pattern can be applied?
•	 Structure: What are the class hierarchy diagrams for the objects in this pattern?
•	 Participants: What are the objects that participate in this pattern?
•	 Collaborations: How do these objects interoperate?
•	 Consequences: What are the trade-offs of using this pattern?
•	 Implementation: Which techniques or issues arise in applying this pattern?
•	 Known Uses: What are some examples of real systems using this pattern?
•	 Related Patterns: What other patterns from this pattern collection are related to 

this pattern?

A complete description is necessary to address all parts of the pattern and to show 
its application:

•	 Provide a comprehensive and descriptive solution involving the three parameters 
of the context of the problem (user, platforms, and environment) by integrating 
usability knowledge

•	 Reuse general/standard solution reducing errors and research a complete solu-
tion in using an abstract solution in order to implement them in a straightforward 
way

•	 Visual explicit view of ergonomic design before implementing.

We can see that the implementation attribute is often missing. That requires more 
details of the pattern application in several programming languages. The pseudo-
code aims to facilitate its implementation in different programming languages while 
bringing better understanding for developers. In this pseudo-code, the master pattern 
is encapsulated in a table view listing each object and gets the detail of the object.

Pseudo-code of M-D Pattern:



7  Generative Patterns for Cross-Platform User Interfaces136

As we can also see on the current shortcomings in the previous section, the ma-
jor element to take into account in the pattern implementation is the cross-platform 
context and to improve the software lifecycle development integrating the develop-
ment of usability studies.

7.4 � Integrate the M-D Pattern in the Whole UI 
Development Process

This section presents one possible way of incorporating the M-D pattern usage 
into the UI development process based on a UIDL that supports the four levels 
of abstraction of the CRF. Other XML-compliant frameworks are available such 
as Object Management Group’s (OMG’s) framework (Computation Independent 
Model (CIM), platform-independent model (PIM), platform-specific model (PSM)) 
for developing multitarget UIs. Our choice is motivated by its simplicity of hierar-
chical structure of each abstract model and its transition of progression levels along 
the development lifecycle on a variety of devices.

7.4.1 � Task Model

A task model is a description of tasks that a user will be able to accomplish in 
interaction with the system. This description is a hierarchical decomposition 
of a global task, with constraints expressed on and between the subtasks. The 
USer interface eXtensible Markup Language (UsiXML) task model relies on 
ConcurTaskTree (CTT) notation (Paterno 1999): a hierarchical task structure, with 
temporary relationships specified between sibling tasks.

Since the M-D pattern is based on a domain model, it needs to be augmented with 
tasks so as to produce a corresponding task model. Depending on it, the domain 
model is interpreted, two task models could result from this process:

•	 A unity instance expressed as the master element and its object domain attributes 
could compose the details element (Fig. 7.8). In this task model, an object or a 
collection of objects is edited by browsing all the attributes belonging to the class 
object and by invoking typical management methods, such as those found in the 
create, read or retrieve, update, delete, and search (CRUDS) pattern.

•	 An aggregation representation between two domain objects (Fig. 7.9). In this task 
model, all object attributes are edited at once or one by one, all object methods 
are invoked at once or one by one on demand

7.4.2 � Domain Model

The domain model presents the important entities of the particular application do-
main together with their attributes, methods, and relationship (Sinnig et al. 2003). 



7.4  Integrate the M-D Pattern in the Whole UI Development Process 137

Various notations could be used for this purpose, such as the entity-relationship-
attribute (ERA) notation, the OO notation, or more frequent and up-to-date the uni-
fied modeling language (UML). Two cases could occur:

1. When the M-D pattern is applied on a single domain class. In this case, 
the domain case merely consists of its usual attributes and methods (Fig.  7.10). 
Applying the M-D pattern therefore consists of displaying a list of objects belong-
ing to this domain class and displaying its attributes and methods on demand. For 
instance, the Mac Developer Library (2012) uses this method where the root is the 
collection of these objects (Fig. 7.10a). Note that the master domain class could 

Manage a Class

[ ] [ ]

[ ]

[ ] [ ] [ ] [][] []III III

Edit Collection of Objects Cancel

Browse of Objects

Browse of 
Attribut_2

Browse of 
Attribut_n

Create
Object

Read
Object

Update
Object

Delete
Object

Search
Object

Execute
Method_l

Execute
Method_m

[Execute Method]*

Quit

Browse of 
Attribut_l

Fig. 7.8   M-D pattern defined by a unity class

 

Manage_application_data

Manage_Master _Class Manage_Details_Class

Edit Collection of 
Objects

Edit Collection
of Objects

Cancel Cancel

[ ]

|| ||
…

[] [] [] [] []

[] [] [] []

[][ ]>>

[]

Browse of Objects [Execute Method]*

Read
Object

Delete
Object

Search
Object

Create
Object

Browse of 
Attribut_1

Browse of 
Attribut_2

Browse of
Attribut_n

Exit.

Exit

Execute
Method_1

Execute
Method_m

Update
Object

Quit

Fig. 7.9   M- pattern defined by an aggregation relationship

 



7  Generative Patterns for Cross-Platform User Interfaces138

refer to several detail areas that are related to some different areas, such as phone or 
address (Fig. 7.10b). Eclipse Documentation (2012) refers to this M-D pattern as an 
M-D block presented as a list or a tree (master area) with a set of synchronized prop-
erties (detail area). Methods of master unit are abstract and must be implemented by 
the subclass while details unit is created.

2. When the M-D pattern is applied on a master domain class associated to a 
detail domain class via an aggregation relationship (Pedro et  al. 2002) see on 
Fig. 7.11. In this case, the details associated to a master are considered conceptu-
ally different and important enough to warrant a dedicated handling via a detail 
area display. “This pattern can be easily mapped to a many-to-one relation schema 
used within a database design.” (Perrins 2008) Detail role expand objects related 
to the master object conforming to their aggregated relationship. In this model For 

firstName

lastName

phone

address

Unity Class

Attribut_1
Attribut_2

Attribut_n

Create_Object()
Read_Object()
Update_Object()
Delete_Object()
Search_Object()
Simple_Criteria_Search_Object()
MuIti_Criteria_Search_Object()

Method_1
Method_2
…

…

Method_m

Employe

-IDEmployee : int 

-Firstname : string 

-Lastname : string 

-Gender: boolean 

-PhoneNumber : string 

-Email : string 

-Address : string

+Create()

+Read()

+Update()

+Delete()

+Search()

a Person

work

home

mobile

a Phone

an Address

street

city

zip

county

a b

Fig. 7.10   A domain model associated to the M-D pattern (a) and associated to the System Envi-
ronment (Mac Developer Library 2012) (b)

 

Master Class
Attribute_1
Attribute_2
…
Attribute_n

CreateObject ()
ReadObject ()
UpdateObject ()
DeleteObject ()
SearchObject ()
SimpleCriteriaSearchObject ()
MultipleCriteriaSearchObject ()
Method_1 ()
Method_2 ()
…
Method_m ()

Detail Class
Attribute_1
Attribute_2
…
Attribute_p

CreateDetail ()
ReadDetail ()
UpdateDetail ()
DeleteDetail ()
SearchDetail ()
SimpleCriteriaSearchDetail ()
MultipleCriteriaSearchDetail ()

MethodDetail_1 ()
MethodDetail_2 ()
…
MethodDetail_q ()

0..n1

Fig. 7.11   The M-D pattern in an aggregation relationship

 



7.4  Integrate the M-D Pattern in the Whole UI Development Process 139

example, the Employee class contains a sub-group Address, which could in turn be 
decomposed into attributes contained in a separate class: zip code, street, etc. This 
concept could be mapped in an aggregation relationship between two distinct enti-
ties if the cardinality of the relation from master class to details class is 0…n. In 
the Employee object, Address is considered as a fundamental attribute. Therefore, 
a mapping from its domain model into two external specific objects could not pos-
sible with a 0…n relationship.

7.4.3 � Abstract User Interface Model

The abstract user interface (AUI) model specifies a UI independent of any interac-
tion modality (we do not know yet whether this UI will be graphical, tactile, gestur-
al, vocal, or multimodal in the future) and any technological space (we do not know 
which computing platform will be the target). The AUI model is the counterpart of 
the PIM) used in model driven engineering (MDE). An AUI consists of a recursive 
definition of abstract interaction units, each unit could be of input, output, input/
output, selection, or trigger, each of them coming with their own event listener. For 
instance Fig. 7.12 reproduces a possible AUI for the Employee class of Fig. 7.10b, 
as edited in UsiAbstract, an Eclipse plug-in for editing AUI models.

7.4.4 � Concrete User Interface

The concrete user interface (CUI) model specifies a UI independent of any techno-
logical space, but for a given interaction modality. The CUI model is the counterpart 
of the PSM in MDE. The benefits consist mainly in improved and expanded defini-
tions of the description of UI elements. The CUI depends on the type of platform 
and media available. This model allows both the specification of the presentation 
and the behavior of a UI with elements that can be concretely perceived by end 

FillEmployeldentitylnformation

Filllntentylnformation

OutSelectGender

Listeners

Listeners

OutGetLastName

Listeners

OutGetFirstName

Listeners

OutGetPhoneNumber

Listeners

OutChooseBirthday

Listeners

FillAddresInformattion

OutGetCity

Listeners

OutGetZipCode

Listeners

OutGetStreet

Listeners

OutChooseCountry

Listeners

Listeners

Listeners

Fig. 7.12   The M-D pattern leading to a AUI model

 



7  Generative Patterns for Cross-Platform User Interfaces140

users. That means to define widgets layout and interface navigation independent of 
any computing platform.

Figures 7.12 and 7.13 present merely one possible AUI and CUI respectively 
for applying an M-D pattern independent of any technological space. We could 
continue with several final UIs that could cover different contexts of use. But our 
goal is to show many high level UI models. We want to define different models to 
specify how sub-tasks of a given task are assembled together for cross-platform 
environments. Therefore, we began with the presentation model from Fig. 7.2 and 
we modified its level 3 to adapt with our sub-task presentations of objects. The re-
sult in the Fig. 7.14 shows different models of possible dynamic presentations from 
AUI models to FUI models. The contribution of this framework is to offer a great 
flexibility in implementation of elements, to provide a usable technic by its XML 
implementation and then an active participation in cross-platform designing. In the 
next section, we will provide more details about this framework.

7.4.5 � The M-D Pattern Application Support Toward FUI

To guide the implementation of the M-D pattern is limited as we can see in the 
scientific literary. Therefore, we created a tool based on the Fig. 7.14 applying this 
UI pattern and at the end generating a XML-document to facilitate its implementa-
tion in high level of abstraction UI design. This section is subdivided in different 

Fig. 7.13   A concrete user 
interface (CUI) model of 
tabbed list presentation for 
M-D pattern according to  
van Welie et al. (2000)

 



7.4  Integrate the M-D Pattern in the Whole UI Development Process 141

Fig. 7.14   The design M-D patterns in abstract user interface (AUI), CUI, and final user interface 
(FUI) customization

 



7  Generative Patterns for Cross-Platform User Interfaces142

sections: beginning by a description of the tool, then the presentation options of 
elements inserted in this tool (how they are created and why).

7.4.5.1 � Description of the Framework Supporting the M-D Pattern  
in Abstract High Level UI Models

Advice-giving system and guidance tool, the master details pattern application 
guide (MDPAG): M-D patterns are used, as other patterns, reflecting on possible 
changes to a technical space or situation. In using the cross-platform context, pat-
terns can prevent repetitive errors in a changing platform. That also allows under-
standing better possible impacts of new technologies such the size of the screen. 
Therefore, patterns are prescriptive and promote creation of new instances in order 
to help designers. The presentation of the M-D patterns in a variety of screens de-
fines how and which elements are suitable. Design patterns can be used to capture 
essential problems of different “sizes.” Moreover, the use of pattern for document-
ing design knowledge “divides a large problem area into a structured set of manage-
able problems.” Alexander’s patterns are defined to be pleasant to humans. Usabil-
ity concept should be integrated to UI patterns. M-D patterns in this work are based 
on ergonomic principles such as user guidance, or consistency, or error manage-
ment. Previous works used M-D patterns in the UI development process but they 
are limited on cross-platform and ergonomic contexts. In Molina et al. (2002), its 
tool is limited in standard view with a limitation of customization and guidance for 
the developer. Indeed, the tool generates a FUI with few customizations. MDPAG is 
a tool focused on abstract UI design pattern with usability integration and high level 
of abstraction to guide the developer/designers. Its offers the possibility to choose 
parameters and have a dynamic abstract representation related to this choice.

Indeed, MDPAG is still a work in progress support, structured like a tree (see on 
Fig. 7.14). The conceptual model from Molina et al. (2002) is extended to show the 
possible UI design elements to guide implementation. Each of the AUI elements 
are followed by CUI elements and possible FUI illustrations in the case study. The 
representation is dynamically related to parameter choices. Each representation 
offers the possibility to see a complete description based on context and implemen-
tation of the UI element. Moreover, the application generates a XML document at 
the end of the representation to facilitate its flexibility and implementation according 
the cross-platform context. Currently, FUI are generated with illustrations in HTML 
and Balsamiq Morkup tool (2014) which is more abstract, and then it facilitates 
elements mapping understanding between CUI and FUI units.

Therefore, this guide support using a high level of abstraction of implementation 
based on the possibility to choose parameters to draw dynamic views of abstract 
object models. The choice is flexible and not restraint to only two choices like 
yes or no but has an exhaustive possibility. Abstract Views is a dynamic change 
related to parameter choices. Each design parameter is defined by using a complete 
description with illustrations and case study like the M-D pattern.



7.4  Integrate the M-D Pattern in the Whole UI Development Process 143

7.4.5.2 � Possible Presentation Options Toward FUI Model

The M-D pattern presentations have some usability restrictions. Indeed, they need 
to have a correct layout to present information in order to perform a task. The sce-
nario of tasks for this pattern needs to get synchronized information between the 
master and details units. The layout of some devices can limit their presentation. 
Consistency and usability are essential characteristics for presentations. In this sec-
tion, we can find different presentations of the master unit. In Fig. 7.15, you can see 
a suggestion of presentation using List or Table of objects in starting point. When 
an item is selected, its details are presented in the display form pattern. We have 
two ways: one column list or multicolumn list. In the first case, master unit can be 
shown by a simple list, a drop-down list or a fish-eye menu. In the multicolumn 
table, attributes of the master unit are presented by prioritized criteria: the most 
frequent, critical or mandatory.

To build MDPAG, we need to draw different presentation options for the M-D 
patterns. The Fig. 7.16, different presentation specifies how objects of a given task 
are assembled together. Instances can be presented in direct mode or progressive 
presentation. In the first format, each object is shown one by one. It is a list that 
includes all attributes and methods in one view for each object. The vertical and 
horizontal scroll can be heavy for the users. In the progressive mode, methods and 
attributes can be selected for each object.

The Fig. 7.17 suggests a presentation of an instance in the M-D pattern case for 
desktop view. The attributes and methods of objects are presented by specific cri-
teria: the most importance, recurrence of use, and critical characteristic. Therefore, 
attributes and methods are characterized by multiple criteria: simple/repetitive, 
elementary/decomposable, and optional/mandatory. Attributes can have the label 
presentation or optional checkbox. For methods, we can find the traditional CRUD 
Method in the unit. Other methods are obviously possible. Each method can have a 
specific view: a textual, graphical or both presentations on their button.

Start: View: Model Flow: Controller: Processor:

Retrieve

1: Search Key

2: Selection

List/Table

Display From

“return”
3: Selection

1.1: Return Objects

Fig. 7.15   An example of M-D pattern presentation. (Perrins 2008)

 



7  Generative Patterns for Cross-Platform User Interfaces144

In the design option presentation of the M-D pattern, we explain the possible 
representation of objects. In Fig. 7.17a unity class is represented in specific desktop 
window. Attributes can be edited by fields or in using checkboxes. Methods are 
action buttons.

This standard representation can be completed by graphical or/and textual option 
for buttons. Standard buttons for common methods such as add, create, or delete 
an item can use frequent icons with extra information. User experiences allow us 
to act quickly and to reduce stress. On mobile platform, a list view is preferred. 
That allows a great structure and improves the usability. Another usability guideline 
specifies to use the button in correct and understandable context. The button cannot 
appear in confuse situation.

In Fig. 7.18, we can observe two same situations: we want to add a new con-
tact. In the figure on the left, we can see this situation on Android 1.1. That does 
not respect usability guidelines described above. On the right, we can observe a 

Fig. 7.17   Instance presentation of M-D pattern in desktop view

 

Detail presentation mode

Combined

All at onceMany at onceOne at once

separated

extended
task
list

reduced
task
list

tabbed
list

single
expansion

list

multiple
expansion

list

separated
list

grouped
list

bulleted
list

ordered
list

Object 1

Object 2

Object 3

Object 1 Object 1 Object 2 Object 3 Object 1

Object 2

Object 3

Object 1

Object 2

Object 3

Object 1

Object 2

Object 3

Object 1

Object 2

Object 3

•Object 1

•Object 2

•Object 3

1.Object 1

2.Object 2

3.Object 3

Object 2

Object 3

Object 1

Fig. 7.16   Object presentation in M-D pattern

 



7.5  The M-D Pattern Application Support 145

list view of Android 1.5 using both graphical presentations: textual and graphical. 
Usability graphic is better to understand the meaning of the application.

The technique of M-D information used in progressive or direct display, are pre-
sented in a specific public support online to guide developers/designers in using the 
question of, how subtasks of a given task could assemble together. By a set dynamic 
choice, different subtask presentations in AUI, CUI and FUI models are displayed. 
The next section presents the application of M-D pattern in a specific tool with a 
case study: the renting car.

7.5 � The M-D Pattern Application Support

These options are presented in the tree (cf. Fig.  7.14) and applied in a specific 
support called MDPAG. The translation from the Task/Domain model, AUI, CUI, 
and FUI are based on study case. For example with the renting car study case, the 
CUI of the M-D pattern is illustrated in Fig. 7.19. The CUI of the M-D pattern is 
presented with the following selection of parameters: The master interaction unit 
is reified into object-combined presentation in AUI model. Its objects are shown 
one at once in using a tabbed list. In CUI, its representation in using tab object is 
illustrated in the guide support and in a FUI instance. The detail interaction unit is 
shown in each object of the tab list of its master in using AUI presentation based 
on all at once with a separated list. In its CUI model, objects are represented by a 
separated choice element.

These generated dynamic applications are validated by different guidelines 
(Fig.  7.20). We can observe what guidelines are validated for each illustration. 
At the end of the preview illustration and selected parameters, the end user can 
also generate a XML-document related to dynamic choice for the implementation. 
Other illustration of the application, based on other operating system and platform 
integrated in this support, is presented in the following section.

Fig. 7.18   Graphical presentation of class methods on Android OS. (Android 2012)

 



7  Generative Patterns for Cross-Platform User Interfaces146

7.5.1 � Support for M-D Pattern Application

The application is developed in order to adapt the M-D pattern in mobile devices. 
We decided to focus on the Android-based mobile systems. The motivations are 
the free accessibility of Android-Framework and its code language, Java that is a 
widespread programming language known by all developers.

The usability concern is the screen size limitations of general mobile devices. 
Therefore, a minimal set of information is available at any time. A possible situation 
is to minimize the accessible information set thanks to an adequate use of “reducing” 
and “expanding” controls of the list, so that the user keeps the focus on the part of 
the application that he is using (see on Fig. 7.21 on the right).

Fig. 7.20   Renting car application validated with ergonomic guidelines in MDPAG

 

Fig. 7.19   A tool of guidance for M-D pattern implementation with Balsamiq FUI model ( left 
above), with HTML FUI model ( left below), final CUI model ( right above), FUI model ( right 
below)

 



7.5  The M-D Pattern Application Support 147

“Cars” is the class “title.” All attributes of this class are included in details pre-
sentation by using a combined way. In this way, three detail views are possible of at-
tributes: one at once, many at once, or all at once. It is a basic possible presentation 
and using of M-D pattern combined with the population pattern and other auxiliary 
popular patterns such as filters, order criterions, selection, and display sets. All used 
patterns in Mandroid are presented. All attributes of Mandroid are viewed many at 
once or all at once. That depends on auxiliary patterns used.

In the Fig. 7.22, the relevant patterns are the master-detail and the order ones. 
This model selection allows sorting alphabetically the brands and, secondly, when 
a brand is selected, the details (i.e., the next step of the car configuration) appear. 
Then, the user has to select a model of car represented by a standard button of the 
Android System. Basically, this step is implemented the same way as the previous 
one, using master-detail and ordering, but it also contains the Filter pattern. Once 
the model is selected, the resulting detail concerns the selection of the body style of 
the car. This step uses a nested M-D pattern.

Next, the user can specify the options and the color that he wants. So, we only 
focus on the “Options” one. Typically, the detail of this button is a list of options, 
which, once again, use the M-D pattern. When an option is selected, a screen allow-
ing the user to select it appears. To get back to the options list, the “ + Expand” link 
can be clicked. This link is present each time the M-D pattern is used in order to get 
back to the master. Finally, a preview of the car is available.

On a technical point of view, the filling of the application is done automatically 
thanks to our XML parser compatible with Android. Thanks to the developed tool, 
the data is fetched from a XML-file and then presented on the user interface. This 
strategy enables us to update the data about cars and even add new models and/or 
brands (without having to recompile the application). The idea behind the algorithm 
is the following: each time we meet a node in the XML-file we check its value and 
create the corresponding elements with the attributes specified in the XML-file. 
Example: a node with value “model” causes the creation of a master element. Every 

Fig. 7.21   M-D pattern in Android system

 



7  Generative Patterns for Cross-Platform User Interfaces148

node that follows and whose value is different from “model” concerns the model 
previously created (we go through the XML-file line by line). Then, depending on 
the values of the next nodes, masters and details elements are created and added to 
previous elements. If the value is equal to “ordering” or “filter”, the corresponding 
patterns are initialized on the population of the appropriate master. This XML parser 
helped us to maintain our application clean, well structured, to enforce the quality 
of the user interface and to efficiently work in a team.

Another illustration of application is the Fig. 7.7 in the Oracle instance, the mas-
ter is also the table of objects. When an object in the master table is selected from 
the single select column, the details section below draws with label/data layout of 
object details. Multiple selections of objects are not allowed in the master objects 
table. If multiple selections are functionally required and there are drill down ac-
tions for the objects, then the actions will have to be performed in separate pages, 
such as an object template. To access full object details, the user must select the 
master object from the single select column, then select the “Advance Update” but-
ton in the detail section. Details are represented as a single object (label/data layout) 
based on the selection of a master object.

7.5.2 � M-D Pattern Presentation for Tabbed List Presentation  
in Mobile Application

The combination of the two interactions units (master and details) is shown in two 
tabs on the mobile view (cf. Fig. 7.23). We take our example with the employee 

Fig. 7.22   Mandroid application

 



7.5  The M-D Pattern Application Support 149

class in aggregated relationship with project class. In our instance, we have in the 
master role: the interface interaction unit of project class. In the Detail role is the 
population interaction unit of the employee class. The detail role means to show 
only the employee from the selected project in the master part. It is the same with 
the mobile view, the second tab shows all employees from the project in the first tab. 
Therefore, we can say that a dependence part is defined.

A navigation bar on the top is not visually correct because the title is reproduced 
twice as we can observe on the right of this figure. Moreover, it is not in line with 
the specific guideline: Indicate the position of the user only once. Without a naviga-
tion bar, the user cannot come back to the menu. The solution can be to integrate 
this in the bottom menu bar which defines the action patterns. The problem with this 
solution is that it reduces the options of action set and information quantity.

7.5.3 � M-D Pattern in Grouped, Ordered, or Structured List 
Presentation

The majority of the tools and M-D pattern presentation is defined by grouped, 
ordered, and structured element presentation in its master part and by a large in-
formation content in its details part. For instance, in the systems, applications, and 
products in data processing (SAP) FUI (cf. Fig. 7.7), the two tables in the master-
detail viewer is be filled with data records that are saved in the context of the view 
controller. The (upper) Master table displays a row for each customer, containing 
his or her name and address. The (lower) Detail table displays the order records 
for the currently selected customer. They are presented in order of date (old date 
to new date). Another illustration, on Oracle system (cf. Fig. 7.6) represents the 
hierarchy of objects; and single object details (from list.). Master is a hierarchic of 
objects. When one of the objects in the tree is selected, the details section draws with 
selected objects details. Depending on the detail contents for each item in the Tree, 

Fig. 7.23   M/D pattern using a tabbed list presentation of mobile platform

 



7  Generative Patterns for Cross-Platform User Interfaces150

it is possible to show a different master/detail template depending on what object 
type is selected. For instance, if the master tree is a hierarchy of banks, branches, 
and accounts, and the user selects an account. Single Object Details are represented 
as a single object (label/data layout) based on the selection of a master.

7.6 � Contributions of the Chapter

Several problems of implementing software design patterns have been pointed out, 
for example, ordinary object-oriented style implementations reduce the traceability 
of design patterns and the reusability of the implementation of design patterns. Our 
approach is one of the solutions for these problems.

In this chapter, we proposed a technique for describing and implementing 
a generative UI design pattern in general that improves reusability and effective 
applicability of the HCI design pattern. It instantiates this general definition for 
a cross-platform pattern for a specific case such the M-D pattern. For structuring 
and coding, the proposed technique relies on the concept of generative patterns 
and a set of rules for implementations. These rules can be encapsulated in several 
programming languages or UI development tools such as task modelers and UIDLs. 
More particularly, the M-D cross-platform pattern is systematically described 
according to the formalisms and notations recommended by W3C for model-based 
UI design. We describe this implementation for two platforms, i.e., a web applica-
tion and a mobile application, and compare it to other languages and cross-platform 
environments.

The major contributions of this research are the following:

•	 A definition of the general concept of generative UI pattern is provided that 
expresses various aspects to consider when applying the pattern for multiple 
contexts of use

•	 An instantiation of this general concept as cross-platform UI pattern for applying 
it for multiple computing platforms

•	 An exemplification of a cross-platform UI pattern based on the M-D pattern that 
is then subsequently detailed at the different levels of abstraction recommended 
by the CRF (Calvary 2003)

•	 An abstraction of design options found in various computing platforms into a 
cross-platform M-D pattern, thus offering a wide range of options at once.

•	 An implementation environment of this cross-platform pattern for two platforms: 
iOs and Androïd.

The proposed meta-model of M-D pattern is structured into four levels of abstrac-
tion to foster portability and reusability. It supports user interfaces that are or have 
to be easily customizable. Another contribution of this work is a systematic review 
and analysis of the recent scientific literature regarding M-D pattern description and 
implementation. We revisited its description and implementation for better under-
standing, to facilitate its integration and to demonstrate how the proposed method 



151References

works. Indeed, current tools offer the possibility to generate FUI in standard repre-
sentation in involving the context of uses and some usability guidelines. But they 
are limited in the customization of design UI patterns. Our support MDPAG offers 
the observation of possible design options of the M-D pattern on different platforms 
at different high abstraction levels. The case study focuses on heterogeneous con-
text and design M-D pattern presentation in an attempt to validate the outcomes. We 
show, for example how the M-D pattern could be represented at the bottom level 
of UI development process (such as task model) independent of platform imple-
mentation. Then, different abstract models of M-D based on a real life case are 
dynamically generated in integrating usability concerns. At the end, the developer 
can generate a XML document to facilitate the pattern implementation.

Between discussions and the case study presented here, the advantages and 
disadvantages of these definitions and methods have been highlighted. The main 
advantage of these methods is the ability to identify the origin of the M-D pattern 
and to revisit it including the current innovation, cross-platform environment. 
“Experience” and “usability” are both defined in its meta-model, illustrations, and 
applications. The main disadvantage is the measure of performance and reliabil-
ity of these methods. Developers understand the definition and capability of these 
methods but it needs more quantifying evaluations. Therefore, the future works are 
to evaluate them in long term by integrating more parameters based on the context 
of uses and usability points. In addition to the user and developer experiments, 
another future work is to quantify the gain of times of its implementation on cross-
platforms.

Acknowledgments  The authors would like to thank the computer science master student Tristan 
Dorange for his participation in the study to build the framework MDPAG. We also acknowledge 
the support of this work by the DESTINE (Design & Evaluation Studio For Intent-Based Ergo-
nomic Web Sites) project, funded by DGO6 of Walloon Region, under convention #315577 in 
«WIST» Wallonie Information Science & Technology research program

References

Alexander C (1977) A pattern language. Oxford University Press, New York
Android Developers (2012) https://developer.android.com/guide/topics/ui/index.html. Accessed 

15 April 2015
Aquino N, Vanderdonckt J, Condori-Fernández N, Dieste Ó, Pastor Ó (2010) Usability evaluation 

of multi-device/platform user interfaces generated by model-driven engineering. In: Proceed-
ing of ESEM’2010. ACM, New York, Article #30

Balsamiq Morkup Support (2014) http://balsamiq.com/
Bayle E, Bellamy R, Casaday G, Erickson T, Fincher S, Grinter B (1998) Putting it all together: 

towards a pattern language for interaction design. SIGCHI Bull 30(1):17–24
Brochers JO (2000) A pattern approach to interaction design. In: Proceedings of ACM conference 

on disiging interactive systems DIS 2000. ACM, New York, pp 369–378
Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A unifying 

reference framework for multi-target user interfaces. Interact Comput 15(3):289–308
Coram T, Lee J (2011) Experiences-a pattern language for user interface design. http://www.

maplefish.com/todd/papers/Experiences.html

https://developer.android.com/guide/topics/ui/index.html
http://balsamiq.com
http://www.maplefish.com/todd/papers/Experiences.html
http://www.maplefish.com/todd/papers/Experiences.html


7  Generative Patterns for Cross-Platform User Interfaces152

Dijkstra EW (1959) Numerische Mathematik. In Numerische Mathematik 1(1):269–271. 
doi:10.1007/bf01386390

Eclipse Documentation (2012) Master/Details block. http://help.eclipse.org/juno/index.
jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fforms_master_details.htm

Engel J, Märtin C, Herdin C, Forbrig P (2013) Formal pattern specifications to facilitate semi-au-
tomated user interface generation. In: Kurosu M (ed) Proceedings of HCI International’2013. 
Springer, Heidelberg, pp 300–309 (LNCS, vol 8004)

Folmer E, Bosch J (2003) Usability patterns in software architecture. In: Proceeding of workshop 
on SE-HCI. Citeseer, Greece, pp 61–68

Gamma E, Helm R, Jonhson R, Vlissides J (1994) Patterns: elements of reusable object-oriented 
software. Addison-Wesley, New York

Henninger S (2001) An organizational learning method for applying usability guidelines and pat-
terns. Engineering for human-computer interaction, 8th IFIP international conference, EHCI 
2001. Toronto, Canada, May 11–13, 2001, Revised Papers. Lecture notes in computer science 
2254, Springer 2001

Henninger S, Keshk M, Kinworthy R (2003) Capturing and disseminating usability patterns with 
semantic web technology. CHI 2003 workshop

Johnson J (2003) Web bloopers, 60 Common Web design mistakes and how to avoid them. Morgan 
Kaufman, San Francisco

Kruschitz C (2009) XPLML—a HCI pattern formalizing and unifying approach. In: 27th inter-
national conference on human factors in computing systems, CHI 2009, extended abstracts 
volume. Boston, MA, USA, April 4–9, 2009

Loranger H, Schade A, Nielsen J (2002) Website tools and applications with Flash. http://media.
nngroup.com/media/reports/free/Website_Tools_and_Applications_with_Flash.pdf Accessed 
on April 15, 2015

Mac Developer Library (2012) Cocoa bindings programming topics, creating a master-detail inter-
face. https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/CocoaBind-
ings/Tasks/masterdetail.html

Molina PJ (2004) User interface generation with OlivaNova model execution system. Proceeding 
of IUI’2004. ACM, New York, pp 358–359

Molina PJ (2013) Conceptual User Interfaces Pattern, Master/Detail Interaction Unit http://pjmo-
lina.com/cuip/node-MasterDetailIU

Molina P, Meliá S, Pastor O (2002) Just-UI: a user interface specification model. Proceeding of 
CADUI 2002. Kluwer Academics, Dordrecht

Nilsson EG (2009) Design patterns for user interface for mobile applications. Adv Eng Softw 
40(12):1318–1328 (Oxford)

Pastor O, Molina J-C (2007) Model-driven architecture in practice. Springer, Berlin
Paterno F (1999) Model-based design and evaluation of interactive applications. Springer, Berlin
Pemberton L, Griffiths R (1999) The Brighton usability pattern collection. http://www.it.bton.

ac.uk/Research/patterns/home.html
Perrins M (2008) The 12 Patterns for User Interface Design. http://mattperrins.wordpress.

com/2008/12/21/the-12-patterns-for-user-interface-design/
Scapin DL, Bastien JMC (1997) Ergonomic criteria for evaluating the ergonomic quality of inter-

active systems. Behav Inf Technol 16(4/5):220–231
Seffah A, Forbrig P (2002) Multiple user interfaces: towards a task-driven and patterns-oriented 

design model. Interactive systems. Design, specification, and verification, 9th international 
workshop, DSV-IS 2002, Rostock Germany, June 12–14, 2002. Lecture notes in computer 
science 2545, Springer 2002

Sinnig D, Forbrig P, Seffah A (2003) Patterns in model-based development, INTERACT 03 work-
shop software and usability cross-pollination: the role of usability patterns, September 2003

Tidwell J (2010) Designing interfaces, patterns for effective interaction design, 2nd edn. O’Reilly 
Media Inc, USA

van Duyne J, Landay J, Hong J (2006) The design of sites, patterns for creating winning websites, 
2nd edn. Prentice Hall International, New Jersey

10.1007/bf
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fforms_master_details.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fforms_master_details.htm
http://media.nngroup.com/media/reports/free/Website_Tools_and_Applications_with_Flash.pdf
http://media.nngroup.com/media/reports/free/Website_Tools_and_Applications_with_Flash.pdf
https://developer.apple.com/library/mac
masterdetail.html
http://pjmolina.com/cuip/node
http://pjmolina.com/cuip/node
http://www.it.bton.ac.uk/Research/patterns/home.html
http://www.it.bton.ac.uk/Research/patterns/home.html
http://mattperrins.wordpress.com/2008/12/21/the
http://mattperrins.wordpress.com/2008/12/21/the


153References

van Welie M, van der Veer GC (2003) Pattern languages in interaction design: structure and orga-
nization. In: M Rauterberg, M Menozzi, J Wesson (eds) Proceedings of INTERACT’03, 1–5 
September, Zurich, Switzerland. IOS Press, Amsterdam, pp 527–534

van Welie M, van der Veer GC, Eliens A (2000) Patterns as tools for user interface design. Proceed-
ing of international workshop on tools for working with guidelines TFWWG’2000. Springer, 
Berlin, pp 313–324

van Welie M, Mullet K, McInerney P (2002) Patterns in practice: a workshop for UI designers. 
ACM Conference on Human Factors in Computing Systems (CHI) Extended Abstracts. Mine-
apolis, USA, April 20–24, pp 908–909

Vanderdonckt J, Montero F (2010) Generative pattern-based design of user interfaces, Proceed-
ing of 1st international workshop on pattern-driven engineering of interactive computing 
PEICS’2010. ACM, New York

Wendler S, Ammon D, Philippow I, Streitferdt D (2013) A factor model capturing requirements for 
generative user interface patterns. In: Proceeding of patterns 2013, fifth international confer-
ences on pervasive patterns and applications. May 27–June 1, 2013, Valencia, Spain



155© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_8

Chapter 8
POMA: Pattern-Oriented and Model-Driven 
Architecture

Abstract  The proposed pattern-oriented and model-driven architecture (POMA) 
architecture illustrates how several individual models can be combined at different 
levels of abstraction into heterogeneous structures, which can then be used as 
building blocks in the development of interactive systems. This chapter presents 
the key concepts, an overview, justifications, and specifications of the proposed 
POMA architecture, a detailed description of architectural levels and categories 
of patterns used in the proposed POMA architecture, and a detailed description 
of five levels and categories of models used by POMA. First, we describe the 
model categorization as well as the key concepts of POMA. We detail POMA 
while comparing its architecture with N-tiers architectures, pattern-oriented design 
and architecture (POD), and model-driven architecture (MDA). We describe the 
architectural levels and categories of patterns including pattern composition rules 
(i.e., the relationships between pattern considered in this architecture). We describe 
the pattern mapping rules that enable one to obtain the final models of the proposed 
architecture. Finally, we define model transformation rules which apply for each 
type of model, [POMA.PIM] (Platform Independent Model) or [POMA.PSM] 
(Platform Specific Model). These rules build a relationship between models of each 
category, i.e., models [POMA.PIM] and [POMA.PSM].

8.1 � Key Concepts of POMA

The five key concepts of POMA are:

•	 Architectural levels and categories of patterns (details in Sect. 8.5)
•	 Models ([POMA.PIM and [POMA.PSM]) (details in Sect. 8.6)
•	 Pattern composition rules (details in Sect. 8.5.2)
•	 Pattern mapping rules: PIM to PSM (details in Sect. 8.5.3)
•	 Model transformation rules: PIM to PIM and/or PSM to PSM (details in 

Sect. 8.6.6)
•	 Code generation rules (this level of POMA is not included in first edition) 

Figure 8.1 shows the five concepts of POMA and their relationships.

POMA.PIM
POMA.PSM
POMA.PIM
POMA.PSM
POMA.PIM
POMA.PSM


 8  POMA: Pattern-Oriented and Model-Driven Architecture156

At this stage, it is interesting to revise some important definitions of each concept 
used in POMA architecture which is given below.

Architecture  “The software architecture of a program or computing system is 
the structure or structures of the system, which comprise software components, 
the externally visible properties of those components, and the relationships among 
them” (Bass et al. 2003).

Pattern  “Each pattern describes a problem that occurs constantly in the environ-
ment, and describes the heart of the solution to the problem in such a way that this 
solution may be used millions of times, but will never do it twice the same way” 
(Alexander et al. 1977).

Model  A model is a formal description of key aspects of an interactive system from 
a specific viewpoint.

Composition  Composition refers to the process and rules for creating design 
platform independent models (PIM) by combining patterns using composition rules.

Mapping  Mapping is the process of creating a design specific model for each 
platform (PSM) from PIM while using rules for mapping (only PIM to PSM).

Fig. 8.1   Key concepts of POMA

 



8.3  POMA Justifications 157

Transformation  The transformation of models is the process of creating a model 
from another model using transformation rules (only PIM to PIM and/or PSM to 
PSM).

8.2 � POMA Overview

The proposed POMA architecture (Fig. 8.2) for interactive systems development is 
an architecture comprising five architectural levels of models using six categories 
of patterns of software architecture (Taleb et  al. 2009). The POMA architecture 
(Fig. 8.2) includes:

•	 Six architectural levels and categories of patterns;
•	 Ten models, five of which are [POMA.PIM] and five others [POMA.PSM];
•	 Four types of relations used in POMA architecture, which are:

1.	 Composition: used to combine different patterns to produce a [POMA.PIM] 
by applying the composition rules.

2.	 Mapping: used to build a [POMA.PIM], which becomes a [POMA.PSM] by 
applying the mapping rules ([POMA.PIM] ⇨ [POMA.PSM]).

3.	 Transformation: used to establish the relationship between two models 
([POMA.PIM] ⇨ [POMA.PIM]) and/or ([POMA.PSM] ⇨ [POMA.PSM]) by 
applying the transformation rules.

4.	 Generation: used to generate the source code of the whole interactive system 
by applying the generation code rules.

The direction in which to read the POMA architecture in (Fig. 8.2) is as follows:

•	 Vertically, concerns the composition of the patterns to produce ten PIM and  
PSM models;

•	 Horizontally, concerns the composition and mapping of the patterns to produce 
five PIM and five PSM models, and the generation of the source code for the 
whole interactive system.

8.3 � POMA Justifications

The justifications for POMA are as follows:

1.	 The N-tiers architectures such as Model-View-Controller (MVC) which is 
3-tiers architecture, J2EE which is a 5-tier architecture, and Zachman which is 
a multi-tiered architecture allow POMA architecture to inherit the concept of 
architectural levels.

2.	 The Pattern-Oriented Design (POD) architecture based on composition 
techniques such as behavioral and structural techniques of patterns, allows 
POMA architecture to inherit the concept of these composition techniques.

POMA.PIM
POMA.PSM
POMA.PIM
POMA.PIM
POMA.PSM
POMA.PIM
POMA.PSM
POMA.PIM
POMA.PIM
POMA.PSM
POMA.PSM


 8  POMA: Pattern-Oriented and Model-Driven Architecture158

3.	 The PSA architecture based on the categories of patterns allows POMA architec-
ture to inherit the concept of this categorization of patterns.

4.	 The MDA architecture based on types of models such as PIM and PSM, and their 
transformation and mapping, allows POMA architecture to inherit the concept of 
models (PIM and PSM) and the concepts of model transformation and mapping.

Fig. 8.2   POMA architecture for interactive systems development

 



8.4  POMA Specifications and Representation 159

8.4 � POMA Specifications and Representation

In this research project, two notations have been adopted: eXtensible Markup Lan-
guage (XML) and Unified Markup Language (UML) for representing the POMA 
architecture.

8.4.1 � The eXtensible Markup Language (XML) Notation

XML notation is used to specify and formalize the language for POMA called PO-
MAML (Pattern-Oriented Modeling Architecture Markup Language) for modeling 
patterns and models of the proposed POMA architecture.

Indeed, there has been a surge recently in initiatives toward modeling and engi-
neering interactive systems based on model-driven architecture (MDA) using XML.
XML is a meta-language that provides directions for expressing the syntax of 

markup languages. Instances of these markup languages are hierarchically struc-
tured documents that typically consist of content encapsulated within markup and 
grammatical instructions on how to process it. The term “document” has a special 
meaning in XML. A document is a standalone object of representation that acts as 
a container for processable information. An XML document could, for example, 
be a physical file on a hard disk or a stream of bytes over a network. Elements and 
attributes form the most commonly used constructs of an XML document. A given 
document can conform to the XML specification in two ways. It can be well formed 
by allowing further constraints. There are a number of ancillary technologies that 
strengthen the XML framework. XML Infoset is a description of the information 
available in a (well-formed) XML document. XML DTD and XML Schema are 
languages that provide a grammar for structural and data type constraints on the 
syntax and content of the elements and attributes in XML documents. This allows 
for verification of formalism or validity in a given document. Namespaces in XML 
are a mechanism for uniquely identifying elements and attributes of XML docu-
ments specific to a markup language, making it possible to create heterogeneous 
documents that unambiguously mix elements and attributes from multiple different 
XML documents. Xlink provides the bidirectional linking capabilities necessary for 
hypertext. XSLT is a style sheet language for transforming XML documents into 
other formats.

All models are expressed in some notation language. The evolution of notation 
languages for modeling interactive systems in the last decade has taken place in 
three orthogonal directions: abstraction; partition (of concerns); standardization. 
Abstraction has made it possible to define models without getting into the details of 
implementation or the underlying computing environment. Partition (of concerns) 
permits describing and dealing with semantically different aspects of the interaction 
in a changing environment. Standardization has brought some order to the grow-
ing complexity of isolated notations that do not always communicate with one an-
other and thereby threaten interoperability among systems. Standardization has also 



 8  POMA: Pattern-Oriented and Model-Driven Architecture160

encouraged industry involvement. After embracing a variety of notations and lan-
guages over the years for modeling interactive systems, XML has become a popular 
language in the research community and among practitioners.

8.4.2 � The Unified Modeling Language (UML) Notation

During the development of interactive systems, the specification of the interactive 
system and the interaction design are often performed in parallel, and therefore 
must be coordinated. A common notation that can be used and understood by both 
developers and interface designers would foster integration. This is of particular 
importance since the interface must eventually be integrated into the rest of the 
interactive system. UML is a standard language for specifying, visualizing, con-
structing, and documenting the components of the different types of systems, in 
particular, interactive systems.

Since its beginnings in 1998, UML has gradually evolved to become an industry 
standard. UML notation according to Gamma et al. (1995):

•	 Is visual modeling which uses the standard graphical notation of patterns;
•	 Is a communication tool for various patterns;
•	 Manages the complexity of composed patterns;
•	 Defines software architecture;
•	 Enables and supports reuse;
•	 Improves the pace at which interactive systems are developed;
•	 Eases the integration of interfaces with preexisting modules;
•	 Decreases interactive system development costs.

UML consists of a set of notations developed to specify and design object-orient-
ed software. UML is made up of a family of notations and models. Among them, 
class and object diagrams for static domain modeling and use cases and sequence 
diagrams and activity diagrams are used for documenting functional requirements. 
In addition, the system’s behavior can be specified using sequence, collaboration, 
state, and activity diagrams.

8.5 � Architectural Levels and Categories of Patterns, 
Composition, and Mapping Rules

Many noteworthy patterns related to content architecture, navigation support (con-
trol) and the physical and logical structures of common pages have been estab-
lished. Recently, we conducted a literature survey in 2002 that informed us that 
there are at least five categories of design patterns for Web applications engineering. 
Together, these patterns provide an integrative solution to the challenges.



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 161

8.5.1 � Architectural Levels and Categories of Patterns

This section illustrates how the existing categories of patterns can be used as 
building blocks in the context of the proposed six architectural levels.

This research project has identified at least six architectural levels and six 
categories of patterns that can be used to create pattern-oriented interactive sys-
tem architecture. Table 8.1 illustrates these six levels of POMA architecture for an 
interactive system, including the corresponding categories of patterns, and gives 
examples of patterns in each category.

Each of these six categories of patterns is discussed hereunder, and examples are 
provided.

8.5.1.1 � Information Patterns

An information pattern, also called an information architectural pattern (Fig. 8.3), 
expresses a fundamental structural organization or schema of information. 
It provides a set of predefined subsystems (information spaces or chunks), specifies 
their responsibilities, and includes rules and guidelines for organizing the relation-
ships between them.

An information pattern is everything that happens in a single information space 
or chunk. With another pattern, the content of a system is organized in a sequence 
in which all the information spaces or chunks are arranged as peers, and every 
space or chunk is accessible by all the others. This is very common on simple sites 
where there are only a few standard topics, such as: Home, About Us, Contact Us, 
and Products. Information which naturally flows as a narrative, a time line, or in 
a logical order is ideal for sequential treatment. An index structure is like the flat 

Architectural level and category of patterns Examples of patterns
Information
This category of patterns describes different 
conceptual models and architectures for organiz-
ing the underlying content across multiple pages, 
servers, and computers. Such patterns provide 
solutions to questions such as which information 
can or should be presented on which device. This 
category of patterns is described in Heer and 
Agrawala (2006)

Reference model pattern
Data column pattern
Cascaded table pattern
Relational graph pattern
Proxy tuple pattern
Expression pattern
Schudler pattern
Operator pattern
Renderer pattern
Production rule pattern
Camera pattern
Linear pattern
Hierarchical pattern
Circular pattern
Composite pattern
Hub-and-spoke

Table 8.1   Architectural levels, categories of patterns and examples



 8  POMA: Pattern-Oriented and Model-Driven Architecture162

Architectural level and category of patterns Examples of patterns
Interoperability
This category of patterns describes decoupling 
the layers of an interactive system, in particular, 
between the content, the dialog, and the views or 
presentation layers. These patterns are generally 
extensions of the Gamma design patterns, such as 
MVC (Model, View, and Controller) observer and 
command action patterns. Communication and 
interoperability patterns are useful for facilitating 
the mapping of a design between platforms

Adapter pattern
Bridge pattern
Builder pattern
Decorator pattern
Façade pattern
Factory pattern
Method pattern
Mediator pattern
Memento pattern
Prototype pattern
Proxy pattern
Singleton pattern
State pattern
Strategy pattern
Visitor pattern

Visualization
This category of patterns describes different 
visual representations and metaphors for group-
ing and displaying information in cognitively 
accessible chunks. They mainly define the format 
and content of the visualization, i.e., the graphical 
scene, and as such, relate primarily to data and 
mapping transforms

Favorite collection pattern
Bookmark pattern
Frequently visited page pattern
Navigation space map pattern

Navigation
This category of patterns describes proven 
techniques for navigating within and/or between 
a set of pages and chunks of information. This 
list of patterns is far from exhaustive, but helps to 
communicate the flavor and abstraction level of 
design patterns for navigation

Shortcut pattern
Breadcrumb pattern
Index browsing pattern
Contextual (temporary) horizontal menu at 
top pattern
Contextual (temporary) vertical menu at 
right pattern
Information portal pattern
Permanent horizontal menu at top pattern
Permanent vertical menu at left pattern
Progressive filtering pattern
Shallow menus pattern
Simple universal pattern
Split navigation pattern
Sub-sites pattern
User-driven pattern
Alphabetical index pattern
Key-word search pattern
Intelligent agents pattern
Container navigation pattern
Deeply embedded menus pattern
Hybrid approach pattern
Refreshed shallow vertical menus pattern

Table 8.1  (continued) 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 163

Table 8.1  (continued) 
Architectural level and category of patterns Examples of patterns
Interaction
This category of patterns describes the interaction 
mechanisms that can be used to achieve tasks and 
the visual effects they have on the scene; as such, 
they relate primarily to graphical and rendering 
transforms

Search pattern
Executive summary pattern
Action button pattern
Guided tour pattern
Paging pattern
Pull-down button pattern
Slideshow pattern
Stepping pattern
Wizard pattern

Presentation
This category of patterns describes solutions 
for how the contents or the related services are 
visually organized into working surfaces, the 
effective layout of multiple information spaces, 
and the relationship between them. These patterns 
define the physical and logical layout suitable for 
specific interactive systems

Carrousel pattern
Table filter pattern
Detail on demand pattern
Collector pattern
In place replacement pattern
List builder pattern
List entry view pattern
Overview by detail pattern
Part selector pattern
Tabs pattern
Table sorter pattern
Thumbnail pattern
View pattern
List pattern
Table pattern
Map pattern
Graph pattern
Home page pattern

Fig. 8.3   Examples of information patterns

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture164

structure, with an additional list of contents. An index is often organized in such a 
way as to make its content easier to find. For example, a list of files in a Web direc-
tory (the index page), an index of people’s names ordered by last name. Dictionaries 
and phone books are both very large indices.

The hub-and-spoke pattern is useful for multiple distinct linear workflows. A 
good example would be an email system where the user returns to his inbox from 
several points, e.g., after reading a message, after sending a message, or after adding 
a new contact. A multidimensional hierarchy is one in which there are many ways 
to browse the same content. In a way, several hierarchies may coexist, overlaid on 
the same content. The structure of the content can appear to be different, depending 
on the user’s task (search, browse). A typical example would be a site like Amazon, 
which lets one browse books by genre or by title, and also allows search by key-
word. Each of these hierarchies corresponds to a property of the content, and each 
can be useful, depending on the user’s situation. A strict hierarchy is a specialization 
of a multidimensional hierarchy, and describes a system where a lower-level page 
can only be accessed via its parent.

8.5.1.2 � Interoperability patterns

Interoperability patterns are useful for decoupling the organization of these differ-
ent categories of patterns, for the way information is presented to the user, and for 
the user who interacts with the information content. Patterns in this category gener-
ally describe the capability of different programs to exchange data, via a common 
set of exchange formats, to read and write under the same file formats, and to use 
the same protocols.

Gamma et  al. (1995) offer a large catalog of patterns for dealing with such 
problems. Examples of patterns applicable to interactive systems include adapter, 
bridge, builder, decorator, factory method, mediator, memento, prototype, proxy, 
singleton, state, strategy, and visitor (Gamma et al. 1995).

The adapter pattern is very common, not only to remote client/server program-
ming, but to any situation in which there is one class and it is desirable to reuse that 
class, but where the system interface does not match the class interface. Figure 8.4 

Fig. 8.4   Adapter pattern

 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 165

illustrates how an adapter works. In this figure, the client wants to invoke the 
method Request() in the target interface. Since the adaptee class has no Request() 
method, it is the job of the adapter to convert the request to an available matching 
method. Here, the adapter converts the method Request() call into the adaptee meth-
od specificRequest() call. The adapter performs this conversion for each method 
that needs adapting. This is also known as wrappering.

8.5.1.3 � Visualization Patterns

Information visualization patterns allow users to browse information spaces and 
focus quickly on items of interest. Visualization patterns can help to avoid an in-
formation overload, a fundamental issue to tackle, especially for large databases, 
Web sites, and portals, as they can access millions of documents. The designer must 
consider how best to map the contents into a visual representation which conveys 
information to the user while facilitating exploration of the content. In addition, the 
designer must undertake dynamic actions to limit the amount of information the 
user receives, while at the same time keeping the user informed about the content 
as a whole. Several information visualization patterns generally combine in such a 
way that the underlying content can be organized into distinct conceptual spaces or 
working surfaces which are semantically linked to one another.

For example, depending on the purpose of the site, users can access several kinds 
of “pages”, such as articles, URLs, and products. They typically collect several of 
these items for a specific task, such as comparing, buying, going to a page, or send-
ing a page to others. Users must be able to visualize their “collection”.

The following are some of the information visualization patterns for display-
ing such collections: favorite, bookmark, frequently visited page, preferences, and 
navigable spaces map. This category of patterns provides a map to a large amount of 
content which can be too large to be presented reasonably in a single view. The con-
tent can be organized into distinct conceptual spaces or working surfaces which are 
semantically linked, so that it is natural and meaningful to go from one to another. 
The map in Fig. 8.5 is an example of this category of patterns.

Fig. 8.5   The navigation 
spaces map pattern imple-
mented using tree hyperbolic, 
a sophisticated visualization 
technique

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture166

8.5.1.4 � Navigation Patterns

Navigation patterns help the user move easily and in a straightforward manner be-
tween information chunks and their representations. They can obviously reduce the 
user’s memory load (Nielsen 1999) and (Lynch and Horton 1999). See Engelberg 
and Seffah (2002) and Garrido et al. (1997) for an exhaustive list of navigation pat-
terns.

The linear navigation pattern is suitable when a user wants a simple way to navi-
gate from one page to the next in a linear fashion, i.e., move through a sequence of 
pages.

The index browsing pattern is similar to the linear navigation pattern and allows 
a user to navigate directly from one item to the next and back. The ordering can be 
based on a ranking. For every item presented to the user, a navigation widget allows 
the user to choose the next or previous item in the list. The ordering criterion should 
be visible (and be user-configurable). To support orientation, the current item num-
ber and total number of items should be clearly visible. A breadcrumb (Fig. 8.6) is 
a widely used pattern which helps users to know where they are in a hierarchical 
structure and to navigate back up to higher levels in the hierarchy. It shows the hi-
erarchical path from the top level to the current page and makes each step clickable.

8.5.1.5 � Interaction Patterns

This category of interaction patterns provides basic information on interaction style, 
mainly on how to use controls such as buttons, lists of items, menus, and dialog 
boxes. This category of patterns is employed whenever users need to take an im-
portant action that is relevant in the current context of the page being viewed. Users 
must be made aware of the importance of the action in relation to other actions on 
the page or site.

To view/act on a linear-ordered set of items, the stepping pattern (Fig.  8.7) 
allows users to go to the next and previous task or object by clicking on the “next” 
or “previous” links. The “next” link takes the users to the next item in the sequence, 
while the “previous” link takes them a step back. It is recommended that a “next” or 
“previous” link be placed close to the object to which it belongs, preferably above 

Fig. 8.6   Breadcrumb pattern (Extracted from Swish Zone Website)

 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 167

the object so that users do not have to scroll to it. One must make sure the next/
previous links are always placed in the same location, so that users clicking through 
a list do not have to move the mouse pointer. The convention, at least in Western 
cultures, is to place the “previous” link on the left and the “next” link on the right.

8.5.1.6 � Presentation Patterns

The authors of technical documents discovered long before interactive systems 
were invented, that users appreciate short “chunks” of information (Horton 1994). 
Patterns in this category, called presentation patterns, also suggest different ways 
for displaying chunks of information and ways for grouping them in pages. Presen-
tation patterns also define the look and feel of interactive systems, while at the same 
time defining the physical and logical layout suitable for specific systems, such 
as home pages, lists, and tables. For example, how long does it take to determine 
whether or not a document contains relevant information? This question is a critical 
design issue, in particular for resource-constrained (small) devices.

Patterns in this category use a grid, which is a technique taken from print design, 
but which is easily applicable to interactive system design as well. In its strictest 
form, a grid is literally a grid of X by Y pixels. The elements on the page are then 
placed on the cell borderlines and aligned overall on horizontal and vertical lines. 
A grid is a consistent system in which to place objects. In the literature on print 
design, there are many variations of grids, most of them based on modular and 

Fig. 8.7   Stepping pattern (Extracted from Field Museum Website)

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture168

column grids. Often, a mix of both types of grids will be used. An example of a grid 
in Fig. 8.8 is used to create several dialog box patterns.

An example of these types of patterns is the executive summary pattern. The ex-
ecutive summary pattern gives users a preview of the underlying information before 
they spend time downloading, browsing, and reading large amounts of information 
(Fig. 8.9).

8.5.2 � Patterns Composition

A platform-independent pattern-oriented design exploits several relationships 
between patterns. We use the relationships defined in Chap 3, including:

•	 Similar. Two patterns (X, Y) are similar or equivalent, if and only if, X and Y 
can be replaced by each other in a certain composition.

•	 Competitor. Two patterns (X, Y) are competitors if X and Y cannot be used at 
the same time for designing the same artifact relationship that applies to two 
patterns of the same pattern category. Two patterns are competitors if and only if 
they are similar and interchangeable.

Fig. 8.9   Example of structural patterns: executive summary pattern (Extracted from CBC Website)

 

Fig. 8.8   An example of a grid

 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 169

•	 Superordinate. A pattern X is a superordinate of pattern Y, which means that 
pattern Y is used as a building block to create pattern X.

•	 Subordinate. (X, Y) are subordinate if and only if X is embeddable in Y. Y is 
also called a superordinate of X.

•	 Neighboring. Two patterns (X, Y) are neighboring if X and Y belong to the same 
pattern category.

The following figure portrays the UML diagram of the patterns at an architectural 
level.

The class diagram in Fig. 8.11 represents the class structure of the five models 
and the pattern structure that represent POMA components. Figure 8.11 shows the 
basic class structure of the POMAML structure notation (see Appendix III for XML 
source code). For the sake of simplicity, only concrete classes and their public at-
tributes and methods are displayed.

POMAML is an acronym for Pattern-Oriented and Model-driven Architecture 
Markup Language and is graphically XML structure displayed in Fig.  8.12 de-
scribed in the Fig. 8.10 and Fig. 8.11. In other words, Fig. 8.12 is a form or structure 
of XML notation that is used to represent patterns used in Fig. 8.10 and Fig. 8.11. 
POMAML XML notation for tasks and feature patterns were developed.

The POMAML schema (Fig. 8.12) consists of the classic elements of patterns 
like name, problem, context, solution and rational. However, these attributes are 
primarily used only to select an appropriate pattern. The implementation of the 
pattern has been formalized in the “body”. At this point, one should distinguish 
between Task and TaskTemplates. Tasks are further decomposed into SubTasks and 
contain no variable parts. Thus they can be adopted 1:1 without further adaptation. 
On the contrary, TaskTemplates are hierarchically structured as well, but also con-
tain variable definitions and variables and must therefore be adapted first.

8.5.3 � Patterns Mapping

Another component in POMA architecture is the concept of pattern mapping 
(Sect 8.1 for the definition). Using a desktop system as a starting point, it is pos-
sible to redesign the PSM model for other platforms. The original set of patterns 
used in the system is mapped or replaced in order to redesign and re-implement the 
system and, in particular, the user interface (UI) for mobile or Personal Digital As-
sistant (PDA) systems. Since patterns hold information about design solutions and 
context of use, platform capabilities and constraints are implicitly addressed in the 
transformed patterns.

Figure 8.13 illustrates different mappings of the Quick Access pattern for three 
different platforms. This navigation design pattern helps the user reach specific 
pages, which reflect important interactive system content, from any location on 
the site. For a news interactive system, direct and quick access to central interfaces 
such as Top Stories, News, Sports, and Business can be provided. A web browser, for 
example, on a desktop, is implemented as an index browsing toolbar. For a PDA, 



 8  POMA: Pattern-Oriented and Model-Driven Architecture170

the Quick Access pattern can be implemented as a combo box. For a mobile phone, 
the Quick Access pattern is implemented as a selection. Pattern descriptions should 
provide advice to pattern users for selecting the most suitable implementation for a 
given platform.

Fig. 8.10   UML class diagram of architectural level and categories of patterns of POMA for inter-
active system

 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 171

To illustrate pattern mapping, a description is given here of the effect of screen 
size on selection and use of patterns. Different platforms use different screen siz-
es, and these different screen sizes afford different types and variants of patterns. 
The problem to resolve when mapping a pattern-oriented design (POD) is how the 
change in screen size between two platforms affects redesign at the pattern level. 
The amount of information that can be displayed on a given platform screen is de-
termined by a combination of area and the number of pixels. The total difference 
in information capacity between platforms will be somewhere between these two 
measures: 20 times the area and 10 times the pixels.

Fig. 8.11   Class structure of POMA’s models and patterns

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture172

To map the desktop display architecture to the PDA display architecture, the op-
tions are as follows:

1.	 Reduce the size of the architecture; it is necessary to reduce both the number of 
pages and the quantity of information per page significantly.

2.	 Hold the architecture size constant (i.e., topics or pages); it is necessary to signif-
icantly reduce the quantity of information per page (by a factor of about 10–20).

3.	 Retain all the information in the desktop architecture; it is necessary to signifi-
cantly increase the size of the architecture, since the PDA can hold less informa-
tion per page.

The mapping choice will depend on the size of the architecture and the value of the 
information:

−	 For small desktop architectures, the design strategy can be weighted either to-
ward reducing information, if the information is not important, or toward in-
creasing the number of pages if the information is important;

Fig. 8.12   Pattern structure of the POMAML markup language

 



8.5  Architectural Levels and Categories of Patterns, Composition, and Mapping Rules 173

−	 For medium and large desktop architectures, it is necessary to weight the design 
strategy heavily toward reducing the quantity of information, otherwise the ar-
chitecture size and number of levels would rapidly explode out of control.

Finally, one can consider mapping patterns and graphical objects in the context of 
the amount of change that must be applied to the desktop design or architecture to fit 
it into a PDA format. The following is the list of suggested mapping rules:

1.	 Identical: No change to the original design. For example, drop-down menus pat-
tern can usually be copied from a desktop to a PDA without any design changes.

2.	 Scalable: Changes to the size of the original design or to the number of items in 
the original design. For example, a long horizontal menu pattern can be adapted 
to a PDA by reducing the number of menu elements.

3.	 Multiple: Repeating the original design, either simultaneously or sequentially. 
For example, a single long menu can be transformed into a series of shorter 
menus.

4.	 Fundamental: Change the nature of the original design. For example, perma-
nent left-hand vertical menu patterns are useful on desktop displays, but are not 
practical on most PDAs. In mapping to a PDA, a left-hand menu pattern nor-
mally needs to be replaced with an alternative, such as a drop-down menu.

These mapping rules can be used by designers in the selection of patterns, espe-
cially when different patterns apply for one platform but not for another, when the 
cost of adapting or purchasing a pattern is high, or when the applicability of a pat-
tern (knowing how and when to apply a pattern) is questionable.

Fig. 8.13   The web convenient toolbar pattern implementations and look and feels for different 
platforms (Extracted from the CNN Website)

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture174

This list of four mapping rules is especially relevant to the automation of cross-
platform design mapping, since the designs that are easiest to map are those that 
require the least mapping. The category of patterns therefore identifies where hu-
man intervention will be needed for design decisions in the mapping process. In ad-
dition, when building a desktop design for which a PDA version is also planned, the 
category of patterns indicates which patterns to use in the desktop design to allow 
easy mapping to the PDA design.

Figure 8.14 illustrates some of the navigation design patterns used in the home 
page of a desktop-based system. Once these patterns are identified in the desktop-
based system, they can be mapped or replaced by others in a PDA version.

Figure 8.15 demonstrates the redesigned interface of the CBC site for migrating 
to a PDA platform. The permanent horizontal menu pattern at the top (P5) in the 
original desktop UI were repositioned to a shorter horizontal menu pattern (P5s). In 
order to accommodate this change on the small PDA screen, the three different hori-
zontal menus had to be shortened, and only important navigation items were used. 
The keyword search pattern (P13) remains as a keyword search. The permanent 
vertical menu on the left pattern (P6) was redesigned to a drop-down menu pattern 
(P15). The drop-down menu pattern in the PDA design also includes the menu head-
ings, “What’s on today?” and “Online features” from the temporary vertical menu 
pattern (P3) in the original desktop design. Finally, the information portal pattern 
(P4), which is the first item that captures the user’s attention, was redesigned as a 
smaller information portal pattern (P4s).

What has just been illustrated in this section and the examples in Fig.  8.13, 
Fig. 8.14 and Fig. 8.15 can be characterized in the form of composed and mapped 
pattern-oriented design architecture (Fig. 8.16).

Fig. 8.14   Examples of patterns (Extracted from the CBC News Website)

 



8.6  Model Categorizations 175

8.6 � Model Categorizations

A categorization of models is proposed here. Examples of models are also presented 
to illustrate the need to map and/or to transform several types of models, to provide 
solutions to problems on the six architectural levels. This section describes how 
these models can be used at six levels of the proposed POMA architecture to create 
a model-driven architecture for interactive systems.

The focus is on a subset of the proposed models by this research project and 
consists of:

•	 A domain model
•	 A task model
•	 A dialog model
•	 A presentation model
•	 A layout model

Fig. 8.15   Migration of the CBC site to a PDA platform using pattern mapping (Extracted from 
the CBC News Website)

 

Fig. 8.16   Pattern-oriented composition and mapping design architecture

 



 8  POMA: Pattern-Oriented and Model-Driven Architecture176

8.6.1 � Domain Model

The domain model is sometimes called a business model. It encapsulates the impor-
tant entities of a system domain along with their attributes, methods, and relation-
ships (Schlungbaum 1996; Sinnig 2004). Within the scope of user interface (UI) 
development, it defines the objects and functionalities accessed by the user via the 
interface. Such a model is generally developed using the information collected dur-
ing the business and functional requirements stage. The information defines the list 
of data and features or operations to be performed in various ways, i.e., by different 
users on different platforms.

The first model-based approaches use a domain model to drive the UI at runtime. 
In this context, the domain model would describe the interactive system in general, 
and include some specific information for the UI. For example, the domain model 
(Schlungbaum 1996) would include:

•	 A class hierarchy of objects which exist in the interactive system
•	 Properties of the objects
•	 Actions which can be performed on the objects
•	 Units of information (parameters) required by the actions
•	 Pre- and post-conditions for the actions

Consequently, the only real way to integrate UI and system development is the 
simultaneous use of the data model. This is why recent model-based approaches 
include a domain model known from the system engineering methods. Four other 
models: task, dialog, presentation, and layout, have the domain model as an input.

8.6.2 � Task Model

The task model makes it possible to describe how tasks can be performed to reach 
the user’s goals when using an interactive system (Paternò 2000). Using this model, 
designers can develop integrated descriptions of the system from a functional and 
interactive point of view. Task models are typically tasks and subtasks hierarchi-
cally decomposed into atomic actions (Souchon et al. 2002). In other words, the 
task model is the set of tasks that users need to perform with the interactive system. 
In addition, the relationships between tasks are described with the execution order 
or dependencies between peer tasks. The tasks may contain attributes about their 
importance, their duration of execution, and their frequency of use.

For purposes here, the following definition is applied:
A task is a goal, along with the ordered set of subtasks and actions that would 

satisfy it in the appropriate context (Schlungbaum 1996).
This definition highlights the intertwining nature of tasks and goals. Actions are 

required to satisfy goals. Furthermore, the definition allows the decomposition of 
tasks into subtasks, with some ordering among the subtasks and actions. In order to 
support this definition, one needs to add the definitions for goal, action, and artefact.

A goal is an intention to perform the task which is the state of an artefact based 
on Schlungbaum (1996);



8.6  Model Categorizations 177

An action is any act which has the effect of changing or maintaining the state of 
an artefact based on Schlungbaum (1996);

An artefact is an object which is essential for a task. Without this object, the task 
cannot be performed; the state of this artefact is usually changed in the course of 
the performance of a task. Artefacts are real things which exist in the context of task 
performance. In business, artefacts are modeled as objects and represented in the 
business model. This implies a close relationship between the task model and the 
business model.

These definitions derive the information that needs to be represented in a task 
model. According to Schlungbaum (1996), the description of a task includes:

•	 A goal
•	 A non-empty set of actions or other tasks which are necessary to achieve the goal
•	 A plan of how to select actions or tasks
•	 A model of an artifact, which is influenced by the task

Consequently, the development of the task model and the domain model is inter-
related. One of the goals of model-based approaches is to support user-centered 
interface design. Therefore, they must enable the UI designer to create the various 
task models. Three other models (dialog, presentation, and layout) have the domain 
and task models as inputs.

8.6.3 � Dialog Model

Dialog model enables one to provide dialog styles to perform tasks and to provide 
proven techniques for the dialog. The dialog model defines the navigational struc-
ture of the UI. It is a more specific model and can be derived mostly from the more 
abstract task and domain models.

A dialog model is used to describe the human-computer interaction. It specifies 
when the end user can invoke commands, functions, and interaction media, when 
the end user can select or specify inputs, and when the computer can query the 
end user and present information (Puerta 1997; Sinnig 2004). The dialog model 
describes the sequencing of input tokens, output tokens, and the way in which they 
are interleaved. It describes the syntactical structure of human-computer interac-
tion. The input and output tokens are lexical elements. Therefore, and in particular, 
this model specifies the user commands, interaction techniques, interface responses, 
and command sequences permitted by the interface during user sessions. Two other 
models, presentation and layout, have the domain, task, and dialog models as inputs.

8.6.4 � Presentation Model

The presentation model describes the visual appearance of the UI (Schlungbaum 
1996). This model exists at two levels of abstraction: the abstract and the concrete. 
In practice, they define the appearance and the form of presentation of a system 
within an interactive system providing solutions on how the contents or related 



 8  POMA: Pattern-Oriented and Model-Driven Architecture178

services can be visually organized into working surfaces, the effective layout of 
multiple information spaces and the relationship between them. Moreover, they de-
fine the physical and logical layout suitable for specific interactive systems such as 
home pages, lists, and tables.

A presentation model describes the constructs that can appear on an end user’s 
display, their layout characteristics, and the visual dependencies among them. The 
displays of most systems consist of a static part and a dynamic part. The static 
part includes the presentation of the standard widgets like buttons, menus, and list 
boxes. Typically, the static part remains fixed during the runtime of the interactive 
system, except for state changes like enable/disable, visible/invisible. The dynamic 
part displays system-dependent data, which typically change during runtime (e.g., 
the system generates output information, while the end user constructs system-spe-
cific data).

The former provides an abstract view of a generic interface, which represents 
corresponding task and dialog models. Another model, layout, has the domain, task, 
dialog, and presentation models as inputs.

8.6.5 � Layout Model

A layout model constitutes a concrete instance for an interface. It consists of a series 
of UI components which defines the visual layout of a UI and the detailed dialogs 
for a specific platform and context of use. There may be many concrete instances of 
a layout model which can be derived from presentation and dialog models.

The layout model makes it possible to provide conceptual models and architec-
tures for organizing the underlying content across multiple pages, servers, databas-
es, and computers. It is concerned with the look and feel of interactive systems and 
with the construction of a general drawing area (e.g., a canvas widget), and all the 
outputs inside a canvas must be programmed using a general-purpose programming 
language and a low-level graphical library.

8.6.6 � Transformation Rules

Model transformation is the process of converting one or more models—called 
source models—to an output model—the target model—of the same system. Trans-
formations may combine elements of different source models in order to build a 
target model. Transformation rules apply to all the types of models listed above.

The following steps make up the list of transformation rules suggested in IN-
TERACT (1999) and are considered as part of POMA architecture.

1.	  Maintain tracking structures of all class instances where needed
2.	  Maintain tracking structures for association populations where needed
3.	  Support state machine semantics



References 179

4.	  Enforce event ordering
5.	  Preserve action atomicity
6.	  Provide a transformation for all analysis elements, including:

•	 Domain, domain service
•	 Class, attribute, association, inheritance, associative class, class service
•	 State, event, transition, superstate, substate
•	 All action-modeling elements

The transformations between models (Si Alhir 2003) provide a path which enables 
the automated implementation of a system to be derived from the various models 
defined for it.

8.7 � Key Issues and Contributions

This chapter has focused on an architectural model that combines two key ap-
proaches: model-driven and pattern-oriented.

1.	 Architectural levels and categories of patterns have been described (naviga-
tion patterns, interaction patterns, visualization patterns, presentation patterns, 
interoperability patterns, and information patterns) as well as the different rela-
tionships between patterns. Their relationships are used to combine using the 
composition rules described in Sect. 8.5.2 such as similar, competitor, superordi-
nate, subordinate, and neighboring to create a platform independent model (PIM) 
and to map several types of patterns to create a platform-specific model (PSM) 
design using mapping rules described in Sect. 8.5.3 such as identical, scalable, 
multiple, and fundamental for interactive systems, as well as to generate specific 
implementations suitable to different platforms from the same pattern-oriented 
design;

2.	 Five categories of models (domain model, task model, dialog model, presenta-
tion model and layout model) to address some of the challenging problems such 
as: (a) decoupling the various aspects of interactive systems such as business 
logic, user interface, navigation, and information architecture; (b) isolating plat-
form-specific problems from the concerns common to all interactive systems.

References

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiskdahl-King I, S. Angel. (1977) A pattern 
language. Oxford University Press. New York

Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd Edn. Addison-Wesley 
Boston, USA



 8  POMA: Pattern-Oriented and Model-Driven Architecture180

Engelberg D, Seffah A (2002) A design patterns for the navigation of large information architec-
tures. 11th annual usability professional association conference. Orlando (Florida). USA

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley, USA

Garrido A, Rossi G, Schwabe D (1997) Pattern Systems for Hypermedia. Pattern Language of 
Programming Conference

Heer J, Agrawala M (2006) Software design patterns for information visualization. IEEE Transact 
Visual Comp Graphics (TVCG) 12(5):853–860

Lynch PJ, Horton S (1999) Web style guide: basic design principles for creating web sites. Yale 
University Press, New Haven

Nielsen J (1999) Designing web usability. The practice of simplicity. New Ridersm, San Francisco
Paternò F (2000) Model-based design and evaluation of interactive applications. 208 pages. ISBN 

1-85233-155-0. Springer, Germany
Puerta A (1997) A model-based interface development environment. IEEE Software 14:41–47. 

http://www.arpuerta.com/pdf/ieee97.pdf. (0740–7459/97)
Schlungbaum E (1996) Model-based user interface software tools—current state of declarative 

models. Graphics, Visualization and Usability Center Georgia Institute of Technology, Geor-
gia. (Technical Report 96-30)

Si Alhir S (2003) Understanding the model-driven architecture (MDA). Methods Tools 11(3):17–
24. http://www.methodsandtools.com/PDF/Dmt0303.pdf

Sinnig D (2004) The complicity of patterns and model-based UI development (p 148). Concordia 
University, Montreal. (Master of Computer Science)

Souchon N, Quentin L, Jean V (2002) Task modelling in multiple contexts of use. In Proceedings 
of DSV-IS 2002. pp 77–95. Rostock. Germany

Taleb M, Seffah A, Abran A (2009) ’Interactive Systems Engineering: A Pattern-Oriented and 
Model-Driven Architecture’, The 2009 International Conference on Software Engineering 
Research and Practice (SERP'09), July 13–16, 2009, CSREA Press, pp 636–642, Las Vegas, 
Nevada, USA

http://www.arpuerta.com/pdf/ieee97.pdf
http://www.methodsandtools.com/PDF/Dmt0303.pdf


181© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns, 
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_9

Chapter 9
Patterns in Web-Based Information Systems

Abstract  Day-to-day experiences suggest that it is not enough to approach Web-
application engineering armed with Web guidelines and user manuals on how to 
use the underlying technologies, such as Java and Simple Object Access Protocol 
(SOAP). Many of the Web designer and user problems tend to recur in various proj-
ects. Web designers often try to reinvent design solutions from scratch. Developers 
must be able to use proven design solutions emerging from the best design practices 
to solve common problems. Without this, the designer will not properly apply Web 
guidelines, or take full benefit of the power of Web technology, resulting in poor 
performance, poor scalability, and poor usability of the developed applications. In 
this chapter, we introduce different types of Web design patterns as a vehicle for 
capturing and disseminating good designs while detailing a motivating example on 
how Web design patterns can be combined to create a home page. Our investiga-
tions are based on several years of Web applications development, ethnographic 
interviews with Web developers, as well as suggestions from others. Such sugges-
tions include reported best practices for using patterns as a bridge over the gaps 
between the design practices and software tools. Our experiences also highlighted 
that in order to render the patterns understandable by novice designers and software 
engineers who are unfamiliar with Web engineering, patterns should be represented 
to developers using a flexible structure, to make it easy for the pattern authors, 
reviewers, and users.

9.1 � Introduction

A complex Web site is the place where all the elements of a company, such as 
graphic identity, customer service, products, services, and structure, come together 
in one place. Interacting with a Web site conveys much more than the graphic brand 
identity of the company—it is all about the user experience of moving through the 
site and interacting with all of its various parts. Web design must incorporate what 
people do on the site rather than simply how it looks. More consideration toward the 
user’s experience and interactions with the website are necessary, such as how the 
site is perceived, learned, and mastered. This includes ease-of-use and, most impor-
tantly, the needs that the site should fulfill with respect to services and information. 



182 9  Patterns in Web-Based Information Systems

The design of the website should focus on the behavior of users. Consequently, we 
must analyze and understand users, and provide designs based on user experiences 
and persona.

For some complex Web sites such as e-commerce, online banking, and educa-
tional systems, as well as Web sites for a specific set of users such as scientists, 
usability is recognized as a key element of the site’s success and acceptance by 
its end users. The bad news is that most of such sites employ horribly misguided 
methodologies that do not assess real usability. A good methodological framework 
should address the following concern: More and more, Web sites are designed for 
an international audience and for universal usability. In this context, a universal 
design approach should be adopted to accommodate the vast majority of the global 
population. This entails addressing challenges of technology variety, user diversity, 
and gaps in user knowledge in ways only beginning to be acknowledged by educa-
tional, corporate, and government agencies (Shneiderman 2000).

Web applications are moving away from the paradigm of an online-type bro-
chure with a static presentation to highly interactive web-based software systems. 
With the advent of Web scripting languages and document object models, the user 
has been given more sophisticated techniques to interact with server-side services 
and information. In addition, the convergence of the internet and mobile device 
technologies has led to the emergence of a new generation of web applications. One 
of the major characteristics of these new applications is that they allow a user to 
interact with services using different kinds of computers and devices, with particu-
larities in interaction style. These devices include the traditional office desktop, lap-
top, palmtop, personal digital assistant (PDA) with and without keyboard, mobile 
telephone, and interactive television.

In this new technological context, we can distinguish four kinds of interactive 
Web applications with four different styles of user interfaces:

Traditional Web applications that are based on the Web browser. Most popu-
lar Web applications are Web sites, corporate intranet environments, portals, and 
e-commerce applications;

Embeddable Web services. Examples of basic services can include open uniform 
resource locator (URL) from FrontPage Explorer, browse through links in a por-
table document format (PDF) file using Adobe Acrobat and send mails from most 
Microsoft productive tools;

Web applications that offer an optimized and specialized user interface to a set 
of Internet features. An example of such applications is e-mail that provides an 
example of the interplay between specialized applications and toned-down web ap-
plications. It is often possible to access your email through a Simple Mail Transfer 
Protocol (SMTP) client provided as an accessory to the browser (such as Outlook in 
Microsoft Internet Explorer and Messenger in Netscape Communicator). The same 
applies to Network News Transfer Protocol (NNTP) clients that enable a user to 
access Usenet newsgroups on the Internet;

Resource constrained Web applications for small and mobile devices that can-
not support the full range of Web application features, because of the lack of screen 



1839.2 � Design Challenges of Web Applications

space or low bandwidth. These applications include mobile telephone-embedded 
Internet applications (read e-mail, browse mobile portal sites, etc.).

This mosaic of applications has led to the emergence of Web engineering as 
a subdiscipline of software engineering for creating high-quality Web interactive 
systems. Web engineering is governed by its own set of fundamental principles, 
even if it borrows many of the software engineering methodologies and theories, 
and emphasizes similar technical and management activities. There are subtle dif-
ferences in the way these activities are conducted, but an overriding philosophy 
dictating a disciplined approach to the development of the system is identical. As an 
example, we can adapt and refine pattern-assisted engineering to the development 
of Web applications.

Our objective can be stated as follows: To facilitate the engineering of Web ap-
plications while improving the usability and quality of the developed applications; 
by composing different kinds of patterns such as architectural, navigational, and in-
teraction patterns to create a high level and reusable design with the goal to support 
the generation of application code. A subobjective of our research is to define a sys-
tematic methodology, supported by a Web CASE tool, to glue the patterns together.

9.2 � Design Challenges of Web Applications

The following are some of the challenges associated with web design that we are 
addressing:

First, in an attempt to segment the different aspects of Web application archi-
tecture and isolate platform specifics from remaining issues, the vast majority of 
current industry Web applications have adopted a layered approach. As with other 
multitiered schemes such as client-server architecture, a common information re-
pository is at the core of the architecture. The repository is accessed strictly through 
this layer, which in addition to the functions listed, also provides decoupling of the 
data from the device specific interfaces. In this way, device application developers 
need to only worry about the standardized middleware interface rather than having 
to concern themselves with the multitude of application programming interfaces 
(APIs) put forth by database repository manufacturers. Segmenting the architecture 
and reducing coupling to stringent specifications allows the designer to quickly un-
derstand how changes made to a particular component effects the remaining system. 
That is because achieving these goals requires a consistent approach to applying 
both cognitive and social factors to UI design, and that would require independent 
developers to coordinate their activities. Unfortunately, conspiring at this level may 
be beyond the abilities of the industry.

Second, web applications are efficient at managing heterogeneous environments. 
This point is critical, as more and more Web applications will need to interact with 
very different platforms and devices. This diversity results in computing devices 
that exhibit drastically different capabilities. For example, PDAs use a pen based 
input mechanism and have average screen sizes in the range of 3  inches. On the 



184 9  Patterns in Web-Based Information Systems

other hand, the typical PC uses a full size keyboard, a mouse, and has an average 
screen size of 17 inches. Coping with such drastic variations implies much more 
than mere layout changes. Pen-based input mechanism are slower than traditional 
keyboards and thus are inappropriate for applications such as word processing that 
require intensive user input. Similarly the small screens available on many PDAs 
only provide coarse graphic capabilities and thus would be ill suited for photo edit-
ing applications.

Another challenge is that heterogeneity in the computing platform ranging from 
traditional desktop to mobile phone via PDA is the source of a further complication 
in Web applications engineering. Certain form factors are better suited to particu-
lar contexts. For example, walking down the street, one user may use her mobile 
telephone’s Internet browser to lookup a stock quote. However, it is highly unlikely 
that this same user reviews the latest changes made to a document using the same 
device. Rather, it would seem more logical and definitely more practical to use a 
full size computer for this task. It would therefore seem that the context of use is 
determined by a combination of internal and external factors. The internal factors 
primarily relate to the user’s attention while performing a task. In some cases, the 
user may be entirely focused, while at other times greatly distracted by other con-
current tasks. An example of this latter point is when a user—while driving a car—
operates a PDA to reference a telephone number. External factors are determined to 
a large extent by the device’s physical characteristics. It is not possible to make use 
of a traditional PC as one walks down the street—a practice quite common with a 
mobile telephone. The challenge for a system architect is thus to match the design 
of a particular device’s UI with the set of constraints imposed by the corresponding 
context of use.

Finally, many system manufacturers and researchers have issued design guide-
lines to Web-application designers (Lynch and Horton 1999). Recently, Palm Inc. has 
put forth design guidelines to address the navigation issues, widget selection, and use 
of specialized input mechanisms such as handwriting recognition. (Macintosh 1992; 
Microsoft 1995; IBM 2015; Sun Microsystems 2001) have also published their own 
usability guidelines to assist developers with programming applications targeted at 
the Pocket PC/Windows CE platform. However, these guidelines are different from 
one platform or device to another. When designing a multidevice Web application, 
this can be a source of many inconsistencies. The Java “look-and-feel” developed by 
Sun is a set of cross-platform guidelines that can fix such problems. However, cross-
platform guidelines do not take into account the particularities of a specific device, in 
particular the platform constraints and capabilities. This can be a source of problems 
for a user using different kinds of devices to interact with the server side services and 
information of a Web application. Furthermore, for a novice designer or a software 
engineer who is not familiar with this mosaic of guidelines, it is hard to remember all 
design guidelines, let alone using them effectively. It is sometimes difficult to make 
the trade-offs among these principles when they come into conflict; we often have to 
figure out the best solution by guessing, or by resorting to other means.



1859.3 � Web Design Principles

9.3 � Web Design Principles

Patterns also are not enough to design usable and useful Web applications. They 
need to be used in junction with high-level design. For example, the design of the 
previous home page, we also used the following rules:

•	 Organize the page for scanning. The homepage is organized to be help users 
scan down the page, trying to find the area that will serve their current goal. 
Links are the action items on a homepage, and when you start each link with a 
relevant word, you make it easier for scanning eyes to differentiate it from other 
links on the page. A common violation of this guideline is to start all links with 
the company name, which adds little value and impairs users ability to quickly 
find what they need;

•	 Provide clear affordance of links. Navigation elements, in particular, links must 
provide clear affordance. Their appearance should help users understand them. 
The mouse pointer change provided by web browsers, to indicate that the ele-
ment pointed at a link is not sufficient. The designer can use differences in size to 
establish a hierarchy between links, but HyperText Markup Language (HTML) 
text has poor graphic quality and doesn’t allow much visual characterization. 
Differentiation between navigation elements and information is indeed the main 
affordance problem to be solved;

•	 Strive to avoid users making errors. We should provide alternative links so that 
the user can recover from the error quickly and easily, communicate in the user’s 
vocabulary, use Web server, which allows you to customize the error messages. 
If an error occurs, tell users what the error is, why it occurred, what they can do 
to fix it.

The same design approach can be applied to the following patterns of pages that we 
generally use to design a Web site:

1.	 Central page (one or more)—Central page of your site from which all, other 
pages can be reached (directly or indirectly). The home page is a specialization 
of such page. For a large Web site, we can have more than one central page (e.g. 
university, department, research group, personal web sites).

2.	 Navigation pages for directing the user to the proper area of your site for the 
information they are seeking.

3.	 Content pages provide the information users are seeking when they visit your 
site. They may also contain navigational links to give users a sense of location 
within the site and allow them to progress to more information or return to a 
previous page.

4.	 Input page (transaction forms, search, feedback) is to collect information from 
users or establish a dialog with the user.

5.	 Utilities pages (bookmarks, extra things, help, archive, configuration, etc.).

One of the major problems we found is that mastering and applying type patterns 
and a large collection of patterns require in-depth knowledge of both the problems 
and forces at play, and most importantly must ultimately put forth battle-tested 



186 9  Patterns in Web-Based Information Systems

solutions. As such, it is inconceivable that pattern hierarchies will evolve strictly 
from theoretical considerations. Practical research and industry feedback are crucial 
in determining how successful a pattern-oriented design framework is at solving re-
al-world problems. It is therefore essential to build an “academia–industry bridge” 
by establishing formal communication channels between industrial specialists in 
human–computer interaction (HCI) patterns, software design patterns, information 
architecture patterns as well as software pattern researchers. Such collaboration will 
lead to a common terminology which is essential for making the large diversity of 
patterns accessible to common Web designers.

9.4 � Case Study: A Detailed Discussion

9.4.1 � Overview

This section presents a case study that describes the design of a functional user 
interface simplified prototype of an “Environmental Management Interactive Sys-
tem” (IFEN), illustrating and clarifying the core ideas of the Pattern-Oriented and 
Model-Driven Architecture (POMA) approach and its practical relevance.

This environmental management interactive system permits requirement analysis 
of the environment, its evolution, its economic and social dimensions, and proposes 
indicators of performance. The main objectives of environmental management are 
the treatment and distribution of water, improving air quality, monitoring noise, the 
treatment of waste, the health of fauna and flora, land use, preserving coastal and 
marine environments, and managing natural and technological risks (IFEN).

A simplified prototype of the “Environmental Management Interactive System” 
is developed here. The interactive system and corresponding models will not be 
tailored to different platforms. This prototype illustrates how patterns are used to 
establish the various models, as well as, the transformation of one model into an-
other while respecting the pattern composition rules described in the Chap. 8 in 
Sect. 8.5.2, the pattern mapping rules described in Sect. 8.5.3 and the transforma-
tion rules described in Sect. 8.6.6.

This case study presents a general overview of the Platform-Independent Model 
(PIM) and Platform-Specific Model (PSM) models of the “Environmental Manage-
ment Interactive System” by applying pattern composition steps and mapping rules, 
as well as transformation rules for the five models. The details of this illustrative 
case study are presented in this chapter in which the five models representing the 
same interactive system are illustrated on a laptop platform and on a PDA platform. 
The five models include the domain model, task model, dialog model, presentation 
model, and layout model of POMA architecture. Table 9.1 lists the patterns that will 
be used by the interactive system.

A prototype of a multiplatform interactive system for POMA architecture 
is implemented. A prototype is implemented in Java language using the Eclipse 
tool. There is a screenshot of the final layout of the “Environmental Management 



1879.4 � Case Study: A Detailed Discussion

Pattern name Model type Problem
Login Domain The user’s identity needs to be authenticated in order to be 

allowed access to protected data and/or to perform autho-
rized operations

Multivalue input 
form (Seffah and 
Gaffar 2006)

Domain The user needs to enter a number of related values. These 
values can be of different data types, such as “date,” 
“string,” or “real”

Submit Domain The user needs to submit coordinates to the authentication 
process to access the system

Feedback Domain The user needs help concerning the use of the Login Form
Close Domain The need to close the system from the Login form
Find (search, 
browse, executive 
summary) (Seffah 
and Gaffar 2006)

Task The need to find indicators related to the task concerned, to 
find environmental patterns related to the indicators, and to 
find a presentation tool to display the results of the indica-
tors and the environmental patterns

Breadcrumb (Path) Task The need to construct and display the path that combines 
the data source, task, and/or subtask

Index browsing Task The need to display all indicators listed as index browsing 
to navigate and select the desired ones

Adapter Task The need to convert the interface of a class into another 
interface that clients expect; an adapter lets classes work 
together which could not otherwise be done because of 
interface incompatibility

Builder Task The need to separate the construction of a complex object 
from its representation, so that the same construction pro-
cess can create different representations

List Task The need to display the information using forms
Table Task The need to display the information in tables
Map Task The need to display the information in geographic maps
Graph Task The need to display the information in graphs
Home page Task The need to define the layout of an interactive system home 

page, which is important because the home page is the 
interactive system interface with the world and the starting 
point for most user visits

Wizard (Welie 
2004) and (Sinnig 
2004)

Dialog The user wants to achieve a single goal, but several deci-
sions and actions need to be taken consecutively before the 
goal can be achieved

Recursive activation 
(Seffah and Gaffar 
2006)

Dialog The user wants to activate and manipulate several instances 
of a dialog view

Unambiguous 
format (Seffah and 
Gaffar 2006)

Presenta-
tion

The user needs to enter data, but may be unfamiliar with 
the structure of the information and/or its syntax

Form (Seffah and 
Gaffar 2006)

Presenta-
tion

The user must provide structural textual information to the 
system. The data to be provided are logically related

House (Seffah and 
Gaffar 2006)

Layout Usually, the system consists of several pages/windows. The 
user should have the impression that it all “hangs together” 
and looks like one entity

Table 9.1   Pattern summary



188 9  Patterns in Web-Based Information Systems

Interactive System” illustrated in Fig. 9.24. The key features of the current version 
of this interactive system prototype are the following:

•	 Support for well-arranged graphical specifications of hierarchy of POMA net-
works. This is achieved by the notion of a so-called tree explorer, in which the 
hierarchy of networks can be easily viewed and managed;

•	 Support for checking the correctness of network dependencies at the syntactic 
level. The editor contains a list of inputs and an output port for each network in 
the hierarchy and helps the user bind the right subsystem ports to the higher ports 
in the network hierarchy;

•	 Together with architectural compatibility checking, the prototype will allow one 
to easily define new POMA models by composing and mapping patterns which 
have already been defined and formalized.

Figure 9.1 shows the graphical representation of the pattern, which is used to exem-
plify the pattern in this case study.

9.4.2 � Defining the Domain Model

Acting in the horizontal line of the POMA architecture (Fig. 8.2) in Chap. 8, this 
model is composed of two types of submodels, [POMA.PIM]-independent domain 
submodel and [POMA.PSM]-specific domain submodel.

The [POMA.PIM]-independent domain submodel (Fig. 9.2) is obtained by com-
posing patterns and applying the composition rules.

The following example shows the composition of a “Close” pattern in eXten-
sible Markup Language (XML) language:

/* XML 
<!xml version=”1.0” > 
<d-class name=”Close”  
      …. 
Compose-to=”xml.Jbutton”>
     …. 

</d-class> 
</xml> 

Fig. 9.1   Graphical represen-
tation of the pattern

 



1899.4 � Case Study: A Detailed Discussion

The [POMA.PSM]-specific domain submodel (Figs.  9.3 and 9.4) is obtained by 
mapping composed patterns and applying the mapping rules (Table 9.2). This latter 
model would be used to generate the interactive system’s source code by taking into 
account the generation code rules for a Microsoft platform.

Table 9.2 shows the mapping rules for the domain model patterns for a laptop 
and PDA platforms.

Therefore, the mapped domain model is obtained. An example of the mapping of 
a Close pattern in Java language follows:

/* Java 
<d-class name=”Close”  
       …. 
Maps-to=”javax.swing.Jbutton”>
        …. 

</d-class> 

After the mapping, the PSM domain model is obtained for a laptop platform—
Fig. 9.3 and for a PDA platform—Fig. 9.4.

To obtain feedback on the PDA platform, we need to insert Next and Previous 
patterns to obtain information in a number of smaller portal displays. The Next pat-
tern enables one to access the next feedback information available, and the Previous 
pattern allows a return to the previous feedback information.

 Input Fields Coordinates

    Coordinates

Authenticate Fields Coordinates
UserList

Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()()

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

Neighboring

n1
Neighboring

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

Neighboring

n

1

Super-Ordinate

Close

CloseForm()

<<Features>>
Login

ShowLoginPrompt()

<<Features>>

1

1

Super-Ordinate

n1 Neighboring

Fig. 9.2   Unified Modeling Language (UML) class diagram of the platform-independent model 
(PIM) domain model

 



190 9  Patterns in Web-Based Information Systems

Feedback

GetFeedback()

<<Features>>

UserList
Username : String
Chain : String
Password : String

VerifyCoordinates()()

Submit

SubmitAction()

<<Features>>

1

1

n1

Multi-ValueInput
UserName : String
Chain : String
PassWord : String

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>
Login

ShowLoginPrompt()

<<Features>>

1

1

n1

Fig. 9.3   UML class diagram of the platform-specific model (PSM) domain model for a laptop 
platform

 

Fig. 9.4   UML class diagram of the PSM domain model for personal digital assistant (PDA) 
platform

 



1919.4 � Case Study: A Detailed Discussion

Figure 9.5 and Fig. 9.6 represent a structure of the Login pattern, which enables 
the user to identify himself or herself in order to access secure or protected data and/
or to perform authorized operations.

Figures 9.7 and 9.8 represent an implementation of the Login pattern.
Figure 9.7 is an example of implementation of the Login Pattern.
Figure 9.8 is an example of implementation of the Login pattern.

Table 9.2   Example of pattern mapping of the Domain model for laptop and PDA platforms
Patterns of Microsoft 
platform

Type of mapping Replacement patterns 
for laptop platform

Replacement patterns for 
PDA platform

P1. Login Identical, scalable, 
or fundamental

P1. Login P1.s Login (small 
interface)

P2. Multivalue input Identical P2. Multivalue input P2. Multivalue input
P3. Submit Scalable or 

fundamental
P3. Submit P3.s Submit (smaller 

button)
P4. Feedback Scalable or 

fundamental
P4. Feedback P4. Feedback (less items 

per page)
P4.1. Next
P4.2. Previous

P5. Close Identical P5. Close P5. Close
PDA personal digital assistant

Fig. 9.5   The Login pattern on the laptop platform

 



192 9  Patterns in Web-Based Information Systems

Fig. 9.7   Login view of the 
interactive system on the lap-
top platform

 

Fig. 9.6   The Login pattern on the PDA platform

 

Fig. 9.8   Login view of the interactive system on the PDA platform

 



1939.4 � Case Study: A Detailed Discussion

The following is an example of the XML source code of the domain model for 
the laptop platform of an “Environmental Management Interactive System”:

9.4.3 � Defining the Task Model

After establishing the domain model for the system in this case study, the task mod-
el can be interactively defined. Figure 9.9 depicts the task model structure of the 
“Environmental Management Interactive System.” Only high-level tasks and their 
relationships are portrayed. The overall structure and behavior of the interactive 
system is given. The structure provided is relatively unique for an environmental 
management interactive system; the concrete “realization” of high-level tasks has 
been omitted.



194 9  Patterns in Web-Based Information Systems

A large part of many interactive systems can be developed from a fixed set of 
reusable components. In the case of the task model, the more those high-level tasks 
are decomposed, the easier it is to use the reusable task structures that have been 
gained or captured from other projects or systems. In this case study, these reusable 
task structures are documented in the form of patterns. This approach ensures an 

Fig. 9.9   Task model of the environmental management interactive system

 



1959.4 � Case Study: A Detailed Discussion

even greater degree of reuse, since each pattern can be adapted to the current use 
context.

The main characteristics of the environmental management system, modeled by 
the task structure in Fig. 9.9 can be outlined as follows:

The interactive system’s main functionality is accessed by logging into the sys-
tem (the login task enables the management task). The key features are “adding a 
guest,” which is accomplished by entering the guest’s personal information and by 
“selecting an environment task or subtask” for a specific guest. The two tasks can 
be performed in any order. The selection process consists of four consecutively 
performed tasks (related through “enabling with information exchange” operators):

1.	 Selecting data source to use
2.	 Selecting task or subtask

a.	 Data management
b.	 Indicator management
c.	 Presentation tool management
d.	 Environmental pattern management

Acting in the horizontal direction of the POMA architecture (Fig. 8.2), this model 
is composed of two types of submodels, which are: [POMA.PIM]-independent task 
submodels, and [POMA.PSM]-specific Task submodels.

[POMA.PIM]-independent Task submodels (Fig.  9.10) are obtained by com-
posing patterns and applying the composition rules described in the Chap.  8 in 
Sect. 8.5.2.

[POMA.PSM]-specific task submodels Figs. 9.11 and 9.12 are obtained by map-
ping composed patterns and applying the mapping rules (Table  9.3). This latter 
model would be used to generate the system’s source code by taking into account 
the code generation rules.

Figure 9.9 presents a structure of the Task model of the “Environmental Manage-
ment Interactive System.” As shown in Fig. 9.9, the Login, MultiValue Input Form, 
and Find patterns can be used in order to complete the task model at lower levels.

Figure 9.10 represents a Unified Modeling Language (UML) class diagram of 
the platform-independent model (PIM) task model, which is composed of several 
patterns by applying, manually by the designers, the composition rules described 
in Sect.  4.1.2. This model underwent mapping by applying the mapping rules 
(Table 9.3) to obtain another model, which is called a platform-specific model 
(PSM) task model (Fig. 9.11) for a laptop platform and Fig. 9.12 for a PDA plat-
form.

Table 9.3 shows the mapping rules of the task model patterns for a laptop and 
PDA platforms.

After the mapping, the PSM Task model is obtained for a laptop platform—
Fig. 9.11.

After the mapping, the PSM task model is obtained for a PDA platform—
Fig. 9.12.



196 9  Patterns in Web-Based Information Systems

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Search Pattern Browse Pattern Executive Summary 
Pattern

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

 Input Fields Coordinates

    Coordinates

Authenticate Fields Coordinates

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

Neighboring

n1
Neighboring

Find Patterns

Adapter Pattern Builder Pattern

Presentation

Path Pattern IndexBrowsing 
Pattern

Interaction

Interoperability

n

0

Neighboring / Super-Ordinate

n

n

Neighboring / Super-Ordinate / Sub-Ordinate

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

Neighboring

n

1

Super-Ordinate

Close

CloseForm()

<<Features>>

Navigation
n0

Neighboring / Compititor/ Similar

n

0

Neighboring / Super-Ordinate

Login

ShowLoginPrompt()

<<Features>>

1

1

Super-Ordinate

11 Neighboring

n

1

Super-Ordinate / Neighboring

Fig. 9.10   UML class diagram of the PIM Task model

 



1979.4 � Case Study: A Detailed Discussion

Presentation

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary 
Pattern

UserList
Username : String
Chain : String
Password : String

VerifyCoordinates()

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Find Patterns

Adapter Pattern Builder Pattern

Path Pattern IndexBrowsing 
Pattern

Interaction

Interoperability

n

0

n

n

Multi-ValueInput
UserName : String
Chain : String
PassWord : String

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation
n0

n

0

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Fig. 9.11   UML class diagram of the PSM Task model mapped for a laptop platform

 



198 9  Patterns in Web-Based Information Systems

Fig. 9.12   UML class diagram of the PSM Task model mapped for a PDA platform

 



1999.4 � Case Study: A Detailed Discussion

The following is an example of the XML source code portion of the task model 
for a laptop platform of the “Environmental Management Interactive System”:

Table 9.3   Example of pattern mapping of task model for laptop and personal digital assistant 
(PDA) platforms
Patterns of Microsoft 
platform

Type of mapping Replacement patterns 
for Laptop platform

Replacement patterns for 
PDA platform

P1. Login Identical P1. Login P1. Login
P2. Multivalue input Identical, scalable, 

fundamental
P2. Multivalue input P2. Multivalue input

P3. Submit Scalable or 
fundamental

P3. Submit P3.s Submit (smaller 
button)

P4. Feedback Identical, 
fundamental

P4. Feedback P4. Feedback
P4.1. Previous
P4.2. Next

P5. Close Identical P5. Close P5. Close
P6. Find (search, 
browse, executive 
summary)

Identical, scalable P6. Find (search, 
browse, executive 
summary)

P6. Find (search, browse, 
executive summary)

P7. Path 
(Breadcrumb)

Identical, scalable 
(Laptop)
Scalable or funda-
mental (PDA)

P7. Path 
(Breadcrumb)

P7.1s Shorter bread-
crumb trial
P7.2 Drop-down “His-
tory” menu

P8. Index browsing Identical P8. Index browsing P8. Drop-down menu
P9. Adapter Identical P9. Adapter P9. Adapter
P10. Builder Identical P10. Builder P10. Builder
P11. List Identical P11. List P11. List
P12. Table Identical P12. Table P12. Table
P13. Map Identical P13. Map P13. Map
P14. Graph Identical P14. Graph P14. Graph
P15. Home Page Identical P15. Home page P15. Home page
PDA personal digital assistant



200 9  Patterns in Web-Based Information Systems

<Name> null </Name> 
<Type> null </Type> 
<Description> null </Description> 
<Precondition> null </Precondition> 
<TemporalOperator name=”SequentialEnabling”/> 
<TimePerformance> 
<Max> null </Max> 
<Min> null </Min> 
<Average> null </Average> 
</TimePerformance> 
<Parent name=”Data Management”/> 
<SiblingRight name=”getDataPathTasks”/> 
<Object name=”null” class=”null” type=”null” access_mode=”null” cardinality=”null”>
<Platform> null </Platform> 
<InputAction Description=”null” From=”null”/> 
<OutputAction Description=”null” To=”null”/> 
</Object> 
</Task> 
   … 
</SubTask> 
</Task> 
</TaskModel> 



2019.4 � Case Study: A Detailed Discussion

9.4.4 � Defining the Dialog Model

Acting in the horizontal line of the POMA architecture (Fig. 8.2), the dialog model 
is composed of two types of submodels, [POMA.PIM]-independent dialog submod-
el, and [POMA.PSM]-specific dialog submodel.

[POMA.PIM]-independent dialog submodel (Fig. 9.13) is obtained by compos-
ing patterns and applying, manually by the designers, the composition rules de-
scribed in Sect. 8.5.2.

The Wizard dialog pattern emerges as the best choice for implementation. It sug-
gests a dialog structure where a set of dialog views is arranged sequentially and the 
“last” task of each dialog view initiates the transition to the subsequent dialog view. 
Figure 9.14 depicts the Wizard dialog pattern’s suggested graph structure.

[POMA.PSM]-specific dialog submodel (Fig.  9.15) is obtained by mapping 
composed patterns and applying the mapping rules (Table 9.4). This [POMA.PSM] 

Set of Dialog Views

Source Dialog View
Creator Tasks
Target Dialog Views

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

 Input Fields Coordinates

    Coordinates

Authenticate Fields Coordinates

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

Neighboring

n1

Neighboring

Adapter Pattern Builder PatternPresentation

Recursive Activation
<<Dialog>>

Find Patterns

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n
Neighboring / Super-Ordinate / Sub-Ordinate

Wizard
<<Dialog>>

n1 n1 Neigboring

Interaction

n

0

Neighboring / Super-Ordinate

n

n

Neighboring

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

Neighboring

n

1

Super-Ordinate

Close

CloseForm()

<<Features>>

Navigation

n

0

Neighboring / Super-Ordinate

n

n

Neighboring

n0
Neighboring / Compititor/ Similar

Login

ShowLoginPrompt()

<<Features>>

1

1

Super-Ordinate

11 Neighboring

n

1

Super-Ordinate / Neighboring

Fig. 9.13   UML class diagram of a PIM dialog model

 



202 9  Patterns in Web-Based Information Systems

Fig. 9.14   Graph structure suggested by the Wizard pattern

 

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

UserList
Username : String
Chain : String
Password : String

VerifyCoordinates()

Adapter Pattern Builder Pattern
Presentation

Recursive Activation
<<Dialog>>

Find Patterns

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Wizard
<<Dialog>>

n

1

Interaction

n

0

n

n

Multi-ValueInput
UserName : String
Chain : String
PassWord : String

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n

n

n
0

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Fig. 9.15   UML class diagram of the PSM dialog model for a laptop platform

 



2039.4 � Case Study: A Detailed Discussion

model is used to generate the interactive system’s source code by taking into ac-
count the code generation rules.

Figure 9.13 represents a UML class diagram of the PIM dialog model, which is 
composed of several patterns. This model underwent mapping by applying the map-
ping rules (Table 9.4) to obtain another model, which is called PSM dialog model 
(Fig. 9.15 for a laptop platform and Fig. 9.16 for a PDA platform).

However, the sequential structure of the subtask process must be slightly modi-
fied in order to enable the user to view the details of multiple subtasks at the same 
time. Specifically, this behavior should be modeled using the recursive activation 
dialog pattern. This pattern is used when the user wishes to activate and manipulate 
several instances of a dialog view.

Table 9.4 shows the mapping rules of the dialog model patterns for laptop and 
PDA platforms.

Table 9.4   Example of pattern mapping of dialog model for laptop and PDA platforms
Patterns of Microsoft 
platform

Type of mapping Replacement patterns 
for laptop platform

Replacement patterns for 
PDA platform

P1. Login Identical P1. Login P1. Login
P2. Multivalue input Identical, scalable, 

fundamental
P2. Multivalue input P2. Multivalue input

P3. Submit Scalable or 
fundamental

P3. Submit P3.s Submit (smaller 
button)

P4. Feedback Identical, 
fundamental

P4. Feedback P4. Feedback
P4.1. Previous
P4.2. Next

P5. Close Identical P5. Close P5. Close
P6. Find (search, 
browse, executive 
summary)

Identical, scalable P6. Find (search, 
browse, executive 
summary)

P6. Find (search, browse, 
executive summary)

P7. Path 
(Breadcrumb)

Identical, scalable 
(Laptop)
Scalable or funda-
mental (PDA)

P7. Path 
(Breadcrumb)

P7.1s Shorter bread 
crumb trial
P7.2 Drop-down “His-
tory” menu

P8. Index browsing Identical P8. Index browsing P8. Drop-down menu
P9. Adapter Identical P9. Adapter P9. Adapter
P10. Builder Identical P10. Builder P10. Builder
P11. List Identical P11. List P11. List
P12. Table Identical P12. Table P12. Table
P13. Map Identical P13. Map P13. Map
P14. Graph Identical P14. Graph P14. Graph
P15. Home page Identical P15. Home page P15. Home page
P16. Wizard Identical Wizard P16. Wizard
P17. Recursive 
activation

Identical Recursive activation P17. Recursive activation



204 9  Patterns in Web-Based Information Systems

After the mapping, the PSM dialog model is obtained for a laptop platform—
Fig. 9.15.

After the mapping, the PSM dialog model is obtained for a PDA platform—
Fig. 9.16.

Figure 9.17 depicts the various dialog view interactions of the “Environmental 
Management Interactive System’s” suggested dialog graph structure for laptop and 
PDA platforms.

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

UserList
Username : String
Chain : String
Password : String

VerifyCoordinates()

Adapter Pattern Builder Pattern
Presentation

Recursive Activation
<<Dialog>>

Find Patterns

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Wizard
<<Dialog>>

n

1

Interaction

n

0

n

n

Multi-ValueInput
UserName : String
Chain : String
PassWord : String

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n

n

n
0

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Previous Next

Fig. 9.16   UML class diagram of the PSM dialog model for a PDA platform

 



2059.4 � Case Study: A Detailed Discussion

9.4.5 � Defining the Presentation and Layout Models

In order to define the presentation model for this case study, the grouped tasks of 
each dialog view are associated with a set of interaction elements including forms, 
buttons, and lists. Style attributes, such as size, font, and color, remain unset and 
will be defined by the layout model.

Fig. 9.17   Dialog graph of the environmental management interactive system for laptop and PDA 
platforms

 



206 9  Patterns in Web-Based Information Systems

A significant part of the user tasks of the system revolves around providing struc-
tured textual information. This information can usually be split into logically related 
data chunks.

At this point, the form presentation pattern, which handles this precise issue, can 
be applied using a form for each related data chunk, populated with the elements 
needed to enter the data. Moreover, the pattern refers to the unambiguous format 
pattern which can be employed. The purpose of this pattern is to prevent the user 
from entering syntactically incorrect data, and is achieved in the following way: 
Depending on the domain of the object to be entered, the instance of the pattern 
provides the most suitable input interaction elements by drawing on information 
from the business object model.

Acting in the horizontal line of the POMA architecture (Fig. 8.2) in Chap. 8, the 
model is composed of two types of submodel, [POMA.PIM]-independent presenta-
tion submodel, and [POMA.PSM]-specific presentation submodel.

IM]-independent presentation submodel, and [POMA.PSM]-specific presenta-
tion submodel.

The [POMA.PIM]-independent presentation submodel (Fig. 9.18) is obtained by 
composing patterns and applying the composition rules.

The [POMA.PSM]-specific presentation submodel (Figs. 9.19 and 9.20) is ob-
tained by mapping composed patterns and applying the mapping rules (Table 9.). 
This model is used to generate the system’s source code by taking into account the 
code generation rules.

Figure 9.18 represents a UML diagram of the PIM presentation model, which is 
composed of several patterns. This model underwent mapping by applying the map-
ping rules (Table 9.5) to obtain another model, which is called the PSM presentation 
model (Fig. 9.19 for a laptop platform and Fig. 9.20 for a PDA platform).

Table 9.5 shows the mapping rules of the patterns of the presentation model for 
laptop and PDA platforms.

After the mapping, the PSM presentation model is obtained for a laptop plat-
form—Fig. 9.19.

After the mapping, the PSM presentation model is obtained for a PDA plat-
form—Fig. 9.20.

In the layout model, the style attributes, that have not yet been defined, are set 
in keeping with the standards set for the “Environmental Management Interactive 
System.” According to the house style pattern (which is applicable here), colors, 
fonts, and layouts should be chosen to give the user the impression that all the sys-
tem windows share a consistent presentation and appear to belong together. Cascad-
ing style sheets have been used to control the visual appearance of the interface. In 
addition, to assist the user when working with the system, meaningful labels have 
been provided. The labeling layout pattern suggests the adding of labels for each 
interaction element. Using the grid format, the labels are aligned to the left of the 
interaction element.
The Layout model determines how the loosely connected XUL (Appendix III) 

fragments are aggregated according to an overall floor plan. In this case study, the 
task is fairly straightforward since the UI is not nested and consists of a single 



2079.4 � Case Study: A Detailed Discussion

container. After establishing the layout model, the aggregated XUL code can be 
rendered, along with the corresponding XUL skins, as the final UI. All interfaces 
are shown in the final UI rendered on the Windows XP platform.

Input Fields

Datatype := Datatype(Input Field)

Set of Dialog Views

Source Dialog View
Creator Tasks
Target Dialog Views

Unambiguous Format
<<Presentation>>

 Input Fields Coordinates

    Coordinates

Authenticate Fields Coordinates

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

Form
<<Presentation>>

Adapter Pattern Builder PatternPresentation

Find Patterns

Recursive Activation
<<Dialog>>

n

n

Neigboring

Feedback

GetFeeddback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

Neighboring

n1

Neighboring

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Neighboring / Super-Ordinate / Sub-Ordinate

Interaction

n

0

Neighboring / Super-Ordinate

Wizard
<<Dialog>>

n

n

Neighboring

n

1
Neigboring

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

Neighboring

n

1

Super-Ordinate

Close

CloseForm()

<<Features>>

Navigation

n

0

Neighboring / Super-Ordinate

n
0

Neighboring / Compititor/ Similar

n

n

Neighboring

Login

ShowLoginPrompt()

<<Features>>

1

1

Super-Ordinate

11 Neighboring

n

1

Super-Ordinate / Neighboring

Fig. 9.18   UML class diagram of a PIM presentation model

 



208 9  Patterns in Web-Based Information Systems

Acting in the horizontal direction of the POMA architecture (Fig. 8.2), this mod-
el is composed of two types of submodels, [POMA.PIM]-independent layout sub-
model, and [POMA.PSM]-specific layout submodel.

[POMA.PIM]-independent layout submodel (Fig. 9.21) is obtained by compos-
ing patterns and applying the composition rules.

[POMA.PSM]-specific layout submodel (Figs.  9.22 and 9.23) is obtained by 
mapping composed patterns and applying the mapping rules (Table  9.6). This 

Unambiguous Format
<<Presentation>>

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

Form
<<Presentation>>

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Adapter Pattern Builder PatternPresentation

Find Patterns

Recursive Activation
<<Dialog>>

n

n

Feedback

GetFeeddback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Interaction

n

0

Wizard
<<Dialog>>

n

n

n

1

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n
0

n

n

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Fig. 9.19   UML class diagram of the PSM presentation model for a laptop platform

 



2099.4 � Case Study: A Detailed Discussion

[POMA.PSM] model is used to generate the system’s source code by taking into 
account the code generation rules (not included in this research).

Figure 9.21 represents a UML class diagram of the PIM layout model which 
is composed of several patterns. This model underwent mapping by applying the 
mapping rules (Table 9.6) to obtain another model, which is called the PSM layout 
model (Fig. 9.22 for a laptop platform and Fig. 9.23 for a PDA platform).

Unambiguous Format
<<Presentation>>

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

Form
<<Presentation>>

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Adapter Pattern Builder PatternPresentation

Find Patterns

Recursive Activation
<<Dialog>>

n

n

Feedback

GetFeeddback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Interaction

n

0

Wizard
<<Dialog>>

n

n

n

1

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n
0

n

n

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Previous Next

Fig. 9.20   UML class diagram of the PSM presentation model for a PDA platform

 



210 9  Patterns in Web-Based Information Systems

Table 9.6 shows the mapping rules for the patterns of the layout model for laptop 
and PDA platforms.

After the mapping, the PSM layout model is obtained for a laptop platform—
Fig. 9.22.

After the mapping, the PSM Layout model is obtained for a PDA platform—
Fig. 9.23.

Figure 9.24 is the final layout of the “Environmental Management Interactive 
System.”

The results of this experimentation of POMA architecture are as follows:

Table 9.5   Example of pattern mapping of the presentation model for laptop and PDA platforms
Patterns of Microsoft 
platform

Type of mapping Replacement patterns 
for laptop platform

Replacement patterns 
for PDA platform

P1. Login Identical P1. Login P1. Login
P2. Multivalue input Identical, scalable, 

fundamental
P2. Multivalue input P2. Multivalue input

P3. Submit Scalable or 
fundamental

P3. Submit P3.s. Submit (smaller 
button)

P4. Feedback Identical, fundamental P4. Feedback P4. Feedback
P4.1. Previous
P4.2. Next

P5. Close Identical P5. Close P5. Close
P6. Find (search, 
browse, executive 
summary)

Identical, scalable P6. Find (search, 
browse, executive 
summary)

P6. Find (search, 
browse, executive 
summary)

P7. Path 
(Breadcrumb)

-Identical, scalable 
(Laptop)
-Scalable or funda-
mental (PDA)

P7. Path 
(Breadcrumb)

- P7.1s. Shorter bread 
crumb trial
- P7.2. Drop-down 
“History” menu

P8. Index browsing Identical P8. Index browsing P8. Drop-down menu
P9. Adapter Identical P9. Adapter P9. Adapter
P10. Builder Identical P10. Builder P10. Builder
P11. List Identical P11. List P11. List
P12. Table Identical P12. Table P12. Table
P13. Map Identical P13. Map P13. Map
P14. Graph Identical P14. Graph P14. Graph
P15. Home page Identical P15. Home page P15. Home page
P16. Wizard Identical P16. Wizard P16. Wizard
P17. Recursive 
activation

Identical P17. Recursive 
activation

P17. Recursive 
activation

P18. Unambiguous 
format

Identical P18. Unambiguous 
format

P18. Unambiguous 
format

Form Identical Form Form



2119.4 � Case Study: A Detailed Discussion

•	 POMA integrates easily patterns and models together to design interactive sys-
tems for different platforms;

•	 POMA uses easily the pattern composition, pattern mapping and model transfor-
mation rules to implement interactive systems for different platforms.

Fig. 9.21   UML class diagram of a PIM layout model

 



212 9  Patterns in Web-Based Information Systems

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

Unambiguous Format
<<Presentation>>

House Style
<<Layout>>

Form
<<Presentation>>

n

n

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Adapter Pattern Builder PatternPresentation

Find Patterns

Recursive Activation
<<Dialog>>

n

n

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Interaction

n

0

Wizard
<<Dialog>>

n

n

n

1

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n
0

n

n

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Fig. 9.22   UML diagram of PSM Layout Model for a laptop platform

 



2139.4 � Case Study: A Detailed Discussion

List Pattern Table Pattern Map Pattern Graph Pattern HomePage Pattern

Search Pattern Browse Pattern Executive Summary Pattern

Unambiguous Format
<<Presentation>>

House Style
<<Layout>>

Form
<<Presentation>>

n

n

UserList
Username : Character Set
Chain : Character Set
Password : Character Set

VerifyCoordinates()

Feedback

GetFeedback()

<<Features>>

Submit

SubmitAction()

<<Features>>

1

1

n1

Adapter Pattern Builder PatternPresentation

Find Patterns

Recursive Activation
<<Dialog>>

n

n

Path Pattern IndexBrowsing 
Pattern

Interoperability

n

n

Interaction

n

0

Wizard
<<Dialog>>

n

n

n

1

Multi-ValueInput
UserName : Character Set
Chain : Character Set
PassWord : Character Set

ShowForm()
InputValues()

<<Features>>

n1

n

1

Close

CloseForm()

<<Features>>

Navigation

n

0

n
0

n

n

Login

ShowLoginPrompt()

<<Features>>

1

1

11

n

1

Previous Next

Fig. 9.23   UML diagram of PSM layout model for a PDA platform

 



214 9  Patterns in Web-Based Information Systems

Table 9.6   Example of pattern mapping of the layout model for laptop and PDA platforms
Patterns of Microsoft 
platform

Type of mapping Replacement patterns 
for Laptop platform

Replacement patterns 
for PDA platform

P1. Login Identical P1. Login P1. Login
P2. Multivalue input Identical, scalable, 

fundamental
P2. Multivalue input P2. Multivalue input

P3. Submit Scalable or 
fundamental

P3. Submit P3.s. Submit (smaller 
button)

P4. Feedback Identical, fundamental P4. Feedback P4. Feedback
P4.1. Previous
P4.2. Next

P5. Close Identical P5. Close P5. Close
P6. Find (search, 
browse, executive 
summary)

Identical, scalable P6. Find (Search, 
Browse, Executive 
Summary)

P6. Find (Search, 
Browse, Executive 
Summary)

P7. Path 
(Breadcrumb)

-Identical, scalable 
(Laptop)
-Scalable or funda-
mental (PDA)

P7. Path 
(Breadcrumb)

- P7.1s. Shorter bread 
crumb trial
- P7.2. Drop-down 
“History” menu

P8. Index browsing Identical P8. Index browsing P8. Drop-down menu
P9. Adapter Identical P9. Adapter P9. Adapter
P10. Builder Identical P10. Builder P10. Builder
P11. List Identical P11. List P11. List
P12. Table Identical P12. Table P12. Table
P13. Map Identical P13. Map P13. Map
P14. Graph Identical P14. Graph P14. Graph
P15. Home page Identical P15. Home page P15. Home page
P16. Wizard Identical P16. Wizard P16. Wizard
P17. Recursive 
activation

Identical P17. Recursive 
activation

P17. Recursive 
activation

P18. Unambiguous 
format

Identical P18. Unambiguous 
format

P18. Unambiguous 
format

P19. Form Identical P19. Form P19. Form
P20. House style Identical P20. House style P20. House style



2159.5 � Key Issues and Contributions

9.5 � Key Issues and Contributions

A prototype of this case study was developed for an environmental management 
interactive system. This prototype was developed in Java Eclipse tool. In this case 
study, patterns were identified and applied for each of the models that were used 
during development.

The main purpose of the prototype of this case study is to show that model-driven 
architecture development consists of model transformation and that mapping rules 
from the abstract to the concrete models are specified and—more importantly—au-
tomatically supported by tools.

In the case study, UML notation was used to design the five models (domain, 
task, dialog, presentation, and layout). XML notation was also used to describe the 
five models and the different types of patterns proposed by the POMA architecture. 
UML and XML allow one to communicate the modeling semantics between the dif-
ferent models, helping tailor the application and corresponding models to different 
platform and user roles.

This chapter created a practical multiplatform architecture for interactive sys-
tems engineering. The main contributions are:

Fig. 9.24   Screenshot of the Environmental Management Interactive System for a Laptop platform

 



216 9  Patterns in Web-Based Information Systems

1.	 The creation of six architectural levels and categories of patterns (navigation pat-
terns, interaction patterns, visualization patterns, presentation patterns, interop-
erability patterns, and information patterns) (Taleb et  al. 2006), (Taleb et  al. 
2007a) and (Taleb et al. 2007c);

2.	 The creation of different relationships between patterns which are used to cre-
ate a pattern–oriented design using composition rules and mapping rules and to 
generate specific implementations suitable for different platforms from the same 
pattern-oriented design (Taleb et al. 2006) and (Taleb et al. 2007c);

3.	 The use of five categories of models: domain model, task model, dialog model, 
presentation model, and layout model (Taleb et  al. 2007b) and (Taleb et  al. 
2010a);

4.	 The creation of different model transformation rules to transform only the PIM 
and PSM models between them such as: PIM to PIM, PIM to PSM, and PSM to 
PSM (Taleb et al. 2010b);

5.	 Development of the “Environmental Management Interactive System” case 
study. The case study illustrates and clarifies the core ideas of this approach and 
its applicability and relevance to multiplatform development.

References

IBM (2015) IBM design language: find your voice. http://www.ibm.com/design. Accessed 15 
April 2015

Lynch PJ, Horton S (1999) Web style guide: basic design principles for creating web sites. Yale 
University Press, New Haven

Macintosh (1992) Human interface guidelines. Apple computer company. Addison Wesley, Cuper-
tino. http://interface.free.fr/Archives/Apple_HIGuidelines.pdf†

Microsoft (1995) The windows interface guidelines for software design. Microsoft Press, Red-
mond. http://www.ics.uci.edu/~kobsa/courses/ICS104/course-notes/Microsoft_Windows-
Guidelines.pdf†

Seffah A, Gaffar A (2006) Model-based user interface engineering with design patterns. J Syst Soft 
80(8):1408–1422. doi:10.1016/j.jss.2006.10.037. (15 pages)

Shneiderman B (2000) Universal usability. Commun ACM 43(5):84–91
Sinnig D (2004) The complicity of patterns and model-based UI development. Master of computer 

Science. Concordia University Press, Montreal, p 148
Sun Microsystems (2001) Java look and feel design guidelines. Addison Wesley Professional 

http://java.sun.com/products/jlf/ed2/book/†
Taleb M, Javahery H, Seffah A (2006) Pattern-oriented design composition and mapping for cross-
platform web applications. The XIII International Workshop. DSVIS 2006. July 26–28 2006. 
Trinity College Dublin Ireland. doi:10.1007/978-3-540-69554-7. ISBN 978-3-540-69553-0. 
Vol. 4323/2007. Publisher Springer-Verlag Berlin Heidelberg. Germany

Taleb M, Seffah A, Abran A (2007a) Pattern-oriented architecture for web applications. 3rd Inter-
national Conference on Web Information Systems and Technologies (WEBIST). March 3–6, 
2007. ISBN 978-972-8865-78-8. pp 117–121. Barcelona. Spain

Taleb M, Seffah A, Abran A (2007b) Model-driven design architecture for web applications. The 
12th International Conference on Human Centered Interaction International (FIC-HCII). July 
22–27, 2007. Beijing International Convention Center. Beijing. P. R. China. Vol 4550/2007, 
pp 1198–1205. Publisher Springer-Verlag Berlin Heidelberg. Germany



217References

Taleb M, Seffah A, Abran A (2007c) Patterns-oriented design for cross-platform web-based infor-
mation systems. The 2007 IEEE International Conference on Information Reuse and Integra-
tion (IEEE IRI-07). August 13–15, 2007. Pages 122–127. Las Vegas. USA

Taleb M, Seffah A, Abran A (2010a) ‘Investigating model-driven architecture for web-based inter-
active systems’. eMinds: Int J Hum Comput Interact II(6):1697–9613

Taleb M., Seffah A, Abran A (2010b) ‘Transformation rules in POMA architecture’. The 2010 
International Conference on Software Engineering Research and Practice (SERP’10), July 
12–15, 2010, CSREA Press, pp. 161–166. ISBN: 1–60132–160–0, Las Vegas, Nevada, USA

Welie VM (2004) Patterns in interaction design. http://www.welie.com/



219© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_10

Chapter 10
HCI Pattern Capture and Dissemination: 
Practices, Lifecycle, and Tools

Abstract  Despite the huge number of human–computer interaction (HCI) design 
patterns available, it has been recently identified that patterns are still difficult to 
find and apply, especially by patterns users, mainly software developers. In this 
chapter, we argue and demonstrate that the lack of an effective pattern representa-
tion is one of the main reasons for this problem. We discussed the idea of pattern 
lifecycle how it can lead to an environment for not only capturing and delivering 
patterns, but that also can automate the pattern lifecycle including the generation of 
applications from a pattern-oriented design. At the core of such environment, the 
concept of generative pattern has been introduced in other chapters.

In this chapter, we again discussedthis concept from the perspective to generating a 
user interface using an extended pattern markup language, UIPML (User Interface 
Pattern Markup Language).

10.1 � Capture and Reuse of HCI (Human–Computer 
Interaction) Patterns

As discussed in the previous chapters, patterns can be seen as a vehicle—a medium 
or an infrastructure—to bridge the gap between the two main activities: delivery 
and discovery. This representation is essentially about how to format the solution 
in a way that allows it to mature from its solution format into a pattern. In essence, 
a pattern is a solution alongside other information that supports it. The reason is 
that in order for a solution to be used by others, they have to be convinced that this 
is a good solution. Part of this comes by annotating pattern solution with expert 
analysis and comments, listing of some cases where the solution has been applied 
and the “success indicators,” and possibly some code examples. Bearing in mind 
that no two systems are exactly the same, and that every new software is a new 
adventure, patterns are typically annotated with important guidance on how to ap-
ply them in different contexts and situations. Some details are left out to allow the 
end user to rematerialize an abstract pattern back into a concrete solution that is 



220

adapted to the new design. Having decided on what to write, the sibling question 
would be how to best represent this information: through UML (Unified Modeling 
Language) diagrams, simple diagrams, images, text, source code, or a combination 
of all of them.

The success of pattern approach depends on all those three milestones. As 
we discuss the potential benefits of applying patterns in design reuse, we cannot 
claim that patterns are “silver bullets.” Due to the inherently creative nature of 
design activities, the direct reusability of designs represents only a small portion 
of the total effort (Yacoub and Ammar 1999). It requires a considerable amount 
of experience and work to modify existing designs for reuse. Many design ideas 
can only be reused when abstracted and encapsulated in suitable formats. Despite 
the creative nature of their work, software designers still need to follow some 
structured process to help control their design activities and keep them within 
the available resources. Partial automation of this process, combined with sound 
experience and good common sense can significantly facilitate the analysis and 
design phase of software development (Arutla 2000). Within this process, tools 
can help glue patterns together at higher design levels the same way we do with 
code idioms and programming language structures (Chambers et al. 2000). For 
example, the Smalltalk Refactoring Browser, a tool for working with patterns at 
the source code level, assists developers using patterns in three ways (Florijin 
et al. 1997):

From a pattern user perspective meaning any user interface (UI) designer, we can 
look at patterns in general as artifacts that have three main milestones, organized 
from a user perspective (Fig. 10.1).

On the pattern user side, we can say that patterns are harvested and represented 
with the main goal of being delivered to other users who implement them as so-
lutions. A delivery paradigm is essential in the pattern approach because it indi-
cates that patterns arrived effectively to potential users; a knowledge dissemina-
tion view. This means that patterns should be represented in a way that software 
developers can learn, master, and apply easily and effectively in their context. This 

Discovery

Pattern
Author

Pattern
User

Representation Delivery

Fig. 10.1   Major milestones and users of patterns

 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



221

implementation highlights the main role of patterns, promoting effective reuse. If 
patterns were harvested and written down just for the sake of archiving them, then 
we have missed on the great benefits of patterns.

On the pattern author side, the discovery of a pattern is only the beginning. 
Harvesting is a carefully selected metaphor that indicates the hard work associ-
ated with patterns. By observing existing artifacts and problems that have been 
solved successfully, we can detect a repeated structure or behavior that is worth 
recording. By asserting its importance, we can write down the essential compo-
nents and—if possible—analyze them. An expert can provide insight as to why 
this combination is good or why it works well and in what context. Finally, guid-
ance on how to reuse this solution can be added to assist in modifying and reap-
plying the solution.

10.2 � A Survey on Patterns Usages

This section reports the results of a survey on the popularity of patterns among 
mainstream developers in industrial settings. Our focus is on design patterns for 
interactive systems as identified early in the design community (Ling 1980; Rouse 
1981). They include the design and implementation of UI for highly interactive 
software systems. The last few years have seen a growing number of new UI-related 
patterns. Numerous research projects and articles focus on how patterns “should” 
be generated and used (Alexander et al. 1977) and (Tidwell 1997). We focus on 
the other end of the journey, namely, how patterns are “actually” being used. The 
primary contribution of this survey is to investigate how patterns are perceived 
and applied in practical industrial settings by software developers. Our goal is to 
identify the current state of affairs and measure the effectiveness of existing pattern 
approaches and tools. Preliminary results of the survey showed that patterns are less 
popular among designers than commonly anticipated by research community, even 
after valuable theoretical analysis and rich pattern literature are produced. The re-
sults reflect the strong belief that patterns can indeed be helpful; however, it shows 
a major gap between this belief and the fact that only few pattern collections are 
popular, generally the older ones. New patterns are still less popular regardless of 
their quality. The survey also shows that the number of developers who are actually 
applying patterns in their work is much less than the number of developers who are 
just familiar with them.

While pattern authors remained focused on discussing how patterns can be used, 
we did not find significant studies on how these patterns are actually perceived 
and applied in practice or how much they contributed to improving the quality and 
usability of interfaces. Some surveys and studies were done on interface design 
methods, on users (Colleen and Pitkow 1996; Pitkow and Colleen 1996) as well as 
interface usability, and how to improve it (Brinck and Hand 1999). Other surveys 
have focused on existing pattern collections in research community (Mahemoff and 

10.2 � A Survey on Patterns Usages



222

Lorraine 2001) and (Portland 2003). We also found empirical studies on how design 
patterns are perceived and promoted in the academia as a pedagogic tool (Porter 
and Calder 2004) and (Clancy and Linn 1999). However, we found only one survey 
made in 1996 on design patterns usage in practice (Beck et al. 1996). The need for 
more surveys is necessary to assess the large body of research that has been done on 
patterns since then, and to examine the different directions in which it is evolving.

The research-specific goal behind this survey was to identify the current state 
of affairs of patterns, and to measure how effective they are delivered and used in 
software industry. The study enables us to reveal the strengths and weaknesses of 
pattern practices and to measure the success or failure of current role of patterns in 
supporting the UI design process. This allows us to shed light on some grey areas 
in patterns and pattern tools and to have a better understanding of the needs of UI 
designers from a pragmatic point of view.

10.2.1 � The Survey Structure and Population

The survey came in the form of a questionnaire divided in eight sections totaling 20 
questions. The first three sections were devoted to get some information about re-
sponders and their work environment as well as sources of their professional knowl-
edge. Section 4 and 5 were designed to evaluate their general perceptions and usage 
of guidelines and pattern. Section 6 and 7 enabled us to get more detailed informa-
tion about the practices of using patterns and tools in UI design. The last section col-
lected feedback about existing and future research trends and proposals. The survey 
was distributed during 6 months and sent as a broadcast to selected professional 
mailing lists as well as personalized emails. We focused on software professionals 
in industrial settings who are practically involved in the development of software 
systems and especially in user interfaces. We targeted large companies as well as 
medium size companies and consultants. The qualified number of replies was 121.

10.2.2 � Analysis Method and Key Findings

The survey analysis is organized under three categories. First, we ran a frequency 
analysis on users’ profile as well as their work environment and knowledge sources. 
We also evaluated the popularity of pattern collections and tools. Next, we cross-
tabulated some questions to report the opinions and practices of patterns among dif-
ferent respondents. All the data collection and statistical analysis were done using 
SPSS (www.spss.com). Finally, we collected all open-ended questions and analyzed 
them manually.

Figure 10.2 portrays the distribution of the respondents (Fig. 10.2). The major-
ity of replies (41.3 %) came from developers with involvement in user interfaces. 
Out of all, 12.4 % respondents were dedicated UI developers, 19 % were system 
developers with no involvement in UI, and 5 % were web developers. While we 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



223

only targeted industrial settings, we had 8.3 % professors and 13.2 % students in the 
replies, which reflect the fact that some people from the academia are indeed work-
ing in the industry as well.

10.2.2.1 � Who Develops the User Interface? Who are the Users of Patterns?

The analysis of work environment and responsibilities delegated to development 
teams (Fig. 10.3) revealed that while a high percentage of respondents worked in 
UI-related teams (50 %), only a minority (16 %) worked exclusively in interface de-
velopment teams. The rest (34 %) worked simultaneously in software and interface 
development. It is clear that the promoted idea of separate and dedicated teams for 
interface development and the underlying software development did not make its 
way completely in the industry. However, we did not correlate this to the size of the 
companies.

When asked about some sources of professional knowledge, the Web was the 
most commonly used source (86 %), academic training was next (76 %), books 
(63 %), reuse of similar work (59 %), professional training (46 %), and working 
with mentors was the least popular at 27 %.

10.2.2.2 � The Current Practices of Guidelines and Patterns

Though guidelines are generally considered an important support for designers, 
only 2.5 % take time to read them carefully and apply them. Out of them, 23 % 
browse them occasionally, and 66 % do not use them at all in their work. As for the 
popularity of patterns, 77 % were familiar with design patterns (Gamma 1995), and 
40 % with some UI patterns. However, familiarity did not match the actual use of 
these patterns; only 15 % used UI patterns in industrial projects, showing that most 
developers know about UI patterns, but do not use them.

Web
Designers

Students
5,0%

19,0%13,2%

8,3%

12,4%
41,3%

0,8%

Developers not
involved in UI

Professors

UI
developers Developers with some

involvement in UI

Usability
experts

Fig. 10.2   The distribution of 
respondents
 

10.2 � A Survey on Patterns Usages



224

The number of popular UI pattern collections was also low. Only seven collec-
tions were known to the respondents. Despite the popularity of the Web as a source 
of professional knowledge, many new UI pattern collections on the Web were not 
known at all in the survey, regardless of their quality as known in the research com-
munity. This certainly requires further study.

10.2.2.3 � The Status of Pattern Tools

We identified similar gap regarding existing tools for patterns. Despite the extensive 
research and rich publications of tool prototypes, only 10 % of respondents used 
tools. These were mostly general design (CASE) tools like Rational Rose, Eclipse, 
and Sun Java Studio, rather than specialized pattern tools. Only ten tools were re-
ported in the survey, six of them were mentioned only once.

10.2.2.4 � The Mainstream Perception About Patterns

We also asked participants how they thought about patterns. The majority (59 %) 
saw them as an effective concept while 35 % were not sure. Only 5 % did not like 
the concept of patterns altogether.

Conversely, when asked about the effectiveness of patterns in practice today, 
only 29 % found them useful in their design whereas 44 % found them not useful. 

Interface
Developers

50%

Software
Developers

63%

Non-dedicated
Interface

Developers
34%

Dedicated
Interface

developers
16%

Fig. 10.3   The responsibilities delegated to development teams

 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



225

Nonetheless, developers showed that they still have faith on pattern; only 7 % were 
on the pessimist side about the future, saying that patterns will never be a real help 
to developers. Out of all developers, 36 % were optimistic and believed that pat-
terns will help future developers while 56 % were not sure. This shows that patterns 
are underutilized in daily practices in the industry, but people still believe that they 
are a good concept. The difference between the high acceptability of patterns as an 
idea (59 %) and between finding them useful in design (29 %) may indicate that we 
need to support pattern reuse more actively. It points to the need to improve our 
techniques to facilitate pattern reuse among industrial developers.

The survey pointed at the problem of patterns underutilization in the industry, 
contrary to what is expected by most pattern authors. We conclude that besides 
discovering new patterns, we need to develop more techniques to improve existing 
pattern reuse and integration into the daily activities of mainstream programmers. 
We also need more pattern tool support to facilitate this reuse. The next sections 
summarize some of our research investigations to address these concerns.

10.3 � An Extended Schema for Representing Patterns

The concept of a schema is used in many domains to present a high level, common 
view of different artifacts, or low-level details of them. In this section, we present a 
high-level schema of patterns based on our investigations in the thesis so far.

10.3.1 � Why a Schema?

To conveniently handle the entirety of available patterns within a pattern system, 
it is helpful to define and separate different parts of each pattern according to the 
interest of the reader. A pattern classification schema that supports the development 
of software systems using patterns should have the following properties:

•	 Simplicity: It should be simple and easy to understand, learn, and use. A complex 
schema would be hard to validate and will deter many users from using it.

•	 Objectivity: Each classification criterion should reflect functional properties of 
patterns, for example the kinds of problems the patterns address, the related de-
sign phase, and the context of applicability rather than nonfunctional criteria 
such as pattern author or whether patterns belong to a pattern language or not.

•	 Guidance: It should provide a “roadmap” that leads users to a set of potentially 
applicable patterns, rather than a rigid “drawer-like” schema that tries to support 
finding the one “correct” pattern.

•	 Generality: Like programming languages, the schema should be independent of 
specific domain, platform, or technology.

•	 Extensibility: The schema should be open to the integration of new patterns with-
out the need for refactoring the existing classification.

10.3 � An Extended Schema for Representing Patterns



226

10.3.2 � A Schema for a Generalized Pattern Model

As highlighted in other chapters especially Chap.  2 and 7, the existing pattern 
language format that has been often used to document patterns looks as follows 
(Table 10.1).

However, this narrative format (and its variations) has several limitations. It 
makes broad use of natural language-based prose and has little context. Hence, 
the patterns based on this format are strongly “document-oriented,” and can seem 
vague and open to interpretation. This limits their use in automated processing en-
vironments and interchange.

Furthermore, the notation is paper-printing oriented and does not provide any 
means of using the potential and benefits offered by the electronic medium of com-
munication which in turns has several implications:

•	 There is no standard way in which nontext objects related to pattern (say, solu-
tion or scenario of use) can be included.

•	 There is no standard way in which instances of pattern expressed in the notation 
can be interchanged across a broad range of devices.

•	 There is no explicit support for presenting patterns expressed in the traditional 
notation on Internet-based information systems, such as the Web. (The patterns 
could be written using some word processing package that can associate presen-
tation and linking semantics, and the result can be converted to, for example, 
HTML. However, such process is not automatic and resulting documents are 
highly inefficient.).

Table 10.1   Pattern of design and the underlying representation of a design
 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



227

•	 There is no standard way to verify whether a pattern is compliant with the 
notation.

•	 There is no standard way in which pattern solution implementations can be 
included.

•	 There is no explicit support for Internationalization, in particular, for non-Eng-
lish language characters or other special symbols.

These limitations have motivated us to take an alternative approach to devise a pat-
tern notation that can resolve these issues as well as to provide other features that 
can adequately represent patterns documentation. Representing and documenting 
patterns using an effective notation enable us to bypass above issues and provides 
various advantages.

One of our goals is to address the inconsistent properties, elements, and attributes 
of patterns while findings the commonalities among the variant pattern formats in 
order to generalize it into a simple, understandable, and flexible format in order to 
make it easier to document patterns and also to disseminate the essence of patterns 
to all of its users

Therefore, we use the Alexander’s Format as the fundamental basis of our pro-
posed generalized format, but we also incorporated some of the issues from Gang 
of Four format in order to reduce the communication gap between patterns writ-
ers and software developers and overall to provide the object-oriented outlook of 
patterns.

We suggest a schema as shown in Fig. 10.4. This schema can be seen as rel-
evant to the end-user experiences, the HCI/usability expert, and the software and 
UI engineers:

Writers

Solution

Problem

Context

Rationale

Consequence

Related Patterns

HCI/Usability Engineers

Structure / 
Architecture

Strategies
(Example,
Diagram,

code)

Developers

Fig. 10.4   Pattern properties

 

10.3 � An Extended Schema for Representing Patterns



228

1.	 A pattern is a solution provided by an HCI/usability expert to a user problem, 
which can occur in different contexts of use.

2.	 The forces, the consequences of the problems as well as the rationale for the 
solution has to be detailed qualitatively.

3.	 Usability/HCI engineers have to ground the patterns in the HCI theory and prin-
ciples. UI developers should also provide an implementation or strategies for 
implementing the patterns. Consequences should be linked to usability measures 
that provide a more objective way to assess the pattern’s applicability.

This abstract schema shows the major issues related to patterns from the perspective 
of different users. In this, each professional group is aware of their own concerns 
as well as the others’. Therefore, each group may be able to address the needs of 
other groups while contributing toward patterns and pattern languages. In this view, 
we are incorporating some concepts from different pattern collections in order to 
reduce the communication gap between pattern writers and software developers and 
to provide the object-oriented outlook of patterns.

This 3D abstraction highlights the major ingredients for documenting a pattern. 
Table 10.2 provides a summary of the key components that can be used in different 

Table 10.2   The proposed format of pattern documentation
Element Sub-elements Requirements
Identification Name

Alias
Author(s)
Date
Category Patterns classification
Keyword For search
Related pattern(s) Super-ordinate

Subordinate
Sibling/neighboring
Competitors

Context of use User Category of users, personas, or profile, etc.
Task Tasks are structured hierarchically. All sub-

tasks should be originated from a root
Platform capabilities and 
constraints

Information should be organized in device-
independent way

Problem Give a statement of the problem that this pattern resolves. The problem may 
be stated as a question

Forces Forces describe the influencing aspects of the problem and solution. This can 
be represented as a list for clarity

Solution Give a statement of the solution to the problem including the rationale behind 
the solution. It could also provide the references for further understanding

Implementation Structure It’s a high level abstraction done by visual 
modeling notation

Strategy Including examples, figures, sample code 
etc.

Consequences Trade-off and results of using the pattern. It could be described by a list of 
usability factors/criteria/metrics

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



229

pattern templates. This template could serve as a basis for future expansions to serve 
different needs.

In Gaffar et al. (2003), we called for an approach to generalizing the format of 
patterns to facilitate the creation of a pattern database. As the idea was discussed 
and accepted, we implemented the first attempt of this task together with the major 
HCI pattern authors. The resulting format, the Pattern Language Markup Language 
(PLML) was created in the workshop to mark the first step toward a common pat-
tern format (Fincher and Finlay 2003). Since then, we went much further into im-
proving the presentation from a common but static presentation (The PLML is a 
static format) into a dynamic runtime module. We then upgraded PLML into the 
Generic Pattern Model (GPM) (Gaffar 2005) that offers the flexibility of changing 
its components as needed. GPM is then used in the tools that are discussed later in 
this chapter.

10.4 � Modeling the Pattern Discovery and Dissemination 
Life Cycle

In the previous section, we proposed a schema and discussed its usefulness from 
delivery perspective. Here, we emphasize this idea and argue that a key factor 
to increasing the usability and usefulness of patterns is the adoption of a model 
for a complete pattern lifecycle. This would underwrite the activities that should 
be taken when identifying a pattern, documenting, delivering, applying, and 
maintaining it. Creating mechanisms to manage the overall pattern lifecycle has 
received little attention in the HCI patterns community so far. Our investigations 
and work as presented in the previous chapters provide a basis for better under-
standing of the process of discovery, representation delivery, and applications of 
HCI patterns.

Also as highlighted in the introduction of this chapter, the currently prevalent 
pattern approaches can be divided into two major activities only: pattern discovery 
and pattern reuse.

•	 Pattern Discovery refers to the activity of writing patterns by domain experts.
•	 Pattern Reuse refers to the activity of applying patterns in a useful design as 

recommended by pattern author.

We could not find significant work on guiding the user through the activity of find-
ing suitable patterns for reuse. This can have negative impact on promoting pattern 
reuse (as shown in our empirical study (Gaffar 2004)). In this regard we introduce 
an intermediate logical layer between pattern discovery and reuse, namely, the dis-
semination process. Pattern Dissemination refers to guiding pattern users through 
the activities of locating all useful patterns, selecting some of them using different 
criteria and then applying them correctly in all phases of design and implementation 
process.

10.4 � Modeling the Pattern Discovery and Dissemination Life Cycle



230

Based on the empirical study and the proposal of dissemination process, we can 
now redefine the lack of ineffective pattern reuse as a symptom and not a problem. 
The problem in this chapter is better identified as

•	 The lack of a dissemination process
•	 The lack of a common and programmable pattern representation to help in com-

bining and reusing patterns and pattern tools in practical design environments. 
In the previous section, we explain how the generalized pattern model can solve 
this problem.

Having attributed the problem to the current narrative format for documenting pat-
terns, we propose an approach to represent patterns as software components by 
identifying and rewriting their semantics as a model for designers as well as design 
tools. This model transforms text patterns into programmable objects with well-
defined interfaces that reflect the knowledge underlying them. This makes them 
accessible in any object-oriented programming language as well as in XML for tool 
interoperability. We also provide a framework that supports a comprehensive dis-
semination process.

10.4.1 � The Challenges of Dissemination

Dissemination refers to “the activities associated with delivering knowledge and 
experience from pattern authors to pattern users—or designers.” For efficient dis-
semination, we need to reduce the time spent by users in looking up patterns, and 
the ability to locate all patterns that can be useful according to some search criteria 
that a user can apply. So far, these activities have been left to the user. Pattern au-
thors simply publish their patterns, generally in books or on the Internet and the 
dissemination process stops there. Some pattern authors recognized the problem 
and added links within their collections to other collections. This, however, adds 
to the confusion of the users as they see similarities between collections. They get 
distracted or lost in the available maze of patterns. In this context, we have defined 
the visibility problem that new patterns suffer as “new patterns become diluted in 
huge pattern offerings and hence get no significant chance of making their way to 
users.” This has been confirmed by the results of our empirical study. Consequently, 
many designers limit their pattern repository to few patterns that they already know 
and rarely look for new patterns.

10.4.2 � The 7C’s Lifecycle for Collection and Dissemination  
of Patterns

We define the 7C’s as “a structured process with the main objective to replace the 
huge cognitive load of manipulating HCI patterns by both authors and users.” The 
7C’s process identifies both logical and physical aspects of the system. The logical 
aspects detail what actions and activities need to be done. The physical aspects 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



231

complement the logical ones by specifying the roles associated with each action 
and activity, and details who is going to do what (Hoffer et  al. 2002), (Whitten 
et al. 2001). As part of the pattern reuse problem is associated with missing roles 
in the dissemination activities (all left to the user), the 7C’s process addresses both 
how these activities need to be done, and who should be doing each of them. In 
short, the 7C’s process moves gradually from current unplanned discovery and use 
of patterns into building an automated pattern collection. The process comprises 
seven steps.

10.4.2.1 � Combine—Place Different Pattern Languages in One Central Place

Despite the proliferation of research into HCI design patterns since the 1990s, there 
has been no successful attempt yet to unify these efforts or collections. Numerous 
works on patterns have been developed in the HCI community; however, they are 
scattered in many different places. A central repository of patterns will allow users 
to concentrate on knowledge retrieval rather than spending time on search for pat-
terns.

10.4.2.2 � Clear Out—Add on the Top the Different Formats, One Unifying 
Description

Ideally, different works on patterns deal with different problems. However, as we 
went through step 1, we were able to identify that some patterns are dealing with 
different sides of the same problem (correlated patterns), some patterns are offering 
different solutions to the same problem (peer patterns/competitors), and some are 
even presenting the same solution to the same problem (similar patterns), only in 
different collections with different presentation formats. Since a large number of 
patterns have different presentation formats, it is difficult to detect these redundan-
cies or useful relations with other patterns until the user has spent some unnecessary 
time with several of them. Putting patterns in a unified format helps discover these 
relationships, put related patterns closer together, and possibly remove the redun-
dancies and inconsistencies.

10.4.2.3 � Certify—Define a Domain and Clear Terminology

This activity is necessarily human-driven. While it can be easy to find useful 
relationships among the patterns, the validation of good patterns is largely a matter 
of people assessing them against experiences and through use to decide if they were 
“really good patterns.” We use a process similar to that of Answer Garden (Acker-
man and Thomas 1990) where new pattern proposals are routed to a distributed 
set of experts in different usability areas. These experts can then provide feedback 
to pattern writers, pointing them to similar patterns, and otherwise facilitating the 
process of creating a useful set of patterns.

10.4 � Modeling the Pattern Discovery and Dissemination Life Cycle



232

10.4.2.4 � Contribute—Receive Input from Pattern Community

New patterns emerge all the time in many areas of the scientific community, in-
cluding HCI. It is very difficult to keep track of these emerging patterns. Typically, 
it would take years before an expert can come up with a thorough collection of 
patterns (Alexander et al. 1977); (Gamma et al. 1995), or have time to update an 
existing collection (Tidwell 1997); (Welie 2000). Having a central repository for 
patterns help unify pattern knowledge captured by different individuals in the fu-
ture. Furthermore, putting such a repository to use in actual design situations will 
help to spot areas of design activities where there is a shortage of patterns so that 
they are made available to the community. The “central” concept refers to either a 
community wide web-based repository or a local repository within a smaller group 
of people. In both cases, a repository will help unify the effort of collecting and 
contributing to patterns.

10.4.2.5 � Connect—Establishing Semantic Relationships Between Patterns

A significant part of knowledge associated with patterns lies in the relationships 
between them. After the Clear Out step removes redundancies, the Connect step is 
meant to build new connections between patterns. Finding and documenting these 
relationships will allow developers to easily use patterns as an integral part to de-
velop applications instead of relying on their common sense and instinct to pick up 
patterns that seem to be suitable. A proven model for the pattern collection helps 
define ontology for the pattern research area with all proper relationships such as 
inference and equivalence between them.

10.4.2.6 � Categorize—Mapping Patterns into the Assimilation Channels

Within the collection, we need to create pattern classifications or categories to make 
them more manageable. The first goal of categorization is to reduce the complexity 
of searching for, or understanding the relationship between patterns. For example, 
some patterns are just abstractions of other patterns. The second and more important 
goal is to build categories that can be mapped to different design approaches and 
methodologies, and then put patterns under their appropriate categories. This is the 
enabling technique to integrating patterns into different phases of several design 
approaches. As explained earlier, decoupling the dissemination and the assimilation 
processes allows same pattern to belong to different categories and be used in dif-
ferent assimilation processes.

10.4.2.7 � Control—Machine Readable Format for Future Tools

Defining pattern models that accurately represent pattern semantics through their 
interfaces and rewriting patterns according to these models enhances the process of 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



233

automating UI design using different assimilation processes. The ultimate goal of 
the 7C’s process is to allow user to interact with the machine as a viable partner that 
can read and understand patterns, and then process them in an intelligent way. Hav-
ing machine-readable patterns is the last step in the process of pattern dissemination 
and the first step toward assimilating them.

10.4.3 � Qualities of Design Patterns

The idea behind the 7C’s lifecycle is not to collect all patterns, but only good one. 
There are several factors that can define the quality of patterns. They are what make 
the pattern usable and easy to apply.

10.4.3.1 � Formality

There have been several efforts (Gamma 1995; Appleton 2000) that provide strat-
egies and suggest guidelines for patterns documentation. However, one of the 
limitations of these guidelines is that they make broad use of natural language 
for description, and hence are less formal and vague. Frequently asked questions 
(FAQs) also help answer user questions but they are usually focused on a single 
topic, often specific to a technology, and rarely provide reasoning for their answers. 
Patterns are more formal in their approach and exist at a higher level of abstraction 
than the strategies or guidelines. Patterns offer various advantages over guidelines 
and are anticipated to play an essential role in information technology. Still, patterns 
do not attempt to necessarily replace the FAQs, strategies, or guidelines in every 
manner. Rather, they should be considered as a key complement to overall initiative 
of a business application realization.

10.4.3.2 � Practicality

Patterns provide practical “ready-to-go” solutions. A pattern describes “good” prac-
tical solutions to a common problem within a certain context, by describing the in-
variant aspects of all those solutions. Given a problem, patterns include a compact, 
focused, complete, and straightforward way of describing a solution. Since they 
provide the consequences of applying that solution, the user can decide and act 
upon in a timely manner if the solution is applicable to his/her situation.

10.4.3.3 � Experience

Patterns form an “expert” system in practice. Patterns, when well-defined and co-
ordinated, are more than a mere static disjoint “collections” of recipes. Patterns are 
tried-and-tested ways to deal with problems that recur. It is expected that those who 

10.4 � Modeling the Pattern Discovery and Dissemination Life Cycle



234

have experience in a particular field of knowledge will have internalized certain 
solutions to these problems. As a result, they recognize a problem to be solved and 
know which solution need to apply in the particular situation. A pattern describes 
this internalized expert knowledge and states the problem, context, and solution, 
so that others with less experience can benefit from this knowledge. In this sense, 
patterns themselves can be considered as a “smart FAQ” or an “expert system” that 
encapsulates the knowledge and experience of the author. This enables them to be 
used as a knowledge base.

10.4.3.4 � Reusability

A pattern presents a higher-level view of the same problem inflicting often multiple 
industries and provides a solution for it. It can also connect to other patterns in exis-
tence (in the same or other catalogs) for whole or in part of its solution (inheritance). 
Patterns thus encourage reuse.

10.4.3.5 � Abstract, Modular Framework

Complex problems are often composed of several steps that need to be dealt with 
independently and then combined to arrive at a solution. Patterns represent these 
steps at a high level via “intelligent” distribution and allocation of responsibilities. 
They provide a framework that works in unison to fulfill a given task.

10.4.3.6 � Community

Patterns help a broad community. Patterns communicate solutions to a community 
of architects, designers, and engineers, who make use of them at different levels and 
for different purposes. The goal of the pattern community is to build a reusable body 
of knowledge to support design and development in general.

10.5 � Tools Support for Pattern Reuse and Dissemination

Beside the pattern lifecycle and representation, one of the key elements that explains 
the misuse of patterns also is the lack of tool support, which makes it difficult to 
capture, disseminate, and apply patterns effectively and efficiently. Tools need to be 
developed with three major objectives in mind. First, tools are needed to support 
UI designers and software engineers involved in UI development. Second, as a re-
search forum for understanding how patterns are really discovered, validated, used, 
and perceived, tools are also required. Third, automation tools are needed to support 
the usage of patterns as prototyping artifacts and building blocks.

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



235

The following are some of the required features that should be provided a tool 
supporting the pattern approach:

•	 Tools have to be designed to accept proposed or potential patterns in many 
different formats or notations. Therefore patterns in versatile formats can be sub-
mitted for reviewing.

•	 A common editorial board for reviewing and validating patterns is also required. 
Before publishing, collecting and contributing, patterns must be accessed and 
acknowledged by the editorial committee. We are inviting the HCI patterns 
practitioners and researchers to set up and join this committee.

•	 A pattern ontology editor to capture our understanding of pattern concepts and 
to put them into relation with each other (Taxonomy) will be an important step 
toward a systematic usage of patterns as well as the emergence of a pattern-
assisted design tool.

•	 Tools are needed to allow us to attach semantic information to the patterns. 
Based on this information and our ontology, patterns will be placed in relation-
ships, grouped, categorized, and displayed.

•	 A pattern navigator can also provide different ways to navigate through patterns 
or to locate a specific pattern. The pattern catalogue can be browsed by pattern 
groups or searched by keywords. Moreover, a pattern wizard will find particular 
patterns by questioning the user.

•	 A pattern viewer will help in providing different views of the pattern, adjusted to 
the preferences of the specific pattern user’s need.

•	 In what follow, we presented two different types of tools. First, the use of online 
databases accessible as a vehicle to document and share patterns on the Inter-
net. Second, we introduced an integrated pattern environment that supports the 
dissemination process as well as the pattern-assisted design and automated code 
generation.

10.5.1 � An Online Database for Patterns Documentation  
and Sharing

Too often, good patterns are hidden in Web pages that become severely underused 
in the daily activities of interface designers. This is because, the web page approach 
alone fails to provide the means to access appropriate patterns as needed and does 
little on the way of reusing them as an integral part of the development processes. 
Even if pattern authors are actively discovering and writing new patterns, it is dif-
ficult for users to keep pace with changes in the HCI community at large just by 
searching the Internet. Designers and developers often work under tight constraints 
and limited resources. Eventually, if software developers have to manually read, 
analyze, and understand every pattern in details to select the ones they need, the 
pattern system becomes unmanageable, even when it included useful patterns.

A better approach is to put patterns in a central database and make it acces-
sible online through the Web or other Intranet facilities. A database of patterns can 

10.5 � Tools Support for Pattern Reuse and Dissemination



236

become a valuable resource that software developers and project managers depend 
on for efficient information retrieval and reuse (Fig. 10.5).

Compared to Web pages and document-based approach for capturing and deliv-
ering patterns, an online database has some advantages:

•	 Scalability: A separate database can store and manage larger data volume than 
files attached to a specific application.

•	 Facilitate efficient updates: Unlike flat text files, a database categorize its con-
tents into tables or objects which helps improve the lookup and editing of con-
tents.

•	 Connectivity: Several applications can connect to the same database, reducing 
the need for extra copies of data files and multiple updates (see integrity).

•	 Promote interaction with other software: A database can provide application-
independent information that can be called and used by several software tools 
and applications.

Forum for discussion

-Author/collection
-Patterns

Generic Patterns Model

My space
Statistics

Statistical
tools

Pattern
Database

My space

My space

Customized space
for users

-Keyword search

Search

-Design Process search

GPM

Browse

Fig. 10.5   The online database approach for capturing and disseminating patterns

 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



237

•	 Reliability: A database usually has advanced capability to enforce reliability 
against mishaps like programmer errors and power outages.

•	 Integrity: If properly designed, database can ensure integrity by having a single 
copy of each data object, so changes can be centralized to one place. This can 
greatly reduce redundancy and inconsistency.

10.5.2 � Pattern-Based Assisted Dissemination and Design 
Environment

The central aspect of automating pattern-oriented design is its dependence on a pre-
defined process. An established design process instigates quality design by allowing 
designers to follow structured methods in their activities. In our approach, we estab-
lished the need for both dissemination and assimilation processes. We implement 
the dissemination process completely decoupled from any specific assimilation pro-
cess. This allows it to offer patterns that can be integrated simultaneously in several 
assimilation processes. “Free patterns” that do not belong to any process are hard to 
integrate in design. Similarly, “proprietary patterns” that are specifically tailored to 
manually fit one design process using one specific example defeat the main purpose 
of pattern generality and abstraction. We see that a pattern can be integrated in sev-
eral assimilation processes by properly encapsulating its knowledge and presenting 
its behavior through a well-defined interface.

Furthermore, there is usually more than one way to implement a specific pattern 
in different software systems. Furthermore, given the wide variety of user interface 
styles and development platforms, each pattern implementation can exist in various 
formats. For example, the Web Convenient Toolbar pattern that provides direct ac-
cess to frequently used pages such as What’s New, Search, Contact Us, Home Page, 
and Site Map, can be implemented differently for a Web browser, and a Personal 
Digital Assistant (PDA). For a Web browser, it can be implemented as a toolbar 
using embedded scripts or a Java applet in HTML. For a PDA, this pattern is bet-
ter implemented as a combo box using the Wireless Markup Language (WML). 
It becomes more convenient due to the PDA-related limitations like screen area, 
bandwidth, memory, and processor speed.

10.5.2.1 � Usability Pattern-Assisted Design Environment (UPADE) 
Architecture

UPADE provides a unified interface to support the development of UI designs and 
improve software production. It is a prototype written in Java that aims to support 
HCI pattern writers and UI developers. By leveraging the portability and flexibility 
of Java, UPADE enables developers to easily and effectively describe, search, ex-
change, and extend their own patterns as well as those created by others. UPADE 
offers features to combine patterns while supporting their integration at high design 
level and automate their composition.

10.5 � Tools Support for Pattern Reuse and Dissemination



238

As a tool for automating the development of UI designs, UPADE embodies sev-
eral functionalities. It helps both pattern writers and developers to use existing re-
lationship between patterns to define new patterns or create a design by combining 
existing patterns. Moreover, in order to facilitate pattern combinations, the tool sup-
ports different hierarchical, traceable design levels. In our case study associated with 
UPADE, three levels are possible: pattern level, design level, and code level. At the 
pattern level, developer can see description of patterns, search a specific pattern, cre-
ate a new pattern, and save it into the database. At the design level, developers can 
combine patterns, support the integration of patterns at different design stages, re-
place one pattern occurrence by another, and validate the selected pattern composi-
tions. Finally at code level, developers can see the structure of the design in terms of 
classes, methods, associations, and inheritance relationships in a particular program-
ming language. Additionally, UPADE provides a mechanism to check and control 
how patterns are created or modified. By using the database information, UPADE 
automatically examines the patterns and offers a related feedback to the designer.

10.5.2.2 � Key Features Offered to Both Pattern Authors and Users

The main UI includes the following components (Fig. 10.6):

•	 “Browse” provides a description of existing patterns, some illustrated diagrams, 
and several practical examples. In this mode, UPADE produces and delivers pat-
terns information. The information is presented using the incorporated format 
showing related design processes, pattern category, name, description, and ex-
amples. Categories are presented as a browse tree for navigation as shown in 
Fig.  10.5. By default, UPADE allows browsing patterns with their associated 
process name. However, software developers can switch to browse by category.

Writers

Solution

Problem

Context
Structure /

Architecture

Strategies
(Example,
Diagram

code)

DevelopersRationale

Consequence

Related Patterns

HCI/Usability Engineers

Fig. 10.6   Navigating and selecting patterns

 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



239

•	 “Search” improves efficiency of using UPADE by accelerating the searching of 
patterns. The search window presented to developer offers two kinds of searches. 
Users can have a simple search for patterns by keywords. They can also select 
from several advanced search criteria in the ‘Criteria Combo Box’ and apply it.

•	 “Edit” helps developers create their own patterns or modify existing ones. Since 
patterns are reusable components, a well-developed pattern should be saved for 
reuse in other designs (Florijin et al. 1997). UPADE allow developers to create 
new patterns and associate new implementation rules, or constraints with them. 
The use of constraints allows developer to decide how certain patterns can be 
combined with each other in the design mode.

•	 “Design” develops structured steps to combine patterns, support integrating them 
at several phases of design, and validate their composition. As shown before, be-
sides describing a solution, a pattern also describes several possibilities of how 
it can relate to other patterns and how it can be composed of other patterns. In 
this way, the generic nature of patterns is preserved. The creativity of design is 
also preserved by allowing designers the freedom to mix different patterns to-
gether. The process of freely mixing patterns together can be hard to validate in a 
complex network of patterns. Relationship constraints guide users into avoiding 
“invalid” or “less preferable” combinations and warn about unforeseen conse-
quences. By offering validation of pattern relationships, UPADE helps designers 
in selecting more appropriate combinations during their design.

In “Design” mode, UPADE can support combination and organization of exist-
ing patterns from more general to more specific details. For example, the software 
developer can embed “Page Managers” patterns into “Information Architectural” 
patterns, and both “Navigation Support” patterns and “Information Containers” 
patterns into “Information Architectural” patterns. Moreover, the designer has the 
freedom to organize “Navigation Support” patterns and “Information Containers” 
patterns inside the layout; they can move, combine, or delete them altogether. These 
activities aim to explore how to organize and combine existing patterns to custom-
ize and format the new ones. “Design” editor provides a mechanism to check the 
validity of combined patterns using the set of constraints associated with them. It 
examines the compatibility of certain patterns and gives the related instruction to 
the designer.

Once the “Design” tab is selected (Fig. 10.7), UPADE can help start a new pat-
tern-oriented design as follows:

•	 Pattern developers need to browse the tree in the “Browse Tree Pane” to view 
available patterns.

•	 Then they can select a pattern and drag and drop it into the “Drawing Pane” area.
•	 They repeat these two steps until all desired patterns are collected into the draw-

ing area.
•	 Next, by selecting “Link Mode” button, developers are guided to connect each 

pattern to others by choosing from different relationship types that are avail-
able in the combo box of the control menu. While developers can choose the 
way they want to connect patterns to generate their own design, and the type 
of relationships, UPADE will check the validity of all connections selected by 

10.5 � Tools Support for Pattern Reuse and Dissemination



240

users and allow only valid ones. Users can override this mechanism, but they are 
provided with the consequences of their selections to help them make informed 
decisions. At the end, the developer can save the new pattern composition map 
into XML format for use by other XML-compatible tools.

UPADE is designed to be customized and extended, with the realization in mind 
that some designers have achieved a local set of patterns and conventions for style 
and structure, and only need a tool to assist them in creating new design more 
quickly that honors those conventions.

10.6 � Key Contributions

Despite the wide acceptance of HCI design patterns within HCI and software en-
gineering community, the current process of pattern reuse is a simple process of 
publishing numerous patterns using different media, and leaving it up to the users to 
do their best in figuring out how to trace and use them.

We suggested an addition to this concept to help define and standardize the 
process of pattern dissemination and assimilation. This process leads to an effective 
reuse of the knowledge contents within patterns. We proposed and developed 
UPADAE, first as an online digital library to share patterns, and then an environment 

Fig. 10.7   Combining patterns in a new design

 

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



241

to  patterns-assisted design approach. In both categories, we prototyped several op-
tions at the database level (persistent layer), the processing level (tools), and the UI 
for both pattern writers and users.

The generalized pattern model and the associated notation to represent pattern 
have been discussed to facilitate interaction between patterns authors and users, and 
to pave the road for code generation from patterns descriptions.

References

Ackerman MS, Thomas WM (1990) Answer garden: a tool for growing organizational memory. 
Proceedings of the ACM conference on office information systems. ACM Press publishing, 
New York, pp 31–39. (Cambridge, Massachusetts, USA)

Alexander C., Ishikawa S., Silverstein M., Jacobson M., Fiskdahl-King I, Angel S (1977) A pattern 
language. Oxford University Press, New York

Alur D, Malks D, Crupi J (2003) Core J2EE patterns: best practices and design strategies. Sun 
microsystems core design series. Prentice Hall PTR, Upper Saddle River

Appleton B (2000) Patterns and software: essential concepts and Terminology. http://www.sci.
brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf. Accessed 
April 15, 2015

Arutla K (2000) Tool support for pattern oriented analysis and design. Master thesis, Department 
of Computer Science and Electrical Engineering. University of West Virginia, Morgantown

Beck K, Coplien JO, Crocker R, Dominick L, Meszaros G, Paulisch F (1996) Industrial experience 
with design patterns. Proceedings of the 18th International Conference on Software Engineer-
ing, IEEE Computer Society Press Publishing

Borchers JO, Sally F, Richard NG, Lyn P, Elke S (2001) Usability pattern language: creating a 
community. AI Soc (AIS) 15(4):377–385

Brinck T, Hand A (1999) What do users want in an HCI Website. EACE quarterly (European 
Association of Cognitive Ergonomics), vol 3. (issue no. 2, August)

Clancy MJ, Linn MC (1999) Patterns and pedagogy. Proceedings of the thirtieth SIGCSE techni-
cal symposium on computer science education. ACM Press publishing, New York, pp 37–42. 
(New Orleans, Louisiana, United States)

Colleen MK, Pitkow JE (1996) Surveying the territory: GVU’s five WWW user surveys. World W 
Web J 1(3):77–84. (CA, USA)

Chambers C, Harrison B, Vlissides JM (2000) A debate on language and tool support for design 
patterns. Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on principles of pro-
gramming languages, Boston, Massachusetts, USA, January 19–21. ACM. 277–289

Fincher S, Finlay J (2003) CHI 2003 report: perspectives on HCI patterns: concepts and tools; in-
troducing PLML. Interfaces, the international journal of human computer interaction 56:26–28. 
(British HCI Group publishing, Winchester)

Florijin G, Meijers M, van Winsen P (1997) Tool support in design patterns. Proceedings of 
ECOOP ‘97, 11th European Conference on Object-Oriented Programming, Utrecht University, 
Jyväskylä, Finland, June 9–13 1997. In: Askit M, Matsuoka S (eds) Lecture notes in Computer 
Science no. 1241. Springer, Berlin

Gaffar A (2004) The other side of patterns: a user-centered analysis. Preliminary results of Pat-
tern Usability Study, presented at UPA: Usability Professionals’ Association, Bloomingdale, 
Illinois, USA in conjunction with CRIM (Computer Research Institute of Montreal)

Gaffar A (2005) Studies on pattern dissemination and reuse to support interaction design. Concor-
dia University, Montreal

Gaffar A, Sinnig D, Javahery H, Seffah A (2003) MOUDIL: a comprehensive framework for 
disseminating and sharing HCI patterns, position paper in CHI workshop entitled: perspectives 
on HCI patterns: concepts and Tools. 3 pages

References

http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf


242

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison Wesley

Hoffer JA, George JF, Valacich JS (2002) Modern system analysis and design, 3rd edn. Prentice 
Hall PTR, Upper Saddle River

Mahemoff M, Lorraine JJ (2001) Usability pattern language: the language aspect. In Hirose M 
(ed), Human computer interaction: interact ’01, proceedings of IFIP TC.13 international con-
ference on human-computer interaction, July 9–13, 2001, Tokyo, Japan. Ohmsha Publishing, 
Tokyo, pp 350–358

Ling RF (1980) General considerations on the design of an interactive system for data analysis, 
vol 23. ACM Press Publishing, New York, pp 147–154. (Communications of the ACM, Issue 3)

Mahemoff M, Lorraine JJ (2001) Usability pattern language: the language aspect. In Hirose M 
(ed), Human computer interaction: interact ’01, proceedings of IFIP TC.13 international con-
ference on human-computer interaction, July 9-13, 2001, Tokyo, Japan. Ohmsha Publishing, 
Tokyo, pp 350–358

Porter R, Calder P (2004) Patterns in learning to program: an experiment. ACM International 
Conference Proceeding Series. Proceedings of the sixth conference on Australian computing 
education—Dunedin, New Zealand, vol 30. Australian Computer Society publishing Inc., Dar-
linghurst, pp 241–246

Portland pattern repository, survey results (2003). http://c2.com/cgi-bin/survey
Rouse WB (1981) Human–computer interaction in the control of dynamic systems, vol 13. ACM 

computing surveys (CSUR) ACM Press Publishing, New York, pp 71–99. (Issue 1)
Tidwell J (1997) Common Ground. A Pattern Language for Human-Computer Interface Design. 

http://www.mit.edu/~jtidwell/common_ground.html
Van Welie M, Van der Veer GC (2000) Patterns as tools for user interface design. International 

workshop on tools for working with guidelines, October 7–8. Biarritz
Whitten JL, Bentley LD, Dittman KC (2001) System analysis and design methods, 5th  edn, 

McGraw Hill Irwin, New York
Yacoub S, Ammar H (1999) Tool support for developing pattern-oriented architectures, Proceed-

ings of the 1st symposium on reusable architectures and components for developing distributed 
information systems, RACDIS’99, August 2–3, 1999, Orlando, pp 6658–6670

10  HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools



243

Chapter 11
PatternCity: A Gamification Approach  
to Collaborative Discovery and Delivery  
of HCI Design Pattern

© Springer International Publishing Switzerland 2015  
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_11

Abstract  Huge frustration is observed among the pattern users—the developers 
and novice designers using patterns to develop software products—as they usually 
spend a significant amount of time just to find the right pattern for their use from 
a very large and heterogeneous collection of patterns that are available via differ-
ent websites and databases. Since software developers are used to working under a 
tight schedule in various environments with different needs, they should find pat-
terns in a clear and understandable format or ready-to-go state along with a proper 
organization.

This chapter is an effort to overcome such drawback while closing the commu-
nication gap between different professional groups, who are interested in patterns 
and pattern languages. The goal is to introduce a methodical approach, in general, 
and a generalized format, in particular for pattern discovery, representation, and 
delivery. We first overview the current drawbacks of HCI design patterns which 
motivate the search for a new tool to document and deliver patterns. Then, we detail 
the ideas that lead the concept of PatternCity, a serious game in which HCI design 
patterns are represented as a building in a virtual world, and where the players can 
collaboratively build and improve these buildings.

11.1 � Introduction

As discussed in the previous chapters, patterns have been documented and made ac-
cessible via web pages. Information about patterns and the patterns collections was 
stored in a database in some collections. A web-based approach to access a central 
database of patterns may have the following advantages:

•	 A consistent set of attributes is used to describe patterns; the differences between 
two patterns are evident so that one pattern can be chosen over another in an 
informed manner.

•	 The collection can make interrelations between patterns explicit by categorizing 
and interlinking them.

•	 A digital database may also produce data about the access frequency of specific 
patterns, which can be used to estimate its popularity among the user base of this 



244 11  PatternCity

database (as patterns are only patterns if they are reused in similar context) this 
may reveal the need of reformulation or dismissal of a pattern.

The fundamental question addressed in this chapter is that how can a designer ac-
cess the content of this database while finding the right pattern at the right time? As, 
by definition, one does not know the name of the pattern searched for the first time; 
a pure text search may not be enough. Categorizing the patterns and adding key-
words to them could help to alleviate this problem. But the discovery of previously 
unknown concepts remains a difficult task due to their textual form.

When building a platform for these different stakeholders, various problems 
arise. To begin with, they may come with different expectations, styles of com-
munication, and goals. To give a quick overview over the broad range of possibili-
ties, we defined three personas (User eXperience UX Researcher, UI Designer, and 
Front-end Developer). The user of the platform may also have different roles: a 
pattern author, seeking to spread knowledge about his insights, may try to publish 
and promote on this platform; while others simply enjoy the social and fun aspect 
of this community.

A related work that needs to be mentioned is the Pattern Almanac (Rising 2000). 
It is an attempt to make accessible (via a unifying user interface) a very large col-
lection of all existing patterns and patterns languages. Several databases accessible 
via the Internet have also been proposed. However, these attempts fail in increasing 
the “ease to use and learning patterns” while making the pattern user experience a 
pleasant and enjoyable activity. As discussed further, the PatternCity project aims 
to overcome such goal while bridging the gap between patterns discovery and dis-
semination.

11.2 � The Problem of Representing and Delivering HCI 
Design Patterns

HCI design pattern writers, who are usability expert with background in psychol-
ogy, focus on usability, and human aspects of the user interface design. They gener-
ally prefer to use narrative formats to convey solutions to common user problems 
with supporting theories and concepts of interaction design and human factors. 
On the other hand, user interface designers are typically software developers who 
need concise and pragmatic guidance through their design and coding activities. 
They often find it hard to translate text pattern knowledge into concrete design 
(Lin et  al. 2000). Moreover, with the plethora of patterns available today, main-
stream developers get inundated with huge number of pattern literature and links in 
many books and on the Internet. They have to manually read and sift through piles 
of texts looking for some useful patterns to apply (Gaffar 2005).

In this regard, besides focusing on what should be presented in terms of informa-
tion contents within patterns, a fundamental challenge is how it should be packaged 
and offered to developers in an appropriate way to help understand and apply them 



24511.2 � The Problem of Representing and Delivering HCI Design Patterns

correctly and efficiently. As will be discussed in this chapter, more flexible nota-
tions and views are required to represent different types of pattern information.

The founding ideas of the PatternCity concept.
Built around a central database that includes all information about patterns and 

their usage, PatternCity combines a serious game and a social network combined 
into a 3D virtual world (Fig. 11.1).

The database containing information about HCI patterns is first of all meant to 
be a shared workspace: the information is not only consumed, but actively produced 
by the participants. Unlike a book, many authors need to contribute their respec-
tive perspective on a specific topic in order to find a representation of knowledge 
that is universally accepted. Ultimately, this may lead to a state of maturity where 
the organically grown content gets an authoritative character (similar to a Body of 
Knowledge).

In order to support this collaborative activity, we added aspects of a social net-
work, emphasizing the possibilities to communicate freely, to build up a circle of 
friends, and to stay aware of the activity of friends or related events. We also use the 
process of group identification as an attractive element to invite new participants: 
being invited by preexisting acquaintances may help new participants to familiarize 
and engage with this system.

These features are embedded within the context of a serious game: active par-
ticipants can earn credits and other awards, increasing their motivation. This play-
ful approach to a serious topic also encourages immersion, potentially leading to a 
more effective learning. Finally, this context allows us to establish rules, allowing 
this socio-technological system to regulate itself.

Ultimately, we can frame our solution as artifact-based, constructionist learning. 
The core of learning here is not memorizing details, but rather creating knowledge 

Fig. 11.1   Components of proposed platform

 



246 11  PatternCity

representations and evolving along with them. Social feedback by other participants 
and system feedback of the game rules can induce the participants to engage with 
the topic in a deeper manner than mere passive reception (such as reading or class-
room activities).

The following goals could be established (similar to the cycle of knowledge 
building (Stahl 2004):

•	 Where do I already use patterns, without being aware of its name and its con-
cept?

•	 What do others say about a specific pattern?
•	 How do I express my internal knowledge about patterns so that different stake-

holders can agree?
•	 Which patterns are suited in my specific context?
•	 How can I apply my knowledge about patterns in my current project?

11.2.1 � Early Prototype

The most recent result of works done in this topic was a clickable prototype (Fig. 
11.2). It contains all essential elements: it refers to the concept of social network 
(user has profiles, friends, and can communicate with them), establishes a database 
of patterns (each user can create patterns), and brings in components of a serious 
game (it is possible to buy patterns, see the high score of designers and patterns, 
and other statistics).

Fig. 11.2   Early prototype: user dashboard

 



24711.2 � The Problem of Representing and Delivering HCI Design Patterns

However, the interface does not clearly state how this game is functioning, and 
thus, why it would be enjoyable to join. Even if there was a page explaining the 
rules of the game, it would be quite difficult to convince a new user to engage with 
this system: the overall design does not look like a game any more than a blog 
or promotional website. Additionally, he would have to register before seeing any 
content.

There are big improvements to be made in the areas of storytelling (what does 
the site do? what is my role? which advantage does it give me? how can I be a part 
of this community?), wording (what is the concept behind this term?), consistent 
use of terms and motivation (why should I participate?).

In addition, some important aspects of the problem stated above were not ad-
dressed.

First of all, it does not take into account the diversity of the audience: as it pro-
poses only one way of describing patterns (narrative, text-based form), it does not 
encourage discussions where different actors can contribute their respective per-
spectives.

Second, the list-based browsing, even if combined with a keyword search, does 
not help the user find the applicable pattern if they do not know its terminology be-
forehand. The interface should invite the discovery of new or previously unknown 
patterns. Most importantly, the site does not fulfill the characteristics of a (serious) 
game (Ang and Zaphiris 2005): neither does it frame the action by a narrative, nor 
does it suggest explicit or implicit goals and rules.

It is for these reasons that we have decided to explore new approaches and ideas 
for this project, instead of iteratively evaluating and refining this prototype.

11.2.2 � Exploration Phase

The exploration that followed was led by the question: how can we design a user 
interface that is playful, expressive, and suited to our needs? Our main approach 
here was to try different metaphors and narratives, applying them to patterns and 
online communities, with the goal that the purpose of the interface should be clear 
at first glance.

11.2.2.1 � Pattern of Minesweeping

The pattern of Minesweeping (Welie 2008) inspired us to try out a playful discovery 
of patterns (Fig. 11.3). The size of the square carries meaning, such as represent-
ing its popularity; positioning and color can show related patterns. Additionally, 
filters allow the usage of this interface for different tasks: giving an overview of 
patterns, patterns of other friends or a specific category. This interface would moti-
vate mainly through its aesthetics: animations and colors encourage the use to “do 
something” with it, for the pleasure of manipulating it.



248 11  PatternCity

11.2.2.2 � Metaphors for Learning Patterns

Another method of motivating would be a system of reputation: points and badges 
reward positive behavior, as seen at Stack Exchange(http://ux.stackexchange.com) 
and other sites following the philosophy of gamification (Deterding et al. 2011). 
This would be very direct and behavioristic feedback, and would not suffice in itself 
to keep the user on site. However, it may be used to reinforce originally intrinsic 
motivation (“I want to learn about patterns” or “I want to document patterns”) or 
narratively induced goals.

As an example of such a narrative, the metaphor Formula One was 
studied (Fig. 11.4). This game is divided in three phases: To become a member of 
a team, the participant needs to show an example where he used the corresponding 
pattern at least once. Then every team tries to improve their pattern (“tuning”). Fi-
nally, all patterns are published and voted by the community; the racing car moves 
forward as the popularity of the pattern increases. These phases are repeated in fixed 
time intervals; existing patterns may be improved further, or new patterns can be 
created. This relatively simple game would combine “serious” work with fun, lever-
aging the spirit of competition as a motivator, and fostering collaborative activity 
around the topic of interface patterns.

Fig. 11.3   Playful discovery 
of patterns
 

Fig. 11.4   Native context 



24911.2 � The Problem of Representing and Delivering HCI Design Patterns

11.2.2.3 � Metaphors for Recognizing Patterns

Another metaphor would be that of the card game Pairs: the participant needs to 
find “two of the same kind”, either two different examples of the same pattern, or 
alternatively an example and the name of the pattern. By this, we could recognize 
patterns in their real-life context, and induce curiosity about patterns the participant 
did not know before. Here, we transfer the common knowledge of how to play Pairs 
to a different context of application, a method commonly used at language learning 
software.

11.2.3 � The PatternCity Concept

Based on these initial conceptual ideas, the concept of PatternCity evolved. Its core 
idea consists of two parts: every pattern is represented as a building in a virtual 
world, and the players (represented by their avatars) can collaboratively build and 
improve these buildings. The PatternCity also includes the following buildings:

•	 Forum, a place for meetings where designers and developers can discuss and 
share experiences regarding the use of patterns;

•	 City Hall, the place to register a pattern and get the approval to add it to the Pat-
ternCity.

•	 Trade Centre, the place to buy and sell patterns.
•	 Pattern Academy, the museum where the most innovative patterns and patterns 

authors are featured.
•	 Tourist Information Centre, a place where to go to get information, advise, and 

directions to visit and explore the PatternCity.
•	 The designer house is the place where all patterns proposed by a distinguished 

designer are featured.

The two main characteristics of the PatternCity components are pattern buildings 
and players.

11.2.3.1 � Pattern Buildings

A building can be viewed from the inside as well as from the outside. When viewed 
from the outside, only the most important aspects of it are shown inside of the win-
dows. It is only when he entered the building that the user can explore the details 
of the pattern.

Each of these details is hidden behind an object metaphor (e.g., a guest book to 
read and write comments, a vitrine to show the examples). In this way, we represent 
concepts as objects (an approach similar to the learning environment Pattern Park 
(Franke et al. 2007), where (software) patterns are represented by different rides in 
an amusement park.



250 11  PatternCity

These buildings are grouped into streets and townships, forming a digital city 
that can be shown on a map. In this city, some buildings have a special function: the 
Academy nominates and awards prizes to the best patterns, pattern collections can 
be shown in a Gallery, and the Stock Market displays the current popularity of each 
pattern. There is also a Town hall for signing up, filing bug reports, giving feedback, 
and reading the archives of the city newspaper. In the Information Center, the player 
can view the current statistics about the city, and he may also find a Forum specific 
to a topic for news, blog entries and chat sessions.

There are different ways of navigation proposed: a map displays patterns by au-
thor, category, or personal bookmarks. Once he has chosen his destination, a navi-
gation system leads him the way through the different streets. The navigation bar 
also shows his current position (on the map, as well as textual) and its surroundings. 
When navigating to a place he was before, the player can go there quicker.

11.2.3.2 � Players

The described environment serves as a shared space where all players can work to-
gether: the common goal is to “build up” the city. This happens not only by creating 
new buildings, but also by improving existing ones: the size of a building reflects 
its popularity. To break down this goal into smaller, individual goals, the game au-
tomatically gives feedback by giving reputation points for positive behavior. This 
encourages the player to try out the actions he can do, and continues to reinforce 
his motivation.

The players in the city also form a virtual community: direct communication 
between players is possible through a chat (synchronous medium) and messages 
(asynchronous medium). These tools are integrated into this game to foster social 
connections as well as collaborative work between real players.

To stay aware of modifications, prizes, and new buildings, the player can consult 
the recent activities or events concerning the player or one of his friends. Addition-
ally, the game leader, represented by “the Architect,” sends messages to inform 
about status information when trying to build a new pattern, or when participating 
in an Academy contest. For citywide information, the architect can publish a news-
paper, containing statistics, new features, or upcoming community events.

Most importantly, players do not only actively contribute by adding text and 
images to the pattern database, but have many design choices while doing so. As 
an example, the interior decoration of a building can be rearranged and modified, 
giving each building a particular flair. The position of the building is also a matter 
of choice: in this way, the structure of the city grows organically. Even the names 
of streets and townships may change, if a poll shows that many players agree on it. 
It is also possible to include elements of End-User-Programming: in this way, the 
player could even customize the interactive behavior of objects or add completely 
new objects.

In the same spirit, access to moderator functions is not limited to the administra-
tor, but can be delegated to motivated and experienced users. A reputation system 



25111.2 � The Problem of Representing and Delivering HCI Design Patterns

may keep track of the overall activity of a player. The amount of reputation of a 
player also helps other players to distinguish between beginners and experienced 
users (similar to Forums where the number of posts of a user is shown).

Players can also buy pattern shares at the Stock Market. Unlike the real stock 
market, the total number of shares is unlimited; the value/“popularity” of a pattern 
is calculated as a function of its number of visitors during a certain time period, its 
average ratings, and its current completeness. Buying a pattern means speculating 
that it will increase in popularity, and as it will be shown on the user profile as well, 
it also means endorsing and recommending this pattern to others.

Unregistered users can watch the city and its contents, but cannot interact with 
other players, modify buildings or buy at the Stock Market. If they want to partici-
pate in this game, then they will need to register at the Town hall.

In case of inappropriate behavior, that is, behavior that violates the “Charter of 
PatternCity” posted at the Town hall, users with the role of police officers may warn 
and, if needed, restrict the possibilities of a player (no communication, no edits) or 
even block his account temporarily.

The player can enter and leave the city by taking a bus; that is the reason why 
players do not have their own houses in the city. In fact, PatternCity is a city where 
patterns habitants and where designers and developers are the creators and users of 
the city.

11.2.4 � Implementation

In order to realize this concept and define a visual language, a chapter prototype 
(Appendix A) has been developed then transformed into a Balsamiq (http://www.
balsamiq.com) wire-frame. The environment resembles Second Life and Visimmo3d 
V3D events.

The interface resembles adventure games in many ways: characters move in a 
(pseudo)-3D-Space, within a predefined area of the screen, by following the mouse 
clicks. Doors or streets indicate the possibility to go to another scene (interior of a 
building or street view).

Objects, as they represent concepts and data, allow interaction with them: they 
show their name (or function) when the mouse hovers over them, and reveal their 
details in a pop-up window when clicked. The setting is dominated by architectural 
design: the special buildings each have a unique expressive architectural style dif-
ferentiating them from normal patterns.

In the following paragraphs, we will add some comments to the wire-frame pro-
totype. There are two versions of it, with and without the label names. As the last 
sketch explains, these label names are only visible when the user hovers over the 
corresponding object. These “tool-tips” help new users to playfully discover their 
action possibilities, but without cluttering the interface with too much text.



252 11  PatternCity

11.2.4.1 � The Top Bar

The top bar (Fig. 11.5) allows user communication and general game functionality. 
At the top left (1) a lexicon offers help. The user can type a question, and the system 
tries to find a similar “frequently-asked question.” These questions are logged, so 
that questions that are frequently asked can be added to the help. The window that 
opens when clicking on the footsteps (2) gives an overview of recent activity dur-
ing the user’s absence or while he was doing something else. A title (3) indicates 
the current location of the showed scene. On the right side, communication tools 
are offered for the envelope (4) which allows initiating a new conversation with a 
person in the current scene, related to the content of the current scene or to the user’s 
friends. For every user, its current status is shown (online/not available/offline). 
Recent conversations (5) and incoming messages (6) are shown on a per user basis. 
(To communicate within a bigger group, the group can meet in a Forum.) Finally, a 
click on the bus (7) quits the game.

11.2.4.2 � The Bottom Bar

The bottom bar (Fig. 11.6) assists navigation, on the left, a map of the city (1) along 
with a detail view, (2) shows the current position of the player (Note that this map 
is updated as the city grows.) The map icons show the buildings on the city map 
filtered by different aspects: depending on the navigational strategy of the user, he 
may search for a pattern with a certain name or within a certain category (3), for 
patterns by a specific user or author (4), highly rated and popular patterns (5) or pat-
terns that the player already viewed or has the intention to view (6). He also can go 
back to the buildings he was before (a history of visits similar to web browsers) (5), 

Fig. 11.5   Top bar

 

Fig. 11.6   Bottom Bar

 



25311.2 � The Problem of Representing and Delivering HCI Design Patterns

or see the chronological order of his visits (7). On the right, the current location is 
displayed in a text form (8), as well as the current destination (9).

11.2.4.3 � The Street View

The following sketch shows the street view (Fig. 11.7). Arrows indicate the possibil-
ity to go to other scenes: the player may enter a pattern (1) or advance to the next 
street segment (2). Some doors are open, indicating the presence of other players 
(3). A big arrow (4) indicates the navigational direction, in this case, how to get to 
Quick-flow Checkout (5). The city may also contain green spaces (6) or unfinished 
buildings (7) which have not been published yet.

11.2.4.4 � The Accordion Pattern

As an example how pattern buildings can look like from the inside, the accordion 
pattern (Fig. 11.8) has been depicted. Information that explains the pattern itself is 
posted on the back wall: A pattern description must contain a textual description 
(1) and at least one example (2) (screen-shots, possibly annotated). Additionally, a 
schema that reduces the pattern to its core (3), implementation tips as well as links 
to existing libraries (4) and scientific background information (5) can be added. The 
player can also view this information as one document (e.g., for printing) (6). Meta-
information can be found on the right wall: a list of recent changes by editors (7), 
a diagram shows the relations of this pattern to other patterns (can be used instead 

Fig. 11.7   Street view

 



254 11  PatternCity

of, is not compatible with, is a part of, contains subpatterns) (8). Statistics about the 
number of visitors over time (9), the possibility to buy a share of this pattern (10) 
and icons representing the author (11) and participating editors (12) are also provid-
ed. Finally, the player can leave his comments in the guest book of this pattern (13).

All of these objects open a pop-up when being clicked that reveals the complete 
information. Other players and their actions are visible in real-time: here, Bob is 
currently editing the description (14), while Anne is studying the print version of 
the pattern (15).

In which respects this concept is a game? Although there is no clear goal in order 
to “win the game,” it describes a system of rules in which some states are more 
desirable than others. This open-endedness allows the player to fix himself the goal 
that the wants to reach. To own many patterns, to be an editor of many patterns, to 
receive many awards, or to have many friends are all equally valid, intrinsically 
anchored goals. The aesthetic environment and the open question about the role of 
The Architect also contribute to make “work” “pleasurable”, a serious game.

Note that the descriptions from the above paragraphs are not completely identi-
cal with the scenario (which was written first). Also, the terminology needs to be 

Fig. 11.8   Inside a pattern building

 



25511.3 � Conclusion

more consistent: the name of the special buildings, the distinction between authors, 
editors and users, and other concept need refinement and a clearer definition. For 
now, these inconsistencies remain to remind that this is not the final concept yet, but 
rather a prototype of it.

11.3 � Conclusion

The use of patterns in Interaction Design, or related fields such as web design and 
GUI design, is gaining momentum in practice. Many patterns collections are now 
publicly available in books or online. With the huge number of patterns, organiza-
tion and classification is becoming a practical issue. No definitive pattern collection 
is available, terminology and formats are different for each pattern collection. This 
makes comparisons difficult.

In this chapter, our goal is to increase the overall awareness of user interface pat-
terns for the different stakeholders. We suggested a platform of three components: 
Pattern Database includes helpful information about user interface that is produced 
by the participants. Their collaborative activities are supported by the social net-
work component that emphasizes the communication. The last component is seri-
ous game, a context in which the earlier features are embedded.

Based on these components, the concept of PatternCity evolved. It consists of 
two parts: building in a virtual world that represents a pattern and avatars. They 
represent players who can collaboratively build and improve the buildings. Even 
if we do believe that the proposed PatternCity concept is applicable to all types of 
design patterns (Appendix A), we have focussed on HCI/UI design patterns, mainly 
for two reasons. First, because of our expertise in the field of HCI as designers, 
researchers and educators, we have developed a very large catalogue of patterns. 
Second, HCI patterns are most often documented by designers who have a back-
ground in psychology. This makes it challenging to describe patterns in way that 
they are easily transferable and understandable by software developers, the end 
users of these patterns.



256 11  PatternCity

Appendix A

New Prototype of PatternCity



257References

References

Ang CS, Zaphiris P (2005) Developing enjoyable second language learning software tools. A com-
puter game paradigm. Idea Group, New York

Deterding S, Sicart M, Nacke L, O’Hara K, Dixon D (2011) Gamification: using game-design 
elements in non-gaming contexts. In Human Factors in Computing Systems (CHI) Extended 
Abstracts. 2425–2428. ACM New York, NY, USA  

Franke D, Freischlad S, Friedrich L, Haug F, Klein B, Koslowski R, Stechert P, Ufer J (2007) Final 
report of the project design patterns. Department of Electrical Engineering and Computer Sci-
ence, University of Siegen

Gaffar A (2005) Studies on pattern dissemination and reuse to support interaction design. Concor-
dia University, Montreal

Lin J, Newman MW, Hong JI, Landay JA (2000) DENIM: finding a tighter fit between tools and 
practice for web site design. CHI Lett Human Factors Comput Syst 2(1):510–517

Rising L (2000) The pattern almanac 2000. Addison Wesley Publishing Inc, Boston
Stahl (2004) Building collaborative knowing. In: Strijbos J-W, Kirschner PA, Martens RL (Eds) 

What we know about CSCL: and implementing it in higher education, pp 53–86, Kluwer Aca-
demic Publishers, Boston

Welie (2008) Patterns in interaction design. http://welie.com/patterns/showPattern.php?patternID
=minesweeping. Accessed on April 15, 2015

http://welie.com/patterns/showPattern.php?patternID=minesweeping
http://welie.com/patterns/showPattern.php?patternID=minesweeping


259© Springer International Publishing Switzerland 2015
A. Seffah, Patterns of HCI Design and HCI Design of Patterns,  
Human-Computer Interaction Series, DOI 10.1007/978-3-319-15687-3_12

Chapter 12
A Pedagogic Pattern Model for Upskilling 
Software Engineering Students in HCI Design 
Practice

Abstract  In this chapter, we describe a pedagogical pattern process that structures 
and transcribes salient points of simulation-based learning applied to Human–Com-
puter Interface (HCI) design. First, we outline Christopher Alexander’s pattern 
language design theory. Second, we examine Jean Houssaye’s trialectic Pedagogic 
Triangle. Then, we combine key aspects of Alexander’s and Houssaye’s theories in 
order to document instructional practices in the teaching of engineering design. The 
practical and theoretical relevance of our unique approach is summarized in our 
Pedagogic Pattern Model (PPM). The model examines the instructional practices 
of experienced university instructors involved in HCI design courses. Through col-
lective analysis, PPM focuses on capturing reflective classroom experiences via 
structured case studies of teaching HCI design practice.

12.1 � Introduction

Design is a fundamental issue in software engineering, computer science as well 
as the management of information systems programs. This can be explained by the 
growing pressure on engineers and other design-oriented professionals to ground 
their design concepts and decisions on a systematic body of knowledge and em-
pirical evidence of successful design practice (cf. Van Aken and Romme 2009). 
Hevner and Chatterjee (2010) refer to Design Science Research in Information 
Systems. They include a selection of papers from the Design Science Research in 
Information Systems and Technologies conferences (DESRIST) that look at key 
principles of Design Science Research and the integration of research on design sci-
ences linked to design practices. In this context, this chapter addresses the increased 
demand for more clearly relevant design-oriented research and training based on 
real-world problems.

However, few publications exist in formalizing the way in which engineers can 
be trained in design with regard to existing good practice and to issues, topics, 
and paradigms that the field covers and those grounded in related domains. These 
domains include the study of the psychological and social aspects of users, their 



260 12  A Pedagogic Pattern Model for Upskilling Software Engineering …

behavioral styles and patterns, user experience modeling, design and prototyping 
tools, user-oriented and usability evaluation, traditional and future design para-
digms, as well as the role of theory in decision-making during design and design 
conception (e.g., Bergin 2012; Pedagogical Patterns Project 2001; Gamma et  al. 
1995). One manifest challenge of these domains is the way in which good prac-
tice can be formally captured, documented, and disseminated. More often than not, 
practices embedded in a specific project are difficult to reapply in other projects and 
organizational contexts. In effect, little work and tools exist to guide practitioners 
in capturing their successful, and unsuccessful, design practices. A Finnish study 
confirms this when it points out that: “…Most of the teachers aimed at promot-
ing purposeful inquiry in their pedagogical designs did not necessarily know good 
methods and practices for structuring and scaffolding students’ inquiry efforts” 
(Lakkala et al. 2005 p. 351).

This observation is equally true in the teaching of design to software engineer-
ing students. These students are often not familiar with the underlying theories and 
models of design. For example, many software engineering teaching programs 
include, invariably, a course on software design with UML (Unified Modeling Lan-
guage), software design patterns as well as a series of user-interface design lectures. 
Such instructional programs are not enough to train software developers in critical 
design skills. In addition, the large majority of software and HCI design textbooks 
do not address instructional design good practice and how instructors need to, or 
should, present such good practice to students. Moreover, it is not uncommon for 
cognitive psychology-based user-interface design to be seen as a nuisance that gets 
in the way of “real and traditional” software design. This results in the tendency 
of many software engineering students and instructors to consider user interface 
design practices and knowledge as haphazard, and thus unimportant. This explains, 
for a large part, why students find it difficult to fully understand and master user-
interface design methods. Clearly, then, the knowledge and training given is not 
sufficiently appropriate. If we accept the fact that user-interface design is indeed a 
key component in modern software development, the question is then how to teach 
such a challenging topic?

We argue that students and teachers need to go beyond ad hoc descriptions of 
design practices by examining how design patterns can be scripted, justified, and 
used via current design tools and techniques. What is needed is a robust instruc-
tional approach for design education. In this sense, the essential features of pattern-
based good design practice need to be logically and explicitly coherent from an 
instructional point of view. It is in knowing the logical underpinning of how an 
instructional practice can be captured and documented in order to empower instruc-
tors to share good design practice from one context to another in terms of needs of 
the learners and other stakeholders. In this case, it is in adopting a theory-driven 
logic to teaching/learning (pedagogics) that instructors can be empowered not to 
blindly reproduce someone else’s practice at the expense of the unique possibilities 
of their own context. We argue that it is through the understanding of the theoretical 
(epistemological) dynamics of a teaching/learning process that can lead to improv-
ing instructional practice (Labour and Kolski 2010, pp. 130–132).



26112.1 � Introduction

With this in mind, we propose a Pedagogic Pattern Model (PPM) as a framework 
to communicate the salient points of simulation-based learning when designing HCI 
concepts and practices. PPM is related to the emerging notion of “pedagogical pat-
terns,” which has been introduced in different domains notably in computer science 
through the Pedagogical Patterns Project (Bergin 2012). The aim of the pedagogi-
cal patterns approach is to capture the essence of practice that can be communicated 
to those who need the knowledge, such as new instructors needing to learn “what 
is known by senior faculty by easy transference of knowledge of teaching within 
the community” (Bergin 2012). This is in line with Wade (2002) for whom “peda-
gogical design patterns” seeks to capture expert teaching practice, communicate 
expertise, solve common recurring problems, provide a vocabulary of solutions, 
and work with other patterns. Such as this approach is presented, it appears that 
these documented “patterns” are portrayed as inherently “pedagogical” in them-
selves (reminiscent of a type of Platonic essentialism).

In order to avoid epistemological, if not semantic confusion, the specificity of 
the Pedagogic Pattern Model is that the knowledge creation process resides in un-
derlying sociocultural practice mediated by computer-based interaction, and is not 
intrinsically in what can be identified post hoc as discernible “patterns.” In this 
sense, the encapsulation of a given socio-cultural HCI practice—emerging as a des-
ignated “pattern”—and represents one key epistemological element, among others, 
that needs to be taken into account in a knowledge creation process. In short, pat-
terns act as a starting point to be adapted to the local socio-cultural HCI context, 
based on an explicit “model,” i.e., a synthetic portrayal of the generic features of a 
pattern-building process (Labour and Kolski 2010: 115–116). A set of documented 
patterns is thus not a manual of one-size-fits-all, ready-made recipe to be applied 
blindly. It is vital to emphasise this point in order to avoid confusion about the role 
and limits of such the PPM approach.

In operational terms, PPM uses a unique type of “alphabet” to transcribe key 
instructional events. In doing this, the alphabet allows a coherent transposition of 
events from one given context to another. This transposition implies keeping the es-
sential features of a sequence of events, while altering its more secondary features 
to the possibilities of a given context.

The originality of PPM is that it provides a guideline for structuring instructional 
frameworks in a logical manner based on good practice. First and foremost, we 
contend that the inner driving force of such an approach depends on the inventive-
ness that a teaching/learning framework affords the instructor. In this sense, French 
philosopher, Chartier (1932/1967) espouses this point of view in highlighting a par-
adox of inventiveness. For Chartier (1932/1967 p. 106), the ingenuity of tomorrow 
comes from the study of tried and tested practices of the past. How then to identify 
and render coherent these past practices? One recognized authority in the world of 
science and engineering, who has adopted such a view of good practice, is design 
architect Christopher Alexander.

Alexander developed his approach after observing that users understand more 
about designing the building they need than a qualified expert-architect. The role 



262

of such an expert is to capture and harness users’ lived knowledge. Based on 
this observation, Alexander et  al. (1977) produced an approach called “pattern 
language” in designing and building different objects. This approach gave rise 
to the design pattern movement that has crossed over to other domains rang-
ing from software design to the social sciences (e.g., Labour and Kolski 2010, 
pp. 126–129).

12.2 � A Five-Step Approach to Using a Pedagogic Pattern 
Model

The five basic phases of the “Model” (in the sense of portraying essential elements 
and their relationships within a given structure, see Table 12.1 below) can be sum-
marized in the following way:

Table 12.1.   Pedagogic Pattern Model of Case study #1: Simulation of adaptable, adaptive and/or 
personalized HCI design
A.1. Knowledge domain pole of the Pedagogic Triangle
– Classroom context Discourse community context
Aims Without object To improve the identification of design 

errors of potential future designers
“Initial” state (at TØ) Copy of the slides used 

and explanations given to the 
students

(at TØ) Existing knowledge including 
resources (e.g. books) and explanations 
given to the students

“Final” state (at T1) The same as TØ plus 
learners’ solutions and instructor’s 
comments

(at T2) The same as TØ

A.2. Instructor pole of the Pedagogic Triangle:
– Classroom context Discourse community context
Aims To teach HCI design To learn about design errors in HCI 

design
“Initial” state (at TØ) Intention to encourage 

students to learn, viz. through 
simulation

(at TØ) Intention to acquire data 
concerning students as potential HCI 
designers

“Final” state (at T1) Satisfaction that the stu-
dents can design a HCI system

(at T1) Intention to analyze available 
data (i.e. the dossiers)

A.3. Learner pole of the Pedagogic Triangle:
– Classroom context Discourse community context
Aims To pass the exam To obtain the degree and get a job with 

skills required for the job market
“Initial” state (at TØ) Acquiring skills to pass 

the exams
(at TØ) Hope to acquire knowledge 
about HCI design

“Final” state (at T1) Satisfaction of developing 
skills via the production of a qual-
ity HCI specification dossier

(at T1) Confidence to be able to pro-
duce real HCI specification dossiers in 
companies (knowledge transfer)

12  A Pedagogic Pattern Model for Upskilling Software Engineering …



263

a.	 General description and context
b.	 Spatiotemporal boundary markers
c.	 Overall action plan of pedagogical techniques/tools
d.	 Group interactions at each pole of Housaye’s Pedagogic Triangle
e.	 Feedback

12.2.1 � General Description and Context

It is in this initial phase that the overall teaching/learning (pedagogic) situation is 
set. The aim is to describe what Alexander (1979, p. 253) calls a “systems of forces” 
that bonds a series of opportunities and limits of a given situation. This description 
is visually represented by French educationalist, Houssaye (1992, p. 235, 1994) as 
an all-encompassing circle (Fig. 12.1, see below).

12.2.2 � Spatiotemporal Boundary Markers

Temporal markers act as markers of when a sequence formally starts and ends. In 
this case, the TØ marker designates the Initial state of the instructional sequence for 
the learner, the instructor, and the researchers. The T1 marker indicates the Final 
state of the instructional session for the learner and the instructor. The T2 marker 

Knowledge domain

(Governing)
Institution

Side 3
learner-led

process

Learner

Side 2
instructor-

led process

Side 1
insteractionally-

led process

oror:Symbol

1 (Interactionnally-led process) or
2 (teacher-led process) or
3 (learner-led process)

X:

a

b

Instructor

Fig. 12.1   a The Pedagogic 
Triangle adapted from 
Houssaye (1992). b Symbols 
indicating the three learning 
processes of Houssaye (1992)

 

12.2 � A Five-Step Approach to Using a Pedagogic Pattern Model



264

identifies the End state of the researcher’s analysis of what was done and what 
could have been done in the instructional session.

Spatial markers pinpoint two basic levels of analysis regarding instructional 
sequences. First, there is the “Classroom context” associated with instructor–stu-
dent interactions in a given space–time. Second, the markers also indicate the 
“Discourse community context.” In this way, PPM takes into account, in the de-
sign of instructional sequences, that the curriculum of future engineers is bound 
by norms (e.g., of what is considered as legitimate knowledge) and values (e.g., 
deontological) of a scientific and professional community. Ideally, there should be a 
reciprocal relationship between the two levels through the description and analysis 
of the changing needs, preferences, and expectations of “Classroom context.”

12.2.3 � Overall Action Plan of Pedagogical Techniques/Tools

In order to render the action plan operational, a diagrammatic system was developed 
based on Houssaye’s Pedagogical Triangle (1992). In essence, the Pedagogical 
Triangle consists of three apexes—Knowledge domain, Instructor and Learner—
circumscribed by a circle indicating the limits and the opportunities of a given 
instructional context (see above “General description and context”). Each apex 
interacts with another and this leads to formally distinct learning processes, see 
Fig. 12.1 (below). Each process is visually represented by three triangles with dif-
ferent shaded sides, see Fig. 12.2 below.

Fig. 12.2   Guide to the process of the overall action plan

 

12  A Pedagogic Pattern Model for Upskilling Software Engineering …



265

In using the Pedagogic Triangle, a series of task boxes are proposed indicating 
which learning process predominates in a given sequence (Labour and Kolski 2010: 
118, 120). Houssaye argues that if more than one instructional process is “activat-
ed” simultaneously, it is likely to be cognitive overloading, if not conflict between 
processes that are intrinsically different. Each symbol is then put in a “Task box” 
with a description of the predominating learning process, according to the “action 
plan” and a succinct description of the task objective. The appropriate spatiotem-
poral boundary markers (TØ, T1, or T2) are found on the left hand side of the Task 
box, see Fig. 12.2 below. There are no limits as to the number of boxes that can be 
put in the model. Task boxes are linked by arrows. Downward arrows show the ini-
tial flow of the sequences and upward arrows indicate feedback dynamics.

12.2.4 � Group Interactions Between Poles of the Pedagogic 
Triangle

The phase describes the selected presence of an interaction linked to an anticipated 
learning process. These interactions involve intra- and inter-group processes be-
tween the Learner-led, Instructor-led, and knowledge domain poles of Houssaye’s 
Pedagogic Triangle (see Fig. 12.1 above). The interactions need to be regulated in 
order to avoid cognitive overloading or conflict between the processes. Such inter-
actions represent what the ancient Greeks called pharmakon, i.e., certain phenom-
ena are neither good nor bad, they can cure or kill, it all depends on their dosage.

12.2.5 � Feedback

Systematic feedback is indispensable in order to adapt to the changing needs of 
learners and instructional contexts. The feedback reexamines the sequences and 
their effects on learners.

In the section that follows, a specific instructional context is formalized accord-
ing to the principles of the Pedagogic Pattern Model. To do this, we present a simu-
lation-based learning context in an HCI design case study.

12.3 � Case Study in HCI Design

12.3.1 � Protocol

Since the beginning of the 1990s, we have conducted various studies in several 
HCI design courses. We asked engineering students to play the role of HCI design-
ers of interactive systems in rival “companies.” The studies were conducted with 
classes of 20–25 students in their fourth year of a Bachelor’s degree in Electrical 

12.3 � Case Study in HCI Design



266

Engineering and Industrial Computer Science (average age of students is 23 years), 
and with students doing a Master’s degree in Information Technology (average age 
is 24 years).

The protocol used in our studies is made up of three phases. The first phase 
includes a preliminary preparation phase of a 12 h instructor-directed class in HCI 
design. The application domain is focused on the design of adaptable, adaptive, 
and personalized HCI as used by different types of users. The pedagogic content 
is grounded on several works, such as those of Rasmussen (1986), Schneider-Huf-
schmidt et al. (1993), Hoc and Amalberti (1995), Calvary et al. (2003), Brossard 
et al. (2011), as well as the instructor’s personal professional experience gained in 
several industrial projects.

During the second phase of 6 h (90 min a week over 4 weeks), the students were 
organized in teams of four or five. All the teams were seated in the same room, with 
each team being only several meters from each other. Each team represented a com-
pany. The companies (teams) competed against each other in submitting a tender 
for the design of an adaptable, adaptive, and/or personalized HCI system to be used 
by several types of users in a complex industrial organization. The projected users 
were to perform tasks in normal and abnormal situations.

One of the rules of the simulation is that the teams should avoid revealing 
information to their “competitors.” During the sessions, the teams were able to 
question the instructor who acted both as the game master and an “employee” 
made available to competing companies by the organization that had launched the 
invitation for tender. At the end of the week, each team had to submit a specifica-
tion dossier (in PDF format by email) presenting their analysis of the problem and 
a model-based description of an adaptable, adaptive, and/or personalized HCI. 
Three extracts of specification dossiers are shown in the following figures: (a) a 
UML use case of different types of users (see Fig. 12.3 below), 12.3b two screen 
pages extracted from a mockup (see Fig.  12.4a below), and 12.4c an UML se-
quence model describing the dynamics of a proposed interactive application (see 
Fig. 12.4b below).

In the third phase, we collected feedback from the instructor about each student’s 
dossier. We used 35 evaluation criteria deemed crucial in the HCI field (usabil-
ity problems, relevance of the solution, methodological weaknesses, quality of the 
models used…). A panel of instructors studied and graded the dossier of the teams 
and the oral presentation of their work.

12.3.2 � Spatiotemporal Boundary Markers

At the heart of our model is section B. To characterize the experience found in the 
case study, we drew up Table 12.1 below. The table portrays a double-entry format 
juxtaposing the “classroom” (local) and “discourse community” (global) contexts 
in terms of temporal markers. This description is followed by a diagrammatic ex-
pression of the Pedagogic Pattern Model (Fig. 12.5, see below).

12  A Pedagogic Pattern Model for Upskilling Software Engineering …



267

12.3.3 � Action Plan of Pedagogical Techniques or Tools Used

Taking account of the three-part rule of the design pattern approach, a diagrammatic 
representation of the action plan is presented in Fig. 12.5 below. The figure portrays 
the overall process in a more schematic way, followed by a step-by-step commen-
tary of the structure that our Pedagogic Pattern Model affords its user. In this way, 
Table 12.1 and Fig. 12.5 present the data in a way that they can be compared and 
contrasted with other similar pedagogic contexts. These elements suggest that our 
approach is able to identify common instructional features in different contexts.

Table 12.1 shows an overall process that goes from TØ to T1 based on the three 
different phases of the Pedagogic Triangle. The first phase is an instructor-led pro-
cess (side #2 of the Pedagogic Triangle). The second phase is a learned-led process 
(side #3 of the Triangle). The third is an interactionally led process (side #1 of 
the Triangle). All three sides are concerned in the teaching/learning process, but 
at different given moments in order to avoid conflict between teaching/learning 
processes. This is followed by an instructor-led process (side #2 of the Triangle) 
during which the instructor undertakes a self-evaluation about the module. It is at 
this juncture that a loop back of information operates to improve future instruction 
sequences (see Fig. 12.5 below). Finally, the instructor-led process (side #2) moves 

Use case

Engineer

Foreman

Supervisor

Roundsman

Fire Department

Technician Contect

In maintenance

Perform task

Analyze

Display

System

Control room

Supervisor
screen

Roundsman PDA

Station
screen

Station

Expert

Send orders

Request statistics

Give objectives

Alert

Fig. 12.3.   Example of an UML use case, showing seven types of users (given in a specification 
dossier)

 

12.3 � Case Study in HCI Design



268

on to a broader analysis as a HCI researcher, within a given discourse community, 
to finish at T2. The consequences of the Pedagogic Pattern Model portrayed in 
Table 12.1 and in Fig. 12.5 are made explicit under the concepts of “group interac-
tion” (see Sect. 12.3.4 below) and “feedback” (see Sect. 12.3.5 below).

Assign action

supervisor:Supervisor stationScreen:Screen

sendSuggestion()

consultStationState()

carryOutOrder()

assignAction()

Display()

Display()

system:System roundsmanPDA:PDA stationScreen:Screen

Last name
First name

Date
Time

Task to performCurrent task

Last name
First name

Date
Time

Task to performCurrent task

Working out of the A4
product on the S4
station

1 Station 4 (in maintenance)

4 Station 2 (in maintenance)

2 Station 3 (Active)

3 Station 5 (Active)Station in maintenance

Done Problem

Description: List of tasks:

a

b

Fig. 12.4.   a Example of two screen pages, as part of a mockup of an interactive system available 
on a PDA (given in a specification dossier). b Example of an UML sequence diagram (given in a 
specification dossier) based on an order sent from one actor to another via the interactive system

 

12  A Pedagogic Pattern Model for Upskilling Software Engineering …



269

12.3.4 � Group Interactions at Each Pole of the Pedagogic 
Triangle

Interactions at the “learner” pole:

•	 Interaction between groups of learners: The sub-groups (teams) were in com-
petition as rival “companies.” It was therefore important for each group to avoid 
transmitting important data to the other groups.

•	 Interaction within groups of learners: As the work was difficult and long, 
members of each group had to cooperate to finish their task. The instructor noted 
down the exchanges of ideas and points of view of each group.

•	 Interaction with the institution: There was a small possibility that the stu-
dents had discussed with students from previous years or with other instructors 
(though few of them were specialized in HCI) about the on-going project. This 
was a calculated risk taken by the instructor, but such intrusive influence has 
never been identified.

Interactions at the “instructor” pole:
•	 Interaction between groups of instructors: not applicable as the instructor 

worked alone.
•	 Interaction within groups of instructors: The instructor had discussed with 

colleagues about innovations in pedagogy, but there was no discernible conse-
quence on the module in question as its action plan had been predefined based 
on previous experiences of other modules.

•	 Interaction with the institution: The instructor took into account the fact that 
other classes had also conducted similar simulations involving HCI design and 
evaluation in the previous year and software engineering in the two previous years.

-

(T2)

Side #1 (pedagogical relation): analysis of 
the dossiers, feedbacks and commentaries 
from the lecturer, interactions between the 

lecturer and the students 

Side #2 (teaching): classical lecture (slides, 
commentaries), during 10 hours 

Side #3 (learning): role-play, 1.5 hours a 
week for 4 weeks, production of a dossier 

(T0) 

(T1)

Side #2 (teaching): personal reflexion 
 about the module by the lecturer 

(no more direct relation with the students) 

Side #2 (teaching): personal reflexion and  
analysis by the lecturer, as a HCI researcher 
 (no more direct relation with the students) 

(T2)

Transfer for other modules 

Transfer   for 
following 

sessions   (in 
this case,  

next  year)

Fig. 12.5.   Overall action plan of an HCI design simulation

 

12.3 � Case Study in HCI Design



270

	 Interactions at the “knowledge domain” pole:
•	 Interaction between knowledge domains: Along with pedagogical texts from 

the instructor, other texts were available to students from the internet and the 
university library.

•	 Interaction within a knowledge domain: In certain groups, there were several 
students with a specialized knowledge in HCI (acquired in past projects or in-
ternships). The instructor noticed in such cases that these students attempted to 
share their experience with the group.

•	 Interaction with the institution: Other faculty staff could have helped students 
to improve the quality of their specification dossiers but students did not avail of 
this help.

12.3.5 � Feedback

•	 Feedback from the “learner” pole: Each of the groups participated in the simu-
lation with a high degree of motivation as witnessed by the virtual lack of ab-
senteeism in the simulation classes, and by the fact that all the dossiers handed 
in included many positive aspects in accordance to the instructor’s evaluation 
criteria. Thanks to the simulation, the potential designers felt they had worked 
on a project that was close to industrial reality. The students also appreciated the 
competitiveness between the groups. In short, there was no visible presence of 
learner boredom or the intrusion of the all-knowing instructor interfering with 
learners’ work.

•	 Feedback from the “instructor” pole: Learners appreciated the simulation as 
a valuable asset to their formal university instruction. The professional nature of 
student dossiers and their active participation satisfied the expectations of the 
instructor. During the oral examination, a panel of instructors questioned the 
learners. This provided valuable input to the instructor in how to better explain 
the general description and context of the simulation module in the following 
years. This feedback leads to the conclusion that the danger of learners falling 
back on prefabricated knowledge was not a dominant feature of the simulation.

•	 Feedback from the “knowledge domain” pole: An analysis of the dossiers 
will be followed by the submission of a scientific publication as a way to get 
feedback from the HCI community.

12.4 � Conclusions

This chapter investigates the underlying pedagogy of teaching design practices for 
software developers. The design practices are, or can be, captured in the format of 
HCI design patterns as defined in the other chapters of this book. We propose a 
model to capture good instructional practice seeking to develop knowledge creating 

12  A Pedagogic Pattern Model for Upskilling Software Engineering …



271

process in students. Our Pedagogic Pattern Model (PPM) is based on patterns that 
have been recognized in many areas of education involving group work, software 
design, and HCI. The approach can be seen as both an extension of HCI design pat-
terns, and of pattern languages in general aimed at fostering the teaching of design 
via good practices.

More specifically, the chapter examines the experiences of instructors whose 
goal are to capture pedagogic patterns in teaching design. To do this, PPM marries 
key aspects of Christopher Alexander’s pattern language approach to Jean Hous-
saye’s trialectic theory. This led to a Pedagogic Pattern Model, which consists of 
five phases: (1) General description and context, (2) Spatiotemporal boundary 
markers, (3) Overall action plan of pedagogical techniques or tools used, (4) Group 
interactions at each pole of the Pedagogic Triangle, and (4) Feedback.

The strength of the model is that it presents different instructional constructs in 
an educationally coherent manner. This is achieved through a specially developed 
transcription mode, which describes events concerning the learner, instructor, and 
knowledge domains. In this chapter, the transcription of instructional practice fo-
cuses on simulations in Human–Computer Interface design (HCI) by effectively 
incorporating the cognitive, emotional and socio-cultural aspects of users’ experi-
ences and behavior patterns.

It is hoped that the capacity of PPM to transcribe and document good practice 
contributes to a more hands-on interdisciplinary approach in the dissemination of 
design practice when preparing our students for the professional world. From this 
perspective, the Pedagogic Pattern Model contributes to an overall vision of HCI 
design as a domain at the intersection of computer sciences, design sciences, and 
social sciences, including the fields of education and psychology.

References

Alexander C (1979) The timeless way of building. Oxford University Press, New York
Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King, Angel S (1977) A pattern 

language. Oxford University Press, New York
Bergin J (2012) Pedagogical patterns: advice for educators. createspace independent publishing 

platform. joseph bergin software tools. http://www.pedagogicalpatterns.org/. Accessed 11 Nov 
2014

Brossard A, Abed M, Kolski C (2011) Taking context into account in conceptual models using a 
model driven engineering approach. Inf Softw Technol 53(12):1349–1369

Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A unifying 
reference framework for multi-target user interfaces. Interact Comput 15(3):289–308

Chartier EA (aka Alain) (1932/1967) Propos sur l'éducation. Digital version of Propos sur 
l'éducation. Paris: Presses Universités de France, 13th edition. http://classiques.uqac.ca/clas-
siques/Alain/propos_sur_education/propos_sur_education.pdf. Accessed 1 Nov 2014

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley, Boston

Hevner A, Chatterjee S (2010) Design research in information systems: theory and practices. 
Springer, Germany

References



272

Hoc J-M, Amalberti R (1995) Diagnosis: some theoretical questions raised by applied research. 
Curr Psychol Cogn 14(1):73–101

Houssaye J (1992) Théorie et pratiques de l'éducation scolaire I: Le triangle pédagogique. Peter 
Lang, Switzerland

Houssaye J (1994) “The relevance of the pedagogical triangle: understanding operating principles 
of the pedagogical situation”. Paper presented at the annual meeting of the American Educa-
tional Research Association (AERA). New Orleans, USA

Labour M, Kolski C (2010) A pedagogics pattern model of blended e-learning: a step towards 
designing sustainable simulation-based learning. In: Tzanavari A, Tsapatsoulis N (eds) Affec-
tive, interactive and cognitive methods for e-learning design: creating an optimal education 
experience, IGI Global, Hershey, pp. 114–137

Lakkala M, Lallimo J, Hakkarainen K (2005) Teachers’ pedagogical designs for technology-sup-
ported collective inquiry: a national case study. Comput Educ 45(3):337–356

Pedagogical Patterns Project (2001) http://www.pedagogicalpatterns.org. Accessed 27 Oct 2014
Rasmussen J (1986) Information processing and human-machine interaction, an approach to 

cognitive engineering. Elsevier Science, Amsterdam
Schneider-Hufschmidt M, Kuhme T, Malinowski U (eds) (1993) Adaptive user interfaces. Elsevier 

Science, Amsterdam
Van Aken JE Romme G (2009) Reinventing the future: adding design science to the repertoire of 

organization and management studies. Organ Manag J 6:5–12
Wade SJ (2002) The application of pedagogical design patterns to the development of distance 

learning materials. distance learning colloquium. Organised by LTSN-ICS University of 
York, UK

12  A Pedagogic Pattern Model for Upskilling Software Engineering …


	Executive Summary 
	Audience 
	Book Structure and Contributions 

	Contents
	Chapter-1
	The Patterns of HCI Design: Origin, Perceptions, and Misconceptions
	1.1 Original Ideas About Design Pattern
	1.2 HCI Design Patterns—A Working Definition
	1.3 Examples of Patterns in HCI
	1.4 Pattern Benefits
	1.5 Misconceptions About Design Patterns
	1.6 Why and How Design Patterns Can Make a Difference?
	References


	Chapter-2
	From HCI Patterns Languages to Pattern-Oriented Design
	2.1 Patterns as Tool to Capture Design Knowledge and Best Practices
	2.2 HCI Design Pattern Languages
	2.3 HCI Pattern Languages and the User-Centered Design Process
	2.4 Pattern Supported Approach (PSA)
	2.5 Pattern-Oriented Design
	2.6 Key Contributions of the Chapter
	References


	Chapter-3
	HCI Design Patterns as a Building Block in Model-Driven Engineering
	3.1 Motivations
	3.2 Patterns and User Interface Model-Driven Engineering
	3.3 Pattern-Driven and MBUI (PD-MBUI) Framework
	3.3.1 Basic Concepts and Terminology
	3.3.2 PD-MBUI Major Models

	3.4 Examples of Patterns
	3.4.1 HCI Patterns Taxonomy and Samples
	3.4.2 Patterns Instantiation and Application

	3.5 Examples of Models Construction Using Patterns
	3.5.1 Patterns in Task Modeling
	3.5.2 Patterns in Dialog Modeling
	3.5.3 Patterns in Presentation Modeling
	3.5.4 Patterns in Layout Management Modeling

	3.6 An Illustrative Case Study
	3.6.1 The Task Model
	3.6.2 Completing the Find Room Task
	3.6.3 Designing the Dialog Structure
	3.6.4 Defining the Presentation and Layout Model

	3.7 Key Contributions of This Chapter
	References


	Chapter-4
	Adding Usability Quality Attributes into Interactive Systems Architecture: A Pattern-Based Approach
	4.1 Software Architecture—A Definition
	4.2 Drawbacks and Fundamentals
	4.3 A Pattern-Based Integration of Usability in Architecture
	4.4 Identifying and Categorizing Typical Scenarios
	4.5 From Scenario to Design Patterns
	4.5.1 System Design Patterns
	4.5.2 Interaction Design (HCI) Patterns

	4.6 Modeling the Cause–Effect Relationships Between the Model and User Interface
	4.7 Application
	4.8 Key Contributions of this Chapter
	References


	Chapter-5
	A Pattern Framework for Task Modeling in Smart Environments
	5.1 Task Modeling for User Interface
	5.2 Proposed Pattern Framework for Task Modeling
	5.3 Task Modeling Patterns Notation
	5.3.1 The Model-Based Approach We Used
	5.3.2 Pattern Notation
	5.3.2.1 Structure Attributes
	5.3.2.2 Variable Declarations and Assignments


	5.4 Pattern References and Pattern Interfaces
	5.4.1 Example of a Pattern
	5.4.2 Application of Patterns

	5.5 Case Study: Task Modelling in Smart Environments
	5.6 Summary
	References


	Chapter-6
	HCI Patterns in Multiplatform Mobile Applications Reengineering
	6.1 On the Needs for Reengineering
	6.2 Steps in User Interface Reengineering
	6.2.1 Reverse Engineering
	6.2.2 Transformation
	6.2.3 Forward Engineering

	6.3 Patterns in Reengineering
	6.3.1 A Brief Overview on Patterns
	6.3.2 The Various Role of Patterns in the UI Reengineering Process

	6.4 Examples of UI Reengineering with Patterns
	6.4.1 Migration from Text-Based to GUI for Legacy Interactive Systems
	6.4.2 Reengineering a Web-Based Interface for Small Devices
	6.4.3 Reengineering Navigation Systems to different Architecture Sizes

	6.5 Key Issues and Contributions
	References


	Chapter-7
	Generative Patterns for Cross-Platform User Interfaces: The Case of the Master-Detail Pattern
	7.1 Introduction
	7.2 Related Work
	7.2.1 Master-Detail Pattern—An Operational Definition
	7.2.2 The M-D Pattern Usage in Pattern Collections
	7.2.3 The Master-Detail as a Generative Pattern
	7.2.4 Previous Work on M-D Pattern
	7.2.5 Shortcomings and Requirements

	7.3 Revisiting the M-D Pattern Description
	7.4 Integrate the M-D Pattern in the Whole UI Development Process
	7.4.1 Task Model
	7.4.2 Domain Model
	7.4.3 Abstract User Interface Model
	7.4.4 Concrete User Interface
	7.4.5 The M-D Pattern Application Support Toward FUI
	7.4.5.1 Description of the Framework Supporting the M-D Pattern in Abstract High Level UI Models
	7.4.5.2 Possible Presentation Options Toward FUI Model


	7.5 The M-D Pattern Application Support
	7.5.1 Support for M-D Pattern Application
	7.5.2 M-D Pattern Presentation for Tabbed List Presentation in Mobile Application
	7.5.3 M-D Pattern in Grouped, Ordered, or Structured List Presentation

	7.6 Contributions of the Chapter
	References


	Chapter-8
	POMA: Pattern-Oriented and Model-Driven Architecture
	8.1 Key Concepts of POMA
	8.2 POMA Overview
	8.3 POMA Justifications
	8.4 POMA Specifications and Representation
	8.4.1 The eXtensible Markup Language (XML) Notation
	8.4.2 The Unified Modeling Language (UML) Notation

	8.5 Architectural Levels and Categories of Patterns, Composition, and Mapping Rules
	8.5.1 Architectural Levels and Categories of Patterns
	8.5.1.1 Information Patterns
	8.5.1.2 Interoperability patterns
	8.5.1.3 Visualization Patterns
	8.5.1.4 Navigation Patterns
	8.5.1.5 Interaction Patterns
	8.5.1.6 Presentation Patterns

	8.5.2 Patterns Composition
	8.5.3 Patterns Mapping

	8.6 Model Categorizations
	8.6.1 Domain Model
	8.6.2 Task Model
	8.6.3 Dialog Model
	8.6.4 Presentation Model
	8.6.5 Layout Model
	8.6.6 Transformation Rules

	8.7 Key Issues and Contributions
	References


	Chapter-9
	Patterns in Web-Based Information Systems
	9.1 Introduction
	9.2 Design Challenges of Web Applications
	9.3 Web Design Principles
	9.4 Case Study: A Detailed Discussion
	9.4.1 Overview
	9.4.2 Defining the Domain Model
	9.4.3 Defining the Task Model
	9.4.4 Defining the Dialog Model
	9.4.5 Defining the Presentation and Layout Models

	9.5 Key Issues and Contributions
	References


	Chapter-10
	HCI Pattern Capture and Dissemination: Practices, Lifecycle, and Tools
	10.1 Capture and Reuse of HCI (Human–Computer Interaction) Patterns
	10.2 A Survey on Patterns Usages
	10.2.1 The Survey Structure and Population
	10.2.2 Analysis Method and Key Findings
	10.2.2.1 Who Develops the User Interface? Who are the Users of Patterns?
	10.2.2.2 The Current Practices of Guidelines and Patterns
	10.2.2.3 The Status of Pattern Tools
	10.2.2.4 The Mainstream Perception About Patterns


	10.3 An Extended Schema for Representing Patterns
	10.3.1 Why a Schema?
	10.3.2 A Schema for a Generalized Pattern Model

	10.4 Modeling the Pattern Discovery and Dissemination Life Cycle
	10.4.1 The Challenges of Dissemination
	10.4.2 The 7C’s Lifecycle for Collection and Dissemination of Patterns
	10.4.2.1 Combine—Place Different Pattern Languages in One Central Place
	10.4.2.2 Clear Out—Add on the Top the Different Formats, One Unifying Description
	10.4.2.3 Certify—Define a Domain and Clear Terminology
	10.4.2.4 Contribute—Receive Input from Pattern Community
	10.4.2.5 Connect—Establishing Semantic Relationships Between Patterns
	10.4.2.6 Categorize—Mapping Patterns into the Assimilation Channels
	10.4.2.7 Control—Machine Readable Format for Future Tools

	10.4.3 Qualities of Design Patterns
	10.4.3.1 Formality
	10.4.3.2 Practicality
	10.4.3.3 Experience
	10.4.3.4 Reusability
	10.4.3.5 Abstract, Modular Framework
	10.4.3.6 Community


	10.5 Tools Support for Pattern Reuse and Dissemination
	10.5.1 An Online Database for Patterns Documentation and Sharing
	10.5.2 Pattern-Based Assisted Dissemination and Design Environment
	10.5.2.1 Usability Pattern-Assisted Design Environment (UPADE) Architecture
	10.5.2.2 Key Features Offered to Both Pattern Authors and Users


	10.6 Key Contributions
	References


	Chapter-11
	PatternCity: A Gamification Approach to Collaborative Discovery and Delivery of HCI Design Pattern
	11.1 Introduction
	11.2 The Problem of Representing and Delivering HCI Design Patterns
	11.2.1 Early Prototype
	11.2.2 Exploration Phase
	11.2.2.1 Pattern of Minesweeping
	11.2.2.2 Metaphors for Learning Patterns
	11.2.2.3 Metaphors for Recognizing Patterns

	11.2.3 The PatternCity Concept
	11.2.3.1 Pattern Buildings
	11.2.3.2 Players

	11.2.4 Implementation
	11.2.4.1 The Top Bar
	11.2.4.2 The Bottom Bar
	11.2.4.3 The Street View
	11.2.4.4 The Accordion Pattern


	11.3 Conclusion
	Appendix A
	References


	Chapter-12
	A Pedagogic Pattern Model for Upskilling Software Engineering Students in HCI Design Practice
	12.1 Introduction
	12.2 A Five-Step Approach to Using a Pedagogic Pattern Model
	12.2.1 General Description and Context
	12.2.2 Spatiotemporal Boundary Markers
	12.2.3 Overall Action Plan of Pedagogical Techniques/Tools
	12.2.4 Group Interactions Between Poles of the Pedagogic Triangle
	12.2.5 Feedback

	12.3 Case Study in HCI Design
	12.3.1 Protocol
	12.3.2 Spatiotemporal Boundary Markers
	12.3.3 Action Plan of Pedagogical Techniques or Tools Used
	12.3.4 Group Interactions at Each Pole of the Pedagogic Triangle
	12.3.5 Feedback

	12.4 Conclusions
	References





